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Editorial foreword

The electron density of a non-degenerate ground state system determines essentially
all physical properties of the system. This statement of the Hohenberg—Kohn theorem
of Density Functional Theory plays an exceptionally important role among all the
fundamental relations of Molecular Physics.

In particular, the electron density distribution and the dynamic properties of this
density determine both the local and global reactivities of molecules. High resolution
experimental electron densities are increasingly becoming available for more and
more molecules, including macromolecules such as proteins. Furthermore, many of
the early difficulties with the determination of electron densities in the vicinity of
light nuclei have been overcome.

These electron densities provide detailed information that gives important insight
into the fundamentals of molecular structure and a better understanding of chemical
reactions. The results of electron density analysis are used in a variety of applied
fields, such as pharmaceutical drug discovery and biotechnology.

If the functional form of a molecular electron density is known, then various
molecular properties affecting reactivity can be determined by quantum chemical
computational techniques or alternative approximate methods.

Spin densities determine many properties of radical species, and have an important
effect on the chemical reactivity within the family of the most reactive substances
containing free radicals. Momentum densities represent an alternative description of
a microscopic many-particle system with emphasis placed on aspects different from
those in the more conventional position space particle density model. In particular,
momentum densities provide a description of molecules that, in some sense, turns
the usual position space electron density model ‘inside out’, by reversing the relative
emphasis of the peripheral and core regions of atomic neighborhoods.

This book contains a selection of chapter topics based on papers given at the
12th conference of the Commission on Charge, Spin and Momentum Density of the
International Union for Crystallography, held in Waskiesiu, Prince Albert National
Park, SK, Canada, July 27-August 1, 1997. The choice of topics represents some
of the latest advances in the field of electron, spin, and momemtum densities and
the analysis of these densities with respect to their roles in determining chemical
reactivity.

It is the hope of the editors that this book will provide our readers with an exciting
collection of accounts of the latest advances, and also will provide further motiva-
tion for new research to address some of the challenging, unsolved problems of the
fascinating interrelations between electron, spin, and momemtum densities, and the
complex subject of chemical reactivity.

Paul G. Mezey and Beverly Robertson

X
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Maximum Entropy charge density studies: Bayesian
viewpoint and test applications

PIETRO ROVERSI', JOHN J. IRWIN' and GERARD BRICOGNE!?

' MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England
2LURE, Batiment 209D, 91405 Orsay, France

1. Introduction

The Maximum Entropy (abbreviated MaxEnt) method has been used in the field of
accurate charge density studies for some time now (see Section 2.2): it has the potential
to overcome some of the limitations of traditional multipolar modelling, but great care
must be taken not to apply it outside the range of validity of its own foundations.

In this paper, after a brief discussion of the main sources of error affecting the
present day implementation of multipolar and MaxEnt charge density studies
(Sections 1.1 and 2.2), we present a rationale for the well-known drawbacks of the
MaxEnt method as applied to charge density studies. In particular, we will show
that the use of a uniform prior-prejudice distribution gives rise to artefacts when the
dynamic range of the electron density to be reconstructed is large enough that the
exponential modelling of the density requires non-negligible Lagrange multipliers
past the resolution limit of the available diffraction data. The artefacts are not due to
insufficient numerical precision, but to series termination effects in the Fourier series
with Lagrange multipliers as coefficients.

In the last section of the paper, we discuss a Bayesian approach to the treatment of
experimental error variances, and its first limited implementation to obtain MaxEnt
distributions from a fit to noisy data.

1.1. Model bias in multipolar charge density studies

The main sources of error in charge density studies based on high-resolution X-ray
diffraction data are of an experimental nature; when special care is taken to minimise
them, charge density studies can achieve an accuracy better than 1% in the values of
the structure factor amplitudes of the simplest structures [1, 2]. The errors for small
molecular crystals, although more difficult to assess, are reckoned to be of the same
order of magnitude.

The challenge is then to achieve the same degree of accuracy in the derived values
of the experimental electron density. Recent studies have shown that in some cases
this is indeed within the reach of the present-day modelling techniques [3—-5]. When
the major sources of experimental error have been corrected for the typical root mean
square electron density residual can reach values as low as 0.05 e A, with maxima
below 0.20eA= in absolute value. The observed residuals are usually due to the

1

Paul G. Mezey and Beverly E. Robertson (eds.), Electron, Spin and Momentum Densiries and Chemical Reactivity. 1-26
© 2000 Kluwer Academic Publishers. Printed in Great Britain



2

errors in the experimental data, but high-resolution, high-quality data sets can in
some cases bring to light inadequacies of the model.

In practice, the choice of parameters to be refined in the structural models requires a
delicate balance between the risk of overfitting and the imposition of unnecessary bias
from a rigidly constrained model. When the amount of experimental data is limited,
and the model too flexible, high correlations between parameters arise during the least-
squares fit, as is often the case with monopole populations and atomic displacement
parameters [6], or with exponents for the various radial deformation functions [7].

A main source of model bias lies in the choice of exponents in the single-exponential-
type functions 7 exp (—o) that are commonly used as the radial parts of the defor-
mation functions: this choice is often ‘more of an art than a science’ [4]. Very little is
known about the optimal values to be used for elements other than those of the first
two rows. Selection of the best value for the exponents n is usually carried out by
systematically varying exponents and monitoring the effects on the R indices and/or
residual densities [8, 9]. The procedure can in some cases be unsatisfactory, as is the
case when very diffuse functions centred on one atom are used to model most of the
density in the bond, and even some of the density on neighbouring atoms [10].

Extra radial flexibility has been proved necessary in order to model the valence
charge density of metal atoms, in minerals [6,11], and coordination complexes [5],
and similar evidence of the inability of single-exponential deformation functions to
account for all the information present in the observations have also been found in
studies of organic [12, 13] and inorganic [14] molecular crystals.

When atoms occupy highly symmetrical sites, a further limitation of the current
multipolar expansions is the limited order of the spherical harmonics employed,
that do not usually extend past the hexadecapolar level (I = 4). Only two multi-
polar studies published to date used spherical harmonics to orders higher than / = 4:
graphite [15] and crystalline beryllium [16]. In the latter work, the most significant
contribution to the valence density was indeed shown to be given by a pole of
order / = 6.

2. MaxEnt charge density studies

Because of the limitation intrinsic to the adoption of an explicit parametrised density
model, many crystallographers have been dreaming of disposing of such models
altogether. The thermally-smeared charge density in the crystal can of course be
obtained without an explicit density model, by Fourier summation of the (phased)
structure factor amplitudes, but the resulting map is affected by the experimental
noise, and by all ‘series-termination’ artefacts that are intrinsic to Fourier synthesis
of an incomplete, finite-resolution set of coefficients.

A second approach which is not subject to the limitations imposed by the choice of a
parametrised model of the density, is the MaxEnt method. The appeal of the method is
evident when counting the increasing number of applications to charge density studies
that have appeared in the crystallographic literature in the last ten years: see among
the most recent ones [17-20], and the works cited in relevant sections of reviews



on charge density studies [21] and on MaxEnt methods in crystallography [22]. In
principle, MaxEnt maps are not tied to any particular multipolar expansion, or radial
deformation function, and can mirror any degree of angular and radial deformation
that is present in the observations.

2.1. The random scatterer model

All of the studies published so far have been aiming at the reconstruction of the total
electron density in the crystal by redistribution of all electrons, under the constraints
imposed by the MaxEnt requirement and the experimental data. After the acceptance
of this paper, the authors became aware of valence-only MaxEnt reconstructions
contained in the doctoral thesis of Garry Smith [58]. The authors usually invoke
the MaxEnt principle of Jaynes [23-26], although the underlying connection with
the structural model, known under the name of random scatterer model, is seldom
explicitly mentioned.

According to the latter model, the crystal is described as formed of anumber of equal
scatterers, all randomly, identically and independently distributed. This simplified
picture and the interpretation of the electron density as a probability distribution to
generate a statistical ensemble of structures lead to the selection of the map having
maximum relative entropy with respect to some prior-prejudice distribution m(x)
[27, 28].

When it is employed to specify an ensemble of random structures, in the sense
mentioned above, the MaxEnt distribution of scatterers is the one which rules out the
smallest number of structures, while at the same time reproducing the experimental
observations for the structure factor amplitudes as expectation values over the ensem-
ble. Thus, provided that the random scatterer model is adequate, deviations from the
prior prejudice (see below) are enforced by the fit to the experimental data, while the
MaxEnt principle ensures that no unwarranted detail is introduced.

2.2. A look at the MaxEnt charge density literature

Since 1993, a number of studies have been devoted to assessing the limitations of
the MaxEnt method when applied to charge density studies, especially in conjunction
with uniform prior-prejudice distributions. We summarise here the main points that
have arisen from these model studies.

Uneven distributions of residuals. ~The MaxEnt calculations in presence of an overall
chi-square constraint suffer from highly non-uniform distributions of residuals, first
reported and discussed by Jauch and Palmer [29, 30]; the error accumulates on a
few strong reflexions at low-resolution. The phenomenon is only partially cured by
devising an ad hoc weighting scheme [20,31, 32]. Carvalho ef al. have discussed this
topic, and suggested that the recourse to as many constraints as degrees of freedom
would cure the problem [33].
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Dynamic range of the density and low-density regions in the crystal. In their work
cited above, Jauch and Palmer first pointed out the inadequacies of the method in
dealing with densities having a large dynamic range. Additional evidence of these
inadequacies has come from Papoular ef al.,, who worked on observed and simulated
data sets for o-glycine [ 18]. In the latter study, when all electrons were redistributed
with a single-channel approach, the density of the hydrogen atoms was clearly flat-
tened, and features below 2 e A were in general deemed to be scarcely significant,
because the large dynamic range of the total density reduced the sensitivity level.
A two-channel calculation,' fitting structure factors calculated from the deformation
density, did not suffer from the same limitations due to the reduced dynamic range of
the density to be reconstructed.

Errors in the low-density regions of the crystal were also found in a MaxEnt study
on noise-free amplitudes for crystalline silicon by de Vries et al. [37]. Data were
fitted exactly, by imposing an esd of 5 X 10+ to the synthetic structure factor
amplitudes. The authors demonstrated that artificial detail was created at the mid-
point between the silicon atoms when all the electrons were redistributed with a
uniform prior prejudice; extension of the resolution from the experimental limit of
0.479 to 0.294 A could decrease the amount of spurious detail, but did not reproduce
the value of the forbidden reflexion F(222), that had been left out of the data set
fitted.

Dependence of results from the prior-prejudice distribution. Non-uniform prior-
prejudice distributions (NUP for short in what follows) were initially introduced by
Jauch and Palmer by centering 3D Gaussian functions at the nuclear positions [29].
They found that the low-density regions of the crystal changed significantly upon
introduction of the NUP, but the uneven distribution of errors persisted.

Iversen et al., in their study of crystalline beryllium [32], were the first to make
use of NUP distributions calculated by superposition of thermally-smeared spherical
atoms. More recently, a superposition of thermally-smeared spherical atoms was
used as NUP in model studies on noise-free structure factor amplitudes for crystalline
silicon and beryllium by de Vries ef al. [38]. The artefacts present in the densities
computed with a uniform prior-prejudice distributions have been shown to disappear
upon introduction of the NUP. No quantitative measure of the residual errors were
given.

Finally, recent work of Iversen ef al. has carefully examined the bias associated to
the accumulation of the error on low-order reflexions, and attempted a correction of the
MaxEnt density [39]. The study, based on a number of noisy data sets generated with
Monte Carlo simulations, has produced less non-uniform distribution of residuals, and
has given quantitative estimate of the bias introduced by the uniform prior prejudice.
For more details on this work, we refer the reader to the chapter by Iversen that appears
in this same book.

'Two-channel MaxEnt techniques have also been used in the study of magnetization and spin
densities [34, 35] and to interpret unpolarised neutron diffraction data [36].



2.3. The joint use of MaxEnt distributions and structural models

None of the studies mentioned in Section 2.2 has explicitly addressed the main issue
of the redistribution of core electron densities under MaxEnt requirements in the
absence of high-resolution observations. This is indeed the key to explaining the
unsatisfactory features encountered so far in the applications of the method to charge
density studies.

By its very definition, the MaxEnt method is optimally suited to flexibly reconstruct
distributions whose main features are well represented in the available data, that is
either in the observations or in the prior structural knowledge. When this is the case,
the missing structure can be reasonably approximated by a collection of randomly
and independently distributed constituents (by ‘missing structure’ here we mean all
those structural details which are not completely defined by the prior knowledge).

If these structural features are not well represented by a mild redistribution of ran-
dom independent constituents from an initially given prior prejudice, and arise instead
from some degree of correlation between the scatterers, they cannot be expected to be
satisfactorily dealt with by the method. For these reasons, substructures which scatter
well beyond the experimental resolution should be left out of the subset of scatterers
distributed at random. The data sets commonly collected for charge density studies
do not as a rule extend beyond 0.4 A resolution, but scattering from the atomic core
does extend well beyond this limit.?

It is therefore clear that MaxEnt redistribution of all electrons, using a uniform
prior prejudice and carried out in the absence of very high-resolution diffraction
measurements, cannot be expected to reproduce a physically acceptable picture of
atomic cores. The reconstruction of total electron densities from limited-resolution
diffraction measurements amounts to a misuse of the MaxEnt method, especially
when the prior prejudice is uniform.

Within the multichannel Bayesian formalism of structure determination, it is in-
deed possible to make use of MaxEnt distributions to model systems whose missing
structure can be reasonably depicted as made of random independent scatterers. This
requires that the structural information absent in the diffraction data be obtained
from some other experimental or theoretical source. The known substructure can be
described making use of a parametrised model.

2.4. The MaxEnt equations and density: a brief reminder

The general computational mechanism of Bayesian crystal structure determination
in presence of various sources of partial phase information was first outlined by

?When low-temperature studies are performed, the maximum resolution is imposed by data collection
geometry and fall-off of the scattered intensities below the noise level, rather than by negligible high-
resolution structure factor amplitudes. Use of Ag Ko radiation would for example allow measurement of
diffracted intensities up to 0.35 A for amino-acid crystals below 30 K [40]. Similarly, model calculations
show that noise-free structure factors computed from atomic core electrons would be still non-zero up to

0.1A.



Bricogne [41]; a status report, now somewhat dated, about its actual implementation
for a number of crystallographic problems was given by the same author in [42].

In this section, we briefly recall the MaxEnt equations and the functional form of the
MaxEnt probability distribution; the formulation is the one obtainable for randomly
and independently distributed electrons, in the presence of a subset of electrons whose
distribution is assumed to be known. The latter structure will be denoted as ‘fragment’.

Let us consider a collection H = (h,, h,, . . ., hy) of symmetry-unique reflexions.
We denote by F* the ‘target’ phased structure factor amplitude for reflexion hy, and
with F £ the contrlbutlon from the known substructure to the structure factor for the
same reﬂexmn We are interested in a distribution of electrons ¢(x) that reproduces
these phased amplitudes, in the sense that, for each structure factor in the set of
observations H,

F;, = Fy + P, (1)

where the contribution Fﬁ‘;‘d of the random scatterers is related to ¢ (x) by

F{fj"d =nf|G| /V q(x)e¥ X g3x, ©)

In this expression, |G| is the number of elements of the space group of the crystal,
and ' and n are the scattering power and number of the point random scatterers in
the asymmetric unit, respectively.

Since all the scatterers are identical, their structure factors can be normalised to
unitary structure factors, as is always the case for homogeneous structures of normal
scatterers [41]:

Urancl = Fra“d/(nflGl) = (F;j ~ F{,’jg) / (nfIGD. 3)

Now we make use of the invariance of ¢(x) under symmetry operations of space
group G:

g®) = (1/1GD) Y _ q(Rex + t,) (4)

geCG

and of the group structure of G, to rewrite Equation (2) as

geG

ULaj,“d =/Q(X) [(I/IGI)Zexp [27ih; (REX+tg)]}d3X, )

The quantity in curly brackets in Equation (5) is called the constraint function C/(x).

To deal with all the observations h; € H in compact form, the unitary structure
factor components can be arranged in a vector U= and the components of the
constraint functions collected in a vector C(x). The MaxEnt distribution of electrons
¢"=(x) then takes the form

M x; A = [mx)/ZAH)]exp A C)], (6)



where Z()) is a normalising factor for ¢(x),
ZM) = / m(x)exp A - C(x)] d*x 7
v

and the saddle point A= A*is computed by solving the MaxEnt equations
Vs (log Z(A)) = U™, (8)

The name of the distribution is due to the fact that the saddle point X* can also be
obtained as the vector of Lagrange multipliers needed to find the distribution ¢ = ¢M®
for which the relative entropy,

Sn(q) =— / g(x)log[g(x)/m(x)]d’x (9)
V
is at a maximum [27].

2.5. MaxEnt deformation density maps

Most of the relevant features of the charge density distribution can be elegantly
elucidated by means of the topological analysis of the total electron density [43];
nevertheless, electron density deformation maps are still a very effective tool in charge
density studies. This is especially true for all densities that are not specified via a
multipole model and whose topological analysis has to be performed from numerical
values on a grid.

Conventional implementations of MaxEnt method for charge density studies do
not allow easy access to deformation maps; a possible approach involves running a
MaxEnt calculation on a set of data computed from a superposition of spherical atoms,
and subtracting this map from ¢MF [44]. Recourse to a two-channel formalism, that
redistributes ‘positive-’ and ‘negative-density’ scatterers, fitting a set of difference
Fourier coefficients, has also been made [18], but there is no consensus on what the
definition of entropy should be in a two-channel situation [18, 36, 41]; moreover, the
shapes and number of positive and negative scatterers may need to differ in a way
which is difficult to specify.

Thanks to the particular choice made for the NUP, taken equal to a superposition
of spherical atoms, it is for the first time possible within the present approach to
compute MaxEnt deformation maps in a straightforward manner. Once the Lagrange
multipliers Ahave been obtained, the deformation density is simply

exp [A* - C(x)] B 1)

Z00 (10)

AgME(x) = m(x) <

This map can have negative as well as positive features, and yet its calculation involves
only that of the positive map ¢, thus avoiding the issue of extending the MaxEnt
method to two-channel problems.



3. The role of the prior-prejudice distribution

It appears from formula (6) that the prior-prejudice distribution m(x) is a fundamental
quantity in the calculation of the MaxEnt distribution of electrons, in that the latter
is obtained by modulation of m(x). In all those regions where the modulating factor
required to fit the observations is unity, the final picture is therefore always going
to coincide with the prior expectation itself. For this reason, it is of the greatest
importance that some of the prior information available about the system under study
be conveyed into the calculation by means of a sensible choice for the prior-prejudice
distribution.

This is especially true when the observations are not informative enough, as is the
case for total charge density reconstruction based on finite resolution X-ray diffraction
data. Even when valence electrons only are redistributed at random, the shell structure
of the atomic densities might still require high-order components that are past the
experimental resolution [2]. The choice of the uniform prior-prejudice distribution
amounts to ignoring the presence of atoms in the crystal, so that its property of
being ‘maximally non-committal’ is no longer a virtue but a vice: it is in fact too
non-committal.

Not only is the choice of a uniform prior-prejudice distribution not sensible; it
also exposes the calculation to two main sources of computational errors, both con-
nected with the functional form of the MaxEnt distribution of scatterers, and with
its numerical evaluation: namely series termination ripples and aliasing errors in the
numerical sampling of the exponential modulation of m(x). The next two paragraphs
will illustrate these issues in some detail.

3.1. The spectrum of the exponential modulation of m (x)

As already pointed out by Jauch [30], the series appearing in the exponential factor that
modulates m (x) in (6) has a finite number of terms, and can therefore give rise to series
termination artefacts. In particular, although the exponentiation will ensure positivity
of the resulting density, series termination ripples will be present in the reconstructed
map whenever the spectrum of the modulation required by the observations extends
significantly past the resolution of the series appearing in the exponential. This in turn
will depend both on the ‘true’ density whose Fourier coefficients are being fitted, and
on the choice for the prior prejudice.

The phenomenon can be illustrated by considering a model density g(x), from
which diffraction data can be computed at arbitrarily high resolution. The (normalised)
exponential factor needed to reconstruct ¢(x) by MaxEnt modulation of a chosen
prior-prejudice distribution m(x) can be written as

exp[r - C(x)] = r%((ix)) (11)

Z(A)

The series in the exponential is called ®: 0 (x) = A. C(x).



102
101 | ;
£
g 100} 3
c
=
E
C T ?
102 P J
103 ) L A
0.0 1.0 2.0 3.0 4.0

dhAl

Figure 1. Amplitudes of the Fourier coefficients of log(¢x)/m(x)) in resolution bins for L-alanine at
23 K. g(x): total model density, from a multipolar tit to 23 K diffraction data protect [45]. Continuous line:
m(x) = uniform distribution. Dotted line: m(x) = core and valence monopoles. The vertical bar marks
the experimental resolution limit 0.463 A.

Fourier analysis of the logarithm of the ratio ¢(x)/m(x) can now inform us about
the extent to which the finite resolution of the observations fitted is likely to affect the
MaxEnt reconstruction, depending on the choice for the prior prejudice. The better
guess m(x) is, the smaller the amplitudes of the Lagrange multipliers will be. Finite-
resolution effects will be negligible when the use of a good NUP keeps the magnitude
of the Lagrange multipliers to a minimum.

Figure 1 shows the average strength of the Fourier coefficients of log(g(x)/m(x)),
with g(x) a multipolar synthetic density for L—-alanine at 23 K, and two different prior-
prejudice distributions m(x). It is apparent that the exponential needed to modulate
the uniform prior still has Fourier coefficients larger than 0.01 past the experimental
resolution limit of 0.463 A. Any attempt at fitting the corresponding experimental
structure factor amplitudes by modulation of the uniform prior-prejudice distribution
will therefore create series termination ripples in the resulting MaxEnt distribution.

The exact amount of error introduced cannot immediately be inferred from the
strength of the amplitudes of the neglected Fourier coefficients, because errors will
pile up in different points in the crystal depending on the structure factors phases as
well; to investigate the errors, a direct comparison can be made in real space between
the MaxEnt map, and a map computed from exponentiation of a resolution-truncated
‘perfect” o-map, whose Fourier coefficients are known up to any order by analysing

log(q (x) /m (x)).
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Figure2. L-alanine. Dynamic deformation density in the COO~ plane. (a) Model dynamic deformation
density AgMod¢!_ (b) MaxEnt dynamic deformation density (Aqglgp(x)) map obtained with a non-uniform
prior of spherical-valence shells. Map size: 6.0A x 6.0A Contour levels: from —1.0 to 1.0 eA=, step
0.075 ¢ A=,

In particular, if the -map suffers from an error Aw due to its finite resolution

@™ x) =1 CX) + Aw(X), (12)
True m(x)
g X)) =g+ Aqx) = Zo P [0(x) + Aw(x)], (13)

the error in the final MaxEnt map will be proportional to the density itself
Ag(x) = g(x) [exp (Ao (x) — 1] ~ g() Aw(x). (14)

Errors are therefore enhanced in high-density regions.

3.1.1. 1-Ala MaxEnt valence density from noise-free data

To check this prediction, a number of MaxEnt charge density calculations have been
performed with the computer program BUSTER [42] on a set of synthetic structure
factors, obtained from a reference model density for a crystal of L-alanine at 23 K. The
set of 1500 synthetic structure factors, complete up to a resolution of 0.555 A [45],
was calculated from a multipolar expansion of the density, with the computer program
VALRAY [46].

The MaxEnt valence density for L-alanine has been calculated targeting the model
structure factor phases as well as the amplitudes (the space group of the structure is
acentric, P2,2,2,). The core density has been kept fixed to a superposition of atomic
core densities; for those runs which used a NUP distribution m(x), the latter was
computed from a superposition of atomic valence-shell monopoles. Both core and
valence monopole functions are those of Clementi [47], localised by Stewart [48]; a
discussion of the core/valence partitioning of the density, and details about this kind of
calculation, may be found elsewhere [49]. The dynamic range of the L-alanine model
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(a) ()

Figure 3. L-Alanine. Dynamic deformation density in the COO- plane. (a) q{'}fﬁf(x) — m(X).
(b) exp (“’g.rsugs (x)) — m(x). Map size, orientation and contouring levels as in Figure 2.

valence density at this temperature is ~966; this fairly high value is mainly due to the
sharp increase of the valence monopole functions of oxygen atoms at approximately
0.196 A from the nucleus (see Figure 8).

Uniform prior prejudice.  Figure 2(a) shows the model deformation density in the
plane of the carboxylate moiety. Figure 3(a) shows the MaxEnt deformation density
in the same plane, obtained modulating a uniform prior prejudice for the valence
electrons. The valence density is affected by errors up to 22% around the oxygen
atoms. Figure 3(b) shows the deformation density computed from exponentiation of
the ‘perfect’” m-map, truncated at the same resolution used for the MaxEnt calculation.
The errors around the oxygen atoms in the two maps of Figure 3 have the same shape;
this is a strong indication that these are indeed Fourier-truncation ripples.

We stress here that any low-temperature valence density for a small organic molecule
will have a comparably high dynamic range, so that even valence-only MaxEnt studies
will always be likely to need a NUP if truncation ripples are to be avoided.

Non-uniform prior prejudice. The dynamic range of the exp(®w) map is reduced
from 966 to a value of 3.3 when a NUP of spherical valence monopoles is used: as
a consequence, the size of the Lagrange multipliers is reduced by between one and
two orders of magnitudes, and the error due to series truncation in the ®-map is less
than 0.213 e A in absolute value everywhere in the cell, the rms deviation from the
model being as low as 0.212 ¢ A+ (Figure 2(b)).?

’The value of the rms deviation from the reference density can be deceptively low, due to the fact that
in the intermolecular regions the model density is virtually the same as the one made of spherical-valence
shells, which was used as a NUP. The agreement between the MaxEnt map and the reference model is very
close in those regions.
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3.2. Numerical sampling of the exponential modulation of m(x)

A second major source of computational difficulties associated with uniform prior-
prejudice distributions is connected with the extremely fine sampling grids that are
needed to avoid aliasing effects in the numerical Fourier synthesis of the modulating
factor in (8). To predict the dependence of aliasing effects upon the prior prejudice,
we need to examine more closely the way the MaxEnt distribution of scatterers is
actually synthesised from the values of the Lagrange multipliers A.

First, we rewrite the constraint functions appearing in the observational equation
(5) by taking explicitly into account the phase of the residual target structure factor:

Urand Urand

x exp(ig;) . (15)

Multiplication of the observational equations (5) by a factor exp(—idy), leads to the
modified constraint functions,

Ci(x) = ﬁZexp [27ih; - (Rex + t,) —ig;]. (16)
g€G

Taking the real and imaginary parts of the left- and right-hand sides of the newly
rewritten observational equation, one obtains

/ q(x)ReC (x) d’x = ]Urand ’ (17)

/v g(x)Im C(x) d’x = 0. (18)

Correspondingly, we introduce symbols for the amplitude 4 and phase 6, of each
complex Lagrange multiplier L ;: L, = «; (cos €;+1isin§;).

With this choice of constraint functions and Lagrange multipliers, we can rewrite
formula (6) and express the MaxEnt distribution of electrons as

m(x)
Z{k,9)

gME(x) = exp lZKj[COS(Gj)Re C; + sin(6;)Im C;] . (19)
j

The sum over symmetry operations in formula (16) can be rewritten by considering
the effect of multiplying vector h; by the rotation matrices R. The collection of
distinct reciprocal vectors h, R, is called the orbit of reflexion h;, [27]; T, is the set
of symmetry operations in G whose rotation matrices are needed to generate the orbit
ofhj; |[';| denotes the number of elements in the same orbit [50].
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The real part of the constraint function can be written as

ReC/ = ——Zcos 27rh R X+t ) ¢>j]
gEG
1
= — Z cos [27Thj . (RVX +ty) - ¢j] (20)
(Fj' VEFj

and a similar expansion holds for the imaginary part.
Substitution of (20) in (19) gives

gE m(x)
*x) = Z(k,0)

X exp Z Z —I_cos[27h; - (Ryx +t,) — ;] { . 1)

Jyel"’f,

where ; = ¢; + 8, This is the actual formula to compute the MaxEnt distribution,
by numerical Fourier synthesis followed by exponentiation. As with all Fourier series,
aliasing errors can occur when the Fourier coefficients extend very far into reciprocal
space, if the grid upon which the density is sampled is not fine enough [50].

To assess the extent to which the exponentiated Fourier series has appreciable
Fourier amplitudes, and set the sampling grid accordingly, further development of
formula (21) is needed. We first rewrite

ME _ m(x)
(x) = Z(lc 9)

x H I1 exp{l—r—| cos[27h; - (Ryx +t,) — wj]] . (22)

j=1yeT;

Expanding each of the exponential factors in a series of modified Bessel functions,
the MaxEnt distribution can be written:

®)
0= o 0)1_[1_[[ ( )

j=lyel;
oC

+2) 1, <|1%) cos {n [27h;.(R,x +1,) — w,-]}]. (23)

n=1

When the prior prejudice m (x) is uniform, some of the Lagrange multipliers ampli-
tudes are large (of the order of unity or greater). This is especially the case when sharp
details are present in the density to be reconstructed and not in the prior prejudice
chosen. For a given argument z, the ratio /,(z)/I,(z) remains substantial until n
exceeds z (see Figure 4), so that large values of the Lagrange multipliers amplitudes
k will give rise to appreciable high-resolution coefficients in the Fourier series in (23).
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In(z) /1 (2)

0.9

Figure 4. Ratio L(z)/I(z).

This in turn will require very fine sampling grids along each crystallographic direc-
tion, to avoid aliasing effects when the density is synthesised. The size of the arrays
needed for the Fourier sampling of ¢i(x) would therefore easily exceed ten million
locations for all-electron runs on low-temperature structures. It is clear that MaxEnt
distributions of scatterers that contain atomic cores, when obtained by modulation of a
uniform prior prejudice, are bound to be spoiled by aliasing effects, unless allowance
is made for prohibitively large amounts of memory space.

When the reconstruction of the density is carried out by modulation of a prior
prejudice of spherical atoms, only the deformation features have to be accommodated;
this can be accomplished relatively easily, and the Lagrange multipliers are usually
below 0.01 in modulus, or even smaller for valence-only runs. No aliasing problems
occur in the synthesis of ¢ME(x).

4. The treatment of the experimental error variances

The calculations discussed in the previous section fit the noise-free amplitudes exactly.
When the structure factor amplitudes are noisy, it is necessary to deal with the random
error in the observations: we want the probability distribution of random scatterers
that is the most probable a posteriori, in view of the available observations and of the
associated experimental error variances.

In the framework of Bayesian statistics, this can be done by maximising the pos-
terior probability of the Lagrange multipliers defining the distribution [51]; Bayes’s



15

theorem gives
PP (A | [FI°, m(x)) = P(IF°™ | &, m(x)) PP"" (A, m(x)) . (24)

In computing the posterior probability, two probability functions are involved:

1. Prier (3 m(x)): the a priori probability is proportional to the exponential of the
relative entropy S,, according to a theorem of Shannon [52]:

PP (o, m(x)) o exp (1S (W) @)

The MaxEnt distribution of scatterers g™MF, obtained for A = %, is also the one
that maximises the a priori probability in (25):

exp {nSu (¢gMF (")}

Pprior A¥) ~ . 26
( ) Vdet(2zn Hess(log Z(A*))) (26)
2. P(|F]* | A m(x)): the conditional probability of the measurements, given a

certain set of Lagrange multipliers and a prior-prejudice distribution m(x), can be
computed from the likelihood gain A, of the same Lagrange multipliers, given
the observed data and the same prior:

P(FI™ | X, m(x) = An(k | m(X), [FI°%). 27)

Likelihood has been long proven the optimal criterion to judge whether hypotheses
(in this case the values of the Lagrange multipliers) are corroborated by the obser-
vations. The recourse to a likelihood gain A, with respect to the prior prejudice
m (x) simply reflects the need for a reference point in evaluating the likelihood; the
reference chosen is the prior-prejudice distribution m (x), the particular distribution
for which all Lagrange multipliers are zero: ¢(x; A= 0) = m(x).

Under the simplifying assumption that the reflexions are independent of each
other, A, can be written as a product over reflexions for which experimental struc-
ture factor amplitudes are available. For each of the reflexions, the likelihood gain
takes different functional forms, depending on the centric or acentric character, and
on the assumptions made for the phase probability distribution used in integrating
over the phase circle: for a discussion of the crystallographic likelihood functions
we refer the reader to the description recently appeared in [51].

Both the a priori and the likelihood functions contain exponentials, so that it is
convenient to consider the logarithm of the posterior probability, and maximise the
Bayesian score:

B(\) = nS, (1) — 4 log [det(27 Hess(log Z(1)))] + log A, (1) (28)

under the constraint of MaxEnt. L£,, = log A, is called the log-likelihood gain. The
algorithm implemented to perform this constrained maximisation is an adaptation
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of the one employed to minimise a y2 residual subject to MaxEnt constraints, and
described in [27].

4.1. Likelihood with experimental errors present

In this section we briefly discuss an approximate formalism that allows incorporation
of the experimental error variances in the constrained maximisation of the Bayesian
score. The problem addressed here is the derivation of a likelihood function that not
only gives the distribution of a structure factor amplitude as computed from the current
structural model, but also takes into account the variance due to the experimental error.

Let us assume an experimentally derived distribution P(R) for the amplitude R =
[F| of a reflexion, normalised so as to have: f0°° P(R) dR = 1. The P(R) distribution
will be typically Gaussian around the measured R°® = |F|> with associated variance
62 P(R) may take a more involved functional form if the Gaussian has a substantial
tail in regions of negative Rebs.

The ‘error-free’ likelihood gain As(R; X,) gives the probability distribution for
the structure factor amplitude as calculated from the random scatterer model (and
from the model error estimates for any known substructure). To collect values of the
likelihood gain from all values of R around R°, A, is weighted with P(R):

20
A(Robs;gz’zz)zf P(R: R, 62y Ao(R: X5) dR. (29)
0

Under general hypotheses, the optimisation of the Bayesian score under the con-
straints of MaxEnt will require numerical integration of (29), in that no analytical
solution exists for the integral. A Taylor expansion of A(R) around the maximum of
the P(R) function could be used to compute an analytical expression for A and its first
and second order derivatives, provided the spread of the A, distribution is significantly
larger than the one of the P(R) function, as measured by o.. Unfortunately, for
accurate charge density studies this requirement is not always fulfilled: for many
reflexions the structure factor variance X, appearing in A, is comparable to or even
smaller than the experimental error variance o, because the deformation effects and
the associated uncertainty are at the level of the noise.

We have for now implemented a drastic simplification, whereby the likelihood
function is taken equal to the error-free likelihood, but to the variance parameter X,
appearing in the latter function the experimental error variance is added:

A(Rops) = Ag(Rops; T3), Tjy =Ty + 02 (30)

This approximation has already proven very effective in the calculation of likelihood
functions for maximum likelihood refinement of parameters of the heavy-atom model,
when phasing macromolecular structure factor amplitudes with the computer program
SHARP [53]. A similar approach was also used in computing the variances to be used
in evaluation of a y2 criterion in [54].
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4.1.1. Effective number of scatterers and variance rescaling
At this stage, two points are worth mentioning:

1. The number of random scatterers appearing in the expression for the Bayesian
score does not necessarily correspond to the nominal number of electrons in the
system under investigation: the random scatterers bear no physical identity! And
yet, the value of n is a key quantity in the optimisation of the Bayesian score, in
that it determines the relative weight of the log-likelihood and entropy terms in
driving the structure determination process: for example, values of n that are too
low will allow a tighter fit of the observations, because of a less stringent entropy
requirement, but at the cost of fitting some of the experimental noise.

2. At each stage during the structure determination process, the current structural
model gives an estimate of the prediction variance X, to be associated with the
calculated amplitude. The contribution of the random part of the structure to
this prediction variance decreases while the structure determination proceeds, and
uncertainty is removed by the fit to the observations. Rescaling of X, would be
needed during the optimisation of the Bayesian score.

