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Editorial foreword 

The electron density of a non-degenerate ground state system determines essentially 
all physical properties of the system. This statement of the Hohenberg–Kohn theorem 
of Density Functional Theory plays an exceptionally important role among all the 
fundamental relations of Molecular Physics. 

In particular, the electron density distribution and the dynamic properties of this 
density determine both the local and global reactivities of molecules. High resolution 
experimental electron densities are increasingly becoming available for more and 
more molecules, including macromolecules such as proteins. Furthermore, many of 
the early difficulties with the determination of electron densities in the vicinity of 
light nuclei have been overcome. 

These electron densities provide detailed information that gives important insight 
into the fundamentals of molecular structure and a better understanding of chemical 
reactions. The results of electron density analysis are used in a variety of applied 
fields, such as pharmaceutical drug discovery and biotechnology. 

If the functional form of a molecular electron density is known, then various 
molecular properties affecting reactivity can be determined by quantum chemical 
computational techniques or alternative approximate methods. 

Spin densities determine many properties of radical species, and have an important 
effect on the chemical reactivity within the family of the most reactive substances 
containing free radicals. Momentum densities represent an alternative description of 
a microscopic many-particle system with emphasis placed on aspects different from 
those in the more conventional position space particle density model. In particular, 
momentum densities provide a description of molecules that, in some sense, turns 
the usual position space electron density model ‘inside out’, by reversing the relative 
emphasis of the peripheral and core regions of atomic neighborhoods. 

This book contains a selection of chapter topics based on papers given at the 
12th conference of the Commission on Charge, Spin and Momentum Density of the 
International Union for Crystallography, held in Waskiesiu, Prince Albert National 
Park, SK, Canada, July 27–August 1, 1997. The choice of topics represents some 
of the latest advances in the field of electron, spin, and momemtum densities and 
the analysis of these densities with respect to their roles in determining chemical 
reactivity.

It is the hope of the editors that this book will provide our readers with an exciting 
collection of accounts of the latest advances, and also will provide further motiva- 
tion for new research to address some of the challenging, unsolved problems of the 
fascinating interrelations between electron, spin, and momemtum densities, and the 
complex subject of chemical reactivity. 

Paul G. Mezey and Beverly Robertson 

ix
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Maximum Entropy charge density studies: Bayesian
viewpoint and test applications

PIETRO ROVERSI1, JOHN J. IRWIN1 and GÉRARD BRICOGNE1,2

1 MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England
2 LURE, Bâtiment 209D, 91405 Orsay, France

1. Introduction

The Maximum Entropy (abbreviated MaxEnt) method has been used in the field of 
accurate charge density studies for some time now (see Section 2.2): it has the potential 
to overcome some of the limitations of traditional multipolar modelling, but great care 
must be taken not to apply it outside the range of validity of its own foundations. 

In this paper, after a brief discussion of the main sources of error affecting the 
present day implementation of multipolar and MaxEnt charge density studies 
(Sections 1.1 and 2.2), we present a rationale for the well-known drawbacks of the 
MaxEnt method as applied to charge density studies. In particular, we will show
that the use of a uniform prior-prejudice distribution gives rise to artefacts when the 
dynamic range of the electron density to be reconstructed is large enough that the 
exponential modelling of the density requires non-negligible Lagrange multipliers 
past the resolution limit of the available diffraction data. The artefacts are not due to 
insufficient numerical precision, but to series termination effects in the Fourier series 
with Lagrange multipliers as coefficients. 

In the last section of the paper, we discuss a Bayesian approach to the treatment of 
experimental error variances, and its first limited implementation to obtain MaxEnt 
distributions from a fit to noisy data. 

1.1. Model bias in multipolar charge density studies 

The main sources of error in charge density studies based on high-resolution X-ray
diffraction data are of an experimental nature; when special care is taken to minimise 
them, charge density studies can achieve an accuracy better than 1% in the values of 
the structure factor amplitudes of the simplest structures [1, 2]. The errors for small 
molecular crystals, although more difficult to assess, are reckoned to be of the same 
order of magnitude. 

The challenge is then to achieve the same degree of accuracy in the derived values 
of the experimental electron density. Recent studies have shown that in some cases 
this is indeed within the reach of the present-day modelling techniques [3–5]. When
the major sources of experimental error have been corrected for the typical root mean
square electron density residual can reach values as low as 0.05 e Å–3, with maxima
below 0.20eÅ–3 in absolute value. The observed residuals are usually due to the

1
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errors in the experimental data, but high-resolution, high-quality data sets can in
some cases bring to light inadequacies of the model.

In practice, the choice of parameters to be refined in the structural models requires a
delicate balance between the risk of overfitting and the imposition of unnecessary bias
from a rigidly constrained model. When the amount of experimental data is limited,
and the model too flexible, high correlations between parameters arise during the least-
squares fit, as is often the case with monopole populations and atomic displacement
parameters [6], or with exponents for the various radial deformation functions [7].

A main source of model bias lies in the choice of exponents in the single-exponential-
type functions rn exp (–α r) that are commonly used as the radial parts of the defor- 
mation functions: this choice is often ‘more of an art than a science’ [4]. Very little is
known about the optimal values to be used for elements other than those of the first 
two rows. Selection of the best value for the exponents n is usually carried out by 
systematically varying exponents and monitoring the effects on the R indices and/or 
residual densities [8, 9]. The procedure can in some cases be unsatisfactory, as is the 
case when very diffuse functions centred on one atom are used to model most of the 
density in the bond, and even some of the density on neighbouring atoms [10]. 

Extra radial flexibility has been proved necessary in order to model the valence 
charge density of metal atoms, in minerals [6, 11], and coordination complexes [5], 
and similar evidence of the inability of single-exponential deformation functions to 
account for all the information present in the observations have also been found in 
studies of organic [12, 13] and inorganic [14] molecular crystals. 

When atoms occupy highly symmetrical sites, a further limitation of the current 
multipolar expansions is the limited order of the spherical harmonics employed, 
that do not usually extend past the hexadecapolar level ( l = 4). Only two multi-
polar studies published to date used spherical harmonics to orders higher than l = 4: 
graphite [15] and crystalline beryllium [16]. In the latter work, the most significant 
contribution to the valence density was indeed shown to be given by a pole of 
order l = 6. 

2. MaxEnt charge density studies 

Because of the limitation intrinsic to the adoption of an explicit parametrised density 
model, many crystallographers have been dreaming of disposing of such models 
altogether. The thermally-smeared charge density in the crystal can of course be 
obtained without an explicit density model, by Fourier summation of the (phased) 
structure factor amplitudes, but the resulting map is affected by the experimental 
noise, and by all ‘series-termination’ artefacts that are intrinsic to Fourier synthesis 
of an incomplete, finite-resolution set of coefficients. 

A second approach which is not subject to the limitations imposed by the choice of a 
parametrised model of the density, is the MaxEnt method. The appeal of the method is 
evident when counting the increasing number of applications to charge density studies 
that have appeared in the crystallographic literature in the last ten years: see among 
the most recent ones [17–20], and the works cited in relevant sections of reviews 
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on charge density studies [21] and on MaxEnt methods in crystallography [22]. In 
principle, MaxEnt maps are not tied to any particular multipolar expansion, or radial 
deformation function, and can mirror any degree of angular and radial deformation 
that is present in the observations. 

2.1. The random scatterer model 

All of the studies published so far have been aiming at the reconstruction of the total 
electron density in the crystal by redistribution of all electrons, under the constraints 
imposed by the MaxEnt requirement and the experimental data. After the acceptance 
of this paper, the authors became aware of valence-only MaxEnt reconstructions 
contained in the doctoral thesis of Garry Smith [58]. The authors usually invoke 
the MaxEnt principle of Jaynes [23–26], although the underlying connection with 
the structural model, known under the name of random scatterer model, is seldom 
explicitly mentioned. 

According to the latter model, the crystal is described as formed of a number of equal 
scatterers, all randomly, identically and independently distributed. This simplified 
picture and the interpretation of the electron density as a probability distribution to 
generate a statistical ensemble of structures lead to the selection of the map having 
maximum relative entropy with respect to some prior-prejudice distribution m(x)
[27, 28].

When it is employed to specify an ensemble of random structures, in the sense 
mentioned above, the MaxEnt distribution of scatterers is the one which rules out the 
smallest number of structures, while at the same time reproducing the experimental 
observations for the structure factor amplitudes as expectation values over the ensem-
ble. Thus, provided that the random scatterer model is adequate, deviations from the 
prior prejudice (see below) are enforced by the fit to the experimental data, while the 
MaxEnt principle ensures that no unwarranted detail is introduced. 

2.2. A look at the MaxEnt charge density literature 

Since 1993, a number of studies have been devoted to assessing the limitations of 
the MaxEnt method when applied to charge density studies, especially in conjunction 
with uniform prior-prejudice distributions. We summarise here the main points that 
have arisen from these model studies. 

Uneven distributions of residuals. The MaxEnt calculations in presence of an overall 
chi-square constraint suffer from highly non-uniform distributions of residuals, first 
reported and discussed by Jauch and Palmer [29, 30]; the error accumulates on a 
few strong reflexions at low-resolution. The phenomenon is only partially cured by 
devising an ad hoc weighting scheme [20, 31, 32]. Carvalho et al. have discussed this 
topic, and suggested that the recourse to as many constraints as degrees of freedom 
would cure the problem [33]. 
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Dynamic range of the density and low-density regions in the crystal. In their work
cited above, Jauch and Palmer first pointed out the inadequacies of the method in
dealing with densities having a large dynamic range. Additional evidence of these
inadequacies has come from Papoular et al., who worked on observed and simulated
data sets for α -glycine [ 18]. In the latter study, when all electrons were redistributed
with a single-channel approach, the density of the hydrogen atoms was clearly flat-
tened, and features below 2 e Å–3 were in general deemed to be scarcely significant,
because the large dynamic range of the total density reduced the sensitivity level.
A two-channel calculation,1 fitting structure factors calculated from the deformation
density, did not suffer from the same limitations due to the reduced dynamic range of
the density to be reconstructed.

Errors in the low-density regions of the crystal were also found in a MaxEnt study
on noise-free amplitudes for crystalline silicon by de Vries et al. [37]. Data were
fitted exactly, by imposing an esd of 5 × 10–4 to the synthetic structure factor
amplitudes. The authors demonstrated that artificial detail was created at the mid-
point between the silicon atoms when all the electrons were redistributed with a 
uniform prior prejudice; extension of the resolution from the experimental limit of 
0.479 to 0.294 Å could decrease the amount of spurious detail, but did not reproduce 
the value of the forbidden reflexion F(222), that had been left out of the data set 
fitted.

Dependence of results from the prior-prejudice distribution. Non-uniform prior-
prejudice distributions (NUP for short in what follows) were initially introduced by 
Jauch and Palmer by centering 3D Gaussian functions at the nuclear positions [29]. 
They found that the low-density regions of the crystal changed significantly upon 
introduction of the NUP, but the uneven distribution of errors persisted. 

Iversen et al., in their study of crystalline beryllium [32], were the first to make 
use of NUP distributions calculated by superposition of thermally-smeared spherical 
atoms. More recently, a superposition of thermally-smeared spherical atoms was 
used as NUP in model studies on noise-free structure factor amplitudes for crystalline 
silicon and beryllium by de Vries et al. [38]. The artefacts present in the densities 
computed with a uniform prior-prejudice distributions have been shown to disappear 
upon introduction of the NUP. No quantitative measure of the residual errors were 
given.

Finally, recent work of Iversen et al. has carefully examined the bias associated to 
the accumulation of the error on low-order reflexions, and attempted a correction of the 
MaxEnt density [39]. The study, based on a number of noisy data sets generated with 
Monte Carlo simulations, has produced less non-uniform distribution of residuals, and 
has given quantitative estimate of the bias introduced by the uniform prior prejudice. 
For more details on this work, we refer the reader to the chapter by Iversen that appears 
in this same book. 

1Two-channel MaxEnt techniques have also been used in the study of magnetization and spin 
densities [34, 35] and to interpret unpolarised neutron diffraction data [36]. 
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2.3. The joint use of MaxEnt distributions and structural models 

None of the studies mentioned in Section 2.2 has explicitly addressed the main issue 
of the redistribution of core electron densities under MaxEnt requirements in the 
absence of high-resolution observations. This is indeed the key to explaining the 
unsatisfactory features encountered so far in the applications of the method to charge 
density studies. 

By its very definition, the MaxEnt method is optimally suited to flexibly reconstruct 
distributions whose main features are well represented in the available data, that is 
either in the observations or in the prior structural knowledge. When this is the case, 
the missing structure can be reasonably approximated by a collection of randomly 
and independently distributed constituents (by ‘missing structure’ here we mean all 
those structural details which are not completely defined by the prior knowledge). 

If these structural features are not well represented by a mild redistribution of ran-
dom independent constituents from an initially given prior prejudice, and arise instead 
from some degree of correlation between the scatterers, they cannot be expected to be 
satisfactorily dealt with by the method. For these reasons, substructures which scatter 
well beyond the experimental resolution should be left out of the subset of scatterers 
distributed at random. The data sets commonly collected for charge density studies 
do not as a rule extend beyond 0.4 Å resolution, but scattering from the atomic core 
does extend well beyond this limit.2

It is therefore clear that MaxEnt redistribution of all electrons, using a uniform 
prior prejudice and carried out in the absence of very high-resolution diffraction 
measurements, cannot be expected to reproduce a physically acceptable picture of 
atomic cores. The reconstruction of total electron densities from limited-resolution
diffraction measurements amounts to a misuse of the MaxEnt method, especially 
when the prior prejudice is uniform. 

Within the multichannel Bayesian formalism of structure determination, it is in-
deed possible to make use of MaxEnt distributions to model systems whose missing 
structure can be reasonably depicted as made of random independent scatterers. This 
requires that the structural information absent in the diffraction data be obtained 
from some other experimental or theoretical source. The known substructure can be 
described making use of a parametrised model. 

2.4. The MaxEnt equations and density: a brief reminder 

The general computational mechanism of Bayesian crystal structure determination 
in presence of various sources of partial phase information was first outlined by 

2When low-temperature studies are performed, the maximum resolution is imposed by data collection 
geometry and fall-off of the scattered intensities below the noise level, rather than by negligible high-
resolution structure factor amplitudes. Use of Ag K α radiation would for example allow measurement of 
diffracted intensities up to 0.35 Å for amino-acid crystals below 30 K [40]. Similarly, model calculations 
show that noise-free structure factors computed from atomic core electrons would be still non-zero up to 
0.1Å.
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Bricogne [41]; a status report, now somewhat dated, about its actual implementation
for a number of crystallographic problems was given by the same author in [42].

In this section, we briefly recall the MaxEnt equations and the functional form of the
MaxEnt probability distribution; the formulation is the one obtainable for randomly
and independently distributed electrons, in the presence of a subset of electrons whose
distribution is assumed to be known. The latter structure will be denoted as ‘fragment’.

Let us consider a collection H = (h1 , h2, . . . , hM) of symmetry-unique reflexions.
We denote by the ‘target’ phased structure factor amplitude for reflexion hj, and
with the contribution from the known substructure to the structure factor for the
same reflexion. We are interested in a distribution of electrons q(x) that reproduces
these phased amplitudes, in the sense that, for each structure factor in the set of
observations H,

(1)

where the contribution of the random scatterers is related to q (x) by

(2)

In this expression, |G| is the number of elements of the space group of the crystal,
and f and n are the scattering power and number of the point random scatterers in
the asymmetric unit, respectively.

Since all the scatterers are identical, their structure factors can be normalised to
unitary structure factors, as is always the case for homogeneous structures of normal
scatterers [41]:

(3)

Now we make use of the invariance of q(x) under symmetry operations of space
group G:

(4)

and of the group structure of G, to rewrite Equation (2) as

(5)

The quantity in curly brackets in Equation (5) is called the constraint function Cj(x).
To deal with all the observations hj ∈ H in compact form, the unitary structure 

factor components can be arranged in a vector Urand, and the components of the 
constraint functions collected in a vector C(x) . The MaxEnt distribution of electrons 
qME(x) then takes the form 

(6)
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where Z(λ) is a normalising factor for q(x),

(7)

and the saddle point λ = λ* is computed by solving the MaxEnt equations

(8)

The name of the distribution is due to the fact that the saddle point λ * can also be 
obtained as the vector of Lagrange multipliers needed to find the distribution q = qME

for which the relative entropy, 

(9)

is at a maximum [27]. 

2.5. MaxEnt deformation density maps 

Most of the relevant features of the charge density distribution can be elegantly 
elucidated by means of the topological analysis of the total electron density [43]; 
nevertheless, electron density deformation maps are still a very effective tool in charge 
density studies. This is especially true for all densities that are not specified via a 
multipole model and whose topological analysis has to be performed from numerical 
values on a grid. 

Conventional implementations of MaxEnt method for charge density studies do 
not allow easy access to deformation maps; a possible approach involves running a 
MaxEnt calculation on a set of data computed from a superposition of spherical atoms, 
and subtracting this map from qME [44]. Recourse to a two-channel formalism, that 
redistributes ‘positive-’ and ‘negative-density’ scatterers, fitting a set of difference 
Fourier coefficients, has also been made [18], but there is no consensus on what the 
definition of entropy should be in a two-channel situation [18, 36, 41]; moreover, the 
shapes and number of positive and negative scatterers may need to differ in a way 
which is difficult to specify. 

Thanks to the particular choice made for the NUP, taken equal to a superposition 
of spherical atoms, it is for the first time possible within the present approach to 
compute MaxEnt deformation maps in a straightforward manner. Once the Lagrange 
multipliers λ have been obtained, the deformation density is simply 

(10)

This map can have negative as well as positive features, and yet its calculation involves 
only that of the positive map qME, thus avoiding the issue of extending the MaxEnt 
method to two-channel problems. 
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3. The role of the prior-prejudice distribution 

It appears from formula (6) that the prior-prejudice distribution m(x) is a fundamental 
quantity in the calculation of the MaxEnt distribution of electrons, in that the latter 
is obtained by modulation of m(x). In all those regions where the modulating factor 
required to fit the observations is unity, the final picture is therefore always going 
to coincide with the prior expectation itself. For this reason, it is of the greatest 
importance that some of the prior information available about the system under study 
be conveyed into the calculation by means of a sensible choice for the prior-prejudice
distribution.

This is especially true when the observations are not informative enough, as is the 
case for total charge density reconstruction based on finite resolution X-ray diffraction 
data. Even when valence electrons only are redistributed at random, the shell structure 
of the atomic densities might still require high-order components that are past the 
experimental resolution [2]. The choice of the uniform prior-prejudice distribution 
amounts to ignoring the presence of atoms in the crystal, so that its property of 
being ‘maximally non-committal’ is no longer a virtue but a vice: it is in fact too
non-committal.

Not only is the choice of a uniform prior-prejudice distribution not sensible; it 
also exposes the calculation to two main sources of computational errors, both con-
nected with the functional form of the MaxEnt distribution of scatterers, and with 
its numerical evaluation: namely series termination ripples and aliasing errors in the 
numerical sampling of the exponential modulation of m(x). The next two paragraphs 
will illustrate these issues in some detail. 

3.1. The spectrum of the exponential modulation of m (x)

As already pointed out by Jauch [30], the series appearing in the exponential factor that 
modulates m (x) in ( 6 ) has a finite number of terms, and can therefore give rise to series 
termination artefacts. In particular, although the exponentiation will ensure positivity 
of the resulting density, series termination ripples will be present in the reconstructed
map whenever the spectrum of the modulation required by the observations extends 
significantly past the resolution of the series appearing in the exponential. This in turn 
will depend both on the ‘true’ density whose Fourier coefficients are being fitted, and 
on the choice for the prior prejudice. 

The phenomenon can be illustrated by considering a model density q(x), from 
which diffraction data can be computed at arbitrarily high resolution. The (normalised) 
exponential factor needed to reconstruct q(x) by MaxEnt modulation of a chosen 
prior-prejudice distribution m(x) can be written as 

(11)

The series in the exponential is called ω : ω (x) = λ . C(x).
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Figure 1. Amplitudes of the Fourier coefficients of log(qx)/m(x)) in resolution bins for L-alanine at
23 K. q(x): total model density, from a multipolar tit to 23 K diffraction data protect [45]. Continuous line:
m (x) = uniform distribution. Dotted line: m(x) = core and valence monopoles. The vertical bar marks 
the experimental resolution limit 0.463 Å. 

Fourier analysis of the logarithm of the ratio q(x)/m(x) can now inform us about 
the extent to which the finite resolution of the observations fitted is likely to affect the 
MaxEnt reconstruction, depending on the choice for the prior prejudice. The better 
guess m(x) is, the smaller the amplitudes of the Lagrange multipliers will be. Finite-
resolution effects will be negligible when the use of a good NUP keeps the magnitude
of the Lagrange multipliers to a minimum. 

Figure 1 shows the average strength of the Fourier coefficients of log ( q(x)/m(x)),
with q(x) a multipolar synthetic density for L–alanine at 23 K, and two different prior-
prejudice distributions m(x). It is apparent that the exponential needed to modulate
the uniform prior still has Fourier coefficients larger than 0.01 past the experimental 
resolution limit of 0.463 Å. Any attempt at fitting the corresponding experimental 
structure factor amplitudes by modulation of the uniform prior-prejudice distribution 
will therefore create series termination ripples in the resulting MaxEnt distribution. 

The exact amount of error introduced cannot immediately be inferred from the 
strength of the amplitudes of the neglected Fourier coefficients, because errors will 
pile up in different points in the crystal depending on the structure factors phases as 
well; to investigate the errors, a direct comparison can be made in real space between 
the MaxEnt map, and a map computed from exponentiation of a resolution-truncated
‘perfect’ ω -map, whose Fourier coefficients are known up to any order by analysing 
log(q (x) / m (x)).
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(a) (b)

Figure 2. L-alanine. Dynamic deformation density in the COO- plane. (a) Model dynamic deformation
density (b) MaxEnt dynamic deformation density ( ) map obtained with a non-uniform
prior of spherical-valence shells. Map size: 6.0Å × 6.0Å Contour levels: from –1.0 to 1.0 eÅ–3, step
0.075 e Å–3.

In particular, if the ω -map suffers from an error ∆ω due to its finite resolution

(12)

(13)

the error in the final MaxEnt map will be proportional to the density itself

(14)

Errors are therefore enhanced in high-density regions.

3.1.1. L-Ala MaxEnt valence density from noise-free data 
To check this prediction, a number of MaxEnt charge density calculations have been
performed with the computer program BUSTER [42] on a set of synthetic structure
factors, obtained from a reference model density for a crystal of L-alanine at 23 K. The
set of 1500 synthetic structure factors, complete up to a resolution of 0.555 Å [45],
was calculated from a multipolar expansion of the density, with the computer program
VALRAY [46].

The MaxEnt valence density for L-alanine has been calculated targeting the model
structure factor phases as well as the amplitudes (the space group of the structure is
acentric, P212121). The core density has been kept fixed to a superposition of atomic
core densities; for those runs which used a NUP distribution m(x), the latter was
computed from a superposition of atomic valence-shell monopoles. Both core and
valence monopole functions are those of Clementi [47], localised by Stewart [48]; a
discussion of the core/valence partitioning of the density, and details about this kind of 
calculation, may be found elsewhere [49]. The dynamic range of the L-alanine model
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(a) (b)

Figure 3. L-Alanine. Dynamic deformation density in the COO– plane. (a) – m(x).
(b) exp (x)) – m(x). Map size, orientation and contouring levels as in Figure 2.

valence density at this temperature is ~966; this fairly high value is mainly due to the 
sharp increase of the valence monopole functions of oxygen atoms at approximately 
0.196 Å from the nucleus (see Figure 8). 

Uniform prior prejudice. Figure 2(a) shows the model deformation density in the 
plane of the carboxylate moiety. Figure 3(a) shows the MaxEnt deformation density 
in the same plane, obtained modulating a uniform prior prejudice for the valence 
electrons. The valence density is affected by errors up to 22% around the oxygen 
atoms. Figure 3(b) shows the deformation density computed from exponentiation of 
the ‘perfect’ ω -map, truncated at the same resolution used for the MaxEnt calculation. 
The errors around the oxygen atoms in the two maps of Figure 3 have the same shape; 
this is a strong indication that these are indeed Fourier-truncation ripples. 

We stress here that any low-temperature valence density for a small organic molecule 
will have a comparably high dynamic range, so that even valence-only MaxEnt studies 
will always be likely to need a NUP if truncation ripples are to be avoided. 

Non-uniform prior prejudice. The dynamic range of the exp( ω ) map is reduced 
from 966 to a value of 3.3 when a NUP of spherical valence monopoles is used: as 
a consequence, the size of the Lagrange multipliers is reduced by between one and 
two orders of magnitudes, and the error due to series truncation in the ω -map is less 
than 0.213 e Å–3 in absolute value everywhere in the cell, the rms deviation from the 
model being as low as 0.212 e Å–3 (Figure 2(b)).3

3The value of the rms deviation from the reference density can be deceptively low, due to the fact that 
in the intermolecular regions the model density is virtually the same as the one made of spherical-valence
shells, which was used as a NUP. The agreement between the MaxEnt map and the reference model is very
close in those regions. 
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3.2. Numerical sampling of the exponential modulation of m (x)

A second major source of computational difficulties associated with uniform prior-
prejudice distributions is connected with the extremely fine sampling grids that are 
needed to avoid aliasing effects in the numerical Fourier synthesis of the modulating 
factor in (8). To predict the dependence of aliasing effects upon the prior prejudice, 
we need to examine more closely the way the MaxEnt distribution of scatterers is 
actually synthesised from the values of the Lagrange multipliers λ. 

First, we rewrite the constraint functions appearing in the observational equation 
(5) by taking explicitly into account the phase of the residual target structure factor: 

(15)

Multiplication of the observational equations (5) by a factor exp(–iφj), leads to the
modified constraint functions, 

(16)

Taking the real and imaginary parts of the left- and right-hand sides of the newly 
rewritten observational equation, one obtains 

(17)

(18)

Correspondingly, we introduce symbols for the amplitude kj and phase j of each 
complex Lagrange multiplier λ j : λ j = κ j (cos + i sin ). 

With this choice of constraint functions and Lagrange multipliers, we can rewrite 
formula (6) and express the MaxEnt distribution of electrons as

(19)

The sum over symmetry operations in formula (16) can be rewritten by considering 
the effect of multiplying vector hj by the rotation matrices Rg. The collection of
distinct reciprocal vectors hj Rg is called the orbit of reflexion hj [27]; Γ j is the set 
of symmetry operations in G whose rotation matrices are needed to generate the orbit
of hj; |Γ j | denotes the number of elements in the same orbit [50].



13

The real part of the constraint function can be written as 

(20)

and a similar expansion holds for the imaginary part. 
Substitution of (20) in (19) gives 

(21)

where ψ j  = φ j + j. This is the actual formula to compute the MaxEnt distribution,
by numerical Fourier synthesis followed by exponentiation. As with all Fourier series,
aliasing errors can occur when the Fourier coefficients extend very far into reciprocal 
space, if the grid upon which the density is sampled is not fine enough [50]. 

To assess the extent to which the exponentiated Fourier series has appreciable 
Fourier amplitudes, and set the sampling grid accordingly, further development of 
formula (21) is needed. We first rewrite 

(22)

Expanding each of the exponential factors in a series of modified Bessel functions, 
the MaxEnt distribution can be written: 

(23)

When the prior prejudice m (x) is uniform, some of the Lagrange multipliers ampli-
tudes are large (of the order of unity or greater). This is especially the case when sharp 
details are present in the density to be reconstructed and not in the prior prejudice 
chosen. For a given argument z, the ratio In(z)/I0( z) remains substantial until n
exceeds z (see Figure 4), so that large values of the Lagrange multipliers amplitudes
κ will give rise to appreciable high-resolution coefficients in the Fourier series in (23).
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Figure 4. Ratio In(z)/I0(z).

This in turn will require very fine sampling grids along each crystallographic direc- 
tion, to avoid aliasing effects when the density is synthesised. The size of the arrays 
needed for the Fourier sampling of qME(x) would therefore easily exceed ten million 
locations for all-electron runs on low-temperature structures. It is clear that MaxEnt 
distributions of scatterers that contain atomic cores, when obtained by modulation of a 
uniform prior prejudice, are bound to be spoiled by aliasing effects, unless allowance 
is made for prohibitively large amounts of memory space. 

When the reconstruction of the density is carried out by modulation of a prior 
prejudice of spherical atoms, only the deformation features have to be accommodated; 
this can be accomplished relatively easily, and the Lagrange multipliers are usually 
below 0.01 in modulus, or even smaller for valence-only runs. No aliasing problems 
occur in the synthesis of qME(x).

4. The treatment of the experimental error variances 

The calculations discussed in the previous section fit the noise-free amplitudes exactly. 
When the structure factor amplitudes are noisy, it is necessary to deal with the random 
error in the observations: we want the probability distribution of random scatterers 
that is the most probable a posteriori, in view of the available observations and of the 
associated experimental error variances. 

In the framework of Bayesian statistics, this can be done by maximising the pos-
terior probability of the Lagrange multipliers defining the distribution [51]; Bayes’s 
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theorem gives 

(24)

In computing the posterior probability, two probability functions are involved: 

1. Pprior (λ , m(x)): the a priori probability is proportional to the exponential of the 
relative entropy Sm, according to a theorem of Shannon [52]: 

(25)

The MaxEnt distribution of scatterers qME, obtained for λ = λ*, is also the one
that maximises the a priori probability in (25): 

(26)

2. P(|F|obs | λ , m(x)): the conditional probability of the measurements, given a
certain set of Lagrange multipliers and a prior-prejudice distribution m(x), can be
computed from the likelihood gain Λm of the same Lagrange multipliers, given 
the observed data and the same prior: 

(27)

Likelihood has been long proven the optimal criterion to judge whether hypotheses 
(in this case the values of the Lagrange multipliers) are corroborated by the obser-
vations. The recourse to a likelihood gain Λm with respect to the prior prejudice
m (x) simply reflects the need for a reference point in evaluating the likelihood; the 
reference chosen is the prior-prejudice distribution m (x), the particular distribution 
for which all Lagrange multipliers are zero: q(x; λ = 0) = m(x).

Under the simplifying assumption that the reflexions are independent of each 
other, Λm can be written as a product over reflexions for which experimental struc-
ture factor amplitudes are available. For each of the reflexions, the likelihood gain
takes different functional forms, depending on the centric or acentric character, and
on the assumptions made for the phase probability distribution used in integrating 
over the phase circle: for a discussion of the crystallographic likelihood functions 
we refer the reader to the description recently appeared in [51]. 

Both the a priori and the likelihood functions contain exponentials, so that it is 
convenient to consider the logarithm of the posterior probability, and maximise the 
Bayesian score: 

(28)

under the constraint of MaxEnt. = log Λm is called the log-likelihood gain. The
algorithm implemented to perform this constrained maximisation is an adaptation
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of the one employed to minimise a χ 2 residual subject to MaxEnt constraints, and 
described in [27]. 

4.1. Likelihood with experimental errors present 

In this section we briefly discuss an approximate formalism that allows incorporation 
of the experimental error variances in the constrained maximisation of the Bayesian 
score. The problem addressed here is the derivation of a likelihood function that not
only gives the distribution of a structure factor amplitude as computed from the current
structural model, but also takes into account the variance due to the experimental error. 

Let us assume an experimentally derived distribution P(R) for the amplitude R =
|F| of a reflexion, normalised so as to have: P(R) dR = 1. The P(R) distribution
will be typically Gaussian around the measured Robs = |F|obs with associated variance
σ 2. P(R) may take a more involved functional form if the Gaussian has a substantial
tail in regions of negative Robs.

The ‘error-free’ likelihood gain Λ 0( R; Σ 2) gives the probability distribution for 
the structure factor amplitude as calculated from the random scatterer model (and 
from the model error estimates for any known substructure). To collect values of the
likelihood gain from all values of R around Robs, Λ 0 is weighted with P(R):

(29)

Under general hypotheses, the optimisation of the Bayesian score under the con-
straints of MaxEnt will require numerical integration of (29), in that no analytical 
solution exists for the integral. A Taylor expansion of Λ 0(R) around the maximum of 
the P(R) function could be used to compute an analytical expression for Λ and its first 
and second order derivatives, provided the spread of the Λ 0 distribution is significantly
larger than the one of the P(R) function, as measured by σ 2. Unfortunately, for
accurate charge density studies this requirement is not always fulfilled: for many
reflexions the structure factor variance Σ 2 appearing in Λ 0 is comparable to or even
smaller than the experimental error variance σ 2, because the deformation effects and
the associated uncertainty are at the level of the noise.

We have for now implemented a drastic simplification, whereby the likelihood
function is taken equal to the error-free likelihood, but to the variance parameter Σ 2
appearing in the latter function the experimental error variance is added: 

(30)

This approximation has already proven very effective in the calculation of likelihood 
functions for maximum likelihood refinement of parameters of the heavy-atom model,
when phasing macromolecular structure factor amplitudes with the computer program
SHARP [53]. A similar approach was also used in computing the variances to be used
in evaluation of a χ 2 criterion in [54].
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4.1.1. Effective number of scatterers and variance rescaling 
At this stage, two points are worth mentioning: 

1. The number of random scatterers appearing in the expression for the Bayesian 
score does not necessarily correspond to the nominal number of electrons in the 
system under investigation: the random scatterers bear no physical identity! And 
yet, the value of n is a key quantity in the optimisation of the Bayesian score, in 
that it determines the relative weight of the log-likelihood and entropy terms in 
driving the structure determination process: for example, values of n that are too 
low will allow a tighter fit of the observations, because of a less stringent entropy 
requirement, but at the cost of fitting some of the experimental noise. 

2. At each stage during the structure determination process, the current structural 
model gives an estimate of the prediction variance Σ 2 to be associated with the 
calculated amplitude. The contribution of the random part of the structure to 
this prediction variance decreases while the structure determination proceeds, and 
uncertainty is removed by the fit to the observations. Rescaling of Σ 2 would be 
needed during the optimisation of the Bayesian score. 

Both the determination of the effective number of scatterers and the associated 
rescaling of variances are still in progress within BUSTER. The value of n at the 
moment is fixed by the user at input preparation time; for charge density studies, 
variances are also kept fixed and set equal to the observational σ 2. An approximate 
optimal n can be determined empirically by means of several test runs on synthetic 
data, monitoring the rms deviation of the final density from the reference model 
density (see below). This is of course only feasible when using synthetic data, for 
which the perfect answer is known. We plan to overcome this limitation in the future 
by means of cross-validation methods. 

4.2. L -Ala MaxEnt valence density from noisy data 

A test of the computational strategy outlined in the previous paragraph has been 
performed on a set of synthetic noisy structure factor amplitudes. The diffraction data 
were computed from the same model density for L-alanine at 23 K as the one used 
for the noise-free calculations described in Section 3.1. 

4.2.1. Generation of the noisy data set 
Gaussian noise has been added onto the structure factor amplitudes squared as com- 
puted from the L-alanine model density; for each datum, the amount of noise added was 
proportional to the experimental esd for the corresponding intensity measurement: 

(31)

where Gauss is a random deviate of zero mean and unit variance. 
From these noisy structure factor amplitudes squared, a sample of 2532 noisy struc- 

ture factor amplitudes | F|Noisy up to 0.463 Å, and the associated standard deviations 
σ (|F|Noisy), have been computed using the computer program BAYES [55]. A number 
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of 2470 of these noisy amplitudes are greater than 2 σ , a consequence of the high 
precision of the experimental data used to calibrate the noise. 

BUSTER has been run against the L-alanine noisy data: the structure factor phases 
and amplitudes for this acentric structure were no longer fitted exactly but only within 
the limits imposed by the noise. As in the calculations against noise-free data, a 
fragment of atomic core monopoles was used; the non-uniform prior prejudice was 
obtained from a superposition of spherical valence monopoles. For each reflexion, 
the likelihood function was non-zero for a set of structure factor values around this 
‘procrystal’ structure factor; the latter acted therefore as a ‘soft’ target for the MaxEnt 
structure factor amplitude and phase. 

4.2.2. Initial phase error 
The core and valence monopole populations used for the MaxEnt calculation were 
the ones of the reference density (electrons in the asymmetric unit: ncore = 12.44 
and nvalence = 35.56). The phases and amplitudes for this spherical-atom structure, 
union of the core fragment and the NUP, are already very close to those of the full 
multipolar model density: to estimate the initial phase error, we computed the phase 
statistics recently described in a multipolar charge density study on 0.5 Å noise-free
data [56]. 

For a number of 1907 acentric reflexions up to 0.463 Å resolution, the mean 
and rms phase angle differences between the noise-free structure factors for the 
full multipolar model density and the structure factors for the spherical-atom struc-
ture (in parentheses we give the figures for 509 acentric reflexions up to 0.700 Å 
resolution only) were: = 1.012(2.152)°, rms( ∆φ ) = 2.986(5.432)°; while 
the mean and rms arc length errors, normalised so as to have F000 = 100, were 
〈 |F| sin ∆Φ = 0.034(0.088), rms(|F| sin ∆φ ) = 0.063(0.116).

4.2.3. Computational details 
It is of interest to mention some of the details of the valence MaxEnt calculations,
performed with the computer program BUSTER [42] on an Alpha Station 500 running
at 500 MHz. 

BUSTER chooses the minimal grid necessary to avoid aliasing effects, based on the 
prior prejudice used and on the fall-off of the structure factor amplitudes with resolu-
tion: for the 23 K L-alanine valence density reconstruction the grid was (64 144 64).
The cell parameters for the crystal are a = 5.928(1)Å; b = 12.260(2)Å; c =
5.794(1) Å [45], so that the grid step was shorter than 0.095 Å along each axis.

The calculation of the thermally-smeared core fragment and the valence monopoles
densities was carried out by a Fourier transform of a set of aliased structure factors
computed with the program VALRAY [46]; details of this calculation have been
published elsewhere [49]. 

The total number of degrees of freedom (NDoF = NCentric + 2NAcentric) was 4439;
this is also equal to the number of Lagrange multipliers. The constrained maximisation 
of the Bayesian score converged in less than 40 iterations; sufficient memory and disk
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Figure 5. L -Alanine. Fit to noisy data. Calculation A. Distribution of residual structure factor am-
plitudes at the end of the MaxEnt calculation on 2532 noisy data up to 0.463Å. Residuals plotted:
∆ F/σ = (|F|ME – |F|Noisy)/σ (|F|Noisy).

were available so that the job had about 80% of the CPU, and took about 7 min to
complete.

As mentioned in Section 4.1.1, the number of random scatterers n has to be chosen
in input. Five BUSTER runs used values of n in the series: n = nvalence × N 2, N =
60, 70, 80, 90, 100. The rms deviation from the reference map varied between 0.0317
and 0.0293 e Å–3, the latter value pertaining to the run with N = 90: this value of n
was then used in the calculation described below.

4.2.4. Quality of the reconstruction 
We briefly discuss in this section the results of the valence MaxEnt calculation on the
noisy data set for L-alanine at 23 K: we will denote this calculation with the letter A.
The distribution of residuals at the end of the calculation is shown in Figure 5. It is
apparent that no gross outliers are present, the calculated structure factor amplitudes 
being within 5 esd’s from the observed values at all resolution ranges.

The same phase statistics mentioned above were computed to obtain an estimate of 
the phase error for the reconstructed density, for 1907 acentric reflexions up to 0.463 
(in parentheses the values for the 509 acentric reflexions up to 0.700 Å): = 
0.755(0.854)º, rms(∆φ ) = 1.762(1.530)º; the normalised mean and rms arc lengths
are |F|Noisy sin = 0.022(0.040) and rms(|F|Noisy sin ∆φ ) = 0.033(0.054),
respectively. The MaxEnt valence modulation does improve the overall and low-
resolution phase error significantly.

The MaxEnt deformation density in the COO– plane is shown in Figure 6(a). The
deformation map shows correct qualitative features; differences between the single
C–C bond and the C–O bonds are clearly visible, and so are the lone-pair maxima
on the oxygen atoms. If compared to the conventional dynamic deformation density

δφ 

δφ 
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(a) (b)

Figure 6. L -Alanine. Fit to noisy data. Calculation A. MaxEnt deformation density and error map in the 
COO– plane Map size, orientation and contouring levels as in Figure 2. (a) MaxEnt dynamic deformation 
density . (b) Error map: qME – qModel.

maps, usually obtained by Fourier summation, the MaxEnt deformation density is also
remarkably clean in intermolecular regions, where the observations do not introduce 
any modulation in the prior prejudice of atomic valence monopoles. 

4.3. The MaxEnt underestimates the deformation features 

Figure 6(b) shows the difference between the MaxEnt valence density and the ref-
erence density, in the COO– plane. The error peaks in the bonding and lone-pair
regions, where the deformation features are systematically lower than the reference 
map (negative contours). The deviation from the reference is largest in the region 
around the C1 atom valence shell, and reaches –0.406 e Å–3.

4.3. 1. Intrinsic dispersion of the MaxEnt distribution 
The MaxEnt method will always deflate deformation features by the rms corre-
sponding to measurements error [39]. To obtain an empirical estimate of this intrinsic 
spread allowed by the noise, twenty noisy data sets were generated as in formula 
(31), and fitted with BUSTER using the fragment and NUP already described in the 
previous paragraph. 

The average map and the rms deviation from the average were computed: 

(32)

(33)

δθ 
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(b)(a)

Figure 7. L -Alanine. Fit to noisy data. Calculation B. 10% experimental noise level. MaxEnt deformation 
density and error map in the COO– plane. Map size, orientation and contouring levels as in Figure 2. 
(a) MaxEnt dynamic deformation density (b) Error map: qME – qModel.

The map is of course less noisy than any of the individual noisy maps; the 
deviation from the reference model map shows the same systematic underestimation 
of the deformation features as observed in density A, with a maximum negative error
of –0.362 e Å–3, again in the region of the valence shell of the C1 atom.

The 〈δq(x)〉 rms   map peaks around the two oxygen atoms, where the valence density
is highest; the values of remain below 0.112 eÅ–3. This confirms that the
deviations observed in the calculation A are indeed significant with respect to the 
intrinsic spread brought by the noise in the data. 

4.3.2. Dependence of the bias on the noise level 
To check for the dependence of this bias on the noise level, a number of 20 noisy data 
sets were generated with variances lowered to 10% of their experimental values, and 
MaxEnt calculations run against these low-noise data. 

Sections of the density from one of these fits, which we will refer to as calculation 
B , are shown in Figure 7: the MaxEnt deformation density in the COO– plane is 
shown in Figure 7(a); Figure 7(b) is the difference between the MaxEnt valence 
density and the reference density in the same plane. The lower noise content of the 
data is clearly visible, when the map is compared with the one for calculation A: in 
particular, the lone pairs on the oxygen atoms are better defined. The rms deviation 
from the reference is as low as 0.023 e Å–3.

Still, the deformation features around C1 are systematically underestimated, with 
a maximum deviation of –0.0312e Å–3. As is evident from Figures 6(b) and 7(b), 
the departure of the MaxEnt distribution from the reference model is most significant 

〈δq(x)〉 rms
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Distance from O1 along O1C1 (A) 

Figure 8. L-Alanine. Fits to noisy data: Calculations A (experimental noise) and B (10% experimental 
noise). MaxEnt, deformation and error density profiles along the C1–O1 bond. Solid line: Model valence 
density. Dashed line: MaxEnt density A. Dot-dashed line: MaxEnt density B. Dotted line: valence-shells
non-uniform prior. 

in the regions where the deformation from the prior prejudice of spherical atoms is 
larger, namely in bonds of order greater than one. 

This finding is more evident in the density profiles in Figure 8: both calculations A
and B produce too low a density in the C1–O1 bond. Close to the carbon atom, the 
profiles depart from the reference density to yield a more ‘atom-like’ picture of the 
bond. This bias is milder for low-noise data, because of a tighter constraint from 
the data. 
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5. Concluding remarks 

The observations presented here are in keeping with the general notion that the 
MaxEnt method is best understood as a method for testing hypotheses against the 
experimental data, in the presence of some prior knowledge. In a crystallographic 
context, the Bayesian viewpoint on crystal structure determination prescribes the use 
of the MaxEnt method to perform iterative testing of structural hypotheses, and allow 
model updating [41, 51]. 

From this viewpoint, it is possible to rationalise the results of the different types 
of charge density MaxEnt calculations discussed so far. In each case, the calculation 
provides an answer whose quality is commensurate with the degree of adequacy 
or inadequacy of the null hypothesis made; these null hypotheses can be ranked in 
increasing order of information content: 

• Many of the MaxEnt calculations described in the literature ignore any knowledge of 
the atomicity of structures other than that conveyed by the choice made for the target 
structure factor phases (see Section 2.2): a uniform prior is used, and all electrons 
are redistributed under the MaxEnt condition. The resulting distribution already 
contains a clear picture of atoms, with atomic cores and bonding density regions; 
but the topology of these MaxEnt densities will often be wrong, because the missing 
structure is not adequately modelled by random independent constituents [57]; 

• Within the computational scheme described in the course of this work, the available 
information about the atomic substructure (core+valence) can be taken into account 
explicitly. In the simplest possible calculation, a fragment of atomic cores is used, 
and a MaxEnt distribution for valence electrons is computed by modulation of a 
uniform prior prejudice. As we have shown in the noise-free calculations on L-
alanine described in Section 3.1.1, the method will yield a better representation of 
bonding and non-bonding valence charge concentration regions, but bias will still 
be present because of Fourier truncation ripples and aliasing errors; 

• Full atomicity can be incorporated into the available prior information, using a 
NUP of spherical-valence shells, together with the atomic cores fragment. The 
test presented in Section 3.1.1 shows that it is possible to correctly reconstruct the 
aspherical features in the density, in absence of experimental noise. At this stage, 
no stereochemical knowledge has yet been used, other than that implicitly con-
veyed by the geometry of the nuclear framework. The presence of the experimental 
noise softens the constraints imposed by the observations, so that multiple-order
bonds and very sharp non-bonded charge concentration features are deflated (see 
Section 4.3). 

• The next update of the null hypothesis would incorporate a zero-order description 
of bonding, in terms of a prior prejudice of ‘standard’ chemical groups. The MaxEnt 
map then will tell us about the subtle differences induced in formally equivalent 
chemical bonds by conjugation, stacking, and other intra- and intermolecular inter-
actions. To achieve this degree of accuracy, the refinement of structural parameters 



24

present in the model adopted for the fragment should proceed together with the 
MaxEnt redistribution of the valence electrons.

We have described in this paper the first implementation of this Bayesian approach 
to charge density studies, making joint use of structural models for the atomic cores
substructure, and MaxEnt distributions of scatterers for the valence part. Used in
this way, the MaxEnt method is ‘safe’ and can usefully complement the traditional
modelling based on finite multipolar expansions. This supports our initial proposal
that accurate charge density studies should be viewed as the late stages of the structure
determination process.
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1. Introduction 

Understanding chemical and physical properties of molecular systems requires knowl-
edge of their charge distributions [1]. Experimentally, electron density distributions 
(EDDs) can be reconstructed from accurate X-ray diffraction data through a series of 
elaborate data reduction and data analysis steps [2]. The most widely used method 
entails least-squares optimization of models containing atom-centered aspherical den-
sity functions [3–6]. In the empirical modeling schemes, estimates of errors in the 
density and in derived properties can be calculated within the framework of the least-
squares method. Such estimates rely on several assumptions including the adequacy 
of the refined model. Several studies [7–9] have shown that even the very sophisticated 
models currently used in empirical EDD modeling are inadequate to describe very 
fine density features present in the data and in general, least-squares estimates of 
EDDs will therefore contain systematic bias due to the model. Nevertheless, the 
least-squares error estimates allow, to some extent, assessment of the reliability of 
conclusions drawn from the model densities. 

In recent years, a new method, the maximum entropy method (MEM), has been 
introduced in charge density reconstruction. When X-ray diffraction data are used, the 
MEM yields the electron density distribution [10, 11], whereas neutron diffraction 
data allows the direct space nuclear probability density function to be determined 
[12]. From limited numbers of X-ray diffraction data, EDDs have been reconstructed 
by the MEM in a number of systems [13–15]. Maps that qualitatively reveal bonding 
features have been obtained in these and many other studies. Although this is of interest 
in itself, quantification and detailed analysis of the derived MEM charge densities is 
highly desirable because chemically important features in molecular electron densities 
often are very small. It is therefore important that the reliability of MEM densities 
is scrutinized in order to make the method generally useful. Several authors have 
pointed out that unphysical features can appear in MEM densities and, depending 
on the quality and the completeness of the data, fine features in the density may be 
artifacts of the density reconstruction [16–19]. It has, furthermore, been pointed out 
that use of an entropy term as a regularizing function in the reconstruction inevitably 
will introduce systematic bias into the result [20, 21]. 
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2. Monte Carlo simulation of errors in MEM densities 

In a recent paper we proposed to perform Monte Carlo simulations as basis for 
the error estimation [22]. The data that are available is a set of observed structure 
factors with associated standard deviations estimated from the scatter among repeated 
measurements of equivalent reflections. We assume the error distributions around the 
true value of each structure factor to be Gaussian and that systematic errors in the data 
are negligible. From the set of observed structure factors, we can calculate a MEM 
EDD, ρ 0, using for example the MEED algorithm from Nagoya University [23], but 
any entropy optimization code may be used. We will not, in this paper, discuss details 
of the MEM itself but refer readers to the references given in the introduction and to 
other contributions in this book. The MEM density will have a corresponding set of 
structure factors F0. We can construct synthetic data sets by applying random noise 
to F0 according to the known error distribution around the true structure factors. 
The synthetic data sets, can be used as input to a series of Monte Carlo MEM 
calculations, and the result will be a series of Monte Carlo MEM densities, 
The scatter of these densities can be used to give an estimate of the error in the 
original MEM density, ρ 0. In Figure 1, a schematic representation of the Monte Carlo
calculations is shown. 

Once N Monte Carlo densities are available, the estimated standard uncertainty in 
each pixel of the discretized density can be calculated by 

If no systematic bias is introduced by the MEM algorithm, we will expect that 

Figure 1. Flow chart of the Monte Carlo calculations to estimate errors in MEM charge densities. 
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In this formula, is the density in pixel number x obtained from the observed 
structure factors. However, the average value of the Monte Carlo densities turns 
out to be systematically different from , as illustrated in Figure 2 where plots 
of b(ρ 0 ) = ρ average – ρ 0 are shown for the MEM density of metallic beryllium.
The density was calculated based on the very accurate structure factors measured by 
Larsen and Hansen [24]. In Figure 2(a), the bias in the MEM density calculated with 
a uniform prior is shown, and in Figure 2(b), the bias obtained with a non-uniform
prior is shown. The non-uniform prior corresponds to the EDD of thermally smeared 
Be atoms placed at their unit cell position (procrystal). It was calculated using wave 
functions from Clementi and Roetti [25] and neutron diffraction thermal parameters 
measured by Larsen et al. [26]. The maps in Figure 2 indicate where systematic bias, 
b(ρ 0), is introduced in the density by the MEM algorithm. If a similar systematic bias 
was introduced in the calculation of ρ 0 from the observed structure factors, then these 
maps also suggest where ρ 0 may be systematically different from the true EDD, ρ true.
We do not know the bias on ρ true, but from the Monte Carlo calculations we know 
the bias on ρ 0. If ρ 0 is not too different from ρ true, we can assume that the bias in ρ 0
is close to the bias in ρ true. Once we have an estimate of the bias, we can correct the 
MEM density by subtracting the bias from ρ 0. In Figure 3, bias corrected densities 
with both uniform and non-uniform priors are shown. The important point to notice is 
that both types of MEM densities contain considerable systematic bias. However, the 
calculations show that the MEM bias in the valence regions is smaller when using the 
non-uniform prior, which indicates that non-uniform priors are preferable to uniform 
priors. In Figure 4, the random error calculated as the square-root of the variance 
of the Monte Carlo densities is shown with fine contour intervals of 0.01 e/Å3. In 
general, the random error is small in the valence regions. 

3. Non-nuclear maxima in hexagonal-close-packed metals 

The chemical bonding and the possible existence of non-nuclear maxima (NNM) in 
the EDDs of simple metals has recently been much debated [13, 27–31]. The question 
of NNM in simple metals is a diverse topic, and the research on the topic has basically 
addressed three issues. First, what are the topological features of simple metals? This 
question is interesting from a purely mathematical point of view because the number 
and types of critical points in the EDD have to satisfy the constraints of the crystal 
symmetry [32]. In the case of the hexagonal-close-packed (hcp) structure, a critical 
point network has not yet been theoretically established [28]. The second topic of 
interest is that if NNM exist in metals what do they mean, and are they important 
for the physical properties of the material? The third and most heavily debated issue 
is about numerical methods used in the experimental determination of EDDs from 
Bragg X-ray diffraction data. It is in this respect that the presence of NNM in metals 
has been intimately tied to the reliability of MEM densities. 

We originally proposed NNM to be present in metallic beryllium [30] based on 
analysis of the X-ray diffraction data measured by Larsen and Hansen [24]. Based on 
Fourier maps and elaborate multipole least-squares modeling, indisputable evidence 
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(a)

(b)

Figure 2. Contour plots of the MEM bias distribution, b(ρ 0 ), in the (110) plane of the hcp structure
of metallic beryllium. The plots are based on 200 Monte Carlo calculations: (a) uniform prior,
(b) non-uniform prior. The plots are on a linear scale with 0.05 e/Å3 intervals. Truncation at –0.5 e/Å3.
Values in e/Å3 are given for extremum points.
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(a)

(b)

Figure 3. Contour plots of the bias corrected MEM densifies in the (110) plane of metallic beryllium:
(a) uniform prior, (b) non-uniform prior. The plots are on a linear scale with 0.05 e/Å3 intervals. Truncation 
at 1.0e/Å3. Maximum values in e/Å3 are given at the Be position and in the bipyramidal space of the hcp 
structure.
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Figure 4. Contour plot in the (110) plane of the estimated random error in the Be MEM densities. The
plot is for a uniform prior, but it is essentially identical to the result obtained with a non-uniform prior. 
The plot is on a linear scale with 0.01 e/Å3 intervals and 0.1 e/Å3 truncation. Maximum values in e/Å3 are
given at the Be position and in the bipyramidal space. 

revealed that in metallic beryllium, charge is transferred into the bipyramidal region 
of the structure relative to a model consisting of independent spherical beryllium 
atoms. Our analysis then addressed whether this redistribution of charge gives rise to 
NNM in the solid. Topological analysis of the multipole model density showed NNM 
to be present, but we wanted further confirmation and therefore also employed the 
MEM. MEM reconstructions were carried out using both uniform and non-uniform
prior distributions. All methods pointed to the existence of NNM. The NNM were 
incorporated into a proposed critical point network for the hcp structure which fulfills 
the Morse equations [32]. In a recent paper, Vries et al. [31] claim that the NNM 
are artifacts of the MEM used with a uniform prior and conclude that there is no 
experimental evidence for the existence of NNM in the EDD of metallic Be. In 
their study, Vries et al. neglect to mention that the least-squares multipole model 
density contains NNM. Furthermore they only cite our results obtained with a uniform 
prior. Vries et al. then show that the use of a procrystal non-uniform prior does not 
give NNM in the MEM density. Almost exactly the same calculations were already 
reported in our original beryllium paper [30]. We proposed that the lack of NNM 
when using a non-uniform prior is due to bias in the prior against moving charge into 
the valence regions during the MEM optimization. It was shown that if the weight 
of the low order reflections is increased in the calculations with a non-uniform prior, 
the NNM reappear. It is in this context we can examine the MEM densities shown in 
Figures 2 and 3. In the case of a uniform prior, the MEM exaggerates the density in the 
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bipyramidal region of tetrahedral holes of the hcp structure leading to a large NNM at 
(2/3, 1/3, 1/4). Bias correction diminishes the NNM, but the bipyramidal region still 
contains a density accumulation relative to the rest of the valence regions. When using 
a procrystal non-uniform prior, the MEM systematically underestimates the density 
in the bipyramidal region. After bias correction, a weak maximum reappears in (2/3, 
1/3, 1/4). In conclusion, there is a significant, although small, accumulation of density 
in the bipyramidal space. However, the Be density is very flat in the valence region 
and when considering the random error in the density it is difficult to be conclusive 
about possible NNM. The fact that we can reconstruct two MEM densities which 
differ in the bipyramidal region tells us that the data are not really sensitive about the 
NNM. Strictly speaking, the MEM neither provides solid evidence for nor against 
the NNM. We have to include other knowledge/methods to establish the critical point 
network of beryllium. The Morse equations put strict limitations on the number and 
types of critical points in a crystal and, to our knowledge, the proposed network is still 
the only suggestion that fulfills these equations. Furthermore, our network is based on 
a proper numerical topological analysis of the density and not just drawing sections 
through the density. In another contribution in the present book, Gatti [33] presents 
recent theoretical evidence in support of the existence of NNM in Be. 

To examine in more detail the questions of NNM and critical point networks we 
have extended our studies to include metallic magnesium in the hope that comparison 
with other hcp metals will reveal topology-property relationships. The analysis of 
the Mg density is based on newly measured single crystal X-ray diffraction data. We 
have collected a full sphere of very extensive 8(1) K X-ray diffraction data on an 
almost spherical single crystal of Mg using AgKα radiation (sin θmax/λ      = 1.4 Å–1).
Scaled, phased and extinction corrected structure factors suitable for MEM analysis 
were obtained from multipole modeling with a model similar to the one used for Be 
[31]. This is necessary because the MEM does not contain a model and therefore 
cannot filter out systematic errors such as extinction which is quite severe in the
present Mg data set (ymax = 40%). A full account of the experimental details as well
as the data reduction and the data analysis will appear in a forthcoming paper [34]. 
In Figure 5 is shown the bias corrected MEM EDD for Mg obtained from 209 unique
reflections using a uniform prior. MEM calculations with non-uniform priors as well
as theoretical calculations are in progress. Based on the experience with Be, where 
the bias corrected densities using uniform and non-uniform priors are very similar,
we expect the present results to be quite accurate. In Figure 5(a), the bias corrected 
MEM EDD of Mg is shown, and in Figure 5(b), the corresponding random error
estimate in plotted. The density of Mg is much less flat in the valence regions than the 
EDD of Be. A clear NNM is present in (2/3, 1/3, 1/4) at the center of the bipyramidal
space. At a qualitative level, it is clear that the Mg density is more peaked than the 
Be density. Overall, the topology in the two systems seems to be identical. It should 
be noted that preliminary topological analysis [34] of a theoretical density calculated 
with periodic Hartree-Fock and DFT methods [35] also indicates the presence of 
NNM in Mg. In conclusion the analysis shows that the EDD of metals with the hcp 
structure probably contain NNM, non-nuclear maxima. 
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(a)

(b)

Figure 5. Contour plots in the (110) plane of metallic magnesium: (a) the bias corrected MEM density, 
(b) the estimated random error in the MEM density. The plots are based on 100 Monte Carlo calculations 
employin a uniform prior. The lots are on a linear scale, (a) 0.25 e/Å3 intervals and 5.0e/Å3 truncation,
(b) 0.1 e/Å3 intervals and 1.0e/Å3 truncation. Maximum values in e/Å3 are given at the Mg position and 
in the bipyramidal space. 
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4. Conclusion

The MEM is a powerful new method which is especially useful in cases with limited 
data sets (powder diffraction). Monte Carlo simulations have shown that the MEM 
introduces systematic features into the reconstructed density and caution should be 
exercised when interpreting fine details of an MEM density. It must be emphasized 
that because the present MEM algorithms do not contain any models, they cannot 
filter out inconsistencies in the data stemming from systematic errors. The MEM 
densities may therefore contain non-physical features not only because of systematic 
bias in the calculation but also because of systematic errors in the data. 
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Diffraction experiments give microscopic information on structures in crystals. Such
investigations correspond to Bragg intensity measurements. More and more accurate 
experiments are performed, which produce accurate maps of the scattering density 
itself charge density in the case of X-ray, density of nuclear scattering amplitude 
in the case of unpolarized neutron and spin (magnetization) gdensity in the case of 
polarized neutron experiments. 

In crystals, the scattering densities are periodic and the Bragg amplitudes are the 
Fourier components of these periodic distributions. In principle, the scattering density 
ρ (r) is given by the inverse Fourier series of the experimental structure factors. Such a 
series implies an infinite sum on the Miller indices h, k, l. Actually, what is performed 
is a truncated sum, where the indices are limited to those reflections really measured, 
and where all the structure factors are noisy, as a result of the uncertainty of the 
measurement. Given these error bars and the limited set of measured reflections, 
there exist a very large number of maps compatible with the data. Among those, the 
truncated Fourier inversion procedure selects one of them: the map whose Fourier 
coefficients are equal to zero for the unmeasured reflections and equal to the exact 
observed values otherwise. This is certainly an arbitrary choice. 

An alternative method, which uses the concept of maximum entropy (MaxEnt), 
appeared to be a formidable improvement in the treatment of diffraction data. This 
method is based on a Bayesian approach: among all the maps compatible with the 
experimental data, it selects that one which has the highest prior (intrinsic) probability. 
Considering that all the points of the map are equally probable, this probability (flat 
prior) is expressed via the Boltzman entropy of the distribution, with the entropy 
defined as

This method has been used for the reconstruction of charge densities from
X-ray data [1–3], for maps of nuclear densities from unpolarized neutron data 
[4–6]as well as for distributions of spin (magnetization) density [7–9].The density
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maps obtained by this method, as compared to those resulting from the usual inverse 
Fourier transformation, are tremendously improved. In particular, any substantial 
deviation from the background is really contained in the data, as it costs entropy 
compared to a map that would ignore such features. 

