
Theory and Applications of Transport in Porous Media

Jacob Bear

Modeling 
Phenomena 
of Flow and 
Transport in 
Porous Media



Theory and Applications of Transport in Porous
Media

Volume 31

Series editor

S. Majid Hassanizadeh, Department of Earth Sciences, Utrecht University, Utrecht,
The Netherlands

Founding series editor

Jacob Bear



More information about this series at http://www.springer.com/series/6612

http://www.springer.com/series/6612


Jacob Bear

Modeling Phenomena
of Flow and Transport
in Porous Media

123



Jacob Bear
Department of Civil and Environmental
Engineering

Technion—Israel Institute of Technology
Haifa
Israel

ISSN 0924-6118 ISSN 2213-6940 (electronic)
Theory and Applications of Transport in Porous Media
ISBN 978-3-319-72825-4 ISBN 978-3-319-72826-1 (eBook)
https://doi.org/10.1007/978-3-319-72826-1

Library of Congress Control Number: 2017961494

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



To Siona,
Eitan and Jennifer,
Alon, Lior, Yoav, and Ido,
Iris and Moshe,
Sharon, Efrat, and Gilad,
with love.



Preface

The objective of this book is to present and discuss the construction of mathe-
matical models that describe phenomena of flow and transport in porous media as
encountered in many disciplines, e.g., civil and environmental engineering, soil
mechanics, groundwater hydrology, petroleum engineering, drainage and irrigation
in agricultural engineering, reactors in chemical engineering, and geothermal
engineering. The book can also serve as a text for courses on modeling in these
disciplines.

Soil, sand, fissured and fractured rock, cemented sandstone, Karstic limestone,
ceramics, filters, foam rubber, bread, wood, concrete, and kidneys, are just a few
examples of the large variety of natural and man-made porous materials encoun-
tered in these disciplines.

Phenomena of transport of extensive quantities, like mass of fluid phases, mass
of chemical species dissolved in fluid phases, momentum and energy of the solid
matrix and of fluid phases, as well as electric charge, in porous medium domains,
are encountered in the disciplines mentioned above and in others not mentioned.

For example, civil engineers deal with the movement of moisture through con-
crete walls and with water flow through and under hydraulic structures. They also
deal with the movement of heat in structures, and with stresses under building
foundations. Hydrogeologists deal with the flow of water in aquifers. Environmental
engineers deal with the transport of contaminants in the subsurface. Agricultural
engineers deal with the movement of water and solutes in the root zone during
irrigation and drainage. Heat and mass transport in packed bed reactors are
encountered in chemical engineering. Petroleum engineers deal with the flow of
(liquid and gaseous) hydrocarbons and water in petroleum reservoirs. The movement
of fluids and chemical species in lungs and kidneys is studied in biomedical
engineering.

Part of the void space in the subsurface may be occupied by a nonaqueous toxic
liquid phase. Components of such a liquid may dissolve in and move with per-
colating water, thus constituting a source for groundwater contamination. Often,
dissolved chemical species interact with each other and with the soil, especially
with the clay and organic fractions of the latter. Phenomena, such as adsorption, ion
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exchange, dissolution, volatilization, and biological decay, continuously affect the
concentration of chemical constituents in the water. The solid matrix itself may be
porous, with tiny pores. Obviously, modeling all these phenomena is essential in
any effort to understand and combat subsurface contamination, or to produce
hydrocarbons from petroleum reservoirs.

Land subsidence, as a consequence of pumping, or upheaval as a consequence of
fluid injection, are examples involving solid matrix deformation as a result of
changes in pressure distribution in the subsurface. Non-isothermal flow occurs and
the solid matrix may undergo deformation when hot or cold water is injected into
the subsurface for energy storage purposes, when CO2, captured from power plants’
emissions, is injected for disposal in depleted petroleum reservoirs, or in deep
brine-containing formations, and when compressed air or gas is injected into
anticlinal geological formations for short or long term storage purposes.

In all the above examples, extensive quantities (mass, momentum, energy, or
electric charge) are transported through porous material domains. The term trans-
port is used here to describe the movement, storage, and transformation of a
considered extensive quantity.

To investigate all these phenomena, as encountered when solving problems in
practice, mathematical models have to be constructed. By solving the latter, fore-
casts are obtained of the response of the considered system to excitations in the
form of changes in controllable source terms, or in boundary conditions. Pressure,
stress, strain, velocity, solute concentration, temperature, etc., for each phase in the
system, and for the porous medium as a whole, serve as examples of state variables.
In this way, models serve as an essential step in the solution of real-life problems.

In this book, we present and discuss various phenomena of flow, transport, and
transformation that take place in porous medium domains, and the construction of
conceptual and well-posed mathematical models that describe them. The objective
is to develop models of phenomena of transport in porous medium domains that are
based on visualizing such domains as continua.

Analytical solutions of the mathematical models considered here are seldom
possible for problems of practical interest. The usual way of solving models of such
cases is to transform the mathematical model into a numerical one, and then use
computer programs to solve the latter. Thus, the mathematical models developed in
this book should serve as the background to computer codes such as TOUGH
(developed at LBNL), NUFT (developed at LLNL), PFLOTRAN (open source,
multi-institution code), and many other freely available or commercial codes.
Numerical models and computer codes are not discussed in this book.

The book is divided into nine chapters:
Chapter 1 starts with the question “What is a porous medium?”. We then present

the continuum approach, define microscopic, macroscopic, and megascopic levels
of description of porous media and phenomena of transport that take place in them.
The continuum description is obtained by employing the phenomenological
approach, or by implementing an averaging or homogenization approach. We also
mention the molecular (or nano-), microscopic (or pore-), macroscopic (or labo-
ratory, field-), and megascopic (or formation-) scales of description and the issue of
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upscaling. Finally the role, content and construction of transport models are
presented.

Chapter 2 introduces some fundamentals of thermodynamics of phases and
chemical species that are required for the presentation in this book. Among the
concepts defined and discussed are the pressure, density, chemical and other
potentials, Gibbs function, internal energy, enthalpy and capillary pressure.
Equations of state and their role in modeling are discussed.

In Chap. 3, we start by presenting the general balance equation for any extensive
quantity, such as mass momentum and energy, of phases and chemical species
encountered in porous medium domains. The equation is stated at the microscopic
level, i.e., at a point within a fluid phase present in the void space, and at a point in
the solid matrix. We make use of the phenomenological approach to present this
balance equation at the macroscopic level. The macroscopic balance equation can
also be obtained by volume averaging, or by homogenization. These approaches are
briefly described. We then derive equations for mass, momentum and energy.

Chapter 4 is devoted to the macroscopic fluid motion equation, emphasizing its
origin as a momentum balance equation. We start with the momentum balance
equation of a phase. Then, under certain simplifying assumptions, this equation is
reduced to the well known (linear) Darcy’s law. Other forms of the motion equa-
tion, e.g., which take into account also inertial effects, are also presented.

Chapter 5 is devoted to modeling mass transport of a single fluid phase, liquid or
gas, that completely occupies the void space. The core of such model is the mass
balance equation of the phase. The specific storativity is introduced to account for
fluid and solid matrix compressibility. Boundary and initial conditions are pre-
sented, leading to a well-posed flow (= mass transport) model.

In Chap. 6, we construct mass transport models for the case of multiple (i.e., two
or three) fluid phases that occupy the void space simultaneously. Again, the
objective is to lead to complete, well-posed mathematical models, taking into
account the coupling that takes place between the phases.

Chapter 7 is devoted to the transport of chemical species dissolved in fluid phases
that occupy the void space, with or without chemical reactions. The phenomenon of
dispersion is introduced and solute fluxes due to diffusion, dispersion, and advection,
are discussed. Like any other model of transport, the core of the solute transport
model is the balance of mass of the considered chemical species. Various sources
and sinks, as well as chemical reactions and interphase transfers are presented. The
discussion leads to a well-posed model of the solute transport problem.

Chapter 8 deals with non-isothermal situations. This requires the construction of
a model that also describes the transport of energy, or heat, together with appro-
priate initial and boundary conditions.

In Chap. 9, we deal with cases of transport of mass and energy in which the solid
matrix, as the entire porous medium domain, undergoes deformation. Models of
consolidation as a consequence of construction, and models of land subsidence due
to heavy pumping, are developed and presented. Also, the propagation of waves in
a porous medium domain, in which soil deformability plays an essential role, is
briefly discussed.
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Three appendices, written by appropriate experts, are added at the end of the
book. Appendix A, written mainly by Prof. Raphael Semiat (Chemical Engineering,
Technion) demonstrates how the material presented in the book is applied in
Chemical Engineering, especially in the design of reactors. Appendix B, by Dr.
Jonathan Ajo-Franklin and Dr. Marco Voltolini (LBNL) deals with modeling at the
microscopic level, while Appendix C, by Dr. David Trebotich (LBNL), discusses
the advent of supercomputing.

The book is written as a text suitable for graduate and upper level undergraduate
students, and for practitioners. Although one of the main objectives of this book is
to construct mathematical models, the amount of mathematical knowledge required
is kept minimal. The emphasis is on understanding the physical and chemical
phenomena that take place in porous medium domains. Mathematics is used only as
a compact language for expressing these phenomena.

Much of the material included in this book has been developed in the period
2009–2017, during which I have been an active researcher in three projects:
MUSTANG. PANACEA and TRUST, conducted and funded by the European
Commission within the 7th program of the European Union Framework Programme
for Research and Innovation. I wish to acknowledge the support I received from
these three projects which dealt with CO2 disposal in deep saline water containing
geological formations. Obviously, an important part of these research programs,
conducted by a team of experts and researchers from more than 20 universities and
industries, has been the development and extensive use of models that describe the
transport of mass–energy and momentum, as well as chemical reactions, encoun-
tered in such projects. These models can be used for predicting the spreading and
trapping of CO2 injected into geological formations. Many of these developments
are incorporated in this book.

Finally, I wish to thank Prof. Dr. S. Majid Hassanizadeh (Utrecht University,
NL), Prof. George J. Moridis (LBNL), Prof. Brian Berkowitz (Weizmann Institute
of Science, Israel), and Prof. Henry Power (Nottingham University, UK) for their
important suggestions and contributions. Special thanks are due to Dr. Peter
Lichtner of OFM Research for his expert advice and for devoting many days to
review parts of the book. Thanks are also due to Dr-Ing. Patrick Kurzeja (TU
Dortmund), Dr. Hui-Hai Liu (ARAMCO), Dr. Ehsan Nikooee (Shiraz University),
Yin Xiaoguang (Utrecht University), Dr. Vahid Joekar-Niasar (University of
Manchester), Dr. Chaozong Qin (Eindhoven Technical University), Prof. Alex
Cheng (University of Mississippi), Prof. Alex Furman (IIT, Israel), and Prof. Dr.
Ing. Jennifer Niessner (Heilbronn University) for their important comments. Thanks
are also due to Diana Swantek (LBNL) for her devoted and meticulous work on
some of the figures presented in this book.

Haifa, Israel Jacob Bear
2017
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Symbols1

a Dispersivity of a porous medium (fourth rank tensor); (dims. L; u: m)
aijkl Component of a; (dims: L; u: m).
aL, aT Longitudinal and transversal dispersivities (isotropic medium), respec-

tively (dims: L; u: m).
BE
fi

Balance operator for an extensive quantity E in an fi-phase,
ð� @hfiefi =@tþr � hfiðefiVfi þ JEdif þ JEdisÞÞ:.

c�fi Mass concentration of a �-species in an fi-phase (dims: ML−3; u:
kg/m3).

cp; cv Specific heat capacity at constant pressure and at constant volume,
resp. (dims: L2T�2H�1; u: J/kg K)

Cp;Cv Heat capacity at constant pressure and constant volume, resp. (dims:
ML2T�2H�1; u: J/K).

d Size of void space. Grain diameter (dims: L; u: m).
Da Darcy number (Dimensionless).
Dm Damköhler number (Dimensionless).
D�

fi Coefficient of mass dispersion of a �-species in an fi-phase (dims:
L2T�1; u: m2/s).

D�
fi Coefficient of molecular diffusion of a �-species in an fi-phase (dims:

L2T�1; u: m2/s).
D��

fi (= D�
fiT

�) Coefficient of molecular diffusion of a �-species in an fi-
phase in a porous medium (dims: L2T�1; u: m2/s).

e Specific value of E (= E per unit mass).
e0 Density of E (= E per unit volume).

11 Dimensions (indicated by dims.) are indicated by M, L, T, H, for mass, length, time and
temperature, resp. (2) All units (indicated by u:) are in the SI System. Basic units: m (for length
in meters), s (for time in seconds), kg (for mass in kilograms), mol (for quantity of substance in
moles), N (for force in Newtons), Pa (for pressure, in Pascals) J (for energy, work, in Joules), K
(for temperature, H, in Kelvin degrees), (3) Note: 1N = 1kg ms�2; 1Pa = 1N m�2 ; 1J = 1N m.
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�e Molar density of E (= E per mole).
e
0�
fi

Density of E�
fi (= E of � in fi, per unit volume of fi-phase).

e�fi Specific value of E�
fi (= E of � in fi, per unit mass of fi-phase).

�e Void ratio (= Vov=Vos).
E An extensive quantity. Young’s modulus (dims: ML�1T�2; u: Pa).
E�
fi An extensive quantity, E, of a �-species in an fi-phase.

E Energy (dims: ML2T�2; u: J).
f Efi!fl

Rate of transfer of E from an fi-phase to a fl-phase, across their
common microscopic interface, per unit volume of porous medium.

f Fugacity (dims: ML�1T�2; u: Pa).
F Concentration of a species adsorbed on a solid (= m�

s =ms) (dims:
dimensionless; u: kg/kg ); Force per unit mass of porous medium (dims:
LT�2; u: N/kg ).

Fo Fourier number (Dimensionless).
Fr Froude number (Dimensionless).
F Force per unit volume (dims: ML�2T�2; u: N/m3 ).
g Gravity acceleration (dims: L2T�1; u: m2/s). Specific Gibbs free energy

(dims: L2T�2; u: J/kg).
g: Molar Gibbs free energy (dims: L2T�2; u: J/mole.
G Shear modulus of solid (dims: ML�1 T�2; u: Pa).
G Gibbs free energy (dims: ML2T�2; u: J).
h Piezometric head (dims: L; u: m). Specific enthalpy (dims: L2T�2; u:

J/kg).
h0 Enthalpy density (dims: ML�1T�2; u: J/m3).
h: Molar enthalpy (dims: L2T�2; u: J/mole).
hr Relative humidity.
H Henry’s coefficient (dims: L�1T�2; u: Pa/mole).
H Enthalpy (dims: ML2T�2; u: J).
jEfi;y Microscopic flux of E in an fi-phase (E per unit area of fi-phase per unit

time), y ¼ adv for advection, y ¼ dif for diffusion.
JEfi;y Macroscopic flux of E in an fi-phase (E per unit area of fi-phase in the

porous medium cross-section, per unit time), y ¼ adv for advection,
y ¼ dif for diffusion, y ¼ dis for dispersion.

J Hydraulic gradient. Jacobian (dimensionless).
k Permeability (second rank tensor) (dims: L2; u: m2, or darcy).
kfi Effective permeability of an fi-phase (dims: L2; u: m2, or darcy).
k�fi Degradation rate constant of a �-species in an fi-phase.
K Hydraulic conductivity (second rank tensor)(dims: LT�1; u: m/s).
Kd Partitioning coefficient (dims: ML�3; u: kg m�3).
Keq Equilibrium coefficient.
Ksp Solubility product.
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Kn Knudsen number (Dimensionless).
L� Characteristic size of domain (dims: L; u: m).
L Latent heat (dims: L2T�2; u: J/kg).
m Mass (dims: M; u: kg).
m�

fi Mass of a �-species in an fi-phase (dims: M; u: kg).
m̂�

fi Molality of a �-species in an fi-phase (u: moles/kg).
M� Molecular mass of a �-species (dimensionless atomic mass units).
Mfi Momentum of an fi-phase (dims: MLT�1; u: kg m/s).
n�fi Number of moles of �-species in an fi-phase (Dimensionless); u: Pa).
p Pressure (dims: ML�1T�2;u: Pa).
pc Capillary pressure, macroscopic (dims: ML�1T�2; u: Pa).
pfi Pressure in an fi-phase (dims: ML�1T�2; u: Pa).
p�fi Partial pressure of a �-species in an fi-phase (dims: ML�1T�2; u: Pa).
pv Average void space pressure. Vapor pressure (dims: ML�1T�2; u: Pa).
Pe Peclet number (Dimensionless).
qfi Specific discharge (of volume) of an fi-phase (= hfiVfi) (= discharge of

fi-phase per unit area of porous medium) (dims: LT�1; u: m/s).
qfir Specific discharge of an fi-phase, relative to the solid matrix

(¼ hfiðV� VsÞ), (dims: LT�1; u: m/s).
qEfi Specific discharge of E in an fi-phase (i.e., E per unit area of p.m).
q�fi Specific mass discharge, i.e., mass of � per unit area of porous medium,

per unit time in fi-phase (dims: ML�2T�1; u: kg/m2s).
Q Fluid discharge (dims: L3T�1; u: m3/s). Heat, or thermal energy (dims:

ML2T�2; u: J).
r Radial distance (dims: L; u: m).
R Universal gas constant (= 8.3145 J/mol K).
R�
fi Solubility of a �-species in an fi-phase.

Rd , Rv Partitioning coefficient.
Rr Reaction rate.
Re Reynolds number (Dimensionless).
s0 Entropy density (dims: ML�1T�2 H�1; u: J/m3K).
s: Molar entropy (dims: ML�1T�2 H�1; u: J/mole K).
s Specific entropy (dims: L2T�2 H�1; u: J/kg K).
S Aquifer storativity (dims: dimensionless).
So Specific storativity of a porous medium (dims: L�1: u: m�1).
Sy Specific yield (dimensionless).
Sr Specific retention (dimensionless).
Sfi Saturation of an fi-phase (dimensionless).
Sfir Irreducible, or residual saturation of an fi-phase (dimensionless).
Swe Effective water saturation.
So; Sofi Surfaces, of areas, So and Sofi, respectively.
St Strouhal number (dimensionless).
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S Entropy (dims: ML2T�2 H�1: u: J/K).
t Time (dims: T; u: s).
T Temperature (dims: H; u: K).
T Aquifer transmissivity (second rank tensor) (dims: L2T�1; u: m2s�1).
T� Tortuosity of void space or of phase in it (dimensionless).
ufi Velocity of an interphase surface (dims: LT�1,; u: m/s).
u0 Internal energy density (dims: ML�1T�2; u: J/m3).
u Specific internal energy (dims: L2T�2; u: J/kg).
u: Molar internal energy (dims: L�1T�2; u: J/mole).
U Internal energy (dims: ML2T�2; u: J).
v Specific volume (= 1=q).
V Mass weighted velocity of a fluid phase (dims: LT�1).
Vfi Velocity of an fi-phase, (dims: LT�1; u: m/s).
VE�

fi Velocity of an E�
fi-continuum.

V�
fi Velocity of a �-species in an fi-phase.

V Volume (dims: L3; u: m3).
ws, w Solid matrix displacement vector (dims: L; u: m).
W� Molar mass of a �-species (u: kg/mole).
x Horizontal coordinate (dims: L; u: m).
x; x0 Position vectors (dims: L; u: m).
x
� Deviation (¼ x� xo) (dims: L; u: m).
xo Position vector of the centroid of an REV (dims: L; u: m).
X�
fi Mole fraction of a �-species in an fi-phase (dimensionless).

y Horizontal coordinate (dims: L; u: m).
z Vertical coordinate (positive upward) (dims: L; u: m).
z� Electrical charge of ion of � species (dims: L; u: m).
Z Compressibility factor (dimensionless).

Greek Letters
fi Symbol/subscript for an fi-phase.
fiT Coefficient of linear thermal expansion (dims: H�1; u: K�1 ).
fiB Biot Coefficient (dimensionless).
fipm Coefficient of porous medium compressibility (dims: M�1LT2;

u: Pa�1).
fiHE Transfer coefficient of E.
flp, flT Fluid compressibility (= bulk modulus) at constant pressure. and

constant T , respectively (dims: M�1L1T2; u: Pa�1).
flT Coefficient of thermal expansion (dims: H�1, u: K�1).
� Symbol/superscript denoting a �-species.
�ðxÞ Characteristic function of the void space.
�fifl Surface tension between fi- and fl-phases (dims: M T�2; u: Pa m).
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CE�
fi Rate of production of E�

fi, per unit mass of an fi-phase.
d Unit tensor; Kronecker delta. Components dij.
D Characteristic distance from solid to fluid in REV (dims: L; u: m).
Dfi Hydraulic radius of an fi-phase (dims: L. u: m).
e Strain tensor (Components eij) (dimensionless).
g�fi Molar �-species concentration in an fi-phase,; i.e., per unit volume

(dims: moles L�3; u: moles/m3).
gfi Molar fi-phase concentration (dims: moles L�3; u: moles/m3).
hLG Contact angle (between liquid and gas).
hfi Volumetric fraction of an fi-phase (� Vfi=V ¼ /Sfi).
hfir Irreducible, or residual volumetric fraction of an fi-phase.
k Coefficient of radioactive decay (dims: T�1; u: 1/s). Coefficient

of thermal conductivity (dims: MLT�3 H�1; u: J m�1 s�1 K�1).
k00s Lamé constant of an elastic solid matrix (dims: ML�1T�2; u: Pa).
KH Cofficient of thermal conductivity of porous medium; (dims: ML T�3

H�1u: J m�1s�1 K�1).
l00s Lamè constant of an elastic solid matrix ((dims: ML�1T�2; u: Pa)).
lfi Dynamic viscosity of an fi-fluid phase (dims: ML�1T�1; u: Pa s).
l�fi Chemical potential of a �-species of an fi-phase.
”00s Poisson ratio.
”fi Kinematic viscosity of an fi-phase (dims: L2T�1; u: m2s�1).
”� Stoichiometric coefficients of a �-species.
” Unit outward normal vector on a boundary surface.
n Position vector of a point at the microscopic level.
qb Bulk mass density of the solid matrix ð¼ ð1� /ÞqsÞ; (dims: ML�3;

u: kg/m3).
qfi Mass density of an fi-phase (dims: ML�3; u: kg/m3).
q�fi Mass density of a �-species in an fi-phase (dims: ML�3; u: kg/m3).
r Stress tensor (dims: ML�1T�2; u: Pa).
r

0
s Effective stress (� r0

s) (dims: ML�1T�2; u: Pa).
Rfifl Specific area of Sfifl (dims: L�1; u: m�1).
¿ Shear stress. Deviatoric stress (dims: ML�1T�2; u: Pa).
/ Porosity (dimensionless).
/

0 Angle of internal friction.
v� Stoichiometric coefficients of � species.
w Suction, or matric suction (dims: L; u: m).
Wg, Wm Gravity and matric potentials, respectively.
Wp, Wsol Pressure and solute (osmotic) potentials, respectively.
Wsw, WT Soil-water and thermal potentials, respectively.
Wtotal Total potential.
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xfi Mass fraction of an fi-phase (dimensionless).
x�

fi Mass fraction of a �-species in an fi-phase (dimensionless).
X Porous medium domain (bounded by surface. @X).

Subscripts
a Air.
adv Advective.
c Characteristic value.
dif Diffusive.
dis Dispersive.
g Gas.
f Fluid.
i Component of a vector. Intermediate wetting fluid.
im Immobile phase.
l Liquid phase.
n Nonwetting fluid phase.
o Organic liquid. Oil.
pm Porous medium.
s Solid phase, or solid matrix. Component of a vector in 1s direction.
v Void space.
w Water. Wetting phase.
fi fi -phase.
fl fl -phase. Also, a symbol for all non- fi phases.

Superscripts
a Air, as a species.
H Heat.
T Transpose of a matrix.
v Vapor.
w Water (H2O), as a component.
� � -species.

Special Symbols

ð::Þ Average, volume average, or phase average of ð::Þ ( = 1
VO

R
VO
ð::Þ dV).
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Chapter 1
Porous Media

The objective of this book is to present and discuss the construction of conceptual
and well-posed mathematical models that describe phenomena of flow and trans-
port in porous medium domains. In Chemical Engineering, such domain is called
“packed bed”. Until we define a porous medium more precisely in Sect. 1.1.2, we
shall understand a porous medium domain as a spatial domain occupied partly by
a solid matrix, with the remaining part, referred to as pore or void space, occupied
by one or more fluid phases. Porous medium domains are encountered in a large
number of industrial and engineering disciplines, e.g., paper and diaper industries,
petroleum reservoir engineering, hydrogeology, chemical engineering, and biomed-
ical engineering. In all these disciplines, thermodynamic extensive quantities, e.g.,
mass, momentum and energy, are transported through porous medium domains, and
decisions, associated with such quantities, have to be made concerning activities and
operations in such domains. The transport of such extensive quantities, will be con-
sidered. We shall use the symbol E to denote the amount of a considered extensive
quantity.

It is important to emphasize from the outset that inmany cases of practical interest,
we have to deal with coupled processes, i.e., the simultaneous transport of more that
one extensive quantity, taking into account the interaction among such quantities.
An example is fluid mass transport under non-isothermal conditions, where mass
and energy are transported simultaneously. Fluid momentum and mass transport
are always coupled, but, as we shall see throughout this book, fluid’s momentum
transport is usually expressed as a flux equation. Other examples are coupling of
flow and deformation, solute transport under non-isothermal conditions, etc. We
note that The term ‘processes’ is often used to describe phenomena that occur within
the framework of transport of an extensive quantity. Examples are interphase mass,
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2 1 Porous Media

energy or momentum transfer, and phase change. In fact, as we shall see throughout
this book, every term that appears in the balance equation of an extensive quantity
expresses a process.

Obviously, we do not intend to present any new ideas and concepts in Thermo-
dynamics, nor in Continuum Mechanics. Our intention is to show and discuss how
these theories and their mathematical representation can be applied to modelling
phenomena of transport of extensive quantities in the special domain referred to as
‘porous medium domain’.

The term mathematical model is usually (and here) used for the tool that uses
mathematics to describe phenomena of flow and transport in a specified real domain.
Its usefulness to decision makers stems from its ability to effectively and econom-
ically predict the future behavior in a considered domain, in response to planned
activities. Thus, a decision maker can use a model of a considered porous medium
system to predict the consequences of implementing contemplated activities, and
the relative importance of the factors, parameters and conditions affecting them.
By comparing the consequences of implementing various decision alternatives, the
decision maker can select the best one, according to some preferred criteria.

The main objective of this first chapter is to introduce some basic concepts, pri-
marily:

• The idea of treating a spatial heterogeneous domain as a continuum.
• The idea of treating an intensive quantity within a phase that occupies a specified
spatial domain also as a continuum.

• Microscopic versus macroscopic level continua and approaches for obtaining
macroscopic level models.

• The idea of treating multiple extensive quantities within a phase as overlapping
continua.

• The mathematical model as a tool for describing phenomena of flow and transport
of various extensive quantities through such domains.

In addition, we shall, briefly, also introduce a specific type of porous medium–
the fractured rock. Many oil and gas bearing geological formations are made up of
fractured rocks.

1.1 The Continuum Approach to Porous Media

A thermodynamical extensive quantity, E , is a physical quantity, whose value at
every instant is proportional to the mass or volume of the spatial domain it occupies.
Such a quantity is additive, i.e., we can determine its value in a given spatial domain
by summing up the values over its constituent subdomains. In this book, the main
considered extensive quantities are the mass, linear momentum, enthalpy and energy
of a fluid (liquid or gas) phase, and a solid phase, as well as of a chemical species
within such phases. The terms ‘phase’ and ‘chemical species’ will be defined in
Sect. 1.1.1.
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At every point within a spatial domain regarded as continuum for a considered
extensive quantity, wemay define a corresponding intensive quantity, e, as the exten-
sive quantity per unit mass, or e′ as the extensive quantity per unit volume, of the
considered phase. Obviously, intensive quantities are non-additive. We shall also use
the symbol ě for molar density of E , i.e., E per mole.

By phenomena of flow and transport, we mean the movement, accumulation and
transformation of extensive quantities within a specified domain. In this book, we
discuss the flow and transport of such extensive quantities asmass, linearmomentum,
enthalpy and energy, all of a phase within a porous medium domain.

Actually, the word ‘transport’ includes also the notion of flow. Nevertheless, as
is common among most of those dealing with this subject, we shall often use the
more commonly used expression ‘flow and transport’, whenever we consider the
movement, transformation and accumulation of an extensive quantity transported by
a moving fluid. However, we shall continue to use ‘flow’, whenever we focus only
on the movement of fluid mass, whether density and temperature are constant or not.

1.1.1 Phases, Chemical Species and Components

A phase, from the Greek word ϕασις , meaning ‘appearance’, is the spatial domain
occupied by amaterial such that a single set of equations of state, e.g., the relationship
between density, composition, pressure, and temperature, describes the behavior at
all points within that domain. In other words, the physical properties are continuous
over the domain occupied by a phase.

Another, perhaps less rigorous, definition of a phase is a portion of space that is
separated from other such portions by a definite physical boundary (= interface, or
interphase boundary). According to the second definition, many globules of oil, each
surrounded by water, are considered separate phases, unless we declare them as a
single multiply connected phase domain. There can be only one gaseous phase in a
system, as all gaseous phases are completely miscible and do not maintain a distinct
interface between them. We may, however, have more than one fluid phase in the
void space, e.g., oil and water, or water and air. Such fluid phases are often referred
to as immiscible phases, or fluids. Actually, all phases are miscible to some extent,
but as long as a visible interface separates adjacent fluids, during the time frame of
the observation, they are, usually, referred to as ‘immiscible fluids’.

With the above in mind, we may now introduce the term, or concept, of a con-
tinuum. A spatial domain is regarded as a continuum with respect to a considered
property, say mass density of a certain substance, if a value of that property can be
assigned to every point within that domain. In what follows, we shall elaborate on
this term, or concept.

A chemical species is an identifiable chemical compound (atom, molecule, or ion)
that participates as an entity, whether as a reactant, or as a product, in a chemical
reaction that takes place within a phase. A chemical species is distinguishable by
its chemical composition, and by the phase in which it is present. Thus, the term
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‘chemical species’, or just ‘species’ refers to the actual form in which a molecule,
ion, or a group of molecules is present in a phase. For example, iodine in an aqueous
solution may exist in the form of one or more species, e.g., I2, I−, HIO, IO−, IO−

3 .
Oxygen may serve as another example. It may be present in the air as O2(g), and
in water as dissolved O2(aq), or as the ion O−2

(aq). Similarly, in the strict chemical
sense, the same compound present in different fluid phases is regarded as different
species. However, the same compound in solution, say in an aqueous liquid and as
an adsorbate on a solid are considered the same species, but distributed over the two
phases with different concentrations, say, (in molar fractions) XO2

aq and XO2
s .

A phase may be composed of a large number of different chemical species, or just
of a single species. For example, water, as a phase, is made up of hydrogen ions, H+,
and hydroxyl ones, OH−. An organic phase (e.g., oil in a petroleum reservoir) may
involve over 100 different chemical species. An oil phase may also contain large
amounts of dissolved species, e.g., in the form of gaseous hydrocarbons, such as
CH4. The gaseous phase ‘air’ contains the species O2, N2, CO2, and some additional
species.

An important concept is that of a component. Under conditions of chemical equi-
librium, the minimum number of independent chemical species required to com-
pletely describe the composition of a given phase may be much smaller than the
number of species present in a solution. We use the term component, or chemical
component, to denote a set of chemical species that belongs to the smallest set of
species that is required to completely define the chemical composition of a phase
under equilibrium conditions. While interacting, a component contains the same
group of chemical species throughout a considered process. Thus, CO2, H2O, CH4

are components, but an aqueous phase is not a component because it may contain
H2O, and various dissolved gases and other dissolved species. Oil is generally not a
component; however, quite often reservoir engineers do consider a mixture of several
hydrocarbons with similar properties as a component. Air may be considered as a
component if we assume that the O2 to N2 ratio remains change. However, if wish to
track O2 and N2 (e.g., because O2 solubility in H2O is much higher than that of N2),
we cannot use air as a component; but have to track these two species separately.

As another example, consider liquidwater in contactwith its vapour.Water is com-
posed of oxygen and hydrogen ions, but these two species are always present in fixed
and definite proportions. Therefore, the system is described by a single component
only-‘water’, or H2O. Once we know the concentration of this component, we also
know the concentrations of the species comprising it. When chemical equilibrium is
not assumed, all species are defined to be components. In an unsaturated (air-water)
flow problem, ‘water’ may be regarded as a component that always contains the
species H+ and OH−, while air, containing N2 and O2, can also be considered as a
component. Various chemical species may still be present in the water and in the air
(and even as adsorbed on the solid). More on phases, components and species can
be found in Sect. 3.8.

If, within a closed container, we have liquid water, and by changing temperature
and/or pressure, the liquid water evaporates, or freezes, we have two or three phases

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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of H2O: liquid, vapour and ice. However, we still have one component–water, but
that component is present in 1, 2, or 3 phases (see details in Sect. 2.3.1A).

The term component is often used also in numerical models and computer codes
of reactive transport, to indicate a set of one or more species that always appear
as a group in a considered problem with equilibrium reactions, maintaining fixed
concentration proportions among them.

Note that we are using the term ‘component’ also for the components of a vector,
e.g., Vi , or of a tensor, σi j , with i, j indicating coordinates.

As background leading to the continuum approach, let us introduce here one
more concept, namely mixture theory. We start by considering a spatial domain, �,
occupied by a fluid, say, a gaseous phase. Let this gas be a mixture of a number
of gases, say gases A, B and C. In a liquid phase, we would have considered three
chemical species A, B, C. Every A molecule has its properties: its mass, energy, etc.
However, for obvious reasons, we cannot model and predict the behavior of these
individual molecules. Instead, we consider a point inside � and a small spatial (say,
spherical) domain,�� around it.Wemake the latter sufficiently large such that it will
always contain a sufficiently large number of molecules, to the extent that although
molecules continuously move in and out of the considered small volume �� around
the point, their average properties, e.g., mass per unit volume, will always remain
practically unchanged. These averages are then assigned as the description of the
averaged behavior of gas A at the point. Repeating this process for all points within
�, we can declare � as a continuum with respect to the mass density of A, ρA: to
every point within � we can assign a value of ρA(x, t).

For the same �-domain, we can now repeat the above procedure for B- and for
C-molecules. The same domain will then be regarded as continua also for ρB(x, t)
and for ρC(x, t). All three continua are overlapping. In fact, the same domain is also
a continuum for ρ�(= ρA + ρB + ρC). This is the essence of mixture theory. We have
used the density as an example, but the concept is applicable also to other intensive
quantities of matter.

Next, consider a domain � of volume V composed of a very large number of
irregularly shaped and randomly distributed sub-domains, ��, with V� � V.
Some of these sub-domains are occupied by an A-phase, e.g., a solid (� = s), while
the others by a B-phase, e.g., a liquid (� = �). Each �� is a continuum of the phase
occupying it, say with respect to the mass density. Again, since (or if)we do not know
the boundaries between the subdomains, and we still want to investigate and predict
the behavior of the phases within �, we follow the mixture theory ideas presented
above. At any point within �, we select a representative (say, spherical) volume Vo,
such thatV� � Vo � V.Within each such representative volume, we can determine
the mass density of the phases, ρ̄A and ρ̄B , as well as ρ̄ ‘for all phases at the point’.
In this way, for the same �-domain, we obtain three overlapping continua, one for
the A-phase, with a density ρ̄A(x, t), the second for ρ̄B(x, t), and the third one for
ρ̄(x, t).

Of course, we could have presented the concept of mixture theory also through
other densities, e.g., momentum density (= momentum per unit mass of substance
≡ phase velocity).

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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“There is only one reality” is a very trivial statement. Reality is usually too com-
plicated, and often involves parts and details that are unknown to us. Therefore, we
are forced to describe reality “approximately”. Since there are many ways to approx-
imate the same reality, phenomena that occur in it can also be described in many
ways. Usually, the selection depends on the objective of that description. Is the color
of the solidmatrix in a porousmedium domain of any importance? is the shape of any
individual sand grain of any significance? Obviously, the amount of details included
in the description depends on the objective of the latter.

The concept of scale (as in “‘Consider a phenomenon described at a certain
scale...”’) will be defined and discussed in Sect. 1.4. For the time being, we suggest
that a spatial domain, occupied only by a fluid, or only by a solid, will be regarded
as a continuum at the microscopic level, or at the microscopic (or micro-) scale of
description, if values of kinematical and dynamical state variables (e.g., velocity,
density, pressure, temperature), as well as values of phase properties (e.g., viscosity,
or thermal conductivity) can be assigned to every point within that domain. These
values are obtained, by averaging the behavior at the molecular level, or molecular
scale, over aMicroscopic Representative Elementary Volume, denoted as μREV (=
microREV), around every point within the domain occupied by the phase. In prac-
tice, however, they are determined experimentally. The term ‘pore-scale model’ is
often used for this level of modeling.

The size of the μREV of a phase must be such that it includes a sufficiently large
number of molecules. This means that the μREVmust be much larger than themean
free path of the molecules. This will ensure that meaningful phase thermodynamic
properties are obtained at every point. Altogether, except for extreme cases, e.g., at
the front of a shock wave, or in a rarefied gas in a relatively narrow domain (such
as nano-pores in shales), a μREV can be defined for any considered phase domain.
For a multi-species fluid, we require that a μREV exists for every chemical species,
and that a common μREV can be found for all of them. An upper limit for the size
of an μREV is that it must be much smaller than the domain of interest occupied
by the phase. Thus, a ‘fluid phase’ and a ‘solid phase’ are continuum concepts,
obtained from the molecular level by volume averaging, at least conceptually, over
a μREV at every point within the phase domain. Bear (1972, p. 18) mentions also
a Representative Elementary Time interval (RET) that is needed (conceptually) to
overcome the random movement of molecules, leading to a fluid as a continuum.

1.1.2 The Porous Medium

We distinguish between three types of porous materials (Fig. 1.1):

• Naturally occurring porous media are those encountered as geological forma-
tions below ground surface. They are of interest, for example, to hydrogeologists
and (petroleum) reservoir engineers. Thus, soil is a porous medium and so are
geological formations composed, for example, of sand, fissured rock, fractured
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porous rock, cemented sandstone, and Karstic limestone. Such formations serve
as aquifers and as gas and petroleum reservoirs.
When considering a large domain within such a (natural) formation, we usually
find it to be highly heterogeneous and often also anisotropic (see Sect. 1.1.7C, D).

• Manufactured porous media, e.g., paper, ceramics, foam rubber, bread, and
filters. Usually, they are homogeneous, and they may be anisotropic, with hetero-
geneity and anisotropy being controlled at desired degrees.

• Organic porous media, e.g., bones, lungs and kidneys.

In all three types, but in particular inmanufactured porousmedia, althoughwemay
also think of a thin slice of a consolidated sandstone, we may encounter a situation
to which we refer as a thin porous medium (see discussion following (1.1.28)).

What is common to all these examples? In fact, we may now ask: “what is the
definition of a porous medium”?

Intuitively, considering these examples, a porous medium domain is a spa-
tial domain that always contains two parts: one part is occupied by a (possibly
deformable) solid phase. As already introduced in Sect. 1.1.2, this part is called the
solid matrix. The remaining part is a void space (i.e., void of solids) that is occupied
by one or more fluid phases–gas, or liquid.

The term solidhere should be construed to represent awider spectrum thanwhat its
strict definition describes. Thus, in addition, say, to a crystalline substance, materials
like manufactured polymers, rubber, and organic materials, such as the tissue matrix
of lungs and kidneys, are also regarded here as ‘solid’. In all cases considered in this
book, the solid portion of the porousmediumdomain is assumed to be interconnected.
It is then also referred to as ‘solid matrix’. It may be deformable. Actually, a fluidized
bed (see Appendix A)may also be regarded as a porous medium continuum, although
the solid particles do not constitute an interconnected domain.

The void space, occupied by one or more fluids, need not be interconnected.
However, when considering fluid flow, an implicit assumption (actually, a necessity)
is that at least part of the void space must be interconnected, with portions of the
interconnected void space on the domain’s boundary surface. However, heat can be
transported through both the solid matrix and the fluid phase(s) occupying the void
space, even if the latter is not continuous. In Sect. 1.1.7A, we shall define porosity
and introduce the concept of ‘dead-end pores’.

Unless otherwise stated, in this book, we shall assume that both the solid matrix
and the void space are continuous within the considered porous medium domain,
with portions on the external bounding surface of the latter.

Another essential feature of a porous medium is that both the solid matrix and the
void space are distributed all over the considered (porous medium) domain, albeit,
not necessarily uniformly. Figure1.2 shows two cross-sections through a spatial
domain. In Fig. 1.2b, the cross-section is not of a porous medium domain, as the
solid matrix in it is not distributed, more or less, over the entire domain, nor is
the void space. Obviously, the above statements should be understood as ‘for the
purpose of the discussion presented here’. So far, we have required (1) that a porous
medium should contain a solid matrix and a void space sub-domain, and (2) that both
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(a) Ceramics

(b) Bioclastic limestone

(c) High porosity sandstone

(d) Franciscan fractured mudstone

(e) Domogene sandstone

(f) Bone

Fig. 1.1 Typical geological, industrial and biological materials (Courtesy of Dr. George J.Moridis,
LBNL (a, d–f), and Dr. Michel Séranne, Univ. of Montpellier (b, c))
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(a) (b)

Fig. 1.2 Definition of a domain: a a porous medium, and b not a porous medium

sub-domains should be distributed throughout the considered domain. To examine
whether condition (2) is satisfied for a given domain,we use the concept of a ‘sample’.
Given a spatial solid matrix plus void space domain, by taking samples of some
constant volume at many arbitrarily selected points within this domain, we require
that both a solid matrix and a void space be present in all samples. Obviously, we
note that when a sample is sufficiently small, it contains only a solid, or only a void
space.

Altogether, at this point, we can summarize that a porous medium is a spatial
domain that (1) always contains a persistent solid portion and a void space (meaning
‘void of solid’), and (2) that it should be possible to find for that domain a sample,
referred to as a Representative Elementary Volume (abbreviated REV), of a size such
that wherever we place it within the domain, it will always contain both a solid
matrix and a void space.

The issue of the appropriate size of the REV will be discussed in Sect. 1.1.6.
In what follows, we shall explain why we need to introduce the concept of an

REV for a given porous medium domain, and how do we make use of the REV in
developing continuum models of phenomena of transport.

Themain objective of this book is (a) to developmodels of phenomena of transport
in porousmediumdomains that are based on envisioning the latter as continua, and (b)
to describe the phenomena in such domains by a modified form of Continuum (fluid
and solid) Mechanics. Here and elsewhere in this book. “phenomena of transport”
include also chemical reactions and phase transformation.

1.1.3 The Porous Medium Domain as a Continuum

Now that we have a definition for a porous medium, consider the flow and trans-
port of an extensive quantity of a fluid phase that occupies the entire void space of
a porous medium domain, or part of it. In Sect. 1.1.1, we have defined the spatial
domain occupied by a fluid phase as a continuum. To describe the flow and trans-
port of an extensive quantity through such a continuum, we construct and solve the
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mathematical model that describes this transport. Throughout this book, following
the ideas underlying continuum mechanics, we shall stipulate that the core of any
(mathematical) model that describes a transport problem is the balance equation of
that extensive quantity. This balance equation takes the form of either a partial dif-
ferential equation, or an integro-differential equation, that describes the local (i.e.,
at a point) balance of the considered extensive quantity. Some researchers use the
term ‘conservation law’ instead of ‘balance equation’. Here we consider a phase
continuum at the microscopic level. Later we shall show that the above statement is
valid also for a phase continuum at the macroscopic level.

We refer to a model that describes what happens at a point within a fluid (or solid)
phase continuum, as a model at the microscopic level, or microscopic scale. At this
level, a considered fluid phase domain is bounded by solid-fluid interfaces and by
surfaces on the external boundary of the considered domain. When the void space is
occupied by more than one fluid phase, then the domain occupied by a specific fluid
will also be partly bounded by fluid–fluid interfaces.

For example, formass transport of a fluid phase in the void space, i.e., E = m, with
V, p and ρ denoting the velocity (of themass) pressure andmass density, respectively,
the model consists of a momentum balance equation and a mass balance one, both
for the fluid phase:

∂ρV
∂t

= −∇·(ρVV − τ ) + ∇ p − F, F = −ρg∇z, (1.1.1)

∂ρ

∂t
= −∇·ρV, (1.1.2)

with : ρ = ρ(p), τ = μ[∇V + (∇V)T ], (1.1.3)

to be discussed later in the book. Note that the above equations are written in vector
notation. In this book, we shall use this kind of notation as well as indicial notation,
interchangeably. Both equations have to be satisfied at all points in the fluid phase.
Furthermore, we require information (1) on the fluid’s constitutive relationship ρ =
ρ(p), (2) on the relationship between shear stress and velocity, τ = τ (V), which
depends on the fluid’s nature, and (3) on the body force,F, which, usually, is assumed
to be due only to gravity.

In addition, to obtain a completemodel for a specific case,wehave to specify initial
and boundary conditions, for example, no flow normal to the solid grain surfaces,
i.e., V·ν = 0 on the fluid–solid interface, and specified conditions on the external
boundaries of the considered flow domain. Obviously, it is not possible to specify
these conditions unless the shape of the fluid–solid boundary is known. Do we know
the shape of this boundary for a given porous medium domain? In two or three
phase flow, each phase is surrounded partly by an inter-phase boundary surface and
conditions on it are also required. Again, even when conditions on such interfaces
are known, the shape and location of these fluid–fluid interfaces are not known. The
conclusion is that we cannot write and solve well posed ‘pore-scale models’.
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Until recently, the above conclusion was obvious, and this led to the introduc-
tion of the ‘macroscopic’ level of description of phenomena of transport in porous
medium domains, as at that level, information on microscopic solid-fluid and fluid–
fluid surfaces is not required. In fact, as will be shown later, this information is
replaced by various porous medium ‘coefficients’. This approach will be introduced
below; it underlies the presentation throughout this book.

However, in recent years, with the advancement in both imaging and computing
power, modeling of phenomena of transport at the microscopic level has been made
possible, albeit, for domains of a rather limited size. Nowadays, it is actually possible
to see and measure the microscopic geometry of interphase boundaries, so that prob-
lems can be set-up at the microscopic level, actually observing what happens inside
individual pores and grains, and solved, i.e., determining values of state variables,
when the system is excited by known boundary conditions. Some comments on this
world of imaging, describing porous material at the microscopic level, and solving
transport problems at that level, using the power of computing, is presented in the
Sect. 1.2. More on this subject is presented in Appendix B.

Altogether, with the exception of fundamental studies of micro-flow analysis
discussed above (which seek answers to fundamental physics), in almost all cases
of practical interest, microscopic interphase boundaries cannot be specified and
problems cannot be solved at the microscopic level. This is particularly true for
geological formations for which we do not have information on the geometry of
the void-solid boundaries. In fact, we do not have such information even for a small
core, or sand column.Under such conditions,writing completemathematical flowand
transportmodels at themicroscopic level is not possible.Weneed another approach—
the macroscopic one—to be introduced below. This book is devoted to modeling at
the macroscopic level.

At the macroscopic level, sometimes referred to as macro-scale, a given porous
medium domain as a whole, involving a solid matrix and a void space, occupied by
one or more fluids, is regarded as a single continuum. This means that to every point
in such domain, values can be assigned to variables of state and to properties that
correspond to any phase present in the domain. Furthermore, each phase may also be
regarded as a continuum that occupies the entire domain, albeit at various volumetric
fractions (to be defined below).

The REV, introduced in Sect. 1.1.2 (and to be further discussed in Sect. 1.1.4),
can now be used to transform the microscopic model of a given domain into a macro-
scopic one. In the description of phenomena at the latter level, every point within the
considered porous medium domain is regarded as associated with, and represented
by, the centroid of an REV the size of which has been selected as appropriate for that
considered domain. We can then average the behavior of the phases (and of chemi-
cal species) within every REV, e.g., the pressure, solute concentration, temperature,
velocity, or their time and space derivatives, to obtain an averaged, or macroscopic
description of phenomena within the porous medium domain. The average values
are assigned to the center of the REV. By the process of averaging, information on
the local variations, i.e., at the microscopic scale, is lost. We recall that, actually, the
microscopic level information is not available. The advantage of the macroscopic
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(= averaged) level of description is that it does not require information on the geom-
etry of the microscopic interphase surfaces. Another important feature is that this
is also the level at which we measure, or monitor, relevant variables of state, like
through an instrument window. In fact, this is the only practical approach to obtain
measured values that are required in such studies. The ‘price’ for achieving this
goal is that various coefficients are created in the process of averaging. They reflect,
at the macroscopic level, the effects of the microscopic interphase (solid-fluid and
fluid–fluid) boundaries, recalling that, anyway, we do not have the detailed informa-
tion about the geometry of such boundaries. Thus, by this process of averaging, we
obtain a model that circumvents the need to know the microscopic geometry of the
fluid–solid boundary, and, in two-phase flow, also that of the fluid–fluid interfaces.
Depending on how the averaging is performed, it is possible to obtain information
on the structure and composition of these coefficients, i.e., on their tensorial nature
and on their dependence on various geometrical features of the void space, or phase
configuration. Unless the void-space has a known well-defined geometry, a situation
whichmay exist in the case of amanufactured porousmedium, but is rare, and usually
does not exist in natural geological media, the numerical values of these coefficients
cannot be determined as part of the averaging process; they must be determined
experimentally.

To summarize, by averaging the microscopic description of phenomena over an
REV, we obtain a macroscopic description in which the entire multi-phase domain
behaves as a continuum. This means that macroscopic values of state variables of
any of the extensive quantities of any of the phases present in the domain, as well
as coefficients associated with each of the phases and their spatial distribution, can
be assigned to every point within this continuum. In fact, we represent a considered
multiphase domain, in which each phase occupies only part of the domain in some
random spatial distribution, as multiple overlapping continua. To every point within
such continuum we assign properties, variable of state, etc., for each of the phases
present at that point in the domain. Phases may exchange extensive quantities at
a point, although they belong to different continua. As we shall see, this approach
of describing the behavior of multiple phases occupying a spatial domain as occur-
ring in multiple interacting overlapping continua, requires that certain conditions be
satisfied. We shall present and discuss these conditions. As we shall show, the con-
tinuum approach will be shown to be valid not only to granular-type porous medium
domains, but also to fractured rock domains.

Although we have referred to ‘volume (or mass) averaging over an REV’ as
the technique for passing from the microscopic level to the macroscopic one, in
Sect. 1.4.3 we shall mention homogenization as an additional technique for achieving
this goal. Some authors (e.g., Blunt 2001; Raoof et al. 2010; Raoof andHassanizadeh
2012; and Joekar-Niasar et al. 2008, 2010) use pore-network models as the starting
point for developing continuum models for transport in porous media.

The phenomenological approach employed throughout this book, is another
option that does not involve formal REV-averaging (see Sect. 1.4.4).

So far, we have shown that in order to overcome the difficulties stemming from
the lack of information on solid-void space boundaries within a porous medium
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Fig. 1.3 Nomenclature for
averaging over an REV
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domain, we have used the concepts of an REV and ‘averaging over an REV’ in order
to pass from the microscopic level of problem description to the macroscopic one.
The latter may still be heterogeneous with respect to macro-level properties such as
porosity and permeability.Wemay refer to the process as upscaling, in this case, from
the microscopic scale of description to the macroscopic one. In fact, we have also
mentioned the molecular level. By averaging at that level, we get the microscopic
level at which we have, for example, fluid and solid phases as continua. In Sect. 1.4,
we shall discuss the subject of upscaling in more detail.

The definition of volume averaging is presented in the next subsection.

1.1.4 Volume and Mass Averages

Figure1.3 shows an REV, occupied by a solid phase and a void space (occupied by
a number of fluid phases). We use subscript α (= 1, 2, 3), to denote each of the
fluid phases. Each α-phase occupies at time t a domain �oα of volume Voα within
the REV domain �o, of volume Vo. Note that we are using subscripts s and v to
denote, respectively, the solid phase and the void space, occupied by fluid phases.
The porosity, φ, and the volumetric fraction of the α-phase, θα, within the REV, both
assigned to the latter’s centroid, x, are defined by:

θα(x, t) = Voα(x, t)

Vo(x, t)
, φ = Vov

Vo
, Vo = Vos + Vov, (1.1.4)

with ∑

(α)

Voα = Vov,
∑

(α)

θα = φ. (1.1.5)

In Chemical Engineering, the term “voidage” is often used for porosity.
Let e′

α(ξ, t)(= dEα/dVα) denote the (volumetric) density of some extensive
quantity E of an α-phase (= amount of E per unit phase volume) at the microscopic
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point, ξ. We use here the position vector ξ to emphasize that the field, e.g., e′
α(ξ, t),

is at the microscopic level. For certain extensive quantities, the monitored value is
not the density, e′, of E , but the specific value, e, of E , i.e., E per unit mass of the
phase, with

e′
α = ρ eα. (1.1.6)

For example, for mass of a phase, the specific value is eα = 1, and e′
α is the mass

density, ρ. Another example, is V, which is specific momentum, i.e., momentum per
unit mass It is assumed that both eα and e′ are finite, continuous and differentiable
everywhere within the sub-domain occupied by the α-phase.

Three kinds of volumetric averages of e′
α can be defined:

A. Intrinsic Phase Average

The (volumetric) intrinsic phase average of e′
α, taken over the α-phase in an �o-

domain:

e′
α

α
(x, t) = 1

Voα(x, t)

∫

�oα(x,t)
e′
α(ξ, t; x) dV(ξ), (1.1.7)

where the x in (ξ, t; x) indicates that we consider points ξ belonging to an REV
centered at x; dV denotes a volume element of Voα(x, t).

It is possible to replace the above equation by:

e′
α

α
(x, t) = 1

Voα(x, t)

∫

�o(x,t)
e′
α(ξ, t; x) γα(ξ)dV(ξ), (1.1.8)

where γα(ξ) is the indicator function for an α-phase that occupies part of the REV,
with s denoting the solid phase, and

γα(ξ) =
{
1, for ξ within �α,

0, for ξ within � − �α.
(1.1.9)

Equations (1.1.7) and (1.1.8) express the same intrinsic phase average.
The average e′

α

α
is a function of the macroscopic coordinates, x. The symbol α

next to the bar in (..)
α
indicates that this average is over Voα.

B. Volumetric Phase Average

The volumetric phase average of e′
α,

e′
α(x, t) = 1

Vo(x, t)

∫

�oα(x,t)
e′
α(ξ, t; x) dV(ξ). (1.1.10)

Here, the total amount of the extensive quantity of the α-phase is averaged over the
entire sub-domain, �o, of the REV. Since we deal with a property of the α-phase
only, the integrations in both (1.1.7) and (1.1.10) are over the sub-domain �oα only.

From (1.1.7) and (1.1.10), with θα defined by (1.1.4), it follows that the two kinds
of averages are related to each other by:
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e′
α = θαe′

α

α
. (1.1.11)

C. Volume Average

When E is an extensive quantity that is defined for all α-phases present in Vo, e.g.,
mass, we define the volume average of E by:

e′ = 1

Vo

∫

�o

e′ dV = 1

Vo

∑

(α)

∫

�oα

e′
α dV

= 1

Vo

∑

(α)

Voαe′
α

α =
∑

(α)

θαe′
α

α =
∑

(α)

e′
α. (1.1.12)

where
∫
�oα

e′
αdVα represents the total amount of E within �oα.

The quantity:
e̊′

α(ξ, t; x) ≡ e′
α(ξ, t; x) − e′

α

α
(x, t) (1.1.13)

defines the deviation of e′
α at a point ξ within the REV centered at x from its intrinsic

phase average over that REV.
By taking the volumetric intrinsic phase average of (1.1.13), we obtain:

e̊′
α

α = 0. (1.1.14)

D. Intrinsic Mass Average

Let eα(¸, t) denote the specific value of Eα (i.e., the quantity of E of an α-phase per
unitmass of that phase), withmα = ρα

α
Voα, and dmα = ραdVα. The intrinsic mass

average, ẽα
α of eα may then be defined by:

ẽα
α(x, t) = 1

moα

∫

moα

eα dm = 1

ρα
α
Voα

∫

�oα

eα(ξ, t)ρα(ξ, t) dV(ξ; x)

= ραeα
α

ρα
α = e′

α

α
(x, t)

ρα
α(x, t)

, ⇒ ρα
αẽα

α = e′
α

α = ραeα
α, (1.1.15)

where ρα
α is the intrinsic phase average mass density of the α-phase.

Similar to (1.1.13), the quantity:

ěα(ξ, t; x) ≡ eα(ξ, t; x) − ẽα
α(x, t), ˜̌eα

α = 0, (1.1.16)

defines the deviation of eα at a point ξ within the REV centered at x from its intrinsic
mass average over that REV. As an example, consider the case of momentum, E =
Mα = mαVα ⇒ Vα = Mα/mα = eα, and Ṽα

α
is the intrinsic mass averaged

velocity of theα-phase. In this book, when considering phenomena of transport at the
macroscopic level, and it is obvious that a considered equation is at the macroscopic
level, we shall use the symbol V to denote the mass averaged velocity.
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It is important to reiterate that when performing either of the two kinds of aver-
aging, leading to (eα)

α
, or ẽα

α, the integrand e′
αdV, or eαdm, has to be physically

meaningful and the respective average has to be measurable. Thus, for E = mα and
fluid velocity, Vα, the integral

∫
�

ρVdV is the total momentum in �, while
∫
�

ρdV

is the total mass in the same volume. The, the ratio, which is the momentum per unit
mass is also the mass averaged velocity.

E. A Comment on Monitoring Averaged Values

The kind of average to be used in each case, i.e., intrinsic phase volume or mass
average, or volume phase average, depends on the way the averaged, or up-scaled,
quantity is actually measured, or monitored. It is of interest to note that the two
averages are equal when the mass density is constant. For example, if at a point in a
porous medium domain we take a liquid sample out of a porous medium domain, in
order to determine its solute concentration, the latter is an intrinsic phase average,
as it is taken over a volume of liquid phase. It is also possible to take a certain
mass of the exiting fluid, and determine the average mass flux. We can then consider
the volume and determine the density of the exiting liquid. The sample serves as
an ‘instrument window’. In fact the above statement on monitoring applies to any
upscaling technique. If values at the upscaled level cannot be monitored, there is no
way to verify the model!

The term ‘flux’ has been used above to express fluid volume passing through a
unit area normal to the flow direction, per unit time. Throughout the book, we shall
refer also to ‘mass flux’, ‘momentum flux’ and ‘energy flux’, as the quantity of the
considered extensive quantity per unit area per unit time.

In the discussion above, we have been referring to an intensive quantity, eα, of an
α-phase and to its volume or mass average. In practice, as presented in Chaps. 5–9,
we shall refer to the specific cases of phase density (ρα), concentration (e.g., cα),
fluid velocity (Vα), and temperature (Tα). A comment on the physicalmeaning of the
averages defined above, especially velocity and pressure, is appropriate. Concerning
fluid (and solid) velocity, we actually never measure velocity directly, as ‘distance
per unit time’, certainly not at the macroscopic level. In fact, in view of fluid com-
pressibility, even the definition of velocity as ‘fluid volume per unit porous medium
area, per unit time’ is meaningless, unless associated with the fluid’s density. What
we often measure at an outlet (from a porous medium domain), is the mass of fluid
leaving the domain per unit area per unit time, namely ‘fluid mass flux’, meaning
‘mass per unit area per unit time’. If we also know the fluid’s (instantaneous) density,
then what we really infer to is the fluid’s mass averaged velocity.

A fundamental thermodynamic variable like fluid density and fluid temperature
is the pressure. All three are attributes of a given mass of fluid. A comment on
the terms/definitions of ‘mechanical pressure’ and ‘thermodynamic pressure’ is pre-
sented in Sect. 2.2.2

It is obvious that pressure propagates very quickly, so that there cannot be large
differences in pressure at points within an REV, and the notion of an average is
reasonable. However, when we consider solute concentration, or temperature, the
smoothing out is by the diffusive fluxes of solute mass and of heat; this is a much

http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_9
http://dx.doi.org/10.1007/978-3-319-72826-1_2


1.1 The Continuum Approach to Porous Media 17

slower process. For the case of solute concentration, the Peclet number, defined by
(7.2.39) as the ratio of advective to diffusive transfers will dictate the relationship
between these two fluxes. For large Pe, the effect of advection dominates and we
may encounter big differences in concentration within the REV. We shall return to
this subject when considering higher level averaging in Sect. 7.2.4A.

Finally, a comment on the relationship between the size of the measuring device
and themonitored averaged, or upscaled value, especially in very heterogeneous (e.g.,
geological) formations is appropriate.We have already emphasized thatwhen upscal-
ing is performed by averaging over an REV, e.g., from microscopic to macroscopic
levels, the monitoring device should have the size of an REV at the macroscopic
level. Then, we can compare observed and predicted values of variables of state. The
observed, or monitored, result depends also on the size of the measuring device. We
usually monitor, say concentration and temperature, in an observation well, but the
actual device may bemuch smaller and we have to make sure that what wemonitor is
the averaged value that appears in the model, or sufficiently close to it. Concentration
and temperature, for example, vary continuously, and, in principle, also within the
well, and we assume that the device exhibits the average over the observation well
and the latter represents the value at the point in the domain. This value is to be
compared with the (averaged) value appearing in the model.

Upscaling, especially in connection with solute transport in large geological for-
mations, is performed by other techniques, e.g., CTRW (Sect. 7.6.2B), we usually
use the same monitoring device (i.e., observation well). Can such observation be
compared with what is predicted (e.g., pressure, temperature or concentration) by
the model?

F. Measuring Mass in Moles

So far, we have referred to mass of a fluid or of a solid as measured, say, in kg.
However, when dealing with the transport of possibly reacting chemical species
dissolved in a fluid phase, or constituting part of a solid, the mass of the these species
is usually measured in moles. The averaged fluid velocity can then be based on the
molar fractions of the various species.

1.1.5 Areal Average

So far, in this section, we have discussed volume and mass averages of intensive
quantities that are additive over volume. However, certain quantities, like stress and
flux, are additive only over area. This means that for such quantities, averages per
unit area have to be defined.

Let Ao and Aoα denote the area of an arbitrarily oriented planar Representative
Elementary Area (Abbrev. REA), and the α-area, within it, respectively, centered at
some point, x, within a porous medium domain. We can define two kinds of areal
averages for any component of a tensorial α-phase quantity, πα associated with area
(e.g., flux, stress), such that π · dAα is physically meaningful and additive over Aoα.

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
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The first is:

π̂α
α(x, t) = 1

Aoα(x, t)

∫

Aoα(x)

πα(ξ, t; x)·dA(ξ; x), (1.1.17)

called the intrinsic phase areal average of πα, taken over the area Aoα. The second
is:

π̂α(x, t) = 1

Ao(x, t)

∫

Aoα(x)

πα(ξ, t; x)·dA(ξ; x), (1.1.18)

called the areal average of πα, taken over the area Ao.
The two averages are related to each other through the areal fraction θA

α (=
Aoα/Ao), i.e.,

π̂α = θA
α π̂α

α, (1.1.19)

where the areas Ao and Aoα are facing some direction denoted by the unit vector
ν(= Ao/|Ao|).

In ContinuumMechanics, the product ρV is the linear momentum density of mass.
By analogy, the product e′

αVEα may be regarded as the linear momentum density of
an extensive quantity E of an α-phase. Hence, e′

αVEαdVα is additive over volume,
and taking a volume average of it is permissible.

However, e′
αVEα also represents an E-flux (= amount of E passing through a unit

area of the α-phase, normal to VEα , per unit time). This means that e′
αVEα ·dAα is

additive over area. Hence, taking an average of e′
αVEα over the area Aoα of an REA

(which is normal to the direction of VEα ) is also permissible.
In the spirit of assigning the REV average to a point, taking an areal average at a

point does not really represent what happens in cross sections of the REV centered
at the point. As an example, we consider the flux of Eα at a point, denoted as
jEα ≡ eαVEα .

Let us examine the conditions under which, at a given point x, the areal average
of the flux, ̂(eαVEα)

∣∣
x ≡ ĵEα

∣∣
x, and the volume average, eαVEα

∣∣
x, of the momentum,

are identical.
For a point x, which is the centroid of Vo(x, t), the volume average of eαV

Eα

1 is
given by:

eαV
Eα

1 (x, t) = 1

Vo(x, t)

∫

�oα(x,t)
(eαV

Eα

1 )
∣∣
x′,t dVα. (1.1.20)

Averaging of a flux over a single cross-section at a point does not really represent
what happens at the point. Instead we have to average over a number of parallel
cross sections around the point. Accordingly, let us choose an REV in the form of
a cylinder of constant cross-sectional area, Ao, equal to the REA normal to the unit
vector 1x1 in the direction of the x1-axis, and length so = (Vo/A0) in the direction
of 1x1. We may rewrite (1.1.20) in the form:
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j Eα

1 (x, t) = 1

so

∫ x1+ so
2 ,x2,x3

x1− so
2 ,x2,x3

dx ′
1
1

Ao

∫

Aoα(x ′
1,x2,x3)

j Eα

1

∣∣∣∣
x ′
1,x

′
2,x

′
3

dx ′
2 dx

′
3. (1.1.21)

With:

ĵ Eα

1

∣∣
x ′
1,x2,x3

= 1

Ao

∫

Aoα(x ′
1,x2,x3)

j Eα

1

∣∣∣∣
x ′
1,x

′
2,x

′
3

dx ′
2 dx

′
3, (1.1.22)

we obtain from (1.1.21):

j Eα

1

∣∣∣∣
x

= 1

so

∫ x1+ so
2 ,x2,x3

x1− so
2 ,x2,x3

̂j t Eα

1 (x ′
1, x2, x3) dx

′
1 = 〈

ĵ Eα

1

〉so
∣∣∣∣
x
, (1.1.23)

where � �so indicates an average over the length so. In words, (1.1.23) states that the
volume average at x is equal to the average over the length so of the areal averages,
each taken over a cross-section, Ao.

By developing the areal average ĵ Eα

1

∣∣
x ′
1,x2,x3

into a power series about the point x,
Bear and Bachmat (1991, p. 35) show that:

� ĵ Eα

1 �so
∣∣∣∣
x

= ĵ Eα

1

∣∣∣∣
x
, (1.1.24)

up to an accuracy of O((�/L∗)2). They proceed to show that for so � L∗:

j Eα

1

α
∣∣∣∣
x

= ĵ Eα

1

α
∣∣∣∣
x
. (1.1.25)

This means that subject to all the constraints imposed on the sizes of the REV and
REA, the volumetric intrinsic phase average and the areal intrinsic phase average
of jt Eα(≡ e′

αVEα) at a point are identical.
In principle, we should also make a distinction between the porosity, φ (= volume

of void space per unit volume of porous medium), and the areal porosity, φA (= area
of void in a planar cross-section, per unit area of cross section), and in the case of
multiple phases between θα and θA

α, with φA = φA (ν1, ν2, ν3), in which ν1, ν2, ν3
denote the components of the unit vector, ν, normal to the considered cross-section.
However, in view of the above developments, it is usually assumed that φ ≈ φA. This
is the approach undertaken in this book.

1.1.6 Size of REV

TheREV is an essential concept in the definition of a porousmedium (Sect. 1.1.2). For
a considered porous medium domain, the size of the REV is also needed in order to
determine the size of the ‘instrument window’ required for observing, or monitoring,
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the (macroscopic) values of state variables that appear in our predictive macroscopic
models. Such measurements should provide the values of these variables at any
monitored point, i.e., the average value taken over the REV assigned to its center.
These are the values of state variables that appear in the mathematical models. For
example, in order to determine the concentration of a chemical species at a point in a
porousmedium domain, we should extract a volume of fluidwhich is equal to the size
of the void space within the REV and determine the concentration of the considered
species in that volume. The resulting value is assigned to the point. However, often,
themeasuring device (e.g., awell for observing pressure, a thermistor for determining
temperature, or an electric charge for determining the salinity of water in a geological
formation) is much smaller or much larger than the size of the REV. The use of such
measuring devices is justified only when we may assume that pressure, temperature
and concentration vary (practically) linearly across the REV, so that practically, the
device, albeit small, provides the sought average value. Otherwise, we have to be
careful in the interpretation of what we monitor.

For a considered porous medium, the size of the REV is selected such that:

• The average value of any relevant geometrical characteristic of the microstructure
of the void space, at any point in a porous medium, will be a unique function of
the location of that point only.

• The measured averaged value should be independent of small variations in the
size of the REV.

This means that the average value at a point should remain, more or less, constant
over a range of REV volumes that corresponds to the range of variation in the sample
size, or in the instrument that monitors that average.

Note that we have emphasized above that the selected REV should be common
to all relevant geometrical characteristics of the microscopic structure of the void
space. The reason is that in the passage from the microscopic to the macroscopic
levels, the (unknown) detailed geometry of the solid-void interface is replaced by
various (geometrical) coefficients (e.g., porosity, hydraulic radius of void space,
specific solid-void area, permeability, tortuosity, fluid saturation, etc.) We have to
ensure that the value of each of these properties at a point in the porous medium
domain is independent of the selected REV size.

In the case of thin porousmedia, e.g., a sheet of paper, one dimension of theREV is
the thickness of the porousmediumdomain,while the aforementioned considerations
apply to the other two dimensions of the REV.

Denoting the characteristic size of an REV by �, e.g., diameter of a spherical REV,
and the length characterizing the microscopic structure of the void space by d (say,
the typical size of grain or pore, or the hydraulic radius of the void space), a necessary
condition for obtaining non-random estimates of the geometrical characteristics of
the void space at any macroscopic point within a porous medium domain is:

� � d, (1.1.26)
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say, � > 10d. Dagan (1989) estimated the radius of a spherical domain�min as about
50 times the pore radius.

Another condition that sets an upper limit to the size of the REV is:

� � �max, (1.1.27)

where �max is the distance beyondwhich the spatial distribution of the relevantmacro-
scopic coefficients that characterize the configuration of the void space (e.g., porosity,
permeability) deviates from the linear one by not more than some acceptable value
(Bear and Bachmat 1991, p. 22). The selection of the size of the REV is also con-
strained by the requirement that:

� � L , (1.1.28)

where L is a characteristic length of the porous medium domain. For example,
� < L/100.

To understand the above requirement, we recall that within half an REV next to a
boundary surface, the domain cannot be regarded as a continuum. The selection of
100 is, of course, arbitrary, just to say ‘many times the size of an REV’. The objective
is to minimize the effect of the fact that very close to the domain’s boundary, the
behavior in the domain is far from the macroscopic averaged description.

A comment on the above constraint is appropriate here. Suppose, for a considered
granular porous domain (as an example), condition (1.1.28) is satisfied in only two
orthogonal space directions, say x1 and x2, but not in the third, x3-direction, which
is mutually orthogonal to x1 and x2. Can an REV be determined? Can such domain
be regarded and treated as a continuum? Indeed, intuitively, if in the x3-direction
the domain’s thickness is only a few grains’ thick, the domain cannot be treated
as a 3-d continuum. However, if the thickness is 10 or more ‘grain sizes’, but still
less that the ‘100’ figure mentioned above, it can be treated as a two-dimensional
continuum. We shall refer to the latter case as a thin porous medium domain, which
can be treated as a two-dimensional continuum. One can write transport models for
such continuum. However, we shall not discuss thin porous media in this book (see
Qin and Hassanizadeh 2013, 2015).

To gain a better understanding of the above discussion of an REV, let us follow
Bear andBachmat (1991, pp. 16–27) and consider a porousmediumdomain, focusing
first on porosity, φ, as a typical porous medium property. Let ξ denote a point within
a small porous medium domain, �, of volume V centered at x. The �-domain is
composed of two portions (see Fig. 1.3): the subdomain of void space,�v , of volume
Vv , and that of the solid matrix, �s , of volume Vs (≡ V − Vv). We make use of the
indicator function, γ, defined in (1.1.9). This γ-function includes all the information
on the void-solid distribution within a porous medium domain. Here,

γ(ξ) =
{
1, for ξ within �ov,

0, for ξ within � − �ov
(1.1.29)

is the indicator function of the void-space.
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An average, γ(x), may be defined by:

γ(x) = 1

Vo

∫

�o(x)

γ(ξ; x) d V = 1

Vo

∫

�ov(x)

d V = Vv

V

∣∣∣∣
x

, (1.1.30)

with a deviation from the average, γ̊(ξ; x), defined as:

γ̊(ξ; x) = γ(ξ; x) − γ(x), (1.1.31)

where the ξ in γ̊(ξ; x) and in γ(ξ; x) indicates that these values correspond to a point
ξ located within the domain � centered at x. From (1.1.30) and (1.1.31), and for an
�o that denotes an REV domain, it follows that:

γ(x) = Vov

Vo

∣∣∣∣
x

≡ φ(x) and γ̊(x) = 0. (1.1.32)

In this way, the porosity, φ, has been defined as the volume average of the indica-
tor function γ(ξ, x). Recall that while the property γ(ξ, x) is a microscopic level
property, the porosity, φ(x), is a macroscopic one.

Let us now introduce the concept of ergodicity of a stationary random function
(e.g., Yaglom 1965). A stationary random function is said to be ergodic, if any
statistical characteristic of the function, taken over a sufficiently large domain of its
argument in a single realization, is an unbiased and consistent estimate of the same
characteristic over the entire set of possible realizations of the function. An estimate
of a population parameter is said to be unbiased if its expected value is equal to
the value of the parameter. An estimate of a parameter is said to be consistent if it
approaches, probabilistically, the value of the parameter as the sample size increases.

If the characteristic function γ(ξ, x) defined above possesses the ergodic property
within the domain �o, of volume Vo, centered at xo, then:

γ(xo) ≡ 1

Vo(xo)

∫

�o(xo)
γ(ξ; xo)dV = φ(xo). (1.1.33)

The spatial distribution of the void space within �o can be described by various
geometrical characteristics. One family of such characteristics is composed of spa-
tial averages of products of γ-values taken at different points within the REV. For
example:

γ̊(x)γ̊(x + h)

∣∣∣∣
xo,Vo,h

≡ 1

Vo

∫

�o(xo)
[γ(x) − γ(xo)][γ(x + h) − γ(xo + h)] dV

= 1

Vo

∫

�o(xo)
γ(x)γ(x + h) dV − φ(xo, Vo)φ(xo + h, Vo), (1.1.34)
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where h is an oriented distance between any two points within the REV. The aver-
age γ̊(x)γ̊(x + h) characterizes the configuration of the void space within �o. A
particular case of this average is obtained for h(≡ |h|) = 0. Then, (1.1.34) reduces
to:

γ̊2
∣∣
xo

= 1

�o

∫

�o(xo)
[γ2(x) − (γ)2(xo)] dV = φ(1 − φ)

∣∣
xo,Vo

. (1.1.35)

This parameter represents the spread of the void space about its average density
expressed by φ.

We have still to define the size of the ‘porous medium sample’ that should be
selected in order to represent the porosity at a point in a porous medium domain. In
other words, ‘how large should theVo-volume be so that φwill represent the porosity
at a point that serves as the centroid of an REV’?

As emphasized earlier, the selection of the REV size, Vo, should be such that not
only the porosity, but the values of all relevant averaged geometrical characteristics
of themicrostructure of the porousmedium at any point in the porousmedium domain
should be single valued functions of the location of that point and of time only,
independent of the size of the REV. This requirement can be expressed by:

∂φ(xo, V)

∂V

∣∣∣∣
V=Vo

≡ ∂γ(xo, V)

∂V

∣∣∣∣
V=V0

= 0, (1.1.36)

and:
∂γ̊(x)γ̊(x + h)

∣∣
xo,V,h

∂V

∣∣∣∣
V=Vo

= 0. (1.1.37)

In principle, for every point xo within a given domain, �, one can visual-
ize an experiment consisting of a succession of gradually increasing volumes
V1 < V2 < V3, . . ., all centered at xo, and a concurrent determination of γ(≡ φ) and
γ̊(x)γ̊(x + h) for each such volume, hoping that a volume V = Vo, which satisfies
both (1.1.36) and (1.1.37) will be found. After repeating this procedure for determin-
ing Vo at all points x ∈ �, one can replace the actual porous medium within �, by
a model of a fictitious continuum, provided Vo is uniform throughout �. Obviously,
this is an impossible task, since it is impractical to observe all points within �.

Instead, let us try to arrive at the size of an REV from its relationships with
measurable macroscopic parameters of the microscopic configuration of the void
space (Bachmat and Bear, 1986). To this end, we make use of the indicator function,
γ(x) which is a random function of position, i.e., at any point xp in a porous medium
domain,�, the characteristic function, γ(xp), is a random variablewhich may attain
the values zero or one. We define the probabilities θ and (1 − θ) as:

P(γ
∣∣
xp

= 1) = θ
∣∣
xp

, P(γ|xp = 0) = 1 − θ
∣∣
xp

.
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Traversing once the domain �, we obtain a non-random function γ(1)(x). We call
γ(1)(x) a realization of γ(x). Repeating this process N times, we obtain additional
realizations, γ(2)(x), γ(3)(x), . . . , γ(N )(x).

We shall refer to γ(x) as a stationary random function in � if:

(a) The expected value of γ, given x, is such that:

E[γ(x)] = θ = const.

(b) The covariance of γ-values at any two points, xp and xq , is such that

Cov[γ(xp), γ(xq)] ≡ E{[γ(xp) − θ][γ(xq) − θ]} = f (hpq),

for all x ∈ �, where hpq = xp − xq is the oriented distance between points xp

and xq .
(c) Var[γ] = E

{[γ(x) − θ]2} = f (0) = const. This is a consequence of (b).

A domain, �, for which (a) and (b) hold, is referred to as macroscopically homo-
geneous with respect to γ(x).

We shall refer to � as isotropic with respect to γ(x), if:

Covγ[hpq ] = Covγ[h], h = |hpq |,

i.e., the correlation function between the values of γ at different points within �

depends only on the distance, h, between them, and not on their relative orientation.
Our next objective is to establish a relationship between moments of the indicator

function γ(x) and the spatial averages of γ over an REV. To this end, we employ the
notion of ergodicity of a stationary random function (Yaglom 1965) defined earlier
in this subsection. If the function γ(x) possesses the ergodic property within Vo

centered at xo, then from (1.1.33) we have:

γ(xo) ≡ 1

Vo

∫

�o

γ(x)dV = φ(xo)  E(γ
∣∣
xo

) = θ
∣∣
xo

(1.1.38)

γ̊(x)γ̊(x + h)

∣∣∣∣
Vo,h

= 1

Vo

∫

�o

γ̊(x)γ̊(x + h) dV

 Covγ(h)
∣∣
xo

= Varγ(xo)τγ(h)

= φ(1 − φ)τγ(h), (1.1.39)

whereCovγ(h)
∣∣
xo
is the covariance of γ in�o for points spaced an oriented distanceh

apart, Varγ(xo) = φ(1−φ), the symbol τγ(h) denotes the correlation coefficient at xo,
between values of γ at points spaced an oriented distance h apart and φ(= Vov/Vo)

is the porosity at xo, where Vov denotes the volume of void space within �o.
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In fact, the volume Vo of an REV should be sufficiently large, so that the volu-
metric averages, e.g., those appearing in (1.1.38) and (1.1.39), can be considered as
satisfactory estimates of the relevant population parameters of the void space config-
uration at xo, i.e., estimates which are free of errors caused by the size of the sample
and its random choice.

In the present case, the sufficient condition for (1.1.38) and (1.1.39) to hold is that
| ∫ ∞

o τγ(h) dh| < ∞. By definition,

τγ(0) = 1.

As shown by Debye et al. (1957), for an isotropic porous medium and for any
function τγ(h), the relation:

∂τγ

∂h

∣∣∣∣
h=0

= − 1

4�v(1 − φ)
(1.1.40)

always holds, where �v(= Vov/Svs) is the hydraulic radius of the void space (of
volume Vov and area of contact, Svs , with the solid). An example of an approximate
expression for τγ(h) for an isotropic porous medium with a random distribution of
void and solid spaces, is given by Debye et al. (1957), in the form:

τγ(h)  exp
{
− h

4�v(1 − φ)

}
, h = |h|. (1.1.41)

From (1.1.41) it follows that τγ(h) → 0 as h → ∞, ensuring that the sufficiency
condition given above holds.

From the above discussion it follows that a necessary condition for obtaining non-
random estimates (i.e., ones that are not subject to sampling errors) of the geometrical
characteristics of the void space at any point xo which serves as a centroid of a sphere
of volume Vo and diameter �, is:

hmax = �min � �v. (1.1.42)

The magnitude of �min is determined by the chosen accuracy and reliability levels
of the parameter estimates. Thus, as a conceptual experiment for estimating the
porosity, φ, of a porous medium at a point xo, let the volume Vo of a cubical REV
centered at that point be split into N disjoint elementary subdomains, each of volume
δV = Vo/N , such that in each of them one may encounter (more or less) either solid
or void. The average of γ over the N samples is taken as an estimate, φ̂, of the
porosity, φ, at xo, i.e.,

φ̂ =
N∑

i=1

γi

N

(
= 1

NδV

N∑

i=1

γiδV

)
. (1.1.43)
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By definition, and by (1.1.38) and (1.1.39), we have:

σ2
φ̂

= 1

N 2

N∑

p=1

N∑

q=1

Cov(γp, γq) = φ(1 − φ)

N 2

N∑

p=1

N∑

q=1

τγ(h pq), (1.1.44)

where σ2
φ̂
is the variance of the estimate of φ, and h pq = |xp − xq | is the distance

between points xp and xq .
Employing (1.1.41) we obtain:

σ2
φ̂

= φ(1 − φ)

N 2

[
N +

N∑

p=1

N∑

q=1,p �=q

exp
{
− h pq

4�v(1 − φ)

}]
. (1.1.45)

From (1.1.45) it follows that if h pq is expressed in units of �v , we have N =
N (φ,σ2

φ̂
).

Bear and Bachmat (1991, p. 21) present a figure that shows an example of the
relationship σ2

φ̂
= σ2

φ̂
(φ, N ), leading, in the case of a cubical REV, to:

�(φ)
min = {

N (φ,σφ̂)
2
}1/3

C��v, (1.1.46)

where C� ≡ (
�

(φ)
min /�v

)∣∣
N=1 is a numerical coefficient. In the above example, this

means �
φ
min = 20C��v , where we have added the superscript (φ) to emphasize that

we have been considering the porosity, as the macroscopic geometrical characteristic
in determining �min.

Following Chebyschev’s inequality (e.g., Feller 1957), Bear and Bachmat (1991,
p. 20) note that the probability that the magnitude of the estimation error exceeds a
prescribed level, say ε, is bounded from above by:

P(|φ̂ − φ| ≥ ε) < σ2
φ̂
/ε2. (1.1.47)

We use the symbol P∗ to denote the probability such that σ2
φ̂
/ε2 = P∗. Then,

N would represent the smallest number of subdomains of �o which is sufficient to
ensure, with a reliability 1−P∗, that the estimation error |φ̂−φ|will not exceed ε. In
the above case, this means, for example, that for ε = 0.1, P∗ = 0.32. Obviously, any
reduction in ε and in P∗, in this example, would require a much larger value of N .

In order to determine �
(φ)
min for a given porous medium by (1.1.46), for a selected

value of σ2
φ̂

= ε2P∗, one has to make use of a preliminary estimate of φ and C��v .

However, the effect of differences in φ on the value of N and, hence on �
(φ)
min decreases

as σ2
φ̂
decreases.

The requirement of ergodicity also sets an upper bound on the size of the REV.
We require � < �max , where �max is the distance between points in the porous medium
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domain beyondwhich the domain of averaging ceases to be statistically homogeneous
with respect to the moments of γ(x).

In reality, the requirement of homogeneity is seldom satisfied, as the macroscopic
parameters of the void space geometry usually vary from point to point. This is
especially true in geological formations. However, even for a domain that is hetero-
geneous with respect to these parameters, it is possible to define around every point, a
sufficiently small subdomain, within which these parameters may still be considered
uniform, up to a prescribed error level. The size of such a subdomain around a given
point serves as the upper bound for the size of the REV at that point.

In order to determine this upper bound, and following the definitions presented
above, for a stationary random function, a domain � centered at a point xo is called
homogeneous with respect to the statistical parameters of γ(x), if

Eγ(x) ≡ φ(x) = const. = φo,

Cov[γ(x + h), γ(x)] = f (h),

i.e., a function of h only for all x ∈ �. Then

Var γ(x) = f (0) = const. = φo(1 − φo).

For a heterogeneous domain, we have φ = φ(x). We shall refer to the domain �

as approximately homogeneous (here, with respect to porosity), if within it:

φmax − φmin

φ
≡ δ � 1, (1.1.48)

where φmax , φmin and φ are the largest, the smallest and the average values of φ,
respectively, within �, and δ (with 0 < δ ≤ 1) is an arbitrarily selected small
number.

For a sufficiently small domain around xo, any differentiable function, φ(x), can
be approximated by its linear part (Fig. 1.4), i.e.,

φ̂(x) = φo + (∇ φ)
∣∣
xo

·(x − xo), (1.1.49)

where φo = φ
∣∣
xo
.

Introducing the definition �(φ)
max = 2Max |x − xo|, and employing (1.1.49),

Eq. (1.1.48) yields:

�(φ)
max = φo

|∇ φ|xo
δ̂, (1.1.50)

where δ̂ = (φ̂max − φ̂min)/φ. The distance �(φ)
max (based on porosity) is, thus, the upper

limit for the size of the REV at a point xo, within a porous medium domain at the
selected error level.
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Fig. 1.4 Conceptual
determination of �(φ)

max by
(1.1.50)

0

Altogether, �(φ) has to satisfy the condition

�(φ)
min � �(φ) � �(φ)

max (1.1.51)

at all points, xo, of the given domain.
If a non-zero range of �(φ) can be found, which is common to all points within

a given spatial domain, one can adopt the continuum model for the porous medium
within that domain.

Finally, we have to relate �(φ) to the size of the considered domain. If L∗ is a
characteristic length of the domain, we require that

�(φ) � L∗, (1.1.52)

in order to ensure that the boundary region of the domain, which has a width �(φ),
and in which the continuum approach is not applicable (see Sect. 2.7.1), be small
compared to the size of the domain itself. The size of the REV in a domain � is
thus determined by the porosity and the specific surface of the void space in �, by
prescribed acceptable reliability and error levels in estimating φ, by the size of the
domain, by the spatial variation of φ within the REV and by a prescribed tolerable
deviation of φ from uniformity within it. If a range satisfying (1.1.51) cannot be
found, the domain � cannot be represented as a continuum.

So far, the concept and size of the REV have been related to porosity as a geomet-
rical porous medium property. We have indicated this fact by using the superscript
(φ). Whenever additional geometrical characteristics of the porous medium appear
in the macroscopic model in the form of coefficients that are associated with a trans-
port problem, e.g., permeability, a range for the REV has to be determined for each
of them. If a common REV range can be found, a continuum model of the porous
medium can be employed.

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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Our interest, however, is in the description of transport of extensive quantities in
single ormultiphase flow, at the continuum level. At such level, the state of each phase
is specified by a set of relevant state variables, (e.g., density, pressure, temperature).
This means that to describe phenomena of transport in porous media, an analogous
approach should be undertaken with respect to these variables. A range for REV
should be selected for each state variable, following considerations similar to those
associated with the geometrical characteristics of the void space. The size, �, of the
REV corresponding to each state variable will be bounded by �min that depends on
the spatial distribution of the microscopic values of that variable within the phase,
and on �max that depends on the spatial variation of its macroscopic counterpart.

In most cases, we have a number of relevant state variables. Hence, the continuum
description of the process involving them can be employed only if a common range
of REV can be found for all of them. The same range should also be common with
that associated with the configuration of the void space.

An inherent difficulty is that the spatial and temporal variations of state variables
vary from one problem to the next. Furthermore, the values of state variables are
both time and space dependent, within each case.

Two examples of interest may be mentioned. One is pressure wave propagation.
In view of the above considerations, if the length of a pressure wave is smaller than
�min of the REV of the porous medium (say, it is of the order of magnitude of the
pore size, or less), that process of wave propagation in a porous medium cannot be
described by means of the continuum approach.

A second example is the spreading of a chemical species within a phase (e.g., a
solute) from a point source. In that part of the domain where the size of the REV
associated with the species’ spatial concentration distribution is smaller than the
lower bound of the size of the REV of the porous medium, the continuum approach
to the spreading of the species is not applicable.

An interesting case is that of two phase flow (Chap.6), where the effective-
permeability-saturation and the capillary-pressure-saturation relationships constitute
porous medium geometrical properties. However, both are functions of fluid satura-
tion, say, of the wetting fluid, which is a variable of state. Selecting an appropriate
REV must take both into account. Joekar-Niasar et al. (2008) investigated such a
case. They studied capillary pressure curves, using pore-and-throat network models
composed of tubes (representing pore-throats) and spheres (representing pore bod-
ies). They showed that 40 nodes in each direction were needed in order to have a
representative network, i.e., an REV.

To summarize, if an REV of volume Vo can be found which is common to all
points within a given spatial domain, both for all relevant geometrical characteristics
of the void space and for all phases occupying it, and for all relevant state variables,
we can define fields of these state variables throughout the domain and treat the latter
as a continuum for all of them.

The requirement that across the REV, any macroscopic property (whether one
of the void space, or of a state variable) should vary linearly, or approximately so,
justifies the assignment of the averaged values taken over the REV to the latter’s
centroid.

http://dx.doi.org/10.1007/978-3-319-72826-1_6
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Fig. 1.5 Variation of Vv/V in the vicinity of a point, as a function of the averaging volume

To get some feeling of how the size of an REV can be determined in the case
of porosity, we envisage a gedankenexperiment in which, at an arbitrary point x
within a given porousmedium domain, we consider sequence of gradually increasing
volumes, V1 < V2 < V3 < . . ., all centered at x, up to a volume which is many
times the volume of a (typical) grain or pore. The point x may fall in the void space,
or in the solid matrix. For each such volume, we calculate the ratioVv/V. The results
are drawn as Fig. 1.5.

Wenote that as the volumeV increases, the ratioVv/Vfluctuateswith a decreasing
amplitude. Then, within a certain range of volumes, say, Vmin ≤ V ≤ 2Vmin , we
may observe a plateau in the ratio Vv/V, where ‘plateau’ means a range of V within
which Vv/V fluctuates in within a specified small range, ±ε.

We then repeat this experiment for all points x within the considered domain.
If (1) such a plateau exists for all points within the considered domain, and (2) a
common range of volumes can be found for all points in the domain for which the
γ̄ − ε ≤ Vv/V ≤ γ̄ + ε, we may choose a volume, Vo, within that common range
as the volume of the REV of the considered porous medium domain. In Fig. 1.5, the
plateau exists between Vmin and 2Vmin . The figure also shows what happens when
the considered porous medium is heterogenous. As we increase the volume of the
examined domain, we may reach another (higher or lower) plateau. Recall that in
selecting the size of the REV, we have also to obey condition (1.1.28).

Obviously, the value of Vo depends also on the selected ε. Once we have selected
the size of an REV (i.e., Vo), we have γ̄ = φ.

The above procedure for determining the size of the REV should be repeated (in
our gedankenexperiment) for all points within the considered domain.

If a common REV can be found for the entire considered domain, then the latter
may be regarded as a porous medium, in which the behavior of each phase and
chemical species can be described as that of a continuum at the macroscopic level.
However, it is possible that no plateau will be reached for a considered spatial
domain occupied by solid and void spaces, i.e., an REV cannot be defined. Then,
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Fig. 1.6 Example of direct porosity REV calculation for a sandstone using synchrotron micro-
tomography (Courtesy of Dr. Jonathan Ajo-Franklin, LBNL)

that domain cannot be treated as a porous medium; the continuum approach at the
macroscopic level is not applicable to such a domain.

We have determined the size of the REV by making use of the ratio Vv/Vpm as
a characteristic property. However, as we shall see throughout the book, there exist
additional fundamental geometrical features such as characteristic pore size, specific
interphase area, and void space tortuosity. Transport and storage properties of the
phases comprising the porousmedium depend on these fundamental features. Hence,
the procedure described above should be repeated also for these features, or, at least,
for the relevant features for each case, in an effort to determine a common REV
for all such features that are relevant to a considered problem. Kjetil and Ringrose
(2008) present an interesting article about determining the REV for permeability in
Heterolithic deposits.

Figure1.6 presents an example of determining the size of an REV for a sandstone
using synchrotronmicro-tomography. Panel A shows a vertical slice of the sandstone
sample (Domengine Formation, Antioch, CA) with highlighted regions showing
the zones of porosity calculation. Panel B depicts individual grain diameters (color
coded) after segmentation and grain shape analysis for the same slice shown in panel
A. PanelC shows porosity estimates for different prospectiveREVs via the expanding
sphere approach for three sub-volumes, labeled with reference to the zones shown in
panel A. Panel D depicts a zoom of panel C for larger calculation volumes. As can be
seen in panels C and D. Porosity estimates reach a plateau (±0.02) at approximately
2.5 mm, an appropriate REV for porosity in this particular facies. In this case, the
mean grain diameter is approximately 300 microns, hence an REV is achieved after
averaging over a volume of 8.3 grains. All calculations are performed on 3Dvolumes.
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The example illustrates the application ofmicroCT to test continuum rules-of-thumb
directly from micro-structure.

Although we have presented above a technique for determining the size of an
REV for a given porous medium domain, we wish to emphasize that this actual size
is not important. We do not use it anywhere, except that, in principle, we should use
it for determining the size of the monitoring device.

Some researchers (e.g., Murdoch and Hassanizadeh 2002) avoided the idea of an
REV and averaging over an REV, by defining the average by using an integrable
non-negative weighting function, m(x′), such that when integrated over the entire
space (= convolution) yields 1. Then, they define the averaged (= macroscopic)
value 〈a〉(x) at the macroscopic point x, by

〈a〉(x) =
∫

a(x + x′)m(x′)dx′. (1.1.53)

The REV average is then a special case, obtained by an appropriate choice of m. To
obtain the porosity, we use a = γ, with γ defined by (1.1.30). Marle (1981, p. 16)
doubted the use of averaging as the basis for developing a theory for flow through
porous media.

Geological formations are usually heterogeneous. For example,weoften encounter
geological formations that are made up of continuous (or discontinuous) layers of
different materials, e.g., clay, sand, and gravel. Randomly distributed lenses of sand
present in a clay formation, or lenses of clay present in a sandy formation, may serve
as additional examples.

In the case of such, ‘slightly heterogeneous’ domains, an REV can still be iden-
tified, possibly with a larger Vo, following the procedure described above. As an
example, Fig. 1.7 shows a porous medium domain with three sub-domains. It is pos-
sible to seek a plateau, V > Vmin1 for �1, V > Vmin2 for �2, . . ., and V > Vmin3

for �3, . . ., following the procedure described above. If a common plateau can be
found, it is then the common REV for the domain, and the latter can be treated as a
continuum, with the selected common REV. Such inhomogeneous porous medium
domain may be regarded as a continuum, with a porosity and other relevant coef-
ficients that vary within the considered domain, but always with a common REV
of volume Vo. If we use a spherical sampling domain, its diameter must be much
larger, say at least 10 times, than the scale of heterogeneity at the macroscopic level,
say the length of correlation of permeability, and much smaller than the size of the
considered domain.

For a highly heterogeneous domain, as geological formations often are, it is possi-
ble that a common REV cannot be found for the entire domain. One possible conclu-
sion then is thatwe cannot treat that domain as a single continuum to which we apply
flow and transport models obtained by averaging, say, over an RMV (= Represen-
tative Macroscopic Volume). Other approaches are also possible. An introduction to
such approaches is presented in Sect. 7.6. The reason for presenting this material in
Chap.7 is that these approaches have been introduced primarily in connection with
modeling solute transport in geological formations.

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
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Fig. 1.7 Selecting an REV for a slightly heterogeneous domain

Zhang et al. (2000) presented results of REV based on porosity, permeability, and
specific surface area, obtained by using Boltzmann simulations on pore geometries
reconstructed frommicro-tomographic images. They studied both homogeneous and
heterogeneous domains.

So far, we have determined whether a domain may be regarded as a porous
medium, and treated as a continuum, on the basis of the void space, or solid matrix
configuration. It is assumed that the same REV, of volume Vo, can then be used for
averaging values of state variables of the considered problem. In principle, we have
to make sure that the selected REV is the same also for all other relevant void-space
geometrical properties. e.g., specific surface area of void space, hydraulic radius and
tortuosity, as these are the building blocks for the macroscopic coefficients, like per-
meability (see Sect. 4.2.5). In the case of multi-phase flow, we have to refer to the
portion of the void space occupied by a wetting and non-wetting fluids, so that we
have to consider hydraulic radius, solid-fluid specific surface of each fluid, etc. We
then have to require a common REV also at all saturations. It is usually assumed
(intuitively!) that the (conceptual) REV based on the porosity as described above
is valid for all these coefficients. However, some authors ( justifiably!) suggest that
‘porosity REV’ is considerably different from ‘permeability REV’, as permeability
is much more sensitive to the details of pore structures.

We can summarize the above discussion as follows:

• A domain composed of a solid matrix and a void space can be regarded as a porous
medium domain for which the continuum approach is applicable (i.e., averaged
geometrical properties can be associated with every point in that domain) if an
REV can be found which is common to all points within the domain.

• The size of the REV, should satisfy

http://dx.doi.org/10.1007/978-3-319-72826-1_4
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d � l � L , (1.1.54)

where d is a characteristic size of the void space (e.g., its hydraulic radius), or of
the solid matrix (e.g., a characteristic grain size), and L is a characteristic length
of the considered domain.

• It is possible that no common REV can be found for a given domain occupied by
a solid matrix and a void-space. Then, the considered domain cannot be regarded
as a single continuum, and the single continuum approach of modeling is not
applicable. Furthermore, in such cases, no information can be obtained on flow
coefficients. Another approach, like CTRW (Sect. 7.6.2B) may be required.

Actually, in practice, we do not really follow the process described above for deter-
mining the existence and the size of an REV for a considered investigated domain. In
most cases of practical interest, by studying the considered domain, e.g., by studying
cores of geological formations, we reach the conclusion about the applicability of the
continuum approach. By modeling phenomena of transport at the continuum level,
we assume, implicitly, that an REV does exist for the investigated domain, as oth-
erwise, a continuum approach cannot be justified. Nevertheless, estimating the size
of the REV is important as it dictates the size of the monitoring devices. We should
always make sure that when we measure, or determine the magnitude of a variable,
it is really the (averaged) variable that appears in the mathematical model that we
solve for predicting the behavior within a given domain. Thus, the REV determines
the size of the ‘window’ of observation or the monitoring instrument.

Once anREVhas been identified for a considered porousmedium domain,macro-
scopic (= continuum) models of transport can be written for it in terms of REV-
averaged values of the various state variables. Verification of model behavior must
be based on monitoring of such values of state variables.

Furthermore, we recall that when performing a formal averaging, the effects of
the geometry of the solid-fluid and fluid–fluid interfaces appear in the form of coef-
ficients. Except for cases where such geometry can explicitly be defined, all such
coefficients have to be determined experimentally, by solving an ‘inverse problem’
(see, for example, Sun 1999; Sun and Sun 2015), or by ‘model calibration’. This
means that we obtain model coefficients by requiring that what we measure in the
field should be the same values that appear in the (REV-averaged) model.

The various inverse techniques for identifying formation coefficients are based
on a comparison between field measured variables of state (e.g., pressure or solute
concentration) and their model predicted values, and determining model coefficients
such that this difference will be minimal.

It is obvious that with the little available field-measured information, and in view
of the strong heterogeneity usually encountered in geological formations, just using
interpolation to obtain themissing information is unacceptable. Instead, it is possible,
on the basis of the available, albeit meager, information to obtain the statistical
distributions of the considered coefficients within the domain. For example, for a
given geological formation, we do not know the spatial distribution of k = k(x, y, z),
but, based on the available information, we can estimate the probability of k, and

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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Table 1.1 Typical porosities of natural materials

Material Porosity Material Porosity

Soils 0.5–0.6 Gravel 0.3–0.4

Clay 0.45–0.55 Uniform sand 0.3–0.4

Silt 0.4–0.5 Fine to medium mixed
sand 0.3–0.35

Shale 0.01–0.1 Gravel and sand 0.3–0.35

Basalt 0.01-0.25 Limestone 0.01–0.1

Sandstone 0.1–0.2 Dolomite 0.001–0.15

Chalk 0.15–0.45 Fractured igneous rock 0.01–0.1

Karst limestone 0.05–0.5 Diatomite earth 0.25–0.65

Bone (cortical) 0.05–0.10 Bone (trabecular) 0.50–0.90

of the other relevant coefficients within the considered domain. This information is
then used in stochastic models. This kind of modeling is beyond the scope of this
book.

1.1.7 Phase Saturation and Solid Matrix Properties

Following are some definitions of commonly used porous medium properties:

A. Porosity, Void Ratio and Sphericity

Porosity, φ, at a point in a porous medium domain, is defined as the volume of void
space per unit volume of porous medium at that point,

φ(x, t) = Vov(x, t)

Vo(x)
, (1.1.55)

where Vo and Vov are the volumes of the REV centered at point x and of the void
space within that REV, respectively. Obviously, this is a macroscopic porousmedium
property. The porosity depends on the texture and structure of the porous medium.
Soil porosity varies over a wide range of values. Table1.1 gives typical porosity
values for a number of natural (geological) materials.

Sometimes, the void space is made up of two portions: an interconnected portion,
throughwhich a fluid canmove, and a non-interconnected (or occluded) portion. The
latter portion is occupied by an immobile fluid. Because, usually, we are interested in
the transport of mass of fluid phases, often carrying chemical species, within the void
space, unless otherwise specified, we shall use the term ‘porosity’ as an indication
of ‘interconnected porosity’, i.e., indicating only the interconnected portion of the
void space.
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Sometimes, the solid matrix is also porous. Grains comprising the solid matrix
may sometimes be porous. In such cases, in addition to the ‘macro porosity’ due
to the void space between grains, there exists a ‘microporosity’ due to void space
within the grains themselves. Diamotite earth is an example of such a medium; it is
usually characterized by a very large overall porosity (often >60%). Although the
pores comprising the micro-porosity can be tiny, to the extent that they have very low
permeability and, consequently, fluid exchange between the former and the latter is
limited, they may play an important role because of their very large specific surface
area.