Both the determination of the effective number of scatterers and the associated
rescaling of variances are still in progress within BUSTER. The value of n at the
moment is fixed by the user at input preparation time; for charge density studies,
variances are also kept fixed and set equal to the observational ¢ An approximate
optimal n can be determined empirically by means of several test runs on synthetic
data, monitoring the rms deviation of the final density from the reference model
density (see below). This is of course only feasible when using synthetic data, for
which the perfect answer is known. We plan to overcome this limitation in the future
by means of cross-validation methods.

4.2. L-Ala MaxEnt valence density from noisy data

A test of the computational strategy outlined in the previous paragraph has been
performed on a set of synthetic noisy structure factor amplitudes. The diffraction data
were computed from the same model density for L-alanine at 23 K as the one used
for the noise-free calculations described in Section 3.1.

4.2.1. Generation of the noisy data set

Gaussian noise has been added onto the structure factor amplitudes squared as com-
puted from the L-alanine model density; for each datum, the amount of noise added was
proportional to the experimental esd for the corresponding intensity measurement:

%oy = IFI? + Gauss x o (/F|2,). (31)

where Gauss is a random deviate of zero mean and unit variance.

From these noisy structure factor amplitudes squared, a sample of 2532 noisy struc-
ture factor amplitudes |F|u, up to 0.463 A, and the associated standard deviations
6(/F|waiy), have been computed using the computer program BAYES [55]. A number
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of 2470 of these noisy amplitudes are greater than 2o, a consequence of the high
precision of the experimental data used to calibrate the noise.

BUSTER has been run against the L-alanine noisy data: the structure factor phases
and amplitudes for this acentric structure were no longer fitted exactly but only within
the limits imposed by the noise. As in the calculations against noise-free data, a
fragment of atomic core monopoles was used; the non-uniform prior prejudice was
obtained from a superposition of spherical valence monopoles. For each reflexion,
the likelihood function was non-zero for a set of structure factor values around this
‘procrystal’ structure factor; the latter acted therefore as a ‘soft’ target for the MaxEnt
structure factor amplitude and phase.

4.2.2. Initial phase error

The core and valence monopole populations used for the MaxEnt calculation were
the ones of the reference density (electrons in the asymmetric unit: n.. = 12.44
and Ay = 35.56). The phases and amplitudes for this spherical-atom structure,
union of the core fragment and the NUP, are already very close to those of the full
multipolar model density: to estimate the initial phase error, we computed the phase
statistics recently described in a multipolar charge density study on 0.5 A noise-free
data [56].

For a number of 1907 acentric reflexions up to 0.463 A resolution, the mean
and rms phase angle differences between the noise-free structure factors for the
full multipolar model density and the structure factors for the spherical-atom struc-
ture (in parentheses we give the figures for 509 acentric reflexions up to 0.700A
resolution only) were: (A¢) = 1.012(2.152)°, rms(Ad) = 2.986(5.432)°; while
the mean and rms arc length errors, normalised so as to have Fy,, = 100, were
(|F| sin A®) = 0.034(0.088), rms(|F| sin Ap) = 0.063(0.116).

4.2.3. Computational details

It is of interest to mention some of the details of the valence MaxEnt calculations,
performed with the computer program BUSTER [42] on an Alpha Station 500 running
at 500 MHz.

BUSTER chooses the minimal grid necessary to avoid aliasing effects, based on the
prior prejudice used and on the fall-off of the structure factor amplitudes with resolu-
tion: for the 23 K L-alanine valence density reconstruction the grid was (64 144 64).
The cell parameters for the crystal are @ = 5.928(1)A; b = 12.260Q)A; ¢ =
5.794(1) A [45], so that the grid step was shorter than 0.095 A along each axis.

The calculation of the thermally-smeared core fragment and the valence monopoles
densities was carried out by a Fourier transform of a set of aliased structure factors
computed with the program VALRAY [46]; details of this calculation have been
published elsewhere [49].

The total number of degrees of freedom (Npww = Newrie + 2Npcenic) Was — 4439;
this is also equal to the number of Lagrange multipliers. The constrained maximisation
of the Bayesian score converged in less than 40 iterations; sufficient memory and disk
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Figure 5. L-Alanine. Fit to noisy data. Calculation 4. Distribution of residual structure factor am-
plitudes at the end of the MaxEnt calculation on 2532 noisy data up to 0.463A. Residuals plotted:
AFlo = (‘F‘ME _ ‘F‘Nolw)/d‘F‘Nolsy)A

were available so that the job had about 80% of the CPU, and took about 7 min to
complete.

As mentioned in Section 4.1.1, the number of random scatterers » has to be chosen
in input. Five BUSTER runs used values of n in the series: # = Ny X N2, N =
60, 70, 80, 90, 100. The rms deviation from the reference map varied between 0.0317
and 0.0293 e A3, the latter value pertaining to the run with N = 90: this value of n
was then used in the calculation described below.

4.2.4. Quality of the reconstruction

We briefly discuss in this section the results of the valence MaxEnt calculation on the
noisy data set for L-alanine at 23 K: we will denote this calculation with the letter 4.
The distribution of residuals at the end of the calculation is shown in Figure 5. It is
apparent that no gross outliers are present, the calculated structure factor amplitudes
being within 5 esd’s from the observed values at all resolution ranges.

The same phase statistics mentioned above were computed to obtain an estimate of
the phase error for the reconstructed density, for 1907 acentric reflexions up to 0.463
(in parentheses the values for the 509 acentric reflexions up to 0.700A): (3¢) =
0.755(0.854)°, rms(A¢) = 1.762(1.530)° the normalised mean and rms arc lengths
are  (|Fluy sin 8¢) = 0.022(0.040) and rms(|Flxy sin  Ap) = 0.033(0.054),
respectively. The MaxEnt valence modulation does improve the overall and low-
resolution phase error significantly.

The MaxEnt deformation density in the COO- plane is shown in Figure 6(a). The
deformation map shows correct qualitative features; differences between the single
C—C bond and the C-O bonds are clearly visible, and so are the lone-pair maxima
on the oxygen atoms. If compared to the conventional dynamic deformation density
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Figure 6. L-Alanine. Fit to noisy data. Calculation 4. MaxEnt deformation density and error map in the
COO- plane Map size, orientation and contouring levels as in Figure 2. (a) MaxEnt dynamic deformation
density Aqmﬁ,. (b) Error map: qME — gModel,

maps, usually obtained by Fourier summation, the MaxEnt deformation density is also
remarkably clean in intermolecular regions, where the observations do not introduce
any modulation in the prior prejudice of atomic valence monopoles.

4.3. The MaxEnt underestimates the deformation features

Figure 6(b) shows the difference between the MaxEnt valence density and the ref-
erence density, in the COO- plane. The error peaks in the bonding and lone-pair
regions, where the deformation features are systematically lower than the reference
map (negative contours). The deviation from the reference is largest in the region
around the C1 atom valence shell, and reaches —0.406 ¢ A-.

4.3. 1. Intrinsic dispersion of the MaxEnt distribution
The MaxEnt method will always deflate deformation features by the (&0 ). corre-
sponding to measurements error [39]. To obtain an empirical estimate of this intrinsic
spread allowed by the noise, twenty noisy data sets were generated as in formula
(31), and fitted with BUSTER using the fragment and NUP already described in the
previous paragraph.

The average map and the rms deviation from the average were computed:

Nmaps

(™) = Nmaps Ez: aME(x), (32)
1 iy ME ME 2 v

g0 =y =7 2 [a" 00 — @]y (33)
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Figure7. L-Alanine. Fit to noisy data. Calculation B. 10% experimental noise level. MaxEnt deformation
density and error map in the COO- plane. Map size, orientation and contouring levels as in Figure 2.
(a) MaxEnt dynamic deformation density AqII\‘;'[UP.(b) Error map: gMF — g,

The {g™E(x)) map is of course less noisy than any of the individual noisy maps; the
deviation from the reference model map shows the same systematic underestimation
of the deformation features as observed in density 4, with a maximum negative error
of —0.362 e A, again in the region of the valence shell of the C1 atom.

The (8¢(x)) ,,, map peaks around the two oxygen atoms, where the valence density
is highest; the values of {(8g(x)) . remain below 0.112 eA. This confirms that the
deviations observed in the calculation 4 are indeed significant with respect to the
intrinsic spread brought by the noise in the data.

4.3.2. Dependence of the bias on the noise level

To check for the dependence of this bias on the noise level, a number of 20 noisy data
sets were generated with variances lowered to 10% of their experimental values, and
MaxEnt calculations run against these low-noise data.

Sections of the density from one of these fits, which we will refer to as calculation
B, are shown in Figure 7: the MaxEnt deformation density in the COO- plane is
shown in Figure 7(a); Figure 7(b) is the difference between the MaxEnt valence
density and the reference density in the same plane. The lower noise content of the
data is clearly visible, when the map is compared with the one for calculation 4: in
particular, the lone pairs on the oxygen atoms are better defined. The rms deviation
from the reference is as low as 0.023 ¢ A~

Still, the deformation features around C1 are systematically underestimated, with
a maximum deviation of —0.0312eA3. As is evident from Figures 6(b) and 7(b),
the departure of the MaxEnt distribution from the reference model is most significant
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Figure 8. L —Alanine. Fits to noisy data: Calculations 4 (experimental noise) and B (10% experimental
noise). MaxEnt, deformation and error density profiles along the C1-O1 bond. Solid line: Model valence
density. Dashed line: MaxEnt density 4. Dot-dashed line: MaxEnt density B. Dotted line: valence-shells
non-uniform prior.

in the regions where the deformation from the prior prejudice of spherical atoms is
larger, namely in bonds of order greater than one.

This finding is more evident in the density profiles in Figure 8: both calculations 4
and B produce too low a density in the C1-O1 bond. Close to the carbon atom, the
profiles depart from the reference density to yield a more ‘atom-like’ picture of the
bond. This bias is milder for low-noise data, because of a tighter constraint from
the data.
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5. Concluding remarks

The observations presented here are in keeping with the general notion that the
MaxEnt method is best understood as a method for testing hypotheses against the
experimental data, in the presence of some prior knowledge. In a crystallographic
context, the Bayesian viewpoint on crystal structure determination prescribes the use
of the MaxEnt method to perform iterative testing of structural hypotheses, and allow
model updating [41, 51].

From this viewpoint, it is possible to rationalise the results of the different types
of charge density MaxEnt calculations discussed so far. In each case, the calculation
provides an answer whose quality is commensurate with the degree of adequacy
or inadequacy of the null hypothesis made; these null hypotheses can be ranked in
increasing order of information content:

* Many ofthe MaxEnt calculations described in the literature ignore any knowledge of
the atomicity of structures other than that conveyed by the choice made for the target
structure factor phases (see Section 2.2): a uniform prior is used, and all electrons
are redistributed under the MaxEnt condition. The resulting distribution already
contains a clear picture of atoms, with atomic cores and bonding density regions;
but the topology of these MaxEnt densities will often be wrong, because the missing
structure is not adequately modelled by random independent constituents [57];

» Within the computational scheme described in the course of this work, the available
information about the atomic substructure (coretvalence) can be taken into account
explicitly. In the simplest possible calculation, a fragment of atomic cores is used,
and a MaxEnt distribution for valence electrons is computed by modulation of a
uniform prior prejudice. As we have shown in the noise-free calculations on L-
alanine described in Section 3.1.1, the method will yield a better representation of
bonding and non-bonding valence charge concentration regions, but bias will still
be present because of Fourier truncation ripples and aliasing errors;

* Full atomicity can be incorporated into the available prior information, using a
NUP of spherical-valence shells, together with the atomic cores fragment. The
test presented in Section 3.1.1 shows that it is possible to correctly reconstruct the
aspherical features in the density, in absence of experimental noise. At this stage,
no stereochemical knowledge has yet been used, other than that implicitly con-
veyed by the geometry of the nuclear framework. The presence of the experimental
noise softens the constraints imposed by the observations, so that multiple-order
bonds and very sharp non-bonded charge concentration features are deflated (see
Section 4.3).

» The next update of the null hypothesis would incorporate a zero-order description
of bonding, in terms of a prior prejudice of ‘standard’ chemical groups. The MaxEnt
map then will tell us about the subtle differences induced in formally equivalent
chemical bonds by conjugation, stacking, and other intra- and intermolecular inter-
actions. To achieve this degree of accuracy, the refinement of structural parameters
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present in the model adopted for the fragment should proceed together with the
MaxEnt redistribution of the valence electrons.

We have described in this paper the first implementation of this Bayesian approach
to charge density studies, making joint use of structural models for the atomic cores
substructure, and MaxEnt distributions of scatterers for the valence part. Used in
this way, the MaxEnt method is ‘safe’ and can usefully complement the traditional
modelling based on finite multipolar expansions. This supports our initial proposal
that accurate charge density studies should be viewed as the late stages of the structure
determination process.
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Reliability of charge density distributions derived by
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1. Introduction

Understanding chemical and physical properties of molecular systems requires knowl-
edge of their charge distributions [1]. Experimentally, electron density distributions
(EDDs) can be reconstructed from accurate X-ray diffraction data through a series of
elaborate data reduction and data analysis steps [2]. The most widely used method
entails least-squares optimization of models containing atom-centered aspherical den-
sity functions [3—-6]. In the empirical modeling schemes, estimates of errors in the
density and in derived properties can be calculated within the framework of the least-
squares method. Such estimates rely on several assumptions including the adequacy
of the refined model. Several studies [7-9] have shown that even the very sophisticated
models currently used in empirical EDD modeling are inadequate to describe very
fine density features present in the data and in general, least-squares estimates of
EDDs will therefore contain systematic bias due to the model. Nevertheless, the
least-squares error estimates allow, to some extent, assessment of the reliability of
conclusions drawn from the model densities.

In recent years, a new method, the maximum entropy method (MEM), has been
introduced in charge density reconstruction. When X-ray diffraction data are used, the
MEM yields the electron density distribution [10, 11], whereas neutron diffraction
data allows the direct space nuclear probability density function to be determined
[12]. From limited numbers of X-ray diffraction data, EDDs have been reconstructed
by the MEM in a number of systems [13—15]. Maps that qualitatively reveal bonding
features have been obtained in these and many other studies. Although this is of interest
in itself, quantification and detailed analysis of the derived MEM charge densities is
highly desirable because chemically important features in molecular electron densities
often are very small. It is therefore important that the reliability of MEM densities
is scrutinized in order to make the method generally useful. Several authors have
pointed out that unphysical features can appear in MEM densities and, depending
on the quality and the completeness of the data, fine features in the density may be
artifacts of the density reconstruction [16—-19]. It has, furthermore, been pointed out
that use of an entropy term as a regularizing function in the reconstruction inevitably
will introduce systematic bias into the result [20, 21].
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2. Monte Carlo simulation of errors in MEM densities

In a recent paper we proposed to perform Monte Carlo simulations as basis for
the error estimation [22]. The data that are available is a set of observed structure
factors with associated standard deviations estimated from the scatter among repeated
measurements of equivalent reflections. We assume the error distributions around the
true value of each structure factor to be Gaussian and that systematic errors in the data
are negligible. From the set of observed structure factors, we can calculate a MEM
EDD, p¢, using for example the MEED algorithm from Nagoya University [23], but
any entropy optimization code may be used. We will not, in this paper, discuss details
of the MEM itself but refer readers to the references given in the introduction and to
other contributions in this book. The MEM density will have a corresponding set of
structure factors F°. We can construct synthetic data sets by applying random noise
to F* according to the known error distribution around the true structure factors.
The synthetic data sets, F; % can be used as input to a series of Monte Carlo MEM
calculations, and the result will be a series of Monte Carlo MEM densities, p
The scatter of these densities can be used to give an estimate of the error in the
original MEM density, p°. In Figure 1, a schematic representation of the Monte Carlo
calculations is shown.

Once N Monte Carlo densities are available, the estimated standard uncertainty in
each pixel of the discretized density can be calculated by

Zl‘N=1 (pfg - p-x)z

(o) = N -1

If no systematic bias is introduced by the MEM algorithm, we will expect that

averae ()
P = g=——§ Py = P,

MC
FSYn MEM A
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F
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Figure I. Flow chart of the Monte Carlo calculations to estimate errors in MEM charge densities.
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In this formula, p¥ is the density in pixel number x obtained from the observed
structure factors. However, the average value of the Monte Carlo densities turns
out to be systematically different from p2, as illustrated in Figure 2 where plots
of b(p®) = p=me — p, are shown for the MEM density of metallic beryllium.
The density was calculated based on the very accurate structure factors measured by
Larsen and Hansen [24]. In Figure 2(a), the bias in the MEM density calculated with
a uniform prior is shown, and in Figure 2(b), the bias obtained with a non-uniform
prior is shown. The non-uniform prior corresponds to the EDD of thermally smeared
Be atoms placed at their unit cell position (procrystal). It was calculated using wave
functions from Clementi and Roetti [25] and neutron diffraction thermal parameters
measured by Larsen et al. [26]. The maps in Figure 2 indicate where systematic bias,
b(p"), is introduced in the density by the MEM algorithm. If a similar systematic bias
was introduced in the calculation of p from the observed structure factors, then these
maps also suggest where p’ may be systematically different from the true EDD, pre.
We do not know the bias on pr, but from the Monte Carlo calculations we know
the bias on p. If ¢ is not too different from p~, we can assume that the bias in p
is close to the bias in p~. Once we have an estimate of the bias, we can correct the
MEM density by subtracting the bias from p. In Figure 3, bias corrected densities
with both uniform and non-uniform priors are shown. The important point to notice is
that both types of MEM densities contain considerable systematic bias. However, the
calculations show that the MEM bias in the valence regions is smaller when using the
non-uniform prior, which indicates that non-uniform priors are preferable to uniform
priors. In Figure 4, the random error calculated as the square-root of the variance
of the Monte Carlo densities is shown with fine contour intervals of 0.01 e/A*. In
general, the random error is small in the valence regions.

3. Non-nuclear maxima in hexagonal-close-packed metals

The chemical bonding and the possible existence of non-nuclear maxima (NNM) in
the EDDs of simple metals has recently been much debated [13,27-31]. The question
of NNM in simple metals is a diverse topic, and the research on the topic has basically
addressed three issues. First, what are the topological features of simple metals? This
question is interesting from a purely mathematical point of view because the number
and types of critical points in the EDD have to satisfy the constraints of the crystal
symmetry [32]. In the case of the hexagonal-close-packed (hcp) structure, a critical
point network has not yet been theoretically established [28]. The second topic of
interest is that if NNM exist in metals what do they mean, and are they important
for the physical properties of the material? The third and most heavily debated issue
is about numerical methods used in the experimental determination of EDDs from
Bragg X-ray diffraction data. It is in this respect that the presence of NNM in metals
has been intimately tied to the reliability of MEM densities.

We originally proposed NNM to be present in metallic beryllium [30] based on
analysis of the X-ray diffraction data measured by Larsen and Hansen [24]. Based on
Fourier maps and elaborate multipole least-squares modeling, indisputable evidence
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Figure 2. Contour plots of the MEM bias distribution, b(@ ), in the (110) plane of the hcp structure
of metallic beryllium. The plots are based on 200 Monte Carlo calculations: (a) uniform prior,
(b) non-uniform prior. The plots are on a linear scale with 0.05 e/As intervals. Truncation at —0.5 e/As.
Values in e/As are given for extremum points.
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Figure 3. Contour plots of the bias corrected MEM densifies in the (110) plane of metallic beryllium:

(a) uniform prior, (b) non-uniform prior. The plots are on a linear scale with 0.05 /A’ intervals. Truncation

at 1.0e/As. Maximum values in e/A> are given at the Be position and in the bipyramidal space of the hep
structure.
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Figure 4. Contour plot in the (110) plane of the estimated random error in the Be MEM densities. The
plot is for a uniform prior, but it is essentially identical to the result obtained with a non-uniform prior.
The plot is on a linear scale with 0.01 e/As intervals and 0.1 e/As truncation. Maximum values in e/A> are
given at the Be position and in the bipyramidal space.

revealed that in metallic beryllium, charge is transferred into the bipyramidal region
of the structure relative to a model consisting of independent spherical beryllium
atoms. Our analysis then addressed whether this redistribution of charge gives rise to
NNM in the solid. Topological analysis of the multipole model density showed NNM
to be present, but we wanted further confirmation and therefore also employed the
MEM. MEM reconstructions were carried out using both uniform and non-uniform
prior distributions. All methods pointed to the existence of NNM. The NNM were
incorporated into a proposed critical point network for the hcp structure which fulfills
the Morse equations [32]. In a recent paper, Vries ef al. [31] claim that the NNM
are artifacts of the MEM used with a uniform prior and conclude that there is no
experimental evidence for the existence of NNM in the EDD of metallic Be. In
their study, Vries et al. neglect to mention that the least-squares multipole model
density contains NNM. Furthermore they only cite our results obtained with a uniform
prior. Vries et al. then show that the use of a procrystal non-uniform prior does not
give NNM in the MEM density. Almost exactly the same calculations were already
reported in our original beryllium paper [30]. We proposed that the lack of NNM
when using a non-uniform prior is due to bias in the prior against moving charge into
the valence regions during the MEM optimization. It was shown that if the weight
of the low order reflections is increased in the calculations with a non-uniform prior,
the NNM reappear. It is in this context we can examine the MEM densities shown in
Figures 2 and 3. In the case of a uniform prior, the MEM exaggerates the density in the
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bipyramidal region of tetrahedral holes of the hcp structure leading to a large NNM at
(2/3, 1/3, 1/4). Bias correction diminishes the NNM, but the bipyramidal region still
contains a density accumulation relative to the rest of the valence regions. When using
a procrystal non-uniform prior, the MEM systematically underestimates the density
in the bipyramidal region. After bias correction, a weak maximum reappears in (2/3,
1/3, 1/4). In conclusion, there is a significant, although small, accumulation of density
in the bipyramidal space. However, the Be density is very flat in the valence region
and when considering the random error in the density it is difficult to be conclusive
about possible NNM. The fact that we can reconstruct two MEM densities which
differ in the bipyramidal region tells us that the data are not really sensitive about the
NNM. Strictly speaking, the MEM neither provides solid evidence for nor against
the NNM. We have to include other knowledge/methods to establish the critical point
network of beryllium. The Morse equations put strict limitations on the number and
types of critical points in a crystal and, to our knowledge, the proposed network is still
the only suggestion that fulfills these equations. Furthermore, our network is based on
a proper numerical topological analysis of the density and not just drawing sections
through the density. In another contribution in the present book, Gatti [33] presents
recent theoretical evidence in support of the existence of NNM in Be.

To examine in more detail the questions of NNM and critical point networks we
have extended our studies to include metallic magnesium in the hope that comparison
with other hcp metals will reveal topology—propertyrelationships. The analysis of
the Mg density is based on newly measured single crystal X-ray diffraction data. We
have collected a full sphere of very extensive 8(1) K X-ray diffraction data on an
almost spherical single crystal of Mg using AgK, radiation (sin 0,,/A = 1.4 A").
Scaled, phased and extinction corrected structure factors suitable for MEM analysis
were obtained from multipole modeling with a model similar to the one used for Be
[31]. This is necessary because the MEM does not contain a model and therefore
cannot filter out systematic errors such as extinction which is quite severe in the
present Mg data set (yVumx = 40%). A full account of the experimental details as well
as the data reduction and the data analysis will appear in a forthcoming paper [34].
In Figure 5 is shown the bias corrected MEM EDD for Mg obtained from 209 unique
reflections using a uniform prior. MEM calculations with non-uniform priors as well
as theoretical calculations are in progress. Based on the experience with Be, where
the bias corrected densities using uniform and non-uniform priors are very similar,
we expect the present results to be quite accurate. In Figure 5(a), the bias corrected
MEM EDD of Mg is shown, and in Figure 5(b), the corresponding random error
estimate in plotted. The density of Mg is much less flat in the valence regions than the
EDD of Be. A clear NNM is present in (2/3, 1/3, 1/4) at the center of the bipyramidal
space. At a qualitative level, it is clear that the Mg density is more peaked than the
Be density. Overall, the topology in the two systems seems to be identical. It should
be noted that preliminary topological analysis [34] of a theoretical density calculated
with periodic Hartree—Fockand DFT methods [35] also indicates the presence of
NNM in Mg. In conclusion the analysis shows that the EDD of metals with the hcp
structure probably contain NNM, non-nuclear maxima.
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Figure 5. Contour plots in the (110) plane of metallic magnesium: (a) the bias corrected MEM density,
(b) the estimated random error in the MEM density. The plots are based on 100 Monte Carlo calculations
employin a uniform prior. The lots are on a linear scale, (a) 0.25 ¢/A® intervals and 5.0e/A* truncation,
(b) 0.1 ¢/A® intervals and 1.0e/A3truncation. Maximum values in ¢/A3 are given at the Mg position and
in the bipyramidal space.
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4. Conclusion

The MEM is a powerful new method which is especially useful in cases with limited
data sets (powder diffraction). Monte Carlo simulations have shown that the MEM
introduces systematic features into the reconstructed density and caution should be
exercised when interpreting fine details of an MEM density. It must be emphasized
that because the present MEM algorithms do not contain any models, they cannot
filter out inconsistencies in the data stemming from systematic errors. The MEM
densities may therefore contain non-physical features not only because of systematic
bias in the calculation but also because of systematic errors in the data.
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Diffraction experiments give microscopic information on structures in crystals. Such
investigations correspond to Bragg intensity measurements. More and more accurate
experiments are performed, which produce accurate maps of the scattering density
itself charge density in the case of X-ray, density of nuclear scattering amplitude
in the case of unpolarized neutron and spin (magnetization) gdensity in the case of
polarized neutron experiments.

In crystals, the scattering densities are periodic and the Bragg amplitudes are the
Fourier components of these periodic distributions. In principle, the scattering density
p(r) is given by the inverse Fourier series of the experimental structure factors. Such a
series implies an infinite sum on the Miller indices A, k, I Actually, what is performed
is a truncated sum, where the indices are limited to those reflections really measured,
and where all the structure factors are noisy, as a result of the uncertainty of the
measurement. Given these error bars and the limited set of measured reflections,
there exist a very large number of maps compatible with the data. Among those, the
truncated Fourier inversion procedure selects one of them: the map whose Fourier
coefficients are equal to zero for the unmeasured reflections and equal to the exact
observed values otherwise. This is certainly an arbitrary choice.

An alternative method, which uses the concept of maximum entropy (MaxEnt),
appeared to be a formidable improvement in the treatment of diffraction data. This
method is based on a Bayesian approach: among all the maps compatible with the
experimental data, it selects that one which has the highest prior (intrinsic) probability.
Considering that all the points of the map are equally probable, this probability (flat
prior) is expressed via the Boltzman entropy of the distribution, with the entropy
defined as

Slp(m] ==Y oiIn(p:).

This method has been used for the reconstruction of charge densities from
X-ray data [1-3], for maps of nuclear densities from unpolarized neutron data
[4-6]as well as for distributions of spin (magnetization) density [7-9]. The density
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maps obtained by this method, as compared to those resulting from the usual inverse
Fourier transformation, are tremendously improved. In particular, any substantial
deviation from the background is really contained in the data, as it costs entropy
compared to a map that would ignore such features.

However, in most of the cases, before the measurements are performed, some
knowledge exists about the distribution which is investigated. It can range from the
simple information of the type of scattering electrons (electrons p, d or f) to an
elaborate theoretical model. In these cases, the uniform prior which considers all the
different pixels as equally likely is too weak a requirement and has to be replaced.
In a rigorous Bayesian analysis, Skilling has shown [10] that prior knowledge can be
encoded into the MaxEnt formalism through a model m(r), via a new definition for
the entropy:

- —my —pIn [ 2
S[p<r>]—2(p, m; plln(mi)).

i

In the absence of any data, the maximum of the entropy functional is reached
for p(r) = m(r). Any substantial departure from the model, observed in the final
map, is really contained in the data as, with the new definition, it costs entropy. This
paper presents illustrations of model testing in the case of intermetallic and molecular
compounds.

An intermetallic compound: a model for the magnetization density in YCos

The magnetic properties of the YCos intermetallic compound have been extensively
investigated due to its ferromagnetism with a high Curie point and very high magne-
tocrystalline anisotropy which makes it a good representative of the RCo; permanent
magnets. Its crystal structure is represented in Figure 1. It includes one site of Y

-

Figure 1. The unit cell of YCos.
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and two sites of Co: Co, in the basal plane and Coy in the intermediate plane. Both
unpolarized neutron and polarized neutron experiments have been performed at room
temperature, in the ferromagnetic state, in order to refine the nuclear structure and to
determine the magnetization density.

As at room temperature Bragg reflections contain both nuclear and magnetic struc-
ture factors, the nuclear structure was refined from a combination of polarized and
unpolarized neutron data. Contrary to the ideal structure where only three atomic sites
are present, it has been shown [11, 12] that some Y atoms were substituted by pairs of
cobalt. These pairs, parallel to the c-axis are responsible for a structure deformation
which shrinks the cobalt hexagons surrounding the substitutions. The amount of these
substituted Y was refined to be 0.046 £ 0.008. Furthermore, the thermal vibration
parameter of Co, site appeared to be very anisotropic. The nuclear structure factors
Fy were calculated from this refined structure and were introduced in the polarized
neutron data to get the magnetic structure factors Fy.

The reconstruction of the magnetization density was done by the MaxEnt method
with a uniform prior. The projection on the basal plane is shown in Figure 2. Besides
a small contribution at the origin due to the Y substituted by cobalt pairs, the magne-
tization is well localized on the five atoms of the two cobalt sites.

Therefore, an atomic model, made of a superposition of independent densities
centered at the magnetic atoms, was built. The magnetic structure factor can be
written as

Fu(K) =Y m; f;(K) exp(Kr) exp(— W),
J

where f; is the magnetic form factor and m, the moment of the jth atom. The
magnetic form factors are the sum of two contributions: orbital and spin: f(K) =
Ifi (K) + sf(K). Assuming that the 3d orbital is almost quenched, the orbital form
factor was taken as isotropic and equal to £, (K) = {Jjo(K))+ (j2(K)).For the spin

Figure2. YCos: MaxEnt reconstruction with a uniform prior.
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part one took into account the anisotropy of the spin density around each magnetic
atom: Co; with one singlet (d-2) and two doublet (dxy and dyz) and Coy with the
five-fold degeneracy completely removed. Altogether 10 parameters were refined
from the experimental Fy to determine the atomic magnetic model: the localized
moments m; and my, the orbital contributions /; and /; and the occupation numbers:
two for the site Co; and four for the site Coy. The agreement between observed and
calculated Fv is very good; the parameters are displayed in Table 1. The magnetiza-
tion density corresponding to the atomic model and projected on the basal plane is
represented in Figure 3. Comparing with the MaxEnt projection (Figure 2) one sees
that the distributions are not far from the other, but with more asphericities on the
atoms of site Co, for the refined model.

How to judge the relevance of these asphericities? Are they really compatible with
the data or are they simply the biased result of an ill-adapted model? The best way
to answer this question is to use this result as a prior probability for a new MaxEnt
reconstruction. The map thus obtained, which is given in Figure 4, is striking: the

Table 1. YCoS5: refined parameters for the atomic magnetic model.

Site Localized moment Spin proportion Occupation parameter

(o L.77 2)us 0.74 (5) d2 0.23 (3)
dy, d, 0.18 (12)
d2-y2 dy 0.58

Con 1.72 2)us 0.84 (4) d2 0.15 (2)
d. 0.24 (4)
d,. 0.24 (4)
d,2-,2 0.22 (3)
dxy 0.20

Sum of the localized moments in one cell: 8.90 (10)u;. Magnetization measured for one cell: 7.99 (2)us.

Figure 3. 'YCos: magnetization density of the magnetic atomic model.
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Figure4. YCos: MaxEnt reconstruction with a non-uniform prior.

new reconstruction is very similar to that obtained with the uniform prior. All the
asphericities which were present in the model have been rubbed out, in spite of the
fact that, with the new definition of entropy, it costs entropy. We can conclude that
the distribution of the magnetization density which is contained in the data is spherical
and that the magnetic model has to be revisited, which is currently being done.

A molecular compound: the antibonding wave function in
an imino nitroxide free radical

Conjugated nitroxide free radicals are among the most widely used spin carriers
in the design of molecular compounds. As their unpaired electron is delocalized
over the different atoms of the molecule, they are convenient building blocks and
ideal magnetic bridges between magnetic metals to achieve new compounds with
particular magnetic properties. In the case of nitronyl nitroxides, the unpaired elec-
tron is supposed to be, in a first approximation, equally shared by the four atoms
O, N, N and O, and the single occupied molecular orbital (SOMO) is supposed to
exhibit a node on the C atom in between the two NOs (Figure 5(a)). In the case of
imino nitroxides, the unpaired electron is mainly carried by the three atoms N, N
and O, but, as the symmetry is broken, no node is expected on the central C atom
for the SOMO (Figure 5(b)). Several studies of spin densities have been performed
on nitronyl nitroxides [13]. We demonstrate here the use of MaxEnt reconstruction
with a non-uniform prior for 2-(3-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro- 1H-
imidazol-1-oxyl (m-NPIN), an imino nitroxide with two non-equivalent molecules in
the asymmetric unit cell: molecule A and molecule B.

In order to figure out the Fy the nuclear structure was refined from unpolarized
neutron data taken at 30 K, in the paramagnetic state, on a 4-circle diffractometer.
Furthermore, a set of 248 flipping ratios was measured with polarized neutrons
at 1.6 K, with the spin density long range ordered by a 4.65 T applied magnetic field.
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Figure 5. Nitroxide radicals and their SOMO: (a) nitronyl nitroxide and (b) imino nitroxide.

Table 2. m-NPIN: spin populations in the
wave function modeling.

Site Wave function modeling
01 0.322(9)
N1 0.258 (9)
Cl —-0.042 (7)
N2 0.193(7)

An approach to solving the inverse Fourier problem is to reconstruct a parametrized
spin density based on axially symmetrical p orbitals (p, orbitals) centered on all the
atoms of the molecule (wave function modeling). In the model which was actually
used, the spin populations of corresponding atoms of A and B were constrained to
be equal. The ‘averaged’ populations thus refined are displayed in Table 2. Most of
the spin density lies on the O1, N1 and N2 atoms. However, the agreement obtained
between observed and calculated data (2 = 2.1) indicates that this model is not
completely satisfactory.

The spin density reconstructed from MaxEnt with a uniform prior, and projected
on the plane of the molecule, is represented with its low contours and with its high
contours for molecules A and B in Figure 6. The majority of the spin resides on the N1,
N2 and Ol atoms, equally shared between those sites. On the N1 and O1 sites of both
molecules the density is not centered on the nuclei but is slightly shifted away from
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Figure 7. m-NPIN: MaxEnt reconstruction for molecules A and B with a non-uniform prior.

the center of the N1-O1 bond. The effect is more pronounced on the N1 site. On the
central C1 carbon atoms, the spin density is negative. Moreover it is off-centered,
shifted in the N1-N2 direction.

Are these off-centering real or due to an artifact of the reconstruction? The fact that
they occur the same way on two unequivalent molecules is already an indication. The
best way to completely answer the question is to reconstruct the spin density with a
MaxEnt method and a non-uniform prior, a prior in which the density is centered on
the nuclei. We have done this reconstruction, taking as a prior for the two molecules the
‘averaged’ parametrized spin density refined above. The result is shown in Figure 7.
The off-centering of the N1-O1 density and of the negative C1 density is still there,
even at the price of a loss of entropy, as it departs from the model.

On the one hand, the antibonding character of the SOMO appears clearly on the
N-O bond: the 2p orbitals are slightly bent and pushed away from the center of
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the bond. On the other hand the observed negative and off-centered density from
the carbon nucleus is the result of a competition between spin polarization and spin
delocalization. Both are of the same order of magnitude, the spin polarization being
slightly larger, providing a negative density and a shift from the central position.

Through these examples we see that we have with the non-uniform prior MaxEnt

reconstruction, not only a method which takes advantage of all the knowledge to get
the best possible map, but also a very powerful way to tell to what extent a proposed
model is compatible with experimental data.
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Transferability, adjustability, and additivity of
fuzzy electron density fragments
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1. Introduction

The molecular electron density cloud is a fuzzy object. For large enough distances
from the center of the molecule, the value of electron density converges to zero
exponentially, and there is no sharp boundary where a molecule ‘ends’. Any such
sharp boundary would violate the principle of quantum mechanical uncertainty. If our
goal is to study local regions of molecules, it is natural to decompose the molecular
density cloud into boundaryless, fuzzy fragments exhibiting convergence behavior
analogous to those of density clouds of complete molecules.