However, in most of the cases, before the measurements are performed, some 
knowledge exists about the distribution which is investigated. It can range from the 
simple information of the type of scattering electrons (electrons p, d or f) to an 
elaborate theoretical model. In these cases, the uniform prior which considers all the 
different pixels as equally likely is too weak a requirement and has to be replaced. 
In a rigorous Bayesian analysis, Skilling has shown [10] that prior knowledge can be 
encoded into the MaxEnt formalism through a model m(r), via a new definition for 
the entropy: 

In the absence of any data, the maximum of the entropy functional is reached 
for ρ (r) = m(r). Any substantial departure from the model, observed in the final 
map, is really contained in the data as, with the new definition, it costs entropy. This 
paper presents illustrations of model testing in the case of intermetallic and molecular 
compounds.

An intermetallic compound: a model for the magnetization density in YCo5

The magnetic properties of the YCo5 intermetallic compound have been extensively 
investigated due to its ferromagnetism with a high Curie point and very high magne-
tocrystalline anisotropy which makes it a good representative of the RCo5 permanent
magnets. Its crystal structure is represented in Figure 1. It includes one site of Y 

Figure 1. The unit cell of YCo5.
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and two sites of Co: CoI in the basal plane and CO II in the intermediate plane. Both 
unpolarized neutron and polarized neutron experiments have been performed at room 
temperature, in the ferromagnetic state, in order to refine the nuclear structure and to 
determine the magnetization density. 

As at room temperature Bragg reflections contain both nuclear and magnetic struc- 
ture factors, the nuclear structure was refined from a combination of polarized and
unpolarized neutron data. Contrary to the ideal structure where only three atomic sites 
are present, it has been shown [11, 12] that some Y atoms were substituted by pairs of
cobalt. These pairs, parallel to the c-axis are responsible for a structure deformation
which shrinks the cobalt hexagons surrounding the substitutions. The amount of these
substituted Y was refined to be 0.046 ± 0.008. Furthermore, the thermal vibration
parameter of CoI site appeared to be very anisotropic. The nuclear structure factors
FN were calculated from this refined structure and were introduced in the polarized
neutron data to get the magnetic structure factors FM.

The reconstruction of the magnetization density was done by the MaxEnt method
with a uniform prior. The projection on the basal plane is shown in Figure 2. Besides
a small contribution at the origin due to the Y substituted by cobalt pairs, the magne-
tization is well localized on the five atoms of the two cobalt sites. 

Therefore, an atomic model, made of a superposition of independent densities 
centered at the magnetic atoms, was built. The magnetic structure factor can be 
written as 

where fj is the magnetic form factor and mj the moment of the jth atom. The 
magnetic form factors are the sum of two contributions: orbital and spin: f (K) =
lf1 (K) + sfs(K). Assuming that the 3d orbital is almost quenched, the orbital form
factor was taken as isotropic and equal to f1 (K) = + For the spin

Figure 2. YCo5: MaxEnt reconstruction with a uniform prior.
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part one took into account the anisotropy of the spin density around each magnetic
atom: CoI with one singlet (d z2) and two doublet (dxy and dyz) and CoII with the 
five-fold degeneracy completely removed. Altogether 10 parameters were refined
from the experimental FM to determine the atomic magnetic model: the localized
moments m I and m II, the orbital contributions lI and lII and the occupation numbers:
two for the site CoI and four for the site CoII. The agreement between observed and
calculated FM is very good; the parameters are displayed in Table 1. The magnetiza-
tion density corresponding to the atomic model and projected on the basal plane is
represented in Figure 3. Comparing with the MaxEnt projection (Figure 2) one sees
that the distributions are not far from the other, but with more asphericities on the 
atoms of site CoI for the refined model.

How to judge the relevance of these asphericities? Are they really compatible with 
the data or are they simply the biased result of an ill-adapted model? The best way
to answer this question is to use this result as a prior probability for a new MaxEnt 
reconstruction. The map thus obtained, which is given in Figure 4, is striking: the 

Table 1. YCo5: refined parameters for the atomic magnetic model. 

Site Localized moment Spin proportion Occupation parameter 

COI 1.77 (2)µ B 0.74 (5) 

COII 1.72 (2)µ B 0.84 (4)

dz2 0.23 (3) 

dx2– y2, dxy 0.58
dz2 0.15 (2)
dxz 0.24 (4) 
dyz 0.24 (4) 

dxz, dyz 0.18 (12) 

dx 2–y 2 0.22 (3) 
dxy 0.20

Sum of the localized moments in one cell: 8.90 (10)µ B. Magnetization measured for one cell: 7.99 (2)µ B.

Figure 3. YCo5: magnetization density of the magnetic atomic model. 
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Figure 4. YCo5: MaxEnt reconstruction with a non-uniform prior.

new reconstruction is very similar to that obtained with the uniform prior. All the 
asphericities which were present in the model have been rubbed out, in spite of the 
fact that, with the new definition of entropy, it costs entropy. We can conclude that 
the distribution of the magnetization density which is contained in the data is spherical 
and that the magnetic model has to be revisited, which is currently being done. 

A molecular compound: the antibonding wave function in 
an imino nitroxide free radical 

Conjugated nitroxide free radicals are among the most widely used spin carriers 
in the design of molecular compounds. As their unpaired electron is delocalized
over the different atoms of the molecule, they are convenient building blocks and 
ideal magnetic bridges between magnetic metals to achieve new compounds with 
particular magnetic properties. In the case of nitronyl nitroxides, the unpaired elec-
tron is supposed to be, in a first approximation, equally shared by the four atoms
O, N, N and O, and the single occupied molecular orbital (SOMO) is supposed to 
exhibit a node on the C atom in between the two NOs (Figure 5(a)). In the case of 
imino nitroxides, the unpaired electron is mainly carried by the three atoms N, N
and O, but, as the symmetry is broken, no node is expected on the central C atom
for the SOMO (Figure 5(b)). Several studies of spin densities have been performed
on nitronyl nitroxides [13]. We demonstrate here the use of MaxEnt reconstruction
with a non-uniform prior for 2-(3-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro- 1H-
imidazol-1-oxy1 (m-NPIN), an imino nitroxide with two non-equivalent molecules in
the asymmetric unit cell: molecule A and molecule B.

In order to figure out the FN’s, the nuclear structure was refined from unpolarized
neutron data taken at 30 K, in the paramagnetic state, on a 4-circle diffractometer. 
Furthermore, a set of 248 flipping ratios was measured with polarized neutrons 
at 1.6 K, with the spin density long range ordered by a 4.65 T applied magnetic field. 
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Figure 5. Nitroxide radicals and their SOMO: (a) nitronyl nitroxide and (b) imino nitroxide. 

Table 2. m-NPIN: spin populations in the
wave function modeling.

Site Wave function modeling

01 0.322 (9)
N1 0.258 (9)

N2 0.193 (7)
C1 –0.042 (7)

An approach to solving the inverse Fourier problem is to reconstruct a parametrized 
spin density based on axially symmetrical p orbitals (pz orbitals) centered on all the
atoms of the molecule (wave function modeling). In the model which was actually 
used, the spin populations of corresponding atoms of A and B were constrained to 
be equal. The ‘averaged’ populations thus refined are displayed in Table 2. Most of 
the spin density lies on the O1, N1 and N2 atoms. However, the agreement obtained 
between observed and calculated data ( χ 2 = 2.1) indicates that this model is not 
completely satisfactory. 

The spin density reconstructed from MaxEnt with a uniform prior, and projected 
on the plane of the molecule, is represented with its low contours and with its high 
contours for molecules A and B in Figure 6. The majority of the spin resides on the N1, 
N2 and O1 atoms, equally shared between those sites. On the N1 and O1 sites of both 
molecules the density is not centered on the nuclei but is slightly shifted away from 
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Figure 6. m-NPIN: MaxEnt reconstruction for molecules A and B with a flat prior.

Figure 7. m-NPIN: MaxEnt reconstruction for molecules A and B with a non-uniform prior.

the center of the N1–O1 bond. The effect is more pronounced on the N1 site. On the 
central C1 carbon atoms, the spin density is negative. Moreover it is off-centered,
shifted in the N1–N2 direction. 

Are these off-centering real or due to an artifact of the reconstruction? The fact that 
they occur the same way on two unequivalent molecules is already an indication. The 
best way to completely answer the question is to reconstruct the spin density with a 
MaxEnt method and a non-uniform prior, a prior in which the density is centered on 
the nuclei. We have done this reconstruction, taking as a prior for the two molecules the 
‘averaged’ parametrized spin density refined above. The result is shown in Figure 7. 
The off-centering of the N1–O1 density and of the negative C1 density is still there, 
even at the price of a loss of entropy, as it departs from the model. 

On the one hand, the antibonding character of the SOMO appears clearly on the 
N–O bond: the 2p orbitals are slightly bent and pushed away from the center of 



44

the bond. On the other hand the observed negative and off-centered density from 
the carbon nucleus is the result of a competition between spin polarization and spin 
delocalization. Both are of the same order of magnitude, the spin polarization being 
slightly larger, providing a negative density and a shift from the central position. 

Through these examples we see that we have with the non-uniform prior MaxEnt 
reconstruction, not only a method which takes advantage of all the knowledge to get 
the best possible map, but also a very powerful way to tell to what extent a proposed 
model is compatible with experimental data. 

References

1. Sakata, M. and Sato, M. (1990) Acta Cryst., A46, 263–270.
2. Papoular, R.J. and Cox, D.E. (1995) Europhysics Letters, 32, 337–342.
3. Papoular, R.J., Vekhter, Y. and Coppens, P. (1996)Acta Cryst., A52, 397–407.
4. Sakata, M., Uno, T., Takata, M. and Howard, C.J. (1993) J. Appl. Cryst., 26, 159–165.
5. Schiebel, P., Wulf, K., Prandl, W., Heger, G., Papoular, R.J. and Paulus, W. (1996) Acta Cryst., A52,

6. Schiebel, P., Prandl, W., Papoular, R.J. and Paulus, W. (1996)Acta Cryst., A52, 189–197.
7. Boucherle, J.X., Henry, J.Y., Papoular, R.J., Rossat-Mignot, J., Schweizer, J., Tasset, F. and Uimin, G.

8. Zheludev, A., Ressouche, E., Schweizer, J., Wan, M. and Wang, H. (1994) J. Mag. Magn. Mat., 135,

9. Papoular, R.J., Zheludev, A., Ressouche, E. and Schweizer, J. (1995) Acta Cryst., A51, 295–300.

176–188.

(1993) Physica B, 192,25–38.

147–160.

10. Skilling, J. (1988) In Maximum Entropy and Bayesian Methods in Science and Engineering, Vol. I,

11. Schweizer, J. and Tasset, F. (1969) Mater. Res. Bull., 4, 369–376.
12. Schweizer, J. and Tasset, E (1980) J. Phys. F: Metal Phys., 10, 2799–2818.
13. Bonnet, M., Luneau, D., Ressouche, E., Rey, P., Schweizer, J., Wan, M., Wang, H. and Zheludev, A. 

Erickson, G.J. and Smith, C.R. (Eds.), Kluwer Academic Publishers, pp. 173–187.

(1995) Mol. Cryst. Liquid Cryst., 271, 35–53.



4

Transferability, adjustability, and additivity of
fuzzy electron density fragments 
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Statistics, University of Saskatchewan, 110 Science Place, Saskatoon, Canada, S7N 5C9 

1. Introduction 

The molecular electron density cloud is a fuzzy object. For large enough distances 
from the center of the molecule, the value of electron density converges to zero 
exponentially, and there is no sharp boundary where a molecule ‘ends’. Any such 
sharp boundary would violate the principle of quantum mechanical uncertainty. If our 
goal is to study local regions of molecules, it is natural to decompose the molecular 
density cloud into boundaryless, fuzzy fragments exhibiting convergence behavior 
analogous to those of density clouds of complete molecules. 

From the early advances in the quantum-chemical description of molecular elec-
tron densities [1–9] to modem approaches to the fundamental connections between 
experimental electron density analysis, such as crystallography [10–13] and density 
functional theories of electron densities [14-43], patterns of electron densities based 
on the theory of catastrophes and related methods [44–52], and to advances in com-
bining theoretical and experimental conditions on electron densities [53–68], local 
approximations have played an important role. Considering either the formal charges 
in atomic regions or the representation of local electron densities in the structure 
refinement process, some degree of approximate transferability of at least some of 
the local structural features has been assumed. 

In more recent years, additional progress and new computational methodologies in 
macromolecular quantum chemistry have placed further emphasis on studies in trans-
ferability. Motivated by studies on molecular similarity [69–115] and electron density 
representations of molecular shapes [116-130], the transferability, adjustability, and 
additivity of local density fragments have been analyzed within the framework of 
an Additive Fuzzy Density Fragmentation (AFDF) approach [114, 131, 132]. This 
AFDF approach, motivated by the early charge assignment approach of Mulliken 
[1, 2], is the basis of the first technique for the computation of ab initio quality
electron densities of macromolecules such as proteins [133–141], 

Approximate transferability of fuzzy density fragments is a key feature of the 
method, where the fuzzy fragments are ‘custom-made’ in order to reproduce inter-
fragment interactions. By increasing the size of the ‘interaction shell’ about each 
fuzzy density fragment, the error of transferred fragment densities can be reduced 
below any positive threshold. One tool for this purpose is the Adjustable Density 

45

Paul G. Mezey and Beverly E. Robertson (eds.), Electron, Spin and Momentum Densities and Chemical Reactivity, 45–69 
© 2000 Kluwer Academic Publishers. Printed in Great Britain 



46

Matrix Assembler (ADMA) method, introduced for the generation of ab initio quality
approximate density matrices for macromolecules [142–146], and for the computation 
of approximate macromolecular forces [146], among other molecular properties. 

Such fragment density matrices must fulfill a set of constraints, in part to ensure 
a proper representation of the charge conservation condition, and in part to fulfill 
the technical requirement of mutual compatibility of fuzzy fragment density matrices 
within an additive framework. Based on properly combined compositions of Lowdin 
transforms and inverse transforms [147–149] of density matrices, it is possible to 
combine the relevant idempotency constraints of the assembled density matrices with 
the adjustability and additivity conditions of fragment density matrices [146]. With 
respect to experimental electron density representations, a similar method is applied 
in Quantum Crystallography [67, 68]. The ADMA approach is suitable to describe a 
series of deformed electron densities occurring during a formal chemical reaction, and 
to evaluate the similarities within a family of density matrices of related molecules 
participating in similar chemical reactions in order to find correlations between their 
reactivities and similarities. 

Simple, approximate methods for the readjustment of fragment electron densities 
based on exact deformations of nuclear arrangements are the Dimension Expansion-
Reduction (DER) and the Weighted Affine Transformation (WAT) techniques [113, 
114, 130, 150–152]. In addition, an application of the Lowdin transform–inverse 
Lowdin transform method also serves as a tool for the generation of approximate 
macromolecular density matrices for slightly distorted nuclear arrangements, if for 
the original nuclear arrangement a density matrix is available. These methods have 
also been suggested as tools in the study of the shape and deformability of quantum 
chemical functional groups [113, 114, 130, 146]. 

In a certain sense, the differential-topological and algebraic-topological methods 
of molecular shape characterization [116-130] imitate the natural process of visual 
comparisons, based on the detection, analysis, and algebraic characterization of var-
ious curvature regions of the object, for example, in the simplest case, the locally 
convex, concave, or saddle type regions of the object. The results of these topological 
methods are fully reproducible, a claim that cannot be made for visual inspections. 
These techniques are not restricted to complete molecules. A topological description 
of the essential properties of local electron densities also has many advantages. Local 
electron density fragments exhibit a variety of important topological properties which 
can be used for their characterization. 

The description of fuzzy, local density fragments is facilitated by the use of local 
coordinate systems, however, some compatibility conditions of such local coordinate 
systems must be fulfilled, reflecting the mutual relations of the fragments within 
the complete molecule. Manifold theory, topological manifolds, and in particular, 
differentiable manifolds [153-158], are the branches of mathematics dealing with the 
general properties of compatible local coordinate systems. 

A special technique, the Alexandrov one-point compactification method, often 
used by topologists within a differential-topological framework, has been applied 
in the proof of the ‘Holographic Electron Density Fragment Theorem’ [159–161]. 
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Earlier density extension results were proven only for parts of artificial molecular 
electron densities, where the complete molecule was assumed to be confined to a finite, 
bounded region of the three-dimensional space [21], a condition that violates quantum 
mechanics. However, the new ‘Holographic Electron Density Fragment Theorem’ 
quoted here proves the unique extension property of parts of quantum-mechanically 
correct, boundaryless electron densities of molecules. This new theorem is of special 
importance with respect to transferability, establishing that for complete, boundaryless 
molecular electron densities no actual fragment density of sharp boundaries is per- 
fectly transferable. This result has implications on using averaged electron densities 
for similarity analysis [162]. 

These topics provide the motivation for a brief topological review in Section 2, 
followed by some of the details of transferability properties in Section 3. Also in 
Section 3, some of the consequences of the ‘Holographic Electron Density Fragment 
Theorem’ will be discussed, as well as the general proposition that ‘No physical 
system with more than one quantum state is rigorously transferable’. In fact, even 
atomic nuclei within molecules are not rigorously transferable. 

The approximate transferability of fuzzy fragment density matrices, and the asso-
ciated technical, computational aspects of the idempotency constraints of assembled 
density matrices, as well as the conditions for adjustability and additivity of fragment 
density matrices are discussed in Section 4, whereas in Section 5, an algorithm for 
small deformations of electron densities are reviewed. The Summary in Section 6 is 
followed by an extensive list of relevant references. 

2. Some topological concepts relevant to the shape of 
molecular electron densities 

In some chemical reactions and conformational changes the molecular interactions 
are often dominated by the local molecular shape properties. Such local properties 
often show high degrees of similarities within a family of related molecules, and it is 
natural to expect some, limited transferability of these local moieties. In such cases it 
is natural to focus on the corresponding local regions of the molecular electron density. 
Local characterization of a molecular moiety is facilitated by using local coordinate 
systems. For example, local curvature properties of Molecular Isodensity Surfaces 
(MIDCOs) G (K, a ) of nuclear configuration K and electron density threshold a are
often characterized in terms of local Hessian (curvature) matrices expressed as the 
matrices of second derivatives of local isodensity surfaces interpreted as being defined 
over various local tangent planes of the MIDCO surfaces G(K, a ). Similarly, local 
coordinate systems are advantageous when using the three-dimensional local curva- 
tures of the four-dimensional representation of molecular density functions, where 
in addition to the three spatial coordinates, the electron density value is represented 
along a fourth coordinate axis. 

Local coordinate systems can be required to conform with certain mutual compat-
ibility requirements which ensure that the local descriptions are compatible with a 
global description of the complete system. The branch of topology that deals with 
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such compatible families of local coordinate systems is manifold theory. In the par-
ticular case when continuous and differentiable functions are studied within a metric 
space, such as the three-dimensional electron densities of molecules embedded in the 
ordinary three-dimensional Euclidean space E 3, the mutual compatibility conditions
of local coordinate systems can be formulated in terms of the properties of differen-
tiable manifolds. Such differentiable manifolds provide a framework for a topological
analysis of molecular shape in terms of a family of topological similarity measures, 
based on the very useful concept of topological resolution. In the following paragraphs 
some of the fundamental concepts of the relevant branches of point set topology and 
manifold theory are reviewed with special focus on local representations which are 
relevant to the problem of transferability of subsystems of a system. More details of 
the fundamentals of topology, as well as some more advanced topological subjects 
can be found in Refs. [153–158]. 

Topology is the branch of mathematics that is based on the most general properties 
of open sets and continuity. Some of the basic concepts can be illustrated using the 
more familiar setting of a metric space, that is, a space where a distance function, with 
the intuitively natural properties of distance in the ordinary, three-dimensional space 
is defined. Within a metric space Y a set A is called an open set if around every point y
of Y there exists some ball that is also contained within the set A. Open sets of a metric 
space Y have some fundamental properties that make them very useful, for example, 
these properties lead to a powerful interpretation (in fact, definition) of continuity of 
functions: a function f, f : Y → Y', assigning points of one metric space Y to points 
of another metric space Y' is continuous if the inverse image of every open set is also an 
open set. In a metric space, the definition of openness requires the concept of distance 
in order to specify the radius of the balls surrounding various points. However, the 
concept of distance is usually not available if our concern is the topological structure 
of objects, hence openness, as well as continuity, require an alternative approach in 
topology. One can, in fact, use some of the very properties of open sets recognized 
in a metric space as the conditions for openness. These properties themselves may 
be used to define which sets are to be regarded as open sets. This cannot be done 
entirely arbitrarily, but there is a surprising degree of freedom in choosing open sets 
in a mutually consistent way. We say that within a set X a topology T is defined if a 
family of subsets of X is specified as the open sets in X, where these sets must fulfill 
some, not very severe, mutual compatibility conditions. 

Specifically, a family T of subsets of X,

(1)

is called a topology on set X, if the following conditions are satisfied: 

(2)

where ∅ is the empty set, 

(ii) (3)
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for any number of sets in T, and

(iii) (4)

for any two sets Tα , Tβ ∈ T.
These three properties, (i)–(iii), are among the properties of open sets in a metric 

space.
If a set X is provided with a topology T, then the pair ( X , T) is called a topological 

space.
Of course, there are many ways one can select such a family T, and on a given 

set X one can define many, different topologies. Consequently, when discussing 
topological properties of a given object (space) X, the actual topology T must be 
specified.

Elements of the family T are called T-open sets. Following some of the natural 
properties of sets in a metric space, a set C is called a T-closed set if its complement 
Cc = X\C is a T-open set. A set may be regarded as an open set or a closed set, 
depending on the topology; if T1 and T2 are two different topologies on set X, then a 
set A in X may be T1-open but T2-closed. Note in particular that for each topology 
T on X, a topology TC can also be defined, where the Tc-open sets are precisely 
the T-closed sets and vice versa. This topology Tc on the same set X is called the 
cotopology of T of set X.

The comparison of various topologies provides the tools for the introduction of 
the concept of topological resolution. Assume that for two topologies T1 and T2 on
set X the following holds: every T1-open subset of X is also a T2-open set. Then T1

is a subfamily of T2, that is, T2 T1. If this holds, then we say that topology T1

is coarser (or weaker) than topology T2, and topology T2 is finer (or stronger) than 
topology T1. Of course, two topologies on the same set X do not need to relate to 
one another in this manner, and two topologies are called not comparable if neither 
is weaker than the other. The coarser-finer relation between some of the topologies 
on a given set X provides a partial ordering of topologies on X.

A set N, X ⊃ N, is called a T-neighborhood of point r ∈ X if and only if there 
exists a T-open set G ∈ T such that r ∈ G, N ⊃ G.

The concepts of base and subbase of topologies are important in the actual con-
struction of a topology that contains a desired family of sets. 

A subfamily B, T ⊃ B, is a base for topology T if and only if every T-open set 
G ∈ T is a union of some sets in B.

A subfamily S, T ⊃ S, is a subbase for topology T if and only if finite intersections 
of elements of S form a base for T.

Consider a set X. The topological space ( X, T) is called a Hausdorff space if for 
any two distinct points x, y ∈ X there exist disjoint T-open sets Tx, Ty,

(5)

(6)
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which contain points x and y, respectively:

(7)

(8)

If in a topological space (X, T) any two T-closed sets Cα and Cβ of X, such that 

(9)

have the property that there exist disjoint T-open sets T α , Tβ ∈ T,

(10)

such that 

(11)

and

(12)

then ( X, T) is called a normal topological space. 
If the topology T is chosen as the metric topology, that is, if the T-open sets are 

precisely those which are open in some metric d introduced into the set X, then one 
obtains the metric topological space ( X, T). Note that the metric topological space 
(X, T) is a Hausdorff space and also a normal space. 

Since the specification of topologies implies that all open sets are defined, the 
concept of continuity can also be generalized to topological spaces, even if distance 
functions are not given. 

Consider two topological spaces, ( X 1, TI) and ( X 2, T2), and a function ϕ from X1

to X2. This function ϕ is continuous if and only if the inverse image of every T2-open
set of X2 is T1-open in XI:

(13)

A function ϕ is called one-to-one if it assigns a unique element ϕ (x) = y ∈ X2 to

A function ϕ is called onto if every element y ∈ X2 is assigned to some element 

A function ϕ is called bijective if it is both one-to-one and onto. 
A function ϕ is called a homeomorphism if it is bijective and both ϕ and its inverse 

each element x ∈ X1.

x ∈ X1.

ϕ –1 are continuous, 

(14)

that is, if ϕ and ϕ –-1 are elements of the class C of continuous functions on X.
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For a comparison of objects, one may focus on how well can these objects corre-
spond to each other and possibly replace each other. A correspondence between two 
objects, specifically, a correspondence between various parts of the two objects, can 
be described by some functions that assign the points of one object to the points of 
the other object. Then, properties of these functions can be used to qualify and even 
quantify the similarity of the two objects. One advantage of topology over straightfor- 
ward geometrical techniques is the fact that topology allows one to recognize and use 
less than perfect correspondence between the points of the two objects; by specifying 
various topologies, and by testing how well correspondences hold up within each 
topological setting, one can find a detailed and quantifiable description of similarity. 

In one extreme case within the topological framework, the two objects can be 
brought into a perfect correspondence, demonstrating topological equivalence. In a 
more precise formulation, two topological spaces ( XI, T1 ) and ( X2, T2) are called 
topologically equivalent or homeomorphic if there exists a function 

(15)

which is bijective and both f and f–1 are continuous. Such a function f is called a 
homeomorphism.

A property is called topological or topological invariant if it is a property of all 
topological spaces in an equivalence class generated by the equivalence relation 
‘topologically equivalent’. Many of the familiar concepts often used in a geometrical 
setting, such as length, boundedness, or being a Cauchy sequence are not topolog- 
ical properties. On the other hand, connectedness and compactness are topological 
properties; some of the associated elementary results are described below. 

If the set X of a topological space ( X , T) is a union of two, non-empty, disjoint 
T-open subsets,

(16)

then the topological space ( X, T) is disconnected. 
Connectedness is defined indirectly as the lack of disconnectedness: a topological 

space ( X , T) is connected if it is not disconnected. A connected open subset is often 
called a domain. 

Consider an n-dimensional set X. Set X is simply connected if and only if every 
k-dimensional ( k < n) topological sphere Sk in set X is contractible to a point. 

Take a general set X, a subset A, X ⊃ A. If there exists a class F = { Fi } of open 
subsets of set X such that 

(17)

then F is called an open cover of A. 
The family F is called a finite cover if F contains only a finite number of Fi subsets.
If every open cover of a subset A of a topological space X contains a finite subcover, 

then the subset A of the topological space X is compact. The compactness property 
is a generalization of the elementary properties of closed and bounded intervals. 
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Three-dimensional electron densities have no boundaries; they converge to zero 
exponentially with distance from the nuclei of the peripheral atoms in the molecule. 
Considering a single, isolated molecule, the exact quantum-mechanical electron den-
sity becomes zero in a strict sense only at infinite distance from the center of mass 
of the molecule. Consequently, the electron density is not a compact set, just as the 
embedding three-dimensional Euclidean space E3 is not compact either. However, the 
three-dimensional Euclidean space E3, as a subset of a four-dimensional Euclidean 
space E4, can be ‘slightly’ extended (for example, by adding one point) and ‘made’ 
compact by various compactification techniques. 

One such compactification technique is the Alexandrov one-point compactification 
method used in the study of the topology of potential energy hypersurfaces and the 
fundamental group of reaction mechanisms associated with a given stoichiometric 
family of molecules [118]. The same technique also has been used in the proof of the 
Holographic Electron Density Fragment Theorem [159–161], establishing for a com-
plete, boundaryless molecular electron density the holographic property of molecular 
fragments: any non-zero volume fragment density contains the full information about 
the electron density of the entire, boundaryless molecule. 

Some non-compact topological spaces ( X, T) can be converted into some com-
pact topological spaces (X∞ , T∞ ) by a technique called the Alexandrov one-point
compactification. Here 

(18)

that is, a single point, distinct from every other point of X, is added to X. This 
additional formal point, denoted by ∞ , is analogous to the ‘ideal point’ of infinity in 
projective geometry. 

The topology T∞ consists of the following sets:

B compact in X}, (19)

that is, the family T∞ contains the following sets:

(i) each T-open set; 
(ii) the complement in X∞ of each closed and compact subset of X.

Evidently, the topological space ( X , T) is embedded in the compact topological 
space (X∞ , T∞ ), since (X, T) is homeomorphic to a subspace of (X∞, T∞), as it
follows from the definitions given above. 

More details of examples of the chemical applications of the Alexandrov one- point
compactification method can be found in Refs. [118] and [159]. 

Sets of local coordinate systems describing certain local features of complicated 
objects are often advantageous when compared to a single, global coordinate system. 
Within a topological framework, the general theory of sets of local coordinate systems 
is called manifold theory. Often, the local coordinate systems are interrelated, and 
these relations can be expressed by continuous, and in the case of differentiable 
manifolds, by differentiable mappings, called homeomorphisms (see Equation (15)), 
and diffeomorphisms, respectively. 
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A function ϕ is called a diffeomorphism if ϕ is a homeomorphism and both the 
function ϕ and its inverse ϕ –1 are infinitely differentiable, that is, both ϕ and ϕ –1

belong to the class C∞ of functions:

(20)

In differentiable manifolds the local coordinate systems must fulfill some com- 
patibility conditions ensuring that in any overlapping region of two local coordinate 
systems any additional, differentiable functions expressed in either coordinate system 
are meaningful and differentiable in the other coordinate system as well. 

In many applications it is customary to define local coordinate systems indirectly 
by establishing their connection with the Cartesian coordinates in some underlying 
Euclidean space En, if there is one. By labeling the points within each actual space 
(of local coordinate system) with the coordinate values in the underlying Euclidean 
space En, there is a common reference for all local coordinate systems, and the 
compatibility conditions can be formulated within the Euclidean space En of familiar
and intuitively simple properties. 

The underlying Euclidean space En also simplifies the definition of individual 
coordinate systems considerably. 

An n-dimensional coordinate system ϕ  (i) of a T-open set G (i) of a Hausdorff
topological space (X, T) is a homeomorphismϕ  (i) between G(i) and an open set H (i)

of the Euclidean space En.
Informally, a set X is an n-dimensional topological manifold if X is covered by 

domains of n-dimensional coordinate systems ϕ (i),i = 1, 2, . . .
If differentiability is also ensured, then one obtains a differentiable manifold.
More precisely, a Hausdorff space X covered by countable many T-open sets

G(1), G(2), . . . , is an n-dimensional differentiable manifold if it satisfies the following 
conditions:

(i) for each T-open set G(i) of X there exists an n-dimensional coordinate system

(ii) if the condition of overlap 

ϕ (i);

(21)

holds then the function ϕ(ij)defined as

(22)

is differentiable. 

If space X is an n-dimensional differentiable manifold and if Y is a subset of X, then
Y is called an m-dimensional submanifold of X if the following additional conditions 
hold for Y:

(i) Y itself is an m-dimensional differentiable manifold;
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(ii) for every point y ∈ Y there exists a local coordinate neighborhood G of point y
in X with a local coordinate system having the following properties: 

(23)

where H , En ⊃ H is a T-open set, and in the subset

(24)

the coordinates are constrained to zero:

(25)

The functionϕ , when restricted to the subset G ⊃  Y , is a local coordinate system
for Y around point y.

In representations of electron densities, the presence or lack of boundaries plays a
crucial role. A quantum mechanically valid electron density distribution of a molecule 
cannot have boundaries, nevertheless, artificial electron density representations with 
actual boundaries provide useful tools of analysis. For these reasons, among the
manifold representations of molecular electron densities, manifolds with boundaries 
play a special role. 

The role of a boundary in a manifold with boundary can be interpreted with 
reference to a hyperplane within a Euclidean space E n, using the concept of half-
space, where the hyperplane is in fact the boundary of the half-space. By appropriate
reordering of the coordinates, a half-space Hn becomes the subset of a Euclidean 
space En containing all points of En with non-negative value for the last coordinate. 

A space M where each point x ∈ M has an open neighborhood homeomorphic
to a set open within a Euclidean half-space H n, is an n-dimensional manifold with 
boundary.

3. Limits to transferability 

Transferability of subsystems of large systems is an assumption often invoked in the 
study of physical objects where a direct analysis of the complete system is cumber-
some. The study of subsystems, either in isolation or as parts of a smaller object 
is often simpler than the study of the original large system; yet in many instances, 
some of the results obtained for the subsystem can be safely extrapolated to the large 
system. Whereas transferability has proved to be a very useful concept that leads to 
important and valid results when used with appropriate caution, it is also a concept 
that is sometimes poorly justified and may lead to erroneous conclusions. 

Although transferability of properties associated with local molecular moieties, for 
example, the transferability of the expected types of reactions and the degree of reac-
tivities of chemical functional groups, are among the most commonly used assump-
tions of classical chemistry, nevertheless, within a quantum-mechanical framework, 
transferability has some natural limitations. 
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One fundamental limitation can be phrased as a formal statement on the interactions 
between a quantum system and its surroundings: 

Theorem No physical system with more than one quantum state is rigorously 
transferable.

Proof If there are two or more possible quantum states of a system, interactions 
with the system may change the quantum state of the system, hence interactions may 
change the system. Consequently, the system is not necessarily rigorously identical to 
the system obtained by placing this same system into a different environment. Hence, 
the system is not rigorously transferable. 

In fact, in a precise sense, no molecular fragment is rigorously transferable, although 
approximate transferability is an exceptionally useful and, if used judiciously, a valid 
approach within the limitations of the approximation. In particular, it is possible to 
define non-physical entities, such as fuzzy fragment electron densities, which do 
not exist as separate objects, yet they show much better transferability properties 
than actual, physically identifiable subsystems of well-defined, separate identity. This 
aspect of specially designed, ‘custom- made’, artificial subsystems of nearly exact 
additivity has been used to generate ab initio quality electron densities for proteins 
and other macromolecules. 

The non-transferability of actual subsystems is manifested on all levels, even 
on the level of atomic nuclei. Although chemists often regard two nuclei of the 
same isotope as interchangeable, even such nuclei of identical lists of nucleons are 
not fully transferable, as evidenced, for example, by NMR spectroscopy. Chemical 
shifts of nuclei of identical lists of nucleons are different, precisely as a conse- 
quence of the nuclei being slightly different, caused by their different interactions 
with their different surroundings. Consequently, even nuclei are not rigorously 
transferable.

In a rigorous sense, non-transferability of molecular parts has profound implica-
tions on chemical conclusions based on electron densities. Since some of the original 
results on the utility and reliability of transferred electron densities have been derived 
within the framework of density functional theory, here we shall follow this approach, 
and describe a recent result on a general, ‘holographic’ property of electron density 
fragments of complete, boundaryless molecular electron densities. 

These results, as most related results of density functional theory, have direct 
connections to the fundamental statement of the Hohenberg-Kohn theorem: the non- 
degenerate ground state electron density ρ (r) of a molecule of n electrons in a local 
spin-independent external potential V, expressed in a spin-averaged form as 

(26)

fully determines all properties, including the electronic energy E of the molecule. 
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The Hamiltonian H of a molecule M can be expressed as 

(27)

where the usual notations are used for the kinetic energy operator T, the electron-
electron repulsion operator V ee, and external potential V (r),

(28)

In the latter expression, V(ri) is the electron–nuclear attraction operator describing 
the interaction of the ith electron of the molecule with the set of nuclei. 

As a consequence of the Hohenberg–Kohn theorem [14], a non-degenerate ground 
state electron density ρ (r) determines the Hamiltonian H of the system within an 
additive constant, implying that the electron density ρ (r) also determines all ground 
state and all excited state properties of the system. 

The original Hohenberg–Kohn theorem was directly applicable to complete sys-
tems [14]. The first adaptation of the Hohenberg–Kohn theorem to a part of a system 
involved special conditions: the subsystem considered was a part of a finite and 
bounded entity regarded as a hypothetical system [21]. The boundedness condition, 
in fact, the presence of a boundary beyond which the hypothetical system did not 
extend, was a feature not fully compatible with quantum mechanics, where no such 
boundaries can exist for any system of electron density, such as a molecular electron 
density. As a consequence of the Heisenberg uncertainty relation, molecular electron 
densities cannot have boundaries, and in a rigorous sense, no finite volume, however 
large, can contain a complete molecule. 

It is possible, however, to avoid any violation of these fundamental properties, and 
derive a result on the local electron densities of non-zero volume subsystems of bound-
aryless electron densities of complete molecules [159–161]. A four-dimensional
representation of molecular electron densities is constructed by taking the first three 
dimensions as those corresponding to the ordinary three-space E3 and the fourth 
dimension as that representing the electron density values ρ (r). Using a compactifi-
cation method, all points of the ordinary three- dimensional space E3 can be mapped 
to a manifold S3 embedded in a four- dimensional Euclidean space E4, where the 
addition of a single point leads to a compact manifold representation of the entire, 
boundaryless molecular electron density. 

The actual properties of this transformation combined with the convergence prop-
erties of molecular electron densities implies analyticity almost everywhere on the 
compact manifold. Consequently, this four-dimensional representation of the molec-
ular electron density satisfies the conditions of a theorem of analytic continuation, that 
establishes the ‘holographic properties’ of molecular electron densities represented 
on the compact manifold S3.

The non-degenerate ground state electron density ρd'(r') over any subset d of man-
ifold S3, S3 ⊃ d, where subset d has non-zero volume on S3, determines uniquely 
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the ground state electron density ρ '( r') of the complete molecule over the entire
manifold S3.

This result, in turn, implies the following ‘holographic properties’ of complete, 
boundaryless molecular electron densities within the ordinary three-dimensional space 

The non-degenerate ground state electron density ρ D(r) over any subset D of the
ordinary three-dimensional space E3, where E3 ⊃ D, and D has non-zero volume, 
determines uniquely the ground state electron density ρ (r) of the complete molecule 
over the entire three-dimensional space E3.

This result, the ‘Holographic Electron Density Fragment Theorem’, is a nega-
tive statement on the transferability of electron density fragments, since the unique 
extension property implied by the theorem also implies that any given electron density 
fragment can be transferred only to an environment that is exactly identical to its 
original environment. 

Nevertheless, approximate transferability is a valid concept and in the next section 
a particular approach will be discussed, based on fuzzy subsystems of molecular 
electron densities. 

[159–161].

4. Approximate transferability of fuzzy fragment density matrices 

If the electron density partitioning results in subsystems without boundaries and with
convergence properties which closely resemble the convergence properties of the
complete system, then it is possible to avoid one of the conditions of the ‘Holographic
Electron Density Fragment Theorem’, by generating fuzzy electron density fragments
which do not have boundaries themselves, but then the actual subsystems consid-
ered cannot be confined to any finite domain D of the ordinary three-dimensional
space E 3.

Transferred electron density fragments obtained by AFDF method can provide
excellent approximations. One such approach, formulated in terms of transferability
of fragment density matrices within the AFDF framework is a tool that has been
suggested as an approach to macromolecular quantum chemistry [114, 115, 130,
142-146] and to a new density fitting algorithm in the crystallographic structure
refinement process [161].

The AFDF approach and the ADMA method have been reviewed in detail [142,
146]add here only a shortened version of the main features of these methods will be
given.

The fundamental tool for the generation of an approximately transferable fuzzy
electron density fragment is the additive fragment density matrix, denoted by Pk

for an AFDF of serial index k . Within the framework of the usual SCF LCAO
ab initio Hartree–Fock–Roothaan–Hall approach, this matrix Pk can be derived from
a complete molecular density matrix P as follows.

In order to assign fuzzy, additive electron density fragments

F1, F2, . . . , Fk, . . . , Fm, (29)
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represented by fragment density functions

(30)

to various subgroups of nuclei, the complete family of nuclei of the molecule is
subdivided into m mutually exclusive families,

(31)

The molecular electronic density ρ (r) of a fixed nuclear geometry K is expressed
in terms of the complete density matrix P of dimensions n × n, and a set of n atomic
orbitals ϕ i (r)(i = 1, 2, . . . , n), as

(32)

As proposed in [131, 132], the general AFDF scheme can be given in terms of an
atomic orbital membership function mk(i) defined as

(33)
if AOϕ  i(r) is centered on a nucleus of nuclear set fk,

otherwise.
mk (i) =

Using weighting factors wij, wji , constrained by the relations

(34)

the elements of the n x n fragment density matrix Pk of the kth fuzzy density
fragment Fk are defined in terms of these membership functions mk(i),

(35)

The simplest choice of weighting factors, 

(36)

corresponds to the choice 

(37)

equivalent to the Mulliken-Mezey fragmentation scheme used in the MEDLA method
and in the simplest version of the more advanced macromolecular density matrix 
method, the ADMA method [142–146]. 

If the kth density fragment ρ k(r) is defined as 

(38)
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then these fuzzy electron density fragments ρ k(r) are exactly additive within the given 
molecule,

(39)

This follows from the definition (35) of fragment density matrices Pk that implies 
exact additivity of these fragment density matrices, i.e., they add up to the density 
matrix P of the complete molecule, 

(40)

This, in turn, implies the exact additivity of the fuzzy electron density fragments ρ k (r)
as given by Equation (39). 

In the following discussions we shall disregard the small changes of the nuclei 
induced by their surroundings within molecules, and we shall regard two nuclei 
identical if their lists of nucleons match. 

If two electron density fragments are ‘anchored’ to two identical sets of nuclei of 
the same nuclear geometry, and if these two fragments come from two molecules in 
which these nuclei have locally well-matching surroundings, then the two fragment 
densities are necessarily very similar and are approximately transferable to replace 
one another. This fact can be used to build approximate electron densities for macro-
molecules, by generating fragment densities from small ‘parent’ molecules where the 
local surroundings of the ‘anchor’ nuclei are the same as the local surroundings of an 
identical set of ‘anchor’ nuclei in the ‘target’ macromolecule. By combining fuzzy 
fragment electron densities, each obtained from an appropriately designed formal 
‘parent’ molecule and ‘custom-made’ to fit within the appropriate local surroundings 
within the target macromolecule, approximate electron density can be generated for 
the entire macromolecule. Applying the AFDF approach within this framework [133– 
146], such computations have led to the first ab initio quality electron densities for 
proteins and other large molecules. 

Whereas the first applications of the AFDF approach were based on a numerical 
combination of fuzzy fragment electron densities, each stored numerically as a set 
density values specified at a family of points in a three-dimensional grid, a more 
powerful approach is the generation of approximate macromolecular density matrices 
within the framework of the ADMA method [142–146]. A brief summary of the main 
steps in the ADMA method is given below. 

We assume that the nuclear families 

(41)

of the target macromolecule M are identified and a series of parent molecules 

(42)
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are designed, each parent molecule Mk containing a suitably large ‘coordination shell’ 
surrounding the set fk of ‘anchor’ nuclei of the fuzzy density fragment Fk, where this 
coordination shell matches that in the target macromolecule M.

With reference to the individual AO basis sets ϕ ( Kk ) of fragment density matrices 
P k ( ϕ ( Kk ) ) obtained from parent molecules Mk of nuclear configurations Kk, on the
one hand, and the macromolecular AO basis set ϕ (K) of the macromolecular density
matrix P ( ϕ ( K )) associated with the macromolecular nuclear configuration K, on the
other hand, the following mutual compatibility conditions are assumed: 

(a) For each fragment density matrix Pk ( ϕ ( Kk )), the AO basis set ϕ (Kk ) is defined
in a local coordinate system which has axes parallel and of matching orientations 
with the axes of the reference coordinate system defined for the macromolecule M.

(b) Each parent molecule Mk contains only complete nuclear families from the sets 
of nuclear families f1, f2, . . . , fk , . . . , fm specified in the target macromolecule 
M, with the possible exception of additional nuclei formally connected to the 
‘dangling bonds’ at the peripheries of the parent molecules Mk.

In order to fulfill compatibility condition (a), the local coordinate system of each 
parent molecule Mk can always be reoriented, resulting in a simple similarity transfor-
mation of the original fragment density matrix Pk (ϕ ' (Kk )) into a compatible fragment 
density matrix Pk ( ϕ ( Kk )),

(43)

using a suitable orthogonal transformation matrix T(k) of the original AO basis set 
ϕ ' (Kk ) of improper orientation, converting it into a basis set ϕ ( Kk ) with proper
orientation:

(44)

The second compatibility condition can also be fulfilled easily by an appropriate 
choice of the parent molecules Mk with respect to the selection of the nuclear families 
fk of the various fragments within the target macromolecule M.

The AFDF approach fulfilling the above two compatibility constraints is referred 
to as the mutually compatible AFDF method (MC-AFDF approach). 

Within the MC-AFDF ADMA method, the management of multiple index assign-
ments of basis orbitals and individual density matrix elements requires a series of index 
conversion relations. These relations are briefly reviewed below, using the notations 
of the original reference [143]. 

Atomic orbital basis functions have several indices, each referring to a different 
listing of these basis functions. In order to facilitate the correct index assignment in 
each case, several auxiliary quantities are defined. 

For each index pair k, k' of a pair fk, fk' of nuclear families, a quantity ck'k is
defined as follows: 

ck'k = (45)
if nuclear family fk' is present in parent molcule Mk,

otherwise
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With respect to the local AO basis set

(46)

of a nuclear family fk', where the number of AOs in this family is denoted by nk, the
AO basis function of serial number b is referred to as ϕ b,k' (r).

With respect to the AO set

(47)

of the kth fragment density matrix Pk (ϕ( Kk )) of total number of npk AO’s, where

(48)

the notation is used for the same AOϕ  (r).
With respect to the basis set

(49)

of the density matrix P(K ) of the target macromolecule M, the same AOϕ  (r) of
serial index y is denoted by ϕ y (r), where the index x for each AO 

(50)

is determined from the index a in the basis set of the nuclear family fk' as follows: 

(51)

where the last entry f in x(k' , a, f ) indicates that k' and a refer to a family of nuclei, 
in fact, to the family fk' of the nuclei. 

For each index k and nuclear family fk" with indices k and k" for which Ck"k ≠ 0
holds, three additional quantities are defined: 

(52)

(53)

and

(54)
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In terms of the index function x(k' , a, f ) with reference to the nuclear family fk',
the index function x = x(k, i, P ) with respect to the kth fragment density matrix 
Pk(ϕ (Kk)) is given as

(55)

where the last entry P in the index function x(k, i, P ) indicates that indices k and i
refer to the fragment density matrix Pk (ϕ (Kk)), and the index x = x(k, i, P ) itself 
is the serial index of an AO basis function in the density matrix P(K ) of target 
molecule M.

The final macromolecular density matrix P(K ) is rather sparse. The index relations 
described above help to identify the non-zero matrix elements of P(K), and the actual 
computations can be restricted to those. Utilizing these restrictions and carrying out a 
finite number of steps only for the non-zero matrix elements of each fragment density 
matrix Pk (ϕ (Kk )), an iterative process is used for the assembly of the macromolecular 
density matrix P(K ):

(56)

This iterative procedure depends linearly on the number of fragments and on the 
size of the target macromolecule M, as long as the parent molecules Mk are confined 
to some limited size. The storage of the information on the macromolecular basis 
set has relatively small computer memory requirements. The computation of the 
macromolecular electron density from this basis set information and the final macro-
molecular density matrix P(K ) obtained from the finite iterative process (56) can rely 
on relation (32). As a consequence of the sparsity macromolecular density matrix 
P(K), the computational task has linear computer time requirement with respect to the 
number of fragments, hence, with respect to the size of the target macromolecule M.

In terms of the three-dimensional local coordinate transformations R(k) leading to the
local basis set transformations T( k ), the entire macromolecular system is naturally 
covered with a family of local coordinate systems. These local coordinate systems 
are also pairwise compatible, since the actual transformation V(k,k' ) between any two 
such local systems of some serial indices k and k' can be given explicitly as 

(57)

where ( T( k ))' stands for the transpose of matrix T( k ), and where the fact that matrix 
T(k ) is an orthogonal matrix is utilized. 

Since the individual coordinate transformations T(k) depend continuously and dif-
ferentially on some rotation angles specifying these transformations, the same must 
hold for the combined transformations V(k,k' ) as well, since transposition and matrix 
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multiplication do preserve these properties. Consequently, these local coordinate 
systems of individual fuzzy electron density fragments and their relations with the 
global, macromolecular coordinate system satisfy the conditions for a differentiable 
manifold.

The reference to local coordinate systems may be advantageous if one considers 
local deformations of macromolecules, such as a small local shape change of the 
pocket region of an enzyme. If the deformation can be considered as being approx-
imately confined to a few molecular fragments, then within such an approximation 
it appears justified to retain the local density matrix representations of all other 
fragments making up the rest of the macromolecule and modify only those fragment 
density matrices which are assumed to be affected by the deformation. 

We shall assume that the fragment density matrix Pk (ϕ (Kk )) is available for the 
local fragment nuclear geometry Kk, expressed at the corresponding nuclear locations, 
and with reference to the local basis set ϕ (Kk ). If a distorted local nuclear geometry 
K'k does not deviate much from the original local nuclear geometry Kk, then a fairly 
simple matrix transformation of the original fragment density matrix Pk (ϕ (Kk)) can
be used to generate an approximate fragment density matrix at the new location K'k .

In fact, for a simple, but still remarkably useful first approximation of the electronic 
density of the new nuclear arrangement K'k. one may use the same density matrix 
Pk (ϕ (Kk )), but in combination with a new basis set ϕ (K'k ) obtained by simply moving 
the centers of the old AO basis functions to the new nuclear locations, 

(58)

where the components of this new local basis set are denoted by ϕ i (r, ).
The macromolecular density matrix built from such displaced local fragment den- 

sity matrices does not necessarily fulfill the idempotency condition that is one condi- 
tion involved in charge conservation. It is possible, however, to ensure idempotency 
for a macromolecular density matrix subject to small deformations of the nuclear 
arrangements by a relatively simple algorithm, based on the Lowdin transform-
inverse Löwdin transform technique.

The formal vector ϕ (K) denotes the set of atomic orbital basis functions with 
centers at the original nuclear locations of the macromolecular nuclear configuration 
K, where the components ϕ i (r, K) of vector ϕ (K) are the individual AO basis 
functions. The macromolecular overlap matrix corresponding to this set ϕ ( K ) of 
AO’s is denoted by S(K). The new macromolecular basis set obtained by moving 
the appropriate local basis functions to be centered at the new nuclear locations is 
denoted by ϕ (K' ), where the notation ϕ i (r, K') is used for the individual components 
of this new basis set ϕ (K' ). The corresponding new macromolecular overlap matrix 
is denoted by S(K’).

Pre- and postmultiplication by the matrix S(K)1/2 generates the Löwdin transform
of the macromolecular density matrix P ( K ) = P ( ϕ ( K ), K ), expressed in terms of 
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the AO basis set ϕ (K):

(59)

For a correct density matrix 

(60)

must hold, consequently, the Löwdin transform S(K)1/2P(ϕ (K), K)S(K)1/2 of den-
sity matrix P ( ϕ ( K ), K ) is idempotent: 

(61)

The inverse Lowdin transform constructed for the above idempotent matrix 
S(K)1/2P(ϕ (K), K)S(K)1/2, given with respect to the actual new, macromolecular 
overlap matrix S(K' ), is expressed as 

(62)

This new, approximate macromolecular density matrix ( ϕ (K' ), K', [K]) for the new, 
slightly distorted nuclear geometry K' is also idempotent with respect to multiplica-
tion involving the actual new overlap matrix S(K’),

(63)

This can be shown as follows. A series of simple substitutions give 

(64)

that is, idempotency condition (63) holds. 

density can be expressed as the improved approximation 
For the new, slightly distorted macromolecular nuclear geometry K', the electronic 

(65)
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If the original macromolecular density matrix is already available, then such approx- 
imate macromolecular electron densities for slightly distorted nuclear geometries are 
simpler to calculate than the full recalculation of an ADMA macromolecular density 
matrix that involves a new fragmentation procedure. 

Note that for large nuclear displacements, for example, distortions exceeding about 
0.3–0.4 a.u., the method based on the Löwdin transform–inverse Löwdin transform 
technique is not recommended. However, for smaller distortions the method discussed 
above appears to provide a useful approximation. 

6. Summary 

Approximate transferability of molecular components is a concept that lies at the foun- 
dation of the classification of chemical reactions and molecular families according 
to functional groups and reaction types. The very definition and choice of molecular 
components, however, involves questions reaching to the foundations of quantum 
chemistry, the topological characterization of local and global shape of molecules, 
the roles of local and global coordinate systems that can be treated within a unified 
framework using manifold theory, and the limitations on true transferability, as mani- 
fested, for example, by the ‘holographic electron density fragment theorem’, reviewed 
in this contribution. Approximate transferability, however, remains a useful concept 
that also serves as the motivation for simple computational algorithms which can 
utilize common features of slightly distorted macromolecular conformations. These 
approaches effectively utilize approximate transferability, while maintaining some of 
the constraints, such as density matrix idempotency, required for consistent electron 
density representations. After discussions on the theoretical concepts and constraints, 
some of the relevant computational methods are also reviewed. 
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Beyond the local-density approximation in 
calculations of Compton profiles 

YASUNORI KUBO 
Department of Physics, College of Humanities and Sciences, Nihon University, 3-chome sakurajosui 
setagaya-ku, Tokyo 156, Japan 

1. Introduction 

Generally, all band theoretical calculations of momentum densities are based on 
the local-density approximation (LDA) [1] of density functional theory (DFT) [2]. 
The LDA-based band theory can explain qualitatively the characteristics of overall 
shape and fine structures of the observed Compton profiles (CPs). However, the LDA 
calculation yields CPs which are higher than the experimental CPs at small momenta 
and lower at large momenta. Furthermore, the LDA computation always produces 
more pronounced fine structures which originate in the Fermi surface geometry and 
higher momentum components than those found in the experiments [3–5]. 

One obvious drawback of the LDA-based band theory is that the self-interaction
term in the Coulomb interaction is not completely canceled out by the approximate 
self-exchange term, particularly in the case of a tightly bound electron system. Next, 
the discrepancy is believed to be due to the DFT which is a ground-state theory, 
because we have to treat quasi-particle states in the calculation of CPs. To correct these 
drawbacks the so-called self-interaction correction (SIC) [6] and GW-approximation
(GWA) [7] are introduced in the calculations of CPs and the full-potential linearized 
APW (FLAPW) method [8] is employed to find out the effects. No established formula 
is known to take into account the SIC. 

In the present calculation the SIC potential is introduced for each angular momen-
tum in a way similar to the SIC one for atoms [9]. The effects of the SIC are examined 
on the CPs of three materials, diamond, Si and Cu compared with high resolution CP 
experiments except diamond [10, 11]. In order to examine the quasi-particle nature 
of the electron system, the occupation number densities of Li and Na are evaluated 
from the GWA calculation and the CPs are computed by using them [12, 13]. 

The purpose of this paper is as follows. Section 2 outlines why we have to go 
beyond the LDA in the calculations of CPs. The first approach, SIC, beyond the LDA 
is presented in Section 3, the other approach, GWA, is given in Section 4, and the 
results are discussed compared with experimental ones in Sections 3 and 4. Section 5 
contains the summary and conclusions. 
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2. Why are trials beyond the LDA necessary? 

In a typical Compton scattering experiment with unpolarized radiation, the cross 
section is expressed as 

(1)

where (d σ /dω )0 is the well-known Thomson scattering cross section, and hω =
h(ω i – ω f) is the transferred energy. The dynamical structure factor S(q, ω ) is 
expressed as 

(2)

In the ideal case being performed at X-ray energy transfers much higher than the 
characteristic energies of the scattering system, the impulse approximation [14] is 
applicable. In this case, the dynamical structure factor is directly connected with the 
electron momentum density ρ (p):

(3)

Taking the photon scattering vector q in z-direction, the dynamical structure factor is 
related to the Compton profile J(pz) by

(4)

(5)

Here, using electron field operator, momentum density is expressed as 

(6)

Furthermore, the field operator is expanded in the Bloch waves with wave vector k
in the band denoted by b as

(7)

The momentum density is given by the momentum wave functions and occupation 
number densities 

(8)
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The momentum wave functions are given by 

(9)

and the occupation number densities are expressed by annihilation and creation 
operator, and show translational symmetry with respect to the reciprocal lattice 
vector K.

(10)

(11)

As noticed from this expression, the CP calculation has to be basically carried out on 
the quasi-particle picture. Formally, quasi-particle energies and wave functions have 
to be evaluated by solving 

(12)

Here, H0 is a Hartree local Hamiltonian that includes the Coulomb effects of both 
nuclei and average electronic charge distributions, 

(13)

where

(14)

In Equation (12), the self-energy operator Σ (r , r '; Eb,k) is, in general, non-local 
and depends on energy. Therefore, to solve the Schrödinger equation, a series of 
approximations have to be introduced. 

First, the self-energy operator is replaced by a local exchange-correlation potential, 
which is given by the functional derivative of the exchange-correlation energy with 
respect to the electron density: 

(15)

(16)

The replacement of Equation (15) corresponds to the density functional method. 
But the exchange-correlation energy is generally unknown. Therefore, the unknown 
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exchange-correlation energy is replaced by the known form of homogeneous electron 
gas, which corresponds to the LDA. The replacement is expressed by 

(17)

(18)

Thus, the Schrödinger equation (12) is expressed as follows and becomes soluble:

(19)

Equation (15) is solved self-consistently employing the FLAPW method. Using the 
solutions, wave functions and energies, momentum densities in Equation (8) are 
calculated. In this step, one more drastic approximation we are going to make is 
that the occupation number in Equation (10) is replaced by the step function 

(20)

where EF is the Fermi energy. From these processes the CP is calculated as follows: 

(21)

(22)

(23)

Thus, the obtained CP of Equation (23) corresponds to the so-called conventional 
band calculation CPs. 

Typical CPs calculated by the FLAPW-LDA are shown compared with experiments 
measured by Sakurai [14] in Figures 1 and 2, for Li and Cu, respectively. As seen 
in both figures, there are serious discrepancies between the experiments and the 
calculations. That is, the calculated profiles are higher than the experimental profiles 
at small momenta and lower at large momenta, as observed consistently in studies 
of other solids. Therefore, I take this as an indication that we have to go beyond 
the LDA. 

3. Self-interaction correction on CPs 

One obvious drawback of the LDA is that, when we replace unknown exchange-
correlation energy by the known form of the exchange-correlation for a homogeneous 
electron gas in Equation (17), we have a problem in that cancelation of self-Coulomb
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Figure 1. The valence-electron CPs of Li along the three principal symmetry directions. The solid curves 
represent the FLAPW-LDA calculations. The dots represent the experimental results measured by Sakurai 
et al. [33].
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Figure 2. The valence-electron CPs of Cu along the three principal symmetry directions. The solid curves 
represent the FLAPW-LDA calculations. The dots represent the experimental results measured by Sakurai 
et al. [24].
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energy and self-exchange-correlation energy is not generally guaranteed [15], shown 
as follows: 

(24)

(25)

(26)

In these equations, (24)–(26), orthonormal orbits are denoted by indices i’s. Equa-
tion (26) means that the orbiting electron interacting with itself, that is self-interaction,
exists. This is unphysical. In order to remove this unphysical term, the SIC is taken into 
account by the following procedure. The SIC for the LDA in the density functional 
method has been treated for free atoms and insulators [16], and found an important 
role in determining the energy levels of electrons. However, no established formula is 
known to take into account the SIC for semiconductors and metals. As a way of trial, 
in the present calculation, the atomic SIC potential is introduced for each angular 
momentum in a way similar to the SIC potential for atoms [17] as follows: 

(27)

(28)

(29)

(30)

(31)

in the region of interstitial, 

in the region inscribed sphere, 

That is, the SIC potential is set to be zero in the interstitial region, and inside of 
the inscribed sphere the SIC potential is calculated in the same way as in the free 
atom case except that a non-integer occupation number at each angular momentum 
orbital state denoted by l is allowed. Thus, the SIC potential in the inscribed sphere is 
given in Equation (28). Here, the effective weight is obtained from the corresponding 
partial density of states in Equation (31). This angular averaged orbital density in 
Equation (30) is calculated from the radial Schrödinger equation with the spherical
part of the LDA potential plus its SIC potential in Equation (29). This procedure is 
incorporated in the whole self-consistent scheme of the FLAPW-LDA calculation. 

This FLAPW-SIC scheme has been applied to the CP calculations of Cu, Si and 
diamond. The semiconductor Si and the insulator diamond have energy gaps and the 
most upper valence electrons are regarded as being a slightly bound state. The noble 
metal Cu has tightly bound d-electrons.
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Effects of the introduction of the SIC on the band structures of Si and diamond are 
summarized as follows. With the introduction of the SIC, energy gaps of diamond 
and Si become larger by 20% and 23%, respectively, than those obtained without the 
SIC [18], which is in better agreement with experiments as shown in Table 1. The 
bandwidths of diamond and Si become narrower by 17% and 6%, respectively. The 
CPs calculated by the FLAPW and FLAPW-SIC scheme are plotted for Si in Figure 3 
together with the experimental profiles by Sakurai et al. [19]. The contributions from 
the core electrons to the CPs are evaluated from FLAPW calculations with and without 
the SIC. The difference between the core CPs with and without the SIC is negligibly 
small for both materials. In the case of Si, the theoretical profiles are convoluted with 
the experimental overall resolution of 0.13 a.u. The theoretical profiles computed 
with and without the SIC provide a reasonable overall description of the measured 
profiles. However, as found in other solids, both theoretical profiles are higher than 
the measured profiles at small momenta, and there is a crossover around 0.8 a.u. 
with the situation reversing itself at large momenta. It is seen that introduction of 
the SIC affects the shape of the profiles in a way that brings the theory into better 
agreement with the experiment. Although the reduction of the discrepancy is small 
in the total profile, the effect of the SIC on the valence-electron profiles is better seen 
in Figure 4, where the characteristic features of each profile are better displayed by 
the first derivatives, because the contribution from the core to the first derivatives is 
slowly and monotonously varying. In the case of diamond, introduction of the SIC 
makes a definite change in the overall shape of the theoretical profiles as seen in 
Figure 5. Unlike the case of Si, diamond has a large band gap and the wave functions 
of the valence electrons are more localized. By nature, the SIC acts to enhance this 
feature as seen in Figure 5 compared to the case of Si. No high resolution experimental 
profile of diamond is available. We show here an earlier measurement by Reed and 
Eisenberger [20]. Their profiles are deconvoluted and the process often produces a 
spurious structure. Therefore, we are not able to make a rigorous comparison between 
calculation and experiment. 