In some porous media, the configuration of the interconnected portion of the
void space is such that most of the fluid flow takes place through only part of the
interconnected void space, with a small fraction of the flow taking place through
the remaining dead-end (cul-de-sac) portion. We often approximate the situation by
assuming that in the latter portion of the void space, the fluid is practically immobile.
This may happen, for example, when pores have the shape of a dead-end, or when
very small pores, say between very small grains, are mixed with very large ones. The
term ‘effective porosity’ is often used to describe that part of the total void space
through which (most of the) flow takes place. However, the volumetric fraction of
the dead-end pores may play an important role in solute transport problems.

In certain porous media, the void space appears in the form of ‘pores’ of two (or
more) sizes. A simple example is when the solid matrix is granular, but the grains are
porous, with pores that are much smaller than those between the grains. We refer to
such case as a ‘double porosity’ porousmedium. In a fractured porous rock (Sect. 1.3),
the void space of the fractures and the void space in the rock blocks surrounded by
the fractures are also regarded as two porosity and the fractured porous rock is said
to exhibit double or dual porosity

In soil mechanics, the term void ratio, ĕ, defined as

ĕ(x, t) = Vov(x, t)

Vos(x, t)
= φ

1 − φ
, (1.1.56)

is used, with Vos denoting the volume of the solid matrix within the REV.
The term sphericity s is sometimes used for unconsolidated porous media (i.e.,

made up of individual particles) indicate how close is the shape of the individual
solid particles to that of a sphere:

s = Surface area of sphere having the same volume as particle

Surface area of particle
.

Obviously, as everywhere in the continuum approach, sphericity at a point means
the average value of s for all particles in the REV centered at that point.

The bulk density of the solid matrix in a porous medium, ρb (= mass of the solid
per unit volume of porous medium), is defined as
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ρb = mos

Vo
= ρs

Vos

Vo
= ρs(1 − φ). (1.1.57)

The porosity as defined in (1.1.55)may be referred to as ‘Eulerian porosity’, where
the ‘Eulerian approach’ means that we are focusing on a fixed point, x, and determine
the porosity as it changes with time, at that point: Vv(x, t) → Vv(x, t + �t).
However, according to Coussy (2004, 2007), it is possible to define another kind of
porosity – the Lagrangian porosity, ϕ. In the latter case, we consider a point ξ in a
porous medium domain. At that point, we have, initially, a certain volume of solid
matrix, Vos and of void space, Vov . As flow occurs, accompanied by solid matrix
deformation, we follow the mass of solid initially within Vo, centered at ξ|t=0, and
determine the porosity associated with this solid mass as flow (and deformation)
occur. In this case, as in the usual (Eulerian) definition, porosity at a point is still
defined as the pore volume per unit volume of porous medium; however, the Eulerian
porosity is defined in the reference state, while the Lagrangian porosity refers to the
actual (deformed) state. The Lagrangian definition of porosity is not used in this
book.

B. Saturation and Fluid Content

Let a number of fluid phases occupy the entire void space. The quantity of anα-phase
at time t at a point x (i.e., ‘within the REV centered at x’) can be described by one
of the following two definitions:

• Volumetric fraction

θα(x, t) = Volume of α-fluid in REV

Volume of REV
, 0 ≤ θα ≤ φ,

∑

(α)

θα = φ, (1.1.58)

In the particular case of water, it is also called moisture content,

• Fluid saturation

Sα(x, t) = Volume ofα-fluid in REV

Volume of void space in REV
, 0 ≤ Sα ≤ 1,

∑

(α)

Sα = 1.

(1.1.59)
In both definitions, the summation is over all fluid phases, present in the void space.

The above definitions are related to each other by

θα = φSα, (1.1.60)

When the porous medium is inhomogeneous with respect to porosity, or when it
undergoes deformation, which alters the porosity, the fluid saturation should be used
to describe the quantity of a fluid within the void space at a point. This will enable a
separate treatment of changes in porosity.



38 1 Porous Media

C. Specific Surface

The specific surface area,�sv = Ssv/ms , where Ssv is the total (internal and external)
surface area of the solid matrix (= solid-void interface) and ms is the mass of the
solid matrix, is defined as the surface area of the solid matrix per unit mass of soil
(e.g., in m2/g). It is a very important soil characteristic, especially in connection with
surface phenomena such as adsorption and ion-exchange. Fine soils, e.g., clay, are
characterized by a huge specific surface area.

To estimate �sv , consider a soil made up of spherical particles of diameter d. For
such spheres, the area per unit mass is given by 6/ρsd, where ρs is the mass density
of the solid. For a soil composed of a number of fractions of particle sizes, with mi

denoting the mass of solid in the i th fraction, we have

�sv = 6

ρs

∑

(i)

mi

ms

1

di
,

For soil particles in the form of platelets � × � × b, the specific area is

�sv = 2(� + 2b)

ρs�b
.

For very thin platelets, �sv ≈ 2/ρsb.

D. Heterogeneity

A porous medium domain is said to be homogeneous with respect to some property
defined for that domain if the value of that property remains unchanged at all points
in the domain. Otherwise, the domain is said to be inhomogeneous, or heterogeneous.
When considering phenomena of flow and transport in porous media, permeability
and porosity are the two main parameters of interest. Later, we shall introduce the
dispersivity as another fundamental soil parameter. In most cases, the homogeneity
or heterogeneity of a domain is related to these parameters.

Whether a given porous medium domain is characterized as homogeneous or not
depends on the scale of heterogeneity, in comparison to the scale of the problem
domain defined as the length of interest within the context of the problem. The
distance between a pumping well and a point of observation, or the length of a plume
of contaminants spreading out from a given source serves as examples of problem
scale. In the latter case, the length of the plume varies with time and, typically, so
does the length of interest. Note that we have not identified the ‘length of interest’
of a problem with some dimension of the entire domain, say, the thickness of an
aquifer, because the length of interest may be much smaller.

InSect. 1.4.1B,we shall introduceheterogeneities at themicroscopic scale, caused
by the presence of voids and solids. There, the grain, or pore size, serves as a typical
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scale of heterogeneity. The REV is a tool for passing from the microscopic level of
description to the macroscopic one. By requiring that the size of the REV be much
larger than the scale of microscopic heterogeneity, and much smaller than the length
scale of interest, we provide a method for homogenizing these heterogeneities.

Heterogeneities may take different forms. Consider permeability. One form is a
gradual change in permeability from point to point within the considered domain.
Another form is when the domain may be subdivided by surfaces of discontinuity
into well defined subdomains, each having a different, constant or gradually varying,
permeability. A layered aquifermay serve as an example. Another example is the case
of low permeability lenses (say, silt) embedded in a domain of higher permeability,
say sand.

Most subsurface domains are highly heterogeneous. This is the result of the geo-
logical processes that have been active over long periods of time to produce the
domains that we encounter now.

To solve problems of flow and contaminant transport in an inhomogeneous
domain, the detailed variations in the permeability and other relevant parameters
within the domain of interest must be known. Unfortunately, such information is
rarely available, and its acquisition is very costly. Various approximate approaches
are used instead. One approach is to homogenize again, over a new, larger, scale of
heterogeneity, thus smoothing out variations at the lower scale. Other approaches
involve various forms of stochastic modeling. We shall not discuss this approach
in this book, although there is no doubt that heterogeneity may strongly affect the
conclusions drawn from modeling efforts. Stochastic approaches to modeling are
reviewed and discussed, for example, by Gelhar (1993), Gelhar and Axnes (1983),
Dagan (1989), Rubin (2003), and by a number of authors in a volume edited by
Dagan and Neuman (1997).

E. Anisotropy

When the value of a porous medium property at a point within a domain varies with
direction, the domain is said to be anisotropic with respect to that property. If the
value of the property at a point is independent of direction, the porous medium is said
to be isotropic at that point, with respect to the considered property. Permeability
is an important example of a property that may be anisotropic. Whether a porous
medium domain is isotropic or not depends on the geometry of the void space, or
of the solid matrix at the microscopic level. Actually, as will be shown in Chaps. 3
and 4, the permeability depends on a fundamental porous medium property, which
is the tortuosity of the void space. We shall also encounter anisotropy in the thermal
conductivity of a porous medium, and the various coefficients of porous medium
elasticity in the case of a deformable porous medium. In the case of natural porous
media, anisotropy reflects processes of movement and accumulation of the materials
that constitute natural depositional formations.

http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_4
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1.2 Microscopic Level Imaging and Modeling

In the previous section, we have justified the passage from the microscopic level of
modeling phenomena of transport in porous media to the macroscopic one noting
that we cannot describe the void-solid geometry in a porous medium domain, nor
can we predict (by solving a mathematical model) andmonitor variables of state, like
pressure, at that level. In recent years, this statement is no more true. The objective of
this section1 is to provide a glimpse into the world that makes such monitoring and
predictions possible, albeit, still for rather small domains. As such, and interesting
and useful as it is, the practice of modeling phenomena of transport in large porous
medium domains still requires modeling at the macroscopic level, as discussed in
this book.

1.2.1 Objectives of Imaging

The goal of pore-scale imaging is to provide an accurate digital 3D model of the
porous media at the smallest scale relevant to the modeled process, e.g., diffu-
sion, advection, etc. A secondary goal, which only recently has become feasible,
is to provide a time sequence of images that actually capture the modification in
either the solid or fluid geometry, as required for testing a descriptive model. With
a static or time variable pore-scale model, an investigator can either extract micro-
scopic geometrical information (e.g., porosity, pore-throat statistics, two-phase satu-
ration), or directly calculate flow properties, including permeability, from pore-scale
images by solving the appropriate microscopic governing equations. While a range
of techniques has recently become available for achieving these goals, hard x-ray
micro-computed tomography (mCT), using either synchrotron or conventional tube
sources, is currently the dominant technology for both static and dynamic imaging
of opaque porous samples at resolutions from 0.5 microns and sample dimensions
in the centimeter range, sufficient for imaging the larger pores in sandstones and
soils (Wildenschild and Sheppard 2013; Cnudde and Boone 2013). In mCT, a large
number of 2D x-ray projections are acquired and then reconstructed into a 3D image
volume, depicting the object’s internal x-ray attenuation structure, as a proxy for
density and z-number (Stock 2008). Recently, these techniques have been extended
to higher time resolutions (>1s), allowing dynamic monitoring of fast hydrologic
processes such as Haines jumps (Berg et al. 2013; Armstrong et al. 2014). Other
available 3D pore scale imaging modalities include Neutron Tomography (Strobl
et al. 2009), ablative imaging techniques, such as Focused Ion Beam/Scanning Elec-
tron Microscopy (FIB-SEM; Holzer and Cantoni 2011), and 3D optical methods for
thin samples, e.g., Confocal Microscopy (Fredrich 1999). In all these techniques,
beyond data acquisition, the challenges are efficient processing and utilization of the

1Contributed by Dr. Jonathan Ajo-Franklin, LBNL.
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Fig. 1.8 Rock samples scanned at various resolutions: two images of Berea Sandstone (a, b), a
sample of the Duperow Dolomite (c), a fractured Opalinus Clay (d) (Courtesy of Dr. Jonathan
Ajo-Franklin, LBNL)

resulting large high-resolution data sets, particularly conversion into either reduced
forms, or modeling of flow processes (e.g. Schluter et al. 2014).

1.2.2 Examples of 3D Imaging of Porous Materials

The volumes of data that result from modern pore-scale imaging approaches capture
substantial details of the structure of a geological sample, including pore morphol-
ogy and topology, grains, mineralogical differences, and fracture geometry. Typical
examples are shown in Figure micro-x. All samples were scanned at beamline 8.3.2
(MacDowell et al. 2012) at the Advanced Light Source, a synchrotron facility at
Lawrence Berkeley National Laboratory.

Figure1.8a, b, show two scans at different resolutions of the Berea sandstone
sample: 325 nm/voxel (a), and 1.3 microns/voxel (b). As can be seen, the resolution
in suchmeasurements is generally inversely proportional to the Field of View (FOV);
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hence, imaging of finer scale features, such as clay aggregates in panel (a), will
sacrifice the extent required for capturing the more extensive pore network. The
volume shown in panel (b) ismore than sufficient to obtain an estimate of permeability
using an appropriate flow modeling code. Texture and particle shape can also be
retrieved from 3D image volumes, thus allowing quantitative retrieval of angular
pore shapes such as the inter-crystalline porosity shown in the dolomite sample in
panel (c).

Finally, the geometry of fractures and fracture networks can be obtained from
such image volumes, including fracture aperture maps and near-fracture weathering
zones. Panel (d) shows a fracture in a hard Opalinus clay sample of obtained from
the Mont Teri Rock Laboratory. While the resolution of current mCT beamlines is
insufficient to image single clay crystallites, or tactoids, fractures, bioclasts, and
mineralogical features such as pyrite nodules are often visible in shales.

1.2.3 Microscopic Level Modeling

Beyond the 3D characterization of porous media discussed above, the use of micro-
scopic level models to obtain quantitative estimates of flow and mechanical prop-
erties has rapidly expanded in recent years, driven and supported by the increase in
computational performance and in the availability of high-quality data sets. Early
models, based on network analysis of pore systems (e.g., Celia et al. 1995; Blunt
2001; Blunt et al. 2013), have gradually given way to direct numerical simulation of
flow utilizing a variety of techniques (e.g. Raeini et al. 2014).

At present, reliable modeling of porous medium permeability is routine and mod-
eling multiphase flow processes and mechanics is becoming more common. Recent
synthesis of pore-scale numerical flowmodels with reactive chemistry is also provid-
ing a route to examine the non-linear coupling between pore geometry and reaction
rate (Molins et al. 2012) at scales approaching 109 grid cells for state-of-the-art high
performance computing facilities (Molins et al. 2014). In all of these cases, pore-
scale numerical modeling can serve as a testing ground for improving the underlying
physics and chemistry included inmacroscopic level continuum scale models as well
as providing a virtual laboratory to explore the impact of pore-scale alterations on
flow processes.

More on microscopic level imaging is presented in Appendix B.

1.3 Soil and Fractured Rock Domains

In Sect. 1.1.2, we have mentioned fresh and saline water aquifers and hydrocarbon
reservoirs as major kinds of naturally occurring porous medium domains. These
formations, made up of clay, sand, sandstone, cemented sandstone, gravel, etc., occur
as geological formations below ground surface, down to depths of thousands of



1.3 Soil and Fractured Rock Domains 43

meters. A special kind of such formations includes those that are made of fissured
rock, fractured rock and fractured porous rock. This kind of porous medium will be
presented in Sect. 1.3.3–1.3.6. Another kind of natural porous medium is soil. We
use this term to denote the layer that is encountered just below ground surface, down
to a depth of a few meters. This is the layer where vegetation roots occur. Thus,
this also the zone where irrigation and drainage take place. It is of interest primarily
to agronomists, soil physicists, and agriculture engineers. Because of the very wide
range of topics involved in modeling phenomena of transport that occur in this soil
domain, we shall not deal with it in this book, beyond a short discussion on soil
structure presented in the next subsection.

1.3.1 Soil Structure

The physical properties of soil depend to a large extent on the size of soil particles,
on the manner in which individual soil particles are arranged and on the strength of
particle interactions. Structural features may occur at various scales. It is, especially
useful to distinguish between soil microstructure and macrostructure; the former
occurs at the level of individual particles, while the latter relates to aggregates of
many particles.

Soil microstructure depends on the size and shape of soil particles, as these impose
certain constraints on the physical orientation and packing geometry, and on interpar-
ticle forces acting between particles. These forces, in turn, control the stability of the
microstructure. The total force acting between particles increases with contact area,
with coarse-grained soils exhibiting little interparticle attraction, or cohesion, unless
secondary minerals precipitate at particle contacts, bridging and cementing the grain
contacts. Otherwise, such soils are cohesionless and exhibit a microstructure that is
largely controlled by particle geometry. It is also strongly influenced by the amount
of moisture and historical stresses imposed on the grains due to gravitational forces
(overburden weight) and transient external loads (e.g., compaction).

The microstructure of soils containing small fractions of clay minerals is con-
trolled, to a large degree, by the composition of the soil solution. The major cations
included in the soil solution are: calcium, magnesium, sodium, and potassium. The
major anions are: chloride, sulfate, carbonate, and bicarbonate. Surfaces of amor-
phous oxides and edges of phyllosilicate minerals have the capacity to exhibit a
positive or negative electrical charge, depending on the soil pH and ionic strength.
Since most soils contain at least some phyllosilicate minerals, with a permanent
negative charge on planar surfaces, lowering the pH to a value below the zero point
of charge (ZPC) for mineral edges, or for amorphous oxides, will produce electro-
static binding between negatively charged planar surfaces and positively charged
ones. Thus, clay minerals may be bound together in clumps, sometimes referred
to as floccules. The process by which particles group into floccules is referred
to as flocculation. The opposite condition, in which particles tend to repel each
other and maintain their separate identity, is referred to as soil dispersion (not to be
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Fig. 1.9 Formation of a
diffuse double layer in soil: a
hydrated state, and b dry
state

confused with the mechanism of transport by the same name, discussed in Chap. 7).
The magnitude of electrostatic binding increases with the strength of the induced
positive charge, which, in turn, increases with decreasing pH and increasing ionic
strength. Thus, flocculation is usually enhanced by decreasing pH and increasing
ionic strength, while soil dispersion has the opposite trends.

The soil solution composition also affects flocculation and soil dispersion phe-
nomena through its control of the electrical double layer. This term is used to denote
a charged surface and the ions associated with it. The surface here is the interface
between the solid matrix and liquid occupied void space.

At a dry colloidal surface (say, of clay or humus), the counterions are attached
to the surface, thus rendering it neutral. Upon wetting, some of the ions dissociate
from the surface and enter the solution. The hydrated colloidal particle thus forms
a micelle in which the adsorbed ions are spatially separated from the negatively
charged particles. The adsorbed ions occur, at least partially, as a diffuse ionic cloud,
the concentration of which decreases gradually with increasing distance from the
surface. Together, the particle surface, acting as a multiple anion, and the cloud of
cations hovering about it, form an electrostatic double layer (Fig. 1.9). The above
phenomena occur also near clay particles.

The adsorbed ions, in the immediate proximity of the surface are known as the
Stern layer. The cations in solution are distributed over some distance from the
surface, with a concentration decreasing with distance. This distribution is a result
of the attraction to the negatively charged ions on the surface, and the spreading
due to Brownian motion of the liquid molecules, inducing diffusion of the adsorbed
cations away from the surface. Figure1.10 shows how positive and negative ions are
distributed in the vicinity of a clay surface.

The hydrogen atoms in a water molecule are not arranged symmetrically around
the oxygen atom. Figure1.11 shows the structure of water molecule behaves like a
rod or dipole, with positive and negative charges at its opposite ends. Hence, dipolar
water molecules can also be electrically-attracted to the surface of clay particles.
In general, water molecules can be electrically attracted to the charged surfaces of

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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clay particles by the above mentioned attraction between the negatively charged clay
surface. They can also be attracted by attraction forces between the cations in the
double layer and the negatively ends of the dipoles, and by the sharing of the hydrogen
atom in the water molecules. This sharing produces a hydrogen bonding between the
oxygen atoms in the clay and those in the water molecules. This electrically attracted
water surrounding clay particles is known as double-layer water. The innermost
layer of double-layer water, which is very strongly held by the clay particle, is called
adsorbed water.

If the ion valence or the bulk ionic strength is increased, the thickness of an ionic
cloud or a double layer is compressed. Fluids with low dielectric constants can also
induce double layer compression (most organic liquids have dielectric constants that
are 5–10 time lower than that of water). If the compression is sufficiently large,
particles may be able to get close enough to each other, so that short-range attractive
van der Waals forces can enable flocculation. Thus, high ionic strength and the
presence of higher valence cations can promote flocculation due to double layer
compression.

These changes in particle interactions at the microscopic scale can have signif-
icant effects on the macroscopic behavior of the soil. For example, if the solution
composition induces soil dispersion, the pore space may become clogged with loose
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Fig. 1.12 Schematic
diagram of adhesive fluid
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particles, resulting in a significant reduction in the permeability to fluids. For this
reason, permeability may exhibit marked dependence on solution composition, espe-
cially for fine-grained soils (and particularly for soils with expansive 2:1 minerals
which exhibit a very high surface area). In such soils, increasing the ionic strength
or counterion valence for aqueous solutions, or replacing the pore fluids by organic
liquids, may result in increases in permeability.

Figure1.12 shows, schematically, the magnitude of the forces of molecular attrac-
tion between a solid and a wetting fluid that is adjacent to it. These forces decrease
rapidlywith the distance from the solidwall.Various explanations have been given for
the resulting ‘adsorbed water’. One hypothesis is that positively charged ions, which
are surrounded by water molecules, are attracted to the mineral surfaces, which, as
is well known, are usually negatively charged. Another explanation is that water
molecules form hydrogen bonds with clay surfaces, thus facilitating hydrogen bond-
ing between the water molecules and the solid (Low 1961). Other forces that attract
water molecules to the solid surface are the van der Waals forces, and interactions
between the electric field produced by the solid and water dipoles. There is evidence
that adsorbed water can have different transport and thermodynamic properties than
those of bulk water (Parker 1986). For example, it has been hypothesized that water
molecules next to clay particles may have a preferential orientation because of their
polar nature and that this orientation can propagate for some significant distance into
the fluid (Low 1961). The result is a layer of water, perhaps only a few molecules
thick, with thermodynamic properties, such as density and viscosity, which are dif-
ferent from those of the bulk water at the same pressure and temperature (e.g., Low
1976).

The term adhesive fluid is used to denote the fluid layer in which the above forces
are significant. This fluid layer is made up of two sub-layers. The first, next to the
solid, is referred to as an adsorbed fluid layer. Its thickness may reach a few tens
of molecules. When the fluid is water, its bipolar (= dipolar) structure (Fig. 1.11)
causes water molecules to be oriented perpendicular to the solid surface. In this
layer, the properties of the water differ significantly from those of ordinary water.
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For example, density and viscosity are much larger. The stress created by the forces
of attraction is very strong, but decreases rapidly with distance.

The second sub-layer of adhesive fluid (say, from 0.1 to 0.5 µm for water), forms
a transition zone in which the forces of attraction still play a role in making the fluid
in this layer relatively immobile. Beyond this layer, the fluid is said to be free, or
mobile.

In two-phase flow, molecular forces prevent the complete drainage of the wetting
fluid from the void space. A thin film of adsorbed wetting fluid will always remain
on the solid. As we shall see below, some wetting fluid may also remain in the void
space for other reasons.

Soil macrostructure involves features which are visually identifiable. Some
macrostructure features may be inherited from the parent material. For example,
fractures in the parent rock or fine stratification in sediments may lead to similar
relic features in the soil. Additional features may develop by pedogenetic (meaning
soil-forming) processes. Repeated wetting and drying, and associated swelling and
shrinking, may produce aggregates. These can be stabilized by organic matter which
acts as a binding agent, or by thin films of clay, washed from upper layers.

Biotic activities can produce structural features that greatly influence the move-
ment of fluids in soil. Root channels, which remain after roots decay, and holes
made by earthworms, ants, and even moles (or other subterranean inhabitants), may
produce a complex network of macropores.

In addition to the void space between aggregates, a void space may be present
within (porous) soil particles. The former are, in general, much larger than the latter.
The total void spacemay be represented as a bi-modal pore size distribution.Moisture
tends to be retained to a greater extent within the aggregates, whereas water moves
more rapidly through the larger inter-aggregate voids. This may provide favorable
conditions for many plants which need water as well as air for root respiration.

The ability of the soil to absorb and conduct fluids applied at ground surface is
greatly affected by soil macrostructure, since the main contribution to the soil’s per-
meability is due to the large inter-aggregate pores. When the latter form a continuous
pathway that happens also to be connected to ground surface, liquids applied at the
surface can infiltrate very rapidly through them. Stable aggregates at the soil surface
that can sustain the impact of raindrops, will prevent the surface from turning into a
puddle of mud that could limit infiltration and increase surface runoff. The transport
of dissolved chemicals or suspended solids through the soil, is, thus, affected by the
soil structure’s control of the amount infiltrating water, and by the subsequent rate
of movement through the subsurface.

1.3.2 Clay Minerals and Soil Colloids

Clay-size particles exert a disproportionately great influence on the physical and
chemical properties of soils, because of their very large specific surface. For typical
kaolinite particles of thickness ≈50 nm, the specific surface is about 15 m2/g.
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Fig. 1.13 a A silicon-oxygen tetrahedral unit, b an aluminum or magnesium octahedral unit

The clay-size fraction is, generally, predominantly composed of secondary min-
erals, formed by the alteration and weathering of primary minerals in the soil. Clay
minerals, may be divided into two broad types:

• Aluminosilicate or phyllosilicate (phyllo means sheetlike) clay minerals, which
are the most prevalent minerals in the clay fraction of temperate region soils.

• Hydrous oxide minerals, or hydrated oxides of iron and aluminum, which are
prevalent in soils of tropical regions.

The typical aluminosilicate clay mineral has a laminated, or sheetlike crystal
structure composed of layers of aluminum hydroxide octahedral units, and silica
oxide tetrahedral units in either 2:1 (tetrahedral—octahedral—-tetrahedral), or 1:1
(tetrahedral-octahedral) stacking sequences. The tetrahedral units are composed of
six oxygen atomsor hydroxyls, surrounding a larger cation, usually aluminum (Al3+),
or magnesium (Mg2+). The octahedral units are composed of four oxygen atoms
surrounding a central cation, usually silicon (Si4+). Figure1.13 shows a silicon-
oxygen tetrahedral unit and an aluminum or magnesium octahedral unit.

Expandable 2:1minerals, such asmontmorillonite, have veryweak bonds between
crystal layers. This results in a very high accessible surface area.Water is free to enter
between the crystallites, thus causing expansion and contraction as the water content
changes. Soils with a large amount of montmorillonite clay will shrink and crack
when dried, and will swell when wetted. This is a troublesome characteristic for the
geotechnical engineer. Since the permeability of such soils depends on the degree
of cracking or swelling, it is also a troublesome feature to the hydrologist and soil
physicist interested in predicting water movement through such soils,

Other 2:1 minerals include vermiculite, chlorite, and hydrous micas, which have
sufficiently strong bonds between crystallites to preclude intercalation of water. As
a result, crystals with a large number of individual crystallites will form. These have
a lower surface area, and are of a less expansive nature than montmorillonite. The
most common 1:1 mineral is kaolinite. It is built of quite strongly bonded stacks of
1:1 crystallites. As a result, kaolinite crystals are relatively large and nonswelling.
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The class of hydrous oxide clay minerals includes a number of species. Some
exhibit very little crystalline structure; they are referred to as amorphous (meaning
formless) oxides. Limonite and goethite are common crystalline hydrous iron oxides,
while gibbsite is a common crystalline aluminum hydroxide. Iron oxides may occur
as discrete minerals, or as a coating on the surface of other minerals. They produce
the red and yellow colors that are typical of many well-oxidized mineral soils.

Clay minerals typically exhibit defects in their crystal structure, involving substi-
tution of Mg2+, Fe2+, or other ions, for Al3+ and Fe3+, and substitution of Al3+, or
other ions, for Si4+. The latter result in a net negative electric charge on the surface.
This surface charge is largely associated with the planar surfaces of clay minerals.
On edges of the sheet silicates, and over the entire surface of oxides, a surface charge
may also develop. This is due to ionization of polyprotic acidic functional groups,
resulting in a charge that varies with the soil’s pH. At high pH levels, H+ ionizes
from the surface, leaving an increasingly negative surface charge, while at low pH,
OH− ionizes and may lead to a net positive surface charge. The crossover pH value is
called zero point of charge. This degree of surface ionization increases with increas-
ing ionic strength, so that at a given pH, the magnitude of surface charge (positive
or negative) is greater if the ionic strength is higher.

Surface charge sites arising from either crystal substitution or surface ionization
are balanced by ions of opposite charge which are attracted to the surface from the
soil solution. Since the ions are held on the surface by relatively weak electrostatic
attraction, theymaybedisplaced from the surface byother ions present in the solution.
These are called exchangeable ions. Some are more strongly attracted than others.
The cations can be arranged in a series, in terms of their affinity for attraction to the
negatively charged clay surface:

Al3+ > Ca2+ > Mg2+ > NH+
4 > K+ > H+ > Na+ > Li+.

This means, for example, that Al3+ ions can replace Ca2+ ions, and that Ca2+ ions
can replace Na+ ions. For example,

2Na+
clay + CaCl2 → Ca2+clay + 2NaCl.

The capacity of the solid phase to adsorb cations, on negatively charged surface
sites, is referred to as cation exchange capacity (CEC). The capacity to retain anions
on positively charged sites is referred to as anion exchange capacity (AEC).

Due to the large accessible surface area of expansive 2:1minerals,montmorillonite
has a rather high CEC, of about 80–100 milliequivalent (meq) per 100g of soil.
Hydrous mica, kaolinite, and hydrous oxides may have CECs of about 15–40, 3–15
and 0–5 meq/100 g. Depending on the amount of ionic substitution in the crystal, the
surface area and the pH, substantial variability may occur. For the 1:1 and hydrous
oxideminerals, theCECwill bemoremarkedly pH-dependent. Theymay also exhibit
a net positive charge resulting in an anion exchange capacity (AEC).

In addition to clay minerals, colloidal organic matter may occur in soils in signifi-
cant quantities, particularly in horizons near ground surface. Colloidal
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material is composed of very fine (solid) granular particles, ranging in size from
a few nanometers to a fewmicrometers (say, less than 10µm). Because of their small
size, their gravitational settling velocity is less than 0.01cm/s, and, usually, under
suitable chemical conditions, they remain suspended inwater. Under such conditions,
thermal or Brownian motion provides enough kinetic energy to overcome gravita-
tional forces which would otherwise cause larger particles to settle. Solid phase
colloidal organic matter is often referred to as humus. It is the result of biological
decomposition of plant and animal remains in the soil. Such material has a very high
specific surface, and its CEC, which is strongly pH-dependent, may be as high as
200 meq/100 g. Although the organic matter content of mineral soils is usually only
a few percent in the soil close to ground surface, and much less in deeper horizons,
it may have a considerable effect on the chemical properties of the soil.

1.3.3 Fractured Domains

In this subsection2 we shall focus on fractured domains and fractured porousmedium
domains. The emphasis is on natural geological domains. In recent years, the subject
of fractures has been receiving significant attention because of its economic impor-
tance in connection with hydrocarbon resources. Man-made fractured domains are
also considered here.

As will be emphasized below, in principle, fractured domains are a special kind of
porousmedium, and the flow and transport through them can bemodeled by the same
kind of models presented throughout this book. However, because of their impor-
tance as petroleum reservoirs, we have decided to devote this special section to their
description, with additional sections throughout the book on modeling phenomena
of transport through them. More information can be found in extensive literature
available on the subject (e.g., Adler and Thovert 1999; Bear et al. 1993).

In this section,we introduce fractured porousmediumdomains,whether natural or
man-made, which contain (1) a network of fractures, and (2) a solid matrix, whether
porous or not. We shall focus our attention on naturally occurring fractured porous
media. They comprise the geological formations which are of interest to a wide
spectrum of applications, including groundwater hydrology, petroleum engineering,
and geothermal engineering.

A fracture is a part of the void space in a porous medium domain that has a special
geometry: one of its dimensions ismuch smaller than the other two. In a consolidated,
lithified granular porous medium, in which the grains comprising the solid matrix are
usually cemented to each other, a fracture interrupts the grain-to-grain contact in the
solid matrix. Fractures do not exist in unconsolidated media. The fracture geometry
is significantly different from that of the void space in a granular material; it is also
different from that of long continuous pores that look like wormholes. Fractures can
be caused by a variety of reasons, e.g., accumulation of locally high mechanical or

2Dr. George J. Moridis of LBNL co-authored Sects. 1.3.3–1.3.6.
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thermal stresses that exceed the mechanical strength of the rock, or by the presence
of zones of mechanical weakness in the rock. The process of fracture creation also
involves (often significant) displacement in which the two faces of a fracture move
relative to each other, thus preventing the complete closure of the fracture once the
fracture-creating stresses are relaxed. However, when this happens at a later stage,
fine materials may be deposited in the fracture, preventing its closure when stresses
are relaxed. The distance between the opposite faces of a fracture is referred to as
aperture.

Fractures are a commonly occurring phenomenon in geological formations. It is
not an exaggeration to state that it is difficult to encounter large portions of geo-
logical formations that are free of fractures. Fractures are characterized by several
geometrical attributes: (1) their extent (reach), (2) their aperture, (3) their surface
area, (4) their frequency of occurrence in the solid matrix comprising the formation
(i.e., the number of fractures per unit length), and (5) their overall porosity (i.e., their
volume as a fraction of the bulk volume of the rock). Their hydraulic properties as
fluid carrying conduits, whether for water, brine, oil or gas, are distinctly different
from those of the porous matrix in which they are imbedded. They often exhibit a
high permeability, relative to that of the porous rock surrounding them, thus making
them the main fluid pathway. In very tight media, such as shales, they constitute the
fluid’s dominant pathway.

A rock domain, or a porous medium domain in which part of the void space is
in the form of fractures is referred to as a ‘fractured rock’, or a ‘fractured porous
medium’. These are more precisely defined in Sect. 1.3.5. We recall that in order
to refer to such domains: the void space subdomain, the solid matrix subdomain,
and the fractured porous medium domain, as continua, we have to make use of the
REV-concept introduced earlier in this chapter. Once these domains are envisioned
as a continua, the continuum modeling approach can be applied to them. In whet
follows, we shall emphasize the difficulties encountered in taking this route.

As defined above, a naturally occurring fractured rock domain, or a man-made
one, is a porous domain in which part of the void space has a special geometry–it
takes the formof a network of (often-interconnected) fractures, or fissures.Weuse the
term fractured rock when the rock blocks, surrounded by fractures, contain no void
space (disregarding the presence of micro- or nano-pores). We use the term fractured
porous domain, or fractured porous rock domain, when the domain intersected by
the fractures is porous. In reality, almost all fractured media are fractured porous
media.

Actually, there is no need for presenting a special discussion on the case of a solid
domain, whether natural or artificially produced, which is intersected by a network of
fractures. The discussion presented in the previous sectionwill dictate the conditions,
mainly the existence of an REV, under which such a domain may be visualized as a
porousmedium and treated as a continuum. The same ideas underlying the passage to
a (macroscopic) continuum remain valid also when the pore space takes the form of
fractures. In fact we shall apply the methodology of representing a porous medium as
multiple overlapping continua also to fractured media and to fractured porous media.
Nevertheless, because of certain special features and because of its importance in
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connection with hydrocarbon reservoirs, we shall present this separate discussion
here. Thus, in this chapter, we shall focus on cases in which a porous medium
domain is intersected by fractures. We shall discuss model that describe phenomena
of transport in such rock domains as occurring in multiple overlapping interacting
continua.

Karstic domains constitute another type of geological porous rock formation. A
Karst is a continuous channel-cave system produced in a soluble rock, e.g., dolomite,
limestone, or gypsum,whenever rainwater, which is usually slightly acidic, infiltrates
through the soil layer below ground surface and continues to percolate through the
rock formation towards a drainage base (e.g., Ten Dam and Erentz 2011). Cracks
and bedding planes serve as conveyers for the percolating water. As the rock (e.g.,
limestone) dissolves by the acidic water, the cracks and fractures tend to get bigger
and wider by dissolution, until, eventually, a drainage system is created. As this
underground drainage system develops, the development of additional karst channels
is enhanced. The interconnected karsts constitute a network of pipe-like channels,
dolines and caves that provide a passage for water from the region of infiltration from
precipitation to natural water outlets. Although bearing some similarity to fractured
rock domains, karst formations will not be discussed in the current chapter.

1.3.4 Natural and Induced Fractures

Fractured domains are anything but rare in geologic systems.Naturally fractured rock
reservoirs constitute more than 20% of the world’s hydrocarbon reserves (Aguilera
1995). However, since the beginning of the 21 century, following the development
of efficient artificial fracturing techniques, production of most of the world’s vast
unconventional petroleum resources, e.g., tight-gas, shale gas, and shale oil reser-
voirs, has been made economically and technically feasible. This led to an explosion
of hydrocarbon production and to a dramatic increase in the estimates of hydrocarbon
reserves. In fact, in the U.S.A., tight-sand and shale gas reservoirs are currently the
main unconventional resources upon which the bulk of production activity is focus-
ing (Warlick 2006). The production from such resources in the U.S. has skyrocketed,
from virtually nil at the beginning of 2000, to 6% of the gas produced in 2005, to 23%
in 2010; it is expected to reach 49% by 2035 (The Annual Energy Review (AER)
issued by the U.S. Energy Information Administration (EIA), 2011).

Low- and Ultra-Low Permeability Reservoirs (LULPR) are considered uncon-
ventional reservoirs. They are best described as oil and/or gas accumulations that
are difficult to characterize and commercially produce by conventional exploration
and production technologies. Typically, these resources are located in very ‘tight’,
heterogeneous, extremely complex, and often poorly understood geological sys-
tems; they are easy to find, but difficult to produce from. The main feature of all
such tight and ultra-tight reservoirs is the unavoidable need for well and reservoir
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stimulation. Their matrix permeability is extremely low (often at the nano-Darcy
level) such that even in the presence of a system of natural fractures, it cannot support
flow at commercially viable rates without permeability enhancement. Such enhance-
ment/stimulation is provided by a number of methods, all of which are designed to
develop a new system of artificial fractures. These increase the system’s permeability,
in addition to increasing the surface area over which reservoir fluids flow from the
porous matrix to the induced fractures, thus providing access to larger fluid volumes.
Altogether, stimulation techniques are the only means for rendering such resource-
rich, but unproductive, natural reservoirs commercially viable entities. Conventional
stimulation techniques involve the creation of a system of individual fractures ema-
nating from particular points along a (usually horizontal, except in the case of very
thick shale reservoirs) wellbore.

The most common stimulation methods are variants of hydro-fracturing, or frack-
ing in which the (almost negligible) incompressibility of water is exploited to deliver
a pressure shock that induces rock fracturing stemming from the target point (Sutton
et al. 2010; Cipolla et al. 2010). Often, proppants, in the form of sand grains, or
grains of a hard material (e.g., ceramics), are added to the injected fluid in order to
keep the fractures open after their creation.

In recent years, fracturing (or “Fracking”) techniques have been developed that
use injected liquid, primarily water (‘fracking fluid’), injected at high pressure
through wellbores and horizontal wells to produce fractures in gas and petroleum-
containing deep rock and shale formations. When the hydraulic pressure is removed
from the well, small grains called proppants, i.e. small particle materials (e.g., sand
or aluminium oxide) that hold the fractures open, prevent hydraulic fractures from
closing once the fracturing pressure is removed, The increased permeability enables
natural gas and petroleum (and the saline water) saturating the formation to move
towards extraction wells.

Acid-fracturing treatments are an alternative to the standard practice of hydraulic
fracturing and to the use of proppants.Williams et al. (1979) present a thorough expla-
nation of the fundamentals of acid fracturing. The latter, in the form of ‘Fracture-
acidizing’ or ‘acid-fracturing’, in which the injection results in pressures that exceed
the permitted rock fracturing pressure, need to be clearly differentiated from ‘frac-
ture acidizing’, which occurs at pressures below the fracturing pressure. The main
difference between standard proppant-assisted hydraulic fracturing and acid fractur-
ing is the mechanism that creates and maintains enhanced fracture permeability. In
acid fracturing, fractures are induced by high-pressure acid injection, and the acid
etched channels in the rock. These channels are not kept open by the use of obstacles
(proppants) that prevent closure, but through the removal of rock material through
chemical dissolution. For obvious reasons, this method is applicable only to rocks
that are soluble in the used acids. This method is widely used in low-permeability
carbonate reservoirs. However, it offers no advantages in reservoirs of different min-
eralogy (e.g., sandstone, shale, or coal bed methane reservoirs).
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Fig. 1.14 A schematic section of a A fractured rock domain, b a fractured porous rock (or porous
medium) domain

1.3.5 Fractures–Porous Blocks Interactions

When considering a fractured porous rock domain, composed of a subdomain of
fractures and another which includes the porous blocks, we encounter cases inwhich:

• Flow takes place overwhelmingly in the fractures, because of their much higher
permeability compared to that of the porous blocks (even when the matrix perme-
ability and porosity are not insignificant). Fluid exchange between the fractures
and the porous blocks is negligible. This type of system will be hereafter referred
to as fractured rock.

• Flow occurs in both the fractures and the porousmatrix, and fluid can be exchanged
between the two systems. Flow in fractured shale gas and oil reservoirs, and in
fractured permeable sandstones, may serve as examples of such cases. This type of
systemwill be hereafter referred to as fractured porousmedium. Note that in reality
practically all geological fractured systems belong in this category, and fractured
rock systems are a limiting case that involves but very low rock (matrix) porosity
and/or permeability compared to that of the fracture that prevent meaningful fluid
exchange between the two.

In both cases, heat exchange by conduction will always occur between the fractures
and the porous matrix as long as there is a temperature difference between the two
systems, and there is no thermal insulator between them unless the fracture is entirely
occupied by gases (which have a very low thermal conductivity). However, advective
heat exchange will occur as long as fluid advection is not negligible. These cases
will be discussed in Chap.8.

Figure1.14a and b show, schematically, segments of a fractured rock domain, and
of a fractured porous rock domain, respectively.

Figure1.15 shows a variety of examples of fractured rocks and fractured porous
rocks encountered at or near ground surface or extracted as cores fromdeepgeological
formations.

http://dx.doi.org/10.1007/978-3-319-72826-1_8


1.3 Soil and Fractured Rock Domains 55

(a) Fractured marl (b) Fractured granite

(c) Fractured Harzburgite

(d) Franciscan fractured mudstone

(e) Potsdam sandstone
(f) Fractured sandstone

Fig. 1.15 Fractured rocks and fractured porous rock (Courtesy of Dr. Phillipe Gouze, Univ. of
Montpellier (a–c), Dr. George J. Moridis, LBNL (d), Dr. Timothy Kneafsey, LBNL (e), and the
Potsdam Public Museum (f))

A verbal description of these figures is presented later in this section. Note the
complexity of these real rock systems. Obviously, the only hope for modeling flow
and transport in such domains is if we may regard them as continua, which means
identifying an REV for each considered rock or porous rock domain.
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Fig. 1.16 Selecting an REV for a fractured porous medium domain

There is no need to repeat the explanation why we cannot deal with phenomena of
transport in fractured domains, and in fractured porous domains, at the microscopic
level. Thus, we need to examine the option of envisioning such domains as con-
tinua. Following the discussion in Sect. 1.1, the conceptual procedure for examining
whether or not a given fractured domain can be regarded as a continuum, involves the
possibility of identifying an appropriate REV for such domain. Figure1.16 explains
the selection of an REV for the porous fractured block shown in Fig. 1.14b.

Once an REV has been identified for a fractured rock domain, or for a fractured
porous rock domain, we may regard it as a continuum. This means that a common
REV exists for both the network of fractures and for the porous rock domain. In fact,
we have here four overlapping continua: (1) the void space in the domain as a whole
is regarded as a continuum that occupies the entire domain at the domain’s porosity,
(2) the solid matrix is regarded as a continuum that occupies the entire domain, at
the solid’s porosity (= volume of solid per unit volume of porous medium), (3) the
fractures constitute a domain that covers the entire domain, and (4) the void space
in the porous blocks also constitute a continuum that covers the entire considered
domain. All these continua overlap each other.

Since, in this section, we are considering fluid flow only, we shall assume that
the void spaces in both the fractures and in the porous blocks are interconnected,
such that we may have (1) fluid mass storage in both domains, (2) fluid flow in both
domains, and (3) fluid mass exchange between them. However, in most cases of
fractured porous media,

• Most of the fluid storage is in the porous blocks,
• Most of the flow is in the fractures.

In fractured porous rocks, the storage in the matrix may be large, but, because of
very small pore size, permeability is very small, so that flow into or out of storage in
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the matrix is low, and, unless enhanced, may be insignificant for practical purposes.
For shale gas reservoir, matrix flow is the limiting factor, hence its importance.

1.3.6 Approaches to the Description of Fractured Media

In this subsection,we shall brieflydiscuss themore commonconcepts and approaches
to the description of transport in fractured porous media. Note that we consider here
not only the transport of one or two fluids, but also of heat.

A. Equivalent Continuum Model (ECM)

The Equivalent Continuum Model (ECM) does not differentiate between the void
space in fractures and that in the porous blocks. Instead, it represents the void space
in both the fractures and the porous blocks as a single void space continuum. This
single continuum is characterized by a single set of flow and transport properties
(e.g., porosity, permeability, dispersivity) that take into account the contributions of
both the fractures and the porous blocks. Furthermore, at any point in this domain
and at any time, fluid flow, heat flow and solute transport are represented by a single
set of variables of state, such as pressure, phase saturation, solute concentration and
temperature. It is an appropriate approximationwhen studying flow in large domains.
However, in small domains, it is incapable of capturing the difference between the
fluid behavior in the fractures and in the porous blocks.

Altogether, the ECM method leads to good results when the time scale for flow
between fracture and matrix is much smaller than the time scale for flow in the whole
domain.

B. Double-Porosity Model

Thismodel, introduced byBarenblatt et al. (1960), and expanded byWarren andRoot
(1963), represents the first conceptual and correspondingmathematicalmodel of flow
through a porous fractured system; it is still widely used in studies and analyses of
flow through porous fractured petroleum reservoirs. In this approach, the total void
space of the fractured rock system, and hence the associated porosity, is partitioned
into (1) a primary porosity, which consists of the interconnected void space within
the porous blocks (referred to as ‘matrix porosity’), and (2) a secondary void space,
consisting of interconnected fractures and joints, referred to as ‘fracture porosity’.
Each of the two void spaces, and the associated porosities, is treated as a continuum
which is characterized by the usual porous medium properties, e.g., permeability,
porosity, and compressibility. The two continua overlap each other.

The fractured rock is treated as a porousmedium continuum. It has its own proper-
ties and characteristics. These are distinctly different from those of the (overlapping)
matrix continuum domain.

Figure1.14 shows a porous fractured rock and its representation as a double poros-
ity domain. In it, the fractured porous rock contains the blocks of porous rock, with
every block surrounded on all sides by fractures. Fluid flow and storage take place
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within each of the two interacting domains–fractures and matrix blocks (although
limited storage may occur in the fractures).

An identifying characteristic of the double porosity model is that it involves flow
both from matrix blocks to fractures and within the system of interconnected frac-
tures. However, there is no direct flow from one matrix block to an adjacent one as
these are separated by fractures.

C. Dual Permeability Model

This model is an extension of the double porosity model. It maintains the partitioning
of the porous rock domain into two interacting (overlapping) continua: thematrix and
the fractures. However, unlike the double porosity model, which allows flow only (1)
between the matrix and the fractures, and (2) in the network of interconnected frac-
tures, thedual-permeability model permits also inter-block (i.e., matrix-to-matrix)
flow. The direct matrix-to-matrix flow indicates that the dual-permeability model is
applicable to fractured media in which fracturing is not extensive and/or is limited
to one or two general directions.

Doughty (1999) presents a thorough discussion on the double-porosity versus the
dual permeability models, as well as a comparison to other conceptual and numerical
approaches for evaluating mass and heat transport in fractured media.

D. Triple Porosity Models

The double-porosity and dual-permeability models described above are limited to
cases in which, within each block, the fractures and the matrix have more or less
homogeneous porosity and permeability. However, block and fracture propertiesmay
still vary from one block to the other.

Thismodel failswhen the heterogeneitywithin eachmatrix block is so pronounced
that it cannot be represented by a single (medium) REV, and a second porousmedium
with distinct properties has to be defined for the same block. A domain contains two
kinds of fractures–e.g., narrow and wide (e.g., large cavities or vugs, or low perme-
ability occlusions) is an example of such a case. Such internal spatial heterogeneity
may occur also when the domain contains a single type of fractures, but the matrix
is constituted of two types of rock with distinctly different sets of properties (e.g.,
porosity and permeability). An example is a rock matrix with high porosity (say, due
to micro-fractures) and a permeability that is in contact with the fractures, on one
hand and with another rock matrix type deeper within the rock block (i.e., away from
the fractures) that is characterized by lower porosity and permeability. Another case
is a rock matrix with regularly-distributed occlusions of very different properties
(e.g., pyrite inclusions in shales). Under such conditions of internal heterogeneity,
the domain can be represented as composed of three overlapping continua: the porous
blocks, the major network of fractured, and either a system of narrow fractures in
the block or as a fraction of the matrix block with different properties. Fluid (under
a pressure difference) and heat (under a temperature difference) can be exchanged
between the various combinations of such continua. We refer to a model of this
kind as a triple-porosity model. It has found numerous applications in petroleum
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(a) Large vugs (b) Small vugs

Fig. 1.17 A fractured rock domain with large and small vugs (Courtesy of Dr. George J. Moridis,
LBNL)

engineering (e.g., Abdassah and Ershaghis 1986; Al-Ghamdi and Ershaghi 1996;
Wu et al. 2004),

E. Fractures and Vugs

Vugs are large voids (cavities) occluded in the porous matrix of geological forma-
tions. They are very different (in terms of their geometry, physical appearance and
effect on flow behavior) from fractures. They are three-dimensional void spaces that
may be small but may reach several meters across and with volumes that can be as
large as several tens of cubic meters.

Vugs are created by a variety of causes, e.g., rock dissolution in carbonate forma-
tions, intrusion of acidic water, or vesicles created by accumulating and/or escaping
gases during the cooling of volcanic magma. Vugs act as local reservoirs of occluded
fluid domains, which, in turn, significantly affect the flow behavior in the geological
system. They can be isolated within the porous matrix, or can be connected through
fractures with neighboring vugs and fractures.

Figure1.17 shows small and large vugs. When the distance between them is small
relative to the considered domain, and there are many of them, such that we may
regard the vugs as a continuum of a certain porosity and permeability that can carry
fluid and exchange fluid with the surrounding continuum of fractures and/or porous
blocks, we can regard them as another layer in the multi-continuum model.

However, when vugs are large, they are usually also widely and irregularly spaced
to the extent that we cannot describe them as a continuum. Large vugs, connected to a
fracture network, create very complex flow regimes and require different approaches.
Flow through vuggy reservoirs has been described by triple- and multiple-porosity



60 1 Porous Media

models (e.g., Wu et al. 2006), but this remains a challenging problem that tests
the limits of the ability to mathematically describe flow in such complex natural
domains.

1.4 Scales and Upscaling

We have already introduced the concept of upscaling in Sect. 1.1.3, where we have
discussed how we overcome the lack of information on how the solid and fluid
phases are distributed throughout a considered porous medium domain. In particular,
we have considered space or mass averaging as a tool for overcoming the lack of
detailed information about the geometry of interphase boundaries. In fact, we have
also mentioned the passage from the molecular distribution of matter to smooth
phases by averaging of the molecular behavior. In what follows, we shall extend the
concept of upscaling to higher levels.

1.4.1 Scales of Heterogeneity

So far in this book, we have mentioned four levels of describing phenomena:

• Molecular level (also referred to as ‘nano-level’ or ‘nano-scale’). At this level we
refer to consider molecules and their movement.

• Nanometric level. This level contains porous media in which the pores are of
nanometer size.Certain shales belong to this group and so are rockswith nanometer
size apertures.

• Microscopic level. At this level, also referred to as ‘pore scale’, each considered
phase within a domain of interest is regarded as a continuum. We consider what
happens at points within a considered phase. Typical distances of interest are µm.
The phase may be a solid, a liquid, or a gas. Variables of state are defined for
every point within a considered phase. In Sect. 1.1.1 we have introduced this as a
definition of a continuum.

• Macroscopic level. The entire porous medium domain of interest is regarded as
a continuum. Each of the phases present in that domain is also considered as a
continuum. Variables of state (= average over an REV) are assigned to every point
within the considered porous medium domain. Some authors refer to this scale as
‘laboratory scale’, or ‘Darcy scale’, although this is the level at which most porous
medium domains, including geological formations, are usually modelled. Typical
distance at this scale is cm, or m.

• Megascopic level. This level, often referred to as ‘field scale’ or ‘formation scale’,
is used to describe phenomena of transport in geological formations which, typ-
ically, are highly heterogeneous. Typical distances of interest are from meters to
kilometers. This kind of porous medium domains requires special attention.
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The passage from one level of description of phenomena of transport to the next
is referred to as ‘upscaling’. The reason for upscaling is mainly lack of information
about the domain properties, or about the behavior of the phases within a consid-
ered domain. At the higher level, the missing information is represented by certain
properties, referred to as coefficients.

It may be interesting to note that the term ‘scale’ is often used to mean something
different from that described above. Sometimes the ‘scale of a problem’ is used to
express the ‘size of the considered geological domain’. In the case of solute transport
in the form of an advancing plume, the ‘scale of the plume’ is an expression often
used for the length of the solute plume. Finally, ‘scale of heterogeneity’ may be
used to indicate the distance over which a certain property, e.g., permeability, is still
correlated.

Our main interest in this book is modeling at the macroscopic level. Nevertheless,
we have added some material also on modeling at the megascopic scale.

Accordingly, we shall start from modeling phenomena of flow and transport at
the microscopic level, i.e., the level at which a fluid and a solid are already defined,
overlooking their molecular structure, and briefly introduce two techniques, averag-
ing and homogenization, for passing from the microscopic level to the macroscopic
one. There is no need to present these approaches in detail as they are described in
numerous books and publications (e.g., Bear and Bachmat 1991; Cushman 1997;
Whitaker 1999; Selyakov and Kadet 1996). We shall then focus on the phenomeno-
logical approach to modeling (directly at the macroscopic level). This approach
will be introduced in the present section and employed throughout the book (see
Sect. 1.4.4).

Let us add some comments on these four scales, or levels of description:

A. Molecular Level

At this level, say in a liquid or a gas that occupies part of the void space, we note
the presence of molecules that are continuously in motion. The mean travel path
(between collisions) of the moving molecules may serve as a measure of the spatial
heterogeneity in the fluid domain.

B. Nanometer Level

Gas or liquid flow, as well as molecular diffusion of dissolved chemical species
through shale, tight sandstone formations, or through powder and engineered porous
media, may serve as examples of nano-scale transport in porous medium domains.
Not all the material presented in this book is valid without modification also for such
porous media. The Klinkenberg effect (Sect. 4.3.3) my play an important role.

C. Microscopic Level

Consider a fluid moving through the void space, or part of it, in a porous medium
domain. We are interested in describing what happens at points within the fluid.
This is the microscopic level of description. Another example is heat flow and we
are interested in the temperature at points inside the solid matrix. In such cases, the
heterogeneity of the domain through which the transport occurs is due to the very

http://dx.doi.org/10.1007/978-3-319-72826-1_4
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presence of void space and solid matrix. This heterogeneity is characterized by the
average grain size, or the average pore size, or, for non-granular material, by the
hydraulic radius of the void space. Typical values of this scale of heterogeneity may
be a few mm’s (in the case of sand) and a few cm in the case of gravel. The material
on imaging presented in Sect. 1.2 is applicable.

D. Macroscopic Level

Here, we are interested in the averaged behavior of fluid flow, solute transport, heat
transport and stresses in the porous medium domain, visualized as a continuum
that has various transport properties. Typically, natural porous medium domains
(e.g., aquifers, petroleum reservoirs) are heterogeneous, due to spatial variations in
porous medium properties, such as porosity, and permeability. A length character-
izing this heterogeneity is the length of correlation of the spatial distribution of a
porous medium property, e.g., permeability. When the porous medium domain is
homogeneous (say, with respect to permeability), its smallest dimension serves as
its characteristic length (e.g., the thickness in an extensive oil reservoir).

E. Megascopic Level

Here, the heterogeneity is of porosity, permeability, andother relevant porousmedium
transport properties. Most geological formations, especially when our interest is in
modeling large domains within such formations, belong to this level. An example
of such heterogeneity is that introduced by the existence of layers and lenses of
different permeability. In the latter case, the scale (of heterogeneity) is the length of
correlation between lenses and layers of different permeability.

In principle, whenever we cannot describe a transport phenomenon (by writing
its complete well-posed model) at one level, say because we cannot describe the
way properties like permeability and porosity vary, we describe the considered phe-
nomenon at a higher level, obviously, if this is possible. We have already referred to
such process as up-scaling.

The objective of this book is to model phenomena of flow and transport at the
macroscopic level. Because the main interest in upscaling due to porous medium
heterogeneity is in connection with solute (or reactive) transport, we shall present
more about up-scaling in Sect. 7.2.4A.

1.4.2 REV Averaging

Volume (or REV) averaging facilitates the passage from the microscopic level to the
macroscopic one. In this method we start by writing a transport model of interest
at the microscopic level and then, making use of certain averaging rules, transform
that model to one at the macroscopic level.

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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A. The Bear–Bachmat Approach

Because the basic balance equation for any extensive quantity includes a sum of
terms, products of terms and partial space and time derivatives, the Bear–Bachmat
approach (Bachmat and Bear 1964; Bear and Bachmat 1991), like all volume aver-
aging approaches, starts by presenting a number of averaging rules. By integrating
(or averaging) the microscopic balance equation for any extensive quantity, over an
REV, and using these averaging rules, the corresponding macroscopic equation are
obtained.

1. Average of a Sum

Let g1(ξ, t; x) and g2(ξ, t; x) be two quantities pertinent to a phase, and g1
α(x, t)

and g2
α(x, t) be their corresponding intrinsic phase averages, respectively. We use ξ

to denote a point within a phase, while x denotes a point at the macroscopic level; it
is the centroid of the REV.

1

Voα

∫

Vo(x)

{g1(ξ, t; x) + g2(ξ, t; x) }dV(ξ)

= 1

Voα

∫

Voα(x)

g1(ξ, t; x) dV(ξ) + 1

Voα

∫

Voα(x)

g2(ξ, t; x) dV(ξ),

from which it follows that

g1(ξ, t; x) + g2(ξ, t; x)
α = g1

α(x, t) + g2
α(x, t). (1.4.1)

Recall the comment following (1.1.15) that g(ξ, t) dV(ξ) must be physically mean-
ingful.

2. Average of a Product

With deviation from the average defined by (1.1.13), we have:

g1(ξ, t; x) = g1
α(x, t) + g̊1(ξ, t; x), g2(ξ, t; x) = g2

α(x, t) + g̊2(ξ, t; x),

and, employing (1.1.14), we obtain (Bear and Bachmat 1991, p. 116),

g1g2
α(x) = g1

α(x)g2
α(x) + g̊1 g̊2

α
(x), (1.4.2)

i.e., the intrinsic average of a product is equal to the sum of the product of the
averages and the average of the product of the deviations.

3. Average of a Time Derivative

Figure (1.18) shows anREV,�o, of volumeVo, centered at x. It contains a subdomain
Voα of an α-phase; the symbol β denotes the union of all other phases present in Vo.
Let e′(≡ e′

α) denote the density of an extensive quantity E of theα-phase.We assume
that e′ is differentiable with respect to time, and has no discontinuity within Voα. We
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Fig. 1.18 Definition sketch
for REV
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regard Voα as a material volume with respect to E , so that the Reynolds Transport
Theorem, (see an appropriate book on mathematics, e.g., Leal 2007; Marsden and
Tromba 2003) is applicable to E within the domain �oα at time t . We obtain

DE

Dt

∫

Voα(t)
e′ dV

=
∫

Voα(t)

∂e′

∂t
dV +

∫

Sαβ(t)
e′u·να dS +

∫

Sαα(t)
e′VE ·να dS, (1.4.3)

where Soα = Sαα + Sαβ is the total surface bounding �oα (see Fig. 1.18), u is the
velocity at which the Sαβ-surface is being displaced and να denotes the outward
normal unit vector to the α-phase on Sαβ . We recall that e′dV must be physically
meaningful and that because Sαβ is regarded here as a material surface, we replace
on it VE ·ν by u·ν.

On the other hand, we may focus our attention on the material rate of change of
E in the α-phase within �o as a whole. We express this rate by:

DE

Dt

∫

Vo

γαe
′ dV = ∂

∂t

∫

Vo

γαe
′ dV +

∫

So

γαe
′VE ·ν dS, (1.4.4)

where γα is the characteristic function defined in (1.1.9). Here,

γ(ξ) =
{
1 for ξ within �oα,

0 for ξ outside �oα.
(1.4.5)

In words, (1.4.4) states that the material rate of change of the total quantity of E in
the α-phase within �o is equal to the rate of change of E instantaneouslywithin �o,
plus the net efflux of E leaving �o through its boundary surface So(= Sαα + Sββ);
να is the outward normal unit vector on So.

Since e′ vanishes outside the phase, (1.4.4) may be rewritten in the form:
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DE

Dt

∫

Voα

e′ dV = ∂

∂t

∫

Voα

e′ dV +
∫

Sαα

e′VE ·να dS. (1.4.6)

By comparing (1.4.3) with (1.4.6), we obtain:

∂

∂t

∫

Voα(t)
e′ dV =

∫

Voα(t)

∂e′

∂t
dV +

∫

Sαβ(t)
e′u·να dS. (1.4.7)

Actually, (1.4.7), knownas theReynolds Transport Theorem,maybe considered as
an extension of Leibnitz’ rule (of taking the derivative of an integral with respect to a
parameter),with the surface integral representing the effect of the rate of displacement
of the boundary of integration, Sαβ .

Using the definition (1.1.7) for an intrinsic phase average, we obtain from (1.4.7):

∂

∂t
(Voαe′α) = Voα

(
∂e′

∂t

α)
+

∫

Sαβ

e′u·να dS. (1.4.8)

After dividing by Vo, we obtain:

∂θαe′α

∂t
= θα

(
∂e′

∂t

α)
+ 1

Vo

∫

Sαβ

e′u·να dS. (1.4.9)

which relates the time derivative of an average value to the average of the time
derivative, with θα(≡ Voα/Vo) denoting the volumetric fraction of the α-phase.

4. Average of a Spatial Derivative

The averaging rule for a spatial derivative can now be derived by making use of
Gauss’ theorem (3.2.7), rewritten here in the form:

∫

Voα

∂g jkl...

∂xi
dV =

∫

Sαα

g jkl...ναi dS +
∫

Sαβ

g jkl...ναi dS, (1.4.10)

where β denotes all non-α phases. We note that:

∫

Sαα

g jkl...ναi dS =
∫

So

g jkl...γαναi dS = ∂

∂xi

∫

Vo

g jkl...γα dV

= ∂(g jkl...
α
Voα)

∂xi
= Vo

∂(θg jkl...
α)

∂xi
, (1.4.11)

where γα is defined by (1.4.5). By combining (1.4.10) and (1.4.11), we obtain the
averaging rule:

θ
∂g jkl...

∂xi

α

= ∂

∂xi
θg jkl...

α + 1

Vo

∫

Sαβ

g jkl...νi dS, (1.4.12)

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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where g jkl... stands for a tensorial quantity of any rank (of the α-phase). Some intro-
ductory remarks on tensors are presented in Sect. 9.1A.

The evaluation of the surface integral, in (1.4.12), requires information on the
configuration of the Sαβ-surface and on the distribution of g (or gα) on it. This
information is nothing but the boundary condition of the first kind, i.e., the value of
the variable gα on the boundary, that is on the solid surface bounding the void space.
Usually, this information is not available.

Bear and Bachmat (1991, p. 125) consider the special case in which this informa-
tion is available in the form:

∇2gα = 0, in Voα, and
1

Sαα

∫

Sαα

∂gα

∂xi
dSαα ≈ ∂gα

α

∂xi
. (1.4.13)

They show that under such conditions, the averaging rule (1.4.12) reduces to:

∂gα

∂x j

α

= ∂gα
α

∂xi
T ∗

αi j + 1

Voα

∫

Sαβ

x̊ j
∂gα

∂xi
νi dS, (1.4.14)

where x̊ = ξ − x, and:

T ∗
αi j = 1

Voα

∫

Sαα

νi x̊ j dS, (1.4.15)

in which Sαα denotes the α − α surface on the external surface of the REV. The
subscript α is used in T ∗

αi j , to emphasize that this coefficient depends only on the
configuration of the α-phase within Vo.

Bear and Bachmat (1991, p. 126) refer to T ∗
αi j as the tortuosity of the α-phase

(thus referring also to multiphase flow within the void-space). The definition in
(1.4.15) defines the tortuosity as the staticmoment of the oriented elementary surfaces
comprising the Sαα-surface, with respect to planes passing through the centroid of
the REV, per unit volume of the α-phase within Vo.

Note that the requirement that ∇2gα = 0 limits the discussion to diffusive type
of flow (e.g., of solute or of heat, but also the case of creeping fluid flow governed
by ∇2 pα = 0, thus also limiting the use of the term tortuosity suggested above. We
may refer to T ∗

αi j as diffusive tortuosity.
They consider three cases of boundary conditions on the Sαβ-surface that partly

surrounds Voα. The REV contains a fluid α-phase and an s-solid phase.

CASE A: The condition on Sαs is

∇gα·να = 0 on Sαβ . (1.4.16)

By inserting (1.4.16) into (1.4.14), we obtain

∂gα

∂x j

α

= ∂gα
α

∂xi
T ∗

αi j (1.4.17)

http://dx.doi.org/10.1007/978-3-319-72826-1_9


1.4 Scales and Upscaling 67

as the relationship between the average of a gradient and the gradient of an average
for this particular case.

CASE B: The conditions on Sαs are:

−(λα∇gα·να)

∣∣∣∣α side
of Sαs

= (λs∇gs ·νs)

∣∣∣∣ s side
of Sαs

, (1.4.18)

gα

∣∣∣∣α side
of Sαs

= gs

∣∣∣∣ s side
of Sαs

, (1.4.19)

where λα and λβ are constant coefficients that depend on the nature of G and on the
nature of the α- and s-phases, respectively, and gs denotes the value of g in Vos .

By applying (1.4.14), first to the α-phase, and multiplying the equation by λα,
then to the s-phase, and multiplying the equation by λs , and then adding the two
resulting equations, making use of condition (1.4.18), we obtain

λαθα
∂gα

∂x j

α

+ λsθs
∂gs

∂x j

s

= λαθα
∂gα

α

∂xi
T ∗

αi j + λsθs
∂gs

s

∂xi
T ∗
si j . (1.4.20)

From (1.4.15), we obtain

∫

So

x̊ jναi dS =
∫

Sαα

x̊ jναi dS +
∫

Sss

x̊ jνsi dS
= VoαT

∗
α j i + VoβT

∗
s ji = Voδi j , (1.4.21)

whence we have a relationship between T ∗
αi j and T ∗

si j in the form:

θαT
∗
α j i + θsT

∗
s ji = δ j i . (1.4.22)

Next, we write (1.4.12) twice, once for the α-phase and then for the s-phase, add
the two equations and employ condition (1.4.19). We obtain

θα
∂gα

∂x j

α

+ θβ
∂gs

∂x j

β

= ∂(θαgα
α)

∂x j
+ ∂(θsgs

s)

∂x j
. (1.4.23)

Finally, multiplying (1.4.23) byλβ and subtracting the result from (1.4.20), yields

∂gα

∂x j

α

= 1

λα − λs

{(
λα

∂gα
α

∂xi
− λs

∂gs
s

∂xi

)
T ∗

αi j

−λs

θα

∂

∂x j
θα

(
gα

α − gs
β
)}

, (1.4.24)
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where we have employed (1.4.22), together with the relationship θα + θs = 1.
In the particular case of λs = 0, Eq. (1.4.24) reduces to (1.4.17), corresponding

to CASE A. The same holds when gα
α = gs

s . We shall later see that the fact that
the averaged g’s are equal, means that on the average (but not locally!) there is no
exchange between the phases across Sαs .

CASE C: Again, a single fluid occupies the entire void space, but the condition on
the α − s-interface is

∇gα·να = gα − gα
α

�
, (1.4.25)

where � is a microscopic elementary distance between the α − s surface and the
interior of the α-phase occupying Voα. For example, we may view it as proportional
to the hydraulic radius �α = Voα/Sαs , such that � = �α/Cα, where Cα is a
coefficient that varies with the orientation of elements of the Sαs-surface.

By inserting (1.4.25) into (1.4.14), we obtain

∂gα

∂x j

α

 ∂gα
α

∂xi
T ∗

αi j + Mj
g̃α

αs − gα
α

�2
α

, (1.4.26)

where g̃α
αs denotes the average of gα on the Sαs-surface. We note that the r.h.s.

of the above equation involves two coefficients. The first, T ∗
αi j , is the tortuosity

as considered so far, associated with the tortuous pathways, as compared to the
macroscopic distance between points. The second,

Mj = 1

Sαβ

∫

Sαβ

Cα x̊ j dS, (1.4.27)

with x̊ = x − xo, is a macroscopic coefficient associated with the configuration of
the Sαs-surface within the REV.We note that in (1.4.26), we have introduced another
macroscopic state variable, viz., g̃α

αs . Thus, the average of the gradient of gα depends
also on the difference g̃α

αs − gα
α.

5. The Macroscopic E-Balance Equation

Although the fundamental microscopic balance equation for any extensive quantity,
E (density e′), will be discussed only in Chap.3, we shall present it here for the
purpose of demonstrating theBear–BachmatREVaveraging approach. This equation
takes the form of (3.2.12), repeated here as:

∂e′

∂t
= −∇·(e′V + jE) + ρ�E . (1.4.28)

In this equation, jE denotes the diffusive flux of E , defined in (3.1.10), and � denotes
the rate of production of E per unit mass of the considered phase.

http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_3
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According to the Bear–Bachmat approach, to obtain the macroscopic level equa-
tion, we start by ‘averaging’ the microscopic balance equation (1.4.28), i.e., integrate
this equation over the volume of the α-phase within the REV, and divide the result
by the latter’s volume. We obtain

1

Vo

∫

Voα

∂e′

∂t
dV = − 1

Vo

∫

Voα

∇·(e′V + jE) dV + 1

Vo

∫

Voα

ρ�E dV. (1.4.29)

By using the averaging rules, the above equation is rewritten in the form:

∂θe′α

∂t
= −∇·θ(e′V + jE)

α − 1
Vo

∫
Sαβ

e′(V − u)·ν dS
(a) (b) (c)

− 1
Vo

∫
Sαβ

jE ·ν dS + θρ�E
α
,

(d) (e)

(1.4.30)

in which

(a) Rate of increase of E (in the phase), per unit volume of porous medium.
(b) Net influx of E by averaged advection and diffusion, per unit volume of porous

medium.
(c) Amount of E entering the phase, through the interface surface, Sαβ , of the phase

within Vo, per unit volume of porous medium and per unit time, by advection
with respect to the (possibly moving) Sαβ-surface.

(d) Same as (c), but by diffusion through Sαβ .
(e) Amount of E generated by sources of E within Voα, per unit volume of porous

medium and per unit time.

By (1.4.2), the (intrinsic-phase-) averaged advective flux, e′Vα
, may be decom-

posed into two fluxes: a macroscopic advective flux, e′αV
α
, and a flux e̊′V̊

α

. We shall
refer to this second flux as the dispersive flux of E (= the amount of E per unit area
of phase in the cross section, per unit time).

With these fluxes, (1.4.30) is rewritten in the form:

∂θe′α

∂t
= − ∇·θ(e′αV

α + e̊′V̊
α + jE

α)

− 1

Vo

∫

Sαβ

{
e′(V − u) + jE

}·ν + θρ�E
α
. (1.4.31)

Equation (1.4.31) is the general (macroscopic) differential balance equation of
an extensive quantity, E , of a phase, written in terms of e′.

It is interesting to emphasize two terms that appear in the above macroscopic level
E-balance equation, but do not appear in the microscopic level one:

• The term e̊′V̊
α

that expresses the dispersive flux of E ,
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• The surface integral on the second line of the equation which expresses interphase
E-transfer.

The dispersive flux of E , e̊′V̊
α

, will be discussed in detail in Sect. 3.4.3 and
especially in Sect. 7.2.3, in connection with the dispersive flux of a chemical species
in an α-fluid phase.

Bear and Bachmat (1991, p. 135) apply (1.4.31) to the particular cases: E =
m,mγ, M and E. Because of their interest primarily in ground water hydrology,
where ρ is essentially constant, their models are based on the intrinsic phase average,
e′α, and not on the specific value e of E and the mass averaged value, ẽα, of the
specific value e of E , as defined by (1.1.7).

An advantage of the Bear–Bachmat REV averaging approach, as of other aver-
aging approaches, say over the phenomenological approach presented in Sect. 1.4.4,
and employed throughout this book, is that it provides a better understanding of
the structure of the various porous medium coefficients, albeit on the basis of quite
a large number of simplifying assumptions, and their relationships to geometrical
features of the solid-void space interface.

B. Whitaker’s Approach

Whitaker (e.g., Whitaker 1999) suggested another, slightly different method for
volume averaging, or ‘spatial smoothing’, of transport models. Let us demonstrate
Whitaker’s approach through the example of solute transport presented by Whitaker
(1999, p. 1).

Whitaker demonstrates his approach by considering the case diffusion of a chem-
ical γ-species, of concentration cγ

α, within a fluid α-phase that occupies the entire
void space of a porous medium domain. The internal surface of that domain is a
catalytic surface.

The microscopic mass balance equation for a diffusing γ-species in an α-phase,
is

∂cγ
α

∂t
= −∇·jγdi f,α + �γ

α, γ = 1, 2 . . . N , (1.4.32)

in which, the diffusive γ-flux is expressed by:

jγdi f,α(≡ cγ
αVγ

α) = −ηαDγ
α∇Xγ

α,
1

Dγ
mixture

=
δ=N ,δ �=γ∑

δ=1

X δ
α

Dγδ
, (1.4.33)

where ηα is the molar concentration (in moles per unit volume) of the α-phase, cγ
α

is the molar concentration of the γ-species in the α-phase, and Xγ
α (dimensionless)

denotes mole fraction, of γ in α, jγdi f,α ≡ cγ
αVγ

α is the diffusive flux of γ in α, with
Vγ

α denoting the velocity of the γ-species in the α-phase; �γ
α is the molar rate of

production of γ by heterogenous chemical reactions (in moles per unit volume per
unit time). At the α − s - interface, with s denoting the solid, we have the interfacial
flux constitutive relationship:

http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_7
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jγα|(α,s)·να,s = k1c
γ
α − k1′cγ

s , (1.4.34)

in which k1 and k1′ denote coefficients of adsorption and desorption, respectively.
This condition expresses a linear adsorption isotherm.

Altogether, the mathematical model of a diffusing γ chemical in an α fluid occu-
pying the void space of a porous medium domain consists of the mass balance of the
γ-species in the void-space, boundary condition (B.C.) on the α− s surface area and
on the fluid portion of the boundary domain, Sαe, and initial conditions (I.C.) in the
fluid occupying the void space within the domain:

∂cγ
α

∂t
= ∇· (Dγ∇cγ

α

)
, in the α-phase, (1.4.35)

I.C. cγ
α = F1(x), at t = 0 in theα phase, (1.4.36)

B.C.1 − Dγ∇cγ
α·ν|α,s = kcγ

α, on Sα,s, (1.4.37)

B.C.2 cγ
α = F2(x, t), on Sα,e, (1.4.38)

where Sα,s denotes the α-solid surface, and Sα,e denotes the fluid–fluid portion on
the surface that bounds the REV.

The problem as stated above is presented at the microscopic level. Obviously, we
cannot solve it as we do not have the information on the detailed configuration of
the α − s surfaces.

Like Bear and Bachmat (1991), Whitaker also considers a point x within the
considered porous medium domain, which serves as the center of an REV of volume
Vo; Voα denotes the volume of the α-phase within Vo. Whitaker defines two kinds
of averages for cγ

α (as, obviously, for any variable):

• Intrinsic phase average concentration of cγ
α:

cγ
α

α
(x, t) = 1

Voα(x, t)

∫

Voα(x,t)
cγ
α(ξ, t; x) dVα(ξ), (1.4.39)

i.e., the average cγ
α

α
is a function of the macroscopic space coordinates, x. Note

that ξ is used to denote the location of a point (at the microscopic level) within the
Voα-domain, while x is used to denote the centroid of the REV.

• Volumetric phase average of cγ
α:

cγ
α(x, t) = 1

Vo(x, t)

∫

Voα(x,t)
cγ
α(ξ, t; x) dVα(ξ). (1.4.40)

Here, the total amount of the extensive quantity of the α-phase is averaged over the
entire volume Vo of the REV. Since we deal with a property of the α-phase only, the
integrations in both (1.4.39) and (1.4.40) are over the sub-domain Voα only.
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From the above two equations, it follows that the two kinds of averages are related
to each other by

cγ
α(x, t) = θαc

γ
α

α
(x, t), (1.4.41)

where θα denotes the volumetric fraction of the α-phase within the REV.
With the above definition, we now average (1.4.35), i.e.,

1

Vo

∫

Voα

∂cγ
α

∂t
dVα = 1

Vo

∫

Voα

∇· (Dγ∇cγ
α

)
dVα, (1.4.42)

In single phase flow in a nondeformable porousmedium,Voα =const. Then, using
the Reynolds transport theorem (1.4.7), Whitaker replaces (1.4.42) by

∂cγ
α

∂t
= ∇· (Dα∇cγ

α

)
, (1.4.43)

or, since the solid matrix is assumed to be non-deformable, i.e., ∂φα∂t = 0,

φα
∂cγ

α

α

∂t
= ∇· (Dα∇cγ

α

)
. (1.4.44)

where, for single phase flow, φα ≡ φ. We recall that the l.h.s. of the above equation
expresses the rate of increase of the γ-species, in moles per unit volume of porous
medium. We use this opportunity to mention that a situation for which ∂(..)/∂t = 0
is referred to as a steady state situation with respect to (..).

Similar to the steps taken by Bear and Bachmat (1991, see Sect. 1.4.2A),
Whitaker’s next step is to introduce ‘averaging theorems’, i.e., rules that relate the
average of (time and space) derivatives to the derivatives of an average. For eα,

∇eα(x, t) = ∇eα(x, t) + 1

Vo

∫

Sαβ

eα(x, t; ξ)ν dS(x, t; ξ), (1.4.45)

in which S denotes the area of the interface between the α-phase and all other β-
phases within V and ν is the unit vector normal to S. For a single fluid phase that
occupies the entire void space, Sαβ ≡ Sαs . The above rule is an extension to three
dimensions of Leibnitz rule for interchanging differentiation and integration (see
discussion leading to (1.4.9) and (1.4.12)).

Rewriting the last equation for a vector variable, say Vα, we obtain:

∇·Vα(x, t) = ∇·Vα(x, t) + 1

Vo

∫

Sαβ

Vα(x, t; ξ)·ν dS(x, t; ξ), (1.4.46)

With the above rules, the averaged equation (1.4.44) leads to the macroscopic
equation:
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φα
∂cγ

α

α

∂t
= ∇·Dα∇cγ

α + 1

Vo

∫

Sαβ

Dα∇cγ
α·νS dS. (1.4.47)

By making use of the boundary condition (1.4.37), we can rewrite the above
equation in the form:

φα
∂cγ

α

α

∂t
= ∇·Dα∇cγ

α − 1

Vo

∫

Sαβ

k cγ
α dS. (1.4.48)

We recall that the second term on the r.h.s. represents heterogenous reactions.
Whitaker approximates (1.4.48) by assuming that k is a constant within the REV

and that Dα also remains approximately constant within the REV. These lead to:

φα
∂cγ

α

α

∂t
= ∇·

(
Dα∇cγ

α

)
− k

Vo

∫

Sαβ

cγ
α dS, (1.4.49)

which is, eventually approximated as:

φα
∂cγ

α

α

∂t
= ∇·

(
Dα∇cγ

α

)
− k

Vo

∫

Sαβ

cγ
α dS, (1.4.50)

or:

φα
∂cγ

α

α

∂t
= ∇·

(
Dα∇cγ

α

)
− �αs k c̃

γ
α, (1.4.51)

c̃γ
α = 1

Sα,s

∫

Sα,s

cγ
α dSα,s . (1.4.52)

where �αs is the specific area of the α − s surface (= Sα,s/V), and c̃γ
α denotes the

average concentration on Sα,s .
Finally, Whitaker rewrites the mass balance of the γ-species in the α-phase in the

form:

φα
∂cγ

α

α

∂t
= ∇·

[
Dα

(
φα∇cγ

α

α + cγ
α

α∇φα + 1

V

∫

Sαβ

cγ
ανα,s dS

)]

−�αs k c̃
γ
α. (1.4.53)

In this equation, we note that the value of cγ
α on the interface Sαβ is not known, as

this requires the solution of the problem as stated microscopic level in Eqs. (1.4.35)–
(1.4.38). Obviously, a passage for the macroscopic description of the problem is a
called for.

Following Gray (1975), Whitaker introduces a separation of length scales in the
form of a relationship between the average value of a state variable, say cγ

α at a point
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within the α-phase in the REV and its average value assigned to the REV’s center.
The former is a local (= microscopic value), while the latter is associated with the
large length-scale. Written, for example for the concentration cγ

α, we have:

cγ
α = cγ

α

α + c̊γ
α, (1.4.54)

in which c̊γ
α denotes the spatial deviation concentration. With (1.4.54), Eq. (1.4.53)

can be rewritten as:

φα
∂cγ

α

α

∂t
= ∇·

[
Dα

(
φα∇cγ

α

α + cγ
α

α∇φα + 1

V

∫

Sαβ

cγ
α

α
να,s dS

+ 1

V

∫

Sαβ

c̊γ
ανα,s dS

)]
− �αs k c̃

γ
α. (1.4.55)

Whitaker indicates three difficulties in the above equation: (1) the presence of the
volume averaged (= macroscopic) value inside the surface integral, (2) the presence
of the surface averaged concentration in the heterogenous reaction rate term, and
(3) the presence of the spatial deviation concentration in the above (macroscopic)
equation forDαc

γ
α

α
. Concerning item (1), he develops cγ

α, which, unlike the average
in the Bear and Bachmat approach is not a constant over the REV, in a Taylor power
series about the centroid of the REV, and, following an order of magnitude analysis,
leads to the conclusion that this term may be eliminated from (1.4.55).

Whitaker develops also a macroscopic level model for convective transport. With
Vα denoting the velocity of the fluid α-phase, the leads to the macroscopic balance
equation for the concentration of a γ-species in a fluid α-phase in the form:

φα
∂cγ

α

α

∂t
= ∇·

[
Dα

(
φα∇cγ

α

α + cγ
α

α∇φα + 1

V

∫

Sαβ

cγ
α

α
να,s dS

+ 1

V

∫

Sαβ

c̊γ
ανα,s dS

)]
− �αs k c̃

γ
α. (1.4.56)

Once Whitaker has reached (1.4.55), his next step is to solve the closure problem
that will lead to a closed form of this equation. This means deriving a closed form for

the spatial deviation concentration c̊γ
α. He derives this form by solving the boundary

value problem for the spatial deviation concentration. This is typical of the approach
suggested by him.

The analysis referred to here is based on a comparison between two characteristic
length scales: that of the averaged concentration as a whole and that related to the
size, say radius, of the REV.
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In his book (1999) and in many papers, Whitaker deals also with the construction
of averaged models for two-phase mass, energy and momentum balance equations,
deriving Darcy’s law from the momentum balance equation.

C. Hassanizadeh-Gray’s Approach

In a series of papers, Hassanizadeh and Gray (e.g., 1979a, b, 1980, 1990) present
an approach, which they characterize as ‘thermodynamically correct’, to the passage
from the microscopic level to the macroscopic one.

Hassanizadeh (1979a), henceforth abbreviated by H&G, consider a multiphase
transport in porous medium systems. Their approach consists of three main parts. In
the first part, similar to Bear and Bachmat’s and Whittaker’s approaches described
above, microscopic balance laws for extensive quantities are stated and averaged,
yielding macroscopic balance laws that are valid for any phase present in a porous
medium domain. In addition to phase domains, they also develop microscopic and
averaged balance equations for extensive properties that are associated with inter-
phase boundaries, i.e., interfaces such as fluid–fluid and solid-fluid interfaces (Gray
and Hassanizadeh 1989). At the microscopic level, such interfaces are between
phases. However, at the macroscopic level, they are added to the phases within
the REV, as a continuum of interphase domains. They have their own E-balance
equations, except that the intensive properties express E per unit area of interface.
Actually, in their models, they also take into account the curves along which inter-
phase surfaces intersect each other and suggest balance equation along such curves
and averages over all such intersection curves within an REV.

In the third part of their work, they employ rational thermodynamics (Truesdell
1977; Eringen 1980) in order to develop macro-scale constitutive equations that
describe the behavior of phases in porous medium domains.

The averaging procedure in the H&G approach follows, basically, that of Bear and
Bachmat (1991) described above. They also start by stating the microscopic balance
equations at a point within a phase, and use REV-averaging laws to derive averaged,
macroscopic balance equations at points within a porous medium domain, regarded
as a continuum, or as multiple overlapping continua. However, in their models, they
use the specific value of E (i.e., E per unit mass of a phase) as variable to be solved
for.

The microscopic balance equation for an extensive thermodynamic property E ,
of a phase, with ρ and V denoting the phase mass density and velocity, takes the
general form:

∂ρe

∂t
= −∇·(ρeV + jEdi f ) + ρ(�E + �E), (1.4.57)

in which e denotes E per unit mass of a phase occupying the void space, or part of
it, ρe denotes E per unit volume, jdi f denotes the diffusive flux of E (as defined by
(3.1.10)), �E denotes external sources of E , and �E denotes internal sources, both
per unit mass. However, in general, �E = 0, except for entropy. Each term in the
above equation expresses the rate of added E per unit phase volume.

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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Examples of E and e are: for E = m, e = 1; for E = mγ , eγ = mγ/m = ωγ ; for
E = M ≡ mV, e = V; for E = E, e = u + 1

2V
2, with u denoting internal energy

per unit mass.
H&G consider also the case of an interface, or a thin interphase zone in two-

phase flow (e.g., Hassanizadeh and Gray 1990), e.g., between an α and a β fluids,
or between an α-fluid and the solid (s). Such surfaces may play an important role in
the E balance at a point within a porous medium domain. We shall use subscripts
αβ and αs to indicate values on an αβ- and on an αs-surface, respectively.

Rather unique in H&G’swork is the way they regard all interphase surfaces within
a porous medium domain, with the void space occupied by one or two fluid phases
(α,β). They introduce specific interfacial areas (= area of interface between adjacent
phases per unit porous medium volume: aαβ , aαs , aβs) as new variables. Extensive
quantities can (1) move within these surfaces, (2) be transported from or to adjacent
phases, and (3) accumulate on the surfaces. In addition, they also consider the line
along which phases intersect and consider the balance of E on such line.

For a point on such an interface, with ραβ denoting the areal mass density (=mass
per unit area) of the interface, and eαβ denoting the density (actually, the specific
value) of E , i.e., E per unit interface mass, they write the microscopic E-balance
equation in the form:

∂ραβeαβ

∂t
= −∇αβ ·(ραβeαβVαβ + jαβ

di f ) + 2ραβeαβKαβVαβ ·n
(a) (b) (c)

−
2∑

α=1

[
ραeα(Vα − Vαβ) + jα,di f

] ·να + ραβ(�αβ + �αβ),

(d) (e) (1.4.58)

in which the divergence (∇αβ ·) is only in the two-dimensional interface domain, Vαβ

denotes the velocity of the material comprising the interface domain, u denotes the
velocity of the (possibly moving) interface, Kαβ denotes the mean curvature of the
interface, with

Kαβ = K1 + K2

2
, or

2

Rαβ
= 1

R1
+ 1

R2
,

R1,R2 denoting the principal radii of curvature, andRαβ denoting the mean one, ν
denotes the unit vector normal to the interface, and ραβ�αβ denoting external sources
of E per unit mass of the interface domain. Note that all quantities with subscript αβ
are surface material quantities; they are defined within the two-dimensional domain
of the interface. Only the interface velocity Vαβ has a component normal to the
interface.

The various terms in the balance equation (1.4.58) can be interpreted as follows:

(a) Accumulation of E per unit area of interface, per unit time.



1.4 Scales and Upscaling 77

(b) Added E per unit area of interface, per unit time, due to advection and diffusion
of E within the thin domain.

(c) Added E per unit area of interface, per unit time, due to the displacement of the
interface, i.e., Vαβ ·n.

(d) Exchange of E with the two neighboring phases that are present on both sides
of the thin interface domain.

(e) Added E by sources within the thin domain. H&G make a distinction between
external and internal source. The�αβ-source is added to facilitate the discussion
on entropy, regarded as an internal source.

H&G emphasize that (1.4.57) does not hold on interphase boundaries. Note that
(1.4.58) replaces the ‘no jump condition’ discussed in Sect. 5.2.3. Indeed, when the
interface zone has no thermodynamic extensive quantities, (1.4.58) reduces to the
no-jump condition discussed in Sect. 5.2.3.

Similar to Bear and Bachmat (1991), they define two kinds of volume averages
of an intensive quantity, e, of an α-phase that occupies a volumetric fraction θα of
an REV of volume V(x) satisfying (1.1.54). These averages, similar to (1.1.7) and
(1.1.8), are:

Volume average of e:

eα(x, t) = 1

Vo

∫

Vo

e(ξ, t; x)γα(ξ, t)dV,

∫

Voα

edV ≡
∫

Vo

ψγαdV, (1.4.59)

with:

ρα(x, t) = 1

Vo

∫

Vo

ρ(ξ, t; x)γα(ξ, t)dV. (1.4.60)

This kind of average is the same as that defined by Bear and Bachmat.

Intrinsic volume average of ψ:

eα
α(x, t) = 1

Voα

∫

Vo

e(ξ, t; x)γα(ξ, t)dV (1.4.61)

Obviously,
e = θαe

α, e.g., ρα = θαρα
α, (1.4.62)

where θα denotes the volumetric fraction of the α-phase in the void space (≡
Voα/Vo). This kind of average is equivalent to Bear and Bachmat’s intrinsic phase
average, (..)

α
.

H&G also define a mass average for a variable density fluid:

Intrinsic mass-average of e:

ẽα(x, t) =
∫
Vo(x,t) ρ(ξ, t; x)e(ξ, t; x)γα(ξ, t; x)dV

∫
Vo(x,t) ρ(ξ, t; x)γα(ξ, t; x)dV

. (1.4.63)

http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
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Recalling that γαdV = dVα, we have:

ẽα(x, t) = 1

ρα(x, t)Vo

∫

Vo

ρ(ξ, t; x)e(ξ, t; x)γα(ξ, t; x)dV. (1.4.64)

Note that the last equation leads to:

ρα ẽα = (ρe)α
α
. (1.4.65)

The quantity:
ěα(ξ, t; x) ≡ eα(ξ, t; x) − ẽα

α(x, t) (1.4.66)

defines the deviation of eα at a point ¸ within the REV centered at x from its intrinsic
phase average, over that REV, centered at x. The above definition of deviation, ě,
leads to the relationship between the product of an average and the average of a
product:

ẽαgα
α = ẽα

αg̃α
α + ˜̌eαǧα

α
, (1.4.67)

to be compared with B&B’s (1.4.2). However, we note that in the balance equa-
tion (1.4.57), the E-flux is expressed by a product of three variables: ρeV. Hence,
considering three variables ρα, ψα, and gα, and making use of (1.1.15), we obtain:

ραeαgα
α = ρα

αẽαgα
α = ρα

α
(
ẽα

αg̃α
α + ˜̌eαǧα

α)
. (1.4.68)

H&G also define an area-average operator of e over an area A:

ëα(x, t) = 1

A

∫

A

e(ξ, t; x)γα(ξ, t; x)·νdA. (1.4.69)

Hassanizadeh and Gray develop rules for averages of space and time derivatives
which are similar to those developed by B&B (henceforth abbreviation for Bear and
Bachmat) in the form of (1.4.11) and (1.4.9):

〈∇·ςα〉 = ∇·〈ςα〉 + 1

Vα

∫

Sαβ

ςα·u·ναdS, (1.4.70)

where β denotes all non-α phases, and Note that the above rules are presented for
ςα that is a vector.

They apply these rules to the fundamental e-balance equation (1.4.57).
The macroscopic balance equation for any extensive quantity, E of an α phase

that occupies part of the void space at the volumetric fraction θα, takes the form:
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∂(θαρα
αẽα

α)

∂t
= −∇·

[
θα(ρα

αẽα
αṼα

α + ˜̂Jα

α

)
]

+
∑

(β �=α)

[
eαβ
α (ραeα) + Îαβ

α

]
+ θαρα

α(�̃α
α + �̃α

α
), (1.4.71)

in which eα = Eα/mα, ρα = mα/Vα, (ρe)α = Eα/Vα, ẽα
α(x, t) is the intrinsic

mass averaged value of eα, defined by (1.4.64), Ṽα
α
is the intrinsic mass averaged

α-fluid velocity, ˜̂Jα

α

denotes the sum of all macroscopic non-advective Eα-fluxes
(by diffusion and by dispersion, see Chap.3),

eαβ
α (ραeα) = 1

dV

∫

Sαβ

ραeα(Vα − Vαβ)·ναβdS, β �= α, (1.4.72)

denotes the transport of E to the α-phase from all non-α phases present in the REV,
through the surface bounding the α phase, and

Îαβ
α = 1

dV

∫

dSαβ

jEdi f ·ναβdS, β �= α, (1.4.73)

is the same as eαβ(ραeα), except that here the symbol expresses transport by E-
diffusive fluxes.

The last term on the r.h.s. of (1.4.71) denotes internal and external sources, noting
that � ≡ 0, except for the case in which E represents entropy.

Each term in (1.4.71) represents an added quantity of E of α per unit volume of
the α phase that occupies the entire void space, or part of it. This equation should be
compared with the microscopic balance equation (1.4.57).

H&G use this equation to write balance equations for the mass of an α fluid or
solid phase, for the momentum of a phase, for energy and for entropy.

Mass Balance of a Fluid, or Solid α-phase

With ẽα
α = 1, ˜̂Jα

α = 0, and �̃α
α = �̃α

α = 0, H&G obtain the macroscopic mass
balance equation:

∂(θαρα
α)

∂t
= −∇·(θαρα

αṼα
α
) +

∑

β �=α

θαρα
αeαβ

α (ρα), (1.4.74)

where eαβ
α (ρα) expresses mass exchange between an α-phase and its interfaces with

other (β-)phases.
They also suggest the no-jump condition on an external domain’s boundary seg-

ment (S�) moving at the macroscopic velocity u� :

[[ θαρα(Vα − u� ]] ·ν = 0, on S�. (1.4.75)

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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Mass of a Dissolved γ-Species in an α-Phase

With eα = ωγ
α, Hassanizadeh (1986a) obtains:

∂θαρα
αω̃

γ
α

α

∂t
= −∇·

[
θα(ρα

αω̃
γ
α

α
Ṽα

α
) + ˜̂Jγ

α

α]

+
∑

(β �=α)

[
eαβ
α (ραωγ

α) + Îαβ
α

]
+ θαρα

α(�̃α
α + �̃α

α
), (1.4.76)

in which ˜̂Jγ
α

α

denotes the sum of diffusive and dispersive fluxes of γ in α.
For momentum balance of an α-phase, with ẽα

α = Ṽα
α
(i.e., momentum per

unit mass), H&G write the macroscopic equation:

∂θαρα
αṼα

α

∂t
= −∇· [θα(ρα

αṼα
α
Ṽα

α + σ̃α
α)
] + θαρα

αg

+
∑

(β �=α)

[
eαβ
α (ραVα) + σ̂αβ

α

]
, (1.4.77)

in which the diffusive momentum flux is expressed by the fluid’s stress, σα, and the
sole external source is gravity (g). The last two terms account for the exchange of
momentum between the α-phase and its interphase boundaries.

For energy balance of an α-phase, with eα = uα + 1
2V

2
α , H&G write:

∂

∂t

[
θαρα

α(ũα
α + 1

2 Ṽ 2
α

α
)
]
=−∇·

[
θα[ρα

α(ũα
α + 1

2 Ṽ 2
α

α
)Ṽα

α+ σ̂α·Ṽα
α + JH

α]
]

+ θαρα
α(gṼα

α + ˜̂hα

α

) +
∑

β �=α

[
eαβ
α (ραuα) + σ̂αβ

α ·Vα + 1
2e

αβ
α (ρα)V 2

α

]
,

(1.4.78)

in which g denotes the gravity vector and the diffusive flux of energy consists of the
work of internal stress, due to the motion, plus the internal heat flux. The external
source of energy is due to the work of gravity as well as that due to radiation (ĥ).
The last three terms account for the exchange of energy between α-phase and its
interphase boundaries.

H&Galso introduce an entropy balance equation for each phase,with sα denoting
the internal entropy per unit mass:

∂

∂t
(θαρα

αsα
α) = −∇·

(
θα(ρα

αs̃α
αṼα

α + 1

T
JH)

)
+ 1

T
˜̂hα

α + eαβ
α (ραsα) + �α,

(1.4.79)
where it is assumed that the diffusive flux of entropy is proportional to the heat flux,
and the external entropy source is proportional to the external energy source, with
the proportionality ratio being the inverse of temperature, T. The last term in (1.4.79)
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is the net production of entropy of the α-phase, which is nonzero, because entropy is
not conserved. The second law of thermodynamics will put restrictions on this term,
as explained below.

Asmentioned earlier, an essential element in the H&G approach is that interfaces,
say between fluid phases and between the solid and a fluid, are also considered
as domains within which transport occurs and on which extensive quantities may
accumulate (Gray and Hassanizadeh 1989). Furthermore, lines along which such
surfaces intersect each other are considered as domains on which E can accumulate
as a result of transfers from the intersecting surfaces. Equation (1.4.58) expresses
the balance of an extensive quantity at a point on such an interface, say between an
α and a β-phase domains. H&G average this equation to obtain the balance equation
at the macroscopic level, i.e., an average of the considered interface within an REV.
This equation takes the form:

∂aαβραβeαβ

∂t
= −∇·(aαβραβeαβVαβ + Jαβ

di f +dis) + aαβραβ
(
�αβ + �αβ

)

(a) (b) (c)

−
[
(eαβ

α (ραeα) + Îαβ
α ) − (eαβ

β (ρβeβ) + Îαβ
β )

]
+ eαβγ

αβ (ραβeαβ) + Îαβγ
αβ ,

(d) (e) ( f ) (g) (1.4.80)

in which, as is common in this book, we have not used any averaging symbols, as it is
obvious that we are considering here an averaged balance equation. In this equation,

aαβ = 1

Vo

∫

Vo

dSαβ,

denotes the specific surface area of the α-β interface, eαβ denotes E per unit mass
of the surface, ραβ denotes the interface mass per unit area, Vαβ denotes the velocity
of matter comprising the interface domain, and Jαβ

di f +dis denotes the non-advective
flux of E in the considered surface.

Terms (d) and (e) in (1.4.80) denote the transfer of E from the surface to the
two neighboring phases, while terms (f) and (g) express the transfer of E from the
surfaces to the lines (usually, curves) along which these surfaces intersect each other.
Assuming that these lines do not possess thermodynamic properties, these terms are
subject to the following constraints:

∑

(β,α)

[
eαβγ
αβ (ραβeαβ) + Îαβγ

αβ

]
= 0. (1.4.81)

Specific balance laws for mass, momentum, energy, and entropy of interfaces are
obtained from (1.4.80). For example, for mass balance, we obtain:
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∂aαβραβ

∂t
= − ∇·(aαβραβVαβ)

−
[
eαβ
α (ραeα) − eαβ

β (ρβeβ)
]

+ eαβγ
αβ (ραβ), (1.4.82)

where the last term accounts for exchange of mass between the αβ-interface and
other interfaces via the common line. They are subject to the following restriction:

∑

(α,β)

eαβγ
αβ (ραβ) = 0. (1.4.83)

The collection of balance laws for phases and interfaces form the basis for an
extended theory of multi-phase flow and transport in porous media that explicitly
models interfaces at the macro-scale. In these theories, specific interfacial area is a
macro-scale state variable similar to porosity and saturation. These equationsmust be
supplemented by constitutive equations that describe the dependency on state vari-
ables of the stress tensor, the heat flux vector, and exchange fluxes. The derivation
of constitutive equations for single-phase flow, two-phase flow, and multi-species
solute transport can be found in Hassanizadeh and Gray (1980, 1990), and Has-
sanizadeh (1986b), respectively. A major element in these derivations is the second
law of thermodynamics, which prescribes that the total rate of production of entropy
of all phases and interfaces must be nonnegative. Their results include a definition
of capillary pressure in terms of the change of free energy of the system, due to a
change in saturation. This replaces hysteretic capillary pressure-saturation curves by
a three-dimensional capillary pressure-saturation-interfacial surface area.

1.4.3 Homogenization

Although the volume averaging technique discussed above has been widely used
for passing from the microscopic level to the macroscopic one, another technique
is often employed for handling multiple-scale heterogeneity. This technique, known
as the mathematical theory of homogenization, has been applied since the 1970s to
a wide range of physical problems that involve composite materials, heterogeneous
geologicalmedia, and porousmedia (Bensoussan et al. 1978; Sanchez-Palencia 1974;
Sanchez-Palencia 1980; Lions 1981; Bakhvalov and Panasenko 1989; Jikov et al.
1994; Mikelic 2000).

Briefly, homogenization is a mathematical technique applied to differential equa-
tions that describe physical phenomena associated with a domain exhibiting het-
erogeneities at two scales. By homogenization, we obtain a domain which is more
homogeneous, at least locally. The coefficients, which characterize this ‘homoge-
nized’ medium, are referred to as ‘effective’ ones. In the process of homogenization,
each of the equations that constitute the model of the transport problem is replaced
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Fig. 1.19 A domain (�)
with periodic cells (Y ) with
period �; �/L � 1

L

x1

x2

y2

y1

Ω

Y

by a number of equations, each addressing the dominant physical phenomena at one
of the two considered scales.