From the early advances in the quantum-chemical description of molecular elec-
tron densities [1-9] to modem approaches to the fundamental connections between
experimental electron density analysis, such as crystallography [10-13] and density
functional theories of electron densities [14-43], patterns of electron densities based
on the theory of catastrophes and related methods [44-52], and to advances in com-
bining theoretical and experimental conditions on electron densities [53-68], local
approximations have played an important role. Considering either the formal charges
in atomic regions or the representation of local electron densities in the structure
refinement process, some degree of approximate transferability of at least some of
the local structural features has been assumed.

In more recent years, additional progress and new computational methodologies in
macromolecular quantum chemistry have placed further emphasis on studies in trans-
ferability. Motivated by studies on molecular similarity [69-115] and electron density
representations of molecular shapes [116-130], the transferability, adjustability, and
additivity of local density fragments have been analyzed within the framework of
an Additive Fuzzy Density Fragmentation (AFDF) approach [114, 131, 132]. This
AFDF approach, motivated by the early charge assignment approach of Mulliken
[L, 2], is the basis of the first technique for the computation of ab initio quality
electron densities of macromolecules such as proteins [133—141],

Approximate transferability of fuzzy density fragments is a key feature of the
method, where the fuzzy fragments are ‘custom-made’ in order to reproduce inter-
fragment interactions. By increasing the size of the ‘interaction shell’ about each
fuzzy density fragment, the error of transferred fragment densities can be reduced
below any positive threshold. One tool for this purpose is the Adjustable Density
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Matrix Assembler (ADMA) method, introduced for the generation of ab initio quality
approximate density matrices for macromolecules [142—-146], and for the computation
of approximate macromolecular forces [146], among other molecular properties.

Such fragment density matrices must fulfill a set of constraints, in part to ensure
a proper representation of the charge conservation condition, and in part to fulfill
the technical requirement of mutual compatibility of fuzzy fragment density matrices
within an additive framework. Based on properly combined compositions of Lowdin
transforms and inverse transforms [147-149] of density matrices, it is possible to
combine the relevant idempotency constraints of the assembled density matrices with
the adjustability and additivity conditions of fragment density matrices [146]. With
respect to experimental electron density representations, a similar method is applied
in Quantum Crystallography [67,68]. The ADMA approach is suitable to describe a
series of deformed electron densities occurring during a formal chemical reaction, and
to evaluate the similarities within a family of density matrices of related molecules
participating in similar chemical reactions in order to find correlations between their
reactivities and similarities.

Simple, approximate methods for the readjustment of fragment electron densities
based on exact deformations of nuclear arrangements are the Dimension Expansion—
Reduction (DER) and the Weighted Affine Transformation (WAT) techniques [113,
114, 130, 150-152]. In addition, an application of the Lowdin transform—inverse
Lowdin transform method also serves as a tool for the generation of approximate
macromolecular density matrices for slightly distorted nuclear arrangements, if for
the original nuclear arrangement a density matrix is available. These methods have
also been suggested as tools in the study of the shape and deformability of quantum
chemical functional groups [113, 114, 130, 146].

In a certain sense, the differential-topological and algebraic-topological methods
of molecular shape characterization [116-130] imitate the natural process of visual
comparisons, based on the detection, analysis, and algebraic characterization of var-
ious curvature regions of the object, for example, in the simplest case, the locally
convex, concave, or saddle type regions of the object. The results of these topological
methods are fully reproducible, a claim that cannot be made for visual inspections.
These techniques are not restricted to complete molecules. A topological description
of the essential properties of local electron densities also has many advantages. Local
electron density fragments exhibit a variety of important topological properties which
can be used for their characterization.

The description of fuzzy, local density fragments is facilitated by the use of local
coordinate systems, however, some compatibility conditions of such local coordinate
systems must be fulfilled, reflecting the mutual relations of the fragments within
the complete molecule. Manifold theory, topological manifolds, and in particular,
differentiable manifolds [153-158], are the branches of mathematics dealing with the
general properties of compatible local coordinate systems.

A special technique, the Alexandrov one-point compactification method, often
used by topologists within a differential-topological framework, has been applied
in the proof of the ‘Holographic Electron Density Fragment Theorem’ [159-161].
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Earlier density extension results were proven only for parts of artificial molecular
electron densities, where the complete molecule was assumed to be confined to a finite,
bounded region of the three-dimensional space [21], a condition that violates quantum
mechanics. However, the new ‘Holographic Electron Density Fragment Theorem’
quoted here proves the unique extension property of parts of quantum-mechanically
correct, boundaryless electron densities of molecules. This new theorem is of special
importance with respect to transferability, establishing that for complete, boundaryless
molecular electron densities no actual fragment density of sharp boundaries is per-
fectly transferable. This result has implications on using averaged electron densities
for similarity analysis [162].

These topics provide the motivation for a brief topological review in Section 2,
followed by some of the details of transferability properties in Section 3. Also in
Section 3, some of the consequences of the ‘Holographic Electron Density Fragment
Theorem’ will be discussed, as well as the general proposition that ‘No physical
system with more than one quantum state is rigorously transferable’. In fact, even
atomic nuclei within molecules are not rigorously transferable.

The approximate transferability of fuzzy fragment density matrices, and the asso-
ciated technical, computational aspects of the idempotency constraints of assembled
density matrices, as well as the conditions for adjustability and additivity of fragment
density matrices are discussed in Section 4, whereas in Section 5, an algorithm for
small deformations of electron densities are reviewed. The Summary in Section 6 is
followed by an extensive list of relevant references.

2. Some topological concepts relevant to the shape of
molecular electron densities

In some chemical reactions and conformational changes the molecular interactions
are often dominated by the local molecular shape properties. Such local properties
often show high degrees of similarities within a family of related molecules, and it is
natural to expect some, limited transferability of these local moieties. In such cases it
is natural to focus on the corresponding local regions ofthe molecular electron density.
Local characterization of a molecular moiety is facilitated by using local coordinate
systems. For example, local curvature properties of Molecular Isodensity Surfaces
(MIDCOs) G (K, a) of nuclear configuration K and electron density threshold a are
often characterized in terms of local Hessian (curvature) matrices expressed as the
matrices of second derivatives of local isodensity surfaces interpreted as being defined
over various local tangent planes of the MIDCO surfaces G(K, a). Similarly, local
coordinate systems are advantageous when using the three-dimensional local curva-
tures of the four-dimensional representation of molecular density functions, where
in addition to the three spatial coordinates, the electron density value is represented
along a fourth coordinate axis.

Local coordinate systems can be required to conform with certain mutual compat-
ibility requirements which ensure that the local descriptions are compatible with a
global description of the complete system. The branch of topology that deals with



48

such compatible families of local coordinate systems is manifold theory. In the par-
ticular case when continuous and differentiable functions are studied within a metric
space, such as the three-dimensional electron densities of molecules embedded in the
ordinary three-dimensional Euclidean space E3, the mutual compatibility conditions
of local coordinate systems can be formulated in terms of the properties of differen-
tiable manifolds. Such differentiable manifolds provide a framework for a topological
analysis of molecular shape in terms of a family of topological similarity measures,
based on the very useful concept of topological resolution. In the following paragraphs
some of the fundamental concepts of the relevant branches of point set topology and
manifold theory are reviewed with special focus on local representations which are
relevant to the problem of transferability of subsystems of a system. More details of
the fundamentals of topology, as well as some more advanced topological subjects
can be found in Refs. [153-158].

Topology is the branch of mathematics that is based on the most general properties
of open sets and continuity. Some of the basic concepts can be illustrated using the
more familiar setting of a metric space, that is, a space where a distance function, with
the intuitively natural properties of distance in the ordinary, three-dimensional space
is defined. Within a metric space Y a set 4 is called an open set if around every point y
of Y there exists some ball that is also contained within the set 4. Open sets of a metric
space Y have some fundamental properties that make them very useful, for example,
these properties lead to a powerful interpretation (in fact, definition) of continuity of
functions: a function £, f : ¥ — Y, assigning points of one metric space Y to points
of another metric space Y’ is continuous ifthe inverse image of every open set is also an
open set. In a metric space, the definition of openness requires the concept of distance
in order to specify the radius of the balls surrounding various points. However, the
concept of distance is usually not available if our concern is the topological structure
of objects, hence openness, as well as continuity, require an alternative approach in
topology. One can, in fact, use some of the very properties of open sets recognized
in a metric space as the conditions for openness. These properties themselves may
be used to define which sets are to be regarded as open sets. This cannot be done
entirely arbitrarily, but there is a surprising degree of freedom in choosing open sets
in a mutually consistent way. We say that within a set X a topology T is defined if a
family of subsets of X is specified as the open sets in X, where these sets must fulfill
some, not very severe, mutual compatibility conditions.

Specifically, a family T of subsets of X,

T={T,: XD T} (1)
is called a topology on set X, if the following conditions are satisfied:
i) X oeT, )

where & is the empty set,

(ii) Lﬂ) TseT 3)
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for any number of sets in T, and
(iii) I,NTgeT 4

for any two sets 7, T, €T.

These three properties, (i)—(iii), are among the properties of open sets in a metric
space.

Ifa set X is provided with a topology T, then the pair (X, T) is called a topological
space.

Of course, there are many ways one can select such a family T, and on a given
set X one can define many, different topologies. Consequently, when discussing
topological properties of a given object (space) X, the actual topology T must be
specified.

Elements of the family T are called T-open sets. Following some of the natural
properties of sets in a metric space, a set C is called a T-closed set if its complement
C® = X\C is a T-open set. A set may be regarded as an open set or a closed set,
depending on the topology; if T, and T, are two different topologies on set X, then a
set A in X may be T,-open but T,-closed. Note in particular that for each topology
T on X, a topology T¢ can also be defined, where the T-open sets are precisely
the T-closed sets and vice versa. This topology T¢ on the same set X is called the
cotopology of T of set X.

The comparison of various topologies provides the tools for the introduction of
the concept of topological resolution. Assume that for two topologies T, and T, on
set X the following holds: every T;-open subset of X is also a T,-open set. Then T,
is a subfamily of T,, that is, T, T,. If this holds, then we say that topology T,
is coarser (or weaker) than topology T,, and topology T, is finer (or stronger) than
topology T,. Of course, two topologies on the same set X do not need to relate to
one another in this manner, and two topologies are called not comparable if neither
is weaker than the other. The coarser—finerrelation between some of the topologies
on a given set X provides a partial ordering of topologies on X.

A set N, X o N, is called a T-neighborhood of point r € X if and only if there
exists a T-open set G €T suchthatr e G, N o G.

The concepts of base and subbase of topologies are important in the actual con-
struction of a topology that contains a desired family of sets.

A subfamily B, T > B, is a base for topology T if and only if every T-open set
G €T is a union of some sets in B.

A subfamily S, T o §, is a subbase for topology T if and only if finite intersections
of elements of S form a base for T.

Consider a set X. The topological space (X, T) is called a Hausdorff space if for
any two distinct points x, y €.X there exist disjoint T-open sets T, T,

T..T, €T, ®)
I.NT, =3, (6)
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which contain points x and y, respectively:

xeT,, (7
yeT,. (®)

If in a topological space (X, T) any two T-closed sets C, and C; of X, such that
CoNCs =2, ()

have the property that there exist disjoint T-open sets T., 7y € T,

T.NTs =2, (10)
such that

T, D C,, (11)
and

Ts O Cg, (12)

then (X, T) is called a normal topological space.

If the topology T is chosen as the metric topology, that is, if the T-open sets are
precisely those which are open in some metric d introduced into the set X, then one
obtains the metric topological space (X, T). Note that the metric topological space
(X, T) is a Hausdorff space and also a normal space.

Since the specification of topologies implies that all open sets are defined, the
concept of continuity can also be generalized to topological spaces, even if distance
functions are not given.

Consider two topological spaces, (X;, Ti) and (X,, T,), and a function ¢ from X;
to X,. This function @is continuous if and only if the inverse image of every T,-open
set of X; is T,-open in Xi:

e (G)eT ifGel. 13)

A function @is called one-to-one if it assigns a unique elemento (x)= y € X, to
each element x €JX,.

A function @is called onto if every element y € X, is assigned to some element
x eX.

A function ¢is called bijective if it is both one-to-one and onto.

A function ¢is called a homeomorphism if it is bijective and both @and its inverse
¢ ' are continuous,

p.97 eC, (14)

that is, if pand @' are elements of the class C of continuous functions on X.
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For a comparison of objects, one may focus on how well can these objects corre-
spond to each other and possibly replace each other. A correspondence between two
objects, specifically, a correspondence between various parts of the two objects, can
be described by some functions that assign the points of one object to the points of
the other object. Then, properties of these functions can be used to qualify and even
quantify the similarity of the two objects. One advantage of topology over straightfor-
ward geometrical techniques is the fact that topology allows one to recognize and use
less than perfect correspondence between the points of the two objects; by specifying
various topologies, and by testing how well correspondences hold up within each
topological setting, one can find a detailed and quantifiable description of similarity.

In one extreme case within the topological framework, the two objects can be
brought into a perfect correspondence, demonstrating topological equivalence. In a
more precise formulation, two topological spaces (X; T,) and (X,, T,) are called
topologically equivalent or homeomorphic if there exists a function

f . X1 —- X 2s (15)
which is bijective and both f and f* are continuous. Such a function f is called a
homeomorphism.

A property is called topological or topological invariant if it is a property of all
topological spaces in an equivalence class generated by the equivalence relation
‘topologically equivalent’. Many of the familiar concepts often used in a geometrical
setting, such as length, boundedness, or being a Cauchy sequence are not topolog-
ical properties. On the other hand, connectedness and compactness are topological
properties; some of the associated elementary results are described below.

If the set X of a topological space (X, T) is a union of two, non-empty, disjoint
T-open subsets,

X=AUB, A,B#©, ANB=2, A, BeT, (16)

then the topological space (X, T) is disconnected.

Connectedness is defined indirectly as the lack of disconnectedness: a topological
space (X, T) is connected if it is not disconnected. A connected open subset is often
called a domain.

Consider an n-dimensional set X. Set X is simply connected if and only if every
k-dimensional (k < n) topological sphere S* in set X is contractible to a point.

Take a general set X, a subset 4, X o A. If there exists a class F' = {F;} of open
subsets of set X such that

UF>a (17)

then F is called an open cover of A.
The family F is called a finite cover if F contains only a finite number of F; subsets.
Ifevery open cover of a subset A of a topological space X contains a finite subcover,
then the subset 4 of the topological space X is compact. The compactness property
is a generalization of the elementary properties of closed and bounded intervals.
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Three-dimensional electron densities have no boundaries; they converge to zero
exponentially with distance from the nuclei of the peripheral atoms in the molecule.
Considering a single, isolated molecule, the exact quantum-mechanical electron den-
sity becomes zero in a strict sense only at infinite distance from the center of mass
of the molecule. Consequently, the electron density is not a compact set, just as the
embedding three-dimensional Euclidean space E° is not compact either. However, the
three-dimensional Euclidean space E°, as a subset of a four-dimensional Euclidean
space E£? can be ‘slightly’ extended (for example, by adding one point) and ‘made’
compact by various compactification techniques.

One such compactification technique is the Alexandrov one-point compactification
method used in the study of the topology of potential energy hypersurfaces and the
fundamental group of reaction mechanisms associated with a given stoichiometric
family of molecules [118]. The same technique also has been used in the proof of the
Holographic Electron Density Fragment Theorem [159-161], establishing for a com-
plete, boundaryless molecular electron density the holographic property of molecular
fragments: any non-zero volume fragment density contains the full information about
the electron density of the entire, boundaryless molecule.

Some non-compact topological spaces (X, T) can be converted into some com-
pact topological spaces (X, To) by a technique called the Alexandrov one-point
compactification. Here

Xoo = X U{o0}, (18)

that is, a single point, distinct from every other point of X, is added to X. This
additional formal point, denoted by oo, is analogous to the ‘ideal point’ of infinity in
projective geometry.

The topology T consists of the following sets:

Tow =TU{A: A= Xx\B, X\B €T, B compact in X}, (19)
that is, the family Teo contains the following sets:

(i) each T-open set;
(if) the complement in Xeo of each closed and compact subset of X.

Evidently, the topological space (X, T) is embedded in the compact topological
space (Xeg Teo9, since (X, T) is homeomorphic to a subspace of (Xeo, Toeo), as it
follows from the definitions given above.

More details of examples of the chemical applications of the Alexandrov one- point
compactification method can be found in Refs. [118] and [159].

Sets of local coordinate systems describing certain local features of complicated
objects are often advantageous when compared to a single, global coordinate system.
Within a topological framework, the general theory of sets of local coordinate systems
is called manifold theory. Often, the local coordinate systems are interrelated, and
these relations can be expressed by continuous, and in the case of differentiable
manifolds, by differentiable mappings, called homeomorphisms (see Equation (15)),
and diffeomorphisms, respectively.
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A function ¢is called a diffeomorphism if ¢is a homeomorphism and both the
function ¢ and its inverse ¢' are infinitely differentiable, that is, both ¢ and ¢~
belong to the class C® of functions:

¢, 9 ' e C™, (20)

In differentiable manifolds the local coordinate systems must fulfill some com-
patibility conditions ensuring that in any overlapping region of two local coordinate
systems any additional, differentiable functions expressed in either coordinate system
are meaningful and differentiable in the other coordinate system as well.

In many applications it is customary to define local coordinate systems indirectly
by establishing their connection with the Cartesian coordinates in some underlying
Euclidean space E", if there is one. By labeling the points within each actual space
(of local coordinate system) with the coordinate values in the underlying Euclidean
space E" there is a common reference for all local coordinate systems, and the
compatibility conditions can be formulated within the Euclidean space E» of familiar
and intuitively simple properties.

The underlying Euclidean space E» also simplifies the definition of individual
coordinate systems considerably.

An n-dimensional coordinate system @® of a T-open set G® of a Hausdorff
topological space (X, T) is a homeomorphism ¢ ® between G® and an open set H®
of the Euclidean space E".

Informally, a set X is an n-dimensional topological manifold if X is covered by
domains of n-dimensional coordinate systems @ @,i = 1, 2, . ..

If differentiability is also ensured, then one obtains a differentiable manifold.

More precisely, a Hausdorff space X covered by countable many T-open sets
Gv, G, ..., is an n-dimensional differentiable manifold ifit satisfies the following
conditions:

(i) for each T-open set G® of X there exists an n-dimensional coordinate system
(p(i);
(ii) if the condition of overlap

GOnG» £ 9 (21)
holds then the function ¢ defined as
¢(ij) : (p(j)(G(i) N G(j)) s (p(i)(G(i) N G(j)) 22)

is differentiable.

If space X is an n-dimensional differentiable manifold and if Y is a subset of X, then
Y is called an m-dimensional submanifold of X if the following additional conditions
hold for Y:

(i) Y itself is an m-dimensional differentiable manifold;
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(ii) for every pointy € Y there exists a local coordinate neighborhood G of point y
in X with a local coordinate system having the following properties:

¢:G—> H, (23)
where H, E* = H is a T-open set, and in the subset

¢(GNY), H>eGNY), (24)
the coordinates are constrained to zero:

X4l = Xmy2 = - = Xy = 0. (25)

The function @, when restricted to the subset G N 7, is a local coordinate system
for Y around point y.

In representations of electron densities, the presence or lack of boundaries plays a
crucial role. A quantum mechanically valid electron density distribution ofa molecule
cannot have boundaries, nevertheless, artificial electron density representations with
actual boundaries provide useful tools of analysis. For these reasons, among the
manifold representations of molecular electron densities, manifolds with boundaries
play a special role.

The role of a boundary in a manifold with boundary can be interpreted with
reference to a hyperplane within a Euclidean space E”, using the concept of half-
space, where the hyperplane is in fact the boundary of the half-space. By appropriate
reordering of the coordinates, a half-space H* becomes the subset of a Euclidean
space E" containing all points of E" with non-negative value for the last coordinate.

A space M where each point x € M has an open neighborhood homeomorphic
to a set open within a Euclidean half-space H», is an n-dimensional manifold with
boundary.

3. Limits to transferability

Transferability of subsystems of large systems is an assumption often invoked in the
study of physical objects where a direct analysis of the complete system is cumber-
some. The study of subsystems, either in isolation or as parts of a smaller object
is often simpler than the study of the original large system; yet in many instances,
some of the results obtained for the subsystem can be safely extrapolated to the large
system. Whereas transferability has proved to be a very useful concept that leads to
important and valid results when used with appropriate caution, it is also a concept
that is sometimes poorly justified and may lead to erroneous conclusions.

Although transferability of properties associated with local molecular moieties, for
example, the transferability of the expected types of reactions and the degree of reac-
tivities of chemical functional groups, are among the most commonly used assump-
tions of classical chemistry, nevertheless, within a quantum-mechanical framework,
transferability has some natural limitations.
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One fundamental limitation can be phrased as a formal statement on the interactions
between a quantum system and its surroundings:

Theorem No physical system with more than one quantum state is rigorously
transferable.

Proof If there are two or more possible quantum states of a system, interactions
with the system may change the quantum state of the system, hence interactions may
change the system. Consequently, the system is not necessarily rigorously identical to
the system obtained by placing this same system into a different environment. Hence,
the system is not rigorously transferable.

In fact, in a precise sense, no molecular fragment is rigorously transferable, although
approximate transferability is an exceptionally useful and, if used judiciously, a valid
approach within the limitations of the approximation. In particular, it is possible to
define non-physical entities, such as fuzzy fragment electron densities, which do
not exist as separate objects, yet they show much better transferability properties
than actual, physically identifiable subsystems of well-defined, separate identity. This
aspect of specially designed, ‘custom- made’, artificial subsystems of nearly exact
additivity has been used to generate ab initio quality electron densities for proteins
and other macromolecules.

The non-transferability of actual subsystems is manifested on all levels, even
on the level of atomic nuclei. Although chemists often regard two nuclei of the
same isotope as interchangeable, even such nuclei of identical lists of nucleons are
not fully transferable, as evidenced, for example, by NMR spectroscopy. Chemical
shifts of nuclei of identical lists of nucleons are different, precisely as a conse-
quence of the nuclei being slightly different, caused by their different interactions
with their different surroundings. Consequently, even nuclei are not rigorously
transferable.

In a rigorous sense, non-transferability of molecular parts has profound implica-
tions on chemical conclusions based on electron densities. Since some of the original
results on the utility and reliability of transferred electron densities have been derived
within the framework of density functional theory, here we shall follow this approach,
and describe a recent result on a general, ‘holographic’ property of electron density
fragments of complete, boundaryless molecular electron densities.

These results, as most related results of density functional theory, have direct
connections to the fundamental statement of the Hohenberg—Kohntheorem: the non-
degenerate ground state electron density p(r) of a molecule of n electrons in a local
spin-independent external potential ¥, expressed in a spin-averaged form as

p(r)=nZ-~~Z/---f’W(r,sl,rz,sz,...,rn,sn))2d3rz~~~d3r,,,
81 Sn
(26)

fully determines all properties, including the electronic energy E of the molecule.
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The Hamiltonian H of a molecule M can be expressed as

H=) V@) +T+ Ve 27

n
i=1

where the usual notations are used for the kinetic energy operator 7, the electron—
electron repulsion operator V.., and external potential V" (r),

V) =) V). (28)
i=1

In the latter expression, V(r;) is the electron—nuclear attraction operator describing
the interaction of the ith electron of the molecule with the set of nuclei.

As a consequence of the Hohenberg—Kohn theorem [14], a non-degenerate ground
state electron density p(r) determines the Hamiltonian H of the system within an
additive constant, implying that the electron density p(r) also determines all ground
state and all excited state properties of the system.

The original Hohenberg—Kohn theorem was directly applicable to complete sys-
tems [14]. The first adaptation of the Hohenberg—Kohn theorem to a part of a system
involved special conditions: the subsystem considered was a part of a finite and
bounded entity regarded as a hypothetical system [21]. The boundedness condition,
in fact, the presence of a boundary beyond which the hypothetical system did not
extend, was a feature not fully compatible with quantum mechanics, where no such
boundaries can exist for any system of electron density, such as a molecular electron
density. As a consequence of the Heisenberg uncertainty relation, molecular electron
densities cannot have boundaries, and in a rigorous sense, no finite volume, however
large, can contain a complete molecule.

It is possible, however, to avoid any violation of these fundamental properties, and
derive a result on the local electron densities of non-zero volume subsystems of bound-
aryless electron densities of complete molecules [159-161]. A four-dimensional
representation of molecular electron densities is constructed by taking the first three
dimensions as those corresponding to the ordinary three-space E° and the fourth
dimension as that representing the electron density values p(r). Using a compactifi-
cation method, all points of the ordinary three- dimensional space E° can be mapped
to a manifold S* embedded in a four- dimensional Euclidean space E*, where the
addition of a single point leads to a compact manifold representation of the entire,
boundaryless molecular electron density.

The actual properties of this transformation combined with the convergence prop-
erties of molecular electron densities implies analyticity almost everywhere on the
compact manifold. Consequently, this four-dimensional representation of the molec-
ular electron density satisfies the conditions of a theorem of analytic continuation, that
establishes the ‘holographic properties’ of molecular electron densities represented
on the compact manifold S3.

The non-degenerate ground state electron density p./(r’) over any subset d of man-
ifold 8%, $* o d, where subset d has non-zero volume on 3, determines uniquely
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the ground state electron density p(r’) of the complete molecule over the entire
manifold S°.

This result, in turn, implies the following ‘holographic properties’ of complete,
boundaryless molecular electron densities within the ordinary three-dimensional space
[159-161].

The non-degenerate ground state electron density p,(r) over any subset D of the
ordinary three-dimensional space E°, where E> S D, and D has non-zero volume,
determines uniquely the ground state electron density p(r) of the complete molecule
over the entire three-dimensional space E°.

This result, the ‘Holographic Electron Density Fragment Theorem’, is a nega-
tive statement on the transferability of electron density fragments, since the unique
extension property implied by the theorem also implies that any given electron density
fragment can be transferred only to an environment that is exactly identical to its
original environment.

Nevertheless, approximate transferability is a valid concept and in the next section
a particular approach will be discussed, based on fuzzy subsystems of molecular
electron densities.

4. Approximate transferability of fuzzy fragment density matrices

If the electron density partitioning results in subsystems without boundaries and with
convergence properties which closely resemble the convergence properties of the
complete system, then it is possible to avoid one of the conditions of the ‘Holographic
Electron Density Fragment Theorem’, by generating fuzzy electron density fragments
which do not have boundaries themselves, but then the actual subsystems consid-
ered cannot be confined to any finite domain D of the ordinary three-dimensional
space E°.

Transferred electron density fragments obtained by AFDF method can provide
excellent approximations. One such approach, formulated in terms of transferability
of fragment density matrices within the AFDF framework is a tool that has been
suggested as an approach to macromolecular quantum chemistry [114, 115, 130,
142-146] and to a new density fitting algorithm in the crystallographic structure
refinement process [161].

The AFDF approach and the ADMA method have been reviewed in detail [142,
146]add here only a shortened version of the main features of these methods will be
given.

The fundamental tool for the generation of an approximately transferable fuzzy
electron density fragment is the additive fragment density matrix, denoted by P*
for an AFDF of serial index k. Within the framework of the usual SCF LCAO
ab initio Hartree-Fock—Roothaan—Hall approach, this matrix P* can be derived from
a complete molecular density matrix P as follows.

In order to assign fuzzy, additive electron density fragments

E:Fb ""Fk"'-sFm; (29)
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represented by fragment density functions

p' (), P2(E), ..., PN, ..., P (r) (30)

to various subgroups of nuclei, the complete family of nuclei of the molecule is
subdivided into m mutually exclusive families,

Fiofoeeis fooeis fne (31)

The molecular electronic density p(r) of a fixed nuclear geometry K is expressed
in terms of the complete density matrix P of dimensions n X n, and a set of n atomic
orbitals ¢(r)(i = 1,2, . .., n), as

p(r) =" " Pygi(r)p;(r). (32)

i=1 j=1

As proposed in [131, 132], the general AFDF scheme can be given in terms of an
atomic orbital membership function m,(i) defined as

1, ifAOgi(r) is centered on a nucleus of nuclear set f,

) =

m (1) 0, otherwise. (33)
Using weighting factors w;, w; , constrained by the relations

wij +wi =1, wy,wy >0, (34)

the elements P,.’; of the n X n fragment density matrix P* of the kth fuzzy density
fragment F, are defined in terms of these membership functions (i),

Pil; = [me(Dw;; + mu(JHwj; 1P (33)
The simplest choice of weighting factors,
w;; = wj; =0.5, (36)
corresponds to the choice
Pl = 0.5[my (i) + me (NP, 37)

equivalent to the Mulliken-Mezey fragmentation scheme used in the MEDLA method
and in the simplest version of the more advanced macromolecular density matrix
method, the ADMA method [142-146].

If the kth density fragment p'(r) is defined as

o) = Z Z P,'I;QDi (r)p,(r), (38)

i=1 j=1
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then these fuzzy electron density fragments p(r) are exactly additive within the given
molecule,

p(r) = p*(r). (39)
k=1

This follows from the definition (35) of fragment density matrices P* that implies
exact additivity of these fragment density matrices, i.e., they add up to the density
matrix P of the complete molecule,

Pij=2_ Py (40)
k=1

This, in turn, implies the exact additivity of the fuzzy electron density fragments pt (r)
as given by Equation (39).

In the following discussions we shall disregard the small changes of the nuclei
induced by their surroundings within molecules, and we shall regard two nuclei
identical if their lists of nucleons match.

If two electron density fragments are ‘anchored’ to two identical sets of nuclei of
the same nuclear geometry, and if these two fragments come from two molecules in
which these nuclei have locally well-matching surroundings, then the two fragment
densities are necessarily very similar and are approximately transferable to replace
one another. This fact can be used to build approximate electron densities for macro-
molecules, by generating fragment densities from small ‘parent’ molecules where the
local surroundings of the ‘anchor’ nuclei are the same as the local surroundings of an
identical set of ‘anchor’ nuclei in the ‘target’ macromolecule. By combining fuzzy
fragment electron densities, each obtained from an appropriately designed formal
‘parent’ molecule and ‘custom-made’ to fit within the appropriate local surroundings
within the target macromolecule, approximate electron density can be generated for
the entire macromolecule. Applying the AFDF approach within this framework [133—
146], such computations have led to the first ab initio quality electron densities for
proteins and other large molecules.

Whereas the first applications of the AFDF approach were based on a numerical
combination of fuzzy fragment electron densities, each stored numerically as a set
density values specified at a family of points in a three-dimensional grid, a more
powerful approach is the generation of approximate macromolecular density matrices
within the framework of the ADMA method [142-146]. A brief summary of the main
steps in the ADMA method is given below.

We assume that the nuclear families

fl,fz,...,fk,...,fm (41)

of the target macromolecule M are identified and a series of parent molecules

M, My, ... My, ..., M, (42)
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are designed, each parent molecule M, containing a suitably large ‘coordination shell’
surrounding the set f; of ‘anchor’ nuclei of the fuzzy density fragment F,, where this
coordination shell matches that in the target macromolecule M.

With reference to the individual AO basis sets ¢ ( Kk) of fragment density matrices
P «( ¢ ( Kk)) obtained from parent molecules M:of nuclear configurations Kx on the
one hand, and the macromolecular AO basis set ¢ (K) of the macromolecular density
matrix P (¢ (K)) associated with the macromolecular nuclear configuration K, on the
other hand, the following mutual compatibility conditions are assumed:

(a) For each fragment density matrix P* (¢ ( K¢)), the AO basis set ¢ (K« ) is defined
in a local coordinate system which has axes parallel and of matching orientations
with the axes of the reference coordinate system defined for the macromolecule M.

(b) Each parent molecule M, contains only complete nuclear families from the sets
of nuclear families f,, f,, ..., fi, ..., fm specified in the target macromolecule
M, with the possible exception of additional nuclei formally connected to the
‘dangling bonds’ at the peripheries of the parent molecules M,.

In order to fulfill compatibility condition (a), the local coordinate system of each
parent molecule M, can always be reoriented, resulting in a simple similarity transfor-
mation of the original fragment density matrix P* (¢(K; )) into a compatible fragment
density matrix P* (¢ (K)),

PA(p(Kp) = TOPH (' (KT, 43)

using a suitable orthogonal transformation matrix T® of the original AO basis set
@(K, ) of improper orientation, converting it into a basis set ¢ (Kix) with proper
orientation:

o(Ki) = TV (Ky). (44)

The second compatibility condition can also be fulfilled easily by an appropriate
choice of the parent molecules M, with respect to the selection of the nuclear families
/i of the various fragments within the target macromolecule M.

The AFDF approach fulfilling the above two compatibility constraints is referred
to as the mutually compatible AFDF method (MC-AFDF approach).

Within the MC-AFDF ADMA method, the management of multiple index assign-
ments of basis orbitals and individual density matrix elements requires a series of index
conversion relations. These relations are briefly reviewed below, using the notations
of the original reference [143].

Atomic orbital basis functions have several indices, each referring to a different
listing of these basis functions. In order to facilitate the correct index assignment in
each case, several auxiliary quantities are defined.

For each index pair &, k' of a pair f, f' of nuclear families, a quantity ¢ is
defined as follows:

1, if nuclear family f;' is present in parent molcule M,

Cow =
" 0, otherwise (43)
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With respect to the local AO basis set

oo * (46)

a=1

of a nuclear family £, where the number of AOs in this family is denoted by n,, the
AO basis function of serial number b is referred to as @, (r).
With respect to the AO set

(et L (47)
of the kth fragment density matrix P* (¢p(Kk)) of total number of n,, AQO’s, where
npe = 3 corni, (48)
K'=1
the notation cpf (r) is used for the same AO @(r).
With respect to the basis set
{e.®},_, (49)

of the density matrix P(K) of the target macromolecule M, the same AO¢(r) of
serial index y is denoted by @ (r), where the index x for each AO

e (r) = @a (1) = @ (r) (50)
is determined from the index a in the basis set of the nuclear family f," as follows:
k-1

x=x(k/,a,f)=a+znb, (51)
b=l

where the last entry fin x(k', a, /) indicates that k" and a refer to a family of nuclei,
in fact, to the family f;" of the nuclei.

For each index k and nuclear family f;- with indices & and k" for which Cx # 0
holds, three additional quantities are defined:

K

ap (k" i)y=1i-— ancbks (52)
b=1

K'=k'(i, k) = min {k": a,(k", i) < 0}, (53)
and

ar(i) = ap (k' 1) + . (54)
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In terms of the index function x(k',a, /) with reference to the nuclear family £/,
the index function x = x(k, i, P) with respect to the kth fragment density matrix
Pi(o (Kk)) is given as

x =x(k, i, P) = x(k', ax (i), [), (55)

where the last entry P in the index function x(k, i, P) indicates that indices & and i
refer to the fragment density matrix P (¢Kk)), and the index x = x(k i, P) itself
is the serial index of an AO basis function in the density matrix P(K) of target
molecule M.

The final macromolecular density matrix P(K) is rather sparse. The index relations
described above help to identify the non-zero matrix elements of P(X), and the actual
computations can be restricted to those. Utilizing these restrictions and carrying out a
finite number of steps only for the non-zero matrix elements of each fragment density
matrix P¥ (@K, )), an iterative process is used for the assembly of the macromolecular
density matrix P(K):

Prthi Py, j, Py (K) & Pei Py.yk. )Py (K) + Pi,;‘(Kk)- (56)

This iterative procedure depends linearly on the number of fragments and on the
size of the target macromolecule M, as long as the parent molecules M, are confined
to some limited size. The storage of the information on the macromolecular basis
set has relatively small computer memory requirements. The computation of the
macromolecular electron density from this basis set information and the final macro-
molecular density matrix P(K) obtained from the finite iterative process (56) can rely
on relation (32). As a consequence of the sparsity macromolecular density matrix
P(K), the computational task has linear computer time requirement with respect to the
number of fragments, hence, with respect to the size of the target macromolecule M.