In the case of Cu, the effects of the SIC on the band structure are summarized as 
follows [21]. The width of the s-type band is not affected. The relative position of 
the d-bands with respect to the Fermi energy is lowered by 2 eV, and the width of the 
d-band is reduced by 15%. As a result, the electrons in the d-bands are more localized. 
The s-d hybridization near the Fermi energy is reduced. Consequently, I have got 
somewhat controversial results on the geometry of the Fermi surface. As reference, 

Table 1. Energy band gaps of diamond and silicon calculated by FLAPW-LDA
and FLAPW-SIC schemes. The experimental values [34] are also shown. Units 
are in eV. 

LDA SIC-LDA Experiment 

Diamond 4.07 5.17 5.48
Si 0.46 0.73 1.17 
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Figure 3. Measured (dotted) and calculated CPs of Si by the FLAPW-LDA (dashed) and the FLAPW-SIC
(solid) schemes, The theoretical core profile is represented by a dash-dotted curve (after Kubo et al. [10]).
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Figure 4. First derivatives of the measured and computed CPs of Si. Explanations are the same as those 
in Figure 3 (after Kubo et al. [10]).
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Figure 5. CPs of diamond along the three principal directions calculated by the FLAPW-LDA (dashed) 
and the FLAPW-SIC (solid) schemes. The dots represent the experimental profile measured by Reed and 
Eisenberger [20]. The theoretical core profile (dash-dotted) is also shown (after Kubo et al. [10]).
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Table 2. The dHvA frequencies of some symmetry orbits in Cu calculated by
the FLAPW-LDA (denoted as LDA) and FLAPW-SIC (SIC), respectively. The
experimental values measured by Shoenberg [22], and Coleridge and Templeton
[23], respectively.

Orbit Notation Exp. LDA SIC

Berry B100 5.998 6.463 6.343
Berry B111 5.814 6.167 6.300
Neck N111 0.218 0.296 0.090
Dog-bone D110 2.514 2.427 2.637
Rosette R100 2.462 2.427 2.491

the cross-sectioned area of the Fermi surface obtained by de Haas–van Alphen (dHvA)
experiments [22, 23] and computed ones are shown in Table 2. The valence-electron
CPs calculated by the FLAPW and FLAPW-SIC schemes are shown in Figure 6
together with the experimental profiles by Sakurai et al. [24]. The calculated profiles
are convoluted with the experimental overall resolution 0.12 a.u. As shown in Figure 6,
the overall shapes of the profiles calculated with the SIC is always lower in small
momenta (0–1 a.u.) and higher in the middle momenta (14 a.u.) than those calculated
without the SIC. Beyond 4a.u., although they are indistinguishable in the figure,
the profiles calculated with the SIC are always slightly higher than those calculated
without the SIC.

4. Electron-correlation effects on CPs

As mentioned in Section 2, the CPs of solids have to be calculated on the quasi-particle
scheme. In order to calculate the quasi-particle states, non-local and energy-dependent
self-energy in Equation (13) must be evaluated in a real system. In practice, the exact
self-energy for real systems are impossible to compute, and we always resort to
approximate forms. A more realistic but relatively simple approximation to the self-
energy is the GWA proposed by Hedin [7]. In the GWA, the self-energy operator in
Equation (12) is

(32)

In Equation (32), G(r,r' ; ω ) is, in principle, the dressed Green’s function given as

(33)

We can properly approximate the dressed Green’s function by its LDA counterpart, 

(34)
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Figure 6. The valence-electron CPs of Cu calculated by the FLAPW-LDA (dashed) and the FLAPW-SIC
(solid) schemes. The dots represent the experimental profiles measured by Sakurai et al. [24].
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The W(r , r' ; ω  ) in Equation (32) is a dynamically screened interaction, and is
given as

(35)

(36)

(37)

Inverse dielectric functions (q, ω ) in Equation (36) are calculated within the
random phase approximation [25]. Thus, the self-energy operator in Equation (32) is
properly expressed by

(38)

From the self-energy operator in Equation (38), the self-energy value in GWA is
calculated as

(39)

It has been suggested that quasi-particle wave functions do not deviate much from
LDA wave functions [26]. Furthermore, in the evaluation of momentum densities
shown in Figure 9, the characteristics of the quasi-particle states dominantly reflect
on the occupation number densities which should be evaluated by using the general
quasi-particle Green’s function. In GWA, however, the corresponding occupation
number densities are

(40)

(41)

Using (k) in Equation (40), the CP by the GWA is calculated as follows:

(42)

(43)

This quasi-particle approach for CPs has been performed on Li and Na [12, 13]. In 
these materials, only diagonal terms of the occupation number densities are evaluated 
in a reasonable justification [27]. The GWA occupation number densities (denoted as 
N(GWA)) thus obtained are shown for the three principal directions in Figures 7 and 
8 for Na and Li, respectively. For reference, the occupation number densities obtained 
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Figure 7. The occupation number densities as functions of wave vector for Na. The thick curves labeled 
, and represent the three principal directions within the first Brillouin zone, obtained 
by the FLAPW-GWA. The thin solid curve is obtained from an interacting electron-gas model [27]. The 
dash-dotted line represents the Fermi momentum. 

from an interacting electron gas model (denoted as N(gas)) are also displayed in the 
same figures. In the case of Na, the N(GWA) are similar to its N(gas). On the other 
hand, N(GWA) of Li shows a remarkable k-dependence, and very different features 
compared to its N (gas), particularly in the 〈110〉 direction.

Using these occupation number densities, CPs of Na are calculated along three 
principal directions. Since the anisotropy in the CPs is very small and high reso-
lution Compton experiments have been performed only for a polycrystal sample, 
the averaged GWA CPs are shown compared with the high resolution experiment by 
Sakurai et al. [28] in Figure 9. For comparison, the LDA and free-electron calculations 
are also shown in the same figure. The calculated profiles are convoluted with the 
overall momentum resolution of experiment 0.12 a.u. In this figure, the difference 
between the free-electron and the LDA CPs is regarded as dominantly due to the 
core-orthogonalization effect, since the lattice potential has a very weak effect on 
the conduction electrons. The discrepancy between the LDA and the experiment is 
considerably reduced by introduction of electron-correlation effects by the electron-
gas model. Furthermore, the introduction of the electron-correlation effects by the 
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Figure 8. The occupation number densities as functions of wave vector for Li. Explanations are the same 
as those in Figure 7. 

GWA leads to a good agreement between the theory and experiment. This finding 
can be interpreted as being mainly due to a different behavior between N(GWA) and 
N(gas) around the Fermi momentum as seen in Figure 7. 

In the case of Li, the effect of its lattice potential to the electron states lead to a large 
anisotropy of the Fermi surface [29], as well known. As a typical phenomenon due to 
this effect, electron states around N-point in the lowest conduction band lie just above 
the Fermi level compared with corresponding electron states of Na. The contributions 
of these features to the self-energy evaluation are remarkably different compared to 
the case of its electron-gas model, and produce large difference between N(GWA)
and N(gas) near the Fermi momentum seen in Figure 8. The renormalization factor 
ZF on the Fermi momentum is estimated to be 0.35, 0.15 and 0.25 for the three 
directions 〈100〉, 〈110〉 and 〈111〉, respectively. These values are much smaller than 
the theoretical results obtained so far using jellium models, which range from 0.5 [30] 
to 0.75 [31]. Schülke et al. [32] found that the value in the (100) direction is 0.1 ± 0.1
from the fitting to a simple model. Although their obtained value is smaller than that 
of our result 0.35, our value is regarded as comparable to the one in the experiment, in 
contrast with those predicted using jellium models. Using these occupation number 
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Figure 9. The valence-electron CPs of polycrystalline Na. The solid and dotted curves represent the 
FLAPW-GWA and FLAPW-LDA calculations, respectively. The dash-dotted and dashed curves represent 
the results calculated by the free-electron and FLAPW-LDA including correlation effects according to 
Lundqvist and Lyden [27], respectively. The dots represent the experimental result by Sakurai et al. [28]
(after Kubo [13]). 

densities N(GWA) and N(gas), CPs are calculated and shown together with the LDA 
results in Figure 10. In the same figure, experimental results by both Sakurai et al. [33]
and Schülke et al. [32] are shown for comparison. The overall momentum resolution 
of the experiments of Sakurai et al. is 0.12 a.u. and that of Schülke et al. is 0.14 a.u. 
Calculated results are all convoluted with the momentum resolution equal to 0.12 a.u. 
As seen in Figure 10 the introduction of electron-correlation effects resulting from 
using N(gas) reduces the discrepancy between the LDA and experimental results to 
a certain extent. However, the reduction is smaller compared to the case of Na. On 
the other hand, the CPs calculated using N(GWA) lead to the drastic reduction of the 
discrepancy between the LDA and the experimental results as seen from Figure 10. 

5. Summary and conclusions 

We have studied the effects of the SIC for the filled and tightly bound bands for ‘Si, 
diamond’ and ‘Cu’, respectively, by utilizing the FLAPW method. In the case of Si, 
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Figure 10. The valence-electron CPs of Li along the three principal symmetry directions. The solid and 
dotted curves represent the FLAPW-GWA and FLAPW-LDA calculations, respectively. The dashed curves 
represent the FLAPW-LDA calculations including correlation effects according to Lundqvist and Lyden 
[27]. The EXPI and EXPII represent the experimental results measured by Sakurai et al. [33] and Schülke 
et al. [32], respectively (after Kubo [13]). 
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introduction of the SIC into the FLAPW scheme changes the band structure and the 
band gap appreciably. CPs computed with the SIC are in better agreement with the 
measured profiles when their first derivatives are compared. The comparison confirms 
that the discrepancy between theory and experiment is the same sort as that found in 
other metals and alloys, suggesting that electron-correlation plays an important role. In 
the case of diamond, the introduction of the SIC affects the band structure, the energy 
gap, the wave functions and CPs. Comparison with the earlier experiment confirms 
an urgent need for a high resolution measurement to judge the effect of the SIC. In the 
case of Cu, introduction of the SIC is somewhat controversial. It has weakened the 
agreement between the LDA Fermi surface area and the dHvA result for the so-called
neck. However, the SIC does not change the other areas so much which are mainly in 
the d-bands. On the other hand, the SIC has brought the LDA CP to a better agreement 
with the experiment. The main reason for this reduction of the discrepancy is that the 
SIC potential brings down and narrows the d-bands. As a result, the wave functions of 
the d-bands become more localized in real space. Therefore, in momentum space, they 
extend more in higher momenta. Although the SIC potential employed in this study is 
not a uniquely determined one nor rigorously formulated, the present results suggest 
that some kind of correction to the LDA potential is needed to explain the experimental 
results consistently. Furthermore, the origin of the remaining discrepancy in the shape 
of CP between the theory and experiment may now be ascribed to the quasi-particle
nature of the electron system, in particular to the non-unity and non-zero occupation 
in k-space.

We have performed CP calculations of Li and Na in a quasi-particle scheme by 
utilizing the GWA using the wave functions and energy values of the LDA-based
FLAPW computations as basis set. In the case of Na, the experimental CP is fairly well 
reproduced by the electron-gas model with the electron-correlation, since the lattice 
potential has a very weak effect on the electron states. However, the CPs calculated by 
using the GWA are much more reproduced than the experimental results. On the other 
hand, for Li, the lattice potential has a strong effect on the electron states. and the Fermi 
surface geometry strongly deviates from a sphere. Reflecting these characteristics 
of the electron states, the occupation number densities N(GWA) computed from 
the GWA are very different from those obtained from electron-gas models. That is, 
computed ZF from the GWA is significantly smaller than that predicted from jellium 
models. The CPs obtained using the N(GWA)s reproduce the experimental results 
extremely well. These results suggest that the GWA is the most meaningful and 
practical way to go beyond the LDA. 
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1. Introduction 

The study of electron density distributions resulting from molecular interactions in 
gas-phase complexes or in molecular crystals, is known [1, 2] to facilitate our under-
standing of the physical mechanisms underlying such interactions. Indeed, the action 
of these mechanisms is reflected in the interaction density, defined as the difference 
between the electron density distribution (EDD) of the molecular complex or crystal 
and that obtained by superimposing the EDDs of free molecules. 

Central to the study of theoretical interaction density are the approximations one 
adopts in the evaluation of the corresponding interaction energy (Eint). This represents 
[3] only a minuscule fraction of the total energy of the global system – typically from 
four to seven orders of magnitude smaller. As a consequence [3] a ‘correct’ calculation 
of Eint requires either an inordinately and unattainable high level of precision or, which 
is common practice, a systematic cancelation among errors in the estimates of the 
various different physical contributions to Eint. In fact, it is reckoned [4] that ‘a reliable 
ab-initio prediction of interaction potentials and energies is still a highly non-trivial
task even for small atoms and molecules’. Moreover, it is also acknowledged that 
all the most commonly used ab-initio methods for computing Eint (supermolecular,
perturbational, or hybrid) have their well-defined drawbacks and advantages [5]. 

This paper is a preliminary attempt towards an understanding of how the interac-
tions densities are affected by approximations and errors introduced in the evaluation 
of Eint. The water dimer complex is investigated here, as it represents a prototype 
of hydrogen bonding and a sort of paradigm for molecular interactions. Owing to 
this and to the limited size of the system, a wealth of literature [3] has appeared 
on water dimer and a corresponding large spectrum of computational protocols and 
Eint estimates has been thereof proposed. Indeed, even if similar or at the limit equal 
Eint values are obtained with several methods, the resulting interaction densities may 
still differ among each other, since Eint is a delicate balance of various positive and 
negative energy contributions. In this respect, the study of interaction density may 
enhance our understanding of the performance of a given model in describing a 
particular molecular interaction. Not only a single, though extremely important value 
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like Eint may be checked, but the whole behavior of a scalar function in both the intra-
and intermolecular regions. 

One of the most important, though quite often unattended, requirement on an 
ab-initio approach to molecular interactions is that of its size consistency [6]. We refer 
here both to what we term basis set size consistency and to the more usual concept of 
size consistency in the evaluation of the electron-correlation contributions. The lack 
of basis set size consistency arises [7] from the use of an incomplete basis set and 
constitutes a well-known inconvenience in the evaluation of molecular interactions by 
a variational supermolecule approach. In fact within the complex or crystal the basis 
set of the subunit is improved by that of its partner(s) and vice versa, thus leading 
to an artificial energy lowering within the complex or crystal repeating unit. Such a 
bias yields to the so-called [5] basis set superposition error (BSSE), which for weak 
intermolecular interactions may be even comparable in magnitude to the interaction 
energy itself. BSSE is often a posteriori corrected by the counterpoise (CP) recipe 
[8] (or one of its many modifications) [9] that is, in its simplest formulation, the 
orbitals of the partner(s) are added when computing the energy of each subunit. CP 
corrections may however either overestimate or underestimate BSSE, while never 
removing it [5]. The treatment of BSSE is a problem also in the case of very simple 
molecular complexes. Indeed Saebø et al. [10] pointed out that although most of the 
energetic contributions to the water dimer interaction have already been computed 
quite accurately, one of the major goal to be reached is a clear BSSE correction. 

In this paper a method [11], which allows for an a priori BSSE removal at the SCF 
level, is for the first time applied to interaction densities studies. This computational 
protocol which has been called SCF-MI (Self-Consistent Field for Molecular Interac-
tions) to highlight its relationship to the standard Roothaan equations and its special 
usefulness in the evaluation of molecular interactions, has recently been successfully 
used [11–13] for evaluating Eint in a number of intermolecular complexes. Com-
parison of standard SCF interaction densities with those obtained from the SCF-MI
approach should shed light on the effects of BSSE removal. Such effects may then be 
compared with those deriving from the introduction of Coulomb correlation correc-
tions. To this aim, we adopt a variational perturbative valence bond (VB) approach that 
uses orbitals derived from the SCF-MI step and thus maintains a BSSE-free picture. 
Finally, no bias should be introduced in our study by the particular approach chosen 
to analyze the observed charge density rearrangements. Therefore, not a model but a 
theory which is firmly rooted in Quantum Mechanics, applied directly to the electron 
density ρ and giving quantitative answers, is to be adopted. Bader’s Quantum Theory 
of Atoms in Molecules (QTAM) [14, 15] meets nicely all these requirements. Such a 
theory has also been recently applied to molecular crystals as a valid tool to rationalize 
and quantitatively detect crystal field effects on the molecular densities [16–18]. 

The paper is organized as follows. Section 2 summarizes the grounding of the SCF-
MI and VB approaches, while Section 3 gives a brief overview of the technical details 
used in our computations and discusses the resulting interaction energy data. The 
application of our BSSE-free analysis to the study of charge density rearrangements 
in water dimer is presented at length in Section 4. Section 5 concludes. 
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2. Methods 

Self-consistent field for molecular interactions

A short summary of the SCF-MI method is presented here for the simplest case of 
two interacting closed-shell monomers A and B. A full account of the theory is given 
elsewhere [11] and its generalization to interaction of an open shell with an arbitrary 
number of closed shell fragments has recently appeared [19]. 

The AB supermolecule is described by a single determinant wave function for-
mulated in terms of doubly occupied molecular orbitals with no orthonormality 
constraints. For a system with 2N = 2NA +2NB electrons the SCF-MI wave function 
expressed in terms of the antisymmetrizer operator A is

(1)

The kernel of SCF-MI derivation is the partitioning of the basis set for the total system 
into two subsets: 

(2)

one, centered on monomer A, and the other, centered on monomer 
B, with M = MA + MB. The molecular orbitals (MO) of A are expanded in subset 

and those of B in subset 

(3)

that is Φ A = χ ATA and Φ B = χ BTB in matrix form. Orbitals of different fragments 
are left free to overlap with each other. As a consequence of the assumed partitioning, 
both the ( M x N) matrix of MO and its variation assume a block diagonal form 

The energy and its variation δ E = 0 have apparently the standard SCF form 

(4)

where F and h are the usual Fock and one-electron integral matrices expressed in the 
atomic orbitals basis set. However, the general stationary condition δ E = 0 is also
mathematically equivalent to the following coupled secular problems: 

(5)
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in terms of effective Fock and overlap matrices F'
A, F’

B, and S’
A, S’

B:

(6)

As is apparent from the above definitions, each of these effective matrices depend on 
basis sets and molecular orbitals of both fragments. It is also important to observe 
that these matrices possess a correct asymptotic behavior as at large interfragment 
distances they become the usual overlap and Fock matrices of the separate fragments, 
while the paired secular systems uncouple and converge to the separate Roothaan 
equations for the single monomers. Finally, as it is usual in a supermolecular approach, 
the interaction energy is expressed as 

(7)

the energy of monomers being that of standard SCF wave functions. At variance with 
the conventional SCF supermolecular (SCF-SM) approach, the SCF-MI interaction 
energies exhibit an extremely rapid convergence with increasing basis set quality. 

a) construct the effective overlap and Fock matrices (Equation (6)); 
b) solve the generalized secular systems (Equation (5)); 
c) check the variation in the density matrix elements DAandDB;
d) at convergence, evaluate the electronic energy (Equation (4)), otherwise go back 

to step (a). 

The computational cost [20] of the SCF-MI algorithm is almost equal to that of 
standard SCF, as the time required to evaluate the effective operators is negligible 
and the overload caused by the doubling of secular equations to be solved is largely 
compensated by the reduced size of these equations. The algorithm, which has been 
incorporated [20] into the GAMESS-US package [21], is compatible with the usual 
formulation of the analytic derivatives of the SCF energy. This fact has allowed [20] 
the implementation of gradient optimization algorithms and of force constant matrix 
computations in both the direct and conventional approaches. So the SCF-MI method 
not only provides a complete a priori elimination of the BSSE, while taking into 
account the natural non-orthogonality of the MOs of the two interacting fragments, 
but also allows for a standard analytical search of minima conformations on the 
potential energy surface (PES) of the complex. This fact is at variance [3] with the 

The solution of the SCF-MI equations involves the following steps:
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classical CP procedure where one has to adopt point by point procedures to move on 
the PES and where as many as five SCF energies are to be evaluated on each point 
of the PES, in order to properly include [22] the treatment of geometry relaxation 
effects.

BSSE-free VB treatment of intermolecular forces 

The correlation contribution to water dimer interaction energy and density has been 
evaluated [23] with a very compact multistructure VB – non-orthogonal CI – cal-
culation. The VB approach is a natural way [24, 25] to describe the intermolecular 
interaction, including the effects deriving from the overlap between the orbitals of 
the separated fragments and the interfragment electron correlation (dispersion). The 
adopted wave function has the general VB form 

(8)

It represents the configuration interaction between the SCF-MI wave function 

(9)

the singly excited localized configuration state functions 

(10)

and the doubly excited localized configuration state functions 

(11)

obtained by simultaneous single excitation localized on A and B. The singlet spin 
functions for the two or four electrons involved in the single or double excitation 
are and = + The configurations included in the VB 
wave function play a significant role in the field of intermolecular forces as they 
can be associated with precise physical effects (energies and associated interaction 
densities) and coincide with specific contributions of a perturbative approach. Namely, 

represents the sum of the Coulombian, the exchange and the induction energy 
(at SCF-MI level); the terms in Equation (8) refine the induction energy 
and have been added to relax the occupied SCF-MI orbitals, which are being kept 
fixed during the virtual orbital determination procedure (see below); the doubly ex-
cited configurations introduce correlation between the electrons of the two fragments 
and are associated to the interfragment dispersion energy. The energy of VB wave 
function is calculated by solving the corresponding secular problem, which includes 
the determination of the Hamiltonian and overlap matrices between non-orthogonal 
VB structures. A general VB code was employed [26]. For the sake of comparison 
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with other energy contributions to the interaction energy, the pure electrostatic and 
exchange term was also calculated by setting Cab, Ca and Cb equal to zero in Equation 
(8) and constructing in terms of the undistorted SCF orbitals of the isolated 
fragments. Such a model is hereinafter referred to as the frozen monomer (FM) model. 
Our correlation contributions to the interaction energy do not introduce BSSE since 
only localized configurations have been considered in the evaluation of the VB energy. 
Besides, our treatment maintains a complete size consistency as, due to Brillouin's 
theorem [6], the included excitations give a zero contribution to the energy of the 
isolated fragments. The energies for the latter to be used in Equation (7) (with VB 
subscripts replacing the SCF-MI ones) are therefore just the SCF energies. Particular 
care has been taken in the construction of the optimal virtual orbitals, in order to 
generate a very compact VB wave function, while maintaining a BSSE-free approach. 
The general procedure is described in Refs. [23, 27] and only a brief summary is 
reported here. Both the occupied and virtual SCF-MI orbitals 
are expanded only in the basis sets of their own fragment: 

(12)

Such constraints imply the non-orthogonality of the orbitals. The optimal virtual 
orbitals and are determined accordingly to the approximation that they sepa-
rately maximize the dispersion contribution of each of the NA * NB two configuration 
wave functions 

(13)

where represents a doubly excited configuration in which electrons are excited 
from the occupied SCF-MI orbitals and to the virtual orbitals and 

respectively. The corresponding optimum virtual orbitals are determined at 
the variational-perturbational level of theory by minimization of the second order 
expression of the energy, the final expansion (Equation (12)) for each virtual pair 
being achieved iteratively. 

Implementation of QTAM analysis for SCF-MI and VB wave functions 

It is well known that, within the framework of the MO-LCAO-HF theory, the electron 
density ρ at a given point r  can be expressed as

(14)

where the summation extends over the occupied molecular orbitals ϕ i and λ i repre-
sent their occupation numbers. In Equation (14) the orbitals ϕ i are supposed to be 
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orthonormal among each other, while SCF-MI orbitals (Equation (3)) are not. The 
PROAIM [28] code, which implements QTAM for theoretical molecular densities, 
evaluates ρ and its derivatives on the basis of Equation (14). Hence to interface SCF-
MI wave function with PROAIM code, the final SCF-MI orbitals have been unitarily 
transformed by diagonalizing the global Fock matrix F in the basis of the Φ A and
Φ B orbitals (Equation (3)). The same procedure was previously used to implement
[20] the energy derivatives of the SCF-MI wave function in the GAMESS-US package 
[21]. In the case of the VB wave function, the natural orbitals and occupation numbers 
obtained by diagonalizing the matrix representation of the VB one-density function 
on the atomic basis set were used in Equation (14). 

3. Computational details and interaction energy data 

Water dimer 

A full account on the energy computations performed, at the SCF-MI and at the 
SCF-MI+VB levels, is reported in Refs. [12] and [23], respectively. Computations 
refer to the trans-linear water dimer, with Cs symmetry, at both experimental and 
theoretically optimized geometries. A thorough study of the water dimer potential 
energy surface, providing a new SCF-MI+VB interaction potential for the molecular 
dynamics simulation of liquid water, can be found in Refs. [29, 30]. Computational 
details and results of relevance for the present study are summarized here for the 
trans-linear conformation only. Several basis sets have been investigated, using the ge-
ometric sequences given by the even tempered gaussian s, p basis functions generated 
according to Schmidt and Ruedenberg [31]. The sequence length was systematically 
increased up to convergence on the dimer binding energy and force constants. The 
isotropic part of the basis set (s, p on O and s on H atoms) was supplemented 
with polarization functions (d, f on O and p and d on H atoms) according to the 
Sadlej method [32]. Finally, to investigate the effect of extremely diffuse s, p, d, 
f functions on the dimer binding energy, the geometric series was prolonged by 
introducing additional very small exponents, down to 10–2. Table 1 lists the SCF-SM
(BSSE-contaminated) and SCF-MI (BSSE-free) interaction energies and optimized 
geometries for the water dimer, as a function of selected basis sets. The largest basis set 
investigated (20s10p6d6f/10s6p6d) gave a monomer energy of –76.0676 au, settling 
the new calculated Hartree–Fock limit for water. The corresponding dimerization 
energy (–3.33 kcal/mol) is to be considered as a value close to the HF limit for this 
quantity and has to be compared with the related SCF-SM value of –3.71 kcal/mol. 
Indeed, Table 1 shows that BSSE is larger than 1 kcal/mol for poor basis sets (6-31G 
and 6-31G**) and, more importantly, that a significant difference (0.38 kcal/mol) 
persists even with the biggest basis sets. For the sake of fairness, such a difference is 
due to both residual BSSE and incompleteness of our best basis set. 

However, the error due to incompleteness should not exceed 0.20 kcal/mol in view 
of the most recent theoretical results on water dimer [34]. Table 1 also shows that 
SCF-MI energies converge much faster than SCF-SM ones with increasing basis set 
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Table 1. SCF-MI ( SCF-SM ) interaction energies and geometries for the Cs linear water dimer.a

a Data from Ref. [12]: basis sets fromRefs. [31, 32]; b Ref. [21];c Ref. [33];d Ref. [12].

size. Quite interestingly, the medium-size Millot-Stone basis set [33] (Table 1, shaded
row) yields geometries and dimerization energies which are (SCF-MI results) very 
close to our basis set limiting values. For this reason this basis has been adopted in 
the VB approach and used as our ‘standard’ in the interaction density and QTAM 
analysis (see below). 

The SCF-MI limit interfragment distance (3.157 Å), is significantly larger than 
the corresponding BSSE-contaminated estimate (3.034 Å) and that found [35] ex-
perimentally (2.98 ± 0.03 Å). Hence, if only induction (SCF-HF without BSSE) is 
taken into account in the intermolecular interaction, the two water molecules are kept 
too far apart, while BSSE seems to mimic the effect of the dispersion contribution. 
However, when the SCF-MI determinant is used as the reference configuration in 
the VB expansion, an interfragment distance of 3.00 Å is obtained [23]. In the VB 
calculation an active space of four MOs with one MO (oxygen 1s2 electrons) kept 
frozen was considered for each water molecule. By adopting the VB expansion given 
by Equation (8) and by evaluating the optimum virtual orbitals according to Equation 
(13), the virtual space on each fragment is equal to 16. This implies a set of 32 (16 
times 2) vertical singly excited configurations and 256 (16 times 16) vertical doubly 
excited spatial configurations. By taking the dimension of the spin space into account, 
the size of the resulting VB matrix is 545. The calculated water dimer binding energy 
(–4.67 kcal/mol) is in very good agreement with the available experimental estimates 
(–5.4 ± 0.7, [36]; –5.2 ± 0.7, [37]) and so is the optimized geometry [23]. Table 
2 details the contribution of the various physical effects to the water dimerization 
energy, using the Millot–Stone basis set. The full counterpoise procedure greatly 
undercorrects BSSE as its estimated Eint (–3.80 kcal/mol) is about 0.5 kcal/mol 
larger than the SCF-MI value and only slightly smaller than the SCF-SM estimate 
(–3.87 kcal/mol). Such an underevaluation is nearly comparable in magnitude to 
the effect of induction. Indeed the difference between the pure exchange plus frozen 
monomer electrostatic dimerization energy (FM model) and the SCF-MI dimerization 
energy amounts to 0.84 kcal/mol. Table 2 also shows that the estimated dispersion 
energy [Eint(VB)–Eint(SCF-MI)] corresponds to over 30% of Eint(VB) and that the
two SCF procedures (SCF-SM and SCF-MI) yield interaction energy values which 
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Table 2. Interaction energies vs physical model for the Cs linear water dimer (Millot–Stone basis set). 

Model Energycontributions Ei n t (kcal/mol)
opt. (exp.) geom.

FM Electrostatic (frozen monomers) + exchange (–2.14)
SCF-SM –3.87 (–3.84)
SCF-FCP –3.80 (–3.73)
SCF-MI As for SCF-SM but BSSE free –3.32 (–2.97)
SCF-MI-VB As for SCF-MI + induction refinement + dispersion –4.67 (–4.57)
Exp. –5.2 ± 0.7

As above + induction + effects due to BSSE 
As for SCF-SM but with full CP correction of BSSE 

differ by a quantity equal to about 40% of the dispersion energy. These observations
strongly support the importance of a detailed study of the changes found in the
interaction densities as the physical model adopted for their evaluation improves. 

4. QTAM analysis of dimerization energies and densities in 
HOH–OH2 system

Atomic energy changes 

The use of QTAM provides an atomic view of the energy changes accompanying 
the charge rearrangements following dimerization. Atomic energies were obtained as 
described in Ref. [14], by integrating the negative of the kinetic energy density over the 
atomic basin and by scaling the resulting energy value by the factor γ – 1 ( γ = – v/ T, 
being the virial ratio), to obtain a set of atomic energies which correctly sum to the 
total energy E. Integration on the atomic basins of water dimer and monomer gives 
the changes ∆ E(Ω) in the atomic energies upon dimerization. Table 3 details such
changes for the atoms of the hydrogen donor and hydrogen acceptor molecules, as a 
function of the adopted model, while Figure 1 shows the numbering scheme used for
water dimer. A negative ∆ E(Ω ) value in Table 3 indicates an energy stabilization of
Ω in the dimer. 

With the only exception of the FM model, which is too crude, the other considered 
methods give a similar qualitative picture for the atomic energy changes following 
dimerization, the two oxygen atoms being stabilized and H2, the hydrogen atom 
involved in the hydrogen bond largely destabilized (as a result of a loss of charge, 
see below). Conversely, when the induction mechanism is inhibited (FM model), 
the reverse is true, H2 being stabilized and the oxygen of the donor molecule being 
destabilized. A closer inspection of Table 3 yields some interesting observations. 
First, the dimerization energy gain is mainly due to the stabilization of the acceptor 
molecule, in spite of its electron population loss (see below). Dispersion stabilizes 
more the H-acceptor than the H-donor molecule. Indeed, the donor molecule is even 
slightly destabilized at SCF-SM and SCF-MI levels. Secondly, at variance with the 
SCF-SM case, the ratio of SCF-MI over VB atomic energy changes is nearly constant, 
independently on the considered atom Ω . Hence dispersion just enhances the energy 
stabilization or destabilization effects caused by 'true' induction mechanisms. This 
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Table 3. Effect of model on the changes in atomic energies ∆ E(Ω ), using the Millot–Stone basis set. 

a FM model (see text) at exp. geom.; b In parenthesis the ratio with the corresponding VB model values. 

Figure 1. Numbering scheme for the trans-linear Cs water dimer. 

is not the case of the standard SCF-SM method that appears to underestimate the 
energy changes in the part (O1 and H2 atoms) of the donor molecule more involved 
in the hydrogen bond, while it overestimates the energy changes of the remaining 
atoms. Comparison of ∆ E(Ω ) values for the donor and acceptor molecules, at the 
two considered SCF levels, suggests that the spurious interaction energy gain due 
to BSSE is mainly due to an increased stabilization of the acceptor, rather than to a 
decreased destabilization of the donor moiety. 

Charge transfer and atomic electron population changes 

Upon dimerization, electron charge is transferred from the base (the H-acceptor
molecule) to the acid (the H-donor molecule), in agreement with Lewis’ generalized 
definition of an acid and a base as an electron acceptor and donor, respectively. The 
amount of such a charge transfer (CT) is reported in Table 4, for the two SCF models 
considered in this paper and as a function of the basis set size. The CTs are small and, 
for the SCF-SM method, are found to decrease as the basis set size increases. 
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Table 4. Effect of BSSE on the CT in the water dimer. 

Basis set M CT* 100 

SCF-SM SCF-MI(VB ) (SCF-SM)/(SCF-MI)

6-3 1G 26 1.92 0.63 3.0 
6-3 1G** 50 1.19 0.05 22.8 
Millot–Stone 102 0.94 0.45 (0.56) 2.1 
TZVP++ 124 0.89 0.36 2.5

Table 5. Effect of model on the changes in QTAM atomic populations ∆ N(Ω ), using the Millot–Stone 
basis set.a

a A positive ∆ N(Ω ) value indicates an electron population gain for Ω in the dimer. 

The ratio of charge transfers, as obtained with the standard and the BSSE- free SCF, 
is always larger than two and shows a maximum for the 6-31G** basis. It appears 
that such a basis is large enough to allow one water molecule for a significant use 
of the basis functions of the partner (and vice versa) and, conversely, not big enough 
to make BSSE negligible. The SCF-MI charge transfer value (0.45 electrons) for the 
Millot–Stone basis set is half than the corresponding SCF-SM estimate and compares 
favorably with the VB outcome (0.56 electrons). 

Atomic electron population changes ∆ N(Ω ) upon dimerization are reported in 
Table 5 for the models considered in this study, at both experimental and optimized 
geometries. A detailed QTAM analysis of such electron rearrangements, in a number 
of hydrogen bonded systems, is reported in Ref. [38]. Here, we just investigate how 
the ∆ N(Ω ) values vary as the theoretical level adopted for the description of the 
intermolecular interaction improves. A positive ∆ N(Ω ) value in Table 5 indicates an 
electron population gain for Ω in the dimer. With the only exception of FM model, 
the ∆ N(Ω ) values turn out to be generally larger than the charge transfer. Indeed, the 
remaining approaches predict a considerable redistribution of charge within the two 
molecules which involves an electron population loss from the tail of the base (H5+H6) 
and an electron population gain by the head (O1+H3) of the acid. Such a behavior 
is common to both experimental and optimized geometries of the water dimer. Save 
in FM model, the two oxygen atoms gain electron charge, the population increase 
for the oxygen donor being about 2.5 times greater than for the oxygen acceptor. 
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Table 6. Effect of BSSE on the changes in Mulliken atomic populations ∆N(Ω ).a

a A positive ∆ N(Ω ) value indicates an electron population gain for Ω in the dimer.

In the case of VB and SCF-MI densities, the decrease in the electron population of 
the hydrogen involved in the HB is about ten times greater than and opposed to the 
observed CT. A similar behavior is found for the SCF-SM wave function, though 
the H2 atom population decrease is only five times greater than CT, as due to the 
overestimate of the latter. Overall, Table 5 shows that changes in electron populations 
upon dimerization are qualitatively described by the induction term only. Moreover, 
the effect of BSSE on ∆ N(Ω ) appears rather limited. However, this observation is 
no longer true when ∆ N(Ω ) values are computed through the standard Mulliken 
population analysis approach. Table 6 reports such ∆ N(Ω ) values for SCF-SM and 
SCF-MI densities as a function of basis set size. The Mulliken CT is about two times 
larger than the QTAM estimate (Table 4) in the case of SCF-SM densities, while it is 
null for SCF-MI wave function, as due to definition of Mulliken’s partitioning. The 
∆ N(Ω ) values at the SCF-MI level are by far more stable against basis set type than 
are the corresponding SCF-SM values. For instance the SCF-MI population change 
for H2 ranges from –4.4* 10–2 to –5.2* 10–2 electrons, while for the SCF-SM model
it may differ by even one order of magnitude from basis to basis. It is also interesting 
to note that only for the SCF-MI wave function are the ∆ N(Ω ) values obtained 
by Mulliken’s procedure quite close to those evaluated through QTAM (Table 5). 
Indeed, while Mulliken’s population values by themselves do not bear much physical 
meaning (especially for large basis sets), their variations, upon change of chemical 
environment, are known to be quite often reliable. Comparison of results reported 
in Tables 5 and 6 suggests that this holds true also for the case of the water dimer, 
provided the BSSE contamination is removed. The basis set instability, exhibited by 
the values of the SCF-SM Mulliken’s population changes upon dimerization, is only 
caused by BSSE. 

Interaction densities

The interaction density in water dimer has been the object of previous studies [39, 40]. 
In particular, Krijn and Feil [40] pointed out the effects of exchange repulsion and of 
the dominant mutual polarization of the two moieties arising from the electric fields 
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Figure 2. Effect of model on the interaction densities ( ∆ ρ = rdimer – ρ monomers) in the water dimer ( σ h
plane, experimental geometry, Millot-Stone basis set). The values of the contours for ρ are ± a * 10–n,
with a = 2, 4, 8 and n beginning at –4 and increasing in step of unity. Dashed contours denote negative, 
solid contours positive values of ∆ρ . The pair of ∇ρ trajectories (heavy lines) which originate (bond paths) 
or which terminate at the bond critical points (denoted by dots) are superposed on the contour map. These 
latter Vp trajectories mark the intersection of the interatomic surfaces with the σ h plane, thus allowing an 
atomic view of interaction densities. 

generated by their unperturbed charge distributions. Figure 2 displays interaction 
density contours for the four models used in this work, in the σ h plane of the water 
dimer and at its experimental geometry. All the approaches, save the FM model, yield 
a similar picture for the interaction. The FM model seems unable to properly describe 
the polarization of the two oxygen atoms and the depletion of charge in the H2 basin. 
Hence, the following discussion does not refer to such a model. Figure 2 shows that the 
H-bond interaction is reflected throughout the complex, rather than being restricted 
to the region of the hydrogen bond itself. This fact was also evident from the reported 
analysis of the ∆ N(Ω ) values. As found elsewhere [1, 41], the HB reinforces the 
polarity of the molecules that participate in the bond (the individual dipole moment 
are enhanced), the acceptor becoming a better donor and the donor becoming a better 
acceptor. The induced dipoles at the VB level and evaluated according to QTAM 
partitioning are 0.14 and 0.09 D for the donor and the acceptor molecules, respec-
tively. The SCF-SM and SCF-MI estimates for the induced dipoles differ between 
each other by less than 10% and are similar to the VB values. A closer and more 
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Figure 3. Differences among water dimer densities ρ , as obtained with the theoretical models explored 
in this work. Same symmetry plane, geometry, basis set and contour levels as that of Figure 2. 

interesting inspection on the different performance of our models is given in Figure 3 
where the differences between VB and either SCF-MI or SCF-SM dimer densities 
are displayed in the same symmetry plane and using the same ∆ρ contour levels of 
Figure 2. The bottom panel of Figure 3 also reports the difference between SCF-
MI and SCF-SM dimer densities. Figure 3 (top) shows that by including dispersion 
contributions, electron charge is moved into the interfragment region, (in particular in 
the H2 basin) and removed from all other regions along the O–O axis. When spurious 
BSSE effects are introduced (Figure 3, middle) the picture becomes far less simple 
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to interpret. However, it is clear that in this case dispersion has to remove electron
charge from the interfragment region. Such an electron removal concerns all the O–O
internuclear axis region, save a small part close to the lone pair of the oxygen acceptor
(see below). It appears that dispersion contributions have opposite effects, whether
a density describing ‘true’ induction or a BSSE contaminated induction, is taken as
reference. Finally the difference between SCF-MI and SCF-SM densities (Figure 3,
bottom) confirms that BSSE puts too much electron charge in the HB region, by
removing it, in particular, from the acceptor oxygen.

The interaction densities portrayed in Figure 2 suggest that the BSSE which arise
from a basis set of quite high quality (7s4p2d/4s2p on O and H, respectively) is
small enough to yield electron density rearrangements qualitatively similar to those
of the BSSE-free model. However, the density differences displayed in Figure 3 show
that the BSSE effects on the density are comparable in magnitude to those induced
by the dispersion contributions. As we also know (Table 2) that the small density
differences shown in Figure 3 imply notable changes in the interaction energies,
one wonders whether these density changes are larger or at least comparable with the
estimated standard deviations (esd) for experimental ρ . High quality X-ray diffraction
experiments, especially when carried out at very low temperatures, may give [42] esd
for ρ in the HB regions as low as 0.001 au, a value comparable in magnitude to the
innermost density contours displayed in Figure 3.

Interaction Laplacian densities

Hydrogen-bonded complexes have been discussed [14, 16,38,43] in terms of a gen-
eralized Lewis acid and base interaction, using the Laplacian of the electron density
(∇2ρ ) as a tool for predicting their structures and studying their characteristics. As
explained at length in Ref. [14], the sign of the Laplacian determines the regions
which are charge depleted (positive Laplacian) or where charge concentrates. Charge
concentration at a point r means that ρ  (r) is bigger than in an infinitesimal volume
around it. The form of the Laplacian of ρ for an isolated atom reflects its shell structure 
since it exhibits a corresponding number of pairs of spherical shells of alternating 
charge concentration and charge depletion, the inner shell of each pair being always 
the region of charge concentration. The spherical valence shell of charge concentration 
(VSCC) in an isolated atom does not persist upon bonding, since local maxima and 
minima in – ∇ 2ρ are formed within the shell, depending on the number and type of 
the linked atoms. It has been shown [43] that the approach of the acidic hydrogen to 
the base, in a HB interaction, is such as to align a – ∇ 2ρ minimum in the valence 
shell of the acidic hydrogen atom with a base – ∇ 2 ρ maximum. Local minima in 
–∇ 2ρ are hereafter indicated as cage critical points, while local maxima are referred 
to as either bonded or not bonded concentrations, according to whether they occur 
in bonding or in lone pair regions, respectively. Figure 4(a) displays the Laplacian 
density in the σ h plane of the water dimer, while Figure 4(b) shows the alignment 
of the H2 cage critical point (CP) of the donor water molecule with the non-bonded
maximum associated to one of the lone pairs of the acceptor oxygen atom. The 
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(a)

(b)

Figure 4. (a) Laplacian density (VB model, experimental geometry) in the ση plane of the water dimer. 
Solid contours denote negative ∇ 2ρ values; (b) schematic representation of the Laplacian critical points 
of water which undergo the most significant changes following dimerization. Bonded maxima are denoted 
as b, non-bonded maxima (lone pairs) as lp. Only one O1 1p is shown in (b), while the local maximum 
visible in (a) and denoted with a star, corresponds to the saddle point between the two O1 1ps which are 
symmetry related by the σ h plane. The alignment of the H2 cage CP of the donor water molecule with the 
non-bonded maximum associated to one of the oxygen acceptor 1ps is also shown in the figure. 

approach of the acid and the base involves, compared to frozen monomers, a further 
charge depletion of the H2 cage and a decrease of the non-bonded concentration of the 
acceptor oxygen pointing towards H2. Also the lone pairs of the donor oxygen (O2) 
become less concentrated, while the bonded concentrations of O1–H2 and O1–H3 
bonds, indicated as b2 and b3 in Figure 4, respectively increase and decrease their 
| – ∇ 2ρ | value upon dimerization. Indeed, hydrogen bonding yields a lengthening 
of O–H2 bond, with a parallel increase of its polarity and decrease of sharing of 
oxygen-bonded concentration. Just the opposite occurs to the O–H3 bond. So far we 
summarized the main changes induced by hydrogen bond formation on the Laplacian 
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Figure 5. Effect of model on the interaction Laplacian densities ∆ (∇ 2ρ  ) = (∇ 2ρ  dimer – ∇ 2ρ  monomers) in
water dimer (σ h plane, experimental geometry, Millot–Stone basis set). Same contours as in Figure 2, but
with n beginning at –3. Dashed contours denote negative, solid contours positive values of ∆ (∇ 2ρ ). A
negative contour level means that locally the dimer has less charge concentration than the pro-dimer.

distribution of isolated monomers. The question now arises whether these changes are
adequately reproduced by all the approaches investigated in this study and whether
the quantitative differences found among the various models are significantly smaller
or, conversely, comparable in magnitude to the changes themselves. Figure 5 displays
interaction Laplacian densities for the four models used in this work, while Figure 6
shows the differences ∆ (∇ 2ρ ) = (∇ 2ρ )A – (∇ 2ρ )B between Laplacian densities for 
the dimer evaluated with models A and B (A and B being any one of the investigated 
models). Finally, Table 7 lists, as a function of the computational approach, the ∇ 2ρ 
values for the Laplacian critical points shown in Figure 5, for both water monomer and 
dimer, at their experimental geometries. Geometry, basis set and map plane in Figure 6 
is the same as that of Figure 3, while, due to the greater details given by the Laplacian 
function, the lowest contour level (±2 * 10–3 au) is, here, one order of magnitude
larger. A negative contour level (dotted line) means (Figure 6) that locally the dimer 
is less charge concentrated than the pro-dimer or that the dimer evaluated according 
to model A is locally less charge concentrated than when evaluated with model B (not 
shown). Inspection of Figure 6 shows that, with the exception of the FM model, all the 
approaches adopted give qualitatively similar Laplacian interaction densities, a result 



110

Figure 6. Differences among water dimer Laplacian densities ∇ 2ρ, as obtained with models explored in 
this work. Same symmetry plane, geometry, basis set and contour levels as that of Figure 2. 

already found for the interaction densities in Figure 4. Changes in the dimer are in the 
expected direction, the cage on H2 being more charge depleted, the oxygen acceptor 
lone pair pointing towards H2 becoming less concentrated and so on. The mechanism 
of base-acid interaction is also evident. Charge concentration is removed from the lone 
pair region of O4 and moved towards the acid which enhances its acidity by further 
increasing the charge depletion around the H2 cage. The FM seems fully unable to 
describe such mechanisms, while the relevance of the quantitative differences among 
the remaining models can easily be appreciated. It turns out that dispersion effects 
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Table7. Laplacian critical points for the water monomer and dimer.a

Ω CP ∇ 2ρ au

FM SCF-SM SCF-MI VB 

Monomer
O 1P -5.926

bm -2.715
H cage ±0.180

Dimer
O1 1p –5.911 –5.764 –5.772 –5.771

b2  –2.174 –2.981 –2.968 –2.954 
b3 –2.703 –2.624 –2.626 –2.630 

H2 cage +0.195 ±0.199 +0.212 ±0.207
O4 lp H2 –6.037 –5.764 –5.797 –5.711 

1p –5.916 –5.939 –5.928 –5.926 
b5 –2.701 –2.769 –2.754 –2.759 

aExperimental geometries, Millot-Stone basis set. For labeling of critical points see Figure 4(b).

lower the charge depletion at the H2 cage point, which is exaggerated by the HF model. 
When BSSE is not removed the opposite is true, as BSSE underestimates the increase 
of charge depletion at the H2 cage point, caused by hydrogen bonding. Moreover, 
when compared with SCF-MI model, the dispersion effects enhance the decrease of 
charge concentration at the O4 lone pair, while they have to slightly increase such a 
concentration if BSSE is present. Such observations are made even more quantitative 
in Table 7. The difference between SCF-MI and SCF-SM Laplacian values at the 
cage point amounts to about 50% of the effect due to dimerization, while the same 
difference lies in the 5–20% range for the oxygen atoms lone pair concentrations. 
It has previously [44] been shown how the changes in the Laplacian bonded and 
non-bonded maxima induced by molecular association in gas phases and crystals are 
reflected in changes of the electric field gradient (EFG) at nuclei. From data reported 
in Table 7, it appears that EFG results might be affected by BSSE removal. 

5. Conclusions 

This study provides a detailed description of changes induced by dimerization on the 
electron distribution of water. The contribution of several mechanisms (electrostatic-
exchange, induction, dispersion) underlying the intermolecular interaction is high-
lighted, and the effect of removing the BSSE contamination on the description of 
such mechanisms is investigated at length. Our study shows that even with a basis 
set of very high quality (Millot–Stone basis set), the BSSE effect is, at least for 
some quantities, of the same order of magnitude of changes due to dimerization. 
Though SCF-SM and SCF-MI provide the same qualitative picture for the charge 
rearrangements in water dimer, the quantitative differences between their associated 
electron densities are as large as 2–3 times the estimated standard deviations of good 
quality experimental densities in molecular crystals. 
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BSSE overestimates the charge transfer between monomers and accumulates too 
much electron charge in the hydrogen bond region by removing it in particular from 
the acceptor oxygen atom. Hence, dispersion contributions are found to concentrate 
or remove electron charge in the intermolecular region according to whether a density 
describing ‘true’ induction or a BSSE contaminated induction is taken as reference. 

BSSE also opposes the tendency of the Hartree–Fock model to keep the interacting 
closed shell fragments too far apart. So, when optimized geometries are considered 
for the complex, BSSE is found to mimic some of those effects on the electron density 
distribution which would be induced by the interfragment dispersion contributions. 

The SCF-MI method provides interaction energy values which converge quite 
rapidly with increasing basis set size. This fact makes this approach particularly 
recommended for large interacting moieties where basis sets of double- or triple-zeta
quality are typically used and where the use of very extended basis set, like Millet-
Stone’s, is precluded. The resulting BSSE effect on the interaction densities should 
in this case be much larger than that found for the water dimer. 

In the last years, alternative approaches have been proposed for constructing elec-
tron densities for large macromolecules, like proteins, starting from smaller fragments. 
Methods based on discrete [14, 45, 46] or on fuzzy boundary [47–49] partitionings 
have been devised. The former approach leads to fragments that have been identified 
as proper open systems [15] and with properties defined by quantum mechanics. 
However, the employment of such fragments as building blocks for larger systems 
presents difficulties and their use is probably more suited for assessing transferability 
properties. The second method, though more empirical, has great advantages as far 
as the additivity and adjustability of fragment densities is concerned. It is our aim 
to explore the capability of SCF-MI method as a tool to evaluate fuzzy density frag-
ments which reproduce interfragment interactions and do not require an a posteriori 
partitioning of the first order density matrix for their construction. 
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1. Introduction 

A fundamental goal of research in the biological sciences is to understand protein 
structure. In theory, protein sequence information can be inferred from the fast 
growing volume of DNA sequence data [1] but predicting the three-dimensional
structure of a protein from its sequence remains an open and important problem [2–4]. 
Part of the difficulty in solving this problem is due to the fact that many of the 
existing techniques rely on our knowledge of previously determined structures which, 
compared to sequence data, is relatively limited. 

X-ray crystallography plays a central role in current efforts in protein structure 
determination. However, building an accurate and detailed protein model from crys-
tallographic data remains acomplex and time-consuming process [5]. This is due to the 
fact that while intensity data may be available at relatively high resolution, this is rarely 
the case for phase information [6]. Therefore, initial models are usually built at low 
to medium resolutions, where human intervention is needed for recognizing typical 
protein structure motifs, and then bootstrap to higher and higher resolution. Errors 
in the initial and subsequent models may be corrected using a refinement process in 
which the model is modified to minimize the difference between the experimentally 
observed data and the data calculated using a hypothetical crystal containing the 
model. The development of more sophisticated computational tools would improve 
the process of protein model building [7]. A goal of our research is to improve and 
accelerate this process through the design and development of automated tools. 

In this paper we report on an approach to protein model construction that can be 
incorporated into a fully automated system for structure determination from crys-
tallographic data. Our approach has the advantage of using characteristics of the 
experimental data to find a path through the tertiary structure of the protein without 
introducing bias into the data. It incorporates a spline interpolation algorithm to gen-
erate a smooth continuous density function for the protein, an eigenvector following 
algorithm to locate critical points in the electron density and a gradient path following 
algorithm to connect critical points and, thus, characterize features of the protein. The 
work described in this paper advances the ability to discern meaningful features of 
protein structure through the use of a topological analysis of the relative density at 
various levels of resolution. This is similar to the approach of Bader et al. [8] and 
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builds on previous work of Johnson [9] and of the Molecular Scene Analysis Group
at Queen’s University [10].

Bader et al. have developed a theory of molecular structure [8], based on the
topological properties of the electron density ρ  (r). In this theory, a molecule may
be partitioned into atoms or fragments by using zero-flux surfaces that satisfy the 
condition

∇ ρ (r)n = 0

for every point on the surface of the subsystem where n is a unit vector to the surface. 
Note that points in the electron density at which the gradient of the density equals 
zero, that is, points at which 

∇ρ (r) = 0 

are critical points and are characterized by the signs of the eigenvalues of the Hessian 
of the density at that point. The sum of the signs of the eigenvalues of this 3 by 3 
matrix of second derivatives of ρ (r) is called the signature and is used to classify the 
type of critical point. There are four possible signatures for critical points of rank 3 
(i.e. with three non-zero eigenvalues), designated by (rank, signature): 

(3, –3) A local maximum in the density with 3 negative curvatures, called a peak.
(3, –1) A saddle point in the density with 2 negative and 1 positive curvatures, called 

(3, 1) A saddle point in the density with 2 positive and 1 negative curvatures, called 

(3, 3) A local minimum in the density with 3 positive curvatures, called a pit.

Points on the zero-flux surfaces that are saddle points in the density are passes or 
pales. Should the critical point be located on a path between bonded atoms along 
which the density is a maximum with respect to lateral displacement, it is known as a 
pass. Nuclei behave topologically as peaks and all of the gradient paths of the density 
in the neighborhood of a particular peak terminate at that peak. Thus, the peaks act 
as attractors in the gradient vector field of the density. Passes are located between 
neighboring attractors which are linked by a unique pair of trajectories associated 
with the passes. Cao et al. [11] pointed out that it is through the attractor behavior of 
nuclei that distinct atomic forms are created in the density. In the theory of molecular 
structure, therefore, peaks and passes play a crucial role. 

The application of the theory of molecular structure to the solid state has been 
limited to theoretical calculations [12] or high resolution experimental data [13]. The 
direct application to low to medium resolution data is impractical as distinct atomic 
forms are for the most part impossible to characterize through the gradient vector field 
of the density. Although there is topology in these maps, peaks represent groups of 
atoms such as fragments of residues in proteins. There have been efforts, however, to 
utilize the topological properties of low to medium resolution crystallographic data 
on proteins to help deduce the structure. The program ORCRIT [14], for example, 

a pass.

a pale.
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has previously been used to calculate and characterize critical points in the relative 
density. By choosing appropriate relative density value cutoffs, Leherte et al. [10]
were able to trace out a spanning tree of peak–pass–peak–pass corresponding to 
the protein structure. The construction of a spanning tree utilizes two parameters, 
rmax, the maximum distance between critical points below which they are considered 
connected and, W, the weighting of the connection. The critical points themselves 
are located first through a simplistic comparison search of the grid, then apolynomial 
interpolation is performed to obtain a more accurate approximation of their position. 

2. Method 

In the present work, the derived relative density grid is modeled using cubic splines. 
This gives a smooth continuous function over which values of the relative density, gra-
dient and Laplacian can be calculated. In order to calculate all critical points, a grid of 
initial starting points is chosen and a search for (3, –3) critical points (peaks) initiated 
using the eigenvector following algorithm of Popelier [15]. Next, a check for other 
peaks is performed by initiating the search algorithm starting midway between those 
peaks already found. Following this check, a search for the passes located between 
proximal peaks is made. This search also uses the eigenvector following method given 
a starting position at the midpoint between peaks that are within 8 Å of each other. 
Note that for this study, only peaks and passes with relative densities greater than zero 
are considered. Once an acceptable pass has been located, the fifth-order Cash–Karp– 
Runge–Kutta gradient path tracing algorithm [16] is used to trace along the ridge of 
maximum density to the two peaks associated with this pass. In this way, the lines of 
interaction (lines of maximum density) between the peaks are traced. By tracing the 
lines of interaction from peak to peak, the chain of such peaks and passes representing 
the protein backbone, or portion thereof, may be traced. Figure 1 illustrates two 
portions of a protein backbone with an intraprotein interaction, such as might be 
traced for a disulphide bridge, and a number of peaks and passes representative of 
side chains. This methodology is based on Popelier’s algorithm as implemented in 
the MORPHY program [17], but unlike the original algorithm it utilizes cubic splines 
and works without reference to nuclei. Note that MORPHY performs an automated 
topological analysis of a molecular electron density, which requires a wave function 
calculated from some quantum mechanical program, a Gaussian basis set and a set 
of nuclear coordinates as input. The nuclear coordinates are assumed to be peaks. 
None of these features are available for the crystallographic work, although the spline 
interpolation functions might be considered a basis set. The spline coefficients are fit 
to a density grid obtained from the XTAL program [18]. 

Three proteins, whose structures have been resolved and used in previous studies 
from this group, were chosen to serve as test cases: 

Case 1: An ideal density map, that is, a calculated map from the known structure 
of protein BP2 (bovine pancreatic phospholipase A2) which contains 123 
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Figure 1. A two-dimensional representation that illustrates the tracing of the interaction lines to give 
the peak–pass–peak–pass chain representative of the protein backbone, side chains and disulphide bridge. 
Circles represent passes and squares peaks. 

residues and in its crystalline form is a member of the P212121 space
group [19].

Case 2: An experimental density map for recombinant type III antifreeze protein from 
eel pout (AFP), which contains 66 residues and in its crystalline form is a 
member of the P212121 space group [20]. 

Case 3: An experimental density map for penicillopepsin (3APP), which contains 
323 residues and in its crystalline form is a member of the C2 space group 
[21].

All three proteins were analyzed at 3.0 Å resolution. Experiments were performed 
on a portion of the relative density map containing an entire connected protein. In 
order to discern effects of topological features just outside the boundaries of this 
volume, our analysis was extended 5.0 Å outside the boundaries on all sides of this 
volume.

3. Results and discussion 

For each protein, the results were evaluated at three stages in the analysis: 

(i) The assignment of peaks to residues, whether backbone or side chain atoms, 
utilizing a proximity criterion of 2.0 Å. The proximity criterion of 2.0 Å. was 
chosen as it has been shown in a study involving ideal density maps of 19 proteins 
that over 98% of the peaks above an appropriate relative density cutoff are within 
that distance [22]. Note that a relative density cutoff was utilized to ensure that 
the backbone was adequately represented by peaks. 

(ii) The assignment of peaks to residues based on the proximity (< 2.0 Å) of peaks 
to protein backbone atoms and the connectivity of these peaks as found through 
the gradient path tracing algorithm. The relative density cutoff outlined in (i) was 
again utilized. 
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(iii) A trace was made starting at the first peak (e.g. residue 1, ALA, for BP2) that 
simply uses the peak–pass–peak information generated by our program for the 
selected volume. 

Case 1
(i) The positions of peaks with a relative density value greater than 0.8 were compared 
with the positions of the non-hydrogen atoms in the protein residues. Peaks within 
2.0 Å of a residue atom were assigned to the respective residues. Only one residue, 
number 32 (GLY), was not assigned a peak. As well, a peak was assigned to the Ca2+
ion associated with the protein. Of note is the large number of side chains represented 
by peaks at this resolution (3.0Å). 

(ii) The location of the peaks with respect to the protein backbone atoms was 
considered. An assignment was made if a peak with a relative density greater than 
0.8 was located within 2.0Å of a backbone atom. Of the 123 residues present, 8 did 
not have a peak assigned based on this criterion. Next the results of the gradient path 
tracing are considered for the peaks that have been assigned. Of the two ‘missing’ 
edges, one is due to an intervening peak, that is, a third peak, not assigned to a residue, 
is connected to the two peaks assigned to the residues forming the edge. The other 
‘missing’ edge is due to a side chain peak being inserted into the chain via the distance 
criterion. The peaks on either side of this assignment are connected by an edge to 
each other. Note that the lowest relative density in the trace is a pass with a density at 
0.7. The fact that there are residues with no peaks fitting the distance criterion is not 
of concern as in each case the residues on either side are represented by peaks which 
are directly connected to each other by a pass. 