A necessary condition for the application of the homogenization technique is the
existence of a periodic structure. This condition is needed for a rigorous mathemat-
ical proof of the existence and uniqueness of the solution. Physically, this means a
structure based on a repeated pattern, e.g., a certain form of stacking of spheres. This
means that the application of the homogenization approach to porous media is based
on the approximation of the geometry of the solid matrix as periodic. Figure1.19
illustrates a domain of size L containing a periodic pattern, with the period denoted
by �. For the application of the homogenization technique, we require that the ratio
ε(= �/L) be a small parameter. In fact, the homogenization seeks the asymptotic
solution in the limit ε → 0. It is possible to apply the homogenization technique to
a domain with multiple scales.

The homogenization approach, which is based on periodicity of the porous
medium structure, facilitates the upscaling from the microscopic to the macroscopic
scale. It is interesting to comment that porousmedia comprising geological formation
are very far from a periodic structure.

It is interesting to compare the REV approach presented in earlier subsections,
where homogenization is achieved by averaging over an REV, and the homogeniza-
tion achieved here, where the REV is the unit cell.

Following Bear and Cheng (2010, p. 57), let us demonstrate how the homogeniza-
tion technique is applied to mathematical model composed of a steady state ordinary
differential equation in one spatial dimension, with appropriate boundary conditions.
The considered ODE is

d

dx

[
aε(x)

duε(x)

dx

]
= 0, 0 ≤ x ≤ L , (1.4.84)

subject to the boundary conditions

uε(0) = 0, and uε(L) = 1. (1.4.85)
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Fig. 1.20 Solution of (1.4.84) with a rapidly fluctuating coefficient: a A plot of aε, with ε = 0.1,
in which the dashed line indicates the ‘effective coefficient’ ao = 1

2 , and b The solution (1.4.88)
for uε

Here, L is the length of the domain of interest, considered as the large scale. Within
the considered domain, there exist repeated small scale features of size �, introduced
through the functional relation of the coefficient aε, and ε = �

L � 1.
As a consequence, the solution uε depends also on ε; the superscript is used to

emphasize this fact. As will be demonstrate below, even if the variations in the aε are
large, expressed in terms of large amplitude fluctuations, their effect on the solution
of the considered equation is small; it is of the order O(ε) only! In fact, the purpose
of homogenization is to seek the asymptotic solution as ε → 0,

u(x) = lim
ε→0

uε(x). (1.4.86)

In the present example, without loss of generality, we assume L = 1, and hence
� = ε. Then, assuming that aε is a periodic function, with period ε, we have:

aε(x) = 1

1 + 2 sin2 πx
ε

. (1.4.87)

This coefficient is plotted as Fig. 1.20a for a small ε, say, ε = 0.1.We observe ‘rapid’
fluctuations (small period) with a large amplitude.

Before applying the homogenization technique, it would be instructional to exam-
ine the exact solution of the problem represented by (1.4.84) and (1.4.85). For 1/ε
an integer, this solution is

uε(x) =
∫ x
0

dx
aε(x)∫ 1

0
dx

aε(x)

= 4πx − ε sin 2πx
ε

4π − ε sin 2π
ε

= x − ε

4π
sin

2πx

ε
, (1.4.88)

plotted as Fig. 1.20b for ε = 0.1. As observed in the figure, and also in (1.4.88), the
solution consists of two parts: a slowly varying part (linear), with rapidly fluctuating,
small amplitude ‘ripples’ superposed on top. Indeed, the magnitude of the ‘distur-



1.4 Scales and Upscaling 85

bance’ in the solution, caused by the fluctuating coefficient aε, is controlled not by
the coefficient’s amplitude, but by its period, which is small.

Homogenization requires the existence of two scales. At the larger scale, we
denote the domain of size L (≡ 1 in the current case) as ω, and use the coordinate
system 0 ≤ x ≤ 1. At the small scale, characterized by the periodic cells of size �

(≡ ε) (see Fig. 1.19 for a two-dimensional conceptualization), we denote the repeated
domain as Y , and use the scaled coordinate y = x/ε, such that 0 ≤ y ≤ 1 in a Y -cell.
With the above definition, we now express the coefficient aε, defined in (1.4.87), as

aε(x) = a(y) = 1

1 + 2 sin2 πy
. (1.4.89)

We can now express uε(x) as a two-scale function, u = u(x, y), and expand it
into a power series in terms of the small parameter, ε,

uε(x) = u(x, y) = u(o)(x, y) + εu(1)(x, y) + ε2u(2)(x, y) + . . . (1.4.90)

This is known as the perturbation technique (Nayfeh 2000). Substituting the above
expression into (1.4.84), and applying the chain rule

d

dx
= ∂

∂x
+ 1

ε

∂

∂y
,

to the two-scale functions, we can expand and separate the resulting equation into
several equations, each corresponding to the same power of ε:

O(ε−2) : ∂

∂y

[
a(y)

∂u(o)(x, y)

∂y

]
= 0, (1.4.91)

O(ε−1) : ∂

∂x

[
a(y)

∂u(o)(x, y)

∂y

]
+ ∂

∂y

[
a(y)

∂u(o)(x, y)

∂x

]

+ ∂

∂y

[
a(y)

∂u(1)(x, y)

∂y

]
= 0, (1.4.92)

O(ε0) : ∂

∂x

[
a(y)

∂u(o)(x, y)

∂x

]
+ ∂

∂x

[
a(y)

∂u(1)(x, y)

∂y

]

+ ∂

∂y

[
a(y)

∂u(1)(x, y)

∂x

]
+ ∂

∂y

[
a(y)

∂u(2)(x, y)

∂y

]
= 0,(1.4.93)

and higher order equations. The boundary conditions (1.4.85), are assigned to the
leading terms, such that the higher order terms take the null boundary conditions:

u(o)(0, y) = 0, u(o)(1, y) = 1; u(1)(0, y) = u(1)(1, y) = 0;
u(2)(0, y) = u(2)(1, y) = 0; . . . (1.4.94)
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Also, the periodicity of the Y -cells requires that

u(1)(x, 0) = u(1)(x, 1); u(2)(x, 0) = u(2)(x, 1); . . .

∂u(1)(x, y)

∂y

∣∣∣∣
y=0

= ∂u(1)(x, y)

∂y

∣∣∣∣
y=1

;

∂u(2)(x, y)

∂y

∣∣∣∣
y=0

= ∂u(2)(x, y)

∂y

∣∣∣∣
y=1

; . . . (1.4.95)

A quick inspection of the O(ε−2)-equation, (1.4.91), shows that

u(o)(x, y) = u(o)(x) (1.4.96)

is an admissible solution. In fact, this is, the only admissible (unique) solution of
(1.4.91).

Bear and Cheng (2010, p. 60) solve also the O(ε−1)-equation, (1.4.92), and the
O(ε0)-equation, (1.4.93). They lead to

u(o)(x) = x . (1.4.97)

As observed in Fig. 1.20b, the above linear term is exactly the anticipated large scale
behavior. It is now possible to determine the ‘flux’,

qε = −aε du
ε

dx
, → qε = −1

2
. (1.4.98)

This behavior is not obvious from the coefficient aε (see also Fig. 1.20a). The homog-
enization process, however, correctly captures this behavior byproviding the effective
coefficient ao. Then,

qo = −ao
du(o)

dx
= −1

2
. (1.4.99)

Just as expected, the solutions (1.4.97) and (1.4.99) are independent of ε, because
these are the asymptotic solutions of uε and qε as ε → 0. It is now possible to find
the solution of higher order terms.

To summarize,

• Homogenization requires the assumption of periodicity at the smaller scale
(Fig. 1.20a). Although this requirement may be viewed as a restriction, as nat-
ural materials are not periodic, this assumption provides the necessary boundary
condition for a rigorous mathematical analysis, ensuring the existence and unique-
ness of the solution.

• The example demonstrates that in a problem that involves two (or multiple) scales,
the asymptotic expansion procedure, which is the basic tool of the homogenization
technique, allows the separation of the governing equation into a number of scales,
each governing the process at a specified scale. The periodic assumption allows the
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smaller scale effects to be averaged (= integrated) to produce lumped (or effective)
coefficients.

1.4.4 The Phenomenological Approach

Phenomenology is a term used in science to establish relationships among empirical
observations of phenomena, in a way that is consistent with fundamental theory, but
is not directly derived from such first principles. According to theConciseDictionary
of Physics (Thewlis 1973):

Phenomenological Theory is a theory that expresses mathematically
the results of observed phenomena, without paying detailed
attention to their fundamental significance. It is an approach that
is applicable to any science, including the physical sciences.

In the above definitions, we wish to emphasize that

• The approach is based on observations.
• The derived theory or model must obey scientific fundamentals.
• The theory is verifiable by experiments.

In the context of this book, we have been using the term ‘model’ for the relations
among observed phenomena, and, aswe shall see below, the ‘scientific fundamentals’
are those of continuum mechanics (e.g., conservation laws) and thermodynamics.
Fourier’s law of heat conduction, j H = −λ∇T , may serve as an example of a
phenomenological law, suggested by Fourier on the basis of experiments.

Thus, unlike the various approaches described above (e.g., volume averaging,
where we begin from the microscopic level and lead to the macroscopic one, which
is our goal), in the phenomenological approach we observe the phenomena of inter-
est at the macroscopic level (and we have discussed above the meaning of such
observations), and we construct the models that express how such observations are
interrelated directly at that level. In this way, we obtain models that are simple and
at the same time, physically, chemically and thermodynamically correct.

The phenomenological approach in flow through porous media is not new. In fact,
Darcy’s law, obtained on the basis of sand column experiments, is a phenomenolog-
ical law. In the area of groundwater flow, Dupuit (1848, 1863), Forchheimer (1886,
1901) and Boussinesq (1904), and many others, followed the same path. Richards
(1931) extended Darcy’s law to unsaturated flow. In petroleum engineering, Muskat
(1949) wrote the classical book on Physical Principles of Oil Production, in which
Darcy’s law was extended to two phase flow (water-oil, or water-gas). Bear et al.
(1968, Sect. 1.6) presented a brief historical review on the development of the theory
and applications of phenomena of transport in porous media. Most of the develop-
ments were based on the phenomenological approach. Other approaches, e.g., based
on mixture theory, on REV averaging and on homogenization techniques started
mainly only around the 1950s.
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In this book, we shall make use of the phenomenological approach for any exten-
sive quantity by undertaking the following steps, all directly at the macroscopic
level:

• Write the balance equation for the considered extensive quantity.
• Identify the driving forces of the considered extensive quantity and express the
fluxes of that quantity in terms of these forces.

• Identify all interphase exchanges of the considered extensive quantity and the
phenomena that produce them.

• Express all sources of the considered extensive quantity in terms of the relevant
state variables, and

• Write the initial and boundary conditions of the considered transport problem.

Accordingly, in Chap.3, we shall present the fundamental balance equations, both
at the microscopic and macroscopic levels of the mass of a single phase

1.5 Modeling Procedure

The primary objective of this book is to present and discuss the construction of math-
ematical models that describe phenomena of flow and transport in porous medium
domains which are regarded as continua at the macroscopic level. Such models are
constructed for two purposes: (1) to summarize and organize our understanding of
phenomena that take place within considered domains, and (2) to enable the predic-
tion of the behavior of fluids and of the solid matrix in response to excitations (for-
ward modeling), and (3) to determine significant properties and parameters through
an optimization process involving minimization of the deviations between observa-
tions andmodel-based predictions (backward/inversemodeling or historymatching).
For example, we may wish to predict the deformation of a porous medium domain,
saturated by one or more fluids to applied stresses, or we may wish to predict the
spreading of a contaminant within an aquifer in response to a specified pumping
regime.

In this section,we shall startwith a definition of amodel, discuss the important step
of establishing the conceptual model of a problem, present the standard content of a
mathematical model, and outline the major steps included in the modeling process.

For the purpose of this chapter, a model is defined as as a selected simplified
(abstract, or physical) version of a real system and phenomena that take place within
it, which approximately simulates the system’s excitation-response (or input–output)
relationships that are of interest. For example, a petroleum reservoirmay be ‘excited’
by pumping, or by injection, and its ‘response’ takes the form of spatial and temporal
changes in its state and conditions, e.g., pressure, temperature, and fluid saturations.
As we shall emphasize below, the model for a particular problem is established
once we have selected its conceptual model. In order to enable a prediction of the
system’s behavior, we translate the conceptual model into a mathematical one. Very
often, the mathematical model is not amenable to analytical solution. In such cases,

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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the mathematical model is transformed into a numerical model, which, in turn, is
solved by means of a computer and a computer code. The development of numerical
models is not included in this book.

1.5.1 The Conceptual Model

The considered system and its behavior may be very complicated, depending on the
amount of details we wish, or need, to include to adequately describe it. Certain
features may be of no practical interest, while others may be significant in governing
those aspects which are important from the point of view of the modeling objectives.
We should also bear in mind that gathering information concerning the modeled
system, for the purpose of model validation and determination of model coefficients,
is always costly, so that a balance should be sought between additional information
and the benefits to be derived from it. The art of modeling is to simplify the model’s
description of the considered system and its behavior to a degree that will still provide
useful predictions.

The ‘simplification’ is introduced in the form of a set of assumptions that express
our understanding of the nature of the system and its behavior. Because the model
is a simplified version of the actual system, no unique model exists for describing
it. Different sets of simplifying assumptions will result in different models, each
approximating the considered domain and the phenomena that occur in it in a different
way. This set of assumptions is referred to as the conceptual model of the problem
and problem domain. Examples of such assumptions are:

• The surface that bounds the domain of interest and the problem’s dimensionality.
• The temporal behavior of the system: steady state or time-dependent.
• The kind of porous material comprising the domain, as well as inhomogeneity,
anisotropy, and deformability of such material.

• The number and kinds and properties of the fluid phases and of the relevant chem-
ical species.

• The extensive quantities of interest (mass, mass of a contaminant, energy) trans-
ported within the domain.

• The relevant flow and transport mechanisms within the domain.
• The possibility of phase change and exchange of chemical species between adja-
cent phases.

• The relevant chemical, physical, and biological processes that take place in the
domain.

• The flow regimes of the fluids involved (e.g., laminar or non-laminar).
• The existence of isothermal or non-isothermal conditions (and their influence on
fluid and solid properties and on chemical–biological processes).

• The relevant state variables, and the areas or volumes over which averages of such
variables should be taken.
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• The presence of sources and sinks of fluids and solutes within the domain, and
their nature (spatial distribution and temporal variation).

• The initial conditions within the domain, and conditions on its boundaries.

Obviously, more items may be included in the conceptual model of specific cases.
Selecting the appropriate conceptual model for a given problem is themost impor-

tant step in themodeling process. If we oversimplify, wemay not adequately describe
its defining characteristics and, thus, may not produce the required information. If we
under-simplify, we may have neither the information required for model calibration
(see below), nor the resources to solve it. If we select inappropriate or wrong assump-
tions, our model may not represent the relevant features of the system’s behavior.

1.5.2 The Modeling Process

Once we have (1) identified the information we expect the model to provide, and (2)
established the conceptual model, we can start the process of modeling that involves
the following steps:

A. Development of a Mathematical Model

In this step, the conceptual model is expressed in the form of a mathematical model.
The continuum type of mathematical model, introduced earlier in the current section
is employed. In principle, the mathematical model at the macroscopic level, can be
obtained by starting from the microscopic level model and using some averaging
technique (as described in Sect. 1.4.2), or by making use of the phenomenological
approach, discussed in Sect. 1.4.4. The resulting mathematical model consists of:

• Identifying the geometry of the surface that bounds the considered domain.
• Equations that express the balances of the considered extensive quantities (e.g.,
mass of fluids, mass of chemical species, energy).

• Equations that express the fluxes of the considered extensive quantities in terms
of the relevant state variables of the problem (e.g., advective mass flux and Fick’s
law for the diffusive mass flux of a chemical species in a fluid phase).

• Constitutive equations that define the behavior of the particular phases and chem-
ical species involved (e.g., dependence of density on pressure, temperature, and
solute concentration, and the relationship between stress and strain of a porous
medium).

• Sources and sinks of the relevant extensive quantities.
• Initial conditions that describe the known state of the considered system at some
initial time.

• Boundary conditions that describe the interaction of the considered domainwith its
environment (i.e., outside the delineated domain) across their common boundaries.

The above content of a mathematical model is straightforward as long as we are
dealing with a single specific extensive quantity and a single PDE that expresses the
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balance of that quantity in terms a single variable, say pressure or temperature. How-
ever, an analytical solution is seldom possible because of the complexity resulting
from the dependence of phase properties on the considered variable.

When considering multiple interacting extensive quantities, like the mass of
two fluids that together occupy the void space, and temperature within the multi-
phase domain, we need to take into account the continuous interaction between the
hydraulic and the thermal system, e.g., temperature affects density and viscosity,
which, in turn, affects flow, which affects temperature, etc. In practice, solutions of
multiple E’s models are solved numerically. In such solution, at every time step the
individual equations are solved sequentially, and solutions for properties that depend
on pressure and temperature are updated. The process is repeated until convergence
is achieved (at a desired level of accuracy) and the system moves to solving for the
next time step.

In passing from a model at the microscopic scale to the macroscopic model,
using some averaging process, or by employing the phenomenological approach,
various coefficients of flow and transport, of interphase transfer and of storage of
the considered extensive quantities are introduced. The permeability of a porous
medium (Sect. 4.2.3) and dispersivity (Sect. 7.2.3) are examples of such coefficients.
The numerical values of these coefficients can be obtained only experimentally, in a
process referred to as ‘inversemodeling’,model calibration, or coefficient estimation,
through the ‘history-matching process’ that involves inversemodeling, i.e., the use of
a model in which the sought coefficients appear, not to predict the simulated system
behavior, but to determine the values of the coefficients that appear in the model by
minimizing the deviations between model predictions and field measurements (e.g.,
Bear and Cheng 2010, p. 36).

B. Development of a Numerical Model and Code

Having constructed a mathematical model, in terms of the relevant state variables,
it has to be solved for cases of interest. The preferred method of solution is the
analytical one, as it provides a general solution that can be applied (for the same
domain geometry) to various sets of parameters and coefficients. However, because
of the complexity of most problems of practical interest (shape of the domain and its
boundaries, heterogeneity, non-linearity, irregular source functions, etc.), generally,
it is not possible to derive analytical solutions except for relatively simple cases.
Numerical methods are usually employed for solving the mathematical model. This
means that various methods are used in order to transform the mathematical model
into a numerical one, in which the partial differential equations are represented by
their numerical counterparts. A computer program, or a code is then required in order
to solve the problem numerically.

C. Code Verification

When a new numerical model and a code are developed for solving a mathemat-
ical model, the code is not considered ready for use unless it undergoes a proper
verification procedure. Here, verification means checking that the code does what it
proclaims to do, namely, to provide a solution which is identical, or sufficiently close
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to the solution of the mathematical model. Verification involves comparing solutions
obtained by using the codewith those obtained by analytical methods, whenever such
solutions are possible. This is usually done for some simplified domain geometry,
homogeneous materials, etc. In many cases, analytical solutions cannot be derived.
The only procedure, then, is to compare code solutions with solutions obtained by
other codes.

D. Model Validation

Once a model has been selected for a particular problem, the model must be vali-
dated. Model validation is the process of ensuring that the model correctly describes
all the relevant processes that affect the excitation-response relations of interest to
an acceptable degree of accuracy. The only way to validate a model is an experiment
conducted on the considered porous medium domain. However, we often validate
the model in principle, i.e., ensuring that it represents the considered phenomena,
by conducting controlled field or laboratory experiments. Unfortunately, unlike lab-
oratory experiments, many features encountered in field experiments, such as field
heterogeneity and anisotropy, cannot be controlled or identified, although, in many
cases they dominate the system’s behavior.

Another problem that arises during model validation may stem from phenomena
that occur during the experiment, but are not represented in the model. Fingering
due to density and viscosity difference in two phase flow (Sect. 6.4.4) may serve
as an example. One should be careful to distinguish between fingering caused by
these physical phenomena and those produced by numerical roundoff errors. Finally,
problemsmay arise from the application of models to space and time domains, which
are much larger than the ones used for model validation.

E. Model Calibration and Parameter Estimation

Obviously, no model can be employed in any particular case of interest, unless
numerical values are assigned to all the coefficients and parameters that appear in
it. We refer to the activity of identifying the values of such model coefficients as the
identification problem, inverse problem, or parameter estimation problem.

We use the termmodel calibration for the combinesmodel validation and parame-
ter estimation for a specific problem of interest. Both activities are actually executed
simultaneously. Thus, in the procedure of calibration, the values of model coeffi-
cients for a considered porous medium domain are determined by solving an inverse
problem, using measured data from that investigated domain.

As emphasized above, the only way to obtain the values of these coefficients
for a considered porous medium domain is to investigate the real system. Data can
be obtained from planned experiments, but, for aquifers and petroleum reservoirs,
historical data can also be envisioned as experimental results. Basically, the tech-
nique involves finding a set of coefficients that will minimize the difference between
observed and predicted data.

It should be emphasized that because the model is only an approximation of
the real system, we should never expect these two sets of values—predicted by the
model and measured in the actual domain, to be exactly identical. Instead, we search
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for a ‘best fit’ between them, according to some criteria, and plausible reasonable
explanations for possible deviations.

Let us add a few words about what we mean by stating (Sect. 1.1.3) that geomet-
rical porous medium coefficients have to be determined ‘experimentally’. As stated
above, porous medium coefficients, like permeability, dispersivity, specific area, etc.,
cannot be determined by direct measurements (see discussion in Sect. 1.2.1), they
are obtained by the process of model calibration outlined above. This means that
we monitor what happens in the domain in terms of the relevant variables of state.
Then we solve the model ‘backward’, seeking the values of the coefficients that will
transform the system from its initial to its final state. In this way, we determine the
values of the relevant coefficients.

Because field measurements are essential, the question “what do we really mea-
sure?” is essential. When we state: ‘we measured a certain pressure at a point’, say
in an observation well, what do we really measure? Is that the pressure p or p̄ that
appears in the PDE that is part of the model? Or, when we take a one liter water
sample from a well to determine its solute concentration, is that concentration rep-
resented by the symbol cγ or cγ that appears in the solute balance equation? In order
to make the predicted value comparable with the monitored one, both have to be
an average over an REV. Is this kind of information provided by field monitoring?
When considering pressure, the difference may be small, as pressure propagates fast.
However, in the case of diffusive phenomena, like solute or heat, spreading is slow,
and the difference between predicted and observed values may be significant.

F. Model Applications

Once we have a calibrated model for a considered problem (and this includes all the
required site-specific coefficients), the model is ready for use.

G. Analysis of Model Uncertainty and Sensitivity Analysis

This is an important feature of modeling, closely associated with the problem of
parameter identification. The term sensitivity analysis is used here to describe tools
that help the modeler evaluate the impact of uncertainty, say, in the values of model
coefficients, on the results predicted by the model.

A sensitivity analysis, and an analysis of the effects of uncertaintymust accompany
every modeling effort. We are uncertain about many elements associated with the
model, e.g., the assumptions included in the conceptual model, and values of model
coefficients, including their spatial variations.

The uncertainty in the spatial variability of coefficients’ values, leads to various
stochastic modeling techniques. The consequence of uncertainty in model param-
eters and coefficients, is uncertainty in model predictions. In this book we focus
on deterministic modeling, i.e., assuming that we know the values of the various
coefficients appearing in the model.
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1.5.3 Existence, Uniqueness and Stability of Solution

The content of a mathematical model has already been presented in Sect. 1.5.2A.
The set of equations (balance equations, flux equations, and constitutive relations)

must be a closed one, i.e., it should contain a sufficient number of independent
equations to permit the simultaneous solution for all the state (= dependent) variables
associated with the problem.

However, after writing the closed set of equations, we should use the discussion
in Sect. 3.9.2 on degrees of freedom to determine the number of primary variables
of the problem and to select the most convenient ones. We then identify an equal
number of (partial differential) balance equations (e.g., of mass of fluid phases, mass
of chemical species, and energy) that have to be solved in order to determine the
values of these variables (whether they appear explicitly in the selected equations
or not). All the remaining equations and relationships, including partial differential
equations, are then employed in order to determine the remaining variables. Initial
and boundary conditions have to be specified only for the partial differential equations
that have to be solved.

The solution of a mathematical model of a problem takes the form of spatial and
temporal distributions of the state variables of interest within the prescribed space
and time domains of the problem.

Not every set of conditions imposed on the boundaries of a problem domain is
satisfactory (for a given set of partial differential equations) from the mathematical
point of view. This is even more so because, often, we have to resort to estimates
of coefficients and simplifications of the mathematical models in specifying the
boundary conditions for a considered problem.Amathematicalmodel that represents
a physical reality (and only such cases are considered here) is said to be well-posed
if it satisfies the following requirements (e.g., Courant and Hilbert 1962):

• A solution to the problem exists. (existence).
• The solution is unique (uniqueness).
• The solution is stable (stability).

The first requirement simply states that at least one solution does exist. The sec-
ond one stipulates completeness of the problem statement, with no ambiguity. The
third requirement means that small variations in data (e.g., initial and boundary con-
ditions, and/or values of coefficients) should lead to small changes in the resulting
solution. If small errors in the data do not lead to correspondingly small errors in
the solution, then the mathematical model is ill-posed. This last requirement is of
particular interest, as all our observations have always some measurement error. A
model will be meaningless if these small errors will significantly affect the solution
and, hence, the prediction obtained by the model.

Thus, once a complete mathematical model has been stated, the next step is to
ensure that it is well-posed. Only then should a solution be sought.

We shall not go into the mathematical analysis of whether a model developed here
is well-posed, or not, although, as stated above, this analysis is an essential step in the

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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modeling process. The mathematical models developed and presented in this book,
since they are based on a thorough analysis of a physical reality and on the description
of this reality, albeit with certain simplifying assumptions, are implicitly assumed to
be always well-posed. Therefore, they should provide unique, stable solutions. The
techniques used in this analysis can be found in appropriate mathematical texts on
partial differential equations.

Finally, we should mentioned that in most cases of practical interest, especially
when the considered domain is geological formation, the actual solution of themodel
is implemented by numerical methods of solution. These are not discussed in this
book.
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Chapter 2
Some Elements of Thermodynamics

The objective of this chapter is to introduce a selection of thermodynamics’ topics,
which are required for the understanding and constructing the flow and transport
models considered in this book. Emphasis will be on equilibrium conditions, but not
exclusively. No effort will be made to present a complete review of the considered
subjects, nor their proofs. These can easily be found in texts on Thermodynamics
(e.g., Smith et al. 2005).

Phases and chemical species were defined in Sect. 1.1.1. When a considered fluid
phase is composedofNγ-chemical species,withnγ denoting the number ofγ-species
moles in a fluid phase, we shall use the following symbols:

n =
N∑

γ=1

nγ, m =
N∑

γ=1

mγ, nγ = mγ

Mγ
, ωγ = mγ

m
, Xγ = nγ

n
,

where ωγ and Xγ denote the mass fraction and the molar fraction of the γ-species,
respectively, and the symbols mγ , and Mγ denote the mass and molecular mass of
the γ-species, respectively (see definitions in Sect. 7.1.1). We add the subscript α
(e.g., in nγ

α) to denote an α-phase. In the case of multi-phase flow (Chap.6), we often
use subscripts w, n and i for wetting, non-wetting and intermediate wetting fluids,
respectively.

Throughout the book, we shall introduce many variables of state, coefficients,
and material properties. Each of these is meaningless unless it is accompanied by
an appropriate unit. In this book, we shall use the International System of units
(abbreviated SI). In the List of Main Symbols, preceding Chap.1, we present the
main symbols used in this book, adding the dimensions and the units employed for
that symbol. Occasionally, the unit will be mentioned also in the text itself.
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2.1 Equilibrium

The continuum approach is presented in Sect. 1.1. There, we have introduced the
μREV as the volume over which the average of molecular behavior yields the behav-
ior of the microscopic level continuum, while the REVwas introduced as the volume
over which averages of microscopic values yield a macroscopic continuum descrip-
tion.

As a first step in the discussion of any thermodynamic concept, it is important
to understand the meaning of thermodynamic equilibrium (TA), and approximate
thermodynamic equilibrium (ATE).

The assumption of ‘local thermodynamic equilibrium’ often underlies the dis-
cussion on the values of thermodynamic state variables at a point within a fluid
phase. Local thermodynamic equilibrium means that when a μREV centered at a
point within a phase is isolated from its surroundings, equilibrium prevails among
all chemical species within that μREV. This also means that mechanical, chemi-
cal and thermal equilibria prevail and properties and conditions within that μREV
remain time-invariant. Actually, equilibrium requires uniformity of temperature and
of all chemical potentials.When chemical reactions take place, local thermodynamic
equilibrium also includes chemical equilibrium among the participating species.
Thus, ‘local thermodynamic equilibrium’ is equivalent to ‘local equilibrium at the
microscopic level’. Such equilibrium guarantees that the standard thermodynamic
variables, e.g., temperature, pressure, and chemical potential (as well as density,
internal energy, and entropy) can be uniquely defined at every point in the phase
continuum. Altogether, the term ‘thermodynamic equilibrium’ describes a situation
in which thermal, chemical, and mechanical equilibria prevail simultaneously. At
equilibrium, in the absence of external forces, the entire considered system is at
the same pressure. Note that the pressure referred to here should be referred to as
thermodynamic pressure (see comment in Sect. 2.2.2).

The driving force for local thermodynamic equilibrium is molecular motion and
collisions. Thus, the time interval (= relaxation time) required for a sufficient number
of molecular collisions per unit time to occur determines how fast equilibrium can be
reached. Local equilibrium is violated only under severe non-equilibrium conditions,
when phenomena take place over a time span that is much shorter than the relaxation
time. Shock waves may serve as an example. By definition, the size of the μREV of a
phase is selected such that it includes a sufficiently large number of molecules. This
means that the μREV must be much larger than the mean free path of the molecules
so as to enable a sufficiently large number of collisions to occur. This will ensure
that meaningful thermodynamic properties are obtained at every point and at every
instant of time (in the sense of an average over some Representative Time Interval)
(RET).

This is the lower limit of the μREV size. For example, if we have a sufficiently
narrow passage, or a rarefied gas, a μREV may not exist, and the gas may not be
treated as a continuum. We then have Knudsen gas flow (Knudsen 1934), which
requires special treatment, using the theory of non-equilibrium statistical mechanics
(see Sect. 4.3.3).
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An upper limit for the size of a μREV is that it must be much smaller than the
domain of interest occupied by the phase. Once we have ascertained that a μREV
exists for a considered fluid in a considered microscopic domain, the values of the
thermodynamical variables for every point within that domain are obtained by aver-
aging the molecular behavior over the μREV centered at the point.

When considering a multi-species fluid phase, we require (1) that a μREV exists
for every chemical species, and (2) that a common μREV can be found for all of
them. Then, except for special cases like those mentioned above, ‘equilibrium at a
(microscopic) point’, or ‘local thermodynamic equilibrium at a point’ means that all
chemical species at a microscopic point, and their partitioning in the various phases,
are in equilibrium.

Henceforth, in this book, we shall assume that local thermodynamic equilibrium
always prevails at every microscopic point within every phase present in the void
space, and that meaningful thermodynamic variables of the phase (e.g., temperature,
pressure, phase velocity and species concentrations and partitioning) can be defined
at every such point.

Microscopic thermodynamic equilibrium within a phase occupying a domain
within an REV means that the temperature and the chemical potentials (to be dis-
cussed in Sect. 2.5) of all chemical species comprising the phase are uniform within
that domain and that velocities of all phases are zero. Bear and Nitao (1995) and
Nitao and Bear (1996) discuss conditions for thermal, chemical, and mechanical
equilibria among phases and chemical species within an REV. They show that under
conditions of microscopic thermodynamic equilibrium, we have a single value of
chemical potential (discussed in Sect. 2.2.6) for every chemical species present in
the REV, and a single temperature within the REV.

From entropy considerations, Bear and Nitao (1995) show that in the absence of
gravity and surface forces, the pressure within any phase must be uniform, and that
the Laplace formula, (2.4.12), discussed below, describes the jump in pressure across
an interphase boundary. It may be of interest to note that in the absence of gravity
the mean radius of curvature of this interface will be uniform everywhere within an
REV, as long as both fluid phases are continuous.

Under microscopic thermodynamic equilibrium within a phase domain inside an
REV, there exists no net transport ofmass of chemical species (chemical equilibrium),
of energy (thermal equilibrium), and of linear momentum (mechanical equilibrium)
within that phase domain. To accommodate real situations, with the possibility of
transport of extensive quantities within a porous medium domain, Bear and Nitao
(1995) introduce the concept of approximate thermodynamic equilibrium, which
allows small gradients in these state variables. They suggest conditions for the exis-
tence of such thermodynamic equilibrium. They define approximate thermodynamic
equilibrium to mean that every REV is sufficiently close, thermodynamically, to an
identical, but sealed, system in complete thermodynamic equilibrium. Here ‘identi-
cal’ means that the void space geometrical configurations in the two systems are the
same, that they both have the same mass of every species and phase, and that both
contain the same amount of internal energy. They also require that the boundary of
the sealed system be rigid, so that no work be done on or by the system with respect
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to its surroundings, and that any force field, such as gravity or surface forces, be the
same as for the equivalent system. Since the sealed system is at complete equilibrium,
all phase velocities in the sealed system are zero.

Since themacroscopic level of description is obtained by averaging the behavior at
the microscopic one, under conditions of microscopic thermodynamic equilibrium,
macroscopic values of state variables are equal to their microscopic counterparts.
However, we recall that thermodynamic quantities such as pressure and concentra-
tion will be uniformly distributed over an REV only if we assume the absence of
gravitational and surface forces. The latter always exist between a solid and the thin
film of fluid that covers it.

When it is obvious from the text that the discussion is at the macroscopic level,
the adjective ‘local’ can be omitted, and we refer to the situation as ‘thermodynamic
equilibrium at a point’.

Under the assumed microscopic equilibrium conditions, and in the absence of
gravity and surface forces, because pressure, temperature, and chemical potentials
are uniform within a phase in the REV, the respective microscopic values are also
identical to their macroscopic counterparts.

2.2 Energy, Work, Entropy and Enthalpy

Work, entropy and enthalpy are three fundamental concepts associated with energy
and its transport in any phase continuum. In this section, we introduce these concepts
only to the extent that is required in order to model the transport of energy in porous
medium domains. The discussion follows the concepts and definitions as applicable
to a (microscopic) point in a phase continuum; however, we shall follow the phe-
nomenological approach and extend the same concepts to the phase continuum at
the macroscopic level.

2.2.1 Entropy

A. Work, Energy and the First Law of Thermodynamics

In mechanics, work, W , is defined as the scalar product of the two vectors: a force,
F, and the resulting displacement,w, of the point of application, with dW = F · dw.
In thermodynamics, when a system applies a force on its surroundings, causing
a displacement at the boundary, the above scalar product expresses the work of
the system. We note that we have always two systems that interact. The work of
a considered system is considered positive when the latter is doing work on its
surrounding; it is negative when the surrounding is doing work on the considered
system.
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Consider a system and its surroundings. When a force, F, is applied by the sur-
roundings on the boundary of that system, resulting in motion, the work performed
by the system is W = − ∫ B

A F · dw.
An adiabatic process is one that involves no heat exchange between a considered

system and its surroundings. The first law of thermodynamics states that the work
of a system connecting two end states in an adiabatic process depends only on the
end states; it does not depend on the detailed path of the process. Hence, we can
define work as an extensive quantity. Another way to express the first law is: the
work done on a body in an adiabatic process, not involving changes in kinetic or
potential energy, is equal to an increase in the internal energy (see below), which is
a function of the state of the body.

Accordingly, energy, E, is an extensive quantity that measures the adiabatic work
of a system between two end states, �E = −Wadiabatic. However if non-adiabatic
heat interactions, Q, are involved in the passage from one state to the other, then
�E = Q − W , i.e., the change in the energy of any process, is equal to the work on
the system and the heat input into it. Another form of writing the above balance is
dU = dQ + dW , i.e., the change in internal energy is equal to the heat added to the
system plus the work done on it. The above is another, equivalent, form of the first
law of thermodynamics.

B. Entropy and the Second Law of Thermodynamics

Clausius inequality states that for any closed system (i.e., a system that is not inter-
acting with its surroundings by exchanging mass) undergoing a cyclic process, we
have: ∮ (

δQ

T

)
≤ 0, (2.2.1)

where δQ denotes the heat absorbed by the body (= system) at a thermodynamic
temperature, T . Here, and elsewhere in this chapter, the symbol δ is used to denote a
small quantity which is not an exact differential. This means that integration requires
detailed information on the pathway/evolution of the process. The < sign is appli-
cable to anirreversible process, while the equal sign applies to a reversible one. A
consequence of the above statement is that the integral of (δQ/T )rev between two
points (= states) in a reversible process is independent of the path selected for the
transition. Hence, the quantity (δQ/T )rev qualifies as an extensive quantity, with:

dS ≡ δQ

T

∣∣∣∣
rev

, (2.2.2)

where S is called entropy. Entropy represents a measure of the availability (or the
lack thereof) of a system’s thermal energy for conversion into mechanical work. It
can also provide a measure of the degree of randomness in a system. It expresses the
added heat per degreeK and has the dimensions ofML2T−2�−1, where� represents
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temperature. In the International System of Units, it is measured in Joules per degree
Kelvin (≡ Joule/Kelvin). The change in entropy of a closed system, or body, between
two states, A and B, is given by:

dS = SB − SA =
∫ B

A

δQ

T

∣∣∣∣
rev

, (2.2.3)

which is an extensive quantity; its value is assigned relative to an arbitrarily selected
state. The corresponding intensive quantity is the specific entropy (= entropy per
unit mass, here per mole), denoted by s.

It can be shown that for any process in which a body is transformed from state A
to state B:

�S ≡ SB − SA ≥
∫ B

A

(
δQ

T

)
. (2.2.4)

For an infinitesimal change:

dS = δQ

T

∣∣∣∣
rev

, dS >
δQ

T

∣∣∣∣
irrev

. (2.2.5)

A consequence of the above statements is that for an isolated system, or for a system
undergoing an adiabatic process, i.e., one in which the net heat transfer to or from
the considered system is zero, δQ = 0, and therefore:

dSadiabatic ≥ 0, (2.2.6)

where the equal sign holds for a reversible process.
We may now introduce the second law of thermodynamics, which states that the

entropy of a system in an adiabatic enclosure can never decrease; it increases in
an irreversible process and remains constant in a reversible one, i.e., dS ≥ 0, or
dS/dt ≥ 0. Often, the second law is presented in the form:

dS ≥ dQ

T

∣∣∣∣
closed system

. (2.2.7)

2.2.2 Enthalpy and Internal Energy

The Enthalpy, H, is an extensive property; it is also a function of state. It is a useful
expression for energy in many chemical and physical systems, because it simplifies
the description of energy transfer. Its usefulness stems from its ability to take into
account energy changes that are due to the change of volume of a considered system.
It is defined as:
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H = U + pV, ⇒ h = u + p v, (2.2.8)

in which U and u denote internal energy and specific internal energy, respectively,
H and h denote enthalpy and specific enthalpy, respectively, V and v denote volume
and specific volume, respectively, and p denotes thermodynamic pressure, defined
as energy per unit volume. The specific values (e.g., specific enthalpy) in (2.2.8) are
per unit mass. However, often it is more convenient to express specific values per
mole, e.g., molar enthalpy means enthalpy per mole. We use the symbol ě for molar
density of E , i.e., E per mole.

A comment on mechanical pressure vs. thermodynamic pressure is appropriate
here. The former is always associated with an area, as it is defined as force per unit
area. The latter, in the kinetic theory of gases, is associated with the random motion
of molecules in a fluid occupying a closed container, e.g., p = (N/V)mV 2, where m
is themass of amolecule, N is the number of molecules in the container of volumeV,
and V denotes their velocity. This pressure acts (as force per unit area) on the walls
of the container. Thus, although these two pressures are defined differently, they
are actually the same. In practice, as in this book, we shall overlook the difference
between them. It is interesting to mention that pressure may be interpreted also as
energy per unit volume.

A most useful property of enthalpy and of internal energy is that they are com-
pletely additive and path-insensitive, depending only on the initial and final states of
the considered system.

The internal energy of a system is another extensive quantity. The corresponding
intensive quantity is the specific internal energy (= internal energy per unit mass),
u = u(T, v). Hence, the change in u can be expressed as:

du = ∂u

∂T

∣∣∣∣
v

dT + ∂u

∂v

∣∣∣∣
T

dv, v = 1

ρ
. (2.2.9)

With heat capacity at constant volume:

Cv = ∂U

∂T

∣∣∣∣
v

, (2.2.10)

and specific heat capacity at constant volume:

cv = ∂u

∂T

∣∣∣∣
v

, (2.2.11)

the change in specific internal energy is given by:

du = cvdT + ∂u

∂v

∣∣∣∣
T

dv. (2.2.12)
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The specific enthalpy: h, obeys:

h = h(T, p) = u + p

ρ
= u + p v, v = 1

ρ
, (2.2.13)

in which u denotes the specific internal energy. In fact, the relationship h = h(T, p)
is an equation of state that varies from one substance to the other. Thus, in the general
case, we have:

dh = ∂h

∂T

∣∣∣∣
p

dT + ∂h

∂ p

∣∣∣∣
T

dp. (2.2.14)

The variation of enthalpy with temperature is also an extensive quantity:

Cp = ∂H

∂T

∣∣∣∣
p

, (2.2.15)

called heat capacity at constant pressure. The corresponding intensive quantity is
the specific heat capacity, cp: defined by:

cp = ∂h

∂T

∣∣∣∣
p

. (2.2.16)

From (2.2.2), we have for any process;

δQrev = T dS. (2.2.17)

With δWrev = −p dV, the first law for a reversible process takes the form:

dU = TdS − p dV. (2.2.18)

From the above relationships it follows that:

du = Tds − p dv, and dh = Tds + v dp. (2.2.19)

Equations (2.2.18) and (2.2.19) are valid for a single species phase, or when the
composition of the phase (say, in terms of species concentrations) is unchanged.

When we wish to take into account the composition of a liquid phase, in terms of
its chemical species, each with its mass fraction ωγ , γ = 1, 2, . . . ,NC, and chemical
potential μγ , discussed in Sect. 2.5, then u = u(s, v,ωγ; γ = 1, 2, . . . ,NC), and:

du = Tds − p dv +
∑

(γ)

μγdωγ . (2.2.20)
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Since:
∂u

∂s

∣∣∣∣
v,ωγ

= T,
∂u

∂v

∣∣∣∣
s,ωγ

= −p,
∂u

∂ωγ

∣∣∣∣
s,v,ωδ ,δ �=γ

= μγ . (2.2.21)

Without (or when neglecting) changes in γ-concentration, we have:

ds = ∂s

∂T

∣∣∣∣
v,ωγ

dT + ∂s

∂v

∣∣∣∣
T,ωγ

dv. (2.2.22)

Since:
∂s

∂v

∣∣∣∣
T,ωγ

= ∂ p

∂T

∣∣∣∣
v,ωγ

, cv = ∂U

∂T

∣∣∣∣
v,ωγ

= T
∂s

∂T

∣∣∣∣
v,ωγ

, (2.2.23)

where cv is the specific heat of the considered phase per unit mass at constant volume.
Hence,

du =
(
T

∂ p

∂T

∣∣∣∣
v,ωγ

− p

)
dv + vvdT +

∑

(γ)

μγdωγ . (2.2.24)

More about enthalpy changes associatedwith chemical reactionswill be presented
in the following subsection.

2.2.3 Gibbs Free Energy

In this subsection, we present the definition and a brief discussion on the concept
of Gibbs free energy, introduced by Gibbs (1873; e.g., in Denbigh 1981, p. 231).
We shall demonstrate the usefulness of this tool for determining the mass action
constant of any chemical reaction when we know its value for minerals, gases and
dissolved chemical species. The Gibbs free energy can also be used to express the
energy released or added during a chemical reaction.

The thermodynamic quantity, G = G(p, T, nγ, γ = 1, . . . ,NC), is called Gibbs
free energy. It is an extensive quantity that depends on the temperature, the pressure
and the phase composition of a given material body. It is defined as:

G = H − TS, (2.2.25)

where H, T , and S denote the enthalpy (or heat content), the temperature, and the
entropy, respectively.

The enthalpy is related to the internal energy,U, and to the pressure, p, by (2.2.8).
Thus, for a given system, we have:

G = U + pV − TS. (2.2.26)
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In the above two equations, using the SI system, G, U and H are in joule, p is in
pascal, V is in m3, T is in kelvin, and S is in joule per kelvin.

For a differential change in G, we have:

dG = dU + pdV + Vdp − TdS − S dT,

in which p dV describes the work done by the system.
From the first law of thermodynamics, it follows that for a system that undergoes

a reversible transformation upon the application of heat, δQ, we have

δQ = dU + p dV + δW ′
rev,

where δW ′
rev denotes all the reversible work other than pressure-volume work (i.e.,

work due to expansion) performed by the system.
From the second law, we have δQ = T δS, thus leading to

dU = TdS − p dV − δW ′
rev.

Hence, we may express the differential change in G in the form:

dG = −SdT + Vdp − δW ′
rev. (2.2.27)

In the absence ofwork other than that due to expansion, the last term on the right-hand
side vanishes, and we have:

dG = −SdT + Vdp. (2.2.28)

If we consider a finite isothermal change of state of a system, say from state A to
state B, then, since dT = 0, we obtain from (2.2.27):

�G =
∫ B

A

dG = G
∣∣
B
− G

∣∣
A
=
∫ B

A

Vdp −
∫ B

A

dW ′
rev. (2.2.29)

If the pressure also remains unchanged during the isothermal change, then:

�G =
∫ B

A

dG = G
∣∣
B
− G

∣∣
A
= −

∫ B

A

dW ′
rev = −�W ′

rev. (2.2.30)

At constant pressure and temperature, the only change is due to chemical reactions,
dG = −δW ′

rev. This may serve as a definition for G. The negative of dG gives the
reversible energy available to perform work (e.g., chemical work) other than that
associated with pressure. In other words, if a reversible change is taking place in a
system at constant pressure and temperature, the work done by the system, δW ′

rev,
excluding the work of expansion against constant pressure, equals the decrease in
the free energy of the system. Actually, at constant p and T , the only change in the
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system would come from chemical reactions, thus making it almost impossible to
maintain constant p, T .

Starting from (2.2.28) and moving along a constant temperature line, we have
dG|T = Vdp, which can also be expressed in the form:

dG|T=const. = ZRTd ln p. For an ideal gas: Z = 1. (2.2.31)

Recall that an ideal gas is one in which the individual molecules are assumed not to
interact with each other, an assumption that significantly simplifies the equation of
state.

2.2.4 Chemical Potential and Fugacity

Another approach for handling the difference between the behavior of an ideal gas
and that of a real one is the use of the notion of fugacity. This concept plays an
important role in thermodynamics, especially in connection with a gas, when we
consider transport with chemical reactions. It may be regarded as a fictitious pressure
equal to the pressure of an ideal gas which has the same chemical potential as the
real gas (Denbigh 1981, p. 122). It serves as an effective pressure which replaces the
true (mechanical) pressure in accurate chemical equilibrium calculations. Thus, the
fugacity of a gas, f = f (p, T ), is a pseudo-pressure, such that:

dG|T=const. = RTd(ln f ). (2.2.32)

By requiring also that as pressure approaches zero, and the gas’ behavior approaches
that of an ideal gas, the fugacity will approach the value of the pressure itself. This
leads to:

lim
p→0

(
f

p

)
= 1. (2.2.33)

Consider a species A in an ideal gas mixture. Its chemical potential is given by
(e.g., Denbigh 1981):

μA = μ∗ A + RT ln
pA

p∗ , (2.2.34)

where pA is the partial pressure of A, and p∗ is a reference pressure. Here, μ∗ A is
the chemical potential of an ideal gas at a reference pressure p∗ that consists entirely
of the single species A. This state is sometimes called the ‘ideal gas state’. It can
be shown that μ∗ A depends only on the temperature, that is, μ∗ A = μ∗ A(T ). We shall
follow the convention of setting p∗ = 1 in the units that are being used for pressure,
so that (2.2.34) becomes:

μA = μ∗ A + RT ln pA. (2.2.35)
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The generalization of the above expression to a non-ideal gas involves introducing
the fugacity, f A, of the species A. It is defined by

f A ≡ f ∗ A exp
{
(μA − μ∗ A

)/RT
}
,

where μ∗ A is the same term as in (2.2.35), and f ∗ A is the reference fugacity. The unit
of fugacity is the same as that of pressure.

2.2.5 Partial Pressure in a Gas-Liquid System

The partial pressure of a chemical species, γ, in a mixture of species (= phase), is
the pressure, pγ , that would prevail in that species, at the same temperature, T , when
it is the sole species in the considered phase.

The material presented in this subsection will be useful when considering inter-
phase mass transfers in porous medium domains (Sect. 7.4).

Consider two adjacent domains–a solution (= liquid, sol) and a vapour (= gas,
vap)–separated by an interface, and assume that the two domains are in equilibrium.
A point on that (microscopic) interface may be assumed to belong to both phases.
Then, the chemical potentials at such point obey:

μ
γ
sol = μγ

vap, (2.2.36)

wherewehave regarded each gaseous species in a vapour (=gas) phase as a ‘chemical
species’. Under conditions at which the vapour may be assumed to behave as an ideal
gas, e.g., sufficiently low pressure, we may use (2.2.35), to determine the chemical
potential of any chemical species in solution in terms of its partial pressure, pγ :

μ
γ
sol = μγ

o + RT ln pγ, ⇒ μγ
vap = μγ

o + RT ln pγ, μγ
o = μγ

o(T ). (2.2.37)

Following are three laws that deal with partial pressure of multi-species gas liquid
phases.

• Dalton’s law

This law deals with a mixture of gases. It states that the (total) pressure of a
gas phase is equal to the sum of the partial pressures of the individual γ-species
comprising that gas phase:

pg =
∑

(γ)

pγ
g . (2.2.38)

The above statement is equivalent to saying that there is no interaction among the
species in the gas; each gas species behaves independently within the domain occu-
pied by the gaseous phase. We may also write: pg =∑(γ) p

γ
g . With mg =∑(γ) m

γ
g ,

or mg =∑γ Mγ
g , we have:

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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pγ
g = Xγ

g pg, pg =
∑

(γ)

pγ
g , (2.2.39)

where Xγ
g denotes the molar fraction of the γ-species in the gas.

• Raoult’s law

Consider a domain occupied by a mixture of two gases, γ and δ. Raoult’s law
states that the partial pressures of these gases are:

pγ
g = Xγ

g p
oγ
g , pδ

g = X δ
g p

oδ
g , (2.2.40)

where poγg and poδg denote the vapour pressures of pure γ and δ gases, respectively, all
the same temperature. Since Xγ

g + X δ
g = 1, it follows from the above two equations

that:
pg ≡ pγ

g + pδ
g = poγg Xγ

g + (1 − Xγ
g )poδg (2.2.41)

Denbigh (1981, p. 223) comments that “mixtures that obey the law over the whole
range of composition are the exception rather than the rule, but an approximation to
the ideal behaviour is usually found whenever the components are closely similar in
molecular structure”.

• Henry’s law

We are considering liquid-gas exchange across a common interface. A volatile
chemical species dissolved in a liquid is present in the adjacent gaseous phase. At a
liquid gas interface, volatilization, and dissolution phenomena occur, driven by the
difference between the partial pressure of the considered substance in the liquid and
in the gas bordering that liquid.

For the partial pressure of a γ-species in a liquid phase (�), e.g., a γ-solute in a
�-solvent, Henry’s law states that:

pγ
� = Hγ

� X
γ
� . (2.2.42)

This law is valid for dilute solutions. It is interesting to note that Denbigh (1981,
p. 225) writes pγ

� → Hγ
� X

γ
� as Xγ

� → O , or ∂ pγ
� /∂Xγ

� → Hγ
� as Xγ

� → 0.
In Sect. 7.4.3, in the discussion on Henry’s law, we present the case of the volatile

species γ (e.g., benzene, C6H6(g)) partitioned between water (w) and air (a). For that
case, Appelo and Postma (2005, p. 491) present Henry’s law for water (w) and air
(a) also in the form:

H′γ
w,a = Hγ

w,a

RT
= Xγ

a

Xγ
w

, (2.2.43)

whereH′γ
w,a is another Henry coefficient. In fact, many forms of Henry’s law can be

found in the literature. In many of them, Henry’s coefficient is denoted by KH .

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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2.2.6 Gibbs Free Energy and Chemical Reactions

At one atmosphere, the enthalpy, say of onemole of ice at 0 ◦C is different from that of
onemole of liquid water. The difference is the enthalpy change during fusion, or heat
of fusion,�ȟ f us , where ȟ indicates themolar enthalpy density, i.e., H (in joules) per
mole. When liquid water is transformed into water vapour under constant pressure,
there is an enthalpy (or heat) of vaporization, �hvap. For a solid-to-vapour transition
under constant pressure, there is an enthalpy of sublimation, �hsub. According to
convention, the sign of these �ȟ-values are positive when heat is absorbed in the
transition, i.e., from solid to liquid, solid to vapour and liquid to vapour. For example,
for H2O at 1atm,

H2O(l) → H2O(g), �ȟ373,vap = 40656 J/mol;
H2O(s) → H2O(l), �ȟ273, f us = 6008 J/mol;
H2O(s) → H2O(g), �ȟ273,sub = 44919 J/mol;

Another example is the burning of coal (graphite) at 25 ◦C:

C(s,gr) + O2(g) → CO2(g), �ȟ298 = −393.5 kJ/mol

i.e., when 1mol of carbon (graphite) at 25 ◦C reacts with 1mol of oxygen gas, also
at 25 ◦C, to form one mole of carbon dioxide, and when the product, one mole of
CO2(g), is cooled back to 25 ◦C, the system, in its final state, contains less enthalpy
than it did initially in the form of the elements carbon and oxygen. The system before
and after the reaction is assumed to be at a constant pressure of 1 atmosphere. This
means that to achieve the cooling, we need to remove heat at the rate of 393.5kJ/mole
from the formed CO2(g).

When a chemical reaction is accompanied by a decrease in enthalpy, a quantity of
heat equal to the enthalpy change is transferred to the surrounding and the reaction is
said to be exothermic. When the chemical reaction results in an increase in enthalpy
of the system, a quantity of heat equal to the enthalpy change must be supplied from
the surrounding, and the reaction is then endothermic. It is also possible to express
the energy released or added during a chemical reaction in terms of the Gibbs free
energy, G, rather than in terms of the enthalpy, H.

Chemical reactions will be introduced and discussed in Chap.7. However, for the
purpose of the discussion here, let us introduce the chemical reaction as described
by the generalized stoichiometric equation:

aA + bB + · · · � pP + qQ + · · · , (2.2.44)

in which A, B, . . . , Q, .. are chemical compounds. For this reaction, the law of mass
action (see any book on Chemistry) takes the form:

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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Keq = {P}p{Q}q . . .

{A}a{B}b . . .
, (2.2.45)

in which a bracketed quantity {·} denotes activity (which serves as a measure of the
effective concentration of a species in a mixture) and Keq denotes the equilibrium
constant (Sect. 7.3.3B).

In a multi-species phase, the Gibbs free energy,G, depends on the amount of each
chemical species, expressed in terms of molar concentration defined in Sect. 7.1, nγ ,
γ = 1, 2, . . . , N , the pressure, and the temperature, i.e.,

G = G(p, T, n1, n2, . . . , nN). (2.2.46)

With ǧ denoting the molar specific Gibbs free energy, �ǧr , of the r ’th reaction is
expressed in the form:

�ǧr = �ǧor + RT ln
{P}p{Q}q . . .

{A}a{B}b . . .
, �ǧor = −RT ln Keq , (2.2.47)

in which �ǧor is themolar standard specific Gibbs free energy of the reaction, which
is equal to �ǧor when each product and reactant is present in the solution at unit
activity (defined in (7.3.55)) and at standard conditions (25 ◦C, 105 Pa), R is the gas
constant (= 8.314 J/(K mol)), and T is the absolute temperature in Kelvin degrees
(= oC + 273.15). At equilibrium,

�ǧor = −RT ln Keq , =⇒ ln Keq = −�ǧor
RT

. (2.2.48)

According to Appelo and Postma (2005, p. 133), Eq. (2.2.48) facilitates the deter-
mination of the mass action constant for any reaction from tabulated data on the
molar (i.e., per mole) free energy of formation, �ǧof , i.e., the energy required to
produce one mole of a substance from pure elements in their most stable form. By
definition, the latter, and the H+ ion, have zero value. Thus, the �ǧor ’s are calculated
from;

�ǧor = �ǧof,products − �ǧof,reactants .

For example, to determine the solubility product of calcite from the Gibbs free
energy of formation at 25 ◦C,

CaCO3 � Ca2+ + CO2−
3 ,

we have (Wagman et al. 1982):

�ǧof,CaCO3
= −1128.8 kJ/mol,

�ǧof,Ca2+ = −553.6 kJ/mol,

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
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�ǧof,CO2−
3

= −527.8 kJ/mol,

and, therefore, the relationship:

�ǧor = �ǧof,Ca2+ + �ǧof,CO2
3
− �ǧof,CaCO3

,

together with (2.2.48), leads to log Keq = −8.30.
Referring to (2.2.47), in view of the above relationships, we have:

�Gr > 0, the reaction proceeds from left to right,

�Gr = 0, the reaction is at equilibrium,

�Gr < 0, the reaction proceeds from right to left.

From (2.2.46) it follows that the total differential, dG, is expressed by:

dG =
(

∂G

∂T

) ∣∣∣∣
p,nγ

dT +
(

∂G

∂ p

) ∣∣∣∣
T,nγ

dp +
∑

(γ)

(
∂G

∂nγ

) ∣∣∣∣
p,T,nδ;δ �=γ

dnγ . (2.2.49)

The first term on the right-hand side expresses the change in G under constant
pressure and composition. The second term expresses the change inG under constant
temperature and composition. The third term expresses the change in G for a γ-
species under constant pressure, temperature, and concentration of all other species
except γ. By comparison with (2.2.28) for constant composition, we obtain:

(
∂G

∂T

) ∣∣∣∣
p,nγ

= −S,

(
∂G

∂ p

) ∣∣∣∣
T,nγ

= V. (2.2.50)

Hence, we may write (2.2.49) in the form:

dG = −SdT + Vdp +
∑

(γ)

μγdnγ, (2.2.51)

where μγ , defined by

μγ ≡
(

∂G

∂nγ

) ∣∣∣∣
p,T,nδ;δ �=γ

, (2.2.52)

is the chemical potential, or molar free energy (as energy per mole) of the γ-species
(Sect. 2.2.6).

The chemical potential, introduced by Gibbs (1873), is analogous to temperature
and pressure. While a temperature difference determines the rate and direction of
heat movement from one body to another, and a pressure difference determines the
motion of a body, the difference in chemical potential will produce movement of a
chemical species within a phase, or from one phase to another. It will also determine
the direction of chemical reactions.
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From (2.2.51), it follows that the chemical potential of a chemical species
expresses the change (increase or decrease) in the capacity of a species to do work
(other than work of expansion) of added species, at constant temperature and pres-
sure.

Finally, two phases, α and β, with a common microscopic interphase boundary,
will be in chemical equilibrium with respect to a γ-species, when:

μγ
α = μ

γ
β for all γ. (2.2.53)

In general, a system is said to be in thermodynamic equilibrium if the thermody-
namic potentials (= chemical potentials and temperature) are uniform within each
homogeneous region of the system and do not change with time. We often distin-
guish between thermodynamic equilibrium, thermal equilibrium (when the tempera-
ture is uniform), chemical equilibrium (when the chemical potential is uniform), and
mechanical equilibrium (when the pressure is uniform). More detailed definitions
are given by Bear and Nitao (1995).

It is interesting to note the relationship between μ of an ideal gas and that of a
real gas, using the concept of fugacity, f , introduced in above. With μ denoting the
chemical potential of a pure real gas at a temperature T , we have:

μg = μo
g + RT ln f, with

f

pg
→ 1, as pg → 0. (2.2.54)

∗ ∗ ∗

Altogether,wehave introduced the temperature,T ,which canbeused todetermine
thermal equilibrium, and four extensive quantities: the internal energy,U, the entropy,
S, the enthalpy, H, and the Gibbs free energy, G, and their corresponding intensive
quantities (= functions of state), u, s, h, and g (i.e., per unit mass). We recall that
u, s and h, and their changes, are independent of the path between their initial and
the final states. This means that we can write balance equations not only for mass,
momentum and energy, but also for internal energy, entropy and enthalpy.

2.3 Phase Behavior

As already emphasized in Sect. 1.1.2A, the core of any transport model contains the
partial differential equations that describe the balances of the transported extensive
quantities of interest of the relevant phases. However, these balance equations are
general. They contain no information on the nature and behavior of the particu-
lar fluid, solid and gaseous phases involved in any specific investigated case. This
observation is important in view of the fact that different fluids and solids behave dif-
ferently as pressure, temperature, stress, and solute concentrations vary. Moreover,

http://dx.doi.org/10.1007/978-3-319-72826-1_1
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their state of aggregation– solid, liquid, gas – may also vary during a considered
case. For example, the density of a liquid and that of a solid vary in different ways
when conditions (e.g., pressure and temperature) vary. Furthermore, within each of
these states, different materials behave differently. In what follows, we shall focus
on specific equations of state.

2.3.1 Phase Change Under Equilibrium

We consider a spatial domain, referred to as a system, containing one or more phases.
The vicinity of a point in a porous medium domain (e.g., an REV) may serve as an
example of such a system. The system may contain a number of substances in the
form of different phases. It may also contain a number of species within each of the
phases. Phase changes may occur. In the course of time, each substance may change
its thermodynamic state– gas, liquid, solid. Nevertheless, let us assume, at least as
a first approximation, that the processes of transport and transformation within a
considered system, from one state to another, are sufficiently slow, so as to allow
for spatial variations of the relevant state variables within the considered domain to
smooth out and to bring the phases at a point (meaning in the close vicinity of the
point) to a state of equilibrium with each other, or close to it. Under such conditions,
the composition of the system is subjected to the relationship, known asGibbs phase
rule,

NF = NC + 2 − NP, (2.3.1)

where NF is usually referred to as the number of degrees of freedom (see Sect. 3.9).
It is also the number of independent state variables, i.e., variables that characterize
the state of the system. NP denotes the number of phases comprising the system,
and NC denotes the number of different chemical constituents (= thermodynamic
species) within the considered system. More on the number of degrees of freedom
is presented in Sect. 3.9.

It is important to emphasize that here we are considering the notion of a thermo-
dynamic species, which means that the same chemical substance found in different
phases represents only a single species. Since NF ≥ 0, the phase rule imposes a
restriction on the coexistence of phases and, hence, also on the possibility of phase
change.

As an example, consider a domain containing only a single chemical compound,
sayCO2, as a single phase, say liquid, or vapour, or frozen solid. In this caseNC=NP
= 1, and the state of the system at equilibrium is fully determined by 2 + 1 − 1 = 2
independent variables, say p and T , or p and ρ. Since ρ = ρ(p, T ), two variables will
determine the third. Every point on a pressure-temperature diagram, e.g., the one
shown as Fig. A-10a, represents a possible state of the considered substance. This
is a phase diagram. It is a chart that shows the thermodynamic state of a substance
under various p − T conditions. The diagram also indicates the regions of stability
of the various distinct thermodynamically phases, of the considered substance. These

http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_3
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Fig. 2.1 Pressure-temperature zones for a single chemical species substance: a schematic, and b
for CO2

regions are delineated by curves of phase coexistence, at which the adjacent phases
are in thermodynamic equilibrium. For example, a phase diagram shows the phases
(or states of aggregation) of a considered substance under different p − T conditions.
Several typical phase diagrams are shown and discussed below.

Let the equation of state of a substance be ρ = ρ(p, T ), and the substance be
present, simultaneously, as two phases, say, a liquid and its vapour. Then, the number
of independent state variables reduces to (NF = 2 + 1 component − 2 phases = 1)
one, say, T . However, since we actually have 2 phases (liquid and gas), i.e., NP = 2
(and not 1 as above), because p and T depend on each other (vaporization line), the
second variable is one of the saturations, say S�.

The process of phase change and its mathematical representation in a model can
be understood in terms of two entities: (a) the physical-chemical-thermodynamic
process that causes a phase to change, and (b) the primary variables (defined in
Sect. 3.9), in terms of which the equation of mass balance of a given component is
written. Knowledge of the thermo-physical processes that controls the phase change
(e.g., the phase diagram of H2O, discussed below) allows the selection of the appro-
priate primary variables for all possible states (i.e., under phase co-existence),making
possible the change of primary variables when called for.

Following is a discussion of examples of phase changes under a variety of condi-
tions, aswell as themathematical/physical criteria characterizing suchphase changes,
the primary variables and their changes, and how, in a considered case, all remaining
thermo-physical properties can be determined from the primary variables.

A. Single Mass Component in 2 or 3 Phases

Figure2.1a shows schematically, a typical phase diagram. On it, we note the possible
states of a two-phase system and the curve p = p(T ). Figure2.1b shows a phase
diagram for CO2.

Another example, for the componentwater, is shown on Fig. 2.2. In what follows,
we shall use this example to elaborate on the processes that are described by this
figure.

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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Fig. 2.2 a Pressure-temperature zones for H2O, b schematic pressure-specific volume-temperature
diagram for a single species system

Thephase changes ofH2O (a single component) is an appropriate example. Inspec-
tion of the phase diagram of H2O, shown in Fig. 2.2a, clearly identifies seven possi-
ble states: three single-phase states (V: Vapor, L: Liquid and S representing solid
≡ ice), three two-phase states Vapor+Liquid, (V+L), Liquid+ solid, (L+S),
Solid+Vapor (S+V), and the triple point at which vapour, liquid and solid co-
exist. Knowledge of both pressure and temperature allows the complete definition
of the thermo-physical properties of water in its L, V or S states. Thus, p and T are
appropriate primary variables to define the aqueous and the vapour phase. However,
these are inappropriate primary variables during any of the two-phase states of the
liquid-vapour phase coexistence, because they are no longer independent, as there is
a well-defined and unique relationship between p and T along the equilibrium line.
Thus, in addition to one of the two, an alternative primary variable is required to
uniquely describe the system. In the case of the triple point, both the pressure and
the temperature at which it occurs are well known, so neither p nor T can serve as
primary variables. Altogether, in the same problem domain, albeit in different parts
of the latter, we may encounter all three states of water: Liquid, vapour and ice.

The curves L+V, S+V and S+L also indicate phase changes that almost invari-
ably are associated with a thermal process, e.g., heating of the porous system. This
means that, in addition to the mass balance equation for the H2O, we also need to
model heat transport, e.g., using the energy balance equation.

The criterion for the change of phase from L to L+V is the relationship between
the pressure p in the modeled system and the vapour pressure, pvap, at the system’s
temperature. In the absence of solutes in the water, or under very strong capillary
pressures, pvap is a function of T only, as shown on Fig. 2.2a. Thus, vapour evolves
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and the state of the system changes from L to L+V when p ≤ pvap(T ). Wherever
this situation occurs, vapour evolves and the primary variables describing the mass
balance equation change from p and T in theL state to p or T and S� (or Sv = 1 − S�),
denoting the saturation of either the liquid or the vapour phase) in the L+V state.

Continuation of the vaporization process requires the supply of additional heat to
provide the latent heat needed for the phase change. As long as S� > 0, the L+V
state persists and the p − T trace of the vaporization process remains confined to
the L+V equilibrium line). In the L+V state, knowing p also means knowing T
(and vice versa), because of the well-established p − T relationship on the L+V
equilibrium line; with the additional knowledge of S, all thermo-physical properties
of the system of phases (density, viscosity, enthalpy, thermal conductivity, etc.) can
be computed. Then the mass balance equation of H2O and the heat balance of the
system (solid and fluids) include the contributions of both the L and the V phases.

Transition from the L+V state to the V state (i.e., the single vapour phase) in any
subdomain of the system occurs when the liquid is exhausted; it is triggered when
S� ≤ 1. When this happens, the primary variables have to be changed to p and T , as
both of them are required to determine the thermo-physical properties and to fully
define the mass and energy balance of the system.

Note that the transition from the V to the L+V and then to the L state proceeds in
the opposite direction, involving cooling (heat removal), but making use of the same
criteria for the phase appearance and disappearance and the same primary variables
to describe any of the states. All other phase transitions (S to S+L to L and L to
S+V to V, recalling that solid here means ice) are described by a similar process, the
same phase change criteria, and the same primary variables. In the case ofH2O, either
p or T can be used interchangeably as one of the primary variables to describe the
L+V and S+V two-phase states (the other being an appropriate phase saturation),
but only p may be used in the S+L state, because of the near insensitivity of T to
p over a very large range of p (as indicated by the long vertical component of the
p − T curve on the I-L equilibrium line, which makes it an unacceptable primary
variable).

Finally, cooling an L+V two-phase system (removing heat, as demonstrated by a
temperature decline) occurs exclusively on the L+V equilibrium line, and the triple
point may eventually be reached. The transition depends on whether p ≤ ptriple
or T ≤ Ttriple, whichever is the primary variable. When this occurs, the primary
variables change from p or T and S� (or Sv = 1 − S� to any two of the following:
S�, Sv or Sice.

The dashed curve on Fig. 2.2b encloses the zone in which both liquid and vapour
coexist. The solid lines are isotherms. The bubble point curve on this figure defines
(for a single species phase) the state at which the phase is liquid, and any reduction in
pressure (or increase in specific volume), at the fixed temperature, produces a vapour.
Similarly, at a fixed pressure and volume, a slight increase in temperature produces
a vapour.

The figure also shows the dew point defined for a single species substance, as that
set of conditions under which a substance which is entirely in the vapour phase, any
slight decrease in pressure (or reduction in specific volume), produces a liquid phase
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Fig. 2.3 Phase diagram for H2O

(e.g., in the form of droplets) at the prevailing temperature. Similarly, in a vapour
phase at a fixed pressure and volume, a slight reduction in temperature produces a
liquid phase. On the other side of the dew point curve, liquid and vapour coexist in
equilibrium. As the bubble point curve is crossed, all the vapour condenses and the
entire system is in the liquid state.

It is interesting to see the phase diagram in its three-dimensional format. Figure2.3
shows such diagram for water.

B. Two Mass Components in 2 or 3 Phases

As a representative example, we shall consider a system involving a liquid (oil),
treated as a single component, and a gas, methane, CH4 (superscript m), which is a
non-condensable gas that dissolves in the liquid–oil. Assuming petroleum reservoir
conditions (i.e., precluding the possibility of ice formation), the possible states are:
two single-phase states (G: Gas and L: Liquid) and a single two-phase state (G+L:
Gas-Liquid). In addition to the known thermodynamical properties of water men-
tioned above, this case involves an additional process: that of the dissolution of CH4

in oil. This process is governed by Henry’s Law:

pmG = Hm(T )Xm
L , m represents here CH4, (2.3.2)



2.3 Phase Behavior 121

where Xm
L denotes the mole fraction of methane gas in the liquid (oil), pmG denotes

the partial pressure of CH4 in the gas phase, andH is Henry’s temperature-dependent
gas solubility factor.

For the single gaseous (G) phase, an appropriate set of primary variables includes
p, T and the CH4 mole fraction in the gas phase, Xm

G . Then, the partial pressure of
the CH4 in the gas phase is pmG , defined (2.3.2), and the pressure, po, of the liquid oil
component in the gas phase is po = p − pmG . Knowing these primary variable allows
the computation of all oil and CH4 properties.

Given the assumption of non-condensable CH4 under the condition of the example
considered here, the transition from the G to the G+L state occurs when the vapour
pressure of the oil po,vap ≤ po. The pressure po,vap is a function of T only. It is
well known for practically all pure substances. In the G+L state, an appropriate
set of primary variables includes p, T and the gas saturation SG . Because of the
co-existence of the liquid and the gas phases, the partial pressure of the oil is by
definition po = po,vap, and that of the CH4 is pm = p − po,vap. The known pm is
used to compute the amount of dissolved CH4 in the oil equation (2.3.2). Thus, all
the thermo-physical properties of the liquid and gas phases in the G-L state can be
determined using these primary variables.

Further transition to the liquid state (L) is attained when SG is reduced. In such
case the primary variables have to be changed to p, T and Xm

L . The transition from the
L to the G+L state indicates gas evolution and calls for monitoring the value of Xm

L ,
comparing the result to the maximum possible dissolved of CH4 (i.e., the solubility
limit) at the considered temperature T . At the solubility limit, pm = p − po,vap, and
max{Xm

L } is computed from (2.3.2). In this case, gas evolves and a transition to the
G+L state from the L one is observed when {Xm

L } ≥ max{Xm
L }.

The same process is used in any system involving two components and two pos-
sible phases (i.e., 3 states, e.g., liquid H2O and CH4, liquid H2O and air), etc. In such
cases, when H2O remains liquid during the study, the heat balance equation may not
be required because of the very low solubility of CH4, or air, in the H2O.

The procedure for determining phase transition in a 2-component, 3-phase sys-
tem (e.g., H2O and air in shallow permafrost, in which H2O can exist in any of its
3 possible phases) is analogous; its description requires the use of appropriate pri-
mary variables and primary variable change when phase changes occur. We wish
to emphasize that it is possible to use more than one set of primary variables to
describe a given state, but their numerical behavior may vary significantly during the
simulations.

C. Multiple Substances

We wish now to consider a multi-substance system. As an example, we consider
water in equilibrium with its vapour and we add CO2. The mass of the added CO2

may go partially into solution in the liquid water and partially remain in the gaseous
phase as water vapour. As we shall show below, the distribution of CO2 between the
two phases, at equilibrium, will depend only on the pressure and the temperature.
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To generalize the discussion, let us consider the definition of solubility. We con-
sider a substance A that can dissolve in two mutually immiscible substances, B and
C. We define the solubility, of A in B as:

RA in B = nA in B

nA in B + nB
, (2.3.3)

where nA in B denotes the number of moles of A dissolved in nB moles of B. Similarly,

RA in C = nA in C

nA in C + nC
, (2.3.4)

where nA in C denotes the number of moles of A dissolved in nC moles of C. These
solubilities are functions of pressure and temperature. The ratio

KA in B&C = RA in B

RA in C
(2.3.5)

is called partitioning factor for A between B and C.
When substance C is a liquid and B is its vapour, we use the term equilibrium

ratio to denote the ratio:

KA = XA
V

XA
L

, (2.3.6)

where XA
V and XA

L are the mole fractions of A in the vapour and in the liquid,
respectively. A similar equilibrium ratio can be defined for any γ-species in a two
phase N -species system:

Kγ = Xγ
V

Xγ
L

, (2.3.7)

where

Xγ
α = nγ

α∑N

j=1 n
j
α

, α = V,L.

All these equilibrium ratios are functions of pressure and temperature, as well as
of the entire composition of the system. The overall composition can be specified by
the mole fractions of the system as a whole. Thus,

Xγ = nγ

∑N

j=1 n
γ
j

, γ, j = 1, 2, . . . , N , nγ = nγ
V + nγ

L ,

for each species, where nγ is the number of moles of the γ-species in the entire
system.
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Under certain conditions, e.g., an ideal gas and dilute solutions, the above equi-
librium ratios can be computed theoretically. In practice, however, they must be
determined experimentally.

With XL and XV denoting the mole fractions of a composite system in the liquid
state and in the vapour one, respectively, with:

XL + XV = 1, and Xγ = Xγ
LXL + Xγ

VXV,

and since ∑

(γ)

Xγ
V = 1,

we have:

∑

(γ)

Xγ

1 + XV
(Kγ − 1

) = 1,
∑

(γ)

XγKγ

1 + XV
(Kγ − 1

) = 1, (2.3.8)

The dew point introduced above is a term often used in petroleum engineering. It
is defined for a given pressure as the temperature at which the least volatile species
of a gaseous mixture begins to condense into a liquid at the same rate at which it
evaporates. At this point, XV = 1, and the first part in (2.3.8) gives:

∑

(γ)

Xγ

Kγ
= 1. (2.3.9)

For a body of water in contact with air, the boiling point is the temperature at
which the vapour pressure is equal to the prevailing air (e.g., atmospheric) one. In
the petroleum industry, the bubble point, introduced earlier, is the temperature, at
a given pressure, where the first bubble of vapour is formed when heating a liquid,
consisting of at least two species (Smith et al. 2005).Bubble point pressure is another
term used in the petroleum industry for the pressure at which a natural gas begins to
come out of solution and form bubbles. For a single species, we use the term boiling
point defined as the state at which the substance is entirely in the liquid phase, and any
slight reduction in pressure (or increase in specific volume), at the substance’s fixed
temperature, produces a vapour phase. Similarly, at a fixed pressure and volume, a
slight increase in temperature produces a vapour phase.

At the bubble point pressure, XV = 0, and the second part of (2.3.8) gives:

∑

(γ)

XγKγ = 1. (2.3.10)

In both cases,
∑

(γ) X
γ = 1.

Figure2.4a presents a pressure-temperature diagram that shows two states, a liquid
and a vapour. In reservoir engineering, for example, the liquid phasemay be amixture
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Fig. 2.4 a Schematic pressure–temperature diagram for a single species system, b pressure-
temperature diagram for H2O

of several liquid hydrocarbons, while the gas phase is a mixture of several light ones.
Examining the T1-isotherm, we note that as the pressure is reduced, we have only
liquid at the point, say at C. A further reduction in pressure, leads to point B, where
liquid and vapour coexist. A further reduction in pressure, leads to point A where we
have only vapour. Along the T2-isotherm, we start at point C′, at which the system is
only in the vapour phase. As the pressure is reduced, the system moves to point B′,
at which we have both liquid and vapour. A further reduction in pressure will lead
to point A′, where only vapour exists. This change from vapour to liquid and back
to vapour, is called retrograde condensation.

From Fig. 2.4b it follows that when a fluid, say, a hydrocarbon, is brought from the
high temperature and high pressure that prevail in a deep oil reservoir, to the surface,
where it is exposed to a different pressure and temperature (atmospheric pressure
and some standard atmospheric temperature), a certain quantity of vapour would
evolve. When the vapour is continuously removed from contact with the remaining
liquid, as it is formed, the process is called differential vaporization. If the evolving
vapour is not removed, the process is referred to as flash evaporation. In either case,
when standard atmospheric conditions of pressure and temperature are reached, a
certain volume of vapour would result, leaving a certain quantity of residual liquid.
We regard the vapour, or gas, that has been produced, as having been dissolved in
the volume of liquid at the original (reservoir) pressure and temperature.

Denoting the residual liquid, say, oil o, by Vo, and the gas volume by V, both
measured at atmospheric conditions, we define the gas solubility as

Rg
o(p, T ) = Vg,SC

Vo,SC
. (2.3.11)

i.e., the amount of gas dissolved in oil per unit volume of oil (sometimes denoted by
the symbol Rso). This ratio is also called solution gas-oil ratio, and denoted by Rs .
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In a petroleum reservoir, an oil formation volume factor is defined as:

Bo(p, T ) = Vo(p, T )

Vo,SC
, (2.3.12)

where Vo(p, T ) denotes the volume of oil at the p and T conditions prevailing in
the reservoir, and Vo,SC denotes the oil volume under SC conditions. We recall that
Vo(p, T ) includes in it a certain mass of dissolved gas which will come out of solu-
tion when an oil sample pressure is reduced to the atmospheric one. Similarly, in
an air water system, Vw(p, T ) may include dissolved air. Both the gas solubility,
Rg
o(p, T ), and the volume formation factor, Bo, are different for the two vaporiza-

tion processes mentioned above, and so are the equilibrium ratios, defined above.
Generally, Rg

o(p, T ) decreases as the oil’s density increases (i.e., pressure increases).
Actually, it more complicated, because the amount of dissolved gas changes, which
changes the density. For a system of fixed composition, a pressure is reached at which
no more gas can go into solution.

Other often used definitions are the formation volume factors for gas and for
water:

Bg(p, T ) = Vg(p, T )

Vg,SC
and Bw(p, T ) = Vw(p, T )

Vw,SC
. (2.3.13)

We note that the actual physical composition of a gas in a petroleum reservoir is
different under different p, T conditions. In the definitions of Bo, Bg and Bw, the
volumes Vo, Vg and Vw at p, T , refer to a fixed mass of the involved substances,
while the corresponding volumes at SC are those occupied by the same mass at stock
tank, or standard conditions.

2.3.2 Equations of State for Liquids

The discussion in this subsection is applicable to both liquids and gases, except
where liquids or gases are specifically referred to. However, because of the high
compressibility of gases, (2.3.14) is, generally, not applicable, and the ideal gas law,
or the real gas law are used as equations of state. This subject is discussed in detail
in Sect. 2.3.3.

A. Fluid Density

In general, for a fluid phase composed of N γ-species,with
∑

(γ) ργ = ρ, the equation
of state, often abbreviated as EOS, can be written, symbolically, in the form:

ρ = ρ (p, T, ργ; γ = 1, 2, . . . , N ), (2.3.14)
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where ργ(≡ cγ) denotes the density (or concentration) of the γ-species. Equa-
tion (2.3.14) states that the density, ρ, is a specific known function of the fluid’s
pressure, p, concentrations, ργ , of the various γ-species (say, dissolved salts in an
aqueous phase), and the temperature, T . Implicit in (2.3.14) is the assumption that
for a specified T , there is a well-defined relationship between ρ and the various ργ’s
in the fluid.

For a single-species fluid phase, the equation of state reduces to ρ = ρ(p, T ).
Under isothermal conditions, this expression is reduced to ρ = ρ(p). Sometimes,
the above relationships are written in terms of the specific volume v(≡ 1/ρ), rather
than in terms of the density, ρ.

From (2.3.14), it follows that:

dρ =
N∑

γ=1

(
∂ρ

∂ργ

∣∣∣∣
p,T

dργ + ∂ρ

∂ p

∣∣∣∣
T,ργ

dp + ∂ρ

∂T

∣∣∣∣
p,ργ

dT

)

= ρ

⎛

⎝
N∑

γ=1

βργdργ + βpdp − βT d T

⎞

⎠ , γ = 1, . . . , N , (2.3.15)

where

βp ≡ 1

ρ

∂ρ

∂ p

∣∣∣∣
T,ργ

(
≡ −1

v

∂v

∂ p

∣∣∣∣
T,ργ

)
(2.3.16)

is the coefficient of compressibility (often referred to as compressibility) of the fluid
at constant temperature and γ-concentrations. The coefficient:

βργ ≡ 1

ρ

∂ρ

∂ργ

∣∣∣∣
p,T

(
≡ −1

v

∂v

∂ργ

∣∣∣∣
p,T

)
(2.3.17)

introduces the effect of a change in ρ, or v, as a result of a change in concentration
of a γ-species at constant temperature and pressure, and:

βT ≡ −1

ρ

∂ρ

∂T

∣∣∣∣
p,ργ

(
≡ −1

v

∂v

∂T

∣∣∣∣
p,ργ

)
(2.3.18)

is called the coefficient of thermal expansion at constant pressure and concentration.
It is a negative number because the thermal expansion of the fluid reduces its density.
Note that, in general, βp, βcργ and βT vary with p, ργ, T , recalling that ρ =∑N

γ=1 ργ .
The use of (2.3.16)–(2.3.18) presupposes (1) a dominant fluid (e.g., water in an

aqueous solution), or a fluid mixture, that can be adequately described as pseudo-
homogeneous (e.g., an ‘oil’, i.e., a mixture of organic reservoir liquids considered
collectively as the dominant species, with dissolved gases representing the non-
dominant species), (2) a weak dependence of ρ on the various non-dominant γ-
species, and (3) low ργ-concentrations.
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Returning now to Eqs. (2.3.16)–(2.3.18), if, within certain ranges of p, ργ and T ,
the coefficients βp, βργ and βT of a given fluid are constant (or can be approximated as
such, usually for small changes in p, ργ or T ), the equation of state (2.3.15) assumes
the specific form:

ρ = ρo exp

⎧
⎨

⎩βp(p − po) − βT (T − To) +
N∑

γ=1

βργ (ργ − ργ
o)

⎫
⎬

⎭ , (2.3.19)

where ρo = ρ(po, ρ
γ
o , To), and the subscript o denotes a reference state.

For small values of βp, βργ and βT , and/or for small changes �p, �ργ and �T ,
Eq. (2.3.19) is further simplified by approximating the exponential by its linearized
form:

ρ = ρo

⎧
⎨

⎩1 + βp(p − po) − βT (T − To) +
N∑

γ=1

βργ (ργ − ργ
o)

⎫
⎬

⎭ . (2.3.20)

Equations (2.3.19) and (2.3.20) are widely used to describe fluid density in oil
reservoirs and in aquifers, because of the usually low compressibility and thermal
expansivity of suchfluids (makingfluid densitiesweak functions of p andT ).Without
dissolved chemical species, we can express (2.3.20) by the linear approximation:
(2.3.20)

ρ = ρo(1 + βp(p − po) − βT (T − To)). (2.3.21)

Special cases of (2.3.19) and (2.3.20), and further simplification of the equations,
can be made for isothermal processes (T = To = const.), homogeneous fluids (ργ =
ρ = ρo = const., and βργ = 0).

For larger �T , the expressions (2.3.19) and (2.3.20), exponential, or their linear
approximation, may no longer be applicable. In that case, there are several empirical
and semi-empirical equations that relate liquid density to temperature.An extensively
used general relationship that covers a wide range of organic and inorganic liquids
is (Yaws 1999):

ρ = Aρ B
(1−T/Tc)

n

ρ , (2.3.22)

in which Aρ is a term incorporating both a reference density, ρo, and the dependence
of ρ on pressure; Tc is the critical temperature, and Bρ and n are substance-specific
constants.

Figure2.5 presents the density of water (H2O) as it varies with pressure and
temperature.

B. Fluid Viscosity

Fluid’s dynamic viscosity, μ (measured in Pa.s) expresses the ease at which a fluid
undergoes deformation under shear stress. An inviscid fluid is one that has no
resistance to shear stress. For a Newtonian fluid, μ is the coefficient that appears
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Fig. 2.5 Density-pressure-temperature diagram for water

in the relationship (3.2.26). The kinematic viscosity is defined by ν = μ/ρ. The
dynamic viscosity varies with temperature, pressure and solute concentration, μ =
μ(p.T .cγ). For example, for supercritical CO2 (denoted by subscript g). Altunin and
Sakhabetdinov (1972) suggested:

μg = μo
g exp

⎛

⎝
4∑

i=1

1∑

j=0

ai j
ρir

T j
r

⎞

⎠ , (2.3.23)

where ρr = ρg/ρc, Tr = Tg/Tc, are the reduced density and temperature, respec-
tively, and μo

g (in mi Ps.s) is expressed by:

μo
g = √Tr

(
27.2246461 − 16.6346068/Tr + 4.66920556/T 2

r

)
, (2.3.24)

where a10 = 0.248566120, a11 = 0.004894942, a20 = −0.373300660, a21 =
1.22753488,a30 = 0.363854523,a31 = −0.774229021,a40 = −0.0639070755, and
a41 = 0.142507049 were evaluated for the temperature range of 220 < T < 1300K
and pressures up to 1200 bar.

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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C. Fluid Enthalpy

In most engineering applications, when considering non-isothermal conditions, we
make use of the concepts of enthalpy H and internal energy U, and their correspond-
ing specific (i.e., per unit mass) quantities, h and u (and we used ȟ for enthalpy per
mole). These were fully described in Sect. 2.2.2.

Both h and u are path-independent properties. They are always used in a dif-
ferential form, i.e., as the difference between h at two states. Under isobaric con-
dition (dp = 0), or when (∂h/∂ p)T is sufficiently small, (as is the case in low-
compressibility liquids), or when pressure changes are small, the specific enthalpy
can be computed from:

h =
∫ T

To

cp(T ) d T = h(T ) − h(To), (2.3.25)

where To is a reference temperature. Further simplifications are possible when ρ(T ),
or Cp(T ), or both, are temperature-insensitive within the considered temperature
range.

For an ideal gas u = u(T ), and, p v = RT , so that

h = h(T ) = u(T ) + RT . (2.3.26)

For liquids, Cp is often provided as the polynomial function,

Cp =
m∑

k=0

aθkT
k, (2.3.27)

where T is in Kelvin degrees, the polynomial order, m, is usually 3 (Yaws 1999), or
4 (Poling et al. 2000), and the aθk’s are material- and equation-specific constants.

Figure2.6 shows how enthalpy and the entropy of water, are related to pressure
and temperature.

Figure2.7 show the relationship h = h(p, T ) for CO2.
The internal energy can be determined from the definition

U = H − p

ρ
. (2.3.28)

Both H and U are additive, path-independent properties, and they are used always
in a differential form (i.e., as the difference between H at two states 1 and 2), as
opposed to an absolute sense, i.e.,

�H = [H(p, T )]2 − [H(p, T )]1 . (2.3.29)

When equilibrium exists between pure liquid water and water vapour within the
void space of a porous medium domain, the chemical potential, μ, for the water and
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Fig. 2.6 Enthalpy diagram, h = h(p, T ), and entropy, s = s(p, T ), for H2O

for the vapour must be the same. Obviously, water ad water vapour is used here as
an example; the same phenomenon will occur for other substances.

The change in Gibbs molar free energy, �ǧ, caused by raising the pressure by
�p, at constant temperature and composition, is expressed by

�ǧ =
∫

�p
V̌dp, (2.3.30)

where V̌ is the molar volume (= volume per mole) of the water component in the
liquid.

The capillary pressure, p′
c, is introduced in Sect. 2.4.3 as the pressure difference

across a liquid-gas interface. Hence, considering a process in which wemove a small
volume of liquid water from a reservoir at zero capillary pressure to a porousmedium
domain such that vmol remains constant, we obtain the free energy of the water in the
porous medium, relative to water at zero capillary pressure, in the form:

�μ = −V̌ p′
c = −mw

ρw

p′
c, (2.3.31)

where mw is the water mass in moles.
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Fig. 2.7 Molier Diagram (Enthalpy-Entropy-density-pressure-temperature of CO2, created from
data provided by ChemicalLogic (1999) Courtesy of Prof. Jesus Carrera, CSIC, Spain

It is convenient to relate the chemical potential of a substance to its vapour pres-
sure. Let us move vapour, considered as an ideal gas, from a reservoir, where we
have a flat water surface, to one where the surface is curved. For an ideal gas,

μγ = μγo + RT ln
pγ

g

pg
. (2.3.32)

For the vapour in the first reservoir, we have

μ = μo + RT ln
pvo

pg
, (2.3.33)

where R is the universal gas constant, and T is the absolute temperature. Hence, a
change in chemical potential can be related to vapour pressure by

�μ = RT ln
pv

pvo
, (2.3.34)

where pv is the partial pressure of water in the gas phase at a curved meniscus, pvo is
the partial pressure of water in the absence of interfacial effects, and the ratio pv/pvo
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is the relative vapour pressure, or relative humidity, hr . The above equation is also
known as Dalton’s law.

Thus, when (pure) water as a liquid and as a vapour are in equilibrium, we obtain
from (2.3.31) and (2.3.34):

p′
c = −ρwRT

Mw
ln

pv

pvo
, (2.3.35)

known as Kelvin’s equation. It relates the capillary pressure to the vapour pressure
under equilibrium conditions. Note that p′

c ≥ 0, and, therefore, pv/pvo ≤ 1 under
all circumstances. Edelfsen and Anderson (1943) wrote (2.3.35) for an air–water
system, at the macroscopic level, in the form:

ψ = RT

gMw
ln hr , (2.3.36)

whereψ is the suction, defined by (6.1.3), and hr denotes the relative humiditywithin
the void space. In Sect. 2.5, we shall rewrite Kelvin’s equation for a water phase that
contains dissolved solids.

Making use of Laplace’s formula, (2.4.12), Eq. (2.3.35) leads to:

2γwn

r∗ = −ρwRT

Mw
ln

pv

pvo
, (2.3.37)

which relates the vapour pressure at a curved water surface to the latter’s radius of
curvature, r∗. The Laplace formula is presented and discussed in Sect. 2.4.3.

In Sect. 2.4.3, we shall consider the behavior of a wetting phase, say water, in the
void space as if the latter was a capillary tube. The behavior will be related only
to the liquid-gas-solid interactions. This is a good approximation for large pores,
such as in sandy soil. However, the presence of a thin film of adsorbed water will
be overlooked. In fine grained soils, especially in clay, this film may significantly
affect the behavior of water in the soil. In such a soil, the effect of the film, depends
on the presence of the double layer, introduced in Sect. 1.1, and on the presence of
exchangeable cations on the solid surface. The pressures of the aqueous and gaseous
phases no longer characterize the system at the macroscopic level, but the chemical
potential per unit volume, known as matric potential, �w

m , defined in Sect. 2.5.1B,
is required (Nitao and Bear 1996).

When written in terms of the matric potential, (2.3.35) takes the form:

�w
m = −ρw

RT

Mw
ln

pv

pvo
. (2.3.38)

For a pure water phase at a sufficiently high saturation, such that no water exists
as films exposed to the gas phase, we have�w

m = pc. Note that all potentials denoted
by the symbol � are expressed in terms of energy per unit volume, i.e., the same as
pressure, and not in terms of head.

http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_1
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From (2.3.35), it may be readily concluded that pv/pvo is very close to 1 in a
porous medium under all but the most extreme conditions of very low saturation.
For example, at a matric potential of 15 atm., which corresponds to soil conditions at
whichmost plants cannot effectively removewater from the soil (the so calledwilting
point), the relative vapour pressure computed from (2.3.35) is 0.997. Extremely large
water potentials will prevail if the relative vapour pressure is substantially less than
1. Under such conditions, the assumption that water is held only by capillary forces
(viz., forces due to surface tension) may no longer be valid.

Short range interactions between water molecules, ions and solid surfaces will
increasingly control the water potential as water films become less than 10 to
20molecular diameters in thickness. Also, it is apparent that (2.3.37) can only
be applied at a scale much greater than molecular dimensions, since surface ten-
sion has a meaning only for an ensemble of molecules. If the limit of the Laplace
formula’s applicability is taken at 103 diameters of water molecules (assuming
0.28nm/molecule), the cutoff for applying (2.4.12) or (2.3.37) would be at a capillary
pressure of about 10atm. Thus, although the term ‘capillary pressure’ is usually used
beyond this range, it should be recognized that the potential for water may actually
be dominated by non-capillary phenomena, and the term ‘matric potential’ should
be used instead.

2.3.3 Equations of State for Gases

For an ideal gas, the EOS takes the form:

ρ = ρ(p, T, Xγ; γ = 1, . . . , N ) = pM

R T
M =

N∑

γ=1

XγMγ, (2.3.39)

called the ideal gas law, in which R is the universal gas constant, M is the molecular
mass of the gas, Mγ is the molecular mass of the γ-species, and Xγ is the mole
fraction of a γ-species in the gas phase.

Equation (2.3.39) is valid for most noble and low-M gases over a wide range of
p and T . Practically, it is applicable to every gas at low p, say, atmospheric, and a
limited (but usually elevated) T -range (a few degrees). However, it may introduce
significant errors at higher pressures and over extended p and T -ranges. The problem
is alleviated by making use of the real gas law, which has the form:

ρ = ρ(p, T, Xγ; γ = 1, 2, . . . , N ) = p M̄ Z

R T
, M̄ =

N∑

γ=1

XγMγ, (2.3.40)

where M̄ is the value ofM for themulti-species gas, and Z = Z(p, T ) is an empirical
correction factor called the compressibility factor. It introduces the effect of the
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deviation of a real gas behavior from that of an ideal gas by accounting for molecular
interactions at higher pressures. For an ideal gas, Z = 1. Equation (2.3.40) is usually
used in the petroleum industry.

There are several mathematical representations of the EOS that take into account
the compressibility of real gases, i.e., gases for which Z �= 1. Because of their sim-
plicity and usefulness in both analytical and numerical solutions, the family of cubic
EOS’s (Walas 1985; Poling et al. 2000) has found widespread use in the study of real
gases. An additional reason for their wide acceptance is the suitability of the cubic
equations of state to predict the properties of a substance not only in its gaseous state,
but also in its liquid state. The general cubic equation for the compressibility, Z , of
a gas mixture, is given by:

Z3 + AZ2Z
2 + AZ1Z − AZ0 = 0, (2.3.41)

where AZ0, AZ1 and AZ2 are parameters which are specific to the type of cubic EOS
used. Some of the best known and widely used cubic EOS’s are those of Redlich
and Kwong (1949), Soave (1972), and Peng and Robinson (1976). Denoting these
references as R-K, So and P-R, respectively, the coefficients of (2.3.41) are described
as:

AZ0 =
{
A B in R-K and So
A B − B2 − B3 in P-R,

(2.3.42)

AZ1 =
{
A − B − B2 in R-K and So
A − 2B − 3B2 in P-R,

(2.3.43)

AZ2 =
{−1 in R-K and So
B − 1 in P-R,

(2.3.44)

where:

A = (aα)∗ p

R2 T ν
, B = b∗ p

R T
, ν =

{ 2.5 in R-K
2 in So and P-R,

(2.3.45)

(aα)∗ =
∑

γ

∑

δ

Xγ X δ(aα)γδ, b∗ =
∑

γ

Xγ bγ, (2.3.46)

(aα)γδ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

aγδ = √
aγaγ, (α ≡ 1) in R-K

(1 − κγδ)
√

(aα)γ(aα)δ, (aα)γ = aγαγ in So

(1 − κ∗
γδ)
√

(aα)γ(aα)δ, (aα)γ = aγαγ in P-R,

(2.3.47)

αγ =
⎧
⎨

⎩

1 in R-K

[
1 + eγ(1 − T 0.5

rγ )
]2

, Trγ = T/Tcγ in So and P-R
(2.3.48)
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eγ =
⎧
⎨

⎩

0.48508 + 1.55171âγ − 0.15613â2γ in So

0.37464 + 1.54226âγ − 0.26992â2γ in P-R,

(2.3.49)

aγ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0.42748 R2 (T ν
cr/pcr )γ in R-K

0.42747 R2 (T ν
cr/pcr )γ in So

0.45724 R2 (T ν
cr/pcr )γ in P-R,

(2.3.50)

bγ =
⎧
⎨

⎩

0.08664 R (Tcr/pcr )γ in R-K and So

0.07780 R (Tcr/pcr )γ in P-R,

(2.3.51)

in which Xγ and X δ denote the mole fractions of any two species γ and δ of the mix-
ture, κγδ and κ∗

γδ are the binary interaction parameters (Walas 1985) for substances
γ and δ in the Soave and Peng–Robinson equations (different for each equation,
and with κγγ = κ∗

γγ = 0), respectively, â is the eccentric factor, and subscript cr
indicates critical conditions. The acentric factor is a gas property, unique for each
gas, that expresses the deviation of the molecular shape from a sphere.

Note that, in addition to other cubic EOS’s, higher-order and parametric EOS’s
have been proposed. Delving further into these EOS is beyond the scope of this book.
Additional information, can be found in Walas (1985) and Poling et al. (2000).

After computing AZ0, AZ1 and AZ2, the closed forms of the roots of the cubic EOS
in (2.3.41) are given by:

Z1 = (s1 + s2) − AZ2

3

Z2 = −1

2
(s1 + s2) − AZ2

3
+ i

√
3

2
(s1 − s2), (2.3.52)

where i = √−1 and:

s1 =
(
rZ +

√
q3

Z + r2Z

)1/3

, s2 =
(
rZ −

√
q3

Z + r2Z

)1/3

, (2.3.53)

qZ = AZ1

3
− A2

Z2

9
and rZ = 1

6
(AZ1AZ2 − 3AZ0) − A3

Z2

27
. (2.3.54)

Thus, (2.3.41) can have either a single real root and two complex ones, or three real
roots. For a gas, the compressibility factor, Z , to be used in the computations (e.g.,
(2.3.39) for a single-species gas, or (2.3.40) for a mixture) is the single real root of
(2.3.41) or largest real root from among the three real roots Z1, Z 2, Z3. In the latter
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case, the existence of three real roots indicates coexistence of the liquid and gas
states, and the liquid compressibility is described by the smallest of the three roots.

The usefulness of the cubic EOS extends well beyond the computation of Z ,
as it forms the basis for the computation of a wide range of thermodynamic and
thermo-physical properties, e.g., fugacity, density, enthalpy, entropy, viscosity, heat
capacity, and the binary diffusion coefficients. Using the cubic EOS, the specific
internal energy (u) and specific enthalpy (h) of a gas mixture, when no phase change
occurs, is determined from:

u = uideal − udep and h = hideal − hdep, (2.3.55)

where subscripts ideal and dep denote ideal and departure-from-the-ideal gas prop-
erties. Note that all the terms in (2.3.55) indicate differences between the (p, T )
conditions under consideration and a reference state of (po, To). In their general
form, for a gas mixture, the ideal parts of u and h are computed from the general
equations:

uideal =
∑

(γ)

Xγ

∫ T

To

Cγ
v d T, and hideal =

∑

(γ)

Xγ

∫ T

To

Cγ
p d T, (2.3.56)

where To is a reference temperature,Cγ
v = Cγ

v (T ) = (∂h/∂T )|γv andCγ
p = Cγ

p(T ) =
(∂h/∂T )|γp are the specific heat capacities of the gaseous γ-species under constant
volume and constant pressure, respectively. The coefficients Cγ

v and Cγ
p for an ideal

gas (and for the computation of ideal species uideal and hiedal of a real gas) are related
to each other through the well-known equation:

Cγ
p − Cγ

v = R. (2.3.57)

in which Cγ
p is usually computed from a 4-th order polynomial (Poling et al. 2000)

as:
Cγ

p

R
=

4∑

k=0

(bθk)
γ T k, (2.3.58)

where (bθk)
γ are substance-specific constants of a γ-gas.

Equation (2.3.58) is entirely analogous to (2.3.22); the only difference is the use of
different parameters (bθ j instead of aθi ) introduced in order to maintain consistency
with (2.3.57). Note that (2.3.58) applies under certain circumstances to liquids, as
discussed in Sect. 2.3.2 (see (2.3.27)).