5. Small deformations of electron densities, adjustability and additivity
conditions for fragment density matrices

In terms of the three-dimensional local coordinate transformations R® leading to the
local basis set transformations T», the entire macromolecular system is naturally
covered with a family of local coordinate systems. These local coordinate systems
are also pairwise compatible, since the actual transformation V& between any two
such local systems of some serial indices k and &' can be given explicitly as

V(k.k’) - (T(k))—lT(k’) — (T(k))/T(k/), (57)

where (T(»)" stands for the transpose of matrix T¢%), and where the fact that matrix
T® is an orthogonal matrix is utilized.

Since the individual coordinate transformations T® depend continuously and dif-
ferentially on some rotation angles specifying these transformations, the same must
hold for the combined transformations V#* as well, since transposition and matrix
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multiplication do preserve these properties. Consequently, these local coordinate
systems of individual fuzzy electron density fragments and their relations with the
global, macromolecular coordinate system satisfy the conditions for a differentiable
manifold.

The reference to local coordinate systems may be advantageous if one considers
local deformations of macromolecules, such as a small local shape change of the
pocket region of an enzyme. If the deformation can be considered as being approx-
imately confined to a few molecular fragments, then within such an approximation
it appears justified to retain the local density matrix representations of all other
fragments making up the rest of the macromolecule and modify only those fragment
density matrices which are assumed to be affected by the deformation.

We shall assume that the fragment density matrix P* (¢ (Kk)) is available for the
local fragment nuclear geometry K,, expressed at the corresponding nuclear locations,
and with reference to the local basis set ¢ (K:). If a distorted local nuclear geometry
K does not deviate much from the original local nuclear geometry K, then a fairly
simple matrix transformation of the original fragment density matrix P (¢Kk)) can
be used to generate an approximate fragment density matrix at the new location K.

In fact, for a simple, but still remarkably useful first approximation of the electronic
density of the new nuclear arrangement K. one may use the same density matrix
Px(¢K,)), but in combination with a new basis set ¢ (K'+) obtained by simply moving
the centers of the old AO basis functions to the new nuclear locations,

n n

Pl (00 KD = " PH(0(K))ei(r, K, (r, K}), (58)
1

i=1 j=

where the components of this new local basis set are denoted by @ (r, X).

The macromolecular density matrix built from such displaced local fragment den-
sity matrices does not necessarily fulfill the idempotency condition that is one condi-
tion involved in charge conservation. It is possible, however, to ensure idempotency
for a macromolecular density matrix subject to small deformations of the nuclear
arrangements by a relatively simple algorithm, based on the Lowdin transform—
inverse Lowdin transform technique.

The formal vector @ (K) denotes the set of atomic orbital basis functions with
centers at the original nuclear locations of the macromolecular nuclear configuration
K, where the components ¢(r, K) of vector @¢K) are the individual AO basis
functions. The macromolecular overlap matrix corresponding to this set ¢ (K ) of
AOQ’s is denoted by S(K). The new macromolecular basis set obtained by moving
the appropriate local basis functions to be centered at the new nuclear locations is
denoted by ¢K'), where the notation ¢ (r, K') is used for the individual components
of this new basis set ¢K'). The corresponding new macromolecular overlap matrix
is denoted by S(K").

Pre- and postmultiplication by the matrix S(K)”? generates the Lowdin transform
of the macromolecular density matrix P (K )=P (o (K ), K ), expressed in terms of
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the AO basis set ¢ (K):
S(K)'/*P(p(K), K)S(K)'/2. (59)
For a correct density matrix
P(¢(K), K)S(K)P(¢(K), K) = P(p(K), K) (60)

must hold, consequently, the Lowdin transform S(K)"“P((K), K)S(K)" of den-
sity matrix P (¢ ( K), K) is idempotent:
S(K)'2P((K), K)S(K)'2S(K)'/*P(p(K). K)S(K)'/2
= S(K)'*P(p(K), K)S(K)'"2. (61)
The inverse Lowdin transform constructed for the above idempotent matrix

S(K)"2P(¢K), K)S(K)"> given with respect to the actual new, macromolecular
overlap matrix S(K"), is expressed as

P(p(K"), K', [K]) = S(K)"'2S(K)V*P(p(K), K)S(K)'?’S(K)™Y2. (62)

This new, approximate macromolecular density matrix (¢K'), K', [K]) for the new,
slightly distorted nuclear geometry K' is also idempotent with respect to multiplica-
tion involving the actual new overlap matrix S(K’),

P(p(K"), K', [KDS(K"P(p(K"), K', [K]) = P(p(K"), K', [K]). (63)
This can be shown as follows. A series of simple substitutions give

P(e(K"), K", [KDS(K"P(p(K"), K', [K])
=S(K")I8(K)*P(p(K), K)S(K)'PS(K")~12S(K"YS(Ky1/?
x S(K)'/*P(p(K), K)S(K)'*S(K')~1/?
= S(K")"'?S(K)'*P(p(K), K)S(K)'/*S(K)'/?
x P(p(K), K)S(K)'*S(K")~/?
= S(K")"V28(K)?P(p(K), K)S(K)P(p(K), K)S(K)/*S(K")~'/?
= S(K)"28(K)'*P(p(K), K)S(K)'*S(K ")~/
=P(p(K"), K, [KD), (64)
that is, idempotency condition (63) holds.

For the new, slightly distorted macromolecular nuclear geometry K', the electronic
density can be expressed as the improved approximation

Pappra (15 K, [K'D) = D D " Pij(p(K"), K', [KD@i(r, KN (r, K). (65)

i=1 j=1
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If the original macromolecular density matrix is already available, then such approx-
imate macromolecular electron densities for slightly distorted nuclear geometries are
simpler to calculate than the full recalculation of an ADMA macromolecular density
matrix that involves a new fragmentation procedure.

Note that for large nuclear displacements, for example, distortions exceeding about
0.3-0.4 a.u., the method based on the Lowdin transform—inverse Léwdin transform
technique is not recommended. However, for smaller distortions the method discussed
above appears to provide a useful approximation.

6. Summary

Approximate transferability of molecular components is a concept that lies at the foun-
dation of the classification of chemical reactions and molecular families according
to functional groups and reaction types. The very definition and choice of molecular
components, however, involves questions reaching to the foundations of quantum
chemistry, the topological characterization of local and global shape of molecules,
the roles of local and global coordinate systems that can be treated within a unified
framework using manifold theory, and the limitations on true transferability, as mani-
fested, for example, by the ‘holographic electron density fragment theorem’, reviewed
in this contribution. Approximate transferability, however, remains a useful concept
that also serves as the motivation for simple computational algorithms which can
utilize common features of slightly distorted macromolecular conformations. These
approaches effectively utilize approximate transferability, while maintaining some of
the constraints, such as density matrix idempotency, required for consistent electron
density representations. After discussions on the theoretical concepts and constraints,
some of the relevant computational methods are also reviewed.
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Beyond the local-density approximation in
calculations of Compton profiles

YASUNORI KUBO

Department of Physics, College of Humanities and Sciences, Nihon University, 3-chome sakurajosui
setagaya-ku, Tokyo 156, Japan

1. Introduction

Generally, all band theoretical calculations of momentum densities are based on
the local-density approximation (LDA) [1] of density functional theory (DFT) [2].
The LDA-based band theory can explain qualitatively the characteristics of overall
shape and fine structures of the observed Compton profiles (CPs). However, the LDA
calculation yields CPs which are higher than the experimental CPs at small momenta
and lower at large momenta. Furthermore, the LDA computation always produces
more pronounced fine structures which originate in the Fermi surface geometry and
higher momentum components than those found in the experiments [3-5].

One obvious drawback of the LDA-based band theory is that the self-interaction
term in the Coulomb interaction is not completely canceled out by the approximate
self-exchange term, particularly in the case of a tightly bound electron system. Next,
the discrepancy is believed to be due to the DFT which is a ground-state theory,
because we have to treat quasi-particle states in the calculation of CPs. To correct these
drawbacks the so-called self-interaction correction (SIC) [6] and GW-approximation
(GWA) [7] are introduced in the calculations of CPs and the full-potential linearized
APW (FLAPW) method [8] is employed to find out the effects. No established formula
is known to take into account the SIC.

In the present calculation the SIC potential is introduced for each angular momen-
tum in a way similar to the SIC one for atoms [9]. The effects of the SIC are examined
on the CPs of three materials, diamond, Si and Cu compared with high resolution CP
experiments except diamond [10, 11]. In order to examine the quasi-particle nature
of the electron system, the occupation number densities of Li and Na are evaluated
from the GWA calculation and the CPs are computed by using them [12, 13].

The purpose of this paper is as follows. Section 2 outlines why we have to go
beyond the LDA in the calculations of CPs. The first approach, SIC, beyond the LDA
is presented in Section 3, the other approach, GWA, is given in Section 4, and the
results are discussed compared with experimental ones in Sections 3 and 4. Section 5
contains the summary and conclusions.
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2. Why are trials beyond the LDA necessary?

In a typical Compton scattering experiment with unpolarized radiation, the cross
section is expressed as

d’c do wy
s = (50), (5o <”

where (dddw), is the well-known Thomson scattering cross section, and o =
(w;, — ®,) is the transferred energy. The dynamical structure factor S(q, ®) is
expressed as

)

S@ )=y Kf Y e
f j

In the ideal case being performed at X-ray energy transfers much higher than the
characteristic energies of the scattering system, the impulse approximation [14] is
applicable. In this case, the dynamical structure factor is directly connected with the
electron momentum density p (p):

2
$(Ef — Ei + o). 2)

2

S(g, ) = /p(p) dra(w - q—'—p). G)

2m m

Taking the photon scattering vector q in z-direction, the dynamical structure factor is
related to the Compton profile J(p.) by

m m
S(q, w) = — dp,dp, = —J(p,),
(q, ) dl o(p)dp.dpy al (ps) 4)
_mo gl
P = Iq| 2 Q)

Here, using electron field operator, momentum density is expressed as
o = @) [ar [ ar'exptip - (v =¥ (r, 0w, 0)). ©

Furthermore, the field operator is expanded in the Bloch waves with wave vector k
in the band denoted by b as

W, 1) =Y apx(®¥px(r). )

bk

The momentum density is given by the momentum wave functions and occupation
number densities

PP = Y X (P X6k PINp by (K). (8)
btk
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The momentum wave functions are given by
xrx(p) =8(K+Kk —p) f Vb x(r) exp(—ip - r)dr )

and the occupation number densities are expressed by annihilation and creation
operator, and show translational symmetry with respect to the reciprocal lattice
vector K.

Noy (k) = [} ,(0)ap k(0)), (10)

Npp (K) = Npp (kK + K). (11)

As noticed from this expression, the CP calculation has to be basically carried out on
the quasi-particle picture. Formally, quasi-particle energies and wave functions have
to be evaluated by solving

Hyrp x(r) + / dr'S(r, v’ Ep i) Vs (0) = Epx¥ox(r). (12)

Here, H, is a Hartree local Hamiltonian that includes the Coulomb effects of both
nuclei and average electronic charge distributions,

1 —_ ’ = ’
H0=—§V2—XH:Z1r—R,,| 1Jrfp(r)lr—rl "dr

3
= %{T[p] + Uenilpl + Uclpl}. (13)
where
pm = v, (14)
b.k

In Equation (12), the self-energy operator X(r, r'’; E,)) is, in general, non-local
and depends on energy. Therefore, to solve the Schrodinger equation, a series of
approximations have to be introduced.

First, the self-energy operator is replaced by a local exchange-correlation potential,
which is given by the functional derivative of the exchange-correlation energy with
respect to the electron density:

o 8 Exclp]
/dr Z(r, ' Epx) = Vxc() = —i;;i (15)

Exclpl = /dl‘/)(l')ﬁxc[p]. (16)

The replacement of Equation (15) corresponds to the density functional method.
But the exchange-correlation energy is generally unknown. Therefore, the unknown
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exchange-correlation energy is replaced by the known form of homogeneous electron
gas, which corresponds to the LDA. The replacement is expressed by

E)L(lgA[ﬂ] =/drp(r)exc[ph], (17)
(SELDA
ViRl = A, i)

Thus, the Schrodinger equation (12) is expressed as follows and becomes soluble:
{Holol + Vi (21} ¥k (1) = By i (0). (19)

Equation (15) is solved self-consistently employing the FLAPW method. Using the
solutions, wave functions and energies, momentum densities in Equation (8) are
calculated. In this step, one more drastic approximation we are going to make is
that the occupation number in Equation (10) is replaced by the step function

1 EMR* < Er,

Ny (k) = O(Ep — E* 20
b ( b,k) 0 E;‘EA>EF, (20)

where E: is the Fermi energy. From these processes the CP is calculated as follows:

PP ) = 3 R @) e (Er — ELRA), 1)
bk

X5 (@) =8(K+k-p) f Vyk (1) exp(~ip - 1) dr, (22)

TPA(p) = / PPA(p) dp, dps. (23)

Thus, the obtained CP of Equation (23) corresponds to the so-called conventional
band calculation CPs.

Typical CPs calculated by the FLAPW-LDA are shown compared with experiments
measured by Sakurai [14] in Figures 1 and 2, for Li and Cu, respectively. As seen
in both figures, there are serious discrepancies between the experiments and the
calculations. That is, the calculated profiles are higher than the experimental profiles
at small momenta and lower at large momenta, as observed consistently in studies
of other solids. Therefore, 1 take this as an indication that we have to go beyond
the LDA.

3. Self-interaction correction on CPs

One obvious drawback of the LDA is that, when we replace unknown exchange-
correlation energy by the known form of the exchange-correlation for a homogeneous
electron gas in Equation (17), we have a problem in that cancelation of self-Coulomb
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Figure 1. The valence-electron CPs of Li along the three principal symmetry directions. The solid curves
represent the FLAPW-LDA calculations. The dots represent the experimental results measured by Sakurai
etal. [33].
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Figure 2. The valence-electron CPs of Cu along the three principal symmetry directions. The solid curves
represent the FLAPW-LDA calculations. The dots represent the experimental results measured by Sakurai

etal. [24].
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energy and self-exchange-correlation energy is not generally guaranteed [15], shown
as follows:

1
Uelpr) = 5 [ Pra(®)pia ()ir = ¥ drar’ (24)
ERPMpis, 0] = /,Oi(l‘)ch[P? Plﬂ]dl’» (25)
> (Uc[pi,al + Exe[pio, 01) # 0. (26)

i,o

In these equations, (24)—(26), orthonormal orbits are denoted by indices i’s. Equa-
tion (26) means that the orbiting electron interacting with itself, that is self-interaction,
exists. This is unphysical. In order to remove this unphysical term, the SIC is taken into
account by the following procedure. The SIC for the LDA in the density functional
method has been treated for free atoms and insulators [16], and found an important
role in determining the energy levels of electrons. However, no established formula is
known to take into account the SIC for semiconductors and metals. As a way of trial,
in the present calculation, the atomic SIC potential is introduced for each angular
momentum in a way similar to the SIC potential for atoms [17] as follows:

; 0 in the region of interstitial,
Vsic = v . Lo (27)
sic{o)  in the region inscribed sphere,
Varc (o) = —wz[ / dr' o, () = x'|7" + Ve[ 1, 0]], (28)
{Holpi] + VERA o) + Vil () = Eii(r), (29)
r) 2
p(r)y = ,¢l4(ﬂ | ; (30)
EF
—oc

That is, the SIC potential is set to be zero in the interstitial region, and inside of
the inscribed sphere the SIC potential is calculated in the same way as in the free
atom case except that a non-integer occupation number at each angular momentum
orbital state denoted by / is allowed. Thus, the SIC potential in the inscribed sphere is
given in Equation (28). Here, the effective weight is obtained from the corresponding
partial density of states in Equation (31). This angular averaged orbital density in
Equation (30) is calculated from the radial Schrodinger equation with the spherical
part of the LDA potential plus its SIC potential in Equation (29). This procedure is
incorporated in the whole self-consistent scheme of the FLAPW-LDA calculation.

This FLAPW-SIC scheme has been applied to the CP calculations of Cu, Si and
diamond. The semiconductor Si and the insulator diamond have energy gaps and the
most upper valence electrons are regarded as being a slightly bound state. The noble
metal Cu has tightly bound d-electrons.
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Effects of the introduction of the SIC on the band structures of Si and diamond are
summarized as follows. With the introduction of the SIC, energy gaps of diamond
and Si become larger by 20% and 23%, respectively, than those obtained without the
SIC [18], which is in better agreement with experiments as shown in Table 1. The
bandwidths of diamond and Si become narrower by 17% and 6%, respectively. The
CPs calculated by the FLAPW and FLAPW-SIC scheme are plotted for Si in Figure 3
together with the experimental profiles by Sakurai ef al. [19]. The contributions from
the core electrons to the CPs are evaluated from FLAPW calculations with and without
the SIC. The difference between the core CPs with and without the SIC is negligibly
small for both materials. In the case of Si, the theoretical profiles are convoluted with
the experimental overall resolution of 0.13 a.u. The theoretical profiles computed
with and without the SIC provide a reasonable overall description of the measured
profiles. However, as found in other solids, both theoretical profiles are higher than
the measured profiles at small momenta, and there is a crossover around 0.8a.u.
with the situation reversing itself at large momenta. It is seen that introduction of
the SIC affects the shape of the profiles in a way that brings the theory into better
agreement with the experiment. Although the reduction of the discrepancy is small
in the total profile, the effect of the SIC on the valence-electron profiles is better seen
in Figure 4, where the characteristic features of each profile are better displayed by
the first derivatives, because the contribution from the core to the first derivatives is
slowly and monotonously varying. In the case of diamond, introduction of the SIC
makes a definite change in the overall shape of the theoretical profiles as seen in
Figure 5. Unlike the case of Si, diamond has a large band gap and the wave functions
of the valence electrons are more localized. By nature, the SIC acts to enhance this
feature as seen in Figure 5 compared to the case of Si. No high resolution experimental
profile of diamond is available. We show here an earlier measurement by Reed and
Eisenberger [20]. Their profiles are deconvoluted and the process often produces a
spurious structure. Therefore, we are not able to make a rigorous comparison between
calculation and experiment.

In the case of Cu, the effects of the SIC on the band structure are summarized as
follows [21]. The width of the s-type band is not affected. The relative position of
the d-bands with respect to the Fermi energy is lowered by 2 eV, and the width of the
d-band is reduced by 15%. As a result, the electrons in the d-bands are more localized.
The s-d hybridization near the Fermi energy is reduced. Consequently, I have got
somewhat controversial results on the geometry of the Fermi surface. As reference,

Table 1. Energy band gaps of diamond and silicon calculated by FLAPW-LDA
and FLAPW-SIC schemes. The experimental values [34] are also shown. Units
areineV.

LDA SIC-LDA Experiment

Diamond 4.07 5.17 5.48
Si 0.46 0.73 1.17
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(solid) schemes, The theoretical core profile is represented by a dash-dotted curve (after Kubo er al. [10]).
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Figure 4. First derivatives of the measured and computed CPs of Si. Explanations are the same as those
in Figure 3 (after Kubo et al. [10]).
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Figure 5. CPs of diamond along the three principal directions calculated by the FLAPW-LDA (dashed)
and the FLAPW-SIC (solid) schemes. The dots represent the experimental profile measured by Reed and
Eisenberger [20]. The theoretical core profile (dash-dotted) is also shown (after Kubo et al. [10]).
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Table 2. The dHVA frequencies of some symmetry orbits in Cu calculated by
the FLAPW-LDA (denoted as LDA) and FLAPW-SIC (SIC), respectively. The
experimental values measured by Shoenberg [22], and Coleridge and Templeton
[23], respectively.

Orbit Notation Exp. LDA SIC

Berry B 5.998 6.463 6.343
Berry B 5.814 6.167 6.300
Neck Ny 0.218 0.296 0.090
Dog-bone Do 2.514 2.427 2.637
Rosette Rin 2.462 2427 2.491

the cross-sectioned area of the Fermi surface obtained by de Haas—van Alphen (dHVA)
experiments [22, 23] and computed ones are shown in Table 2. The valence-electron
CPs calculated by the FLAPW and FLAPW-SIC schemes are shown in Figure 6
together with the experimental profiles by Sakurai ef al. [24]. The calculated profiles
are convoluted with the experimental overall resolution 0.12 a.u. As shown in Figure 6,
the overall shapes of the profiles calculated with the SIC is always lower in small
momenta (0—1 a.u.) and higher in the middle momenta (14 a.u.) than those calculated
without the SIC. Beyond 4a.u., although they are indistinguishable in the figure,
the profiles calculated with the SIC are always slightly higher than those calculated
without the SIC.

4. Electron-correlation effects on CPs

As mentioned in Section 2, the CPs of solids have to be calculated on the quasi-particle
scheme. In order to calculate the quasi-particle states, non-local and energy-dependent
self-energy in Equation (13) must be evaluated in a real system. In practice, the exact
self-energy for real systems are impossible to compute, and we always resort to
approximate forms. A more realistic but relatively simple approximation to the self-
energy is the GWA proposed by Hedin [7]. In the GWA, the self-energy operator in
Equation (12) is

T, v, E)= (-1—) / G(r, v, E + o)W(r, r; w)e® dow. (32)
2
In Equation (32), G(r,r'; o) is, in principle, the dressed Green’s function given as

Yk (D) ()
Grriw) =2y —Hh Eb:ila (33)

We can properly approximate the dressed Green’s function by its LDA counterpart,

A*(r) LDA(r/)
Guoar. w)_zz‘”w EL g;ius
bk

(34)
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Figure 6. The valence-electron CPs of Cu calculated by the FLAPW-LDA (dashed) and the FLAPW-SIC
(solid) schemes. The dots represent the experimental profiles measured by Sakurai ez al. [24].
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The W(r,r’; o) in Equation (32) is a dynamically screened interaction, and is
given as

W riw) = Y 0T o (q, w)el @K (35)
K.K'.q

Wik (@, ) = eg' (@, )V (g + K)), (36)
4

V(q+K) = PESE (37)

Inverse dielectric functions 81;,11(' (g, ®) in Equation (36) are calculated within the
random phase approximation [25]. Thus, the self-energy operator in Equation (32) is
properly expressed by

T(r,v; E) = T, T E) = / GrLpaW. (33)

From the self-energy operator in Equation (38), the self-energy value in GWA is
calculated as

IOMGWA) = (b, K|Z(r, 1'; E)|, K). (39)

It has been suggested that quasi-particle wave functions do not deviate much from
LDA wave functions [26]. Furthermore, in the evaluation of momentum densities
shown in Figure 9, the characteristics of the quasi-particle states dominantly reflect
on the occupation number densities which should be evaluated by using the general
quasi-particle Green’s function. In GWA, however, the corresponding occupation
number densities are

13
NYAK) =n 1[ Im G§y*(k, E) dE, (40)
—0oc
-1
GivAk, E) = [E — E(LDA) ~ ZLDA(GWA)] . (41)
bh.b

Using N EZYA (k) in Equation (40), the CP by the GWA is calculated as follows:

PP = D N NS (), (42)
b.v' k
JOWA(p) = f 2% (p) dp, dp,. (43)

This quasi-particle approach for CPs has been performed on Li and Na [12, 13]. In
these materials, only diagonal terms of the occupation number densities are evaluated
in a reasonable justification [27]. The GWA occupation number densities (denoted as
N(GWA)) thus obtained are shown for the three principal directions in Figures 7 and
8 for Na and Li, respectively. For reference, the occupation number densities obtained
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Figure 7. The occupation number densities as functions of wave vector for Na. The thick curves labeled
(100}, {110) and (111} represent the three principal directions within the first Brillouin zone, obtained
by the FLAPW-GWA. The thin solid curve is obtained from an interacting electron-gas model [27]. The
dash-dotted line represents the Fermi momentum.

from an interacting electron gas model (denoted as N(gas)) are also displayed in the
same figures. In the case of Na, the N(GWA) are similar to its N(gas). On the other
hand, N(GWA) of Li shows a remarkable k-dependence, and very different features
compared to its N (gas), particularly in the (110) direction.

Using these occupation number densities, CPs of Na are calculated along three
principal directions. Since the anisotropy in the CPs is very small and high reso-
lution Compton experiments have been performed only for a polycrystal sample,
the averaged GWA CPs are shown compared with the high resolution experiment by
Sakurai et al. [28] in Figure 9. For comparison, the LDA and free-electron calculations
are also shown in the same figure. The calculated profiles are convoluted with the
overall momentum resolution of experiment 0.12 a.u. In this figure, the difference
between the free-electron and the LDA CPs is regarded as dominantly due to the
core-orthogonalization effect, since the lattice potential has a very weak effect on
the conduction electrons. The discrepancy between the LDA and the experiment is
considerably reduced by introduction of electron-correlation effects by the electron-
gas model. Furthermore, the introduction of the electron-correlation effects by the
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Figure 8. The occupation number densities as functions of wave vector for Li. Explanations are the same
as those in Figure 7.

GWA leads to a good agreement between the theory and experiment. This finding
can be interpreted as being mainly due to a different behavior between N(GWA) and
N(gas) around the Fermi momentum as seen in Figure 7.

In the case of Li, the effect of its lattice potential to the electron states lead to a large
anisotropy of the Fermi surface [29], as well known. As a typical phenomenon due to
this effect, electron states around N-point in the lowest conduction band lie just above
the Fermi level compared with corresponding electron states of Na. The contributions
of these features to the self-energy evaluation are remarkably different compared to
the case of its electron-gas model, and produce large difference between N(GWA)
and N(gas) near the Fermi momentum seen in Figure 8. The renormalization factor
Z: on the Fermi momentum is estimated to be 0.35, 0.15 and 0.25 for the three
directions (100), (110} and (111), respectively. These values are much smaller than
the theoretical results obtained so far using jellium models, which range from 0.5 [30]
to 0.75 [31]. Schiilke et al. [32] found that the value in the (100) direction is 0.1 = 0.1
from the fitting to a simple model. Although their obtained value is smaller than that
of our result 0.35, our value is regarded as comparable to the one in the experiment, in
contrast with those predicted using jellium models. Using these occupation number
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J(p)

Figure 9. The valence-electron CPs of polycrystalline Na. The solid and dotted curves represent the
FLAPW-GWA and FLAPW-LDA calculations, respectively. The dash-dotted and dashed curves represent
the results calculated by the free-electron and FLAPW-LDA including correlation effects according to
Lundgqvist and Lyden [27], respectively. The dots represent the experimental result by Sakurai ez al. [28]
(after Kubo [13]).

densities N(GWA) and N(gas), CPs are calculated and shown together with the LDA
results in Figure 10. In the same figure, experimental results by both Sakurai et al. [33]
and Schiilke et al. [32] are shown for comparison. The overall momentum resolution
of the experiments of Sakurai ef al. is 0.12 a.u. and that of Schiilke et al. is 0.14 a.u.
Calculated results are all convoluted with the momentum resolution equal to 0.12 a.u.
As seen in Figure 10 the introduction of electron-correlation effects resulting from
using N(gas) reduces the discrepancy between the LDA and experimental results to
a certain extent. However, the reduction is smaller compared to the case of Na. On
the other hand, the CPs calculated using N(GWA) lead to the drastic reduction of the
discrepancy between the LDA and the experimental results as seen from Figure 10.

5. Summary and conclusions

We have studied the effects of the SIC for the filled and tightly bound bands for ‘Si,
diamond’ and ‘Cu’, respectively, by utilizing the FLAPW method. In the case of Si,
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Figure 10. The valence-electron CPs of Li along the three principal symmetry directions. The solid and
dotted curves represent the FLAPW-GWA and FLAPW-LDA calculations, respectively. The dashed curves
represent the FLAPW-LDA calculations including correlation effects according to Lundqvist and Lyden
[27]. The EXPI and EXPII represent the experimental results measured by Sakurai et al. [33] and Schiilke
et al. [32], respectively (after Kubo [13]).
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introduction of the SIC into the FLAPW scheme changes the band structure and the
band gap appreciably. CPs computed with the SIC are in better agreement with the
measured profiles when their first derivatives are compared. The comparison confirms
that the discrepancy between theory and experiment is the same sort as that found in
other metals and alloys, suggesting that electron-correlation plays an important role. In
the case of diamond, the introduction of the SIC affects the band structure, the energy
gap, the wave functions and CPs. Comparison with the earlier experiment confirms
an urgent need for a high resolution measurement to judge the effect of the SIC. In the
case of Cu, introduction of the SIC is somewhat controversial. It has weakened the
agreement between the LDA Fermi surface area and the dHvA result for the so-called
neck. However, the SIC does not change the other areas so much which are mainly in
the d-bands. On the other hand, the SIC has brought the LDA CP to a better agreement
with the experiment. The main reason for this reduction of the discrepancy is that the
SIC potential brings down and narrows the d-bands. As a result, the wave functions of
the d-bands become more localized in real space. Therefore, in momentum space, they
extend more in higher momenta. Although the SIC potential employed in this study is
not a uniquely determined one nor rigorously formulated, the present results suggest
that some kind of correction to the LDA potential is needed to explain the experimental
results consistently. Furthermore, the origin of the remaining discrepancy in the shape
of CP between the theory and experiment may now be ascribed to the quasi-particle
nature of the electron system, in particular to the non-unity and non-zero occupation
in k-space.

We have performed CP calculations of Li and Na in a quasi-particle scheme by
utilizing the GWA using the wave functions and energy values of the LDA-based
FLAPW computations as basis set. In the case of Na, the experimental CP is fairly well
reproduced by the electron-gas model with the electron-correlation, since the lattice
potential has a very weak effect on the electron states. However, the CPs calculated by
using the GWA are much more reproduced than the experimental results. On the other
hand, for Li, the lattice potential has a strong effect on the electron states. and the Fermi
surface geometry strongly deviates from a sphere. Reflecting these characteristics
of the electron states, the occupation number densities N(GWA) computed from
the GWA are very different from those obtained from electron-gas models. That is,
computed ZF from the GWA is significantly smaller than that predicted from jellium
models. The CPs obtained using the N(GWA)s reproduce the experimental results
extremely well. These results suggest that the GWA is the most meaningful and
practical way to go beyond the LDA.
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Interaction energy and density in the water dimer.
A quantum theory of atoms in molecules: insight on
the effect of basis set superposition error removal
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1. Introduction

The study of electron density distributions resulting from molecular interactions in
gas-phase complexes or in molecular crystals, is known [1,2] to facilitate our under-
standing of the physical mechanisms underlying such interactions. Indeed, the action
of these mechanisms is reflected in the interaction density, defined as the difference
between the electron density distribution (EDD) of the molecular complex or crystal
and that obtained by superimposing the EDDs of free molecules.

Central to the study of theoretical interaction density are the approximations one
adopts in the evaluation of the corresponding interaction energy (E..). This represents
[3] only a minuscule fraction of the total energy of the global system — typically from
four to seven orders of magnitude smaller. As a consequence [3] a ‘correct’ calculation
of E;, requires either an inordinately and unattainable high level of precision or, which
is common practice, a systematic cancelation among errors in the estimates of the
various different physical contributions to E,. In fact, it is reckoned [4] that ‘a reliable
ab-initio prediction of interaction potentials and energies is still a highly non-trivial
task even for small atoms and molecules’. Moreover, it is also acknowledged that
all the most commonly used ab-initio methods for computing E;, (supermolecular,
perturbational, or hybrid) have their well-defined drawbacks and advantages [5].

This paper is a preliminary attempt towards an understanding of how the interac-
tions densities are affected by approximations and errors introduced in the evaluation
of E,.. The water dimer complex is investigated here, as it represents a prototype
of hydrogen bonding and a sort of paradigm for molecular interactions. Owing to
this and to the limited size of the system, a wealth of literature [3] has appeared
on water dimer and a corresponding large spectrum of computational protocols and
E.. estimates has been thereof proposed. Indeed, even if similar or at the limit equal
E.. values are obtained with several methods, the resulting interaction densities may
still differ among each other, since E;, is a delicate balance of various positive and
negative energy contributions. In this respect, the study of interaction density may
enhance our understanding of the performance of a given model in describing a
particular molecular interaction. Not only a single, though extremely important value
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like E;, may be checked, but the whole behavior of a scalar function in both the intra-
and intermolecular regions.

One of the most important, though quite often unattended, requirement on an
ab-initio approach to molecular interactions is that of its size consistency [6]. We refer
here both to what we term basis set size consistency and to the more usual concept of
size consistency in the evaluation of the electron-correlation contributions. The lack
of basis set size consistency arises [7] from the use of an incomplete basis set and
constitutes a well-known inconvenience in the evaluation of molecular interactions by
a variational supermolecule approach. In fact within the complex or crystal the basis
set of the subunit is improved by that of its partner(s) and vice versa, thus leading
to an artificial energy lowering within the complex or crystal repeating unit. Such a
bias yields to the so-called [5] basis set superposition error (BSSE), which for weak
intermolecular interactions may be even comparable in magnitude to the interaction
energy itself. BSSE is often a posteriori corrected by the counterpoise (CP) recipe
[8] (or one of its many modifications) [9] that is, in its simplest formulation, the
orbitals of the partner(s) are added when computing the energy of each subunit. CP
corrections may however either overestimate or underestimate BSSE, while never
removing it [5]. The treatment of BSSE is a problem also in the case of very simple
molecular complexes. Indeed Saebg et al. [10] pointed out that although most of the
energetic contributions to the water dimer interaction have already been computed
quite accurately, one of the major goal to be reached is a clear BSSE correction.

In this paper a method [11], which allows for an a priori BSSE removal at the SCF
level, is for the first time applied to interaction densities studies. This computational
protocol which has been called SCF-MI (Self-Consistent Field for Molecular Interac-
tions) to highlight its relationship to the standard Roothaan equations and its special
usefulness in the evaluation of molecular interactions, has recently been successfully
used [11-13] for evaluating E,, in a number of intermolecular complexes. Com-
parison of standard SCF interaction densities with those obtained from the SCF-MI
approach should shed light on the effects of BSSE removal. Such effects may then be
compared with those deriving from the introduction of Coulomb correlation correc-
tions. To this aim, we adopt a variational perturbative valence bond (VB) approach that
uses orbitals derived from the SCF-MI step and thus maintains a BSSE-free picture.
Finally, no bias should be introduced in our study by the particular approach chosen
to analyze the observed charge density rearrangements. Therefore, not a model but a
theory which is firmly rooted in Quantum Mechanics, applied directly to the electron
density p and giving quantitative answers, is to be adopted. Bader’s Quantum Theory
of Atoms in Molecules (QTAM) [14, 15] meets nicely all these requirements. Such a
theory has also been recently applied to molecular crystals as a valid tool to rationalize
and quantitatively detect crystal field effects on the molecular densities [16-18].

The paper is organized as follows. Section 2 summarizes the grounding of the SCF-
MI and VB approaches, while Section 3 gives a brief overview of the technical details
used in our computations and discusses the resulting interaction energy data. The
application of our BSSE-free analysis to the study of charge density rearrangements
in water dimer is presented at length in Section 4. Section 5 concludes.
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2. Methods
Self-consistent field for molecular interactions

A short summary of the SCF-MI method is presented here for the simplest case of
two interacting closed-shell monomers A and B. A full account of the theory is given
elsewhere [11] and its generalization to interaction of an open shell with an arbitrary
number of closed shell fragments has recently appeared[19].