(iii) The protein should not only have a continuous trace from start to finish, but 
should also display intraprotein connectivity through the disulphide bonds and the 
Ca2+ ion. Using the peak identified as residue 1 (ALA), the best trace is created 
using the highest passes and discounting side chains where the trace stops. Points at 
which there appears to be a fork are explored. From previous work, we were aware 
that the highest peaks usually represent disulphide bridges and heteroatoms such as 
Ca2+, at this resolution [14]. We follow the peak–pass–peak path and trace the protein 
including the disulphide bridges. We complete the trace noting that there are seven 
disulphide bridges which connect various portions of the chain, a Ca2+ ion at the active 
site which has four passes (three large passes and one almost at the cutoff) and two 
bridges that are formed by side chains. The size of the peaks in the bridges allow us 
to identify the disulphide bridges and the Ca2+ ion, with the disulphides having only 
two passes above the cutoff and the ion three well above and one at the cutoff. With 
peak and pass cutoffs set at 0.8 and 0.6, respectively, the gradient path tracing used 
to assign peaks to passes gives an excellent trace of the protein backbone and its side 
chains. The two branch points where the side chains bridge between two portions 
of the main trace have peaks much lower than those consistent with disulphide or 
heteroatom peaks. One of these bridges has a peak of 1.8, consistent with an electron 
rich system but not as rich as a sulphur containing region ( ρ > 2). In fact, that peak 
corresponds to the carboxylate group of the aspartate side chain. Note that one side 
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Figure 2. Correspondence of the calculated backbone trace with that of the reported backbone for 
BP2 [19]. As well, the calculated disulphide bridges are included to illustrate the important role they 
play in protein structure, binding certain regions together. 

chain peak attached to peak 8 of the chain has a density of 2.2. This peak corresponds 
to the side chain of residue 8, methionine, and represents the sulphur atom in that 
chain.

Figure 2 illustrates the correspondence of the calculated trace with that of the 
backbone atoms. As well, the calculated disulphide bridges are included to illustrate 
the important role they play in protein structure, binding certain regions together. For 
example, the helical portions of the protein are well represented with the disulphide 
bridges helping to hold two helices together illustrating the important role they play 
in the tertiary structure of this protein. 

Case 2 
(i) The peaks were compared to the positions of the non-hydrogen atoms in the 
residues, including the side chain atoms utilizing a relative density cutoff of 0.3. Of 
the 66 residues, 4 do not have an atom within 2.0 Å of a peak and were not assigned 
a peak. They are residues 2, 30, 32 and 50. 

(ii) A comparison of the location of peaks with the backbone atoms of AFP was 
performed. Using a density cutoff of 0.3, the peaks were assigned to backbone atoms if 
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they were within 2.0 Å of the atoms. Of the 66 residues, 14 did not have peaks assigned. 
Examination of the connectivity of these peaks, utilizing the pass information from 
the gradient pass tracing algorithm, revealed 4 breaks in the chain, 2 of which were 
due to the insertion of side chain peaks included due to the distance criterion. The 
peaks on either side of these inserted peaks were connected directly to each other 
leaving only two missing edges. The lowest density value for a pass in the backbone 
trace is 0.19. 

(iii) The tracing of the protein utilizing the peak–pass–peak information should 
reveal a continuous trace and also any intramolecular interactions. Starting with the 
peak identified with residue 1 (ALA), the backbone was traced utilizing the peak-
pass-peak information. Although there are no disulphide bonds present in the protein, 
three bridges were detected through intraprotein interactions. Given that there were 
two breaks in the backbone, from residues 7 to 8 and 58 to 59, these bridges helped 
complete the trace. The peak density values range from 1.0 to 0.31 while the pass 
values range from 0.7 to 0.17. There were numerous side chains whose traces terminate 
after one or two peaks. Note that the highest peaks were once again those associated 
with sulphur atoms in the side chains of methionine. 

Figure 3 illustrates the correspondence of the calculated backbone trace with that of 
the backbone atoms. Figure 4 illustrates the sequence of the protein and the occurrence 
of the two breaks in the chain. 

Case 3 
(i) The position of peaks with a relative density value greater than 0.5 were compared 
with the positions of the non-hydrogen atoms in the protein residues. Peaks within 
2.0Å of a residue atom were assigned to the respective residues. Of the 323 residues, 
7 were not assigned peaks. They are residues 1, 99, 105, 109, 250, 275 and 279. 

(ii) A comparison of the location of peaks with respect to the protein backbone 
atoms of 3APP was performed utilizing a density cutoff of 0.5. Of the 323 residues, 
24 did not have a peak that was within the 2.0 Å criterion. Examining the connectivity 
of these peaks utilizing the pass and gradient path tracing results reveals 13 breaks in 
the trace, 4 of which are due to side chain peaks inserted due to the distance criterion 
but with the peaks on either side directly connected to each other. Another 7 breaks 
are due to peaks in the chain that do not meet the distance criterion but are connected 
to the 2 peaks where the break occurs. Of the 2 remaining breaks in the trace, there 
are paths to other peaks further in the chain, for example, from the peak identified 
as representing residue 277 there is a peak–pass–peak path to the peak representing 
residue 282, thus bypassing the break in the chain. A similar pattern exists for the path 
from residue 129 to 137, except the pattern is peak–pass–peak–pass–peak. The lowest 
pass in the relative density occurs between backbone peaks representing residues 12 
and 13 with a density of 0.26. 

(iii) This is probably the most rigorous test of the methodology as the protein 
should not only have a continuous trace from start to finish, but should also display 
intraprotein connectivity through the disulphide bond. As well, 3APP is known to 
resemble an approximate hexagonal close-pack in its crystal packing. The result is 
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Figure 3. Correspondence of the calculated backbone trace with that of the reported backbone for 
AFP [20]. 

Figure 4. AFP sequence and the two breaks in the chain. The dots on the line represent residues with no 
associated peaks as found in stage (i) of the analysis. 
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that there are interprotein interactions which complicate the topology. There are also 
multiple intramolecular interactions due to the presence of the 6 β -pleated sheets 
and 6 α -helices. Using the peak identified as residue 2 (ALA), the best trace is 
created using the highest passes and discounting side chains where the trace stops. 
Points at which there appears to be a fork are explored. The resulting tree structure is 
extremely complicated with 41 intramolecular interactions (passes) detected, some of 
which have very large density values, and there are also 27 intermolecular interactions 
detected. In the chain itself, the lowest pass has a value of 0.25 which can be misleading 
considering that many of the intramolecular interactions have passes in the 0.4–1.0 
range. However, at 2.8 Å resolution, it was reported that the experimental density is 
very weak and discontinuous in the residue regions 109–110 and 277– 281 [20]. This 
is where we experience low passes and in the latter case a break in the continuous 
chain. Due to the presence of the disulphide bond and the many other intramolecular 
interactions we are able to complete our trace. Note that the passes to other proteins 
were found to have a density value range from a low of 0.46 to a high of 0.55. 

Figure 5 shows the correspondence of the calculated 3APP backbone with the 
experimental structure. 

Figure 5. A portion of the calculated backbone trace and the corresponding portion of the reported 
backbone for 3APP [21]. 
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Table 1. Summary of results. 

BP2 AFP 3APP 

No. of peaks associated with proteina 944 296 1245
No. of peaks associated with 205 95 521
protein after elimination of 
symmetry equivalentsa

No. of residues present 123 66 323
No. of peaks in backbone traceb 121 56 321
No. of breaks in chain 0 2 2
Relative density rangec –0.95 to 2.2 –0.90 to 1.0 –1.8 to 2.3 

a Utilizing the proximity and relative density cutoffs as discussed in case 1 and 2. 
b As found through the eigenvector following/gradient path tracing algorithm. 
c Note that the F000 term has not been included in the relative density calculation. 

Comparing our results with the three known structures reveals that this methodology 
has correctly identified the chain, many of the side chains and the disulphide linkages. 
As well, there is a wealth of additional information with respect to H-bonding and other 
interactions. Given the range in values for the relative densities for our three test cases 
(see Table 1), our cutoff and lowest pass relative density values are approximately 
50% or more of the values of the highest peaks. The quality of the density will 
obviously affect the outcome of the trace as areas where the density is discontinuous 
may terminate the trace if no other path is found. However, even the tracing of only 
portions of the backbone and side chains, combined with knowledge of the dimensions 
and symmetry of the unit cell should prove to be of value in further resolving the 
structure of the protein. 

It should be noted that the present methodology provides a further advantage over 
the original ORCRIT program by reducing the number of peaks and/or passes that are 
allowed to be connected. The problem of determining the protein structure may be 
considered to be equivalent to determining the sequence of critical points associated 
with the backbone, making it useful to prune out incorrect connections. ORCRIT 
would allow a potential connection between any critical point (peak or pass) which 
lays within a certain distance of one another. The present methodology allows passes 
to be connected to only two peaks and peaks only to passes, with the connections 
determined by tracing the gradient path from pass to peak eliminating the uncertainty 
in the assignments. For example, for the volume studied for BP2, and considering 
all peaks and passes above relative densities of 0.8 and 0.6, respectively, ORCRIT's 
distance criteria produces 4824 connections (peak–peak, peak–pass and pass–pass), 
or an average of 5.05 associations per critical point. The MORDEN approach leads 
to only 1828 connections, or an average of 1.9 associations per critical point, thus 
making it easier to determine the trace corresponding to the protein structure. 
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The number of independent parameters defining a 
projector: proof in matrix representation and 
resolution of previously conflicting arguments 

ARNAUD J.A. SOIRAT* and LOU MASSA 
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695 Park Ave., New York, NY 10021, USA 

1. Introduction 

Projectors often arise in attempts to describe experiments within the structure of 
Quantum Mechanics. For example, in the case of the coherent scattering of X-rays by 
crystals the ideal measured intensities are given by the square of the structure factors 

(1)

where k is the scattering vector, r is a position vector, and P is the spinless-electron
density. In order to obtain a quantum interpretation of the measured structure factors, it
is natural to expand the molecular orbitals, , of the system studied in an orthonormal
basis, thus

( 2 )

where the matrix C contains expansion coefficients. The density associated with 
an independent particle model, i.e. with a Slater determinant wave function, then 
becomes

(3)

By defining the population matrix 

(4)

the electron density may be written as 

(5)

The elements of P may now be considered to be experimental parameters obtained
simply by an experimental fit to the measured X-ray structure factors (Equation (1)). 

*Currently with Aluminium Pectiney, France 
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However, to ensure that the electron density thus obtained is N-representable by 
a single determinant of N doubly occupied molecular orbitals it is necessary and 
sufficient that P be a normalized, hermitian, projector [1], i.e. 

(6)

Thus the following question arises quite naturally: how many independent experi-
mental conditions are required to entirely determine a normalized, hermitian, projector 

This important question has been addressed several times in the literature, with 
various authors reaching apparently conflicting results, or, in some cases, apparently 
agreeing on the results but for conflicting reasons. 

The first derivation treating the general case of the projection from an M-dimensional
space (spanned by the functions ) onto an N-dimensional subspace (spanned by the 
molecular orbitals ) was due to Clinton Galli and Massa (CGM) [1] who reached the 
conclusion that fora complex P matrix, the number of complex constraints required 
to fix the projector is N(M – N). Later on, Pecora [2] considered the problem and 
followed essentially the lines of argument in [1], but criticized their counting of 
hermiticity conditions and hence reached the different conclusion that for a complex 
P, the number of real constraints required to fix the projector is 2NM – N(N + 1),
while the number of complex constraints is half this latter number. Still later, Levy 
and Goldstein on the one hand agreed with the criticism by Pecora, but on the other 
hand, by means of a different line of argument, reached a result apparently similar to 
that of CGM and in disagreement with Pecora; they found, indeed, that for a real P
the number of real conditions to fix the projector is N(M – N).

These various conflicting results, summarized in Table 1, leave the question ad-
dressed unresolved. Also, Refs. [1, 3] display the results in different ways, making 
their comparison less than obvious. In attempting to make comparisons, one might 
assume two things: 

1. The number of complex constraints to fix a complex would be the same as real 

2. Twice as many real conditions would be needed to fix a complex as complex 

However, both assumptions are in general not valid1, thus complicating the com-
parison of results in the various papers and, in some cases, causing errors in the 
extrapolation of one result from another within a paper, as we shall see. 

For the special case of a projection from an M-dimensional space onto an N =
one-dimensional subspace, Fano [4], Roman [5], and Blum [6] have obtained the 
number of real constraints required to fix a complex projector as KC,R = 2M – 2.

constraints to fix a real 

conditions.

1For example, according to Hamermesh (see Ref. [11]), the number of real conditions to uniquely 
determine an ( N x N) (complex) unitary matrix is N2 , while the number of real conditions to uniquely 
fix a (real) orthogonal matrix of same dimensions is not N2/2 but N(N + 1)/2. 

P?

;
P

P
P
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Table 1. Number K of independent parameters in a projector: comparison of different 
published formulae. 

Reference Complex and Complex and Real and 
complex constraints real constraints real constraints 

[1] N(M – N) NA NA
[2] NM – N(N + 1)/2 2NM – N(N + 1) NM – N(N + 1)/2
[3] NA NA N(M – N)

NA = Not applicable. 

There is no doubt that this result is correct, as a close examination of their derivation 
would suggest. Interestingly enough, the results of all reduce properly to this result 
in the one-dimensional case, although there are disagreements in the N-dimensional
case, (Note: We use the symbol K to represent a count of the parameters which 
fix a matrix. A first subscript, C or R, is attached to indicate whether the matrix is 
complex or real, and a second subscript, C or R, is attached to indicate whether the 
parameters counted are complex or real. For example, KC,R signifies the number of 
real parameters required to fix a complex matrix.) 

To clarify this problem, our approach will be the following: first, we shall devote 
ourselves to finding a formula for K, independently of any of the three existing 
derivations made for the most general N-dimensional case; then we shall compare 
our answer to the previously published results. 

Since the one-dimensional result for K is definitely correct, our approach will be 
to generalize Fano-Roman’s [4, 5] derivation to the N-dimensional case. This shall 
be our goal in the coming section. 

2. Generalization of Fano–Roman’s derivation to the N-dimensional case

2.1. Number of real conditions to fix a complex 

Consider an ( M x M) complex matrix which satisfies the conditions in Equation (6). 
According to a well-known theorem on projectors [7], for the above equations to hold, 
it is necessary and sufficient that 

(7)

where λ i’s refer to the eigenvalues. 

dimensional case, i.e. 
Note that this system properly reduces to that of Fano-Roman [4, 5], in the one-

Rank = 1, (8)
= 1. 

=

Tr

P

P

P+ = P,

Rank P=N

i = 1  i = 1, . . . , Nλ

=

∀
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Hence, the problem of counting how many experimental conditions are required 
to fix the matrix satisfying Equation (6) is equivalent to that for the case satisfying 
Equation (7). We treat here the problem of imposing Equations (7), because, as we 
shall see, we can display a clear counting procedure for them. This approach represents 
a generalization of that used by Fano and Roman for the specific case N = 1. 

, we count the number of real parameters 
which completely define the entire matrix; from this number, we subtract the number 
of real conditions imposed by N-representability (i.e. hermiticity, rank N and unit 
eigenvalues). The remaining number of parameters represents the number of real 
(experimental) conditions required to complete the definition of the projector consid-
ered. Such a number is the solution to the problem posed in this paper. Later on, we 
shall consider the two other cases previously mentioned, that is, complex independent 

We proceed as follows: for a complex 

2.1.1. Number of real parameters contained in complex 
The matrix, made of complex elements, pij, may be written as

(9)

so that each element is explicitly defined by two real numbers, Reij and Imij. For a
matrix of dimensions ( M x M), the total number of real parameters defining the 

matrix is therefore 

(10)

This is the number whose reduction by parameters fixed by the N-representability
constraints yields a count of the remaining parameters which must be fixed by 
additional experimental constraints, such as those of Equation (1). 

2.1.2. Hermiticity constraint 
In order to properly count the number of real conditions arising from the hermiticity 
constraint , it is first necessary to determine the number of diagonal and 
off-diagonal elements in this matrix: the matrix being of dimension M x M, there
are M diagonal complex elements, and consequently a total of ( M2 – M) off-diagonal
complex elements, or M(M – 1)/2 complex elements in each off-diagonal triangle. 

The hermiticity constraint may, then, be transcribed into the following equivalent 
conditions on the matrix elements: 

=

Diagonal elements 

Mreal conditions; (11)

P

P

Pparameters of a complex ,  and  real  independent  parameters  of  a  real  P.

P
P

P

P
P

P

P+
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Off-diagonal elements 

real conditions. (12) 

Therefore, by summing the above results, we are led to a total number of 

M2 real conditions. (13) 

The reader may note that this result is in accordance with Fano–Roman, who treat 
only the case N =1, for the hermiticity constraint is the same no matter what the 
dimension of the subspace. 

2.1.3. Number of real parameters fixed by rank 
The rank of any (P x Q) matrix
using the following algorithm [8]: 

= ( aij ), for which a11 ≠ 0, may be computed 

Rank = 1 + Rank , (14) 

where is a (( P – 1) x (Q – 1)) matrix of the form 

(15)

whose elements are the (2x2) subdeterminants 

(16)

Before using this algorithm, we note the following theorem. 

Theorem Let  be an hermitian matrix. Then, the matrix D arising from the 
algorithm for calculating the rank of a matrix , i.e., 

Rank  = 1 + Rank D,

where the D elements retain their previous meaning, is hermitian.

This theorem is essential to the proper counting of the number of conditions arising 
from the constraint Rank = N, as we shall now see. 

In order to use the above algoritnm for computing the rank of , p11 must be 
different from 0. However, this is no restriction, since it is always possible to reach 

A

A

A

A

D

P
P
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this condition for a non-zero matrix by using an appropriate elementary row operation 
(if necessary) transformation which always leaves the rank of the matrix unchanged. 
We can therefore assume, without any loss of generality, that the condition p11 ≠ 0
is always satisfied. The matrix being of dimension ( M x M), the computation of 
its rank following this algorithm will yield the relation 

Rank = 1 +Rank , (17) 

where retains its previous meaning, except for its dimensions which are here 
((M – 1) x (M – 1)). The same procedure can be used iteratively, and after the Nth
iteration, one obtains 

Rank = N + Rank , (18) 

where is an (( M – N) x (M – N)) matrix.
The constraint Rank = N is then equivalent to 

Rank = N N + Rank = N = 0. (19) 

However, the rank of any matrix other than a zero matrix cannot be 0, while the rank 
of a zero matrix is defined to be 0 [9]. The following equivalence is, thus, 

Rank = (20) 

We shall now use the theorem previously mentioned. Since is hermitian during this 
rank computation, so too are    and . The above constraint on X , Equation (20), 
along with its hermiticity property, leads to the following number of conditions on its 
elements, and therefore ultimately on the elements:

Diagonal elements 

(21)
(Im[xii] = 0 being obvious since xii is real) 

(M – N) real conditions. 

Off-diagonal elements 

∀ i ≠ j, xij = 0. (22)

But x,, = , and, thus, only the constraints on, say, the upper off-diagonal triangle 
of is to be counted: 

real conditions. 

As a conclusion, summing the above results shows that the constraint Rank = N
yields a total number of 

Nrank,(C,R) = ( M – N)2 real conditions. (23)

P

P

P

P

P

P

P

P

D

D

D

X

X

X

X

X

X
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One may notice that this last formula properly reduces to the ( M – 1)2 real conditions 
found by Roman [5] in the N = 1 case. 

2.1.4. Number of real parameters fixed by unit eigenvalues 
Since has been already constrained to be hermitian, it is legitimate to assume, 
without any loss of generality that is always diagonalizable into, say, by a 
unitary transformation of the basis elements [10]. The diagonal elements of then 
called its eigenvalues, are real. The rank constraint on (which is basis independent) 
further reduces the number of non-zero eigenvalues to N. Let λ i (i = 1, . . . , N), be 
these non-zero eigenvalues. 

Hence, it is always possible to find a unitary transformation into a basis in which 
the matrix is diagonal, and can be written as 

(24)

where λ i ∈ ,∀ i = 1, . . . , N.
Imposing unit magnitudes upon the eigenvalues, we have 

λ 1 = λ 2 = . . . = λ N = 1 N real conditions, (25)

which would allow one to recover a diagonalized matrix of the form 

(26)

The basis in which is of the above form is made of the collection of occupied 
and unoccupied eigenstates , i.e. , Ultimately, the very 
process of projection allows one to select the N occupied ones, and it is not necessary 
to consider the unoccupied ones (at least for the ground-state description of the 
system).

However, to determine the number of real pieces of information required to fix the 
projection from an M-dimensional space onto an N-dimensional subspace spanned, 
not by the particular basis in which is diagonal, but by any basis of 
the subspace, it is necessary to subtract the number of real parameters required to fix 
a particular basis in the N-dimensional subspace from the total KC,R; such a number 
corresponds to the N2 real conditions that are necessary to fix a unitary transformation 
[11] in the subspace. But, as the phases of the eigenstates, are arbitrary as far as the 
physical state is concerned [4, 12], this latter number is reduced by N, the number of 
eigenstates belonging to the projection space. Hence, the number of independent 
real parameters in the unitary transformation which fixes the basis spanning the 

P

P
P

P

P

P

P,
P,
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subspace defined by when reduced by the number of arbitrary phases is equal to 
(N2 – N).

Summing the above results, the unit magnitudes of the non-zero eigenvalues of 
yields a total number of 

Nunit eigenvalues,(C,R) = N2 real conditions. (27)

2.1.5. Summation of various contributions to K 
We now obtain the solution to our problem of enumeration by subtracting from the 
total number of parameters in those fixed independently by hermiticity, rank, and 
unit eigenvalues. 

Thus,

KC,R = Ntotal,(C,R) – ( Nhermiticity,(C,R) + Nrank,(C,R) + Nunit eigenvalues,(C,R) ),

i.e.,

KC,R = 2 M2 – (M2 + ( M – N)2 + N2),

or,

KC,R = 2 N(M – N) real conditions. (28)

This number is the answer to the question originally posed. This is the number of real 
conditions required to fix experimentally a complex, normalized, hermitian, projection 
matrix. For example, this number of experimental structure factors, Equation (1), 
would suffice to fix Equation (6). 

2.2. Number of real (complex) conditions to fix a real (complex) 

By simply using arguments analogous to those used in deriving Equation (28), one 
may find that if the projector is real, then 

KR,R = N(M – N) real conditions. (29)

while, for a complex 

KC,C = N(M – N) complex conditions. (30)

Having derived K by a method independent of those used in [1–3], we now compare 
our result to those obtained in these previous papers. From the perspective of our 
present counting procedure, we hope to shed light on the previous derivations. We 
shall take them up in the order in which they appeared in the literature. 

P

P

P

P

P

P,
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3. Further investigation of the previous derivations of K

3.1. CGM’s derivation 

In counting the number of orthonormalization conditions on C, CGM apparently did
not assume the hermiticity of the scalar product in the subspace, but rather chose to 
impose it. Their calculation of K ran along the following lines: a complex projector, 
which is hermitian and normalized, may be factored into [13] 

(31)

where the complex is ( N x M), and

(32)

Counting the parameters in is now converted into counting the parameters in C,
which defines Thus, the number of elements in NM, is reduced by the N2

orthonormalization conditions arising from Equation (32). They found, then, that 

KC,C = NM – N2 = N(M – N) complex conditions. (33)

Notice that, in counting the orthogonalization conditions, the ‘upper triangle’ and the 
‘lower triangle’ in have separately been set to zero. It is for this reason that we 
interpret the derivation as imposing hermiticity on the subspace rather than assuming 
it. If hermiticity were assumed, then the vanishing of the ‘upper triangle’ of 
would automatically require the vanishing of the ‘lower triangle’, and both would not 
be counted as independent orthogonalization conditions. 

However, as we show in an appendix, when counting the number of conditions aris- 
ing from Equation (32), one does not have to impose hermiticity on the inner product 
but can take it for granted. The reader may find it, then, quite interesting to understand 
why the CGM derivation obtains, nevertheless, the right answer for K. Rather than 
counting the number of independent parameters in CGM instead counted those 
in . In doing so, they apparently overcounted by one of the off-diagonal triangles 
(2 ( N2 – N)/2 real parameters) by choosing to impose the hermiticity of the inner 
product in the occupied subspace. But, since the counting is based on the matrix, 
one has to correct for the fact that actually less information is required to uniquely 
determine the matrix. That is to say, one has to subtract the number of conditions 
necessary to fix a unitary transformation apart from the arbitrarily chosen phases of 
the basis elements. Such a correction would have given 

(34)

Apparently, the oversight of this last correction exactly compensates for the previous 
overcounting associated with imposing hermiticity on the subspace. Therefore, an 
exact compensation of errors has yielded precisely the correct result. 

P
P.

P

P

C
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C

C

C
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3.2. Pecora’s derivation 

Following the approach of CGM based on McWeeny’s [13] decomposition of into 
Pecora arrived at results different from CGM. 

After factoring of the matrix, Pecora considers that ‘the constraints are sum-
marized by the equation = and is completely determined by . This 
analysis, too, is based on counting the number of complex conditions on the complex 
elements of 

It seems the key step in this derivation, which differs from the analysis of CGM, is 
the following. In the system of equations resulting from the constraint = 
Pecora considers that ‘N(N – 1) of [them] are simply complex conjugates of each 
other’, yielding a total number of complex conditions equal to N(N + 1)/2. This is, 
in fact, equivalent to considering the matrix as hermitian, i.e., 

(35)

More fundamentally, what Pecora seems to assume – although never explicitly say-
ing so – is the following property. Since the condition = is actually the 
orthonormalization constraint on the Φ k’s since = it is supposed 
that the scalar product between any two wavefunctions Φ k is hermitian. That is to say, 
it is assumed that the subspace on which the projection is made is a Hilbert subspace. 

Based on this assumption, the result for the number of complex conditions to 
uniquely determine is then given to be 

KC,C = NM – (36)

Finally, Pecora generalizes to 

KC,R = 2 NM – N(N + 1) = 2 KC,C, (37)

obtaining KC,R, the number of real parameters in a complex by simply doubling 
KC,C, the number of complex parameters. 

However, if one were to exactly follow what seem to be Pecora’s assumptions about 
the scalar product being hermitian, one would get a different result from Pecora when 
counting the number of real conditions on the complex matrix, arising from the 
constraint = In fact, when the matrix is considered to be hermitian, 
the normalization condition on the N complex diagonal elements of yields N
real conditions and not 2 N as Pecora seemed to tacitly suppose. This is due to the 
fact that the diagonal elements are already known to be real since is hermitian, 
and hence, Im ii = 0 is not a separate constraint. 

The orthogonalization condition on the off-diagonal elements correctly yields 
2{N(N – 1)/2} real conditions. The assumption of the hermiticity property of the 
scalar product in the subspace of N dimensions, would lead finally to, KC,R =
2NM – N2 in the case of a complex , and not 2 KC,C, as had been claimed. 

However, if one completely determines and therefore the accompanying one 
has to do so apart from their phases which are known to be physically meaningless, as 
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previously said. This further decreases the number of conditions to uniquely determine 
apart from the phases, by a number N and yields: 

(38)

Interestingly enough, this turns out to be the very result that Pecora claims for the 
following reason: the overcounting of the number of real conditions on the diagonal 
elements of the assumed hermitian matrix (N in number) exactly compensates
for the oversight of the conditions relative to the arbitrary phase of each Here, we 
have a second case in which an exact compensation of errors has occurred. 

Of course, it is apparent that KC,R is given by differing formulas in the work of 
CGM and Pecora. The formula of CGM correctly answers the question posed in this 
paper. However, as we shall see later, the formula of Pecora correctly answers quite 
a different, but related question. For now, we turn to the remaining paper which is to 
be considered. 

3.3. Levy and Goldstein's derivation 

Levy and Goldstein chose to tackle the problem in a different way. They based 
their reasoning, in one of their derivations, on the orthogonal decomposition of the 
space spanned by into S and S⊥ , respectively the occupied and unoccupied
subspaces.

As is known [14], there is a one-to-one correspondence between each subspace and 
its accompanying projection. 

Based on this notion, Levy and Goldstein then developed a formula for the real 
number of pieces of information necessary to fix uniquely Ψ det( 1, 2, . . . , N) described 
in a real function basis. They wrote: ‘the number of independent parameters in Ψ det

is equal to the number of equations required to fix the subspace. We now assert 
that this number is N(M – N) because there are N(M – N) orthogonality relations 
between the and the orbitals: 

(39)

Although it is clear that there are N(M – N) orthogonality relations between the 
and the it is not clear why this is exactly equal to K, unless one has 

additional knowledge of and the but such knowledge would be incorporated 
in additional constraints which would have to be counted and would presumably alter 
the expression for K that was obtained. 

Indeed, one may give the following counter-argument to Levy and Goldstein's as-
sumption: for simplicity, take the case of a projection from a three-dimensional space 
(M = 3) onto a two-dimensional subspace (N = 2). S⊥ is then a one-dimensional
subspace, and any ∈ S⊥ spans the subspace and therefore completely specifies it.
Figure 1 somewhat clarifies our hypotheses. 

According to Levy and Goldstein, the S subspace is then completely specified by 
the N(M – N) = 2 orthogonality relations between the Φ 's and the Φ ̂. Let Φ 1 and

C C+

C,
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Figure 1. Orthogonal decomposition of a three-dimensional Hilbert space: geometrical representation of 
the two orthogonal subspaces. 

Figure 2. Orthogonal decomposition of a three-dimensional Hilbert space: case of two collinear vectors 
in the two-dimensional subspace.

Φ 2 be the two elements of S. One has then the following relations: 

However, Φ 1 and Φ 2 could be such that Φ 1 = kΦ 2, as described by Figure 2.
In such a case, the two vectors being collinear, do not form a basis of the S subspace

In the case where M = 4 and N = 3, one could have the following situation: 
and, consequently, do not entirely define the subspace they belong to. 

but where Φ 3 = Φ 1 + Φ 2. Here again, the set {Φ 1, Φ 2, Φ 3} does not span the S
subspace.
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As a consequence, such examples show that the orthogonality relations (between 
vectors in different subspaces) alone, do not fix the S subspace. To do so, one would 
need some previous additional information on the basis which spans S and S⊥ . That 
is to say, one would need to constrain the set of recovered Φ ’s to form a basis of the 
occupied subspace. This would then make additional orthogonality constraints within 
the subspace to take into account in the search for a K formula.

The formula in [3] gives the correct answer for KR,R to determine real Appar-
ently, coincidences occur in all three derivations reviewed in this section. 

4. Discussion 

A problem arises in considering the result given by Pecora for KC,R. Indeed, this result 
does not seem to be correct since it does not properly reduce to 0 when M = N, but
to ( N2 – N), instead. 

However, when M = N, the projection operation is done onto the whole space and 
is, thus, the identity transformation; is then the unit matrix and, as a consequence, 
no information is needed to determine it, leading to K = 0 in such a case. 

Based on this argument, Levy and Goldstein correctly implied – in their footnote 
#7 – that Pecora’s formula was wrong, and did not discuss it further. Earlier, we 
criticized Pecora’s derivation, but we point out here an interpretation under which 
Pecora’s formula is correct. 

A normalized, hermitian projector can always be diagonalized, according to the 
following procedure [10]: 

(40)

where

(41)

and

(42)

As McWeeny [13] showed by the reverse transformation of Equation (40), can 
always be factored into 

(43)

where the ( N x M) matrix is made of the first N rows of the unitary matrix 
while of the first N columns of

However, the decomposition of is not unique, since, as Pecora wrote, 
any = (where is understood to be an ( N x N) unitary matrix) will generate the 
same matrix, which ‘is just a basic fact of Quantum Mechanics or, more generally, 
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linear eigenvalue theory restated in population matrix language’, Hence, the only way 
one might speak of the uniqueness of is within a unitary transformation. 

Moreover, as previously mentioned, the CGM (and [3]) formula properly reduces 
to K = 0 when M = N. We shall now examine the decomposition of into 
in such a case. 

From the definition of it is clear that the rectangular matrix of the previous case 
becomes now the square matrix, so that can always be written, when M = N,
as

where (44) 

Of course, there is an infinity of unitary transformations in the space we are dealing 
with, that satisfies this equation. 

Now suppose that we were to determine one particular complex matrix out 
of the infinity. We stated earlier that the number of real independent conditions to 
uniquely determine apart from the phases of each of the N eigenstates is: 
KU(C,R) = N2 –N.

If one realizes that this last number KU(C,R) is precisely the difference between 
Pecora’s and CGM’s formulae for Kp,

(45)

one may interpret Pecora’s formula as follows: 2 MN – N2 – N is the number of 
independent real conditions to uniquely determine the projection transformation from 
the M-dimensional space onto the N-dimensional subspace ( 2 N(M – N) conditions),
as well as the N basis vectors of the subspace, apart from their phases, arbitrarily 
chosen (additional ( N2 – N) conditions). That is to say, such a Kp allows one to 
uniquely decompose into

Figure 3 summarizes this interpretation, in the easily visualizable case of a pro-
jection from an M = 3 dimensional space onto an N = 2 dimensional subspace. 
This interpretation clarifies the relationship between the CGM (and [3]) formula and 
Pecora’s, and also the following: 

1. Pecora noticed that ‘the phase information of is lost in the original constraints’ 
[i.e. = Tr = N], but found it ‘not at all clear’. Here, we showed in which 
way one might take into account the loss of the phase information in when 
calculating the number of conditions to uniquely determine one has to impose, 
over and above the constraints arising from fixing the projector, the conditions 
to determine a particular unitary transformation in the N-dimensional subspace,
apart from the phases of the basis functions which are physically meaningless in 
the context of Quantum Mechanics. 

2. The formulae obtained for K by CGM (and [3]) and [2], reduce to the proper result 
for the case where N = 1. Indeed, this is because, in such a case, there is only 
one possible orientation of the basis vector in the one-dimensional subspace (the 
subspace being fixed), and its phase is physically meaningless. 

C

CC

C
C

C

P

P

P

PP;



141

In the N-dimensional subspace, determine a particular basis, 

i.e. fix { Φ k} apart from their phase 

an additional (N 2- N) real parameters to be fixed 

Figure 3. Number K of independent parameters in a projector: geometrical interpretation of Pecora’s vs 
CGM’s formulae. 

5. Conclusion 

In this paper, we have answered the fundamental question of determining how many 
independent experimental measurements (or theoretical conditions) are needed to fix 
a projector. Conflicts which appear in the previous literature treating this question, 
and that we have simply noted earlier [15], have here been resolved. In particular, we 
have explained how to properly interpret the K-formulae in [1–3]. 
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One way of using experimental conditions that determine a projector is provided 
by the methods of Quantum Crystallography [16–20], where a quantum description 
of the X-ray diffraction experiment is realized. In practice, one makes a least squares 
fitting to experimental X-ray structure factors, consistent with the constraints of N-
representability, using the Clinton–Massa algorithm [16]. Ultimately, this procedure 
allows one to recover quantum mechanically valid, exact density delivering, reduced 
density matrices which are projectors N-representable by a single Slater determinant 
[17–20]. These projectors through density functional theory, also contain in them-
selves the only information required for their own correction to include correlation 
effects.

Appendix: Proof of the inner product hermiticity of a subspace of 
an hermitian space 

In their derivation, CGM tacitly assumed that one has to impose the hermiticity of the 
scalar product defined in the subspace to ensure the subspace to be a Hilbert subspace. 

To decide whether or not this is a legitimate assumption, we shall now answer the 
following questions: 

1. Is the space spanned by ( ψ j) a Hilbert space? 
2. If yes, does the projection process preserve the hermiticity character of the scalar 

product?

For convenience of argumentation, we from now on use the function representation 
of our formalism, which restrains the generality of the results only in the sense that 
the L2 space is a particular example of separable Hilbert space; the generalization to 
any separable Hilbert space is, however, straightforward. 

In the most general formulation of our formalism expressed in the function repre-
sentation, we first make the choice of a basis {ψj (l)} which spans an M-dimensional
space. This basis can be any set of M linearly independent complex functions, nor-
malized or not, as long as it satisfies one single condition. Since we are dealing with 
the description of the state of the system by Quantum Mechanics, y j (l)’s must be 
well-behaved functions and therefore must be chosen among the elements of the L2

space [21]. Any choice of a basis not satisfying this latter condition would violate 
the Quantum Mechanics formalism – described in the continuous representation. The 
basis functions being elements of the L2 space, our space is as a consequence an 
M-dimensional complex separable Hilbert space, written h, and therefore possesses 
by definition an inner product structure satisfying the corresponding axioms [22]. In 
particular, the inner product is hermitian, i.e. for any choice of basis which is a linearly 
independent subset of L2 it is always true that 

(A-1)

Hence the first question is answered affirmatively. 
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Now we shall examine the second one, which may be resolved in different
ways.

1. Our first way of answering the last question will be based on the fundamental
theorems on Hilbert space [14]. Indeed, the theorem on separability tells us that any
subspace of h is also a separable Hilbert space. As a consequence, the inner product
defined on, say, the occupied subspace is hermitian irrespectively of the choice of the
basis {ψj (l)], as long as this latter satisfies the fundamental requirements of Quantum
Mechanics. One should therefore not have to impose this property as a constraint when
counting the number of conditions arising from the constraint but, on the
contrary, can take it for granted.

2. A second way of resolving this question is provided by examining the constraint
itself. Indeed, the condition = is equivalent to requiring the orthonormal-
ization of the basis functions Φ k(l) of the occupied subspace. That is to say, Φ k(l)’s
must satisfy

(A-2)

However, since φ k(l) is described in the space basis by

(A-3)

the orthonormalization condition can be written as

(A-4)

and it is obvious that the hermiticity property of the inner product of the space is
conferred to the subspace. This is in fact nothing more than the above answer restated
in terms of the exact expression of the inner product.

3. Finally, one may suggest a third way of solving this problem by further investi-
gating McWeeny’s theorem of decomposition [13]. Consider first a general matrix
of M2 dimensions. If this matrix is of rank r, r ≤ M it is then always decomposable
into a product of two rectangular matrices of respective shapes, (M × r) and (r × M)
[23]. Now consider each of the three constraints on

a) = then, it is always possible to find a unitary transformation so that =

However, so far, is a rectangular matrix of dimensions (r × M) where r is the
rank of 

=

since then if and only if 

P
P

P:

PP

P.



144

b) Rank = N: then, 

and becomes an ( N x M) matrix. 
2

(A-5)

Therefore, it is clear that one may rewrite the constraints as 

• if then = where 
• if and only if = 
• i.e. if and only if and Rank = N.

It appears thus, that writing as where = is already taking account 
of the first constraint of hermiticity of and also includes the two conditions 

= and Rank = N. That is to say, the hermiticity constraint is implicitly 
taken into account as soon as one decomposes as the two other constraints 
being completely summarized by = It seems therefore not necessary to 
superimpose the hermiticity constraint on = for it has already been done. 

As a conclusion to this part, when counting the number of conditions arising from 
= one does not have to impose the inner product to be hermitian but can 

take it for granted. 
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Kinetic equation, optical potential, tensor theory and 
structure factor refinement in high-energy electron 
diffraction
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Beijing Laboratoy of Electron Microscopy, Institute of Physics and Center for Condensed Matter 
Physics, Chinese Academy of Sciences, P.O. Box 2724, Beijing 100080, People’s Republic of China 

1. Introduction 

In this chapter we will present an account of methods used in high-energy electron 
diffraction for describing the movement of fast electrons in a solid and for retrieving 
crystal structure factors from energy-filtered experimental diffraction data. By high-
energy electron we mean electrons in the energy range of a few keV to a few MeV. 
For if the incident beam energy is smaller than about 1 keV the incident electron 
will hardly be distinguishable from one of the solids. The treatment of the scattering 
processes is then complicated by exchange effects due to the mixture of the incident 
electron and the electrons of the solid, and by complicated virtual inelastic scattering 
effects [1]. On the other hand, if the energy is very high, say greater than 10 MeV, 
Bremsstrahlung losses become severe and in addition the specimen can be seriously 
damaged by electron induced atomic displacements [2]. 

High-energy electrons may be scattered elastically or inelastically by a solid. In 
an elastic collision the solid remains in its original state so that the incident electron 
does not lose any energy, i.e. φ f = φ i (here the subscripts ‘f’ and ‘i’ denote the final 
state and the initial state respectively). On the other hand in an inelastic collision the
incident electron loses an amount of energy ∆ E equal to Ef – Ei, and the solid is 
excited from the initial state φ i to a final state φ f. Without loss of generality we can 
partition the interaction potential into time-independent and time-dependent parts. 
The time-independent part of the potential gives rise to elastic scattering, while the 
time-dependent part gives rise to inelastic scattering. Techniques utilizing elastically 
scattered electrons can be used to study the electron distribution and atomic struc-
ture of solids and utilizing inelastically scattered electrons can be used to probe the 
dynamics of solids [3, 4]. 

The general problem of high-energy electron diffraction by a solid may be for-
mulated self-consistently on the basis of a kinetic equation for the one-particle den-
sity matrix ρ  (r, r' , t, t') = ψ (r, t)ψ (r' , t'), ψ  (r, t) being the wave function of a
high-energy electron propagating in the solid [5]. This approach provides a general
treatment of spatial and temporal coherence of electrons and takes account of both 
elastic and inelastic scattering [6, 7]. It can be shown using the kinetic equation 
that the problem of multiple elastic and inelastic scattering by a solid is entirely 
determined by two universal functions, that is (1) the Coulomb potential averaged
over the motion of the crystal particles, i.e. the crystal electrons and nuclei and 
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(2) the mixed dynamic form factor of inelastic excitations [8, 9]. In a general electron 
diffraction experiment, the scattering cross section contains information about both 
these functions simultaneously. 

For high-energy electron diffraction the influence of the time-dependent part of the 
potential, giving rise to inelastic scattering, is usually much smaller than that of the 
time-independent part. To a good approximation the effect of the inelastic scattering 
on the elastic scattering may be represented by regarding the interaction potential 
between the incident electron and the solid to be complex. This complex potential 
is usually called the optical potential, by analogy with the long-standing use of a 
complex refractive index for discussing the optical properties of partially absorbing 
media [10, 11]. After an inelastic collision the solid is excited to a higher energy state 
and the incident electron is removed from an elastic channel and enters an inelastic
channel. Since for high-energy electrons the probability that the inelastically scattered 
electron will reappear in the elastic channel is very small [12], as far as the elastic 
scattering is concerned, the inelastically scattered electron can be considered to have 
been absorbed by the crystal, and the inelastic scattering events contribute only an 
imaginary addition to the time-independent part of the potential [13]. 

Using the effective optical potential the general kinetic equation reduces to a one-
body Schrödinger equation. To an excellent approximation, the real part of the optical 
potential equals the averaged Coulomb potential and the imaginary part represents the 
first order correction resulting from inelastic diffuse scattering. Experimentally the 
real part of the optical potential may be measured using, for example, the technique 
of convergent-beam electron diffraction (CBED), and the structure factors of crystals 
may be retrieved [14–23]. 

For high-energy electron diffraction there exist three main inelastic scattering 
mechanisms. These are, respectively, the collective excitation of the valence electrons 
(plasmon excitation ) which has an energy of the order of 10–40 eV, single electron 
excitations with energies up to few thousand eV, and the excitation of lattice vibrations 
(phonon excitation) with energies typically of 10–2 eV. It has been shown, see for 
example Rez [12] and Whelan [24, 25], that for all but the direct transmitted beams the 
contribution from phonon excitation or thermal diffuse scattering (TDS) is an order of 
magnitude larger than contributions from plasmon and single electron excitations. For 
high-order reflections the imaginary part of the optical potential may be calculated 
accurately using an Einstein model of TDS [26–31]. For low-order reflections the 
calculated imaginary part of the structure factors are less accurate. These low-order
structure factors may, however, be taken to be the fitting parameters in the structure 
factor refinement procedure although they may not correspond directly to real physical 
quantities.

To a first order approximation, the scattering potential of a crystal may be rep-
resented as a sum of contributions from isolated atoms, having charge distributions 
of spherical symmetry around their nuclei. In a real crystal the charge distribution 
deviates from the spherical symmetry around the nucleus and the difference reflects 
the charge redistribution or bonding in the crystal. The problem of experimental 
measurement of crystal bonding is therefore a problem of structure factor refinement, 
i.e. accurate determination of the difference between the true crystal structure factors 
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and that of isolated atoms. The structure factors may in principle be extracted from 
energy-filtered experimental diffraction data by varying crystal structure factors and 
minimizing a merit function which measures the difference between experiments and 
theoretical models. There are at least two major drawbacks for the direct application 
of the minimization scheme. First, the procedure may not be able to return a unique 
set of parameters that give the minimum to the merit function in multiple parameter 
space and, second, the procedure is numerically very expansive. Both problems may 
be solved to a large extent by the use of a perturbation approach called the tensor
theory of electron diffraction [20, 22, 32–34]. The validity of this approach will be 
discussed and its application to structure factor refinement will be demonstrated using 
experimental results from a single crystal of silicon. 

The plan of this chapter is as follows. Section 2 outlines the general equations that 
govern the movement of high-energy electrons in a solid, and Section 3 describes the 
concept and computation of the optical potential and the reduction of the general ki-
netic equation to a one-body Schrödinger equation for the elastic wave field. Section 4 
presents the tensor theory of high-energy electron diffraction for the description of 
energy-filtered electron diffraction data, and Section 5 gives its application to crystal 
structure factor refinement. The summary and conclusions are given in Section 6. 

2. Kinetic equation 

The dynamical elastic and inelastic scattering of high-energy electrons by solids may 
be described by three fundamental equations [5]. The first equation determines the
wave amplitude G0(r,r', E), or the Green function, at point r due to a point source
of electrons at r' in the averaged potential :

(1)

where the time-averaged interaction potential is made over the motion of the
crystal particles and is defined as 

(2)

where Z = Σ n exp(–en/ k BT) is the partition function, e n the nth eigenvalue of 
the crystal Hamiltonian Hcr, i.e. = being the nth eigenstate of the 
crystal system. 

The second equation determines the wave amplitude G(r, r' , E) at r due to a point
source of electrons at r' , with the influence of the fluctuating part of the interaction
included

(3)
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where s(r, x, w) is the Van Hove dynamical form factor [8] which is defined as

(4)

in which δ Vn,n1 (r) represents the fluctuating part of the interaction

(5)

with being given by Equation (2).
The third equation is the kinetic equation, which describes the evolution of the one-

particle density matrix ρ  (r, r', E) of the electron in the process of multiple elastic
and inelastic scattering in a solid

(6)

that is the one-particle density matrix is a sum of the ‘coherent’ wave ρ0 and waves
inelastically scattered at (x, x'), the propagation of which to (r, r' ) is described by the
product of two Green’s functions G(r, x, E)G*(r', x', E). The one-particle density
matrix ρ (r, r' E) is indeed the spectral one-particle density matrix which is related
to the usual bilinear combination of two wave functions 

by the Fourier transformation 

In the simplest case where the interaction potential does not depend on time we 
have

where ψ µ(r) is a wave function of the continuous spectrum, and the spectral one-
particle density matrix ρ (r, r' , E) is given by

In general the spectral one-particle density matrix ρ (r, r', E) describes the mutual
coherence of the wave field of high-energy electrons at the points r and r' . For
the simplest case of time-independent interaction potential the diagonal elements of 
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ρ (r, r' , E) = | ψ µ (r) |2, i.e. the element is proportional to the probability of finding the
electron with energy E at the point r. In a general case the kinetic equation describes the
evolution of ρ (r, r' , E) due to the process of multiple elastic and inelastic scattering.
The distribution of electrons over a solid angle and energy is related to the double
differential cross section

(7)

where k = is the angle between the wave vector of the scattered
electron and the z-axis of the chosen system or coorainares, R = (x, y) and qt = q x,y.

The positive and negative signs correspond to the forward and backward scattering,
respectively.

In summary, the movement of a high-energy electron in a solid may be described 
by a set of three Equations (1), (4) and (6). From these equations we may conclude 
that for high-energy electron diffraction the problem of multiple elastic and inelastic
scattering by a solid is entirely determined by two functions, i.e. (1) the Coulomb 
interaction potential averaged over the motion of the crystal particles and 
(2) the mixed dynamic form factor s(r, r' , E) of inelastic excitations of the solid.

3. Optical potential 

In this section we consider the problem of scattering of a well-collimated beam of 
high-energy electrons of energy E0 by a crystal. The incident electron wave function 
then has the form of a plane wave 

where k0 is the wave vector of the incident electron. Neglecting the effect of the time-
dependent part of the interaction potential, the movement of the incident high-energy
electron in a solid is governed by Equation (1). Let ψ k o be the wave function of the 
fast electron, we have 

(8)

E0 being the energy of the fast electron. To a good approximation, the effect of 
inelastically scattered electrons on the elastic electron wave field may be treated via 
a first order perturbation method. From Equation (4) we have 

(9)
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where V is called the optical potential [13, 35, 36] and is given by

with

being the averaged potential and

(10)

being the first order correction due to diffuse scattering. Recent quantitative electron
diffraction work has shown that this approximation works with high precision [16,
21, 23, 37, 38]. In Equation (10) h0 = –(h2/2m0)∇2 is the free Hamiltonian of the
incident electron, H0 is the Hamiltonian for all the electrons and nuclei of the crystal,
and Eα is the α th eigenvalue of the crystal Hamiltonian, i.e. H0φ α = Eα φ α , φα being
the α th eigenstate of the crystal. 

For TDS and to a good approximation we may assume that the atomic electrons 
follow adiabatically the motion of nucleus and that all atomic electrons are in their 
ground states [39]. The interacting potential is then given by 

(1 1) 

in which Zn is the atomic number of the nth atom and is its corresponding 
electron density in its ground state, the summation on n is over all atoms in the crystal, 
and ϕ n ( r ) is given by 

(12)

Let rn = Rn + un, where Rn denotes the equilibrium position of the nth atom 
and un represents the thermal displacement of the atom from its thermal equilibrium 
position, we have for the averaged potential 

(13)

The Fourier coefficients of the averaged potential is given by 

(14)
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in which V and Ω are the volume of the crystal and a unit cell respectively, is 
the Born atomic scattering amplitude [40] with s = g/4π , Ti (g) is the temperature
factor [41] of the ith atom, and the summation on i is over a unit cell. In Equation (14)
the Born atomic scattering amplitude is related to ϕ i (r) via the following relation: 

(15)

and for a harmonic crystal the temperature factor is given by 

(16)

Let a1 , a2, a3 be the real space lattice vectors and b1 , b2, b3 be the reciprocal space 
lattice vectors. We have then the following relations: 

In terms of these vectors a real space displacement vector u can be expressed as 

(17)

and a reciprocal space vector g as

(18)

giving

(19)

In matrix notation the above expression can be written as 

where G and X are 3 x 1 column vectors and their transpose are given by 

The temperature factor (16) then becomes 

(20)

in which the matrix β = 1/2( XXT) is a symmetric matrix 

(21)
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and is usually referred to as the mean-square displacement matrix. In X-ray crystallo-
graphy the general anisotropic vibration parameters are usually given as the elements
of a U matrix which are related to that of the β matrix by the following relation:

(22)

Explicitly the anisotropic temperature factor is given by

(23)

Experimentally Uij may be obtained by fitting quantitatively the calculated X-ray
beam intensities with the experimentally measured X-ray intensities using a general 
anisotropic temperature factor [42]. 

We now consider the first order correction to the average potential, i.e. V(1) . In real 
space representation, substituting Equations (11) and (13) into (10) gives [36] 

(24)

For thermal diffuse scattering since the energies of phonons are much smaller than 
the energy of the incident electrons, we may neglect Eα and H0 in (24). Neglecting 
the effect of virtual diffuse scattering [12] and using the high-energy approximation 
[43] we obtain 

(25)

where

(26)

where υ is the velocity of the electron. For isotropic thermal vibrations of the crystal
lattice we have 
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and therefore 

(27)

in which B = 8π2〈u2〉 is the usual Debye–Waller temperature B-factor of the atom.
Substitution of Equation (27) into Equation (26) gives 

(28)

and this is the Hall and Hirsch formula [26]. In real space we have 

(29)

and this expression clearly shows that V(1)(r) is a local potential, i.e. it depends only 
on one site coordinate r.

4. Tensor theory 

In this section we will discuss perturbation methods suitable for high-energy electron 
diffraction. For simplicity, in this section we will be concerned with only peri-
odic structures and a transmission diffraction geometry. In the context of electron 
diffraction theory, the perturbation method has been extensively used and developed. 
Applications have been made to take into account the effects of weak beams [44, 
45]; inelastic scattering [46]; higher-order Laue zone diffraction [47]; crystal struc-
ture determination [48] and crystal structure factors refinement [38, 49]. A formal 
mathematical expression for the first order partial derivatives of the scattering matrix 
has been derived by Speer et al. [50], and a formal second order perturbation theory 
has been developed by Peng [22, 34]. 

It is assumed from the outset that the crystal potential may be written as a sum of 
two parts: 

in which V0(r) is a known potential, hereafter we will refer to the structure giving rise 
to this potential as the reference structure. The second term in the above expression 
∆ V (r) is a small quantity which may be regarded as a perturbation on V0(r).

Considering only forward scattering by a crystal, the one-body Schrödinger wave 
equation may be transformed into a first order eigenequation [44, 51] 

(30)
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in which Sg = [K2 – (k + g)2]/2Kz is the usual excitation error measuring the 
distance between the reflection g and the Ewald sphere, K2 = + U0, Ug is the 

gth Fourier component of the crystal scattering potential field, γ (j) and { } are 
the eigenvalue and corresponding eigenvector of the jth Bloch wave, respectively. 

In matrix notation, Equation (30) can be rewritten as 

(31)

in which the matrices S and γ are diagonal matrices with 

(32)

and the elements of the matrices U and B are given by 

(33)

Similarly we may define a right-hand eigenvector satisfying 

(34)

and it can be easily shown that = = I, i.e.

When the interaction potential V 0(r) is subjected to a small variation ∆ V 0(r), both 
the eigenvalues and eigenvectors of the initial system change their values. If the per-
turbation is small enough, the changes in both the eigenvalues and eigenvectors may 
be obtained by the use of the perturbation theory. Following the standard procedures of 
quantum mechanics, the changes may be expressed in a tensor form [34], by analogy 
with the tensor theory of low-energy of electron diffraction [52] 

(35)

(36)

(37)

in which ∆ U = { ∆ Ug} and 

(38)

with

(39)
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and

(40)

(41)

(42)

The diffracted beam amplitude is given by 

(43)

At the entrance surface z = 0, the above expression gives Fg = δ g0, i.e. there exists 
only the incident beam above the crystal in the vacuum region. 

For given vectors and matrices u and ε , the calculation of the diffracted beam 
amplitude is an operation of the order of n(p + p2), where n is the number of Bloch 
waves having appreciable excitation amplitudes, and p is the number of varying crystal 
structure factors. As will be shown in the following section that for a typical zone 
axis incidence, the number of Bloch waves having appreciable excitation amplitude 
is usually less than 20. For simple cases, the number of fitting parameters is usually 
less than 30. This situation should be compared with the case of a full dynamical 
calculation scaling as O(N3), with N being the total number of beams involved. For a 
typical zone-axis incidence this number is usually larger than 100. For each calculation 
the tensor theory is therefore about 50 times more efficient than the full dynamical 
diffraction theory. For a typical numerical minimization routine, for example the NAG 
routine E04GBF using quasi-Newton algorithm [53], the number of multiplications 
performed per iteration of the routine is approximated pm2 + O(p3 ), m being the 
number of data points. For a refinement procedure involving 30 parameters the present 
scheme is therefore many thousand times faster than the standard procedure. In the 
following section we will be concerned with the validity of the present tensor theory, 
the computation of the tensor expressions, and its application to crystal structure 
factor refinement from energy-filtered experimental CBED patterns. 
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5. Results

Shown in Figure 1 is an energy-filtered experimental CBED pattern obtained from
a silicon sample and along the [110] zone axis, using a primary beam energy of
195.35 keV. The CBED pattern was obtained by focusing a convergent electron beam,
defined by a circular aperture, onto the specimen (for a detailed discussion of this
method of electron diffraction, see Spence and Zuo [37]). Each diffraction spot of
the conventional electron diffraction pattern is then spread into a circular disk, and
each point in the disk corresponds to a particular angle of incidence. The variation of
intensity across each disk represents the variation of the diffracted beam intensity as-
sociated with that disk as a function of the incident angle. A graphical representation of
this variation is called a rocking curve. CBED patterns are essentially two-dimensional
rocking curves from a very small illuminated area, which in the present study is of
the order of 1.4 nm. It is then reasonable to assume that the CBED pattern is obtained
from an area of uniform crystal thickness and orientation. The pattern obtained in this
way is therefore well defined, from an area free from crystal defects and from effects
due to bending, and is well suited for comparison with theoretical calculations.

Figure 1 shows, among other disks, the transmitted (000) disk, two (002) type
disks, and four (111) type disks. It should be pointed out that the (002) type reflec-
tions are kinematically forbidden, and the appearance of the (002) type disks in the 

Figure 1. Energy filtered experimental Si[110] zone axis CBED pattern. The pattern was obtained for a 
primary beam energy of 195.35 keV, an energy window of 10eV and an electron probe size of 1.4 nm, 
using a Philips CM200/FEG electron microscope. 

–
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experimental CBED pattern is mainly due to the multiple diffraction processes, for 
example via the scattering of (111) followed by (111). The raw experimental CBED 
pattern was recorded using a 1024 × 1024 slow-scan CCD camera. We have therefore
in a single CBED pattern more than one million data points available. Since the 
number of structural parameters for a single crystal of silicon is much smaller than 
the number of available data points, we choose to extract certain well-defined lines 
of data from the two-dimensional CBED pattern and for simplicity we will hereafter 
simply call these line scans CBED rocking curves. 

Shown in Figure 2 are calculated CBED rocking curves, corresponding to a line 
scan along [111] direction as shown in Figure 1. The first data point of Figure 2 
corresponds roughly to point A of Figure 1, the 98th data point to point B, 99th data 
point to point C and the 196th point to point D. This figure shows that the effect of the 
number of Bloch waves used in dynamical diffraction calculations on the calculated 
CBED rocking curves. 

All tensor expressions (35)–(42) involve summation over Bloch waves, i.e. sum- 
mation over j. For a dynamical diffraction calculation involving N beams, the number
of Bloch waves resulting from Equation (30) equals the number of beams, i.e. N. It
should be noted, however, that not all of these Bloch waves will be strongly excited 
within the crystal and contribute to the electron wave field. The excitation amplitudes 
of the Bloch waves in the crystal are given by Extensive numerical calculations 
show that in a typical dynamical diffraction calculation, although typically more than 

Figure 2. Calculated CBED rocking curves for Si[110], a primary beam energy of 193.35 keV and 
a crystal thickness of 369 nm. The three curves shown in the figure were calculated using 80 Bloch 
waves (circle+solid line) 20 Bloch waves (star solid line) and 5 Bloch waves (dotted line) and the curves 
correspond to the line of Figure 1 along A–D. 

– –

–
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100 beams are needed for a zone-axis incidence, only less than 30 most strongly
excited Bloch waves are required to achieve a convergent result for calculating the
diffracted beam amplitudes Fg . Shown in Figure 2 are three rocking curves calculated
using 5,20 and 80 most strongly excited Bloch waves. This figure shows clearly that
results obtained using 20 and 80 Bloch waves are indistinguishable, suggesting that
in the present case only about 20 Bloch waves have been excited in the crystal with
appreciable amplitude and have contributed to the electron wave field.

Among all the tensor components, the computation of the second order tensors 2ε 
and 2ε are most time consuming. According to the order of complexity, we may divide
our approximate theories as (1) first order or linear theory, using only the linear tensors, 
1 u, 1ε and 1ε for calculating the correction to both the eigenvalues and eigenvectors; 
(2) quasi-second order theory, treating the correction in eigenvalues using both the 
first and second order tensors and correction in eigenvector using only the first order 
tensor, i.e. 1ε and 1ε ; (3) full second order theory, using full tensor expressions for 
treating both corrections in eigenvalues and eigenvectors. Roughly speaking, both the 
linear theory and the quasi-second order theory are methods which scale as M, M 
being the number of strongly excited Bloch waves within the crystal. The full second 
order theory scales as M2. Shown in Figure 3 are five rocking curves calculated using 
the full dynamical theory (solid curve), using the full tensor expressions for both 
the eigenvalues and eigenvectors (circle and dotted line), using second order tensor 
expression for eigenvalue and first order expressions for eigenvectors (star and dotted 

Figure 3. Calculated CBED rocking curves within the (000) disk. The calculations were made for a 
Si[110] zone axis, a primary beam energy of 193.35 keV and a crystal thickness of 1000 nm. The curves 
shown in the figure correspond to the line scan A–B of Figure 1. 

-

-

-
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line), using first order expressions for both the eigenvalues and eigenvectors (dotted 
line). The reference structure is taken to be that composed of neutral atoms, and the 
perturbation be the difference between the (111) structure factors of a real single 
crystal of silicon and that of the reference structure. The crystal thickness used in the 
calculation was 1000 nm. It is seen that for this crystal thickness while the first order 
theory differs substantially from the exact solution, both the full second order tensor 
theory and the quasi- second order theory give excellent results over the whole range of 
incidence. In what follows we shall therefore use only the quasi-second order theory. 