The departure internal energy, udep, and the departure specific enthalpy, hdep,
both from the ideal behavior, are determined from the cubic EOS, using parameters
computed in the course of the Z -estimation. Thus,
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udep =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RT

[
1.5

A

B
ln

(
1 + B

Z

)]
for R-K

RT

[
A

B

(
1 + D

(aα)∗

)
ln

(
1 + B

Z

)]
for So

RT

[
A

2.828B

(
1 + D

(aα)∗

)
ln

(
Z + 2.414B

Z − 0.414B

)]
for P-R,

(2.3.59)

and:
hdep = udep + RT (1 − Z) , (2.3.60)

where:
D =

∑

(i)

∑

( j)

Xi X je j (1 − κi j )
√
aiαi

√
a j Tr j . (2.3.61)

All the terms in (2.3.59)–(2.3.61) are as obtained and computed from (2.3.45) to
(2.3.51).

2.3.4 Introduction to Stress, Strain, and Tensors

Consider a bounded domain regarded as a continuum. The domain is acted upon by
two kinds of forces:

• Body force that acts on every point within this domain, where we may think of a
point as representing a small volume of matter centered at the point. Gravity may
serve as an example of such force.

• Traction that acts on every point on the surface that surrounds the considered
body. The force resulting from the weight of a soil column (overburden) above a
unit horizontal area at some depth within the soil layer may serve as an example.
Forces per unit area produce stresses which, in turn produce strains, manifested
as displacements.

The objective of this section is to discuss these topics.

A. Stress

A stress, σ, also referred to as Cauchy’s stress, at a point within a material domain,
regarded as a continuum, is defined as a ‘force per unit area’. However, force is
a vector (with a magnitude and a direction) and so is the area, which also has a
magnitude, and may face different directions at the same point. How do we divide a
vector by a vector? Let us use this opportunity to introduce an informal explanation
of the notion of a tensor through the example of a second rank tensor.

Consider two vectors at a point in a given (fluid or solid) domain: a force, f, and
an area, A. To obtain the stress, we would have liked to divide the force by the area,
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f/A. However, division of a vector by a vector is undefined. Instead, we seek a way to
express f through the value ofA. In otherwords, we introduce the stress, denoted byσ
such that when multiplying it by the areaA, we obtain the force, i.e., f = σ·A. Thus,
the entity σ is like the ratio f/A, but only in the sense that f = σ·A. However, we
must emphasize again that the above quotient is not defined, and we have brought it
here only to demonstrate themeaning ofσ. This mathematical entity–the stress at the
considered point—is a stress tensor. It is a tensor of the second rank. Recalling that
a vector is associated with one direction in space, a second rank tensor is associated
with two directions: one of the force and one of the area. Nine numbers/values are
requires to specify it. These numbers correspond to the nine possible combinations
of components of the two directed vectors.

We can now be more formal. Tensors are classified by rank (or order) which also
determines the number of their components. Thus, in the physical three-dimensional
space considered here, a tensor of rank n has 3n components, independent of the
selected coordinate system. Accordingly, a tensor of order zero has only one compo-
nent. We refer to it as a scalar. A tensor of order one is a vector; it has 3 components,
whereas a second rank tensor has 32 = 9 components.

In a three-dimensional space, a Cartesian tensor of order n is a quantity repre-
sented in any rectangular Cartesian coordinate system, xi , i = 1, 2, 3, by an ordered
set of 3n numbers, Ai j ...�m , called components of the tensor, which, upon transition
to another rectangular Cartesian coordinate system x ′

k , obtained from the first by
rotation of the coordinate system, transforms (i.e., the numerical values of the com-
ponents transform) to a new set of 3n components, A′

rs...uv , according to the rule:

A′
rs...uv︸ ︷︷ ︸

n subscripts

= ∂x ′
r

∂xi

∂x ′
s

∂x j
· · · ∂x ′

u

∂x�

∂x ′
v

∂xm︸ ︷︷ ︸
n derivatives

Ai j ...�m︸ ︷︷ ︸
n subscripts

, (2.3.62)

where:
∂x ′

r

∂xi
≡ cos(1x′

r , 1xi )

with 1xr denoting a unit vector in the xr -direction, is the cosine of the angle between
the positive directions of the x ′

r -axis in the new coordinate system and the xi -axis in
the old one.

Thus, tensors are characterized by a linear transformation of their components
upon transition from one coordinate system to the next. In fact, (2.3.62) can be used
as a definition for an n-rank tensor.

We wish to emphasize again: given a tensor at a point in space, as we rotate the
coordinate system, the tensor is not changed, but the magnitude of its components
varies with the changes in the coordinate system.

With the above introductory remarks on tensors, we shall now focus on two
second rank symmetric tensors: the stress, σ (force per unit area), and the strain, ε
(dimensionless). Figure2.8 shows the components ofσ at a point P of a domain, i.e.,
acting on a parallelepiped body for which P serves as a center. This body is part of
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Fig. 2.8 Normal (σi i ) and
shear (τi j ) components of the
stress tensor at a point (P)

z

x

P

yσxx

τyx

τzx

τxy σyy

τzy
τxz

τyz

σzz

a domain regarded as a continuum. Note that the figure displays the σi j -components
only on the sides that face the direction +x , +y, and +z. The other sides are not
shown.

At a point in a continuum, a stress component, σi j , of σ, is considered positive if
it is associated with a surface that faces the positive i-direction and is acting in the
positive j-direction. For example, we note on the figure that the stress component
σxx is positive as it acts in the +x-direction on a surface that faces the +x-direction.
Stress components for which i = j , are referred to as normal stress components.
Stress components for which i �= j are referred to as shear stress components; they
are usually denoted by τi j . For shear stresses, we also have τi j = τ j i (see any text
on Fluid Mechanics). Thus, the full description of stress at a point in a 3-d domain
requires information on nine scalar components:

σi j =
⎡

⎣
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤

⎦ ≡
⎡

⎣
σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

⎤

⎦ ,
σi j = σ j i ,

τi j = τ j i .
(2.3.63)

Sometimes, we use subscripts 1, 2, 3 instead of x, y, z. Note the use of the shear
stress symbol, τi j , i �= j .

A second rank tensor has two invariants, i.e., combinations of tensor components
that are independent of the coordinate system employed. One is the sum of the
diagonal components,

∑
(i) σi i = σ11 + σ22 + σ33 (referred to as the first invariant).

Recall that with Einstein’s summation convention, employed in this book, σi i ≡
σ11 + σ22 + σ33, i.e., without the sum symbol. One third of this quantity is a scalar
quantity, often called mean stress

σm = 1

3
(σ11 + σ22 + σ33) ≡ 1

3
tr(σ). (2.3.64)

Read: trace of sigma. It is a scalar that has no directional properties; it does not vary
as the coordinate system is rotated.
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A second invariant is the deviatoric stress, σd , which is the portion of the stress
tensor that is complementary to the mean stress, i.e.,

σd = σ − σm I,

where I is the identity matrix, or the unit tensor, denoted also by δ (components δi j ).

I =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ≡ δ. (2.3.65)

Consider a saturated porous medium, visualized as three overlapping continua:
the solid matrix, the fluid occupying the void space, and, at the macroscopic level,
the porous medium as a whole. Let us focus on the third case. How is the stress
defined above related to the pressure at a point in a fluid phase that occupies the void
space, with the fluid visualized as a continuum? Since for a non-viscous fluid, the
normal stresses at a point are equal to each other, each of them must be equal to σm

defined in (2.3.64). For such a fluid, as for a Newtonian fluid, when we invoke the
Stokes assumption, λ + (2/3)μ = 0, where λ is the second coefficient of viscosity,
we have:

− p = σm, i.e., p = −1

3
(σ11 + σ22 + σ33) , (2.3.66)

where the minus sign is a consequence of the fact that negative normal stresses occur
in a fluid. Hence, for a fluid at rest, or in the absence of shear stress, the stress at a
point in a fluid is described by the matrix

⎛

⎝
−p 0 0
0 −p 0
0 0 −p

⎞

⎠ ,

in which p is called the hydrostatic pressure. Thus, for the kind of fluids considered
here, the pressure is defined as minus the mean of the normal stresses. With the above
definition of pressure, we may express a typical stress component in a fluid, σi j , in
the form:

σi j = τi j − pδi j , (2.3.67)

where δi j is the Kronecker delta (≡ the unit tensor) defined in Sect. 3.2.2C, and τi j
is a component of the viscous stress, or shear tensor. Note that here, and elsewhere in
this book, we consider fluid pressure, as is common in fluid mechanics, as positive
for compression.

As will be shown below, knowledge of the (macroscopic) stress and the resulting
(macroscopic) strain is required when considering flow through a deformable porous
medium domain, porous medium deformation, and failure in a porous medium as a
result of excessive stress.

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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Fig. 2.9 a Shear components in an xy domain, and b deformed domain (stress components are not
shown)

Before leaving the above introductory remarks on stress, it may be interesting to
recall that in (3.2.22) we have defined the stress (in fact, −σ) as the diffusive flux of
linear momentum.

B. Strain

In (2.3.67), we have related the stress at a point in a 3-d stationary fluid continuum,
to the shear stress and to the fluid pressure. This relationship is valid when the
considered point belongs to a domain that is occupied by two overlapping continua
in a porous medium domain: one of the solid matrix and the other of the fluid phase.

When, in a porous medium domain, the total stress, or the fluid pressure, or both,
are perturbed (e.g., by producing fluid motion, or by loading the porous medium
domain), the stress in the solid matrix is changed, producing displacement and dis-
tortion. In otherwords, the solidmatrix is “strained”. Let us discuss these phenomena.

Figure2.9 shows what happens when a stress is acting on a rectangular planar
domain, �x , �y, centered at a point P in a continuum. For the sake of simplicity,
the demonstration is in a 2-d, x, y, domain. In this figure, a stress, σ acts on the
rectangle OABC, keeping the point O clamped. The result is that points A, B, C,
will be displaced to A’, B’, C’, respectively. The original rectangle OABC will be
deformed to the shape O A’B’C’. The figure shows the distortion of the original
rectangle and the change of angles. The four right angles will be changed:

�O : π/2 ⇒ �O′ : π/2 − γ,

�A : π/2 ⇒ �A′ : π/2 + γ,

�B : π/2 ⇒ �B′ : π/2 − γ,

�C : π/2 ⇒ �C′ : π/2 + γ,

where, denoting the displacement vector by w, with components: wx , wy, wz , and
the strain tensor (which is a second rank symmetric tensor) by ε, we have (in indicial
notation):

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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εxx = ∂wx

∂x
, εyy = ∂wy

∂y
, εxy = εyx

(
≡ γ

2

)
= 1

2

(
∂wx

∂y
+ ∂wy

∂x

)
. (2.3.68)

Thus, the shear strain, εxy , represents the change in the angle between the two initially
perpendicular lines (actually, half the angle), while the normal strain represents the
relative change in length of the solid box dimensions. Altogether, strain components
are dimensionless.

The above relationships can be extended to a 3-d domain. It can easily be shown
that the strain tensor, ε, is related to the skeleton’s displacement vector, w, by:

ε = 1
2

[∇w + (∇w)T
]
, (2.3.69)

or, in indicial notation:

εi j = 1

2

(
∂wi

∂x j
+ ∂w j

∂xi

)
. (2.3.70)

Volume change is also related to the strain tensor, noting that shear strain does
not produce volume change. Thus, for a considered continuum, the relative volume
change, εv ≡ �V/V, is expressed by:

εv ≡ �V

V
= εxx + εyy + εzz ≡ 3εm, εv = ∇·w, (2.3.71)

where εm denotes the mean strain.

2.3.5 Stress-Strain Relationship for a Solid

The constitutive equation for a solid expresses its stress-strain relationship at a point
in a solid domain. We shall use tensor concepts to describe these terms. In Sect. 9.1
we shall discuss these concepts for a solid matrix of a porous medium domain. A
brief introduction to the concepts of tensor, stress and strain are presented at the
beginning of this section.

While for fluids, the deviatoric stress-tensor is regarded as a force (per unit area)
which arises in a moving fluid and depends on the rate of strain, a solid, even at rest,
can be deformed by an applied stress. Thus, for an anisotropic, linearly elastic solid
under isothermal conditions, the stress-strain relation is given by the generalized
Hooke’s law:

σi j = C ′′
i jk� εk�, (2.3.72)

where C ′′
i jk� is the elasticity tensor, or stiffness tensor, and εk� denotes the k�-

component of the (Eulerian infinitesimal) strain tensor. Here, and everywhere in this
book, we are making use of Einstein’s summation convention, i.e., when a subscript
is regarded twice and only twice, it is regarded as a sum over the range of values of
that subscript or superscript (e.g., 1, 2, 3 in three dimensions).

http://dx.doi.org/10.1007/978-3-319-72826-1_9
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More on the C
′′
i jk� for an anisotropic porous medium is presented in Sect. 9.1.4.

Common ways to express Hooke’s law for an isotropic elastic solid in indicial
notation are:

σi j = λ′′
s εkkδi j + 2μ′′

s εi j = C ′′
i jk�εk�,

C ′′
i jk� = λ′′

s δi jδk� + μ′′
s

(
δikδ j� + δi�δ jk

)
, (2.3.73)

in which δi j is the Kronecker delta, and:

σi j = E

1 + ν ′′
s

(
εi j + ν ′′

s

1 − 2ν ′′
s

εkkδi j

)
, (2.3.74)

in which superscript (.)′′s denotes solid matrix properties (here at the microscopic
level), or:

εi j = 1

E

[
σi j − ν ′′

s (σkkδi j − σi j )
]
, (2.3.75)

in which E is Young’s elasticity modulus, Young’s!elasticity modulus λ′′
s (= K − 2

3G)

and μ′′
s (≡ G) are the Lamé constants, ν ′′

s is Poisson’s ratio, K is the bulk modulus,
and G is the shear modulus.

In the particular case of a uniaxial state of stress in the x1-direction (i.e., σ11 �= 0,
σ22 = σ33 = 0), we have:

E = σ11/ε11 and ν ′′ = −ε22/ε11 = −ε33/ε11. (2.3.76)

In this case:

E = μ′′
s (3λ

′′
s + 2μ′′)

λ′′
s + μ′′

s

, ν ′′
s = λ′′

s

2(λ′′
s + μ′′

s )
. (2.3.77)

Examples of stress-strain relations of solids are given in Fig. 2.10.
Note that C ′′

i jk� in (2.3.72) is a fourth rank tensor. In principle, such tensor has
81 components. However, because of various symmetries, e.g., because σi j = σ j i

and εi j = ε j i , we have actually only 21 different independent components. For an
isotropic solid, these reduce to only two. These are the Lamè coefficients introduced
below.

The solid’s velocity at a point, Vs , is related to the displacement at that point, w,
by:

Vs = Dsw
Dt

≡ ẇ. (2.3.78)

The dilatation, ε, is given by

ε = εi i = ∂wi

∂xi
, (2.3.79)

http://dx.doi.org/10.1007/978-3-319-72826-1_9
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Fig. 2.10 Stress-strain relations for various solids

recalling that, as everywhere in this book, the summation convention is implied.
Thus, for an isotropic linearly elastic solid, (2.3.72) takes the form:

σi j = μ′′
s

(
∂wi

∂x j
+ ∂w j

∂xi

)
+ λ′′

s

∂wk

∂xk
δi j . (2.3.80)

It is interesting to note that altogether, we have introduced here five material
coefficients: E , ν ′′

s , G, λ′′
s and μ′′

s . However, only two of them are independent. We
can choose any two to be independent; the other three are computable from these
two.

For a linearly thermoelastic solid, i.e., when changes in temperature are taken
into account, the stress-strain relationship (2.3.72) is extended to the form:

σi j = C ′′
i jk�

[
εk� − ηk�(T − To)

]
, (2.3.81)

where ηk�(T − To) is the strain contributed by the temperature field and To is a
reference temperature. The coefficientC ′′

i jkl is a fourth rank tensor. Because of various
symmetries, only 21 of its components are non-zero. For an isotropic porousmedium,
the number of components is reduced to 2. The above equation can then be written
in the form:

C ′′
i jkl = E

2(1 + ν ′′
s )

(
δilδ jk + δikδ jl

)+ Eν ′′
s

(1 + ν ′′
s )(1 − 2ν ′′

s )
δi jδkl . (2.3.82)
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For an isotropic solid:
ηk� = αTδk�, (2.3.83)

where αT is the coefficient of linear thermal expansion. By analogy with (2.3.80) the
stress-strain relationship then becomes

σi j = 2μ′′
s

[
εi j − αT (T − To)δi j

]+ λ′′
s

[
ε − 3αT (T − To)

]
δi j

= 2μ′′
s εi j + λ′′

s εδi j − (3λ′′
s + 2μ′′

s )αT (T − To)δi j , (2.3.84)

where ε(≡ εi i ≡∑i εi i ) is the volumetric strain (≡ dilatation). Equation (2.3.84) is
the constitutive equation of a linearly thermoelastic isotropic solid. It may be inverted
to yield the strain as a function of the stress:

εi j = 1

2μ′′
s

(
σi j − λ′′

s

3λ′′
s + 2μ′′

s

σkkδi j

)
+ αT (T − To)δi j . (2.3.85)

Other forms are:

εi j = 1 + ν ′′
s

E
σi j − ν ′′

s

E
σkkδi j + αT�T δi j , (2.3.86)

or

σi j = E

1 + ν ′′
s

(
εi j + ν ′′

s

1 − 2ν ′′
s

εkkδi j

)
− αT

E

1 − 2ν ′′
s

�T . (2.3.87)

2.3.6 Enthalpy of a Solid

The state variable enthalpy of a liquid was introduced in Sect. 2.3.2C.
For a solid, the specific enthalpy, h, and the specific internal energy, u, under

isobaric conditions, or for small pressure variations, �p = p − po, with respect to a
reference pressure p0, can be described by (4.36) and (2.3.25). Note that for a solid,
the pressure, p is defined by (2.3.66).

For solids, the heat capacity Cp(= Cp(T )) is often described by the general
quadratic function in Cp =∑m=2

m=0 AθmTm (Yaws 1999), in which Aθm (m = 0, 1, 2)
denotes material-specific constants. For large �p, the effect on h of solids can be
described by the general equation:

h = h po + βpo

[
vpo − v + v ln

(
v

vpo

)]
. (2.3.88)

There are several general EOS’s for a single-species solid under non-isothermal
conditions, e.g., the universal equation of solids proposed by Vinet et al. (1987).
However, these are cumbersome to use, and were developed for solids exposed to

http://dx.doi.org/10.1007/978-3-319-72826-1_4
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very large pressures and undergoing significant compression, i.e., beyond the range
of conditions of most processes in flow and transport through porous media.

2.4 Interphase Surfaces and Transfers

In this sectionwe consider themicroscopic interfaces between phaseswithin a porous
medium domain and the transfer of extensive quantities across these surfaces. In sin-
gle phase flow, we have only fluid-solid interfaces. In multi-phase flow, we also have
fluid-fluid interfaces. The macroscopic description of these phenomena is presented
in Chaps. 5–9.

2.4.1 Fluid-Fluid Interface

We are consider a fluid-fluid interface, or inter-phase boundary, at the microscopic
level. The shape of the microscopic interface, F(x, y, z, t) = 0, is not discussed
here, but the discussion in Sect. 5.2.1D is applicable also here, with x, y, z denoting
coordinates at the microscopic level.

A. The Inter-phase Zone

For a fluid-solid interface, the presence of an interface is obvious, although the fluid
next to the solid may behave differently from the rest of the fluid. The situation
is different when we consider the interface between two immiscible fluids—two
liquids, or a liquid and a gas—within the void space, i.e., at the microscopic level.
In principle, there are no ‘immiscible fluids’, as any two fluids are always miscible
with each other, at least to some extent. However, when the degree of miscibility
is very small, the concept of ‘immiscible fluids’ may be applied. This ‘interface’ is
actually a very thin zone of transition between the two fluid phases. Close to this
surface, say, within a distance of a few molecules on either side of the latter (i.e.,
within the transition zone), the properties of the fluid differ significantly from those
within the body of either fluid. In fact, the idea of a thin film as an inter-phase zone is
introduced in Sect. 7.4.3, where the concept of a thin film is approximates the ‘sharp
interface’ between two immiscible fluids.

It is interesting to note that Hassanizadeh and Gray (1989) envision the inter-
face between phases as a ‘domain’ for which balance equations of thermodynamic
extensive quantities are considered in a way which is analogous to balance equations
written for phase domains. Their approach to modeling transport in porous media is
summarized in Sect. 1.4.2C.

To understand this phenomenon, we have to recall what happens in the fluids at
the molecular level.

http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_9
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_1
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B. Surface Tension

Molecules of a fluid are attracted to each other by an attractive force. Consider the
interface between two domains: one occupied by a liquid, the other occupied by the
latter’s vapour. Because a molecule in the interior of the liquid body is surrounded
by liquid molecules of the same kind, having a similar mean spacing, it is attracted,
on the average, equally in all directions, and the resultant attractive force acting on
it vanishes. The same is true for a molecule in the interior of the vapour. However,
the situation changes as we approach the interface from either side. A molecule
belonging to the interface is subjected to a stronger resultant attractive force towards
the interior of the liquid body. As a consequence of the pull towards the liquid’s
interior, work must be performed in order to increase the surface of the interface by
bringing liquid molecules from the interior of the liquid body to the interface. Left
alone, the surface will tend to assume, spontaneously, the shape that corresponds
to a state of minimum energy under the prevailing conditions. Thus, the surface of
the liquid always tends to contract to the smallest area possible under the prevailing
circumstances. The same phenomenon takes place at the interface between a liquid
and a gas, and between any two immiscible liquids.

In reality, because of the continuous motion of the molecules, no sharp surface of
separation exists. Instead, a transition takes place across a relatively thin zone, from
the domain occupied primarily by one kind ofmolecules to that occupied primarily by
molecules of the other kind. The properties of the transition zone vary across itswidth.
As explained above, becausemolecules in this transition zone behave differently from
those in the interior of the respective fluid bodies, this zone is conceptually replaced,
as an approximation, by a sharp interface that is assumed to separate the two domains
(Gibbs 1906). At the macroscopic level, the exact position of this dividing surface
within the transition zone is arbitrary. Although molecules are continuously joining
and leaving this interface, we regard it as a distinct surface that separates the two
fluid phases. In fact, this is an observable surface.

Transport of extensive quantities (e.g., heat, or mass of a phase) may take place
through this interface. In order to increase the area of the interface between two
immiscible fluids, molecules from the interior of the two fluid bodiesmust be brought
into the surface. This requires that work be done against the net cohesive force among
the molecules in the two fluids. On the other hand, energy is gained when the area
of an interface is reduced. The work required in order to increase the surface area of
an interface by one unit is called surface (or interfacial) free energy.

The tendency of a surface to contract may be regarded as a manifestation of the
surface free energy. The molecules at the surface behave as if they belong to a
thin, skin-like elastic layer, or membrane, under tension, that adjusts its geometry to
attain the smallest possible surface area under the prevailing conditions. Obviously,
the ‘membrane’ is only a model of the behavior of the interfacial boundary surface,
and no such membrane actually exists. This property of interfaces causes a liquid
droplet to assume a spherical shape (which has the smallest surface area for a given
volume), in the absence of any other forces.
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We have to be careful with the analogy to a ‘stretched membrane’. The tension in
the latter, generally, increaseswith increased surface area,whereas the surface tension
is independent of area. Furthermore, contrary to the case of the interface between
two fluids, molecules are not added to a real membrane as it is being stretched.

The interfacial free energy manifests itself as an interfacial tension (inside the
fictitious ‘membrane’), measured as energy per unit area. For a pair of substances,
α and β, the interfacial tension, γαβ , is defined as the amount of work that must
be performed in order to separate a unit area of substance α from substance β, or,
equivalently, to increase their interface by a unit area. For air (a) and water (w) at
20 ◦C, γwa = 72.8erg/cm2 (≡ 72.8 × 10−3 J/m−2).

Surface tension, �αβ between two fluid phases, α and β, separated by an interface
of area A, can also be expresses as a change in Gibbs free energy (Sect. 2.2.3) G of
a system composed of the two phases and the interface separating them, by:

γαβ = ∂G

∂Aαβ

∣∣∣
p,T

. (2.4.1)

Equivalently, the interfacial tension can also be expressed, as force per unit
distance along the membrane’s surface, i.e., γαβ = 72.8dyne/cm (≡ 72.8 × 10−3

N/m). The interfacial tension between an α-substance and its own vapour is called
surface tension, γα. For example, a general equation describing the temperature
dependence of surface tension of organic substances is the relationship proposed by
Escobedo and Ali Mansoori (1996):

γα = [γRα(ρLα − ρGα)]4 , (2.4.2)

where ρLα = ρLα(p, T ) and ρGα = ρGα(p, T ) are the densities of the liquid and gas
α-phases, respectively, and:

γRα = γoα(1 − Tr )
0.37Tr exp

(
0.30066

Tr
+ 0.86442 T 9

r

)
, Tr = T/Tc, (2.4.3)

γoα =
(
39.643

P5/6
c

)[
0.22217 − 2.91042 × 10−3

(
R∗

T 2
br

)]
T 13/12
c , (2.4.4)

where Tc denotes critical temperature, R∗ = Rmα/Rm,re f , Rmα is the molar refrac-
tion of the α-substance, Rm,re f is the molar refraction of a reference fluid (usually
methane), Tbr = Tbα/Tc, and Tbα is the boiling point of the α-substance.

The term surface tension is often used to indicate the interfacial tension associated
with the interface between two immiscible liquids, or between any liquid and a
gas. Henceforth, we shall also use the term ‘surface tension’ to indicate ‘interfacial
tension’.
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The interface tension γαβ of two immiscible fluids α and β can be obtained as a
function of the surface tensions of the individual fluids (phases) using the equation
of Girifalco and Good (1957):

γαβ = γα + γβ − 2�
√

γαγβ , (2.4.5)

whereγα andγβ are the surface tensions of the immisciblefluidsα andβ, respectively,
and � is a constant which is equal to the ratio of energies of adhesion and cohesion
for the two phases. The values of � for a number of different liquid/liquid systems
can be found in Girifalco and Good (1957).

As is evident from Eqs. (2.4.2) to (2.4.5), the interfacial tension depends on the
temperature; it decreases by approximately 5.5 × 10−5 N/m/◦C for a crude oil-water
interface. It is strongly affected by surface active agents (called surfactants), by gas
in solution, and by the pH (Schowalter 1979). A survey of methods for estimating
surface tension values between various fluids is given by Poling et al. (2000).

As an illustration, consider a soap (s) bubble of radius r , with gas (= air) on
both sides. Actually, in a soap bubble, we have two interfaces: a soap-(internal) air
interface, and a soap-(external) air one. With γ(= 2γas) denoting the surface tension
in the film, measured as energy per unit area, the total energy in the film surface is
4πr2γ. If the radiuswill be increased by dr , the added energywill amount to 8πrγdr .
This increase in film area is produced by increasing the pressure difference, �p, say,
by increasing the inner pressure, pin, more than the outer one, pout . The added energy
is due to the work of �p. Thus,

(�p) × (4πr2dr) = 8πrγdr, or �p = 2
γ

r
. (2.4.6)

Since γ > 0, and r > 0, we must have �p > 0, or pin > pout .

2.4.2 Wettability and Spreading

When any two fluids are in contact with a solid, one of them will tend to adhere to
the solid. Figure2.11a shows two immiscible fluids in contact with a planar solid
surface (S). The point M in the figure is the trace of the line (perpendicular to the
figure) along which the three phases are in contact with each other. Due to interfacial
tension, three forces act at this line, each being directed along the tangent to the
interface between adjacent phases. The magnitude of each force, per unit length of
the contact line, is equal to the corresponding interfacial tension: γSG , γSL , and γLG .

The angle, θLG , called contact angle, or wetting angle, denotes the angle between
the solid surface and the fluid-fluid interface, measured through the denser fluid. It
depends on the properties of the two fluids, and expresses the affinity of the fluids
for the solid. For a perfectly wetting fluid, θLG = 0. Which means that the fluid tends
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Fig. 2.11 Interfacial tension

Gas or liquid (G)

Gas or liquid (G)
Liquid (L)

Solid (S) γ SG

γ GBγ GA

γ AB

γ SL

LG

S

Liquid (B)

GLγ

GLγ

θ GA

Liquid (A)

θ GLM

M

M

(a) (b)

(c)

θ AB

θ GB

to spread over the solid surface. For a perfectly non-wetting fluid, θLG = 180o; this
fluid will form droplets on the solid surface.

At equilibrium, the equation

γLG cos θ + γSL = γSG, or cos θ = γSG − γSL

γLG

, (2.4.7)

called Young’s, or Dupré equation, states that cos θ is the ratio of the work required
to change a unit area of S–G-interface into a unit area of S–L-interface to the work
required to form a unit area between the L- and the G-phases. From (2.4.7), it follows
that no equilibrium is possible if:

γSG − γSL

γLG

> 1, or SLSG ≡ γSG − γSL − γLG ≥ 0, (2.4.8)

where SLSG is the spreading coefficient. In such a case, the L-liquid in Fig. 2.11a will
spontaneously spread indefinitely over the solid surface (Adamson 1982)

If θ = 0, (2.4.7) is no longer valid, and if (2.4.8) is satisfied, the imbalance in
surface free energy will cause spreading. For the case of two liquids, A and B, the
spreading coefficient, SA/B , is expressed by:

SA/B = γA − γB − γAB. (2.4.9)

Spontaneous spreading occurs when this coefficient is positive. The spreading coeffi-
cient is positive if spreading is accompanied by a decrease in free energy. The surface
tensions in the above equations are those of pure fluids. In reality, as fluids come into
contact with each other, and with time, they gradually become mutually saturated,
so that γA and γ B will change, and, as a consequence, the spreading coefficient will
also change. The extent of the change may be such that the sign of this coefficient
will also change.
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Actually, Young’s equation considers only equilibrium of the force components
along the tangent to the solid surface. Requiring equilibrium of force components
also along the normal to the surface, would mean that, in principle, we must have
the situation shown in Fig. 2.11b. We note that the surface is not planar, although the
actual deviation from a plane may be very small.

The spreading coefficient may have a significant effect on whether a nonwetting
fluid, when reaching residual saturation in a porous medium domain, will take the
form of isolated droplets, or extended ganglia. In very fine-grained materials, e.g.,
clays, most of the wetting fluid–water–may take the form of films. The trend may be
influenced by certain chemicals, called surfactants (to be discussed below), which
affect surface tension (e.g., Schramm 2000).

The product γLGcos θ, appearing in (2.4.7), is called adhesion tension. It deter-
mines which of the two fluids, L or G, will preferentially wet the solid, i.e., adhere
to it and spread over it. When the wetting face is replace by a nonwetting one, It is
assume that the portion of the solid surface which is contact with the nonwetting fluid
(see Fig. 2.11) is always devoid of wetting film. In reality, due to adhesive forces,
such film does exist (see Fig. 1.12).

The fluid for which θ < 90◦ (e.g., L in Fig. 2.11a), is said to wet the solid and
is called the wetting fluid. Gases are almost invariably nonwetting phases. When
θ > 90◦, the fluid (G in Fig. 2.11a) is called nonwetting fluid. In any system similar
to that shown in Fig. 2.11a, it is possible to have either a L-fluid-wet, or a G-fluid-wet
solid surface, depending on the chemical composition of the two fluids and of the
solid.

In the unsaturated (air–water) zone in the soil, water is, usually, the wetting phase,
while air is the nonwetting one. Gas is always the non-wetting phase. It may be
interesting to note that petroleum reservoir rocks are usually water-wet, but they can
be oil wet, or have mixed wettability.

Sometimes, due to the heterogeneity of the mineral composition of a solid matrix,
we encounter fractional wettability, defined as the fraction of the total surface area
that is preferentially wet by one of the phases (e.g., Anderson 1987; Demond et al.
1994;Dekker andRitsema 1994). This phenomenonmay strongly affect the transport
of fluid phases, and of dissolved chemical species.

Additives, called surfactants, or surface active agents, mentioned earlier, tend
to accumulate in the liquid close to and at the interface. We say that they ‘adsorb’
on the interface. They reduce the interfacial tension, sometimes significantly, and
may alter the contact angle, mainly due to modifications of solid surface properties.
The presence of surfactants, even in minute quantities, may significantly change the
capillary behavior of water in soil.

Figure2.11c shows the balance of forces between three fluid phases, or between
two liquid phases and a gas, with one of the liquid phases taking the form of a lens
that rests on the other liquid. Equilibrium of force components tangent to the solid
surface requires that:

γAG cos θAG = γAB cos θAB + γGB cos θGB. (2.4.10)

http://dx.doi.org/10.1007/978-3-319-72826-1_1
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It follows that when γAG < (γAB + γGB), a lens of the intermediate wettability B-
liquid will be formed between the wetting A-phase and the nonwetting G-phase. The
B-liquid is referred to as a ‘nonspreading liquid’. If γAG > (γAB + γGB), the B-liquid
will spread out between the A-liquid and the gas, or the G-liquid. In this case, the
B-liquid is called a ‘spreading liquid’.

The magnitude of the surface tension, γAB , depends on the temperature, compo-
sition, and pressure of the fluids. It is very sensitive to impurities. In general, the
effect of pressure is very small and can be neglected, so that surface tension can be
assumed to depend primarily on the temperature and the composition of the fluids.

It is generally assumed that all fluid phases within an REV are in thermody-
namic equilibrium, or approximate thermodynamic equilibrium. According to our
nomenclature, this is equilibrium at themicroscopic level, obtained by averaging the
molecular one. However, when modeling transport phenomena in porous media, we
average the microscopic behavior (over an REV) to obtain the macroscopic one. This
means that we have to consider the concept of equilibrium also at the macroscopic
level. A discussion on equilibrium is presented in Sect. 2.1.

Water has a very high surface tension, relative to most other liquids. For a mixture
of miscible liquids (e.g., a mixture of hydrophobic organic liquids), the surface
tension is approximately equal to the weighted average of the liquids’ fractional
volumes. However, surfactants, because they accumulate in the interfacial region,
may reduce the surface tension disproportionate to their volumetric fraction. Many
hydrophobic compounds, which have a low solubility in water, prefer to accumulate
in the interfacial region, rather than mingle freely with molecules in the interior of a
water domain. Some examples of interfacial tension values at 20◦ are:

Water–water vapour 72.88dyne/cm = 7.288×10−2 N/m.
Benzene–benzene vapour 28.88dyne/cm = 2.888×10−2 N/m.
Water–benzaldehyde 15.50dyne/cm = 1.550×10−2 N/m.

Various theoretical and empirical methods for estimating surface tension of mix-
tures, spreading tension and interfacial tension have been summarized by Lyman
et al. (1982).

2.4.3 Capillary Pressure

In this subsection, we are dealing only with capillary pressure at the microscopic
level, i.e., at a point on the (assumed sharp) interface between two fluids. Capillary
pressure at the macroscopic level will be presented and discussed in Chap.6, which
deals with multiphase flow.

As discussed above, a discontinuity in fluid stress exists across a curved interface
that separates any two immiscible fluids (say, air and water). The jump in the normal
stress, or pressure, is a consequence of the interfacial tension which exists at every
point of such an interface. The difference between the pressure pconcave, in the fluid

http://dx.doi.org/10.1007/978-3-319-72826-1_6
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Fig. 2.12 Force balance at a curved interface

which occupies the concave side of an interface, and the pressure pconvex , which
occupies the fluid on the convex side of the latter, is called capillary pressure, pc:

pc = pconcave − pconvex . (2.4.11)

In this equation, the pressures are taken as the interface is approached within the
appropriate phase. Note that we have used the prime symbol to indicate the capillary
pressure at the microscopic level, i.e., at a point on the interface. In Sect. 6.1 we shall
consider the capillary pressure at the macroscopic level.

The magnitude of the pressure difference at a point on an interface depends on the
radius of curvature of the latter and on the surface tension at that point. The special
case of a spherical surface was given by (2.4.6). Let us now consider the relationship
for a general surface. There are several ways for developing this relationship. For
example, it is possible to consider thework required in order to increase the area of the
interface. In all approaches, the interface is visualized as a (two-dimensional)material
body (actually, surface) which has rheological properties of its own. Its behavior is
similar to a that of a ‘stretched membrane’ under tension. In fact, this assumption
alone already leads to the conclusion that under conditions of force equilibrium,
the normal components of the fluid’s stress, or pressure, must be discontinuous as a
(curved) interface is crossed.

As an example, let us use Fig. 2.12, which shows an infinitesimal element of a
curved interface between a wetting-fluid (w), which occupies the convex side of the
interface, and a nonwetting-fluid (n), which occupies the concave side of the latter.
The figure shows the various forces acting on this element. Assuming the interfacial
tension between these two fluids, γwn , to be constant, a balance of force components

http://dx.doi.org/10.1007/978-3-319-72826-1_6
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Fig. 2.13 Water (w) - air (n) interface in a capillary tube: a Capillary rise, θ = 0◦, b capillary
depression, θ = 180◦, and c capillary rise, θ �= 0◦

normal to this element requires (Adamson 1982) that at equilibrium, under steady
state conditions:

p′
c = pn − pw = γwn

(
1

r ′ + 1

r ′′

)
= 2

r∗ γwn, (2.4.12)

where subscriptsw and n denote the wetting and the non-wetting fluids. In the above
expression, r ′ and r ′′ are the two principal radii of curvature of the surface, with
a radius considered positive when it lies within the n-fluid. The radius r∗ denotes
the mean radius of curvature, defined by 2/r∗ = 1/r ′ + 1/r ′′. Equation (2.4.12) is
known as the Laplace, or Young–Laplace formula for capillary pressure. Because
γnw is positive when both radii are positive, the pressure is greater in the n-fluid, for
which the surface is convex.

An example of two fluids in a capillary tube is shown in Fig. 2.13. The definition
of capillary pressure presented above still holds, with subscripts w and n denoting
‘wetting’ and ‘non-wetting’ fluids, respectively.

Let us consider the effect of the interaction between two fluids and a solid surface.
For this purpose, let us consider what happens to the interface between a pair of two
immiscible fluids, say, a liquid and a gas, in a capillary tube. The twofluids occupy the
convex and the concave sides of the interface, respectively, as shown in Fig. 2.13a.
If the liquid perfectly wets the solid surface of the tube, i.e., the contact angle θ



2.4 Interphase Surfaces and Transfers 155

= 0◦, and the gas-liquid surface is tangent to the tube’s wall at their point of contact.
When the liquid is nonwetting with respect to the solid, i.e., θ = 180◦, a situation of
capillary depression (Fig. 2.13b) is observed, with a convex meniscus.

In the general case of a wetting liquid, θ �= 0◦, we have the situation shown in
Fig. 2.13c. If the capillary tube has a circular cross-section, with a radius R that is
not too large, the curved interface (= meniscus) will be approximately in the shape
of a hemisphere. In this case, r ′ = r ′′, and r∗ = R/cos θ. Then, in a small diameter
circular tube, with an approximately spherical meniscus, the pressure difference
given by (2.4.12) can be written in terms of the tube’s radius, R, in the form:

p′
c = 2γwn cos θ

R
. (2.4.13)

Figure2.13c, shows the rise of water in a vertical capillary tube with an air–water
meniscus. With h′

c (= capillary rise) denoting the height of the water column above
a horizontal, flat water surface in a large container (i.e., r∗ = ∞), pc must equal the
hydrostatic pressure drop along the column of length hc. Hence:

πR2h′
cρwg = 2πRγawcos θ, h′

c = 2γawcos θ

ρwgR
, (2.4.14)

where γaw denotes the air–water surface tension. In terms of the radius of curvature
of the meniscus, r∗ = R/cos θ, we obtain:

h′
c = 2γaw

ρwgr∗ = pc
ρwg

. (2.4.15)

2.4.4 Interphase Mass Transfer

In this subsection we consider mass transfer across a microscopic interphase surface.
In Chap.7 we shall consider interphase mass transfer at the macroscopic level.

A. Gas-Liquid Mass Exchange and Vapor Pressure

Understanding phase changes (e.g., evaporation and condensation) requires a firm
grasp of the physics and thermodynamics of vapour pressure. Some relevant elements
on this subject are presented below.

We consider a liquid and a gas separated by an interface. Both contain a substance
γ, although both the liquid and the gas may contain also other species. A continuous
transfer of the γ-species takes place between the gaseous and liquid phases across
their common interface. For example, consider a free water (primarily H2O, but
may contain other dissolved species) surface exposed to air (which contains mostly
oxygen and nitrogen, but also water vapour). As long as the air, at the system’s
temperature, is not saturated by water vapour, which means that the system is not at
equilibrium, a continuous transfer of H2O molecules takes place from the aqueous

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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phase to the gaseous one, and vice versa, leading to either evaporation of liquid water,
or condensation of water vapour.

Vapor pressure, pvap, is the pressure exerted by the gaseous phase of a single
substance on the liquid (or solid) phase of the same substance with which it is
in contact and in equilibrium in a closed system. It is the pressure of the vapour
resulting from the evaporation of the liquid phase present above the latter’s surface.
This pressure is a strong nonlinear function of the temperature. The vapour pressure
is also affected by other factors, e.g., salinity and capillarity. Thus, rocks with very
high capillary pressures lead to vapour-pressure lowering, a phenomenon that has
significant implications in the behavior and management of geothermal reservoirs.

In a closed system, the equilibrium attained between the pressure of the liquid
phase and that of its vapour indicates that the pressure in the latter is constant at a
given temperature, with a balance established between molecules of the substance
exchanged between the two phases across their common interface.

Denoting the molar Gibbs free energy, G, defined by (2.2.28), of the liquid and
the gas by subscripts l and g, respectively, we have across the interface for this case,
at a specified p and T ,

Gl = Gg, dGα = −SαdTα + Vαdpα. (2.4.16)

Henceforth, to emphasize that the gas considered here is the vapour of the associated
liquid phase, we shall use the subscript v instead of g.

From (2.4.16), it follows that:

dp

dT
= Sl − Sv

Vl − Vv

≡ �Hv

T (Vl − Vv)
. (2.4.17)

We note that the difference between the molar entropy of the vapour and that of the
liquid at a given temperature is the entropy of vaporization, �Sv . Equation (2.4.17)
is known as the Clapeyron equation (e.g., Smith et al. 2005; Poling et al. 2000).

If, in theClapeyron equation (2.4.17), as an approximation,weneglectVl , (relative
to Vv , we obtain for the two co-existing phases:

dp

dT
= �h·

v

TVv

, (2.4.18)

where ȟv denotes molar enthalpy.
For a liquid and its vapour, if, in addition to the assumption Vl � Vv , we assume

also that the vapour behaves as an ideal gas (Sect. 2.3.3), we obtain:

dp

dT
= p�h·

v

RT 2Vv

, (2.4.19)

known as the Clapeyron–Clausius equation.
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By rewriting (2.4.19) in the form:

dp

p
= �h·

v

RT 2 dT, (2.4.20)

and integrating from (p1, T1) to (p2, T2), we obtain the dependence of pressure: on
temperature:

ln
p2
p1

= �h·
v

R

(
1

T1
− 1

T2

)
. (2.4.21)

Gas phase evolves in a system at a pressure p and temperature T initially con-
taining only a liquid phase of a chemical species γ, when pv(T ) ≥ p; coexistence of
the vapour and liquid phases requires pv(T ) = p, with both phases occurring on the
vapour-liquid saturation line in the phase diagram (e.g., Fig. 2.3). Conversely, a gas
phase disappears if pvap(T ) < p. These are the criteria used in thermal processes
involving phase changes in porousmedia, e.g., steam injection for heavy oil recovery,
in-situ combustion.

There are several expressions describing the dependence of vvap on T . The sim-
plest one is the Clausius–Clapeyron equation:

ln(pv) = A − B

T
, (2.4.22)

where B = �Hv/R�Zv . Because of the weak dependence of�Hv and�Zv on tem-
perature (with the exception of the vicinity of the critical point), this equation is used
extensively, but it may be inaccurate when applied over a wide temperature range,
especially when extrapolated below the normal boiling point (Poling et al. 2000).
For improved results, Antoine (1888) proposed a slight modification of (2.4.22):

ln pvap = A + B

T + C
, (2.4.23)

where A, B and C are substance-specific parameters that can be found in several
reference books, e.g., Poling et al. (2000) and Yaws (1999). This equation is appli-
cable over a rather narrow range of temperatures. For a wider temperature range,
other parametric equations are routinely used. These include the Wagner equation
(Wagner 1973), the method of Ambrose and Walton (1989), the parametric equation
of Yaws (1999). The general form of some of these equations are shown below:

Wagner (1973) ln pvap = (ATv + BT 1.5
v + CT 3

v + DT 6
v )/Tr ,

Riedel (1954) ln pvap = A + B/T + C ln(T ) + DT 6,
Yaws (1999) log10 pvap = A + B/T + C log10(T ) + DT + ET 2,

where Tv = 1 − Tr , Tc denotes critical temperature, with Tr = T/Tc. The substance-
specific constants (A to E) corresponding to each equation can be found in reference
books such as Poling et al. (2000) and Yaws (1999).
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B. Gas Solubility in a Liquid

We consider the concentration of a gaseous γ-species, e.g., methane (CH4), dissolved
in a liquid phase of a different composition. The concentration of a dissolved gaseous
γ-species in a gas phase, g, that is in contact with a liquid α-phase (such as water),
is related to the partial pressure, pγ

g , of the γ-species in the gas, through Henry’s law
(see Sect. 2.2.5):

pγ
g

= Hγ
aq(T, cδ, δ �= γ)Xγ

aq , (2.4.24)

where pγ
g is the partial pressure of the γ-species in the gas phase, Xγ

aq is the mole
fraction of the γ-species dissolved in the aq-liquid phase, and Hγ

aq is Henry’s coef-
ficient. While Hγ may be approximated by a constant for small changes in p and
T , it would be more appropriate to refer to it as Henry’s factor, since, in general,
Hγ(= Hγ

α(T, cδ
α, δ �= γ)), where cδ

α denotes the concentration of non-γ species in
the α-solution. Values of, and equations for, Hγ

α can be found in the literature (e.g.,
Yaws 2003; Truesdell et al. 1960).

It is interesting to note that actually, Henry’s law applies within a thin surface
liquid layer between a gaseous domain and a liquid one, or to a gaseous phase in
contact with a “well mixed” liquid domain, or only to a thin layer in contact with the
gas. In a gas liquid system in a porous medium domain, Henry’s law is applicable at
a point in the porous medium continuum.

In general, currently available expressions for Hγ
α(T, cδ

α, δ �= γ) are quite accu-
rate over a rather wide range of T . More accurate estimates of gas solubility may be
obtained from the equality of fugacities (Sect. 2.2.4) in the aqueous and the gaseous
phases. Although the use of fugacity provides a more accurate estimate, the com-
plexity of the calculations increases significantly and the difference does not exceed
a few percents, in a wide range of practical problems.

Gas solubility controls the dissolution and emergence from solution of a γ-species
in a gas phase in contactwith a liquid. Thus, a γ-gas specieswill emerge from solution
when

Xγ
g > ωγ

g,max = pγ
g

Hγ(T, cδ, δ �= γ)
, (2.4.25)

i.e., when the dissolved mass fraction of a γ-species exceeds its maximum solubility
in the liquid phase at specified temperature and a partial pressure, pγ

g .

C. Liquid-Solid Mass Exchange

Two kinds of liquid-solid mass exchange may be considered here:

• Dissolution of the solid comprising the solid matrix in the liquid occupying the
void space.

• Adsorption/desorption phenomena which describe the movement of a chemical
species dissolved in the solution to become adsorbed on the solid surface, or
desorb back into the solution. Surface complexation and ion exchange phenomena
also belong to this group.

These phenomena are described in Sect. 7.4.

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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2.5 Soil Potentials and Osmotic Pressure

The potential is a concept that expresses the ability to do work. The potential energy
of a mass particle, say of a fluid, is associated with its position in a force field (e.g.,
gravity field). The value of the potential is a measure of the work that would be
done in a particular force field on the fluid particle that moves in that field from one
point to another, provided this work could be done reversibly (Corey 1977, p. 77). A
force field f for which a potential exists is said to be conservative. A necessary and
sufficient condition for a force field to be conservative is that the work integral over
any closed path will vanish, i.e.:

∮
f ·ds = 0, (2.5.1)

where ds is a differential displacement vector in the field. If the above condition is
satisfied, then it is possible to define a scalar:

�(s) =
∫ s

so
(−f)·ds, (2.5.2)

where so represents a datum point for the potential point, and the minus sign is
associated with the way the potential is commonly defined such that the negative
gradient of the potential represents the force acting at any point in the considered
domain. It is interesting to note that clay layers act equivalent to membranes, so
osmotic pressure does develop across them.

The presentation in this section follows the presentation byNitao andBear (1996).
Although in this chapter we are focussing on microscopic level phenomena, occa-
sionally we shall also refer to macroscopic level potentials.

2.5.1 Soil Potentials

The term ‘potential’—total potential, matric potential, osmotic potential, etc.—is
often encountered in the soil science literature. It is of special interestwhen conditions
of equilibrium are assumed to exist between phases and species in the soil’s void
space. Our interest here is in the behavior of fluids and chemical species in a porous
mediumdomain (i.e., at themacroscopic level). An extensive discussion on potentials
in the soil is presented by Parker (1986). Chemical potential, which is an essential
concept in thermodynamics is introduced and discussed in Sect. 2.2.6.

The concept of a potential is well established in thermodynamics, where, in this
book’s terminology, it is discussed ‘at the microscopic level’. The basic ideas have
been extended also to the discussion of flow and other phenomena of transport in
porous media, i.e., at the macroscopic level of description, often without a rigorous
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proof. Nitao and Bear (1996) have presented a rigorous discussion on potentials at
the macroscopic level. As in the theory of thermodynamics, they also start from
definitions at the microscopic level, and then average the potentials defined at the
microscopic level to obtain their macroscopic counterparts.

A chemical species in the fluid phase within the void space is acted upon by
a number of forces. These forces arise from gravity, from the interaction of fluid
molecules with those of the solid matrix, and from the presence of dissolved matter.
Although this statement is valid for any fluid, we shall use here water as an example,
because it is often the main fluid of interest. Work has to be expended in order to
change the system in a directionwhich is opposite to any or all of the forcesmentioned
above.

The potential of the water is a concept which facilitates the discussion of such
changes. It expresses the reversiblework that has to be expended in order to transform
a given system from some reference state to its current one. This amount of work is,
thus, equivalent to the increase in the energy of the system. Because of the different
nature of the various forces, some being non-mechanical, it is more convenient to
define a number of potentials, each corresponding to a specific force, or a combination
of forces.

Each potential is expressed as an intensive quantity, either per unit volume, per
unit mass, or per unit weight of the considered fluid phase, e.g., water in the void
space.

A. Total Potential, �w
total

This potential of the water, H2O, as a species at a point in the soil is defined by
Commission I of the International Soil Science Society (Aslyng 1963) as

the amount of work that must be done per unit quantity of pure water in order to transport
reversibly and isothermally to the soil water at a considered point, an infinitesimal quantity
of pure water from a pool that contains pure water. The pool is at a specified elevation, and
with the same temperature and external gas pressure as at the considered point.

Here ‘purewater’ refers to thewater (H2O) as a substance, or a species, while the ‘soil
water’ is the liquid phase (or soil solution) in the unsaturated zone, which contains
both water and dissolved matter.

The above definition refers to ‘soil water at a considered point’, where the ‘point’
is within a phase, i.e., at the microscopic level. A macroscopic potential is defined
as the average of the microscopic one over all (microscopic) points within a repre-
sentative elementary volume (REV) centered at a (macroscopic) point (= centroid
of an REV) within a porous medium domain. The same extension from microscopic
to macroscopic levels, may be applied to other types of potentials.

The total potential of a fluid phase is composed of a number of potentials:

B. Matric Potential, �w
m

Thematric potential at a point within a fluid phase that occupies part of the void space
in the soil, is defined as the amount of work that must be done, per unit quantity of
pure water (as a species, w), in order to transport reversibly and isothermally to
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the soil water at a considered point, an infinitesimal quantity of pure water from a
reference pool. The latter is at the elevation, the temperature, and the external gas
pressure of the considered point, and contains water (= soil solution) identical in
composition to that present in the soil at the considered point (Commission I, ISSS.
See Aslyng 1963).

However, the matric potential as defined above refers to a chemical species at the
microscopic level, while our interest is really (a) in solutions, or phases, and (b) in
phase behavior within the void space, i.e., at the macroscopic level.

Thematric potential,�m , can also be defined for a phase as awhole. At a point, it is
defined as the sum of the (reversible) work that has to be expended in order to move
each of the individual species comprising the phase, from a reservoir at the same
elevation, temperature, external gas pressure, and composition, to the considered
point.

The macroscopic matric potential of a phase is the average over the REV of the
microscopic one (defined above). This matric potential, often used in soil science,
when dealing with the unsaturated (air–water) zone of the soil, is a consequence of
two phenomena:

• Unbalanced forces across water–air interfaces, manifested as surface tension.
• Attraction of molecules in the phase to the solid surface, manifested as thin films
that coat the latter.

The presence of air–water interfaces gives rise to the phenomenon of capillary
pressure, viz., the jump in pressure across the microscopic water-air interfaces inside
the void space (Sect. 2.4.3). The microscopic capillary pressure is then averaged to
obtain its macroscopic counterpart. In the simplified model of a curved meniscus,
with a sufficiently thick fluid layer on each side, the concept of a surface tension is
valid, and so is the resulting Laplace formula, (2.4.12), for the relationship between
the radius of curvature of the meniscus and the (microscopic) capillary pressure.
However, in developing an expression for the capillary pressure, say, the Laplace
formula, the presence of a film of adsorbed water on the solid surface, and its effect
on the relationship between water and gas pressures, was overlooked. This approach
is not justified, as the portion of the void space from which water has been drained
always contains somewater in pendular rings and in thin films that coat the solid, and,
therefore, the effect of the solid surface in the unsaturated zone cannot be ignored.

The definition of matric potential incorporates also the effect of the attractive
forces acting upon these films. Nitao and Bear (1996) showed that

�m = − 2̃γ �g

r∗

�g

+ ϕ̃�g,

where Ã�g denotes an average of A over the �-g-interface, and ϕ denotes the surface
potential to be discussed below. The matric potential is, thus, not identical to the cap-
illary potential, which is associated with capillary forces only. The surface potential
at the � − g-interface becomes negligible at high saturations as the distance from
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the interface to the solid surface increases. Consequently, the effect of the adsorbed
water films becomes negligible. The matric potential is, then, essentially equal to the
capillary potential. If we define the matric potential per unit volume of water, the
matric potential in this range of saturations is identical to the capillary pressure.

The effect of the films becomes more significant as a soil is drained, and the
water saturation approaches the irreducible one. As water is further removed by
evaporation to below the irreducible saturation, the effect of adsorbed water films,
and its contribution to thematric potential, becomes evenmore significant, as the only
remaining water occurs as films. In fact, these films become discontinuous as drying
continues. At some low water saturation, water in the void space can be present only
as films that coat the soil surface (and pendular rings at points of contact between
grains). They become thinner as water is removed by evaporation, or transpiration.
In this range, the behavior is dominated not by the air–water surface tension, but by
the interaction between water and solid molecules.

When expressed per unit volume of water, the matric potential at sufficiently high
saturations is equal to the pressure in the water (as a liquid phase), pw − p0, with
respect to a datum pressure, p0, of the reservoir. It is positive (i.e., above the reference
atmospheric pressure) in the saturated zone, and negative (i.e., below the reference
atmospheric pressure) in the unsaturated zone above it. When the gaseous phase in
the void space (primarily air) is at the pressure pg = p0, the matric potential per unit
volume of water is expressed by the difference (pw − pg), or by −pc. The matric
potential per unit weight of water is, thus, expressed by (pw − pg)/ρwg.

For a given soil, the relationship between thematric potential and saturation has to
be derived experimentally, because it depends on the pore size distribution and on the
complex geometry of the pore space. For sufficiently coarse soils, at the irreducible
water saturation, Sw � Swr , the �m(Sw)-curve (with �m expressed per unit volume
of water) is essentially that for the capillary pressure presented and discussed in
Sect. 2.4.3. At full saturation, the matric potential becomes zero.

C. Solute Potential, �w
s

This potential is also referred to as osmotic potential. The liquid in the soil, referred
to by soil scientists as ‘soil solution’, usually contains dissolved matter. The concen-
tration of dissolved matter affects both the surface tension and the forces that attract
water molecules to solid surfaces. It also affects the energy relationships that deter-
mine the equilibrium among phases and chemical species. Thus, the solute potential
at a point in the soil (i.e., microscopic level) obeys a definition similar to that of
the matric potential, except that the reference pool contains pure water at the same
pressure, temperature and elevation, as the considered point, while the void space at
the point contains a soil solution. We wish to emphasize that the potential is defined
for the water as a chemical species and not as a liquid phase. For the latter, we have
to sum over all species, and the pool has to contain a dilute solution.

D. Soil Water Potential, �w
sw

This potential combines the work required to overcome the forces due to both surface
forces, pressure, and concentration differences between the reference reservoir and



2.5 Soil Potentials and Osmotic Pressure 163

the considered point. The soil-water potential is, thus, the sum of the matric and the
solute potentials.

Taking into account the effect of dissolved matter, and following a derivation
similar to that for Kelvin’s equation (2.3.35), we may write:

�w
sw = −ρw

wRT

Mw
ln

pv

pvo
, (2.5.3)

in which �w
sw is per unit volume of water in the void space. Note that superscript w

refers to water as a chemical species, while subscript w refers to water as a liquid
phase, which consists primarily of water, but may contain other species. For the sake
of clarity, we could have used subscript � instead of w to denote the liquid phase.
The above equation is valid at both the microscopic and the macroscopic levels.

E. Gravity Potential, �w
g

This potential expresses the change in the potential energy associated with the ele-
vation of the considered point above the reference reservoir. Thus, we can use the
same definition as that of the matric potential, except that the considered point and
the reference reservoir are at different elevations, and both reservoirs have flat inter-
faces. When expressed per unit weight, the gravity potential is equal to the elevation,
z − zo, of the point. When expressed per unit volume, the gravity potential for the
w-species is given by ρw

wg(z − zo), assuming that ρw
w does not change appreciably

from zo to z.

F. Thermal Potential, �w
T

This potential expresses the change in the free energy associatedwith the temperature
of the considered point above that prevailing in the reference reservoir. Thus, we can
use the same definition as that of the matric potential, except that the considered
point and the reference pure water reservoir are at different temperatures.

G. Total Potential, �w
total

The total potential for a w-species, may now be defined as:

�w
total = �w

m + �w
s + �w

g + �w
T = �w

sw + �w
g + �w

T . (2.5.4)

Many of these potentials depend on the liquid’s saturation. The total potential,
�w

total , is nothing but the chemical potential of water, as a chemical species in the
soil, per unit volume of the water phase.

2.5.2 Osmotic Pressure and Chemical Potential

Osmosis is the movement of a solvent through a membrane (= a relatively thin
porous medium domain of very low permeability) which is impervious to the solute.
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Fig. 2.14 Definition sketch
for osmotic pressure

hosm

Solution Water

Membrane

Such a membrane is often referred to as semipervious, or semipermeable. The direc-
tion of flow of the solvent is from the more dilute solute concentration to the more
concentrated one.

For example, if a salt (= solute) in a salt solution is separated from pure water
(= solvent) by a membrane that is impervious to the salt, water will pass through it
(by diffusion from high to low water concentration), with a net flux in the direction
of the salt solution. As a consequence, a difference in hydrostatic pressure devel-
ops (Fig. 2.14), with a higher pressure on the solution side. The pressure difference
will grow until the pressure in the solution will be sufficient to prevent the flux of
water (by diffusion) through the membrane. Eventually, equilibrium is reached, with
a pressure difference that is sufficient to counteract the effect of the solute concen-
tration difference. Under the equilibrium conditions, the solution is under a greater
hydrostatic pressure than that in the pure solvent. This pressure difference is called
osmotic pressure difference, �posm . The corresponding osmotic potential (in units of
head) is hosm = �posm/ρwg. It is important to note that osmotic pressure exists only
in the presence of a semipervious or partially semi-pervious membrane, or relatively
thin semi-pervious domain.

By applying a pressure that exceeds the osmotic pressure, the reverse effect occurs.
Fluids are pressed back through the membrane, while dissolved solids stay behind.
This is referred to as reverse osmosis.

To remove dissolved chemicals fromwater by using a reverse osmosis membrane,
the natural osmosis effect must be reversed. In order to force the water with the high
salt concentration to flow towards the low salt concentration reservoir, it must be
pressurized to an operating pressure greater than the osmotic pressure. As a result, the
high salt concentration sidewill getmore concentrated. This is the process underlying
the desalinization of sea water, brackish or polluted water.

Let us find an expression for the osmotic pressure in terms of temperature and
concentration. At equilibrium, the chemical potential (= molar free energy) of a
solvent in a solution, μ, is the same as that of the pure solvent. The chemical potential
of an ideal solvent, μsolvent , of mole fraction Xsolvent , is (e.g., Denbigh 1981)



2.5 Soil Potentials and Osmotic Pressure 165

μsolvent = μo,solvent + RT ln Xsolvent, (2.5.5)

where μo,solvent denotes the chemical potential of the pure solvent, R (= 0.082 liter-
atm/mole-deg) is the universal gas constant, and T is the absolute temperature in
Kelvin degrees. Since Xsolvent < 1, we have μsolvent < μo,solvent .

As pressure is applied to the solution (Fig. 2.14), the free energy of the solvent
increases. It may be raised to the point where it is equal to that of the pure solvent.
From (2.2.53), it follows that in a process at constant temperature, the effect of an
increase in pressure on the chemical potential is expressed by �μ = vmol posm . Since
the osmotic pressure, posm , is the pressure in the solution, in excess of that exerted
on the pure solvent, the increase in the chemical potential (Sect. 2.2.6) due to this
pressure is given by:

�μsolvent = vmol

∫ posm

patm

dp = posmv
mol, (2.5.6)

where we have assumed that the solvent is incompressible, or may approximately
be considered as such. The combined effect of dilution and external pressure is
expressed by:

μsolvent = μo,solvent + RT ln Xsolvent + �posmv
mol . (2.5.7)

When the solvent is in equilibrium with the pure solution, μsolvent = μo, solvent . For
Xsolvent ≈ 1, we have ln Xsolvent ≡ ln(1 − Xsolute) ≈ −Xsolute. For a dilute solution,
Xsolute ≈ Nsolute/Nsolvent and vmol = V/Nsolvent , where V is the volume of the solution,
and Nsolvent and Nsolute are the number of moles of solvent and of solute in V, respec-
tively. We obtain:

posm = RT

V
Nsolute = nsolute RT, (2.5.8)

where nsolute is the molar concentration of the solute (in moles per liter), and posm is
measured in atmospheres. Thus, (2.5.8) relates the osmotic pressure to the concen-
tration and temperature of a dilute solution.

Osmotic pressure occurs in a porous medium domain whenever a layer of soil
behaves as a semipervious membrane with respect to certain chemical species that
are present in the water solution. In addition, the roots of vegetation behave as such
a membrane. The osmotic potential was discussed in the previous subsection.

In natural solutions, like seawater and brackish water, the different ions do not
have the same concentration. For example, in seawater the molar concentration of
the Na+-ions is usually lower than the molar concentration of the Cl−-ions, so when
we calculate the actual osmotic pressure of the solution we have to use:

posm = RT
N∑

i=1

ln ni ≈ RT
N∑

i=1

lnαi , (2.5.9)
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where N denotes the number of the different ions in solution, ni denotes the molar
concentration of each ion, αi is the activity of the i th ion.

2.6 Onsager’s Theory of Coupled Processes

In this subsection, we present Onsager’s theory (Onsager 1931) as described by de
Groot (1963). The presentation is limited to the microscopic level, i.e., a point within
a phase, regarded as a continuum. However, using the phenomenological approach,
it is then possible to extend the theory to the macroscopic level.

A consequence of the ideas underlying the concept of equilibrium is that all
(microscopic) fluxes of extensive quantities (defined in Sect. 1.1) vanish, simulta-
neously, when the thermodynamic forces vanish. And vice versa, thermodynamic
forces produce fluxes. Phenomenologically, it has been known that under a wide
range of experimental conditions, irreversible (i.e., diffusive, or molecular driven)
fluxes are linear functions of the thermodynamic forces. Examples are Fick’s law,
where the components of the flux of a γ-species are linear functions of the com-
ponents of the γ-concentration gradient, and Fourier’s laws, where the components
of the heat flux are linear functions of the components of the temperature gradient.
Later (Sect. 3.4.1), we shall see that the above observation can also be applied to the
flux of linear momentum as driven (for a Newtonian fluid) by components of the
velocity gradient (Newton’s law).

Each of the three diffusive flux laws mentioned above, also referred to as phe-
nomenological laws, is a particular case of the general linear law:

j ni = −
3∑

j=1

Lnn
i j

∂�n

∂x j
, i, j = 1, 2, 3, (2.6.1)

where j ni (≡ j E
n

i ) denotes the i th component of the flux of an extensive quantity
En of a phase, �n is a state variable associated with En , and Lnn

i j is a coefficient
of proportionality, which is a second rank symmetric tensor for any given n. Since
only one phase is being considered, no special symbol is used to indicate it. Some
introductory remarks about tensors are presented in Sect. 9.1.

The three phenomenological laws mentioned above state that a nonuniform dis-
tribution of a state variable, �n (e.g., temperature), produces a flux of only the
corresponding extensive quantity (e.g., heat). However, experimental evidence sug-
gests that, since all diffusive fluxes are associated with the same molecular motion,
the gradient of any state variable, associated with one of the extensive quantities,
should produce a flux also of all other extensive quantities. Phenomena of this kind
are referred to as coupled phenomena (or cross-effects). Common examples of such
phenomena are the Soret (or thermodiffusion) effect, in which mass flux of a solute
in a liquid phase is produced by a temperature gradient, in addition to the flux pro-
duced by the gradient of the solute’s concentration according to Fick’s law, and the

http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_9
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Dufour effect, in which heat flux is caused by a concentration gradient, in addition to
the heat flux caused by temperature gradient. Thermodynamic, thermoelectric, and
galvano-magnetic effects, are other examples of coupled phenomena. The description
of coupled phenomena requires a generalization of the linear law (2.6.1).

FollowingBear andBachmat (1991, p. 100), let us assume that a set of N variables,
referred to as parameters of state, ψn , n = 1, 2, . . . , N , is sufficient to completely
define the motion and physico-chemical properties of a phase. These ψ’s are specific
values of the extensive quantities pertinent to the system, i.e., ψn = dEn/dm(≡
en/ρ). Examples of ψn’s are the specific mass, ωγ(= ργ/ρ), of a γ-species of a
phase, the specific volume, v(= 1/ρ), of a phase, the specific momentum of a phase,
V (= mass weighted velocity = ρV/ρ), and the specific entropy of a phase, s. These
ψ’s constitute fields that are functions of the spatial coordinates and of time.

The behavior of a phase is characterized by its constitutive equations. The most
fundamental one is the caloric equation of state that relates the specific internal
energy of a phase, u, to the complete set of the N parameters of state, ψn , through a
single valued function which is independent of time, position, motion, or stress.We
may express this relation in the general form:

u = f(ψ1,ψ2, . . . ,ψN , ξ),

where the ξi ’s are the material coordinates (Sect. 2.1) of a considered element of the
system.

The differential increment in the thermodynamic state of an element is expressed
by:

du = ∂u

∂ψ1
dψ1 + ∂u

∂ψ2
dψ2 + · · · + ∂u

∂ψN
dψN

=
N∑

n=1

∂u

∂ψn
dψn ≡

N∑

n=1

�n dψn,

�n = ∂u

∂ψn
= �n(ψ1,ψ2, . . . ,ψN )

∣∣∣∣
ξ

, n = 1, 2, . . . , N , (2.6.2)

where �n is the increment of internal energy per unit increment in the value of the
parameter of state ψn . The various �n’s are thus functions of the state of the system
as expressed by the ψr ’s. Accordingly, we refer to the N equations for the �n’s
appearing in (2.6.2) as equations of state.

For example, by comparing (2.6.2) with (2.2.20), we obtain in the latter case:

dψ1 = ds, dψ2 = −dv, dψγ = dωγ,

�1 = T, �2 = p, �γ = μγ .

Assuming that the linear relationship of the type (2.6.1) is valid, and continuing to
omit the subscript that denotes a phase, we find that the flux of an extensive quantity,
Eq , belonging to the coupled subset, is given by
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jqi = −
3∑

j=1

Lqq
i j

∂�q

∂x j
= −

�∑

r=1

3∑

j=1

Lqq
i j

∂�q

∂ψr

∂ψr

∂x j
, (2.6.3)

with no summation on q.
Defining (Veynik 1961):

Xr
j = −∂�r

∂ψr

∂ψr

∂x j
, r = 1, 2, . . . , �, (2.6.4)

with no summation on r , as the thermodynamic force, which is conjugate to the
gradient of ψr , and with:

Lqr
i j = Lqq

i j

∂�q/∂ψr

∂�r/∂ψr
, r = 1, 2, . . . , �, (2.6.5)

with no summation on r , we rewrite (2.6.3) in the form of the � equations:

jqi =
�∑

r=1

3∑

j=1

Lqr
i j X

r
j , i = 1, 2, 3; q = 1, 2, . . . , �. (2.6.6)

We recall that � depends on the considered q.
From (2.6.6) it follows that the flux, jq (components jqi ), of an extensive quantity,

Eq , is a single-valued function of all the (coupled) thermodynamic forces associated
with Eq . Equation (2.6.6), for the various Eq ’s, are also called the phenomenological
equations of a system possessing � coupled degrees of freedom. They express linear
relationships between fluxes and thermodynamic forces. In general, however, the
relationships between fluxes and thermodynamic forces may be nonlinear.

While (2.6.4) serves as a definition for the thermodynamic force, Xr , Eq. (2.6.5)
determines the nature of the phenomenological coefficients, Lqr .

Stokes (1951) postulated that in (2.6.3), the coefficients Lqq
i j are symmetric with

respect to the coordinates i and j , i.e.:

Lqq
i j = Lqq

ji . (2.6.7)

In other words, this coefficient is a second rank symmetric tensor.
Of special interest are the cross coefficients for q �= r , which give the flux of Eq

caused by the force, Xr , associated with the gradient of er (≡ the density of Er ).
Employing the principle of microscopic reversibility of processes, and methods of
statistical mechanics, Onsager (1931) showed that for the linear equation (2.6.6),
and provided a proper choice is made for the fluxes, jq , and conjugated forces, Xr ,
the phenomenological coefficients are also symmetric in r and q, i.e.:

Lqr
i j = Lrq

i j , q �= r, (2.6.8)
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and Lrq is also a second rank symmetric tensor.
Equation (2.6.8) is known as Onsager’s, or Onsager–Casimir’s, reciprocal rela-

tions (or Onsager’s law). They express a relationship between any pair of cross-
phenomena arising from simultaneously occurring irreversible processes (e.g., heat
conduction and molecular diffusion).

Together, the relationships (2.6.7) and (2.6.8) take the form:

Lqr
i j = Lqr

ji = Lrq
i j = Lrq

ji . (2.6.9)

According to Onsager, the reciprocal relations (2.6.7), hold under two conditions:

(a) The relationship between each individual flux and its conjugate thermodynamic
force is linear.

(b) The fluxes, jq , and their conjugate forces, Xq , should be selected such that:

Ṡ =
�∑

q=1

3∑

i=1

jqi X
q
i , (2.6.10)

where Ṡ is the rate of entropy production of the system, and we recall that by
the second law of thermodynamics, (Sect. 2.2.1B), Ṡ ≥ 0.

Hence, we require that: ∑

(q,r,i, j)

Lqr
i j X

r
j X

q
i ≥ 0. (2.6.11)

A sufficient condition for the validity of (2.6.11) is:

Lqq
i j ≥ 0, for all i, j (2.6.12)

Lqq
i j L

rr
i j ≥ 1

4 (L
rq
i j + Lqr

i j ). (2.6.13)

For an isotropic medium, Lqr
i j = Lqrδi j , and:

Lqq ≥ 0, Lqq Lrr ≥ 1
4 (L

qr + Lrq). (2.6.14)

• Example A: Thermo-mechanical system.

Consider the fluxes of volume, V, and entropy, S, in a fluid phase possessing two
coupled degrees of freedom: one mechanical and the other thermal. The correspond-
ing equations of state are:

p = p(s, v),

T = T (s, v),

}
(2.6.15)

where v = 1/ρ is the specific volume, s is the specific entropy and T is the absolute
temperature. For this case, following (2.2.20), Eq. (2.6.2) yields:



170 2 Some Elements of Thermodynamics

�1 = p, �2 = T,

ψ1 = −v, ψ2 = s,

with j1 denoting volumetric flux, and j2 denoting entropy flux.
From (2.6.4) through (2.6.6), we obtain:

L11
i j = L11

i j

(∂ p/∂v)
∣∣
s

(∂ p/∂v)
∣∣
s

= L11
i j , L12

i j = L11
i j

(∂ p/∂s)
∣∣
v

(∂T/∂s)
∣∣
v

,

X1
j = −∂ p

∂v

∣∣∣∣
s

∂v

∂x j
= − ∂ p

∂x j

∣∣∣∣
s

, X2
j = −∂T

∂s

∣∣∣∣
v

∂s

∂x j
= − ∂T

∂x j

∣∣∣∣
v

,

and the flux

j1i = L11
i j X

1
j + L12

i j X
2
j = −L11

i j

∂ p

∂x j

∣∣∣∣
s

− L12
i j

∂T

∂x j

∣∣∣∣
v

. (2.6.16)

Thus, in (2.6.16) the total volume flux is produced by both a pressure gradient
and a temperature gradient.

In a similar way, the flux of entropy is given by:

j2i = L21
i j X

1
j + L22

i j X
2
j = −L21

i j

∂ p

∂x j

∣∣∣∣
s

− L22
i j

∂T

∂x j

∣∣∣∣
v

, (2.6.17)

where:

L21
i j = L22

i j

(∂T/∂v)
∣∣
s

(∂ p/∂v)
∣∣
s

, L22
i j = L22

i j

(∂ p/∂s)
∣∣
v

(∂ p/∂s)
∣∣
v

= L22
i j . (2.6.18)

• Example B: Thermo-diffusive system.
For such system, we consider the fluxes of mass and entropy in a fluid phase

composed of a solvent and a γ-solute. The equations of state of this system are:

μγ = μγ(s,ωγ),

T = T (s,ωγ),
(2.6.19)

whereμγ represents the chemical potentialof the solute (Sect. 2.2.6), andωγ(≡ ργ/ρ)

is its specific mass (= mass of γ per unit mass of phase). Bear and Bachmat (1991,
p. 106) show that for this case:

�1 = μγ, �2 = T,

ψ1 = ωγ, ψ2 = s.

With jγ denoting mass flux of the solute, and j2 denoting entropy flux, they show
that:
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jγi = −Lγγ
i j

∂μγ

∂x j

∣∣∣∣
s

− LγS

i j

∂T

∂x j

∣∣∣∣
ωγ

,

j Si = −LSγ
i j

∂μγ

∂x j

∣∣∣∣
s

− LSS
i j

∂T

∂x j

∣∣∣∣
ωγ

, (2.6.20)

where LγS

i j is a coefficient which represents the diffusive mass flux of the solute
caused by a temperature gradient, referred to as thermodiffusion, or Soret effect, and
LSγ
i j is a coefficient which represents the flux of entropy caused by a gradient of the

chemical potential, referred to as the Dufour Effect. Altogether, we note that the flux
of heat is affected also by the gradient of the γ-species, while the flux of γ is also
driven by the temperature gradient

Bear and Bachmat (1991, p. 107) rewrite these fluxes in terms of more commonly
used coefficients, e.g., thermal conductivity and coefficient of molecular diffusion.

The above discussion on coupled phenomena has been presented at the micro-
scopic level, i.e., we have considered fluxes of extensive quantities at a point is a
fluid continuum. However, following the phenomenological approach which under-
lies the presentation in this book, we can extend the presentation to the macroscopic
level, i.e., at a point in a porous medium domain. Nield and Bejan (2013, p. 433)
present a discussion with many references on the Soret and Dufour cross-diffusion,
or thermodiffusion effects.

Unless otherwise stated, the phenomena of coupling between fluxes of heat and
mass of species as described here are neglected in this book.
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Chapter 3
Fundamental Balance Equations and Fluxes

There are two major approaches to the mathematical description of flow and trans-
port phenomena in a continuum. The first approach, referred to as the Lagrangian
approach, or Lagrangian description of motion, focuses on a fixed amount of a con-
sidered extensive quantity and follows what happens to it as it travels in a considered
spatial domain. Both the volume occupied by this amount and the shape of the surface
surrounding it vary with time.

In the second approach, called theEulerian approach, still in a continuumdomain,
we focus on a fixed (in space and time) finite domain, referred to as a control volume,
of arbitrary shape, bounded by a fixed closed surface, and followwhat happenswithin
that volume with time. In this book we shall use the Eulerian approach to develop
flow and transport models.

In Sect. 1.4, we identified two levels of description of flow and transport phe-
nomena in porous medium domains. One, called the microscopic level, at which we
consider and describe what happens at a point inside any of the fluid phases that
occupy the void space, or at a point within the solid matrix. The other, the macro-
scopic level, describes what happens at a point, which is the centroid of an REV, in
a porous medium domain, regarded as a continuum. When we say ‘at a point’, we
mean ‘at every point’. This level, employed in practice for describing and solving
flow and transport problems of interest, is the one that we shall use in this book. In
Sect. 1.1.6, we have also identified a still higher level, themegascopic one, introduced
in an effort to cope with heterogeneity at the macroscopic level, say in permeability.

As described in Sect. 1.4, macroscopic models of a transport process undergone
by any extensive quantity, can be obtained in a number of ways. One way is to
start by modeling the considered phenomenon of transport at the microscopic level,
and then make use of one of the averaging techniques described in Sect. 1.4.2 in
order to upscale the microscopic level model to the macroscopic one. A second
way also starts from the microscopic level model, but derives the macroscopic one
by mathematical homogenization. In the third approach, the phenomenological one
(Sect. 1.4.4), the macroscopic model is obtained directly from observations; it does
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not require the formal passage from the microscopic level to the macroscopic one.
This is the approach that we use in this book.

We start by discussing the meaning of a point, a particle, e.g., a fluid particle,
the velocity of an extensive quantity, and the flux of the latter. We then use the
phenomenological approach to construct balance equations for a number of extensive
quantities. Although we start by writing balance equations at the microscopic level,
our main objective is to write balance equations at the macroscopic one, as this is
the level at which processes and phenomena with applications and consequences in
practice are analyzed and described. All balance equations contain terms that express
fluxes, interphase transfers and sources. In the last section of this chapter, we discuss
fluxes in general terms, making use of thermodynamic considerations, using the flux
of a dissolved species as an example. In later chapters, we shall present and discuss
fluxes of other extensive quantities as well as interphase transfer rates and strength
of sources of these quantities.

And a few words about symbols. Throughout this book, we are using the term
‘flux’ for the quantity of an extensive quantity E , per unit area and per unit time. At
the microscopic level, we use the symbol jEα for the flux of E in the α-phase, and the
unit area is of the considered phase; the additional subscripts indicate advective (adv)
and diffusive (di f ) fluxes. In multiphase situations, a subscript (say α) will indicate
a considered α-phase. At the macroscopic level, we use the symbol JE

α for the same
definition of flux, except that now the unit area is of theα-phase occupying part of the
void space. At that level, we also use the symbol qE

α to denote the quantity of E of an
α phase passing through a unit area of porous medium. Thus, qE

α = θαJE
α. However,

at the macroscopic level, we shall often use φVα, rather than qα, to facilitate the
option of a variable porosity, say, in a deformable porous medium.

In Sect. 1.1.5, we have introduced the concept or areal porosity, φA. We have also
suggested that in practical cases of interest, this porosity is approximated by the
(volumetric) one, φ. Henceforth, we shall make this assumption. In fact, we shall
continue to make this assumption throughout the remaining chapters of this book.

3.1 Point, Particle, Velocity and Flux

3.1.1 Point and Particle

The continuum at the microscopic level is defined in Sect. 1.1. There, we wrote that a
domain behaves as a continuum, ‘if values of state variables (e.g., density, pressure,
temperature), or phase coefficients (e.g., viscosity, or thermal conductivity), can be
assigned to every point within the domain’. In this definition, the term point is used
to indicate a location in the considered spatial domain. Another important basic
definition is particle. We use this term to denote a point in a continuum. Here, the
continuum is of a considered extensive quantity, e.g., the mass of a fluid phase, or
of a chemical species dissolved in the fluid, or of the energy of a fluid. While points

http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_1
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are (1) fixed in space, and (2) independent of time, the position of a particle may
vary with time. Accordingly, we consider two distinct, yet related concepts of points,
coordinates, and particles:

• Spatial (Eulerian) coordinates: We denote a point in a spatial domain by its
position vector, x, with respect to a fixed coordinate system, serving as a frame
of reference. We use xi , i = 1, 2, 3, to denote components of x in a Cartesian
coordinate system.

• Material (Lagrangian) coordinates of a particle:We denote a particle in space by
its position vector, ξ (components ξi , i = 1, 2, 3). These coordinates are assigned,
once and for all, to a particle of a continuum as it travels in the considered domain.
Usually, we use the initial location of the particle as its material coordinates, i.e.,
ξ ≡ x|t=0.

Having defined a particle as a point in an E-continuum, we have also to consider
its corresponding intensive quantity. In fact, in Sect. 1.1, we have introduced two
kinds of such quantities: E per unit mass, usually referred to as the specific value of
E , denoted by e, and E per unit volume of the phase, referred to as the density of E ,
denoted by e′. We shall also use molar values of E , i.e., E per mole, denoted by ě.

Over what volume do we take the mass in order to determine the mass density of
a particle at a point in a considered domain?

Because of the molecular structure of matter, in order to define the density of a
moving particle, its volume has to be within a certain range: as small as possible, yet
not too small, in order to avoid the effect of motion of individual molecules. This
means that if at t = 0 we identify a particle of a certain solute mass, at a certain solute
concentration, then, as that particle moves, that mass will spread out over a volume
which is too large. We then have to ‘freeze’ the motion, re-define the particle at that
point, maintaining the same concentration, and then allow the particle to proceed on
its motion as an E-particle.

In what follows, we shall assume that the reader is familiar with the concepts of
‘vector’ and ‘tensor’ and with tensor operations. In Sect. 2.3.4, we have presented
some introductory remarks on second rank tensors, in connection with stress and
strain in porous medium domains.

3.1.2 Velocity

As a particle of a continuum of an extensive quantity (e.g., mass) moves, the (spatial)
coordinates of its position, xi , vary in time, whereas its material coordinates, ξi ,
remain unchanged. Thus, x is a function of both time, t , and the initial position, ξ,
of the particle, and the particle’s motion can be described by:

x = x(ξ, t), or xi = xi (ξ1, ξ2, ξ3, t), i = 1, 2, 3. (3.1.1)

http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_2


178 3 Fundamental Balance Equations and Fluxes

Fig. 3.1 Definition sketch
for particles, points and
displacements
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This description of motion is known as the Lagrangian formulation of motion (see
preamble of this chapter).

Figure3.1 shows a spatial domain �o occupied at t = 0 by a continuum with
material coordinates ξ. The set of points in �o specifies the initial configuration
of this continuum. At some later time, t > 0, the domain occupied by the same
continuum is �1. As ξ runs over the set of points in �o, the value of x runs over
the set of points in �1, and hence, �1 may be regarded as deformed configuration
of the continuum initially occupying �o. Referring to a continuous sequence of
configurations as motion, (3.1.1) also describes the motion of any particle (of the
continuum contained in �o) initially at ξ, i.e., it gives its place, x(t), as a function
of time.

Assuming that (3.1.1) can be inverted to yield the initial position (i.e., material
coordinates) of a particle which at time t is at position x, we have:

ξ = ξ(x, t), or ξi = ξi (x1, x2, x3, t), i = 1, 2, 3. (3.1.2)

This description of motion is known as the Eulerian formulation of motion.
It is important to emphasize that a particle here should not be interpreted as a

‘small material body’. Instead, it is a point that belongs to a specific continuum
of an extensive quantity, which, at some specified (or initial) time, has occupied a
certain finite domain. The configuration of the domain (e.g., the shape and the size
of the volume corresponding to a unit of mass of a moving fluid) occupied by the
extensive quantity may vary with time, but it will always contain the same amount of
the extensive quantity. If sources and/or sinks of the extensive quantity are present,
i.e., new particles are being created, or existing particles are being removed, (3.1.1)
does not hold, since particles exist in the domain only for a short duration and have
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to be continuously redefined. We note that the concept of a particle as defined above
allows particles of different continua (e.g., of mass of a phase and mass of a chemical
species) to occupy the same point, simultaneously.

The material derivative (also called convected derivative) of a variable gE of a
particle of a considered E-continuum is the (temporal) rate of change of that variable
for the considered particle. The symbol:

∂gE(ξE, t)

∂t

∣
∣
∣
∣
ξE=const.

≡ DEg
E{x(ξE, t), t}

Dt
, (3.1.3)

i.e., a derivative of gE with respect to time, keeping ξE constant. In other words,
DEg

E/Dt gives the rate of change of g of a fixed E-continuum particle to an observer
situated on that particle.

With xm denoting the position of a particle of a mass (m)-continuum as it is being
displaced, and ξm , denoting its material coordinates, the velocity, Vm , of a mass
particle, is given by the rate of change of its position in time:

Vm = ∂xm

∂t

∣
∣
∣
∣
ξm=const.

. (3.1.4)

We may now generalize (3.1.4) to a particle of a continuum of any extensive
quantity denoted by E . Its velocity is defined by:

VE = ∂xE

∂t

∣
∣
∣
∣
ξE=const.

(3.1.5)

Examples for E representing mass as expressed by mass density and by molar
density are presented on Sect. 3.1.3.

Thematerial derivative of gE , which is aLagrangian concept, can also be expressed
in terms of the spatial, or Eulerian, description, using the relationship gE(x, t) =
gE[x(X, t), t]:

DEg
E{x(ξE, t), t}

Dt

= ∂gE

∂t

∣
∣
∣
∣
x=const.

+ ∂gE

∂xk

∣
∣
∣
∣
t=const.

∂xk(ξ
E, t)

∂t

∣
∣
∣
∣
ξE=const.

= ∂gE

∂t
+ ∂gE

∂xk
V E
k , (3.1.6)

where
∂gE

∂xk
V E
k ≡

3
∑

k=1

∂gE

∂xk
V E
k ≡ VE ·∇gE .
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This abbreviated form of representing a sum of terms by a single, typical, one is
known as Einstein’s (double index) summation convention. Unless otherwise stated,
this convention will be used throughout this book. It states that any index (called a
dummy index) repeated twice and only twice in a term is held to be summed over the
range of its values.

Obviously, the two expressions in (3.1.2) represent the same motion. Hence, they
yield the same equation for the pathline of a particle, as long as the material coordi-
nates of the particle are defined in the same way, with xi = ξi , at t = 0, and if the
two equations are mutually invertible, i.e.,

J ≡
∣
∣
∣
∣

∂xi
∂ξ j

∣
∣
∣
∣
�= 0, i, j = 1, 2, 3, (3.1.7)

where J , referred to as Jacobian, is the determinant of a matrix in which the typical
element is ∂xi/∂ξ j .

For the sake of simplifying notation, henceforth, we shall use the symbol V to
denote the mass weighted velocity, Vm , and DE/Dt to denote DmE/Dt .

3.1.3 E-Fluxes, Pathlines and Transport Lines

At the microscopic level, i.e., at a point in a phase continuum, the flux, or total flux,
jE , of an extensive quantity, E , describes the amount of E passing through a unit area
of the phase, during a unit time:

jE = e′VE, (3.1.8)

in which e′ denotes the density of E , andVE is the velocity of E . The specific value of
E is e, with e′= ρe. In the above equation, the unit area is normal to the direction of
VE . As emphasized in Sect. 1.1.4D, we often monitor not a quantity per unit volume,
but a quantity per unit mass. Then:

jE = ρeVE, (3.1.9)

The total flux of E , can be expressed as the sum of two fluxes:

jE(≡ e′VE) = e′V + e′(VE − V) = jEadv + jEdi f , (3.1.10)

i.e., the sum of an advective flux, jEadv (= e′V), and a diffusive flux jEdi f
(= e′

(VE − V)
)

. The first expresses the flux of E as carried by the fluid moving at the fluid
phase (mass-weighted) velocity, V. The second flux expresses the flux of E relative
to this advective flux.

http://dx.doi.org/10.1007/978-3-319-72826-1_1
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The diffusive mass flux of a dissolved chemical species in a fluid phase will be
further discussed in Sects. 3.4 and in 7.2.2. Thermal conduction is the diffusive flux
of thermal energy.

In a multi-species fluid, the mass-weighted velocity, V(≡ Vm) is:

V(≡ Vm) = 1

m

N
∑

γ=1

mγVγ =
N

∑

γ=1

ργ

ρ
Vγ =

N
∑

γ=1

ωγVγ, (3.1.11)

where ωγ = mγ/m = ργ/ρ is the mass fraction of the γ-species in the phase, with
∑

(γ) ωγ = 1, ργ = mγ/V and ρ = m/V, with V denoting the volume of the domain
�. Note that the symbol V denotes the velocity of the mass, Vm .

When considering reacting chemical species (see Chap.7), it is convenient to
measure themass of chemical species in a fluid in terms ofmoles andwrite the species
balance equations also in term of moles, both at the microscopic and macroscopic
levels. In such equations, the fluid’s velocity is the molar averaged velocity Vmol ,
and the diffusive molar flux jγ,mol

di f defined in Sect. 7.2.1.
Since momentum of a mass m is mVm , we may regard Vm (≡ ‘velocity of the

mass’) as ‘momentum per unit mass’. In this book, unless otherwise specified,
we shall use the symbol V for Vm . This is the mass averaged velocity defined in
Sect. 1.1.4.

Although our interest in the microscopic level description is only as the starting
point for velocity and transport at the macroscopic one, let us add two additional
concepts—pathlines and streamlines, as they aid in the understanding of the concept
of tortuosity (Sect. 4.2.5) as a porous medium property. We shall follow here the
presentation in Bear and Bachmat (1991, p. 62).

A (microscopic level) pathline is a curve (or line) along which a fixed particle
of a continuum moves in the course of time. The term trajectory is sometimes used
instead of pathline. A pathline is thus a Lagrangian concept. Let ξE

i , i = 1, 2, 3,
denote thematerial coordinates of a fixed E-particle. The Lagrangian description of
its motion, as given by (3.1.1), is:

x = x(ξE, t), or xi = xi (ξ
E
1 , ξ

E
2 , ξ

E
3 , t), i = 1, 2, 3. (3.1.12)

The above equations provide the coordinates of the time-dependent position-vector
of the particle. Eliminating the time from a pair of these equations, and repeating
this process for a second pair, yields two equations:

F1(x1, x2, ξ
E) = 0, F2(x2, x3, ξ

E) = 0.

Each of these equations describes a surface. Together, they define the pathline of the
E-particle (coinciding with the intersection of the two surfaces).

In the Eulerian formulation of the material derivative, the differential equation of
motion of an E-continuum, is given by:

http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_4
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dxi
dt

= V E
i (x, t),

or
dx1

V E
1 (x, t)

= dx2
V E
2 (x, t)

= dx3
V E
3 (x, t)

= dt, (3.1.13)

in which VE denotes the velocity of an E-particle.
The solution of these equations gives the Eulerian description of motion, (3.1.2)

ξE
i = ξE

i (x, t), i = 1, 2, 3, (3.1.14)

where the ξE
i ’s are parameters identifying a particle. By fixing the values of these

parameters, one obtains, the pathline of a specific particle.
While a pathline is a curve along which a given particle moves, a streamline

is a curve along which a string of particles move at a given instant. By definition,
the tangent to a streamline at each point on it is collinear with the velocity vector,
VE , at that point. Accordingly, the mathematical definition of a streamline of an
E-continuum at a given instant, say, t = to, is:

dxi = aV E
i (x, to), i = 1, 2, 3,

or,
dx1

V E
1 (x, to)

= dx2
V E
2 (x, to)

= dx3
V E
3 (x, to)

, (3.1.15)

where a is a scalar and the dxi ’s are the components of an infinitesimal distance
along a streamline. A streamline is thus an Eulerian concept.

Once the velocity field, VE(x, to), is known, the general solution of the system
(3.1.15) yields the family of streamlines, referred to as the motion pattern, of the
E-continuum at the instant t = to.

For unsteady motion of an E-continuum (i.e., ∂V E
i /∂t �= 0), the streamlines may

vary from one instant to the next, whereas for a steady motion (∂V E
i /∂t = 0), the

streamlines remain unchanged with time. In the latter case, streamlines and pathlines
coincide. For any scalar E-continuum (e.g.,mass,mass of a solute, heat), a streamline
which is a vector line of the velocity field, VE , is also a vector line of the total flux,
jt E(= eVE) of that continuum. This line is defined by:

dx1
j t E1 (x, to)

= dx2
j t E2 (x, to)

= dx3
j t E3 (x, to)

. (3.1.16)

A line or curve defined by (3.1.16) is called an E-transport line, or curve of the
(scalar) E-continuum. Bear and Bachmat (1991, p. 65) use the above discussion to
introduce streamlines and stream-tubes in a two-dimensional domain. In three dimen-
sional transport, a stream-tube may also be defined as a control volume bounded
by streamlines. Bear (1972, p. 226) discusses stream-tubes in three-dimensional
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domains. In Sect. 4.2.5, we shall introduce the concept of tortuosity which expresses
the fact that the length of the microscopic level flow, or transport, through the actual
(microscopic) tortuous pathways within the void-space is larger than the length of
averaged transport.

So far, we have considered phenomena at the microscopic level continuum. In
Chap.1, we also defined the macroscopic. All the concepts presented above, like
velocity and streamline, are also applicable at that level.

3.2 Microscopic Balance Equations for Extensive
Quantities

As stated earlier, the core of any model that describes the transport of an extensive
quantity is the balance equation of that quantity. Some authors refer to it as a ‘con-
servation equation’. In this book we consider mainly five extensive quantities: (1)
mass, (2) mass of a chemical species dissolved in a fluid phase, or adsorbed on a
solid, (3) linear momentum, (4) energy, and (5) entropy. In certain cases, e.g., when
dealing with the energy of a porous medium as a whole, we’ll also consider extensive
quantities of the solid phase.

We have already explained why, in practice, the required models have to be writ-
ten at the macroscopic level (Sect. 1.1.3). Accordingly, in this chapter, using the
phenomenological approach, we shall develop the macroscopic balance equation for
any extensive quantity of a phase and apply it to the five extensive quantities men-
tioned above. In later chapters, we shall present the same equations in more details
by adding specific information on the fluxes, interphase exchange terms and sources,
as well as additional information that is required in order to present complete, well
posed mathematical models.

3.2.1 The General Microscopic Balance Equation

We consider an extensive quantity E , within a domain �, of volume V, bounded by
a fixed surface S around some point x (Fig. 3.2). We can write the balance of E in
the verbal form:

⎧

⎨

⎩

Rate of
accumulation of
E within �

⎫

⎬

⎭
=

⎧

⎨

⎩

Net influx of
E into �

through S

⎫

⎬

⎭
+

⎧

⎨

⎩

Net rate of
production of
E within �

⎫

⎬

⎭
,

(a) (b) (c)

in which:

(a) The rate of increase in the amount of E within the�-domain, of volume V, with
e′ = dE/dV, is expressed by:

http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_1
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Fig. 3.2 A 3-d domain �

bounded by a fixed surface S

dS

S

VE

Ω

ν

x

∂

∂t

∫

V

e′ dV

(

=
∫

V

∂e′

∂t
dV

)

, (3.2.1)

where e′ is the density of E , i.e., the amount of E per unit volume of the phase;
the exchange of integration and differentiation is permitted since the boundary
S is fixed.

(b) The net influx (= total influx minus total efflux) of E into �, through S, is
expressed as:

−
∫

S
e′VE ·ν dS, (3.2.2)

where ν is the outward normal unit vector on the elemental area (= dS), and
VE denotes the velocity of E as defined in Sect. 3.1; the product e′VE denotes
the flux of E , i.e., the amount of E passing through a unit area of the phase, per
unit time.

(c) The net rate of production of E by sources inside � is expressed by:

∫

V

ρ�E dV, (3.2.3)

where ρ is the mass density of the phase, and �E denotes the rate of internal
production of E , per unit mass of the phase. When the considered extensive
quantity disappears, e.g., mass of a liquid disappears by change of phase, �E

will take on a negative value, representing a sink. We may include in �E both
internal and external sources, making a distinction between E-sources resulting
from internal activities, i.e., within the phase, and E-sources that result from
external activities: �E = �E

int + �E
ext , each per unit mass of the phase, per unit

time. The emphasis in the definition of �E is that the production/disappearance
is not through any interphase boundary. Gravity, a force that is a source for
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momentum, radioactive decay of a chemical species, added or disappearance
of a species by chemical reactions and heating by microwave may serve as
examples. In the macroscopic E-balance equation (Sect. 3.2), we shall introduce
a separate term to express sources and sinks that are due to exchange across
interphase boundaries.

Altogether, the balance of E within � is expressed by:

∫

V

∂e′

∂t
dV = −

∫

S
e′VE ·ν dS +

∫

V

ρ�E dV. (3.2.4)

Equivalently, in terms of the specific value, e:

∫

V

∂ρe

∂t
dV = −

∫

S
ρeVE ·ν dS +

∫

V

ρ�E dV. (3.2.5)

As emphasized when the concept of e′ of a phase was introduced in Sect. 1.1.4, e′
must be such that it is additive over volume of that phase, and e′VE expresses a flux.

At this point, we introduce the Gauss Theorem, the proof of which can be found
in any book on vector analysis. We consider a tensorial quantity, Gi jk... (of any rank),
that is defined and differentiable within a regular convex spatial domain,�, bounded
by a fixed closed surface, S. The surface S consists of a finite number of parts, with
a continuously turning tangent plane.

Gauss’ Theorem states that:
∫

V

∂G jkl...

∂x j
dV =

∫

S
G jkl...ν j dS, (3.2.6)

in which the double summation convention is used. This equation is also called the
Gauss divergence theorem. Note that throughout this book, we are making use of
indicial notation and vector notation, interchangeably.

For the special case in which G jkl... is a vector, Gi , the Gauss theorem takes the
form:

∫

V

∂Gi

∂xi
dV =

∫

S
Giνi dS, or

∫

V

∇·G dV =
∫

S
G·ν dS. (3.2.7)

With Gauss’ theorem, and with e′VE expressing flux, we have:

∫

V

[∇·(e′VE)] dV =
∫

S
(e′VE)·ν dS. (3.2.8)

The r.h.s. of (3.2.8) represents the net amount of E leaving the domain � of volume
V, through its bounding surface S. An interesting consequence is:

∇·e′VE ≡ lim
V→0

1

V

∫

S
e′VE ·ν dS. (3.2.9)

http://dx.doi.org/10.1007/978-3-319-72826-1_1
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This provides a physical interpretation of the divergence of a flux of E as the excess
of efflux over influx of E through a closed surface surrounding a domain, per unit
volume, as the latter shrinks to zero around the point.

Another interesting conclusion of the Gauss theorem is that at the microscopic
level, for a surface S enclosing a volume V, we have:

∫

V

(∇ p) dV =
∫

S
p dS,

with − ∫

S p dS expressing the net force acting on the closed surface. Thus −∇ p
expresses a force per unit volume.

Assuming that e′VE is differentiable within �, we apply Gauss’ theorem, (3.2.7),
with Gi = e′V E

i , to the first term on the r.h.s. of (3.2.4), obtaining:

∫

V

(
∂e′

∂t
+ ∇·e′VE − ρ�E

)

dV = 0. (3.2.10)

By shrinking the volume V to zero around an the arbitrary point x, we obtain the
microscopic level E-balance equation:

∂e′

∂t
+ ∇·e′VE − ρ�E = 0, (3.2.11)

where all terms refer to the considered point.
In view of (3.1.10), the balance equation (3.2.11) can be rewritten as:

∂e′

∂t
= −∇·(jEadv + jEdi f ) + ρ�E, jEadv = e′V, (3.2.12)

in which jEadv and j
E
di f denote the advective and the diffusive fluxes of E , respectively,

i.e., the amounts of E passing by advection and by diffusion through a unit area of
a cross section through the phase, per unit time. We recall that V ≡ Vm is the mass-
weighted (also called barycentric velocity) of the fluid. In a multi-species fluid,
V = ∑

γ ωγVγ , ωγ = ργ/ρ. It is also the momentum per unit mass.
Equation (3.2.12) is the microscopic level differential balance equation of any

extensive quantity, E, in a phase domain considered as a continuum. It expresses the
balance of E over a small volume around any point in the domain, in the limit as this
volume is reduced, converging to the point.

The E-balance equation (3.2.12) is written in terms of E-density, i.e., E per unit
volume of the considered phase. However, sometimes, E is monitored as E per unit
mass of the considered phase, denoted as e defined in (1.1.15).Under such conditions,
we write the E-balance equation in terms of e(≡ e′/ρ):

∂(ρe)

∂t
= −∇·(ρeV + jEdi f ) + ρ�E, ρeV ≡ jEadv, (3.2.13)

http://dx.doi.org/10.1007/978-3-319-72826-1_1
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recalling that V is the mass-weighted (barycentric) velocity defined in (3.1.10) and
(3.1.11). In (3.2.13), ρ�E represents a source (which adds E) per unit phase volume
per unit time. A negative �E-value means a sink. Some authors make a distinction
between internal and external sources.

The above equation can also be written in the form:

D(ρe)

Dt
= −V·∇(ρe) − ∇·jEdi f + ρ�E . (3.2.14)

3.2.2 Particular Cases

Herewe present the cases ofmass,momentum, energy and entropy balance equations
as applications of the general balance equation (3.2.13).