The AB supermolecule is described by a single determinant wave function for-
mulated in terms of doubly occupied molecular orbitals with no orthonormality
constraints. For a system with 2N = 2N, +2N, electrons the SCF-MI wave function
expressed in terms of the antisymmetrizer operator 4 is

Wsce = [2N)!] 72 A[p (DB (2) - - @3, (2Na)
X F (2Na + D@P(2ANA +2) - 95 (2Na + 2Np)). (1)

The kernel of SCF-MI derivation is the partitioning of the basis set for the total system
into two subsets:

{Xk}k = {Xp}p 1+{Xq }q 1 2)

one, {x 5}2421, centered on monomer A, and the other, { xq _BI, centered on monomer
B, with M = M, + M, The molecular orbitals (MO) of A are expanded in subset

{X;}ﬁi‘"l and those of B in subset{xf};wfl

Ma
=T z ®)
=

that is @ = y2T, and ®B = Ty in matrix form. Orbitals of different fragments
are left free to overlap with each other. As a consequence of the assumed partitioning,
both the (M x N) matrix of MO and its variation assume a block diagonal form

=] T 0] 5T=[§A8¥}.
B

The energy and its variation 8 E = 0 have apparently the standard SCF form
E =Tr[D-h] +Tr[D - F(D)], S8E = 2 Tr[F(D)sD], 4)

where F and h are the usual Fock and one-electron integral matrices expressed in the
atomic orbitals basis set. However, the general stationary condition 6 £ = 0 is also
mathematically equivalent to the following coupled secular problems:

FATA = S;\TALA, F1’3TB = S%TBLB, 5
T.S.\Ta = Ly, ThSpTs = I, ®)
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in terms of effective Fock and overlap matrices F,, F'5, and S's, S’

S, =8,(Tg) = Saa — SapDsSga,
Sg = S5(Ta) = Sgs — SeaDaSas,

H H 1
F, = F\ (T4, Tg) = (14 | ~SapDp)F (——A—> ,
—DgSga

Da(Ta) = Ta(TiSaaTa) ' T},

, ’ —D.AS
Fj, = Fy(Tp, Ta) = (~=SpaDa | 1)F (—ﬂ) ,

1p
Ds(Tg) = Ts(TSpsTs) T (6)

As is apparent from the above definitions, each of these effective matrices depend on
basis sets and molecular orbitals of both fragments. It is also important to observe
that these matrices possess a correct asymptotic behavior as at large interfragment
distances they become the usual overlap and Fock matrices of the separate fragments,
while the paired secular systems uncouple and converge to the separate Roothaan
equations for the single monomers. Finally, as it is usual in a supermolecular approach,
the interaction energy is expressed as

AEscrmi = ESA(IZSF-MI - E?CF - E?CF’ (7

the energy of monomers being that of standard SCF wave functions. At variance with

the conventional SCF supermolecular (SCF-SM) approach, the SCF-MI interaction

energies exhibit an extremely rapid convergence with increasing basis set quality.
The solution of the SCF-MI equations involves the following steps:

a) construct the effective overlap and Fock matrices (Equation (6));

b) solve the generalized secular systems (Equation (5));

c) check the variation in the density matrix elements D,andD;;

d) at convergence, evaluate the electronic energy (Equation (4)), otherwise go back
to step (a).

The computational cost [20] of the SCF-MI algorithm is almost equal to that of
standard SCF, as the time required to evaluate the effective operators is negligible
and the overload caused by the doubling of secular equations to be solved is largely
compensated by the reduced size of these equations. The algorithm, which has been
incorporated [20] into the GAMESS-US package [21], is compatible with the usual
formulation of the analytic derivatives of the SCF energy. This fact has allowed [20]
the implementation of gradient optimization algorithms and of force constant matrix
computations in both the direct and conventional approaches. So the SCF-MI method
not only provides a complete a priori elimination of the BSSE, while taking into
account the natural non-orthogonality of the MOs of the two interacting fragments,
but also allows for a standard analytical search of minima conformations on the
potential energy surface (PES) of the complex. This fact is at variance [3] with the
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classical CP procedure where one has to adopt point by point procedures to move on
the PES and where as many as five SCF energies are to be evaluated on each point
of the PES, in order to properly include [22] the treatment of geometry relaxation
effects.

BSSE-free VB treatment of intermolecular forces

The correlation contribution to water dimer interaction energy and density has been
evaluated [23] with a very compact multistructure VB — non-orthogonal CI — cal-
culation. The VB approach is a natural way [24, 25] to describe the intermolecular
interaction, including the effects deriving from the overlap between the orbitals of
the separated fragments and the interfragment electron correlation (dispersion). The
adopted wave function has the general VB form

Na Nb Na Nb
Wap = CoWap + 2 D Cap Wi+ C¥8 + > Cuf ®)
a=1 b=1 a=1 b=1

It represents the configuration interaction between the SCF-MI wave function
0 AZABAHA .. HA HBEHBHBEHB ... BB
Vg = [P P PTDS -+ Dy , DT PT Dy D5 -+ - Dy ), 9)
the singly excited localized configuration state functions

V= (PR RN By OVBT - P D] - B, 07 ).

. - - - - - (10)
Wy = 0F0) - R DY - B, PPDT - DRI - DR, 05 )
and the doubly excited localized configuration state functions
b = |opd) @R -8R, 9PRT - PR - B, 00, (1)

obtained by simultaneous single excitation localized on A and B. The singlet spin
functions for the two or four electrons involved in the single or double excitation
are ©3 ; and ©f ; = C10],,, + €20, The configurations included in the VB
wave function play a significant role in the field of intermolecular forces as they
can be associated with precise physical effects (energies and associated interaction
densities) and coincide with specific contributions of a perturbative approach. Namely,
Wl represents the sum of the Coulombian, the exchange and the induction energy
(at SCF-MI level); the \Ilg*, WY terms in Equation (8) refine the induction energy
and have been added to relax the occupied SCF-MI orbitals, which are being kept
fixed during the virtual orbital determination procedure (see below); the doubly ex-
cited configurations introduce correlation between the electrons of the two fragments
and are associated to the interfragment dispersion energy. The energy of VB wave
function is calculated by solving the corresponding secular problem, which includes
the determination of the Hamiltonian and overlap matrices between non-orthogonal
VB structures. A general VB code was employed [26]. For the sake of comparison
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with other energy contributions to the interaction energy, the pure electrostatic and
exchange term was also calculated by setting C,,, C, and C, equal to zero in Equation
(8) and constructing W35 in terms of the undistorted SCF orbitals of the isolated
fragments. Such a model is hereinafter referred to as the frozen monomer (FM) model.
Our correlation contributions to the interaction energy do not introduce BSSE since
only localized configurations have been considered in the evaluation of the VB energy.
Besides, our treatment maintains a complete size consistency as, due to Brillouin's
theorem [6], the included excitations give a zero contribution to the energy of the
isolated fragments. The energies for the latter to be used in Equation (7) (with VB
subscripts replacing the SCF-MI ones) are therefore just the SCF energies. Particular
care has been taken in the construction of the optimal virtual orbitals, in order to
generate a very compact VB wave function, while maintaining a BSSE-free approach.
The general procedure is described in Refs. [23,27] and only a brief summary is
reported here. Both the occupied (<I> QDB) and virtual (94 @E*) SCF-MI orbitals
are expanded only in the basis sets of their own fragment:

Ma
=ZX?Tﬁa’ o} _qu gb»
a* = Z Xp pa cbb* - Z Xq qb*

Such constraints imply the non-orthogonality of the orbitals. The optimal virtual
orbitals ®A, and ®P. are determined accordingly to the approximation that they sepa-
rately maximize the dispersion contribution of each of the N, * N, two configuration
wave functions

a**

(12)

Wip = CoW¥ly + Cap 37, (13)

where \I-';‘;b* represents a doubly excited configuration in which electrons are excited
from the occupied SCF-MI orbitals @2 and ®F to the virtual orbitals @2 and
B, respectively. The corresponding optimum virtual orbitals are determined at
the variational-perturbational level of theory by minimization of the second order
expression of the energy, the final expansion (Equation (12)) for each virtual pair
being achieved iteratively.

Implementation of QTAM analysis for SCF-MI and VB wave functions

It is well known that, within the framework of the MO-LCAO-HF theory, the electron
density p at a given point r can be expressed as

p(r) =Y igles, (14)

where the summation extends over the occupied molecular orbitals ¢ ;and A repre-
sent their occupation numbers. In Equation (14) the orbitals ¢ are supposed to be
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orthonormal among each other, while SCF-MI orbitals (Equation (3)) are not. The
PROAIM [28] code, which implements QTAM for theoretical molecular densities,
evaluates p and its derivatives on the basis of Equation (14). Hence to interface SCF-
MI wave function with PROAIM code, the final SCF-MI orbitals have been unitarily
transformed by diagonalizing the global Fock matrix F in the basis of the @ and
@ *® orbitals (Equation (3)). The same procedure was previously used to implement
[20] the energy derivatives of the SCF-MI wave function in the GAMESS-US package
[21]. In the case ofthe VB wave function, the natural orbitals and occupation numbers
obtained by diagonalizing the matrix representation of the VB one-density function
on the atomic basis set were used in Equation (14).

3. Computational details and interaction energy data
Water dimer

A full account on the energy computations performed, at the SCF-MI and at the
SCF-MI+VB levels, is reported in Refs. [12] and [23], respectively. Computations
refer to the trans-linear water dimer, with C, symmetry, at both experimental and
theoretically optimized geometries. A thorough study of the water dimer potential
energy surface, providing a new SCF-MI+VB interaction potential for the molecular
dynamics simulation of liquid water, can be found in Refs. [29,30]. Computational
details and results of relevance for the present study are summarized here for the
trans-linear conformation only. Several basis sets have been investigated, using the ge-
ometric sequences given by the even tempered gaussian s, p basis functions generated
according to Schmidt and Ruedenberg [31]. The sequence length was systematically
increased up to convergence on the dimer binding energy and force constants. The
isotropic part of the basis set (s, p on O and s on H atoms) was supplemented
with polarization functions (d, fon O and p and d on H atoms) according to the
Sadlej method [32]. Finally, to investigate the effect of extremely diffuse s, p, d,
f functions on the dimer binding energy, the geometric series was prolonged by
introducing additional very small exponents, down to 102 Table 1 lists the SCF-SM
(BSSE-contaminated) and SCF-MI (BSSE-free) interaction energies and optimized
geometries for the water dimer, as a function of selected basis sets. The largest basis set
investigated (20s10p6d6f/10s6p6d) gave a monomer energy of —76.0676 au, settling
the new calculated Hartree—Fock limit for water. The corresponding dimerization
energy (—3.33 kcal/mol) is to be considered as a value close to the HF limit for this
quantity and has to be compared with the related SCF-SM value of —3.71 kcal/mol.
Indeed, Table 1 shows that BSSE is larger than 1 kcal/mol for poor basis sets (6-31G
and 6-31G**) and, more importantly, that a significant difference (0.38 kcal/mol)
persists even with the biggest basis sets. For the sake of fairness, such a difference is
due to both residual BSSE and incompleteness of our best basis set.

However, the error due to incompleteness should not exceed 0.20 kcal/mol in view
of the most recent theoretical results on water dimer [34]. Table 1 also shows that
SCF-MI energies converge much faster than SCF-SM ones with increasing basis set
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Table 1. SCF-MI (SCF-SM) interaction energies and geometries for the C, linear water dimer.?

Basis sel M E;y keal/mol Roo A Roy_nr A

6-31G 26 6.34 (—=7.84) 2,916 (2.843) 0.953 ((L957)
6-31G™* 50 —4.12 (=5.54) 3.054 (2.980) 0,945 ((L.948)
TZVP? 112 3.36 (—3.95) 3.165 (3.028) 0.943 ((L944)
TZVP++" 124 —3.27 (—3.79) 3.165 (3.030) (1,943 ((1.945)
{(Tsdpldidse2p)© 102 =332 (<387N 3164 (3.033) 944 (0.945)
(20s10p4d/10s4p)? 236 —3.27 (=3.76) 3,157 (3.034) 0.943 ((.944)
(20s10p3d51/10s5pSd) 480 333 (=371 3,157 (3.034) 0.943 (0.944)
(20s10p6d6t, 10s6p6d)? 548 =333 (=371 3.157 (3.034) 0.943 ((.944)

4 Data from Ref. [12]; basis sels tom Refs. [31.32]; " Rel. [21]:° Ref. [33]:¢ Ref. [12].

size. Quite interestingly, the medium-size Millot-Stone basis set [33] (Table 1, shaded
row) yields geometries and dimerization energies which are (SCF-MI results) very
close to our basis set limiting values. For this reason this basis has been adopted in
the VB approach and used as our ‘standard’ in the interaction density and QTAM
analysis (see below).

The SCF-MI limit interfragment distance (3.157 A), is significantly larger than
the corresponding BSSE-contaminated estimate (3.034 A) and that found [35] ex-
perimentally (2.98 + 0.03 A). Hence, if only induction (SCF-HF without BSSE) is
taken into account in the intermolecular interaction, the two water molecules are kept
too far apart, while BSSE seems to mimic the effect of the dispersion contribution.
However, when the SCF-MI determinant is used as the reference configuration in
the VB expansion, an interfragment distance of 3.00A is obtained [23]. In the VB
calculation an active space of four MOs with one MO (oxygen 1s? electrons) kept
frozen was considered for each water molecule. By adopting the VB expansion given
by Equation (8) and by evaluating the optimum virtual orbitals according to Equation
(13), the virtual space on each fragment is equal to 16. This implies a set of 32 (16
times 2) vertical singly excited configurations and 256 (16 times 16) vertical doubly
excited spatial configurations. By taking the dimension of the spin space into account,
the size of the resulting VB matrix is 545. The calculated water dimer binding energy
(—4.67 kcal/mol) is in very good agreement with the available experimental estimates
(-5.4 £ 0.7, [36]; -5.2 £ 0.7, [37]) and so is the optimized geometry [23]. Table
2 details the contribution of the various physical effects to the water dimerization
energy, using the Millot—Stone basis set. The full counterpoise procedure greatly
undercorrects BSSE as its estimated FEi: (—3.80 kcal/mol) is about 0.5 kcal/mol
larger than the SCF-MI value and only slightly smaller than the SCF-SM estimate
(-3.87 kcal/mol). Such an underevaluation is nearly comparable in magnitude to
the effect of induction. Indeed the difference between the pure exchange plus frozen
monomer electrostatic dimerization energy (FM model) and the SCF-MI dimerization
energy amounts to 0.84 kcal/mol. Table 2 also shows that the estimated dispersion
energy [Ew(VB)-E.(SCF-MI)] corresponds to over 30% of Ein(VB) and that the
two SCF procedures (SCF-SM and SCF-MI) yield interaction energy values which
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Table 2. Interaction energies vs physical model for the C, linear water dimer (Millot—Stone basis set).

Model Energy contributions Ein« (kcal/mol)

opt. (exp.) geom.
FM Electrostatic (frozen monomers) + exchange (-2.19)
SCF-SM As above + induction + effects due to BSSE —3.87 (-3.84)
SCF-FCP As for SCF-SM but with full CP correction of BSSE -3.80 (-3.73)
SCF-MI As for SCF-SM but BSSE free -3.32 (-2.97)
SCF-MI-VB As for SCF-MI + induction refinement + dispersion —4.67 (-4.57)
Exp. -52+07

differ by a quantity equal to about 40% of the dispersion energy. These observations
strongly support the importance of a detailed study of the changes found in the
interaction densities as the physical model adopted for their evaluation improves.

4. QTAM analysis of dimerization energies and densities in
HOH-OH,; system

Atomic energy changes

The use of QTAM provides an atomic view of the energy changes accompanying
the charge rearrangements following dimerization. Atomic energies were obtained as
described in Ref. [14], by integrating the negative of the kinetic energy density over the
atomic basin and by scaling the resulting energy value by the factory — 1 (y = —=v/T,
being the virial ratio), to obtain a set of atomic energies which correctly sum to the
total energy E. Integration on the atomic basins of water dimer and monomer gives
the changes A E(€2) in the atomic energies upon dimerization. Table 3 details such
changes for the atoms of the hydrogen donor and hydrogen acceptor molecules, as a
function of the adopted model, while Figure 1 shows the numbering scheme used for
water dimer. A negative A E(Q) value in Table 3 indicates an energy stabilization of
Q in the dimer.

With the only exception of the FM model, which is too crude, the other considered
methods give a similar qualitative picture for the atomic energy changes following
dimerization, the two oxygen atoms being stabilized and H2, the hydrogen atom
involved in the hydrogen bond largely destabilized (as a result of a loss of charge,
see below). Conversely, when the induction mechanism is inhibited (FM model),
the reverse is true, H2 being stabilized and the oxygen of the donor molecule being
destabilized. A closer inspection of Table 3 yields some interesting observations.
First, the dimerization energy gain is mainly due to the stabilization of the acceptor
molecule, in spite of its electron population loss (see below). Dispersion stabilizes
more the H-acceptor than the H-donor molecule. Indeed, the donor molecule is even
slightly destabilized at SCF-SM and SCF-MI levels. Secondly, at variance with the
SCF-SM case, the ratio of SCF-MI over VB atomic energy changes is nearly constant,
independently on the considered atom Q. Hence dispersion just enhances the energy
stabilization or destabilization effects caused by 'true' induction mechanisms. This
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Table 3. Effect of model on the changes in atomic energies A E(Q), using the Millot—Stone basis set.

Atom £ AE(S) (keal/mol). opt. geometries
FM? SCF-SM" SCE-MI" VB

0l +3.7 —11.5 (0.89) —10.5 ((.81) —12.8
H2 S B +15.1 (0.94) +13.6 ((L84) +16.1
H3 +0.0 -3.6 (1.02) —2.9 (0.84) ~3.5
Donor molecule +2.0 +0.1 +0.2 —(.2
04 —4.2 —13.2 (1.00) —11.1 (0.84) —13.2
H5 -+0.1 +4.6 (1.05) +3.8 (0.85) 4.4
Acceptor molecule —4.1 —4.0 —36 —4.5
* FM model (see text) at exp. geom.: " In parenthesis the ratio with the corresponding VB model values.

H2

Figure 1. Numbering scheme for the trans-linear C, water dimer.

is not the case of the standard SCF-SM method that appears to underestimate the
energy changes in the part (O1 and H2 atoms) of the donor molecule more involved
in the hydrogen bond, while it overestimates the energy changes of the remaining
atoms. Comparison of AE(Q) values for the donor and acceptor molecules, at the
two considered SCF levels, suggests that the spurious interaction energy gain due
to BSSE is mainly due to an increased stabilization of the acceptor, rather than to a
decreased destabilization of the donor moiety.

Charge transfer and atomic electron population changes

Upon dimerization, electron charge is transferred from the base (the H-acceptor
molecule) to the acid (the H-donor molecule), in agreement with Lewis’ generalized
definition of an acid and a base as an electron acceptor and donor, respectively. The
amount of such a charge transfer (CT) is reported in Table 4, for the two SCF models
considered in this paper and as a function of the basis set size. The CTs are small and,
for the SCF-SM method, are found to decrease as the basis set size increases.
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Table 4. Effect of BSSE on the CT in the water dimer.

Basis set M CT*100

SCF-SM SCF-MI(VB) (SCF-SM)/(SCF-MI)

6-31G 26 1.92 0.63 3.0
6-31G** 50 1.19 0.05 22.8
Millot-Stone 102 0.94 0.45(0.56) 2.1
TZVP++ 124 0.89 0.36 2.5

Table 5. Effect of model on the changes in QTAM atomic populations A N(Q), using the Millot—Stone
basis set.

Atom £ AN(L2) + 100 opt. (exp.) geomelries
FM SCH-SM SCF-MI VB

01 (+1.0 +4.0 (+4.7) +34(4+5.0) +4.2 (+4.7)
H2 (—0.8) —3.9 (—.5) =371 (=2:4) ~4.5 (—4.9)
H3 . (+0.1) - RGO O 0.7 (+0.8) +0.8 (+0.8)
Donor molecule & 03 RO GEED 0 0% 05 (H06)
04 (—0.3) 1.4 (4-1.3) 1.5 (+1.9) +1.7 (4+1.5)
H5 (+0.0y —1.2 (—1.3) —0.9 (1.2 —1.1 (=1.2)
Acveptor molecule [—(0.3} =10 (=11 04 (=0.5) L S

1A positive AN (€2) value indicales an electron population gain lor €2 in the dimer.

The ratio of charge transfers, as obtained with the standard and the BSSE- free SCF,
is always larger than two and shows a maximum for the 6-31G** basis. It appears
that such a basis is large enough to allow one water molecule for a significant use
of the basis functions of the partner (and vice versa) and, conversely, not big enough
to make BSSE negligible. The SCF-MI charge transfer value (0.45 electrons) for the
Millot-Stone basis set is half than the corresponding SCF-SM estimate and compares
favorably with the VB outcome (0.56 electrons).

Atomic electron population changes AN(Q2) upon dimerization are reported in
Table 5 for the models considered in this study, at both experimental and optimized
geometries. A detailed QTAM analysis of such electron rearrangements, in a number
of hydrogen bonded systems, is reported in Ref. [38]. Here, we just investigate how
the AN(Q) values vary as the theoretical level adopted for the description of the
intermolecular interaction improves. A positive A N(Q) value in Table 5 indicates an
electron population gain for Q in the dimer. With the only exception of FM model,
the AN(Q) values turn out to be generally larger than the charge transfer. Indeed, the
remaining approaches predict a considerable redistribution of charge within the two
molecules which involves an electron population loss from the tail of the base (H5+H6)
and an electron population gain by the head (O1+H3) of the acid. Such a behavior
is common to both experimental and optimized geometries of the water dimer. Save
in FM model, the two oxygen atoms gain electron charge, the population increase
for the oxygen donor being about 2.5 times greater than for the oxygen acceptor.
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Table 6. Effect of BSSE on the changes in Mulliken atomic populations AN (£2).1

Atom §2 AN(82) * 100 SCF-SM (SCF-MI)

6-31G* Millot-Stone TZVP+4+
01 +4.6(43.8) +2.7 (+3.9) +8.3 (+4.9)
H2 ~2.7(—4.7) —-1.2 (—4.4) —7.5(=52)

H3 +1.0 (+0.9) ) +0.5 (+0.5) +0.4 (+0.7)

Donotmolecule: i ek J b2
04 +0.0(+2.5) +0.0 (4-2.3) +0.1 (+3.2)
HS —1.4(-1.3) —1.0(-1.2) —(.6 (—1.6)
Acceptor molecule =2y i — 1.9 =12

A positive AN (£2) value indicates an electron population gain for £ in the dimer.

In the case of VB and SCF-MI densities, the decrease in the electron population of
the hydrogen involved in the HB is about ten times greater than and opposed to the
observed CT. A similar behavior is found for the SCF-SM wave function, though
the H2 atom population decrease is only five times greater than CT, as due to the
overestimate of the latter. Overall, Table 5 shows that changes in electron populations
upon dimerization are qualitatively described by the induction term only. Moreover,
the effect of BSSE on AN(Q) appears rather limited. However, this observation is
no longer true when AN(C)) values are computed through the standard Mulliken
population analysis approach. Table 6 reports such AN(Q) values for SCF-SM and
SCF-MI densities as a function of basis set size. The Mulliken CT is about two times
larger than the QTAM estimate (Table 4) in the case of SCF-SM densities, while it is
null for SCF-MI wave function, as due to definition of Mulliken’s partitioning. The
AN(Q) values at the SCF-MI level are by far more stable against basis set type than
are the corresponding SCF-SM values. For instance the SCF-MI population change
for H2 ranges from —4.4* 10 to —5.2* 102 electrons, while for the SCF-SM model
it may differ by even one order of magnitude from basis to basis. It is also interesting
to note that only for the SCF-MI wave function are the AN(Q) values obtained
by Mulliken’s procedure quite close to those evaluated through QTAM (Table 5).
Indeed, while Mulliken’s population values by themselves do not bear much physical
meaning (especially for large basis sets), their variations, upon change of chemical
environment, are known to be quite often reliable. Comparison of results reported
in Tables 5 and 6 suggests that this holds true also for the case of the water dimer,
provided the BSSE contamination is removed. The basis set instability, exhibited by
the values of the SCF-SM Mulliken’s population changes upon dimerization, is only
caused by BSSE.

Interaction densities

The interaction density in water dimer has been the object of previous studies [39,40].
In particular, Krijn and Feil[40] pointed out the effects of exchange repulsion and of
the dominant mutual polarization of the two moieties arising from the electric fields
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Figure 2. Effect of model on the interaction densities (Ap = rdimer — pmonomers) in the water dimer (g,
plane, experimental geometry, Millot—Stonebasis set). The values of the contours for p are +a * 10,
with a = 2, 4, 8 and »n beginning at —4 and increasing in step of unity. Dashed contours denote negative,
solid contours positive values of Ap. The pair of Vp trajectories (heavy lines) which originate (bond paths)
or which terminate at the bond critical points (denoted by dots) are superposed on the contour map. These
latter Vp trajectories mark the intersection of the interatomic surfaces with the o, plane, thus allowing an
atomic view of interaction densities.

generated by their unperturbed charge distributions. Figure 2 displays interaction
density contours for the four models used in this work, in the g, plane of the water
dimer and at its experimental geometry. All the approaches, save the FM model, yield
a similar picture for the interaction. The FM model seems unable to properly describe
the polarization of the two oxygen atoms and the depletion of charge in the H2 basin.
Hence, the following discussion does not refer to such a model. Figure 2 shows that the
H-bond interaction is reflected throughout the complex, rather than being restricted
to the region of the hydrogen bond itself. This fact was also evident from the reported
analysis of the AN(Q) values. As found elsewhere [1, 41], the HB reinforces the
polarity of the molecules that participate in the bond (the individual dipole moment
are enhanced), the acceptor becoming a better donor and the donor becoming a better
acceptor. The induced dipoles at the VB level and evaluated according to QTAM
partitioning are 0.14 and 0.09 D for the donor and the acceptor molecules, respec-
tively. The SCF-SM and SCF-MI estimates for the induced dipoles differ between
each other by less than 10% and are similar to the VB values. A closer and more
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Figure 3. Differences among water dimer densities p, as obtained with the theoretical models explored
in this work. Same symmetry plane, geometry, basis set and contour levels as that of Figure 2.

interesting inspection on the different performance of our models is given in Figure 3
where the differences between VB and either SCF-MI or SCF-SM dimer densities
are displayed in the same symmetry plane and using the same Ap contour levels of
Figure 2. The bottom panel of Figure 3 also reports the difference between SCF-
MI and SCF-SM dimer densities. Figure 3 (top) shows that by including dispersion
contributions, electron charge is moved into the interfragment region, (in particular in
the H2 basin) and removed from all other regions along the O—O axis. When spurious
BSSE effects are introduced (Figure 3, middle) the picture becomes far less simple
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to interpret. However, it is clear that in this case dispersion has to remove electron
charge from the interfragment region. Such an electron removal concerns all the O-O
internuclear axis region, save a small part close to the lone pair of the oxygen acceptor
(see below). It appears that dispersion contributions have opposite effects, whether
a density describing ‘true’ induction or a BSSE contaminated induction, is taken as
reference. Finally the difference between SCF-MI and SCF-SM densities (Figure 3,
bottom) confirms that BSSE puts too much electron charge in the HB region, by
removing it, in particular, from the acceptor oxygen.

The interaction densities portrayed in Figure 2 suggest that the BSSE which arise
from a basis set of quite high quality (7s4p2d/4s2p on O and H, respectively) is
small enough to yield electron density rearrangements qualitatively similar to those
of the BSSE-free model. However, the density differences displayed in Figure 3 show
that the BSSE effects on the density are comparable in magnitude to those induced
by the dispersion contributions. As we also know (Table 2) that the small density
differences shown in Figure 3 imply notable changes in the interaction energies,
one wonders whether these density changes are larger or at least comparable with the
estimated standard deviations (esd) for experimental p. High quality X-ray diffraction
experiments, especially when carried out at very low temperatures, may give [42] esd
for p in the HB regions as low as 0.001 au, a value comparable in magnitude to the
innermost density contours displayed in Figure 3.

Interaction Laplacian densities

Hydrogen-bonded complexes have been discussed [14, 16,38,43] in terms of a gen-
eralized Lewis acid and base interaction, using the Laplacian of the electron density
(V2p as a tool for predicting their structures and studying their characteristics. As
explained at length in Ref. [14], the sign of the Laplacian determines the regions
which are charge depleted (positive Laplacian) or where charge concentrates. Charge
concentration at a point r means that p(r) is bigger than in an infinitesimal volume
around it. The form of the Laplacian of p for an isolated atom reflects its shell structure
since it exhibits a corresponding number of pairs of spherical shells of alternating
charge concentration and charge depletion, the inner shell of each pair being always
the region of charge concentration. The spherical valence shell of charge concentration
(VSCC) in an isolated atom does not persist upon bonding, since local maxima and
minima in —V?p are formed within the shell, depending on the number and type of
the linked atoms. It has been shown [43] that the approach of the acidic hydrogen to
the base, in a HB interaction, is such as to align a —V2p minimum in the valence
shell of the acidic hydrogen atom with a base —V? p maximum. Local minima in
—V2p are hereafter indicated as cage critical points, while local maxima are referred
to as either bonded or not bonded concentrations, according to whether they occur
in bonding or in lone pair regions, respectively. Figure 4(a) displays the Laplacian
density in the o, plane of the water dimer, while Figure 4(b) shows the alignment
of the H2 cage critical point (CP) of the donor water molecule with the non-bonded
maximum associated to one of the lone pairs of the acceptor oxygen atom. The
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Figure 4. (a) Laplacian density (VB model, experimental geometry) in the o, plane of the water dimer.
Solid contours denote negative V2p values; (b) schematic representation of the Laplacian critical points
of water which undergo the most significant changes following dimerization. Bonded maxima are denoted
as b, non-bonded maxima (lone pairs) as Ip. Only one Ol 1p is shown in (b), while the local maximum
visible in (a) and denoted with a star, corresponds to the saddle point between the two O1 1ps which are
symmetry related by the g, plane. The alignment of the H2 cage CP of the donor water molecule with the
non-bonded maximum associated to one of the oxygen acceptor lps is also shown in the figure.

approach of the acid and the base involves, compared to frozen monomers, a further
charge depletion of the H2 cage and a decrease of the non-bonded concentration of the
acceptor oxygen pointing towards H2. Also the lone pairs of the donor oxygen (02)
become less concentrated, while the bonded concentrations of O1-H2 and O1-H3
bonds, indicated as b2 and b3 in Figure 4, respectively increase and decrease their
| -V2p| value upon dimerization. Indeed, hydrogen bonding yields a lengthening
of O-H2 bond, with a parallel increase of its polarity and decrease of sharing of
oxygen-bonded concentration. Just the opposite occurs to the O—H3 bond. So far we
summarized the main changes induced by hydrogen bond formation on the Laplacian
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Figure 5. Effect of model on the interaction Laplacian densities A (V2p) = (V2p dimer — V?p monomers) in
water dimer (o, plane, experimental geometry, Millot—Stone basis set). Same contours as in Figure 2, but
with n beginning at —3. Dashed contours denote negative, solid contours positive values of A(V2p). A
negative contour level means that locally the dimer has less charge concentration than the pro-dimer.

distribution of isolated monomers. The question now arises whether these changes are
adequately reproduced by all the approaches investigated in this study and whether
the quantitative differences found among the various models are significantly smaller
or, conversely, comparable in magnitude to the changes themselves. Figure 5 displays
interaction Laplacian densities for the four models used in this work, while Figure 6
shows the differences A(Vp) = (Vp» — (V?p)s between Laplacian densities for
the dimer evaluated with models A and B (A and B being any one of the investigated
models). Finally, Table 7 lists, as a function of the computational approach, the V2p
values for the Laplacian critical points shown in Figure 5, for both water monomer and
dimer, at their experimental geometries. Geometry, basis set and map plane in Figure 6
is the same as that of Figure 3, while, due to the greater details given by the Laplacian
function, the lowest contour level (£2 * 10 au) is, here, one order of magnitude
larger. A negative contour level (dotted line) means (Figure 6) that locally the dimer
is less charge concentrated than the pro-dimer or that the dimer evaluated according
to model A is locally less charge concentrated than when evaluated with model B (not
shown). Inspection of Figure 6 shows that, with the exception of the FM model, all the
approaches adopted give qualitatively similar Laplacian interaction densities, a result
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Figure 6. Differences among water dimer Laplacian densities V2p, as obtained with models explored in
this work. Same symmetry plane, geometry, basis set and contour levels as that of Figure 2.

already found for the interaction densities in Figure 4. Changes in the dimer are in the
expected direction, the cage on H2 being more charge depleted, the oxygen acceptor
lone pair pointing towards H2 becoming less concentrated and so on. The mechanism
of base—acid interaction is also evident. Charge concentration is removed from the lone
pair region of O4 and moved towards the acid which enhances its acidity by further
increasing the charge depletion around the H2 cage. The FM seems fully unable to
describe such mechanisms, while the relevance of the quantitative differences among
the remaining models can easily be appreciated. It turns out that dispersion effects
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Table7. Laplacian critical points for the water monomer and dimer.?

Q Cp Vip au
FM SCF-SM SCF-MI VB
Monomer
(0] 1P —-5.926
bm -2.715
H cage +0.180
Dimer
01 Ip -5.911 -5.764 =5.772 =5.771
b2 -2.174 -2.981 -2.968 -2.954
b3 -2.703 -2.624 -2.626 -2.630
H2 cage +0.195 +0.199 +0.212 +0.207
04 lp= H2 —6.037 -5.764 -5.797 =5.711
1p -5.916 -5.939 -5.928 -5.926
b5 -2.701 -2.769 -2.754 -2.759

*Experimental geometries, Millot—Stone basis set. For labeling of critical points see Figure 4(b).

lower the charge depletion at the H2 cage point, which is exaggerated by the HF model.
When BSSE is not removed the opposite is true, as BSSE underestimates the increase
of charge depletion at the H2 cage point, caused by hydrogen bonding. Moreover,
when compared with SCF-MI model, the dispersion effects enhance the decrease of
charge concentration at the O4 lone pair, while they have to slightly increase such a
concentration if BSSE is present. Such observations are made even more quantitative
in Table 7. The difference between SCF-MI and SCF-SM Laplacian values at the
cage point amounts to about 50% of the effect due to dimerization, while the same
difference lies in the 5-20% range for the oxygen atoms lone pair concentrations.
It has previously [44] been shown how the changes in the Laplacian bonded and
non-bonded maxima induced by molecular association in gas phases and crystals are
reflected in changes of the electric field gradient (EFG) at nuclei. From data reported
in Table 7, it appears that EFG results might be affected by BSSE removal.

5. Conclusions

This study provides a detailed description of changes induced by dimerization on the
electron distribution of water. The contribution of several mechanisms (electrostatic-
exchange, induction, dispersion) underlying the intermolecular interaction is high-
lighted, and the effect of removing the BSSE contamination on the description of
such mechanisms is investigated at length. Our study shows that even with a basis
set of very high quality (Millot—Stone basis set), the BSSE effect is, at least for
some quantities, of the same order of magnitude of changes due to dimerization.
Though SCF-SM and SCF-MI provide the same qualitative picture for the charge
rearrangements in water dimer, the quantitative differences between their associated
electron densities are as large as 2—3 times the estimated standard deviations of good
quality experimental densities in molecular crystals.
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BSSE overestimates the charge transfer between monomers and accumulates too
much electron charge in the hydrogen bond region by removing it in particular from
the acceptor oxygen atom. Hence, dispersion contributions are found to concentrate
or remove electron charge in the intermolecular region according to whether a density
describing ‘true’ induction or a BSSE contaminated induction is taken as reference.

BSSE also opposes the tendency of the Hartree—Fock model to keep the interacting
closed shell fragments too far apart. So, when optimized geometries are considered
for the complex, BSSE is found to mimic some of those effects on the electron density
distribution which would be induced by the interfragment dispersion contributions.

The SCF-MI method provides interaction energy values which converge quite
rapidly with increasing basis set size. This fact makes this approach particularly
recommended for large interacting moieties where basis sets of double- or triple-zeta
quality are typically used and where the use of very extended basis set, like Millet—
Stone’s, is precluded. The resulting BSSE effect on the interaction densities should
in this case be much larger than that found for the water dimer.

In the last years, alternative approaches have been proposed for constructing elec-
tron densities for large macromolecules, like proteins, starting from smaller fragments.
Methods based on discrete [14,45,46] or on fuzzy boundary [47-49] partitionings
have been devised. The former approach leads to fragments that have been identified
as proper open systems [15] and with properties defined by quantum mechanics.
However, the employment of such fragments as building blocks for larger systems
presents difficulties and their use is probably more suited for assessing transferability
properties. The second method, though more empirical, has great advantages as far
as the additivity and adjustability of fragment densities is concerned. It is our aim
to explore the capability of SCF-MI method as a tool to evaluate fuzzy density frag-
ments which reproduce interfragment interactions and do not require an a posteriori
partitioning of the first order density matrix for their construction.
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1. Introduction

A fundamental goal of research in the biological sciences is to understand protein
structure. In theory, protein sequence information can be inferred from the fast
growing volume of DNA sequence data [1] but predicting the three-dimensional
structure of a protein from its sequence remains an open and important problem [2—4].
Part of the difficulty in solving this problem is due to the fact that many of the
existing techniques rely on our knowledge of previously determined structures which,
compared to sequence data, is relatively limited.