In principle the validity of an approximate theory depends on the crystal thickness. 
The parameter most widely used for estimating the validity of the kinematical or a 
single diffraction theory is the distinction distance, see for example Hirsch et al. [46].
For an averaged interaction potential, the extinction distance is roughly proportional 
to the inverse of the potential. For a single crystal of silicon, the extinction distance is 
of the order of 50 nm, suggesting that for a crystal thickness comparable to that value 
multiple diffraction processes will begin to dominate the diffraction processes and a 
kinematical diffraction theory will no longer be valid. Since the charge redistribution 
or the formation of bonding in a real crystal introduces a change in the crystal structure 
factors which is typically less than 5% of the total crystal structure factors, one 
would expect that the corresponding extinction distance for the first order perturbation 
treatment of the bonding effect be about 20 times that due to the whole crystal potential, 
i.e. of the order of 20 × 50 nm = 1000 nm. For the second order tensor theory the
distance would be twice that value. We would then expect that the validity of the first 
order theory to be about one-third of the extinction distance, i.e. for the first order 
theory the validity is about 330 nm, and that for the second order theory 700 nm. 
Shown in Figures 4–6 are three sets of rocking curves for a crystal thickness of (a) 
250 nm (Figure 4); (b) 500 nm (Figure 5); and (c) 1000 nm (Figure 6). These figures 
clearly show that for a crystal thickness smaller than a few hundreds of angstroms, 
see for example Figure 4, both the first and second order theory works well. For a 
crystal thickness of larger than, say 500 nm, see Figure 5, only the second order theory 
provides an adequate description of the perturbation caused by the crystal bonding. 
Figure 6 shows that for a crystal thickness as large as 1000 nm the second order 
tensor theory remains accurate for describing the effect of bonding. Noticing that a 
typical crystal thickness used in CBED experiments lies from a few hundred to less 
than 5000 Å, we would expect the second order theory to provide a generally valid 
description of the bonding effect in real crystals. It should also be pointed out that the 
perturbation theory may also be used in combination with the method of iteration, i.e. 
a new reference structure which is closer to the true solution may always be defined as 
the solution return from the previous application of the tensor theory, and the accuracy 
of the solution may therefore be improved via iteration. 

One of the most important questions in quantitative electron diffraction work 
concerns whether or not the solution obtained is unique. It may be shown that in 
a general situation the solution obtained is not unique [54]. In the study of crystal 
bonding, however, since we have a fairly good starting point, i.e. the isolated atoms 
approximation of the crystal, we will show that the solution obtained from quantitative 
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Figure 4. Calculated CBED rocking curves within the (000) and the (111) disks in a Si[110] zone axis
CBED pattern. All curves shown in the figure were calculated for a crystal thickness of 250 nm, and a
primary beam energy of 196.35 keV., and correspond to the line scan A–B of Figure 1. 

electron diffraction is unique, with the only uncertainty being that due to the statistic 
noise always present in real experiments. 

The goodness-of-fit between the experimental and theoretically calculated CBED 
rocking curves is described by a merit function, and in the present study we use the 
chi-square merit function defined as 

(44)

in which denotes the variance of the kth experimental data point, Iexp and Ical

refer to experimental and calculated diffracted beam intensities respectively. The 
variance of the experimental data σ k may be estimated using experimentally measured 
values of detector quantum efficiency for different beam intensities i.e. Iexp see for 
example [23]. In a simple first order perturbation theory, the x2 function depends on 
the structural parameters, i.e. ∆ Ug, quadratically. Within the validity of the full tensor
theory, the dependence is quadrennial. In both cases a unique minimum exists in the 

–
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Figure 5. Calculated CBED rocking curves. This figure is essentially the same as Figure 4, except that 
all calculations were made for a crystal thickness of 500 nm. 

x2 surface, since the third order terms will affect only the degree of asymmetry of the 
x2 surface around its minimum and the fourth order term affect only the degree of 
peakedness or flatness of the x2 surface rather than introduce additional minimums. 
Shown in Figure 7 is a plot of the x2 function as a function of δ U111, i.e. variation in 
the {111} structure factors. The three curves are obtained using the full dynamical 
theory (circles) and making expansions using the quasi-tensor expressions around 

δ U111 = –0.0025 and –0.005 Å–1, respectively. The neutral atom approximation 
gives U111 = 0.050136 Å2. A variation of δ U111 = –0.0025 and –0.005 Å–1

therefore represent 5% and 10% variations in U111. It should be noted that both 
values are larger than that caused by the bonding effect in a single crystal of silicon. 
Figure 7 shows that for any variation in U111 of less than about 5%, the tensor theory 
will always be able to return a very accurate value of U111 giving rise to the unique 
minimum in the x2 surface. For a variation of up to 10% in U111, although the tensor 
theory cannot return accurate solution, the returned solution is nevertheless much 
closer to the true solution, and the solution may be taken to be the new starting point 
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Figure 6. Calculated CBED rocking curves. This figure is essentially the same as Figure 4, except that
all calculations were made for a crystal thickness of 1000 nm.

and a more accurate solution can be obtained by repeated applications of the tensor
theory.

Shown in Figure 8 is essentially the same plot as Figure 7, but one of the expan-
sions is made using the first order theory. This figure shows that although the first
order theory is not adequate for an accurate description of the x2 surface even for
a 5% variation around the true solution, the first order theory nevertheless results
in a solution which is closer to the true solution compared with its starting point
and that the method of iteration may be applied to improve the accuracy of
the solution.

Shown in Figure 9 are experimental CBED rocking curves extracted from Figure 1
along (a) [111] and (b) [002] directions, the corresponding fitted rocking curves
and the residual between the experimental and fitted rocking curves. The fitting was 
made using the quasi-second order tensor theory, using a primary beam energy of 
195.35 keV and a crystal thickness of 369 nm. It was found that for the present study no 
iteration is required, and the direct application of the quasi-second order theory returns 
a minimum x2 values of 1.4, which is very close to the ideal value of 1.0, suggesting 
that systematic errors introduced by other factors that have not been considered here 
have been minimized. 

–



Figure 7. One-dimensional plot of x2 as a function of δ U111. The three curves in the figure are exact 
plots (circle) calculated using the full dynamical theory and approximate expansions using the full tensor
theory around δ U111 = –0.005 Å–1 (solid line) and around δ U111 = –0.0025 Å–1 (cross and solid line)
respectively.

Figure 8. One dimensional plot of x2 as a function of δ U111. The three curves in the figure are exact plots 

calculated using full dynamical theory (circle) full tensor expansion around δ U111 = –0.0025 Å–1 (solid

line) and line tensor expansion around δ U111 = –0.0025 Å–1 (cross and solid line). 

165
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Figure 9. Energy-filtered experimental and fitted Si[110] CBED rocking curves for (a) a line 
scan along the [111] direction and (b) a line scan along the [002] direction (see Figure 1). 
The calculations were made for a primary beam energy of 195.35 keV and a crystal thickness of 
369 nm. 

6. Conclusion 

In summary, in this chapter we have presented methods of different complexity and 
therefore validity for describing the process of elastic and inelastic scattering of 
high-energy electrons in a solid. For the general description of the multiple scat-
tering events of both the elastically and inelastically scattered electrons, the kinetic 
equation should be used. When considering only the elastically scattered electrons, 
the general kinetic equation reduces to a one-body Schrödinger equation with the 
interaction potential being regarded as an effective optical potential. For accurate 
structure factor refinement or the measurement of the bonding effect in a crystal 
the tensor theory may be used and its accuracy may be improved by the method of 
iteration.

–
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‘Compton microscope effect’?: image of 
intra-unit-cell atom theoretically observed in 
compton B(r)-function

TEIJI KOBAYASI 
College of Medical Sciences, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan 

1. Introduction 

In the field of Compton scattering the real space function it B( r) for the electron 
system is defined by the Fourier inversion of the distribution function of electron 
momentum density (EMD) ρ (q) [1–8]: 

(1)

(2)

where Ω is the crystal volume. In the independent electron model, the EMD function 
for the spin-degenerating material is given by 

(3)

where Ψnk is the wave function of an electron with wave vector k in the nth occupied
band.

The B(r)-function was originally introduced as a mathematical intermediate in 
order to attain high accuracy in calculating EMD or Compton profile J(qz), which is
represented under the impulse approximation as [7, 9] 

(4)

As was pointed out previously [6, 8], in pseudo-potential (PP) approach to these 
quantities for valence electron systems of semiconducting materials Si and Ge, it is 
far more favorable to adopt the indirect derivation of EMD via B(r) based on Equation 
(1), not on Equation (3), both in treatment and in numerical accuracy. 

In the course of the PP calculations of these quantities for Si [10] and Ge [11], a 
characteristic local pattern which reflects position, shape and size of a specific atom 
in the crystal is observed on the contour map of the valence electron B(r)-function.
The atom is one of the two atoms in the unit cell of diamond structure. It seems as 
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if the B(r)-function works as a microscope to detect the structural information of the
intra-unit-cell atom in the crystal. The appearance of the atomic pattern has its origin
in the core-orthogonalization (CO) taken explicitly into our PP theory. 

In the PP theory, the valence electron wave function is composed of two parts. The 
main part is the pseudo-wave function describing a relatively smooth-varying behavior 
of the electron. The second part describes a spatially rapid oscillation of the valence 
electron near the atomic core. This atomic-electron-like behavior is due to the fact 
that, passing the vicinity of an atom, the valence electron recalls its native outermost 
atomic orbitals under a relatively stronger atomic potential near the core. Quantum 
mechanically the situation corresponds to the fact that the valence electronic state 
should be orthogonal to the inner-core electronic states. The second part describes 
this CO. The CO terms explicitly contain the information of atomic position and 
atomic core orbitals. 

The purposes of this paper are to discuss the CO effect on the B(r)-function and to 
show that the appearance of the atom-like image can be explained by using the fact that 
the B(r)-function can be described in terms of the autocorrelation function among the 
electron wave functions over the occupied electronic states. Autocorrelative overlap 
between the CO terms explicitly containing the atomic information has a possibility to 
enhance a specific atom on the B(r)-function map. The overlap explains why images 
of the other distant atoms are not pronounced. 

2. Method of calculation 

In the PP framework, the valence electron wave function Ψ ck orthogonalized to the
inner core electron wave function Ψ ck’s is given by [12] 

(5)

where Φ nk is the pseudo-part of the valence electron wave function, Ψck the wave
function of the cth core electronic state and Nnk the normalization constant. We 
assume that Ψck can be well described by the Bloch sum of the ionic core orbitals φc

under the tight-binding-limit approximation as 

(6)

where Rm is the primitive translational vector pointing the mth unit cell in the crystal, 
tj the non-primitive one within the unit cell with s atoms (s = 2 for Si and Ge), and N
the total number of unit cells. We introduce plane wave expansions of Φ nk and Ψ ck:

(7)

(8)
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where G is the reciprocal lattice vector, and 

(9)

(10)

(11)

where Ω 0 is the unit cell volume. Substitution of Equations (7) and (8) into Equation (5) 
yields

(12)

(13)

Substituting Equation (12) into Equation (3) and its result into Equation (2), we will 
obtain the key expression for B(r)-function as follows: 

(14)

Contribution of the CO terms is defined by 

(15)

where Bpseudo(r) is the B(r)-function of the pseudo-valence electron system described 
by the pseudo-wave function with no CO terms. 

In order to visualize B(r) on a contour map, let us expand it in terms of the cubic 
harmonics as follows [5, 10, 11, 13, 14]: 

(16)

where are the l(angular momentum)th order cubic harmonics and i distinguishes
the different independent harmonics with the same l. For the diamond structure, we 
need the harmonics belonging to the Γ 1-representation of the O h group symmetry. 
The term of l = 0 in Equation (16) describes the spherically symmetric behavior in 
B(r) and the terms with non-zero l describe its anisotropy. The expansion coefficient 
functions Bli (r) are given by [11] 

(17)
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where jl is the lth order spherical Bessel function. The EMD can be constructed by 
using the corresponding expansion coefficients given by 

(18)

3. Numerical calculations 

The wave function coefficients ( G)’s have been solved under the 3L + NL( d)
type non-local pps of Heine–Abarenkov form [15]. The potential parameters used
for Si are VL(3) = –0.20532, V L(8) = 0.03548, VL(11) = 0.07239, A2(Si4+) =
–2.0773 in units of Ry and R2(Si4+) = 1.25 a.u. and, for Ge, VL(3) = –0.24220, 
VL(8) = 0.02548, VL(11) = 0.05264, A2(Ge4+) = 167.53 in units of Ry and 
R2(Ge4+) = 0.98 a.u. The Chadi–Cohen's 10-special-point scheme is adopted for 
making k-meshes [16]. It contains 256 k-points in the first Brillouin zone. All plane 
waves with the reciprocal lattice vector G satisfying | k + G|2 – k ≤ 20(2p/a)2 are
taken into the expansion of Φnk where a is the lattice constant, which are
10.26327 a.u. (Si) and 10.6772 a.u. (Ge). The corresponding vector set includes 137 
reciprocal lattice vectors. The core electronic states for Si are originated from the 
1s, 2s, 2p ionic states and, for Ge, from the 1s, 2s, 2p, 3s, 3p and 3d states. The 
Roothaan–Hartree–Fock wave functions are used for the ionic core electron orbitals 
[17]. Because the core orbitals are highly localized, a set of reciprocal lattice vectors 
for their Fourier components was forced to include all of the 4621 reciprocal lattice 
vectors up to the very large shell of the (13,7,7) (2π/a) group.

In the cubic harmonics expansion of B(r), a full convergence has been attained by 
inclusion of 1 ≤ 22 in which the first 16 harmonics belonging to the Γ 1 -representation
are contained [ l = 0, 4, 6, 8, 10, 12 ( i = 1, 2), 14, 16 ( i = 1, 2), 18 ( i = 1, 2), 
20 ( i = 1, 2) and 22 ( i = 1, 2)]. 

Contour map calculations in the three-dimensional zone of r are concentrated on the 
(110) plane containing the five fundamental directions of [001], [112], [111], [221] 
and [110] shown in Figure 1. The cube shown in Figure 1 has 4 times the volume of 
the unit cell containing two atoms. The intra-unit-cell atoms are, for example, atoms 
A and B in Figure 1, with the bond length of 

4. Results 

Figure 2 represents the contour behavior of B(r) of Si and its variation along the [111] 
direction of bond. In Figure 2(a) the whole B(r) including the spherically symmetric 
component is shown and in Figure 2(b) the anisotropic part. The distant parameter 
r is in units of a. The contour spacings are 0.1 in (a) and 0.01 in (b) in units of 
2/ Ω 0, respectively. Figure 2(c) shows the variation of B(r) along the [111] direction 
and Figure 2(d) of the anisotropic part. Figure 3 represents the corresponding results 
for Ge. 



Figure 1. The atomic configuration of the diamond structure and the five directions in the (110) plane. 

Figure 2. (a) and (b): Contour map of B(r ) of Si on the (110) plane. (a) Total B(r) and (b) its anisotropic 
part. (c) and (d): Variation along the [111] direction. (c) Total B( r ) and (d) its anisotropic part. Arrow 
indicates a local pattern around the point (1, 1, 1) a/4.
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Figure 3. (a) and (b): Contour map of B(r ) of Ge on the (110) plane. (a) Total B(r) and (b) its anisotropic 
part. (c) and (d): Variation along the [111] direction. (c) Total B(r) and (d) its anisotropic part. Arrow 
indicates a local pattern around the point (1, 1, 1) a/4.

The CO contribution ∆ B (r ) of Si is shown in Figure 4. In Figure 4(a) the contour 
map of the whole ∆ B (r ) is drawn and, in Figure 4(b) the anisotropic part. The contour 
spacing is 0.005. The variation along the [111] direction of the whole B(r) is shown 
in Figure 4(c) and the anisotropic part is in Figure 4(d). Figure 5 represents the 
corresponding results for Ge. 

Characteristic local pattern is indicated by an arrow in Figures 2–5. The pattern is 
discussed in the next section. 

5. Discussions 

As can be seen from Figure 2(a) for Si and Figure 3(a) for Ge, the B(r)-function
has a large spherically symmetric part around r = (0, 0,0) a and it sharply damps 
outward. Anisotropic behavior of B(r) is well observed in Figures 2(b) and 3(b). We 
notice a local pattern of contour lines around the point at r = (1, 1, 1) a/4 in the [111] 
direction. The pattern is arrowed in Figure 2(b), (d) and Figure 3(b), (d). If we put 
the atom A on r = (0, 0, 0) a, the atom B is on r = (1, 1, 1) a/4 by the bond length 

(= 0.4330 a) apart. The local pattern is enhanced on the contour maps of 
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Figure 4. (a) and (b): Contour map of the CO contribution ∆ B(r) of Si. (a) Total ∆ B(r) and (b) its 
anisotropic part. (c) and (d): Variation along the [111] direction. (c) Total ∆ B (r) and (d) its anisotropic 
part. The local pattern in Figure 2 becomes clear as a contour-circle centered on the point (1. 1, 1) a/4.

the CO contribution ∆ B (r). As the arrow indicates in Figure 4(a), (b) and Figure 5(a), 
(b), the pattern appears clearly as a small circle centered on the point (1, 1, 1) a/4.
In Figures 4(d) and 5(d) it shows a sharp peak at r = 0.433 a. The radius of the 
circle is roughly equal to 0.1 a , which is nearly equal to the physical core radius Rc.
Examples of Rc are 0.41Å = 0.076 a for Si4+ and 0.53Å = 0.094 a for Ge4+ [18].
From these observations it can be concluded that we observe a kind of image of one 
of the intra-unit-cell atoms as the weak but characteristic local pattern in ∆ B(r) or in 
B(r) . The position, size and shape of the atom are well reproduced quantitatively in 
∆ B(r). It seems as if the Compton scattering had a microscope effect for detecting a 
local structure through a process of J( qz)’s → ρ (q) → B(r ), ∆ B(r).

The microscope effect can be explained by using the fact that the B(r)-function is
equivalently described in terms of the autocorrelation function of the valence electron 
wave functions as follows [7]: 

(19)

For the sake of simplicity, we consider an example of a one-dimensional periodic 
system of length L with N atoms with one core electronic state per atom. The inter-
atom space is a. The pseudo-valence electron is assumed to be in a single plane wave 
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Figure 5. (a) and (b): Contour map of the CO contribution ∆ B(r) of Ge. (a) Total ∆ B(r) and (b) its 
anisotropic part. (c) and (d): Variation along the [111] direction. (c) Total ∆ B(r) and (d) its anisotropic 
part. The local pattern in Figure 3 becomes clear as a contour-circle centered on the point (1, 1, 1) a/4.

state. The orthogonalized wave function is 

(20)

where φ is a core orbital function satisfying 

(21)

Here, Rm = ma is the mth atom position, and 

(22)

(normalization constant). (23) 

The x-integration is taken over the length L.
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Substituting Equation (20) into the B(x) of the one-dimensional system, we obtain

(24)

At x = 0, B(0) is equal to the uniform density of electrons. The first term of the right 
hand side makes a bulk peak around x = 0. It sharply damps outside, because the 
k-integration over the occupied states is similar in structure to the following damping 
oscillation function: 

(25)

The second term in the right hand side of Equation (24) comes from the autocorrelation 
containing the CO terms and is of higher order contribution. At the atom position 
x = Rn, it gives the contribution of 2 Σ k exp(ikR n)/L to B(x). Due to the 
k-integration, it damps rapidly as x increases. The largest value of the second term at 
x = 0 is absorbed into the value of the first term at x = 0 to reproduce the uniform 
density of electrons [= 2 /L = B(0)]. As a result, the CO contribution is 
marked only on the nearest neighbor atom, reflecting its shape and size through the 
core orbital φ . These facts explain why the atom-like pattern appears and why it is 
limited on the atom sites close to the origin. If the unit cell contains s atoms, the 
δ -function in Equation (24) is replaced by l/s exp[ ik(ti –
In this case, therefore, the most pronounced atom-like image can be observed at the 
position of the shortest distance among the intra-unit-cell atom–atom distances. 

Experimentally, the EMD function ρ (q) can be reconstructed from a set of Compton 
profiles J(qz )’s, and B(r) from theEMD. However, ∆ B(r) is not a direct experimental
product. By combining the experimental B(r) with theoretical Bpseudo (r), we need 
to derive a semiexperimental ∆ B(r). Since the atomic image is very weak, many 
problems must be cleared in experimental resolution, in reconstruction (for example, 
selection of a set of directions and range of qz’s ), in various deconvolution procedures 
and so on. First of all, high resolution experiments are desirable. 

The effect can be applied, for example, to estimate a bond length or atomic spacing, 
to observe valence electron spin distribution around a specific atom and to derive 
information of the nearest neighbor atom distribution in a disordered system such as 
amorphous, under an expansion of the theory. 
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New light on electron correlation in simple metals: 
inelastic X-ray scattering results vs. current theoretical 
treatment

A. KAPROLAT, K. HÖPPNER, CH. STERNEMANN and W. SCHÜLKE 
University ofDortmund, Institute of Physics, Otto Hahn Straβ e 4, D-44221 Dortmund, Germany

1. Introduction 

In this contribution we will deal with electron-electron correlation in solids and how 
to learn about these by means of inelastic X-ray scattering both in the regime of small 
and large momentum transfer. We will compare the predictions of simple models 
(free electron gas, jellium model) and more sophisticated ones (calculations using 
the self-energy influenced spectral weight function) to experimental results. In a last 
step, lattice effects will be included in the theoretical treatment. 

In Section 2 we will present a short overview of the theoretical approach widely 
used to describe inelastic X-ray scattering results at low momentum transfer ( q ≤ 
1 a.u.), leading to the dynamical structure factor S(q, ω ). Section 3 will confront 
these theoretical descriptions to experimental measurements of S(q, ω ) for Li and 
liquid Al. In Section 4 we will extend the theoretical treatment to large momentum 
transfers, leading to the so-called Compton profile J(pz) of the solid using the impulse 
approximation. Section 5 then again confronts this approach to high- and ultra-high
resolved Compton measurements on Li. 

2. Inelastic X-ray scattering at low momentum transfer 

The principal geometry of an inelastic X-ray scattering experiment is outlined in 
Figure 1. The experimental outcome of this kind of experiment, the so-called double 
differential cross section d 2σ /dω 2 dΩ is defined as the flux of X-ray photons scat-
tered into an energy interval [ hω 2, hω 2 + h dω 2] and a certain interval of solid angle 
[Ω , Ω + d Ω ], defined by the special experimental arrangement. During the scattering 
process, the photon wave vector changes from k1 to k2 and its energy from hω 1 to
hω 2. If one neglects resonant and magnetic contributions and calculates up to the 
first-order perturbation theory, this quantity is directly proportional to the dynamical 
structure factor S(q, ω ), where hq = hk2 – hk1 and hω = hω 2 –  hω 1 are momentum
and energy transferred to the scattering system, respectively. S(q, ω ) can be expressed 
in terms of the Fourier transform in time of the two-particle correlation function [1]: 

(1)
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Figure 1. Principal geometry. 

rj’(0) and rj(t) being the position in space of electron j’ at time t = 0 and of 
electron j at time t. One can clearly see that S(q, ω ) contains in a somewhat integral 
way information about all possible electron–electron correlations, as it connects the 
scattering phases of electrons at different points in space and time. Via the fluc-
tuation dissipation theorem, S(q, ω ) is often expressed in terms of the dielectric 
response function ε –1(q, ω ) which gives the modification of an external applied 
electric potential Φ ex t(q, ω ) by the electron gas of the solid: 

(2)

(3)

ε –1 (q, ω ) is connected to the polarizability χ (q, ω ) in the way shown in Equation (3). 
Let us turn to the most simple model case, the jellium model, in which the electrons 
are assumed to be free particles, moving embedded in a positive uniform charge 
background, obeying only Pauli’s principle but not showing any electron–electron 
interactions. For this case of a non-interacting electron gas, the dielectric response 
function is given by 

(4)

revealing the density of states of possible electron-hole pairs. 
Interaction of the electrons in the framework of the self-consistent field approxima-

tion is accounted for by considering the induced density fluctuations as a response of 
independent particles to Φ ext + Φ int via Poissons equation [2]. This means, physically, 
that collective excitations of the electrons can occur, taken into account via a chain of 
electron-hole excitations. These collective excitations show up in S(q, ω ) as a distinct 
energy loss feature. Figure 2 shows the shape of the real and imaginary parts of the 
dielectric function in RPA ( ε r(q, ω ), ε i(q, ω )) and the resulting dielectric response 
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Figure 2. Dielectric function in RPA. 

function [3]: 

(5)

One can clearly see, that for small q, a strong peak in S(q, ω ) dominates, where 
ε r and ε i are close to zero, thus indicating the independent collective correlation of 
the electrons. For increasing q , ε i gets broader and S(q, ω ) reveals the spectrum of 
possible electron–hole excitations. 

The next step to include electron–electron correlation more precisely historically 
was the introduction of the (somewhat misleading) so-called local- field correction fac-
tor g(q), accounting for statically screening of the Coulomb interaction by modifying 
the polarizability [4]: 

(6)

There exist quite a lot of different approaches to calculate the shape of g(q) with 
largely varying results [4–8] (Figure 3).

As will be shown in Section 3, inelastic X-ray scattering experiments can help to 
decide which theoretical approach is appropriate. One must keep in mind that this 
static correction is far from an appropriate description of electron correlations. A 
more accurate way is to account for dynamical screening by writing χ (q, ω ) in terms 
of the one-particle Greens function G(p, ε ) corrected for many-particle effects by a 
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Figure 3. Local-field correction factor calculations. 

vertex function Λ [9]:

(7)

This expression usually is rewritten as a geometrical series in an irreducible particle-
hole interaction: 

(8)

which of course is rather complicated to compute. Equation (8) can nevertheless be 
used to get an expression for χ SC that accounts for self-energy effects in the so-called 
off-shell way, by again replacing the full particle–hole interaction by the statically 
screened Coulomb interaction (4πe2/q2)g(q) and obtaining [10]:

(9)
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with

(10)

Using the connection between G(p, ε ) and the spectral density function A( p , ε ),

(11)

leads to 

(12)

that is, the convolution of the spectral density function A for ground state and excited 
state. A (p, E) expresses the probability for the system to be in a state with energy
E above ground state right after injection of an electron (analogous for injection of 
holes).

The improvement compared to the representation of Equation (6) is, that self-energy 
effects are included via the influence of the self-energy Σ on A :

(13)

Figure 4 shows the result of a calculation of A (p, E) by Lundquist [11]. From Equa-
tion (13) it is clear that prominent structures in A (p, E) arise, when Re Σ approaches
the value E – being the energy of a free particle, while Im Σ is nearly zero. 
So, for large p, A will exhibit a peak following the quasi-particle dispersion and
broadened by approximately one half of the plasmon energy, whereas for small p
two prominent peaks are to be seen: one is the quasi-particle excitation, the other is 
attributed to the excitation of a so-called plasmaron, the latter holding approximately 
one-third of the total spectral weight. 

In a last step of this section, the on-shell approximation shall be applied to 
Equation (12) by replacing 

and setting the real part of Σ (p, E) equal to zero, its imaginary part to Γ p , the inverse
lifetime of the excited particle–hole pair. This leads to the following expression for χ :

(14)
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Figure 4. A (p, E) after Lundquist [11].

This is nothing but the imaginary part of the Lindhard-polarizability χ 0, but with 
finite O+ that now is given by the imaginary part of the self-energy, revealing the 
lifetime of the excited state. 

To sum up this section, electron–electron correlations can to a first approximation, 
be included into the response function by introducing a static local-field correction 
factor modifying the Lindhard or RPA dielectric function, accounting only for stat-
ically screened Coulomb interaction. Including self- energy effects on-shell leads to 
the inclusion of lifetime effects as well. The more sophisticated way to use the one-
particle Greens function together with the irreducible particle–hole interaction turns 
out to be too complicated to compute. Accounting again only for static Coulomb 
interaction leads to the off-shell representation of χ as the convolution of the spectral 
density function for ground and excited state, which in turn contains the self-energy.
It should be mentioned that the latter approach should, in principle, be physically 
more significant when compared to accounting only for statically screened Coulomb 
interaction.

3. Inelastic X-ray scattering experiments on lithium and liquid aluminum 

The typical experimental setup (here the experiment established at beamline G3/ 
HASYLAB [12] is shown) is outlined in Figure 5. The white synchrotron radiation is 
monochromatized by a double crystal monochromator using the Ge (311) reflection 
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Figure 5. Experimental setup 

in (+/–) setting to a primary energy of ≈ 8keV. This primary radiation is scattered 
under a certain angle Θ that defines Ω and therefore the momentum transfer q and
energy analyzed using a spherically bent analyzer in nearly backscattering geometry. 
Measurement of a spectrum is performed in inverse geometry, that is, by varying the 
primary energy and keeping the analyzer at a constant angle. 

A simple metal like lithium or aluminum should best reveal the properties of the 
jellium model. To be sure, all long range order influence has been switched off, 
we measured S(q, ω ) of liquid A1 ( T = 1000 K). Figure 6 shows the result of a 
measurement for | q | = 1.5 a.u. together with theoretical calculations. 

The solid points show the experimental result, the long dashed line the calculation 
of a g(q)-modified Lindhard response function according to Equation (6), using g(q)
after Utsumi and Ichimaru [5]. The solid line gives the result of a calculation that also 
takes into account self-energy effects on-shell, that is, introducing the lifetime of the 
involved states into the calculation according to Equation (14). One can clearly see 
that the latter reproduces the experimental result quite nicely. 

Quite surprisingly, the off-shell method of accounting for self-energy effects using 
the spectral density function A( p, E) according to Equation (12) given by the short 
dashed curve in Figure 6 is far off the experimental values, although this method 
should be of greater physical significance. We believe that a possible reason for this 
failure is the neglect of the vertex correction function together with a cancellation of 
off-shell self-energy effects and the vertex correction. 

To make this point clear, one has to look at the involved effects using diagram 
techniques. Self-energy effects, that is the deformation of the electron cloud around 
a single electron which then reacts back on this electron, can be divided into two 
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Figure 6. S(q, ω ) experiment on A1 vs. theoretical calculations, for details see text. 

principally different groups. The first type of process is described by the creation of a 
hole and a plasmon during the interaction process (Figure 7, upper left). In this case, 
the lifetime of the intermediate state is not restricted and therefore on-shell. The other 
type of self-energy process involves the emission of a plasmon, which reacts back on 
the emitting electron (Figure 7, upper right). For this kind of process, the lifetime of 
the intermediate process must be smaller than the lifetime of the original electron-
hole pair and therefore off-shell. The vertex correction on the other hand consists of 
processes in which electron and hole exchange a plasmon directly (Figure 7, lower 
part). One clearly sees that off-shell self-energy processes and dynamical vertex cancel 
because for the first one a plasmon acts on an electron, for the latter, the plasmon 
acts on a hole so that they interfere destructively. Neglect of vertex correction while 
accounting for off-shell self-energy processes must then lead to a considerable error. 
As dynamical vertex and off-shell self-energy effects cancel, taking into account a 
statically screened Coulomb interaction via the local-field factor together with the 
self-energy on-shell will be appropriate to describe the experimental results as can be 
seen from Figure 6. 

As was mentioned in Section 2, there exists a variety of different theoretical 
approaches to calculate the local field factor g(q). Following Farid et al. [7], the 
behavior of g(q) for large q is connected to the size z of the step in the occupation 
number function n(k) fork = kF, kF being the Fermi-momentum (see Figure 8). This 
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Figure 7. Cancellation of off-shell self-energy processes and dynamical vertex. 

Figure 8. Occupation number function for correlated electrons. 

quantity z is strongly determined by electron-electron correlation, so experimental 
evidence about the exact behavior of g(q) would be highly desirable. 

Fortunately, inelastic X-ray scattering can provide a means of determining semi- 
empirically g(q) from S(q, ω ) measurements of simple metals. The application of 
g(q) to χ 0 according to Equation (6) tends to shift χ 0 on the energy loss scale to 
lower energy losses. 
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Figure 9. S(q, ω ) and local-field corrected of χ 0 Li.

Figure 10. g(q) for different z [7] compared to the experimental findings. 
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This can be seen from Figure 9 showing experimental S(q, ω ) (points) of Li for 
two different values of q together with (a) the pure Lindhard response function χ 0
calculated for the Li parameters (short dashed line), and (b) a g(q)-modified calcula-
tion according to Equation (6) using the g(q)-value of Utsumi and Ichimaru [5] (long 
dashed line). It can be seen how the application of this local field correction shifts 
χ 0 toward the correct position but it is obvious that this correction is not sufficient 
to reproduce the experimental findings. Using now the g(q)-value as a parameter, 
one can determine g(q) for different q simply by fitting the local field corrected χ 0
to the experimental data. This procedure is described in more detail elsewhere [13]. 
Figure 9 shows the obtained local field corrected χ using the optimum g(q) values 
in small points, showing remarkable agreement with the experimental data. 

To determine the behavior of g(q) for large q, we performed measurements of 
S(q, ω ) of Li for 1.1 a.u. < q < 2.6 a.u. and performed for each spectrum a fit of the 
g(q)-modified c0 to the experimental data. Figure 10 shows the result of this semi-
empirical determination of g(q) together with the shape of the local-field correction 
factor after Farid et al. [7] calculated for different values of z: solid line ( z = 0.1), 
dashed line (z = 0.5) and dash-dotted line (z = 0.7). One clearly sees that the curve
for the surprisingly small value of z = 0.1 fits our experimental findings best. 

4. Inelastic X-ray scattering with high momentum transfer 

If the geometrical parameters of an inelastic scattering experiment are set up in a 
way that large momenta are transferred to the sample (that is, a large scattering angle 
is chosen) and the amount of energy transfer is large compared to characteristic 
energies of the valence electrons, the so-called impulse approximation [14] can be 
applied when calculating the double differential cross section. One assumes that the 
scattering process happens so fast due to the large energy transfer, that the electrons 
do not rearrange during the process, the interaction potential remains constant and 
therefore the information about the scattering system is restricted to ground state 
information. Detailed calculation leads to the connection of the double differential 
cross section to the so-called Compton profile J(pz) via 

(15)

the Compton profile being the projection of the momentum space density ρ (p) of the 
electrons on the direction of the momentum transfer q.

So, by measuring J(pz) for a variety of different q-directions, one can, in principle, 
reconstruct in three-dimension the momentum space density. 

Application of the formalism of the impulse approximation to the double differ-
ential cross section in terms of the dielectric response (Equation 12), that is, using 
free-electron-like final states E = |p+q|2/2m in the calculation of A (p+q, E +hω )
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yields

(16)

which is nothing but the Compton profile in the jellium model, convoluted with 
A(p + q, E + hω ). It should be noted that this creates a principal limitation for the 
momentum space resolution that can be achieved in ultra-high resolved Compton 
experiments due to the finite width of A( p + q, E + hω ) (see Section 2). One can 
connect the information contained in Compton profiles to the occupation number 
function n(k) [15, 16] via the reciprocal form factor B(z) [17–19] which is the Fourier 
transform of a Compton profile 

(17)

n(k) for metals is then given as a series in B(R), R being a lattice translation vector: 

band index. (18) 

Figure 11 shows the influence of correlation and lattice effects on the shape of n (k)
for the case of lithium. The short dashed line shows n(k) according to the jellium 
model with no electron–electron interaction included. Inclusion of correlation effects 
can be described using a model-n(k):

(19)

where a is determined by the normalization condition

(20)

This yields the long dashed curve for a step of z = 0.7. In triangles, circles and 
squares, GWA-calculations by Kubo [20] for different directions are given. One can 
see a dependence of n(k) of the direction of k and, as was seen from IXSS experiments 
already, that the calculated step tends to be smaller than 0.3. Given as a solid line is 
a model-n(k) for z = 0.1 for comparison. 
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Figure 11. Calculations of n(k).

5. Compton scattering from lithium 

To provide experimental information about n(k) from Compton profile measurements, 
we performed Compton measurements on Li using an experimental setup described 
elsewhere [21]. The momentum space resolution obtained was ∆ Pz = 0.12a.u., 
11 different directions of q were measured. From the obtained profiles we calculated 
their Fourier transforms and took from these the B(R)-values, given by triangles in 
Figure 12. 

For comparison, the results of the GWA-calculation [20] are plotted in squares. We 
fitted the model-n(k)-based B(r) according to Equations (19) and (18) using the step 
as fit parameter and got a remarkable agreement of the so calculated B(r)-function
with the experimental values B(R) again for the small value z = 0.1. 

To get more direct experimental information about a correlation induced smearing 
of the step z in n(k), we performed ultra-high resolved Compton profile measure-
ments, using the standard IXSS as in Figure 5, choosing a large scattering angle. These 
experiments are of a preliminary nature and up to now suffer from poor statistics. We 
achieved an energy resolution of ∆ E < 2 eV yielding a momentum space resolution 
of ∆ pz < 0.02 a.u. Figure 13 shows a typical raw spectrum. 

A smearing of n(k) at k = kF should influence the Compton profile in the fol-
lowing way: at the Fermi-break, the Compton profile should change slope abruptly, 
changing from the narrow valence electron profile into the much broader profile of 
the core electrons, if the electrons are modelled as being free without correlation. As 
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Figure 12. B(r)-calculations, B(R) from experiment (for Li). 

Figure 13. Typical raw spectrum of ultra-high resolved Compton experiments on Li. 
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correlation effects begin to smear out the abrupt change in n(k), also this transition in 
slope from valence to core profile becomes less distinct, which can be seen directly 
from the second derivative of the Compton profile. 

We find the second derivative of the Compton profile for q || (111), (100) to be 
broadened beyond the experimental resolution with an additional ∆E ≈ 5eV which
is due to the convolution with A( k + q, E +hω ), as described in the previous section. 
For q || (110), we find an additional broadening of the second derivative of the order 
of some eV which we ascribe to lattice effects on the electron correlation, predicted 
by the GWA-calculation.

6. Conclusion 

To conclude, we have demonstrated how inelastic X-ray scattering experiments, both 
for small and large momentum transfer, can provide information about electron-
electron correlation and lattice effects on correlation. 

We have shown for the case of Li that the step in the occupation number function 
is surprisingly small: z ≈ 0.1 and provided semi-empirically obtained values for the 
local-field correction factor. For the case of Al, we showed the additional cancellation 
of self-energy and vertex correction. 

Furthermore, we showed for the first time the principal possibility of obtaining 
the correlation induced smearing of the occupation number function from ultra-high
resolved Compton spectra and presented the first test experiments on Li. 

References

1. van Hove, L. (1954) Phys. Rev., 95, 249.
2. Pines, D. and Nozieres, P. (1966) The Theory of Quantum Liquids, Vol. 1, Benjamin, New York, 

3. Lindhard, J. (1954) Matematisk-Fysiske Meddelelser, 28, 8.
4. Hubbard, J. (1958) Proc. Roy. Soc. A, 243, 336.
5. Utsumi, K., Ichimaru, S. (1980) Phys. Rev. B,22, 5203.
6. Kleinman, L. (1967) Phys. Rev ., 160, 585.
7. Farid, B., Heine, V., Engel, G.E. and Robertson, I.J. (1993) Phys. Rev. B,48, 11602.
8. Singwi, K.S., Tosi, M.P. and Land, R.H. (1970) Phys. Rev. B, 1, 1044.
9. Awa, K., Yasukara, H. and Asahi, T. (1981) Solid State Comm., 38, 1285.

10. Green, F., Neihon, D. and Szymanski, J. (1987) Phys. Rev. B, 35, 124.
11. Lundquist, B.I. (1968) Phys. kond. Materie, 7, 117.
12. Berthold, A., Mourikis, S., Schmitz, J.R., Schülke, W. and Schulte-Schrepping, H. (1992) Nucl.

13. Schülke, W., Höppner, K. and Kaprolat, A. (1996) Phys. Rev. B,54, 17464.
14. Eisenberger, P. and Platzman, P.M. Phys. Rev. A , 2, 415.
15. Schülke, W. (1977) Phys. Stat. Sol. B, 80, K67.
16. Schülke, W. (1978) Jap. J. Appl. Phys., 17, 332.
17. Schülke, W. (1977) Phys. Stat. Sol. B, 82, 229.
18. Pattison, P., Weyrich, W. and Williams, B.G. (1977) Solid State Comm., 21, 967.
19. Weyrich, W., Pattison, P. and Williams, B.G. (1979) Chem. Phys., 41, 271.
20. Kubo, Y. (1997) J. Phys. Soc. Jpn., 66, 8.
21. Schülke, W., Stutz, G., Wohlert, G. and Kaprolat, A. (1996) Phys. Rev. B, 45, 14381.

Amsterdam.

Instrum. Meth. A, 317, 373.



This page intentionally left blank.



12

The measurement of spectral momentum densities of 
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1. Introduction 

Electron momentum spectroscopy (EMS) or (e, 2e) spectroscopy is based on kinemat- 
ically complete measurements of high energy electron impact ionisation of a suitable 
target material, which may be atoms or molecules in the gaseous state or condensed 
matter. Electrons of well-defined energy and momentum E0 and k0 are directed onto 
the target material, and the energies and momenta of the two emitted (scattered and 
ejected) electrons are measured [1–3]. The kinematics are chosen to be that for free 
electron–electron collisions (allowing for the relatively small binding energy of the 
target electron [1]), or as it is commonly expressed, Bethe-ridge kinematics. In order to 
ensure a clean knockout of the struck electron the kinematics is also chosen to involve 
a large momentum transfer K from the incident electron to the ejected electron. These 
are the conditions for clean binary (e, 2e) collisions or EMS, where for an N electron
target the N – 1 electrons not observed can, to a good approximation, be treated as 
‘spectators’.

In general, one energy and angle analyser, denoted by f, detects emitted electrons 
that are faster than those detected in the other analyser, denoted by s. (Due to the 
indistinguishability of electrons it does not matter which is the ‘scattered’ electron 
or indeed whether their energies are equal, as is the case in ‘symmetric’ kinematics.) 
To ensure that the two detected electrons come from the same event, fast timing 
techniques are used [1, 2]. 

For each pair of detected electrons the binding energy ω and ion recoil momentum 
p are recorded. In a clean knockout, the recoil momentum p = – k, where k is the 
momentum of the bound electron when it is struck. Thus from energy and momentum 
conservation

(1)

and

(2)

At high enough energies the free electrons can be described by plane waves, and 

(3)

the differential cross section is given by [2] 
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where C is a constant depending on the energies of the electrons, fee is the electron-
electron collision factor which is also essentially constant in EMS kinematics [2], 

and are the electronic final ionic and initial (usually ground) states, and the 
operator ak annihilates an electron of energy momentum k in the initial many-body
target state Σ av indicates a sum over final-state and average over initial-state
degeneracies. For a non-oriented molecular or atomic target this means that differential 
cross section must be averaged over the solid angle k, i.e. spherically averaged. In 
addition if vibrational states are not resolved, the average over vibrations can be very 
well approximated by taking the initial and final states to those corresponding to the 
initial-state equilibrium positions [2]. 

We can consider EMS to be a direct probe for the energy–momentum spectral 
density function 

(4)

For atoms and molecules it is usual to make the weak coupling expansion for the one 
electron target-ion overlap amplitude [1, 2]: 

(5)

where is a one-hole state formed by annihilating an electron from the ‘orbital’ i in
the target state. One can define the experimental orbital ψ i (k) (the Dyson orbital) by 

(6)

The differential cross section is then proportional to the spectroscopic factor 
(or pole strength): 

(7)

which is the probability that the final ion state contains the one-hole state 
Thus the spectroscopic factors give the intensities of the transitions (main and 
satellite lines) for a given manifold of ion states belonging to orbital i.

For atomic hydrogen, ψ i(k) ≡ ψ 1s(k), the wave function for the 1s ground state, 
and = 1, since there are no electron–electron correlations. Figure 1 shows the 

measurements of | ψ 1s(k)|2 obtained by Lohmann and Weigold [4]. Momentum is 
given in atomic units, as in the rest of this work. The results are independent of 
energy and in excellent agreement with the momentum density given by the absolute 
square of the Schrödinger momentum space wave function (solid curve). 

Electron correlations show up in two ways in the measured cross sections. If 
the initial target state is well described by the independent particle Hartree–Fock 
approximation, the experimental orbital (6) is the Hartree–Fock orbital. Correlations 
in the ion can then lead to many transitions for ionisation from this orbital, rather 
than the expected single transition, the intensities of the lines being proportional to 
the spectroscopic factors 
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Figure 1. The electron momentum density for atomic hydrogen measured by EMS for the indicated 
energies compared with the square of Schrödinger wave function (solid curve) [4]. 

The simple linear molecule ethyne C2H2 is such a case. Figure 2 shows the electron 
binding energies measured by EMS and the momentum densities for the correspond-
ing peaks in the spectrum. There are four peaks below 25 eV corresponding to the 
four valence orbitals of ethyne (the 1 π u, 3 σ g, 2 σ u, and 2 s g orbitals). The binding 
energy spectrum shows additional structure at high binding energies due to electron 
correlations. The momentum density of this structure has the same shape as that 
calculated with the independent particle wave function for the inner valence 2 σ g
orbital. It has, however, only 38% of the strength of that orbital, the main 2 σ g transition
at 23.6 eV having nearly all of the remaining strength. The independent particle orbital 
momentum densities agree very well with the measured ones. The spectroscopic factor 
for the observed 2 σ u transition is also a little smaller than unity, so some of the strength 
of this orbital may contribute at higher binding energies. 

Secondly, correlations in the initial state can lead to experimental orbital momen-
tum densities significantly different from the calculated Hartree–Fock ones. Figure 3 
shows such a case for the outermost orbital of water, showing how electron–electron 
correlations enhance the density at low momentum. Since low momentum components 
correspond in the main to large r components in coordinate space, the importance 
of correlations to the chemically interesting long range part of the wave function is 
evident.

In solids, as in atoms and molecules, the spectral density A (k, ω ) contains much
more information than simply the band peak position, i.e. the band dispersion. The 
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Figure 2. The binding energy spectrum for valence electrons of ethyne and the corresponding measured 
and calculated self-consistent-field independent particle orbital momentum densities [5]. 

width in energy of the main quasi-particle peak in A (k, ω ) gives the quasi-particle
lifetime at momentum k and peak energy ω. The magnitude of A( k, ω ) is the prob-
ability of the particle having momentum k and energy ω. Due to correlations the 
spectral density function may contain additional satellite structures [9], which should 
be observable by EMS. 

It is important to note that since the momentum k measured in EMS is the real 
electron momentum, EMS of solids does not require the object to be a single crystal 
(as for instance in ARPES). Thus using EMS one can obtain the full spectral density 
function A (k, ω ) for amorphous and polycrystalline targets as well as for single
crystals. During the last two decades considerable progress has been made in the 
application of EMS to the study of the electronic structures of atoms and molecules [2]. 
Although the first EMS measurement was on a solid target [10], technical problems 
severely limited its application to solids until the recent development of the Flinders 
high resolution multiparameter spectrometer [11]. The severest limitation was the poor 
energy and momentum resolution and the low count rates in the earlier spectrometers. 
For the study of solids it is essential to use very high energy beams in order to reduce 
multiple scattering in the target. 
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Figure 3. Comparison of the measured momentum distributions of the outermost valence orbital for 
wafer [6–8] with spherically averaged orbital densities from Hartree–Fock limit and correlated wave 
functions [6]. 

For high energy electrons it is more difficult to obtain the sort of energy resolution 
1 eV) required for valence band studies. In addition the cross section decreases as 

the energy is increased and this leads to low coincidence count rates, and also to poor 
momentum resolution due to the need for large detector solid angles to help increase 
the count rate. Canney et al. [12] achieved an energy resolution of 0.9 eV and 
coincidence count rates of the order of 200 counts/minute, compared to the earliest 
measurements where the energy resolution was 100eV and coincidence count 
rates of the order of 0.1 counts/minute. We will now briefly describe the Flinders 
spectrometer and associated techniques before discussing some recent examples of 
EMS applied to amorphous, polycrystalline, and single crystal materials. 

2. Experimental details 

The kinematics of the Flinders spectrometer is shown in Figure 4. The plane formed 
by k0 and the mean direction of kf is the laboratory z–x plane (horizontal) and the y-
direction is the vertical. The coincidence spectrometer can record events 
simultaneously over the predetermined azimuthal angular range (– 18° < φf < 18°, 
180° – 7° < φs < 180° + 7°). This means that the cross section as a function 
of electron momentum k is sampled simultaneously over a range of ky with kx

and ky fixed and essentially zero for polar angles θf = 14° and = 76° and
Ef = 18.8 ± 0.01 keV, Es = 1.2 ± 0.02 keV and E0 = 20keV + ω . θs can be
varied over a small range about 76° so that one can sample events with kx ≠ 0 and 
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(a) (b)

Figure 4. Kinematics of the solid-state EMS spectrometer [11]. (a) The polar angles made by kf and ks

with respect to the incident ( z) direction are = 14° and = 76°. In (b) is shown a typical sample 
membrane relative to the electron trajectories. The surface sensitivity is largely determined by the escape 
depth of the 1.2 keV electrons (~ 2 nm) and is indicated by the shaded area. 

Figure 5. A horizontal schematic cut through the EMS spectrometer showing the monochromated and 
collimated incident beam and the hemispherical (fast) and toroidal (slow) energy and angle dispersive 
analysers as well as the retarding lens systems. 

k2 ≠ 0. Under normal operating conditions the azimuthal angular range is restricted 
to θ f = ±10° and φ s = π ± 6°, which restricts ky to the range ±2.5 au.

A horizontal cut through the spectrometer is shown schematically in Figure 5. It 
shows the electron gun with its monochromator and accelerator stages, the sample 
position, and the slow (toroidal) and fast (hemispherically) electron electrostatic 
analysers with their retarding lens stacks. The mean pass kinetic energies of the 
electrons through the analysers are 200 eV for the toroidal (slow) analyser and 100 eV 
for the hemispherical (fast) analyser, the dispersion in energy being in the radial 
direction in the plane shown in the figure. The dispersion in angle is in the direction 
perpendicular to that plane. On the exit planes of each analyser, a stack of chevron 
mounted microchannel plates, followed by a Gear-type resistive two-dimensional
position sensitive anode, provides the fast timing signal as well as the four position 
determining signals [11]. Each analyser is carefully calibrated so that from the arrival 
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position on the anode the energy and angle (i.e. momentum) of each detected electron 
can be determined. For each coincident pair of detected electrons, the binding energy 
ω and bound electron momentums k (Equations (1) and (2)) can then be obtained and 
recorded. The arrival position allows one to also infer the trajectory of the detected 
electron through the analyser, and in this way transit time variations can be corrected 
for in the timing spectrum, leading to significant improvement in the signal to noise 
ratio. The whole experiment and data acquisition is under complete computer control. 
The data reduction techniques are outlined by Vos et al. [13].

For transmission EMS measurements the requirements for target sample prepara- 
tion are severe. First of all the target has to be a very thin (10–20 nm) free-standing 
membrane with a diameter of at least 0.3 mm. The composition has to be well known, 
and the exit surface has to be clean, due to the surface sensitivity resulting from the 
small mean free path of the slow ejected electron (Figure 1). Therefore much ingenuity 
and time has gone into developing suitable sample preparation techniques. 

The target preparation and characterisation facilities are shown schematically in 
Figure 6. Details of typical sample preparation are given in Fang et al. [14]. Samples 

Figure 6. Plan of the target preparation facilities consisting of UHV preparation chamber (a), (reactive) 
ion etching chamber (b), ion etching gun (c), laser (d), photon detector (e), transfer arms (f), Auger 
system for surface analysis (g), sample manipulator and annealing facility (h), load lock and optical 
microscope for viewing sample (i), evaporator (j), transmission diffractometer (k), and vacuum tank for 
main spectrometer (1). 
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can be thinned by cleaving and/or electrochemical and chemical etching to a prelim-
inary stage. They can then be further thinned by either reactive ion (plasma) etching 
or etching by the ion beam facility. A laser interferometer can be used for monitoring 
the thickness during the ion etching. 

The target preparation and characterisation facility consists of two vacuum cham-
bers connected in series with the main collision chamber. The chamber furthest from 
the collision chamber has a dual function. It serves as a chamber where reactive etch 
gases can be used and where the etch gas pressure can be maintained in the Torr 
range. The intermediate buffer chamber (low 10–10 Torr range) has an Auger system 
for characterising the surface and an annealing stage. Targets can also be prepared in 
this chamber by evaporation onto one surface of a thin free-standing film. Argon ion 
sputtering can also take place in this chamber. Ultra-high vacuum (UHV) conditions 
are maintained in the preparation chambers, the target samples being inserted using 
a load lock system. Similarly, it is possible to transfer the sample rapidly from one 
chamber to another under UHV conditions. 

A transmission electron diffraction facility, mounted on top of the EMS spec-
trometer can be used to further characterise the sample. The target is mounted on 
a manipulator in the main spectrometer chamber. This manipulator allows rotation 
about the vertical ( y-axis) and the surface normal, as well as movement in the x-, y- and
z-directions. The sample can be aligned along a crystal direction using the diffraction 
set-up, and then transferred to the measurement stage retaining this alignment. Thus 
momentum densities can be determined along chosen crystallographic directions. 

With these facilities a range of high quality targets can be produced. Samples 
already successfully fabricated include graphite and silicon single crystals, free-
standing films of copper, aluminium oxide, silicon and silicon oxide. A considerable 
number of amorphous or polycrystalline targets have been made by evaporating 
sample material onto a thin amorphous carbon substrate. Samples studied in this 
way include aluminium, fullerene, silicon, germanium and copper. A 30 Å overlayer 
of the material is generally sufficient to attenuate the signal from the carbon backing 
by several orders of magnitude. In some cases such as copper, where ‘islands’ are 
formed on evaporation onto the backing, the characteristic carbon energy–momentum 
density traces underlie the sample data. However, since the carbon energy–momentum 
densities have been accurately measured, they can be subtracted from the data. 

3. Solid state results 

One of the attractive aspects of EMS is that it allows for the study of atoms, molecules 
and solids in a unified framework. In atoms and molecules we have discrete orbitals, 
whereas in solids there is a momentum distribution continuously varying with energy. 
The transition from molecules to solids is well illustrated in the case of a C60 film.
The interaction between the different C60 molecules is small, and is expected to fall 
within the resolution of the present spectrometer ( ≈ 1 eV). We expect thus that the 
EMS measurements can be described by the theory of isolated molecules. In Figure 7 
we show an energy spectrum of C60. Non-zero intensity is found for binding energies 
much larger than expected for a C60 molecule. This is attributed (at least for a large 
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Figure 7. EMS results for C60. In the left top panel we show the energy spectrum as obtained by integrating 
over a momentum range from 0 to 1.7 au. Raw data (error bars) are shown as well as these data approximately 
corrected for multiple energy loss events (solid line). In the lower left panel we show the calculated energy 
positions of the different levels plus their degeneracy (excluding spin degeneracy). The theoretical spectrum 
(dotted line) is obtained by summing the momentum distribution as described in the text. The right panel 
shows the experimentally obtained momentum distributions for binding energies as indicated. 

part) to multiple scattering. One of the electrons involved in the (e, 2e) event suffered 
energy loss due to additional scattering. Thus in spite of the large energies used in 
these experiments and the small thickness of the film (5–10 nm), the thickness of the 
film cannot be made small enough so that multiple scattering becomes negligible. This 
is an important difference with the gas-phase experiments, where multiple scattering 
is negligible. In the figure the additional energy loss processes are corrected for in an 
approximate deconvolution procedure. 

The calculated position of the 120 occupied orbitals, and their degeneracy is in- 
dicated below the experimental data. The energy position of the highest occupied 
molecular orbital is aligned with the edge of the experimental spectrum. At small 
binding energies there are still experimental indications for the discrete nature of the 
orbitals. At larger binding energies this is washed out, presumably due to increased 
lifetime broadening. From the calculated orbitals a theoretical spectrum was derived, 
using a broadening that is due to experimental resolution only. This reproduces the 
main structures well, except in the inner valence region, where the measured spectrum 
is much more spread out in energy than given by the self-consistent field calculation. 
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As in ethyne (Figure 2) this is probably due to electron–electron correlations in the 
inner valence region. 

These large molecules can be considered as a small cluster as well, i.e as a small 
solid. In the left panel of Figure 6 we show the measured momentum densities for 
small binding energies. With decreasing binding energy the peaks move slowly to 
larger momentum values. In a true solid the spacing of the levels becomes infinitely 
small, and the momentum densities peak at well-defined values at each energy. The 
dependence of peak position on binding energy is referred to as ‘dispersion’ and it is 
this relation between binding energy and momentum that is usually presented as the 
result of calculations of the electronic structure of materials. Thus the development of 
the orbital momentum density with binding energy shows the signature of an emerging 
solid. More details of the transition from molecular to solid state behaviour can be 
found in [15]. A complete description of the C60 results is given in [16]. 

The outer most levels in C60 are due to ‘ π orbitals’. These are formed by 2p 
electrons which have their orbitals oriented along the radius of the molecule. The 
different environment inside and outside the spherical molecule causes the double-
peaked structure in the momentum densities. In graphite the n band is formed by 2p 
orbitals oriented perpendicular to the sheets of carbon atoms. Using single-crystal
graphite films we have a unique opportunity to study the effects of the orientation of 
these 2p orbitals in detail. 

In the left panel of Figure 8 we show the band structure calculation of graphite in 
the repeated zone scheme, together with a drawing of the top half of the first Brillouin 
zone. The band structure is for the Γ –M direction. As the dispersion is very small 
along the c-axis we would find a similar result if we add a constant pc component
to the line along which we calculate the dispersion [17]. The main difference is that 
the splitting of the σ 1 and π band, caused by the fact that the unit cell comprises two 
layers, disappears at the Brillouin zone boundary (i.e. if the plot would correspond to 
the A–L direction).

We show the experimentally obtained spectral momentum density for the electrons 
with their momentum directed along the graphitic planes (i.e. along Γ –M with pc = 0) 
in the central panel of Figure 8. We observe only one continuous structure. From Γ –M,
in the first Brillouin zone, the measured intensity is at binding energies corresponding 
to the σ 1 band. In the second Brillouin zone the experimentally observed intensity is 
along the σ 2 band. There is no indication of any intensity related to the π band or 
the σ 3 band. For the π band this is due to the orientation of the 2 pc electrons. Their 
wave functions have a nodal plane at the layer formed by the carbon honeycomb 
structure. This causes a nodal plane in the momentum representation of these orbitals 
for pc = 0, and hence they are not observed under these conditions. The absence of 
the σ 3 band is not accidental either, it can be shown from symmetry arguments that 
its intensity should be equal to zero under these conditions [18]. 

By changing the scattering parameters we can ‘tune in’ to electrons with a well-
defined, constant momentum value along the c-axis. In the present case pc = 0.25 au 
i.e. the resulting measurement was on the boundary of the Brillouin zone, along the 
A–L direction. Now two structures are visible, both the σ 1,2 and the π band. The 
dispersion of the σ 1,2 band has not changed noticeably from that found for the Γ –M
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Figure 8. In the top left panel we show the band structure in the repeated zone scheme for the Γ –M
direction. In the lower left panel we show the top half of the graphite Brillouin zone. The measurement 
presented in the central and right panel are for the Γ –M and A–L directions. Darker shading corresponds 
to larger intensities. Note that the π band is visible in the latter but absent in the first. 

measurement. The σ 3 band is still absent. At the boundary of the first Brillouin zone 
the π band has not yet reached its maximum intensity. It is expected to be reached
for pc values around 0.75 au [17]. 

A comparison of the band structure diagram and these two measurements shows 
that experimentally the main measured intensity is constrained to a few of the bands 
present. In the first Brillouin zone the σ 1 band is found to be occupied, in the second 
zone σ 2. No sign of σ 3 or the π band is found for the Γ –M measurement. For the 
A–L measurement the same bands as for the Γ –M measurement contribute but in 
addition the π band is observed, mainly in the first Brillouin zone. These experiments 
are a beautiful, direct observation of the nodal plane of the π electrons in momentum 
space.

Thus, in addition to the dispersion itself, we get information about which band 
is occupied in which Brillouin zone. This is a consequence of the fact that EMS 
measures real momentum, and not, like for example angle-resolved photoemission, 
crystal momentum. 

According to theory the measured intensity should be directly proportional to the 
momentum density. Thus not only the peak position is meaningful, but also the area 
under the peak can be directly interpreted as the momentum density. To what extent 
is this confirmed by the experiment? There are two main difficulties in verifying this 
claim.
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One is multiple scattering. Both elastic and inelastic scattering contribute to a 
smooth background on which the clean events are superimposed. Assumptions on the 
shape of the background make large differences to the area attributed to a peak. As 
the transport of keV electrons through solids is quite well understood it is possible 
to simulate these multiple scattering effects, using Monte Carlo procedures. In this 
way it is possible to compare the experiment with theory that includes these multiple 
scattering effects. 

The other problem is the theory. In a solid all electrons interact strongly with each 
other due to the long range nature of the Coulomb field. This leads to screening 
which reduces the effective range of the electron-electron interaction. The final result 
is that, even for simple metals, which appear at first sight as free-electron metals 
(as far as dispersion is concerned), the full many-body calculations of the spectral-
momentum density (the spectral function) give considerable intensity away from the 
single-particle branch [9]. 

Let us illustrate these effects for the case of aluminium [19]. In Figure 9 (left 
panel) we show the momentum density near the Fermi level. Additional inelastic 
scattering events shift intensity away from the Fermi level, to higher binding energies. 
So at the Fermi level the only observed background is due to elastic scattering. 
The dotted line is the result of a linear muffin tin orbital (LMTO) band structure 
calculation, in the local density approximation. The theoretical results are broadened 
by lifetime broadening as determined empirically by Levinson et al. [20], but this is 
only important for energies away from the Fermi level. The LMTO calculation has 
peaks that coincide approximately with the experimental peak positions, but much 
less intensity away from these peaks. Inclusion of multiple scattering effects, using 
Monte Carlo simulations for the incoming and outgoing electron trajectories improves 
the agreement considerably [21]. Thus the intensity in between the two main peaks 
seems to be a result of elastic scattering. 