A. E Represents the Mass, m, of a Phase

Here, e′ = ρ, e = 1, �E = �m = 0 (as mass cannot be created), and VE = Vm ≡ V
is the phase velocity defined by (3.1.11). For this case, the diffusive mass flux, jmdi f ,
vanishes, i.e., jmdi f ≡ ρ(Vm − V) ≡ 0. Hence, for the mass of a fluid phase, (3.2.12),
or (3.2.13) leads to the mass balance equation:

∂ρ

∂t
= −∇·ρV, (3.2.15)

in which:

• On the l.h.s. we have the rate of mass increase per unit volume of the phase.
• On the r.h.s. we have the net flux into the vicinity of the point through the bounding
surface of a small domain, per unit volume of the latter, as this domain converges
to the point.

Equation (3.2.15) is the microscopic level balance equation for the mass of a
phase. It may also be written in the form:

(
∂ρ

∂t
+ V·∇ρ ≡

)
Dρ

Dt
= −ρ∇·V, or

1

ρ

Dρ

Dt
= −∇·V, (3.2.16)

where D(.)/Dt ≡ Dm(.)/Dt denotes the total (= material) derivative defined by
(3.1.6), i.e., with respect to an observer moving at the fluid’s mass averaged velocity
V(≡ Vm). Recall:

• For any scalar ϕ, the gradient is a vector,

∇ϕ = (∂ϕ/∂x)1x + (∂ϕ/∂y)1y + (∂ϕ/∂z)1z,

in which 1x , 1y, 1z denote unit vectors in the x, y, z directions, respectively.
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• For any vector V, the divergence of the vector is a scalar, e.g.,

∇ · V = ∂Vx/∂x + ∂Vy/∂y + ∂Vz/∂z.

• For any vector V, the gradient, ∇V, is a second rank tensor, with 9 components
∂Vi/∂x j , e.g., i, j = x, y, z.

B. E Represents the Mass of a γ-Chemical Species, mγ , in a Phase

E = mγ
α represents the mass of a γ-species in an α-phase. Then, e′ = ργ

α is the
concentration of the γ-species (= mass of γ-species per unit volume of the phase),
�E

α = �mγ

α ≡ �γ
α expresses a source (= negative sink) of the γ-species in the α-

phase, say by production of the mass of the considered γ-species within the phase by
chemical reactions, or radioactive decay, per unitmass of the phase,VE ≡ Vγ

α denotes
the velocity of the mass of the γ-species, and jγα,di f (= ργ

α(Vγ
α − Vα)) represents the

diffusive flux of the mass of the γ-species, with respect to α-phase mass particles.
Then, the mass balance equation for the considered species takes the form:

∂ργ
α

∂t
= −∇·(ργ

αVα + jγα,di f )+ ρα�γ
α, (3.2.17)

(a) (b) (c)

where
∑

(γ) ργ
α = ρα and

∑

(γ) j
γ
α,di f = 0, i.e., the sum of diffusive fluxes for all

chemical species is identically zero. In the above equations,

(a) is the rate of added species mass per unit phase volume,
(b) is the rate of net influx of species mass through the surface bounding the domain,

per unit domain volume, by advection and diffusion, and
(c) is the rate of produced/destroyed speciesmass per unit volume, by sourceswithin

the latter.

Except for the case of point injection or extraction of γ-species mass, or cases
in which the considered species is introduced through domain boundaries, the total
mass of the system as a whole is conserved, i.e., the combined mass production of
all γ-species must vanish,

∑

(γ) �γ
α = 0. By summing (3.2.17) for all γ’s comprising

the fluid phase, we obtain the mass balance equation for the fluid, (3.2.15). It is of
interest to note that (3.2.17) may also be written in the mixed Eulerian–Lagrangian
form:

Dργ
α

Dt
= −ργ

α∇·Vα + ∇·jγα,di f + ρα�γ
α. (3.2.18)

The diffusive flux of a γ-species is further discussed in Sect. 7.2.2. Chemical
reactions will be discussed in Sect. 7.3.3.

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
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The mass balance equation (3.2.17) for a chemical species can also be written in
terms of the γ-mass fraction ωγ ,

∂ραωγ
α

∂t
= −∇·(ρωγ

αVα + jγα,di f ) + ρα�γ
α, (3.2.19)

or, in terms of the molar fraction, Xγ
α, defined in Sect. 7.1,

∂ηαXγ
αM

γ
α

∂t
= −∇·(ηαX

γ
αM

γ
αVα + jγα,di f ) + ρα�γ

α. (3.2.20)

C. E Represents the Linear Momentum, M, of a Fluid Phase

Here, E = M ≡ mV denotes linear momentum, and e = V. e′ = ρV. The source of
momentum within a unit volume is the total force acting on that volume. Here, this
force is due to gravity,

�E ≡ �M = −F, (3.2.21)

in which F is a body force per unit mass. When F is due only to gravity, we have
F = −ρg∇z, with ∇z denoting a unit vector pointing upward.

The diffusive flux of linear momentum is the stress, σ, which causes energy dis-
sipation:

jMdi f ≡ ρV
(

VM − V
) = −σ. (3.2.22)

The microscopic level momentum balance (3.2.12) takes the form:

∂ρV
∂t

= −∇·(ρVV − σ) + ρF, (3.2.23)

(a) (b) (c)

in which VV is the dyadic product (≡ ViVj ) of the two vectors, and

(a) is the rate of accumulation of momentum,
(b) is the rate of momentum gained by momentum advection and diffusion,
(c) is the rate of momentum gained by external (e,g., body) force,

and each term expresses the rate at which momentum is added per unit volume of
the phase. Equation (3.2.23) is the (microscopic level) differential balance equation
of linear momentum of a phase.

In viewof themass balance (3.2.15), another formof the abovemomentumbalance
equation is Cauchy’s equation of motion (or Cauchy’s first law):

ρ
DV
Dt

= ∇·σ + ρF, with σ = τ − pδ, (3.2.24)

in which δ denotes the Kronecker delta; it is a second rank symmetric tensor, with
components δi j , such that δi j = 1 for i = j , and δi j = 0 for i �= j . The Kronecker

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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delta is often referred to as theunit tensor denoted by I. For gravity as the only external
force, F = g = −g∇z, with g denoting gravity acceleration and ∇z denoting a unit
vector directed upwards.

Equation (3.2.23), combined with the mass balance equation (3.2.15), can also be
written in the form of the motion equation:

ρ
DV
Dt

= ∇·τ − ∇ p + ρF. (3.2.25)

This equation has to be supplemented by an expression that relates τ toV, accord-
ing to the nature of the considered fluid. Henceforth in this book, we shall limit the
discussion to Newtonian fluids. For such fluids, with τ denoting the shear stress, we
use the constitutive relationship:

τ = μ(∇V + ∇VT ), (3.2.26)

where μ is the fluid’s dynamic viscosity.
When gravity is the only body force, for V = 0, and for DV/Dt = 0, (3.2.23)

reduces to the equilibrium equation:

∇·σ + ρF = 0, (3.2.27)

which is actually an equation that expresses a (static) balance of forces.
The momentum balance equation (3.2.25) then takes the form:

ρ
DV
Dt

= μ∇·(∇V) − ∇ p + ρF, (3.2.28)

known as the Navier–Stokes equation for viscous flow. Recall that as is common in
Fluid Mechanics, pressure is considered negative for compression.

Note that whenever the dynamic viscosity, μ, appears in a balance equation as
the only coefficient that represents the fluid’s viscosity, the equation is limited to a
Newtonian fluid.

The l.h.s. of (3.2.28) expresses the inertial effects, which are a consequence of
non-uniform velocity. From the definition of DV/Dt in (3.1.6), it follows that the
inertial effects involve two phenomena: one is due to velocity acceleration at a point,
and the other to velocity non-uniformity in space. The first will vanish in steady flow.
The second will vanish in uniform flow (but uniform flow in a porous medium does
not exist at the microscopic level!).

For ∇·τ = 0, i.e., viscous effects are negligible, (3.2.28) reduces to

ρ
DV
Dt

= −∇ p + ρF, (3.2.29)

known as Euler’s equation.
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For small Reynolds numbers, Re(= Vd/ν) � 1, we are left with:

ρf
∂V
∂t

= μ∇2V − ∇ p + ρF, (3.2.30)

known as Stokes equation.

D. E Represents the Energy, E, of a Fluid Phase

The total energy of the phase, E, consists of its internal energy (due to thermal
agitation and short range intermolecular forces), and its kinetic energy. The potential
energy of the body as a whole (due to gravity) does not appear explicitly in the
balance equation, as here we choose to include it in the term that expresses work by
the body forces (compare with De Groot and Mazur 1962, p. 17). Accordingly, the
specific energy and the energy density are expressed by:

eE = (

u + 1
2V

2
)

, e′E = (

u′ + 1
2ρV

2
)

, (3.2.31)

where V is the velocity (≡ momentum per unit mass), V ≡ |V|, and u is the specific
internal energy, (i.e., internal energy per unit mass).

Although we could make use of the general microscopic level balance equation
(3.2.13), we shall develop the microscopic level energy balance equation in detail.

Following the phenomenological approach, and referring to Fig. 3.2, we note that
energy is supplied to the phase contained in a domain � through its total interface
with other phases, S:
• by advection, following (3.2.8): jEadv = ∫

S
(

u′ + 1
2ρV

2
)

V·ν dS, and
• by thermal diffusion (≡ conduction: jEdi f ): − ∫

S jHdi f ·ν dS,
with ν denoting the outward normal unit vector on S.
Employing Gauss divergence theorem (3.2.7) to transform the sum of the last two
integrals into a volume one, we obtain:

−
∫

V

∇·[(u′ + 1
2ρV

2)V + jHdi f
]

dV.

The rate of energy productionwithin�-domain is expressed by
∫

V
ρ�H dV, where

�H is the rate of heat produced within �, per unit mass, e.g., by chemical reactions.
Finally, energy is added to the domain � by the work of the forces acting on the

phase contained in �. These include:

(a)
∫

V
V·ρF dV, where F represents body force per unit mass, expressing the rate

of supply of kinetic energy by the body force acting on the phase contained in
�, and

(b) − ∫

S V·(−σ)·ν dS, expressing the rate of work done by the surface force acting
on the surfaceS of�, with the tensorσ denotes stress. Employing the divergence
theorem, this term can be replaced by

∫

V
∇·(σ·V) dV.
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By combining all the above terms, dividing by V and passing to the limit as
V → 0, we obtain the differential energy balance equation in the form:

∂

∂t

(

u′ + 1
2ρV

2
)

(a)

= −∇·[(u′ + 1
2ρV

2
)

V + jHdi f
] + V·ρF + ∇·(σ·V) + ρ�H,

(b) (c)
(3.2.32)

where:

(a) is the rate of energy accumulation,
(b) is rate of net energy influx by advection and heat conduction, and
(c) is the rate of energy supplied to the phase by the work of mechanical forces and

heat sources (three terms),

and all terms are per unit volume.
Combining (3.2.32) with the mass balance equation (3.2.15) and the momentum

balance equation (3.2.23) yields another form of the energy balance equation,

ρ
Du′

Dt
= σ : ∇V − ∇·jH + ρ�H,

(a) (b) (c) (d)
(3.2.33)

where:

(a) is the material rate of growth of internal energy,
(b) is the rate of increase of internal energy by the work done in producing strain

(= σ : ε̇, with ε denotes strain),
(c) is the net influx of internal energy by heat conduction, and
(d) is the rate of increase of internal energy from internal sources,

and all terms are per unit phase volume.
In a fluid, σ = τ − pδ, and (3.2.33) can be rewritten as:

ρ
Du′

Dt
= τ : ∇V −p∇·V − ∇·jH + ρ�H,

(a) (b) (c) (d) (e)
(3.2.34)

where:

(a) is the material rate of growth of internal energy,
(b) is the irreversible rate of increase in internal energy (= heat) due to shear,
(c) is the reversible rate of internal energy gain by compression,
(d) is the net influx of internal energy by heat conduction, and
(e) is the rate of increase of internal energy from internal sources.
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For a multi-species system, we should add the work due to the diffusive flux,

∑

(γ)

jγdi f ·Fγ, jγdi f = ργ(Vγ − V),

where Fγ is the body force acting on the γ-species, provided Fγ is different for
different chemical species.

It is oftenmore convenient towrite the energy balance equation (3.2.34) in terms of
the absolute temperature, T , and the heat capacity. To do so, we follow the discussion
in Sect. 2.2.2, where we have introduced the specific internal energy of a phase, u′,
as a single valued function of a set of specific values (per unit of mass) of extensive
state variables, e.g., u′ = u′(s, v,ωγ), where s ′ is the specific entropy, v(= 1/ρ) is
the specific volume, and ωγ(= ργ/ρ) is the mass fraction of the γ-species, with
γ = 1, 2, . . ., all of a phase. Based on that discussion, the l.h.s. of (3.2.34) becomes:

ρ
Du′

Dt
= ρ

(

T
∂ p

∂T

∣
∣
∣
∣
v,ωγ

− p

)
Dv

Dt
+ ρcv

DT

Dt
+ ρ

∑

(γ)

μγ Dωγ

Dt
, (3.2.35)

in which cv (dims: M−1L2T−2�−1, with SI units of J/kg/K) denotes the specific heat
at constant volume.

From (3.2.16), or (3.2.34), we also have:

1

v

Dv

Dt
≡ ρ

D(1/ρ)

Dt
= −1

ρ

Dρ

Dt
= ∇·V. (3.2.36)

By substituting (3.2.36) in (3.2.35), and combining the resulting equation with
(3.2.34), we obtain:

ρCv

DT

Dt
= τ : ∇V − ∇·jH − T

∂ p

∂T

∣
∣
∣
∣
v,ωγ

∇·V − ρ
∑

(γ)

μγ Dωγ

Dt
+ ρ�H. (3.2.37)

This is the (microscopic level) differential equation of heat balance, written in
terms of the temperature of the considered phase.

Another useful form of this equation is:

ρcp
DT

Dt
= τ : ∇V − ∇·jH + T

∂ρ

∂T

∣
∣
∣
∣
p,ωγ

∇·V − ρ
∑

(γ)

μγ Dωγ

Dt
+ ρ�H, (3.2.38)

where cp (dims.: M−1L2T−2�−1, with SI units of J/kg/K) is the specific heat at
constant pressure.

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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E. E Represents the Enthalpy, H, of a Fluid Phase

It is often advantageous to use specific enthalpy, h (Sect. 2.2.2), of the considered
phase, as the dependent variable, especially when dealing with liquids and gases
which undergo phase change. We then express the energy balance equation (3.2.34)
in the form:

ρ
Dh

Dt
= τ : ∇V − ∇·jH + Dp

Dt
+ ρ�H. (3.2.39)

By adding h(∂ρ/∂t + ∇·ρV) which is equal to zero (i.e., the mass balance equa-
tion) to the l.h.s. of the last equation, we obtain another form of the energy balance
equation:

∂ρh

∂t
= −∇·(ρhV + jH) + τ : ∇V + Dp

Dt
+ ρ�H. (3.2.40)

F. E Represents the Entropy, S, of a Fluid Phase

With s denoting entropy (S) per unit mass, the entropy balance takes the form:

∂ρs

∂t
= −∇·(ρsV + jS) + ρ(�S

int + �S

ext ), (3.2.41)

where jS denotes the diffusive entropy flux, �S is the rate of production of entropy
per unit mass, and we have made a distinction between internal production (�S

int )
and external supply (�S

ext ).
By the second law of thermodynamics (Sect. 2.2.1B), �S

int ≥ 0.

3.2.3 Initial and Boundary Conditions

In order to solve the E-balance equation (3.2.13) for a specified phase domain within
the void space, we have to specify: (1) (possibly moving) phase domain boundaries,
(2) initial conditions within the phase domain, and (3) conditions on interphase
boundaries. However, since our interest is primarily in modeling at the macroscopic
level, we shall skip the discussion on microscopic level initial and boundary condi-
tions. These can be found in any text on Continuum Mechanics.

Overlooking for a moment the fact that microscopic level interphase boundaries
are unknown (and, in fact, this is one of the reasons for developing macroscopic
models), we may describe a (possibly moving) interphase boundary surface by
F(x, y, z, t) = 0. Although we are considering here boundary surfaces and bound-
ary conditions at the microscopic level (i.e., between phases inside the void space),
the material on the moving macroscopic boundary presented in Sect. 5.2.1D is valid
also here, with x, y, z denoting coordinates at the microscopic level.

http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_5
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3.3 Macroscopic Balance Equations for E (1)

In the previous section, we used the phenomenological approach to develop E-
balance equations at the microscopic level. Once we have that equation, we can
use one of the averaging approaches outlined in Chap.1 to derive the corresponding
macroscopic balance equations. Instead, we shall develop the corresponding macro-
scopic also by the phenomenological approach, recalling that an equation at the
macroscopic level describes what happens ‘at a point in the porous medium consid-
ered as a continuum’. Within a porous medium domain, the considered E may be
transported by a single (fluid or solid) phase, or by all fluid and solid phases present
in the considered domain. The fluid phase itself is usually composed of a number of
chemical species.

3.3.1 The General Macroscopic Balance Equation

We shall generalize the discussion by considering what happens at a point x (to
be interpreted as ‘within the REV centered at the point x’) at time t , to a fluid α-
phase that occupies only part of the void space at phase saturation, Sα, or volumetric
fraction, θα, where:

θα(x, t) = Volume of α-fluid in REV

Volume of REV
, 0 ≤ θα ≤ φ,

∑

(α)

θα = φ,

Sα(x, t) = Volume of α-fluid in REV

Volume of void space in REV
, 0 ≤ Sα ≤ 1,

∑

(α)

Sα = 1.

In both definitions, the sum is over all fluid phases present in the void space. The
two definitions are related to each other by:

θα = φSα, (3.3.1)

where φ is the porosity at the point.
When the porous medium is inhomogeneous with respect to porosity, or when it

undergoes deformation, which alters the porosity, the fluid saturation should be used
to describe the quantity of a fluid in the void space at a point (meaning in the vicinity
of the point). This enables a separate treatment of porosity changes.

Within a porous medium domain, consider a domain � surrounded by a sur-
face S�. Within �, we have a subdomain �α, occupied by a fluid α-phase, and a
subdomain �β occupied by β, i.e., non-α, fluid or solid phases. The macroscopic
Eα-balance equation for the porous medium domain �α, bounded by a fixed closed
surface S�, can be written in the form:

http://dx.doi.org/10.1007/978-3-319-72826-1_1
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⎧

⎪⎪⎨

⎪⎪⎩

Quantity of Eα

accumulating
in�α

during�t

⎫

⎪⎪⎬

⎪⎪⎭

=

⎧

⎪⎪⎨

⎪⎪⎩

Net quantity of
Eα entering �α

through S�

during �t

⎫

⎪⎪⎬

⎪⎪⎭

+

⎧

⎪⎪⎨

⎪⎪⎩

Net quantity of
Eα entering �α

through Sαβ

during �t

⎫

⎪⎪⎬

⎪⎪⎭

+
⎧

⎨

⎩

Net production
of Eα in �α

during �t

⎫

⎬

⎭
.

(3.3.2)

where Eα may be the mass of an α-phase, or the of a γ-species in the α-phase,
mγ

α, and we have taken into account that Eα can leave/enter the α-phase across any
Sαβ-surface within �. This includes the cases of phase change from α to β, and a
γ-species diffusing from α to β.

When the above balance equation iswritten for a small volume in a porousmedium
domain around a point, and for a small time interval, and then letting the volume
and the time interval shrink to zero, the balance equation can be written as a partial
differential equation (PDE) that expresses the balance of E at that instant of time
and that point in space within the domain:

∂θαe′
α

∂t
= −∇·θA

αJ
E
α,tot + f E

β→α +θαρα�E
α,

(a) (b) (c) (d)

(3.3.3)

where e′
α denotes the Eα-density, i.e., Eα per unit volume of fluidα-phase, θA

α denotes
the areal fraction of the α-phase in the cross-section, and JE

α,tot denotes the total
macroscopic flux of E , with and in the moving α-phase, per unit phase area. Or,
in terms of the specific value of eα (= Eα per unit mass of fluid α-phase), and
approximating θA

α by θα:

∂θαραeα

∂t
= −∇·θαJE

α,tot + f E
β→α +θαρα�E

α.

(a) (b) (c) (d)

(3.3.4)

The terms appearing in the above balance equations can be interpreted in the
following way:

(a) Rate of accumulation of E in the α-phase, per unit volume of porous medium,
per unit time, with:

θα = 1

Vo

∫

Vo

γαdV,

inwhich γα denotes the characteristic function of theα-phase, defined by (1.1.9):

θαρα(≡ θαρα
α) = 1

Vo

∫

Vo

ραγαdV,

http://dx.doi.org/10.1007/978-3-319-72826-1_1
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and:

θαραeα(≡ θαe′
α

α
) = 1

Vo

∫

Vo

(ραeα)γαdV,

with eα = 1 forEα = mα. Note that, althoughwe are not using different symbols,
in the above equation, as in the following ones, the integral is over microscopic
level values, while the l.h.s. involves macroscopic values.

(b) Net inflow of Eα, per unit volume of porous medium, per unit time, with JE
α,tot

denoting the totalmacroscopic flux (per unit area of theα-phase), per unit volume
of theα-phase, by advection (JE

adv ≡ eα
αVα

α
), dispersion (JE

α,dis , to be discussed
later in this chapter) and diffusion (JE

α,di f ), with

θαραVα(≡ θαραVα
α
) = 1

Vo

∫

Vo

(ραVα)γαdV.

(c) Rate at which E enters the α-phase from all other (non-α) phases through the
microscopic Sαβ-surface that surrounds the α-phase within an REV, per unit
volume of porousmedium.However, in determining this transfer, we have to take
into account the possibility that the microscopic interface between a considered
α-phase and any other phase inside the REV may be moving (e.g., in two phase
flow, or when the solid matrix is deformable, or when phase change occurs).
Thus:

f E
α→β = − 1

Vo

∫

Sαβ

[

ραeα(Vα − uαβ) + jEdi f
] ·ναdS, (3.3.5)

in which Vo denotes the volume of an REV, Sαβ is the total α-β interface within
the REV, and να denotes the outward unit vector on this surface, which moves
at a velocity uαβ . When the Sαβ-interface is a material surface with respect to
E , the first term in the square brackets above vanishes, and interphase transfer
is possible only as a diffusive flux:

f γ
α→β = − 1

Uo

∫

Sαβ

jγα·nα dS. (3.3.6)

This means that the chemical species can reach and cross interphase boundaries
only by diffusion. Note that all symbols in the above integrand denotemicroscopic
values, and

f E
α→β + f E

β→α ≡ 0,

unless we allow E to accumulate on the interface itself (see Sect. 1.4.2C).
When a change of phase takes place across the Sαβ-interface, the latter is no
more a material surface. In fact, the first term in the square parenthesis expresses
the rate at which the considered Eα crosses the microscopic α − β interface as
a consequence of the phase change. In fact, in (3.3.6) we note both the effect
of change of phase and that of transfer (of the considered E across interphase

http://dx.doi.org/10.1007/978-3-319-72826-1_1
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boundaries. Some authors (e.g., Hassanizadeh and Gray 1990) represent fα→β

in (3.3.5) as two separate terms: one representing the amount of E crossing the
interface as a consequence of phase change, and the other due to the diffusive
E-flux (or phase exchange).

(d) Rate of production (i.e., a source) of E in the α-phase, per unit volume of porous
medium, per unit time:

θαρα�E
α(≡ θαρα�E

α

α
) = 1

Vo

∫

Vo

(ρα�E
α)γαdV.

In Chap.7, we shall consider the case of Eα that represents the mass of a γ chemical
species in an α phase. Then, �γ

α will represent the production of the γ-species by
chemical reactions. Another example will be the appearance of the mass of a phase
by phase change, say, due to heating at a point.

Let us add here a few comments:
(1) First, a comment concerning notation. For the flux of E , we have introduced,

and shall be using throughout the book, two different symbols, jE and JE . The first
for the microscopic flux and the second for the macroscopic one. However, for the
sake of simplicity, except for the flux, we shall not use different symbols for the two
levels; the appropriate level for each equation should be inferred from the content
of the equation itself, recalling that each equation belongs only to one of the two
levels, and so do all the terms appearing in it. For example, if an equation includes
a porosity, φ, or a volumetric fraction, θα, or a permeability, k, it is obviously at the
macroscopic level.

(2) In view of (1.1.15), e′
α in (3.3.3) represents the intrinsic phase average e′

α

α
,

while eα in (3.3.4) represents the intrinsic mass average ẽα
α. In both cases, ρα rep-

resents ρα
α. In fact, all variables appearing in (3.3.4) are mass averaged ones.

(3) At the macroscopic level, the flux is still per unit area of the considered phase,
but the latter occupies only part of the cross-section through the porous medium
domain. The flux per unit area of porous medium is obtained by multiplying the
J-flux by the areal fraction of the phase, θA

α(≈ θα). This facilitates modeling the case
of variable porosity and saturation.

(4) We have not made a distinction between the porosity, φ (= volume of void
space per unit volume of porous medium), and the areal porosity, φA (= area of void
in a planar cross-section, per unit area of cross section), introduced in Sect. 1.1.5.
Similarly, in the case of multiple phases, we do not distinguish between θα and
θA

α, with φA = φA (ν1, ν2, ν3), in which ν1, ν2, ν3 denote the components of the unit
vector, ν, normal to the considered cross-section. Instead, we assume that φA ≈ φ
and θA

α ≈ θα.
The balance equation (3.3.4), obtained phenomenologically, will be the basic

balance equation to be used for all extensive quantities in this book. It is a differential
macroscopic balance equation of E in an α-phase. It describes the transport of any
extensive quantity in an α-phase that occupies the entire void space, or part of it, in
a porous medium domain. Appropriate expressions have to be provided for the flux,
the transfer and the source terms. The term ‘flux (for JE

α,tot ) is used here to denote

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_1
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the quantity of E passing through a unit area of α-phase in a planar cross-section,
per unit time

We wish to emphasize that every term in (3.3.4), as in all macroscopic balance
equations, expresses what happens in the vicinity of a point (and this means in the
vicinity of every point) in the porous medium domain, regarded as a continuum, in
terms of values of state variables that may be regarded as average values for that
vicinity, and coefficients that represent various aspects of the effects of the solid
matrix configuration in that vicinity.

The macroscopic balance equations presented below contain terms that express
total flux, rate of interphase exchange and sources of the considered extensive quan-
tities. These will be discussed in subsequent chapters.

3.3.2 Particular Cases

The particular cases discussed below are based on (3.3.3).

A. Mass Balance Equation of an α-Phase, eα = 1

We consider the mass of a fluid α-phase (E = mα, density e′ = ρα, specific mass,
eα = 1) that occupies part the void space, at the volumetric fraction θα. Assuming
no sources or sinks of α-phase mass, i.e., �m

α = 0, the macroscopic α-fluid mass
balance equation (3.3.3) takes the form:

∂θαρα

∂t
= −∇·θαJmα,tot + f mβ→α , (3.3.7)

where ρα ≡ ρα
α, Jmα, tot denotes the total α-mass flux (= mass per per unit time per

unit area of α-phase), and f mβ→α(≡ f mα→β) denotes the rate of mass transfer from all
β-phases to the α-phase, e.g., by phase change like evaporation, condensation, and
dissolution, per unit volume of porous medium. In single-phase flow, θα → φ, and
f mβ→α ≡ 0. However, we use this term to express the rate at which a solid dissolves
in the fluid, or a liquid evaporates. Note that here and in what follows, we have
approximated θA

α by θα in the flux expression, and that as everywhere in this book,
we refer to sources, with sinks being equivalent to negative sources.

Examples of two phase flow are air and water, oil and gas, and water and CO2.
Fluxes of specific extensive quantities will be discussed in Sect. 3.4.

B. Balance Equation for the Mass of a Chemical Species, e = ωγ
α

We consider a chemical γ-species present in a fluid α-phase, which occupies part
of the void space, at the volumetric fraction θα. For this case (E = mγ

α, e′ = ργ
α,

e = ωγ
α), Eq. (3.3.4), takes the form:

∂θαραωγ
α

∂t
= −∇·θαJ

γ
α,tot + f γ

β→α + θαρα�γ
α, (3.3.8)
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in which Jγ
α, tot denotes the total flux of the γ-mass with and in the α-phase, i.e.,

advective, dispersive and diffusive fluxes, f γ
β→α denotes the rate of transfer of mγ

to the α-phase from the solid and from all non-α fluid phases present in the void
space, across α-β interfaces, e.g., by volatilization of γ, and the source �γ

α may
include a source of mγ

α due to such phenomena as chemical reactions or radioactive
decay within the α-phase in which γ is produced (or destroyed). Each term in (3.3.8)
expresses added mass of the γ-species in the α-phase, per unit volume of porous
medium, per unit time.

The flux, Jγ
α,tot , the rate of interphase transfer, f γ

β→α, and sources, θαρα�γ
α, will

be discussed in detail in Chap. 7.

C. Balance Equation for the Momentum of a Fluid Phase, e = V

We consider a single fluid phase (of density ρ) that occupies the entire void space.
The case of two fluids will be discussed in Sect. 6.2. Here, E = M, e = V, e′ = ρV,
and the momentum balance equation obtained from (3.3.4) takes the form:

∂φρV
∂t

= −∇·φJM
tot +fMs→ f +φρ�M,

(a) (b) (c) (d)

(3.3.9)

in which:

(a) denotes the rate of momentum added to the fluid, per unit volume of porous
medium,

(b) denotes the net influx of momentum per unit volume of porous medium, as flow
takes place, with JM

tot denoting the total flux of momentum (per unit fluid phase
area), i.e., advective, dispersive and diffusive fluxes,

(c) denotes the rate at which momentum is transferred from the solid phase to the
fluid, across their common interface, per unit volume of porous medium, and

(d) denotes the rate at which momentum is produced within a unit volume of porous
medium.

As we shall see in Sect. 6.2.1, in the case of two-phase (α,β) flow, momentum is
transferred to the α-phase also from the β-phase.

In the above equation, the source of momentum, �M, is due to body (and other)
forces (per unit mass of the phase), and the velocity,V, has themeaning ofmomentum
per unit mass of the phase.

In the case of a single fluid that occupies the entire void space, by (1) com-
bining the above equation with the mass balance equation (without mass sources),
(2) recalling that the total momentum flux is made up of the advective flux, ρVV,
the diffusive flux, expressed by the stress, −σ f , and a dispersive flux, which we
neglect here, (3) expressing the solid to fluid momentum transfer per unit volume by
(1/Vo)

∫

Ss f
σ·νdS, (4) assuming that the only source (= production) of momentum,

�M, is the external body force per unit mass acting on the phase is F, we can rewrite
the above momentum balance equation in the form:

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_6
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φρ
DV
Dt

= ∇·φσ + 1

Vo

∫

Sαs

σ·ν dSαs + φ ρ f F. (3.3.10)

The total momentum flux, JM
tot , the rate of interphase transfer, fMs→ f , and the

momentum source, φρf F, will be further discussed in Sect. 3.5.
Whenwe are interested in themomentumbalance equation for the porousmedium

as a whole, say in single phase flow, we write one momentum balance equation for
the fluid and one for the solid, and add them (see Chap.9). The momentum exchange
terms will then vanish. Actually, in the phenomenological approach, we can write
the momentum balance equation directly for the porous medium as a whole.

D. Total Stress, Capillary Pressure and Equilibrium Equation

Let us add some information on the case of two fluid phases that occupy the void
space of a deformable porous medium domain (Bear and Pinder 1978): a wetting
phase (w), and a non-wetting one (n). These terms are introduced in Sect. 2.4.2. The
macroscopic momentum balance equation, (3.3.10), for each of the three phases,
with subscript s denoting the solid, is rewritten here in the form:

θαρα
DVα

Dt
= ∇·θασα + 1

Vo

∫

Sαβ

σα·να dS + θαραF, α,β = s, w, n, (3.3.11)

where we recall that ρα and Vα represent intrinsic phase averages.
By writing (3.3.11) for each of the three phases, we obtain:

θnρn
DVn

Dt
= ∇·θnσn + θnρnFn + 1

Vo

∫

Sns+Snw

σn·νndS,

θwρw

DVw

Dt
= ∇·θwσw + θwρwFw + 1

Vo

∫

Sws+Swn

σw·νwdS,

θsρs
DVs

Dt
= ∇·θsσs + θsρsFs + 1

Vo

∫

Ssn+Ssw

σs ·νsdS. (3.3.12)

We note that the outward normals are such that νn ≡ −νs on Sns , νs ≡ −νw on
Ssw andνn ≡ −νw onSnw. The symbolD( )/Dt denotes thematerial derivative from
the point of view of an observer traveling at the average velocity of the considered
phase.

By summing the three equations, we obtain:

∑

(α=n,w,s)

θαρα
DVα

Dt
= ∇·σ + ρF + 1

Vo

∫

Snw

[[ σ ]]n,w·νn dS

+ 1

Vo

∫

Sws

[[ σ ]]w,s ·νw dS + 1

Vo

∫

Ssn

[[ σ ]]s,n·νs dS, (3.3.13)

where the overbar indicates volume average as defined by (1.1.12) and we have used
the symbol:

http://dx.doi.org/10.1007/978-3-319-72826-1_9
http://dx.doi.org/10.1007/978-3-319-72826-1_2
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[[ (..) ]]1,2 ≡ (..)
∣
∣
side 1 − (..)

∣
∣
side 2 (3.3.14)

to denote the jump from side 1 to side 2 across themicroscopic interface. By (1.1.12),

σ = 1

Vo

∫

Vo

σdV = 1

Vo

∑

(α=s,n,w)

∫

Voα

σαdVα

=
∑

(α=s,n,w)

σα ≡ σs + σn + σw (3.3.15)

defines the volume averaged stress, or total stress, and

ρF = ρnFn + ρwFw + ρsFs (3.3.16)

defines the total body force per unit volume of porous medium at a (macroscopic)
point.

To facilitate the discussion on fluid stress-strain relationships, we express the
fluid’s average stress, σ, in the form:

σ = τ − pδ, (3.3.17)

where the average deviator τ is the viscous stress tensor, p = − 1
3 (σi i − τ i i ) ≡

− 1
3

∑

(i)(σi i − τ i i ) is the pressure, and δ (components δi j ) is the Kroenecker delta,
defined by:

δi j =
{

1, when i = j,
0, when i �= j .

(3.3.18)

In (3.3.17), the pressure p is considered positive for compression, while σi j and
τ i j are considered positive for tension.

Using (3.3.17), the total stress in the two phase flow considered here can also be
expressed by:

σ = σs + τ n + τw − pn I − pw I. (3.3.19)

By examining (3.3.13), we note that the interaction between the phases is
accounted for by the three surface integrals. The first integral on the r.h.s. of (3.3.13)
describes the interaction across the (microscopic) interface between the nonwetting
andwetting fluid phases. In principle, similar interactions also occur at the solid-fluid
interfaces, i.e., the second and third integrals. On the other hand, we usually assume
continuity of traction, i.e., [σ]w,s ·νw = 0 and [σ]s,n·νs = 0, and neglect surface
tension phenomena at fluid-solid interfaces. Hence, the last two surface integrals in
(3.3.13) vanish. Surface tension is discussed in Sect. 2.4.1.

Back to the first integral, actually, at every point on the microscopic interface
between two immiscible fluids (here the wetting and the nonwetting ones), over-
looking their molecular structure, and regarding them as two continua separated by

http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_2
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a sharp interface, the following equation expresses continuity of momentum transfer
(Landau and Lifshitz 1960):

[ρVi (Vj − u j ) − σi j ]n,wν j =
(
1

r ′ + 1

r ′′

)

γwnνi + ∂γwn

∂xi

= 2

r∗ γwnνi + ∂γwn

∂xi
, (3.3.20)

where γwn is the magnitude of the surface-tension between the wetting and the non-
wetting fluids. This is a concept that introduces the molecular level effects between
the two fluids in the form of a force (per unit length) that is tangent to the interface,
and r∗ is the mean radius of curvature of the latter, with r ′ and r ′′ denoting its princi-
pal radii of curvature. The l.h.s. of (3.3.20) expresses a jump in the component in the
i th direction of the total momentum flux. The r.h.s. may be interpreted as the rate of
production of linear momentum per unit area of the interface. In this equation, γnw

may be nonuniform, e.g., because of impurities and temperature variations.
Note that because γwn exists only in the interphase surface, the gradient of γwn in

(3.3.20) should be interpreted as:

∂γwn

∂xi
≡ |∇γwn|ti ,

in which ti = cos(∇γwn, 1xi ).
When the n − w-interface is a material surface with respect to fluid mass, the

advective momentum flux vanishes, i.e., [ρV(V − u)]n,w·νn = 0. For a stationary
fluid, the viscous stress, τ (= σ + pI), vanishes and the jump, −[σ]n,w·νn , reduces
to [p]n,wνn . The same conclusion can be obtained if we assume, as an approximation,
that the component of the shear force normal to the interface is much smaller than
the force due to pressure, i.e.,

|τi jν jνi | � |p|.

If also ∇γwn = 0, Eq. (3.3.20) reduces to:

pn − pw =
(
1

r ′ + 1

r ′′

)

γwn, (3.3.21)

known as the Laplace formula. Since (pn − pw) > 0, the pressure is greater in the
nonwetting fluid for which the surface is convex. The difference pn − pw, called
(microscopic) capillary pressure, was introduced in Sect. 2.4.3. In Sect. 6.1, we shall
introduce the pressure difference at the macroscopic level, pc = pn − pw = pc(θw)

referred to asmacroscopic capillary pressure. Note that pn
n ≡ pn , pw

w ≡ pw, recall-
ing that, in general, we are not using the averaging symbols whenever, it is obvious
that an equation is at the macroscopic level.

http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_6
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Without fluid traction at the fluid solid-interfaces, (3.3.13) reduces to:

∑

(α=n,w,s)

θαρα
DVα

Dt
= ∇·σ + F c + ρF, (3.3.22)

where we recall that ρα and Vα represent intrinsic phase averages, and

F c = 1

Vo

∫

Snw

[σ]n,w·νn dS. (3.3.23)

Without inertial forces, the averaged momentum balance (3.3.13) reduces to:

∇·σ + ρF + F c = 0. (3.3.24)

In the case of a single fluid phase, or, in the case of multiphase flow, neglecting F c

as an approximation, (3.3.24) reduces to:

∇·σ + ρF = 0, (3.3.25)

in which we note the phase average. The above equation is known as the equilibrium
equation (seeBiot 1941;Verruijt 1969). It relates changes in total stress to body force.
In Sect. 9.2, we shall make use of this equation as the starting point for modeling
deformation in a porous medium.

E. Energy Balance Equation

For E = E, representing the energy of a fluid that occupies the entire void space,
and e = u + 1

2V
2, e′ = u′ + 1

2ρV
2 = ρ(u + 1

2V
2), i.e., the sum of the internal energy

and the kinetic energy of the fluid, per unit fluid volume, or per unit fluid mass, but
not potential energy, the macroscopic energy balance equation (3.3.4), written for
energy in terms of u′, takes the form:

∂

∂t

[

φ
(

u′ + 1
2ρV

2)] = −∇·φJE

tot + f E

s→ f + φρ�E, (3.3.26)

or, in terms of u,

∂

∂t

[

φ
[

ρ(u + 1
2V

2)
]] = −∇·φJE

tot + f E

s→ f + φρ�E, (3.3.27)

in which φJE

tot denotes the total energy flux carried in and by the fluid, φρ�E denotes
the source of energy in the fluid, both per unit volume of porous medium and per unit
time, from both external and internal sources, and f E

s→ f , defined by (3.3.5), denotes
the energy transferred from the solid to the fluid across their common interface. Note
that the potential energy is not included as we assume that gravity is the only body
force.

http://dx.doi.org/10.1007/978-3-319-72826-1_9
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The flux JE

tot , the rate of interphase transfer, f
E

s→ f , and the sources, φρ�E, will be
discussed in Chap. 8.

Usually, we are interested in the energy balance equation for the porous medium
as a whole under the assumption of thermal equilibrium. We can then write (3.3.26)
once for the fluid ( f ) and once for the solid (s) and sum up the two equations. The
total interphase energy transfer term will vanish, and we obtain:

∂

∂t

∑

(α= f,s)

[

θα

(

ρα(uα + 1
2V

2
α

)] = −∇·JE

pm,tot +
∑

(α= f,s)

θαρα�E

α, (3.3.28)

in which JE

pm,tot = ∑

(α= f,s) θαJE

α denotes the total energy flux, i.e., due to advection,
dispersion, and diffusion, through the porous medium as a whole.

∗ ∗ ∗

All (macroscopic) balance equations in this section were obtained strictly by phe-
nomenological considerations, without resorting to any formal upscaling technique.
They contain fluxes, rates of interphase transfers and sources of the considered E’s,
which will be discussed in subsequent chapters. Obviously, we could have obtained
the same equations also by appropriate averaging (over an REV) of the microscopic
level balance equations. Examples of the averaging approach are presented, among
others, by Bear and Bachmat (1991, see also Sect. 1.4.2A), Whitaker (1999, see also
Sect. 1.4.2B), Hassanizadeh and Gray (1979a, b, 1980, see also Sect. 1.4.2C), and
Gray and Miller (2014).

3.4 E-Fluxes

E-fluxes appear in all E-balance equations, both at the microscopic level (Sect. 3.2)
and at the macroscopic one (Sect. 3.3).

3.4.1 Microscopic Advective and Diffusive Fluxes

At the microscopic level of description, the total flux of an extensive quantity E is
defined as jEtot = e′VE . This flux, within a phase, is the sum of two fluxes:

jEtot = e′VE = e′V + e′(VE − V) = jEadv + jEdi f , (3.4.1)

i.e., the sum of an advective flux, jEadv = e′V, that carries E at the fluid’s velocity, V,
and a diffusive flux, jEdi f = e′(VE − V), relative to the advective one, resulting from
the molecular (Brownian) motion within the fluid phase.

http://dx.doi.org/10.1007/978-3-319-72826-1_8
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Or, in terms of the specific value of E :

jEtot = ρeVE = ρeV + ρe(VE − V) = jEadv + jEdi f , (3.4.2)

A. Advective Flux of Mass of a Fluid Phase

In this case, E = m, e′ = ρ, e = 1, and the (microscopic level) flux is

jmadv = ρV. (3.4.3)

We recall that ρV is also the fluid’s momentum per unit mass.

B. Advective Flux of Mass of a γ-Species

In this case, E = mγ , e′ = ργ = ρωγ , e = ωγ , and we have,

jγadv = ρωγV. (3.4.4)

C. Advective Flux of Momentum of a Phase

Here, e′ = ρV, e = V, and
jMadv = ρVV, (3.4.5)

where VV is the dyadic product of the two vectors. Recall that a dyadic product of
two vectors is a 2nd rank symmetric tensor, with components ViVj .

D. Advective Flux of Energy of a Phase

In this case, e = (

u + 1
2V

2
)

, e′ = ρ
(

u + 1
2V

2
) = (

u′ + 1
2ρV

2
)

, and

jEadv = ρ
(

u + 1
2V

2)V. (3.4.6)

E. Diffusive Flux of a γ-Species in a Fluid Phase

Consider a fluid containing only two species: γ and δ. The diffusive mass flux (mass
of γ per init area per unit time) is expressed by Fick’s law of molecular diffusion, in
the form:

jγdi f = −ρDγδ∇ωγ, ωγ = ργ

ρ
,

∑

(γ)

jγdi f = 0, (3.4.7)

where ωγ is the mass fraction of the γ-species, and the scalar Dγδ is the coefficient
of molecular diffusion (dims. L2/T) of the γ-species in a fluid that contains only two
species, γ and δ. The symbol cγ is often used instead of ργ .

The diffusive flux of the other species, δ, is given by jδdi f = −ρDδγ∇ωδ , such
that jγdi f + jδdi f = 0, implying that Dγδ = Dδγ . It is usually assumed that Dγδ is
independent of cγ . However, in general, it is a function of pressure and temperature.

When∇ρ= 0, i.e., in a homogeneous fluid, or when ρ∇ωγ ≈ ∇ργ , i.e., |ωγ∇ρ| �
|ρ∇ωγ |, we may write Fick’s law in terms of ργ , as:
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jγdi f = −Dγδ∇ργ . (3.4.8)

In Chap.7, we shall consider transport with chemical reactions among dissolved
species. Under such conditions, it is more convenient to express the concentration of
a γ-species, say in an α-phase, in terms of molar fraction, Xγ

α. Thus, the advective
flux is:

Jγ,mol
α,adv = φSαηαX

γ
αVα. (3.4.9)

and the diffusive flux (i.e., Fick’s law) in terms of Xγ
α is:

jγ,mol
α,di f = −ηαDγ

α,di f ∇Xγ
α. (3.4.10)

ηα and Xγ
α are defined in Sect. 7.1.1.

The termKnudsen flow, orKnudsen diffusion (Knudsen 1934;Malek andCoppens
2003) is used to describe the diffusion of a gas when the mean free path of its
molecules is not much larger than the characteristic dimension of the flow domain,
here the size of a pore.

The Knudsen number, Kn, defined as:

Kn = λkn

�pm
, (3.4.11)

in which λkn denotes themean free path of the molecules, and �pm is the characteristic
length dimension of the void space, is used to identify the regime in which the
Knudsen effect occurs.

Typically, Knudsen diffusion occurs when the pore diameter is in the range
2–50nm. According to Chambre and Schaaf (1961), Knudsen diffusion occurs when
Kn > 10, as then collisions between the gas molecules and the pore wall dominates.
The range 0.1 ≤ Kn ≤ 10, is regarded as transition regime. For 10−3 ≤ Kn ≤ 0.1,
the flow at the wall cannot be neglected, which means slip flow exists and Klinken-
berg effects have to be taken into account. For Kn < 10−3, collisions between gas
molecules and the pore wall can be neglected, and the flow behavior can be described
by Darcy’s Law (Chap.4), without any correction.

In the above expressions for the flux of molecular diffusion, we have not taken
into account the Soret effect presented in Sect. 2.6 according to which we also have
molecular diffusion as a result of a temperature gradient.

More on diffusion of a chemical species and Fick’s law at the macroscopic level
is presented in Sect. 7.2.2.

F. Diffusive Flux of Momentum of a Fluid Phase

From the momentum balance equation (3.2.23), it follows that the viscous stress
tensor, τi j , represents the diffusive flux of linear momentum across a material surface
element, due to velocity gradient across the element. As such, it acts as a frictional
force between adjacent layers of the fluidmoving at different velocities, per unit area.

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_7
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Within the framework of the same concept, we obtain the transfer of momentum
between the fluid and the solid, assuming that the fluid sticks to the solid surface.

A typical component of the velocity gradient, relevant to τi j , is ∂Vi/∂x j . There-
fore, it is generally assumed that for fluids, τi j = τi j ( ˙εk�), where ε̇k� represents the
rate of strain defined by:

ε̇k� = 1

2

(
∂Vk

∂x�

+ ∂V�

∂xk

)

. (3.4.12)

For the sake of clarity, we are using here indicial notation.
For sufficiently small values of ∂Vi/∂x j , the diffusive flux of momentum is

expressed by:
τi j = Cv

i jk� ε̇k�, (3.4.13)

where Cv
i jk� (a fourth rank tensor) denotes the fluid’s viscosity coefficient. The linear

relationship (3.4.13) is called Newton’s law, and the fluid that obeys this law is
called a Newtonian fluid. Some introductory remarks about tensors are presented in
Sect. 2.3.4.

When the viscous stress generated in a fluid element is independent of the ori-
entation of the latter, i.e., when the molecular structure of the fluid is statistically
isotropic (which is the case of all gases and simple liquids, but unlike suspensions
and solutions that contain very large molecular chains), the coefficient Cv

i jk� is an
isotropic tensor that can be written in the form:

Cv
i jk� = bv(δikδ j� + δi�δ jk) + bvvδi jδk�, (3.4.14)

where bv and bvv are scalar coefficients. Hence, by inserting (3.4.14) into (3.4.13),
we obtain the following expression for the diffusive flux of an isotropic single species
Newtonian fluid,

τi j = 2με̇i j + λvv ε̇kkδi j , ε̇kk ≡ ∂Vk

∂xk
, τi j = τ j i , (3.4.15)

with
p = − 1

3σi i + (

λvv + 2
3μ

)

ε̇kk, σi j = τi j − pδi j , (3.4.16)

where μ = bv is the fluid’s dynamic viscosity and λvv = bvv is another viscosity
coefficient of the fluid. In (3.4.16) p is the thermodynamic pressure and ε̇i j denotes
the rate of deformation. Water is a typical example of a Newtonian fluid that obeys
(3.4.15).

For an incompressible Newtonian isotropic single species fluid under conditions
of isochoric isothermal mass flow, since ε̇kk ≡ ∂Vk/∂xk = 0, (3.4.15) reduces to:

τi j = 2με̇i j = μ

(
∂Vi

∂x j
+ ∂Vj

∂xi

)

, with σi j = τi j − pδi j . (3.4.17)

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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Then, the pressure p in (3.4.16) reduces to p = − 1
3

∑

i=1,2,3 σi i and is called
the mean normal stress, or mechanical pressure. Equation (3.4.17) is often called
the generalized Newton law, describing the molecular (= diffusive) flux of linear
momentum.

For a fluid at rest, or in uniform flow, V = const., we always have τi j = 0, and
σi j = −pδi j . In this case, the mean negative normal stress, p, is the hydrostatic
pressure.

A perfect fluid is a non-viscous (or inviscid) fluid that cannot sustain a viscous
stress, i.e.,

τi j = 0, and σi j = −pδi j . (3.4.18)

G. Diffusive Flux of Energy of a Fluid Phase

The diffusive flux of internal energy, jUdi f , is identical to the heat flux, jH, which
is, usually, referred to as heat conduction. This (microscopic) flux is expressed by
Fourier’s law,

jH = −λ∇T, (3.4.19)

in which λ and T denote the thermal conductivity and the temperature of the phase,
respectively.

In the above expressions for heat flux, we have not taken into account the Dufour
effect, presented in Sect. 2.6, according to which we also have heat flux as a result of
a concentration gradient.

More on Fourier’s law is presented in Sect. 8.1.1A.

3.4.2 Macroscopic Advective and Diffusive Fluxes

At the macroscopic level, with V denoting the fluid’s mass-averaged velocity, the
advective flux of any E in a porous medium domain is associated with the movement
of the fluid phase through the void space. The diffusive fluxes are associated with
the molecular motion within the fluid that occupies the void space.

As defined earlier, the (macroscopic) flux, JE , expresses the amount of E passing
through a unit area of fluid in a planar cross-section through the porous medium
domain. The amount per unit area of the porous medium cross-section is given by
φAJE (∼= φJE). We have been avoiding the use of the specific discharge, qE(= φVE)

for the various extensive quantities, as the porosity may vary spatially and with time.

A. Advective Flux of the Mass of a Fluid α-Phase

In this case,
e = 1, e′ = ρα, Jmα,adv = ραVα. (3.4.20)

We recall that V is interpreted as momentum per unit fluid mass. It is, thus, a state
variable like ρ and ργ , and we need to include the momentum balance equation in
the set of equations to be solved for these variables.

http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_8
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B. Advective Mass Flux of a γ-Chemical Species in an α-Fluid

The advective flux of the mass of a γ-chemical species carried with the α-fluid
moving at the velocity Vα, with eγ

α = ωγ , eγ
α = ραωγ

α = ργ
α, is

Jγ
α,adv = ργ

αVα = ραωγ
αVα. (3.4.21)

C. Advective Flux of Momentum of a Fluid α-Phase

Here, the advective flux of momentum of the α-fluid has the form

e′M
α = ραVα, eM

α = Vα, JM
α,adv = ραVαVα. (3.4.22)

D. Advective Flux of the Energy of a Fluid α-Phase

For a moving α-fluid, the advective energy flux is given by

JE

α,adv = ρα

(

uα + 1
2V

2
α

)

Vα. (3.4.23)

E. Diffusive Mass Flux of a Fluid α-Phase

For this case,
e = 1, Jmα,di f = ρα(Vα − Vα) ≡ 0. (3.4.24)

i.e., there is no diffusion of the mass of a fluid phase.

F. Diffusive Flux of the Mass of a γ-Species in an α-Fluid

Phenomenologically, in analogy to Fick’s law in a fluid continuum, with a driving
force which is the gradient of the (macroscopic) γ-species concentration, expressed
by the mass fraction of the species, ωγ

α(≡ ργ
α/ρα), the macroscopic diffusive flux of

a γ-species takes the form:

Jγ
α,di f = −ραDα,pm∇ωγ

α, Dα,pm = T∗
αD, T∗

α = T∗
α(Sα), (3.4.25)

in which D pm denotes the macroscopic coefficient of molecular diffusion. It is a
second rank symmetric tensor expressed as the product of the scalar molecular diffu-
sivity in a fluid continuum,D, and a geometrical property of the void space,T∗, called
tortuosity, which is a second rank symmetric tensor. This property expresses the fact
that the actual path of extensive quantities (here the mass of a chemical species)
by advection along (microscopic) stream-tubes is longer than the length between
macroscopic points in the porous medium domain. This tensorial tortuosity exists
also in anisotropic porous media. A detailed discussion on tortuosity is presented in
Sect. 4.2.5. Note that we indicated that in multiphase flow, the phase tortuosity is a
function of phase saturation, Sα.

More on molecular diffusion at the macroscopic level, when mass is measured in
moles, is presented in Sect. 7.2.2.

http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_7
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G. Diffusive Flux of Momentum of a Fluid α-Phase

Here, e′ = ραVα, e = Vα, and the macroscopic diffusive momentum flux is:

JM
α,di f = ραVα(VM

α − Vα) = −σα, (3.4.26)

in whichσα (≡ τ α − pαδ) denotes the shear, or deviatoric stress, in the fluid phase,
σα is the stress in the fluid phase, pα is pressure and δ denotes the unit tensor.

In the momentum balance equation (3.3.9), we can express the first term on the
r.h.s. in the form:

∇·φJM
adv+di f ≡ ∇·φ (ρVV − τ ) + ∇·(φpδ), (3.4.27)

in which −φτ expresses the (macroscopic) diffusive flux of momentum, since only
τ is contributing to the dissipation of energy.

H. Diffusive Energy Flux in a Fluid α-Phase

In a fluid α-phase that occupies the entire void space, e′
α = (u′

α + 1
2ραV 2

α ), eα =
(uα + 1

2V
2
α ), and the diffusive flux is:

JE

α,di f = ρα

(

uα + 1
2V

2
α

)

(VE

α − Vα). (3.4.28)

At the microscopic level, i.e., in a phase continuum, the diffusive (≡ conduc-
tive) energy flux is expressed by Fourier’s law, jEα, di f ≡ ραeE

α(VE

α − V) = −λ∇T ,
in which T denotes the temperature, and λ denotes the thermal conductivity of the
phase. By the phenomenological approach, at the macroscopic level, in the fluid, the
diffusive energy flux, driven by ∇T , takes the form:

JE

α,di f = −λ∗
α·∇T, (3.4.29)

in which the λ∗
α denotes the macroscopic thermal conductivity within the fluid α-

phase inside the void space.
For the porous medium as a whole, the diffusive energy flux is expressed by:

JE

pm,di f = −λ∗
pm ·∇T, λpm = φλ∗

f + (1 − φ)λ∗
s , (3.4.30)

in which λpm denotes the thermal conductivity for the porous medium (pm) as
a whole, i.e., through the composite material composed of the (assume thermally
conducting) solid matrix and the (thermally conducting) fluid occupying the void
space. Thus, λpm depends on both λf and λs and on the configuration of the two
phases in the porous medium domain.

In two-phase flow, the combined porous medium conductivity, λpm , is a compli-
cated function of conductivities and volume fractions of the participating phases, as
heat streamlines (see Sect. 3.1.3) may pass through all phases.

∗ ∗ ∗
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Altogether, we have 3 driving forces: ∇ωγ for the diffusive mass of a species,
∇V + (∇V)T (see below) for the diffusive flux of momentum, and ∇T for the diffu-
sive flux of energy. In this book, we do not take into account coupled processes (in
the Onsager sense, e.g., de Groot and Mazur, 1962, p. 30), although, for the sake of
a complete presentation, the topic is presented in Sect. 2.6.

3.4.3 Dispersive Fluxes

A. The Need for a Dispersive Flux

Around the 1950s, mainly in dealing with the quality of groundwater in aquifers,
as associated with the movement, accumulation and transformation of dissolved
chemical species, and, later, with ground water contamination, it was noted, in field
and laboratory experiments (e.g., summary in Bear 1972, Sect. 10.3), that a dissolved
species is transported in a porous medium domain, both in the general direction of
the flow and also normal to it, in a way that could not be explained merely by the
movement of the fluidat its average velocity, (i.e., advective fluxat a velocity described
by Darcy’s law (Chap. 4)) and by molecular diffusion. This spreading phenomenon
was called dispersion. To bridge the discrepancy, an additional fluxwas introduced at
the macroscopic level–the dispersive flux. It became obvious that this additional flux
is not a real flux, like the advective and diffusive fluxes discussed above; it does not
exist at the microscopic level! It is a flux that is added in order to compensate for the
fact that the advective transport of the solute at the macroscopic level is described in
terms of the volume (or mass) averaged velocity (and this was done because Darcy’s
law provides only this velocity), while, actually, within the void space, the solute is
transported at every (microscopic) point by the local microscopic velocity. All this
is in addition to the flux due to molecular diffusion, which is also included in the
macroscopic flux. Altogether, the total macroscopic flux of a solute is expressed as
the sum:

Jm
γ

tot = Jm
γ

adv + Jm
γ

dis + Jm
γ

di f , (3.4.31)

i.e., advection, dispersion and diffusion.
Following is a simple way to understand the need for introducing the dispersive

flux of any extensive quantity E of a fluid α-phase. This flux is a consequence of the
fact that both the fluid’s velocity and the intensive quantity, e (e.g., concentration of
a solute, when E is the mass of the solute), vary from point to point within a fluid
phase that occupies the entire void space, or part of it.

The advective flux of E (= E per unit area of fluid) at a (microscopic) point, ξ,
within a fluid phase ( f ) that occupies part of the void space within an REV centered
at a point x, is given by e′(ξ, t; x)V(ξ, t; x). The intrinsic phase average of this flux
is e′V f

(x, t). In order to express this flux in terms of the average values, e′ f (x, t)
and V

f
(x, t), the velocity, V(ξ, t; x), and the value of e′(ξ, t; x), are decomposed

into two parts: an intrinsic phase average value and a deviation from that value:

http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_4
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V(ξ, t; x) = V
f
(x, t) + V̊(ξ, t; x),

e(ξ, t; x) = e′ f (x, t) + e̊′(ξ, t; x). (3.4.32)

Because an average value is constant over the REV, we have (..)
f
f

= (..)
f
. As a

consequence,

V̊
f = 0, and e̊

f = 0. (3.4.33)

To obtain the average flux (still per unit area of fluid), we write:

e′V f = (e′ f + e̊′)(V f + V̊)
f

= e′ fV f
f

+ c f V̊
f + e̊′V f

f

+ e̊′V̊
f
. (3.4.34)

Because the average of the deviations vanishes, the second and third terms on the
right-hand side of (3.4.34) vanish, leaving the relationship:

e′V f = e′ fV f + e̊′V̊
f
. (3.4.35)

Thus, the average (=macroscopic) flux of e′ at a point in a porousmedium domain
(= centroid of an REV) is equal to the sum of two macroscopic fluxes:

• An advective flux, e′ fV f
, expressing the mass of the species carried by the fluid

at the latter’s average velocity, V
f
.

• A flux, JE
dis ≡ e̊′V̊

f
, that results from the variation of e′ and V within the REV for

which the point, x, serves as a centroid. This is the flux that produces the (often
called mechanical) dispersion of E , with E = mγ as an example. We refer to this
flux as the dispersive flux of E .

Although we have presented the above discussion for the case of the intensive
property e′ (= E-density = E per unit phase volume), an analogous development
can be written with respect to the specific value, e (= E per unit mass of the phase),
and to intrinsic mass averaging, ẽα, defined in (1.1.15), with a deviation from the
average, ěα, defined by (1.1.16). However, in this case, the microscopic advective is
j Eα = ραeαVα, and, following (1.4.68), the intrinsic mass average flux is defined by:

ραeαVα
α = ρα

αẽαVα

α = ρα
α

(

ẽα
αṼα

α + ˜ěαV̌α

α)

. (3.4.36)

Again, we note here the flux term that expresses the effect of velocity deviations.
Over the years, research, using a variety of models, has led to various expressions

that describe the dispersive flux of a solute, E = mγ , but not much research efforts
have been devoted to the dispersion of momentum and energy, although, in principle,
this kind of flux should be present in the respective (macroscopic) balance equation
models.

http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_1
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The dispersive flux of the various E’s will be considered in more details below.

B. Dispersive Flux of a Solute

Starting with Nikolaevski (1959), Bear (1961), Scheidegger (1961), and others, the
most commonly used expression for the dispersive flux in single phase flow has
been one in which ∇ργ , or ∇ωγ , serves as the driving force, with a coefficient that is
proportional to the fluid’s average velocity vector,V (see Sect. 7.2.3 formore details).

The term ‘Fickian expression’ is often used when referring to the dispersive flux
of a solute which is assumed to be proportional to the gradient of latter’s concen-
tration, because of its resemblance to Ficks law for molecular diffusion, i.e., a flux
that is driven by the gradient of concentration. Over the years, some researchers,
mainly (but not exclusively) on the basis of field observations of plume (of a solute)
propagation in aquifers, have proposed various ‘non-Fickian’ alternative approaches
to the determination of plume shape. The main, but not sole reason for the non-
Fickian expression for dispersion has been field heterogeneity, although Berkowitz
et al. (2008, p. 226) have observed non-Fickian behavior also at laboratory rather
short sand columns.

In Sect. 7.2.4A we introduce an approach to modeling solute transport that is
based on Fickian dispersion, with averaging over an RMV (defined in Sect. 1.1.6).
In Sect. 7.2.4B we present a field-scale approach, called Continuous Time Ran-
dom Walk, which takes into account domain heterogeneity, employs a non-Fickian
approach to dispersion and does not involve volume averaging. In Sect. 7.6, we shall
present other approaches to solute transport – upscaling – that is attempting to treat
the effects of porous medium heterogeneity as encountered under field conditions.

In what follows, we shall employ the phenomenological approach to develop an
expression for the dispersive flux for the mass of a solute, based on the observation
that this fluxmust dependon thefluid’s velocity, as there is no dispersionwhenV = 0,
and on a driving force, associated with the spatial distribution of solute concentration
in the fluid phase, as there is no dispersion unless this distribution in not uniform.

Although the discussion in this section starts with the dispersive flux of a solute,
the same phenomenon of dispersion and the consequence in the form of a dispersive
flux occur also in the cases of transport of momentum and of energy.

Dispersion of a solute and of heat will be considered in detail in Sects. 7.2.3, and
8.3.6, respectively.

3.4.4 Non-advective Fluxes

Within the framework of the phenomenological approach to modeling transport in
porous media, we shall now derive expressions for the non-advective fluxes of exten-
sive quantities: the diffusive and dispersive fluxes. We shall start with the flux of a
solute. The same approach will then be applied to the fluxes of other extensive
quantities.

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_8
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A. Non-advective Solute Flux

Following Bear and Fel (2012), we make use of the generic terms in the polynomial
representation of the total (macroscopic) flux of a γ-species in a fluid phase. The
total non-advective flux, Jγ

non−adv , of a γ-species is produced by two independent
factors:

• the fluid phase velocity, V, as there is no dispersion when V = 0, and
• the gradient of the mass fraction ∇ωγ , as there is no solute dispersion when

ωγ(x) = const.

The second factor can be expressed in the form of a driving force represented by
−∇ωγ . Thus, the flux is a smooth function of these two factors, and of the fluid’s
density,

Jγ = Jγ (V,∇ργ) , or Jγ = Jγ (ρ,V,∇ωγ) .

By developing this functional relationship in a power series, say, up to third order
terms, we obtain:

J γ
i (ρ,∇ωγ,V) = Aik∇kω

γ + Bikl∇kω
γ∇lω

γ + CiklVl∇kω
γ

+Diklm∇kω
γ∇lω

γ∇mωγ + EiklmVk∇lω
γ∇mωγ

+GiklmVlVm∇kω
γ, (3.4.37)

in which the various coefficients (Aik, Bikl , etc.) are tensorial coefficients that
are associated with fluid and porous medium properties. The latter represent var-
ious characteristics of the geometry of the void space configuration. In multiphase
flow, and when (3.4.37) is written separately for each fluid phase, these coef-
ficients depend also on fluid saturations. As everywhere in this book, whenever
indicial notation is being used, Einstein’s summation convention is employed (e.g.,
Aik∇kω

γ ≡ ∑

(k) Aik∇kω
γ ≡ ∑

(k) Aik∂ωγ/∂xk).

In thermodynamics, the rate of entropy production, denoted by Ṡ (Sect. 2.2.1) is
related to the thermodynamic driving force, X, and to the thermodynamic flux, Y,
by De Groot and Mazur (1962, p. 65):

Ṡ = Yi Xi . (3.4.38)

Furthermore, the rate of entropy production must be positive, i.e., Ṡ ≥ 0. Here, the
solute flux, Jγ is driven by −∇ωγ , which acts as a ‘driving force’. Thus, in this case,
X = −∇ωγ , and its conjugate flux is Y = −Jγ . Altogether, we have:

Ṡ(ρ,∇ωγ,V) = Aik∇iω
γ∇kω

γ + Bikl∇iω
γ∇kω

γ∇lω
γ + Cikl∇iω

γ∇kω
γVl

+Diklm∇iω
γ∇kω

γ∇lω
γ∇mωγ + Eiklm∇iω

γ∇kω
γ∇lω

γVm

+Giklm∇iω
γ∇kω

γVlVm . (3.4.39)

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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Note that we have extended the structure of Ṡ, as proposed by De Groot and
Mazur (1962), for a flux linearly proportional to a driving force, to the nonlinear
case considered here.

The requirement that Ṡ ≥ 0, i.e., Ṡ be positive definite, leaves only the quadratic
and the two quadratic terms in (3.4.39):

Ṡ(ρ,∇ωγ,V) = Aik∇iω
γ∇kω

γ

+Diklm∇iω
γ∇kω

γ∇lω
γ∇mωγ + Giklm∇iω

γ∇kω
γVlVm ≥ 0.

(3.4.40)

In (3.4.40), we note that certain symmetries exist in the three tensors A, D
and G:

Aik = A1
ki , Diklm = Dkilm = · · · = Dilmk

Giklm = Gkilm = Gikml = Glmik, (3.4.41)

where the tensor Diklm is invariant under every permutation of the full symmetric
group (Sirotine and Chaskolskaya 1984).

Thus, with (3.4.40), and since

Ṡ = 〈Jγ,∇ωγ〉, (3.4.42)

in which 〈A,B〉 denotes the scalar product of the vectors A and B, it follows that
the non-advective flux is expressed as

J γ
non−adv,i = −Aik∇kω

γ − Diklm∇kω
γ∇lω

γ∇mωγ − Giklm∇kω
γVlVm . (3.4.43)

The first two terms on the r.h.s. of (3.4.43) do not involve the velocity. They
describe diffusion. The first term is actually the diffusive flux expressed by Fick’s
law, with Aik ≡ ρD∗γ

i j . The second term represents a non-linear, or ‘non-Fickian’
diffusiveflux. The last termexpresses thedispersive flux discussed above,with−∇ωγ

as the driving force, but with a proportionality to V 2. This may be still considered a
‘Fickian’ law, as it is proportional to ∇ωγ , as in Fick’s law, but it is different from
the Fickian expression for the coefficient of dispersion presented in Sect. 3.4.3, in
that here the flux depends on V 2. It may be interesting to mention that in one of the
earliest works on dispersion, the work of Taylor (1953), concerning dispersion in a
circular capillary tube, due to the parabolic distribution of velocities within the tube,
the dispersive flux was also proportional to V 2 (see Sect. 7.2.3).

A detailed analysis of the tensors A, D andG in a 3-dimensional porous medium
domain with a prescribed symmetry (e.g., isotropic, axisymmetric) shows that the
increase in symmetry towards isotropy causes a reduction in the number of inde-
pendent moduli associated with these tensorial coefficients. For an isotropic porous
medium —i.e., highest symmetry—we need four moduli for the description of the
three tensorial coefficients:

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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Aik = aδik, Diklm = d

3
(δikδlm + δilδkm + δimδkl) ,

Giklm = g1δikδlm + g2

2
(δilδkm + δimδkl) , (3.4.44)

The corresponding rate of entropy production is then

Ṡ = Ṡ(ρ,∇ωγ,V)

= a(∇ωγ)2 + d(∇ωγ)4 + g1(∇ωγ)2V2 + g2〈∇ωγ,V〉2, (3.4.45)

with the coefficients a, d, g1, g2 > 0.
Hence, the non-advective flux, presented above as (3.4.43), takes the form:

J γ
non−adv,i = J γ

non−adv,i (∇ωγ,V)

= −a∇iω
γ − d(∇ωγ)2∇iω

γ − (

g1V2∇iω
γ + g2〈∇ωγ,V〉Vi

)

. (3.4.46)

Again, in this equation, the first term on the r.h.s. expresses linear diffusion, the
second term expresses non-linear diffusion, and the last term expresses the dispersive
flux of γ. In (3.4.46), we note the driving force, ∇ωγ and the dependence on V 2 (see
comment following (3.4.43).

For axisymmetric porous medium domains, with the axis of symmetry indicated
by the unit vector e, we need eleven (2+3+6) moduli to describe these three tensorial
coefficients:

Ṡ(ρ,∇ωγ,V, e) =
a1(∇ωγ)2 + a2〈∇ωγ, e〉2 + d1(∇ωγ)4 + 2d2(∇ωγ)2〈∇ωγ, e〉2

+d3〈∇ωγ, e〉4 + g1V2(∇ωγ)2 + g2〈∇ωγ,V〉2 + g3V2〈∇ωγ, e〉2
+g4〈e,V〉2(∇ωγ)2 + g5〈e,V〉〈V,∇ωγ〉〈∇ωγ, e〉 + g6〈e,V〉2〈e,∇ωγ〉2, (3.4.47)

with the following thermodynamic constraints imposed on the eleven moduli:

a1, a2 > 0, d1, d3 > 0, d1d3 > (d2)
2,

and, similar to the results obtained in Fel and Bear (2010),

g1 > 0, g1 + g2 > 0, g1 + g3 > 0, g1 + g4 > 0, g1 + g2 + g3 + g4 + g5 + g6 > 0,

(g1)
2 + g1(3g2 + g3 + g4 + g5 + g6) + 2g2(g3 + g4 + g6) > 1

2 (g5)
2.

Altogether, the non-advective γ-species flux is:

J γ
non−adv,i (ρ,∇ωγ,V, e) = a1∇iω

γ + a2〈∇ωγ, e〉ei
+d1(∇ωγ)2∇iω

γ + d2
(

(∇ωγ)2ei + 〈∇ωγ, e〉2∇iω
γ
) + d3〈∇ωγ, e〉3ei
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+g1V2∇iω
γ + g2〈∇ωγ, e〉Vi + g3V2〈∇ωγ, e〉ei + g4〈e,V〉2∇iω

γ

+g5〈e,V〉 (〈V,∇φ〉ei + 〈∇ωγ, e〉Vi ) + g6〈e,V〉2〈e,∇ωγ〉ei , (3.4.48)

in which the first two terms describe the linear diffusive flux, with the tensorial
coefficient of diffusion depending on two scalar moduli, a1, a2. The next three terms,
with moduli d1, d2 and d3, describe the nonlinear diffusive flux components. The
remaining terms describe the dispersive flux. We note that for this axially symmetric
porous medium, the dispersivity coefficient is defined by six dispersivity moduli,
g1, . . . , g6.

More on solute dispersion is presented in Sect. 7.2.3.

B. Non-advective Momentum Flux

The advective momentum flux at the microscopic level is jMadv = ρVV. Recalling that
the macroscopic non-diffusive momentum flux is JM

non−di f = ρVV, and assuming,
for the sake of simplicity, that the variations in fluid density are relatively small,
i.e., that |ρ| � |ρ̊|, we may approximate the dispersive momentum flux by JM

dis =
ρV̊V̊. Altogether, the non-diffusive momentum flux nay be expressed as the sum of
advective and dispersive momentum flux:

JM
non−di f = ρVV + ρV̊V̊. (3.4.49)

In view of (3.4.36), the non-advective momentum flux is expressed by ρα
α˜̌VαV̌α

α

.
At the microscopic level, i.e., in a fluid continuum, the deviatoric stress, τi j ,

which expresses the dissipative part of the diffusive momentum flux, is related to the
driving forceWi j (≡ ∇i Vj + ∇ j Vi ), which is a symmetric 2nd rank tensor. With this
in mind, at the macroscopic level, the non-advective flux of momentum depends also
on the fluid’s velocity, V, and on the driving force, W, by the general constitutive
relationship:

τi j = τi j (W,V) = Mi jklWkl + Ni jklpstrWklWpsWtr + Li jklpsWklVpVs, (3.4.50)

where Mi jkl = Mi jkl = Mjikl = Mi jlk , Ni jklpstr = N jiklpstr = · · · = Ntri jklps and
Li jklps = L jiklps = Li jlkps = Lkli jps = Li jklsp are tensorial coefficients that depend
on fluid and void-space properties, and all terms are at the macroscopic level.

The first term on the r.h.s. represents the linear diffusive flux of momentum, with
the 4th rank tensor Mi jkl standing for the usual fluid viscosity for a Newtonian fluid.
The second term, with the 8th rank tensorial coefficient, Ni jklpstr , is responsible for
non-linear viscous effects. The dispersive part of the non-advective momentum flux
involves the 6th rank tensorial coefficient Li jklps .

The corresponding rate of entropy production is:

Ṡ(W,V) = τi j Wi j

= Mi jklWi jWkl + Ni jklpstr Wi jWklWpsWtr + Li jklpsWi jWkl VpVs . (3.4.51)

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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To facilitate the use of (3.4.51) for an isotropic porous medium, we introduce the
following notations for operations with the W-tensor:

〈W, δ〉 ≡ Wii , 〈W,W〉 ≡ Wi jW ji , 〈W,W,W〉 ≡ Wi jW jkWki ,

〈W,W,W,W〉 ≡ Wi jW jkWklWli , 〈WV,WV〉 ≡ Wi j VjWikVk , (3.4.52)

recalling that the symbol 〈A,B〉 denotes the scalar product of the vectors A and B.
With this notation, we get eleven (2 + 5 + 4) viscous moduli:

Ṡ(W,V) = M1〈W,W〉 + M2〈W, δ〉2 + N1〈W,W〉2 + N2〈W,W,W,W〉
+N3〈W,W,W〉〈W, δ〉 + N4〈W,W〉〈W, δ〉2 + N5〈W, δ〉4
+L1〈W,W〉V2 + L2〈WV,WV〉 + L3〈V,W,V〉〈W, δ〉
+L4〈W, δ〉2V2. (3.4.53)

When 〈W, δ〉 = 0, equivalent to ∇·V = 0, i.e., isochoric flow, and the domain is
isotropic, only five (1 + 2 + 2) moduli are left:

Ṡ(W,V) = M1〈W,W〉 + N1〈W,W〉2 + N2〈W,W,W,W〉
+L1〈W,W〉V2 + L2〈WV,WV〉. (3.4.54)

The corresponding non-advective momentum flux is:

JM
non−adv,i j = M1Wi j + N1〈W,W〉Wi j + N2WikWklWl j

+L1V2Wi j + L2WikVkVj . (3.4.55)

The first term expresses the diffusive flux of fluid momentum. The next two terms
express the nonlinear momentum flux. The last two terms express the dispersive flux
of momentum (proportional to V 2). For a Newtonian fluid, M1 ≡ μ, i.e., the fluid’s
viscosity.

C. Non-advective Heat Flux

We consider the entire porous medium domain. At every point, i.e., within an REV
centered at the point, we have a rigid stationary solidmatrix and a void space occupied
by a single fluid. We assume that both the solid and the fluid phases are at thermal
equilibrium, i.e., a single temperature T describes the thermal state of both phases
at the considered point. The development of the expressions for the non-advective
fluxes of heat is similar to those of solute, except that in this case the diffusive flux has
to take into account the heat transported in both fluid and solid phases. Altogether,
(3.4.43)–(3.4.48) are valid, except that the numerical values of the various coefficients
are different, and the thermal diffusivity of the porous medium as a whole depends
on the porosity and on the thermal conductivity of the two phases, but not on their
densities.
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For example, for an isotropic porous medium, we may express the non-advective
heat flux in the form (3.4.43), replacing ωγ by T , Aik by λ∗

pm,ik , and omitting the
nonlinear diffusive term. We obtain:

J H
non−adv,i = −λ∗

pm,ik∇kT − GH
iklmVlVm∇kT, (3.4.56)

i.e., the sum of a diffusive term and a dispersive one.

3.5 Interphase Transfers and Sources

In most cases of flow and transport, regardless of the number of phases involved,
a considered extensive quantity is being transported across fluid-fluid and fluid-
solid (microscopic) interfaces. In the macroscopic balance equation (3.3.3), we have
denoted the rate of such transfer—of an extensive quantity, E , to an α-phase from all
other β-phases, including the solid, within a porous medium domain—by f E

β→α. In
this section, we shall consider two cases: momentum transfer, E = M, and energy
transfer, E = E. The transfer of mass of a γ-species across the interface between
a fluid phase and the solid matrix and across the fluid-fluid interface in multiphase
flow, will be presented in Chap.7.

Actually, interphase transfer (as a term in the E-balance equation) does not exist at
themicroscopic level. To the extent that such transfers exist, they appear in themicro-
scopic levelmodels asboundary conditions. During the passage from themicroscopic
to the macroscopic levels of description, these flux boundary conditions are trans-
formed into interphase exchange terms in the balance equations. Sources and sinks
that exist at the microscopic level will be transformed into macroscopic source-sink
terms at the macroscopic one. Both cases will be discussed in the next section which
deals with the macroscopic balance equations and in the respective chapters where
the models of specific extensive quantities are presented.

3.5.1 Fluid to Solid Momentum Transfer

Obviously, at the microscopic level, there is no fluid-solid momentum transfer in
the momentum balance equation. However, such transfer appears as a boundary
condition at a fluid-solid boundary. It then appears as a term in the macroscopic
M-balance equation. Thus, in the macroscopic momentum balance equation (3.3.9)
for single phase flow, fMf →s denotes the rate of momentum transfer from the fluid
to the solid matrix, per unit volume of porous medium. To obtain this constitutive
relationship, we shall make the following assumptions:

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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• The fluid in the void space adheres to the solid surface (no-slip condition).
• The fluid is Newtonian. This means that the momentum transfer from the fluid
to the solid, per unit f -s-area, is proportional to the dynamic viscosity, μ, and
to the velocity gradient, (Vf, j − Vs, j )/� ≡ Vr, j/�, at the solid surface, with the
hydraulic radius, �, of the void-space, (= Vof /Ss f ) serving as a length char-
acterizing the size of a ‘pore’. To obtain the momentum transfer per unit vol-
ume of porous medium, we have to multiply the flux at a point by Sf s/Vo =
(Sf s/Vof )(Vof /Vo) = φ/�.

• The solid matrix may be in motion (e.g., due to deformation), at the velocity Vs .

Altogether, phenomenologically, the M-transfer from the fluid to the solid, per unit
area of the (microscopic) solid-fluid interface, due to the fluid’s velocity gradient at
that s- f surface area is expressed by:

(

f M
f →s

)

i
= φRi j μ

Vf, j − Vs, j

�2
≡ φRi j μ

Vr, j

�2
. (3.5.1)

in which Ri j , are components of a second rank symmetric tensor, R, which is a
coefficient of proportionality associated with the geometrical configuration of the
void space. It is possible to add in the above expression a coefficient of proportion-
ality, say, Cf , to be determined, like all coefficients, experimentally. We prefer not
to add this coefficient here, and to envision that it is imbedded either in � or R. In
fact,Rmay be envisioned as some kind of tortuosity associated with the momentum
transferred from the moving fluid to the solid. It is an extension of Newton’s (diffu-
sive) momentum flux to a porous medium, taking into account the directions of the
solid-fluid microscopic interface elements.

With the terminology introduced in the preamble to Sect. 2.3, (3.5.1) is a constitu-
tive relationship. Later, we’ll suggest that this makes Darcy’s law also a constitutive
relationship.

In Sect. 4.2.4, we use (3.5.1) to derive Darcy’s law and other flux expressions
as simplified versions of the momentum balance equation. In Sect. 6.2.1 we shall
consider the momentum exchange in the case of two phase flow, leading to the
corresponding fluid flux expressions.

However, when the velocity difference, Vr becomes larger, there is no reason
to assume that the momentum transfer depends only on the first power of Vr . In
fact, all experiments show that as Vr increases, the relationship between the rate of
momentum transfer and the relative velocity is no longer linear, as in (3.5.1). For
example, we may write the non-linear constitutive relationship:

(

f M
f →s

)

i
= Ai j Vr, j + Bi jkVj Vk + Ci jklVj VkVl + · · · (3.5.2)

In Sect. 4.3.2, we present Forchheimer’s equation which relates the pressure gra-
dient, ∇ p, to the sum of a linear and a quadratic terms in V.

http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_4
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3.5.2 Interphase Energy Transfer

There is no interphase energy transfer when we assume that all phases at a (macro-
scopic) point are at the same temperature. However, wemay encounter cases inwhich
this equilibrium assumption is not valid. One such example is a chemical reaction
which is fed by streams of fluids at different temperatures. Another example is at
the initiation of steam (or hot water) injection into a (cold) rock formation. The tem-
perature difference may gradually be closed, but it does exist for a while. While it
exists, the rate of energy transfer is (1) proportional to the difference in temperature,
(2) proportional to the contact area between the solid and the fluid in the void space,
and (3) inversely proportional to some length characterising the distance between the
void space occupied by the fluid and the solid matrix. The coefficient of proportion-
ality will be an equivalent thermal conductivity which takes into account the thermal
conductivity of the fluid, that of the solid matrix and the porosity. The subject is
discussed in detail in Sect. 8.3.4.

3.5.3 Sources of Extensive Quantities

In the macroscopic level E-balance equation (3.3.4), this term appears as θαρα�E .

A. Source of Mass of a Fluid Phase

There are no fluid mass sources within a fluid phase. However, often especially in
dealing with flow in ground water aquifers and in oil and gas reservoirs, fluids are
injected into the geological formation, or pumped from it through wells. Because a
well is small, relative to the extent of the considered geological formation, it is often
considered as a point source (or sink) for fluid mass. This subject will be discussed
in Sect. 5.1.1.

B. Sources of Mass of a Chemical Species in a Fluid Phase

A source of this kind may be due to (1) decay (e.g., radioactive), or production of a
considered chemical species, and (2) by chemical reactions. We shall elaborate on
such sources in Chap.7.

C. Sources of Momentum of a Fluid Phase

We are considering sources only in the fluid due to forces acting on it (but per unit
volume of porous medium). In the case of single phase flow considered here, we
have two sources of momentum per unit volume of porous medium:

• A source due to body forces, here due to gravity, i.e., �M = −φρg∇z.
• A source due to the pressure gradient in the fluid, i.e.,−φ∇ p, where we have taken
into account that the considered fluid occupies only part of any cross-sectional area
through the porous medium.

http://dx.doi.org/10.1007/978-3-319-72826-1_8
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_7
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D. Sources of Energy of a Phase

There are four possible sources of energy:

• Sources, φρ�E

chem(≡ φρ�H
chem), due to heat generated by chemical reactions in the

fluid phase (when such reactions occur).
• A source V·(φρF), due to the work, per unit volume of porous medium, by the
body force F (= −g∇z).

• A source −∇·[V·φ(−τ )], resulting from the work of the viscous (shear) stress in
the fluid, per unit volume of porous medium.

• A source due to the work of the pressure, per unit volume of the porous medium.

3.6 Macroscopic E-Balance Equations (2)

In this section, we shall insert the expressions for fluxes, rates of transfer and sources,
all for E , into the balance equations presented in Sect. 3.3, in order to obtain specific
balance equations in terms of the problem variables: p, T,V, ργ, γ = 1, 2, . . . , NC .
We also have ρ = ∑

(γ) ργ . Altogether we have NC + 3 variables, and NC + 3 equa-
tions: NC + 2 balance equations and one constitutive relation,

ρ = ρ(p, T, ργ; γ = 1, 2, . . . , NC).

3.6.1 Mass Balance of a Fluid Phase

Inserting the advective mass flux into (3.3.7), considering a single fluid phase that
occupies the entire void space, with no mass sources, we obtain:

∂φρ

∂t
= −∇· (φρV) , or

∂φρ

∂t
= −∇· (ρq) , q = φV, (3.6.1)

where q denotes the specific discharge and we have assumed that the advective flux
of the fluid mass is much larger than the dispersive one (see Sect. 3.4.3) so that the
latter can be neglected. Note that many authors prefer to state this equation in the
second form, i.e., in terms of q. However, this is inconvenient when φ varies in space
and time, or when we consider solid deformation.

3.6.2 Mass Balance for a γ-Chemical Species

From (3.3.8), rewritten for a single fluid phase, we obtain

∂φρωγ
α

∂t
= −∇·φ (

ρωγV + Jm
γ

dis + Jm
γ

di f

) + f m
γ

s→α + φρ�mγ

, (3.6.2)
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into which we can now insert appropriate expressions for the non-advective γ-fluxes
that appear in Sect. 3.4.4. As an example, for an isotropic case, we shall make use of
(3.4.46):

∂φρωγ
α

∂t
=

−∇·φ[ρωγV − a∇ωγ − 2d(∇ωγ)2∇ωγ − (

g1V2∇ωγ + g2〈∇ωγ,V〉V)]
+ f m

γ

β→α + φρ�mγ

. (3.6.3)

We note that the total mγ-flux is made up of an advective flux, a (linear) diffusive
flux, with a representing the (scalar) coefficient of diffusion in a porous medium,
ρD∗

pm , a non-linear diffusive flux, and a dispersive flux, which is proportional to the
fluid’s velocity squared and depends on two (scalar) coefficients that represent the
effect of the void space geometry. More on the coefficients of molecular diffusion
and the coefficients of dispersion is presented in Chap. 7.

3.6.3 Momentum Balance of a Newtonian Fluid

For a Newtonian fluid, and (1) expressing the advective momentum flux by JM
adv ≡

φρVV,V ≡ Vf , (2) expressing the momentum diffusive flux, JM
di f , by the dissipative

part of the stress, i.e., φτ , (3) neglecting the dispersive momentum flux, (4) com-
bining the pressure part with the body force, i.e., −φ(∇ p + ρg∇z), where −g∇z
expresses the body force due to gravity, and (5) using (3.5.1) to express the fluid-
to-solid momentum transfer, fMf →s = (φμ/�2)R·(Vf − Vs), we rewrite the fluid’s
momentum balance equation (3.3.9) in the form:

φρ
DVf

Dt
= ∇·(φτ ) − φ (∇ p + ρg∇z) − φ

μR
�2

· (Vf − Vs). (3.6.4)

In the above equation, each term expresses added momentum per unit volume of
porous medium per unit time.

If we (1) neglect the nonlinear terms in the series expression for the diffusive
flux of momentum, (2) neglect the dispersive flux of momentum, and (3) express
the diffusive flux of momentum, τ , by φμ∇V, i.e., assuming isochoric flow at the
microscopic level, the momentum balance equation (3.6.4) reduces to:

φρ
DVf

Dt
= ∇·φμ∇Vf − φ(∇ p + ρg∇z) − φ

μR
�2

· (Vf − Vs). (3.6.5)

The macroscopic momentum balance equation (3.6.5) may be referred to as the
Navier–Stokes equation for a porous medium. With a number of special cases, it will
be further discussed in Sect. 4.2.4.

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_4
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3.6.4 Energy Balance

We start from the energy balance equation (3.3.26). For the total energy flux, in the
case of an isotropic porousmedium, wemake use of (3.4.56), i.e., taking into account
only the linear diffusive heat flux, and the ‘Fickian’ dispersive flux. Energy per unit
volume of porousmedium is added by (1) thework done on the fluid phase by external
body forces, e.g., gravity (V·φρF ≡ −V·φρg∇z), (2) work done on the fluid by the
stress within the fluid, composed of the work done by the viscous forces (∇·(V·φτ ))

and by the pressure forces, (∇·V·φpδ), and (3) heat produced by chemical reactions
within the fluid (= φρ�H ). We obtain:

∂

∂t

[

φρ
(

I + 1
2V

2
)] = − ∇· [φρ

(

I + 1
2V

2
)

V
] − ∇·φJH

di f − ∇·φJH
dis

+∇·[V·(φτ )] − ∇·[V·(φpδ)] − V·φρg∇z + φρ�H , (3.6.6)

in which the diffusive and dispersive fluxes of heat are defined by (3.4.56), and the
shear stress, τ , can be expressed by (3.4.50). Note that (1) there is no exchange of
heat between solid and fluid, as we have assumed that both are at the same T , and
(2) we have assumed heat flux only in the fluid, as if the solid matrix is an insulator.

Other forms of the energy balance equation are presented in Sect. 8.2.

∗ ∗ ∗

In Chaps. 5–9, we shall use the E-balance equations presented above as the cores
of models that describe mass, energy, and momentum transport. There, to present
complete well-posed models, we shall also present and discuss the appropriate initial
and boundary conditions for each case.

3.7 Constitutive Equations

So far in this chapter, we have presented the fundamental balance equations for
flow and transport in any fluid phase, first at the microscopic level and then at the
macroscopic one, i.e., in a porous medium. To simplify the discussion here, let
us consider the former case, i.e., the microscopic level. The same conclusions are
applicable also to multiple phases at the macroscopic one, i.e., for modeling any
problem of transport in a porous medium domain. Since, in what follows, we shall
refer to a single fluid continuum only, no subscript will be used.

For any fluid phase at the microscopic level, we have the following system of
balance equations:

• Mass balance equation for a fluid (Vf ≡ V). Since there is no source of phase
mass:

∂ρ

∂t
= −∂(ρVi )

∂xi
. (3.7.1)

http://dx.doi.org/10.1007/978-3-319-72826-1_8
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_9
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It is a single equation that contains four scalar variables: the density, ρ, and three
scalar velocity components, Vi .

• Linear momentum balance:

∂(ρVi )

∂t
= − ∂

∂x j
(ρViVj − σi j ) + ρFi , (3.7.2)

which is a set of six equations for the three components of the (assumed known)
body force, Fi , and the six components of the stress, σi j , (≡ σ j i ).

• Internal energy balance:

ρ
∂u′

∂t
= −ρVi

∂u′

∂xi
+ σi j

∂Vi

∂x j
+ ∂(ρ j Hi )

∂t
+ ρ�H , (3.7.3)

where u′ denotes internal energy density, jHi is the i th component of heat flux,
and �H denotes energy source, and we have taken into account the mass balance
(3.7.1).

• Mass balance for a γ-chemical species in a fluid phase:

∂ργ

∂t
= − ∂

∂xi

(

ργVi + jγi,di f

)

+ ρ�γ, (3.7.4)

and we write one such equation for every γ-species. In the above equation, we
have four scalar variables: ργ and jγi,di f for every γ-species, and �γ is known.

• Entropy balance:

ρ
∂s

∂t
= − ρVi

∂s

∂xi
+ 1

T

(

τi j
∂Vi

∂x j
− ∂ j Hi

∂xi

+ ρ�H +
∑

(γ)

μγ
∂ jγi,di f
∂xi

− ρ

NC
∑

γ=1

μγ�γ

)

, (3.7.5)

with NC + 8 additional variables: μγ (NC variables), τi j , T and s (≡ specific
entropy).

Altogether, for an NC species phase, since
∑NC

γ=1 ργ = ρ, we have NC + 5(≡
(NC − 1) + 6) independent balance equations in the 17 + 5NC(≡ 22 + 5
(NC − 1)) variables that are functions of time and position:

ρ, Vi ,σi j , u
′, j Hi , ργ, jγi ,μγ, τi j , T, s.

The above equations are nothing but universal statements of balance, which are
valid for any phase continuum. They contain no information on the specific material
(fluid phase, solid, chemical species) involved in any specific investigated case. For
example, they say nothing on the internal constitution of the considered fluid or solid,
or of how these phases respond to pressure or temperature changes. This observation



3.7 Constitutive Equations 227

is important in view of the fact that different fluids and solids behave differently as
pressure, temperature, stress, and solute concentrations vary. Moreover, their state of
aggregation -solid, liquid, gas- may also vary during a considered case. Furthermore,
within each of these states, different materials behave differently.

For any fluid or solid, a total of additional 12 + 4NC relationships are needed
in order to complete the above description of transport for any specific material.
These take the form of a closed set of equations (i.e., number of variables equal to
the number of equations) that describe the behavior of the particular material that
comprises the specific phase and chemical species in a considered problem.We refer
to these relations as constitutive equations. As we shall see in the examples below,
constitutive equations take the forms of equations of state, as well as stress-strain
relationships and flux equations, which may be regarded as dynamic equations of
state.

Accordingly, let us add six additional equations:

σi j = τi j − pδi j (6 equations), (3.7.6)

which decompose the stress components into a deviatoric part τi j , and a pressure,
p, which, in a fluid, is taken positive for compression). This equation is a definition,
valid for any fluid, It contains no coefficient. We now have 11 + NS equations, but
the total number of variables has been increased to 18 + 5NC , as we have added the
pressure, p, as a variable. The 7 + 4NC relationships still required to obtain a closed
set of equations, take the forms of equations of state. These can be expressed in one
of the three following forms:

• Equations of state (EOS):

ρ = ρ(p, ργ, T, ), (one equation),
s = s(T, v,ωγ), (one equation),

or
u′ = u′(T, v,ωγ), (one equation),
μγ = μγ(p,ωγ, T ), (N − 1 equations),

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3.7.7)

where ρ = 1/v, μγ is the chemical potential of the γ-species, and ωγ = ργ/ρ. The
symbols ργ and ωγ stand for all the ργ’s and ωγ’s of all the γ species present in the
system. Under certain circumstances, we may use an expression for the chemical
potential μγ = μγ(p,ωγ, T ).

• Stress-strain relationships:

τi j = τi j (Vi ), (6 equations). (3.7.8)

Under certain circumstances, it may be advantageous to introduce the relationship
εi j = ε(σi j , T ).
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• Flux equations:

Heat conduction: j Hi = j Hi (T ), (3 equations),

Diffusive mass flux: jγi,di f = jγi,di f (ρ
γ), (3(N − 1) equations).

We wish to emphasize one important difference between the balance equations
and the constitutive relationships. Unlike the former, the latter always contain (scalar
or tensorial) coefficients that characterize the specific considered material, phase,
or chemical species. They have to be determined experimentally, for any considered
phase or chemical species.

So far, the entire discussion, as well as the schematic examples of constitutive
equations presented above, are related to a single phase continuum, viz., at themicro-
scopic level. However, the same ideas–balance equations, constitutive relationships
and definitions–are also applicable to the macroscopic level. Just as we obtain the
macroscopic balance equations by averaging the microscopic ones, the macroscopic
constitutive equations for a phase in the multiphase system called ‘porous medium’
(regarded as a continuum), or for the porous medium as a whole, can be obtained,
by averaging the appropriate microscopic equations.

For example, given a microscopic constitutive equation in terms of the variables
a and b in the form

a = f (b),

valid for an α-phase, we assume that by averaging over the α-phase within an REV,
we obtain the corresponding macroscopic constitutive relationship in terms of the
macroscopic variables aα and b

α
, in the form:

aα = f (b
α
). (3.7.9)

Note that this conclusion is not necessarily correct if a constitutive relationship
involves derivatives.

Denoting the deviation of b from its mean by b̊ ≡ b − b
α
, we have

f (b) ≈ f (b
α
) + b̊

d f

db

∣
∣
∣
∣
b

α
+ (b̊)2

d2 f

db2

∣
∣
∣
∣
b

α
. (3.7.10)

Since, b̊
α = 0, we have:

aα = f (b)
α ≈ f (b

α
) + (b̊)2

α d2 f

db2

∣
∣
∣
∣
b

α
. (3.7.11)

Thus, if the mean-square deviation, (b̊)2
α

, is sufficiently small within the REV, then
the relationship in (3.7.9) holds. This condition is satisfied when the constitutive
relationship is close to a linear function. For example, fluid density is almost a linear
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function of pressure over a large range of pressures. However, for highly nonlinear
constitutive relationships, it is necessary to verify that the deviations of the arguments
are not too large.

Or, the macroscopic constitutive relationship can be obtained by making use of
the phenomenological approach. According to this approach, we assume that the
general structure of a macroscopic constitutive equation is the same as that of the
microscopic one, without going through an averaging procedure. It then remains
only to determine experimentally the values of the coefficients that appear in the
macroscopic constitutive relation written in this way. By following this procedure,
we lose the interactions across interphase boundaries that appear in the averaging
process, assuming that they are relatively minor.

We should mention one important difference between the microscopic level and
themacroscopic one. It concerns interphase E-transfers, expressed by the term f E

α→β ,
or f E

α→s , in the macroscopic E-balance equation. These terms usually involve inter-
phase transfer coefficients.

Obviously, it is essential to select the appropriate constitutive relationship for a
given problem (and this means for a given set of fluid and solid materials), and use
in them appropriate values of coefficients which are independent of the fluid/solid
movement. However, while the equations of state are derived experimentally, and this
includes both their general structure aswell as the values of the coefficients appearing
in them, they must obey the fundamental laws of physics and thermodynamics. Gray
and Hassanizadeh (1998), Hassanizadeh (2004, p. 187), following Eringen (1980,
p. 151), and others, refer to these rules as ‘axioms’ which constrain the equations of
state:

(a) Axiom of causality: When investigating the behavior of a considered system,
certain properties can be selected as observable, or measured. Examples are the
location of a fluid particle and the temperature. The remaining properties and
quantities are considered as causes. The latter are regarded as dependent, or con-
sequences of the former. For example, pressure and temperature are observable
quantities.

(b) Axiom of determinism: The value of the thermodynamic constitutive functions
at a material point within a considered domain, at a specified time, is determined
by the history of the motion and temperature of all material points within the
considered domain. Thus, it excludes any dependence on points outside the
considered body and future times.

(c) Axiom of equipresence: All constitutive functions should be expressed in terms
of the same list of independent constitutive variables until otherwise deduced.

(d) Axiom of objectivity: This axiom stems from the recognition that the behavior
of material must be independent of the motion of an observer.

(e) Axiom of material invariance: Constitutive relationships must be invariant
under certain groups of orthogonal transformations and translations of the mate-
rial coordinates. These constraints are the result of symmetry conditions implied
by these transformations in the material frame of reference. In order to obey this
constraint, the constitutive equations are expressed in tensorial form.
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(f) Axiom of neighborhood: It is safe to assume that what happens very far from
a considered system has very little effect on the latter.

(g) Axiom of memory: Similarly, things that happened in the far past have very
little effect on the present behavior of a considered system.

(h) Axiom of memory: Similarly, things that happened in the far past have very
little effect on the present behavior of a considered system. Axiom of admis-
sibility: The constitutive equation should not violate conservation laws (i.e.,
mass, momentum and energy balance equations) and the second law of thermo-
dynamics.

(see also Classical Field Theories in Truesdell and Toupin 1960.) Some authors
present a slightly different list.

These are important axioms. They should be obeyed whenever choosing a con-
stitutive relationship. However, beyond their presentation here, we shall not dwell
on them any further, assuming, implicitly, that all constitutive relations mentioned in
this book obey these axioms, both at the microscopic level, but also when selecting
such relationships within the framework of macroscopic models.

As mentioned earlier, constitutive relationships always include coefficients that
representmaterial properties. They arematerial dependent and have to be determined
empirically for any considered case. Usually, they are determined at the microscopic
level. However, when considering phenomena of transport in porous media, say,
with the void space occupied by one or more fluids, we encounter interactions across
interphase boundaries (= interphase transfers). These interactions occur as boundary
conditions at the microscopic level, but their effects have to be taken into account
when we consider their macroscopic (averaged) counterpart. This is done when the
averaging approach is employed, but also in the phenomenological approach. Then,
what happens at phase boundaries appears as interphase exchange terms. Because
we do not know the detailed form of interphase boundaries, constitutive relation-
ships are obtains by conducting experiments on porous medium samples e.g., on a
core extracted from a geological formation. Obviously, the above axioms are also
applicable to the macroscopic level constitutive relations.

Altogether, when considering phenomena of transport in porous media, we
encounter (macroscopic):

• Constitutive relationships that express solid and fluid behavior, e.g., density and
enthalpy, in response to changes in pressure, temperature, and solute concentration.
These relationships are the same for the microscopic and the macroscopic models,
as they involve no interphase boundaries.

• Constitutive relations that express the transfer of extensive quantities, e.g., solute,
heat, and momentum, across microscopic interphase boundaries. This is the f E

term appearing in the macroscopic balance equation.
• Flux equations that express the motion of extensive quantities (e.g., mass of a
chemical species and heat) in response to driving forces.

• Definitions that express stress-strain relationships for the solid matrix and for the
saturated porous medium as a whole.

• Definitions, e.g., S� + Sg = 1.
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Finally, a few comments on certain specific constitutive equations. The first is
Darcy’s law, which plays a central role in phenomena of transport in porous media.
While Fick’s law and Fourier’s law, expressing the diffusive fluxes of mass and heat,
respectively, exist at both the microscopic and the macroscopic level, Darcy’s law
exists only at the macroscopic one. It expresses at the macroscopic level the momen-
tum transfer from the fluid to the solid at their microscopic interfaces. Although it
is often considered as an approximate form of the momentum balance equation (see
Sect. 3.5.1), it is a constitutive relationship of the flux type. It expresses the momen-
tum transferred from the fluid to the solid (some refer to it as ‘friction’). It may be
considered as a macroscopic extension of Newton’s law. Henry Darcy discovered
it as an expression for the loss of head in an experiment of flow through a sand
column. The coefficient-hydraulic conductivity-involves the fluid’s viscosity (for a
Newtonian fluid) and the geometrical features of the fluid-solid interface.We express
the momentum transfer, f M by (3.5.1) and then express it by the momentum balance
equation in which we neglect certain terms.