X-ray crystallography plays a central role in current efforts in protein structure
determination. However, building an accurate and detailed protein model from crys-
tallographic data remains acomplex and time-consuming process [5]. This is due to the
fact that while intensity data may be available at relatively high resolution, this is rarely
the case for phase information [6]. Therefore, initial models are usually built at low
to medium resolutions, where human intervention is needed for recognizing typical
protein structure motifs, and then bootstrap to higher and higher resolution. Errors
in the initial and subsequent models may be corrected using a refinement process in
which the model is modified to minimize the difference between the experimentally
observed data and the data calculated using a hypothetical crystal containing the
model. The development of more sophisticated computational tools would improve
the process of protein model building [7]. A goal of our research is to improve and
accelerate this process through the design and development of automated tools.

In this paper we report on an approach to protein model construction that can be
incorporated into a fully automated system for structure determination from crys-
tallographic data. Our approach has the advantage of using characteristics of the
experimental data to find a path through the tertiary structure of the protein without
introducing bias into the data. It incorporates a spline interpolation algorithm to gen-
erate a smooth continuous density function for the protein, an eigenvector following
algorithm to locate critical points in the electron density and a gradient path following
algorithm to connect critical points and, thus, characterize features of the protein. The
work described in this paper advances the ability to discern meaningful features of
protein structure through the use of a topological analysis of the relative density at
various levels of resolution. This is similar to the approach of Bader et al. [8] and

115

Paul G. Mezey and Beverly E. Robertson (eds.), Electron, Spin and Momentum Densities and Chemical Reactivity, 115-125
© 2000 Kluwer Academic Publisher,. Printed in Great Britain



116

builds on previous work of Johnson [9] and of the Molecular Scene Analysis Group
at Queen’s University [10].

Bader et al. have developed a theory of molecular structure [8], based on the
topological properties of the electron density p(r). In this theory, a molecule may
be partitioned into atoms or fragments by using zero-flux surfaces that satisfy the
condition

Vp(r)n = 0

for every point on the surface of the subsystem where n is a unit vector to the surface.
Note that points in the electron density at which the gradient of the density equals
zero, that is, points at which

Vp(r) = 0

are critical points and are characterized by the signs of the eigenvalues of the Hessian
of the density at that point. The sum of the signs of the eigenvalues of this 3 by 3
matrix of second derivatives of p(r) is called the signature and is used to classify the
type of critical point. There are four possible signatures for critical points of rank 3
(i.e. with three non-zero eigenvalues), designated by (rank, signature):

(3, -3) A local maximum in the density with 3 negative curvatures, called a peak.
(3, —1) A saddle point in the density with 2 negative and 1 positive curvatures, called
apass.
(3, 1) A saddle point in the density with 2 positive and 1 negative curvatures, called
a pale.
(3, 3) A local minimum in the density with 3 positive curvatures, called a pit.

Points on the zero-flux surfaces that are saddle points in the density are passes or
pales. Should the critical point be located on a path between bonded atoms along
which the density is a maximum with respect to lateral displacement, it is known as a
pass. Nuclei behave topologically as peaks and all of the gradient paths of the density
in the neighborhood of a particular peak terminate at that peak. Thus, the peaks act
as attractors in the gradient vector field of the density. Passes are located between
neighboring attractors which are linked by a unique pair of trajectories associated
with the passes. Cao et al. [11] pointed out that it is through the attractor behavior of
nuclei that distinct atomic forms are created in the density. In the theory of molecular
structure, therefore, peaks and passes play a crucial role.

The application of the theory of molecular structure to the solid state has been
limited to theoretical calculations [12] or high resolution experimental data [13]. The
direct application to low to medium resolution data is impractical as distinct atomic
forms are for the most part impossible to characterize through the gradient vector field
of the density. Although there is topology in these maps, peaks represent groups of
atoms such as fragments of residues in proteins. There have been efforts, however, to
utilize the topological properties of low to medium resolution crystallographic data
on proteins to help deduce the structure. The program ORCRIT [14], for example,
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has previously been used to calculate and characterize critical points in the relative
density. By choosing appropriate relative density value cutoffs, Leherte et al. [10]
were able to trace out a spanning tree of peak—pass—peak—pass corresponding to
the protein structure. The construction of a spanning tree utilizes two parameters,
Fmas the maximum distance between critical points below which they are considered
connected and, W, the weighting of the connection. The critical points themselves
are located first through a simplistic comparison search of the grid, then apolynomial
interpolation is performed to obtain a more accurate approximation of their position.

2. Method

In the present work, the derived relative density grid is modeled using cubic splines.
This gives a smooth continuous function over which values of the relative density, gra-
dient and Laplacian can be calculated. In order to calculate all critical points, a grid of
initial starting points is chosen and a search for (3, —3) critical points (peaks) initiated
using the eigenvector following algorithm of Popelier [15]. Next, a check for other
peaks is performed by initiating the search algorithm starting midway between those
peaks already found. Following this check, a search for the passes located between
proximal peaks is made. This search also uses the eigenvector following method given
a starting position at the midpoint between peaks that are within 8 A of each other.
Note that for this study, only peaks and passes with relative densities greater than zero
are considered. Once an acceptable pass has been located, the fifth-order Cash—Karp—
Runge—Kutta gradient path tracing algorithm [16] is used to trace along the ridge of
maximum density to the two peaks associated with this pass. In this way, the lines of
interaction (lines of maximum density) between the peaks are traced. By tracing the
lines of interaction from peak to peak, the chain of such peaks and passes representing
the protein backbone, or portion thereof, may be traced. Figure 1 illustrates two
portions of a protein backbone with an intraprotein interaction, such as might be
traced for a disulphide bridge, and a number of peaks and passes representative of
side chains. This methodology is based on Popelier’s algorithm as implemented in
the MORPHY program [17], but unlike the original algorithm it utilizes cubic splines
and works without reference to nuclei. Note that MORPHY performs an automated
topological analysis of a molecular electron density, which requires a wave function
calculated from some quantum mechanical program, a Gaussian basis set and a set
of nuclear coordinates as input. The nuclear coordinates are assumed to be peaks.
None of these features are available for the crystallographic work, although the spline
interpolation functions might be considered a basis set. The spline coefficients are fit
to a density grid obtained from the XTAL program [18].

Three proteins, whose structures have been resolved and used in previous studies
from this group, were chosen to serve as test cases:

Case 1: An ideal density map, that is, a calculated map from the known structure
of protein BP2 (bovine pancreatic phospholipase A2) which contains 123



118

Figure 1. A two-dimensional representation that illustrates the tracing of the interaction lines to give
the peak—pass—peak—pass chain representative of the protein backbone, side chains and disulphide bridge.
Circles represent passes and squares peaks.

residues and in its crystalline form is a member of the P2,2,2, space
group [19].

Case 2: An experimental density map for recombinant type III antifreeze protein from
eel pout (AFP), which contains 66 residues and in its crystalline form is a
member of the P2,2,2, space group [20].

Case 3: An experimental density map for penicillopepsin (3APP), which contains
323 residues and in its crystalline form is a member of the C2 space group
[21].

All three proteins were analyzed at 3.0 A resolution. Experiments were performed
on a portion of the relative density map containing an entire connected protein. In
order to discern effects of topological features just outside the boundaries of this
volume, our analysis was extended 5.0 A outside the boundaries on all sides of this
volume.

3. Results and discussion
For each protein, the results were evaluated at three stages in the analysis:

(i) The assignment of peaks to residues, whether backbone or side chain atoms,
utilizing a proximity criterion of 2.0A. The proximity criterion of 2.0A. was
chosen as it has been shown in a study involving ideal density maps of 19 proteins
that over 98% of the peaks above an appropriate relative density cutoff are within
that distance [22]. Note that a relative density cutoff was utilized to ensure that
the backbone was adequately represented by peaks.

(ii) The assignment of peaks to residues based on the proximity (< 2.0 A) of peaks
to protein backbone atoms and the connectivity of these peaks as found through
the gradient path tracing algorithm. The relative density cutoff outlined in (i) was
again utilized.
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(iii) A trace was made starting at the first peak (e.g. residue 1, ALA, for BP2) that
simply uses the peak—pass—peak information generated by our program for the
selected volume.

Case ]

(i) The positions of peaks with a relative density value greater than 0.8 were compared
with the positions of the non-hydrogen atoms in the protein residues. Peaks within
2.0 A of a residue atom were assigned to the respective residues. Only one residue,
number 32 (GLY), was not assigned a peak. As well, a peak was assigned to the Ca’+
ion associated with the protein. Of note is the large number of side chains represented
by peaks at this resolution (3.0A).

(ii) The location of the peaks with respect to the protein backbone atoms was
considered. An assignment was made if a peak with a relative density greater than
0.8 was located within 2.0A of a backbone atom. Of the 123 residues present, 8 did
not have a peak assigned based on this criterion. Next the results of the gradient path
tracing are considered for the peaks that have been assigned. Of the two ‘missing’
edges, one is due to an intervening peak, that is, a third peak, not assigned to a residue,
is connected to the two peaks assigned to the residues forming the edge. The other
‘missing’ edge is due to a side chain peak being inserted into the chain via the distance
criterion. The peaks on either side of this assignment are connected by an edge to
each other. Note that the lowest relative density in the trace is a pass with a density at
0.7. The fact that there are residues with no peaks fitting the distance criterion is not
of concern as in each case the residues on either side are represented by peaks which
are directly connected to each other by a pass.

(iii) The protein should not only have a continuous trace from start to finish, but
should also display intraprotein connectivity through the disulphide bonds and the
Ca* ion. Using the peak identified as residue 1 (ALA), the best trace is created
using the highest passes and discounting side chains where the trace stops. Points at
which there appears to be a fork are explored. From previous work, we were aware
that the highest peaks usually represent disulphide bridges and heteroatoms such as
Ca*, at this resolution [14]. We follow the peak—pass—peak path and trace the protein
including the disulphide bridges. We complete the trace noting that there are seven
disulphide bridges which connect various portions ofthe chain, a Ca** ion at the active
site which has four passes (three large passes and one almost at the cutoff) and two
bridges that are formed by side chains. The size of the peaks in the bridges allow us
to identify the disulphide bridges and the Ca?* ion, with the disulphides having only
two passes above the cutoff and the ion three well above and one at the cutoff. With
peak and pass cutoffs set at 0.8 and 0.6, respectively, the gradient path tracing used
to assign peaks to passes gives an excellent trace of the protein backbone and its side
chains. The two branch points where the side chains bridge between two portions
of the main trace have peaks much lower than those consistent with disulphide or
heteroatom peaks. One of these bridges has a peak of 1.8, consistent with an electron
rich system but not as rich as a sulphur containing region (p > 2). In fact, that peak
corresponds to the carboxylate group of the aspartate side chain. Note that one side
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Figure 2. Correspondence of the calculated backbone trace with that of the reported backbone for
BP2 [19]. As well, the calculated disulphide bridges are included to illustrate the important role they
play in protein structure, binding certain regions together.

chain peak attached to peak 8 of the chain has a density of 2.2. This peak corresponds
to the side chain of residue 8, methionine, and represents the sulphur atom in that
chain.

Figure 2 illustrates the correspondence of the calculated trace with that of the
backbone atoms. As well, the calculated disulphide bridges are included to illustrate
the important role they play in protein structure, binding certain regions together. For
example, the helical portions of the protein are well represented with the disulphide
bridges helping to hold two helices together illustrating the important role they play
in the tertiary structure of this protein.

Case 2
(i) The peaks were compared to the positions of the non-hydrogen atoms in the
residues, including the side chain atoms utilizing a relative density cutoff of 0.3. Of
the 66 residues, 4 do not have an atom within 2.0 A of a peak and were not assigned
a peak. They are residues 2, 30, 32 and 50.

(ii) A comparison of the location of peaks with the backbone atoms of AFP was
performed. Using a density cutoff of 0.3, the peaks were assigned to backbone atoms if
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they were within 2.0 A ofthe atoms. Ofthe 66 residues, 14 did not have peaks assigned.
Examination of the connectivity of these peaks, utilizing the pass information from
the gradient pass tracing algorithm, revealed 4 breaks in the chain, 2 of which were
due to the insertion of side chain peaks included due to the distance criterion. The
peaks on either side of these inserted peaks were connected directly to each other
leaving only two missing edges. The lowest density value for a pass in the backbone
trace is 0.19.

(iii) The tracing of the protein utilizing the peak—pass—peak information should
reveal a continuous trace and also any intramolecular interactions. Starting with the
peak identified with residue 1 (ALA), the backbone was traced utilizing the peak—
pass—peak information. Although there are no disulphide bonds present in the protein,
three bridges were detected through intraprotein interactions. Given that there were
two breaks in the backbone, from residues 7 to 8 and 58 to 59, these bridges helped
complete the trace. The peak density values range from 1.0 to 0.31 while the pass
values range from 0.7 to 0.17. There were numerous side chains whose traces terminate
after one or two peaks. Note that the highest peaks were once again those associated
with sulphur atoms in the side chains of methionine.

Figure 3 illustrates the correspondence of the calculated backbone trace with that of
the backbone atoms. Figure 4 illustrates the sequence of the protein and the occurrence
of the two breaks in the chain.

Case 3

(i) The position of peaks with a relative density value greater than 0.5 were compared
with the positions of the non-hydrogen atoms in the protein residues. Peaks within
2.0A of a residue atom were assigned to the respective residues. Of the 323 residues,
7 were not assigned peaks. They are residues 1, 99, 105, 109, 250, 275 and 279.

(ii) A comparison of the location of peaks with respect to the protein backbone
atoms of 3APP was performed utilizing a density cutoff of 0.5. Of the 323 residues,
24 did not have a peak that was within the 2.0 A criterion. Examining the connectivity
of these peaks utilizing the pass and gradient path tracing results reveals 13 breaks in
the trace, 4 of which are due to side chain peaks inserted due to the distance criterion
but with the peaks on either side directly connected to each other. Another 7 breaks
are due to peaks in the chain that do not meet the distance criterion but are connected
to the 2 peaks where the break occurs. Of the 2 remaining breaks in the trace, there
are paths to other peaks further in the chain, for example, from the peak identified
as representing residue 277 there is a peak—pass—peak path to the peak representing
residue 282, thus bypassing the break in the chain. A similar pattern exists for the path
from residue 129 to 137, except the pattern is peak—pass—peak—pass—peak. The lowest
pass in the relative density occurs between backbone peaks representing residues 12
and 13 with a density of 0.26.

(iii) This is probably the most rigorous test of the methodology as the protein
should not only have a continuous trace from start to finish, but should also display
intraprotein connectivity through the disulphide bond. As well, 3APP is known to
resemble an approximate hexagonal close-pack in its crystal packing. The result is
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Figure 3. Correspondence of the calculated backbone trace with that of the reported backbone for
AFP [20].
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Figure4. AFP sequence and the two breaks in the chain. The dots on the line represent residues with no
associated peaks as found in stage (i) of the analysis.
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that there are interprotein interactions which complicate the topology. There are also
multiple intramolecular interactions due to the presence of the 6 B-pleated sheets
and 6 o-helices. Using the peak identified as residue 2 (ALA), the best trace is
created using the highest passes and discounting side chains where the trace stops.
Points at which there appears to be a fork are explored. The resulting tree structure is
extremely complicated with 41 intramolecular interactions (passes) detected, some of
which have very large density values, and there are also 27 intermolecular interactions
detected. In the chain itself, the lowest pass has a value 0of0.25 which can be misleading
considering that many of the intramolecular interactions have passes in the 0.4-1.0
range. However, at 2.8 A resolution, it was reported that the experimental density is
very weak and discontinuous in the residue regions 109—110 and 277— 281 [20]. This
is where we experience low passes and in the latter case a break in the continuous
chain. Due to the presence of the disulphide bond and the many other intramolecular
interactions we are able to complete our trace. Note that the passes to other proteins
were found to have a density value range from a low of 0.46 to a high of 0.55.

Figure 5 shows the correspondence of the calculated 3APP backbone with the
experimental structure.

Figure 5. A portion of the calculated backbone trace and the corresponding portion of the reported
backbone for 3APP [21].
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Table 1. Summary of results.

BP2 AFP 3APP

No. of peaks associated with protein? 944 296 1245
No. of peaks associated with 205 95 521

protein after elimination of

symmetry equivalents®
No. of residues present 123 66 323
No. of peaks in backbone trace® 121 56 321
No. of breaks in chain 0 2 2
Relative density ranger —0.95 to 2.2 -0.90 to 1.0 -1.8 t0 2.3

» Utilizing the proximity and relative density cutoffs as discussed in case 1 and 2.
b As found through the eigenvector following/gradient path tracing algorithm.
¢ Note that the Fy, term has not been included in the relative density calculation.

Comparing our results with the three known structures reveals that this methodology
has correctly identified the chain, many of the side chains and the disulphide linkages.
As well, there is a wealth of additional information with respect to H-bonding and other
interactions. Given the range in values for the relative densities for our three test cases
(see Table 1), our cutoff and lowest pass relative density values are approximately
50% or more of the values of the highest peaks. The quality of the density will
obviously affect the outcome of the trace as areas where the density is discontinuous
may terminate the trace if no other path is found. However, even the tracing of only
portions of the backbone and side chains, combined with knowledge of the dimensions
and symmetry of the unit cell should prove to be of value in further resolving the
structure of the protein.

It should be noted that the present methodology provides a further advantage over
the original ORCRIT program by reducing the number of peaks and/or passes that are
allowed to be connected. The problem of determining the protein structure may be
considered to be equivalent to determining the sequence of critical points associated
with the backbone, making it useful to prune out incorrect connections. ORCRIT
would allow a potential connection between any critical point (peak or pass) which
lays within a certain distance of one another. The present methodology allows passes
to be connected to only two peaks and peaks only to passes, with the connections
determined by tracing the gradient path from pass to peak eliminating the uncertainty
in the assignments. For example, for the volume studied for BP2, and considering
all peaks and passes above relative densities of 0.8 and 0.6, respectively, ORCRIT's
distance criteria produces 4824 connections (peak—peak, peak—pass and pass—pass),
or an average of 5.05 associations per critical point. The MORDEN approach leads
to only 1828 connections, or an average of 1.9 associations per critical point, thus
making it easier to determine the trace corresponding to the protein structure.
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The number of independent parameters defining a
projector: proof in matrix representation and
resolution of previously conflicting arguments

ARNAUD J.A. SOIRAT* and LOU MASSA
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1. Introduction

Projectors often arise in attempts to describe experiments within the structure of
Quantum Mechanics. For example, in the case of the coherent scattering of X-rays by
crystals the ideal measured intensities are given by the square of the structure factors

F(k) = f P(r)e*Tdr (1)

where K is the scattering vector, r is a position vector, and P is the spinless-electron
density. In order to obtain a quantum interpretation of the measured structure factors, it
is natural to expand the molecular orbitals, ¢ , ofthe system studied in an orthonormal
basis, ¥, thus

¢(r) = Cy(r), (2)

where the matrix C contains expansion coefficients. The density associated with
an independent particle model, i.e. with a Slater determinant wave function, then
becomes

N
P(r) =2 ¢i(r)gi(r) = 2TrCTCY (Y™ (r). (3)
k=1

By defining the population matrix

P=crc 4)
the electron density may be written as

Py =2TrPy(my™ (). (5)

The elements of P may now be considered to be experimental parameters obtained
simply by an experimental fit to the measured X-ray structure factors (Equation (1)).

*Currently with Aluminium Pectiney, France
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However, to ensure that the electron density thus obtained is N-representable by
a single determinant of N doubly occupied molecular orbitals it is necessary and
sufficient that P be a normalized, hermitian, projector [1], i.e.

P*=pP; P*=P; TtP=N. (6)

Thus the following question arises quite naturally: how many independent experi-
mental conditions are required to entirely determine a normalized, hermitian, projector
P
~ This important question has been addressed several times in the literature, with
various authors reaching apparently conflicting results, or, in some cases, apparently
agreeing on the results but for conflicting reasons.

The first derivation treating the general case of the projection from an M-dimensional
space (spanned by the functions ) onto an N-dimensional subspace (spanned by the
molecular orbitals ¢ ) was due to Clinton Galli and Massa (CGM) [1] who reached the
conclusion that fora complex P matrix, the number of complex constraints required
to fix the projector is N(M — N). Later on, Pecora [2] considered the problem and
followed essentially the lines of argument in [1], but criticized their counting of
hermiticity conditions and hence reached the different conclusion that for a complex
P, the number of real constraints required to fix the projector is 2NM — N(N + 1),
while the number of complex constraints is half this latter number. Still later, Levy
and Goldstein on the one hand agreed with the criticism by Pecora, but on the other
hand, by means of a different line of argument, reached a result apparently similar to
that of CGM and in disagreement with Pecora; they found, indeed, that for a real P
the number of real conditions to fix the projector is N(M — N).

These various conflicting results, summarized in Table 1, leave the question ad-
dressed unresolved. Also, Refs. [1, 3] display the results in different ways, making
their comparison less than obvious. In attempting to make comparisons, one might
assume two things:

1. The number of complex constraints to fix a complex P would be the same as real
constraints to fix areal P ; B

2. Twice as many real conditions would be needed to fix a complex P as complex
conditions.

However, both assumptions are in general not valid!, thus complicating the com-
parison of results in the various papers and, in some cases, causing errors in the
extrapolation of one result from another within a paper, as we shall see.

For the special case of a projection from an M-dimensional space onto an N =
one-dimensional subspace, Fano [4], Roman [5], and Blum [6] have obtained the
number of real constraints required to fix a complex projector as Kcx = 2M — 2.

'For example, according to Hamermesh (see Ref. [11]), the number of real conditions to uniquely
determine an (N X N) (complex) unitary matrix is N2 , while the number of real conditions to uniquely
fix a (real) orthogonal matrix of same dimensions is not N2/2 but N(N + 1)/2.
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Table 1. Number K of independent parameters in a projector: comparison of different
published formulae.

Reference Complex P .and Complex P and Real P and
complex constraints real constraints real constraints

[1] NM — N) NA NA

[2] NM — NN + 1)2 2NM — N(N+ 1) NM — NN + 1)2

[3] NA NA NM - N)

NA = Not applicable.

There is no doubt that this result is correct, as a close examination of their derivation
would suggest. Interestingly enough, the results of all reduce properly to this result
in the one-dimensional case, although there are disagreements in the N-dimensional
case, (Note: We use the symbol K to represent a count of the parameters which
fix a matrix. A first subscript, C or R, is attached to indicate whether the matrix is
complex or real, and a second subscript, C or R, is attached to indicate whether the
parameters counted are complex or real. For example, K¢ signifies the number of
real parameters required to fix a complex matrix.)

To clarify this problem, our approach will be the following: first, we shall devote
ourselves to finding a formula for K, independently of any of the three existing
derivations made for the most general N-dimensional case; then we shall compare
our answer to the previously published results.

Since the one-dimensional result for K is definitely correct, our approach will be
to generalize Fano—Roman’s[4, 5] derivation to the N-dimensional case. This shall
be our goal in the coming section.

2. Generalization of Fano—Roman’s derivation to the /N-dimensional case
2.1. Number of real conditions tofix a complex P

Consider an (M x M) complex P matrix which satisfies the conditions in Equation (6).
According to a well-known theorem on projectors [7], for the above equations to hold,
it is necessary and sufficient that

ProP
Rank P=N (7)
rM=1Vi=1,...,N

where A\’s refer to the eigenvalues.

Note that this system properly reduces to that of Fano—Roman[4, 5], in the one-
dimensional case, i.e.
B =P,

Rank P =1, (8)
Trp= 1.
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Hence, the problem of counting how many experimental conditions are required
to fix the matrix P satisfying Equation (6) is equivalent to that for the case satisfying
Equation (7). We treat here the problem of imposing Equations (7), because, as we
shall see, we can display a clear counting procedure for them. This approach represents
a generalization of that used by Fano and Roman for the specific case N = 1.

We proceed as follows: for a complex P, we count the number of real parameters
which completely define the entire matrix; from this number, we subtract the number
of real conditions imposed by N-representability (i.e. hermiticity, rank N and unit
eigenvalues). The remaining number of parameters represents the number of real
(experimental) conditions required to complete the definition of the projector consid-
ered. Such a number is the solution to the problem posed in this paper. Later on, we
shall consider the two other cases previously mentioned, that is, complex independent
parameters of a complex P, and real independent parameters of a real P.

2.1.1. Number of real parameters contained in complex P
The P matrix, made of complex elements, p,, may be written as

P = (p) = Rey; +ilmy)), v

so that each element is explicitly defined by two real numbers, Re, and Im,. For a
P matrix of dimensions (M X M), the total number of real parameters defining the
matrix is therefore

Nl c.R) = 2M*. (10)

This is the number whose reduction by parameters fixed by the N-representability
constraints yields a count of the remaining parameters which must be fixed by
additional experimental constraints, such as those of Equation (1).

2.1.2. Hermiticity constraint
In order to properly count the number of real conditions arising from the hermiticity
constraint P+ = P, it is first necessary to determine the number of diagonal and
off-diagonal elements in this matrix: the P matrix being of dimension M X M, there
are M diagonal complex elements, and consequently a total of (M2 — M) off-diagonal
complex elements, or M(M — 1)/2 complex elements in each off-diagonal triangle.
The hermiticity constraint may, then, be transcribed into the following equivalent
conditions on the P matrix elements:

Diagonal elements
Vi=1,...,.M, p?}=p,~,~©1m,~,~=0
= Mreal conditions; (11)
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Off-diagonal elements

V# . " o Re,'j=R€j,‘,
l ) S ji
/ pu Pj Im,‘j = —Im]’,‘,
MM —=1) ..
2—2—' real conditions. (12)

Therefore, by summing the above results, we are led to a total number of
Nhermiticity, (C.R) = M? real conditions. (13)

The reader may note that this result is in accordance with Fano—Roman, who treat
only the case N =1, for the hermiticity constraint is the same no matter what the
dimension of the subspace.

2.1.3.  Number of real parameters fixed by rank
The rank of any (P x Q) matrix 4 = (ay ), for which a,, # 0, may be computed
using the following algorithm [8]:

Rank 4 = 1 +Rank D, (14)

where D is a (P — 1) x (Q — 1)) matrix of the form

d22 N d2N
dyp ... dan
D=| . ' (15)
dayz .. duw
whose elements are the (2x2) subdeterminants
oo (a1 dij
4 = |a aij |’ (16)

Before using this algorithm, we note the following theorem.

Theorem Let 4 be an hermitian matrix. Then, the matrix D arising from the
algorithm for calculating the rank of a matrix , i.e.,

Rank 4 =1+ Rank D,

where the D elements retain their previous meaning, is hermitian.

This theorem is essential to the proper counting of the number of conditions arising
from the constraint Rank P = N, as we shall now see.

In order to use the above algoritnm for computing the rank of P, p, must be
different from 0. However, this is no restriction, since it is always possible to reach
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this condition for a non-zero matrix by using an appropriate elementary row operation
(if necessary) transformation which always leaves the rank of the matrix unchanged.
We can therefore assume, without any loss of generality, that the condition p,, # 0
is always satisfied. The P matrix being of dimension (M x M), the computation of
its rank following this algorithm will yield the relation

Rank P = 1 +Rank D , (17)

where D retains its previous meaning, except for its dimensions which are here
((M = 1) x (M — 1)). The same procedure can be used iteratively, and after the Nth
iteration, one obtains

Rank P = N + Rank X , (18)

where X is an (M — N) x (M — N)) matrix.
The constraint Rank P = N is then equivalent to

Rank P = N ¢ N + Rank X = N ¢ RankX =, (19)

However, the rank of any matrix other than a zero matrix cannot be 0, while the rank
of a zero matrix is defined to be 0 [9]. The following equivalence is, thus,

RankP =N & X =0. (20)

We shall now use the theorem previously mentioned. Since P is hermitian during this
rank computation, so too are D and X. The above constraint on X , Equation (20),
along with its hermiticity property, leads to the following number of conditions on its
elements, and therefore ultimately on the P elements:

Diagonal elements
Vi=1,....,(M=N), x;=0 = Relx;]=0 1)

(Im[x,] = 0 being obvious since x; is real)

= (M — N) real conditions.

Off-diagonal elements
M%), x =0. 22)
But x,, = x/;, and, thus, only the constraints on, say, the upper off-diagonal triangle
of X is to be counted:

2(M—N)(M—N—l)
2

real conditions.

As a conclusion, summing the above results shows that the constraint Rank P = N
yields a total number of

Nuwen = (M — N) real conditions. (23)
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One may notice that this last formula properly reduces to the (M — 1)* real conditions
found by Roman [5] in the N = 1 case.

2.1.4. Number of real parameters fixed by unit eigenvalues
Since P has been already constrained to be hermitian, it is legitimate to assume,
withoutany loss of generality that P is always diagonalizable into, say, P, by a
unitary transformation of the basis elements [10]. The diagonal elements of " P, then
called its eigenvalues, are real. The rank constraint on £ (which is basis independent)
further reduces the number of non-zero eigenvalues toN. Let 4 (i = 1, ..., N), be
these non-zero eigenvalues.

Hence, it is always possible to find a unitary transformation into a basis in which
the matrix is diagonal, and can be written as

A 0
P=|: AN E (24)

0 0

where A eR*Vi=1,...,N.
Imposing unit magnitudes upon the eigenvalues, we have

A=Xx=...=7x=1 = N real conditions, (25)

which would allow one to recover a diagonalized P matrix of the form

,_(ln 0
i =(-5“ 5)- 6)

The basis in which P is of the above form is made of the collection of occupied
and unoccupied eigenstates @y, i.e. {g_ék(occupied),Qk(moocupied)}. Ultimately, the very
process of projection allows one to select the N occupied ones, and it is not necessary
to consider the unoccupied ones (at least for the ground-state description of the
system).

However, to determine the number of real pieces of information required to fix the
projection from an M-dimensional space onto an N-dimensional subspace spanned,
not by the particular {Qk(occupie(n} basis in which P is diagonal, but by any basis of
the subspace, it is necessary to subtract the numberof real parameters required to fix
a particular basis in the N-dimensional subspace from the total Kcg; such a number
corresponds to the N? real conditions that are necessary to fix a unitary transformation
[11] in the subspace. But, as the phases of the eigenstates, ¢, are arbitrary as far as the
physical state is concerned [4, 12], this latter number is reduced by N, the number of
eigenstates belonging to the projection space. Hence, the number of independent
real parameters in the unitary transformation which fixes the basis spanning the
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subspace defined by P when reduced by the number of arbitrary phases is equal to

(N* - N).
Summing the above results, the unit magnitudes of the non-zero eigenvalues of P
yields a total number of

Nuni| eigenvalues,(C,R) = NZ I'Cal COHdlthIlS. (27)

2.1.5. Summation of various contributions to K
We now obtain the solution to our problem of enumeration by subtracting from the
total number of parameters in P those fixed independently by hermiticity, rank, and
unit eigenvalues. B

Thus,

KC,R = ]thal,(C,R] - (N hermiticity,(C,R) + Nrunk,(C,R) + N cigcnvz\lucs.(C.R));
ie.,

Keg = 2M? — (M2 + (M — N + N?),
or,

Kex = 2N(M — N) real conditions. (28)

This number is the answer to the question originally posed. This is the number of real
conditions required to fix experimentally a complex, normalized, hermitian, projection
matrix. For example, this number of experimental structure factors, Equation (1),
would suffice to fix P Equation (6).

2.2. Number of real (complex) conditions to fix a real (complex) P

By simply using arguments analogous to those used in deriving Equation (28), one
may find that if the projector is real, then

Kix = N(M — N) real conditions. (29)
while, for a complex P,
Kcc = N(M — N) complex conditions. (30)

Having derived K by a method independent of those used in [1-3], we now compare
our result to those obtained in these previous papers. From the perspective of our
present counting procedure, we hope to shed light on the previous derivations. We
shall take them up in the order in which they appeared in the literature.
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3. Further investigation of the previous derivations of X
3.1. CGM'’s derivation

In counting the number of orthonormalization conditions on C, CGM apparently did
not assume the hermiticity of the scalar product in the subspace, but rather chose to
impose it. Their calculation of K ran along the following lines: a complex projector,
which is hermitian and normalized, may be factored into [13]

£=

e

¢, (31)

where the complex C is (N x M), and

1oy

c* =1y (32)

Counting the parameters in P is now converted into counting the parameters in C,
which defines P. Thus, the number of elements in C, NM, is reduced by the N?
orthonormalization conditions arising from Equation (32). They found, then, that

Kee = NM — N> = N(M — N) complex conditions. (33)

Notice that, in counting the orthogonalization conditions, the ‘upper triangle’ and the
‘lower triangle’ in C C+have separately been set to zero. It is for this reason that we
interpret the derivation as imposing hermiticity on the subspace rather than assuming
it. If hermiticity were assumed, then the vanishing of the ‘upper triangle’ of C C
would automatically require the vanishing of the ‘lower triangle’, and both would not
be counted as independent orthogonalization conditions.

However, as we show in an appendix, when counting the number of conditions aris-
ing from Equation (32), one does not have to impose hermiticity on the inner product
but can take it for granted. The reader may find it, then, quite interesting to understand
why the CGM derivation obtains, nevertheless, the right answer for K. Rather than
counting the number of independent parameters in P CGM instead counted those
in C . In doing so, they apparently overcounted by one of the off-diagonal triangles
(2(N> — N)/2 real parameters) by choosing to impose the hermiticity of the inner
product in the occupied subspace. But, since the counting is based on the C matrix,
one has to correct for the fact that actually less information is required to uniquely
determine the P matrix. That is to say, one has to subtract the number of conditions
necessary to fix a unitary transformation apart from the arbitrarily chosen phases of
the basis elements. Such a correction would have given

Kcr(for P) = Kcr(for ©) — (N? — N). (34)
Apparently, the oversight of this last correction exactly compensates for the previous

overcounting associated with imposing hermiticity on the subspace. Therefore, an
exact compensation of errors has yielded precisely the correct result.
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3.2. Pecora’s derivation

Following the approach of CGM based on McWeeny’s [13] decomposition of P into
C*C, Pecora arrived at results different from CGM.

After factoring of the P matrix, Pecora considers that ‘the constraints are sum-
marized by the equation CcCt = ly, and P is completely determined by C . This
analysis, too, is based on counting the number of complex conditions on the complex
elements of C.

It seems the key step in this derivation, which differs from the analysis of CGM, is
the following. In the system of equations resulting from the constraint C C+ = 1y,
Pecora considers that ‘N(N — 1) of [them] are simply complex conjugates of each
other’, yielding a total number of complex conditions equal to N(N + 1)/2. This is,
in fact, equivalent to considering the C C+ matrix as hermitian, i.e.,

(CCH* =cCC™. (35)

More fundamentally, what Pecora seems to assume — although never explicitly say-
ing so — is the following property. Since the condition C C+= 1y is actually the
orthonormalization constraint on the @’s since C C+ = (@D )), it is supposed
that the scalar product between any two wavefunctions @, is hermitian. That is to say,
it is assumed that the subspace on which the projection is made is a Hilbert subspace.

Based on this assumption, the result for the number of complex conditions to
uniquely determine P is then given to be

NN+

KC,C = NM - _i_' (36)

Finally, Pecora generalizes to
= 2NM — NN + 1) = 2K, (37

obtaining K¢z, the number of real parameters in a complex £ by simply doubling
K¢, the number of complex parameters.

However, if one were to exactly follow what seem to be Pecora’s assumptions about
the scalar product being hermitian, one would get a different result from Pecora when
counting the number of real conditions on the complex P matrix, arising from the
constraint C C+ = 1y.In fact, when the C C+ matrix is considered to be hermitian,
the normalization condition on the N complex diagonal elements of C C+yields N
real conditions and not 2N as Pecora seemed to tacitly suppose. This is due to the
fact that the diagonal elements are already known to be real since C C+ is hermitian,
and hence, Im; = 0 is not a separate constraint.