Figure 9. The measured momentum density of an aluminium film. In the left panel we show the measured 
momentum density near the Fermi level (error bars), the result of the LMTO calculations (dashed line) 
and the result of these calculations in combination with Monte Carlo simulations taking into account the 
effects of multiple scattering (full line). In the central panel we show in a similar way the energy spectrum 
near zero momentum. In the right panel we again show the energy spectrum, but now the theory is that 
of an electron gas, taking approximately into account the effects of electron–electron correlation (dashed) 
and this electron gas theory plus Monte Carlo simulations (solid line). 
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In the central panel we show a measured energy spectrum near zero momentum 
compared with the LMTO calculation and the LMTO calculation plus simulation of 
multiple scattering events. 

The same normalisation of theory to the experiment is used as in the momentum 
density plot. Clearly the Monte Carlo simulation compares better with the experiment 
than the LMTO calculation by itself, but at high binding energies there is still a 
significant amount of intensity missing in the theory. 

Replacing the LMTO theory with a calculation that neglects the effect of the 
crystal lattice, but takes, within the random phase approximation, electron–electron 
correlation into account does not lead to a perfect fit either. This is shown in the right 
panel. This theory includes lifetime broadening, as this is a consequence of electron– 
electron correlations. The obtained lifetime broadening is somewhat smaller than 
that obtained experimentally by Levinson et al. As a result the ‘fit’ at low binding 
energy is not as good as in the LMTO case. It results however in more intensity at 
large binding energy, due to satellites corresponding to a coupled hole–plasmon final 
state. However, this intensity is concentrated in a narrow energy range, whereas the 
experiment shows excess intensity over a broad range of energies. For more details 
see [22]. 

4. Conclusions 

Electron momentum spectroscopy gives direct information about the binding energy 
of electrons and their distribution in momentum space. As it can be applied to atoms, 
molecules and solids it gives a very unified picture of the electronic structure of matter. 
For solids multiple scattering is a complicating factor. It can be reduced significantly 
by going to larger energies of the incoming and outgoing particles. For this purpose 
a new high energy spectrometer is under construction at the ANU. With this spec-
trometer we plan to achieve results that are able to test not only the one-electron type 
theories like band structure calculations, but true many-body calculations as well. 
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Accurate structure factor determination using 100 keV 
synchrotron radiation 
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1HASYLAB/DESY, Notkestr. 85, D-22603 Hamburg, Germany 
2Mineralogisches Institut, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany 
3Mineralogisch-Petrologisches Institut, Universität Bonn, Poppelsdorfer Schlo β , D-53115 Bonn, 
Germany

The accuracy of experimentally determined structure factors is limited by various 
error sources, which may be introduced by the experimental method itself or during 
the data reduction stage. A reduction of those errors is expected by the use of high-
energy synchrotron radiation ( E( I0) ≥ 100 keV) as primary beam source, because 
absorption and extinction corrections are negligible in most practical cases. 

Conventional diffractometers for structure factor determination purposes are 
operated in the ‘low energy’ regime up to 40keV, whereas instruments at high-
energy beamlines were constructed for different purposes (e.g. diffuse scattering 
experiments). Thus, there are principal differences in design and equipment, and 
our first investigations were focused on tests of the instrumental prerequisites. 

Scattering on the Triple-Axis-Diffractometer [1, 2] at the HASYLAB high-energy
beamline BW5 is performed in the horizontal plane using an Eulerian cradle as sample 
stage and a germanium solid-state detector. The beam is monochromatized by a single-
crystal monochromator (e.g. Si 111, FWHM: 5.8”), focused by various slit systems 
(Huber, Risø) and iron collimators and monitorized by a scintillation counter. The
instrument is controlled by a µ-VAX computer via CAMAC. 

In order to provide all necessary measurement routines for a structure factor 
data collection the Four-Circle software package DIF4 [3] was adapted to the BW5 
control software SPECTRA ON_LINE [4]. The program allows for fast reflection 
search (i.e. rotation photograph, ‘peak hunting’, cone scan), reflection centering, 
automatic reflection indexing, and setting up and refinement of the orientation matrix. 
Flexible data collection, either using reflection lists or hkl-files, includes on-line
data reduction and graphical presentation and processing of a scan during the data 
acquisition.

Test measurements were performed on Cuprite, Cu2O, for various reasons: it has 
a well-known structure (cubic, space group Pn3m, a0 = 4.2696, Z = 2) and 
has been examined by conventional X-ray single crystal diffractometry [5, 6] and 
by synchrotron radiation in the ‘low energy’ regime [7]. As a consequence of the 
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special positions of Cu (4b) and O (2a) all reflections can be separated into four 
parity groups: 

Group Dominated by Intensity 

eee Cu, O Strong
ooo cu Strong
ooe 0 Weak
eeo Very weak 

e = even, o = odd. 

Assuming spherical symmetric charge densities, the fourth group is forbidden. Hence,
these reflections provide information about the anisotropic copper displacement pa-
rameters and chemical bonding, and a correct determination of these ‘forbidden’ 
reflections gives evidence of the data quality. 

Experiments were carried out during several runs of DORIS III ( E = 4.5 GeV). 
The beam size was 1 x 1 mm2, the sample–detector distance was ≈ 1200 mm and 
the detector aperture 9 x 9 mm2. ω stepscans were applied with 1 s per step for 
the stronger and 3 s per step for the weak reflections. The sample was a sphere of 
≈ 190 µm diameter. 

The first investigations were focused on some basic topics. In order to check the 
dynamic range various reflections of all parities were recorded, and an intensity ratio 
I (eee)/I (eeo) ≈ 5 . 105 was covered. The strongest reflections were measured using 
iron absorbers of up to 27 mm thickness. A couple of strong and medium-intensity
reflections were investigated several times during various DORIS-runs in order to 
test the reproducibility. The data were averaged and internal consistencies of 0.5– 
1.5% were achieved, showing good reproducibilities and stable beam conditions 
(i.e. beam position) at the beamline BW5. The same tests were carried out on a 
couple of symmetry-equivalent reflections and good internal consistencies were also 
found. Conclusively, the instrumental prerequisites for structure factor measurement 
purposes (i.e. stability, good alignment) were verified. 

After these tests a dataset (CU96) was recorded, which consists of 

(i) 485 reflections of all parities; 0 < (sin Θ ) / λ 1 Å–1; h, k, l > 0; 120 unique; 
(ii) 103 ooe (‘oxygen’) reflections with ≈ 1 < (sin Θ )/λ 1.4Å–1; h, k, l > 0; 

(iii) 122 eeo (‘forbidden’) reflections with 0 < (sin Θ )/λ 1 Å–1; h, k, l > 0; 23 

Integral intensities were obtained after dead-time corrections, background subtraction 
and normalization to averaged monitor counts. The Lp correction was applied in the 
usual way. Since the polarization ratio was not measured at BW5 so far, 90% linear 
horizontally polarized radiation was assumed for all scans. Calculations show that 
even a change in the beam polarization of 10% would effect the intensities of the 
highest order reflections of less than 1.5%. 

No absorption corrections were carried out. The correction for TDS was evaluated 
using TDSCOR [8]. Elastic constants were taken from Hallberg and Hanson [9]. 

46 unique; 

unique;
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(a) (b) 

Figure 1. Electron-density maps (5 Å x 5 Å) in the plane (110). Horizontal axes: [001], vertical axes: 
[110]. (a) Monopoles omitted and (b) monopoles included. Contours at 0.05 eÅ–3, negative – broken,
positive – full lines. 

Averaging of symmetry-equivalent and multiply measured reflections was performed 
using AVSORT [8]. Fifteen ooe and eeo reflections were considered unobserved 
(I < σ) and the remaining data set consists of 128 unique reflections with an internal
consistency Rint (F2) = 0.0064. 

A second data set (CU97, 1535 reflections of all parities, 0 < (sin Θ ) / 1.3; 
h, k, l > 0 and h, k, l < 0) was recorded in continuous scan mode (i.e. the detector 
was read out during the ω -moves). This scan mode accelerated the data acquisition 
and enhanced the accuracy of the derived integral intensities. Averaging of these data 
yielded 120 reflections with an internal consistency Rint(F2) = 0.0038. 

Thermal parameters of conventional independent-atom refinements using BLFLS 
[8] were applied as starting values for full multipole refinements, which were per- 
formed with VALRAY [10]. Both data sets were successfully refined. The results 
were compared to those published by Kirfel and Eichhorn [7], and good agreement 
was found. 

Using the refinement parameters, electron density maps were calculated. Figure 1 
shows an example derived from CU96. According to all refinement results the intensi- 
ties of the strong reflections were too low. Therefore, they were omitted for the electron 
density studies. The problem is currently under study. Additionally, low-temperature 
measurements are planned for the near future. 
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Charge density data from CCD detectors 

A. ALAN PINKERTON 
Department of Chemistry, University of Toledo, Toledo, Ohio 43606, USA 

1. Introduction 

The advent of CCD detectors for X-ray diffraction experiments has raised the possi-
bility of obtaining charge density data sets in a much reduced time compared to that 
required with traditional point detectors. This opens the door to many more studies 
and, in particular, comparative studies. In addition, the length of data collection no 
longer scales with the size of the problem, thus the size of tractable studies has certainly 
increased but the limit remains unknown. Before embracing this new technology, it 
is necessary to evaluate the quality of the data obtained and the possible new sources 
of error. The details of the work summarized below has either been published or 
submitted for publication elsewhere [1–3]. 

As area detectors (other than multiwire systems) are not energy discriminating 
devices, apotential source of error lies in the contamination of the data with harmonics 
of the assumed wavelength of the primary beam. The importance of this effect has 
been estimated for molybdenum Kα radiation using a graphite monochromator [1]. 

The quality of the intensity data obtainable has been assessed from an experiment 
on oxalic acid obtained at 100 K with a CCD detector. In this experiment the contam-
ination of λ / 2 to the measured intensities was eliminated by appropriate choice of the 
generator voltage. Various criteria for judging the quality of the data are discussed 
below [2]. 

The advantages of measuring at very low temperatures are well established [4]. 
Because of the increased speed of data collection, it now becomes feasible to consider 
the use of liquid helium as a cryogen. A prototype open-flow helium cooling device 
using mainly off-the-shelf components has been developed [3]. 

2. λ / 2 contamination

The characteristic radiation employed for a typical diffraction experiment is com-
monly obtained by using a crystal monochromator. Harmonics of λ contributing to 
the primary beam leaving the X-ray source also contribute to the ‘monochromatic’ 
beam arriving at the sample. Limiting ourselves to Mo-K α radiation, only λ /2 is 
important under normal operating conditions (50 kV). For any reflection 2 h2k2l due
to λ , there will be a contribution due to λ /2 to the intensity of the reflection hkl if
this harmonic is present in the primary beam. When using a scintillation counter to 
detect the scattered radiation, this can be removed by energy discrimination. With 

213

Paul G. Mezey and Beverly E. Robertson (eds.), Electron, Spin and Momentum Densities and Chemical Reactivity, 213–223 

© 2000 Kluwer Academic Publishers. Printed in Great Britain 



214

CCD detectors (and also image plates), this contamination is a potential source of 
systematic errors because these devices cannot discriminate with respect to energy. 

There are four approaches to remove or account for this effect: (i) primary radiation 
free of any λ /2 component can be produced; (ii) a Si or Ge monochromator may be 
used; (iii) the λ /2 component of the scattered radiation can be determined; (iv) an 
independent determination of the amount of λ /2 scattering may be carried out. 

λ /2 free radiation 

A primary beam that is free of λ /2 radiation is produced when the accelerating voltage 
is reduced below the threshold required for λ/2 generation. This is given by [5] 

For Mo-K α radiation, λ /2 = 0.3554 Å which is produced at a threshold voltage of 
34.9 kV. Operating an X-ray source at this potential also results in a drastic reduction 
in intensity of the desired characteristic radiation [5]. 

Thus, reducing the potential from 50.0 to 34.9 kV will reduce the intensity of the 
desired radiation (Mo-K α ) by 68%. Although some of this loss in intensity may be 
recovered by increasing the filament current, this is not a convenient solution for 
most experiments. For samples which are strongly diffracting, e.g. minerals, this is a 
reasonable approach. 

Use of Si or Ge monochromators 

The amplitude of F222 for Si or Ge is close to zero, therefore the contribution of λ /2
to the 111 reflection is zero. Hence, the 111 reflection from a Si or Ge monochromator 
is used to obtain λ /2 free radiation. However, these monochromators also drastically 
reduce the intensity of the primary beam compared to the graphite monochromators 
found in most commercial diffractometers. 

Experimental determination 

A structure factor obtained from an experiment where there is λ/2 contamination
may be written as 

Thus, we may obtain a best value fork from a modification of the normal least squares 
procedure. As k << 1, will only significantly differ from Fhkl when Fhkl is small 
and F2h2k2l is large, i.e. the reflections carrying the most information about k are those 
very reflections that are poorly observed. Hence, this is not a reliable method. 
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Independent determination of the l/2 contribution to the scattering 

A method for correcting intensities from film data was proposed by Guinier [6] where 
two films were used. These were separated by a metal filter designed to absorb 
radiation λ and let the more penetrating λ/2 radiation through. Subtraction of the
intensities on the second film from those on the first gave intensities free from λ/2
contamination.

A method to measure the λ/2  contribution to the observed intensity at any reciprocal
lattice point was proposed by Rees [7] for neutron data and is equally applicable to 
X-rays. By comparing the intensity of strong reflections with at least one index odd 
with that of pure λ/2 reflections (which appear at reciprocal lattice nodes) we obtain
a direct measure of the two components. With an area detector, this information is 
always contained in the measurement but is normally ignored if the reflections have 
been correctly indexed. This information may be extracted using existing software 
by defining a new unit cell in which all the axes have been doubled. Now all of the 
original reflections in the data set have even indices; all of those with any odd index are 
pure λ/2 reflections. From the comparison of appropriate pairs of reflections, the ratio 
of the intensities of the two components of the primary beam may be estimated. As 
this is a property of the primary beam, it is best performed as a separate experiment 
designed to optimize the integration of the half integral reflections under standard 
operating conditions. It is, of course, a function of the accelerating voltage but not of 
the filament current. The value should be stable with time except for effects due to 
changes in the absorption of the window of the X-ray source. The difference between 
diffractometers is small but not negligible (see below). 

Using three spherical crystals – the standard ylide crystal provided by Siemens 
Analytical Instrumentation, ruby and ammonium hydrogen tartrate (Enraf-Nonius 
standard crystal) – such an experiment has been carried out using two SMART CCD 
diffractometers. Before integration [8], all of the cell axes were multiplied by 2. 
Duplicate measurements were then averaged, and all odd reflections with values of 
F2 > 15 esd’s were compared with the reflection with double the indices to obtain the 
best value of k for the expression = The average values of k obtained
for the two diffractometers were 0.0014(2) and 0.00106(5). 

These values were used to correct the intensities for nine representative data sets, 
organic crystals, organometallics and minerals, and the data compared with respect to 
systematic absences and space group assignment (i) with no corrections to the data, 
(ii) with an absorption correction (SADABS [9]), (iii) with only l/2 correction, and 
(iv) with both absorption and λ/2 correction. Analogously four different refinements
per sample were carried out based on F2.

The magnitudes of the corrections varied quite widely over the nine data sets, the 
average correction being less than one esd, however the maximum correction was 
47.4s. In all cases there was an improvement in the number of ‘observed’ systematic 
absences and, hence, space group assignment. 

The effects of the λ /2 correction on the final refinements of these routine data sets 
was negligible. There was no significant change in the final agreement factors and 
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the changes in the geometrical parameters were all smaller than one esd. However, 
although it has been suggested that this is also the case for charge density data sets, 
it has yet to be rigorously demonstrated. 

3. Oxalic acid 

Experiment

An extensive data set on oxalic acid dihydrate was obtained at 100.0(1) K using 
a Siemens SMART Platform diffractometer and graphite monochromated Mo-Kα 
radiation. λ/2 contamination was eliminated by running the generator at 35 kV and
50 mA. Intensity data were collected using 0.3° omega scans with a detector distance 
of 3 cm. Maximum redundancy in the data was obtained by using four phi settings 
(0, 90°, 180°, 270°) for each of five detector positions (–35°, –65°, –95°, –109° 
and –50°) in . The 60 s frames were measured for the three lowest resolution 
detector positions, and 120 s frames for the two others. For the first four detector 
positions, 600 frames were measured for each phi setting and 500 for the final detector 
position.

Data reduction

The unit cell (Table 1) and orientation matrix were determined from the XYZ cen-
troids of 8192 reflections with I > 20 σ (I). The intensities (SAINT [8]) were 
corrected for beam inhomogeneity and decay, and the esd's adjusted using SADABS 
[9]. An absorption correction was applied ( Tmin 0.949, Tmax 0.983) and symmetry 
and multiply measured reflections averaged with SORTAV [10]. 

Of 46,135 reflections measured (29,973 with I > 2 σ (I)), only 156 reflections were 
missing to sin θ/λ= 1.34 Å–1 ; 5102 reflections were unique of which 2681 had been
measured more than nine times (symmetry equivalents plus multiple measurements). 
The merging R values were R1 = 0.037 and R2 = 0.024 for 4809 accepted means. 
Examination of the reflection statistics (Table 2) with respect to and
sin θ/λ(S)   indicates the usual trends and suggests that the data should be adequate
for a charge density study. 

Table 1. Comparison of unit cell parameters. 

This Work IUCr Study 

a = 6.1024(1) (Å) 
b = 3.4973(1) (Å) 
c = 11.9586(2) (Å) 
β = 105.771(1) (°) 

a = 6.102(6) 
b = 3.501(7) 
c = 11.964(17) 
β = 105.80(5) 
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Table 2. Reflection statistics. 

R1 R2 Rω Nterms Nmeans

(a) With respect to intensity 
Q < -2.0 0.0527 0.0610 0.0758 8 4

-2.0 < Q < -1.0 0.4186 0.4591 0.4343 156 41
-1.0 < Q < 0.0 0.9073 0.9195 0.8695 3157 443

0.0 < Q < 1.0 0.8215 0.8215 0.8745 8342 1033 
1.0 < Q < 2.0 0.3585 0.3668 0.4385 4621 566
2.0 < Q < 3.0 0.2105 0.2358 0.2622 3449 404
3.0 < Q < 4.0 0.1380 0.1622 0.1732 2522 292
4.0 < Q < 6.0 0.0963 0.1137 0.1194 4499 468
6.0 < Q < 8.0 0.0710 0.0856 0.0866 3551 333
8.0 < Q < 10.0 0.0543 0.0666 0.0656 2553 230

10.0 < Q < 20.0 0.0346 0.0417 0.0418 7804 634 
20.0 < Q < 50.0 0.0219 0.0288 0.0252 5232 382 
50.0 < Q 0.0144 0.0173 0.0161 547 48

(b) With respect to resolution 
S < 0.500 0.0192 0.0235 0.0227 3891 313 

0.500 < S < 0.600 0.0241 0.0245 0.0304 3262 214 
0.600 < S < 0.650 0.0286 0.0265 0.0370 1900 129 
0.650 < S < 0.700 0.0327 0.0295 0.0431 2126 155 
0.700 < S < 0750 0.0385 0.0345 0.0483 2790 181 
0.750 < S < 0.800 0.0467 0.0391 0.0571 3343 207 
0.800 < S < 0.850 0.0479 0.0378 0.0575 2998 213 
0.850 < S < 0.900 0.0533 0.0423 0.0608 3682 270 
0.900 < S < 0.950 0.0657 0.0502 0.0730 3872 289 
0.950 < S < 1.000 0.0772 0.0577 0.0854 3343 298 
1.000 < S < 1.050 0.1026 0.0750 0.1140 3418 352 
1.050 < S < 1.100 0.1119 0.0778 0.1197 3169 386 
1.100 < S < 1.150 0.1081 0.0823 0.1253 2296 338 
1.150 < S < 1.200 0.1449 0.1041 0.1642 2393 415 
1.200 < S < 1.250 0.1334 0.1054 0.1520 2347 480 
1.250 < S < 1.300 0.1525 0.1165 0.1821 1253 396 
1.300 < S < 1.350 0.1433 0.1139 0.1776 358 156 

where

Refinements

Starting coordinates were taken from Stevens and Coppens (hereafter SC) [11] and 
all refinements were carried out on F2 using the XD suite of programs [12]. Four 
different refinements were carried out using statistical weights throughout and the 
results are summarized in Table 3. Refinement I is an independent atom refinement; 
II is a high angle refinement (1.00 < sin θ/λ  < 1.34 Å–1) with the hydrogen atoms 
fixed at the neutron positions [13] with isotropic thermal parameters fixed at the values 
obtained from I; III is a kappa refinement to assign atomic charges [14] with hydrogen
parameters fixed as in II; a complete atom centered multipole refinement [15] was 
carried out in IV with hydrogen atoms treated as in II with one atom directed dipole 
and quadrupole population varied. All other atoms were refined as previously [11] up 



218

Table 3. Summary of least squares refinements. 

Refinement

I IIa IIIa IVa

sin range (Å–1) 0.00–1.20 1 .00– 1.3 3 0.00–1.33 0.00–1.20 
Nobs 3860 2895 5166 3860
Nv 50 37 50 108
Scale factor 1.812(2) 1.87(2) 1.813(4) 1.812(4)
R(F2)b 0.0540 0.1170 0.0457 0.0532
Rω (F2)b 0.0769 0.1630 0.0777 0.0299
R(F)(I > 2 σ (I)) 0.0281 0.0423 0.0282 0.0190
GOF 1.01 0.84 0.86 0.73

aHydrogen coordinates fixed at neutron positions with isotropic thermal parameters from I.
bAll reflections. 

to the hexadecapole level with mirror symmetry imposed in the plane of the oxalic acid 
molecule and in the bisecting plane perpendicular to the plane of the water molecule. 
Isotropic extinction was included in all four refinements, however, the value obtained 
from refinement I was held constant for the high angle refinement. For purposes of 
comparison, particularly of the multipole refinements, an identical set of refinements 
was carried out using the SC data [11] and the results compared. As the SC data only 
extend to sin = 1.2 Å–1, the current data was also limited to this resolution for 
refinement IV.

Positional parameters of the non-hydrogen atoms obtained from refinements I and
II are in good agreement with those of SC (1980) or Dam, Harkema and Feil (hereafter 
DHF) [16] from X-ray data as well as those from neutron data [13, 17]. 

The values for the thermal displacement parameters fall in the same range as 
reported in the IUCr study [18], however, all refinements gave values that were 
systematically smaller than those obtained by SC [11]. In contrast, the values are 
quite similar to the values reported by DHF [16]. It is tempting to suggest that the 
thermal parameters are too small due to the presence of TDS contamination in the 
intensity data, however, it is more likely that the experimental temperatures were 
not identical. The agreement of thermal parameters from refinement II with those 
obtained from one neutron data set [17] is quite satisfying, however, agreement with 
a second neutron study [13] reported for the same temperature differed by 15%, again 
suggesting a problem with temperature calibration across these experiments. 

Charge densities 

The atomic charges estimated from a kappa refinement are given in Table 4 as well 
as those obtained from the SC data [11]. The main difference is the positive charge 
obtained for the C atom from the CCD data (in agreement with chemical intuition) 
compared to a small negative one obtained using the point detector data. 

Difference density maps from the current data and the SC [11] data after high order 
refinements are shown in Figure 1(a) and (b). The main features of the maps agree 
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Table 4. Comparison of the results of the kappa refinements.

This work sc

q κ q κ 

O(1) –0.42(3) 0.976(3) –0.18(3) 0.986(3)
O(2) –0.51(2) 0.972(3) –0.32(3) 0.973(3)
O(3) –0.63(3) 0.960(3) –0.44(4) 0.986(4)
C(1) 0.27(3) 1.032(5) –0.06(5) 0.990(7)
H(1) 0.49(2) 1.49(6) 0.29(3) 1.20(3)
H(2) 0.41 (2) 1.34(3) 0.35(2) 1.22(3)
H(3) 0.41 (2) 1.34(3) 0.35(2) 1.22(3)

with respect to the bonding and lone pair regions, however, there are much deeper 
negative regions close to the nuclear positions for the current data. In contrast, a 
similar map reported by DHF [16] also has similar negative regions. 

Comparison of the model maps (Figure 1(c) and (d)) again shows qualitative agree-
ment. All regions agree to within one contour level (0.05 e Å–3) except for the lone 
pair regions for O(2) and O(3) which are significantly sharpened compared to those 
obtained with the SC data. 

Examination of the multipole populations gives no indication of the discrepancy 
observed in the model maps, all populations from parallel refinements agreeing to 
within two esd’s (Table 5). The one striking exception is the monopole population 
(Pr ) for carbon. This must be a simple difference in the partitioning of the charge 
density between atom centers in the model as there is no discernible difference in the 
model maps around the carbon position. 

It has been suggested that the integrated intensities of weak reflections are over-
estimated by the current integration algorithm (SAINT, [8]). The ratio between 
for the current data and that of SC [11], scaled from the multipole refinements, has 
been calculated for all common reflections (Figure 2). The agreement for the strong 
reflections is good, however, either the CCD detector has indeed overestimated the 
weak intensities or else they are underestimated by the scintillation counter. 

4. Helium cooling

Most previous attempts to obtain X-ray diffraction data at very low temperatures
(< 80 K) have used custom built systems with closed cycle helium refrigerators
mounted on large, robust four circle diffractometers. In order to remove the in-
herent disadvantages of these systems - cost, single application, absorption and
scattering of the windows - we have built an open flow system from mainly off-
the-shelf components which uses liquid helium as the cryogen. This is not the first
open flow helium system [19, 20] but is the first that is mainly off-the-shelf and
is mountable on any diffractometer. It is based on an ADP Helitran ESR cryostat
with modifications to the nozzle assembly and to the direction of the gas flow. The
lowest temperature is estimated to be <30K. At the current price for liquid helium in
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(a) (b)

(c) (d)

Figure 1. Difference map after high order refinement – data cutoff at sin = 0.9Å–1 for reflections 
with F2 > 2 σ (F2); (a) this work; (b) SC. Model map after multipole refinement – data cutoff at 
sin σ /λ = 0.9 Å–1 for reflections with F2 > 2 σ (F2); (c) this work; (d) SC. 

the US, with the increase in measuring speed available with a CCD detector, the eco-
nomics per data set are comparable with those using liquid nitrogen on a conventional 
diffractometer.

5. Conclusion 

Clearly the CCD data is adequate for a charge density analysis. It is also possible 
that the weak data, contrary to popular wisdom, is actually better than that from point 



Table 5. Comparison of refined multipole parameters. 

C(1) O(1) O(2) O(3) 

This work SC This work SC This work SC This work SC 

κ' 0.981(3) 0.974(4) 0.974(3) 0.987(2) 1.000(5) 0.978(2) 1.014(6) 0.999(3)
Pu 3.87(4) 5.77(3)4.31(3) 6.22(3) 6.06(2) 6.47(3) 6.27(2) 5.83(5) 

P+11 0.026(14) 0.063(8) –0.015(9) –0.028(4) –0.051(10) –0.045(6) –0.100(9) –0.082(5) 
P–11 –0.015(11) 0.018(6) 0.001(7) –0.055(5) 0.010(8) 0.010(4) –0.021(8) 0.011(5) 
P20 –0.264(12) –0.255(7) –0.032(10) –0.008(6) –0.078(10) –0.062(7) –0.015(8) –0.037(5) 

P+22 0.072(12) 0.069(7) –0.045(9) –0.040(4) –0.003(9) –0.039(6) –0.022(8) –0.016(5) 
P–22 –0.044(11) –0.031(6) 0.027(9) 0.022(5) 0.040(8) 0.003(5) –0.013(8) –0.006(5) 
P+31 0.031(13) 0.017(7) 0.012(10) 0.019(4) –0.014(10) 0.005(5) 0.124(8) 0.090(4)
P–31 0.009(11) –0.013(6) –0.028(9) –0.039(4) –0.015(9) –0.012(4) 0.020(8) 0.024(4)
P–33 0.287(14) 0.301(7) 0.079(9) 0.076(4) 0.057(9) 0.034(4) 0.013(8) –0.001(4) 
P–33 0.030(16) 0.067(7) 0.012(10) -0.01 1(4) 0.016(8) –0.007(4) 0.006(8) –0.006(4) 
P40 0.038(16) 0.026(8) 0.010(13) 0.017(6) –0.001(13) –0.006(6) –0.019(11) –0.002(5) 

P+42 0.009(17) 0.016(8) 0.021(12) 0.014(5) –0.003(11) –0.013(5) 0.062(10) 0.071(5) 
P–42 –0.018(17) –0.010(8) 0.007(11) –0.005(6) –0.010(11) –0.000(5) –0.001(10) 0.018(5)
P+44 –0.061(20) –0.031(9) –0.001(10) 0.028(5) –0.008(10) –0.007(5) –0.010(10) 0.012(5)
P–44 –0.051(15) –0.007(8) 0.032(10) 0.029(4) 0.010(10) –0.002(4) –0.003(10) –0.009(5) 

H(1) H(2) H(3)* 

This work SC This work SC This work SC 

K 1.00 1.00  1.00 1.00 1.00 1.00
Pv 0.75(2) 0.87(1) 0.93(2) 0.86(1) 0.93(2) 0.86(1)
P10 0.197(21) 0.253(12) 0.392(20) 0.384(11) 0.392(20) 0.384(11) 
P20 0.330(31) 0.330(20) 0.275(22) 0.243(13) 0.275(22) 0.243(13) 

* H(3) populations are constrained equal to H(2). 
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Figure 2. Ratio between scaled F2 for CCD and point detector data with respect to log F2.

detectors. Following informal discussions at the 1997 ACA meeting1 it seems possible 
that even better data will be obtained by using narrower frames (e.g. 0.1°). 
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Recent studies in magnetisation densities 

E. LELIÈVRE-BERNA 
Institut Laue Langevin, BP 156, 38042 Grenoble cedex 9, France(E-mail: lelievre@ill.fr) 

1. Introduction 

The polarised neutron diffraction (PND) technique [1, 2] applies to single crystals 
which are magnetically ordered in a ferro- or ferrimagnetic phase under an applied 
magnetic field. Assuming a good knowledge of the nuclear structure factors N (i.e. the 
Fourier components of the density of atomic nuclei in the unit cell), the dependence 
of the elastic scattering cross-section on the initial neutron polarisation gives access 
to magnetic structure factors M (i.e. the Fourier components of the magnetisation 
density). In practice, one measures the ‘flipping ratio’ R between the intensities 
observed for (+) and (–) initial polarisation states at the peak of each Bragg re-
flection. The experimental flipping ratios are easily corrected for some instrumental 
imperfections, and one has to take into account extinction which may occur in the 
scattering process [3]. As shown by the study of Ce3Al11, it is even possible to 
determine the magnetisation density of a twined crystal [4]. 

2. Methods of analysis 

After a simple Fourier inversion of a set of magnetic structure factors Mhkl, one
can retrieve the magnetisation density. A much better result, e.g. the most probable 
density map, can be obtained using the Maximum Entropy (MaxEnt) method. It 
takes into account the lack and the uncertainty of the information: not all the Bragg 
reflections are accessible on the instrument, and all the values contained in the error 
bars are satisfactory and have to be considered. However, as this method extracts 
all the information contained in the data, it is important to keep in mind that it may 
show spurious small details associated to a low accuracy and/or a specific lack of 
information located in Q-space.

Another way consists in comparing the measurements to a model. One can express 
the atomic form factor in the dipolar approximation at low sin θ/λ,  or the magnetisa-
tion density in a multipolar expansion. In the case of molecular magnets, one generally 
fits a Hartree–Fock magnetic wave function constructed from standard Slater orbitals 
at each magnetic site. A more versatile modelling is obtained by expanding the spin 
density in a superposition of aspherical densities (series expansion in real spherical 
harmonics).
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3. Molecular compounds 

3d transition metal complexes and organic free radicals form groups of molecular 
compounds to which PND has been successfully applied [5, 6]. The results provide 
a basis to understand the antiferro- and ferromagnetic spin-coupling mechanism of 
molecular-based magnets. It also gives the opportunity to study 2p electron magnetism 
and to test new theories in fundamental physics with model systems. 

Magnetism in molecular compounds is firstly characterised by the spin delocali-
sation which is required for the existence of exchange interaction. These effects are 
clearly shown in binuclear compounds such as the Mn(II)Cu(II) heterobimetallics 
where the two metals are antiferromagnetically coupled [7–9]. One can see in the 
oxamato-bridged Mn(II)Cu(II) chain that the Cu(II) magnetic orbital is more delo-
calised toward the nitrogen atom than the oxygen atoms of the copper basal plane 
(Figure 1). It explains the more pronounced antiferromagnetic exchange interaction 
observed for the oxamido-bridged Mn(II)Cu(II) pair. 

Some confirmatory evidence from PND experiments for spin and charge transfer 
through hydrogen bonding have been reported in Ni(NH3)4(NO2)2 and
[Co(NH3)5(OH2)][Cr(CN)6] [10–12]. It was suggested that it could provide an 
explanation for the antiferromagnetic exchange interaction in the complex 
Ni(NH3)4(NO2)2. The spin density of the [Cr(CN)6] ion is distinctly different from 
that in the salt Cs2KCr(CN)6 where strong features of covalence and spin polarisation 
are observed [13]: the local density functional calculations are in broad agreement with 
the experimental results, giving considerable spin transfer to the cation and large spin 
polarisation effects, with possibly a strong involvement of protons in the hydrogen 
bonds. In Cs2KFe(CN)6, 60% of the total moment of the Fe(CN)6 units comes from 

Figure 1. Induced spin density map for MnCu(pba)(H2O)3 . 2H2O at 10 K under 5 T in projection along 
the perpendicular to the basal plane. Solid and dashed lines are used respectively for negative and positive 
spin densities. Contour steps are 5 mµB/Å2. The spin delocalisation is more pronounced toward the N 
atom than the O atoms.
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the orbital contribution [14]. The magnetisation density is dominated by the orbital 
angular momentum, and its distribution shows almost cylindrical symmetry about 
the ligand direction closest to the applied field. Metal–water bonding interactions 
have also been studied in a CsMo(SO4)2

. 12D2O single crystal [15]. Most of the
spin is concentrated in the Mo(III) t2 g orbitals, but there is significant spin transfer 
to the ligand. The presence of metal–water bonding normal to the plane of the water 
molecule is shown, as well as the absence of significant in-plane metal–ligand spin 
transfer which implies that metal–ligand interaction is highly anisotropic. 

Several [TCNE].– (TCNE = tetracyanoethylene) based ferromagnets and ferrimag-
nets have been successfully synthesised. Among these, [Fe(C5Me5)2].+[TCNE].–, a 
solvent soluble salt, is a ferromagnet with an ordering temperature of 4.8 K 
[16–18]. The MaxEnt reconstruction of the spin density of [TCNE].–[Bu4N].+ and
the corresponding density functional theory calculations are consistent and show that 
the excess α -spin on the [TCNE].– is distributed across the radical. It demonstrates 
that [TCNE].– has the possibility for strong magnetic interactions with neighbouring 
spin sites [19, 20]. Using a non-uniform atomic orbital model, the MaxEnt reconstruc-
tion of the spin density shows features contained in the data, but not in the model. There 
is a significant off-centring, and the nitrogen spin populations are inequal (Figure 2). 

Nitronyl and imino nitroxide free radicals are also among the most versatile spin 
carriers which are widely used in the design of molecular magnets. Their delo-
calised unpaired electrons make them convenient building blocks and ideal mag-
netic bridges between magnetic metals, to achieve new compounds with particular 

Figure 2. [TCNE].–[Bu4N].+ spin density obtained by MaxEnt reconstruction using an atomic orbital 
model, and subsequent projection onto the molecular plane of [TCNE].–. Positive contour steps are 
50 mµB/Å2 and negative contours are dashed (step 10mµB/Å2). A significant off-centring is present. 
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magnetic properties. It has been shown that NIT φ (2-phenyl-4,4,4,5,-tetramethyl-4,5-
dihydro- 1,H-imidazol-3-oxide-1-oxyl), Cu(hfac)2NIT-Me (catena-(m-1,3-2,4,4,5,5- 
penta-methyl-4,5-dihydro- 1, H-imidazol-3-oxide- 1 -oxyl)bis(hexafluroacetylaceto-
nato) copper(II)), p-NPNN ( β -para-nitrophenyl nitronyl nitroxide) and m-NPIM
(2-( 3-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro- 1 H-imidazol- 1 -oxyl) exhibit fer-
romagnetic coupling [21–26], and that CuCl2(NITφ )2 (bis-(2-phenyl-4,4,5,5,-tetra-
methyl-4,5-dihydro- 1, H-imidazol-3-oxide- 1 -oxyl)copper(II)-chloride) and m-NPIN
(meta-nitrophenyl imino nitroxide) exhibit antiferromagnetic interactions [23–26]. 
To the knowledge of the author, the rather large negative contribution to the spin 
density on the carbon atom of the O–N–C–N–O fragment is observed system-
atically on all the nitronyl nitroxides which have been investigated up to now. In 
(Cu(hfac)2NIT-Me)n , 1 and CuCl2(NITPh)2,2, one can also see that coordination of 
a nitroxide to a Cu(II) ion results in spin density transfer from the bound oxygen atom 
to the nitrogen. This effect is more pronounced when the Cu(II) spin density is cou-
pled antiferromagnetically to the spin of the unpaired electron of the O– N– C– N– O
fragment (Figure 3). 

In all cases, the oversimplified theory formulated by Kahn and Briat [27, 28] allows 
to guess the sign of magnetic coupling: the exchange interaction between electrons 
residing on two orbitals is ferromagnetic when those orbitals are orthogonal, and usu-
ally antiferromagnetic otherwise. In fact, the understanding of the interaction requires 
detailed knowledge of the orbital structure. Unrestricted Hartree–Fock calculations 
might predict [29] a good estimate of Tc, but give generally a wrong spin population. 
Compared to UHF, the density functional theory does better in predicting the spin 
polarisation effect [30], but a restricted open-shell Hartree–Fock calculation with 
configurational interaction corrections is now considered. 

Figure 3. CuCl2(NITPh)2,2: projection of the spin density along the π * direction of the nitroxide. Con-
tours 5 ± n(10) mµB/Å2. Coordination of a nitroxide to a copper(II) ion results in spin density transfer 
from the bound O atom to the N atom. 
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4. Itinerant magnetism 

Polarised neutron diffraction technique is also very useful for studying lanthanide- and
actinide-transition metal intermetallics. The itinerant-electron theory and the model in 
which localised magnetic moments are assumed, have been the subject for discussion 
for many years. The itinerant approach, which is associated to d-electron systems, and 
mainly to 3d, is based on the strong overlap of the charge distributions of atoms. The 
magnetism is of spin origin and is governed by the crystal field and in a lower manner 
by the exchange interaction. It may lead to small magnetically ordered moments and 
to high ordering temperatures. 

Previous experiments have shown that the internal magnetisation density of Ni 
is fitted well by a 3d-like density superposed on a uniform negative ‘diffuse’ mag-
netisation which has been ascribed by band calculations to negative polarisation of 
the 4s conduction band. This reverse polarisation only occurs when there is long 
range order, and cannot be induced either by an applied field or by the short range 
fluctuating local fields which are present in the paramagnetic state [31]. The internal 
magnetisation density of Ni is well reconstructed by the MaxEnt method with positive 
values only, and it reveals clearly the magnetic anisotropy of eg and t2g types. But 
allowing for negative contribution, the corresponding form factors give contribution 
to the innermost reflections and vary in an oscillatory manner contrary to what was 
expected [32]. In fact, effect of a presence of the negative contribution is of the order 
of the sensitivity of the MaxEnt program, and further investigations are needed at 
high sin / λ.

Recently, it has been shown that 3d elements might also exhibit magnetic instabili-
ties. In the hexagonal Laves phase compound TiFe2, the fact that a site with no ordered 
moment persists down to low temperatures suggests that the Fe moment is near to 
instability [33] as it is observed [34–37] for Mn in YMn2 or TbMn2. Binary cubic 
alloys might also exhibit high temperature strongly magnetic materials like ZrFe2, in 
which a strong 3d–4d hybridisation is reported [38]. 

5. Localised magnetism 

Contrary to itinerant magnetism, the localised approach treats electrons as strongly 
associated with a particular atom. The 4f-magnetism is of spin and orbital origin and 
governed by the spin–orbit interaction and a lower exchange interaction. The ordering 
temperatures are usually low and the complex magnetic configurations are promoted 
indirectly via conduction electrons. 

Among lanthanides, cerium and samarium exhibit particular behaviours compared 
to other rare-earths. For example, in CeFe2, the 4f electrons form energy bands, and 
the Ce atoms carry a magnetic moment oppositely polarised to the Fe moments [39] 
as it is the case in ZrFe2. The magnetic form factor measured in the mixed-valence
154Sm11B6 is in agreement with apurely Sm2+ form factor [40]. This result is surpris-
ing owing to the anomalies in the Q-dependence of the form factor and to the strong 
different magnetic densities expected for the two valence states Sm2+ and Sm3+.
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6. Actinides: localisation vs itinerency 

Apart from d- and 4f-based magnetic systems, the physical properties of actinides 
can be classified to be intermediate between the lanthanides and d-electron metals. 
5f-electron states form bands whose width lies in between those of d- and 4f-electron
states. On the other hand, the spin–orbit interaction increases as a function of atomic 
number and is the largest for actinides. Therefore, one can see direct similarity between 
the light actinides, up to plutonium, and the transition metals on one side, and the 
heavy actinides and 4f elements on the other side. In general, the presence or absence 
of magnetic order in actinides depends on the shortest distance between 5f atoms 
(Hill limit). 

In neptunium intermetallics, the critical Hill spacing is about 3.2 Å, and we should 
anticipate strong 5f hybridisation leading to non-magnetic behaviour in NpCo2 where
dNp–Np ≈ 3.05 Å. However, hybridisation may also occur with the unpaired 3d 
electrons of magnetic Cobalt atoms. Many previous experiments have failed to reveal 
any direct evidence for long-range ordering of the Np moments. A recent work has 
shown unambiguously the development of long-range order below 13 K, and the PND 
experiment [41] gives the proof of hybridisation between 5f and 3d electrons, and 
shows a decrease of the orbital magnetic moment compared to the spin 5f moment. 
This result is in agreement with single-electron band-structure calculations which 
predict the reduction of the orbital moments of the actinides 5f electrons. 

Concerning induced orbital moments of U-based intermetallic compounds, many 
PND experiments have been performed and have shown that the ratio µL/µs can be 
used as a measure of the hybridisation [42–44] (in the light actinides, orbital and spin 
moments are oppositely directed and the neutron magnetic form factors are highly 
sensitive to the ratio µL/µs). Indeed, this ratio is reduced as compared to the free ion 
expectations (Figure 4). 

Recently, it has been shown that this hybridisation may be anisotropic. In URhA1, 
there is a strong moment on RhI atoms, but no moment on RhII atoms [45]. This 
anisotropy is at the origin of the bulk anisotropy. This hybridisation also plays a 
significative role in the appearance of magnetic anisotropy in U3X4-type actinides. In 
U3Bi4 and U3Sb4, the different magnetic moments determined on the two U sites are 
due to a low local symmetry environment [46]. We also observed a strong reduction 
of their magnitudes compared to the free ion value. 

7. Conclusion

The PND technique is a very sensitive method and certainly the most powerful tool for
determining magnetisation densities. It reveals unambiguously the spin delocalisation, 
the polarisation sign, the density shape and the effects of magnetic interactions. It 
may also separate precisely the spin and orbital contributions, and combined with
well adapted data treatment analyses, it gives access to precise quantitative results. 
Compared to X-ray diffraction technique, the PND technique gives a more direct way
of investigating the chemical bonding involved in molecules containing unpaired 
electrons: only electrons of the outer valence shells are considered. Furthermore, 
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Figure 4. Dependence of the ratio –µL/µs on the number of 5f electrons for light actinide compounds: 
x free ion values, ° experimental values, • form band calculations. The hybridisation between 5f and 3d 
electrons leads to the reduction of the 5f orbital moments (metallic covalency). 

contrary to magnetic resonance, PND corresponds to observations concerning the 
whole space of the unit cell. 
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1. Introduction 

The polarised neutron diffraction (PND) technique is applicable to single crystals 
of systems in which the magnetisation can been partly or completely aligned by an 
applied magnetic field [1, 2]. If the nuclear structure factors are accurately known, 
the components, parallel to the field, of the magnetic structure factors of the Bragg 
reflections can be determined, i.e. the Fourier components of the magnetisation. 
Several different methods can be used to retrieve the magnetisation distribution. The 
simplest is a simple Fourier inversion of a set of magnetic structure factors. A much 
better result can be obtained using the Maximum Entropy method in which both the 
uncertainty of the data and the fact that not all Fourier components are measured can be 
taken into account [3–6]. An alternative technique is to compare the measurements 
to a model which gives the spin and orbital densities. One can express the atomic 
form factor in the dipolar approximation [7–9] at low sin θ/λ, or the magnetisation
density in a multipolar expansion [10, 11]. In the case of molecular magnets [12, 
13], e.g. 3d transition metal complexes and organic free radicals, it is usual to fit 
a Hartree–Fock magnetic wave function constructed from standard Slater orbitals 
at each magnetic site. A more versatile model is obtained by expanding the spin 
density in a superposition of aspherical densities (series expansion in real spherical 
harmonics). To summarise, the PND technique when combined with well adapted 
methods of analysis, can yield precise quantitative results. In this paper, we present 
two complementary ways in which the accuracy of the experimental data can be 
optimised.

2. The flipping ratio 

In a PND experiment, the data measured are the (flipping) ratios Rhkl between the 
intensities observed for (+) and (–) polarisation states of the incident neutron beam 
at the peak of Bragg reflections hkl. These intensities are related to both nuclear and 
magnetic interactions, and the (+) and (–) states correspond to a neutron magnetic 
moment, respectively, parallel and antiparallel to the applied magnetic field. The 
nuclear interaction between the neutrons and the nuclei of the atoms leads to a 
coherent scattering term which contributes to the Bragg intensity, and to an incoherent 
scattering term which comes from the isotopic and nuclear spin contributions. In 
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normal experimental conditions, the nuclear spins are randomly oriented and the 
coherent nuclear scattering does not depend on the incident neutron polarisation 
direction. The incoherent scattering also depends on the Debye–Waller factor and is 
subtracted from the Bragg intensity by measuring the background intensity away from 
the Bragg peak. The magnetic interaction between the neutron magnetic moments and 
the ferromagnetic component of the unpaired electron spins and orbital moments also 
contributes to the Bragg peak intensity which can be written as 

(1)

where N is the nuclear structure factor. M ⊥k is the projection of the magnetic structure
factor onto a plane perpendicular to the scattering vector k = hkl, and P+/– is
the polarisation vector whose magnitude gives the incident beam polarisation. The 
polarisation dependence of the intensity comes from the nuclear-magnetic interfer-
ence terms, and these are the origin of the high sensitivity of the PND technique. 
Experimentally, the flipping ratio is determined by measuring the count rates rp+,
rp– at the peak of a Bragg reflection, and the background count rates rb+ and rb– on
either side of it. Then, 

(2)

Before going further, it may be noted that the flipping ratio does not depend either 
on the Lorentz factor or on absorption in the sample. Certain instrumental parameters 
such as the polarisation of the neutron beam for the two spin states, the half wavelength 
contamination of the neutron beam and the dead-time detector can readily be taken 
into account when analysing the data. On the other hand, the extinction which may 
occur in the scattering process is not so easy to assess, but must also be included [14]. 
Sometimes, it is even possible to determine the magnetisation density of twinned 
crystals [15]. 

The variance (3) of the flipping ratio as a function of rates is easily obtained from 
Equation (2): 

(3)

We shall present, in the following sections, two complementary measurement strate-
gies which allow the value of this variance to be minimised. The first concerns the 
technique by which the measuring time is divided between the two polarisation states, 
and the second minimises the variance by determining an optimal division of the 
counting times. 

3. Cyclic measurements 

The rates are commonly defined by r = N/M, i.e. the intensity N normalised by 
monitor M. The monitor count is proportional to the incident flux, as this normalisation 
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corrects for fluctuations of the neutron source. For simplicity, before discussing the 
general case, let us consider the case for which the background contribution is neg-
ligible compared to the Bragg intensity. In such a situation, the expressions for the 
flipping ratio and for the variance are very simple 

(4)

(5)

Normally, the dead-time of the monitor is negligible and V(M) ≈ M. If the monitor 
counts neutrons at a typical rate of 103 n/s, its contribution to the standard deviation 
σ (R0) of a measurement taking 40 s is of the order of 0.01 x R0. In the case of a 
strong Bragg intensity, i.e. a rate greater than 103 n/s, Equation (5) shows that σ (R0)
depends mainly on the monitor values. To make the point clear, suppose now that 
for a constant flux on the sample, the monitor counts only 10n/s. Then, the monitor 
contribution to σ (R0) for the same measurement time is an order of magnitude greater, 
which means that the value of the standard deviation of R0 is unnecessarily large. 

The high sensitivity of the variance of R to the monitor count rate can be avoided 
by making use of the fact that the fluctuations of the neutron source are rather slow. 
At the Institut Laue Langevin (ILL), the fastest fluctuations which can be observed 
have a period of about 15 min and are negligible. The larger, but still relatively minor, 
fluctuations of the High Flux Reactor are slower and arise firstly when the weir which 
retains the cooling water for the reactor is opened (period of 12 h), and secondly from 
the change in distribution of reactivity which occurs during a reactor cycle as the fuel 
element is consumed (50 days). 

In the measurement technique, which has been used on D3 for many years, the 
ratio of the time spent counting with the cryoflipper in (+) or (–) mode is controlled 
by a quartz crystal controlled oscillator with a highly stable output frequency f of
1 MHz. There are two scalers to count the detector pulses (+ and – states), a single 
monitor scaler and a single time scaler used to end the measurement when the total 
time is reached (precision of 1 ms). 

The logic of the CAMAC unit driving the cryoflipper and gating the scalers (FCU) 
[16] operates cyclicly every 2 . 106 + 2n pulses of 1 µs. The operations it performs
in each cycle are illustrated in Figure 1. At t = 0, all scalers are gated OFF and the 
cryoflipper is switched (+). At t = n0, the monitor, the time and the (+) scalers 
are switched on; after n pulses (at t = n0 + n) the flipper is switched (–) and all 
the scalers are gated off for n0 pulses. Finally at t = 2 n0 + n the monitor, time and 
(–) scalers are switched on for 2 . 106 – n pulses. n0 is chosen to allow time for the 
currents in the flipper circuits to stabilise after switching (typically 15 ms), and n can
be selected by the program to fix the ratio n/(106 – n) of tp+/tp–. If the neutron flux 
variations are slow compared to the cycle time, the precision of the ratio Mp+/Mp–

is determined by that of the oscillator, and one can write the expressions 

and (6) 
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Figure 1. Logic of the flipper control unit (FCU). 

where Mp is the total monitor value corresponding to the peak measurement for both 
(+) and (–) states. Substituting (6) in expressions (4) and (5) leads to new formulae 
for the flipping ratio: 

(7)

(8)

With a 1 MHz quartz clock, the contribution to the standard deviation σ (R0 ) is 
mainly that from the intensities N. For example, with tp+ = tp– = 20 s, the time 
contribution to σ (R0) is equal to 10–7 R0. This is negligible compared to the 
values calculated above. This cyclic method reduces the time needed to obtain a given 
accuracy in flipping ratio measurements particularly in the case of strong reflections. 

One may ask whether this method could be generalised to include the background 
contributions also. The flipping ratio can be written as a function of the counts and 
the time determined fractions of the monitor count as 

(9)

Practically, this requires that crystal be rotated quickly and reproducibly into and 
out of the reflecting position, so as to allow the peak and background contributions 
be counted repeatedly for both incident polarisation states. Even with present day 
technology, making such movements with the required precision is time consuming. 
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Table 1. Flipping ratios of strong and weak reflections obtained using the standard (std) and cyclic (cyc) 
methods (total measurement time of 180 s). As expected, an improvement is observed for the strong 
reflection.

Reflection 200 600

Rate (background) 
t+/t– 10%/90% 50%/50%
tb / tp 20%/80%  20%/80%
Rstd 13.956 ± 0.063 (0.45%) 1.200 ± 0.019(3) (1.614)
Rcyc 13.986 ± 0.054 (0.38%) 1.199 ± 0.019(2) (1.608)

≈ 7000 n/s ( ≈ 40 n/s) ≈ 150 n/s ( ≈ 30 n/s) 

Because of this, cyclic measurements are made first of the background (+) and (–) 
intensities, and then of the (+) and (–) peak intensities (6). Thus, the (+)/(–) ratios 
are obtained with a high accuracy (clock precision), but the peak/background ratios 
still depend on the monitor counts Mp = Mp+ + Mp– and Mb = Mb+ + Mb –.
In such conditions, the flipping ratio is defined by Equations (10) and (11) where 
tp = tp+ + tp– and tb = tb+ + tb–. One may note here that the count rates are no 
longer independent, so that expression (3) cannot be used to derive the variance of R
directly

with (10) 

(1 1) 

With the new VME/UNIX control system on the polarised hot-neutron normal-
beam diffractometer D3 at ILL, each measurement cycle for both peak and background 
intensities lasts 2 s, and the (+)/(–) counting-time fractions are defined with a 1 MHz 
clock. There are two detector scalers and two monitor scalers ((+) and (–) states). In 
Table 1, we compare the flipping ratio measured for the strong 200 and the weak 600 
Bragg peak reflections of a CoFe sample. As expected, the standard deviation σ (R)
is improved in the case of the strong reflection (16%). 

4. Optimised counting-time distribution 

Another way to improve the quality of flipping ratio is to optimise the proportions 
of time spent counting in the four states: peak (+), peak (–), background (+) and 
background (–), so as to minimise the variance obtained with a fixed total counting 
time. For example, in the case of a weak reflection for which the Bragg peak count rates 
are comparable to those of the background, one has to count the peak and background 
intensities for the same time. On the other hand, if the peak to background ratio is 
large, the precision of the peak count and consequently the time spent measuring it, 
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should be greater than that for the background. Finally, if the (+) and (–) intensities 
are very different, the ratio of the (+)/(–) counting times must be chosen in order to 
obtain the same total counts for both incident polarisation states [17]. 

We present here the theory behind the method, which has been used on D3 for some 
20 years, to achieve such optimisation. Because (+) and (–) peak count rates and 
peak/background ratios may differ strongly from one reflection to another and are not 
known a priori, the measurement is divided into a number of steps of duration T. A
first flipping ratio measurement is made in predefined conditions ( tp+, tp–, tb+, tb–).
Then, after calculating the counting-time proportions which minimise the variance 
of the flipping ratio, the time already spent is subtracted and the measurement is 
made again with times chosen to achieve these optimised proportions. The process 
of calculation and measurement is repeated in each step. 

To determine the expressions for the optimised counting times, we write the ex-
pressions (10) and (11) in terms of count-rates and times (count rates are constant 
quantities for each Bragg reflection). We assume that the incident neutron flux is 
constant during a flipping ratio measurement, and that no dead-time correction is 
needed. In these conditions, we have the relations: 

(12)

(13)

Using (12) and (13) in (10) and (11), we obtain the simplified expression for the 
variance:

with (14)

Minimising this expression subject to the constraint tp+ + tp– + tb+ + tb– = T using
the Lagrange multipliers, one obtains the optimal counting-time proportions: 

(15)

On D3, we have tested this method, starting with the conditions tb/tp = 20%/80% 
or 50%/50% for t+/t– = 10%/90%, 50%/50% and 90%/10%. These tests were 
performed for the 200 and the 600 reflections of a CoFe single crystal for different 
magnitudes of the applied magnetic field, R varying from 1 (no magnetic field) to about 
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20. The main results are summarised in Figures 2 and 3. The dashed curves associated 
with the left axis represent the time variation of the relative standard deviation of 
the flipping ratio measured with steps of 60 s. The time dependence of the relative 
improvement using the proposed method is represented by the full curve (right axis). 
In Figure 2, the predefined conditions are not too far from being optimal, and an 
improvement of about 7% is observed. In Figure 3, the (+)/(–) starting counting-
time proportions are bad and the improvement is more than 17%. This method works 

Figure 2. Time variation of σ (R)/R (dashed lines) and of the relative improvement (full line) for the 200 
reflection. No significant improvement is obtained by going beyond three steps. 

Figure 3. Time variation of σ (R)/R (dashed lines) and of the relative improvement (full line) for the 600 
reflection. Starting with bad counting-time proportions, the improvement is more than 17%. 
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Table 2. Flipping ratios of strong and weak reflections measured starting from different time proportions 
(three steps of 60s). When using the optimised method, the standard deviation σ (R) does not depend on 
the initial conditions. 

tb/tp (%/%) t+/t– (%/%) σ std(R200) (%) σ opt(R200) (%) σ std(R600) (%) σ opt(R600) (%)

20/80 10/90 0.38 0.35 2.52 1.59
... 50/50 0.42 0.35 1.63 1.59
... 90/10 0.91 0.37 2.67 1.58
50/50 10/90 0.47 0.35 2.93 1.61
... 50/50 0.51 0.36 1.89 1.61
... 90/ 10 1.11 0.37 3.19 1.60

well, and the main result is that, in all cases examined, no significant improvement is 
obtained by going beyond three steps. 

In Table 2, we present the standard deviation of flipping ratios measured in three 
steps starting from different timing conditions. As was done previously, we have 
considered two types of Bragg peaks: the strong polarising 200 reflection and the 
weak almost non-polarising 600 reflection of a CoFe single crystal. The results are 
very satisfactory. They show that almost the same accuracy is obtained for each Bragg 
reflection, independently on the initial conditions. 

The only problem with this method is observed for weak reflections where (+)/(–) 
count-rates are similar (i.e. R≈ 1). The (+)/(–) optimised counting-time proportions
must be 50%/50%, but with low count-rates, we have observed that the lack of 
precision may lead to proportions which are not optimum (e.g. 47%/53%). The 
same behaviour has been observed for peak to background proportions. In fact, 
when measuring a flipping ratio in many steps, we observe oscillations of the time 
proportions which slow the decrease of the standard deviation. Of course, these time 
variations have no sense, and one should calculate the variances of the ‘optimised’ 
counting-times (Equations (16)) to avoid such spurious fluctuations: 

(16)

We propose to use (17) as criteria to determine whether the statistics allow the calcu-
lated proportions to be distinguished from the (50%/50%) case. Using the criteria, 

if

if

if

if

then

then

then

then

(17)

no more oscillations were observed. 
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5. Conclusion 

We have presented two complementary ways to improve flipping ratios measurements. 
The first one applies mainly to strong peaks. The (+)/(–) counting-time ratios are 
fixed with high accuracy and the monitor can then be corrected for slow variations 
of the neutron flux, without degrading the final variance of the flipping ratio. The 
second one is more general, and permits flipping ratios to be measured with the best 
accuracy available in a determined measurement time without any pre-knowledge 
of the (+)/(–) or peak/background count rates. The counting-time proportions are 
adjusted optimally during the measurement using an iterative process. An algorithm 
based on the methods presented here is used to optimise flipping ratio measurements 
made by the polarised hot- neutron normal-beam diffractometer D3 at ILL. 
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Concerning the magnetisation density in magnetic 
neutron scattering experiments 

DYLAN JAYATILAKA 
Department of Chemistry, The University of Western Australia, Nedlands 6009, Australia 

1. Introduction 

The magnetic dipole moment density, or magnetisation density, has assumed a funda-
mental role for the interpretation of magnetic scattering of neutrons from matter [1]. 
This is unfortunate, as it is well known that the magnetisation density is not determined 
to within a gradient of a scalar function [1, 2]. Strictly, the magnetisation density is 
not an observable. To highlight this fact, note that there are several acceptable formula 
for the magnetisation density; Steinsvoll et al. [3] have proposed 

(1)

while, on the other hand, Trammell [4] gives 

(2)

In these equations, J is the physical current density. Clearly, the magnetisation density 
is a derived quantity. 

Why, then, is the magnetisation density used? The answer is that the magnetisation 
density is important for certain approximations which are usually made in analysing 
neutron scattering experiments. In the standard polarised neutron diffraction (PND) 
experiment [5], only one parameter is measured – the so-called ‘flipping ratio’. It is 
impossible to determine a vector quantity like the magnetisation density from a single 
number, unless some assumptions are made. The assumptions usually made are: 

1. The magnetic field seen by the probe neutron is solely due to the magnetic dipole 
moment density of the unpaired electrons. In other words, the magnetisation density 
is simply related to the electron spin density by a multiplicative factor, and there is 
no ambiguity in its definition. 

2. The direction of the spin density can be fixed experimentally, usually to be along
the direction of an externally applied magnetic field. 

These assumptions define the collinear approximation. In this approximation, the 
PND experiment becomes a powerful tool for seeing what the unpaired electrons are 
‘doing’, which is particularly useful in a chemical context. Although more detailed 
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experiments can fix all components of the magnetisation density (for example, the 
polarisation analysis experiments [6]), they are rarely carried out. 

The question now arises: can we tell when the collinear approximation is likely 
to break down? A practical indicator of trouble would be anisotropy in the g tensor,
since the g tensor defines the angle of the total magnetic moment relative to an 
external applied field; systems with highly anisotropic g values are known [7]. On 
the other hand, theoretically, the failure of the collinear approximation is related to a 
breakdown in assumption (1) above: magnetic interactions between the neutron and 
internal electronic orbital currents become significant. These internal currents are due 
to spin-orbit coupling effects [8]. Since energy associated with spin–orbit coupling is 
known to grow as Z4 , where Z is the nuclear charge, it seem likely that failure of the 
collinear approximation will be the rule rather than the exception for heavy atoms. 
There are certainly examples of systems where this approximation breaks down (see, 
for example, Refs. [9, 10]), but they appear to be rare. It may be true that studies on 
systems which are not fruitfully analysed within the conventional collinear scheme 
are avoided, or not published. 