The second comment is on the capillary pressure. Here we do have a microscopic
law, in the form of Laplace formula (Sect. 2.4.12), but we do have also a macroscopic
law in the form of (6.1.5). However we should take into account the condition of
continuity of momentum transport expressed by (3.3.20).

Equations of state andflux equation for extensive quantities are presented through-
out the book. For example, equations of state for fluid and solid phases are presented
in Sect. 2.3. Stress-strain relationship for an elastic porous medium is presented in
Sect. 2.3.5. Macroscopic flux equation for a dissolved chemical species is presented
in Sect. 7.2.2, for heat in Sect. 8.3.4, and for momentum in Sect. 3.5.1.

3.8 The Finite Volume Method

So far in this book, we have emphasized that the core of the mathematical model that
describes the flow and transport of any extensive quantity through a porous medium
domain is a partial differential equation (PDE) that describes the balance of that
quantity at a point in the considered domain. The analytical solution of this equa-
tion, subject to appropriate initial and boundary conditions, provides information on
future values of relevant state variable at all points within the considered domain.
Unfortunately, although analytical solutions are always preferable, they are seldom
solvable for problems of practical interest, because of the irregular boundaries of the
problem domain, the heterogeneity of the domain, with respect to its physical prop-
erties, and, often, because of the nonlinearity of the equations. Instead, in practice,
computer-based numerical techniques are used for solving such equations.

In most numerical techniques, the mathematical model, written in terms of con-
tinuous state variables, like p(x, t) and c(x, t), is replaced by a numerical model,
written in terms of discrete variables, such as pnj ≡ p(x j , tn), which represent val-
ues of state variables at grid points x j and times tn , in space and time, respectively.

http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_8
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Furthermore, in the finite difference method, the derivatives that appear in the PDE
are replaced by approximate expressions written in terms of values at the grid points.

In all numerical methods, the sought values of state variables are obtained only
for specified points in space and time (= the grid points). Information related to
other points in the problem space and time domains are obtained by interpolation.
Numerical methods of solution, or numerical models, are beyond the scope of this
book. However, since we have been emphasizing that the core of a mathematical
model is the partial differential equation that expresses the balance of the considered
extensive quantity, we wish to show that also in numerical models, the core is a
statement of balance of the considered extensive quantity, this time taken over a
specified finite domain, and over a specified time interval. Just a reminder: the partial
differential equation that represents the balance of an extensive quantity ‘at a point’
is obtained by first writing the balance for a finite domain in space and a finite time
interval, and then going to the limit as the domain and the time interval are shrunk
to a point.

Obviously, seeking the solution in the form of values of state variables at many
(often very many) points in space and time, requires an appropriate computer and a
computer program, referred to as ‘code’, or ‘software’.

The finite volume method is one of the numerical models that are based on writing
the relevant balance equation (of a considered extensive quantity) for specified finite
subdomains, often called ‘cell’, ‘elements’, or ‘gridblocks’.

As examples, we may mention the TOUGH2 (Pruess et al. 1999) and TOUGH+
(Moridis et al. 2008) codes. In these codes, the balance equation of the considered
extensive quantity is presented in its integro-differential form, rather than in the
form of a partial differential equation. The considered porous medium domain is
divided into small volume elements, or cells, and values of relevant state variables
and of porous medium properties are assigned to every one of them. A balance of the
considered extensive quantity is then written for every cell in terms of these values.

Specifically, Fig. 3.3 shows a porous medium subdomain (= finite volume ele-
ment, cell) at the macroscopic level. The cell, �n , of finite volume Vn , bounded

Fig. 3.3 A quadrilateral cell
in the finite volume method
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Table 3.1 Example 1: Two phases and two components

Phases (α) Aqueous (w) Non-aqueous (n)

Components (κ)

H2O � �
CO2 � �

by a closed surface of area Sn, n = 1, . . . , 4, with ν indicating the outward normal
unit vector on the latter. The figure also shows the adjacent cells as the considered
extensive quantity can cross inter-cell boundaries.

The void space in the cell is occupied by one, two or three α-fluid phases, each
at the volumetric fraction θα(≡ φSα). In addition, we have the solid phase (relevant
for heat transport). An extensive quantity Eκ

α (read: the κth-extensive quantity of the
α-phase’, (specific value eκ

α) is transported in andwith each of the (one, two or three)
fluid α-phases that occupy the void space in this domain and through the solid (e.g.,
heat, or momentum).

As an example, consider the case of a geological formation saturated by brine into
which supercritical CO2 is injected. As the latter–non-wetting phase– spreads out,
displacing the brine (= wetting phase), some CO2 will dissolve in the brine, while
some H2O will dissolve into the CO2. The following table represents the phases and
components in this example (Table3.1):

As a second example, consider the case represented by the following table (Falta
et al. 1995, p. 6):

This is a case in which the void space is occupied by three fluid phases: a gas, an
aqueous phase and a Non-aqueous Liquid Phase (NAPL). We declare three compo-
nents:water, air, andVolatileOrganicCompound (VOC).Wenote that the component
water can be a gas or an aqueous phase, while air and VOC can be in any of the three
phases. If we consider the extensive quantity mass, and its density, then we have
mκ

α and ρκ
α. Note that the ‘component’ (as defined in Sect. 1.1.1) represents a certain

fixed combination of γ-species. However, in non-isothermal transport, heat is also
considered as a (pseudo) component. For modeling heat transport, we often use for
heat: Eκ → H.

Heat and mass transport (of fluid phases and dissolved chemical species) in a
petroleum reservoir may serve as a third example. The void space in the reservoir
is occupied by three fluid phases: an aqueous wetting phase, a NAPL, which is the
non-wetting phase, and an aqueous intermediate wetting phase–the oil. Each of these
phases is made up of components; gas, oil and water, In addition, we may consider
solutes that are present in the oil and may also dissolve in the water.

As a result of fluxes to and from the neighboring cells, the considered quantity of
Eκ

α accumulates in the considered volume element, due to:

(a) The net quantity of E that enters the considered cell from adjacent cells through
its bounding surfaces, at the fluxes of Eκ

α that prevail on them.

http://dx.doi.org/10.1007/978-3-319-72826-1_1
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(b) The net production of Eκ
α by various sources that exist within the considered

cell.

The total flux mentioned in (a) above involves advection, diffusion and dispersion.
However, we recall that there is no diffusion nor dispersion of the total mass of a
phase. The same extensive quantity (e.g., heat) may also be present and transported
in the solid (s)-phase, within the �n-cell. In this case, the only flux through the solid
is the diffusive (= conductive) heat flux.

Let Mκ ≡ ∑

(α) M
κ
α, denote the total amount of a considered extensive quantity

associated with the relevant α-phases, per unit volume of the nth cell, of volume Vn .
The rate at which this quantity is increased is expressed by:

∂

∂t

∫

Vn

Mκ dVn.

The total flux is expressed by:

Jκ ≡
∑

(α)

Jκ
α,adv+dis+di f .

Within the phases that occupy the cell, the considered Eκ
α is produced (e.g., by

chemical reactions) at a rateGκ = ∑

α θαρα�κ
α, per unit volume of porous medium,

with �κ
α denoting the rate of production of κ per unit mass of the α-phase. Following

(3.2.4), we can write the balance of Eκ within the �n cell, in the form (Pruess et al.
1999)

∂

∂t

∫

Vn

Mκ dVn = −
∫

Sn

Jκ·ν dSn +
∫

Vn

Gκ dVn . (3.8.1)

Following are four examples. Since our objective here is only to demonstrate
how balance equations of considered extensive quantities are written as integro-
differential equations, no details will be presented on the actual fluxes and storage
coefficients of the considered extensive quantities. These are presented and discussed
in the relevant chapters of the book.

A. Mass of a Fluid α-Phase in Multi Phase Flow

We consider the flow of anα-phase at saturation Sα in two-phase flow, say a liquid (�)
and a gas (g), in the absence of sources. For this case,Mκ = φSαρα. No production
of mα, i.e., �α = 0. The mass flux of the α phase is Jκ ≡ ραqα ≡ φSαραVα is by
advection only, obeying, for example, Darcy’s law for multiphase flow. The balance
equation (3.8.1) takes the form:

∫

Vn

∂φSαρα

∂t
dVn =

∫

Sn

φSαραVα·ν dSn, α = �, g. (3.8.2)



3.8 The Finite Volume Method 235

Table 3.2 Example 2: Multiple phases and components

Phases (α) Gas Aqueous NAPL –

Components (κ)

Water � � –

Air � � �
VOC � � �

Table 3.3 Example 3: Multiple Phases and components

Phases (α) Gas (G) Aqueous (A) NAPL (N ) Solid (S̄)

Components (κ) –

Gas (g) � � �
Oil (o) � � �
Water (w) � � –

Solutes (γ) � �
Solid (s) �
Heat (H) � � � �

B. Mass of Multiple κ-Components in Multiphase Flow

In this case (Table3.2), for any of the κ-components:

Mκ
α =

∑

α=G,A,N

φSαραωκ
α, κ = g, o, w, s. (3.8.3)

C. Mass of a γ-Solute in Multiphase Flow

We are considering the transport of mass of a γ-chemical species in a fluid phase
in multiphase flow, using ωγ

α to denote the mass fraction of γ in α. For all phases
together, we have (Table3.3):

Mκ =
∑

(α)

φSαραωγ
α, γ = 1, 2, . . . , NC. (3.8.4)

The flux Jγ is by advection, diffusion and dispersion of γ in all phases:

Jγ =
∑

(α)

φSαραωγ
αVα +

∑

(α)

Jγ
α,di f +dis .

The rate of production of γ per unit cell volume is

Gγ =
∑

(α)

φSαρα�γ
α.
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Altogether, the γ-balance equation for the nth cell takes the integro-differential
form:

∫

Vn

∂

∂t

∑

(α)

φSαραωγ
α, dVn =

∫

Sn

Jγ ·ν dSn +
∫

Vn

Gγ dVn, γ = 1, 2, . . . , NC,

(3.8.5)
and we have NC such equations–one for every species present in the system.

When the γ-species can be adsorbed on the solid, the term (1 − φ)ρsϒ
γ
s , where

ϒ
γ
s denotes the mass of adsorbed γ-species per unit mass of solid, is added on the

r.h.s. of (3.8.4).

D. Heat in Multiphase Flow

In this case, againwithmultipleβ-fluid phases occupying the void space,Mκ denotes
heat (H ) per unit volume of cell, treated as a pseudo-component:

MH = (1 − φ)ρsCsT +
∑

(α)

φSαραuα,

in which T denotes temperature, Cs denotes the heat capacity of the solid (s), and
uα denotes the specific internal energy of the α-phase fluid. Accordingly, the heat
balance equation is:

∫

Vn

∂

∂t

⎡

⎣(1 − φ)ρsCsT +
∑

(α)

φSαραuβ

⎤

⎦ dVn =
∫

Sn

JH ·ν dSn +
∫

Vn

GH dVn .

(3.8.6)
Finally, a comment about monitoring. Here, like in any numerical technique (e.g.,

finite element method, finite differences, etc.), in which the domain is divided into
finite volume cells, eventually, we assign the average value of state variables in the
elementary cell to the cell’s center. Then, by interpolation, we obtain the continu-
ous variation of the variables throughout the domain. These are the values that we
compare with values that we monitor in the field, say, in wells or by taking samples.

∗ ∗ ∗

This concludes our presentation of the balance equations for the extensive quan-
tities: mass of a fluid phase, mass of a solute in a fluid phase, momentum of a phase,
and energy of a phase and of the porous medium as a whole. In subsequent chapters,
we shall elaborate on each of these cases, and discuss the various coefficients that
appear in the flux and transfer expressions. However, before leaving this chapter, we
should refer to the observation that a large number of variables of state are involved
in any flow and transport problem.
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3.9 Primary Variables and Degrees of Freedom

Aswill be shown in subsequent chapters, a rather large number of variables is required
in order to fully describe flow and transport in a porous medium domain, especially
when the considered problem involves multiple phases, dissolved interacting chem-
ical species, non-isothermal conditions, and a deformable solid matrix. However, on
the basis of balance and thermodynamic relationships, the number of variables to be
solved for in a mathematical model can be significantly reduced, thus simplifying
the task of solving transport models. Obviously, although the actual solution of the
(usually, partial differential) equations is carried out for a small number of variables,
eventually, the values of all system variables are obtained.

The number of degrees of freedom was introduced in Sect. 2.3.1 as the minimal
number of variables that are needed in order to completely describe a system, whether
the latter is at the microscopic level, or the macroscopic one. All other variables are
functions of these degrees of freedom, or of their derivatives. Thus, for a given
transport problem, the number of degrees of freedom, NF, is equal to the number of
variables, NV, minus the constitutive relationships and constraints, NE, imposed on
these variables i.e.,

NF = NV − NE. (3.9.1)

The degrees of freedom are also referred to as primary variables. By definition, the
primary variables, cannot solely be algebraically expressed in terms of each other,
as, often, they must satisfy partial differential equations, in particular, when the latter
are equations of balance of extensive quantities.

The material in his section is based on Bear and Nitao (1995), who presented a
comprehensive discussion on the subject of degrees of freedom in modeling phenom-
ena of transport in porous media under various conditions.

3.9.1 Degrees of Freedom in Multiphase Flow

Let us start with the case in which all phases and species within a system are at
equilibrium, or when the rate of transformation of the system from one state to
another is such that it can be assumed to be continuously close to equilibrium.

The state of a system composed of N P phases and NC chemical components
under conditions of equilibrium is fully defined by NF state variables determined
by the relationship called Gibbs phase rule (3.9.2) (e.g., Denbigh 1981, p. 185).
Repeated here for convenience, we write:

NF = NC − NP + 2. (3.9.2)

degrees of freedom.

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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For example, consider the case of a single fluid phase composed of a single
species, say H2O, at a density ρ and temperature T . For this system, NC = NP = 1,
NF = 2. This means that the state of such system at equilibrium is fully defined by
two independent (of each other) variables, say the pressure, p, and the temperature, T .
We could, however, select also T and ρ, with the constitutive relation, ρ = ρ(p, T ),
as long as this relationship can, at least in theory, be solved for p as a function of
ρ and T . As a second example, consider two fluid phases: a liquid, consisting of a
single-species water, and a gas, composed only of water vapour. This means that we
have two phases and one species, and by Gibbs phase rule we have NF = 1, i.e., one
degree of freedom. Suppose we select T as the independent variable. Since we have
here liquid water and water vapour in equilibrium, the gas pressure is determined as a
function of T by pg = psat (T ), where psat is the saturated vapour pressure of water
at which the system can exist at any given temperature. Once we know p and T , we
can determine the densities of the phases, or the value of any other thermodynamic
property.

Next, let us consider a model that describes the behavior at the macroscopic
level of a system composed of multiple multi-species fluid phases within a possi-
bly deformable porous medium domain under non-isothermal conditions. Here, the
behavior at a point means the averaged behavior within an REV centered at the
considered point.

Based on balance considerations and on thermodynamic relationships, Bear and
Nitao (1995) showed that when conditions of thermodynamic equilibria prevail (or
are assumed to prevail as a good approximation) among all phases and species present
within a deformable porous medium under non-isothermal conditions, the number
of degrees of freedom, NF, in a problem of heat and mass transport, involving NP
fluid phases and NC non-reacting species, is given by the relationship

NF = NC + NP + 4. (3.9.3)

Under conditions of nonequilibrium between the phases, this rule becomes

NF = NC × NP + 2 × NP + NC + 4. (3.9.4)

In both cases, when Darcy’s law is used to determine the velocities of the fluid
phases, NF is reduced byNP.When the solidmatrix is non-deformable, NF is reduced
by 3, leading to the relationship

NF = NC + 1. (3.9.5)

Under isothermal conditions,
NF = NC. (3.9.6)

The above rules are, thus, extensions of the well known Gibbs phase rule to
phenomena of flow and transport in porous media. They are applicable to NC non-
reacting species. For a system with chemical reactions, let NSr be the number of
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reacting species and NReq denote the number of equilibrium reactions. Then, by
expressing the reactions in the form of a canonical set of equations, and using of the
law of mass action, we find NC = NSr - NReq .

As an example, consider the case (Lichtner and Karra 2014, p. 81) of NP fluid
phases that move and interact within a geological formation under non-isothermal
conditions. In this general case, we denote the fluid phases by subscript α, α =
1, . . . , N P . For example, in the case of CO2 sequestration, the fluids are H2O and
CO2. Each fluid involves chemical γ-species that move and interact. The considered
problem involves the following variables:

• Temperature, T , assuming thermal equilibrium between all participating phases,
independent of their number.

• Pressure, pα, of the α-phase, with α = 1, 2, . . . ,NP pressures of all the partici-
pating phases.

• NC chemical γ-species, γ = 1, 2, . . .NC, in every α-phase, with concentrations
measured as molar fractions Xγ

α, such that
∑

(γ inα) Xγ
α = 1. We have here 2

variables for every γ – one in any of the two adjacent phases.
• Two phase saturations, Sα, at every point, with

∑

(α) Sα = 1, and Sα − Sβ = pc,
where β is a phase which is not α, and pc denotes the capillary pressure. Note that
we have a capillary pressure relationship for every pair of fluid phases:

pc|α,β = pα − pβ, α �= β.

Altogether, the number of variables at a point is: 1 (for T ) + 2NP (for Sα, pα)
+ NP×NC concentrations (i.e., Xγ

α’s). To solve for these variables, we have the
following equations:

• Equality of the chemical potential (Sect. 2.2.4) at every point in space and for every
instant, between the two adjacent phases (i.e., “no jump” condition):

[[ μγ
α(pα, cγ

α, T ) ]](x,t) = 0,

i.e., μγ
α = μ

γ
β for γ = 1, 2, . . . ,NC.

• pα − pβ = pc(x, t) at every point, i.e., one more constraint (for the two-phase
case).

Altogether, we have:

• Number of variables: T, pα, Sα, Xγ
α, for a total on 1+ 2NP + NP×NC.

• Number of constraints and equations: 1 + NP + NC(NP-1) + NP - 1.

Thus the number of degrees of freedom, is (Lichtner and Karra 2014, p. 83):

NF = NC + 1.

We note that this number of degrees of freedom is independent of the number of
phases present in the system.

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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The number of degrees of freedom for reactive transport problems was also dis-
cussed by Saaltink et al. (1998).

Once the number of degrees of freedom has been determined for a given prob-
lem, we select the most convenient variables to be declared as primary ones, and
identify the (same number of) balance (partial differential) equations which have to
be solved in order to determine the values of these variables. All other variables are,
subsequently, determined by using the remaining equations—constitutive relations
and definitions.

Under certain conditions, as when dealing withmultiple multi-component phases,
conditions may develop under which the initially selected primary variables cannot
continue to play this role (e.g., when a phase disappears due to evaporation). Under
such conditions, the initially selected primary variables have to be changed.

3.9.2 Degrees of Freedom Under Nonequilibrium Conditions

In a porous medium, a system that undergoes changes in time due to motion of the
phases can never be strictly in complete/exact thermodynamic equilibrium (Bear and
Nitao 1995). Conditions of mechanical non-equilibrium prevail as a consequence of
the transfer of momentum from the moving fluid to the solid by viscous forces. This
gives rise to pressure gradients at the microscopic level within the REV. Tempera-
ture gradients may also occur because of viscous dissipation. If these pressure and
temperature gradients are large, the system will be far from chemical and thermal
equilibrium. Perhaps,more importantly, flow can transport components into theREV,
resulting in non-equilibrium concentrations. For a multi-phase REV, flow can cause
some phases to be under non-equilibrium conditions, and some of the phases may be
in non-equilibrium with each other. Bear and Nitao (1995) consider also this case.

The phases moving within the void space of a porous medium domain are never
in thermodynamic equilibrium. Conditions of mechanical non-equilibrium are the
consequence of the transfer of momentum by viscous forces from the moving fluid,
or fluids, to the solid. This gives rise to pressure gradients at the microscopic level
within theREV.Temperature gradientsmayalsooccur becauseof viscous dissipation.
If these pressure and temperature gradients are large, the system will be far from
chemical and thermal equilibrium. Furthermore, flow can transport chemical species
into the REV, thus resulting in non-equilibrium concentrations. For a multi-phase
REV, flow may cause some phases to be under non-equilibrium conditions. In spite
of the above statements, we usually assume that changes are slow so that we are
considering unsteady conditions f flow and transport, but the at every point, the
system is close to equilibrium and we use all kinds of equilibrium laws.

A. Degrees of Freedom Under Non-equilibrium Conditions

Bear and Nitao (1995) consider cases of non-equilibrium conditions in a deformable
porous medium domain containing a number of multi-species fluid phases under
non-isothermal conditions. Some of the chemical species may adsorb on the solid
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surface. Actually, they assume approximate equilibrium within each phase present
in the REV, but not between phases. The balance equations provide information on
the following state variables:

Kind Number of variables

ωγ
α, ρ

γ
ad NC × (NP + 1)

θα, θs NP + 1
Tα, Ts NP + 1
pα NP
Vα,Vs NP + 1
ws 1

where ρ
γ
ad denotes the REV-averaged mass density of an adsorbed γ-species, ws

denotes the displacement in the solid matrix, with:

DVsws

Dt
= Vs, or approximately

∂ws

∂t
= Vs,

and α = 1, . . . ,NP. The total number of variables is

NV = NC × NP + NC + 4NP + 4. (3.9.7)

We have not listed the phase internal energies, uα, and the densities, ρα, as they can
be related to the other variables through appropriate constitutive relations, assuming
macroscopic thermodynamic equilibrium within each phase.

The actual number of independent variables is much smaller due to various con-
straints. There are NP+1 constraints on these variables due to the following relations:

NP
∑

α=1

θα + θs = 1, and
∑

(γ)

ωγ
α = 1. (3.9.8)

In addition, we have to take into account the NP-1 capillary pressure relationships,

p1 = pα − pc1α(θδ, Tβ,ω
γ
β), α = 2, . . . ,NP. (3.9.9)

Altogether, the total number of constraints is

NE = 2NP, (3.9.10)

and the number of degrees of freedom is equal to

NF = NV − NE = NC × NP + NC + 2NP + 4. (3.9.11)
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To solve for these primary variables, we have

NB = NV-NE = NC × NP + NC + 2NP + 4 = NF

three partial differential equations:

Kind Number of equations

Massbalances NC × NP + NC + 1
Energybalances NP + 1
Momentumbalances NP + 1,

and the definition of ws as the 4th equation.
The set of primary variables is, in general, not unique. An example of a set of NF

primary variables is:

Kind Range Number

ωγ
α γ = 1, . . . ,NC − 1 (NC − 1) × NP

α = 1, . . . ,NP
ρ

γ
ad γ = 1, . . . ,NC NC

θs(≡ 1 − φ) 1
pα α = 1, . . . ,NP NP
Tα α = 1, . . . ,NP NP
Ts 1
Vα α = 1, . . . ,NP NP
Vs 1
ws 1

Let us show how the other variables can be solved in terms of these primary
variables. For example:

• We first solve for the θα (α = 2, . . . ,NP) in terms of the pα, using the capillary
relationships (3.9.9).

• We then solve for θ1 in terms of the other θα and θs , using:

NP
∑

α=1

θα + θs = 1, and (3.9.12)

• Finally, we solve for ωγ
α, using

∑

(γ) ωγ
α = 1.

Low volumetric fractions may not be unique function of pressure, and we may
need to use them instead of pressure (see Nitao and Bear 1996). Thus, another
possible set of primary variables is obtained by replacing the pα’s by the set, p1, θα
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Table 3.4 Degrees of freedom and primary variables for nonequilibrium case (Bear and Nitao
1995)

Deformable
solid

Darcy’s law Iso-thermal NF Primary variables
(γ′ = 1, . . . ,NC-1;
γ = 1, . . . ,NC;
α = 1, . . . ,NP)

Yes No No NC × NP + NC +
2NP + 4

pα, ω
γ′
α , ρ

γ
ad , Vα,

Vs , ws , θs , Tα, Ts ,

Yes Yes No NC × NP + NC +
NP + 4

pα, ω
γ′
α , ρ

γ
ad , Vs ,

ws , θs , Tα, Ts ,

No Yes No NC × NP + NC +
NP + 1

pα, ω
γ′
α , ρ

γ
ad , Ts , Tα,

No No No NC × NP + NC +
2NP + 1

pα,ω
γ′
α , ρ

γ
ad , Vα, Ts , Tα,

Yes No Yes NC × NP + NC +
NP + 1

pα, ω
γ′
α , ρ

γ
ad , Vα,Vsws , θs ,

Yes Yes Yes NC × NP + NC + 3 pα, ω
γ′
α , ρ

γ
ad , Vs ,ws , θs ,

No Yes Yes NC × NP + NC pα, ω
γ′
α , ρ

γ
ad ,

No No Yes NC × NP + NC +
NP

pα, ω
γ′
α , ρ

γ
ad , Vα,

(α = 2, . . . ,NP). In this case, the pα, (α = 2, . . . ,NP) are obtained as functions of
the θα and p1, using (3.9.9).

Since, within an REV, the number of phases may change as phases may disappear
or appear, the actual number and type of primary variables may change with time.

The primary variables depend also on the type of problem that is being mod-
eled and the simplifications involved, e.g., whether or not the solid is assumed to be
deformable. In the latter case, the variables Vs , ws , and θs are not needed, and NF is
reduced by three. Other cases are when the problem is isothermal, so that Ts = Tα =
initial temperature. In this case, the temperatures are not required as primary vari-
ables, and NF is reduced by NP+1. When approximate thermal equilibrium exists
between phases, Ts = Tα, only the temperature, say Ts , is needed, and then NF is
reduced by NP. When Darcy’s law is valid, the phase velocities Vα can be expressed
in terms of the other primary variables so that they should not be counted as primary
variables. These special cases are summarized in Table3.4.

If the phases are in thermal equilibrium with each other, then Tα = Ts and the
Tα’s may be removed from the set of primary variables. NF is then reduced in all the
above cases by the amount NP. If the adsorbed chemical species on the solid are in
chemical equilibrium with the fluid phases, then the ρ

γ
ad ’s are no longer needed as

primary variables and NF is reduced by NC.
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B. Degrees of Freedom for Approximate Chemical–Thermal Equilibrium

Suppose that at every (macroscopic) point within the domain, and at every instant of
time, the system is assumed to be in approximate thermodynamic equilibrium. Bear
and Nitao (1995) also consider the case in which the exchange of certain extensive
quantities between NPE phases (1 < NPE < NP) occurs sufficiently fast, so as to
establish equilibrium between them, with respect to the considered quantities, while
the other NP-NPE phases are not in equilibrium with respect to the same quantities.

Under equilibrium, we assume that adsorption isotherms take the form:

ρ
γ
ad/ρb = fα(ωγ

αρα), (3.9.13)

where ρb is the bulk density of the solid matrix (assumed constant), with:

ρb ≡ 1

Uo

∫

Uso

ρsdU . (3.9.14)

We start with the same NV=NC×NP+NC+4NP+4 variables as above. We have
the following constraints:

θs + ∑

(α) θα = 1 1
∑

(γ) ωγ
α = 1 NP

Ts = Tα NP
μγ

α = μ
γ
β (NP-1) × NC

ρ
γ
ad/ρb = fα(ωγ

αρα) NC
capillary pressure NP − 1

The number of constraints is NE=NP×NC+3NP. The number of degrees of freedom
is

NF = NV − NE = NC + NP + 4. (3.9.15)

The mass balance equations for all components may be summed over all the
phases to give NC component balance equations. The exchange fluxes cancel since
f γ
α→β = − f γ

β→α. This leaves NC mass balance equations for the γ component and
one mass balance equation for the solid matrix. Similarly, the exchange fluxes cancel
when the phase energy balance equations are summed over all the phases within an
REV, resulting in a single energy balance equation.

We now count the number of balance equations.

Mass balance NC + 1
Energy balance 1
Momentum balance NP
Definition of ws 1

The total number of equations is



3.9 Primary Variables and Degrees of Freedom 245

Table 3.5 Degrees of freedom and primary variables for equilibrium case (Bear and Nitao 1995)

Deformable
solid

Darcy’s law Iso-thermal NF Primary variables
(γ = 1, . . . ,NC-NP;
α = 1, . . . ,NP)

Yes No No NC+NP+4 pα, ω
γ
1 , Vα, Vs , ws , θs , Ts ,

Yes Yes No NC+4 pα, ω
γ
1 , Vs , ws , θs , Ts ,

No Yes No NC+1 pα, ω
γ
1 , Ts ,

No No No NC+NP+1 pα, ω
γ
1 , Vα, Ts ,

Yes No Yes NC+NP+1 pα, ω
γ
1 , Vα, Vs , ws , θs ,

Yes Yes Yes NC+3 pα, ω
γ
1 , Vs , ws , θs ,

No Yes Yes NC pα, ω
γ
1 ,

No No Yes NC+NP pα, ω
γ
1 , Vα.

NB = NC + NP + 4. (3.9.16)

This is also equal to the number of degrees of freedom, NF.
A possible set of primary variables is pα (α = 1, ..,NP), ωγ

1 (γ = 1, ..,NC-NP),
Ts ,Vα (α = 1, ..,NP),Vs ,ws , θs . Solution of the θα in terms of the primary variables
is described above for the nonequilibrium case. It is obvious that the Tα’s are obtained
through Tα = Ts . The values of ωγ

α (α = 2, . . . ,NP; γ = 1, . . . ,NC-NP) are found
through solving the equations:

μγ
α(ωκ

α, pα, Tα) = μ
γ
1(ω

κ
1 , p1, T1). (3.9.17)

The remaining ωγ
α (α = 1, . . . ,NP; γ = NC-NP+1, . . . ,NC) are found by solving

NC
∑

γ=NC−NP+1

ωγ
α = 1 −

NP−NC
∑

γ=1

ωγ
α, (3.9.18)

where the right-hand side is known and the left-hand side contains the variables to
be solved for. The ρ

γ
ad ’s are obtained from (3.9.13). A number of particular cases are

considered in Table3.2.
It is obvious that for isothermal problems, Ts is no longer a primary variable and

that NF is reduced by one. For a nondeformable, isothermal system with Darcy’s
law, we have NF = NC (Table3.5).

3.9.3 Partial Phase Equilibrium

It is possible that the exchange of certain extensive quantities between NPE phases
(1 <NPE<NP) occurs sufficiently fast, so as to establish equilibriumbetween them,
with respect to the considered quantities. The other NP-NPE phases are not in equi-
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librium with respect to the same quantities. This means that the potentials associated
with the considered quantities are approximately constant over the NPE phases. It is
then clear that the number of degrees of freedom is smaller than in the case where all
phases are not in equilibrium with each other. In particular, consider the case where
NPE phases are in equilibrium with each other with respect to the mass and energy
of the NC components. Then, we have the (NPE-1)×NC constraints from the equal-
ity of chemical potentials between the NPE phases, and NPE-1 constraints for the
equality of temperatures, for a total of NPE×NC-NC+NPE-1 additional constraints.
Adding these to the NE (= 2NP) constraints that correspond to the case of complete
nonequilibrium, we obtain:

NE = 2NP + NPE × NC − NC + NPE − 1

constraints. Since the number of variables is NV=NC×NP+NC+4NP+4, the number
of degrees of freedom is:

NF = NV − NE = NC × (NP − NPE) − NPE + 2NC + 2NP + 5.

A possible set of primary variable is: ωδ
αo

(δ = 1, . . . ,NC-NPE), ω
γ
α′ (γ =

1, . . . ,NC-1), ργ
ad (γ = 1, . . . , NC), θs , pα, Tα′ , Ts , Vα, ws , where α = 1, . . . ,NP,

α′ = 1, . . . ,NP-NPE denotes all the phases that are not in equilibrium, and αo is
one of the NPE phases.

3.10 Dimensionless Numbers and Non-dominant Effects

In each of the balance equations presented throughout this book, we see the effect of
a number of phenomena. In fact, we note these phenomena already in the verbal form
of the general balance equation (3.3.2). When all these phenomena occur simulta-
neously, it is possible that under certain conditions, the effect of some phenomena
are much larger than others, to the extent that by neglecting the less dominant phe-
nomena, or the non-dominant phenomena, we obtain a simpler, albeit approximate
model. The latter model is, usually, much easier to solve, yet it provides a solution
which is not much different from that obtained by solving the full model.

A simple approach is to define dimensionless numbers and express flux and bal-
ance equations in terms of these number. For example. Let us define the following
dimensionless numbers:

Reynolds number : Re = qc�c
νc

, Euler number Eu = (�p)c
ρcq2

c

,

Froude number : Fr = q2
c

g�c
, Darcy number Da = k

�2c
.

in which subscript c denotes a characteristic value.
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A number of dimensional numbers often used in dealing with phenomena of
transport in prous media will be added below.

Following Bear and Bachmat (1991, p. 268), let us suggest a methodology that
leads to the derivation of dimensionless numbers. We shall make use of two exam-
ples. In these examples, the emphasis will be on the identification of non-dominant
effects, and not on the specific case described by these equations. Other examples
are scattered throughout the book.

Another subject, associated with the evaluation of dominance of effects is that of
nondimensionalization. Because each equation that appears in a mathematical model
expresses a physical phenomenon, it must be dimensionally homogeneous. Hence, it
can always be nondimensionalized, i.e., written in terms of dimensionless quantities.
This goal is achieved by the following three steps:

(a) By introducing for each dependent variable, independent variable and coeffi-
cient, a dimensionless variable that expresses the ratio between the considered
(dimensional) quantity and a corresponding intrinsic reference quantity of the
same dimension (e.g., length, time and force).

(b) By inserting the dimensionless ratios into the original equation, we obtain an
equation in which each term is a product of the dimensionless ratio and a dimen-
sional coefficient made up only of the reference quantities.

(c) By dividing all terms appearing in the equation by one of the coefficients, we
obtain the dimensionless form of the original equation.

Let us demonstrate the method through a number of examples (see also Bear and
Bachmat 1991, p. 274):

Example 1: Consider the macroscopic mass balance equation (3.3.7), written for the
case of saturated flow (θ → φ) in a rigid solid matrix (∂φ/∂t = 0), with J = ρV,
and f mβ→α = 0:

φ
∂ρ

∂t
= (−∇·ρq) = −ρ∇·q − q·∇ρ. (3.10.1)

We introduce the following dimensionless variables (indicated by an asterisk) and
scales, or characteristic values (indicated by subscript c):

φ∗ = φ

φc
, t∗ = t

t (ρ)
c

, ρ∗ = ρ

ρc
, ρc = ρmax , qc = |q|max

(
∂ρ

∂t

)∗
≡ ∂ρ∗

∂t∗
= ∂ρ

∂t

/(
∂ρ

∂t

)

c

,

(
∂ρ

∂t

)

c

=
∣
∣
∣
∣

∂ρ

∂t

∣
∣
∣
∣
max

,

(�t)(ρ)
c = ρc

(∂ρ/∂t)c
= ρmax

|∂ρ/∂t |max
,

q∗ = q
|q|max

, (∇·q)∗ = ∇∗·q∗ = ∇·q
(∇·q)c

, (∇·q)c = ∣
∣∇·q∣

∣
max ,

(∇ρ)∗ ≡ ∇∗ρ∗ = ∇ρ

(∇ρ)c
, (∇ρ)c = ∣

∣∇ρ
∣
∣
max , ∇∗ = Lc∇,
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L(q)
c =

∣
∣q

∣
∣
max

∣
∣∇·q∣

∣
max

, L(ρ)
c = ρmax

∣
∣∇ρ

∣
∣
max

.

With these substitutions, we rewrite (3.10.1) and divide all terms by ρmax |q|max ≡
ρcqc. We obtain

St(ρ)φ∗ ∂ρ∗

∂t∗
+ L(q)

c

L(ρ)
c

ρ∗∇∗·q∗ + q∗·∇∗ρ∗ = 0, (3.10.2)

where

St(ρ) = L(ρ)
c /Vc

t (ρ)
c

is the Strouhal number of this example.We have here two characteristic length scales:
L(q)
c , which characterizes the length over which a significant change in q takes place,

and L(ρ)
c , which indicates the length over which the same change is in ρ.

It is interesting to understand the interpretation of the Strouhal number in this
case. Verbally, for the general case of any E , it relates the added E per unit volume
and unit time to the added E per unit volume and unit time by advection.With E = m
and e = ρ, we obtain

St(e) = |∂e/∂t |c
|∇·eV|c = L(e)

c /Vc

t (e)c

. (3.10.3)

Another interpretation of St(e) is that it expresses the reciprocal of the time during
which significant changes in values of e are induced, compared to that required for
these changes to spread out out throughout the domain by advection.

Consider E = m, e = ρ. Unless we have very rapid changes in ρ, the time incre-
ment, (�t)ρc for a local change in ρ is large compared to the travel time required to
obtain the same spatial change in ρ, and, therefore, St(ρ) � 1. Then, the first term
(3.10.2) is much smaller than the third, and may be deleted. Often, L(q)

c � L(ρ)
c , so

that the third term may also be neglected. Then, (3.10.2) reduces, as an approxima-
tion, to the dimensionless equation:

∇∗·q∗ = 0. (3.10.4)

Example 2: Consider the balance equation for a chemical species (concentration c)
that undergoes radioactive decay. At the microscopic level, under certain conditions,
this equation takes the form

∂c

∂t
= − ∂

∂xi

(

cVi − Di j
∂c

∂x j

)

− λc, (3.10.5)

where the last term on the r.h.s. expresses the rate (per unit fluid volume) at which the
concentration of the considered species is reduced by radioactive decay; λ denotes
the decay constant.
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The proposed methodology will be presented as a number of steps:

Step 1: For every dependent variable, independent variable, and coefficient that
appears in the considered equation, we introduce a dimensionless variable (denoted
by an asterisk) that represents the ratio between the considered (dimensional) quantity
and a corresponding characteristic quantity, of the same dimension, denoted by
subscript c. In the example considered here,

∂c

∂t
=

(
∂c

∂t

)∗
(�c)c
(�t)c

≡ ∂c∗

∂t∗
(�c)c
(�t)c

, (3.10.6)

∂cVi

∂xi
≡ c

∂Vi

∂xi
+ Vi

∂c

∂xi
= c∗ ∂V ∗

i

∂x∗
i

(�V )c(δc)c

L(V)
c

+ V ∗
i

∂c∗

∂x∗
i

Vc(�c)c

L(c)
c

, (3.10.7)

∂

∂xi

(

Di j
∂c

∂x j

)

= ∂

∂x∗
i

(

D∗
i j

∂c∗

∂x∗
j

)

Dc(�c)c

L(c)2
c

, (3.10.8)

λc = λ∗c∗λc(�c)c, xi = x∗
i L

(.)
c , (3.10.9)

where (�t)c, is a characteristic time interval, L(c)
c and L(V)

c are lengths characterizing
the spatial changes in c and V, respectively, and Dc is a characteristic coefficient of
dispersion. We may relate these lengths to the gradients in the respective quantities,
e.g.,

(�V )c

L(V)
c

= max

∣
∣
∣
∣

dV

dx

∣
∣
∣
∣
, viz., L(V)

c = |V |max

|dV/dx |max
. (3.10.10)

We can also use some characteristic length of the domain. Usually, we assume a
single common characteristic length, associated with all the domain’s dimensions.
We shall do so here, denoting it by Lc. This is not essential, as we could proceed
with different characteristic lengths. A similar discussion applies to the characteristic
time, which may take on different values, depending on the particular transported
quantity and mode of transport. Here, (�t)c denotes the characteristic time for a
change in concentration at a point in the domain. We note that the characteristic
rate of a process is inversely proportional to its characteristic time. The maximum
velocity within a considered domain may be taken as the characteristic velocity.

In principle, there may be different characteristic times for different processes,
and they need not be equal to each other.

Step 2: When we insert these relationships into the considered balance equation, we
obtain:

∂c∗

∂t∗
(�c)c
(�t)c

= −c∗ ∂V ∗
i

∂x∗
i

cc
(�V )c

Lc
− V ∗

i

∂c∗

∂x∗
i

Vc(�c)c
Lc

+ ∂

∂x∗
i

(

D∗
i j

∂c∗

∂x∗
j

)

Dc(�c)c
L2
c

− λ∗c∗λc(�c)c. (3.10.11)
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Step 3: We rewrite the original balance equation in one of the three dimensionless
forms:

St
∂c∗

∂t∗
= − ∂

∂x∗
i

(

c∗V ∗
i − 1

Pe
D∗

i j

∂c∗

∂x∗
j

)

− DmIλ∗c∗, (3.10.12)

1

Fo

∂c∗

∂t∗
= − ∂

∂x∗
i

(

Pe c∗V ∗
i − D∗

i j

∂c∗

∂x∗
j

)

− DmI Iλ∗c∗, (3.10.13)

St

Pe

∂c∗

∂t∗
= − 1

Pe

∂

∂x∗
i

(

c∗V ∗
i − 1

Pe
D∗

i j

∂c∗

∂x∗
j

)

− DmI I Iλ∗c∗, (3.10.14)

in which, with cc denoting (�c)c, Vc denoting (�V )c, and �tc ≡ tc,accum , we have
made use of the following dimensionless numbers:

St ≡ Lc

Vctc
= Lc/Vc

tc
= tc,adv

tc
= Strouhal number,

Pe ≡ LcVc

Dc
= L2

c/Dc

Lc/Vc
= tc,di f

tadv

= Peclet number,

Fo ≡ tc
L2
c/D

= tc
tc,di f

= 1

St Pe
= Fourier number,

DmI ≡ Lc/Vc

1/λ
= tc,adv

tc,react
= 1st kind Damkohler number,

DmI I ≡ L2
c/D
1/λ

= tc,di f
tc,react

= Pe DmI = 2nd kind Damkohler number,

DmI I I ≡ DmI

Pe
= DmI I

Pe2
= λD

V 2
c

= tc,adv

tc,di f

tc,adv

tc,react
= 3rd kind Damkohler number. (3.10.15)

Note that

tc,adv ≡ Lc

Vc
, tc,di f ≡ L2

c

Dc
, tc,react ≡ 1

λ
, (3.10.16)

denote the characteristic times of advection, diffusion, and chemical reactions,
respectively:

Since, if the reference (or characteristic) values are properly selected, the aster-
isk’ed terms are always of of order one (Bear and Bachmat 1991, p. 271), the dom-
inance of a term is determined by the magnitude of the dimensionless numbers that
appear in that term. We note that in (3.10.12), the rate of accumulation by advection
(= inverse of characteristic time of advection) is used as a reference. In (3.10.13),
the rate of accumulation by diffusion (= inverse of characteristic time of diffusion)
is used as a reference time.
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Step 4: We consider the ratio between any two terms in (3.10.5), which we wish
to compare with each other. For simplicity, consider a one-dimensional case. For
example,

|∂c/∂t |
|∂(cV )/∂x | = St

∂c∗/∂t∗

∂(c∗V ∗)/∂x∗ . (3.10.17)

Since every term with an asterisk is of order one, the Strouhal number, St, indicates
the ratio between two characteristic time intervals: that required for a significant
change in concentration to spread throughout the considered domain by advection,
and the other (tc ≡ tc,accum) that is required for local changes in concentration to take
place.

Example 3: Let us compare advective and diffusive fluxes:

|cV |
|D∂c/∂x | = Pe

c∗V ∗

D∗∂c∗/∂x∗ . (3.10.18)

From the above equation, it follows that thePeclet number expresses the ratio between
the advective and diffusive fluxes. For Pe � 1, advection dominates over diffusion.
For Pe � 1, diffusion dominates.

It is possible to interpret the Peclet number also as a ratio between two time
scales: one (tc,di f = L2

c/D) that is required for spreading by diffusion, the other
(tc,adv = Lc/Vc) for spreading by advection. When the former time scale is smaller
than the latter, diffusion dominates over advection.

Example 4: Let us compare the rate of production of a source (here, a sink due to
radioactive decay) with the rate of accumulation (or spreading out) by advection.
This is expressed by the Damköhler number of the first kind defined above. Again,
this number may be interpreted as the ratio between two characteristic times: that
of advection, and that of production (= 1/λ). It is also possible to define another
(second kind) Damköhler number, by replacing the time required for spreading by
advection, by the time required for spreading by diffusion, or by comparing the source
term in the balance equation (|λc|), with that expressing accumulation by diffusion
(|∇·D∇c|). We obtain

DmI I = L2
c/D
1/λ

= Pe DmI . (3.10.19)

Altogether, the two Damköhler numbers are defined as the ratio between the reaction
rate and the rates of mass transport by advection and by diffusion.

Note that DmI I is independent of the characteristic velocity, and that DmI I I is
not a ratio between two characteristic times. All three are referred to as ‘Damköhler
numbers’, as they involve the characteristic time of reaction.

By examining whether a dimensionless number is much smaller or much larger
than unity, we may learn the relative significance of various transport processes.
Following are some examples:
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• When DmI � 1, advection dominates over the source term. In other words, the
time required for transport by advection is much smaller than that required for
production or removal by the source. Conversely, when DmI � 1, the source term
dominates over advection.

• When DmI I � 1, the spreading of the contaminant by diffusion dominates over
the source term. In other words, the time required for spreading by diffusion is
much smaller than that required for production, or removal by the source.

From (3.10.12)–(3.10.14), it follows that:

• When Pe � 1, transport by diffusion dominates over that by advection. If also:

– DmI I � 1, the reaction is referred to as a fast reaction.
– DmI I � 1, the reaction is referred to as a slow reaction.

• When Pe � 1, transport by advection dominates over that by diffusion. If also:

– DmI � 1, the reaction is referred to as a fast reaction.
– DmI � 1, the reaction is referred to as a slow reaction.

• When Pe � 1, and also DmI I I I � 1, we have a process dominated by advection
and reaction. If also

– DmI � 1, the reaction is referred to as a (relatively) fast reaction.
– DmI � 1, the reaction is referred to as a (relatively) slow reaction.

• When Pe � 1, and DmI � 1, the situation implies DmI I I � 1; the process is
dominated by advection and reaction.

• When Pe � 1, and DmI � 1, the situation implies DmI I I � 1; the process is
dominated by diffusion and reaction.

Let us introduce two additional useful dimensionless numbers:

Fourier number:
Fo(E), for any E :

FoE = |∇·(D(E)·∇e)|c
|∂e/∂t |c = t Ec

L E
c/D

E
c

. (3.10.20)

It expresses the ratio between the time interval required for the introduction of
changes in the density of an extensive quantity (E) into a system, say, in the vicinity
of a point, and that required for these changes to spread throughout the system by
the dispersion–diffusion process.

Another kind of Fourier number, associated with the fluid’s kinematic viscosity,
can be defined as:

Foν = t (q)
c

(L(q)
c )2/νc

. (3.10.21)

It expresses the ratio between the time interval during which a significant change in
velocity (= momentum per unit mass!) occurs and the time required for smoothing
out spatial velocity differences by molecular transfer of momentum.
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Chapter 4
Momentum Balance and Motion Equation

Darcy’s law, often referred to as the ‘motion equation of a fluid in a porous medium’
is the law that governs the flux of a fluid that occupies the entire void space, or part
of it (in multiphase flow). It relates the macroscopic (i.e., averaged) velocity of the
fluid, or its specific discharge, to the forces that produce the fluid’s motion, primarily
pressure gradient and gravity.

In this chapter we consider the motion equation for saturated flow, i.e., when a
single fluid occupies the entire void space. In Sect. 6.2 we shall consider the motion
equations when two or three fluid phases occupy the void space simultaneously.

Here, as in the entire book,we are using the followingfive terms at themacroscopic
level:

• Fluid’s velocity, Vα: It is the distance traveled by a fluid α-phase ‘particle’ per
unit time, or the volume of an α-fluid passing through a unit area of fluid in a
planar cross-section through a porous medium domain, per unit time.

• Solid’s velocity, Vs : It is the distance traveled by a point of a solid matrix per
unit time, or the volume of solid passing through a unit area of solid in a planar
cross-section through a porous medium domain, per unit time.

• Relative fluid velocity, Vαr : It is the velocity of the α-fluid relative to that of the
solid matrix: Vαr ≡ Vα − Vs .

• Fluid’s flux, Jα: Volume of fluid passing through a unit area of α-fluid (in a planar
cross-section through a porous medium domain), per unit time.

• Fluid’s specific discharge, qα (= θαVα): Volume of an α-fluid passing through
a unit area of porous medium (in a planar cross-section through a porous medium
domain), per unit time.
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An important comment should be introduced here. In Sect. 1.1.7A, we have intro-
duced the concept of effective porosity, stemming from the observation that flow
(may) take place only through part of the void space. Accordingly, in single phase
flow, the specific discharge, q should be expressed by q = φe f f V. Henceforth, in
this book, whenever φe f f < φ, the specific discharge of a fluid should be expressed
by φe f f V. Furthermore, in most applications, especially in the case of a geological
formation, it is practically impossible to determine/measure both effective porosity
and fluid velocity. It is much more convenient to determine the fluid’s specific dis-
charge, q. As a consequence, in practice, it is much more convenient to refer to q
as the variable that describes fluid motion in a porous medium—volume of fluid per
unit area of a porous medium per unit time.

In the continuum approach employed here, all macroscopic variables are assigned
to a point within the porous medium domain, regarded a continuum.

4.1 Some Historical Notes

With no effort to present a comprehensive review, let us review some of the ways
used for developing the motion equation, as defined in Chap.3.

4.1.1 Obtaining the Law Experimentally

Actually, this is how, in 1856, Henri Darcy, the water engineer of Dijon, a city in
the southern part of France, obtained the linear law named after him. He conducted
experiments in the vertical sand column shown in Fig. 4.1. In his experiments, Darcy
(1856) varied the piezometric head (see Sect. 4.2.1) difference acting on a sand col-
umn, and measured the resulting water discharge. Based on these experiments, he
concluded that the discharge through the column is:

• proportional to the cross-sectional area of the column, A,
• proportional to the difference in water level elevations, h1 and h2, at the inflow
and outflow reservoirs of the column, respectively, and

• inversely proportional to the column’s length, L .

When combined, these conclusions give the famous Darcy’s formula (or law):

Q = K Ah1 − h2
L

, (4.1.1)

inwhich L , is the length of the sand column, Q is the (constant) discharge through the
column,A denotes the column’s cross-section, and h1 and h2 denote the piezometric
heads at the column’s inlet and outlet reservoirs (see Fig. 4.2).

http://dx.doi.org/10.1007/978-3-319-72826-1_1
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Fig. 4.1 Darcy’s column experiment (after Darcy 1856)
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The coefficient of proportionality, K , called hydraulic conductivity (dims. L/T), is
discussed in detail in Sect. 4.2.3. With the definition of specific discharge introduced
earlier, Darcy’s law (for the 1-D case considered here) can also be written in the
form:

q = K
h1 − h2

L
. (4.1.2)

4.1.2 Analogy to Flow Through Capillary Tubes

As discussed in Chap. 1, it is (practically) impossible to analyze and mathematically
solve the detailed (microscopic level) flow of a fluid through the void space of most
porous media, by solving, simultaneously, the mass and momentum balance equa-
tions, say theNavier–Stokes equation, for the fluid occupying the void space. Instead,
we replace the actual porous medium domain by a fictitious, simpler one. This is the
one regarded in Chap.1 as a continuum. In this domain, the flow problem reduces
to one that is amenable to exact mathematical treatment. Of course, this approach is
justified only if the real system and the simpler fictitious one—the continuum at the
macroscopic level—exhibit the same major features that control the flow through the
void space. By analyzing the flow in the simpler system, we obtain a relationship
between the flux and the relevant driving force for that system. We then assume that
the same (e.g., linear) relationship exists also in a real porous medium, but with a
different coefficient that represents the effect of the (microscopic) geometrical fea-
tures of the considered void space. In a real porous medium, such coefficients have,
anyway, to be determined experimentally. In fact, the only way to validate the model
obtained from the simplified (conceptual) model is through experiments.

We start by considering flow of a homogeneous fluid through a parallelepiped
body of porous medium of length L in the s-direction, and a cross-section of unit
area normal to this direction. The simplest physical model that represents the flow
through such body is that of laminar flow (or flow at small Reynolds number, Re;
see Sect. 4.1) through a single straight circular capillary tube of diameter δ (see Bear
1972, p. 161) and length L in the s-direction. TheHagen–Poisseuille law that governs
such flow is:

Qs = −πδ4

128

ρg

μ

∂h

∂s
, or qs

(
≡ Qs

πδ2/4

)
= − δ2

32

ρg

μ

∂h

∂s
, (4.1.3)

where Qs is the total discharge through the tube, ρ and μ are the density and viscosity
of the fluid, respectively, qs denotes the fluid’s specific discharge in the s-direction,
p denotes pressure and for constant density, i.e., when the fluid is homogeneous and
incompressible, and the flow is under isothermal conditions, we define the piezomet-
ric head:

h = z + p

ρg
, (4.1.4)

http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_1


4.1 Some Historical Notes 259

where z is the elevation of the point at which the piezometric head is being considered
above some datum level, p and ρ are the fluid’s pressure and mass density, respec-
tively, and g is the gravity acceleration. The piezometric head is a concept often used
in groundwater hydrology; the term potential is also often used. The quotient p/ρg is
called pressure head. The Hagen–Poisseuille law (4.1.3) is the steady state solution
of the Navier–Stokes equation for a capillary tube.

Next we represent the same porous medium domain by N identical capillary tubes
of diameter δ each. Equation (4.1.3) is then replaced by:

Qs = −N
πδ4

128

ρg

μ

∂h

∂s
, qs = Qs

Nπδ2/4
= −φδ2

32

ρg

μ

∂h

∂s
, (4.1.5)

or:

qs = −k
ρg

μ

∂h

∂s
, k = φδ2

32
, (4.1.6)

which is Darcy’s law, with the permeability, k, related to φ and δ. Bear (1972,
p. 163) presents also the case in which there are Ni pipes of diameter δi per unit area
of the cross-section. In Sect. 4.2.5, we consider tortuous capillary tubes, leading to
the concept of tortuosity.

Note that the use of of piezometric head, h, is limited to cases of constant den-
sity only, i.e., when the fluid is homogeneous and incompressible, and the flow is
isothermal.

For variable density, e.g., a compressible fluid, ρ = ρ(p), the pressure head is
expressed by the integral

∫ p
po

(dp/ρ(p)g), where po is a reference pressure (Muskat
1946, p. 129).

In petroleum engineering, the concept of pseudopotential� (Hubbert 1940, 1956)
is often used. Thus,Hubbert’s potential for a compressible fluid, ρ = ρ(p), is defined
by:

� =
∫ p

p0

dp

ρ(p)g
+ z, (4.1.7)

Darcy’s Law for the fluid’s flux can then be rewritten in the form:

q = − k

μ
ρg∇�. (4.1.8)

With the piezometric head, h, defined in (4.1.4), Darcy’s law takes the form:

q = −K∇ h, where K = kρg

μ
. (4.1.9)

Scheidegger (1953, 1960) related the distribution of diameters of the capillary
tubes to the pore size distribution.
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For flow through a single narrow fracture of aperture width b, it is easy to show
(e.g., Bear 1972, p. 165) that:

qs = φ
b2

12

ρg

μ

∂h

∂s
, where k = φb2

12
, (4.1.10)

i.e., the permeability is proportional to the square of the aperture, b. Irmay (1955)
analyzed the flow through narrow parallel capillary fissures of aperture b, spaced a
distance a apart, and obtained an expression which is analogous to Darcy’s law, i.e.,
the flux is linearly proportional to the head gradient, with a permeability proportional
to b2.

In all these models, laminar flow takes place through narrow channels, and it is
easy to recognize the similarity between the flux expressions and Darcy’s law. This
law is nothing but a statement that the flux is linearly proportional to a driving force,
which is the gradient of the piezometric head. The latter is the sum of the pressure
gradient and a force due to gravity. In (4.1.3), (δ2/32)(ρg/μ) is analogous to the
hydraulic conductivity, K , in a porous medium.

We note that the hydraulic conductivity is made up of two parts: one that expresses
the geometry of the flow domain; specifically, it is proportional to the square of the
tube’s diameter. The other is a property of the fluid (actually, ρ/μ ≡ 1/ν). In fact,
the same expression appears also in all other models mentioned above, except that
in each case the length that characterizes the capillary opening, e.g., tube diameter,
or width of aperture, may be different. Obviously, the similarity between all above
cases stems from the observation that they are all based on solving the (linear)
momentum balance equation (in this case, the Navier–Stokes equation) for small
Reynolds numbers, i.e., neglecting all inertial terms. A widely used expression for
the permeability of a porous medium is the one proposed by Kozeny (1927) and later
modified by Carmen (1937, 1956; see Bear 1972, p. 165). Actually, Blake (1922)
has derived the same expression for permeability earlier.

Kozeny (1927) also treated a porous medium as a bundle of capillary tubes of
equal length, but not necessarily circular, neglecting the velocity normal to a tube’s
axis. By solving the (linear) momentum balance equations for a Newtonian fluid, i.e.,
the Navier–Stokes equations, simultaneously for all capillary tubes passing through
a cross-section which is normal to the flow, he obtained the flux through the fictitious
porous medium in the form:

qs = − coφ3

μM2
s

∂ p

∂s
, where k = coφ3

M2
s

, (4.1.11)

where Ms denotes the specific surface of the tubes, and co is a numerical coefficient
referred to as Kozeny’s constant; it varies slightly according to the shape of the
individual tubes. The above equation is referred to as Kozeny’s equation. Carman
(1937) suggested co = 0.2, and lead to the Kozeny–Carman equation:
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k = 1

5M2
s

φ3

(1 − φ)2
, (4.1.12)

in which Ms is the specific surface (= surface of solid exposed to fluid per unit
volume of solid), and dm is the mean diameter of the spheres comprising the porous
medium. Recall that for a sphere of diameter dm , the surface area per unit volume of
sphere is 6/dm .

WithVo andVso denoting volume of a representative elementary volume, and the
volume of solid in the latter, it is interesting to note that with:

φ = Vvo/Vo, 1 − φ = Vso/Vo,

Ms = Sso/Vso = Sso/(Vo − Vvo) = Sso/Vo(1 − φ),

Equation (4.1.12) can be written as k = φ�2T ∗, in which �(= Vvo/Svo) is the
hydraulic radius of the void space, and T ∗ = 1/5 plays the role of tortuosity. This
can be compared with (4.2.26).

While (4.1.12) is a relatively simple relationship, it by nomeans represents the full
spectrum of the k–φ relationships presented in the literature for natural geological
porous media, nor for the kind of porous media used in reactors in the chemical
industry. Actually, there is no universal convenient equation relating k to φ; a wide
variety of equations have been proposed.

Some authors construct models that take into account a statistical distribution of
the capillary tubes in space. For example, de Josselin de Jong (1969; Bear 1972,
p. 173) used a model composed of a network of interconnected capillary channels
(Fig. 4.3). He assumed that the probability of a fluid particle choosing a direction
between θ and θ + �θ is proportional to the total fluid’s discharge in that direction.
His analysis lead to a linear relationship between the flux vector and the hydraulic
gradient vector that took the form of a second rank symmetric tensor. Some intro-
ductory remarks about tensors are presented in Sect. 2.3.4 (Fig. 4.2).

4.1.3 Models Based on Resistance to Flow Around Spheres

When a fluid is flowing relative to a solid surface, say bounding a solid grain, it exerts
a force on the latter. This force is due to (1) pressure variations on the surface and (2)
shear stress resulting from the velocity gradient at the surface, since we assume that
the fluidwhich is adjacent to the solid sticks to the latter (i.e., a no slip condition). The
sum of these forces, integrated over the surface, gives the resultant force exerted by
the fluid on the considered solid grain. The component of this force in the direction of
the velocity (relative to the solid, as the latter may be moving too) is called drag. The
resistance to flow, or drag on the solid surface, has been used by various researchers
to derive expressions for the permeability of a porous medium.

http://dx.doi.org/10.1007/978-3-319-72826-1_2


262 4 Momentum Balance and Motion Equation

n

h1

Datum level

z1 h2

h = h1 – h2

z2

p1
γ

p2
γ

Δ1

2
L

QQ
SandSandSand

AA

Fig. 4.2 Flow in an inclined porous medium column

Fig. 4.3 Interconnected
channels. (de Josselin de
Jong, 1958)

x

y

α

α

Δ

θ

p
l

The simplest case is that of laminar flow around a single stationary sphere of
diameter d, representing the case of drag acting on a solid particle of a porous
medium (Bear 1972, p. 167): In slow fluid motion, this drag, D, can be expressed
by:

D = 3πdμV, (4.1.13)

i.e., proportional to the first power of the specific discharge, or:

D = CD

ρV 2

2
Aref = 24

Re

ρV 2

2

πd2

4
; CD = 24

Re
, Re = ρqd

μ
, (4.1.14)

where Aref is a chosen reference surface area. This equation is known as the Stokes
equation, with the drag coefficient, CD valid for Re < 1. Various authors suggested
values of CD for high values of Re, where inertia cannot be neglected.

The general macroscopic linear momentum balance equation was presented as
(3.3.9) in Sect. 3.3.2C. That equation includes terms that represent momentum flux,
momentum transfer and momentum sources, expressed in terms of state variables

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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that are more relevant to the considered transport problem, leading to the funda-
mental macroscopic momentum balance equation for a fluid phase that occupies the
entire void space. We shall then show that under certain conditions, certain phenom-
ena associated with momentum transport may be neglected, and the macroscopic
momentum balance equation can be simplified. In fact, one of these simplified forms
isDarcy’s law. In Chap.6, we shall discuss the case in which two or three fluid phases
occupy the void space, simultaneously.

The development of Darcy’s law as a simplified form of the momentum balance
equation explains why we have chosen to present the discussion on the macroscopic
momentum balance equation (in this chapter) before the chapter on the mass balance
equation (next chapter); the former will provide the required expression for fluid flux
(or fluid velocity, in the more general case), which is required for the mass balance
equation.

Another application of the macroscopic momentum balance equation will be in
the modeling of deformation and wave propagation in porous media (Sect. 9.4).

4.2 Darcy’s Law

Although in the previous subsection, we have presented Darcy’s law as an approxi-
mate formof themomentumbalance equation (CaseA),we shall nowpresent this law
as an empirical phenomenological law. For the sake of simplicity, we shall overlook
the possible motion of the solid skeleton, as did Darcy.

4.2.1 The Empirical Law

In Sect. 4.1.1, we have introduced Darcy’s law, as proposed by Darcy (1856) on the
basis of column experiments, say, in the form of (4.1.2). In this equation, q denotes
the specific discharge, i.e., the discharge (= volume of fluid per unit time) per unit
area of porous medium in a planar cross-section perpendicular to the flow direction.
Figure 4.2 provides also the meaning of the symbol h that expresses the mechanical
energy per unit weight of fluid due to elevation and pressure; it does not include the
kinetic energy, expressed as βV 2/2g, where β is a coefficient that is associated with
the fact that V is the average velocity.Wemay interpret the head difference h1 − h2 as
the loss of mechanical energy due to friction in the flow through the narrow tortuous
pathways in the porous medium; changes in the kinetic energy have been neglected
as being much smaller than those in the piezometric head.

Although, originally, Darcy’s law (4.1.2) was derived from experiments on a finite
length column, we can extend Darcy’s conclusion to what happens at a point along
a column, or streamtube, by considering flow in a segment of a (not necessarily
straight) streamtube in a three-dimensional space, aligned in a direction indicated by
the unit vector 1s (Fig. 4.4).

http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_9
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Fig. 4.4 A streamtube in three-dimensional space

The piezometric head varies along the stream-tube i.e., h = h(s). We consider
a segment of length �s along the s-axis, between the coordinates s − �s/2, and
s + �s/2. With this notation, (4.1.2) takes the form:

qs(s) = K
h
∣∣
s− �s

2
− h

∣∣
s+ �s

2

�s
, (4.2.15)

where the subscript s in qs indicates that the flow is in the s-direction. In the limit,
as �s → 0, we obtain:

lim
�s→0

h
∣∣
s− �s

2
− h

∣∣
s+ �s

2

�s
= −dh

ds
, (4.2.16)

and (4.2.15) reduces to:

qs = −K
dh

ds
, (4.2.17)

where qs is considered positive in the positive direction of the s-axis. This is the
1-d differential form of Darcy’s law at a point. In a heterogeneous domain, K =
K (x, y, z), i.e., a function of the location of the considered point.

The derivative dh/ds in (4.2.17) expresses the slope of the piezometric curve, h =
h(s), with a positive value indicating a rising function, h = h(s), and a negative value
indicating that h decreases with s. We refer to −dh/ds as the hydraulic gradient.
The use of the piezometric head, h, in Darcy’s law is permitted only for a fluid of
constant density. When the fluid’s density varies, because of variations in pressure,
concentration of dissolved matter, or temperature, the hydraulic gradient should not
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be used as a driving force. Later in this section, we shall present the motion equation
(which we usually still refer to as Darcy’s law) for a variable density fluid.

So far, we have been discussing the fluid’s specific discharge. However, when
considering the transport of a solute dissolved in the moving fluid (Chap.7), we
need to know the fluid’s velocity. In fact, the entire discussion in Sect. 4.2.4 on the
momentum balance equation and its simplified forms, often referred to as motion
equations, was presented in terms of the fluid’s (average) velocity as the variable of
state.

At the microscopic level, flow takes place only through part of the cross-sectional
area of the porous medium domain, the remaining part being occupied by the solid
matrix, or solid skeleton. Because it can be shown (Bear and Bachmat 1991, p. 37)
that the average areal porosity, φA, equals the volumetric one, φ, the portion of
the area A available to flow is φAA ≈ φA, where φ and φA denote the porosity
(= volume of voids per unit volume of a porous medium sample) and areal porosity
(= area of voids per unit area of a planar cross-section through the porous medium).
Accordingly, the average velocity, V , of a fluid flowing through a porous medium is
given by:

V = Q

φA = q

φ
. (4.2.18)

As explained in Sect. 3.1.3, the velocity as defined above is the fluid’smass-weighted
velocity.

Sometime, part of the void space is unavailable to fluid flow, or almost so, due
to dead-end pores in which the fluid is (practically) immobile. We then define an
effective porosity, φe f f , and use it to determine the velocity:

V = Q

φe f fA = q

φe f f
. (4.2.19)

4.2.2 Extension to Three Dimensions

Our next step is to extend Darcy’s law, say (4.2.17) to three dimensions. We envision
any flow pattern in a 3-d porous medium domain (recalling that we are regarding this
domain as an isotropic continuum at the macroscopic level). Then, using a cartesian
coordinate system, at every point (x, y, z), and any instant of time, t , the value of
the piezometric head is h(x, y, z, t) = z + p(x, y, z, t)/ρg. At that point and at that
instant of time, the flux vector q(x, y, z, t), is driven by the hydraulic gradient,−∇h
(which is the 3-d extension of −dh/ds), having the components −∂h/∂x , −∂h/∂y,
−∂h/∂z. Thus, the cartesian components of the flux vector are:

qx = −K (x, y, z)
∂h

∂x
, qy = −K (x, y, z)

∂h

∂y
, qz = −K (x, y, z)

∂h

∂z
. (4.2.20)

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_3
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In the above equation, K = K (x, y, z) denotes the hydraulic conductivity at the
point (x, y, z). In this way, (4.2.20) is valid also for heterogeneous porous medium
domains. Darcy’s law (4.2.20) can also be written in the compact vector form:

q = −K (x, y, z)∇h, (4.2.21)

or making use of indicial notation, in the form:

qi = −K (x, y, z)
∂h

∂xi
. (4.2.22)

Note that when written in terms of the piezometric head, h, Darcy’s law, e.g.,
(4.2.22), is applicable only to a constant density fluid.

4.2.3 Hydraulic Conductivity and Permeability

The coefficient of proportionality, K , appearing in Darcy’s law (4.1.1) is called the
hydraulic conductivity of the porous medium. In an isotropic porous medium, (4.1.1)
may be used to define it as the specific discharge per unit hydraulic gradient. It is a
scalar that expresses the ease with which a fluid flows through the narrow tortuous
pathways comprising the void space. It is, therefore, a coefficient that depends on
both matrix and fluid properties. The relevant fluid properties are the density, ρ,
and the dynamic viscosity, μ (or in the combined form of the kinematic viscosity, ν
(= μ/ρ)). The relevant solid matrix property is the permeability, denoted by k. It is
related to the geometrical features of the void space, which, in turn, depend on grain-
or pore-size distribution, shape of grains, or pores, tortuosity of passages, specific
surface, roughness of solid surface, porosity, and other void-space characteristics.
Following Bear and Bachmat (1991), we shall use (in saturated flow) the hydraulic
radius of the fluid-filled void space as the (microscopic) length that characterizes the
void-space, and, hence, is the main feature that determines the permeability.

Accordingly, the hydraulic conductivity, K , can be expressed as:

K = k
ρg

μ
≡ k g

ν
, (4.2.23)

where g is the gravity acceleration, μ and ν are the dynamic and kinematic viscosities
of the fluid, respectfully, and k (dims. L2) is the permeability of the porous medium.
It is a coefficient that depends solely on the properties of the configuration of the
void-space and not on those of the fluid. For water at 20 ◦C, μ = 1.002× 10−3 Pa.s.

Various units are used in practice for the hydraulic conductivity, K . Some hydrol-
ogists prefer the unit m/d (meters per day). Soil scientists and geotechnical engineers
often use cm/s (centimeters per second). The recommended system is, of course, the
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Fig. 4.5 Representative values of hydraulic conductivity (for water at 20 ◦C) and permeability for
selected soils (Bear et al. 1968)

SI system of units, where m/s (meters per second) is used. Representative values of
hydraulic conductivity are given in Fig. 4.5.

In the SI system, the permeability, k, is measured in m2. Petroleum engineers
use the unit Darcy, suggested by Muskat (1937) to honor Henry Darcy. The unit 1
darcy is defined as that permeability which allows the discharge of 1cm3/s of fluid of
viscosity 1 centipoise (abbrev. cp) through an area of 1cm2, under a pressure gradient
of 1atm/cm:

1 darcy = 1 cm3/s/cm2 × 1 centipoise

1 atm/cm
. (4.2.24)

where we recall that 1 darcy is equivalent to 9.869233× 1013 m2, or 0.9869233µm2.
This conversion is usually approximated as 1 µm2. Groundwater hydrologists, for
water at 20◦, use 1 darcy = 9.613 × 10−4 cm/s, or 0.831m/day.

Although the darcy as a unit for permeability is not an SI unit, it is very commonly
used, especially by reservoir engineers.

Numerous formulæ that relate permeability to various geometric properties of the
void space are presented in the literature. Some are purely empirical, as, for example:

k = Cd2, (4.2.25)

where C is a dimensionless coefficient and d is an effective grain diameter, say,
d10 (i.e., 10% of the grains by weight are smaller than this diameter). Krumbein
and Monk (1943) suggest C = 6.17 × 10−4 for k and d expressed in cm2 and cm,
respectively. Although this is an empirical formula; the dependence on the square
of a characteristic length of the void-space can be justified by a theoretical analysis
(see, for example, Bear and Bachmat 1991, p. 174).



268 4 Momentum Balance and Motion Equation

Another example is the Fair and Hatch (1933) formula, developed from dimen-
sional considerations, and verified experimentally:

k = 1

β

[
(1 − φ)2

φ3

(
α

100

∑
(m)

Pm
dm

)2]−1

, (4.2.26)

where β is a packing factor, found experimentally to be 5, α is a sand shape factor,
varying from6 for spherical grains to 7.7 for angular ones, Pm is theweight percentage
of sand held between adjacent sieves, and dm is the geometric mean diameter of the
adjacent sieves.

An often used formula for permeability is the Kozeny–Carman equation:

k = Co
φ3

(1 − φ)2(�vs)2
, (4.2.27)

where �vs is the specific surface area of the solid (defined per unit volume of solid
matrix), and Co is a coefficient for which Carman (1937) suggested the value 0.2.
Often, 1/(�vs)

2 is replaced by d2, with d = mean grain size, or by �2, with �

denoting the hydraulic radius of the void-space.
It is interesting to note that in all permeability expressions, e.g., (3.6.5), (4.2.16),

(4.2.26) and (4.2.32), the permeability is proportional to the porosity, to the square of
a length characterizing a pore, and to a tortuosity. For an anisotropic porous medium,
the latter is a second rank symmetric tensor. The tortuosity is discussed in the next
subsection.

Under certain conditions, the permeabilitymay varywith time. Such a changemay
be caused by compaction of a layer due to external loads. Clogging by precipitation
or dissolution of minerals, filtration of fine-grained solids, or swelling of clay may
also produce changes in the structure and texture of the solid matrix.

4.2.4 Simplified Macroscopic Momentum Balance

Although we have already suggested (in Sect. 3.5.1) that Darcy’s law is a constitutive
type of law, we shall elaborate now on how Darcy’s law and other flux laws are
obtained as simplified forms of the momentum balance equation for a fluid in a
porous medium domain. However, in all these laws, we note the term that expresses
the transfer of momentum from the fluid to the solid. This actually makes these laws
constitutive ones (see preamble to Chap. 2).

Let us start from the macroscopic momentum balance equation for a Newtonian
fluid, (3.6.5), rewritten here, for convenience, as:

φρ
DV
Dt

= ∇·φ (
JM
di f + JM

dis

) − φ (∇ p + ρg∇z) − φ
μR

�2
· Vr , (4.2.1)

http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_3
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in which V ≡ Vf , Vr = (V − Vs), and the specific discharge relative to the solid
matrix is expressed by qr = φVr .

In what follows, we shall:

(a) neglect the nonlinear diffusive flux of momentum,
(b) assume a Newtonian fluid and express the diffusive flux of momentum, JM

di f ,
by JM(≡ τ ) = φμ∇V, i.e., assuming isochoric flow at the microscopic level,
∇·V = 0, and

(c) neglect the dispersive flux of momentum, JM
dis .

Under these assumptions, the momentum balance (4.2.1) reduces to:

φρ
DV
Dt

= ∇·φμ∇V − φ(∇ p + ρg∇z) − φ
μR

�2
Vr . (4.2.2)

Sometimes, different viscosities are used in the first and last terms on the r.h.s. of the
above equation.

We shall later show (Case A below) that the product φ�2RT denotes the per-
meability tensor, k, of the considered porous medium. The symbol (.)T denotes the
transpose of (.).

Equation (4.2.2) may be regarded as a sufficiently generalized motion equation
for a Newtonian fluid. Let us consider a number of simplified cases.

We wish to investigate the conditions under which the magnitude of the fluid’s
velocity and of the fluid’s temporal and spatial velocity variations are such that the
viscous force, resisting the flow, due to the transfer of momentum at the fluid-solid
interface, is much larger than both the inertial force and the viscous resistance to the
flow. Mathematically, we are looking for the conditions under which:

∣∣∣φρ
∂V
∂t

∣∣∣ � |φ2μkT Vr |, (4.2.3)∣∣∣φρV·∇V
∣∣∣ � |φ2μkT Vr |, (4.2.4)

|∇·φμ∇V| � |φ2μkTVr |, (4.2.5)

where k = φ�2RT is the permeability tensor. With Vs � Vf ≡ V, we follow the
discussion is Sect. 3.10 on dominance of effects (represented as terms in the balance
equation), we can investigate the conditions under which (4.2.3)–(4.2.5) are valid.
We rewrite the above equations in the form:

φcρcVc

(�t)c

∣∣∣φ∗ρ∗ ∂V ∗
i

∂t∗
∣∣∣ � φ2

cμck
−1
c Vc|φ∗2μ∗k∗T

i j V
∗
ri |, (4.2.6)

φcρcV 2
c

Lc

∣∣∣φ∗ρ∗V ∗
j

∂V ∗
i

∂x∗
j

∣∣∣ � φ2
cμck

−1
c Vc|φ∗2μ∗k∗T

i j V
∗
ri |, (4.2.7)

φcμcVc

L2
c

∣∣∣ ∂

∂x∗
j

φ∗μ∗ ∂V ∗
i

∂x∗
j

∣∣∣ � φ2
cμck

−1
c Vc|φ∗2μ∗k∗T

i j V
∗
ri |. (4.2.8)

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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In the above inequalities, all symbols with subscript c indicate characteristic val-
ues, while those with an asterisk (∗) denote the (dimensionless) ratio between a value
and its characteristic counterpart.

Let us introduce three dimensionless numbers which are related here to flow in
porous media:

• The Darcy number:

Da = kc/φc

(LV
c )

2
, where LV

c = |V |max

|dV/dx |max
, (4.2.9)

which expresses the ratio between the square of a characteristic length of the void
space, i.e., at the microscopic level, and the square of the characteristic length over
which the fluid’s velocity varies significantly. Note that the characteristic length at
themicroscopic level is represented here by

√
kc/φc. The hydraulic radius of the pore

space may serve as the characteristic length of the void space. Bear and Bachmat
(1991, p. 276) define themicroscopic characteristic length as

√
kc/φcT ∗

c , in which T
∗

denotes the characteristic (dimensionless) tortuosity (see Sect. 4.2.5) of the porous
medium. In most cases of flow through porous media, Da � 1.
• The Reynolds number, which relates the inertial to the viscous forces acting on
the fluid:

Re = Vc
√
kc/φc

νc
, (4.2.10)

• The Strouhal number (also Sect. 3.10), which is defined here as the ratio between
two time intervals: the travel time LV

c/Vc, required in order to encounter a significant
spatial change in velocity, and the time interval �t Vc required to encounter the same
change in velocity at a point:

St = LV
c

(�t)Vc Vc
, with (�t)Vc = |V |max

|∂V/∂t |max
. (4.2.11)

A ‘significant change’ may mean, for example, a change from zero to the character-
istic velocity, Vc. The latter may be selected as |Vmax |.

With the above dimensionless numbers, (4.2.6)–(4.2.8) can be rewritten as:

ReDa
1
2 St

∣∣∣φ∗ρ∗ ∂V ∗
i

∂t∗
∣∣∣ � |φ∗2μ∗k∗T

i j V
∗
ri |, (4.2.12)

ReDa
1
2

∣∣∣φ∗ρ∗V ∗
j

∂V ∗
i

∂x∗
j

∣∣∣ � |φ∗2μ∗k∗T
i j V

∗
ri |, (4.2.13)

Da
1
2

∣∣∣ ∂

∂x∗
j

φ∗μ∗ ∂V ∗
i

∂x∗
j

∣∣∣ � |φ∗2μ∗k∗T
i j V

∗
ri |, (4.2.14)

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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Since all terms indicated by an asterisk (∗) are of order one, the validity of the
inequalities (4.2.3)–(4.2.5) depends on the values of the relevant dimensionless num-
bers.

Case A

When, in a considered case, Reynolds number, Darcy number and the Strouhal num-
ber are such that:

Da � 1, ReDa
1
2 � 1, St ∼ O(1), (4.2.15)

which is the case in most groundwater and petroleum reservoir engineering cases,
the momentum balance equation (4.2.1) reduces to:

qr ≡ φ(Vf − Vs) = −k

μ
(∇ p + ρg∇z) , k = φ�2RT , (4.2.16)

which is Darcy’s law, with k denoting the permeability. Thus, Darcy’s law, which is
usually regarded as a flux equation, is nothing but a simplified form of the momentum
balance equation. The product φVf is usually referred to as the specific discharge
of the fluid. However, we note that on the l.h.s. of the above equation, we have the
fluid flux relative to the (possibly moving) solid matrix.

The permeability, k is a second rank tensor, as it relates the velocity vector to the
driving force vector composed of the pressure gradient and the force due to gravity.

It is interesting to compare the expressions for the permeability tensor, k, as
defined in (4.2.16), in (4.2.26) and in (4.2.32).

Darcy’s law (4.2.16) is the form most commonly used in modeling, obviously,
within the limits of the constraints underlying it. We note that in it, the density and
the viscosity depend on the temperature and the concentration of dissolved species.

Let us express this driving force (for a constant density fluid) as the gradient of
the piezometric head, h = z + p/ρg (valid for ρ = const.). Then, we make use of
(3.4.38), with Xi ≡ qi , where qi ≡ φVi , Vi ≈ V f i � Vsi , and Yi ≡ ∂h/∂xi ≡ ∇i h.
In this case, the, Ṡ is related to X and Y, by:

Ṡ ≡ XiYi =
(

−Ki j
∂h

∂x j

)(
− ∂h

∂xi

)
≥ 0.

Hence, thematrix Ki j is symmetric and definite positive; the permeability is a second
rank symmetric tensor.

Note that when the driving force in Darcy’s law is expressed in terms of pressure
and gravity, like in (4.2.16), the law is applicable to a variable density fluid.

We note, that although we have started from a momentum balance equation, the
final form, contains a coefficient—the fluid’s viscosity,

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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Case B

We assume that (4.2.13) and (4.2.14) are valid, i.e., that we may neglect the inertial
effects, but we maintain the internal viscous friction expressed by the first term on
the r.h.s. of (4.2.1). Then, with:

Da ∼ O(1), ReDa
1
2 � 1, St ∼ O(1), (4.2.17)

the momentum balance equation (4.2.1) reduces to the simplified form:

∇·φμ̃∇V − φ(∇ p + ρg∇z) − φ
μR

�2
· (V − Vs) = 0, (4.2.18)

known as the Brinkman equation (Brinkman 1948). In it, we note two viscosity sym-
bols: one which is due to the momentum transfer from the solid to the fluid, and the
other, which is associated with the fluid’s velocity gradient, unless the (macroscopic)
velocity is uniform everywhere, i.e., V = const. The Brinkman equation is usually
employed to describe saturated flow with a high velocity gradient, e.g., when the
porous medium domain is bounded by a body of free water.

Case C

When the local acceleration, ∂V/∂t , cannot be neglected, e.g., when flow starts from
rest, or in oscillatory flow, we have:

Da ∼ O(1), ReDa
1
2 � 1, St � O(1), (4.2.19)

and the momentum balance equation takes the form:

φρ
∂V
∂t

= ∇·φμ∇V − φ(∇ p + ρg∇z) − φ
μR

�2
· (Vf − Vs). (4.2.20)

Focussing our attention on the three momentum balance equations (4.2.16),
(4.2.18) and (4.2.20), it is obvious that if, in a given experiment, we try to use any
of these equations to determine the value of the coefficient R/�2, we shall obtain
different values. This means that the permeability, defined as φ�2RT will take on
different values in the three cases. Cheng (2016, p. 486) uses the term “dynamic
permeability” for k obtained from (4.2.20).

Let us focus on the last two terms on the r.h.s. of the momentum balance equation
(4.2.20), recalling that ki j = φ�2RT

i j . It is implicit that these two terms are of the
same order of magnitude, i.e.,

O (φcρcg) ∼ O

(
φ2
cμcLc

kctc

)
, O (pc) ∼ O (ρcgLc) .

This leads to the conclusion that in all three cases considered above:
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Fr2

ReDa
1
2

∼ O(1), ⇒ Fr � 1, Fr = Vc√
gLc

, (4.2.21)

where Fr denotes the Froude number associated with flow through porous media.
We recall that in fluid dynamics, the Froude number is used for the ratio of inertial
to gravity forces.

4.2.5 Tortuosity

The term tortuosity has been introduced already in Sect. 3.4.2, in connection with the
macroscopic expression formolecular diffusion, and in connectionwith fluid-to-solid
momentum transfer in Sect. 3.5.1. In fact, the concept of tortuosity is associated with
the macroscopic diffusive fluxes of mass, heat and momentum in a porous medium.
The latter—that of momentum—is the extension of the microscopic Newton’s law to
the transfer momentum of momentum from the fluid to the solid matrix mentioned
above. Eventually, Darcy’s law is obtained as a simplified case of the momentum
balance equation. Let us elaborate on these concepts in connection with Darcy’s law
and porous medium permeability.

Ghanbarian et al. (2012) present an extensive critical review and discussion on
tortuosity in saturated and unsaturated flow, making a distinction between geometric,
hydraulic, electrical, and diffusive tortuosities. They emphasize that the proposed
tortuosity models are distinct and thus may not be used interchangeably. Especially,
they suggest making a distinction between tortuosity with and without chemical
reactions. They also review a number of expressions for tortuosity.

In this subsection, the discussion on macroscopic fluxes in based on the pheno-
logical approach.

A. Tortuosity in Single-phase Flow

In Sect. 4.1.2, we used a bundle of straight capillary tubes to represent the flow
through a porous medium domain. We showed how a single straight capillary tube,
or a bundle of such tubes, can represent a parallelepiped block of porous medium.

Bear (1972, p. 110) followed Carman (1937), who made use of Poisseuille’s law
for the average velocity, Vx , in a straight capillary tube in the x-direction:

Vx = −gρ

μ
��2 �h

Lx
, (4.2.22)

where � is the hydraulic radius of the tube, � is a factor that depends on the shape
of the tube’s cross-section, and �h/Lx is the average hydraulic gradient along the
tube. By using � and �, we account for a non-circular cross-section. By averaging
over many such elementary tubes of different cross-sections, we obtain the average
velocity:

http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_3
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V x = ρg

μ
�(�2)

�h

Lx
, (4.2.23)

However, a bundle of straight parallel capillary tubes does not really represent the
flow through the void-space of a porous medium domain. The real flow takes place
through tortuous stream-tubes that fill up the entire void-space. Along each stream-
tube, the direction of the flow varies continuously, say, with respect to a fixed x, y, z
coordinate system. The cross-section also varies along each stream-tube. Thus, we
start from the single tortuous stream-tube, with length Ls(> Lx ) and constant cross-
section. The axial average axial velocity in an elementary straight stream-tube is
expressed by:

Vs = −ρg

μ
�(�2)

�h

Ls
. (4.2.24)

Then, we replace �h/Ls by (�h/Lx )(Lx/Ls) and Vs by (Ls/Lx )Vx , leading to:

V x = −ρg

μ
�(�2)

(
Lx

Ls

)2
�h

Lx
= −ρg

μ
�(�2)T ∗ �h

Lx
, (4.2.25)

where T ∗ = (Lx/Ls)
2 may be regarded as the porous medium’s tortuosity (e.g.,

Corey 1977, p. 91; Bear 1972, p. 110). It is an elementary void-space property that
takes into account the fact that the (actual) microscopic stream-tubes are tortuous and
longer through the void-space than the macroscopic ones; they do not coincide with
the direction of the piezometric head gradient, which is the driving force. Bear and
Bachmat (1967, see also Bear 1972, p. 105) obtained this coefficient when deriving
Darcy’s law by averaging over tortuous stream-tubes within an REV, taking into
account also variations in their cross-sectional area. Bear (1972, p. 107) defines
tortuosity of a porous medium as a “non-random porous medium operator (property)
that transforms the average components of an external force acting at a physical point
of a porous medium into the average components (in the xi system) of its projections
along the streamlines”. Actually, we could define the tortuosity as obtained from
(4.2.25) by �(Lx/Ls)

2, as m may also vary with direction. Other authors suggest
different definitions.

Henceforth, the symbol T∗ will be used to denote (flow) tortuosity. In an
anisotropic porous medium, the lengths of the tortuous stream-tubes per unit length
of porous medium, and their cross-sectional area, vary with direction. Hence, in an
anisotropic porous medium, the tortuosity is a second rank symmetric tensor, T∗

(components T ∗
i j ).

Altogether, we can write (4.2.25) in the form:

qi ≡ φVi = −ρg

μ
ki j

∂h

∂x j
, ki j = φ��2T ∗

i j , (4.2.26)

where ki j , the porous medium’s permeability, is related to the porosity, to the aver-
age of the square of the hydraulic radius of the void-space, and to some numerical
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coefficient that is related to the shape of the voids. We note the role played by the
(second rank tensor) tortuosity. It is interesting to compare the tortuosity T ∗

i j with RT
i j ,

in which the superscript T denotes transpose, by comparing (4.2.26) with (4.1.12)
and (4.2.2), and, especially, with (4.2.16).

Bear and Bachmat (1991, p. 126), as part of their discussion on the rule that relates
the average of a gradient to the gradient of an average, present another definition of
the tortuosity of a porousmediumdomain in the formof (1.4.15), which expresses the
total static moment of the oriented elementary surfaces comprising the Sαα-surface,
with respect to planes passing through the centroid of theREV, per unit volume of the
α-phase within Vo. This macroscopic coefficient depends only on the microscopic
configuration of the α-phase within the REV. For an isotropic porous medium, they
suggest:

T ∗
α,i j = θS

α

θα
δi j , (4.2.27)

where θα denotes the volumetric fraction of the α-phase (i.e., the void space), and
θS

α is the fraction of the α − α surface on the surface of the REV.

B. Tortuosity in Multi-phase Flow

In multi-phase flow (Chap.6), each fluid occupies only part of the void space, with
this part depending on the phase saturation. It is obvious that the concept of tortuosity
is applicable also to the flow of each of the phases, with the effective permeability of
each phase related to the tortuosity of that phase. Thus, the tortuosity of each phase
will be a function of that phase’s saturation. Effective permeability is discussed in
Sect. 6.2.2.

∗ ∗ ∗

In what follows we shall introduce additional cases in which tortuosity is defined
and employed. We shall consider the following cases: (1) mass of a solute diffusing
through the fluid occupying the void space, with no adsorption, obeying Fick’s law,
(2) heat conduction through a fluid saturating the void space, with a non-thermally-
conductive solid, obeying Fourier law, and (3) electric current through a fluid saturat-
ing the void space, obeyingOhm’s law,with a non-conductive solid. In all these cases,
the microscopic flux is proportional to the gradient of a potential and stream-tubes
of the considered extensive quantity can be identified. These tortuous stream-tubes
underlie the concept of tortuosity.

C. Tortuosity in Molecular Diffusion

We consider the case of molecular diffusion, i.e., the case in which the trans-
ported extensive quantity is the mass of a dissolved chemical species. At the micro-
scopic level, the flux of molecular diffusion is described by Fick’s law, presented in
Sect. 7.2.2A. This law states that the flux of a solute is driven by the latter’s con-
centration gradient. The discussion in that subsection introduces also the tortuosity
associated with solute transport by molecular diffusion at the macroscopic level.

http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_7
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Treated there are also the cases of molecular diffusion in multi-phase flow and the
effect of adsorption of the solute on the solid surface, discussed in Sect. 7.4.1.

D. Tortuosity in Heat Conduction

The diffusive flux of heat, or heat conduction, is described by Fourier’s law of heat
conduction (8.1.4). This law states that this flux is proportional to the temperature
gradient; the latter acts as a driving force. Similar to molecular (mass) diffusion,
described by Fick’s law, we can envision the transport of heat through tortuous heat-
carrying stream-tubes. Indeed, Bear andBachmat (1991, p. 62) extended the concepts
of stream-tubes and stream function to any extensive quantity. However, unlike mass
diffusion, in the absence of adsorption, heat can cross interphase boundaries, includ-
ing the fluid-solid interface, unless the solid is a thermal insulator. Let us focus first
on the case in which a single fluid occupies the entire void space, while the solid
behaves as a thermal insulator. We can follow the discussion presented earlier in
this subsection on mass flow in the void space, noting that the actual travel distance
along a heat stream-tube is much longer than the distance between equal temperature
surfaces under a macroscopic temperature gradient. This will lead to the definition
of a tortuosity in a way similar to that defined for flow and for molecular diffusion.
Then, using λα to denote the thermal conductivity of the α-phase at the microscopic
level, the corresponding macroscopic thermal flux law and the thermal conductivity
of the fluid occupying the entire void space and a non-conducting solid is:

qH
pm = φJH

α = −φλ∗
α · ∇T, λ∗

α = λαT
∗
α, (4.2.28)

in which T∗
α denotes the tortuosity of the fluid in the void space. In fact we note the

similarity between the above equation and (4.2.26). Thus, (4.2.28) describes heat
conduction in the fluid occupying the void space in an anisotropic porous medium,
with a non-conducting solid.

When, in single phase flow, the solid matrix is also heat conducting, we have to
take into account the possibility that the tortuous heat stream-tubes refract at the
solid-fluid interfaces and pass also through the solid. Altogether, following the same
analysis that led to (4.2.26), we obtain:

qH
pm = φJH

f + (1 − φ)JH
s = −�∗H

pm · ∇T .

with �∗H
pm = φλ∗

f + (1 − φ)λ∗
s (4.2.29)

denoting the thermal conductivity of the saturated porous medium. We note the two
tortuosities—one for the fluid saturated void space and the other for the solid matrix.

In Sect. 8.1.1A we shall present another approach for deriving (4.2.29), making
use of the derivation presented by Bear and Bachmat (1991, p. 128).

E. Formation Factor in Reservoir Engineering

The discussion presented earlier, on the tortuous pathways in the void space, etc., is
also valid for the flowof electricity through the void-space occupied by an electrically
conducting fluid, assuming a non-conducting solid. The flux of electricity in the

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_8
http://dx.doi.org/10.1007/978-3-319-72826-1_8
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(conducting) fluid is described by Ohm’s law. The formation factor, F , is a concept
used in reservoir engineering. It is defined (Archie 1942) as the resistivity (defined as
the electrical resistance of a porous medium cube having unit length sides measured
with uni-directional electrical current flow entering one face and leaving the opposite
one) of a porous medium saturated with an ionic solution to the bulk resistivity of the
same solution. It is used in the interpretation of electric logs, providing information
on the permeability of the formation. Assuming that the solid matrix is an insulating
material, F provides information on the geometry of the void space. Bear (1972,
p. 114), following Cornell and Katz (1953) and performing an analysis similar to
that leading to the definition of tortuosity above, suggested that:

F = 1

φT ∗ . (4.2.30)

Thus, the formation factor is another way of introducing the actual (tortuous)
pathways of extensive properties transport through porous medium domains.

4.2.6 Range of Validity of Darcy’s Law

Columnexperiments, similar to those conducted byDarcy, indicate that as the specific
discharge increases, its relationship to the hydraulic gradient gradually deviates from
the linear relationship expressed by Darcy’s law (4.2.17). Figure4.6a shows this
deviation.

In fluid mechanics, the (dimensionless) Reynolds number, Re, which expresses
the ratio between inertial and viscous forces acting on a moving fluid, is used as
a criterion for distinguishing between laminar flow occurring at low velocities and
turbulent flow occurring at higher ones (see any textbook on fluid mechanics). In

Darcy’s law
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Fig. 4.6 Experimental relationship between specific discharge, q, and hydraulic gradient, J
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pipes, the critical value Re≈ 2000, indicates the transition from laminar to turbulent
flow, althoughwidely varying valuesmay apply under special conditions.By analogy,
a Reynolds number is defined for flow through porous media, as:

Re = q d

ν
, (4.2.31)

where d is some representative (microscopic) length characterizing the void space
and ν is the fluid’s kinematic viscosity. Although, by analogywith pipe flow, d should
be a length characterizing the cross-section of an elementary channel of the porous
medium, it is customary, for unconsolidated porous media, to employ for d some
characteristic length of the grains, probably because it is more easily measured.

Often, the mean grain diameter is used for d in (4.2.31). Sometimes, d10 is men-
tioned in the literature as the representative grain diameter used for d. Collins (1961)
suggested d = (k/φ)

1
2 , or k = φd2, where k is the permeability and φ is the porosity,

and d serves as the representative length. Bear and Bachmat (1991), on the basis
of theoretical analysis, suggested the hydraulic radius of the void space (defined as
the ratio of the volume of the void space to the area of solid-fluid interface) as the
characteristic length. In their analysis, they define a Reynolds number and a Darcy
number:

Re = V�

ν
, Da =

(
�

L(V)

)2

, � =
√

k

φT ∗ , (4.2.32)

where� denotes the characteristic hydraulic radius, L(V) is the length characterizing
spatial variations in the fluid’s velocity, V , and T ∗ is the tortuosity (Sect. 4.2.5).
They suggest that Darcy’s law be used for ReDa1/2 � 1. Following their analysis,
we suggest replacing (4.2.31) by:

Re = V
√
k/φT ∗

ν
. (4.2.33)

In spite of the various definitions for the characteristic length used in (4.2.31),
practically, all evidence indicates that Darcy’s law is valid as long as Re does not
exceed a value of about 1 (but sometimes as high as 10). Most saturated groundwater
flows occur in this range, except in the very close vicinity of high-rate pumping or
recharging wells, or large (point) springs. High Reynolds number flows may also be
observed in very porous aquifers, such as cavernous limestone, where the hydraulic
radius is large.

Curve I in Fig. 4.6b indicates the existence of some minimum hydraulic gradient,
J = Jo, below which there is, practically, no flow. On this figure, Curves I I and I I I
indicate cases in which the growth is q slower and faster, respectively as J increases.
Curve I shows a case when no flow takes place below a threshold gradient. Bear
and Verruijt (1987, p. 34) present a number of explanations to these phenomena: (1)
pores are very small such that water molecules in them are strongly influenced by the
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double layer effects of clay particles. Because water molecules are polar, water near
the electrically charged clay particles has a more crystalline structure which causes
the viscosity to be higher than ordinary water. Under such conditions, a minimum
hydraulic gradient is required to produce water movement, (b) the effect of streaming
potential. As water moves near the clay surface it carries along some cations in the
diffuse layer Tne cations are electrically attached to the clay particles, a fact that
produces a resistance to the movement of the cations. This, in turn, produces a drag
on the moving water. The potential difference due to this migration of cations is
called streaming potential; it acts in the direction opposite to that of the flow, (3)
non-Newtonian behavior of the fluid in capillary passages, and (4) electroosmosis
counterflow.

Liu (2017, p. 9) presents a detailed literature survey and discussion on the flux
law for low permeability materials.

The case of flow at high Re is discussed in Sect. 4.3.2.

4.2.7 Darcy’s Law in an Anisotropic Porous Medium

Aporousmediumdomain is said to be isotropic at a point,with respect to a considered
property, if that property does not vary with direction at that point. It is said to
be anisotropic at a point, with respect to a property, if that property varies with
direction at that point. A typical porous medium property that exhibits anisotropy is
the permeability, k. In Sect. 4.2.4, Case A, we have shown that the permeability of a
porous medium is a second rank symmetric tensor. A symmetric second rank tensor
has a set of three mutually orthogonal principal axes, with three corresponding real
principal values. If the principal values differ from each other, then there exists only
one set of principal axes. In general, the principal values differ from each other, and
they correspond to only one set of three mutually orthogonal principal directions
(see any textbook on tensors).

Consider the case in which the permeability tensor, k, has three principal values,
k1, k2 and k3, and three corresponding principal directions indicated by the unit
vectors e(1), e(2) and e(3). We can express the tensor’s components in any Cartesian
coordinate system, in the form:

ki j = k1e
(1)
i e(1)

j + k2e
(2)
i e(2)

j + k3e
(3)
i e(3)

j . (4.2.34)

If the principal axes are chosen as coordinate axes, (4.2.34) reduces to:

ki j = k1δ1iδ1 j + k2δ2iδ2 j + k3δ3iδ3 j . (4.2.35)

when k1 �= k2 �= k3, we say that the permeability represented by these coefficient is
anisotropic.

In certain cases, a tensorial property of a porous material may exhibit the
same response in some, but not all directions. Such behavior indicates that the
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microstructure of the solid matrix is such that it possesses certain features of macro-
scopic symmetry. The existence of such symmetries simplifies themathematical form
of the corresponding coefficient, and, hence, also the description of the process under
consideration.

When k = k1 = k2 = k3, Eq. (4.2.35) reduces to the simple form:

ki j = aδi j , (4.2.36)

which represents an isotropic second rank tensor. It is characterized by a single
scalar, k.

When k represents a tensorial coefficient that has one principal direction, e, with
a corresponding principal value, k1, while all directions in a plane normal to e are
principal directions, with a common principal value, k2, the components ki j can be
expressed by (4.2.34), reduces to the form:

ki j = k1ei e j + k2δi j . (4.2.37)

A tensor k that satisfies (4.2.37) is said to be an anisotropic tensor with axial
symmetry.

The components of K in a three-dimensional space, can be written in the matrix
form:

K =
⎡
⎣Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

⎤
⎦ , (4.2.38)

In two dimensions, the transformation of K-components from any coordinate
system, (x, y) to the principal coordinate system, (x ′, y′), is given by the relationship:

K′
x ′x ′

K′
y′ y′

= Kxx + Kyy

2
±

[(
Kxx − Kyy

2

)2

+ K2
xy

]1/2

. (4.2.39)

The angle of rotation needed to reach the principle axes is given by:

α = 1

2
tan−1 2Kxy

Kxx − Kyy
. (4.2.40)

When the principal values K′
x ′x ′ and K′

y′ y′ are given, and xy are the cartesian
coordinates rotated clockwise by an angle α, with respect to x ′y′, we have:

Kxx

Kyy
= K′

x ′x ′ + K′
y′ y′

2
± K′

x ′x ′ − K′
y′ y′

2
cos 2α,

Kxy = −K′
x ′x ′ − K′

y′ y′

2
sin 2α. (4.2.41)
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When the principal directions are aligned with a selected coordinate system, (4.2.38)
may be represented in matrix form as:

[K] =
⎡
⎣Kxx 0 0
0 Kyy 0
0 0 Kzz

⎤
⎦ , (4.2.42)

so that Darcy’s law reduces to:

qx = KxxJx , qy = KyyJy, qz = KzzJz . (4.2.43)

In an anisotropic porous medium, since the direction of the flow (q) does not coin-
cide with the direction of the driving force (a vector, say, �J = −∇h), it is possible
to consider the permeability in a specific direction in the porous medium domain.
However, it is interesting to note that we may define two kinds of permeability for
the same direction in space. For the sake of simplicity, consider the flow of a homo-
geneous fluid in such a porous medium. With θ denoting the angle between the two
directions,

cos θ = q· �J
J ,

and, for the sake of simplicity, referring to the hydraulic conductivity, K, we distin-
guish between two cases (Bear 1972, p. 143):

(a) Permeability, Kq , in a direction that coincides with that of the flow,

Kq = q

J cos θ
.