The orthogonalization condition on the off-diagonal elements correctly yields
2{N(N — 1)/2} real conditions. The assumption of the hermiticity property of the
scalar product in the subspace of N dimensions, would lead finally to, Kcx =
2NM — N? in the case of a complex P, and not 2K, as had been claimed.

However, if one completely determines C, and therefore the accompanying ¢’s, one
has to do so apart from their phases which are known to be physically meaningless, as
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previously said. This further decreases the number of conditions to uniquely determine
C, apart from the ¢’s phases, by a number N and yields:

Kcr =2NM — N> — N =2NM — N(N +1). (38)

Interestingly enough, this turns out to be the very result that Pecora claims for the
following reason: the overcounting of the number of real conditions on the diagonal
elements of the assumed hermitian C C+ matrix (N in number) exactly compensates
for the oversight of the conditions relative to the arbitrary phase of each ¢. Here, we
have a second case in which an exact compensation of errors has occurred.

Of course, it is apparent that Kcx is given by differing formulas in the work of
CGM and Pecora. The formula of CGM correctly answers the question posed in this
paper. However, as we shall see later, the formula of Pecora correctly answers quite
a different, but related question. For now, we turn to the remaining paper which is to
be considered.

3.3. Levy and Goldstein's derivation

Levy and Goldstein chose to tackle the problem in a different way. They based
their reasoning, in one of their derivations, on the orthogonal decomposition of the
space spanned by {|v;)}, into S and S, respectively the occupied and unoccupied
subspaces.

As is known [14], there is a one-to-one correspondence between each subspace and
its accompanying projection.

Based on this notion, Levy and Goldstein then developed a formula for the real
number of pieces of information necessary to fix uniquely Wi 1,2, . . . , N) described
in a real function basis. They wrote: ‘the number of independent parameters in ‘Wi,
is equal to the number of equations required to fix the ¢ subspace. We now assert
that this number is N(M — N) because there are N(M —N) orthogonality relations
between the ¢ @nd the@* orbitals:

(@) =0, i=1,2,....,N; j=1,2,...,(M—N). (39)

Although it is clear that there are N(M — N) orthogonality relations between the
¢’s and the g_)i’s, it is not clear why this is exactly equal to K, unless one has
additional knowledge of ¢’s and the ¢~s, but such knowledge would be incorporated
in additional constraints which would have to be counted and would presumably alter
the expression for K that was obtained.

Indeed, one may give the following counter-argument to Levy and Goldstein's as-
sumption: for simplicity, take the case of a projection from a three-dimensional space
(M = 3) onto a two-dimensional subspace (N = 2). S* is then a one-dimensional
subspace, and any ¢ €S* spans the subspace and therefore completely specifies it.
Figure 1 somewhatclarifies our hypotheses.

According to Levy and Goldstein, the S subspace is then completely specified by
the N(M — N) = 2 orthogonality relations between the @s and the @. Let @, and
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N=2
/ Subspace

Figure 1. Orthogonal decomposition of a three-dimensional Hilbert space: geometrical representation of
the two orthogonal subspaces.

A¢_J_

7/

Figure 2. Orthogonal decomposition of a three-dimensional Hilbert space: case of two collinear vectors
in the two-dimensional subspace.

@ be the two elements of S. One has then the following relations:
ot 1L oy; ot 1 @,

However, @ and @ could be such that @ = k®, as described by Figure 2.

In such a case, the two vectors being collinear, do not form a basis of the S subspace
and, consequently, do not entirely define the subspace they belong to.

In the case where M = 4 and N = 3, one could have the following situation:

ot 1L d: &+ 1 b, &t L P,

but where &, = @ + ®. Here again, the set {d, &, &} does not span the S
subspace.
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As a consequence, such examples show that the orthogonality relations (between
vectors in different subspaces) alone, do not fix the S subspace. To do so, one would
need some previous additional information on the basis which spans S and St. That
is to say, one would need to constrain the set of recovered @’s to form a basis of the
occupied subspace. This would then make additional orthogonality constraints within
the subspace to take into account in the search for a K formula.

The formula in [3] gives the correct answer for Ky to determine real P. Appar-
ently, coincidences occur in all three derivations reviewed in this section.

4. Discussion

A problem arises in considering the result given by Pecora for K. Indeed, this result
does not seem to be correct since it does not properly reduce to 0 when M = N, but
to (N2 — N), instead.

However, when M = N, the projection operation is done onto the whole space and
is, thus, the identity transformation; P is then the unit matrix and, as a consequence,
no information is needed to determine it, leading to K = 0 in such a case.

Based on this argument, Levy and Goldstein correctly implied — in their footnote
#7 — that Pecora’s formula was wrong, and did not discuss it further. Earlier, we
criticized Pecora’s derivation, but we point out here an interpretation under which
Pecora’s formula is correct.

A normalized, hermitian projector P can always be diagonalized, according to the
following procedure [10]: B

P=U"PU, (40)
where
Uty =UU" = L (41)
and
AT
P = (ﬁ Q)‘ (42)

As McWeeny [13] showed by the reverse transformation of Equation (40), P can
always be factored into

P=c¢C, (43)

where the (N X M) C matrix is made of the first N rows of the unitary matrix U/,
while C*of the first N columns of U™, -

However, the decomposition of P into g*g is not unique, since, as Pecora wrote,
any C = VC (where V 'is understood to be an (N X N) unitary matrix) will generate the
same P matrix, which ‘is just a basic fact of Quantum Mechanics or, more generally,
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linear eigenvalue theory restated in population matrix language’, Hence, the only way
one might speak of the uniqueness of C is within a unitary transformation.

Moreover, as previously mentioned,the CGM (and [3]) formula properly reduces
to K = 0 when M = N. We shall now examine the decomposition of P into C*C
in such a case.

From the definition of C it is clear that the rectangular C matrix of the previous case
becomes now the square U matrix, so that P can always be written, when M = N,
as

P=

e

*U, where UTU =UU" = 1y. (44)

Of course, there is an infinity of unitary transformations in the space we are dealing
with, that satisfies this equation.

Now suppose that we were to determine one particular complex U matrix out
of the infinity. We stated earlier that the number of real independent conditions to
uniquely determine U, apart from the phases of each of the N eigenstates ¢y, is:
Kycny = N* -N.

If one realizes that this last number Kycr, is precisely the difference between
Pecora’s and CGM’s formulae for K,

2MN — N*— N =2N(M — N) + (N* - N), (45)

one may interpret Pecora’s formula as follows: 2MN — N> — N is the number of
independent real conditions to uniquely determine the projection transformation from
the M-dimensional space onto the N-dimensional subspace (2N(M — N) conditions),
as well as the N basis vectors of the subspace, apart from their phases, arbitrarily
chosen (additional (N> — N) conditions). That is to say, such a K, allows one to
uniquely decompose P into C +C

Figure 3 summarizes this i 1nterpretat10n in the easily visualizable case of a pro-
jection from an M = 3 dimensional space onto an N = 2 dimensional subspace.
This interpretation clarifies the relationship between the CGM (and [3]) formula and
Pecora’s, and also the following:

1. Pecora noticed that ‘the phase information of C is lost in the original constraints’
[i.e. P2 =P; Tr P = N], but found it ‘not at all clear’. Here, we showed in which
way one might take into account the loss of the phase information in C when
calculating the number of conditions to uniquely determine C one has to impose,
over and above the constraints arising from fixing the projector, the conditions
to determine a particular unitary transformation in the N-dimensional subspace,
apart from the phases of the basis functions which are physically meaningless in
the context of Quantum Mechanics.

2. The formulae obtained for K by CGM (and [3]) and [2], reduce to the proper result
for the case where N = 1. Indeed, this is because, in such a case, there is only
one possible orientation of the basis vector in the one-dimensional subspace (the
subspace being fixed), and its phase is physically meaningless.



141

>
¥
// 4 N
V227

¢,

Kp =2N(M-N) K=Kp+Ky=2MN - N(N+1)

Bridge:

In the N-dimensional subspace, determine a particular basis,
i.e. fix {@} apart from their phase
= an additional (N 2- N) real parameters to be fixed

Figure 3. Number K of independent parameters in a projector: geometrical interpretation of Pecora’s vs
CGM'’s formulae.

5. Conclusion

In this paper, we have answered the fundamental question of determining how many
independent experimental measurements (or theoretical conditions) are needed to fix
a projector. Conflicts which appear in the previous literature treating this question,
and that we have simply noted earlier [15], have here been resolved. In particular, we
have explained how to properly interpret the K-formulae in [1-3].
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One way of using experimental conditions that determine a projector is provided
by the methods of Quantum Crystallography [16-20], where a quantum description
of the X-ray diffraction experiment is realized. In practice, one makes a least squares
fitting to experimental X-ray structure factors, consistent with the constraints of N-
representability, using the Clinton—-Massa algorithm [16]. Ultimately, this procedure
allows one to recover quantum mechanically valid, exact density delivering, reduced
density matrices which are projectors N-representable by a single Slater determinant
[17-20]. These projectors through density functional theory, also contain in them-
selves the only information required for their own correction to include correlation
effects.

Appendix: Proof of the inner product hermiticity of a subspace of
an hermitian space

In their derivation, CGM tacitly assumed that one has to impose the hermiticity of the
scalar product defined in the subspace to ensure the subspace to be a Hilbert subspace.

To decide whether or not this is a legitimate assumption, we shall now answer the
following questions:

1. Is the space spanned by (v ;) a Hilbert space?
2. If yes, does the projection process preserve the hermiticity character of the scalar
product?

For convenience of argumentation, we from now on use the function representation
of our formalism, which restrains the generality of the results only in the sense that
the L? space is a particular example of separable Hilbert space; the generalization to
any separable Hilbert space is, however, straightforward.

In the most general formulation of our formalism expressed in the function repre-
sentation, we first make the choice of a basis {y;(/)} which spans an M-dimensional
space. This basis can be any set of M linearly independent complex functions, nor-
malized or not, as long as it satisfies one single condition. Since we are dealing with
the description of the state of the system by Quantum Mechanics, y;(/)’s must be
well-behaved functions and therefore must be chosen among the elements of the L2
space [21]. Any choice of a basis not satisfying this latter condition would violate
the Quantum Mechanics formalism — described in the continuous representation. The
basis functions being elements of the L2 space, our space is as a consequence an
M-dimensional complex separable Hilbert space, written h, and therefore possesses
by definition an inner product structure satisfying the corresponding axioms [22]. In
particular, the inner product is hermitian, i.e. for any choice of basis which is a linearly
independent subset of L? it is always true that

(Wi 1)) = (¢ | ¥)*
R /w,.*<z>w,-<z>dz= (fw;f(z)wz) dz) . (A-1)

Hence the first question is answered affirmatively.
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Now we shall examine the second one, which may be resolved in different
ways.

1. Our first way of answering the last question will be based on the fundamental
theorems on Hilbert space [14]. Indeed, the theorem on separability tells us that any
subspace of h is also a separable Hilbert space. As a consequence, the inner product
defined on, say, the occupied subspace is hermitian irrespectively of the choice of the
basis {\y (/)], as long as this latter satisfies the fundamental requirements of Quantum
Mechanics. One should therefore not have to impose this property as a constraint when
counting the number of conditions arising from the constraint CC* =1y but, on the
contrary, can take it for granted.

2. A second way of resolving this question is provided by examining the constraint
itself. Indeed, the condition CCT =1y is equivalent to requiring the orthonormal-
ization of the basis functions ®,(/) of the occupied subspace. That is to say, @(/)’s
must satisfy

/ O P (1) dl = St (A-2)

However, since ¢(/) is described in the space basis by

M
O (1) =) ¥y, (A-3)

J=1
the orthonormalization condition can be written as

M

Cuemn [ 5O = bin. (A-4)
1

jn=

and it is obvious that the hermiticity property of the inner product of the space is
conferred to the subspace. This is in fact nothing more than the above answer restated
in terms of the exact expression of the inner product.

3. Finally, one may suggest a third way of solving this problem by further investi-
gating McWeeny’s theorem of decomposition [13]. Consider first a general matrix P
of M? dimensions. If this P matrix is of rank », » < M it is then always decomposable
into a product of two rectangular matrices of respective shapes, (M x r) and (r x M)
[23]. Now consider each of the three constraints on P:

a) P = P then, it is always possible to find a unitary transformation so that P =
U*P'U; P = C*Cifandonlyif P2 = P, since then

However, so far,C is a rectangular matrix of dimensions (r X M) where r is the
rank of P.

i~y

I
TN
O =
no o
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b) Rank P = N: then,

(v 0
5‘(9 9)

and C becomes an (N X M) matrix.
c) 1:2: 1=J

& (CTOCTO =C"C,

& crEche=ctc & cct =1 (A5)

Therefore, it is clear that one may rewrite the P constraints as

+ if PT = P then P = C*C, where C iis (N x M);
. 1fandonly1fCC+ = Iy
* i.e. ifand only 1fP2 =Pand Rank P = N.

It appears thus, that writing P as CTC where CC* = 1y is already taking account
of the first constraint of hermiticity of P, andalso includes the two conditions
P? = P and Rank P = N. That is to say, the hermiticity constraint is implicitly
taken into account as soon as one decomposes P as C +C the two other constraints
being completely summarized by CC* = 1w. - It seems therefore not necessary to
superimpose the hermiticity constraint on CC* = 1y, for it has already been done.

As a conclusion to this part, when counting the number of conditions arising from
CC* = 1y, one does not have to impose the inner product to be hermitian but can
take it for granted.
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Kinetic equation, optical potential, tensor theory and
structure factor refinement in high-energy electron
diffraction
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1. Introduction

In this chapter we will present an account of methods used in high-energy electron
diffraction for describing the movement of fast electrons in a solid and for retrieving
crystal structure factors from energy-filtered experimental diffraction data. By high-
energy electron we mean electrons in the energy range of a few keV to a few MeV.
For if the incident beam energy is smaller than about 1 keV the incident electron
will hardly be distinguishable from one of the solids. The treatment of the scattering
processes is then complicated by exchange effects due to the mixture of the incident
electron and the electrons of the solid, and by complicated virtual inelastic scattering
effects [1]. On the other hand, if the energy is very high, say greater than 10MeV,
Bremsstrahlung losses become severe and in addition the specimen can be seriously
damaged by electron induced atomic displacements [2].

High-energy electrons may be scattered elastically or inelastically by a solid. In
an elastic collision the solid remains in its original state so that the incident electron
does not lose any energy, i.e. ¢ = ¢ (here the subscripts ‘f” and ‘i’ denote the final
state and the initial state respectively). On the other hand in an inelastic collision the
incident electron loses an amount of energy AE equal to E; — E;, and the solid is
excited from the initial state ¢ to a final state ¢ Without loss of generality we can
partition the interaction potential into time-independent and time-dependent parts.
The time-independent part of the potential gives rise to elastic scattering, while the
time-dependent part gives rise to inelastic scattering. Techniques utilizing elastically
scattered electrons can be used to study the electron distribution and atomic struc-
ture of solids and utilizing inelastically scattered electrons can be used to probe the
dynamics of solids [3,4].

The general problem of high-energy electron diffraction by a solid may be for-
mulated self-consistently on the basis of a kinetic equation for the one-particle den-
sity matrix p(r,x', t, t') = Wr, Hw(r’, ), y(r, ¢) being the wave function of a
high-energy electron propagating in the solid [5]. This approach provides a general
treatment of spatial and temporal coherence of electrons and takes account of both
elastic and inelastic scattering [6, 7]. It can be shown using the kinetic equation
that the problem of multiple elastic and inelastic scattering by a solid is entirely
determined by two universal functions, that is (1) the Coulomb potential averaged
over the motion of the crystal particles, i.e. the crystal electrons and nuclei and
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(2) the mixed dynamic form factor of inelastic excitations [8,9]. In a general electron
diffraction experiment, the scattering cross section contains information about both
these functions simultaneously.

For high-energy electron diffraction the influence of the time-dependent part of the
potential, giving rise to inelastic scattering, is usually much smaller than that of the
time-independent part. To a good approximation the effect of the inelastic scattering
on the elastic scattering may be represented by regarding the interaction potential
between the incident electron and the solid to be complex. This complex potential
is usually called the optical potential, by analogy with the long-standing use of a
complex refractive index for discussing the optical properties of partially absorbing
media [10, 11]. After an inelastic collision the solid is excited to a higher energy state
and the incident electron is removed from an elastic channel and enters an inelastic
channel. Since for high-energy electrons the probability that the inelastically scattered
electron will reappear in the elastic channel is very small [12], as far as the elastic
scattering is concerned, the inelastically scattered electron can be considered to have
been absorbed by the crystal, and the inelastic scattering events contribute only an
imaginary addition to the time-independent part of the potential [13].

Using the effective optical potential the general kinetic equation reduces to a one-
body Schrodinger equation. To an excellent approximation, the real part of the optical
potential equals the averaged Coulomb potential and the imaginary part represents the
first order correction resulting from inelastic diffuse scattering. Experimentally the
real part of the optical potential may be measured using, for example, the technique
of convergent-beam electron diffraction (CBED), and the structure factors of crystals
may be retrieved [14-23].

For high-energy electron diffraction there exist three main inelastic scattering
mechanisms. These are, respectively, the collective excitation of the valence electrons
(plasmon excitation) which has an energy of the order of 10-40 eV, single electron
excitations with energies up to few thousand eV, and the excitation of lattice vibrations
(phonon excitation) with energies typically of 102 eV. It has been shown, see for
example Rez [12] and Whelan [24,25], that for all but the direct transmitted beams the
contribution from phonon excitation or thermal diffuse scattering (TDS) is an order of
magnitude larger than contributions from plasmon and single electron excitations. For
high-order reflections the imaginary part of the optical potential may be calculated
accurately using an Einstein model of TDS [26-31]. For low-order reflections the
calculated imaginary part of the structure factors are less accurate. These low-order
structure factors may, however, be taken to be the fitting parameters in the structure
factor refinement procedure although they may not correspond directly to real physical
quantities.

To a first order approximation, the scattering potential of a crystal may be rep-
resented as a sum of contributions from isolated atoms, having charge distributions
of spherical symmetry around their nuclei. In a real crystal the charge distribution
deviates from the spherical symmetry around the nucleus and the difference reflects
the charge redistribution or bonding in the crystal. The problem of experimental
measurement of crystal bonding is therefore a problem of structure factor refinement,
i.e. accurate determination of the difference between the true crystal structure factors
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and that of isolated atoms. The structure factors may in principle be extracted from
energy-filtered experimental diffraction data by varying crystal structure factors and
minimizing a merit function which measures the difference between experiments and
theoretical models. There are at least two major drawbacks for the direct application
of the minimization scheme. First, the procedure may not be able to return a unique
set of parameters that give the minimum to the merit function in multiple parameter
space and, second, the procedure is numerically very expansive. Both problems may
be solved to a large extent by the use of a perturbation approach called the tensor
theory of electron diffraction [20, 22, 32-34]. The validity of this approach will be
discussed and its application to structure factor refinement will be demonstrated using
experimental results from a single crystal of silicon.

The plan of this chapter is as follows. Section 2 outlines the general equations that
govern the movement of high-energy electrons in a solid, and Section 3 describes the
concept and computation of the optical potential and the reduction of the general ki-
netic equation to a one-body Schrodinger equation for the elastic wave field. Section 4
presents the tensor theory of high-energy electron diffraction for the description of
energy-filtered electron diffraction data, and Section 5 gives its application to crystal
structure factor refinement. The summary and conclusions are given in Section 6.

2. Kinetic equation

The dynamical elastic and inelastic scattering of high-energy electrons by solids may
be described by three fundamental equations [5]. The first equation determines the
wave amplitude Gy(r,r’, E), or the Green function, at point r due to a point source
of electrons at r' in the averaged potential {V (r)):

h2

E+ —V*~ (V@) | Go(r,r, E) = 8(r — 1), (1)

2m
where the time-averaged interaction potential {V (r)) is made over the motion of the
crystal particles and is defined as

1
(V) = — D exp(=ea/ksT)(nlV(x, 11, ) ), @)

where Z = %, exp(-e/ksT) is the partition function, e, the nth eigenvalue of
the crystal Hamiltonian H,, i.e. H|n) = €|n), |n) being the nth eigenstate of the
crystal system.

The second equation determines the wave amplitude G(r, r', E) at r due to a point
source of electrons at r', with the influence of the fluctuating part of the interaction
included

2
|:E + h—v2 - (V(r))] G(r,r, E)
2m

- f dxfdw S(r, X, 0)Go(r, X, E —hw)G(X, v, E) = 8(r — 1), 3)
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where 5(r, X, w) is the Van Hove dynamical form factor [8] which is defined as

1 —
S F, @) = = Y exXp(=n/ kBT Vo (1) Vs, 1 ()8 (a) g - 8”) ,

n.n
(4)
in which 8V,,, (r) represents the fluctuating part of the interaction
8V (1) = (n|V(r,x1,..)01) = 8p 0y (V(D)), %)

with {V(r)) being given by Equation (2).

The third equation is the kinetic equation, which describes the evolution of the one-
particle density matrix p(r, r’, E) of the electron in the process of multiple elastic
and inelastic scattering in a solid

p(r, ¥’ E) = po(r,r', E)+fdxdx/G(r, x, EYG*(r',x', E)
x |:/ do§x, x, wpex,x', E +ha)):| , (6)

that is the one-particle density matrix is a sum of the ‘coherent’ wave p, and waves
inelastically scattered at (x, x'), the propagation of which to (r, r") is described by the
product of two Green’s functions G(r, x, E)G*(r’, x', E). The one-particle density
matrix p(r, r' E) is indeed the spectral one-particle density matrix which is related
to the usual bilinear combination of two wave functions

p(r, ¥, 1, 1) = Y (x, )y, 1)

by the Fourier transformation

[o,¢]

p(r, v, E) = 1 dt —1'yex ~£(l - |p@,r, ).
27k ) PI7%

In the simplest case where the interaction potential does not depend on time we
have

LE,
Y(r, 1) = Yu(r) eXp<—1—h—t>,

where y(r) is a wave function of the continuous spectrum, and the spectral one-
particle density matrix p(r, r', E) is given by

p(r, v, E) = Y, (), (x)8(E — EL).

In general the spectral one-particle density matrix p(r, r’, E) describes the mutual
coherence of the wave field of high-energy electrons at the points r and r'. For
the simplest case of time-independent interaction potential the diagonal elements of



151

p(r, r', E) = |y (r) |, i.e. the element is proportional to the probability of finding the
electron with energy E at the point r. In a general case the kinetic equation describes the
evolution of p(r, r’, E) due to the process of multiple elastic and inelastic scattering.
The distribution of electrons over a solid angle and energy is related to the double
differential cross section

d2o ok (kcos@)2
dQdR ~ ko \ 27

x lim [ d?Rd’R exp(—iq; - R +iq;R)p(R.z, R, 2. E), (7)

I—=>E0

where k =.,/2mE/h%, 6 is the angle between the wave vector of the scattered
electron and the z-axis of the chosen system or coorainares, R = (x, y) and q, = q.,
The positive and negative signs correspond to the forward and backward scattering,
respectively.

In summary, the movement of a high-energy electron in a solid may be described
by a set of three Equations (1), (4) and (6). From these equations we may conclude
that for high-energy electron diffraction the problem of multiple elastic and inelastic
scattering by a solid is entirely determined by two functions, i.e. (1) the Coulomb
interaction potential averaged over the motion of the crystal particles {V(r)) and
(2) the mixed dynamic form factor s(r, r’, E) of inelastic excitations of the solid.

3. Optical potential

In this section we consider the problem of scattering of a well-collimated beam of
high-energy electrons of energy E, by a crystal. The incident electron wave function
then has the form of a plane wave

Yo(r) = exp(ikg - 1),

where k, is the wave vector of the incident electron. Neglecting the effect of the time-
dependent part of the interaction potential, the movement of the incident high-energy
electron in a solid is governed by Equation (1). Let y «.be the wave function of the
fast electron, we have

n? ;
{—%Vz + <V(r)>} Yk (1) = Eo¥kys (®)

E, being the energy of the fast electron. To a good approximation, the effect of
inelastically scattered electrons on the elastic electron wave field may be treated via
a first order perturbation method. From Equation (4) we have

hZ
{:—%vz + V(r)} '(/fko = EOWkos (9)
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where V is called the optical potential [13, 35, 36] and is given by
VP & VO 4y

with
VO =(v)

being the averaged potential and

1
Eyr + Ey +ie —ho— Hp

vl = <(v — (V) (V- <V>>>, (10)
being the first order correction due to diffuse scattering. Recent quantitative electron
diffraction work has shown that this approximation works with high precision [16,
21, 23, 37, 38]. In Equation (10) &, = —(h%2m,)V? is the free Hamiltonian of the
incident electron, H, is the Hamiltonian for all the electrons and nuclei of the crystal,
and E, is the ath eigenvalue of the crystal Hamiltonian, i.e. Hyd. = E.d., ¢. being
the oth eigenstate of the crystal.

For TDS and to a good approximation we may assume that the atomic electrons
follow adiabatically the motion of nucleus and that all atomic electrons are in their
ground states [39]. The interacting potential is then given by

Z,e? e? 0.0/ 1n/
V(r,...,rn,...)zz{—‘r_rn| +/ Ir_R/_rn‘pn(R)dR}

n

- Z/dnw,,(r—R)a(R—m, (11)

in which Z, is the atomic number of the nth atom and pQ(R’) is its corresponding
electron density in its ground state, the summation on # is over all atoms in the crystal,
and ¢ .(r)is given by

Z,,e2 2 03/ ,
on(r) = — " +/‘T_R,\pn(R)dR. (12)

Let r, = R, + u, where R, denotes the equilibrium position of the nth atom
and u, represents the thermal displacement of the atom from its thermal equilibrium
position, we have for the averaged potential

v =Y [ Reule - ROR-R, —un) (13)
n
The Fourier coefficients of the averaged potential is given by

1
Ve = V/(V(r))exp(ig-r) dr

h2

4 B )
= m ey szi (s)T;: (g) exp(—ig - R;), (14)
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in which V and Q are the volume of the crystal and a unit cell respectively, By is
the Born atomic scattering amplitude [40] with s = g/4rn, T, (g) is the temperature
factor [41] of the ith atom, and the summation on i is over a unit cell. In Equation (14)
the Born atomic scattering amplitude is related to ¢ (r) via the following relation:

2w mg
]’l2

R =- /(01‘ (r)exp(—ig - r) dr, (15)

and for a harmonic crystal the temperature factor is given by
T;(g) = (exp(—g - u;)) = exp {—%((g : uz-)2>] : (16)

Leta, , a,, a, be the real space lattice vectors and b, , b,, b; be the reciprocal space
lattice vectors. We have then the following relations:

a; - bj = 8,']'.
In terms of these vectors a real space displacement vector u can be expressed as
u = ujal + uray + u3as, (17)

and a reciprocal space vector g as

g = hb; + kby + b3, (18)
giving
(g w?) = h2(u3) + K*u3) + 1*(u3) + 2hk{uyuz) + 2h1 (1u3)
+ 2kl {uzu3). (19)

In matrix notation the above expression can be written as
U h
(@ -w? = (h kD) {u2) (ur,uz,u3) | k] = GTXXDG,
us [
where G and X are 3 X 1 column vectors and their transpose are given by
GT = (h, k., ). XT = (uy, uz, u3).
The temperature factor (16) then becomes

T;(g) = exp { — G'8:G}. (20)

in which the matrix § = 1/2(XXT) is a symmetric matrix

2
1 1 (u3)  (wiwa)  (uruz)
B == <XXT> == | (wour)  (u3)  (uouz) |, an
2 2
<M3M1> (u3u2) <u§>
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and is usually referred to as the mean-square displacement matrix. In X-ray crystallo-
graphy the general anisotropic vibration parameters are usually given as the elements
of a U matrix which are related to that of the f matrix by the following relation:

Bij = 27°Uijbib;. (22)
Explicitly the anisotropic temperature factor is given by

T(g) = exp{—21[U1(hb1)? + Una(kby)? + Us3(b3)*
+ 2U12(hb1)(kb2) + 2U13(hb1)(Ib3) + 2U23(kb2)(1b3)]}. (23)

Experimentally U; may be obtained by fitting quantitatively the calculated X-ray
beam intensities with the experimentally measured X-ray intensities using a general
anisotropic temperature factor [42].

We now consider the first order correction to the average potential, i.e. V® . In real
space representation, substituting Equations (11) and (13) into (10) gives [36]

v, r) = Z<[/ dRdR'¢;(r —R)[§R —1;) — (SR —17))]
ij

1
Noitrf — R’
X<r\Ek+Ea+i8——ho—Hor>(pj(r )

[ =)~ s = )] 09

For thermal diffuse scattering since the energies of phonons are much smaller than
the energy of the incident electrons, we may neglect £, and H, in (24). Neglecting
the effect of virtual diffuse scattering [12] and using the high-energy approximation
[43] we obtain

VO (g, h) = ‘i#l;_o z 3 #1P%s) exl-itg )R
=vP(@g-h), (25)
where
50 = [as (5 +¢)) £ (5 -<))
<{me-n(3+9)1(5-9)}. 26)

where v is the velocity of the electron. For isotropic thermal vibrations of the crystal
lattice we have
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and therefore
T(g) = exp |~} {u?)g?} = exp(—Bs?), 27)

in which B = 8m(u?) is the usual Debye—Waller temperature B-factor of the atom.
Substitution of Equation (27) into Equation (26) gives

0= a5+ (-

x exp(—B;s?) {1 — exp[—2Bi(s” — 52/4)]} (28)

and this is the Hall and Hirsch formula [26]. In real space we have
vy = / v (s)exp(is - ) ds, (29)

and this expression clearly shows that Vo(r) is a local potential, i.e. it depends only
on one site coordinate r.

4. Tensor theory

In this section we will discuss perturbation methods suitable for high-energy electron
diffraction. For simplicity, in this section we will be concerned with only peri-
odic structures and a transmission diffraction geometry. In the context of electron
diffraction theory, the perturbation method has been extensively used and developed.
Applications have been made to take into account the effects of weak beams [44,
45]; inelastic scattering [46]; higher-order Laue zone diffraction [47]; crystal struc-
ture determination [48] and crystal structure factors refinement [38, 49]. A formal
mathematical expression for the first order partial derivatives of the scattering matrix
has been derived by Speer ef al. [50], and a formal second order perturbation theory
has been developed by Peng [22,34].

It is assumed from the outset that the crystal potential may be written as a sum of
two parts:

V(r) = Vo(r) + AV(r),

in which V,(r) is a known potential, hereafter we will refer to the structure giving rise
to this potential as the reference structure. The second term in the above expression
AV(r) is a small quantity which may be regarded as a perturbation on Vy(r).

Considering only forward scattering by a crystal, the one-body Schrodinger wave
equation may be transformed into a first order eigenequation [44, 51]

()
2koSg () Ug—nB, () g
8 g4 E = 2ko,y"’ By, 30
(+g/ko) ¢ JTHe/ko/I=hifko, o ° G0
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in which S, = [K> — (k + g)*]/2K; is the usual excitation error measuring the
distance between the reflection g and the Ewald sphere, K> = k2 + U, U, is the
gth Fourier component of the crystal scattering potential field, y» and {B(J ) J} are

the eigenvalue and corresponding eigenvector of the jth Bloch wave, respectively.
In matrix notation, Equation (30) can be rewritten as

(S+U)B =B, 31
in which the matrices S and y are diagonal matrices with
2koS, .
Slgg = —=. (7)) = 2ko,¥Y, 32
7 JT+a/k, s (32)

and the elements of the matrices U and B are given by
Ug_n

\/1 + gz/kOZ\/l +hz/koz’

Similarly we may define a right-hand eigenvector B satisfying

BS+U)=+B (34)

{Uken =

{B}gi = BY. (33)

and it can be easily shown that BB = BB =1, i.c.
Z BUBY = 54, Z B, BY = 5.

When the interaction potential V(r) is subjected to a small variation A V(r), both
the eigenvalues and eigenvectors of the initial system change their values. If the per-
turbation is small enough, the changes in both the eigenvalues and eigenvectors may
be obtained by the use of the perturbation theory. Following the standard procedures of
quantum mechanics, the changes may be expressed in a tensor form [34], by analogy
with the tensor theory of low-energy of electron diffraction [52]

Ay =149 AU+ AU- 20V . AU, (35)
AB(j) le (J) AU+ AU - %¢ (J) - AU, (36)
AB(_]) Iz (1) AU+ AU. 2—<!) AU, (37)
in which AU = {AUg} and
N (jj') (j'j)
a0y, = “l(m’ {2U(j)}1,k - Z W, (38)
i'#i Yo

with
B(J) B (J/)

2ka Z,/l-{-gz/ko Jl—i—(g;,—l Y ko,

W01 =

(39)
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and
GG =G Gin
, By ‘u , By 'u
1.H] _— 0, "I 1= _ 0, *1
{ fs },! =2 Do) [ £e ], =D - D0 (40)
i#i Y% Y J#i % TN

’ G GD G )

{28(/)} Y Bog [_ W' ug _Zul Ui }

8 - N (" ) " 2 ()
R Y B U W T S YA ET R Ul

GG

1 u uy ,

3 T (41)
Ry [yo —y ]

—_ . P i3l
Bo ) ’ ul(u)u(]/)

2-(j) p “z(ji)uz(fj/)
={J — _ PR T, T
[ fe };,k = Z DD D) +Z D0
i'#i Yo Y0 Y Y i#j Yo Yo
GiN G
1 U U — ..
24T o _ i
J'#i [Vo - % ]

The diffracted beam amplitude is given by

—(j) —(J i i . i ;
Fp= Z (Boé + AB(%)) (Béé) + AB(();)) exp [1 (yo(j) + Ay(f)) z] . 43)
J

At the entrance surface z = 0, the above expression gives F, = 8, i.e. there exists
only the incident beam above the crystal in the vacuum region.

For given vectors and matrices u and €, the calculation of the diffracted beam
amplitude is an operation of the order of n(p + p?), where n is the number of Bloch
waves having appreciable excitation amplitudes, and p is the number of varying crystal
structure factors. As will be shown in the following section that for a typical zone
axis incidence, the number of Bloch waves having appreciable excitation amplitude
is usually less than 20. For simple cases, the number of fitting parameters is usually
less than 30. This situation should be compared with the case of a full dynamical
calculation scaling as O(N?), with N being the total number of beams involved. For a
typical zone-axis incidence this number is usually larger than 100. For each calculation
the tensor theory is therefore about 50 times more efficient than the full dynamical
diffraction theory. For a typical numerical minimization routine, for example the NAG
routine EO4GBF using quasi-Newton algorithm [53], the number of multiplications
performed per iteration of the routine is approximated pm? + O(p*), m being the
number of data points. For a refinement procedure involving 30 parameters the present
scheme is therefore many thousand times faster than the standard procedure. In the
following section we will be concerned with the validity of the present tensor theory,
the computation of the tensor expressions, and its application to crystal structure
factor refinement from energy-filtered experimental CBED patterns.
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5. Results

Shown in Figure 1 is an energy-filtered experimental CBED pattern obtained from
a silicon sample and along the [110] zone axis, using a primary beam energy of
195.35 keV. The CBED pattern was obtained by focusing a convergent electron beam,
defined by a circular aperture, onto the specimen (for a detailed discussion of this
method of electron diffraction, see Spence and Zuo [37]). Each diffraction spot of
the conventional electron diffraction pattern is then spread into a circular disk, and
each point in the disk corresponds to a particular angle of incidence. The variation of
intensity across each disk represents the variation of the diffracted beam intensity as-
sociated with that disk as a function of the incident angle. A graphical representation of
this variation is called a rocking curve. CBED patterns are essentially two-dimensional
rocking curves from a very small illuminated area, which in the present study is of
the order of 1.4 nm. It is then reasonable to assume that the CBED pattern is obtained
from an area of uniform crystal thickness and orientation. The pattern obtained in this
way is therefore well defined, from an area free from crystal defects and from effects
due to bending, and is well suited for comparison with theoretical calculations.
Figure 1 shows, among other disks, the transmitted (000) disk, two (002) type
disks, and four (111) type disks. It should be pointed out that the (002) type reflec-
tions are kinematically forbidden, and the appearance of the (002) type disks in the

Si[110] CBED zone axis pattern

Figure I. Energy filtered experimental Si[110] zone axis CBED pattern. The pattern was obtained for a
primary beam energy of 195.35 keV, an energy window of 10eV and an electron probe size of 1.4nm,
using a Philips CM200/FEG electron microscope.
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experimental CBED pattern is mainly due to the multiple diffraction processes, for
example via the scattering of (111) followed by (111). The raw experimental CBED
pattern was recorded using a 1024 x 1024 slow-scan CCD camera. We have therefore
in a single CBED pattern more than one million data points available. Since the
number of structural parameters for a single crystal of silicon is much smaller than
the number of available data points, we choose to extract certain well-defined lines
of data from the two-dimensional CBED pattern and for simplicity we will hereafter
simply call these line scans CBED rocking curves.