In this article I propose a formalism which avoids the magnetisation density and 
the associated collinear approximation in favour of the observable magnetic field 
density B(r) and the current density J(r). I will show that the magnetic scattering of 
neutrons is completely determined by the magnetic field density, and that the current 
density can be determined from the magnetic field density. I will also show that the 
Fourier components of the magnetic field density determine the magnetic scattering 
amplitudes for the neutron, so that magnetic field density plays exactly the same role 
as does the charge density in an X-ray scattering experiment. The key to the formalism 
is to recognise that the magnetic field density is ‘sampled’ by the magnetic moment 
of the neutron, Mn, via an interaction term 

(3)

Halpern and Johnson [11] noted the significance of this form of interaction in 1939, 
but did not pursue it. Finally, I show how it is possible to retain some connection 
within the collinear magnetisation density framework by defining a ‘canting angle’ 
which describes quantitatively the deviation from the collinear approximation for each 
measured neutron scattering reflection. We will present calculations for this canting 
angle for the system in the crystal Cs3CoCl5.

2. Magnetic neutron scattering in terms of the magnetic field density 

In the first Born approximation [12], the scattering cross section for a beam of neutrons 
incident on a magnetic material, assuming form (3) for the interaction, is given by 
the square of the scattering amplitude, F(kf, ki), where 

(4)
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ki and χ i are the initial wave vector and spin state of the incoming neutron, while kf

and χ f are the same quantities for the scattered neutron. Mn is the mass of the neutron, 
and V is the spin dependent scattering potential seen by the neutron. Using form (3), 
this is [5] 

(5)

where γ is the magnetic moment of the neutron in nuclear magnetons µN, Sn is the 
spin operator for the neutron and B(r) is the magnetic field density of the electrons 
seen by the neutron. Note that the non-magnetic isotropic scattering of neutrons from 
the nuclei has been neglected. It may easily be incorporated in this approach using 
delta functions to represent the scattering potential of the nuclei. For elastic scattering 
considered here, the sample (and hence the potential V) will not be modified during 
the scattering process. The scattering matrix element (4) is seen to involve a Fourier 
transform of B(r) in the variable k = ki – kf,

(6)

where the bar indicates the aforementioned Fourier transform. In another work in the 
literature, the magnetic field density Fourier component B is known as the ‘perpen-
dicular structure factor’, F⊥ . This hides the fact that we are in fact just dealing with 
the Fourier transform of the magnetic field density, a concept which is easily grasped. 

3. Expressions for the magnetic field density 

The following development is devoted to obtaining an expression for B in terms of 
more familiar quantities. To this end, consider the Fourier transform of Maxwell’s 
equations (in the time independent case) 

(7)

(8)

J is the Fourier transform of the electron current which gives rise to the magnetic 
field B. Using these equations with the following vector identity, 

(9)

(where k = k/ k is a unit vector), gives 

(10)

In the non-relativistic limit, the electron current is comprised of two contributions [13], 

(1 1) 
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JL is due to the linear velocity of the electrons (the ‘orbital’ component) while JS is
due to the spin of the electron. The quantum mechanical expressions for these currents 
are

(12)

(13)

(14)

where π is the gauge invariant momentum operator, Ms is the spin magnetisation, 
and Se is the spin operator for the electrons. ρ (x; x' ) is the reduced one particle matrix 
for the state under consideration, where x = ( r, χ ) are space–spin coordinates. Note 
that due to the continuity equation for the total electron current, 

(15)

the linear current JL may also be written exactly as the curl of a vector function ML.
However, as discussed in the introduction, it is not clear how to define a unique ML

from a given current density JL. The problem does not arise for Ms since it is related to 
the spin operator, which is unique. Now using (10) and (11) and the Fourier transform 
of (13) gives 

(16)

This is the desired result which may be substituted into the scattering amplitude 
formula (6). The resulting scattering formula is the same as found by other authors [5], 
except that in this work SI units are used. The contributions to the Fourier component 
of magnetic field density are seen to be the physically distinct (i) linear current JL

and (ii) the magnetisation density Ms associated with the spin density. A concrete 
picture of the physical system has been established, in contrast to other derivations 
which are heavily biased toward operator representations [5]. We note in passing that 
the treatment here could be easily extended to inelastic scattering if transition one 
particle density matrices ρ fi (x; x' ) were used in Equations (12)–(14).

4. Magnetic neutron scattering in terms of the current density 

It will now be shown that the current density is uniquely determined from the magnetic 
field density. From the Fourier transform of the current conservation condition (15) 
we have 

(17)

Combined with Equation (10) and a decomposition analogous to (9), we obtain the 
desired result 

(18)
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Alternatively, we could have derived this from Maxwell's Equation (7). Magnetic 
neutron scattering can therefore be seen as a probe of the current density in the 
system. In this view, the magnetic scattering of neutrons is a pleasing complement to 
the X-ray scattering experiment, which probes the charge density. 

5. Non-collinear magnetisation and the canting angle 

In view of the central role that a magnetisation density plays for magnetic neutron 
scattering, it is useful to define a parameter for each reflection, called a canting angle, 
which gives a quantitative estimate of the deviation from the collinear approximation. 
The idea is as follows. 

In the collinear approximation, the direction of the magnetic field would be given 
by k x z x k, assuming that the magnetisation lies along the applied field direction, 
taken to be the unit vector z by convention (to see this, look at Equation (16) and 
ignoring the orbitals currents). On the other hand, the actual magnetic field is given 
by B. The canting angle is therefore defined as the angle between these two directions. 
An expression for the canting angle is 

(19)

The maximum value obtainable for the canting angle is 90º. This maximum value 
occurs when B is in the same direction as the scattering vector. (It may be necesary to 
use 180º – when the magnetic field is against the direction of the scattering vector.) 
Essentially, this is a canting angle into the plane of the scattering. 

We have calculated the canting angle for the system in the crystal Cs3

CoCl5 using the ab initio methodology in Ref. [16]. The calculations differ from 
those previously reported in that (i) experimental (neutron) geometrical, thermal, and 
scattering length parameters were used for the cobalt complex [15] (note: these are 
the only experimental data used, and they were not ‘refined’ to give a better fit to 
experiment), and (ii) a better basis set was used, from [14], supplemented with an 
extra p polarisation function on the cobalt atom (exponent 0.141308 atomic units) and 
d polarisation function on the chlorine atoms (exponent 0.65 atomic units). As in the
previous work, to account for the shielding effect of the missing two-electron spin-
orbit interactions, the one-electron spin–orbit integrals were scaled by the Slater factor 
of 1/3. The agreement between the calculated thermally averaged magnetic structure 
factors and the experimental magnetic structure factors gave χ 2 = 6.3, with an 
overall scale factor of 1/1.080. (The calculated structure factors are too large.) This c2
agreement statistic is an improvement over the previous work. Table 1 shows values of 
the calculated canting angle for various reflections together with, for comparison, the 
nuclear structure factors FN, and scaled effective scalar magnetic structure factors FM.
We have only included those reflections from the experiment which our calculations 
show have canting angles greater than 0.1º. Clearly, out of the original 98 calculated 
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Table 1. Canting angles (hkl) (degree) for various reflections (hkl), with nuclear structure factors FN

and scaled scalar magnetic structure factors FM (Bohr magneton). 

h k l FN FM (hkl) h k l FN FM (hkl)

1 2 3 -54.306 -0.040 9.47 3 11 2 27.648 0.636 0.14

1 6 3 35.176 0.038 5.35 5 11 2 11.318 0.680 0.16
1 8 3 -42.943 0.008 14.71 2 10 4 21.637 1.174 0.10
2 3 3 25.121 -0.150 1.78 2 12 4 14.668 0.244 0.47

2 9 3 51.361 -0.002 51.41 5 9 4 23.464 1.622 0.12
3 4 3 10.920 0.188 0.39 6 10 4 29.852 1.056 0.16
3 6 3 19.138 0.071 0.93 1 2 1 11.476 0.072 18.05 

1 4 3 28.720 0.129 5.84 4 12 2 -11.845 -0.289 0.31 

2 5 3 -63.881 -0.139 1.93 3 11 4 46.191 -0.677 0.25 

3 8 3 -18.186 0.001 79.77 1 6 1 -16.273 –0.011 22.13
5 12 3 -46.183 -0.020 7.72 2 3 1 -12.105 0.060 11.79 
1 2 5 -2.666 -0.110 3.16 2 5 1 15.554 0.061 8.67
1 4 6.942 -0.095 4.42 3 6 1 –10.175 -0.033 5.86 
2 7 5 11.160 0.024 2.62 5 6 1 19.564 -0.019 1.85 
2 3 5 -4.295 0.197 0.35 

reflections, very few are significantly canted. Further, the few magnetic structure 
factors that show large canting angles (say, greater than 10º) are associated with very 
small magnetic structure factors, so are not well determined by either experiment or 
calculation. There are only four reflections with a canting angle greater than 1º for 
which FM is above 0.1 Bohr magneton. It would appear that for this system, except for 
a few reflections, the calculations show that the collinear approximation is good. This 
is in agreement with previous conclusions that the system is, essentially, collinear. 
We plan to report calculations on systems where non-collinear effects are suspected 
to be important in the near future. 
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A wave function for beryllium from X-ray diffraction data 

DYLAN JAYATILAKA 
Department of Chemistry, The University of Western Australia, Nedlands 6009, Australia 

1. Introduction 

The fundamental object in the quantum theory of matter is the wave function, which 
is the most compact way to represent all the information contained in a system. Exact 
wave functions are usually not available, so if we want to know certain properties of 
the system the procedure is to set up some model Hamiltonian and get an approximate 
wave function, from which the desired properties can be extracted. This program can 
be represented by 

Model Hamiltonian wave function(s) → Properties (1)

The reverse program is also quite common: 

Properties → Model Hamiltonian wave function(s) (2)

The reason for pursuing the reverse program is simply to condense the observed 
properties into some manageable format consistent with quantum theory. In favourable 
cases, the model Hamiltonian and wave functions can be used to reliably predict 
related properties which were not observed. For spectroscopic experiments, the prop-
erties that are available are the energies of many different wave functions. One is 
not so interested in the wave functions themselves, but in the eigenvalue spectrum 
of the fitted model Hamiltonian. On the other hand, diffraction experiments offer 
information about the density of a particular property in some coordinate space for 
one single wave function. In this case, the interest is not so much in the model 
Hamiltonian, but in the fitted wave function itself. 

In this article I will be concerned with determining wave functions from charge 
densities measured by X-ray diffraction experiments. The extraction of wave functions 
(or density matrices) directly from diffraction related experiments, although not as 
well developed as extracting model Hamiltonians in spectroscopy, has nevertheless 
had a long history [3–8]. Indeed, Massa et al. have recently coined the term ‘Quantum 
Crystallography’ to describe the field where using crystallographic techniques are 
used to enhance quantum mechanical calculations [2]. 

The technique used to extract the wave function in this work is conceptually 
simple: the wave function obtained is a single determinant which reproduces the 
observed experimental data to the desired accuracy, while minimising the Hartree– 
Fock (HF) energy. The idea is closely related to some interesting recent work by 
Zhao et al. [l]. These authors have obtained the Kohn–Sham single determinant 
wave function of density functional theory (DFT) from a theoretical electron density. 
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(The Kohn–Sham determinant is the single determinant which reproduces the electron 
density and minimises the kinetic energy [1, 9].) They observed that for the Be atom, 
the Kohn–Sham orbitals were nearly indistinguishable from the HF orbitals, and on 
this evidence they claim that the problem of finding a physically meaningful wave 
function from an electron density is ‘solved’. Here, we merely note that there are a 
number of desirable features for our model: 

• The problem of having sufficient data to fit does not arise, unlike previous 
work [3, 7]. 

• The model gives a unique answer in the limit of an infinite basis set, whereas density 
matrix fitting methods do not [10, 11]. 

• Since the HF model already gives good charge densities, and reliably predicts many 
other diverse properties, it seems reasonable to expect that the charge densities 
produced from this model will be better than those from conventional least squares 
fitting. In other words, ‘quantum knowledge’ is built into the model. 

• Comparison between the model and ab initio calculations are greatly facilitated 
since exactly the same basis sets and methodology are used in both. 

• The form that the equations take involves a straightforward modification of the 
self-consistent HF or density functional methods currently used in the oretical 
chemistry.

There are, however, two new issues which arise when using real data. First, because 
of experimental errors, our wave function should not exactly produce the experimental 
charge density. This has some important consequences. Second, because data for a 
periodic system will be used, the orbitals obtained should be orthogonal throughout 
the crystal if a single determinant wave function is to be constructed. The resolution of 
the orthogonality problem is not critical for the purposes of charge density modelling, 
but will allow useful results from formal density functional theory to be used. These 
problems will be discussed and resolved. The method will be demonstrated to work 
by extracting the wave function for beryllium crystal, for which accurate experimental 
charge density data is available. 

2. Theory 

2.1. Review of the Zhao-Parr technique 

Consider a single determinant wave function whose orbitals φi are obtained from a 
model hamiltonian h,

(3)

The density is given by 

(4)
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If ρ is constrained to be the same as the exact ground state density ρ 0, then the orbitals
will satisfy the equation

(5)

where λ is the Lagrange multiplier attached to the constraint. The form of uc depends
on the specific choice of the constraint (or penalty) function C. Zhao et al. [1] propose

(6)

(7)

Provided the potential υ is local in r, in the limit that λ → ∞ we will have ρ → ρ 0
independent of the choice of υ. In this limit then, Equation (5) gives the Kohn–
Sham orbitals and eigenvalues. The determinant formed from these orbitals is a wave
function obtained from the density ρ 0.

In this work I choose a different constraint function. Instead of working with the
charge density in real space, I prefer to work directly with the experimentally measured 
structure factors, Fh. These structure factors are directly related to the charge density
by a Fourier transform, as will be shown in the next section. To constrain the calculated 
cell charge density to be the same as experiment, a Lagrange multiplier technique is
used to minimise the χ 2 statistic,

(8)

where are the calculated structure factors, σ h is the error associated with each
measured structure factor Fh, and M is the number of observations. Our choice is
motivated by the fact that the χ 2 statistic is often used in crystallography as a measure
of error. Unlike Parr and coworkers, I do not constrain χ 2 to be zero: it does not make
sense to exactly reproduce an experimental density which contains errors. Instead,
χ 2 is constrained to be equal to a certain value ξ p.

One way to choose the value of ξ p is as follows. Assume that the distribution
of squared residuals is normal, as is often done in crystallography. Then tables are
available [17] which give the probability p that a particular experiment will give a
χ 2 less than ξ p. The value of ξ p can be chosen according to the desired confidence
level, p. Of course, other ways to choose ξ p are possible. Indeed, other choices for
the agreement of statistic are possible.

As a consequence of the non-zero value demanded for the ξ 2 statistic, the solution
to (5) (if possible at all) will occur at a finite value of λ. . Because of this, the choice
of υ is no longer arbitrary. Clearly, υ must be chosen using the best possible model,
so that one does not have to constrain the orbitals very much to obtain the observed 
charge density. The HF model is chosen for this work, υ = υHF, because studies have
already indicated that very good results are obtained at this level [18], and, as already 
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noted, the HF orbitals appear to be very similar to the Kohn–Sham orbitals for the 
case examined here, beryllium. 

However, one feature of the HF potential is that it is not a local potential. In the 
case of perfect data (i.e. zero experimental error), the fitted orbitals obtained are no 
longer Kohn–Sham orbitals, as they would have been if a local potential (for example, 
the local exchange approximation [27]) had been used. Since the fitted orbitals can 
be described as ‘orbitals which minimise the HF energy and are constrained produce 
the real density’, they are obviously quite closely related to the Kohn–Sham orbitals, 
which are ‘orbitals which minimise the kinetic energy and produce the real density’. 
In fact, Levy [16] has already considered these kind of orbitals within the context of 
‘hybrid’ density functional theories. 

2.2. The charge density and the X-ray diffraction experiment 

Real data is often available only for periodic systems, so only the density in the crystal 
unit cell need to be considered. Now the X-ray experiment gives structure factors Fh

(along with errors σ h) which are related to the unit cell charge density via a Fourier 
transform,

(9)

where B is the reciprocal lattice matrix dependent only on the crystal morphology, and 
h is an integer vector (the Miller indices) labelling the reflection. So constraining the 
calculated and experimental charge densities to be the same is equivalent to constrain-
ing the calculated and experimental structure factors to be the same. Restricting our 
attention to systems which are centrosymmetric (so the structure factors are real) and 
composed of one symmetry unique molecule in each unit cell, it follows that the cell 
charge density can be decomposed into a sum of Nm molecular charge densities ρj,
each related by unit cell symmetry operations { Sj, rj} to a reference charge density 
for the molecule ρ 0,

(10)

It is usually a good approximation to take ρ 0 to be the isolated molecule charge 
density, but within the above restrictions, no approximation has yet been made. For 
practical calculations ρ 0 is usually obtained in a basis set. If we write 

(11)

where Cµi are the orbital expansion coefficients, then, using (4), the reference molecule 
charge density basis set expansion is 

(12)
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where

(13)

is the (closed shell) density matrix. Using this in (10) and substituting in (9) yields 
the desired result for the calculated structure factors, 

(14)

Ih are the thermally smeared Fourier transforms of the basis function pairs summed 
over all the equivalent unit cell sites, 

(15)

Fast methods for evaluating these integrals for the case of gaussian basis func- 
tions are known [12]. Also, Hall has described how to get the symmetry operators 

for any crystal space group [13]. The parameters tµv account for 
thermal smearing of the charge density. In this work I use the form recommended by 
Stewart [14], 

(16)

which is expressed in terms of the thermal vibration parameters Uµ (also obtained 
from the X-ray experiment) for the atom on which basis function gµ is centred. The
factor g is if the motions of atoms µ and v are ‘correlated’, or if ‘uncorrelated’. In
this work, atoms were deemed correlated if they were less than 2.5 Bohr radii apart. 
The formula for the temperature factors is model dependent, but the use of a different 
thermal smearing model [15] makes little difference. Additional h dependent factors 
which account for extinction may also be incorporated in (15), but I have not done that 
in this work, because extinction was shown to be very small for the case of beryllium 
crystal. However, an overall ( h independent) scale factor is used, since the absolute 
scale is not always well defined in the X-ray experiment. 

2.3. A wave function for the entire crystal based on localised orbitals 

It is possible to ensure that the orbitals we extract for one molecule in the crystal are 
orthogonal to all other orbitals on all other molecules in the crystal. If this is the case, 
a determinant wave function can be constructed for the entire crystal. To ensure the 
required orthogonality, a projection operator is used: 

(17)
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It is assumed that the orbitals on the reference system φi are fairly localised. All the
other orbitals in the crystal are related to the reference orbitals by translations and 
crystal symmetry operations as in (10). The assumption of locality means that only 
a finite number of neighbours near to the reference molecule need to be included in 
the above summation. Adding the above projector to any equation for the reference 
system orbitals and choosing the Lagrange multiplier k large enough will ensure 
orthogonality. The projection operator ensures that the parts of the orbitals which are 
not orthogonal are energetically unfavourable, and are thus removed. 

2.4. Working equations in a finite basis set

The matrix form for (5) expressed in a finite basis set is easily shown to be 

(18)

where the usual definitions hold, 

(19)

S is the overlap matrix, while f is taken to be the Fock matrix in this work. The matrix 
of the χ 2 constraint term, vc, is given by 

(20)

It is essentially the derivative of χ 2 with respect to the orbital coefficients c (see
Equation (7)). The matrix of the projection term p which ensures orthogonality to 
neighbouring molecules is 

(21)

These equations are solved in the usual self-consistent way, the Lagrange multipliers 
λ and k being chosen large enough to give, respectively, the desired agreement with 
experiment, or the desired orthogonality to near neighbours. As for normal HF equa-
tions, there will be Ne/2 ‘occupied’ orbitals co and a number of ‘virtual’ orbitals cu.
It is usual to write 

(22)

2.5. Convergence issues 

In practice, convergence problems are observed, because as λ becomes larger, f
becomes small compared with vc, and the solution of (18) becomes like a least squares 
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fit, which is a singular problem if there are less data than parameters. Using real data 
with normal basis sets, vc is unlikely to go to zero as λ gets larger, so the equations 
become increasing ill-conditioned. The convergence acceleration technique of Pulay 
[19] improves the situation. Alternatively, Equation (18) can be recast as follows. The 
occupied–occupied and virtual–virtual block of f are arbitrary and can be scaled by 
λ . Now divide the scaled f in (18) by λ and substitute ∈ /λ → ∈ and κ /λ → κ (this
follows because they are Lagrange multipliers). The result is 

(23)

where fλ has had its occupied–unoccupied blocks scaled by 1/ λ ,

(24)

Later, the occupied–occupied block will be diagonalised using different effective 
potentials to get eigenvalues. 

3. Results 

The theory described in the previous section is now applied to beryllium metal. 
Accurate low temperature data was taken from the paper of Larsen and Hansen [20]. 
(But note that in (20) I used the structure factors multiplied by 1000, as given in their 
paper.) For the orthogonalisation, all nearest neighbours we included within the first 
shell. There were 12 atoms. A ‘triple zeta’ basis set from Ref. [21] was used. There are 
182 basis functions and 361 independent parameters in the wave function, whereas 
there are 58 experimental measurements. Figure 1 shows a plot of the χ 2 agreement
statistic as a function of the parameter λ , for κ = 0.2. Larger values of κ caused

Figure 1. χ 2 agreement statistic versus λ for κ = 0.2. 
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numerical instability. For λ = 10 the overlap with the near neighbours was 0.004 and 
0.002 for κ equal to 0.1 and 0.2, respectively. The plot for κ = 0.1 is indistinguishable 
on this scale. The value of χ 2 at λ = 10 was 1.44, with the overall scale factor being 
0.997. A straight atomic density gave a χ 2 of 2.37: the atomic model is already very 
good. It seems clear that a χ 2 much lower than 1.44 is not practically obtainable, either 
because the energy penalty is too high, or the basis set is inadequate. To test the latter, 
calculations were performed with an additional d function (exponent 0.32 atomic 
units) on the beryllium atom, but to make the calculations practical, orthogonalising 
the orbitals to the near-neighbours was not performed. (This approach corresponds to 
using up to l = 4 in a normal least squares multipole moment approach.) The value 
of χ 2 obtained was 1.40, indicating the basis set is not the problem. It is perhaps a 
good time to note that considerable computational effort is expended with regard to 
the near neighbours in the projection term in (23). If orthogonalisation is neglected, 
as above, the method is no more time consuming than a normal HF calculation, but 
the orbitals obtained are no longer suitable for constructing a single determinant for 
the entire crystal. A scatter plot in Figure 2 as a function of scattering angle shows 
that the deviations of the fitted results are random. There are no obvious systematic 
errors. Figure 3 is a plot of the thermally smeared deformation densities, calculated 
from our structure factors. Interestingly, there is hardly any buildup of charge in the 
tetrahedral and octahedral holes, although there are depletions of charge similar to 
those observed by Larsen and Hansen [20], in plots that they give which are derived 
from Fourier summation techniques. 

We now consider more interesting properties that can be extracted in our approach 
which cannot be extracted in a standard X-ray charge analysis. For a system at 
equilibrium, the virial theorem gives the total energy as 

E = – T . (25)

Figure 2. Errors in fitted structure factors. 
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Figure 3. Thermally averaged deformation maps. Section (a) at z = 0.75 in the basal plane, (b) at 
z = 0.625 (containing the tetrahedral position) and (c) at z = 0.5 (containing the octahedral position). 
The origin is at the top left corner and the a and b axes increase across and down the page respectively. 
Contours are at intervals of 0.015 a.u. and dotted lines are negative, solid lines are positive. 

The ‘non-interacting’ kinetic energy Ts from our determinant is 14.7861 a.u. for λ =
10, κ = 0.2. From this and the exact result for the Be atom ground state energy 
of –14.6674a.u. [22], a binding energy of 312kJ/mol is obtained. At λ = 5 and 
κ = 0.2, the binding energy is 390 kJ/mol. The observed value is 318 kJ/mol [23]. 
However, it should be noted that the error Tc = T – Ts in the Kohn–Sham theory is 
known to be 194 kJ/mol for the Be atom [1]. 

An approximate ionization energy or work function can also be extracted. In density 
function theory, the ionization energy is given by the highest eigenvalue [24–26], 
which is governed by the long range behaviour of the density. If our fitted orbitals 
are a good approximation to the Kohn–Sham orbitals, they can be used to define the 
highest eigenvalue for an approximate one-particle effective potential [see comments 
below Equation (24)]. With three popular choices, the HF potential, the local density 
approximation (comprised of Dirac’s exchange [27] plus local correlation energy 
functional of Ref. [28]), and the ‘BLYP’ approximation (comprised of the Becke 
exchange functional [29] plus correlation functional from [30]), the results are, re-
spectively, 6.0, 3.7 and 4.9 eV. These are to be compared with the experimental value 
of 4.98 eV [23]. Even though there is a considerable spread in the results, as expected 
for such a crude calculation, they are all better than the free atom HF value of 8.4 eV. 
From these results it would seem that our fitted wave function is not unreasonable. 

4. Conclusions

A new and accurate quantum mechanical model for charge densities obtained from
X-ray experiments has been proposed. This model yields an approximate experimen-
tal single determinant wave function. The orbitals for this wave function are best
described as HF orbitals constrained to give the experimental density to a prescribed 
accuracy, and they are closely related to the Kohn-Sham orbitals of density functional 
theory. The model has been demonstrated with calculations on the beryllium crystal. 

There is no reason why the technique cannot be applied to extract wave functions
for larger systems. Calculations have recently been completed in our group on the
oxalic acid dihydrate system; in this case, hydrogen bonding effects were examined
in detail.
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Finally, a few general remarks are in order regarding systematic errors. The view 
adopted in this work is that the X-ray date ‘enhances’ the reliability of quantum 
mechanical calculations. The alternate view, that the quantum mechanical model 
introduces unwanted and unquantifiable systematic errors, could also be put forward. 
To counter this, the general merits of the HF method are mentioned; but there is no 
impediment, in principle, to using a theory more accurate than HF model. Secondly, 
according to the study of Frishberg [4], ‘X-ray fitted wave functions give better results 
than HF for most expectation values . . . with little sacrifice in the energy’. The last 
part of this statement would support the view that the HF wave function is a reasonable 
starting point for X-ray diffraction models. Thirdly, one should keep in mind that any 
model contains assumptions which can lead to systematic errors. 

In the case of beryllium specifically, there has been considerable controversy re-
cently regarding the existence of ‘non-nuclear attractors’ in this system [31, 32]. That 
is, regions in space (not at the nucleus) where there is a buildup of charge. Features 
like this are not observed in our maps. However, with an atom-based fitting technique 
used in this work, it could be argued that systematic errors will work against such 
feature appearing. Studies are planned which will allow for cluster-based fitted wave 
functions, which will provide a more realistic model for the crystal. That is why 
no statements were made in this work concerning the existence of the non-nuclear
attractors in beryllium crystal. Nevertheless, it is hoped that techniques like this will
stimulate more accurate charge density measurements. 
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Spin density in interacting nitronyl nitroxide radicals 
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1 DRFMC-SPSMS-MDN, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France 
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50144 Firenze, Italy 
3Laboratoire de Chimie, Ecole de Chimie, Université Louis Pasteur; 1 rue Blaise Pascal, 
67008 Strasbourg, France 

Since the reported synthesis [1] of stable 2-phenyl-4,4,5,5-tetramethylimidazoline-1-
oxyl-3-oxide, NitPh, considerable effort has been spent in the physical characteriza-
tion of nitronyl nitroxide compounds. Their general formula is presented in Figure 1A. 
These compounds carry a delocalized, S = 1/2, unpaired electron. Among them, 
some derivatives were found to be paramagnetic at low temperature (NitPh, [1]), 
others were found to exhibit an antiferromagnetic or a ferromagnetic behavior [2–7]. 

This magnetic behavior is very sensitive to the chemical structure of the spin carrier 
and to the crystal packing. For instance, for the para-nitro substituted derivative,
Nit(p-NO2)Ph, which crystallizes in four different phases, the β phase only orders 
ferromagnetically ( Tc = 0.6 K ) [8, 9]. Moreover, attaching the nitro group in the 
meta-, rather than the para-position of the phenyl, leads to an antiferromagnetic 
compound [2]. 

Furthermore, the NitR radicals have been shown to behave as valuable bridging 
ligands for obtaining low-dimensional, strongly coupled magnetic systems. Examples 
of high nuclearity spin clusters, magnetic chains and magnetic planes have been 
reported in the course of a rather exhaustive investigation of complexes with 3d and 
4f transition-metal hexafluoroacetylacetonates, M(hfac) n [10–14].

We report herein a single crystal polarized neutron investigation of the spin density 
of two purely organic nitronyl nitroxide free radicals which present ferromagnetic 
interactions: the 2-(6-ethynyl-2-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl- 
3-oxide, NitPy(C ≡ C–H), and the 2-(4-methylthiophenyl)-4,4,5,5-tetramethylimid-
azoline- 1-oxyl-3-oxide, Nit(SMe)Ph. We have compared these results with the spin 
density of the NitPh [15] where the molecules are isolated one from the other, 
with practically no intermolecular magnetic interaction. The aryl group R of the 
NitPh, NitPy(C ≡ C–H) and Nit(SMe)Ph compounds are depicted in Figure 1B–D, 
respectively.

NitPh. The P21/c form of the NitPh has been investigated by polarized neutron 
diffraction (Zheludev et al. [15]). We present herein only the main results of this 
study. (i) Most of the spin density is equally shared between the four atoms of the two 
NO groups (Figure 2). (ii) The bridging sp2 carbon atom carries a significant negative 
spin density (the ratio of its spin population to the spin populations of the oxygen or 
nitrogen atoms of the two NO groups is approximately –1/3). (iii) Delocalization of 
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Figure 1. General formula of nitronyl nitroxide free radicals (A). The phenyl (B), 2-(6-ethynyl-2-pyridyl)
(C) and 2-(4-methylthiophenyI) (D) groups are possible substituents for R. 

(a) (b)

Figure 2. Projection onto the nitroxide mean plane of the spin density (NitPh). Negative contours are 
dashed: (a) high-level contours (step 0.1µB/Å2); (b) low-level contours (step 0.01 µB/Å2).
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Figure 3. Projection onto a plane perpendicular to the nitroxide mean plane of the contours (step 
0.04 µB/Å2) of the spin density (NitPh). Negative contours are dashed. 

Figure 4. View of crystal packing of NitPy(C ≡ C–H).

the unpaired electron onto the phenyl ring is weak. The corresponding spin popula-
tions are at the limit of the experimental accuracy. (iv) The magnetic orbitals of the 
O–N–C–N–O atoms are p z orbitals, mainly perpendicular to the O–N–C–N–O plane 
(Figure 3). 

NitPy(C ≡ C–H). In the solid state, the NitPy(C≡ C–H) molecules (space group 
P21/n crystallize in chains via a hydrogen bond –C≡ C–H. . .O–N– (Figure 4), with
positive intrachain magnetic coupling [16]. A single crystal (5.0 x 4.5 x 1.7 mm3) was 
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investigated by polarized neutron diffraction (DN2 diffractometer, SILOE reactor) 
and 216 independent flipping ratios were collected ( H = 8T, T = 4.65 K). We have 
analyzed the data in two steps. First, we have performed a 3D Maximum Entropy 
(MaxEnt) reconstruction [17]. Figures 5(a) and 5(b) show the projected spin density, 
respectively, onto the O–N–C–N–O plane and the pyridine cycle. As in the NitPh, 
the main part of the spin density is located on the two NO groups. But in the present 
case, a depletion of the spin density on the O1 atom (oxygen atom involved in the 
hydrogen bond) in favor of O2 (oxygen atom not involved in the hydrogen bond) 
is observed (Figure 5(a)). Moreover, the spin density on O1 and O2 is not exactly 
centered on these atoms, but is slightly shifted away from the center of the NO bond. 
This illustrates the antibonding character of the singly occupied magnetic molecular 
π * orbital. Besides this, a noticeable positive spin density is found on the acetylenic 
hydrogen H16 (Figure 5(b)). 

(a)

(b)

Figure 5. Projection of the MaxEnt reconstructed spin density (NitPy(C ≡ C–H)): (a) onto the nitroxide 
mean plane (step 0.02 µB/Å2); (b) onto the pyridine ring (step 0.006 µB/Å2).
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Figure 6. Projection onto the nitroxide mean plane of the spin density as analyzed by wave-function 
modeling (NitPy(C ≡ C–H)). Negative contours are dashed, contour step 0.04 µB/Å2.

To obtain quantitative data in terms of individual atomic spin populations and to 
extract information concerning the polarization of the aryl fragment, we have then 
refined the atomic orbital coefficients of the unpaired electron molecular orbital [18]. 
Figure 6 shows the reconstructed spin density projected onto the Nit cycle of the 
molecule. As expected, the strongest spin populations are carried by the O–N–C–N–O 
fragment and the bridging sp2 carbon carries a negative spin density. The ratio of its 
spin population to the average of the spin populations of the O1, N2, N3 and O2 atoms 
is, as in the NitPh, approximately –1/3. In the present case, the main difference lies 
in the oxygen atoms. They were equivalent in NitPh but not here: the transfer from 
O1 (0.203(10) µB) to O2 (0.278(9) µB) is confirmed. Besides this, a significant and 
positive contribution is found on the hydrogen atom H16 (0.045(9) µB), much higher 
than on the other atoms (except the O–N–C–N–O fragment). 

The spin density on the acetylenic hydrogen H16 is a sign of the active role 
played by the hydrogen bond in the intrachain coupling. Moreover, the hydrogen 
bond corresponds to C7–H16. . .O1 and the spin population is much less on O1 than
on O2: O1 participates to the magnetic interaction, and O2 does not. We have then 
strong evidence that the hydrogen bond is involved in the path of the ferromagnetic 
interactions.
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Nit(SMe)Ph. The unit cell of Nit(SMe)Ph (space group P21/a) comprises four 
molecules of free radicals which are arranged in pairs. These pairs form a layered 
structure (Figure 7). This radical is a ferromagnet with Tc = 0.6K [19]. The exper-
iment was performed on the DN2 polarized neutron diffractometer (SILOE reactor, 
Grenoble), with a vertical field provided by a cryomagnet (8 T at T = 5.3 K). In this 
case, 350 independent reflections have been measured with a 9.25 x 2.5 x 1.4 mm3

crystal. As done previously, we have analyzed the data in two ways: the three-
dimensional MaxEnt method [17] and the magnetic wave function refinement method 
[18]. Figure 8 represents the spin density map reconstructed by the MaxEnt method, 
and projected onto the Nit ring. As in the NitPh, one clearly sees the major part of 
spin density localized on the O–N–C–N–O fragment and this spin density is equally 
shared between the O1, N1, N2 and O2 atoms. A negative contribution is also found 
on the central carbon atom C8. 

Then, to obtain quantitative data in terms of individual atomic spin populations, we 
have refined the magnetic wave function. Figure 9 shows the spin density projected 
onto the Nit cycle of the molecule. As expected from the MaxEnt analysis, most of the 
spin density is carried by the ONCNO fragment and the bridging sp2 carbon atom car-
ries a negative spin density which corresponds, as in NitPh, at – 1/3 of those carried by 
oxygen and nitrogen atoms of the NO groups. The main difference between NitPh and 
Nit(SMe)Ph concerns the shape of the molecular magnetic orbital of the two oxygen 

Figure 7. View of the crystal packing of Nit(SMe)Ph.
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Figure 8. Projection of the MaxEnt reconstructed spin density onto the nitroxide mean plane 
(Nit(SMe)Ph). Negative contours are dashed, contour step 0.02 µB/Å2.

atoms O1 and O2 of the NO groups (Figure 10). In Nit(SMe)Ph a clear rotation, from 
z-axis, is evidenced. Besides this, a hybridization of this magnetic orbital is observed 
(one lobe is stronger than the other). Moreover, some significant spin density is found 
on the C4 (0.016(6) µB), C5 (–0.018(7) µB) and C6 (0.027(6) µB) carbon atoms 
of the phenyl ring and on the terminal carbon C14 (0.028(6) µB) of the methylthio 
group.

The carbon atoms which are involved in the short intermolecular contacts between 
molecules (less than 4Å: O2/C14 and O1/C4, C5, C6, Figure 7) carry a significant 
spin density. The magnetic moIecular orbitals of the corresponding oxygen atoms (O1 
and O2) are twisted and hybridized. Thus we have evidence that the intermolecular 
exchange involves these contacts. 

In these two examples where the magnetic coupling between adjacent molecules 
exist and are positive, we have evidenced specific features which reflect the role 
of the spin density in the magnetic interaction propagation. These specific features 
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Figure 9. Projection onto the nitroxide mean plane of the spin density as analyzed by wave-function
modeling (Nit(SMe)Ph). Negative contours are dashed: (a) high-level contours (step 0.04 µB/Å2); (b) 
low- level contours (step 0.006µB/Å2).

Figure 10. Projection onto a plane perpendicular to the nitroxide mean plane of the contours (step 
0.03 µB/Å2) of the spin density as analyzed by wave- function modeling (Nit(SMe)Ph). Negative contours 
are dashed. 
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Table 1 . Spin populations of the atomic sites in µB (scaled
to 1 µB/molecule) of the O-N-C-N-O fragment for the NitPh, 
NitPy(C≡C–H) and Nit(SMe)Ph.

NitPh [15] NitPy(C≡C–H) Nit(SMe)Ph

O 0.267 0.278 0.239
N 0.272 0.225 0.238
C -0.109 -0.071 -0.098
N 0.272 0.242 0.265
O 0.267 0.203 0.233
Sum of the spin 0.969 0.877 0.877
populations on 
O–N–C–N–O

concern, to alarge extent, the spin density which is located outside of the O–N–C–N–O 
fragment. We have summarized in Table 1, for the two radicals NitPy(C ≡ C–H) and 
Nit(SMe)Ph, as well as for the reference radical NitPh, the spin density which remains 
on the O–N–C–N–O group. The sum of the spin populations on these atoms amounts 
to 0.969µB for NitPh, indicating that almost all the spin density is localized on 
that fragment. Contrarily, this sum is equal to 0.877 µB only for each of the two 
other radicals. We have here clear evidence that the magnetic interactions imply a 
noticeable delocalization of the spin density out of the O–N–C–N–O fragment. This 
delocalization happens to be equal for the two ferromagnetic radicals investigated 
here.
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1. Introduction 

The hormone angiotensin II (AII), an octapeptide of sequence Asp-Arg-Val-Tyr-
Ile-His-Pro-Phe produced by the renin–angiotensin system (RAS), participates in 
a number of physiological functions associated with the regulation of blood pressure. 
Drugs that inhibit the RAS have been shown to be effective in treating human hyper-
tension [1]. A possible approach to interfering with the RAS is to inhibit the binding of 
AII to its receptor, and recent pharmacological research is currently directed towards 
non-peptide AII receptor antagonists that, unlike peptide AII receptor inhibitors, can 
exhibit oral activity, long-plasma half-life and no partial agonism. 

In a recent paper by Salimbeni et al. [2], a novel series of such AII antagonists 
has been presented: on the basis of a comparative analysis of theoretical distri-
butions of the electrostatic potential ( Φ (r)) of active and inactive compounds and 
overlay studies, employing a computational model of an AII active conformation, 
it was found that the compound named LR-B/081 [3, 4] (C30H30N6O3S), i.e. 2-
[(6-butyl-2-methyl-4-oxo-5-{4-[2-(1H-tetrazol-5-yl)phenyl] benzyl}-3H-pyrimidin- 
3-yl)methyl]-3-thiophenecarboxylate (Scheme 1), was one of the most potent in the
series, and was selected as a candidate for further studies. 

Scheme I.
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For a better understanding of the electrostatic requirements for LR-B/081 activity, 
its total experimental electron distribution ρ (r) and electrostatic potential Φ (r) have 
been obtained from an extensive set of X-ray diffraction data collected at 18K. 
Indeed, the electrostatic potential that the nuclei and electrons of a molecule create 
in the surrounding space is well established as a useful analytical tool for the study 
of molecular reactivity. It is this potential that is first “seen” or “felt” by another 
approaching chemical species. Thus, key features of a molecule that are necessary 
for a successful interaction with a receptor can be identified through an analysis of its 
electrostatic potential [5]. This property has been used extensively for interpreting and 
predicting the reactive behaviour of a variety of chemical systems, and in the study 
of biological recognition processes, such as drug–receptor and enzyme–substrate 
interactions [6–9]. 

F (r) was also computed from ab initio wave functions in the framework of the 
HF/SCF method using 3-21G and 6-3lG* basis sets: due to the large size of LR-B/081,
the calculation has as yet been performed on isolated molecular fragments, adopting 
a geometry based on molecular dimensions from X-ray diffraction studies. 

The preliminary comparison between these experimental and theoretical results 
shows satisfactory agreement, both qualitatively and quantitatively, and clearly demon-
strates that the two methods support one another well. 

2. Methods 

Experimental

Crystal data and details of data collection, data reduction and final refinement are 
reported in Table 1. The procedure for data collection and processing, which included 
a correction for scan-truncation effects, were similar to those recently described 
for syn-1,6:8,13-biscarbonyl[14]annulene [10] and citrinin [11]. Figure 1 shows the 
numbering scheme adopted in the present analysis. 

A preliminary least-squares refinement with the conventional, spherical-atom model 
indicated no disorder in the low-temperature structure, unlike what had been observed 
in a previous room-temperature study [4], which showed disorder in the butylic chain 
at C1. The intensities were then analysed with various multipole models [12], using 
the VALRAY [13] set of programs, modified to allow the treatment of a structure as 
large as LR-B/081; the original maximum number of atoms and variables have been 
increased from 50 to 70 and from 349 to 1200, respectively. The final multipole model 
adopted to analyse the X-ray diffraction data is described here. 

According to the aspherical-atom formalism proposed by Stewart [12], the one-
electron density function is represented by an expansion in terms of rigid pseudoatoms, 
each formed by a core-invariant part and a deformable valence part. Spherical surface 
harmonics (multipoles) are employed to describe the directional properties of the 
deformable part. Our model consisted of two monopole (three for the sulfur atom), 
three dipole, five quadrupole, and seven octopole functions for each non-H atom. 
The generalised scattering factors (GSF) for the monopoles of these species were 
computed from the Hartree-Fock atomic functions tabulated by Clementi [14]. 
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Table1. LR-B/081: crystal data and summary of the X-ray diffraction experiment.

Name LR-B/081 Refl. for cell 240

Dimensions/mm 0.45 × 0.45 × 0.125 No. of values 15
Temperature/K 18 Standard 820,829, 413
Crystal system Orthorhombic 75
Space group Pbca Decay none
a/Å 29.831(4) Time of exposure/h ~ 600
b/Å 15.505(2) No. intensities 51,485
c/Å 11.985(1) No. independent 14,699

V/Å 3 5543(1) 886
Z 8 No. of parameters 1161
F(000) 2336 R ( F ) 0.0308
Dx/Mg m–3 1.329 ω R ( F ) 0.0219
µ /mm–1 0.145 R(F2) 0.0254
Diffractometer Syntex P1 ω R(F2) 0.0421
Radiation MoKa Goodness-of-fit 1.2088

determination (23° ≤ 20 ≤ 32°)

refl. with I ≤ 0

Scan technique |εn - εn–1|/εn with 5.98 × 10–7

Scan range 1.2+sα1–α2

ε= Σ -

Scan speed min–1 3 Extinction × 10–4/rad–2 0.530(44)

Electron population parameters of inner monopoles were constrained to be equal for 
all 40 non-H atoms. Single exponentials rn exp(–α r) were adopted as radial functions
for the higher multipoles, with n = 2, 2, 3 respectively for dipole, quadrupole, and 
octopole of the species C, N and O, and n = 4, 4, 4 for the same multipoles of the 
S atom. A radial scaling parameter κ , to shape the outer shell monopoles, and the 
exponential parameter α of all non-H atomic species were also refined. H atoms were 
initially given scattering factors taken from the H2 molecule [15] and polarised in the 
direction of the atom to which they are bonded. 

In the final stages of the refinement the positional parameters of the H atoms were 
kept fixed, and these atoms too were described with multipoles, up to the dipole 
level. For both poles of the H pseudoatoms the radial functions were again single 
exponentials, with n = 0, 1 for monopole and dipole respectively, and the α value
was 2.48 bohr–1.

An isotropic extinction parameter, of type I and Lorentzian distribution (in the 
formalism of Becker and Coppens [16]), was also refined. The motions of the non-H
atoms were described by anisotropic parameters, while those of the H atoms by 
isotropic B’s. All these displacement parameters were included among the refinable
quantities of the model, for a total of 1161 variables in a single least-squares matrix. 

Within this model, the electron density ρ (r) is analytically represented by a finite 
multipole expansion [12] about the equilibrium nuclear configuration Qe

(1)
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Figure 1. ORTEP plot of LR-B/081 at 18 K. Ellipsoids at 95% probability level. H atoms are omitted for 
clarity.

where Cplm are electron population coefficients and Bplm are basis functions. Popu-
lation coefficients for each basis function are obtained through a least-squares fit of
the calculated, model structure factors (Fc) to the observed ones (Fo) .

The electrostatic potential Φ (r) is then computed in direct space as

( 2 )

A detailed description of the method has been presented by Stewart and Craven 
[17]. The procedure has been applied, in our case, over discrete molecular fragments 
removed from the cell and in isolation. Estimated standard deviations (esd’s) of Φ (r)
were also calculated [18]. 

Ab initio calculations

Equation (2) was also used to calculate Φ (r) in the quantum chemical approach. On the 
basis of previous results [19], calculated electrostatic potentials were computed from 
ab initio wave functions obtained in the framework of the HF/SCF method using a 
split-valence basis set (3-21G) and a split-valence basis set plus polarisation functions 
on atoms other than hydrogen (6-31G*). The GAUSSIAN 90 software package [20] 
was used. Since ab initio calculations of the molecular wave function for the whole 
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Figure 2. The three molecular fragments constituting LR-B/081.

molecule of LR-B/081 required computer time and storage memory greater than 
the available computational resources, three molecular fragments constituting the 
AII antagonist (Figure 2) were here separately analysed, adopting the experimental 
molecular geometry. 

Two-dimensional isopotential maps in meaningful planes were adopted as electro-
static potential representation techniques. For the three fragments, the Φ (r) values 
were calculated with 0.2 Å spacing at points belonging to regular two-dimensional
grids in the planes containing the thiophene ring, the tetrazole ring and the pyrimidi-
none ring. The isopotential lines over the two-dimensional maps were constructed by 
an interpolation technique with the SURFER program [21] on a personal computer. 

3. Results and discussion 

Results are presented in terms of maps of experimental and theoretical F ( r ) for
the three molecular fragments. Only regions with Φ (r) < 50 kcal/mol are mapped. 
A table of Φ (r) minima (Table 2) is also given. Experimental results refer to the 
multipole model adopted to analyse the X-ray diffraction data, the theoretical ones 
to the 6-31G* basis set. Calculations have been performed on the fragments reported 
in Figure 2, so that Figure 3(a) and (b) are relative to fragment 1, Figure 4(a) and (b) 
to fragment 2 and Figure 5(b) to fragment 3. In Figure 5(a), on the other hand, the 
electrostatic potential includes the contributions of all atoms in the molecule. 

We see overall qualitative agreement between experiment and theory. In Figure 3(a) 
and (b) the position of the zero contours of Φ (r) and the shape and height or depth 
of the constant potential lines agree quantitatively, the maximum difference between 

and being less than for the minimum in the proximity
of the oxygen atom O3. 

In the maps of Figure 4(a) and (b) the three minima near the three nitrogen atoms 
(N3, N4 and N5) agree very well, while the zero contour level appears somehow 
different. Moreover, in the experimental map (and not in the theoretical one) a neg-
ative region of Φ (r) is found between the two phenyl rings, probably due to the π 
electrons of the aromatic systems. A 6-31G** calculation has been performed on this 
fragment to check if the lack of this negative region in the ab initio map was due to the 
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Table 2. Experimental (final multipole model) and theoretical (6-31G*) values of Φmin(r) and of
|r(Φmin) – rclosest atom| in the most meaningful planes of LR-B/081.

Plane Φmin(r), kcal/mol |r(Φmin) – rclosest atom|, Å 

Exp.a Theor. Exp.b Theor.b

Thiophene –37 (12) –51.71 1.28 (O3) 1.23 (O3)

–12 (11) –3.86 1.78 (S1) 1.72 (S1)
Tetrazole –84 (14) –65.13 1.20 (N3) 1.32 (N3) 

(Figures 4(a) and (b)) –80 (12) –63.43 1.27 (N4) 1.33 (N4) 
–76 (13) –50.87 1.25 (N5) 1.33 (N5) 

Pyrimidinone –62 (22) –63.54 1.21 (N1) 1.29 (N1) 

(Figures 3(a) and (b)) –20 (13) –28.31 1.26 (O2) 1.20 (O2)

–24 (17) — 1.64 (C2O) —

(Figures 5(a) and (b)) –42 (26) –68.07 1.21 (O1) 1.20 (01)

aEsd’s in parentheses. 
bClosest atom in parentheses. 

(a) (b)

Figure 3. Φ (r) contour plots in the plane of the thiophene ring. Sections of 128, × 12 Å. Contour inter-
val: 10 kcal/mol. (a) Experimental (minimum contour –30 kcal/mol), (b) theoretical (minimum contour 
–50 kcal/mol). Negative and zero contours: short and long dashed lines, respectively, positive contours: 
solid lines. 

theoretical treatment of the H atoms, but it provided a result identical to that reported
in Figure 4(b). 

Figure 5(a) and (b) show excellent agreement as to the depth of the minimum and 
the position of the zero contour in the region near the N1 atom. The maps are not so 
similar in the bottom part, the difference being due to the presence, in the experimental 
map, of all the rest of the molecule. 

Figure 6(a) and (b) report the experimental Φ (r) maps in the planes of thiophene and 
tetrazole, respectively, including the contributions of all atoms in the molecule: they 
are to be compared with those calculated on the corresponding fragments 
(Figures 3(a) and 4(a)) and are presented to show the consequences implied by 
breaking the molecule into fragments and separately analysing them. It may be 
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(a) (b) 

Figure 4. Φ (r) contour plots in the plane of the tetrazole ring. Dimensions and contour interval as 
in Figure 3. (a) Experimental (minimum contour –80 kcal/mol), (b) theoretical (minimum contour 
–60 kcal/mol). 

(a) (b)

Figure 5. Φ (r) contour plots in the plane of the pyrimidinone ring. Sections of 16 Å x 14 Å. Contour 
interval as in Figure 3, minimum contour –60 kcal/mol. (a) Experimental (including contributions of all 
atoms in the molecule), (b) theoretical. 

seen that differences are appreciable only in the regions where the fragment lies 
in close proximity to the remaining part of the molecule, i.e. below the sulfur atom 
in Figure 6(a) of –68 (26) kcal/mol) and above the N4 and N5 atoms in 
Figure 6(b). In order to complete this comparison, an ab initio calculation of the 
electrostatic potential of the whole molecule of LR-B/081 is planned for the future. 

4. Conclusions 

Our results indicate an overall qualitative and quantitative agreement between theo-
retical and experimental Φ (r) , discrepancies between Φ and Φ never
exceeding . As previously reported [2, 19], it appears that the Φ (r)
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(a) (b)

Figure 6. Experimental Φ (r) contour plots including the contributions of all atoms in the molecule. Dimen-
sions and contour interval as in Figure 3. (a) Plane of the thiophene ring, minimum contour –60 kcal/mol. 
To be compared with Figure 3(a). (b) Plane of the tetrazole ring, minimum contour –80 kcal/mol. To be 
compared with Figure 4(a). 

features which play a key role for binding to the AII receptor are the strongly elec-
trophile attractive regions bulging out from the central heterocycle – N= type nitrogen 
atom and from the lactamic oxygen atom, and a region of positive long-range potential 
around the 6-butyl chain, the latter being believed to fit into a lipophilic pocket of the 
receptor that accommodates the Ile5 side chain of AII. These features emerge from the 
maps reported here, confirming that LR-B/081 possesses all necessary electrostatic 
requirements for activity. 

The determination of the bioactive conformation of AII should significantly ad-
vance the rational design of potent AII antagonists; its extreme flexibility has hereto-
fore hindered attempts at determining its structure by either spectroscopic or crystal-
lographic methods [22]. Garcia et al. [23] have recently proposed a receptor-bound
conformation of AII developed from crystallographic data of the complex between 
AII and a high-affinity monoclonal antibody: it has been seen that the X-ray structure 
of the complex reveals an AII structure consistent with the overlay hypothesis [2] 
employed to develop this series of AII antagonists. 

On the basis of these findings, and of recent in vivo and in vitro biological studies 
[3], the compound LR-B/081 was selected as a candidate for development, and is now 
undergoing clinical investigation for the treatment of hypertension. 
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1. Introduction 

The zeolites are aluminosilicate materials with a framework formed by oxygen-
connected tetrahedral SiO4 and A1O4 building blocks. The framework of such com-
pounds surrounds channels or large cavities in the solid state and is negatively charged 
due to the difference between the formal charges of Si4+ and Al3+. Therefore, cations 
like Na+, Ca2+, Li+, etc. are present in the channels or in the cavities of the zeolite to 
ensure the electroneutrality of the system, and are linked to some framework oxygen 
atoms. The well-known interest of zeolites lies on their large adsorption capability 
which is related to the electrostatic properties of these porous compounds. In order to 
understand the electrostatic interactions which drive the properties of these materials, 
we have focused on the basic observable which is the electron density distribution. The 
connection of the SiO4 and A1O4 tetrahedra in the framework of the zeolite makes the 
electron density in the Si–O–T (T = Si, Al) bridges of a particular and fundamental 
interest in this investigation. 

For the crystalline materials, high resolution X-ray diffraction experiment is a 
powerful tool to derive accurate electron density even for large systems like zeolites. 
In this study, we are interested in the experimental electron density distribution in 
the scolecite CaAl2Si3O10

. 3H2O in order to make comparison with its sodium 
analogue natrolite Na2Al2Si3O10

. 2H2O for which the electron density has been 
reported recently [1, 2]. 

Scolecite gave the opportunity to relate the electron density features of Si–O–Si 
and Si–O–AI bonds to the atomic environment and to the bonding geometry. After the 
multipolar density refinement against Ag K α high resolution X-ray diffraction data, a 
kappa refinement was carried out to derive the atomic net charges in this compound. 
Several least-squares fit have been tested. The hat matrix method which is presented 
in this paper, has been particularly efficient in the estimation of reliable atomic net 
charges in scolecite. 
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2. Data collection and processing 

A good quality natural sample was used in the X-ray diffraction experiment. The 
X-ray diffraction data were collected at room temperature on an Enraf-Nonius CAD4
diffractometer with graphite-monochromatized Ag K α radiation (0.5609 Å). The ori-
entation matrix and the unit cell parameters were determined by least- squares fit 
to the optimized setting angles of 25 reflections in the range of 20° ≤ 2θ    ≤ 55º.
The Fd setting was chosen for scolecite instead of Cc in order to make comparison 
with the crystallographically related compound, the natrolite (Na2A12Si3O10

. 2H2O)
which crystallizes in Fdd2 space group. A total of 29,794 intensities were measured 
consistently with the Fd space group and recorded as ω-2θ scan Bragg profiles up to
a maximum reciprocal resolution of Smax = (sin = 1.28 Å–1.

DREADD programs package [3, 4] was used to achieve the data reduction and 
the error analysis of the measurements. The absorption correction was performed 
with ABSORB program (De Titta [5]). The spherical harmonics empirical method 
of Blessing [6] was also applied to correct for the inhomogeneity of the X-ray beam. 
Since the space group of the scolecite is acentric and in order to take into account 
the anomalous dispersion effect, sorting and averaging of the data was performed 
in point group m giving 12,959 reflections with I > 3 σ (I) used in the first stages 
of refinements. Table 1 gives the main informations about the data collection and 
processing.

3. Use of the hat matrix in the least-squares fit procedure 

In crystallography, the least-squares fit is based on the minimization of the sum ∆ =
Σ ω (| Fo | – | Fc |)2, where w = 1 /s2 (Fo), s2 (Fo) being the variance of the observed
structure factor Fo and Fc is the calculated structure factor. Following Hamilton [7], if 
m is the number of observations, the changes of then model parameters are determined 
by the resolution of the m linear equations 

(1)

where ∆ P = ( P1 – P0) is the n-dimensional vector of the changes of the n parameters
{ D pj = – are the initial parameters; ∆ F = ( Fo – is the 
m-dimensional vector of the m differences (|Fo,hi | – |Fc.hi , between the
observed and calculated structure factors moduli at the Bragg vector hi (i = 1, m), X
is the m x n matrix of the derivatives: 

(2)

The least-squares normal equations are obtained by the transformation: 

(3)

where tX is the transposed matrix then the estimation ∆ P (by the least-squares
method) of the change of parameters ∆ P is given by 

(4)
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Table 1. Experimental details of the data collection. 

Chemical formula CaA12Si3O10
. 3H2O

Chemical formula weight (g) 3138.7 
Cell setting ‘pseudo-orthorhombic’ (monoclinic) 
Space group Fd (Cc) 
a (Å) 18.489(2) 
b (Å) 18.959(2) 
c (Å) 6.519(1) 
β (°) 90.61 1(13) 
v (Å3) 2284.8(5) 
Z 8 
Dx(Mg m–3) 2.28 
Radiation type (graphite monochromator) Ag K α 
Wavelength (Å) 0.5609 

25No. of reflections for cell parameters 
range (º) 10–28

µ (mm–1 ) 0.542 
Temperature room 
Crystal form parallelopiped 
Crystal size (mm) 
Crystal color colorless 

Data collection 
Diffractometer Enraf-Nonius CAD-4
Data collection method scans 
Absorption correction 
Tmin 0.864
Tmax 0.924
No. of measured reflections 29,794 
No. of observed reflections 6610 
Criterion for observed reflections 
R1, R2, Rw. S

(º) 45.9

0.32 × 0.16 × 0.20

Gaussian quadrature (De Titta, 1984) 

I > 3σ (I)
0.0205, 0.0293, 0.0232, 1.045 

Range of h, k, l –47 → h → 47
–48 → k → 48
–16 → l → 16

120
No. of standard reflections 6 
Frequency of standard reflections (min) 
Intensity decay (%) None 

The internal-agreement factors are defined as: 

and

the intensity I(H) = K–2|Fo(H)|2 (|Fo(H)| is the modulus of the observed structure factor and K–1 is
the structure factor scale factor), M and N are respectively the number of the equivalent reflections and 
the number of the unique reflections, ω = 1/ σ 2 (I(H)) is the statistical weight related to the standard 
deviation of the intensity. 
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then

(5)

where the hat matrix H is an m x m matrix defined by 

(6)

Since XP0 = it is obvious that = , consequently 

(7)

where is the estimated vectorial value of Fo. Geometrically the H matrix projects 
the observation vector Fo on the n-dimensional space of solutions [8, 9] (derivatives 
of parameters) where lie the estimated vectors Fc, the H matrix is therefore called 
the projection matrix. Furthermore the elements Hij of the H matrix denote the 
relation between the estimated value and the observation Fo,hi . It means that 
the estimation of through the least-squares determination of the n parameters
can be explained, in the statistical sense, by more than one observation (the diagonal 
element Hii is lower than 1). Hii represents the weight of the observation i on the 
prediction of Fc,hi, the matrix H is also called the prediction matrix and Hii the
leverage.

In crystallography, the number of observations m is larger than the number of 
parameters n to be determined, therefore Hii is in average very low (about n/m
[8]). Velleman and Welsh [9] suggest that the observation with Hii > 3n/m (when
n > 6 and ( m – n) > 12) can be considered as influential in the determination by 
the least-squares fit procedure. In practice during the refinements, the calculations of 
such Hii will reveal the observations which have an influence on the estimation of 
some parameters of the model. However, this analysis must be carried out only for 
parameters of the same type to be efficient. Now, if the Hii value is significantly high, 
the inspection of the residues ei = | Fo,hi | – | Fc,hi |, or weighted residues ei /σ (Fo,hi )
is an indicator of the eventual aberration of this observation with respect to the model, 
when no experimental problems occur for this observation. 

4. Pseudo-atom model and refinement strategies 

The least-squares Molly program based on the Hansen–Coppens model [10] was
used to determine atomic coordinates, thermal parameters and multipolar density
coefficients in scolecite. In the Hansen–Coppens model, the electron density of unit
cell is considered as the superposition of the pseudo-atomic densities. The pseudo-
atom electron density is given by

(8)
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where ρ core and ρ val are respectively Hartree–Fock spherical core and valence densi-
ties, ρ val is normalized to one electron; then the refined valence population parameter 
ρ val gives the net atomic charge q with respect to the number of electrons Nval in
the free atom valence orbitals, q = Nval – ρ val. The ylm±’s are spherical harmonic 
angular functions of order l in real form, and Rnl (r) are Slater-type radial functions 

Rnl(r) = Nlrnl exp(–ζ r), (9) 

Nl is the normalization factor, nl and ζ are parameters depending on the atomic 
type. Plm are the multipolar population parameters and κ and κ ' are the contraction-
expansion coefficients [11] for, respectively, spherical and multipolar valence den-
sities. We have chosen orthogonal reference axes which respect the tetrahedral (23) 
Tl point group for Si and A1 atoms of the scolecite in order to reduce the number of 
multipolar parameters; only the cubic harmonic multipoles (one octupole l = 3 and 
two hexadecapoles l = 4) have been refined for these two atoms. The pseudo-atom
expansion was extended to the octupoles ( l = 3) for O including oxygen of water, 
and to the dipoles ( l = 1) for H. The best radial functions of Si and A1 atoms were 
obtained by inspection of the residual maps [12], (nl = 4, 4, 4, 4 (1 = 1–4)); ζ's were
taken from Clementi and Raimondi [13]: ζ si = 3.05 bohr–1, ζ A1 = 2.72 bohr–1. For 
O atoms, ζ O = 4.5 bohr–1 and the multipole exponents were respectively nl = 2, 3, 4
up to the octupole level. 