(b) Permeability, KJ , in a direction that coincides with that of the hydraulic gradient,

KJ = q cos θ

J ,

with KJ/Kq = cos2 θ < 1.
Altogether, the basic expression that describes the flux of a variable density fluid

(relative to the (possibly moving) solid) takes the form:

qr ≡ φ
(
Vf − Vs

) = −k

μ
· (∇ p + ρg∇z) , (4.2.44)

or, in indicial notation:

qri ≡ φ
(
V f i − Vsi

) = −ki j
μ

(
∂ p

∂x j
+ ρg

∂z

∂x j

)
. (4.2.45)
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This equation will be used throughout this book as the fundamental single flux
equation for saturated flow in the range in which Darcy’s law is applicable. However,
we usually (but not always) overlook the fact that the above equation involves the
fluid’s velocity relative to the solid, i.e., and assume Vs ≡ 0.

Note that in the above equation,ρ andμmayvarywith p and T , and concentrations
of dissolved species. To understand the gravity effect, we may rewrite (4.2.45) in the
form:

qri = −ki j
μ

(
∂ p

∂x j
+ ρog

∂z

∂x j

)
− (ρ − ρo)

ki j
μ

. (4.2.46)

4.3 Non-Darcy Flux Laws

In Sect. 4.2.4, we have presented an expression for fluid flux, Darcy’s (linear) law, as a
simplified, or approximate, version of the fluid’smomentum balance equation, where
the simplification is based on neglecting certain terms in the general momentum
balance equation. We started from (4.2.1) and lead to Darcy’s linear law (4.2.16).
However, under certain circumstances, the assumptions leading to the linear flux
law (4.2.16) are not valid and other simplified versions of the momentum balance
equation have to be used as ‘motion equations’.

4.3.1 Brinkman’s Equation

Brinkman’s law (Brinkman 1949) was already presented as (4.2.18). With the per-
meability defined in (4.2.16), we can rewrite it in the form:

∇·φμ∇V − φ(∇ p + ρg∇z) − φ
μR

�2
· (Vf − Vs) = 0. (4.3.1)

Brinkman’s equation is used, primarily, when it is not possible to ignore the viscous
shearing stresses acting on the fluid (Brinkman 1949). While such simplification is
acceptable under the conditions of relatively lowpermeability, forwhichDarcy’sLaw
is valid, it introduces significant errors at the boundaries between low-permeability
subdomains and subdomains where resistance to flow is limited (e.g., at the boundary
of a wellbore or a fracture in contact with a porous medium). Although the use of
Brinkman’s equation allows an accurate description of flow over the entire spectrum
of permeabilities within a domain, it has found limited application because of its
complexity.
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4.3.2 Forchheimer’s and Other High Re Flux Laws

A. Forchheimer’s Flux Law

As shown in Sect. 4.2.6, Darcy’s law, which involves a linear relationship between
the fluid’s flux and the hydraulic gradient, is valid only for flow at low Reynolds’
numbers, e.g., Re ≤ 1–10. Experimentally, as Re increases, or, equivalently, as the
fluid’s velocity increases, we observe a growing deviation from the linear relationship
between the pressure gradient and the flux. In the range of validity of Darcy’s law, i.e.,
Re<1–10, the viscous forces that resist flow are predominant. As the flow velocity
increases, a gradual transition is observed (Fig. 4.6) from (microscopically) laminar
flow, where viscous forces are predominant, to, still essentially laminar flow, but
with inertial forces gradually taking over. Often, the value of Re = 100 is mentioned
as the upper limit of this transition region in which Darcy’s linear law is no longer
valid. The reason for this deviation from the linear law is that at the microscopic
level, as velocities increase, local separation of the flow from the walls of the solid
matrix occurs at an increasing number of places where the flow curves or diverges.
Local vortices and countercurrent flow regimes are caused by inertial and viscous
forces along portions of the solid. It may be interesting to note that the use of the
range 1–10 for the limiting value of Re results for the use of different values for
the characteristic microscopic length: mean grain diameter, mean pore diameter,
hydraulic radius of pore, etc. For this range, the motion equation, known as the
Darcy–Forchheimer equation, is used. It was suggested by Dupuit (1848, 1863) and
Forchheimer (1901)on the basis of experiments of flow at high Re in a sand column.
In his 1901 paper, Forchheimer suggested the relationship:

�h

��
= aV + bV 2, (4.3.2)

in which the l.h.s. denotes the hydraulic gradient.
Barak and Bear (1981) suggested the following form of the motion equation:

Ji = ν

g
wi j q j + β′

i jklq jqkql + 1

g
β

′′
i jkq jqk, (4.3.3)

as a good approximation for a constant density Newtonian fluid. In this equation, Ji

denotes the i th component of the hydraulic gradient,wi j , β
′′
i jk and β

′
i jkl are tensors of

the second, third and fourth orders, respectively, which represent matrix properties
only. If the resistance to flow in any direction is the same as in the opposite direction,
the second term must vanish. At low Re, the last two terms on the r.h.s. vanishes and
we obtain Darcy’s law. The last term expresses the effect of matrix asymmetry.

Nield and Bejan (1998, pp. 9–12) present reviews and discussions on Forch-
heimer’s equation. They present the expression suggested by Joseph et al. (1982):

∇ p = −μ

k
q − cFk

−1/2ρ|q|q, (4.3.4)
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in which a, b are coefficients and cF is a dimensionless form-drag constant, k is the
permeability and μ is the fluid’s viscosity. At low Re, the second term on the r.h.s.
which expresses the average of the microscopic inertial effects, becomes negligible.

Hassanizadeh and Gray (1987) concluded that:

φ

(
∂ p

∂xk
+ ρg∇z

)
= (

a + b|V d
k | + c|V d

k |2) V d
k , (4.3.5)

where V d
k denotes the kth component of the fluid’s velocity relative to the solid, and

a, c, c are coefficients which depend on density and porosity.
Altogether, for a rigid porous medium, neglecting the effects of inertia at the

macroscopic level, leads to the flux equation in the form:

qi = −ki j
μ

(
∂ p

∂x j
+ ρg

∂z

∂x j

)
− ρβi j

μ
qq j , (4.3.6)

where q = |q|, and βi j , sometimes referred to as the non-Darcy flow coefficient, or
the Forchheimer inertial resistance coefficient (dims. L−1) is a second rank tensorial
coefficient that is related to the configuration of the void space, thus related also to
the permeability of the void-space. In multiphase flow, βi j is also related to phase
saturation. In an isotropic porous medium, this coefficient is a scalar. At low Re, the
second term on the right-hand side, which expresses the average of the microscopic
inertial effects, becomes negligible. It is important to emphasize that although we
have here flow at high Re, this is not turbulent flow, which in a porous medium
appears at a much higher Re.

Whitaker (1996), starting from the Navier–Stokes equation at a point within the
void space, employs his averaging method described in Sect. 1.4.2B, to develop the
Forchheimer equation by averaging the Navier–Stokes equation. His result takes the
form:

〈Vα〉 = − k

μα
· (∇〈pα〉α − ραg) − Fα·〈Vα〉, (4.3.7)

where 〈Vα〉 is the superficial average velocity, 〈eα〉 and 〈eα〉α represent the phase
average and the intrinsic phase average, respectively, of eα, and Fα is a tensorial
correction coefficient.

Finsterle (2001) expresses the β-coefficient for a phase in multiphase flow in an
isotropic porous medium,in the form:

β = A1
1

kA2
e f f

1

θA3

1

τ A4
, (4.3.8)

where the A’s are coefficients, θ is the fluid’s content, assuming that the Forchheimer
equation applies to both liquid and gas flow, and τ is the tortuosity for multiphase
flow, defined by Millington (1959) as:

http://dx.doi.org/10.1007/978-3-319-72826-1_1
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τ = φ1/3S10/3α . (4.3.9)

Finsterle (2001) provides a table in which the values of various coefficients are
presented, as appearing in various publications.

B. Friction Factor and Ergun’s Equation

The concept of friction factor and Ergun’s equation are commonly used in Chemical
Engineering (see Appendix A). When fluid flows relative to a submerged solid parti-
cle, it exerts a force, or drag on the surface of the latter. This force is a consequence
of (1) shear stresses due to the fluid’s viscosity and to velocity gradients, which pro-
duces forces that are tangential to surface, and (2) pressure which produces a force
normal to the surface. Together, the (vector) sum of these forces, integrated over the
entire surface area of the particle, produces a resultant force. The component of the
latter in the direction of the fluid’s velocity is called the drag force, or just drag. It
is also referred to as surface resistance. The force component normal to direction of
the relative velocity is referred to as lift force. The two force component include the
effects of both pressure and friction.

Each of these forces can be expressed as a product of three factors: a coefficient,
the kinetic energy of the fluid and some suitably selected characteristic area of the
solid:

D f ric = C f ric ρ
V 2
o, f

2
A f s, Dpres = Cpresρ

V 2
o, f

2
Aps (4.3.10)

It is common to choose the frontal area for A f s and the horizontal projection are for
Aps . When the solid is not stationary, we have to consider the velocity relative to the
solid.

In principle,whenwe consider theflowof afluid through the void space of a porous
medium domain, the same drag and lift phenomena occur, but the geometry is more
complicated. Still, we may consider the same two types of forces: one associated
with the flow, i.e., with the velocity of the fluid, and the other associated with the
pressure (which is present even in the absence of flow).

Let Fk denote the force exerted by the moving fluid acting on a characteristic area
A. We can write:

Fk = K × A × f, (4.3.11)

in which K is a coefficient, A is the area normal to the flow direction and f is a
coefficient, referred to as friction factor that depends on the properties of both the
flow and the porous medium, e.g., f = f (Re). For flow in a porous medium column
of length L , packed with solid particles of diameter dp, it is common to write (e.g.,
Bird et al. 1960, p. 199):

p∗
o − p∗

L

1
2ρq2

o

= L

dp
·4 f, p∗ = p + ρgz, (4.3.12)
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where q denotes the fluid’s specific discharge, f is the friction factor, and p∗ (for
ρ = const.) may be referred to as a modified pressure. Actually, p∗ = ρg(p/ρg +
z) = ρgh, where h denotes the piezometric head.

Following the discussion presented by Bird et al. (1960, p. 197), let us consider
1-d average laminar flow in a narrow tube of radius R. Making use of the Hagen–
Poisseuille law (4.1.3), we write;

q = (p∗
o − p∗

L )R
2

8μL
. (4.3.13)

When applied to laminar flow in column of length L , packed with a porous medium,
visualized as a network of capillary tubes of non-uniform length and cross-section,
we may rewrite the above equation in the form:

q = (p∗
o − p∗

L )�
2

2μL
, � = hydraulic radius, (4.3.14)

where Bird et al. (1960, p. 197), following the work of Kozeny (see (4.1.12)), the
hydraulic radius (�) can be related to the porosity and to the specific surface (Ms)
by:

� = φ

Ms
, Ms = 6

dp
, (4.3.15)

where dp denotes the mean particle diameter (sphere).
Altogether, by combining the Hagen–Poiseuille formula (4.1.3) with the above

considerations, we obtain:

q = p∗
o − p∗

L

L
= d2

p

150μ

φ3

(1 − φ)2
. (4.3.16)

According to Bird et al. in the above equation, referred to as the Blake–Kzeny equa-
tion, the coefficient 150 is a consequence of taking into account the tortuosity of the
individual pathways within a real porous medium domain.

Following similar consideration for flow at higher Re, Ergun (1952) suggested
the following flux law for both low and high Re 1-d flow in an isotropic packed beds
of length L:

�p∗

L
= 150

μ

d2
p

(1 − φ)2

φ3
q + 1.75

ρ

dp

1 − φ

φ3
q2, (4.3.17)

where 180 and 1.75 are experimentally derived coefficients, �p∗/L includes both
the pressure gradient and the effect of gravity, and dp denotes particle size. Ergun’s
equation is commonly used in chemical engineering to calculate pressure drop in
packed bed reactors. Slightly different values for the numerical coefficients are also
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mentioned in the literature. Irmay (1958) derived the same equation, but without the
numerical values of the coefficients.

C. Rapid Velocity Changes

When local acceleration may not be neglected, especially at the onset of flow and
in oscillatory flows, but the advective acceleration, V∇V, and the internal friction,
φμ∇V, in the fluid may be neglected, the motion equation takes the form:

ρ

μ
(T ∗

im)
−1kmj

∂Vj

∂t
+ ki j

μ

(
∂ p

∂x j
+ ρg

∂z

∂x j

)
+ qi = 0, (4.3.18)

where T ∗
im denote components of the tortuosity tensor, defined in Sect. 4.2.5.

Although, for the sake of completeness, we have introduced equations applicable
to cases in which Darcy’s law is not applicable, conditions that justify their appli-
cation are seldom encountered in problems of flow and contaminant transport in the
subsurface.

4.3.3 The Klinkenberg Effect in Gas Flow

The general flux law for a fluid was introduced in the form of Darcy’s law (4.2.44).
When applied to a gas, the gravity term in that flux law is often neglected. One
example is the case where gas flows through a relatively thin gas-bearing reservoir.
Another example is when considering the flow of air in the unsaturated zone, just
below ground surface. Obviously, the gravity term cannot be neglected when the flow
is gravity-driven, e.g., when a volatile organic compound is present and diffusing in
the air that occupies part of the void space in the unsaturated zone.

However, when (4.2.44) is applied to a gas, this flux law requires special attention.
As presented, this law is applicable to the flow of any fluid phase–liquid, or gas—
through a porous medium domain. However, there are some significant differences
between liquid and gas flow that stem mainly from the very strong relationship
between the gas pressure and certain properties of the solid matrix, as compared
to those of liquids. Focussing first on a single-component gaseous phase, the main
difference stems from the assumption that liquid adheres to the solid’s (microscopic)
surface, i.e., from the assumption of a “no-slip” condition at the microscopic solid–
liquid interface. On the other hand, at a solid–gas interface, this assumption is no
more valid and we have “slippage” of the gas relative to the solid surface. This
phenomenon is amplified as the area of this interface (per unit volume of porous
medium) becomes larger as voids (or grains) become smaller, i.e., in lowpermeability
media. This phenomenon of gas slippage is well known in flow though capillary tubes
when the diameter of the latter becomes smaller, particularly approaching the mean
free path of the gas. It is referred to as the Klinkenberg effect (Klinkenberg 1941).



288 4 Momentum Balance and Motion Equation

As themean free path of themolecules is inversely proportional to the gas pressure,
Klinkenberg’s experiments with gas flow in a glass capillary tube showed that the
measured permeability and the reciprocal mean pressure can be expressed by:

kg = k�

(
1 + 4c

λ

R

)
, (4.3.19)

in which kg and k� are the permeabilities to gas and to liquid (or gas at very high
pressure), respectively, λ denotes the mean free path of the gas molecules under the
mean pressure p, c ≈ 1 is a proportionality factor, and R is the radius of the tube.
He concluded that for a porous medium, the rule should be:

kg = k�

(
1 + b

pg

)
, (4.3.20)

in which b (dim. ML−1T−2) is a coefficient for the gas-solid system that depends
on the mean free path of the gas (and, hence, on its pressure) and on the size of the
openings in the porous medium. Since k� is related to this size, b is also a function
of k�. Note that in the literature k� may also be referred to as k∞, i.e., the gas-phase
permeability to gas at very high pressures, at which the Klinkenberg effect becomes
negligible (Wu et al. 1998). Examples of b suggested by the American Petroleum
Institute are: b = 3, 0.5, 0.1 for k� = 3 × 10−18, 5 × 10−18, and 2 × 10−13 m2 (0.03,
0.05 and 200 millidarcy (or mD), respectively).

When the permeability is sufficiently large, e.g., > 10−13 m2 (= 100mD), the
dependence of kg on pressure, associated with the slippage (or Klinkenberg) effect,
can safely be ignored (Aronofsky 1954).

Wu et al. (1998) suggested b = 3.95 × 103, 4.75 × 104 and 7.60 × 105 for
k� = 10−12, 10−15 and 10−18 m2 (1000, 1 and 0.001mD), respectively. Jones (1972)
expressed the k - b relationship by the equation:

b = k−0.36
� . (4.3.21)

This relationship can then be used to estimate b from a referencemediumwith known
properties:

b

bo
=

(
k�

k�o

)−0.36

, (4.3.22)

where the subscript o denotes a reference medium.
Wang et al. (2014) suggested the relationship:

b = 16cν

w

√
2RT

πM
, (4.3.23)
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where c is a constant (usually taken as 0.9), ν is the kinematic viscosity, M is the
molecular weight of the gas, R is the universal gas constant, w is the average flow
path width, and T is the absolute temperature.

We recall that Darcy’s law is based on the assumption of no slip of the fluid with
respect to the pore’s wall. This is similar to the assumption of no slip of the fluid in
a capillary tube, which leads to Poiseuille’s equation. The introduction and quantifi-
cation of the Klinkenberg effect, or the gas slippage effect , is based on the concept
of a fluid layer that is thinner than the molecular mean free path, i.e., the average
distance between two consecutive molecular collisions (sometimes called Knudsen
layer), which is in contact with the pore walls. In this layer, only molecules-to-wall
collisions are taken into account,while collisions amongmolecules are ignored.Thus,
the slippage velocity, described by the Klinkenberg permeability correction, repre-
sents the contribution of molecule-wall interactions. It yields the Poiseuille velocity
profile in a capillary tube, based on the no slip assumption. The Klinkenberg effect is
important when kg < 10−18 m2, and can be used to estimate the liquid permeability
from gaseous permeability measurements. Klinkenberg applied this slippage condi-
tion to the flow of a gas in a porous medium to derive a first order correction for the
gas slippage.

Knudsen flow characterizes gas flow through the void space of ultra-low per-
meability media. In such media, the mean molecular path length is of the order of
magnitude of the size of the very small pores size and the permeability is controlled
by them. A typical case is gas flow in shale reservoirs. This is a rather unconventional
gas resource whose exploitation began mainly around 2005 (with the introduction
of hydraulic fracturing (fracking) techniques) and soon turned into a significant gas
source, particularly in the U.S.A. Knudsen flow occurs also at very low pressure; the
gas is then referred to as “rare gas”.

Altogether, the assumption underlying Darcy’s law fails as the flow apertures
become very small. The dimensionless Knudsen number:

Kn = λ

�
, (4.3.24)

in which � is the length characterizing the size of the void space, for example, its
hydraulic radius, and λ denotes the mean free path of the gas molecules, is used to
determine the kind of flow regime prevailing in gas flow through a porous medium
domain.

When the Knudsen number is near or greater than one, the mean free path of
a gas molecule is comparable to a length scale of the aperture, and the continuum
assumptions underlying fluid mechanics is no longer valid. For Kn < 0.01, the mean
free path of the gas molecules is negligible compared to the characteristic dimension
of the flow geometry and Darcy’s law (including all the assumptions underlying it)
is valid. As pressure drops, the mean free path and the Knudsen number increase,
and Darcy’s law is no more valid.

The Klinkenbergs approach ignores the transition flow region, in which both
molecule-molecule and molecule-wall interactions are significant. The Klinkenberg
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approach and equations are sufficiently accurate to describe the problem of gas
flow in tight organic media for a wide range of practical purposes. More accurate
estimates that account for this transition zone (theKnudsen layer) can be obtained by
considering Knudsen diffusion which is valid in the range Kn < 10 in which the gas
molecules collide with the void space boundaries more often than among themselves.

In shale reservoirs, the characteristic length of the void space is close to the mean
free path of the gas and Darcy law fails to describe gas flow.

Kuila et al. (2010) suggested that gas flow in the transition, or intermediate, regime
falls between Darcy flow and Knudsen flow. The term Knudsen flow (reference) is
used here to describe the flow of a gas when the mean free path of the gas molecules
is lager than the characteristic length of the flow domain; here, this is the charac-
teristic length dimension of a pore. Thus, the Klinkenberg effect and the equation
for permeability describe what happens when we have Knudsen flow in a porous
medium with very small apertures and/or very low gas pressure.

The subject of gas flow, with and without the Klinkenberg effect is presented in
Sect. 5.1.7.
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Chapter 5
Modeling Single-Phase Mass Transport

In the previous chapter, we have presented the law that governs the mass flux of a
fluid phase that occupies the entire void space. We noted that this law contains at
least two variables: the flux and the pressure, or the piezometric head (in the case of
constant density). This means that to obtain a complete model, we need at least one
additional equation—the mass balance equation. This equation will be discussed
in the current chapter for the case of a single fluid phase that occupies the entire
void space, i.e., saturated flow. We shall make use of the general microscopic and
macroscopic balance equations for any extensive quantity, presented in Sects. 3.2,
3.3 and 3.6, and apply it to cases in which the considered extensive quantity is the
mass of a fluid. In the next chapter, we shall consider the case of multiple fluid phases
that together occupy the void space.

The ultimate objective of this chapter is to develop and present complete, well-
posed models of single phase mass flow in a porous medium domain. We shall
also develop flow models based on the approximations of constant density fluid and
essentially horizontal flow, commonly used to describe flow in aquifers. The entire
discussion here is under the assumption of isothermal conditions. Non-isothermal
conditions will be discussed in Chap. 8.

Two additional subjects will be discussed in this chapter. One is flow in a
deformable porousmedium, primarily as associatedwith storage of water in aquifers.
The general subject of flow and other phenomena of transport in deformable porous
media will be discussed in detail in Chap.9. The other subject is an introduction to
flow in fractured porous medium domains.

The presentation in this chapter is at themacroscopic level, although, as is common
in this book, we shall not use any special symbol to indicate this fact.
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We shall make use of the concepts of stress and shear which are second rank
tensors, assuming that the reader is familiar with these concepts (or will seek infor-
mation in any good text on the subject). Some introductory remarks about stress and
strain are presented in Sect. 9.1.

The last section in this chapter is an introduction to modeling flow in fractured
rock domains. In this book, we do not cover the cases of solute transport, nor of
energy transport in fractured rock domains (see, for example, Bear et al. 1993).

5.1 Mass Balance Equation for a Deformable Porous
Medium

In principle, fluids are compressible and porousmedia are deformable, i.e., their solid
matrix deforms under applied stress. In connection with phenomena of transport in
porous media, we encounter such deformation or its consequences in many forms:

• One form is as solid’s velocity, Vs . We have encountered Vs in Chaps. 3 and 4,
when considering Darcy’s law. We have shown that Darcy’s law really expresses
the velocity of the fluid relative to the solid. In most cases of interest, |Vs | � |Vf |,
so thatVs may be neglected relative toVf . However, in the case of pressure waves,
the strain produced in a porous medium domain as a result of the application of
stresses, strongly affects the propagation of pressure waves, and we have to take
into account the solid’s velocity. This possibility is of interest in geophysical
engineering.

• A stress acting on a porous medium domain will cause the solid matrix to deform.
When the domain is a geological formation, the strain produced by the applied
stress may damage the formation. Cracks and fissures may develop. Land sub-
sidence, or consolidation, in response to loading at ground surface, and land
upheaval, in the case of recharge of fluids into a confined formation, may serve as
examples. These phenomena are of interest to geotechnical engineers. This sub-
ject is discussed in detail in Chap.9. There, we shall also show the relationship
between the solid’s velocity, the strain and the displacement of points within the
solid matrix.

• The deformation produced by changes in stress within a formation manifests itself
also as change in porosity. This means that the storage of fluid(s) within the forma-
tion is changing. This change in storage, of interest to groundwater hydrologists
and to petroleum reservoir engineers, is considered here. In the current chapter, we
shall also develop the concept of specific storativity, encountered when modeling
flow in confined geological formations, e.g., groundwater aquifers.

• Using injection of fluids at high pressure to produce cracks and fractures in deep
geological rock formations is a technique used in reservoir engineering to enhance
fluid recovery.

• In a deformable porous medium, we have: (1) a time-dependent porosity, i.e.,
∂φ/∂t �= 0, and (2) a moving solid matrix, i.e., Vs �= 0. We recall that Darcy’s

http://dx.doi.org/10.1007/978-3-319-72826-1_9
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law, e.g., (4.2.16), expresses the fluid’s flux relative to the (possibly moving) solid.
Hence, when considering fluid ( f ) flow through a deformable porous medium, we
have to take into account Vs �= 0, i.e., qr = φ(Vf − Vs) in Darcy’s law.

5.1.1 The Basic Fluid’s Mass Balance Equation

The basic macroscopic mass balance equation for a single fluid phase that occupies
the entire void space was already presented in Sect. 3.6.1. With subscript f denoting
the fluid phase, θf ≡ φ, and with a fluid source term, this balance equation takes the
form:

∂φρf

∂t
= −∇·ρf q f + ρf �

f , (5.1.1)

where: qf (= φVf ) is the specific discharge (≡ flux) of the fluid, and the source, � f ,
denotes added fluid mass per unit volume of porous medium per unit time. Usually,
as a practical approximation, qf is expressed by Darcy’s law, but we have to recall
that, actually, this law expresses the fluid’s flux relative to the solid, i.e., qr and
not qf , with qr ≡ φ(Vf − Vs). As we shall see below, since we added Vs as an
additional variable, we shall have to add the balance equation for the solid’s mass as
an additional equation.

It may be interesting to note the special case in which the porous medium domain
is homogeneous, isotropic and rigid, and the fluid is a liquid of constant density. For
the case ρ,φ = constant, and � f = 0, the mass balance equation reduces to:

∇·q = 0, (5.1.2)

known as the Boussinesq equation. In this case, we may use the piezometric head,
h(x, y, z, t), defined by (4.1.4), instead of pressure as a variable of state. The mass
balance equation that describes steady flow (φ and ρf are constant) in a homogeneous
isotropic porous medium domain, in the absence of liquid sources and sinks, reduces
to the Laplace equation:

∇2h = 0, or
∂2h

∂x2
+ ∂2h

∂y2
+ ∂2h

∂z2
= 0. (5.1.3)

When the considered fluid is extracted from the void space of a geological forma-
tion through a well, considered as a point sink, or injected into the porous medium
domain through a well, considered as a point source, we may replace � f on the
right hand side of (5.1.1) by specific expressions that describe these activities, per
unit volume of porous medium. For example, when fluid extraction takes the form
of point sinks located at points xm , where the fluid’s densities are ρm , and the rates
are Qm(x, t) (dims. L3/T), we use the Dirac delta-function, δ(x − xm) (dims. L−3),
formally defined by:

http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_4
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δ(x − xm) = lim
a→0

⎧
⎨

⎩

1/a3, if |x − xm | < a,

0, if elsewhere,
(5.1.4)

where a is a small length, to express the combined mass withdrawal of a number
of sources in the form:

∑
(m) ρmQm(xm, t)δ(x − xm). Actually, Qm represents both

sinks (with Qm < 0) and sources (with Qm > 0). The mass balance equation (5.1.1)
may then be written in the form:

∂φρ

∂t
= −∇·ρq +

∑

(m)

ρmQm(xm, t)δ(x − xm), (5.1.5)

where subscript f has been omitted. Note that ρm represents the density of the
pumped water when the later is withdrawn and that of the injected water in the case
of injection wells. The l.h.s. of the above equation expresses the mass added to a
unit volume of porous medium, per unit time, because of changes in both porosity
and fluid density. In the next section, we shall focus on these changes, as the fluid’s
pressure undergoes changes.

5.1.2 Mass Balance Equation for the Solid Matrix

Because Vs is an additional variable, we have to consider also the solid’s mass
balance equation. To do so, wemake use of the general macroscopic balance equation
(1.4.30), with E = ms , e′ = ρs , θ → (1 − φ), V = Vs , jE = 0, �E = 0, and assume
that at themicroscopic level the solid-fluid interface is amaterial surfacewith respect
to the solid’s mass, i.e., (Vs − u) · ν = 0, where u denotes the speed of displacement
of this surface and ν is the unit outward vector on the latter. Under such conditions,
(1.4.30) reduces to the solid’s macroscopic mass balance equation:

∂

∂t
[(1 − φ)ρs] = −∇·[(1 − φ)ρsVs], (5.1.6)

where we have omitted all averaging symbols, as it is obvious that the equation is at
the macroscopic level.

Introducing the material (or total) time derivative for the solid phase, defined by:

Ds(..)

Dt
= ∂(..)

∂t
+ Vs · ∇(..), (5.1.7)

Equation (5.1.6) can be rewritten in the form:

1

1 − φ

Ds(1 − φ)

Dt
+ 1

ρs

Dsρs

Dt
= −∇·Vs, (5.1.8)

http://dx.doi.org/10.1007/978-3-319-72826-1_1
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or:
1

1 − φ

Dsφ

Dt
= 1

ρs

(
Dsρs

Dt
+ ρs∇·Vs

)

. (5.1.9)

When we assume Dsρs/Dt = 0, the above equation reduces to:

1

1 − φ

Dsφ

Dt
= ∇·Vs . (5.1.10)

The solid (as a phase, not the solid matrix !) is usually assumed to be volume
preserving, i.e., deformation of the solid matrix is caused only by change of shape
or rearrangement of particles, with the solid itself assumed incompressible. This
means that at themicroscopic level, both∇·Vs = 0, and Dsρs/Dt = 0. Hence, (5.1.8)
reduces to:

1

1 − φ

Ds(1 − φ)

Dt
= −∇·Vs, =⇒ ∂φ

∂t
= ∇·[(1 − φ)Vs]. (5.1.11)

The l.h.s. of the first equation in (5.1.11) may be interpreted as ‘the relative rate
of expansion of the volume occupied by the solid phase’. However, this does not
necessarily mean that the porosity does not undergo changes.

5.1.3 Mass Balance Equation for the Fluid

We now rewrite the fluid ( f ) mass balance equation (5.1.1) as:

∂φρf

∂t
= −∇·φρfVf + ρf �

f = −∇·φρf (Vf − Vs) − ∇·(φρfVs) + ρf �
f

= −∇·(ρf qr ) − Vs · ∇(φρf ) − φρf ∇·Vs + ρf �
f

= −∇·(ρf qr ) − Vs · ∇(φρf ) + φρf
1

1 − φ

Ds(1 − φ)

Dt
+ ρf �

f , (5.1.12)

or:

φ
Dsρf

Dt
+ ρf

1

1 − φ

Dsφ

Dt
= −∇·(ρf qr ) + ρf �

f . (5.1.13)

In terms of the material derivative with respect to the fluid phase, this equation takes
the form:

φ
Df ρf

Dt
+ ρf

1

1 − φ

Dsφ

Dt
= −ρf ∇·qr + ρf �

f , (5.1.14)

where:
Df (..)

Dt
= ∂(..)

∂t
+ Vf · ∇(..). (5.1.15)
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For a stationary (Vs = 0) nondeformable solid matrix (Ds(1 − φ)/Dt = −Dsφ/

Dt = 0), Eq. (5.1.13) reduces to (5.1.1). Assuming that in a deformable porous
medium: ∣

∣
∣
∣
∂ρf

∂t

∣
∣
∣
∣	
∣
∣Vs · ∇ρf

∣
∣,

∣
∣
∣
∣
∂φ

∂t

∣
∣
∣
∣	
∣
∣Vs · ∇φ

∣
∣, (5.1.16)

i.e., assuming that the spatial variations aremuch smaller than the corresponding tem-
poral ones, (5.1.13) reduces to the mass balance equation for a fluid in a deformable
porous medium:

φ
∂ρf

∂t
+ ρf

1

1 − φ

∂φ

∂t
= −∇·(ρf qr ) + ρf �

f . (5.1.17)

A detailed analysis of the deformation of a porous medium requires the introduc-
tion of the latter’s (macroscopic) volumetric strain, or dilatation, εs . Denoting the
(macroscopic) displacement vector of the porous medium’s solid skeleton byws , the
porous medium’s volumetric strain is expressed by:

εs = ∇·ws . (5.1.18)

Then, with the assumption |∂ws/∂t | 	 |Vs · ∇ws |, we obtain:

Vs ≡ Dsws

Dt
≈ ∂ws

∂t
. (5.1.19)

Equation (5.1.11) then becomes:

∂εs

∂t
= − 1

1 − φ

Ds(1 − φ)

Dt
, (5.1.20)

and the mass balance equation (5.1.13) is replaced by:

φ
Dsρf

Dt
+ ρf

∂εs

∂t
= −∇·(ρf qr ) + ρf �

f . (5.1.21)

The mass balance equation (5.1.17) can be rewritten as:

φ
∂ρf

∂t
+ ρf

∂εs

∂t
= −∇·(ρf qr ) + ρf �

f . (5.1.22)

Finally, if we assume that: ∣
∣
∣
∣φ

∂ρf

∂t

∣
∣
∣
∣	
∣
∣qr · ∇ρf

∣
∣, (5.1.23)

which may be interpreted as stating that the temporal rate of density change at a
point is much larger than the spatial one, we may approximate ∇·(ρf qr ) in (5.1.17),
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(5.1.21), and (5.1.22) by ρf ∇·qr . For example, the mass balance equation for a fluid,
(5.1.17), then reduces to:

φ
∂ρf

∂t
+ ρf

1

1 − φ

∂φ

∂t
= −ρf ∇·qr + ρf �

f . (5.1.24)

For a compressible fluid, ρf = ρf (p), the above equation takes the form:

φβ
∂ p

∂t
+ ∂εs

∂t
= −∇·qr + � f , (5.1.25)

in which β is the coefficient of fluid compressibility, defined by:

β = 1

ρf

dρf

dpf
. (5.1.26)

Equation (5.1.25) is often referred to as the storage equation.
Note that the above two forms of the fluid mass balance equation involve the

relative specific discharge, qr , while in the mass balance equation (5.1.5) it is the
specific discharge, q.

Expressing qr by (4.2.16), we obtain a single equation in the four variables p,
ρ, φ and εs . We recall that ρ = ρ(p), and that we have shown earlier that changes
in εs are associated with changes in φ. The second term on the l.h.s. of (5.1.24)
expresses the temporal rate of change in the volume strain of the solid skeleton. It
has to be expressed in terms of the variable(s) of the problem, e.g., in terms of the
rate of change in fluid pressure. To achieve this goal, we shall introduce the concept
of effective stress in the next subsection. Then we shall define the specific storativity
of a deformable saturated porous medium, which leads to the derivation of a model
that describes saturated flow and deformation in a three-dimensional porous medium
domain.

In the next section, we shall present a different form of (5.1.25), which describes
the mass balance for a fluid in a deformable porous medium—an equation written in
terms of a single variable, pressure, or piezometric head.

5.1.4 Effective Stress

In simple terms, a fluid mass balance equation means that for a given spatial domain,
the total fluid mass inflow minus the total mass outflow plus the quantity of fluid
mass added from all sources, is being stored in that domain. The mechanisms that
enable such storage are the compressibility of the fluid and of the solid matrix. In
this subsection, we shall discuss these mechanisms and develop a coefficient that
expresses their effect in the mass balance equation.

http://dx.doi.org/10.1007/978-3-319-72826-1_4
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AlthoughChap.9 is devoted to poro-mechanics,wehave introduced the discussion
on effective stress already here, as we need this concept in the discussions on specific
storativity in 3-d flow in a porous medium and on aquifer storativity in the mass
balance equation for essentially horizontal flow in aquifers. These are two basic
concepts in modeling flow in aquifers. The material on effective stress presented
below will also serve the discussion in Chap. 9, where we consider the general case
of poro-mechanics. Note that the terms “storativity” and “effective storativity” are
used mainly by groundwater hydrologists in connection with flow and water storage
in aquifers. They are not common in reservoir engineering. It may also be interesting
to note that the concept of effective stress was originally developed and initially
employed in connection with soil loaded by structures and in connection with what
happens in aquifers and petroleum reservoirs as fluids are extracted or injected. Here,
we shall extend the concept to any stressed porous medium domain.

Following Bear and Bachmat (1991, p. 153), we consider the particular case of a
single fluid phase (subscript f ) that fully occupies the void space. Then, neglecting
the shear stress in the fluid, or when the system is at rest, i.e., τ f ≡ 0, we have, from
(3.3.19):

σ = (1 − φ)σs − φpf I, (5.1.27)

in which σs and pf are intrinsic phase averages of the stress in the solid and the
pressure in the fluid, respectively, and σ denotes the volume average stress defined
by (3.3.17).

Our objective is to determine the stress that produces the strain in the solid matrix.
Knowledge and understanding of this strain is required in problems of flow through
deformable porous media.

Terzaghi (1925), while investigating the delay in the deformation caused by the
slow drainage of water from the void space in a low permeability soil, when a com-
pressive load is applied, introduced the concept of effective stress, or intergranular
stress in Soil Mechanics (see any text on Soil Mechanics, e.g., Verruijt 2010, p. 28).
Essentially, this concept assumes that as the solid comprising the solid matrix (e.g.,
grains in a granular material) is (almost) completely surrounded by an ambient fluid,
the latter’s pressure (actually stress, unless we neglect τ f ) acting on the solid-fluid
interface produces a stress of equal magnitude in the solid (say, within each individ-
ual grain), without contributing to the solid matrix’ deformation, which is produced
mainly by forces that are transmitted (in a granular material) from grain to grain at
contact points. Thus, the strain producing stress, or inter-granular stress, is obtained
by subtracting the pressure in the fluid from the stress in the solid, where both pres-
sure and stress are average values. We recall that in this book stress is positive for
tension, while pressure is positive for compression.

Terzaghi’s concept of effective stress is based on the assumption that soil grains
are very rigid compared to the soil as a whole, and on the assumption that the inter-
particle contact areas are very small compared to the surface area of the grains. These
are reasonable assumptions for granularmaterials or soils, but are not valid for porous
or fractured rocks. In the latter, rock compressibility must be taken into account.

http://dx.doi.org/10.1007/978-3-319-72826-1_9
http://dx.doi.org/10.1007/978-3-319-72826-1_9
http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_3
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Fig. 5.1 Nomenclature for
the definition of Terzaghi’s
effective stress
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Verruijt (2010, p. 29) comments that Terzaghi’s effective stress principle is often
quoted as total stress equals effective stress plus pore pressure, but that it should be
noted that “this applies only to the normal stresses. Shear stresses can be transmitted
by the grain skeleton only”.

Essentially, the concept of effective stress stems from the observation that the
deformation of a granular material is much larger than can be explained by the
compression of the solid material itself. This suggests, at least in a granular material,
that deformation is produced mainly by the rearrangement of grains, with localized
slipping and rolling, implying that deformation is governed by the transmission of
localized normal and shear forces at contact points. As these forces are not affected by
the pressure in the fluid, a change in fluid pressure, accompanied by an equal change
in total stress, produces no deformation and, hence, should produce no change in
effective stress.

Accordingly, when the (macroscopic) shear stress in the fluid, τ f
f , is neglected,

we write (3.3.17) in the form:

σ = (1 − φ)σs
s − φpf

f δ

= (1 − φ){σs
s + pf

f δ} − (1 − φ)pf
f δ − φpf

f δ,

or,
σ = σ′

s − pf
f δ, (5.1.28)

where pf
f is the (intrinsic phase average) pressure in the fluid, δ is the unit tensor,

and the effective stress, σ′
s , is expressed by:

σ′
s = (1 − φ){σs

s + pf
f δ}. (5.1.29)

Figure 5.1 illustrates the above stress balance in a simpleway. The figure is limited
to vertical forces only, and considers a horizontal area, AB, in a vertical cross-section
through a saturated porous medium.

In the theory of poroelasticity, (5.1.29) is replaced by:

σ′
s = (1 − φ){σs

s + αB pf
f δ}, (5.1.30)

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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in which αB , with 0 ≤ αB ≤ 1.0, a coefficient introduced by Biot (1941), is called
the Biot effective stress coefficient. This coefficient depends on the nature of the
solid matrix only, independent of the nature of the fluid that occupies the void space.
Cheng (2016, p. 61) interprets αB as the ratio of the fluid volume gained (or lost)
in a porous sample to the volume change of that sample, when the pore pressure is
returned to its initial state, with αB = 1 in the case of an incompressible solid.

Terzaghi’s work was related, primarily, to one-dimensional case. Biot (1941)
extended poroelasticity theory to three dimensions. The effective stress defined by
(5.1.30) is sometimes called Biot’s effective stress. Over the years, Biot’s theory has
been extended (e.g., Geertsma 1957; Gambolati et al. 2000; Bishop 1973; Verruijt
1995) to include the compressibility of the fluid and that of the soil particles. This last
extension is especially important because it means that the theory can also be used
for time-dependent deformation of such materials as rocks (in reservoir engineering)
and in bone structures. Biot (1935, 1941), whowas the first to develop a linear theory
of poroelasticity, suggested that the αB-coefficient be related to the compressibility
of the solid (say grains), Cs , and to that of the porous medium as a whole (Cpm). The
upper limit of αB is 1, when the solid is incompressible. The lower limit is associated
with the porosity. It can approach zero only when the porosity goes to zero (i.e., we
have a pure solid). In between, it depends on the porosity and the compressibility
of the solid. The usual assumption (e.g., Verruijt 2014; Jha and Juanes 2014; Kim
et al. 2013) is that αB = 1 − Cdr/Cs , where Cdr denotes the drained bulk modulus
(= inverse of compressibility) andCs is that of the solid material. Often it is assumed
that αB = 1.

A comprehensive review of soil consolidation, including the above developments
can be found in a comprehensive review on Soil Consolidation, published by Verruijt
(2005).

From (5.1.29) it follows that the effective stress is made up of two parts: one is
an average stress (positive for tension) within the solid matrix, and the other is an
average pressure (positive for compression) in the fluid occupying the void space.
The stresses σ and σ′

s are forces per unit area of porous medium cross-section. In
soil mechanics, the minus sign in (5.1.28) is usually replaced by a plus sign, i.e.,
both σ and σ′

s are positive for compression.
When τ f within the fluid cannot be neglected, we obtain:

σ = σ′
s + σ f

f , (5.1.31)

with:
σ′
s = (1 − φ)(σs

s − σ f
f ). (5.1.32)

5.1.5 Specific Storativity in Single Phase Flow

The term on the l.h.s. of (5.1.1) represents the mass of fluid added to a unit volume
of porous medium per unit time. This term can also be written as:
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∂

∂t
(φρf ) = φ

∂ρf

∂t
+ ρf

∂φ

∂t
. (5.1.33)

We note the two effects that contribute to the added fluid mass: fluid compressibility
and porous medium deformability.

In general, the fluid’s density depends on its pressure, p, solute concentration, c,
and temperature, T , i.e., ρf = ρf (p, c, T ). Thus,

∂ρf

∂t
= ∂ρf

∂ p

∂ p

∂t
+ ∂ρf

∂c

∂c

∂t
+ ∂ρf

∂T

∂T

∂t
. (5.1.34)

Note that c represents cγ, γ = 1, 2, . . . , NC . In this section,we restrict the discussion
to the case in which the fluid’s density depends on pressure only, i.e., ρf = ρf (p).
Then,

∂ρf

∂t
= ∂ρf

∂ p

∂ p

∂t
= ρf β

∂ p

∂t
, (5.1.35)

where β is the fluid’s compressibility, defined in (5.1.26).
To develop the second term on the r.h.s. of (5.1.33), we start from the assumption

(already introduced earlier) that the solid’s density, ρs , not of the solidmatrix, remains
unchanged as the porosity undergoes changes. Given a fixed mass of solid matrix,
ms , this means that ∂Vs/∂t = 0, where Vs denotes the solid’s volume. We recall that
the entire discussion here is at the macroscopic level.

The total stress in a three-dimensional saturated porous medium is expressed by
(5.1.28), repeated here for convenience as:

σ = σ′
s − pf

f δ, (5.1.36)

in which δ denotes the Kronecker delta (tensor).
It is interesting to recall here the equilibrium equation (3.3.25), repeated without

the averaging symbols:
∇·σ + ρF = 0. (5.1.37)

With ρF including only the total external force per unit mass due to gravity, i.e.,

ρF ≡ −g[(1 − φ)ρs + φρf ]∇z ≡ −gρpm∇z,

and total stress related to effective stress, σ′
s , by (5.1.30), the equilibrium equation

(5.1.37) takes the form:

∇·σ′
s − αB∇ pf + (ρpmF) = 0, F = −g∇z. (5.1.38)

Stresses in the soil below ground surface are caused by the weight of the soil
itself, i.e., solid matrix + water, as well as by any external load applied to ground
surface. For a homogeneous soil and a horizontal ground surface, the vertical stress,
σzz at a depth d is obtained from:

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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σzz =
∫ d

0
gρpm(z)dz, ρpm = φρf + (1 − φ)ρs . (5.1.39)

If a water table is present at some depth below ground surface, we assume that the soil
above it is dry. The effect of any additional load (positive, or negative for excavation)
at ground surface should also be taken into account (see Bear 1972, p. 187).

When changes take place, either in the external load (producing changes in the
total stress distribution, σ), or in the fluid pressure, as a result of changes in flow
conditions, e.g., by pumping or injection, we have, omitting the averaging symbol,
as the effective stress is a macroscopic concept only,

dσ = dσ′
s − αBdpf δ, (5.1.40)

in which αB is the Biot coefficient.
We shall now limit the discussion to the case of vertical stresses only. The state-

ment that the solid is not deformable, is expressed by:

∂Vs

∂σ′
s,z

= 0, (5.1.41)

where σ′
s,z is the vertical effective stress. With Vpm (= Vs/(1 − φ)) denoting the

porous medium volume containing Vs , we rewrite (5.1.41) as:

∂Vs

∂σ′
s,z

≡ (1 − φ)
∂Vpm

∂σ′
s,z

+ Vpm
∂(1 − φ)

∂σ′
s,z

= 0. (5.1.42)

Hence, in view of (5.1.36), written for the vertical direction only, and assuming no
change in the total stress, i.e., dσ = 0, and dσ′

s = dp, we have:

1

Vpm

∂Vpm

∂σ′
s,z

= 1

1 − φ

∂φ

∂σ′
s,z

= 1

1 − φ

∂φ

∂ p
. (5.1.43)

At this point, we assume that we deal with relatively small volume changes,
and that the porous medium may be assumed to behave as an elastic material. The
coefficient of porous medium compressibility, αpm , is defined for this case of vertical
stresses only, as:

αpm = 1

Vpm

∂Vpm

∂σ′
s,z

= 1

1 − φ

∂φ

∂ p
. (5.1.44)

The coefficient αpm (dimensions of reciprocal of stress) can be determined in a
laboratory experiment with a fixed mass of porous medium, and a representative
volume of porous medium.

We now return to the second term on the right-hand side of (5.1.33). Making use
of (5.1.44), we obtain



5.1 Mass Balance Equation for a Deformable Porous Medium 305

∂φ

∂t
= (1 − φ)αpm

∂ p

∂t
. (5.1.45)

With the above equation, we can now rewrite (5.1.33) in the form:

∂

∂t
(φρf ) = ρf

[
φβ + (1 − φ)αpm

] ∂ p

∂t
≡ Sm∗

op

∂ p

∂t
. (5.1.46)

Recalling the physical interpretation of the l.h.s. of the above equation, Sm∗
op can be

interpreted as the specific mass storativity, here for a saturated porous medium. It is
defined as the mass of fluid released from (or added to) storage in a unit volume of a
deformable porous medium per unit decline (or rise) in fluid pressure. We have used
the superscript m and subscript p to indicate that this is a specific mass storativity
associated with pressure changes, as several other types of storativity will be defined
below. Through the dependence of ρw and φ on pressure, it follows that the specific
storativity is also pressure dependent.

Groundwater hydrologists, who deal with water (w) as the dominant fluid, define
a specific storativity (for saturated flow),

S∗
o ≡ gSm∗

op = ρwg[φβ + (1 − φ)αpm], (5.1.47)

as the volume of water (w) released from (or added to) storage in a unit volume of
porous medium, per unit decline (or rise) in the piezometric head (e.g., Bear 1972,
p. 204),

S∗
o = �Vw

Vpm�h
. (5.1.48)

Following the above discussion, we may now rewrite the mass balance equation
(5.1.1), say, for water (w), in the form:

Smop
∂ p

∂t
= −∇·(ρwqw) + ρf �

f , Smop = ρw(φβ + αpm). (5.1.49)

We can also write the mass balance equation for water in saturated flow, in terms of
the piezometric head, h, in the form:

ρwSo
∂h

∂t
= −∇·(ρwqw) + ρw�w, So = ρwg(φβ + αpm), (5.1.50)

in which So is another form for the specific (volume) storativity. Note that in order to
express qw by Darcy’s law, we have to assume that Vs ≈ 0. Then, when expressing
qw in terms of the piezometric head, h, i.e., qw = −K·∇h, the above mass balance
equation contains only a single variable, h, to be solved for. We recall that the use
of the piezometric head as a variable is permitted only when the fluid’s density is
constant.



306 5 Modeling Single-Phase Mass Transport

Equation (5.1.50) is a partial differential equation of the parabolic type, often
referred to the heat equation.

We note the difference between the expressions for So and S∗
o defined in (5.1.47).

This difference is explained by the difference between qw(≡ φVw) and qr (≡
φ(Vw − Vs)) appearing in the divergence term in the mass balance equation. In
Soil Mechanics, an undrained test is one in which a stress applied to a saturated
soil sample produces deformation (of the sample), but no fluid is allowed to drain
out of the deforming porous medium sample. The fluid is (practically) stationary
relative to the solids. Such conditions can occur when the sample is bounded by
impervious boundaries, or when the permeability is very low, or when the external
stress is applied very quickly and the low permeability does not allow any significant
outflow of water. The deformation of the sample is due mainly to the rearrangement
of particles.

Under drained conditions of a saturated soil sample, as the stress is applied to
the sample, producing changes in the fluid’s pressure, fluid can enter or leave the
sample.

Accordingly, So (= ρw(αpm + φβ)) may be considered to be another definition
for specific storativity, this time under conditions equivalent to those prevailing in
an undrained test. Thus, So is applicable to a coordinate system that moves with the
solid phase, while S∗

o is appropriate for a reference frame in which solid and fluids
are allowed to move freely.

When we assume |φ∂ρw/∂t | 	 |qw · ∇ρw|, the mass balance equation (for con-
stant ρ) (5.1.50) is simplified to the form:

So
∂h

∂t
= −∇·qw + �w, or qw = −K·∇h. (5.1.51)

This equation, with specific storativity, So ≡ S∗
o , defined by (5.1.48), i.e., with the

same verbal definition, is the one commonly used when considering (saturated)
groundwater flow in aquifers. The variable solved for is h = h(x, y, z, t). Actu-
ally, groundwater hydrologists use (5.1.51) with So defined by the right-hand side of
(5.1.47), and with qw expressed by Darcy’s law.

We wish to emphasize again that underlying (5.1.51) is the assumption that water
density is assumed constant, except in the expression for the specific storativity, So,
where we do take water compressibility into account.

5.1.6 Three-Dimensional Flow with Deformation

Following Verruijt (1969), we separate the total stress, σ, the effective stress, σ′
s ,

the pressure p, and the body force f(≡ ρF), appearing in the equilibrium equa-
tion (5.1.37), into initial steady-state values, σo, σ′

s
o
, po and fo, and deformation-

producing increments, σe, σ′
s
e
, pe and fe. We obtain
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σo = σ′
s
o − poI, and σe = σ′e

s − peI. (5.1.52)

We can, of course, modify the above equations by including the effect of the Biot
coefficient (Sect. 5.1.4). We shall continue without this coefficient.

As a good approximation, we assume that the body force, f , remains unchanged,
although φ and ρw do vary, i.e., fe = 0. Then, the equilibrium equation for the initial
steady state, is

∇ · σ′
s
o + fo − ∇ po = 0. (5.1.53)

For the incremental (deformation producing) effective stress and pressure, we have

∇ · σe ≡ ∇ · σ′
s
e − ∇ pe = 0. (5.1.54)

We nowmake the assumptions that the solidmatrix is isotropic (although the same
approach can also be applied to an anisotropic solid matrix) and, for the relatively
small excess effective stresses considered here, is made of a perfectly elastic material
that obeys themacroscopic strain-stress relationship (2.3.73), withw(≡ ws) denoting
the macroscopic solid’s displacement vector. Thus, the constitutive relationship is:

(σ′
s
e
)i j = μ′′

s

(
∂wi

∂x j
+ ∂w j

∂xi

)

+ λ′′
s

(
∂wk

∂xk

)

δi j = 2μ′′
s εi j + λ′′

s εδi j . (5.1.55)

as only the incremental effective stress causes displacement.
By inserting (5.1.55) into (5.1.54), we obtain

∂

∂xi

[

μ′′
s

(
∂wi

∂x j
+ ∂w j

∂xi

)

+ λ′′
s

∂wk

∂xk
δi j

]

− ∂ pe

∂xi
δi j = 0, (5.1.56)

to be used for determining w.
The mass balance equation (5.1.22) may also be rewritten as two balance equa-

tions, one representing the initial steady state (with variables denoted by superscript
o), and the other, involving the pressure increment (denoted by superscript e) that
produces displacement. Thus, the second equation may be written in the form:

∇ · (ρwqe
r

)+ φρβ
∂ pe

∂t
+ ρ

∂εsk

∂t
= 0, (5.1.57)

where εesk ≡ εsk since εosk ≡ 0. For the isotropic porous medium considered here,
Darcy’s law takes the form:

qe
r = − k

μ
(∇ pe + ρwg∇z). (5.1.58)

In writing (5.1.57) and (5.1.58), we have introduced the approximations

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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Table 5.1 Balance equations and constitutive relations forDarcian, saturatedflowof a compressible
Newtonian fluid in an isotropic linearly elastic porous medium (Bear and Bachmat 1991)

Equations Additional dependent variables

Mass balance equation for the
fluid, (5.1.22)–(1 Eq.)

∇ · ρwqer + φ∂ρw

∂t +
ρw

∂εsk
∂t = 0

ρw, φ,qer , εsk (6 vars.)

Equation of motion for the
fluid (5.1.58)–(3 Eqs.)

qer = − k
μ (∇ pe + ρwg∇z) pe (1 var.)

Equilibrium relationships
(5.1.54)–(3 Eqs.)

∇ · σ′
s
e − ∇ pe = 0 σ

′e
s (6 vars.)

Stress-strain relationships for
the solid matrix (5.1.55)–(6
Eqs.)

σ′′
s
e = μ′′

s

[∇w + (∇w)T
]+

λ′′
s (∇ · w)I

w (3 vars.)

Dilatation-displacement
relations (5.1.18)–(1 Eq.)

εsk = ∇ · w (none)

Equation of state for the
fluid–(1 Eq.)

ρw = ρw(p) (none)

Dilatation-porosity relation
(5.1.20)–(1 Eq.)

ε̇sk = 1
1−φ φ̇ (none)

Total: 16 equations 16 (scalar) variables

ρw = ρow + ρew  ρow, ρew � ρow, μe � μo, φ = φo + φe  φo, φe � φo.

We also assume that the permeability, k, remains unchanged in spite of the deforma-
tion that takes place.

By inserting the expression for qe
r into (5.1.57), we obtain the mass balance

equation for a compressible fluid phase in a deformable, isotropic and linearly elastic
porous medium, in the form:

− ∇ ·
[

ρw

k

μ
(∇ pe + ρwg∇z)

]

+ φρwβ
∂ pe

∂t
+ ρw

∂εsk

∂t
= 0. (5.1.59)

This is a single equation in two variables pe and εsk . We need a second PDE.
The complete set of equations describing the flow of a single compressible New-

tonian fluid (ρ,μ) in a deformable isotropic porous medium consists now of the
equations and relationships summarized in Table5.1.

From this table, it follows that we have a sufficient number of equations to solve
for the various dependent variables involved. In principle, this is themodel introduced
by Biot (1941), except that the Biot coefficient has been omitted, bu can be added.
We note that this model also yields the displacement vector, w. It can be used, for
example, for determining soil consolidation and land subsidence.

As an example, consider a homogeneous isotropic porousmedium, withλ′′
s , μ′′

s =
const. We rewrite (5.1.56) in the form of the three equations:
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μ′′
s

∂2wi

∂x j∂x j
+ (λ′′

s + μ′′
s )

∂εsk

∂xi
− ∂ pe

∂xi
= 0, i, j = 1, 2, 3. (5.1.60)

By differentiating each of these equations with respect to the corresponding xi , and
adding the resulting three equations, we obtain the single equation (Verruijt 1969):

(λ′′
s + 2μ′′

s )∇2εsk − ∇2 pe = 0, (5.1.61)

which, together with (5.1.25) and (4.2.44), often simplified for a homogeneous
isotropic porous medium to the form:

− k

μ
∇2 pe + φβ

∂ pe

∂t
+ ∂εsk

∂t
= 0, (5.1.62)

constitute two equations in the variables pe and εsk .
Following Verruijt (1969), we integrate (5.1.61) over the vertical, and obtain:

(λ′′
s + 2μ′′

s )εsk = pe + �(x, t), (5.1.63)

where � is a function of position and time that for every value of time, t , satisfies

∇2� = 0. (5.1.64)

When � ≡ 0 (see below), we may insert:

εsk = pe

λ′′
s + 2μ′′

s

(5.1.65)

in (5.1.62), and obtain:

k

μ
∇2 pe =

(

nβ + 1

λ′′
s + 2μ′′

s

)
∂ pe

∂t
≡ (nβ + αpm)

∂ pe

∂t
, (5.1.66)

which is a simple (diffusion-type) mass balance equation commonly employed in
hydraulics of groundwater for determining the pressure distribution. In the above
equation, we have

αpm = 1

λ′′
s + 2μ′′

s

, (5.1.67)

which may be interpreted as a coefficient of porous medium compressibility. This is
the same coefficient α (defined in (5.1.44)) that appears in the definition of specific
storativity, (5.1.47).

As pointed out byVerruijt (1969, p. 348), the function� ‘describes the deviation of
the simplifiedTerzaghi-Jacob theory from theBiot theory’,where the former assumes
vertical consolidation only, while the latter takes into account the three-dimensional

http://dx.doi.org/10.1007/978-3-319-72826-1_4
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nature of consolidation. Here, � expresses the deviation in the integrated approach
to aquifer consolidation. In principle, however, horizontal displacements do take
place. Their effect in hydrology may be negligible, but as part of consolidation, their
damage may be significant. A discussion on modeling land subsidence is presented
in Sect. 9.3.2.

5.1.7 Balance Equation for Gas Flow

Equation (5.1.1) is valid also for gas flow. Repeated here for convenience, without
the source term, it takes the form:

∂φρg

∂t
= −∇·ρgqg, (5.1.68)

or:

ρg
∂φ

∂t
+ φ

∂ρg

∂t
= −∇·kg

μ

(∇pg + ρgg∇z
)
, (5.1.69)

where we can express changes in φ and ρg as in terms of variations in pg.
In general, Darcy’s law, say (4.2.44), is applicable to the flowof both gas and liquid

at low Reynolds numbers. However, as discussed in Sect. 4.3.3, when considering
the flow of gas at low pressure, or through a porous medium in which the void space
is comprised of very small pores, the permeability in Darcy’s law has to be modified,
say in the form of (4.3.20).

Let us now consider a real gas. The density of a real gas in a single phase system
is presented in Sect. 2.3.3A, where the dependence of the gas density, ρg , on pressure
is presented, for example, in the form of (2.3.40), repeated here for convenience, as:

ρg = ρg(p, T ) = M

RT

p

Z(p, T )
, (5.1.70)

in which Z = Z(p, T ) is the compressibility factor. For an ideal gas, Z = 1. Con-
versely, for a large permeability, e.g., in excess of 10−12 m2( 1 D) and/or when gas
velocity is high, Darcy’s law is not applicable. Instead, a non-linear flux equation,
such as Forchheimer’s equation (Sect. 4.3.2), may be required in order to express the
flux.

Consider gas flow under the following conditions:

(a) We take into account the Klinkenberg effect (Sect. 4.3.3), such that:

kg = kg(p).

http://dx.doi.org/10.1007/978-3-319-72826-1_9
http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_4
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(b) Flow is under isothermal conditions.
(c) We neglect the effect of gravity in Darcy’s law. This assumption is valid when

the reservoir’s thickness is small and pressure is low.
(d) The solid matrix is slightly deformable. For example, we may use the approxi-

mation:

φ = φ(p) = φo[1 + Cpm(p − po)], or Cpm = 1

∂φo

∂φ

∂ p
.

Altogether, the flow of gas is governed by the mass balance equation:

∂

∂t

φ(p)p

Z(p)
= ∇· p

Z(p)

kg(p)

μ(p)
∇p. (5.1.71)

If, further, we assume (1) that kg is homogeneous over the domain, and is pressure-
independent, and (2) that the solid matrix is incompressible, then ∂φ/∂ p = 0 (a rea-
sonable assumption when pressure changes are small, given the very large difference
between the compressibility of the matrix and that of the gas phase) and (5.1.71) is
simplified to the form:

φμ(p)cg(p)

k

∂ p2

∂t
= ∇2 p2 − d{ln[μ(p)Z(p)]}

dp2
(∇ p2)2, (5.1.72)

where:

cg = 1

p
− 1

Z(p)

dZ(p)

dp
. (5.1.73)

Equation (5.1.72) is rather cumbersome, because it involves both ln and (∇ p2)2

components. However, the second term on the r.h.s. of (5.1.72) may be ignored when

∇2 p2 >>
d{ln[μ(p)Z(p)]}

dp2
(∇ p2)2,

a condition which is valid only if both the pressure gradient in the system and the
variations in [μ(p)Z(p)] are small compared to the initial p.

The difficulty in dealing with the second term on the l.h.s. of (5.1.72) is alleviated
by using the concept of pseudo-pressure (Al-Hussainy et al. 1966), which is defined
as:

ψg = ψp(p) = 2
∫ p

po

p

μ(p) Z(p)
. (5.1.74)

We then obtain the simpler more robust mass balance equation:

φ μ(p) cg(p)

k

∂ψp(p)

∂t
= ∇ · [∇ψp(p)

]
. (5.1.75)
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This equation is applicable over the entire range of pressures. Despite its non-
linearity, (5.1.75) can be solved, leading to an analytical solutions with signifi-
cant engineering applications, especially in the petroleum industry (e.g., Fraim and
Wattenbarger 1986, 1987) for well test analysis and for reservoir evaluation.

Obviously, there is no need for many of these approximations and simplifications
if the problem of gas flow through porousmedia is solved by numerical techniques, as
such solutions can handle the non-linearities of the pressure-dependence appearing
in the flow equations.

5.2 Complete Flow Models

The (macroscopic) partial differential equations (5.1.1) and (5.1.51) are different
forms of the mass balance equations of a fluid that fully occupies the void space
of a porous medium domain. Each equation is associated with a different set of
underlying assumptions. In subsequent chapters, we shall see additional equations,
e.g., ones that describe the mass balance of a chemical component in a fluid phase
and that of energy. All these balance equations contain no information related to any
particular flow or solute transport problem, because a balance equation contains no
information on the boundaries of the problem domain, and how the external world
interacts with phenomena within the considered domain across such boundaries, nor
information on the behavior of the specific materials (solid matrix, fluids, chemical
species) involved.

Accordingly, for a balance equation, or a set of such equations, to fully describe a
particular case of interest, it has to be supplemented by the following information:

• The constitutive equations that provide information on the behavior of the specific
solid and fluid phases involved in the considered case.

• The numerical values of all the coefficients that appear in the constitutive equations
and in the source terms. In Sect. 7.6, we introduce some comments on techniques
aimed at the treatment of cases for which the information concerning model coef-
ficients is insufficient.

• Functions that represent the rate of (positive or negative) production of the various
extensive quantities that are relevant to the considered case.

• The configuration of the boundaries of the domain within which the considered
transport phenomena take place.

• A description of the initial state of the considered domain (= initial conditions)
in terms of the considered state variables.

• A description of the interaction of the domain under consideration with its envi-
ronment, i.e., conditions on the specified boundaries. These conditions are referred
to as boundary conditions.

The number of variables may be large. However, we have to solve partial differ-
ential (balance) equations only for a small number of these variables, referred to as
primary variables. All other variables can then be obtained from these variables by

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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solving algebraic equations and relationships. The latter contain definitions and con-
stitutive relationships. In practice, rather than solve PDE’s, we solve their numerical
equivalent, e.g., the integro-differential equations discussed in Sect. 3.8. A further
discussion on this subject is presented in Sect. 3.9.

When all this information is put together, we obtain a closed set of equations,
i.e., a set in which the number of equations equals the number of variables to be
solved for. The solution provides the future spatial distributions of the value(s) of
the considered state variable(s) within the considered domain.

Different boundary conditions result in different solutions. Hence, it is important
to select them, as part of the formulation of the conceptual model of the problem, in
a way that reflects the actual physical conditions of the problem on hand. These may
be current conditions, as actually observed in the field, or conditions anticipated (or
assumed) to prevail in the future.

Altogether, solving a problem of transport in a specified domain means determin-
ing the spatial and temporal distributions of certain dependent variables that satisfy
a given (1) set of equations, (2) initial conditions at all points within the considered
domain, and (3) conditions specified on its boundary.

We shall start with a discussion on the conceptual model of a (sharp) boundary
surface. We shall then discuss the general boundary condition that is based on the
continuity of fluxes of extensive quantities across a boundary, and present a number of
the conditions that are more commonly encountered in problems of flow in aquifers.
In the current section, we focus on boundary and initial conditions required for
modeling fluid mass flow. In subsequent chapters, we shall add conditions associated
with solute transport, heat transport and stresses in deforming porous media.

Prior to presenting examples of types of initial and boundary conditions that may
be encountered, we wish to emphasize again that no mathematical model can be
solved unless appropriate initial and boundary conditions are specified. If we do not
know them, but we still wish to solve the problem, we have to assume, or guess,
possible conditions.

5.2.1 Boundary Surface

Although this section deals with macroscopic boundaries, the basic ideas presented
in it apply also to microscopic interphase boundaries in a porous medium domain.

Any closed surface may serve as a boundary of an investigated domain, provided
we can state the conditions that prevail on it. It is, therefore, convenient, but not
mandatory, in groundwater hydrology and in reservoir engineering, to select natural
boundaries for a considered problem domain, e.g., an impervious geological forma-
tion, an aquifer in contact with a hydrocarbon reservoir, a lake or a river in contact
with a groundwater aquifer. An infinite domain may be visualized as an idealization
of a very large finite one.

Aboundarymay also coincidewith a surface of discontinuity in any (macroscopic)
parameter characterizing the solidmatrix, e.g., porosity. In the strict continuum sense,

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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a sharp boundary that separates a porous medium domain from its environment, or
that delineates a subdomain of different porous media at the macroscopic level, does
not exist. By taking averages over REVs at points (= centers of these REVs) located
along a line normal to a boundary between two different media, e.g., between two
porous media (with φ1 �= φ2), between a porous medium and an adjacent domain
of solid without voids (φ = 0), or between a porous medium and a body of fluid
(φ = 1), we obtain a gradual transition in the averaged solid matrix properties.
Usually, no information is available on how the averaged values of a considered
property vary within this transition zone. However, we recall that in Sect. 1.1.2, in
defining a porous medium, we required: (a) the existence of an REV the size of
which is much smaller than the size of the considered domain, and (b) that the
variation of any macroscopic quantity (e.g., porosity) over the REV be linear, or
approximately so. If these conditions are satisfied, the actual variation in porosity
across the transition zone may be replaced by an idealized boundary in the form of a
surface across which an abrupt change in porosity takes place. The sharp boundary
may be arbitrarily located at any point within the transition region. For convenience,
however, we usually locate this surface at the point corresponding to the mean value
of the considered property between the two adjacent regions. These considerations
are applicable also to an impervious boundary, i.e., when the external domain is
impervious (φ = 0).

The sharp boundary surface introduced in this way, divides the entire space into
two parts: the bounded investigated domain and the external world. Conditions are
imposed on this boundary. They represent the way the exterior world interacts with
and constrains what happens on the interior side of the boundary. Rigorously, the
behavior close to the surface that serves as a (sharp) boundary of an investigated
domain, say, within a boundary domain of thickness equal to half the size of an
REV, cannot be described by the continuum approach, as we do not have within such
domain the REV required for obtaining averaged values. In principle, a porosity
cannot be defined within this boundary layer. In most cases, we extrapolate the value
of φ from the interior of the domain. Some authors (e.g., Beavers et al. 1973) regard
the situation within some distance from a rigid wall as one of variable porosity.
In the continuum approach as presented in this book, the expression “porosity at
a point within a porous medium domain” means the “fraction of the void space
within an REV centered at the point”. Therefore, this definition cannot be applied
to any point within half the size of an REV from the boundary. According to the
definition of an REV, the width of the boundary domain must be much smaller than
the size of the domain itself, so that the effect (on the solution) of the error resulting
from extrapolating the value of porosity from the interior to the boundary should be
negligible. The only way to study what happens within the boundary layer is to do
so at the microscopic level.

By hypothesizing the existence of sharp boundaries, we obtain regular continuum
domains for all phases present in the system up to the boundary surface. Boundary
conditions have, then, to be specified; they describe the interactions between the
interior and the exterior domains, across these boundaries.

http://dx.doi.org/10.1007/978-3-319-72826-1_1
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In addition to the boundary that delineates a considered porous medium domain
from its environment, wemay encounter some special cases of surfaces that are often
considered as boundaries:

A. Boundary Between Two Miscible Fluids

We consider ‘two miscible fluids’ separated by an assumed sharp surface. This may
be a casewith either two different fluid phases, or the samefluid, butwith significantly
different concentrations of some dissolved species (e.g., fresh water and sea water
in an aquifer), possibly leading to two different viscosities and densities. This is an
approximation of the real situation where a transition zone always occurs between
two fluids, whether miscible or not.

Even if initially the two fluids are separated by a sharp interface, as the two fluids
move, a transition zone is created between them because of dispersion and diffusion
phenomena (Chap.7). The concentrations vary gradually across this transition zone.
However, when the latter is narrow, relative to the dimensions of each of the two
fluid domains of interest, we may approximate the boundary surface between the
two fluids, across which the concentration changes abruptly from that of one fluid
to that of the other, as a sharp boundary. This approximation was often used for
modeling seawater intrusion into coastal aquifers. Nowadays, there is no need to use
this approximation, as numerical solutions, run on powerful computers, can treat the
fluids’ motion with a transition zone of variable concentration, density and viscosity.

B. Boundary Between Two Immiscible Fluids

Here, even if the two fluids are initially separated by a sharp interface, as the fluids
move, due to capillary effects (Sect. 6.1), the saturation of each fluid varies gradually
across a transition zone between the two fluids. If this zone is narrow, relative to the
domains of interest on its two sides, it may be approximated as a sharp boundary
across which a jump in the saturation of the considered fluids is stipulated. The
phreatic surface (Sect. 5.2.4E) may serve as an example; the two fluids are air and
water, and we assume that only water is present in the void space below this surface,
while only air is present in the void space above it. Here also, numerical solutions
with fast computers can handle the moving/widening transition zone. Nowadays,
there is no need for the “sharp interface approximation”.

C. Boundary Between States of Aggregation

Under certain conditions, a substance in the void space undergoes a change of phase
(= change in state of aggregation). Evaporation, condensation, freezing, thawing and
melting of water, may serve as examples. When this change takes place within a rela-
tively narrow zone in a porous medium domain, we introduce, as an approximation,
a macroscopic boundary surface across which the phase change is assumed to take
place. We assume that the void space on each side of such a boundary is completely
occupied by a uniform state of aggregation. The interface boundary may move as a
result of the change of phase.

Transport problems having a moving boundary as discussed above are called
Stefan problems.

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_6


316 5 Modeling Single-Phase Mass Transport

D. Shape of a Moving Sharp Boundary

In general, a boundary surface may be stationary or moving. It may also be material
or non-material with respect to any considered extensive quantity.

Let F(x, y, z, t) = 0 represent the equation that describes a possibly moving
(macroscopic) boundary surface between twofluids. If the surface is between aporous
medium domain and an impervious domain, then fluid particles on this boundary stay
on it; neither fluid particles, nor dissolved species can cross this boundary (but heat
can, unless the impervious domain is also an insulator). If this boundary is between
two fluid domains, then, fluid particles cannot cross it, but molecules of species
dissolved in the fluids may (and, in fact, do) cross this interface. The speed, u,
of boundary displacement should not be mixed up with the velocities of the fluids
present on its two sides.

As the surface moves, its shape may change, but the equation describing it,
F(x, t) = 0, remains unchanged. The quantity F is, thus, a conservative property of
the points on the surface, for which the total derivative vanishes, i.e.,

D F

Dt
≡ ∂F

∂t
+ u · ∇F = 0, hence u · ∇F = −∂F

∂t
. (5.2.1)

The unit vector, ν, normal to the surface F = 0, is expressed by

ν = ∇F

|∇F | . (5.2.2)

The component of u normal to the surface is then given by

uν ≡ u · ν = −∂F/∂t

|∇F | . (5.2.3)

5.2.2 Initial Conditions

Initial conditions specify the value of the (macroscopic) dependent variable, e.g., p,
at all points within the modeled domain at some initial time, usually taken as t = 0.
For example, in terms of p,

p(x, y, z, 0) = f (x, y, z), (5.2.4)

where f (x, y, z) is a known function.
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5.2.3 General Boundary Conditions

Although the current chapter deals with a single fluid that occupies the entire void
space, we shall begin with the more general case of two-phase flow. The subsequent
discussion on specific types of boundary conditions will focus on single-phase flow.

In general, there exist two kinds of conditions that have to be satisfied on a
boundary surface:

• Continuity in the (macroscopic) value of the considered intensive quantity, e′
α

α
(or

ẽα
α) across a boundary surface (sides 1 and 2):

[[ e′
α

α
]]1,2 = 0, (5.2.5)

where e′ = ρe and [[ .. ]]1,2 denotes a jump from side 1 to side 2. This no-jump
condition is a consequence of the continuity in themicroscopic value as anymicro-
scopic boundary is crossed. A jump in e′

α

α
or ẽα

α would lead to an infinite gradient
which, in turn, would create an infinite flux that will instantly eliminate the jump.

• In the absence of (1) sources and sinks on a boundary, and (2) accumulation of a
considered extensive quantity on the boundary, the total amount of any considered
extensive quantity that is transferred by all phases present in the porous medium
domain must be conserved as it is being transported across a boundary. This condi-
tion arises from the balance of that quantity as it is transported across a considered
boundary.
However, it is possible that a certain extensive quantity can accumulate on the
boundary. This would lead to a model of a different kind (see Sect. 1.4.2C).

With the above considerations in mind, for any extensive quantity, E , in the
absence of sources and sinks of E on the boundary surface, andwith no accumulation
of E on the boundary, the boundary condition may be stated in the form (Bear and
Bachmat 1991, p. 238):

∑

(δ = α,β,s)

[[ θδ(e′
δ

δ
(Vδ

δ − u) + J∗E
δ ) ]]1,2 ·n = 0, (5.2.6)

where, assuming that E can be transferred from one phase to another within the
surface, the sum is over all the phases present in the domain (including the solid), with∑

(δ) θδ = 1, J∗E
δ denotes the sum of the dispersive and (macroscopic) diffusive fluxes

of E , and u denotes the velocity of the (possibly moving) boundary. Equation (5.2.6)
represents the general macroscopic boundary condition for any extensive quantity,
E , in a porous medium. It is often referred to as the no-jump condition, meaning no
jump in the normal component of the total flux across the boundary. We note that it
expresses the notion that E does not accumulate (or disappear) on the boundary. If
it does, we have a “jump condition”, and the value of the jump is specified.

To be used as a boundary condition in a transport problem,wemust know the value
of the variable, or the total flux, on the external side of the boundary. By using this

http://dx.doi.org/10.1007/978-3-319-72826-1_1
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information, the no-jump condition becomes a constraint that serves as a boundary
condition in the transport problem.

However, although we have stated above that the considered E does not have
sources or sinks and does not accumulate on the boundary, it is possible to envision
conditions under which (1) E does accumulate on the boundary, and (2) sources
and sinks of the considered E do exist on the boundary surface. We may think of
a boundary between two states of aggregation, or the accumulation of surfactant.
Under such conditions, and allowing the exchange among phases at a (macroscopic
point) within the surface, (5.2.6) is replaced by:

∑

δ=α,β,s

∂θδρsur,δesur,δ
∂t

=
∑

δ=α,β,sur

[[ θδ(ρδeδ(Vδ − Vsur ) + JE
δ,di f ) ]]1,2 ·ν

+
∑

δ=α,β,sur

θδρsur,δ�sur , (5.2.7)

in which ρδ,sur denotes, the mass density of the surface (= mass per unit area),
eδ,sur denotes the density of E (= E per unit δ-mass), Vδ denotes the velocity of the
δ-phase, and ν denotes the unit vector normal to the surface.

If local thermodynamic equilibrium is assumed, then thermodynamic variables,
such as pα, T , and concentration, say, expressed as the mass fraction ωγ

α, must be
continuous across the boundary. Some non-thermodynamic variables, such as θα and
Sα, which do not exist at the microscopic scale, are not necessarily continuous across
boundary surfaces; they, do not necessarily satisfy the condition of no-jump across
a considered boundary surface.

Gray andHassanizadeh, in a number of publications (e.g., Gray andHassanizadeh
1989; Hassanizadeh and Gray 1979a) also present E-balance equation for surfaces.
However, they deal with inter-phase surfaces (see Sect. 1.4.2C for a description of the
Hassanizadeh and Gray approach tomodeling transport in porous medium domains).

In practice, the boundary conditions used inmodels of flow and transport in porous
medium domains, although a consequence of the no-jump conditions (5.2.6), take
forms that specify values of variables, or of their derivatives, on the boundary.

The kind of PDE that describes the mass balance, e.g., (5.1.50), requires only
one condition on each boundary segment, and we prefer a condition based on flux
continuity, if such information is available. If not, we base the condition on avail-
able information on values of scalar variables, e.g., a known pressure. Sometimes,
approximations concerning the continuity in fluxes produce a jump in the values of
the variables; we have to accept this consequence.

Because the momentum balance equation has been reduced to a flux expression in
the form of Darcy’s law, there is no need to solve the momentum balance equation.
To predict flow in a given domain, we have to solve only any of the flow equations
(presented in the previous subsection) that expresses the mass balance equation for
the considered fluid. By inserting Darcy’s law into the mass balance equation, we
obtain a single linear second order PDE in terms of either pressure (p), or piezometric
head (h). In Sect. 5.2.4G, we shall introduce a case in which the motion equation

http://dx.doi.org/10.1007/978-3-319-72826-1_1
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takes the form of Brinkman’s equation, rather than Darcy’s law. The reason for the
need to use the Brinkman equation is that the momentum transfer due to the fluid’s
velocity gradient cannot be neglected, at least in part of the considered domain.

The type of partial differential mass balance equation considered here, e.g.,
(5.1.51), requires just one condition. We satisfy this requirement using the condition
of no-jump in mass flux. In multiphase flow, the pressure is related to saturation. The
selection of the condition to be used in any particular case depends on the kind of
information we have concerning what happens on the external side of the boundary.

In the next subsection, we present boundary conditions for single phase flowmod-
els, without presenting the details of their development from the general boundary
condition stated above. The type of boundary condition to be used in any particular
case depends on the available data concerning the actual or anticipated behavior in
the field.

5.2.4 Particular Boundary Conditions

Following are some of the more commonly encountered boundary conditions for
saturated flow. In each case, the entire surface bounding an investigated domain is
divided into segments on each of which we may specify a different boundary condi-
tion. The latter should be stated in terms of the relevant state variable of the problem.
The boundary surface is described by F(x, t) = 0 (Sect. 5.2.1). The discussion is at
the macroscopic level, and we shall use the symbol B to denote a boundary segment.
We recall that all boundary conditions are based on the no-jump condition presented
in Sect. 5.2.3.

A. Boundary of Prescribed Pressure, or Piezometric Head

In this case, the boundary condition takes the form:

p = f1(x, y, z, t), or h = f2(x, y, z, t), on B, (5.2.8)

where f1 and f2 are known functions, and B denotes the boundary.
Actually, the value of p is seldom known on the boundary, except when a porous

medium domain is bounded by a body of water (e.g., a pond). In such case, the
pressure along the pond’s bounding surface is dictated by the water level in the
pond. Whenever the density, ρw, is constant, the piezometric head, h, may also be
prescribed on such a boundary.

A boundary condition that specifies the value of a state variable (here, p, or h)
along a boundary segment is called boundary condition of the first type, or Dirichlet
boundary condition.

B. Boundary of Prescribed Flux

This case occurs when fluid at a known flux enters a domain through its boundary.
This includes the case of ‘no-flow’ through such a boundary. We shall assume that
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such boundary is always a material surface with respect to the solid, i.e.:

(Vs − u)
∣
∣
side 1 · ν = (Vs − u)

∣
∣
side 2 · ν = 0. (5.2.9)

When [[ ρf ]]1,2 = 0, the general boundary condition, (5.2.6), for such a surface takes
the form:

[[ φ(V − u) ]]1,2 · ν = 0. (5.2.10)

With (5.2.9), Eq. (5.2.10) reduces to the form:

[[ qr ]]1,2 · ν = 0, or qr
∣
∣
1 · ν = qr

∣
∣
2 · ν. (5.2.11)

To serve as a boundary condition, information must be available on what happens
on the external side of the boundary, say, side 2. Obviously, the relative specific flux,
qr , has to be expressed by an appropriate flux equation, written in terms of p, or h.

For an impervious boundary, say, a pervious side 1 and an impervious side 2,
Eq. (5.2.11) reduces to:

qr · ν = 0. (5.2.12)

Note that this equation constrains only the normal component of the flux. The tan-
gential components may take on any value; we may have slippage along such a
boundary.

Let N denote the prescribed flux on the external side of a stationary boundary
(u = 0) described by F = F(x), with ν ≡ ∇F/|∇F | denoting the unit outward
normal vector to it. We assume that the fluid density obeys [[ ρf ]]1,2 = 0, and that
ρf is a constant. Then, the prescribed flux boundary condition takes the form:

qr · ∇F = N |∇F |, N = N · ν. (5.2.13)

In this equation, qr can be expressed by any of the motion equations presented in
Chap.4. For example, we can rewrite (5.2.13) in the form:

− (K · ∇h) · ν = N · ν, (5.2.14)

where K denotes the hydraulic conductivity.
A condition that specifies the gradient of a scalar variable on the boundary, here

∇ h, is called a boundary condition of the second kind or a Neumann boundary
condition.

The condition of prescribed flux provides no explicit information on the values
of the state variables, say, p or h, at (i.e., just inside) the boundary. These values will
adjust themselves to accommodate the specified rate of flow through the boundary.

C. Semipervious Boundary

A layer of fine sediments on the bottom of a pond may serve as an example of a
semi-pervious membrane that resists the movement of water through it (Fig. 5.2).

http://dx.doi.org/10.1007/978-3-319-72826-1_4
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Fig. 5.2 A semipervious
boundary
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We assume that this ‘membrane’ is saturated when present at the bottom of an active
water pond.

Let us assume that water is ponded on the upper side of this ‘membrane’ such
that a piezometric head ho is specified there. Let us denote the resistance of the
semipervious membrane by cr (= thickness of the membrane, B, divided by its
hydraulic conductivity, K ′, i.e., the reciprocal of the leakance), and the piezometric
head on the lower side of the membrane by h. Then, the flux through the membrane
is expressed by:

qr · ν = h − ho
cr

, cr = B

K′ , (5.2.15)

where qr may be expressed by any of the flux equations. The reason for writing qr
and not q is that, as explained earlier, Vs ·ν ≡ 0 on the boundary. This is a third type
boundary condition, or a Robin boundary condition.

D. Boundary Between Different Porous Media

Figure5.3 shows a boundary between two regions of different permeability. In prin-
ciple, in a mathematical model, we should avoid modeling of discontinuities within
a modeled domain, e.g., discontinuity in the values of coefficients. When an inves-
tigated domain does include such discontinuities, it is useful to divide the domain
into sub-domains along the surfaces of discontinuity, in order to obtain sub-domains
without discontinuities. We then write a complete model for each sub-domain. On
each of the common boundary segments, we need two boundary conditions—one for
each side: these are the continuity of flux and the continuity of pressure. Because both
flux and pressure are unknown a priori, we have to write these conditions in terms of
the state variables for both sides, and solve for all the sub-domains simultaneously.

As the boundary is approached from within each side, the continuity of pressure
(or piezometric head), is expressed as:
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Fig. 5.3 Boundary between
regions of different hydraulic
conductivities

p
∣
∣
side 1 = p

∣
∣
side 2, or h

∣
∣
side 1 = h

∣
∣
side 2, (5.2.16)

and the continuity of flux, following the discussion leading to (5.2.11), takes the
form:

qr
∣
∣
side 1 · ν = qr

∣
∣
side 2 · ν. (5.2.17)

Note that in view of, (5.2.9), we have expressed the boundary condition in terms of
the relative flux, qr , expressed by Darcy’s law.

Although Fig. 5.3 is presented in two-dimension, (5.2.16) and (5.2.17) are valid
also on a boundary in a three-dimensional domain. The explicit expression (5.2.17),
in terms of h1 in D1, and h2 in D2, depends on the nature of the materials occupying
the two sub-domains (also, with respect to isotropy or anisotropy).

Thus, for the case shown in Fig. 5.3, the two boundary conditions to be satisfied
on C are (5.2.16) and (5.2.17). Since each of these equations includes both h1 and
h2, the two problems (for D1 and D2) must be solved simultaneously.

From (5.2.16), it follows that ∂h1/∂s = ∂h2/∂s, where s is a distance measured
along the tangent to C (in Fig. 5.3). This can also be expressed as:

(q s)1

K1
= (q s)2

K2
, (5.2.18)

where both K1, and K2 are isotropic. By combining (5.2.17) with (5.2.18), we obtain:

K1

tan β1
= K2

tan β2
, tan β1 = (q s)1

(qν)1
, tan β2 = (q s)2

(qν)2
, (5.2.19)

where β1 and β2 are the angles which q1 and q2 make with the normal to the bound-
ary C. This means that along such a boundary, the incident streamline is refracted.
Equation (5.2.19) is the law of refraction of streamlines for two-dimensional flow,
when both sub-domains are isotropic.
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Fig. 5.4 Refraction of streamlines at an interface between different hydraulic conductivities

Bear (1972, p. 263) discusses the laws of refraction of streamlines and of equipo-
tentials also for three-dimensional flows and for cases where the two sub-domains
are anisotropic.

From (5.2.19), it follows that when K1 	 K2, then β1 	 β2, and the refracted
streamline approaches the normal to the common boundary upon passing from a
more pervious to a less pervious medium. When (Fig. 5.4) K1 � K2, then β1 � β2,
and the refracted streamline tends to become almost parallel to the common boundary
upon passing from a less pervious (e.g., semi-pervious) to a more pervious medium.
This justifies the assumption of ‘essentially horizontal flow’ in a leaky aquifer.

E. Phreatic Surface

A (possibly moving) phreatic surface, or free surface, may serve as the upper bound-
ary of a saturated zone below ground surface. This surface is defined as the locus
of all points at which the pressure in the liquid/water phase is equal to the gas/air
pressure (e.g., Bear 1972, p. 252; Bear 1979, p. 98). Below this surface, the soil is
saturated. Above it, the void space is occupied by both water and air. The subject of
two phase flow is discussed in Chap.6. Thus, in principle, a solution of the problem
of flow below ground surface requires the statement of the problem as one of two
phase flow, or, as an approximation, as one of flow of two fluid phases separated by
an assumed sharp interface, discussed in Sect. 5.2.6.

In Soil Physics, it is often assumed that the air in the unsaturated zone is (prac-
tically) immobile and under atmospheric conditions. This approximation is also
assumed here. This leads to a simplified problem in which we need to consider
only the flow of water below the phreatic surface, although we do consider accretion
reaching the water table from above.

Actually, for some small distance, hcrc , above the phreatic surface, the soil is still
saturated, but the water there is at a (small) pressure less than atmospheric (which
is the air pressure in the unsaturated void space above this zone). The value of
pcrc (= hcrc /ρg) is called bubbling pressure or air entry pressure (see Sect. 6.1B).

As for every boundary, we have to specify for the phreatic surface both the shape
of the boundary surface and the condition to be satisfied on it.

http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_6
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Usually, the shape of the phreatic surface, say, expressed by the equation
F(x, y, z, t) = 0, is a priori unknown. In fact, as we have already emphasized earlier,
in many flow problems, determining the shape and (possibly time-dependent) posi-
tion of this surface is the very objective of model investigations. However, once we
have a solution, say, in the form of p = p(x, y, z, t), or h = h(x, y, z, t), whether
in the unsaturated flow domain, or in the saturated one underlying it, since on the
phreatic surface

p
∣
∣
sat = p

∣
∣
unsat = 0,

the shape of the phreatic surface boundary is given by:

F(x, y, z, t) ≡ p(x, y, z, t) = 0. (5.2.20)

Let us assume that the water density, ρw, remains unchanged. This is a valid
approximation in the vadose zone of an unconfined groundwater system. The eleva-
tion of points on the phreatic surface, denoted as ζ = ζ(x, y, t), can be found from
the requirement that hsat (x, y, z, t)|z=ζ = hunsat (x, y, z, t)|z=ζ = ζ. Thus, we can
define the shape of the phreatic surface as either:

z = ζ(x, y, t), or F(x, y, z, t) = z − ζ(x, y, t) = 0, (5.2.21)

or as:
F(x, y, z, t) ≡ h(x, y, z, t) − z = 0. (5.2.22)

The condition on the phreatic surface boundary is that of continuity of the normal
water flux across it. Usually, when we consider a phreatic surface as a boundary,
the underlying assumption is that the moisture saturation above this surface is at its
irreducible level, θwr . The concept and definition of irreducible moisture saturation
is discussed in Sect. 6.1D. This ‘sharp interface approximation’ is valid as long as
the thickness of the capillary fringe is small relative to either the thickness of the
unsaturated zone, or of the saturated one. Such a sharp front may exist in the case of
very permeable media (such as gravels) However, under certain circumstances (e.g.,
in fine soils), the capillary fringe, or the transition from the water table to the zone
of irreducible water saturation may be several meters, or tens of meters thick. Under
such conditions, the ‘sharp interface approximation’ is no more valid.

When the sharp interface approximation is justified, say, for a phreatic surface,
the condition to be satisfied on it, assuming no change in density as water crosses
this surface, is expressed in the form:

φ(Vw − u)
∣
∣
sat · ν = θrw(Vw − u)

∣
∣
unsat · ν, (5.2.23)

where ν denotes the unit vector normal to that surface, pointing away from the
saturated zone, and u is the speed of the moving phreatic surface. They are related
to the shape of the surface, F(x, y, z, t) = 0, by (5.2.1) and (5.2.2).

http://dx.doi.org/10.1007/978-3-319-72826-1_6
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Fig. 5.5 Phreatic surface with accretion

Let us consider the case of flow in a phreatic aquifer, encountered in groundwater
hydrology. Here, the details of flow in the unsaturated zone are of no interest. Instead,
we assume that accretion, N (e.g., from precipitation), takes place on the upper side
of the phreatic surface (Fig. 5.5).

The rate at which water travels from the unsaturated zone to the saturated one
through the phreatic surface may be expressed by:

θrw(Vw − u)
∣
∣
unsat · ν ≡ (N − θrwu)

∣
∣
unsat · ν, (5.2.24)

where N = θrwVw

∣
∣
unsat. For a vertically downward accretion at a rate N , we use

N = −N∇z. Equation (5.2.24) is the sought boundary condition. Let us rewrite it in
a number of equivalent forms.

We have used the term ‘accretion’ to denote the rate at which water is added to,
or removed from the phreatic surface, independent of the movement of the latter
and of any moisture (if present) in the void space above it. However, it should be
emphasized that N · ν is not the rate at which water actually crosses the phreatic
surface and augments (or reduces) the quantity of water in the saturated zone. This
net rate depends also on the movement of the phreatic surface.

We can rewrite (5.2.23), or (5.2.24), in the form:

(qw

∣
∣
sat − φu) · ν = (N − θrwu) · ν, (5.2.25)

or:
(qw

∣
∣
sat − N) · ν = (φ − θrw)u · ν. (5.2.26)

In view of (5.2.2) and (5.2.3), we may rewrite (5.2.26) as:

(qw

∣
∣
sat − N) · ∇F = −(φ − θrw)

∂F

∂t
. (5.2.27)

Making use of (5.2.22), we may rewrite (5.2.27) in terms of the piezometric head,
h, in the form:
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(qw

∣
∣
sat − N) · ∇(h − z) = −(φ − θrw)

∂h

∂t
. (5.2.28)

By inserting qw

∣
∣
sat ≡ qr = −K · ∇h into this equation, we obtain:

(Kw · ∇h + N) · ∇(h − z) = φeff
∂h

∂t
, (5.2.29)

where φeff ≡ φ − θrw. We wish to reiterate that this equation expresses nothing but
the continuity of fluid flux across the phreatic surface boundary. For an isotropic
porous medium, the above condition can be written in the form:

K

[(
∂h

∂x

)2

+
(

∂h

∂y

)2

+
(

∂h

∂z

)2
]

− (K + N )
∂h

∂z
+ N = φeff

∂h

∂t
. (5.2.30)

Although we have presented here the boundary condition of a phreatic surface,
assuming that the rate of accretion, N, is known, in most cases of practical interest,
this rate is actually unknown. It is certainly not the rate of rainfall; among other
factors, its value depends both on the rainfall and on the moisture conditions of the
soil at ground surface. We shall discuss this issue in detail in Sect. 6.4.2.

F. Seepage Face

This kind of boundary appears when a phreatic surface approaches a body of open
water, a river or a lake, which serves as part of the boundary of a flow domain
(Fig. 5.6). In such cases, the phreatic surface will always terminate on that (known)
boundary at a point (Point B in Fig. 5.6) located at some elevation above the water
surface of the body of open water (Point A). The segment AB is called the seepage
face. Through it, water seeps out of the porous medium domain. Along the seepage
face, the water will seep out of the formation and flow as a thin layer along the AB
slope.

http://dx.doi.org/10.1007/978-3-319-72826-1_6
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The reason for the existence of a seepage face is that otherwise (i.e., if point
B would coincide with A), the velocity at that point would be infinite. This is an
impossible situation (Muskat 1946, p. 303; Bear 1972, p. 260, 288).

Since on a seepage face, which is exposed to the atmosphere, the pressure in the
water is p = 0 (assuming atmospheric pressure is pa = 0), the boundary condition
is:

p(x, t) = 0, or h(x, t) = z, (5.2.31)

i.e., the head at every point of the seepage face is specified to be equal to its known
elevation. The geometry of the seepage face is known, except for the location of its
end point, B, which is also a point on the (a priori unknown) phreatic surface. It is
interesting to note that the component (tangential to the slope) of the seepage flow is
a constant −K (∂h/∂�) = −K sin β, with β and � denoting the slope of the seepage
face and length along the slope, respectively.

G. Boundary with a Body of Flowing Water

In Sect. 5.2.4A, we discussed the boundary condition of a porous medium in contact
with a static body of water; in Sect. 5.2.4C, the presence of a semi-pervious layer
separating openwater and a porousmediumdomainwas discussed. In this subsection,
we shall examine the conditions on the boundary between a porous medium domain
and a body of flowing water.

In a body ofwater, the flow is governed by theNavier–Stokes equation (=momen-
tum balance equation for a Newtonian fluid), or by some simplified version of it,
together with the mass balance equation. To have a well-posed boundary value
problem, either the velocity components, or the stresses, but not both, have to be
specified on all parts of the boundary (Ladyzhenskaya 1963). For example, for the
two-dimensional flow shown in Fig. 5.7a, the boundary condition on the solid surface
is that the fluid must adhere there to the solid; this is referred to as the ‘no-slip’ con-
dition. In the case of a stationary solid surface, the boundary conditions are Vx = 0
and Vz = 0. On the other hand, on a free surface, the shear stress and pressure are
specified as τzx = 0 and p = 0.

In principle, flows in a porous medium, and in a fluid continuum, are governed by
the same physical laws—momentum balance and mass balance (and solute balance
and heat balance, in the cases of solute and heat transport). However, for flow in a
porous medium domain, as a consequence of the process of averaging or homog-
enization, these two fundamental equations are often expressed in different forms,
containing coefficients, such as permeability; and the microscopic geometry of the
void space no longer appears explicitly. Furthermore, the porous medium equations
are often simplified, because the effects of certain terms appearing in these equations
are negligible.

Let us start by assuming that a considered flow in the porous medium domain
is governed by Darcy’s law, as discussed as Case A in Sect. 4.2.4. This law is a
simplified form of the homogenized Navier–Stokes equation. When Darcy’s law is
combined with the mass balance equation, we obtain a single governing, or flow,
equation, expressed, say for a constant density fluid, in terms of a single scalar

http://dx.doi.org/10.1007/978-3-319-72826-1_4
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(a)

(c)

(b)

Fig. 5.7 Boundary conditions for: a Flowing water with impermeable boundary, b Porous medium
with impermeable boundary, and c Common boundary between flowing water and porous medium

variable—the piezometric head, h. As a consequence, one and only one boundary
condition, either the normal flux or the head, needs to be specified on any part of the
domain’s boundary. As illustrated in Fig. 5.7b, qz = 0 on a horizontal impervious
boundary. Particularly, we notice that qx cannot be specified and must be solved for;
hence, qx �= 0 on the impervious boundary, i.e., we have a ‘slip’. We recall that q
is the macroscopic average of the microscopic velocity over the REV, and that the
microscopic velocity does not slip on a solid surface.

The discussion above serves to illustrate that although the physical principles
need to be obeyed, the averaging process makes the two sets of equations, one based
on Navier–Stokes equation in the free-flowing water, and the other based on the
homogenizedDarcy’s law in the porousmedium, incompatible on a shared boundary.
Hence, a coupled solution of the two domains is not possible.

This incompatibility between governing equations may be resolved if we assume
that flow in the porous medium domain is governed by Brinkman’s equation (Case
B in 4.2.4). When the two flow domains are in contact with each other, that is,
the flowing (viscous) fluid is bounded from below by a porous medium saturated
with the same fluid (Fig. 5.7c), we need to consider the conditions on the common
boundary carefully, in order to determine the set of necessary and sufficient boundary
conditions that will ensure the existence of a solution of the problem.

First, consider the interface between two immiscible flowing fluids with differ-
ent densities and viscosities. A total of four conditions are needed on the inter-
face (for two-dimensional flow): (1) velocity continuity, Vx |z=0+ = Vx |z=0− ; (2)
Vz|z=0+ = Vz|z=0− ; (3) pressure continuity, p|z=0+ = p|z=0− ; and (4) shear stress

http://dx.doi.org/10.1007/978-3-319-72826-1_4


5.2 Complete Flow Models 329

continuity τzx |z=0+ = τzx |z=0− . A similar situation exists at the interface between a
free-flowing fluid and a porous medium (Kohr and Sekhar 2007). Two of these inter-
face conditions are obvious: (1) velocity continuity normal to the interface (mass
conservation), Vz|z=0+ = qz|z=0− , and pressure continuity p|z=0+ = γh|z=0− . The
other two conditions: the relation between the horizontal velocity of the flowing fluid,
Vx |z=0+ and the flux qx |z=0− , and between the two shear stresses, are not so obvious,
as the quantities in the porous medium are homogenized ones.

Bear and Bachmat (1991, p. 245) considered the case of free flowing water over-
laying a porous medium (Fig. 5.7c) containing an incompressible, Newtonian fluid.
They showed that when we assume no jump in pressure, and no jump in effective
stress, there should not be a jump in the normal (to the common interface) component
of the shear stress, τ , across the interface, i.e.,

[[ τ f ]]1,2 · n = 0, (5.2.32)

where n is the unit normal vector. In order to express (5.2.32) in terms of fluid veloc-
ities, we need an appropriate constitutive relation. For τ f

∣
∣
2, i.e., in the free-flowing

fluid, we use the constitutive relationship for an incompressible single component
Newtonian fluid,

τi j = μ

(
∂Vi

∂x j
+ ∂Vj

∂xi

)

. (5.2.33)

We assume that this relationship is valid also for the porous medium at the macro-
scopic level, but with an apparent viscosity μ∗ that takes into consideration the added
porous medium resistance (Shavit et al. 2004). Different studies have derived and
used different values of μ∗, μ∗ >,=,< μ (Nield and Bejan 2013; Koplik et al. 1983;
Kim and Russel 1985). In the case under consideration here, we shall neglect the
velocity gradient terms ∂Vz/∂x |z=0+ and ∂qz/∂x |z=0− in (5.2.33), to obtain the
condition for shear stress continuity on the interface,

μ∗

φ

∂qx
∂z

∣
∣
∣
∣
z=0−

= μ
∂V

∂z

∣
∣
∣
∣
z=0+

. (5.2.34)

This can be used as the condition on the interface between the two domains in the
coupled boundary value problems. A more thorough examination of the condition
of shear stress compatibility can be found in Kubik (2004), who suggested that the
horizontal velocities tangential to the interface, V |z=z+ and qx |z=0− are not contin-
uous. Their relation should be determined from the continuity of both momentum
and energy near the interface. More discussion about the interface condition between
free-flowingfluid and porousmediumcan be found inRosenzweig andShavit (2007).

Finally, let us examine a well-known condition at the interface between a free
flowingwater domain and a saturated porousmediumdomain, known as theBeavers–
Joseph condition (Beavers and Joseph 1967). This condition was motivated by the
observation that in open channel flow, with a porous channel bottom, the discharge
tends to be slightly greater than the one bounded by an impermeable bottom. The
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reason is that the porous interface condition allows the velocity at the channel bot-
tom to slip, as shown in Fig. 5.7c. The Beavers–Joseph condition approximates the
velocity gradient on the left side of (5.2.34) in the form:

αM

φ

(
V
∣
∣
z=0+ − qo

) = ∂V

∂z

∣
∣
∣
∣
z=0+

, (5.2.35)

whereαM (dims. L−1) is amomentum transfer coefficient that depends only on porous
medium properties, such as permeability and porosity, and qo is the uniform specific
discharge in the porous medium starting from a certain distance away from the
‘velocity boundary layer’ in the vicinity of the interface. Beavers and Joseph (1967)
proposed αM = CMφ/

√
k, where the dimensionless coefficient, CM , which depends

only on φ and k, has to be determined experimentally. We note that (5.2.35) is a
third type boundary condition for the free-flowing water, with empirical coefficients
αM and qo. As the equation does not contain head or specific discharge information,
it is not a boundary condition for the porous medium flow. More discussion on the
Beavers–Joseph type boundary condition can be found in Ochoa-Tapia andWhitaker
(1995), Nield and Bejan (2013), and Jager and Mikelic (2000).