Shown in Figure 2 are calculated CBED rocking curves, corresponding to a line
scan along [111] direction as shown in Figure 1. The first data point of Figure 2
corresponds roughly to point A of Figure 1, the 98th data point to point B, 99th data
point to point C and the 196th point to point D. This figure shows that the effect of the
number of Bloch waves used in dynamical diffraction calculations on the calculated
CBED rocking curves.

All tensor expressions (35)—(42) involve summation over Bloch waves, i.e. sum-
mation over j. For a dynamical diffraction calculation involving N beams, the number
of Bloch waves resulting from Equation (30) equals the number of beams, i.e. N. It
should be noted, however, that not all of these Bloch waves will be strongly excited
within the crystal and contribute to the electron wave field. The excitation amplitudes
of the Bloch waves in the crystal are given by{E(()]) } Extensive numerical calculations
show that in a typical dynamical diffraction calculation, although typically more than

Si[110], 369nm, 111 line scan

T T

f——@ 80 Bloch waves -

0.35
*—% 20 Bloch waves

------------ 5 Bloch waves

0.25 %

Counts

0.15

0.05

(000) disk | (1-11) disk
_0.05 — ﬁ] 1 b, Il
0.0 50.0 100.0 150.0 200.0
Data index

Figure 2. Calculated CBED rocking curves for Si[110], a primary beam energy of 193.35 keV and
a crystal thickness of 369nm. The three curves shown in the figure were calculated using 80 Bloch
waves (circle+solid line) 20 Bloch waves (star solid line) and 5 Bloch waves (dotted line) and the curves
correspond to the line of Figure 1 along A-D.



160

100 beams are needed for a zone-axis incidence, only less than 30 most strongly
excited Bloch waves are required to achieve a convergent result for calculating the
diffracted beam amplitudes F,. Shown in Figure 2 are three rocking curves calculated
using 5,20 and 80 most strongly excited Bloch waves. This figure shows clearly that
results obtained using 20 and 80 Bloch waves are indistinguishable, suggesting that
in the present case only about 20 Bloch waves have been excited in the crystal with
appreciable amplitude and have contributed to the electron wave field.

Among all the tensor components, the computation of the second order tensors 2¢
and 2€ are most time consuming. According to the order of complexity, we may divide
our approximate theories as (1) first order or linear theory, using only the linear tensors,
'u, 'e and '€ for calculating the correction to both the eigenvalues and eigenvectors;
(2) quasi-second order theory, treating the correction in eigenvalues using both the
first and second order tensors and correction in eigenvector using only the first order
tensor, i.e. 'e and 'g; (3) full second order theory, using full tensor expressions for
treating both corrections in eigenvalues and eigenvectors. Roughly speaking, both the
linear theory and the quasi-second order theory are methods which scale as M, M
being the number of strongly excited Bloch waves within the crystal. The full second
order theory scales as M2 Shown in Figure 3 are five rocking curves calculated using
the full dynamical theory (solid curve), using the full tensor expressions for both
the eigenvalues and eigenvectors (circle and dotted line), using second order tensor
expression for eigenvalue and first order expressions for eigenvectors (star and dotted

Si[110], 1000nm, (00) disk

075 T GO Second order theory |
065 L *---% Quasi second order theory :

F First order theory
—— Reference 4
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Figure 3. Calculated CBED rocking curves within the (000) disk. The calculations were made for a

Si[110] zone axis, a primary beam energy of 193.35 keV and a crystal thickness of 1000 nm. The curves
shown in the figure correspond to the line scan A-B of Figure 1.
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line), using first order expressions for both the eigenvalues and eigenvectors (dotted
line). The reference structure is taken to be that composed of neutral atoms, and the
perturbation be the difference between the (111) structure factors of a real single
crystal of silicon and that of the reference structure. The crystal thickness used in the
calculation was 1000 nm. It is seen that for this crystal thickness while the first order
theory differs substantially from the exact solution, both the full second order tensor
theory and the quasi- second order theory give excellent results over the whole range of
incidence. In what follows we shall therefore use only the quasi-second order theory.

In principle the validity of an approximate theory depends on the crystal thickness.
The parameter most widely used for estimating the validity of the kinematical or a
single diffraction theory is the distinction distance, see for example Hirsch ez al. [46].
For an averaged interaction potential, the extinction distance is roughly proportional
to the inverse of the potential. For a single crystal of silicon, the extinction distance is
of the order of 50 nm, suggesting that for a crystal thickness comparable to that value
multiple diffraction processes will begin to dominate the diffraction processes and a
kinematical diffraction theory will no longer be valid. Since the charge redistribution
or the formation of bonding in a real crystal introduces a change in the crystal structure
factors which is typically less than 5% of the total crystal structure factors, one
would expect that the corresponding extinction distance for the first order perturbation
treatment of the bonding effect be about 20 times that due to the whole crystal potential,
i.e. of the order of 20 X 50 nm = 1000 nm. For the second order tensor theory the
distance would be twice that value. We would then expect that the validity of the first
order theory to be about one-third of the extinction distance, i.e. for the first order
theory the validity is about 330nm, and that for the second order theory 700nm.
Shown in Figures 4—6 are three sets of rocking curves for a crystal thickness of (a)
250 nm (Figure 4); (b) 500 nm (Figure 5); and (c) 1000 nm (Figure 6). These figures
clearly show that for a crystal thickness smaller than a few hundreds of angstroms,
see for example Figure 4, both the first and second order theory works well. For a
crystal thickness of larger than, say 500 nm, see Figure 5, only the second order theory
provides an adequate description of the perturbation caused by the crystal bonding.
Figure 6 shows that for a crystal thickness as large as 1000nm the second order
tensor theory remains accurate for describing the effect of bonding. Noticing that a
typical crystal thickness used in CBED experiments lies from a few hundred to less
than 5000 A, we would expect the second order theory to provide a generally valid
description of the bonding effect in real crystals. It should also be pointed out that the
perturbation theory may also be used in combination with the method of iteration, i.e.
a new reference structure which is closer to the true solution may always be defined as
the solution return from the previous application of the tensor theory, and the accuracy
of the solution may therefore be improved via iteration.

One of the most important questions in quantitative electron diffraction work
concerns whether or not the solution obtained is unique. It may be shown that in
a general situation the solution obtained is not unique [54]. In the study of crystal
bonding, however, since we have a fairly good starting point, i.e. the isolated atoms
approximation of the crystal, we will show that the solution obtained from quantitative
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Si[110], 8U,,,=(-.25705E-2, .10359E-2), t=250nm
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Figure 4. Calculated CBED rocking curves within the (000) and the (111) disks in a Si[110] zone axis
CBED pattern. All curves shown in the figure were calculated for a crystal thickness of 250 nm, and a
primary beam energy of 196.35 keV., and correspond to the line scan A-B of Figure 1.

electron diffraction is unique, with the only uncertainty being that due to the statistic
noise always present in real experiments.

The goodness-of-fit between the experimental and theoretically calculated CBED
rocking curves is described by a merit function, and in the present study we use the
chi-square merit function defined as

1 2

2 k k

=Y - 1] (44)
k %k

in which sz denotes the variance of the kth experimental data point, /,, and I
refer to experimental and calculated diffracted beam intensities respectively. The
variance of the experimental data g, may be estimated using experimentally measured
values of detector quantum efficiency for different beam intensities i.e. I, see for
example [23]. In a simple first order perturbation theory, the x2 function depends on
the structural parameters, i.e. A U,, quadratically. Within the validity of the full tensor
theory, the dependence is quadrennial. In both cases a unique minimum exists in the
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Figure 5. Calculated CBED rocking curves. This figure is essentially the same as Figure 4, except that
all calculations were made for a crystal thickness of 500 nm.

x2 surface, since the third order terms will affect only the degree of asymmetry of the
x2 surface around its minimum and the fourth order term affect only the degree of
peakedness or flatness of the x2 surface rather than introduce additional minimums.
Shown in Figure 7 is a plot of the x? function as a function of 6 U, i.e. variation in
the {111} structure factors. The three curves are obtained using the full dynamical
theory (circles) and making expansions using the quasi-tensor expressions around

Uy = -0.0025 and —0.005 A, respectively. The neutral atom approximation

gives Uy = 0.050136 A>. A variation of §U,, = -0.0025 and —0.005A"
therefore represent 5% and 10% variations in Uy,,. It should be noted that both
values are larger than that caused by the bonding effect in a single crystal of silicon.
Figure 7 shows that for any variation in Uy, of less than about 5%, the tensor theory
will always be able to return a very accurate value of U,,, giving rise to the unique
minimum in the x? surface. For a variation of up to 10% in U,,,, although the tensor
theory cannot return accurate solution, the returned solution is nevertheless much
closer to the true solution, and the solution may be taken to be the new starting point
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Figure 6. Calculated CBED rocking curves. This figure is essentially the same as Figure 4, except that
all calculations were made for a crystal thickness of 1000 nm.

and a more accurate solution can be obtained by repeated applications of the tensor
theory.

Shown in Figure 8 is essentially the same plot as Figure 7, but one of the expan-
sions is made using the first order theory. This figure shows that although the first
order theory is not adequate for an accurate description of the x2 surface even for
a 5% variation around the true solution, the first order theory nevertheless results
in a solution which is closer to the true solution compared with its starting point
and that the method of iteration may be applied to improve the accuracy of
the solution.

Shown in Figure 9 are experimental CBED rocking curves extracted from Figure 1
along (a) [111] and (b) [002] directions, the corresponding fitted rocking curves
and the residual between the experimental and fitted rocking curves. The fitting was
made using the quasi-second order tensor theory, using a primary beam energy of
195.35 keV and a crystal thickness of 369 nm. It was found that for the present study no
iteration is required, and the direct application of the quasi-second order theory returns
a minimum x? values of 1.4, which is very close to the ideal value of 1.0, suggesting
that systematic errors introduced by other factors that have not been considered here
have been minimized.
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Figure 7. One-dimensional plot of x2 as a function of dU,,. The three curves in the figure are exact
plots (circle) calculated using the full dynamical theory and approximate expansions using the full tensor
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Figure 8. One dimensional plot of x? as a function of 3 Uy,,. The three curves in the figure are exact plots
calculated using full dynamical theory (circle) full tensor expansion around 8 U, = —0.0025 A+ (solid
line) and line tensor expansion around §U,;, = —0.0025 A~ (cross and solid line).
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(a) Si[110], t=369nm, 1-11 line scan
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Figure 9. Energy-filtered experimental and fitted Si[110] CBED rocking curves for (a) a line
scan along the [111] direction and (b) a line scan along the [002] direction (see Figure 1).

The calculations were made for a primary beam energy of 195.35keV and a crystal thickness of
369 nm.

6. Conclusion

In summary, in this chapter we have presented methods of different complexity and
therefore validity for describing the process of elastic and inelastic scattering of
high-energy electrons in a solid. For the general description of the multiple scat-
tering events of both the elastically and inelastically scattered electrons, the kinetic
equation should be used. When considering only the elastically scattered electrons,
the general kinetic equation reduces to a one-body Schrdodinger equation with the
interaction potential being regarded as an effective optical potential. For accurate
structure factor refinement or the measurement of the bonding effect in a crystal

the tensor theory may be used and its accuracy may be improved by the method of
iteration.



167

Acknowledgements

The author wishes to thank Drs. J.M. Zuo, S.L. Dudarev, X.F. Duan and G. Ren for
stimulating discussions and collaboration, This work is supported by the National
Natural Science Foundation of China (Grant No. 19425006) and by the Chinese
Academy of Sciences.

References
1. Pendry, J.B. (1974) Low Energy Electron Diffraction, Academic Press, New York.
2. Reimer, L. (1989) Transmission Electron Microscopy — Physics of Image Formation and
Microanalysis, 2nd edn. Springer-Verlag, Berlin.
3. Cowley, IM. (Ed.) (1993) Electron Diffraction Techniques, Oxford University Press, Oxford.
4. Egerton, R.F. (1986) Electron Energy Loss Spectroscopy in the Electron Microscope, Plenum

10.

11.

16.

17.

18.

19.

20.

21.

22.

23.

Press, New York.

. Dudarev, S.L., Peng, L.-M. and Whelan, M.J. (1993) Correlations in space and time and dynamical

diffraction of high energy electrons by crystals, Phys. Rev. B, 48(18), 13408-13429.

. Dudarev, S.L., Peng, L.-M. and Whelan, M.J. (1992). On the damping of coherence in the small-

angle inelastic scattering of high-energy electrons by crystals, Phys. Letts. 4, 170, 111-115.

. Peng, L.-M., Dudarev, S.L. and Whelan, M.J. (1993). Evidence for the damping of coherence in

inelastic scattering of high-energy electrons by crystals, Phys. Letts., A175, 461-464.

. Van Hove, L. (1954) Correlations in space and time and Born approximation scattering in systems

of interacting particles, Phys. Rev., 95(1), 249-262,.

. Kohl, H. and Rose, H. (1985) Theory of image formation by inelastically scattered electrons in

the electron microscope. In Adv. Electronics and Electron Physics, Hawkes, P.W. (Ed.), Vol. 65,
Academic Press, New York, pp. 173-227.

Hodgson, P.E. (1963) The Optical Model of Elastic Scattering, Oxford University Press, New
York.

Yoshioka. H (1957) Effect of inelastic waves on electron diffraction, J. Phys. Japan, 12(6),
618-628.

. Rez, P. (1976) The Theory of Inelastic Scattering in the Electron Microscopy of Crystals, PhD

thesis, St. Catherine’s College, Oxford, Oxford.

Dederichs, P.H. (1972) Dynamical diffraction theory by optical potential methods, Solid State
Phys., 27, 125.

Smart, D.J. and Humphreys, C.J. (1978) The crystal potential in electron diffraction and in band
theory, Inst. Phys. Confs. Ser., 41, 145-149.

Fox, A.G., and Fisher, RM. (1986) Accurate structure factor determination and electron charge
distributions of binary cubic solid solutions, Phil. Mag. A, 53, 815-832.

Zuo, J.M., Spence, J.C.H., and O’Keeffe, M. (1988) Bonding in GaAs, Phys. Rev. Letts., 61(3),
353-356.

Spence, J.C.H. (1993) On the accurate measurement of structure factor amplitude and phases by
electron diffraction, Acta. Cryst. A, 49, 231-260.

Zuo, JM., O’Keeffe, M., Rez, P. and Spence, J.C.H. (1997) Charge density of MgO: implications
of precise new measurements for theory, Phys. Rev. Letts., 78(25), 4777-4780.

Hoier, R., Bakken, L.N., Marthinsen, K. and Holmestad, R. (1993) Structure factor determina-
tion in non-centrosymmetric crystals by a two-dimensional CBED-based parameter refinement
method, Ultramicroscopy, 49, 159-170.

Peng, L.-M. and Zuo, JM. (1995) Direct retrieval of crystal structure factors in THEED,
Ultramicroscopy, 57, 1-9.

Saunders, M., Bird, D.M., Zaluzec, N.J., Burgess, W.G., Preston, A.R. and Humphreys, C.J.
(1995) Measurement of low-order structure factors for silicon from zone-axis CBED patterns,
Ultramicroscopy, 60, 311-323.

Peng, L.-M. (1997) Direct retrieval of crystal and surface structure using high energy electrons,
MICRON, 28(2), 159-173.

Ren, G., Zuo, JM. and Peng, L.-M. (1997) Accurate measurements of crystal structure factors
using a FEG electron microscope, MICRON, 28.



168

24.

25.

26.

27.

28.

29.

30.

3

—_

32.
33.
34,
35.
36.
37.
38.
39.
40.
41,
4.
43,
44,
45,
46.

47.
48.

49.
50.
51.
52.
53.

54.

Whelan, M.J. (1965) Inelastic scattering of fast electrons by crystals — I. Interband excitations,
Applied Phys., 36, 2099-2103.

Whelan, M.J. (1965) Inelastic scattering of fast electrons by crystals — II. Phonon scattering,
Applied Phys., 36, 2103-2110.

Hall, C.R. and Hirsch, P.B. (1965) Effect of thermal diffuse scattering on propagation of high
energy electron through crystals, Proc. R. Soc. London A4, 286, 158-177.

Rossouw, C.J. and Bursill, L.A. (1985) Interpretation of dynamical diffuse scattering of fast
electrons in rutile, Acta Cryst. 4, 41, 320-327.

Bird, D.M. and King, Q.A. (1990) Absorptive form factor for high-energy electron diffraction,
Acta Cryst. A, 46, 202-208.

Dudarev, S.L., Peng, L.-M. and Whelan, M.J. (1995) On the Doyle-Turner representation of the
optical potential for RHEED calculations, Surface Sci., 330, 86-100.

Peng, L.-M., Ren, C., Dudarev, S.L. and Whelan, M.J. (1996) Robust parameterization of elastic
and absorptive electron atomic scattering factors, Acta Cryst. 4, 52, 257-276.

. Peng, L.-M., Ren, C., Dudarev, S.L. and Whelan, M.J. (1996) Debye—Waller factors and absorptive

scattering factors of elemental crystals, Acta Cryst. A, 52,456-470.

Peng, L.-M., and Dudarev, S.L. (1993) Tensor theories of high energy electron diffraction and
their use in surface crystallography, Surface Sci., 298, 316-330.

Peng, L.-M. and Dudarev, S.L. (1993) Direct determination of crystal and surface structures in
THEED, Ultramicroscopy, 52, 312-317.

Peng, L.-M. (1995) New developments of electron diffraction theory, In Advances in Imaging
and Electron Physics, Hawkes, P.W. (Ed.), Vol. 90, Academic Press, London, pp. 205-351.
Dudarev, S.L., Peng, L.-M. and Whelan, M.J. (1992) A treatment of RHEED from a rough surface
of a crystal by an optical potential method, Surface Sci., 279, 380- 394.

Peng, L.-M. (1997) Anisotropic thermal vibrations and dynamical electron diffraction by crystals,
Acta Cryst. A, 53, 663-672.

Spence, J.C.H. and Zuo, J.M. (1992) Electron Microdiffraction, Plenum Press, New York and
London.

Zuo, JM. and Spence, J.C.H. (1991) Automated structure factor refinement from convergent-
beam patterns, Ultramicroscopy, 35, 185-196.

Ashcroft, N.W. and Mermin, N.D. (1976) Solid State Physics, Saunders College, Philadephia.
Cowley, J.M. (1992) Scattering factors for the diffraction of electrons by crystalline solids, In
International Tables for Crystallography, Wilson, A.J.C. (Ed.), Volume C. Kluwer Academic
Publishers, Dordrecht/Boston/London.

Willis, B.T.M. and Pryor, AW. (1975) Thermal Vibrations in Crystallography, Cambridge
University Press, Cambridge.

Giacovazzo, C. (1992) Fundamentals of crystallography, Oxford University Press, Oxford.
Cowley, J.M. (1928) Diffraction Physics, 2nd edn., North-Holland, Amsterdam. (1990)

Bethe, H. (1928) Theorie der Beugung von Elektronen an Kristallen, Ann. Physik., 87, 55— 129.
Gjennes, J. (1962) The dynamical potentials in electron diffraction, Acta Cryst., 15, 703— 707.
Hirsch, P.B., Howie, A., Nicholson, R.N., Pashley, D.W. and Whelan, M.J. (1977) Electron
Microscopy of Thin Crystals, Krieger Publishing Company, Malabar and Florida.

Bird, D.M. (1989) Theory of zone axis electron diffraction, J. Electron Microsc. Tech., 13, 77.
Vincent, R., Bird, D.M. and Steeds, J.W. (1984) Structure of augeas determined by convergent-
beam electron diffraction — II. Refinement of structural parameters, Phil. Mag. A, 50,765-786.
Bird, D.M. and Saunders, M. (1992) Inversion of convergent-beam electron diffraction patterns,
Acta Cryst. A, 48, 555-562.

Speer, S., Spence, J.CH. and Ihrig, E. (1990) On differentiation of the scattering matrix in
dynamical transmission electron diffraction, Acta Cryst. A, 46, 763-772.

Lewis, A.L., Villagrana, R.F. and Metherall, A.J.F. (1978) A description of electron diffraction
from higher order Laue zones, Acta Cryst. A, 34, 138-140.

Rous, P.J. (1992) The tensor approximation and surface crystallography by low-energy electron
diffraction, Prog. Surf. Sci., 39, 3-63.

The NAG Fortran Library Manual, Mark 16. The numerical algorithms group limited, Oxford,
1993.

Spence, J.C.H. (1998)Acta. Cryst. A.



10

‘Compton microscope effect’?: image of
intra-unit-cell atom theoretically observed in
compton B(r)-function

TEINI KOBAYASI
College of Medical Sciences, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan

1. Introduction

In the field of Compton scattering the real space function it B(r) for the electron
system is defined by the Fourier inversion of the distribution function of electron
momentum density (EMD) p(q) [1-8]:

p(q) = f B(r)exp(—iq - r)d’r, (1)
B(r)=)_ p(q)exp(iq - 1)/, 2)
q

where Q is the crystal volume. In the independent electron model, the EMD function
for the spin-degenerating material is given by

2
p<q>=2221 / W, (r) exp(—iq - 1) d*r/V/Q) 3)
n k

where W, is the wave function of an electron with wave vector k in the nth occupied
band.

The B(r)-function was originally introduced as a mathematical intermediate in
order to attain high accuracy in calculating EMD or Compton profile J(g.), which is
represented under the impulse approximation as [7, 9]

I =27 [ dac [ da, planana. @

As was pointed out previously [6, 8], in pseudo-potential (PP) approach to these
quantities for valence electron systems of semiconducting materials Si and Ge, it is
far more favorable to adopt the indirect derivation of EMD via B(r) based on Equation
(1), not on Equation (3), both in treatment and in numerical accuracy.

In the course of the PP calculations of these quantities for Si [10] and Ge [11], a
characteristic local pattern which reflects position, shape and size of a specific atom
in the crystal is observed on the contour map of the valence electron B(r)-function.
The atom is one of the two atoms in the unit cell of diamond structure. It seems as
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if the B(r)-function works as a microscope to detect the structural information of the
intra-unit-cell atom in the crystal. The appearance of the atomic pattern has its origin
in the core-orthogonalization (CO) taken explicitly into our PP theory.

In the PP theory, the valence electron wave function is composed of two parts. The
main part is the pseudo-wave function describing a relatively smooth-varying behavior
of the electron. The second part describes a spatially rapid oscillation of the valence
electron near the atomic core. This atomic-electron-like behavior is due to the fact
that, passing the vicinity of an atom, the valence electron recalls its native outermost
atomic orbitals under a relatively stronger atomic potential near the core. Quantum
mechanically the situation corresponds to the fact that the valence electronic state
should be orthogonal to the inner-core electronic states. The second part describes
this CO. The CO terms explicitly contain the information of atomic position and
atomic core orbitals.

The purposes of this paper are to discuss the CO effect on the B(r)-function and to
show that the appearance of the atom-like image can be explained by using the fact that
the B(r)-function can be described in terms of the autocorrelation function among the
electron wave functions over the occupied electronic states. Autocorrelative overlap
between the CO terms explicitly containing the atomic information has a possibility to
enhance a specific atom on the B(r)-function map. The overlap explains why images
of the other distant atoms are not pronounced.

2. Method of calculation

In the PP framework, the valence electron wave function Wi orthogonalized to the
inner core electron wave function ‘F,’s is given by [12]

Wk (r) = Nnk[(bnk(r) - Z(‘Pck \ CbnkN’ck(l‘):l, (5)

where @, is the pseudo-part of the valence electron wave function, ¥, the wave
function of the cth core electronic state and N, the normalization constant. We
assume that W, can be well described by the Bloch sum of the ionic core orbitals ¢.
under the tight-binding-limit approximation as

Wae(r) = Y ¢e(r — Ry — t) explik - (Ryy +t)]/v/sN, (6)
m j=I1

where R,, is the primitive translational vector pointing the mth unit cell in the crystal,
t; the non-primitive one within the unit cell with s atoms (s = 2 for Si and Ge), and N
the total number of unit cells. We introduce plane wave expansions of @, and W:

Qi (r) = Y CHM™(G) explitk + G) - 1]/V/Q, %
G

W (r) = Y b (G) explick + G) - r]/V/Q, )
G
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where G is the reciprocal lattice vector, and

bk (G) = S(G)p.(k + G), )

S(G) = 1/s Zexp(—iG 1)), (10)
=

¢c(q) = \/S/Qo/¢>c(l') exp(—iq - r)d’r, (11)

where Q) , is the unit cell volume. Substitution of Equations (7) and (8) into Equation (5)
yields

Wo(r) = Y Cu(G)explik + G) - r]/vVQ, (12)
G
Cak(G) = N [CRM(G) = 37 D~ 536 bek(G) CHE (G, (13)
c G/’

Substituting Equation (12) into Equation (3) and its result into Equation (2), we will
obtain the key expression for B(r)-function as follows:

B(r) =23 3" |Ck(G) explik + G) - r]/ Q. (14)
n k G

Contribution of the CO terms is defined by
AB(r) = B(r) — BP®®(r), (15)

where Brewo(y) is the B(r)-function of the pseudo-valence electron system described
by the pseudo-wave function with no CO terms.

In order to visualize B(r) on a contour map, let us expand it in terms of the cubic
harmonics as follows [5, 10, 11, 13, 14]:

B(r)=Y_ > Bu(rKj(Qs), (16)
i i

where K/ are the /(angular momentum)th order cubic harmonics and i distinguishes
the different independent harmonics with the same /. For the diamond structure, we
need the harmonics belonging to the I' -representation of the O, group symmetry.
The term of / = 0 in Equation (16) describes the spherically symmetric behavior in
B(r) and the terms with non-zero / describe its anisotropy. The expansion coefficient
functions B, (r) are given by [11]

By(r) = / B(OK[™ (L) dQ:

= @r/i"2Y Y D IC( @ik + GINK[*(Quse)s  (17)
n k G
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where j; is the /th order spherical Bessel function. The EMD can be constructed by
using the corresponding expansion coefficients given by

01 (q) =4n(—i)’/0 Bii(r)ji(gr)r*dr. (18)

3. Numerical calculations

pseudo

The wave function coefficients C,,~ (G)’s have been solved under the 3L + NL(d)
type non-local pps of Heine—Abarenkov form [15]. The potential parameters used
for Si are V,(3) = —0.20532, Vi (8) = 0.03548, V.(11) = 0.07239, A,(Si*) =
—2.0773 in units of Ry and R,(Si*) = 1.25 a.u. and, for Ge, V. (3) = -0.24220,
Vi(8) = 0.02548, V. (11) = 0.05264, A,(Ge*) = 167.53 in units of Ry and
Ry(Ge*) = 0.98 a.u. The Chadi—Cohen's 10-special-point scheme is adopted for
making k-meshes [16]. It contains 256 k-points in the first Brillouin zone. All plane
waves with the reciprocal lattice vector G satisfying |k + G]2 — k < 20(2p/a)* are
taken into the expansion of @, where a is the lattice constant, which are
10.26327 a.u. (Si) and 10.6772 a.u. (Ge). The corresponding vector set includes 137
reciprocal lattice vectors. The core electronic states for Si are originated from the
Is, 2s, 2p ionic states and, for Ge, from the 1s, 2s, 2p, 3s, 3p and 3d states. The
Roothaan—Hartree—Fock wave functions are used for the ionic core electron orbitals
[17]. Because the core orbitals are highly localized, a set of reciprocal lattice vectors
for their Fourier components was forced to include all of the 4621 reciprocal lattice
vectors up to the very large shell of the (13,7,7) (2w/a) group.

In the cubic harmonics expansion of B(r), a full convergence has been attained by
inclusion of / < 22 in which the first 16 harmonics belonging to the I", -representation
are contained [/ = 0,4, 6,8, 10, 12 (i = 1,2),14,16 (i = 1,2),18 (i = 1,2),
20(i=1,2)and 22 (i = 1, 2)].

Contour map calculations in the three-dimensional zone of r are concentrated on the
(110) plane containing the five fundamental directions of [001], [112], [111], [221]
and [110] shown in Figure 1. The cube shown in Figure 1 has 4 times the volume of
the unit cell containing two atoms. The intra-unit-cell atoms are, for example, atoms
A and B in Figure 1, with the bond length of (v/3/4)a.

4. Results

Figure 2 represents the contour behavior of B(r) of Si and its variation along the [111]
direction of bond. In Figure 2(a) the whole B(r) including the spherically symmetric
component is shown and in Figure 2(b) the anisotropic part. The distant parameter
r is in units of a. The contour spacings are 0.1 in (a) and 0.01 in (b) in units of
2/ Q,, respectively. Figure 2(c) shows the variation of B(r) along the [111] direction
and Figure 2(d) of the anisotropic part. Figure 3 represents the corresponding results
for Ge.
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Figure 2. (a) and (b): Contour map of B(r) of Si on the (110) plane. (a) Total B(r) and (b) its anisotropic
part. (c) and (d): Variation along the [111] direction. (c) Total B(r) and (d) its anisotropic part. Arrow
indicates a local pattern around the point (1, 1, 1)a/4.
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Figure3. (a) and (b): Contour map of B(r) of Ge on the (110) plane. (a) Total B(r) and (b) its anisotropic
part. (c) and (d): Variation along the [111] direction. (c) Total B(r) and (d) its anisotropic part. Arrow
indicates a local pattern around the point (1, 1, 1)a/4.

The CO contribution A B(r) of Si is shown in Figure 4. In Figure 4(a) the contour
map ofthe whole A B(r) is drawn and, in Figure 4(b) the anisotropic part. The contour
spacing is 0.005. The variation along the [111] direction of the whole B(r) is shown
in Figure 4(c) and the anisotropic part is in Figure 4(d). Figure 5 represents the
corresponding results for Ge.

Characteristic local pattern is indicated by an arrow in Figures 2-5. The pattern is
discussed in the next section.

5. Discussions

As can be seen from Figure 2(a) for Si and Figure 3(a) for Ge, the B(r)-function
has a large spherically symmetric part around r = (0, 0,0)¢ and it sharply damps
outward. Anisotropic behavior of B(r) is well observed in Figures 2(b) and 3(b). We
notice a local pattern of contour lines around the pointatr = (1, 1, 1)a/4 in the [111]
direction. The pattern is arrowed in Figure 2(b), (d) and Figure 3(b), (d). If we put
the atom A on r = (0, 0, 0)a, the atom B is on r = (1, 1, 1)a/4 by the bond length
(+/3/4)a (= 0.4330a) apart. The local pattern is enhanced on the contour maps of
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Figure 4. (a) and (b): Contour map of the CO contribution AB(r) of Si. (a) Total AB(r) and (b) its
anisotropic part. (c) and (d): Variation along the [111] direction. (c) Total AB(r) and (d) its anisotropic
part. The local pattern in Figure 2 becomes clear as a contour-circle centered on the point (1. 1, 1)a/4.

the CO contribution A B(r). As the arrow indicates in Figure 4(a), (b) and Figure 5(a),
(b), the pattern appears clearly as a small circle centered on the point (1, 1, 1)a/4.
In Figures 4(d) and 5(d) it shows a sharp peak at » = 0.433a. The radius of the
circle is roughly equal to 0.1a, which is nearly equal to the physical core radius R..
Examples of R, are 0.41A = 0.076a for Si* and 0.53A = 0.094a for Ge* [18].
From these observations it can be concluded that we observe a kind of image of one
of the intra-unit-cell atoms as the weak but characteristic local pattern in A B(r) or in
B(r). The position, size and shape of the atom are well reproduced quantitatively in
AB(r). It seems as if the Compton scattering had a microscope effect for detecting a
local structure through a process of J(¢.)’'s = p(q) — B(r), AB(r).

The microscope effect can be explained by using the fact that the B(r)-functionis
equivalently described in terms of the autocorrelation function of the valence electron
wave functions as follows [7]:

B(r)y=2 Z Z/ ‘y;k(l'/)‘l’nk(l'/ +r) dBr//Q. (19)
n k

For the sake of simplicity, we consider an example of a one-dimensional periodic
system of length L with N atoms with one core electronic state per atom. The inter-
atom space is a. The pseudo-valence electron is assumed to be in a single plane wave
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Figure 5. (a) and (b): Contour map of the CO contribution AB(r) of Ge. (a) Total AB(r) and (b) its
anisotropic part. (c) and (d): Variation along the [111] direction. (c) Total AB(r) and (d) its anisotropic
part. The local pattern in Figure 3 becomes clear as a contour-circle centered on the point (1, 1, 1)a/4.

state. The orthogonalized wave function is
Wy (x) = Nk[expﬁkx)/ﬁ —¢* ()Y exp(ikRm)p (x — meﬁ], 20)
where ¢ is a core orbital function satisfying
/¢*(x ~ Rp)p(x — Ry) dx = 8g,, -, - (21)
Here, R,, = ma is the mth atom position, and

¢ (k) =/¢(x)exp(—ikx)dx/\/7 (22)

Ne = 1/[1—[¢(®)*1'*  (normalization constant). (23)

The x-integration is taken over the length L.
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Substituting Equation (20) into the B(x) of the one-dimensional system, we obtain
B =23 [ W0+ dx L
k
=23 Niexp(ikn)[l = 2l¢(k)[*]/L
3
+2) NHSWIP Y explikRy)S &, /L. (24)
k n

Atx = 0, B(0) is equal to the uniform density of electrons. The first term of the right
hand side makes a bulk peak around x = 0. It sharply damps outside, because the
k-integration over the occupied states is similar in structure to the following damping
oscillation function:

G
/ exp(ikx) dk = 2sin(Gx)/x. (25)
-G
The second term in the right hand side of Equation (24) comes from the autocorrelation
containing the CO terms and is of higher order contribution. At the atom position
x = R, it gives the contribution of 2 %; N,f|¢(k)|2 rexp(ikR,)/L to B(x). Due to the
k-integration, it damps rapidly as x increases. The largest value of the second term at
x = 0 is absorbed into the value of the first term at x = 0 to reproduce the uniform
density of electrons [= 2 3 P /L = B(0)]. As a result, the CO contribution is
marked only on the nearest neighbor atom, reflecting its shape and size through the
core orbital ¢ These facts explain why the atom-like pattern appears and why it is
limited on the atom sites close to the origin. If the unit cell contains s atoms, the
8-function in Equation (24) is replaced by /s 37;_; 3% _explik(ti — ;)18 ry+1;~1;-
In this case, therefore, the most pronounced atom-like image can be observed at the
position of the shortest distance among the intra-unit-cell atom—atom distances.

Experimentally, the EMD function p(q) can be reconstructed from a set of Compton
profiles J(g. )’s, and B(r) from theEMD. However, A B(r) is not a direct experimental
product. By combining the experimental B(r) with theoretical Br=® (r), we need
to derive a semiexperimental AB(r). Since the atomic image is very weak, many
problems must be cleared in experimental resolution, in reconstruction (for example,
selection of a set of directions and range of ¢,’s), in various deconvolution procedures
and so on. First of all, high resolution experiments are desirable.

The effect can be applied, for example, to estimate a bond length or atomic spacing,
to observe valence electron spin distribution around a specific atom and to derive
information of the nearest neighbor atom distribution in a disordered system such as
amorphous, under an expansion of the theory.
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