With data averaged in point group m, the first refinements were carried out to 
estimate the atomic coordinates and anisotropic thermal motion parameters Uij ’s. We 
have started with the atomic coordinates and equivalent isotropic thermal parameters 
of Joswig et al. [14] determined by neutron diffraction at room temperature. The high 
order X-ray data (0.9 ≤ s ≤ 1.28Å–1) were used in this case in order not to alter 
these parameters by the valence electron density contributing to low order structure 
factors. Hydrogen atoms of the water molecules were refined isotropically with all 
data and the distance O–H were kept fixed at 0.95 Å until the end of the multipolar 
refinement. The inspection of the residual Fourier maps has revealed anharmonic 
thermal motion features around the Ca2+ cation. Therefore, the coefficients up to 
order 6 of the Gram-Charlier expansion [15] were refined for the calcium cation in 
the scolecite. 

In Molly program, the asymmetric unit is constrained to be neutral during the 
refinement of Pval. In the case of scolecite, the Pval’s of the water molecules have 
been refined separately to the framework in order to respect the H2O electroneutrality. 
The starting Pval parameters for the ten oxygen atoms were 6.2 instead of 6 in order 
to take into account the fixed net charge of the calcium cation (2+). The multipolar 
refinements were carried out over all reflections up to a resolution of (sin = 
1.28 Å–1 . We started with a natrolite-like constraint [2] which consists in imposing to 
the almost symmetry related atoms of scolecite to have the same electron density. This 
chemical constraint was kept unchanged until the last refinements of the multipolar 
parameters; then we removed the chemical constraint, first Pval and κ parameters, then 
all multipole populations. Isotropic extinction was corrected during all refinements 
cycles and the final extinction parameter value is g = 0.41(2) x 10–4 corresponding
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Table 2. Least-squares statistical factors R, Rw and GoF of the refinement strategies. 

Refinement s =(sin R Rw GoF n m Type of refinement 
number (Å–1) (%) (%) 

1 0.0 ≤ s ≤ 1.28 3.77 3.68 1.32 1 12959 Spherical 
(m averaged data) 

2 0.0 ≤ s ≤ 1.28 3.37 3.05 1.11 507 12959 Multipolar 
(m averaged data) 

3 0.0 ≤ s ≤ 1.28 3.25 3.39 1.19 1 6610 Spherical 
(2/m averaged data) 

4 0.0 ≤ s ≤ 1.28 2.65 2.37 0.85 507 6610 Multipolar 
(2/m averaged data) 

5 0.0 ≤ s ≤ 1.28 2.83 2.67 0.94 41 6610 Kappa 
(2/m averaged data) 

6 0.0 ≤ s ≤ 1.28 2.82 2.61 0.92 41 6603 Kappa without the 
7 reflections – see
Table 4 – (2/m averaged data) 

where |Fo| and |Fc| are respectively the modulus of the observed and the calculated structure factor, w the
statistical weight, K–1 the scale factor, n the number of refined parameters and m the number of data. 

to a maximum intensity loss of 17% for the (3 5 1) reflection. After convergence of 
the unconstrained refinements, the atomic positions and thermal motion parameters 
were relaxed and refined with all multipoler parameters in the last cycles. Then the 
data were corrected for anomalous dispersion [12], merged and averaged in the Laue 
group 2/ m (6610 reflections) and new cycles of refinements of all parameters were 
carried out again. 

At each stage of the refinement of a new set of parameters, the hat matrix diagonal 
elements were calculated in order to detect the influential observations following 
the criterium of Velleman and Welsh [8, 9]. The inspection of the residues of such 
reflections revealed those which are aberrant but progressively, these aberrations 
disappeared when the pseudo-atoms model was used (introduction of multipoler 
coefficients). This fact confirms that the determination of the phases in acentric 
structures is improved by sophisticated models like the multipole density model. 

Final residual indices of the refinement strategies are given in Table 2. On the 
residual density maps shown in Figure 1, the maxima and minima do not exceed 
0.2 e Å–3.

5. Crystal structure of scolecite 

Figure 2 gives a view of the scolecite structure along c-axis. Table 3 gives a selected 
set of bond lengths and angles in the scolecite structure. The framework of scolecite
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Figure 1. Residual density in Si2–O3–Al1 and Si1–O10–Si3 planes of scolecite after the multipole 
refinement 4 in Table 2. Contour interval ±0.1 e Å–3; negative contours are dashed, zero contour omitted. 

is isotypical with that of natrolite [2] with a slightly distorted framework: the two 
Na+ cations of natrolite are replaced by one Ca2+ and one water molecule (Ow3). As 
in the natrolite, the structure of scolecite presents parallel channels along the c-axis
containing the Ca2+ cations and water molecules. Ow1 and Ow2 are equivalent to 
the symmetry related water molecules in the natrolite structure. The aluminosilicate 
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Figure 2. View of the structure of scolecite along c-axis using STRUPLO’90 [21]. The small circles
correspond to Ow1 and Ow2 water molecules, the medium circle to Ow3 water molecule and the big 
circles to Ca2+ cation.

framework results from oxygen-connected four-membered rings of tetrahedra. A quar-
ter of the ring is composed by a central silicon tetrahedron surrounded by, respectively, 
two opposing tetrahedra of SiO4 and A1O4. Except for the central silicon tetrahedron, 
all other silicon or aluminum tetrahedra are surrounded by, respectively, three alu-
minum and one silicon tetrahedra or three silicon and one aluminum tetrahedra. The 
Ca2+ cations are seven-coordinated by four oxygen atoms of the framework (O3,
O4, O5, O7) and the three oxygen atoms of the water molecules are in a distorted 
pentagonal bipyramid as reported by Fälth and Hansen [17]. The water molecules
are closer to the cation [Ow1–Ca2+ = 2.3117(12) Å, Ow2–Ca2+ = 2.3484(11) Å, 
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Table 3. Selected bond lengths (Å) and angles (º) in scolecite. The esd’s are given in parentheses. 

Si1–O2 1.6008(8) Si2–O6 1.6028(8) Si3–O8 1.5972(8)
Sij–O1 1.6101(8) Si2–O3 1.6121(7) Si3–O4 1.6077(7)
Si1–O9 1.6196(8) Si2–O9 1.6295(8) Si3–O5 1.6289(8)
Si1–O10 1.6418(7) Si2–O7 1.6313(8) Si3 –O10 1.6409(8)

A11–O3 1.7349(7) A12–O2 1.7399(8)
All–O1 1.7409(8) AI2–O6 1.7411(8)
AI 1–O5 1.7516(8) Al2–O4 1.74 19(7) 
Al1 – O7 1.7667(8) Al2–O8 1.7462(8)

Si1–O1 –A11 134.75(5) Si1–O2–A12 143.82(5) Si3– O5–A11 135.06(5)
Si2–O7–A11 127.48(5) Si3–O8–A12 133.24(5) Si3– O4–A12 138.27(5)
Si1–O9–Si2 150.79(6) Si2–O6–A12 134.15(5)
Si3–O10–Si1 134.05(5) Si2–O3–A11 133.19(4)

Ca–O3 2.4900(7) Ca–Ow1 2.3117(12)
Ca–O5 2.5066(8) Ca–Ow2 2.3484(11)
Ca–O7 2.5288(8) Ca–Ow3 2.3500(10)
Ca–O4 2.6057(8)

H32 ... O2 1.7518(8)
H11 ... O1 1.7900(8)
H21 ... O10 1.8652(8)
H22 ... O8 2.1428(9)
H12 ... O6 2.1654(8)
H31 ... O9 2.3076(9)

Ow3–Ca2+ = 2.3500(10) Å] than the framework oxygen atoms [the closest is O3

with O3–Ca2+ = 2.4900(7) Å]. In natrolite, the sodium cation are linked to four 
oxygen of the framework and two oxygens of the water molecules [the closest Ow 
being at Ow–Na+ = 2.371(2) Å and the closest oxygen of the framework is at 
2.367(2) Å]. In the two compounds, the water molecules are bound to the alumi-
nosilicate framework by hydrogen bonds, the strongest involving O2 and H32(OW3)
[O2–H32 = 1.75 18(8) Å] in scolecite. 

6. Static deformation densities in Si–O and A1–O bonds 

STATDENS program [18] was used to calculate the static deformation density in 
scolecite. As reported in the previous study of natrolite [2], the main feature of the 
deformation densities is the concentration of the electron density around the oxygen 
atoms and the more or less depletion of this density near the silicon or the aluminum 
atoms. Figure 3 shows the static deformation densities in the plane of Si1–O9–Si2

and Si1–O10–Si3 where Si1 is the near-origin central silicon atom. In Si1–O9–Si2

bridge [150.79(6)º], the density peak-height values are, respectively, 0.70 e Å–3 in the 
Si1–O9 bond [Si1–O9 = 1.6196(8) Å] and 0.60e Å–3 in the Si2–O9 bond Si2–O9 =
1.6295(8) Å], both peaks are localized 0.45 Å from the oxygen O9. The electron 
density peaks in Si1–O10– Si3 bonds [134.05(5)0°] are enhanced with a peak height 
reaching 0.8–0.9e Å–3 at 0.45Å from O10 [Si1–O10 = 1.6418(7)Å, Si3–O10 =
1.6409(8) Å]. If we compare the two bridges, the deformation density has a tendency 
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Figure 3. Static deformation density in Si–O–Si bridge planes: Si1–O9–Si2 and Si1–O10–Si3. Contours 
as in Figure 1. 

to be shifted toward the interior of the Si–O–Si angle as shown for Si1–O9–Si2. The 
same remark has been done for natrolite [2] (Si–O–Si = 144.31(6)°). This feature 
is also in close agreement with the results in coesite [19]. The interaction of these 
two Si–O–Si bridges in scolecite with the water molecules involves more strongly 
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the O10 oxygen atom [O10–H21(Ow2) = 1.8652(8)Å, H21 is at 0.5Å above the 
plane of the Si1–O10–Si3] than O9 [O9–H31(Ow3) = 2.3076(9) Å]. This feature is in 
agreement with the observed slight polarization of the electron density lone pair of 
O10 towards the hydrogen atom. The static deformation density in Sil–O1–A11 and
Si2–O3–A11 bonds is shown in Figure 4. The electron density is also more concentrated 
around the oxygen atoms with a visible distortion or polarization of their lone pairs 
either in presence of hydrogen bonds [O1–H11(Ow1) = 1.7900(8)Å, compared to 
O–H = 1.8871(8) Å in natrolite] or when a strong interaction occurs with a cation 
[O3–Ca2+ = 2.4900(7) Å compared to O–Na+ = 2.367(2) Å for the closest oxygen 
to Na+ in natrolite [2]]. This last feature has also been observed inforsterite by R.J. Van 
Der Wal and Vos [20] between the oxygens of the SiO4 tetrahedra and the Mg2+ cation.
In the Si–O–A1 bridges of scolecite, the electron density peak heights are in the range 
of 0.8eÅ–3 for Si1–O1 [Si1–O1 = 1.6101(8)Å] at 0.45Å from O1 and 1.0e Å–3

for Si2–O3 [Si2–O3 = 1.6121(7) Å] at 0.40Å from O3. In the A1–O bonds, the peak 
height varies from 0.4e Å–3 in All–O1 bond [A11–O1 = 1.7409(8) Å] to 0.7 eÅ–3 in
All–O3 bond [A11–O3 = 1.7349(7) Å]. The distances between the electron density 
peaks and the oxygen atoms in the A1–O bonds are respectively 0.50 Å in All–O1 bond
and 0.40Å in A11–O3 link. On average for Si–O–A1 bridges, the electron bond peaks 
in A1–O bond are lower (0.4 to 0.8 e Å–3) than those of Si–O link (0.8–1.0 e Å–3) but 
the distances between the electron peaks and the oxygen atoms are almost the same 
in the two types of bond. 

7. Kappa refinements and atomic net charges 

After the multipolar fit (refinement 4 in Table 2), we have carried out a kappa refine-
ment to determine the atomic net charges in scolecite. In order to have reliable values 
of these parameters, we have analyzed carefully the data using the hat matrix method 
described in the previous section. At the end of natrolite-like constraint multipole 
refinement (not reported in Table 2), we have calculated the diagonal elements of the 
prediction matrix i.e. the leverages H ii. According to the criteria of Velleman and 
Welsh [9], 201 observations have their leverages greater than 3 n/m, where n = 7 
(number of refined Pval of the framework atoms minus 1 for the electroneutrality 
constraint) and m = 6610 reflections. As expected from the valence contribution, 
the maximum value of (sin θ)/λ resolution for these 201 reflections does not exceed
0.4 Å–1. We have reported in Table 4, the 7 influential reflections detected by the hat 
matrix method with significant weighted residues during the fit of the Pval parameters.
A new statistical analysis was performed in the end of the unconstrained refinement 
(number 4 in Table 2) over the Pval parameters and led to 212 influential reflections. 
Table 4 shows that these 7 reflections do not have high weighted residues in refinement 
4 (Table 2) and that the reflection (0 2 0) has an abnormal leverage of 0.85 and a very 
low residue. We have, therefore, carried out two kappa refinements (5 and 6 in Table 2), 
with and without the 7 reflections given above in Table 4. 

The values obtained at the convergence for κ , Pval parameters and the atomic 
net charges are reported in Table 5. In these two refinements, the κ parameters are 
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Figure 4. Static deformation density in Si–O–A1 bridge planes: Si1–O1–A11 and Si2–O3–A11. H11 is at 
0.98 Å and Ca2+ at 0.44 Å. Contours as in Figure 1. 

greater than 1 for the silicon and aluminum atoms revealing the contraction of their 
valence electron densities. The contraction of the aluminum atoms is, however, more 
pronounced (in average κ = 1.4–1.5) than for the silicon atoms (in average κ = 1.2). 
The oxygen atoms have, in turn, κ parameter values of about 0.90–0.96 showing a 
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Table 4. Diagonal elements (leverages Hii) of the hat matrix and weighted residues (|| Fo| – | Fc ||/σ (Fo))
of the pertinent data in the determination of the atomic net charges in scolecite. 

Reflections Constraint refinement Non-constraint refinement 
(hkl) (not reported in Table 2)

Leverages Hii Weighted Leverages Hii Weighted

(refinement 4 in Table 2) 

residues residues 

(–153) 0.040 8.20 0.084 4.39 
(020) 0.004 14.97 0.854* 0.87 
(191) 0.030 3.99 0.063 2.36 
(242) 0.061 4.44 0.179 2.16 
(331) 0.068 4.75 0.223 0.06 
(731) 0.135 3.05 0.163 1.10 
(911) 0.013 3.34 0.029 1.01 

* Abnormal reflection. 

Table 5. κ , Pval and the atomic net charges q from the kappa refinements 5 and 6 (Table 2). The esd’s are 
given in parentheses. 

Refinement 5 6 Differences of 
atoms net charges 

κ Pval q κ Pval q 5–6

Si1 1.16(3) 2.52(13) 1.48(13) 1.18(3) 2.33(13) 1.67(13) –0.19(13) 
Si2 1.31(4) 1.70(13) 2.30(13) 1.25(4) 1.91(14) 2.09(14) 0.21(14)*

A11 1.53(11) 0.70(11) 2.30(11) 1.55(7) 1.05(12) 1.95(12) 0.35(12)*
Si3 1.23(3) 2.25(14) 1.75(14) 1.25(3) 2.21(14) 1.80(14) –0.05(14) 

A12 1.36(5) 1.49(13) 1.51(13) 1.50(8) 1.06(12) 1.94(12) –0.43(13)*
O1 0.0946(6) 6.85(8) –0.85(8) 0.934(6) 7.15(9) –1.15(9) –0.30(9)*
O2 0.910(6) 7.69(9) –1.69(9) 0.924(6) 7.39(9) –1.39(9) 0.30(9)*
O3 0.947(6) 7.28(8) –1.28(8) 0.939(6) 7.31(8) –1.31(8) 0.03(8) 
O4 0.922(6) 7.22(8) –1.22(8) 0.925(6) 7.21(8) –1.21(8) –0.01(8) 
O5 0.937(6) 7.22(9) –1.22(9) 0.932(6) 7.31(9) –1.31(9) 0.09(9)
O6 0.949(6) 7.08(8) –1.08(8) 0.947(6) 6.95(8) –0.95(8) –0.13(8)
O7 0.965(6) 6.70(8) –0.70(8) 0.945(6) 7.00(9) –1.00(9) 0.30(9)*
O8 0.951(6) 7.08(7) –1.08(7) 0.952(6) 7.00(7) –1.00(7) –0.08(7) 
O9 0.960(6) 6.89(7) –0.89(7) 0.961(6) 6.89(7) –0.89(7) 0.00(7) 
O10 0.923(6) 7.34(8) –1.34(8) 0.933(6) 7.24(8) –1.24(8) –0.10(8)
Ca 1.00 0.00 2.00 1.00 0.00 2.00 0.00
Ow1 0.988(8) 6.33(8) –0.33(8) 0.996(8) 6.31(8) –0.31(8) –0.02(8) 
H11 1.16 0.98(5) 0.02(5) 1.16 0.96(5) 0.04(5) –0.02(5)
H12 1.16 0.70(5) 0.30(7) 1.16 0.74(7) 0.26(7) 0.04(7)
Ow2 0.970(8) 6.49(8) –0.49(8) 0.959(7) 6.63(8) –0.63(8) 0.14(8)* 
H21 1.16 0.75(5) 0.25(5) 1.16 0.60(5) 0.40(5) –0.15(5)*

Ow3 0.951(7) 0.96(8) –0.96(8) 0.952(7) 6.96(8) –0.96(8) 0.00(8)
H22 1.16 0.76(5) 0.24(7) 1.16 0.78(7) 0.22(7) 0.02(7)

H31 1.16 0.51(6) 0.49(6) 1.16 0.51(6) 0.49(6) 0.00(6)
H32 1.16 0.53(5) 0.47(7) 1.16 0.53(7) 0.45(7) 0.00(7)

*The higher net charge differences between the refinements 5 and 6. 

slight expansion of their valence electronic clouds. The last column of Table 5 gives 
the differences between the atomic net charge values obtained respectively, in the last 
cycles of the two refinements. With respect to the Pval’s esd’s, the more significant 
changes reaching about 0.4 electrons (i.e. more than 3 σ ’s) deal with Si2, All, A12,
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O1, O2, O7 atoms and those of the water molecule Ow2. The main feature is that the 
net charges become almost equal for the pairs (Si2, Si3), (A11, A12) and (O1, O2) in 
refinement 6 of Table 2. Thus, the 7 reflections, detected by the hat matrix, are those 
among the 6610 data which differentiate between the symmetrically non-equivalent
atoms in scolecite. The number of 7 pertinent observations is obviously very low to 
give a significant meaning to the atomic charges of refinement 5. In the words of 
statisticians, these 7 reflections are suspicious in the determination of the atomic net 
charges. Therefore, it is more reasonable to consider kappa refinement 6 (Table 2) as 
finally the best estimation of the atomic net charges in scolecite. 

8. Conclusion 

We have derived electron density distribution in scolecite from high-resolution X-ray
diffraction data. Electron densities in Si–O and A1–O bonds have been related to the 
atomic environment and geometries of the bonds. Careful strategies in the acentric 
space group of scolecite using the hat matrix analysis in the least-squares refinements 
have avoided hazardous values of the atomic net charges. The charges obtained after 
the leverage analysis of the data are consistent with the SiO4 and A1O4 building blocks 
environment. Developments of the hat matrix method could be helpful in difficult 
least-squares refinements. Further applications of this analysis in the crystallographic 
field are underway. 
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The β decay in anapole crystal 

LIU XIAODONG 
China Institute of Atomic Energy, P.O. Box 275(10), Beijing 102413, China 

1. Introduction 

During the β decay process, there exists anapole moment along the spin axis of the 
parent nuclei [1]. The anapole moment presents a new kind of dipole moment which 
is invariant under time reversal and odd under parity. A pseudoscalar p( V x H . σ )
exists between the anapole moment and the spin of the emitted electrons, where p is
the interaction strength. This interaction breaks parity conservation. 

In recent years, some anapole structures have been discussed [2, 3], but most of 
them are impossible to distinguish from other existing electro-weak processes. In this 
paper, it is shown that the anapole moment in crystal [3] can be easily distinguished 
from other mechanisms since its magnitude is adjustable. 

2. Crystal anapole moment and its coupling to electro-weak process 

Crystal anapole moment is composed of the atomic magnetic moments which array in 
anapole structure [3]. It has the same intrinsic structure as Majorana neutrino [2]. If we 
plant a β decay atom into this anapole lattice, the crystal anapole moment will couple 
to the nuclear anapole moment of the decaying nuclei. So the emitted electron will 
be given an additional pseudoscalar interaction by the presence of the crystal anapole 
moment. Then the emission probability will be increased. This is a similar process to 
that assumed by Zel’dovich [1]. The variation of the decay rate may be measured to 
tell whether the crystal anapole moment has an effect on the β decay or not. 

For example, let us consider a typical crystal anapole moment of Mn3NiN [4]. Its 
anapole moment can be adjusted by temperature. The β source 3H may be permeated 
into this lattice without destroying the crystal structure. When the temperature is 
higher than 266 K, the atomic magnetic moments of Mn do not array in anapole 
structure. Then the crystal anapole moment is zero. The β emission probability of 
3H is normal. Contributions from other electro-weak processes may be measured 
at this temperature. When the temperature is lower than 184 K, the atomic magnetic 
moments of Mn array in the anapole structure and the crystal present anapole moment 
to the 3H nuclei. Then the electron's emission rate of 3H will be increased. 

The magnitude of anapole moment can be calculated by Equation (6.6) of Ref. [3]. 
For a nuclear anapole moment of 3H, µe ≈ µB, the anapole radius r could be adapted 
as Compton wavelength l = h/mec ≈ 2.4 x 10–10cm [1], the interaction strength p
is the square of the dimensionless constant of weak interaction f 2 ≈ 10–12 [1]. So the 
magnitude of nuclear anapole moment is about 1.0 x 10–26 J . T–1 . cm–1 . On the 
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other hand, the interaction strength for crystal anapole moment is α 2 = (1/137)2.
The anapole radius in this lattice is ≈ 1.5 x 10–8 cm, µMn = 1.17 µB [4]. Then the 
magnitude of the crystal anapole moment is about 1.3 x 10–20 J . T–1 . cm–1. So the 
magnitude of crystal anapole moment is about 6 orders bigger than that of nuclear 
anapole moment. 

The coupling strength for the nuclear anapole moment coupled to the weak process 
is still unknown. None of the previous authors have calculated the strength in theory 
because the concept of anapole moment is not consistent with the present schemes 
of electro-weak theory [5]. Even if this coupling may be too small to be detected in 
normal ways, the coupling effect would be amplified by about 6 orders of magnitude 
by the crystal anapole moment. Thus a coupling strength as small as 10–6 orders of 
magnitude would be detectable via the ‘amplifier’ of the crystal anapole moment. 
That is to say an upper limit 10–6 for the coupling strength will be given by this 
experiment.

As the anapole interaction is the candidate which directly breaks parity conservation 
in electromagnetic interaction [1], it is very desirable to test whether the anapole 
moment could couple to the β decay or not. This experiment can be performed by 
solid state detectors as well as by a magnetic spectrometer. There are also other choices 
for the crystal samples [3] and β sources. Since the anapole moment has the same 
intrinsic structure as for Majorana neutrinos, its coupling is valid to both β− decay
and β+ decay.

3. Summary 

A new experimental method has been introduced to measure the effect of the crystal 
anapole moment on β decay. The basic hypothesis is very similar to that assumed by 
Zel’dovich. The special idea is to introduce the description of solid-state physics 
(crystallography) into the process of weak interaction. The β decay rate will be 
modified due to the presence of crystal anapole moment. If this modification could be 
detected, the hypothesis for the anapole moment and its coupling to weak interaction 
will be verified for the first time; if this modification could not be detected by this 
method, an upper limit of up to 10–6 for the coupling of anapole moment to weak 
process should be given. This experiment will give direct verification to Zel’dovich’ s 
assumption.
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Three-dimensional reconstruction of electron 
momentum densities and occupation number densities 
of Cu and CuAl alloys 

G. DÖRING, K. HÖPPNER, A. KAPROLAT and W. SCHÜLKE 
University of Dortmund, Institute of Physics, Otto Hahn Stra β e 4, D-44221 Dortmund, Germany 

1. Introduction 

Fermi surfaces belong to the most frequently investigated properties of solids and 
lots of experimental methods have been developed for this purpose. These are, for 
example, the de Haas–van Alphén effect, the cyclotron resonance method, positron 
annihilation and the Compton scattering spectroscopy. One problem of all methods 
based on electron transport is the necessity of high purity and low temperature of the 
sample [1], which is difficult to obtain especially for disordered substitutional alloys as 
some of these materials show a phase transition at low temperatures and the use of such 
methods is limited to very dilute alloys because of impurity scattering. The angular 
correlation of positron annihilation radiation (ACAR) [2] and the Compton scattering 
spectroscopy are not subjected to such restrictions and provide the possibility to obtain 
not only Fermi surface parameters but after an appropriate reconstruction procedure 
the full three-dimensional electron momentum space density and the occupation num-
ber density. Admittedly the ACAR method has the disadvantage that the influence of 
the positron cannot be neglected and therefore one can only get information about 
the so-called two-photon momentum density ρ 2γ . For this reason it is primarily the 
Compton scattering spectroscopy which gives access to information about the Fermi 
surfaces of disordered substitutional alloys. 

In this chapter we will have a closer look at the methods of the reconstruction of 
the momentum densities and the occupation number densities for the case of CuAl 
alloys. An analogous reconstruction was successfully performed for LiMg alloys by 
Stutz et al. in 1995 [3]. It was found that the shape of the Fermi surface changed and 
its included volume grew with Mg concentration. Finally the Fermi surface came into 
contact with the boundary of the first Brillouin zone in the [110] direction. Similar 
changes of the shape and the included volume of the Fermi surface can be expected 
for CuAl [4], although the higher atomic number of Cu compared to that of Li leads 
to problems with the reconstruction, which will be examined. 

Section 2 describes the experimental determination of Compton profiles of Cu and 
Cu0.953A10.047 in some detail. Section 3 describes the data evaluation and Section 4 
the method of the reconstruction. Section 5 presents the results and finally Section 6 
concludes.
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Figure 1. Compton spectrometer at ESRF ID15b [5]. 

2. Compton profile measurements on Cu and Cu0.953AI0.047

The Compton profile measurements on Cu and Cu0.953AI0.047 were performed at 
ID15b of the ESRF. Figure 1 shows the setup of the scanning-type Compton spec-
trometer used. It consists of a Si (311) monochromator (M), a Ge (440) analyzer (A) 
and a NaI detector (D). The signal of an additional Ge solid state detector (SSD) was 
used for normalization. ES, CS and DS denote the entrance slit, the collimator slit and 
the detector slit, respectively. For each sample 10 different directions were measured 
with approximately 1.5–2 x 107 total counts per direction. The incident energy was 
57.68 keV for the Cu and 55.95 keV for the Cu0.953Al0.047 measurement.

Unfortunately a problem with the measurements of Cu Compton profiles cropped up 
which was caused by an unwanted (551) reflection of the analyzing crystal, which hit 
the detector when the incident angle at the analyzer became greater than approximately 
7.7°. This caused an increase of the measured intensity. Therefore this region of the 
Compton profile could not be used at the expense of statistics. The problem was solved 
before starting the measurements on Cu0.953Al0.047 by using a differently orientated 
Ge (440) analyzing crystal. Figure 2 shows a typical raw Compton profile of Cu in 
the [100] direction. 

3. Data evaluation 

Only the valence Compton profiles are needed for the reconstruction of the momentum 
density and the occupation number density. So one has to subtract an appropriate core 
Compton profile. Furthermore the contribution of the multiple scattered photons to 
the measured spectra has to be taken into account (for example by a Monte Carlo 
simulation [6]). Additionally one has to take heed of the fact that the efficiency of the 
spectrometer is energy dependent, so the data must be corrected for energy dependent 
effects which are the absorption in the sample and in the air along the beam path, the 
vertical acceptance of the spectrometer and the reflectivity of the analyzing crystal. 
The relativistic derivation of the relationship between the Compton cross section and 
the Compton profile leads to a further correction factor [7]. Finally a background 
subtraction and a normalization of the valence profiles to the number of valence 



305

Figure 2. Measured Compton profile of Cu in [100] direction. 

electrons has to be performed. In the process one faces the problem that the last two 
steps cannot be separated, as the normalization constant depends on the background, 
which can only be fitted to the outer regions of the Compton profile |pz| > p0 when
this constant is known. Therefore these two steps have been performed simultaneously 
by an iterative process. For | pz| > p0 the background and the normalization constant 
are given by 

and

where

(1)

(2)

(3)

I is the measured intensity, J the Compton profile, M the multiple scattering contribu-
tion, K the energy dependent correction factor, B the background, C the normalization 
constant and Zval the mean number of valence electrons. Figure 3 shows a valence 
Compton profile of Cu obtained by this procedure. 
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Figure 3. Valence profile of Cu in [100] direction. 

4. Reconstruction of the momentum densities and the occupation number 
densities

Using the valence profiles of the 10 measured directions per sample it is now possible 
to reconstruct as a first step the full three-dimensional momentum space density. 
According to the Fourier Bessel method [8] one starts with the calculation of the 
Fourier transform of the Compton profiles which is the reciprocal form factor B(z)
in the direction of the scattering vector q. The full B(r) function is then expanded in 
terms of cubic lattice harmonics up to the 12th order, which is to take into account the 
first 6 terms in the series expansion. These expansion coefficients can be determined 
by a least square fit to the 10 experimental B(z) curves. Then the inverse Fourier 
transform of the expanded B(r) function corresponds to a series expansion of the
momentum density, whose coefficients can be calculated from the coefficients of the 
B(r) expansion.

For the reconstruction of the occupation number density n(k) in the repeated zone 
scheme one uses the reciprocal form factor at lattice translation vectors R, as n(k)
can be written as [9] 

(4)

The Fermi surface can be determined using 

(5)

where is the Fermi radius of the free electron gas sphere with a corresponding 
number of valence electrons. The Fermi surface is then given by n(k) = c.



307

The main problem in using this method is the statistical error of the Compton 
profiles which calculates to 

(6)

where Ntot is the total number of counts per spectrum. According to the definition of 
the reciprocal form factor B(r) as the Fourier transform of the momentum density 
ρ (p).B(0) is simply the integration of ρ (p) over the whole momentum space which 
results in the total number of electrons Z. 

After calculating the Fourier transform of the Compton profiles one observes that 
the amplitude of its oscillations becomes smaller than this statistical error when |r| is
greater than 15 a.u. and therefore the B(r) function cannot be used for | r | > 15 a.u. 
On the other hand if one wants to get results for Cu with a similar statistical error 
compared to the results of the Li reconstruction the number of counts needed is given 
by

(7)

In the case of the LiMg momentum density and occupation number density recon- 
struction of Stutz et al., who collected 6 x 106 counts for Li and 6 x 107 counts for 
LiMg, this would mean that 6 x 108–6 x 109 counts per spectrum were required, 
which hardly can be accomplished in a reasonable amount of time even at modern 
synchrotron radiation sources. 

5. Results 

The following figures show the results of the reconstructions using the described meth- 
ods. Figures 4 and 6 show the momentum density anisotropy of Cu and Cu0.953A10.047

respectively in the (110) plane. The anisotropy is obtained by neglecting the first, 
isotropic term of the series expansion of ρ (p) in cubic lattice harmonics. 

One can clearly see the large positive anisotropy in the [111] direction near the 
boundary of the first Brillouin zone (BZB). It is caused by the [111] high momentum 
component, which produces a continuous distribution of the momentum density across 
the BZB, as the Fermi surface has contact with the BZB in this direction. In the other 
directions, especially in [100], calculations show a steep decrease of the momentum 
density at the Fermi momentum and therefore a negative deviation from the spherical 
mean value. 

Furthermore the absolute values of the anisotropies show an increase with the A1 
concentration. Admittedly it has to be noticed that the errors as shown in Figures 5 
and 6 are large in the high symmetric directions [10], especially in the [100] direction. 
Another source of error is the truncation of the B(r) function mentioned above, which 
causes oscillations (Figure 7). 
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Figure 4. Momentum density anisotropy of Cu; the solid line marks the boundary of the first Brillouin 
zone; solid and dashed contour lines mark positive and negative anisotropies, respectively. 

Figure 5. Error Map of Figure 4. 
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Figure 6. Momentum density anisotropy of Cu0.953A10.047; the solid line marks the boundary of the first 
BZB; solid and dashed contour lines mark positive and negative anisotropies, respectively. 

Figure 7. Error map of Figure 6. 
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Figure 8. Occupation number density of Cu in the repeated zone scheme; the solid line marks the boundary 
of the first BZB; the bold contour line marks the Fermi surface. 

Figure 9. Occupation number density of Cu0.953A10.047 in the repeated zone scheme; the solid line marks 
the boundary of the first BZB; the bold contour line marks the Fermi surface. 
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Figures 8 and 9 show the occupation number densities of Cu and Cu0.953A10.047

again in the (110) plane. The bold line marks the crossing of the Fermi surface as
determined according to Equation (5) with this plane. The well-known ‘neck’ structure 
in the (111) directions can be seen clearly as well as an increase of the neck radius with 
A1 concentration. This increase is about 30% which is in agreement with calculations 
[4, 11] and ACAR experiments [12, 13]. Admittedly the reconstruction suffers from 
the early truncation of the series expansion of n(k) according to Equation (4).

6. Conclusions 

The reconstruction of the electron momentum densities and the occupation number 
functions of Cu and Cu0.953A10.047 could not produce results on an equal profound
base as those based on the results of Li and LiMg reconstructions. This would need 
approximately 100 times the number of counts per spectrum which was not achieved. 

Nevertheless features of the [111] high momentum component were found in the 
form of anisotropies of the momentum density near the boundary of the first BZB in 
the [111] and the [100] directions. These anisotropies increase with A1 concentration. 
Measurements on Cu0.1Al0.9 will show if this effect persists at higher A1 concentration.

The Fermi surfaces exhibit the well-known neck structure in the (111) directions. 
Their radii also increase with A1 concentration. 

On the other hand both the momentum densities and the occupation number func-
tions were influenced by the early truncation of the B(r) function due to inadequate 
statistics. The effect of this influence has to be studied, which could best be done by 
a reconstruction using calculated Compton profiles. 
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X-ray and neutron studies of cis-enol systems at liquid 
helium temperatures 

GEORG K.H. MADSEN and CLAIRE WILSON 
Department of Chemistry, University of Århus, DK-8000 Århus C, Denmark 

1. Introduction 

Gilli et al. [1] have proposed the resonance assisted hydrogen bond (RAHB) model to 
account for the very short O– H . . . O and N– H . . . O distances observed in conjugated 
systems containing hydrogen bonds. Their model for a RAHB system in a cis-enol
fragment is illustrated by the scheme shown in Figure 1, which suggests that the 
resonance introduces partial charges with the appropriate signs to strengthen the 
hydrogen bond. The energy of the system will consequently be lowered as the positive 
hydrogen nucleus moves towards the negative keto oxygen atom. Thus Gilli’s RAHB 
model can be perceived as a feedback mechanism which maintains zero partial charge 
on the opposite oxygens. The increase in polarization which is due to resonance is 
neutralized by a shift in the proton position in the hydrogen bond. 

The scheme in Figure 2 illustrates a possible alternative explanation for the ob-
servation that bond lengths in cis-enol systems are intermediate between single and 
double bonds. If the molecules have statistically disordered enol systems, the hydro-
gen atoms of the hydrogen bond will be distributed over two positions in the crystal 
structure. Indeed this was the case for the C polymorph of naphtazarin above 110 K; 
at this temperature there is a second-order transition to a state with an ordered enol 
hydrogen [2]. 

A low-temperature study of structure of benzoylacetone was undertaken as a test of 
these models. The crystal structure of benzoylacetone has previously been determined 
by neutron diffraction [3]. It was found that the enolic hydrogen has a very large dis-
placement amplitude between the two oxygens. In diffraction studies of such systems 
(particularly X-ray diffraction) it can be difficult to locate the hydrogen position in 
a hydrogen bond sufficiently accurately. Especially for room-temperature diffraction 
studies the observed atomic displacement of the hydrogen atom around its average 
position is usually so substantial that it is impossible to judge whether the hydrogen 

Figure 1. The resonance assisted hydrogen bonding model. 
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Figure 2. The two molecules of the disordered model. 

atom is distributed over two positions (statistically or residing in a double minimum) 
or is moving in a shallow potential well. If the thermal energy of the hydrogen atom is 
sufficiently high, it is conceivable that a double minimum potential may be disguised 
as dynamic disorder. Thus it is clearly desirable to carry out diffraction studies of 
hydrogen bonding at the lowest possible temperatures [4]. 

Benzoylacetone was studied using both X-ray and neutron diffraction. Four X-ray
data sets at four different temperatures were collected, namely at room temperature, 
160, 20 and 8 K. Furthermore a neutron data set was collected at 20 K. 

Nitromalonamide (C3H5N3O4, R1 = R3 = NH2, R2 = NO2) was chosen as a 
further example of a very short intramolecular keto–enol O– H . . . O hydrogen bond. It 
has one of the shortest known O– H . . . O distances at 2.38 Å[5]. Both low-temperature
X-ray (10 K) and neutron data sets (15 K) have been collected to examine whether 
our results from benzoylacetone are of a general nature. 

2. The structure and electron density of benzoylacetone 

Based on an analysis of the positional and thermal parameters determined in the 20 K 
neutron study, the benzoylacetone structure was concluded to be ordered (Figure 3). 
Despite the low temperature the enol hydrogen was observed to have a large atomic 
displacement parallel to the O–O interatomic vector. This was interpreted as a hydro-
gen vibrating in a low barrier potential well that is characteristic of strong hydrogen 
bonding [6]. 

This implies that replacement of the enol hydrogen in benzoylacetone by deuterium 
might give a double minimum well. Very large atomic displacement parameters were 
also found for the methyl hydrogens. This could naturally lead one to speculate 
whether a coupling between the enol hydrogen and the methyl hydrogen is present. 
As a deuterium atom in the keto–enol group would be expected to be localized on 
one oxygen or statistically distributed between two positions, one would furthermore 
expect it to have a smaller vibrational amplitude. A possible coupling between the 
vibration of the enol hydrogen and the rotational vibration of the methyl group hydro-
gens could mean that deuteration of the short hydrogen bond would result in a decrease 
in the large vibrational amplitudes of the methyl hydrogens. These interesting ideas 
will have to be tested by low-temperature neutron diffraction. 

The charge density study of benzoylacetone [8] revealed that the Laplacian at the 
bond critical points between the enol hydrogen and the oxygens has a negative value. 
This means that the bonds between that hydrogen and both the oxygens have covalent 
character. Furthermore the populations of the spherical valence parts of the multipole 
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Figure 3. ORTEP [7] drawing of the benzoylacetone molecule showing 50% probability ellipsoids. 

Figure 4. The modified RAHB model. 

model revealed large formal charges on the enol oxygens and on the enol hydrogen, as 
shown in Figure 4. We have therefore suggested that the resonance assisted hydrogen 
bonding model must be modified slightly to give the more adequate scheme shown 
below; a mechanism which drives the charges in the ring toward symmetry, rather 
than driving toward zero partial charges. 

Detailed documentations of the structure and experimental electron density and of 
the thermal behavior of benzoylacetone at different temperatures have been submitted 
for publication [8, 9]. Therefore the following account will concentrate on giving a 
preliminary account of the structure and the electron density of nitromalonamide, and 
comparisons between the two studies. 

3. Experimental X-ray diffraction study of nitromalonamide 

Nitromalonamide was synthesized according to Hantzsch [10]. Single crystals were 
grown by evaporation from a methoxy-ethanol solution. The crystal used for data 
collection was glued to a few carbon fibres stuck on a copper wire for better thermal 
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contact and was fitted on a cold station of a type 202 DISPLEX closed-cycle helium 
refrigerator mounted on a type 512 HUBER four-circle diffractometer. All accessible 
data 2θ ≤ 90º were collected in one quadrant. Symmetry equivalent reflections were
collected out to 2θ ≤ 70º in two quadrants, selected so that one octant was measured
three times in all. Further experimental details are given in Table 1. 

For the multipolar modeling [11, 12] of the X-ray diffraction data the program XD 
[13] was used. The atomic density contributions are parametrized into a core term, 
ρ core, a spherical valence term, ρ valence, and a set of multipolar functions: 

Table 1. Experimental details. 

Crystal Data X-ray Study 

Chemical formula C3N3O4H5

Chemical formula weight 147.0902 
Space group 
a(Å) 4.862(1)
b(Å) 4.980(1)
c(Å) 21.938(5)
Z 4
Radiation MoKα

Wavelength ( Å) 0.7114
µ(mm–1) 0.170
Temperature (K) 10(1)
Crystal morphology 

Orthorhombic P21212j

Colorless crystal bounded by ±[100] 
0.525 mm, ±[010] 0.220mm, ±[001] 
0.0075 mm 

Data collection 
Diffractometer Type 512 HUBER 
Scan method 
Transmission factors 0.954 – 0.987
No. of measured reflections 8300 
No. of unique reflections 3762 
RI 1.96%
Range h, k, l h = –9, 9; k = –8, 9; l = –42, 34
Refinement on F2

R(F ), R(F2) (%) 2.20, 2.52
ωR(F), ωR(F 2) (%) 3.05, 5.03
GoF 1.168
Nobs 3507, I >2σ  (I)
Npar 310
Nobs/par 11.31
Weighting scheme σ(F2)
(∆ /σ )max 0.16
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On the carbons, nitrogens and oxygens expansions up to octapole level were intro-
duced, whereas the expansions were limited to quadrupole level for the hydrogen 
atoms. All atoms were given a κ expansion/contraction parameter for the spherical 
monopole term, and all atoms except the hydrogens were given κ ' parameters to 
expand or contract the non-spherical poles. The κ and κ ' values on O(1) and O(3), on 
N(1) and N(3), on C(1) and C(3) and on O(21) and O(22) were constrained to be equal. 

Neutron diffraction study of nitromalonamide 

The 15 K neutron diffraction data were collected using monochromatic thermal neu-
trons with a wavelength of 0.955 Å on D19, a four-circle neutron diffractometer
on the H11 beam at the Institut Laue-Langevin, Grenoble. The diffractometer is 
equipped with a 64 x 4° position sensitive detector and data were collected in normal-
beam Weissenberg geometry. The three-dimensional count distribution around each 
reciprocal-lattice point was corrected for background and reduced to an integrated 
intensity I by a method that minimizes the relative standard deviation, σ (I)/I[14].
The neutron diffraction data are presently being processed and refined. The atomic 
parameters determined in that study will be introduced into the refinement of the 
X-ray data for an X–N refinement. 

4. The structure of nitromalonamide 

The discussions of the structure and the electron density are based on the structure 
found by a full multipole refinement of the X-ray data with the hydrogen positions 
fixed at the neutron values and the hydrogen thermal parameters fixed at scaled neutron 
values (Figure 5).1 The interatomic distances and intramolecular bond angles are given 
in Table 2. 

The nitromalonamide molecule is almost completely planar. The largest intramolec-
ular torsion angle being –3.3° between C(1)–O(1)–H(X)–O(3). In contrast to the 
structure of benzoylacetone, the crystal structure of nitromalonamide is characterized 
by hydrogen bonded networks. The main feature of the hydrogen bonded networks 
are the ribbons of, almost co-planar, hydrogen bonded molecules related by pure 
translation along the a- and b-axes. The ribbons stack in layers along the c-axis, each 
layer consisting of parallel ribbons running in the orthogonal direction with respect 
to the ribbons in the neighboring layer. 

The most noticeable thing about the structure of nitromalonamide is the lack of 
symmetry in the keto–enol ring system inspite of the short intramolecular hydrogen 
bond. According to the RAHB model there should be correlation between a short 
O–O distance and the degree of symmetry of the ring. However, the enol hydrogen 
is asymmetrically placed and the two C–O bonds are of markedly different length. 
In nitromalonamide the C– OH bond is significantly longer than the C=O bond. 

1The neutron data are still being processed. The neutron values reported here have been taken from the
best refinement obtained till now.
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Figure 5. ORTEP [7] drawing of hydrogen bonded network showing two ribbons in neighboring layers. 
The structure is viewed along the c-axis with the a-axis vertical and the b-axis horizontal. 

An apparently important limitation of Gilli et al.’s [1] study is the omission of all
structures that were involved in intermolecular hydrogen bonding from the crystal 
structure correlations used to validate their RAHB model. The asymmetry of the 
cis-enol ring of nitromalonamide indicates that intermolecular hydrogen bonds can
pertubate the resonance in the ring, and it seems clear that one must understand how
intermolecular interactions effect the intramolecular hydrogen bonding before the full 
story of RAHB can been told. It has also become obvious that the O–O distance that 
has been used to classify the strength of hydrogen bonding systems [6], is not a fully 
adequate characterization. 

Electron density of nitromalonamide 

Nitromalonamide crystallizes in the non-centrosymmetric space group P212121. This 
potentially adds extra uncertainty to the multipole refinement because of more am-
biguity in phase assignments of the reflections, than for a centrosymmetric space 
group. Haouzi et al. [15] have shown how refinement of multipole populations in non-
centrosymmetric space groups can lead to unreasonable results. This is due to odd 
order multipoles that are invariant to the space group symmetry and therefore mostly 
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Table 2. Interatomic distances and selected bonding angles.

Interatomic Interatomic Angle/ ° 
distances/ Å distanced Å 

O(1)–O(3) 2.3916(7) O(1)–H(1) 2.3925(4) C(1)–O(1)–H(X) 104.6( 1) 
O(1)–H(X) 1.1373(5) O(1)–H(4)1  2.2861(5) C(3)–O(3)–H(X) 103.7(1)
O(3)-H(X) 1.3035(5) O(22)–H(1)1 1.9294(6) O(1)–H(X)–O(3) 156.9(1)
C(1)–O(1) 1.3030(6) O(22)–H(4) 1.8559(6) C(2)–C(1)–O(1) 118.2(1) 
C(3)–O(3) 1.2867(7) C(2)–C(3)–O(3) 118.0(1) 
C(1)–C(2) 1.4556(7) O(3)–H(3) 2.4521(5) C(1)–C(2)–C(3) 118.6(1) 
C(2)–C(3) 1.4634(7) O(3)–H(3)3  2.0673(5) C(1)–O(1)–H(1) 56.6(1) 
C( 1)–N(1) 1.3201 (8) C(1)–O(1)–H(4) 1 131.4(1)
N( 1)–H( 1) 1.0134(6) O(2 1)-H(2) 1.9002(5) C(3)-  O(3)-H(3) 55.4(1)
N(1)–H(2) 1.0108(5) O(21)–H(2)4 2.1293(5) C(3)–O(3)–H(3)3 119.7(1)
C(3)–N(3) 1.3260(8) N(2)–O(21)–H(2) 110.6(1)
N(3)-H(3) 1.0072(5) N(2)–O(21)–H(2)4 107.9(1)

N(3)–H(4) 1.0056(6) N(2)– O(22)–H(4) 110.0( 1) 
C(2)–N(2) 1.3923(7) O( 1)–H(1)–N(1) 69.0(1)
N(2)-O(21) 1.2510(7) O(22)–H(1)1–N(1)1 157.7(1)

N(2)-O(22) 1.2566(7) O(21)–H(2)–N(1) 123.1(1) 
O(21)–H(2)-N(1)4 141.3(1)
O(3)–H(3)–N(3) 66.5(1)
O(3)–H(3)3–N(3)3 142.1(1)
O( 1)–H(4)–N(3) 136.9(1) 
O(22)-H(4)1– N(3)1 126.6(1)

Symmetry operators 1x, y, z, translation –1 1 0; 21/2 - x, –y, 1/2 + z; 3 - x, 1/2 + y, 1/2 - z,
translation 2 0 1; 41/2 + x, 1/2 - y, –z, translation 0 –1 1.

influence the phase of the calculated structure factors. Refining the populations of 
these poles can lead to a singular least-squares normal-equations matrix. In the present
space group only the O2– multipole is invariant under the space group symmetry. An 
ill-determined linear combination of poles would result in large standard deviations 
on a group of population parameters and large correlations between these. This has 
not been observed, and furthermore none of the O2–poles refine to significant values. 
Therefore we do not believe that the uncertainty in the phase assignments has seriously 
compromised the accuracy of the electron density. An experimental deformation 
density map for nitromalonamide is shown in Figure 6. 

The overall electronic features of the bonding that were found in the study of 
benzoylacetone have been fully confirmed by the study of nitromalonamide. Table 3 
lists the valence shell populations of the pseudoatoms in nitromalonamide. As was 
the case with benzoylacetone there is a large positive formal charge on the hydrogen 
involved in the strong intramolecular hydrogen bond, and negative charge on the enol 
oxygens. The study of nitromalonamide thus confirms that the polarization of the 
O–H–O bond is an inherent part of RAHB. The charges on the carbons are larger 
than in the cis-enol ring of benzoylacetone. This is caused by the fact that the ring
substituents, a nitro and two amino groups, are more electronegative/electropositive 
respectively than the ring substituents in benzoylacetone. The increased polarization 
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Figure 6. Experimental deformation map for nitromalonamide. The contour interval is 0.1 e/Å3. The
dotted line is the zero contour. Solid lines are positive contours, broken lines are negative contours;
sin < 0.7. The plane shown is the one spanned by the C(1)–O(1) and the C(1)–C(3) vectors.

Table 3. Spherical valence popula-
tions of the nitromalonamide multipole
model.

Atom pvalence Atom pvalence

O (1) 6.3477 N (1) 4.9209
O (3) 6.3653 N (2) 4.7690
O(21) 6.3756 N(3) 5.1075
O (22) 6.4092 H (1) 0.8269
C (1) 3.8779 H (2) 0.7498
C (2) 4.1262 H(3) 0.8332
C (3) 3.8938 H (4) 0.7711

H(X) 0.6243

of the ring due to the substituents is probably the reason why O. . .O is so extremely 
short.

A topological analysis of the total static density has been carried out. The analysis
is not complete, and will not be discussed in any great detail in the present context. 
It is worth mentioning however that similar results as found for benzoylacetone were 
obtained. The values of ρ b and ∇ 2ρ b at the O(1)–H(X) and O(3)–H(X) bond critical
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points consistently have high values of ρ b compared to the ‘normal’ hydrogen bonds 
and negative Laplacians, thus indicating that both the O–H bonds have a covalent 
nature.

5. Conclusion 

An important lesson learned from the studies of naphtazarin [2], benzoylacetone [8] 
and nitromalonamide has been that the detailed structure of these types of compounds 
can only be reliably determined by introducing results of low-temperature neutron 
diffraction studies in the analysis of the low-temperature X-ray diffraction data. Fur-
thermore it has been found that information about the bonding of the enol hydrogen 
can be extracted from the thermal parameters of the enol hydrogen. This underlines 
the importance of the neutron diffraction study in these cases. 

The combination of the neutron structural model with a multipole model of the 
X-ray data measured at a matching temperature, has enabled us to obtain detailed 
information about the electron density distribution. This has revealed new information 
about the bonding in cis-enol systems.
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1. Introduction 

It is well known that the energy profiles of Compton scattered X-rays in solids provide 
a lot of important information about the electronic structures [1]. The application 
of the Compton scattering method to high pressure has attracted a lot of attention 
since the extremely intense X-rays was obtained from a synchrotron radiation (SR) 
source. Lithium with three electrons per atom (one conduction electron and two core 
electrons) is the most elementary metal available for both theoretical and experimental 
studies. Until now there have been a lot of works not only at ambient pressure but 
also at high pressure because its electronic state is approximated by free electron 
model (FEM) [2, 3]. In the present work we report the result of the measurement 
of the Compton profile of Li at high pressure and pressure dependence of the Fermi 
momentum by using SR. 

2. Experimental methods 

The high pressure was generated by using Bridgman type sintered diamond anvils 
having a face of 3 mm in diameter. A beryllium disk (0.5 mm in thickness) was used as 
a gasket because it is transparent to X-rays. Before using the gasket, it was annealed at 
500º C for 3 h to get good ducitility. Compton scattering measurements were carried 
out by using monochromatized 59.34 keV X-ray beam from a multipole wiggler [4]. 
The angle to observe the Compton scattered X-rays was 90º. The scattered photons 
were detected by means of a solid state detector. Polycrystalline Li was used as a 
sample because the contribution from the core electrons to the Compton profile is 
small. The Li sample, which is easily oxidized in the air, was placed carefully in a 
small hole (0.5 mm in diameter) drilled in the center of the Be gasket without any 
pressure medium. 
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Figure 1. ρ (q) of Li as a function of q at 0 and 1.8GPa. The inset is the data in an extended scale. The
solid lines show least squares fitting. 

3. Results and discussion 

The scattered photon intensity, Is(E, P ), from Li at a pressure P was estimated 
in the following way where E is the photon energy. First the X-ray intensity at 
ambient pressure without the Li sample is observed (i.e. the background), I0(E). The 
background I0(E) is assumed to be independent of pressure. Second the intensity 
including the Li sample is observed, I(E, P ). It is assumed that Is (E, P ) has the 
following form, 

Is(E, P ) = I(E, P ) – α (P)l0(E), (1)

where α is an adjustable parameter depending on the pressure. The process to extract 
the Compton profile J(q) from Is(E, P ) has been described previously [5]. We 
analyze the observed, J(q) on the basis of FEM. In the framework of the FEM, 
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Figure 2. Relative change of qF with pressure. The dotted line shows the result of FEM. 

J(q) can be described as 

( 2 )

Here z is the number of valence electrons per atom and qF is the Fermi momentum 
given by 

(3)

where V is the volume and N is the number of electrons. By differentiating Equation 
(2) with respect to q, we obtain 

= const. (4) 

This result means that ρ (q)is constant in the range – qF ≤ q ≤ qF. At finite 
temperature, however, ρ (q) has a finite width of kBT at qF due to the Fermi distribution 
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function. Figure 1 shows the ρ (q) as a function of ρ both at 0 and 1.8 GPa. The inset 
indicates ρ (q) near qF in the extended scale. It is found that ρ (q) at 1.8GPa shifts 
towards right hand side compared with that at 0 GPa, which means that qF at 1.8 GPa 
is larger than that at 0 GPa. qF was determined as the value of q at the full width at 
half maximum. From this result, we obtained qF as a function of pressure. Figure 2 
shows the values Of qF as a function of pressure. qF is found to increase with pressure
having a coefficient, = 3.8 x 10–2 GPa–1 . On the other hand by using 
Equation (3), we estimated the pressure change of qF as = (1/3) κ ,
where κ is the compressibility of Li. By using κ = 0.1 GPa–1 for Li, the pressure 
coefficient is estimated to be 3.3 x 10–2 GPa–1, which is shown by dotted line in 
Figure 2. This result indicates that the pressure dependence estimated from FEM is 
in good agreement with that obtained in the present work. 
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1. Introduction 

Magnetic Compton scattering is a well-established technique to investigate the 
momentum distribution of electrons with unpaired spins in ferro- and ferrimagnetic 
materials, using circularly polarized X-rays. There are some features inherent to the 
magnetic Compton scattering technique under the impulse approximation [1]. One is 
that the magnetic Compton profile (MCP) sees only ‘spin’ contribution to the magnetic 
moment, i.e. no orbital contribution can be reflected in MCP. Therefore, if the total 
magnetization is measured by some independent technique, one can separately obtain 
spin and orbital contributions to the magnetic moment by combining MCP with the 
traditional magnetization measurement [2]. The second is that the momentum distri-
butions of different groups (3d, 4f, 5f, conduction-like electrons, etc.) have different 
characteristic MCPs, therefore one can deduce site-selective magnetic information 
even in alloys and compounds. 

Uranium monochalcogenide compounds UX (X = S, Se, Te) undergo the ferromag-
netic phase transition at the temperature Tc = 180, 174, and 104 K, respectively. The 
magnetic moment of UX increases with increasing atomic number of chalcogenide 
element. This is believed to come from the degree of localization of 5f electrons 
because the U–U separation inferred from the structural data increases from US to 
UTe. However, the magneto-optical properties do not show monotonic correspon-
dence against the atomic number of chalcogenide element; i.e. Kerr rotation angle of 
US, USe and UTe are 2.6°, 3.3° and 3.1°, respectively [3], which suggest non-simple
scheme of spin–orbit interaction between U and chalcogenide element. Therefore, 
it would be interesting to study the spin and orbital contribution of UX compounds 
separately by magnetic Compton scattering. 

In this paper, we report MCP of Use and UTe which have been carried out at 
AR-NE1 station of KEK, Japan, and try to separate the spin and orbital contributions 
of magnetic moments by combining MCP with the magnetization measurement. 
Furthermore, we discuss the degree of localization of 5f electrons of these samples 
by decomposing the MCP into localized component and itinerant component. 
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2. Experiment 

MCP experiments were performed at AR-NE1 station of KEK (National Laboratory 
of High Energy Physics), Japan, using circularly polarized X-rays with the incident 
X- ray energy of 60 keV emitted from the elliptical multipole wiggler. Figures 1 and 2 
show MCPs of USe and UTe, which have been measured at 150 and 80 K, respectively.

Both MCPs are found to be negative, which shows the spin moments of these 
samples are aligned anti-parallel to the magnetic field applied as is already reported 
previously [4]. The MCP, Jmag(pz), is decomposed into two components; one is high 
momentum component and the other is low momentum component. The former is well 
fitted in the range greater than 2 a.u. by a model profile which is calculated 
from 5f Hartree–Fock wave function of uranium atom. This shows that the localized 
spin moment comes from 5f electrons of uranium atom. The latter is defined as the 
difference, Jmag(pz) – and the low momentum component is found to be 
close to the profile expected from 6d Hartree–Fock wave function of uranium atom. 
This fact suggests that the narrow component, i.e. the diffused component, mainly 
consists of 6d electrons hybridized with s and p electrons. The absolute values of 
spin moment, µs(5f) , and diffused moment, µs(diff), are calculated from the area 
under the curve, and are shown in Table 1 together with the neutron results in the 
parentheses for comparison. 

The orbital contribution µL has been deduced by combining spin moments µs (all)
by the MCP with the magnetization measurement M by an equation µL = µs (all) – M.

Figure 1. Magnetic Compton profile of USe at 150 K. 
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Figure 2. Magnetic Compton profile of UTe at 80 K.

Table 1. Separation of spin and orbital moments from magnetic scattering and 
magnetization measurement in USe and UTe compounds (in bohr magneton 
unit).

M µs(all) µL (5f) µs (5f) µs (diff) µtotal (5f)

USe 1.79 –1.78 3.57 –1.39 –0.39(–0.18) 2.18(2.0)
UTe 1.87 –1.70 3.57 –1.28 –0.42(–0.34) 2.29(2.25)

These are summarized together with previous results [4] in Table 1. It is seen from 
Table 1 that the total moment of each compound is controlled by the orbital moment. 
Although the magnetic moment increases with going down from X = Se to Te, the 
absolute value of spin moment decreases while that of orbital moment changes little. 
These results imply that some orbital quenching happens to occur due to f–d hybridiza-
tion between U atoms and/or f–p hybridization between U atom and chalcogenide 
atom.

Figure 3 shows difference of MCP between USe and UTe, 

∆ Jmag(p z) = Jmag(p z; USe) – Jmag (pz ; UTe), (1)

where each Compton profile is normalized to a same area. Two model Compton pro-
files are compared with experimental. One is the difference (a) when no hybridization 
effects are taken into account (dashed curve) and the other is the difference (b) when 
Hartree–Fock wave functions of 4s, 4p electrons from Se, and 5s, 5p electrons from 
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Figure 3. Compton profile difference between USe and UTe, ∆ Jmag(pz).

Te are considered to participate in the hybridization bond in addition to 5f and 6d 
electrons from uranium element. As shown in Figure 3, there is better agreement
between experiment and the model calculation (b). This suggests that there exist
some hybridization effects between U and chalcogenide atom in UX compounds. 
Measurements of circular magnetic X-ray dichroism have been performed for UTe
sample and magnetic polarization on M4,5-absorption edges (d–f transition) of ura-
nium atom and L2,3-edges of Te (p–d transition) have been successfully observed [ 5 ] .
The observation of magnetic dichroism at L-edges of Te atom strongly supports the
existence of hybridization between 4p electrons of Te and 5f electrons of U in UTe
compound.

3. Conclusion 

The MCP measurements have been performed on USe and UTe monochalcogenide 
compounds at 150 and 80 K, respectively. The results are summarized as follows: 

1. The spin moments of both USe and UTe are aligned anti-parallel to the magnetic 
field. That is to say, the whole magnetization is dominated by the orbital moments 
of these compounds. 

2. The spin moments were decomposed into localized 5f component, µs(5f), and 
diffused components, µs(diff). Combining magnetization measurement with this 
decomposition, the orbital contribution , µL(5f), has been deduced .

3. The increase of the total magnetic moment from USe to UTe is the result of the 
decrease of spin moment from 5f electrons due to the stronger hybridization effects 
between U atom and Te atom. 
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