5.2.5 Complete 3-D Mathematical Flow Model

We now have all the elements required in order to formulate the complete mathe-
matical model of a problem of forecasting the flow of a single fluid phase (saturated
flow) in a porous medium domain. The objective of this subsection is to review the
standard content of any such model.

Note that although this subsection refers to the particular case in which the trans-
ported extensive quantity is the mass of a single fluid phase, the same model content
is applicable also to the model of any other extensive quantity.

A. A Well-Posed Problem

The solution of the mathematical model of a problem takes the form of temporal and
spatial distributions of the state variables of interest within the problem’s prescribed
time and space domains.

From the mathematical point of view, given a model composed of one or more
partial differential equations, not every set of conditions imposed on the boundaries
of the problem domain is satisfactory. This is even more so because, often, we have
to resort to estimates of coefficients and simplifications of the mathematical models
in specifying the boundary conditions.

A mathematical model that represents a physical reality (and only such cases
are considered in this book) is said to be well-posed if it satisfies the following
requirements (e.g., Courant and Hilbert 1962):
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• A solution of the problem exists (existence).
• The solution is unique (uniqueness).
• The solution is stable (stability).

The first requirement simply states that at least one solution exists. The second one
stipulates completeness of the problem statement, with no ambiguity. There exists
no other solution that satisfies the stated problem. The third requirement means that
small variations in data (e.g., initial and boundary conditions, and/or values of model
coefficients) should lead to small changes in the resulting solution. If small errors
in the data do not lead to correspondingly small errors in the solution, then the
mathematical model is ill-posed. This last requirement is of particular interest, as all
our observations have always somemeasurement errors.Amodelwill bemeaningless
if these small errors will significantly affect the solution.

Thus, once a complete mathematical model has been stated, the next step is to
ensure that it is well-posed. Only then should a solution be sought.

The models developed and presented in this book, since they are based on a
thorough analysis of the physical reality and on its description, albeit with certain
simplifying assumptions, are implicitly assumed to be alwayswell-posed. Therefore,
they should provide unique, stable solutions. We shall not go into the mathematical
analysis of whether a model developed here is well-posed, or not, although, as stated
above, such an analysis is an essential step in the modeling process. The techniques
used for such analysis can be found in appropriate mathematical texts on partial
differential equations.

B. Standard Content of a Flow Model

A complete, well-posed mathematical model consists of the following items:

(a) Definition of the geometry of the flow domain’s boundaries. The boundary sur-
face must form a closed surface.

(b) The primary variable that describes the state of the system, e.g., the pressure (or
the piezometric head for ρw = const.).

(c) Partial differential flow equation that expresses the mass balance equation.
(d) An expression for the fluid’s flux (e.g., Darcy’s law).
(e) Constitutive equations (and equations of state) for the phases involved, including,

if necessary, the solid matrix. For the case of saturated flow, we may need the
relationships between density and pressure, and between porosity and effective
stress.

(f) Information on the various sources and sinks of fluid mass. Sometimes, these
take the form of functions of the problem’s state variables.

(g) Formulation of the conditions that prevail everywhere within the considered
domain at some initial time, in terms of the problem’s state variables.

(h) Formulation of the conditions that prevail on the domain’s boundaries, specified
in item (a) above, during the period of interest. Inmany cases, the delineation of a
boundary segment and the conditions on it have to be considered simultaneously,
i.e., we select boundaries such that we can specify the conditions on them.
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(i) Numerical values, or functional relations, of all the coefficients and parameters
that appear in the model’s equations.

The set of equations (mass balance equations, motion equations, and constitutive
relations) must constitute a closed one, i.e., it should contain a sufficient number of
equations to enable the simultaneous solution for all state variables of the problem.

After writing the closed set of equations, we use the methodology discussed in
Sect. 3.9 to determine the number of degrees of freedom, or primary variables of the
problem and to select the most convenient ones. We then identify an equal number
of (partial differential) balance equations that have to be solved in order to determine
the values of these variables (whether they appear explicitly in the equations or
not). All the remaining equations and relationships, including partial differential
equations, are then employed in order to determine the remaining variables. Initial
and boundary conditions are specified only for the partial differential equations that
have to be solved. In practice, in most cases, the PDE’s are replaced by equivalent
numerical equations, e.g., the integro-differential equations discussed in Sect. 3.8,
which have to be solved by appropriate software.

We have presented the discussion above in a somewhat generalized form in order
to facilitate the discussion in Chaps. 6 and 7, where we shall be discussing more
than one fluid phase and dissolved chemical species. The situation described above
becomes much simpler in the case of saturated (or single phase) flow considered in
this chapter, for which we have to solve only a single partial differential equation–the
mass balance equation—for the single variable pressure, or piezometric head.

5.2.6 Two Phases Separated by a Sharp Interface

Although this chapter covers modeling of flow of a single fluid only, we include in it
also this subsection that considers two fluid phases. However, as we shall see below,
we actually deal simultaneously with two domains, each containing a single phase
only, except that the two domains are interacting through a common boundary.

A sharp interface does not really exist between two immiscible fluids, because of
capillarity. In the case of two miscible fluids, a transition zone will always occur
between them because of diffusion and dispersion. This subject is discussed in
Chap.7. In both cases, under certain conditions, when the transition zone between
the two fluids is narrow, relative to the zones occupied by the considered fluids, we
may replace it by a sharp interface between the two fluids. This approximation was
common prior to the era of computers, e.g., when considering the phreatic surface,
or the interface in coastal aquifers. Nowadays, there is seldom a justification for this
sharp interface approximation.

Actually, we have already introduced this approximation in Sect. 5.2.1A. There,
because of capillarity, a transition zone occurs. Across the latter, water saturation
varies from 100% to an irreducible saturation value. Nevertheless, we often replace
this transition zone by a sharp air-water interface, referred to as the water table, or

http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
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Fig. 5.8 Two immiscible
liquid zones separated by a
sharp interface
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phreatic surface. We have presented the condition on this surface in Sect. 5.2.4E,
where we have also assumed that the air is at a constant pressure.

Another example is the boundary between two fluids of different densities, e.g.,
fresh water and seawater in a coastal aquifer. These are two miscible fluid zones: a
fresh groundwater zone and a zone of sea water, with a transition zone between them
due to diffusion/dispersion of dissolved salts. However, when each of these zones is
much thicker than the width of the transition zone, it is possible to regard the latter
as a sharp interface (e.g., Bear 1979, Sect. 9.5).

Figure5.8 shows two fluid zones separated by a sharp interface. The two fluids
are characterized by their densities and viscosities.

In order to determine the flow regime in the two zones, and the time-dependent
location of the interface, we have to solve an appropriate mathematical model that
is composed of two zones: an α-fluid zone, with density ρα and viscosity μα, and
a β-fluid zone, with ρβ > ρα and μβ �= μα. We write a complete model for each
zone. It consists of a mass balance equation, a flux equation, and conditions on the
zone’s boundaries, including on the surface separating the two zones. However, the
(time-dependent) location of the latter is a-priori unknown. In fact, in most cases,
this location is what we are seeking by solving this problem.

Let us express the location and shape of the interface considered here in the form
F = F(x, y, z, t) = 0, with F describing an a priori unknown (until the problem is
solved) surface. Denoting the elevation, z, of points on the interface by ζ = ζ(x, y, t)
(Fig. 5.8), the relationship satisfied by F at points on the moving interface is:

z = ζ(x, y, t), or F(x, y, z, t) ≡ z − ζ(x, y, t) = 0. (5.2.36)

The pressure at a point on the interface, p(x, y, z, t), is the same when the point
is approached from both sides. Because ρ is constant within each of the two zones,
the use of piezometric head as a variable is permitted. Hence, from the definitions
of hα and hβ (see (4.1.4)), we obtain:

ρα(hα − ζ) = ρβ(hβ − ζ), (5.2.37)

http://dx.doi.org/10.1007/978-3-319-72826-1_4


334 5 Modeling Single-Phase Mass Transport

or:
ζ = hβ

ρβ

ρβ − ρα
− hα

ρβ

ρβ − ρα
= hβ(1 + δ) − hαδ, (5.2.38)

where hα and hβ take on their respective values on the interface, and:

δ = ρα

ρβ − ρα
. (5.2.39)

If we can solve the appropriate PDE’s for hα = hα(x, y, z, t) and for hβ =
hβ(x, y, z, t), in their respective domains, (5.2.38) will be the sought equation
describing the shape of the (possibly moving) interface. We can rewrite it in the
form:

F ≡ z − hβ(1 + δ) + hα δ = 0. (5.2.40)

As this relationship is valid only for points z on the interface, i.e., z ≡ ζ, we recall
that hα = hα(x, y, ζ, t), and hβ = hβ(x, y, ζ, t).

Once we have the location of the boundary (≡ the interface), the boundary con-
ditions on it—one for each side—are obtained from the fact that the interface is
a material surface with respect to the mass of each of the liquids; no liquid mass
crosses it. The two conditions are:

(Vα − u) · ν = 0, (Vβ − u) · ν = 0 (5.2.41)

in which Vα and Vβ are the velocities of the respective fluids, u is the speed of
displacement of the interface F , and ν denotes the outward unit vector on F , with:

DF

Dt
≡ ∂F

∂t
+ u · ∇F, ν = ∇F

|∇F | , u · ∇F = −∂F

∂t
. (5.2.42)

In addition, the interface is also a material surface with respect to the solid, and
hence,

(Vsolid − u) · n = 0. (5.2.43)

From the above two equations, it follows that on the interface, which serves as a
common boundary to both subdomains, we have:

(qrα − φu) · n = 0, α = f, s. (5.2.44)

Making use ofDarcy’s law and (5.2.42),we obtain the two conditions on the interface,
for the Rα and Rβ sub-domains, respectively, in the form:

φ δ
∂hα

∂t
− φ(1 + δ)

∂hβ

∂t
= Kα · [∇z − (1 + δ)∇hβ + δ∇hα

] · ∇hα, (5.2.45)

φ δ
∂hα

∂t
− φ(1 + δ)

∂hβ

∂t
= Kβ · [∇z − (1 + δ)∇hβ + δ∇hβ

] · ∇hβ . (5.2.46)
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In principle,we canfind solutions for hα and hβ in their respective domains by solving
the governing equations for each domain, together with the boundary (interface)
conditions, (5.2.44)–(5.2.46). Unfortunately, the interface conditions, (5.2.45) and
(5.2.46), are nonlinear coupled partial differential equations in the variables hα and
hβ . It is practically impossible to directly solve the coupled system analytically, in
order to determine the shape and position of the interface. Instead, numericalmethods
can be employed to approximately find the interface location.

5.3 Modeling 2-D Flow in an Aquifer

In principle, flow always takes place in a three-dimensional domain. However, some-
times the domain has one dimension which is much larger than the other two, so that
a one-dimensional model seems a good simplification. Another case is when one
dimension is much smaller than the other two such that a simplified two-dimensional
flowmodel is called for.We refer to such domain as a thin one. An example is the case
of regional flow in an aquifer. The main feature of an aquifer is that it is an essentially
horizontal flow domain, characterized by a thickness that is much smaller than its
horizontal extent of interest; hence, the vertical variations in piezometric head are,
usually, much smaller than the horizontal ones. Under such circumstances, flow in an
aquifer may be conceptuallymodeled (albeit as an approximation) as taking place in
a horizontal two-dimensional domain. We refer to this approximation as ‘essentially
horizontal flow’ approximation, or ‘the hydraulic approach’. The transformation of
the three-dimensional mathematical model into a horizontal two-dimensional one
is performed by integrating (or averaging) the former along the vertical coordinate
axis (see next subsection). Obviously, although we have referred here to an aquifer,
the same approach is applicable to any reservoir for which the essentially horizontal
flow approximation is valid.

5.3.1 Deriving 2-D Balance Equations by Integration

Consider the piezometric head, h = h(x, y, z, t). Its average over the vertical thick-
ness of an aquifer, B(x, y, t), is defined by

ĥ(x, y, t) = 1

B(x, y, t)

∫

B(x,y,t)
h(x, y, z, t) dz. (5.3.1)

In terms of this averaged variable, ĥ = ĥ(x, y, t), the flow equation is reduced to a
two-dimensional one in the horizontal, xy-plane.

The assumption of ‘essentially horizontal flow in an aquifer’, usually referred
to as the Dupuit assumption, was introduced by Dupuit (1863) in connection with
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flow in phreatic aquifers. Dupuit suggested that in such an aquifer, we assume,
as a good approximation, that flow is horizontal, equipotentials are vertical, and,
equivalently, the vertical pressure distribution is hydrostatic. Althoughwe shall apply
here the Dupuit assumption to water flow in an aquifer, both confined and phreatic,
the presented material may be extended to the transport of any extensive quantity in
any relatively thin domain (Bear and Bachmat 1991, p. 481).

We start by developing the integrated balance equation for any macroscopic
extensive quantity, E , having a density e (= amount of E per unit volume of the
phase). The general macroscopic balance equation that describes the transport of E
in a three-dimensional domain is given by (3.3.3), rewritten here in the form:

∂

∂t
(φ e) + ∇ · (eq + φ JE

h

)− �′′ = 0, (5.3.2)

where φ denotes the porosity, q denotes the specific discharge of the phase, φJE
h

denotes the sum of dispersive and diffusive fluxes (Sect. 3.4.4A) of the extensive
quantity, per unit area of porous medium, and �′′ denotes the total source (= rate of
production) of E , due to both internal production and influx across the (microscopic)
surface that bounds the phase, per unit volume of porous medium.

The methodology of the hydraulic approach calls for the integration of (5.3.2)
along the vertical (possibly varying) thickness of the aquifer. Let the aquifer be
bounded from above and below by (possibly moving) surfaces whose elevations are
at z = b1(x, y, t) and z = b2(x, y, t), respectively, with b2 − b1 = B. Another way
of expressing the geometry of these boundary surfaces is by (Fig. 5.9):

F1 ≡ F1(x, y, z, t) = z − b1(x, y, t) = 0,

F2 ≡ F2(x, y, z, t) = z − b2(x, y, t) = 0, (5.3.3)

where Fi (x, t) = 0 represents the equation of a boundary surface, or a segment of
it. Time is introduced to allow for the possibility of a moving boundary, e.g., a
phreatic surface, with u denoting the speed of displacement of such a boundary.
Since the quantity F is a conservative quantity of the points on the surface, we have
DFi/Dt = 0, i = 1.2, and hence:

ν = ∇F

|∇F | , uν = u · ν = −∂F/∂t

|∇F | , (5.3.4)

where ν denotes the unit vector normal to the surface F = 0.
With the above definitions of the two F-surfaces, we have from (5.3.3):

∇Fi = ∇(z − bi ) and
∂Fi
∂t

= −∂bi
∂t

, i = 1, 2. (5.3.5)

For example, for a horizontal F1-surface, ∇F1 is directed upward, normal to the
surface. Also, for any surface Fi = Fi (x, y, z, t), we have:

http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_3
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Fig. 5.9 Nomenclature for
integration over the thickness
of an aquifer
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∂Fi
∂t

+ u · ∇Fi = 0, or
∂bi
∂t

− u · ∇(z − bi ) = 0, i = 1, 2. (5.3.6)

For a stationary boundary:

bi = bi (x, y),
∂Fi
∂t

= 0, i = 1, 2. (5.3.7)

By integrating (5.3.2) along the thickness, B, we obtain:

∫ b2

b1

∂φe

∂t
dz +

∫ b2

b1

∇ · (eq + φJE
h) dz −

∫ b2

b1

�′′ dz = 0. (5.3.8)

Since we have here integrals of derivatives, with integration boundaries that are
space-(and possibly time-)dependent, we have to introduce a certain rule for taking
integrals of derivatives. This rule is based on Leibnitz’ rule for a derivative of an
integral with respect to a variable upon which the boundaries of the latter depend
(see any textbook on Calculus). Here, we rewrite this rule in the form:

∂

∂r

∫ b2

b1

A dz =
∫ b2

b1

∂A
∂r

dz + A

∣
∣
∣
∣
b2

∂b2
∂r

− A

∣
∣
∣
∣
b1

∂b1
∂r

, (5.3.9)

where A = A(x, y, z, t) is any tensor field, and r stands for x , y, z, or t .
Let us define the symbol Â as:

Â′(x, y, t) = 1

B(x, y, t)

∫ b2(x,y,t)

b1(x,y,t)
A(x, y, z, t) dz, (5.3.10)

in which the prime symbol denotes a vector (or vector operator) in the two-
dimensional (xy)-plane only, viz.,

A′ = A′
x1x + A′

y1y, ∇′(..) = ∂

∂x
(..) 1x + ∂

∂y
(..) 1y,
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with 1x and 1y denoting unit vectors in the x- and y-directions, respectively.
Making use of Leibnitz rule, we may write for any vector, A:

∫ b2(x,y,t)

b1(x,y,t)
∇ · A dz =

∫ b2

b1

(

∇′ · A′ + ∂Az

∂z

)

dz

= ∇′ ·
∫ b2

b1

A′ dz − A′∣∣
b2

· ∇′b2 + A′∣∣
b1

· ∇′b1 + Az

∣
∣
b2

− Az

∣
∣
b1

= ∇′ · BÂ′ + A
∣
∣
b2

· ∇(z − b2) − A
∣
∣
b1

· ∇(z − b1)

= ∇′ · BÂ′ + A
∣
∣
F2

· ∇F2 − A
∣
∣
F1

· ∇F1. (5.3.11)

Here, and henceforth,
∣
∣
Fi
stands for

∣
∣
Fi=0.

For any scalar, A(x, y, z, t), with b1 = b1(x, y, t), b2 = b2(x, y, t), we have:

∫ b2

b1

∂A

∂t
dz = ∂

∂t

∫ b2

b1

A dz − A
∣
∣
b2

∂b2
∂t

+ A
∣
∣
b1

∂b1
∂t

= ∂

∂t
B Â + A

∣
∣
F2

∂F2

∂t
− A
∣
∣
F1

∂F1

∂t
. (5.3.12)

By applying (5.3.6), (5.3.12), (5.3.11), and (5.3.8), we obtain

∂

∂t
Bφ̂e + ∇′ · B

(

ê q′ + φ̂ J′E
h

)

+ [φe(V − u) + φ JE
h

]∣
∣
F2

· ∇F2

− [φe(V − u) + φ JE
h

]∣
∣
F1

· ∇F1 − B�̂′′ = 0, (5.3.13)

in which q′ denotes the vector of specific discharge in the horizontal xy-plane. This
is the averaged, two-dimensional (in the horizontal plane) balance equation for any

E in an aquifer. The dependent variables and fluxes, φ̂e, êq′, and φ̂J′E
h , are functions

of x , y, and t only.
In (5.3.13), the terms

[
φe(V − u) + φJE

h

]
∣
∣
∣
∣
F2

· ∇F2 and
[
φe(V − u) + φJE

h

]
∣
∣
∣
∣
F1

· ∇F1

represent the total flux of E through the (possibly moving) boundaries F2 = 0 and
F1 = 0, which bound the aquifer from above and below, respectively. In other words,
these terms represent boundary conditions on these surfaces.We note that while these
terms are boundary conditions for the three-dimensional balance equation, (5.3.2),
they appear as source terms in the averaged, two-dimensional equation (5.3.13). Our
next task is to express these conditions.

The general condition that must be satisfied at any point on a boundary F = 0,
for any of the α-phases present in a system, in the absence of sources and sinks of a
considered quantity E on the boundary, is that of continuity of the normal component
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of the total flux of E in any of the phases. However, if there exist on the boundary
portions that provide direct contact between phases, continuity exists only for the flux
through all phases together, rather than for each phase separately. In what follows,
we shall refer to the latter case. Using subscripts ext and int to denote the external
and internal sides of the boundary F(x, y, z, t) = 0, respectively, we may rewrite
this condition in the form:

∑

(α=s, f )

[[
θα

{
e′
α(Vα − u) + JEα

h,α

}]]

ext,int
· ν = 0, (5.3.14)

where the symbols f and s denote the fluid and solid phases, respectively, [[ (..) ]]1,2
denotes the jump in (..) from side 1 (here, external) of the boundary to side 2 (here,
internal), and JE

h,α denotes the non-advective flux of Eα. When the microscopic
interphase boundary is a material boundary with respect to the considered quantity,
i.e., there is no exchange of that quantity among the phases, the no-jump condition
(5.3.14) may be written separately for each phase.

In what follows, we shall assume that the top and bottom surfaces that bound
a confined or a leaky aquifer are material surfaces with respect to the solid mass.
Hence, on these surfaces, (Vs − u) · ν = 0, and, therefore:

φ(Vf − u) · ν = φ(Vf − u) · ν − φ(Vs − u) · ν

= φ(Vf − Vs) · ν ≡ qr · ν. (5.3.15)

Recall that qr denotes the specific discharge of the fluid relative to the solid; it is
expressed by Darcy’s law.

We can now use (5.3.14) to replace the terms in (5.3.13) that express the flux
conditions on the ‘internal sides’ of the boundaries by terms that involve (known)
information on the corresponding ‘external sides.’

Let us develop the condition for an upper boundary, F2 = 0, and for the specific
case of the mass of water phase, e = ρ, in saturated flow. Since we have assumed
that the boundary is a material surface with respect to the solid, we have on it:

ρs(Vs − u) · ∇F2 = 0. (5.3.16)

In addition, for the F2-surface, (5.3.14) reduces to:

[φρ(Vf − u)]∣∣ext · ∇F2 = [φρ(Vf − u)]∣∣int · ∇F2, (5.3.17)

where ρ ≡ ρf , or
(ρqr )

∣
∣
ext · ∇F2 = (ρqr )

∣
∣
int · ∇F2. (5.3.18)

For an impervious boundary, qr
∣
∣
ext · ∇F2 = qr

∣
∣
ext · ν = 0, so that (5.3.18) reduces

to:
(ρqr )

∣
∣
int · ∇F2 = 0. (5.3.19)
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At a leaky boundary, i.e., a boundary through which fluid mass can enter or leave the
aquifer at a known rate, ρqleak, the condition is

(ρqr )
∣
∣
int · ∇F2 = (ρqleak)

∣
∣
ext · ∇F2. (5.3.20)

The term qleak
∣
∣
ext represents the leakage into (or out of) the aquifer on the external

side of the latter. It can nowbe expressed in terms of the state variables of a considered
problem.

Let the surface F2 serve as the upper boundary for the saturated domain of a
phreatic aquifer with accretion. The condition on such a boundary takes the form:

[φρ(Vf − u)]∣∣int · ∇F2 = ρN(N − θr f u)
∣
∣
ext · ∇F2, (5.3.21)

or, by rearranging terms, and using (5.3.4):

(ρNN − ρq) · ∇F2 = (φρ − θr f ρN)
∂F2

∂t
. (5.3.22)

Here, N denotes the rate of accretion of water of density ρN , and θr f denotes the
irreducible moisture content that is assumed to prevail above the phreatic surface.

For downward accretion at a rate N , we introduce N = −N∇z, and (5.3.22)
becomes:

(ρN N∇z + ρq) · ∇F2 = −(φρ − θr f ρN)
∂F2

∂t
. (5.3.23)

Let us now rewrite the mass balance equation (5.3.13), making use of the following
approximations:

• The macrodispersive flux (Sect. 7.2.4) of the total mass, ̂ρ̊q̊′, due to vertical varia-
tions in the horizontal flux, q′, and in ρ, may be neglected, i.e.,

ρ̂q′ = ρ̂ q̂′ + ̂ρ̊q̊′ ≈ ρ̂ q̂′, (5.3.24)

where the symbol ˚(..) denotes deviation of (..) from its average, (̂..), over the
vertical, B.

• The average of the sum of the components of the dispersive and diffusive fluxes of
the total mass is much smaller than the advective mass flux at the averaged level,
i.e.,

|φ̂Jm′
f h | � |ρ̂ q̂′|.

With these approximations, (5.3.13) can be rewritten in the form:

∂

∂t
(Bφ̂ρ) + ∇′ · (Bρ̂ q̂′) + [ρ(q − φu)

]∣
∣
F2

· ∇F2

− [ρ(q − φu)
]∣
∣
F1

· ∇F1 − B�̂′′ = 0. (5.3.25)

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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inwhichwenote the use of the specific discharge, q̂′, rather than the specific discharge
relative to the moving solid, q̂′

r .
Let us now rewrite the last balance equation for specific types of aquifer.

A. Confined Aquifer

Both the upper and lower bounding surfaces are now impervious.On suchboundaries,
u · ∇F = Vs · ∇F ; hence, two conditions prevail: (5.3.19) and a similar one for
F1 = 0. By inserting these conditions into (5.3.25), we obtain:

∂(Bφ̂ρ)

∂t
+ ∇′ · (Bρ̂ q̂′) − B�̂′′ = 0. (5.3.26)

This is the (integrated) balance equation for flow in a confined aquifer. Pumping and
artificial recharge may serve as examples of distributed sinks and sources expressed
by B�̂′′.

In order to express themass balance equation (5.3.26), which applies to a confined
aquifer with a compressible fluid, in terms of a single state variable, ĥ, we make use
of (5.3.12), and introduce the approximations:

∂(Bφ̂ρ)

∂t
≈ B

∂(φ̂ρ)

∂t
≈ ρ̂BSo

∂ĥ∗

∂t
, (5.3.27)

(φρ)
∣
∣
F1

≈ (φρ)
∣
∣
F2

≈ φ̂ρ, (5.3.28)

where h∗ is Hubbert’s potential defined by (4.1.7), and neglect averages of products
of fluctuations over the thickness. We also assume that:

h∗∣∣
F1

≈ h∗∣∣
F2

≈ ĥ∗ ≈ ĥ ≡ h, (5.3.29)

∇′ · (Bρ̂ q̂′) ≈ −∇′ · (ρ̂BK̂′ · ∇′ĥ∗), (5.3.30)

q ≈ qr , (5.3.31)

and: ∣
∣
∣
∣Bφ̂

∂ρ̂

∂t

∣
∣
∣
∣	
∣
∣Bq̂′ · ∇′ρ̂

∣
∣. (5.3.32)

These approximations lead to the averaged mass balance equation

ρ̂S
∂h

∂t
= ∇′ · (ρ̂T · ∇′h) + B�̂′′, h ≡ ĥ, (5.3.33)

in which the aquifer storativity or storage coefficient, S, is:

http://dx.doi.org/10.1007/978-3-319-72826-1_4
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S =
∫ b2

b1

So dz, S = BŜo, (5.3.34)

where Ŝo represents the average value of So along B. In words, S is defined as the
volume of water release from (or added to) storage in a confined aquifer per unit
area of aquifer per unit decline (or rise) of the piezometric head.

The term −T · ∇′ĥ, which we denote as Q′, expresses the horizontal discharge
through the entire thickness of the aquifer per unit width, with

T = T(x, y) =
∫ b2

b1

K dz ≡ BK̂′ (5.3.35)

denoting aquifer transmissivity. It may be interesting to note that for a stratified
aquifer, say an aquifer composed of N layers, Bi , Ki , K̂ is the harmonic mean
hydraulic conductivity of the layers, and the transmissivity, obtained by integration,
takes the form T =∑

N
Ki Bi . Note that we have assumed above that the layers are

anisotropic, but with x, y, z principal directions. The resulting transmissivity, T, is
then also anisotropic (in 2-d), with x, y as principal directions.

In the Dupuit assumption, equipotentials are approximated as vertical, i.e.,
ĥ(x, y) ≈ h(x, y, b1) ≈ h(x, y, b2), so that:

Q′ = −T · ∇′h, T = K̂(x, y)B(x, y). (5.3.36)

with Q,T and h ≡ ĥ(x, y, t).
In (5.3.33), B�̂′′/ρ̂ denotes a water source (dims. L3/T/L2). For wells, we express

the sources by using the Dirac delta function, δ(x − xi , y − yi ), modified to two
dimensions from the three-dimensional definition (5.1.4).

In groundwater hydrology, it is often assumed that ρ̂ = const. in (5.3.33). Thus,
for water of constant density, with pumping wells at points (xm, ym), with pumping
rates, Pm , we obtain the confined aquifer flow equation:

S
∂h

∂t
= ∇′ · (T · ∇′h) −

∑

(m)

Pmδ(x − xm, y − ym), h ≡ ĥ. (5.3.37)

B. Leaky Aquifer

In this case, (5.3.20) serves as a boundary condition on the upper bounding surface
(a similar expression can be written for the lower surface). We assume that the upper
semipervious boundary can be approximated as a thin membrane through which
water leaks out of the aquifer into an overlying aquifer. Then, the rate of leakage
through the upper surface of the aquifer can be expressed by:

qleak
∣
∣
F2

· ∇F2 = K�

ĥ − h
∣
∣
ext

B�

|∇F2|, (5.3.38)
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where h
∣
∣
ext denotes the piezometric head above the upper semipervious layer, and

K� and B� denote the hydraulic conductivity and thickness of the semipervious
layer. This term is sometimes called leakance. The term B�/K� is referred to as
the resistance (dims. T) of the semipervious layer. In writing (5.3.38), we have also
assumed that water density is constant, and is, thus, the same on both sides of the
semipervious layer.

We now use (5.3.13), making the same approximations used to derive (5.3.33)
and (5.3.36) for the confined aquifer, defining qleak

∣
∣
Fi

≡ qleak
∣
∣
Fi

· ∇Fi i = 1, 2, to
obtain the following relationships from (5.3.20):

q
∣
∣
F1

· ∇F1

|∇F1| = qleak
∣
∣
F1

and q
∣
∣
F2

· ∇F2

|∇F2| = qleak
∣
∣
F2

,

which represent the conditions on the top and the bottom boundaries.With R(x, y, t)
≡ B�̂′′/ρ, we then obtain:

∇′ · (T · ∇′ĥ) + R(x, y, t) − qleak
∣
∣
F2

|∇F2| + qleak
∣
∣
F1

|∇F1| = Ŝ
∂ĥ

∂t
. (5.3.39)

This is the (integrated) mass balance equation for a leaky aquifer. The leakage terms
express (possible) loss of water to the overlying and underlying aquifers.

C. Phreatic Aquifer

Let the lower boundary be impervious, so that (5.3.19) is valid there. Then, using
(5.3.21) with (5.2.3), and employing the same assumptions as introduced above,
including constant water density, (5.3.25) becomes:

∂(Bφ̂)

∂t
+ ∇′ · (Bq̂′) +

(

N · ∇F2 + θrw
∂F2

∂t

)

− B
�̂′′

ρ
= 0, (5.3.40)

where we have assumed b2 ≈ ĥ so that B = ĥ − b1. This is the (integrated) mass
balance equation for a phreatic aquifer.

Assuming that |B(∂φ̂/∂t)| � |(φ|ĥ ∂ĥ/∂t)|, and since F1 = z − b1(x, y), and
F2 = z − ĥ(x, y, t), the first term of the left-hand side of (5.3.40) becomes:

∂Bφ̂

∂t
≡ ∂

∂t

∫ ĥ

b1

φ dz =
∫ ĥ

b1

∂φ

∂t
dz + φ

∣
∣
∣
∣
ĥ

∂ĥ

∂t

= B
∂φ̂

∂t
+ φ

∣
∣
∣
∣
ĥ

∂ĥ

∂t
≈ φ

∣
∣
∣
∣
ĥ

∂ĥ

∂t
. (5.3.41)

With ν = −N∇z, by inserting (5.3.41) into (5.3.40), we now obtain:

Sy
∂ĥ

∂t
+ ∇′ · [(̂h − b1)q̂′] − N − R + P = 0, (5.3.42)
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Fig. 5.10 Relation between
specific yield and grain size
(from Conkling 1934, as
modified by Davis and de
Wiest 1966)
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in which we have assumed that ∇F2 ≈ −∇z, i.e., the water table is approximately
horizontal with respect to N, and the net withdrawal from the aquifer, i.e., pumping
minus artificial recharge, is denoted by P − R ≡ −(̂h − b1)�̂′′/ρw.

The symbol Sy ≡ φeff = φ − θrw is the specific yield, which is equivalent to the
storativity of a phreatic aquifer. It is defined as (Fig. 6.5) the volume of water, �Uw,
released from storage in a phreatic aquifer, per unit area and per unit decline in the
water table elevation:

Sy = �Uw

A�h
. (5.3.43)

In this definition of Sy , we have assumed that (̂h − b1)So � φeff , i.e., the effect of
elastic storativity is negligible.

Figure5.10 shows the dependence of the specific yield, Sy , on grain- (actually
pore-) size. We note that for clay, Sy is very small, although the porosity is relatively
large. This behavior stems from the fact that the size of the pores in clays is very small,
so that capillary forces are very large, and so is the irreducible moisture content, θwr .

Equation (5.3.42) is the balance equation commonly employed for a phreatic
aquifer. It is often referred to by groundwater hydrologists as the Boussinesq equa-
tion. In (5.3.42),Q′ (≡ (ĥ − b1)q̂′) denotes the total discharge through the saturated
thickness, ĥ − b1, per unit width of aquifer.

Let us use vertical integration to derive an expression forQ′ in terms of h̃. Assum-
ing that K = K(x, y), we obtain:

Q′ =
∫ ĥ(x,y,t)

b1(x,y)
q dz = −K ·

∫ ĥ

b1

∇h dz

= −K ·
{

∇′
[
(ĥ − b1)ĥ

]
− h
∣
∣
∣
x,y,z=ĥ

∇′ĥ + ĥ
∣
∣
∣
x,y,z=b1

∇′b1
}

, (5.3.44)

where h
∣
∣
(x,y,z=h)

= ĥ.

http://dx.doi.org/10.1007/978-3-319-72826-1_6
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By invoking now the Dupuit assumption, i.e., ĥ ≈ h
∣
∣
(x,y,z=h)

≈ h
∣
∣
(x,y,z=b1)

, we
obtain:

Q′ = −(̂h − b1)K · ∇′ĥ. (5.3.45)

Equation (5.3.42) can then be written as:

Sy
∂ĥ

∂t
+ ∇ · [(̂h − b1)K · ∇′ĥ] − N − R + P = 0. (5.3.46)

When recharge and pumping is implemented through wells (≡ point sources and
sinks), we may, symbolically, use the notation:

R(x, y, t) − P(x, y, t) ≡
∑

(i)

Ri (t)δ(x − xi , y − yi ) −
∑

( j)

P j (t)δ(x − x j , y − y j ), (5.3.47)

where δ(x − xi , y − yi ) is the Dirac delta function at (xi , yi ).
In (5.3.46), the product (ĥ − b1)K plays the role of transmissivity of a phreatic

aquifer. However, here the transmissivity may be time dependent, because h̃ =
ĥ(x, y, t). As a result, the equation for flow in a phreatic aquifer is nonlinear.

In principle, the non-linear balance equation (5.3.46) can be solved numerically.
However, often this equation is approximated by linearization prior to being solved
numerically. Commonly, linearization is achieved by replacing ĥ in the product
(̂h − b1)K, which represents the aquifer transmissivity, by some mean (in time!)
value ̂̂h, assuming |̂h − ̂̂h| � ̂̂h. Equation (5.3.46) then becomes

Sy
∂ĥ

∂t
+ ∇ · [(̂̂h − b1)K · ∇′ĥ] − N − R + P = 0, (5.3.48)

which is now linear in ĥ = ĥ(x, y, t). The introduction of an average thickness of
the saturated zone is justified whenever fluctuations in the water table elevations are
much smaller than the thickness itself.

5.3.2 Initial and Boundary Conditions

As in the 3-dimensional case discussed above, to present a well-posed problem in a
2-d domain, we need to specify appropriate initial and boundary conditions for every
flow equation. We recall that we are considering here flow equations based on the
essentially horizontal flow assumption. Hence, the flow domain, �(x, y), which is
in the horizontal plane, is bounded by a closed boundary �, composed of curved
and straight line segments, �i , with Fi = Fi (x, y) = 0 representing the equation of
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the i-th segment. Note that only stationary boundaries are considered here. We shall
regard the piezometric head, h = h(x, y, t), as the variable in the flow equation.

A. Initial Conditions

Initial conditions take the form:

h = h(x, y, t) = f (x, y), on �, (5.3.49)

where f = f (x, y) is a known function.

B. Boundary Conditions

Several types of boundary conditions may be encountered:

(a) Boundary of prescribed piezometric head. This condition takes the form:

h = f1(x, y, t), on �1, (5.3.50)

where f1 = f1(x, y, t) is a known function.
(b) Boundary of prescribed flux. Along such a boundary:

Q′
ν = Q′ · ν = f2(x, y, t), on �2, (5.3.51)

where f2 = f2(x, y, t) is a known function.
(c) Semi-pervious Boundary. As in three-dimensional flow, this kind of boundary
condition occurs, for example, when a partly clogged river-bed (e.g., by a thin layer
of silt or clay) serves as a boundary of a flow domain. Because of the resistance to
the flow offered by the semi-pervious layer, the piezometric head in the aquifer, next
to this layer, is different from that on its external side.

With ho denoting the piezometric head on the external side of the boundary,
continuity of flux through the entire thickness of the aquifer requires that:

(Q′
n ≡ Q′ · n =) − (Kh · ∇′h) · n = h

ho − h(x, y, t)

cr
, (5.3.52)

where cr = B ′/K ′, with K ′ and B ′ denote the hydraulic conductivity and the thick-
ness of the semi-pervious layer, respectively.

C. Complete Model Statement

The standard content of a two-dimensional flow model include the following
items:

• Delineation of the closed curve that bounds the problem domain. This means that
all boundaries are really vertical surfaces extending through the entire thickness
of the aquifer.

• Specification of the state variable, usually the average piezometric head h, for
which a solution is sought.
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• Statement of the partial differential equation that represents the mass balance of
water in the aquifer. In the case of multiple leaky aquifers, we need a variable of
state and a mass balance equation for each aquifer.

• Specificationof all the (storage and transport) coefficients that appear in the balance
equation(s).

• Statement of initial conditions that the state variables have to satisfy.
• Statement of boundary conditions for each balance equation.

5.4 Heterogeneity and Monte Carlo Simulations

In Sect. 1.1.6, we discussed the conditions that have to be satisfied in order to justify
the modeling of phenomena of transport in a geological formation regarded as a
continuum. However, we have also emphasized thatmost geological formations, e.g.,
petroleum reservoirs, groundwater aquifers and geothermal reservoirs, are highly
heterogeneous to the extent that it is not obvious that an REV, or an RMV can
be identified. In fact, even if an REV can be found, or assumed to exist, the spatial
variability of coefficients, like porosity and permeability, obtained from cores, from a
pumping test, or by some inverse technique, is significant and very irregular. Usually,
there is not enough information concerning their spatial variability. Interpolation does
not solve the problem as it leaves a high level of uncertainty as to the values of the
considered coefficients between points at which actual data are available.

In spite of the above severe conclusion concerning the lack of sufficient informa-
tion about coefficients, in the real world, decisions (based on predicting excitation-
response relations) have still to be made with respect to flow and transport in such
(highly heterogenous) formations. This led to efforts to find techniques for coping
with the lack of sufficient information concerning model coefficients, obviously at
the cost of a certain degree of uncertainty in the predicted values.

In fact, the above introductory remarks focus on the assumption that the basic
mass balance equation and Darcy’s law remain unchanged, with the same set of
coefficients, e.g., S and T for an aquifer, but that we have insufficient information
concerning the spatial distribution of the formation’s coefficients. However, this is
not necessarily true, as strong heterogeneity may lead to additional phenomena that
are not represented by the set of coefficients that correspond to a homogeneous, or a
slightly heterogeneous formation. The term “upscaling” is often used in the literature
to describe modeling of transport in highly heterogeneous formation.

In the current section, we shall introduce a method–Monte carlo Simulations–
often used to cope with the lack of information on the spatial distribution of coeffi-
cients in heterogeneous domains.

We introduce the Monte Carlo method by presenting the case of flow through
a heterogenous isotropic confined aquifer described by the mass balance equation
(5.3.37), rewritten here in the form:

http://dx.doi.org/10.1007/978-3-319-72826-1_1
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S
∂h

∂t
= ∇′ · (T · ∇′h) − R(x, y, t), h = h(x, y, t), (5.4.1)

where h = h(x, y, t) is the piezometric head, ∇′ denotes the gradient operator in the
2-d (x, y) domain, R(x, y, t) denotes sources, and S(x, y) and T (x, y) denote the
aquifer’s transmissivity and storativity, respectively. These two coefficients, S and
T , are known at a small number of points throughout the aquifer, say from pumping
tests. Thus, using interpolation to derive values for all points throughout the domain
is an unacceptable approach.

The Monte Carlo method deals with the uncertainty concerning the values coef-
ficients (here, S and T ) as a probability issue. It uses the available measured (thus,
assumed reliable) information on these coefficients to produce their statistical char-
acteristics (e.g., mean, standard deviation, covariance), and then uses the latter to
produce a large number of realizations, each of which is a possible manifestation of
the unknown reality. All these realizations obey the same statistical characteristics
as the actually measured information. Each of these (equally likely to occur) realiza-
tions, is used as input to the considered (deterministic)model, producing one possible
model prediction as output. In this way, a large number of simulations is conducted,
each making use (as input) of one of the realizations of the spatial distribution of
model coefficients. Each of the produced outputs contains detailed information on
the distributions of the sought model variables, say, h(x, y, t). It is a sample taken
from the ensemble space. The ensemble statistics can then be applied to this informa-
tion. In this way, instead of a single deterministic prediction, say h(x, y, t), obtained
by solving the given mathematical model with known coefficients, we obtain many
solutions, one for each realization of the coefficients’ distributions. From them, we
obtain the statistical characterization of the solution. For example, for a specified
location and a specified point in time, we obtain the mean value of h, its standard
deviation, aswell as its correlation length and correlation time. The correlation length
tells us the persistence of a value in a spatial direction and in time. In fact, the Monte
Carlo method produces much more than merely statistical information. The large
number of (artificially produced) samples allows us to construct a histogram of any
output prediction and provides the probability distribution of that quantity.

The Monte carlo method requires the (usually numerical) solution of a very large
number, often many thousands of cases, each with a different set of the considered
coefficients. However, with the power of computing nowadays, this is not a serious
obstacle.

By applying a statistical analysis to thesemany ‘equally likely to occur’ outcomes,
we can provide quantitative, albeit probabilistic, answers to questions like, ‘what is
the probability that a water table elevation, h, at a certain location at a certain time
will be below or above a certain specified value, in response to certain specified
values of natural replenishment, R’. Thus, the results take the form of a probability
distribution for h at a desired location. We have to ensure that we run a sufficient
number of cases so as to ensure convergence of the results. Even then, convergence
is not always ensured.
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Although the Monte Carlo procedure as described above seems simple and
straightforward, it is actually not. Dagan (1989, p. 182) and Bear and Cheng (2010,
p. 668) discuss some of the difficulties associated with the implementation of this
technique.

Let us discuss some issues associated with it:
(1) To generate the many realizations of the spatial distribution of transmissivity

and storativity, we need to determine their probability distributions, i.e., their prob-
ability density functions (abbreviated: pdf). In most fields, however, the amount of
actually measured data is insufficient for such purpose. Fortunately, based on a few
studies in which a large quantity of data was indeed available for a given site, or
could be compiled from different similar sites, it was concluded that the hydraulic
conductivity is log-normally distributed, Y = ln T (e.g., Freeze 1975; Hoeksema and
Kitanidis 1985a, b; Gelhar 1986, 1993). The same conclusion may be extended to
transmissivity and storativity. With this assumption, the full determination of their
pdf’s is reduced to determining only two statistical moments: the mean and the
standard deviation of the required distributions.

(2) To determine these statistical moments of the pdf, a large number of sam-
ples in the ensemble space is needed. Unfortunately, such ensemble space does not
exist in groundwater modeling, as each investigated hydrogeological field is unique.
This obstacle is overcome by making the assumption of ergodicity. The ergodicity
hypothesis allows us to conduct the spatial statistical analysis by using data collected
at different locations of the same field, and using the results as the sought ensemble
statistics. However, as emphasized earlier, the amount of spatial data is often insuf-
ficient for producing a statistical model with a spatial trend. In other words, we may
not be able to reliably obtain amean that varies from location to location.Most likely,
we can only obtain a statistically homogeneous mean. This means that a constant
mean is obtained for the entire field.

(3) For the second moment, e.g., the covariance, the amount of data is usually
insufficient for determining its spatial trend. Hence, the covariance is almost always
assumed to be statistically homogeneous; in other words, we assume that the variance
and the correlation length are everywhere the same. Due to the lack of sufficient data
for the construction of a detailed empirical statistical model, the simulated results
are often questionable.

(4) The generation of random realizations, required in the Monte Carlo simula-
tion, calls for the generation of a sequence of random numbers. For this purpose, we
use a computerized pseudo random number generator. This is based on a mathemat-
ical algorithm, programmed for a computer, that can generate a seemingly random
sequence of numbers, say, between 0 and 1, with a certain precision. Actually, the
process is only pseudo-random, because, given the same ‘seed number’, the same
sequence of numbers will be generated every time. Using an algebraic transforma-
tion, meaning replacing one variable by another, defined by a functional relation, this
sequence of random numbers, can be mapped onto a Gaussian (normal) probability
distribution. With another transformation, the normal probability distribution can be
mapped onto a log-normal probability distribution (Press et al. 2007).
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With the random number generator and a probability distribution, the random
fields (of parameters, such as storativity and transmissivity) required as input for the
Monte Carlo simulations of the considered mathematical model can now be gener-
ated. We divide the modeled inhomogeneous domain into a number of small cells,
each assumed to be homogeneous. Selecting one cell to start from, we can ‘ran-
domly’ assign to it a parameter value, say, the value of transmissivity. We then move
to the next cell and assign to it another random transmissivity value. We continue
this process, until the entire transmissivity field is defined. To obtain these transmis-
sivity values, we start by inserting a ‘seed number’ (between zero and one) into a
random number generator. The random number generator then produces a sequence
of pseudo-random (i.e., almost random) numbers, uniformly distributed between
zero and one. Based on the assumed pdf (for example, log-normal distribution), and
the provided mean and standard deviation, these numbers are then transformed into
the sought transmissivity values. Note that by conducting a statistical analysis on
these random transmissivity values, we should return to the same mean and stan-
dard deviation originally used for their generation. These transmissivity values can
then be assigned, cell by cell, as described above. This process, however, generates
an incoherent random parameter field that does not exhibit a spatial correlation, as
a real field should. The value selected for one cell bears no correlation with those
assigned to neighboring cells, and the resulting field is rougher than it should be. In
fact, the smaller the cell, the rougher is the field. In reality, however, if the value in
one cell is higher than average, there is a high probability that the values at neighbor-
ing cells will also be higher than the average. Thus, the values at neighboring cells
should be conditionally generated, on the basis of known information concerning the
covariance.

(5) Once the transmissivity has been generated for all cells, we need to generate
the spatial distribution of storativity. If we allow the random number generator to
arbitrarily select a storativity value for individual cells, that value may not be physi-
cally feasible, as it has been observed that a large transmissivity is often associated
with a low storativity (Freeze 1975; Dagan 1979). The conclusion is that the selection
of transmissivity and storativity must be based on a joint probability density function
for these two parameters. This function can be obtained by compiling the storativity
and transmissivity data pairs on a histogram that sorts these values into ranges.

The above discussion (in which we have used transmissivity and storativity just
as examples of two porous medium parameters) indicates that the generation of a
multidimensional, multivariate, and spatially correlated random field of the relevant
model parameters, to be used as input in a Monte Carlo simulation, is a complicated
process; special algorithms are required (e.g., Mantoglou and Wilson 1982; Man-
toglou and Gelhar 1987; Tompson et al. 1989; Tompson and Gelhar 1990; Robin
et al. 1993; Bellin and Rubin 1996).

Although we have presented here the Monte Carlo method for the solution of the
aquifer flow equation, it can be applied also to solute transport and to any problem
of transport.
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Fig. 5.11 Nomenclature for a fracture geometry

5.5 Flow in Fractured Domains

Fractured rock domains and fractured porous rock formations were introduced in
Sect. 1.3. In many parts of the world, such formations constitute important fresh
water aquifers, petroleum reservoirs and sources of geothermal energy. In Sect. 1.3.4
wehavementioned fracking and acidizing as techniques that are employed to increase
the permeability of fractured rocks, thus enhancing the production of oil and gas.

In principle, as long as an REV can be identified for a fractured domain, the latter
can be regarded as a porous medium domain and the mass, momentum and energy
transport models presented in this book are applicable, at least in principle. The
objective of this section is to highlight certain features that are typical to fractured
domains.

5.5.1 Flow in a Single and Multiple Fractures

As already emphasized in Sect. 4.2.4, CaseA, the flux equation in the form ofDarcy’s
lawcanbeobtained as a simplifiedversionof theNavier–Stokes (momentumbalance)
equation. This will be our starting point for expressing the flux of a fluid in a fracture.
We shall start by introducing some definitions related to the geometry of a fracture.
The discussionwill be confined to a non-deformable fracture,with a fracture aperture
that may vary in space in such a way that a fracture axis surface can be defined
throughout the fracture. To obtain this surface, we consider a point on one of thewalls
that bound the fracture and determine the largest sphere that (1) can be placed inside
the fracture, and (2) is tangent to the wall at that point. The centroid of this sphere is a
point on the axis surface. We repeat this procedure for all points on the selected wall.
The centroid of all spheres form the axis surface. Often, we approximate this surface
as a plane (or as composed, piecewise, of planar segments). Figure5.11 shows a
single fracture with a variable aperture.

http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_4
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At every point on a fracture’s axis plane, an orthogonal coordinate system,
x ′, y′, z′, can be defined, with x ′, z′ denoting a point in the axis plane, and y′ is
the coordinate normal to the axis plane. The stationary walls of the fracture can be
described by the equations:

F1(x
′, y′, z′) ≡ y′

1 − f1(x
′, z′) = 0, F2(x

′, y′, z′) ≡ y′
2 − f1(x

′, z′) = 0,
(5.5.1)

in which y′
1, y

′
2 are the values of y′ on the walls of the fracture. From the above

equation it follows that the normal outwardly directed unit vector at a point on a
fracture wall, is defined by:

νm = ∇Fm

|∇Fm | , m = 1, 2, (5.5.2)

and the fracture aperture, b = b(x ′, z′), at any point on the axis surface is expressed
by:

b(x ′, z′) = f2(x
′, z′) − f1(x

′, z′). (5.5.3)

A. Flow in a Single Fracture

Assuming negligible pressure variations across the fracture’s width (based on the
assumption that the latter is much smaller than its extent in the direction of the
fracture surface), the point (i.e., microscopic) balance equations for the fluid’s mass
and linearmomentumcan be averaged over the fracturewidth to produce averaged (or
integrated) equations for two-dimensional flow in the fracture plane (see Sect. 5.3.1).

The three-dimensional balance equation for the linear momentum of an incom-
pressible constant density fluid in a fracture, when combined with the mass balance
equation, takes the form:

ρ
∂V
∂t

= −ρ∇·(VV) + μ∇2V − ∇p + ρg, (5.5.4)

where ρ and μ denote the fluid’s density and dynamic viscosity, respectively, p is
pressure, V is the fluid’s velocity, t denotes time, and g = −g∇z denotes gravity
acceleration.

For a constant density, we can use the piezometric head, h = z + p/ρg as the
state variable, so that (5.5.4) can be rewritten in the form:

ρ
∂V
∂t

= −ρ∇·(VV) + μ∇2V − ρg∇h. (5.5.5)

Our next step is to average (5.5.5) over the width of the aperture, b, normal to the
latter’s axis. With the nomenclature of Fig. 5.11, we write:

∫ f2(x ′,z′)

f1(x ′,z′)

[
∂ρ

∂t
+ ρ(VV) + ρg∇h − μ∇2V

]

dy′ = 0. (5.5.6)
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Making use of Leibnitz rules (5.3.9) and (5.3.12), we obtain (Bear 1993, p. 13):

ρ
∂bṼ
∂t

+ ρ∇′· (bṼṼ)+ ρ∇′·
(
b˜̊VV̊
)

− ρVV| f2 ·∇F2 + ρVV| f1 ·∇F1

+ ρg∇′(bh̃) − ρgh| f2∇F2 + ρgh| f1∇F1

+ μ∇′2(bṼ) − μ∇′ · (V| f2∇F2 − V| f1∇F1)

− μ(∇V| f2 ·∇F2 − ∇V| f1 ·∇F1) = 0, (5.5.7)

In the above equation, ∇′ involves differentiation only with respect to coordinates
lying in the fracture (x ′, z′)-plane, and we have used:

Ã(x ′, z′) ≡ 1

b

∫ f2

f1

A(x ′, y′, z′)dy′, (5.5.8)

with V(x ′, y′, z′) = Ṽ(x ′, z′) + V̊(x ′, y′, z′), so that

ṼV = ṼṼ + ˜̊VV̊, V(x ′, y′z′) ≡ Ṽ(x ′, z′) + V̊(x ′, y′, z′), ˜̊V ≡ 0. (5.5.9)

In the absence of sources and sinks, the microscopic level mass balance equation
at a point in a fracture is:

∂ρ

∂t
= −∇·(ρV). (5.5.10)

By integrating over the aperture,

∫ f2(x ′,z′)

f1(x ′,z′)

[
∂ρ

∂t
+ ∇·(ρV)

]

dy′ = 0, (5.5.11)

using Leibnitz rules (5.3.9) and (5.3.12), we obtain the averaged mass balance equa-
tion:

∂bρ̃

∂t
+ ∇′·(bρ̃V) − (ρV)| f2∇F2 + (ρV)| f1∇F1 = 0. (5.5.12)

With a constant density and stationary, non-deformable fracture walls, the above
equation reduces to:

∇′·(bρ̃) = V| f2 ·∇F2 − V| f1 ·∇F1. (5.5.13)

Substituting (5.5.13) into (5.5.7), we obtain:
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Fig. 5.12 Fracture-porous
block geometry in a
one-dimensional case
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0

ρ
∂bṼ
∂t

= −ρbṼ(∇′·Ṽ) − ρ∇′·(b˜̊VV̊)

+ρVV| f2 ·∇F2 − ρVV| f1 ·∇F1

− ρg∇′(bh̃) + ρgh| f2∇F2 − ρgh| f1∇F1

− μ∇′2(bṼ) + μ∇′ · (V| f2∇F2 − V| f1∇F1)

+ μ(∇V| f2 ·∇F2 − ∇V f1 ·∇F1)

− ρṼ(V| f2 − V| f1∇F1). (5.5.14)

To analyze (5.5.14), we consider the simple case of steady, unidirectional flow
through a two-dimensional fracture bounded by the planar, parallel walls defined in
Fig. 5.12.

Furthermore, we assume that (1) the dispersive momentum flux is much smaller

that the advective one, i.e., |ρ˜̊VV̊| � |ρṼṼ|, and (2) across any aperture, the
piezometric heads at the fracture walls satisfy h| f1  h| f2 . The stronger condition
h| f1  h| f2  h̃ is required when the fracture walls are not assumed parallel. Under
these assumptions, and for steady flow, (5.5.14) reduces for the x-direction to:

ρgb
∂h̃

∂x
= μ

(
∂Vx

∂y

∣
∣
∣
∣
f2

− ∂Vx

∂y

∣
∣
∣
∣
f1

)

. (5.5.15)

The assumption of steady flow is not required if from the outset, i.e., already at the
microscopic level, we would have made the reasonable assumption that the inertial
effects are negligible.

For fracture walls that are stationary and impervious, and under a no-slip con-
dition, V = 0, on the walls, the velocity distribution across the fracture width is
parabolic and symmetric about the fracture’s axis (Lamb 1945), with:
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Vx (y) = 6Ṽx

b2

(
b

2
+ y

)(
b

2
− y

)

, −b

2
≤ y ≤ b

2
. (5.5.16)

By differentiating (5.5.16) and substituting the result into (5.5.15), we obtain the
average velocity in a fracture:

Ṽx = −ρg

μ

b2

12

∂h

∂x
, (5.5.17)

and a similar expression in the z-direction. The above equation can also be written
in the form:

Ṽi = −K f r
∂h

∂xi
, x1 ≡ x, x2 ≡ z, K f r = ρg

μ

b2

12
≡ ρg

μ
k f r , k f r = b2

12
,

(5.5.18)
where K f r and k f r are referred to as the hydraulic conductivity and permeability of
a fracture. Altogether, the discharge through an individual fracture is:

Q′
f r = bṼ = −ρg

μ

b3

12
∇′h̃ = −T f r∇′h̃, (5.5.19)

in which the prime indicates a vector in the two dimension, x, z, and T f r denotes the
transmissivity of a fracture. The last equation is often referred to as the ‘cubic law’
(Witherspoon et al. 1980).

When fluid can pass from fracture to adjacent rock block, or from the rock block
to the fracture, we have to modify the above analysis. Let us return to (5.5.14)
and consider the case of fracture walls that are permeable. Then, with the other
assumptions that led to (5.5.15), we obtain:

ρgb
∂h̃

∂x
= μ

(
∂Vx

∂y

∣
∣
∣
∣
f2

− ∂Vx

∂y

∣
∣
∣
∣
f1

)

− ρṼx
(
Vy| f2 − Vy| f1

)

+μ
∂

∂x

(
Vy | f2 − Vy| f1

)
. (5.5.20)

Assuming that the leakage into or out of the fracture is equal on both fracture
walls, and is uniform over the fracture length, i.e., Vy| f2 = Vy| f1 = q�, Eq. (5.5.15)
reduces to:

ρgb
∂h̃

∂x
= μ

(
∂Vx

∂y

∣
∣
∣
∣
f2

− ∂Vx

∂y

∣
∣
∣
∣
f1

)

− 2ρṼxq�. (5.5.21)

We now assume that the velocity distribution across a fracture is described by
(5.5.16), and that the no-slip condition exists also in the case of flow in a fracture
with leakage through the walls. In fact, this assumption is valid only when the flux
through the fracture is much larger than the leakage through the fracture walls.
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Fig. 5.13 Fracture of
variable aperture: a Discrete
aperture variation, and b
Continuous aperture
variation

bi

b = b(I )
d i

I i

L

(a)

(b)

Differentiating (5.5.16), and substituting the result into (5.5.21), yields a’modified’
average velocity in the fracture:

Ṽx = − ρgb2

12μ + 2bρq�

∂h̃

∂x
, (5.5.22)

to be compared with (5.5.17). Thus, for a fracture imbedded in a porous host rock, the
hydraulic conductivity in a fracture is also a function of the magnitude of the leakage
through the fracture walls. When μ 	 bρq�/6, the permeability in the fracture can
be approximated by k f r = b2/12.

In addition to the observation made above, that fracture walls are not smooth, the
aperture of a fracture may vary in size. The ideal model of parallel plates does not
exist in reality. Moreover, at points and areal segments within a fracture, the aperture
may disappear altogether, as adjacent blocks come into direct contact.

Several authors have studied the effects of a variable aperture on the flow in a
fracture. For a fracture approximated as a series of m discrete segments with differ-
ent apertures (Fig. 5.13a), Wilson and Witherspoon (1974) expressed the ’effective
aperture’, bef f , by:

b3ef f =
∑n=m

n=1 �n
∑n=m

n=1 (�n/b3n)
, (5.5.23)

in which �n denotes the length of a fracture segment of aperture bn .
It is also possible to introduce a statistical distribution of apertures. Then:

T f r = 1

12

ρg

μ
L
∫ ∞

0
b3 f (b)db, (5.5.24)

where f (b) is the frequency distribution of b. For flow parallel (Q′
1) and normal

(Q′
2) to these changes, we have:

Q′
1 = −b3ef f

12

ρg

μ

∂h

∂x1
, Q′

2 = −b3ef f
12

ρg

μ

∂h

∂x2
, (5.5.25)
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Fig. 5.14 Multiple fracture systems: aOne family of parallel fractures, and bTwomutually orthog-
onal families of parallel fractures

B. Flow in an Ordered Fractured Rock Domain

With the result of the analysis presented above for a single fracture, it is possible to
construct flow expressions for variety of systems composed of multiple parallel frac-
tures. For example, for the case of parallelepiped fractured rock domain intersected
by a single family of m fractures of equal aperture b (Fig. 5.14a), oriented parallel
to the direction of flow, the total discharge Q and the specific discharge q, through
a cross section of this domain, having a width L and a height of unit length normal
to the flow direction, is:

Q = −m
b3

12

ρg

μ
∇h, q ≡ Q

L
= −m

L

b3

12

ρg

μ
∇h ≡ −K f r∇h, (5.5.26)

K f r = mb3

12L

ρg

μ
= φ f r

b2

12

ρg

μ
, φ f r = mb

L
, (5.5.27)

denoting the hydraulic conductivity and the fractured rock porosity, respectively.
When the parallel fractures are of varying apertures, bi , i = 1, 2, . . . ,m, then

Q = qL = − 1

12

ρg

μ

(
i=m∑

i=1

b3i

)

∇h, q ≡ Q
L

= −m

L

b3

12

ρg

μ
∇h ≡ −K f r L∇h,

(5.5.28)
and:

K f r = 1

12L

ρg

μ

i=m∑

i=1

b3i = φ f r
∑i=m

i=1 bi

1

12

ρg

μ

i=m∑

i=1

b3i . (5.5.29)
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Next, we consider the case of a fracture system composed of two orthogonal
families of parallel fractures, in the cross-sectional area F × L , normal to the
flow direction, shown in Fig. 5.14b. The two families of fractures are denoted by
bi = 1, 2, . . . ,mi , and b j , j = 1, 2, . . . ,m2. The total discharge and hydraulic con-
ductivity are determined by superposition:

Q = Qm1 + Qm2 = qL2 = 1

12

ρg

μ

⎛

⎝
m1∑

i=1

b3i +
m2∑

j=1

b3j

⎞

⎠∇h ≡ K f r L∇h, (5.5.30)

with an hydraulic conductivity of the fracture network defined by:

K f r = 1

12L2

ρg

μ

⎛

⎝
i=m1∑

i=1

b3i +
j=m2∑

j= j

b3j

⎞

⎠ , φ f r =
∑i=m1

i=1 bi +∑ j=m2
j=1 b j

L2
,

(5.5.31)
with φ f r denoting the porosity due to the void space of the fractures. We note that
in (5.5.30) and (5.5.31), the flow through the fracture junctions is counted twice.
However, it seems reasonable to assume that this will have only a very small effect
on the calculated discharge and porosity.

Let us add here the option that the blocks are porous (≡ a double porosity rock
domain), with k f r denoting the permeability of the porous blocks. Then, for a frac-
tured porous rock composed of parallel fractures of constant aperture, the total flux
is expressed by:

q f r = − ρg

μL

(
mb3

12
+ kpb(L − mb)

)

∇h. (5.5.32)

Since mb � L , we have:

q f r ≈ −ρg

μ

(
mb3

12L
+ kpb

)

∇h = −ρg

μ

(
φ f r b2

12
+ kpb

)

∇h. (5.5.33)

Note that in the above development, it is implicitly assumed that the fracture walls
are impervious, or that the leakage across them, between the fractures and the porous
blocks, is negligible.

Bear (in Bear et al. 1993, pp. 19–21) discusses the general case when the frac-
ture network is made up of randomly oriented fracture segments having different
orientations within a fractured rock domain.
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5.5.2 Flow in a Fractured Porous Medium Domain

The underlying assumption in this subsection is that the rock blocks surrounded
by fractures are porous. We have already introduced such a fractured rock domain
as a fractured porous rock, or, for obvious reason, as a double porosity domain.
Accordingly, we have already defined two porosities: one of the fractures and the
other of the porous blocks. The entire void space may contain one or more fluids. In
the current section we deal only with a single fluid. According to our approach in
this book, we envision such domain as three overlapping continua at the macroscopic
level: one of the network of fractures, the other of the porous blocks, and the third
one of the fractured porous rock as a whole. The first two continua may exchange
fluid mass between them at every macroscopic point within the considered domain,
recalling that “at a point” means “within the REV centered at the point”, and the
REV always contains both fractures and porous blocks. Obviously, to regard the
considered system as overlapping continua requires that a common REV exists for
both of them. The transport of other extensive quantities, e.g., mass of a chemical
species dissolved in the fluid(s), or heat, may also take place.

Many authors developed models of fluid flow based on the two-continua (or
double-porosity) approach introduced by Barenblatt and Zheltov (1960). Among
many others, we may mention Warren and Root (1963), Odeh (1965), Kazemy et al.
(1969) and Streltsova (1976).

Let us consider the mass balance of a single fluid that occupies the void space of
both the fractures and the porous blocks. We shall use subscripts s, f r and pb to
denote the solid, the fractures and the porous blocks, respectively. Needless to add
that we require that a common REV can be found for the network of fractures and
for the porous medium in the blocks.

Equation (5.5.10) is the microscopic mass balance equation for a fluid in the void
space of any porous medium domain without sources and sinks. Let us rewrite this
equation, once for the fluid in the fractures (subscript f r ) and once for the fluid in
the void space of the porous blocks (subscript pb), in the form:

∂ρ f r

∂t
= −∇·(ρ f rV f r ), (5.5.34)

∂ρpb

∂t
= −∇·(ρpbVpb). (5.5.35)

The corresponding averaged mass balance equations for the fluid in the fractures
and in the porous blocks, are:

∂φ f rρ f r
f r

∂t
= −∇·φ f rρ f r

f rV f r
f r − f mf r→pb, (5.5.36)
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and:
∂φpbρpb

pb

∂t
= −∇·φpbρpb

pbVpb
pb − f mpb→ f r , (5.5.37)

where we note the terms that express mass exchange between the two continua.
(Barenblatt et al. 1960) developed the above mass balance equations phenomenolog-
ically (from mass balance considerations) and suggested expressions for the mass
transfer terms. A review of expressions representing the transfer between the phases
is presented by Abushaikha and Gosselin (2008).

Let us assume that the fluid densities obey ρpb
pb ≡ ρ f r

f r ≡ ρ. Then, omitting the
averaging symbols, as it is obvious that the equations are at the macroscopic level,
we can write flux equations for the fluids in the fractures and in the blocks, each
regarded as a continuum:

φpbVpb = −kpb
μ

(∇ppb + ρg∇z
)
, (5.5.38)

and

φ f rV f r = −k f r

μ

(∇p f r + ρg∇z
)
. (5.5.39)

For the mass transfer terms, Barenblatt et al. (1960) suggested:

f mf r→pb = C frpb
K pbρA2

μ

(
p f r − ppb

)
, (5.5.40)

where A denotes the area of fracture-porous block interface, per unit volume of
fractured porous medium (≈ 2θ f r/ < b >), with < b > representing the average
fracture aperture, and C frpb denoting a dimensionless shape factor of the fractured
porous medium.

For a compressible fluid, Barenblatt et al. (1960) approximated the density-
pressure dependence by the linear relationship:

ρ = ρo
(
1 + βp(p − po)

)
, (5.5.41)

where βp denotes the fluid’s compressibility at constant temperature and po denotes
a reference pressure.

For a deformable fractured porous rock, for which:

φ f r = φ f r (p f r , ppb), φpb = φpb(p f r , ppb),

we write:

dφ f r = α11dp f r − α12dppb, dφpb = α21dp f r − α22dppb,
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where:

α11 = ∂φ f r

∂ p f r
, α12 = ∂φ f r

∂ ppb
, α21 = ∂φpb

∂ p f r
, α22 = ∂φpb

∂ ppb
,

are coefficients of porous rock compressibility.
In spite of the deformation of the fracture porous rock as a whole, we assume that

the volume of solids, per unit volume of fracture porous rock remains unchanged,
viz., 1 − φ f r − φpb = const . Hence, α11 = −α21, α12 = −α22. Under these con-
ditions, and for an isotropic fractured porous rock, we insert the flux equations into
the mass balance equations, and assume that the effect of gravity is much smaller
than that of the pressure gradient. We obtain:

• For flow in the fracture network,

k f r

μ
∇2 p f r = (α11 + βpφ f r )

∂ p f r

∂t
+ α12

∂ ppb

∂t

−C frpb
kpb A2

μ
(p f r − ppb) − βpk f r

μ
(∇ p f r )

2. (5.5.42)

• For flow in the porous blocks,

kpb
μ

∇2 ppb = (α22 + βpφpb)
∂ ppb

∂t
+ α21

∂ p f r

∂t

−C frpb
kpb A2

μ
(p f r − ppb) − βpkpb

μ
(∇ ppb)

2. (5.5.43)

The last term on the r.h.s. of the above two equations is very small (relative to the
other terms) and may be neglected. Assuming that:

|α12dppb| � |α11dp f r |, |α21dp f r | � |α22dppb|,

|∇·ρφpbVpb| �
∣
∣
∣
∣
∂(φpbρ)

∂t

∣
∣
∣
∣, |∇·ρφ f rV f r | 	

∣
∣
∣
∣
∂(φ f rρ)

∂t

∣
∣
∣
∣,

we obtain the approximate mass balance equation for flow in the network of fractures
in the form:

k f r∇2 p f r + C frpbk f r A
2
(
p f r − ppb

) = 0. (5.5.44)

We note that in this equation we have only flow in the fractures and exchange of fluid
between fractures and porous blocks.
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For porous blocks, the approximate mass balance equation takes the form:

(α22 + βpφpb)
∂ ppb

∂t
− C frpb

k f r A2

μ

(
p f r − ppb

) = 0. (5.5.45)

Here we note only fluid exchange between fractures and porous blocks, and elastic
storage in the porous blocks.

By eliminating ppb from (5.5.44) and (5.5.45), we obtain another approximate
mass balance equation for the fluid in the fractures:

∂ p f r

∂t
− k f r

kpb

1

C frpb A2

∂

∂t

(∇2 p f r
) = χ∇2 p f r , χ = k f r

μ(α22 + βpθpb)
. (5.5.46)

The expressionα22 + βpθpb plays here the role of specific storativity of the porous
block, where most of the water is stored (to be compared with the same definition as
used in flow through ordinary porous media, say, (5.1.50).

If we assume that flow takes place only in the fractures, while (compressibility)
storage is mainly in porous blocks, the governing mass balance is:

βpφpb
∂ p f r

∂t
= k f r

μ
∇2 p f r . (5.5.47)

Warren and Root (1963) employed a model which is essentially the same as
(5.5.44) and (5.5.45), except that they did not neglect the effect of fluid storage in
the fractures, related to ∂ p f r/∂t in (5.5.42). They presented an analytical solution
for flow to a well producing at a constant rate from an infinite, or finite, horizontal
reservoir. Kazemy et al. (1969) solved a similar problem. They solved for the spatial
as well as the temporal variation in pressure. Da Prat et al. (1981) solved the problem
of flow to a well producing at a constant pressure.

Without presenting their actual solution, it may be interesting to summarize the
main features of the Warren and Root (1963) solution:

• Initially, fluid is removed primarily from fractures, because their permeability is
much higher than that of the porous blocks. The case of impervious blocks reduces
to that of a homogeneous single continuum with fracture permeability and the
pressure decline in a well producing at a constant rate is plotted as a straight line
against the logarithm of time.

• Gradually flow at an increasing rate takes place from the porous blocks to the
fractures. This appears as a curve of variable slope on the, mentioned above plot.

• Then equilibrium is reached between the two continua. This appears on the above
mentioned plot as a straight line having the same slope as that describing the
pressure decline during the initial period, but now the line is displaced parallel to
itself. This indicates that the entire fractured porous rock behaves as an equivalent
single homogeneous continuum. The equality of the slopes during the first and
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third stages indicates that the permeability 1n the latter is primarily that of the
fractures.

The solution derived by Warren and Root (1963) requires the knowledge of the
coefficient C frpb appearing in the transfer function. This coefficient depends on the
configuration of the blocks. Warren and Root assumed that C frpb is a constant that
can be determined from tests. Crawford et al. (1976) describe such tests. In a non-
homogeneous material, the magnitude of this coefficient varies in space. However,
Braester (1984) showed that even when this coefficient is constant (as in the case of
uniform regular porous blocks), the pressure decline is insensitive to block size. He,
therefore, questions the usefulness of the solution.

An important conclusion is that flow in a fractured porous rock differs from that
in an ordinary porous medium only during the initial stages of flow and only in
the vicinity of a producing well, After that, the flow regime is identical to that of a
single continuum; it can be described by a single mass balance equation for the fluid
in the void space. We can obtain such equation by regarding the fractured-porous-
rock as a single continuum that has a porosity and a permeability, like an ’ordinary’
porous medium. We can obtain this equation also by writing separate equations for
the fractures and for the porous blocks and adding them. The terms expressing the
exchange of mass between fractures and blocks will then be eliminated.

Usually we assume that the two sub-systems– the fractures and the porous blocks–
are in equilibrium–the same pressure at a point in both systems. There is no net
exchange of fluid between them.

∗ ∗ ∗

In this book, we do not consider modeling of reactive transport, nor energy trans-
port in fractured rock domains. Material on these subjects were presented by Bear in
Bear, Tsang and de Marisly (1993). In this book, among others, Smith and Schwartz
(in Tsang and demarsily 1993, pp. 129–168) discuss solute transport through fracture
networks, Kazemi and Gilman (pp. 267–324) discuss multiphase flow in fractured
petroleum reservoirs, and Wang and Narasimhan (pp. 325–395) discuss unsaturated
flow in fractured media. Bear and Braester (1972) discuss the simultaneous flow of
immiscible liquids in a fractured medium.
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Chapter 6
Modeling Multiphase Mass Transport

In the previous chapter, we have presented models that describe flow of a single fluid
that fills up the entire void space. Here, we consider cases in which the void space
is occupied, simultaneously, by more than one fluid phase. The fluids are referred
to as immiscible fluids. Actually, we mean “practically immiscible fluids”, as all
fluids are miscible in each other to some extent. They occupy disjoint (microscopic)
subdomains that together fill up the entire void space. Because of surface tension
phenomena (Sect. 2.4.1), one of the fluids, called wetting fluid, tends to adhere to
the solid, while the other, called nonwetting fluid, finds itself farther from the solid
surface. This means that a wetting fluid always coats the entire solid’s (microscopic)
surface.

It is important to emphasize that although we are considering here two phases,
with a visible interface at the microscopic level, it is possible that certain chemical
species present in these phases do cross this microscopic interface. This possibility
is discussed in Sect. 7.4.

The term drainage is often used to describe the situation in which a nonwetting
fluid displaces a wetting one. An example is air displacing water.

When a porous medium, initially saturated by a wetting fluid, is drained, a small
amount of that fluid will always remain on the surface of the solid matrix in the form
of a very thin film, with a thickness of some tens of molecules, that adheres to the wall
by strong molecular forces and cannot be easily displaced. Even if initially a pore is
occupied by a nonwetting fluid, a wetting fluid that invades the void space will tend
to spread on the solid surface by imbibition, gradually displacing the nonwetting
fluid.

It is interesting to note that in many chemical reactors, mass of chemical species
is exchanged between a gas in the void space and a (moving) wetting liquid that
covers the solid surfaces.
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One example of two fluid phases that occupy the void space is the unsaturated
zone below ground surface, where the two fluids are water and air. Following a spill
of a non-aqueous contaminant at ground surface, the same zone will be occupied
also by the downward moving contaminant—a third fluid phase. Special attention is
devoted to this zone.

Another example is a petroleum reservoir, where the void space is occupied by
two (water and oil), or three (water, oil and gas) fluid phases. Each of these three
fluids has a different wetting behavior.

The material in this chapter should be of interest to those who deal with the
unsaturated zone in the subsurface, e.g., in connection with irrigation and drainage
in agricultural engineering. It should also be if interest to reservoir engineers, to those
who plan the disposal of CO2 in deep brine-containing geological formations, or to
those who plan the injection of air or natural gas into depleted oil and gas reservoirs.
As will be discussed in AppendixA, many types of chemical reactors involve flow
of two (practically) immiscible fluids (two liquids or a liquid and a gas).

We shall start by presenting flux equations for individual phases, leading to well-
posed mathematical models based on mass balance equations.

6.1 Macroscopic Capillary Pressure

The concept of capillary pressure was introduced in Sect. 2.4.3. There, the discussion
focussed on the pressure jump at the microscopic level, i.e., at a point on the interface
(=meniscus) between two immiscible fluids–a wetting fluid and a non-wetting one–
inside the void space. The Laplace formula (2.4.12) was presented as an expression
for the capillary pressure at that point. This equation expresses a condition to be
satisfied at every point on the interface between the fluids. Here, our interest is in the
capillary pressure at the macroscopic level, i.e., at every point in a porous medium
domain (regarded as a single continuum) in which the void space is occupied by two
or three fluid phases. In fact, we consider the wetting fluid, the non-wetting one and
the porous medium as a whole as three overlapping continua. It seems reasonable
to assume that for the many menisci within an REV at such a point, the average
capillary pressure will depend on some average radius of the menisci, and, hence,
on the saturation (defined in Sect. 1.1.7B) at the macroscopic point.

Following the phenomenological approach, which serves as the basis for this
book, and in view of the definition of capillary pressure at a microscopic point, we
assign to every point within a porous medium domain, the average pressure of each
of the fluids that occupies the void space, in the vicinity of the point. Each of these
fluids is regarded as a continuum that occupies the entire porous medium domain
at a certain saturation. The latter may vary from point to point and with time. The
pressure of a fluid at a point in a porous medium domain is the average over the fluid
present in the REV centered at that point. In analogy to the definition of capillary
pressure at the microscopic level, we then define for every point in a porous medium
domain a macroscopic capillary pressure, pc, as the difference between the average
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pressure of the non-wetting fluid (n) and that of the wetting one (w) present at that
point:

pc(x, t) = pn
n(x, t) − pw

w(x, t). (6.1.1)

Note that pc(x, t) here is at the macroscopic level. It is important to note the kind of
average, namely, the intrinsic phase average, used above. In fact, the above equation
serves as a definition for the macroscopic capillary pressure, and not the average of
the microscopic capillary pressure.

Hassanizadeh and Gray (1990, 1993) employed rational thermodynamic averag-
ing approach to derive a different theory of two-phase flow in porous media. Their
approach is also based on the behavior of the microscopic fluid-fluid and solid-
fluid interfaces. However, as explained in Sect. 1.4.2C, they write microscopic level
E-balance equations also for the (very thin) interphase domains and average these
balances (per unit volume of porous medium) to obtain macro-scale description of
two-phase flow within a surface. By doing so, they obtain also macro-scale quanti-
ties. Thus, in addition to the usual averages of mass density, fluid velocity, etc., of
the fluid phases involved, they also obtain macroscopic averaged variables for inter-
phase surfaces, e.g., average interfacial mass density, interfacial velocity, average
interfacial tension, and specific interfacial area.

In the unsaturated (water-air) zone below ground surface, thewetting fluid is water
and the nonwetting one is air. Soil physicists often assume that the air is at a constant
atmospheric pressure, taken as zero, i.e., pn

n = pa
a = 0. Then:

pc = −pw
w. (6.1.2)

Under such conditions, especially when considering water in the unsaturated zone,
we often introduce the definition of (macroscopic) capillary pressure head, ψ (dims.
L), also called (macroscopic) suction, or tension, or matric suction:

ψ = − pw
w

gρw
w

. (6.1.3)

The symbol hc is also used for ψ. Note that ψ may be employed only when the
(macroscopic) water density, ρw

w, is constant. The same definition is extended to
cases where pa

a �= 0, viz.,

ψ = pa
a − pw

w

gρw
w

= pc

gρw
w

. (6.1.4)

In Soil Science, the unit pF is defined as the logarithm of negative pressure head
in the water, measured in cm. Thus, pF = 4 indicates a suction of 104 cm (of water).

In the remaining part of this chapter, the averaging symbol, (..)α
α
for (..)α, will

be omitted when referring to the average of (..)α. Unless otherwise stated, the term
capillary pressure, and the symbol pc will be used for the difference between the
macroscopic pressures defined by (6.1.1).

http://dx.doi.org/10.1007/978-3-319-72826-1_1
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Fig. 6.1 Oil and water distributions as pendular rings when the solid grains are: a Water-wet, and
b oil-wet

A. Drainage and Imbibition

In (2.4.12), we note the relationship between the (microscopic) capillary pressure
and the radius of the meniscus at a point on the latter. It seems reasonable to assume
that for the many menisci within an REV, the macroscopic capillary pressure will
depend on some average radius of the menisci, and, hence, on the saturation. In what
follows, we shall present the relationship between the (average) capillary pressure
and the saturations of two fluid phases that, together, occupy the void space in a
domain. The unsaturated (air-water) zone, and a petroleum (oil-water) reservoir, will
serve as examples.

A typical example is shown in Fig. 6.1. It shows a number of solid grains and two
fluids that occupy the void space: oil and water. In Fig. 6.1a the solid grains are oil
wet, while Fig. 6.1b shows the case in which the solid grains are water wet. In both
cases, as a result of surface tension phenomenon, the wetting fluid at low saturations
occupies domains in the form of rings around the grain contact points (or grains that
are very close). These liquid domains are called pendular rings. Note that the figure
does not show the thin film of wetting fluid that covers the water-wet solid.

As a second typical example, consider the distribution of air, as an example of
a nonwetting phase, and water, as an example of a wetting phase, within the void
space of an unsaturated zone. At low saturation, water takes the form of pendular
rings at contact points (Fig. 6.2a). The air-water interface has the shape of a saddle.
A number of adjacent pendular rings may coalesce. We observe how water touches
the solid at the contact angle. When the grains are close, but not touching each other,
the water, or, in general, the wetting fluid, takes the form of a ‘bridge’, connecting
close grains.

In a water-air system, at low water saturation, the pendular rings are isolated and
do not form a continuous water phase, except for the very thin film of adsorbed water
on the solid surfaces. Figure6.2b shows a pendular ring between two spheres.

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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Fig. 6.2 Air and water
distributions at various
saturations: a Pendular
saturation, b pendular ring
between two spheres;
c funicular water saturation,
and d insular air saturation
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As water saturation increases, the pendular rings expand and coalesce, until a
continuous water phase is formed. Above this critical saturation, the ‘bulk’ water
forms a continuous phase, and its saturation is called funicular; flow of ‘bulk’ water
is possible (Fig. 6.2c). Both the water and the air phases are continuous. As water
saturation increases, a situation develops in which the air is no longer a continuous
phase; it breaks into individual bubbles (globules, blobs, ganglia) lodged in the larger
pores (Fig. 6.2d). The air is then said to be in a state of insular air saturation. An
air globule can move only if a pressure difference is applied to it by the surrounding
water that is sufficient to squeeze it through the constriction. In the absence of air in
the void space, we have complete water saturation. Similarly, a NAPL ganglion may
be trapped. Residual NAPL, say in the form of a ganglion, will remain entrapped
unless displacement pressure exceeds entry pressure.

The above discussion on a water-air system is, of course, valid for any wetting-
nonwetting pair of fluids.

Depending on the pore size distribution, the above stages, say from pendular to
funicular water, do not have to occur simultaneously across the entire unsaturated
domain. It is possible to envision that at low saturations, part of the water forms a
continuous phase, while the remaining part is still in a pendular state, with a gradual
transition as saturation increases. A similar transition may occur as saturation is
reduced. This may give rise to situations in which part of the water in the porous
medium is mobile, while the other part is immobile.

In the course of time, the volume of air at insular saturation may decrease due to
air solubility in water. Similarly, the volume of water in pendular rings may decrease
with time due to evaporation.

With these definitions, let us now follow the changes in water saturation as an
initially-saturated porous medium sample is gradually drained from its bottom, with
air introduced at its top. Figure6.3 shows several successive stages of drainage (stages
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Fig. 6.3 Gradual drainage
and rewetting in the
unsaturated zone
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1 through 5) and rewetting (stages 6 and 7) in the unsaturated zone. Each state
corresponds to a certain volume of air occupying a certain portion of the void space
at a corresponding saturation. As water drainage progresses, the water-air interface
retreats into channels which support a curvature of still smaller radius (e.g., interface
4). The wetting fluid will continue to retreat until the local interfaces have taken
up positions of equilibrium in channels which are sufficiently narrow to support
interfaces with smaller radius of curvature. Obviously, if all channels are equal and
large, at a given capillary pressure, no equilibrium can be maintained any longer,
and a sudden, almost complete, drainage of water from the entire porous medium
sample will be observed. We use the word ‘almost’, because some water will always
remain as isolated pendular rings and as a film adsorbed to the solid surface. Within
the pendular rings, the pressure is independent of that in the remaining, continuous
water phase in the void space. However, the pressure there is related to pressure in the
gaseous phase (which is a mixture of air and water vapour) by the capillary pressure
relationship. As water evaporates, the volume of water in a pendular ring decreases,
the radius of curvature of themeniscus decreases, and the capillary pressure increases.

At every stage, the largest capillary pressure that can be maintained by a local
interface corresponds to the smallest radius of curvature that can be accommodated
in a pore, or channel, through which the interface is being withdrawn. Therefore,
the smallest radius of curvature occurs in the narrowest pores that correspond to the
prevailing air volume (e.g., interface 3 in Fig. 6.3).

In general, pores have different dimensions and shapes. Therefore, theywill not all
empty at the same capillary pressure. The large pores (or those with larger channels,
or throats of entry) will empty at low capillary pressures, while those with narrow
channels of entry, supporting interfaces of smaller radius of curvature, will empty at
higher capillary pressures.

If, at some point in time, the drainage of the wetting fluid at the bottom of a sample
is stopped, overlooking evaporation and air solubility processes, an equilibrium will
be established, with no further motion of either fluid. The pressure distributionwithin
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each fluid will be hydrostatic, while satisfying the pressure jump condition at every
point of the (microscopic) interfaces. At every such point, the pressure jump will
correspond to the radius of curvature of the interface at that point. In this way,
equilibrium is established between surface tension and gravity.

Let us now reverse the process and begin to refill the pore space with water. In
Fig. 6.3, this is shown as transition from stage 5 to stages 6 and 7. The interfaces’
radii of curvature become progressively larger.

From the above description, it is obvious that at each stage of a drainage process,
the quantity of water remaining in the void space, say, within an REV centered at a
point, takes on a certain (microscopic) configuration. The latter is related to the distri-
bution of the (microscopic) interface geometry within that REV. As a consequence,
the quantity of water remaining in the void space depends on the (macroscopic)
capillary pressure defined by (6.1.1). The capillary pressure increases as the water
saturation decreases, which, in turn, corresponds to a decrease in interfacial surface
area.

Finally, a comment concerning the effect of wettability is appropriate here.
Figure6.3 and the discussion of drainage describe what happens in an air-water
system. However, when we consider two liquids, once a solid comes in contact with
the wetting liquid, even when the adjacent pore is drained of that liquid, the solid
surface will remain covered by a layer, albeit a thin one, of the wetting liquid. Special
means are required to completely remove that layer.

B. Capillary Pressure Relationship

Equation (2.4.12) relates the capillary pressure at a point on the water-air interface
to the mean radius of curvature of the latter. In Fig. 2.13 we note how the capillary
pressure in a tube is related to the radius of curvature of the meniscus, which, in
turn, is related to the radius of the tube. Visualizing a porous medium domain as a
random assembly of tubes of various radii, the above relations can be interpreted as
indicating the fraction of these tubes that will drain at any given capillary pressure
(as long as there is a continuous passage for the drained water to reach the external
boundary of the sample). We may conclude that a strong relationship exists between
the macroscopic capillary pressure and the fraction of the void space occupied by
water (or, in general, by the wetting phase). In other words, the capillary pressure is
a function of the water saturation.

The relationship between the quantity of water present “at a point” in the void
space (within an REV centered at the point), in terms of its saturation, to the pre-
vailing capillary pressure, is recorded as a capillary pressure curve, pc = pc(Sw). In
unsaturated (air-water) flow, the hc(Sw)-curve is called retention curves, as it shows
how much water is retained in the soil by the capillary pressure (Bear et al. 1968, p.
43).

We recall that at every microscopic point on a meniscus, the capillary pressure
depends on the surface tension, γwn , between the wetting and nonwetting fluids. The
concept of surface tension, γwn , introduced in Sect. 2.4.1, depends on the two fluids,
the temperature, T (≡ Tw ≡ Tn), and the concentrations of dissolved species at the
interface. For the sake of simplicity, in this chapter we shall continue to assume that

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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http://dx.doi.org/10.1007/978-3-319-72826-1_2
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Fig. 6.4 Typical capillary pressure curves during drainage of water from the unsaturated zone

for a given pair of fluids, pc = pc(Sw) only. We shall also assume that the porous
medium/soil is water-wet.

Figure6.4 shows two typical examples of capillary pressure head curves, hc =
hc(θw), during and after cessation of drainage of water in an air-water system above
the phreatic surface. Point A in Fig. 6.4 indicates the threshold capillary pressure
head, hcr

c , corresponding to the largest pore size. If we start from a soil sample that
is fully saturated by water, we can produce the capillary head, hcr

c , by draining a
very small quantity of water. Practically, no air will penetrate the sample, until the
critical capillary head is reached. The corresponding pressure, pcr

c , is called the
critical pressure, or threshold pressure. When expressed in terms of pressure, the
critical value is also called the bubbling pressure, pb, or air entry pressure. As the
magnitude of the capillary pressure head, hc, is increased, an initial small reduction
in θw, associated with the retreat of the air-water menisci into the pores at the external
surface of the sample, is observed. Then, at the critical pressure head value hcr

c , air
enters the larger pores and they begin to drain. Recall that the solid is assumed to be
water-wet.

The shape of the capillary pressure curve, and, hence, also the threshold pressure,
depends on the distributions of pore sizes and shapes. The two curves in Fig. 6.4
correspond to well graded and poorly graded granular porous media, respectively.

The concept of threshold pressure, or pressure entry value, is valid for any porous
medium and a pair of immiscible fluids, such that one of them is the wetting fluid,
with respect to that solid, and the other is the non-wetting one. A certain minimal
pressure is always required such that the non-wetting fluid can enter a wetting fluid
saturated porous medium. Similar to air entering a water-saturated zone, a NAPL (=
Non Aqueous Phase Liquid) accumulates on a low permeability layer, e.g., clay, and
form a pool until the latter’s depth will create a pressure in excess of entry pressure.
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The threshold pressure plays an essential role in creating petroleum reservoirs.
When a water-saturated low permeability (i.e., small pores) layer (also referred to as
caprock) overlies a layer fully or partly saturated by oil, i.e., a nonwetting fluid, the
latter cannot penetrate into the low permeability layer unless its pressure is higher
than the pressure entry value of the water saturated caprock. This caprock, although
it has (albeit low) permeability, acts as a barrier to the upward migration of the oil.

The concept of threshold pressure also serves as the basis for theMercury Injection
Capillary Pressure (MICP) technique for evaluating petroleum reservoir lithology,
cap seals (e.g., in the case of CO2 injection in a CCS project), and determining pore
size distribution in a porous medium domain. In this technique, the non-wetting fluid
(mercury) is injected into a porous medium, under a gradual step-wise increase of
pressure. The volumeof injectedmercury is recorded as a function of the accumulated
injected fluid, until the sample is fully saturated by the injected fluid. This pressure-
volume relationship is based on (6.1.5).

Let a fully saturated soil column, Sw = 1, be drained through its bottom until
no water leaves the column. The drainage will never be complete. Some water (=
irreducible water) will always remain in the column (against gravity) in the form of
pendular rings and relatively immobile thin films that cover the microscopic solid-
void surface. If we now refill the column with water (imbibition), displacing the air,
the columnwill never return to full water saturation. Eventually, some air will remain
in the sample in the form of isolated bubbles. A detailed discussion on the drainage
and of a soil sample is presented in the next subsubsection.

The capillary pressure curve is strongly related the pore-size distribution of the
porous medium. The Laplace formula at the macroscopic level, as an analog to
(2.4.12) and (2.4.13), is:

pc ≡ pn − pw = 2

r∗ γwn, or pc ≡ pn − pw = 2

R
γwn cos θwn. (6.1.5)

Here r∗ is the mean radius of curvature of the microscopic interfaces between the
wetting and nonwetting fluids (in our case, water and air) inside an REV, and θwn is
the contact angle. We usually write:

pc = pc(Sw). (6.1.6)

For nonisothermal situations and with the effects of dissolved matter, cγ
w, we have:

γwn = γwn(T, cγ
w), leading to pc = pc(Sw, T, cγ

w). (6.1.7)

Note that if we assume equilibrium and no gravity effects, all air-watermenisci at a
(macroscopic) point, i.e., within the REV centered at that point, must have exactly the
same radius of curvature. Under such conditions, the microscopic value of capillary
pressure and its macroscopic counterpart become identical. Recall that in (2.4.13)
we have replaced (the local) r∗ by R/ cos θwn , with R regarded as a measure of the
size of the pores occupied by the wetting fluid. Also, with the above discussion,

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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we may conclude that r∗ = r∗(Sw) and R = R(Sw). We shall later see that because
the above functional relationships are not unique, the capillary pressure relationship,
pc = pc(Sw), exhibits the phenomenon of hysteresis.

Two dimensionless numbers may be mentioned in connection with entrapment
of a non-wetting (nw) fluid ganglion by a surrounding wetting (w) fluid moving at a
velocity Vw:

Often, it is useful to use (for an isotropic domain) the dimensionless capillary
number Caα, when considering the flow of an α-phase in two-phase flow. For exam-
ple, for gas flow in an oil-gas system:

Cag = μgqg

γog
. (6.1.8)

It expresses the ratio between the viscous force, or drag, tending to move the gas, and
the surface tension, or capillary forces, tending to entrap it. The capillary number is
small when capillary forces dominate the flow processes

Some authors define the capillary number as:

Can = kα∇ pn

γnw

. (6.1.9)

with Can < 10−5 often mentioned as the range for which the flow is capillarity
dominated.

It is interesting to mention here the work on the relationships between capillary
pressure, pc, and relative permeability, krw and interfacial areas published by Joekar-
Niasar et al. (2008), following the work of Hassanizadeh and Gray (1990). They
conducted experiments on two pore-network models: one, composed of a network
of interconnected tubes, that has only pore throats, while the other, of tubes and
pores, that has both pore bodies and pore throats. They concluded that the latter kind
of network model, namely, the one composed of pore throats and pore bodies, is
required to produce hysteresis. Their main conclusion was that the capillary pressure
and relative permeability, say krw, depend not only on saturation, say Sw, but also
on the relevant specific interfacial area (= surface area per unit volume of porous
medium), aαβ , αβ = ws, ns, wn, of the w-s, n-s, and w-n microscopic interfaces.
Thus, they showed that the w − n specific interfacial area may be considered as an
essential variable in the description of multiphase flow. They have also investigated
the effects of the specific interfacial areas on hysteresis. Similar results were obtained
by Reeves and Celia (1996). They have also investigated the effect of aw−n .

For a given rigid porous medium, neglecting any effect of fluid composition on
the structure of the pores, the effect of the pore- or grain-size distribution on capillary
pressure curves is the same, regardless of the nature of the two fluids. The effect of
fluid properties may be stated by the general expression:

Sw(pc

∣
∣
fluids n1,w1

) = Sw(β12 pc

∣
∣
fluids n2,w2

), (6.1.10)
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where:

β12 = γn1,w1 cos θn1,w1

γn2,w2 cos θn2,w2

(6.1.11)

is a scaling factor, and {n1, w1} and {n2, w2} represent pairs of nonwetting and
wetting fluids. When the contact angles remain unchanged, then:

β12 = γn1,w1

γn2,w2

. (6.1.12)

The two immiscible fluids may be different, or theymay be the same two fluids under
different temperature and slightly different chemical compositions. Therefore, using
fluids n1 and w1 as reference fluids, we can use the above relationships to obtain the
capillary pressure curve for any other pair of immiscible fluids.

Let us add a few comments on the concept of specific yield introduced in
Sect. 5.3.1C. This concept, defined as the volume of water added to or released
from storage in a phreatic aquifer per unit decline or rise of the phreatic surface, is
one used mainly when hydrologists consider essentially horizontal flow in a phreatic
aquifer.

After a prolonged period of timewithout accretion, themoisture distribution above
a phreatic surface takes the form of the capillary pressure curve that corresponds to
the relevant soil. Figure6.5a shows two such steady-statemoisture distribution curves
that correspond to two water table depths: at time t ′ and at time t ′′, with the latter
water table lower by �h. When the initial and final water tables are sufficiently deep
below ground surface, and sufficient time has elapsed, so that a new equilibrium
moisture distribution has been reached, the curves θ

′
w and θ

′′
w are identical in shape,

with one being shifted vertically with respect to the other. The volume of water
drained is indicated by the shaded area in the figure. Then, per unit horizontal area,
as in the definition of Sy in Sect. 5.3.1C,

(a) (b)

Fig. 6.5 Steady state moisture distribution above a: a Deep water table, b shallow water table

http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
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Sy(d̄∞, t) = volume of water drained

�h

= 1

�h

[

φ(�h) +
∫ z′=d ′

z′=0
θ

′
w(z′, t)dz −

∫ z′=d
′′

z′=0
θ

′′
w(z

′′
, t)dz

]

. (6.1.13)

When the water table is at a shallow depth below ground surface (Fig. 6.5b), the
specific yield, θy , is a function of both water table depths, at t ′ and at t ′′. The same
is true when the soil is inhomogeneous (e.g., layered).

When changes in the water table elevations are slow, the corresponding changes in
moisture distribution have sufficient time to adjust continuously, and the lag between
the lowering of the water table and the total volume of water drained practically
vanishes.

C. Experimental and Analytical Expressions for pc = pc(Sw)

The capillary pressure relationship, pc = pc(Sw), is, usually, obtained by conducting
laboratory experiments in which measured static saturation-capillary pressure data
are obtained for soil cores.A typical experimental apparatus for determining capillary
pressure in a gas-liquid (= the wetting fluid) system, is shown, schematically, in
Fig. 6.6. The porous medium sample is placed in a cell on a ‘capillary barrier’, or
‘porous plate’, which itself is a porous material, ceramic, sintered metal, or fritted
glass. The grain (or pore) size of this barrier is selected such that it is sufficiently
small to prevent the gas from invading the sample under the capillary pressures to
be applied during the course of the experiment. To achieve this goal, the gas entry
pressure of the porous plate should exceed the range of capillary pressures that are
planned for the experiment. However, if the pores in the barrier are too small, a long
time will be required for equilibrium to be reached at every stage of the experiment.
The sample (= core) is initially saturated with the liquid, e.g., water, with a zero

Fig. 6.6 Apparatus for
determining the capillary
pressure curve of a core

Stopcock

( w)

plate
L

pg2 pg1

Soil sample

γ
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capillary head maintained by adjusting the liquid level in the tube connected to the
bottom of the cell. The top of the sample is in contact with gas at a known pressure.
The capillary pressure in the sample is increased incrementally, by producing a
negative (gauge) liquid pressure at the bottom of the core (e.g., by lowering the
tube), or by increasing the gas pressure in contact with the top of the core. Either
way, the capillary pressure is increased and liquid will leave the core through the
capillary barrier. After equilibrium is attained, following each incremental change in
the capillary pressure, the volume of liquid outflow is measured and the new liquid
saturation is computed. This procedure is repeated step-wise to generate points on
the drainage capillary pressure curve.

Figure6.7 shows results of a typical drainage-imbibition experiment with hystere-
sis (to be discussed in Sect. 6.1E below). In this experiment, the liquid (= wetting
fluid) can be removed by drainage as long as the remaining liquid, at least in part,
constitutes a continuous phase, i.e., above the irreducible wetting liquid saturation,
Swr . In the case of water, this saturation is also referred to as connate water satura-
tion. When the liquid reaches Swr , it becomes discontinuous everywhere, in the form
of isolated pendular rings, ganglia, or very thin liquid films on the solid surface in
pores from which most of the liquid has been evacuated. Under such conditions, the
liquid’s effective permeability vanishes, and further drainage by liquid flow cannot be
produced by a pressure gradient and gravity. The above statement is not completely
accurate as some water flow may take place even under saturations below Swr in the
form of film flow (see Dullien, 1992). The experiment is terminated when the air
entry value (see Sect. 6.1B) of the porous plate is approached.

Fig. 6.7 Drainage and
imbibition capillary pressure
curves

0 Swr
Sw

1.0 0Sa Sar

Swdr

Main
imbibition
curve

1.0

Main drainage curve

pc

0
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Fig. 6.8 Hysteresis in a
capillary pressure-head curve

An imbibition pc-curve is obtained by reversing the process. We note that once
a sample saturated by a wetting phase has been drained, it can never return to full
saturation (by flow); part of the void space will always be occupied by some residual
non-wetting fluid.

Figure6.8 shows the relationship between capillary pressure head,
hc (= pc/ρwg), and wetting fluid (e.g., water) saturation, hc = hc(Sw), as a soil
sample, initially at irreducible wetting fluid saturation, Swr , is being wette4d. It also
shows how a sample, initially at the residual non-wetting fluid saturation, Snr , is
being wetted. Note that such wetting cannot reach full saturation.

Consider a fully saturated sample, Sw = 1. As the sample is being drained, a non-
wetting fluid (e.g., air) enters the void space. we move along the boundary drying
curve. We can drain the sample of the wetting fluid until we reach a saturation,
Sw = Swr , called irreducible wetting fluid saturation, at which the wetting fluid
is in the form of isolated menisci, and ganglia. As such, it has no permeability
and drainage cannot be continued. We note the asymptotic shape of the curve as it
approaches Sw = Swr . At this stage, the wetting fluid can further be removed only
by evaporation.

We now reverse direction and start wetting the sample (= imbibition), i.e., increas-
ing Sw. We start from a sample at Swr and wet it. As shown on Fig. 6.8, we move
now along the boundary wetting curve. However, once a saturated sample has been
drained, and this means that a nonwetting fluid has entered the void space, the sample
saturation because of the phenomenon of residual nonwetting saturation, Sn = Snr .
At this point Sw = 1 − Snr . It is called (= entrapped air when air is the nonwetting
phase); it cannot be removed by flow.

For a given capillary pressure, a higher wetting fluid saturation is obtained during
drainage than imbibition. If. during wetting or drying, the direction is reversed, the
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change in hc = hc(Sw) follows wetting or drying scanning curves. The scanning
curves are shown as dashed lines in the figure. In this way, the macroscopic hc =
hc(Sw)-relationship, described by the capillary pressure head curve, depends also on
the wetting-drying history of the particular sample under consideration.

Over the years, methods have also been developed for estimating soil hydraulic
properties from grain size distribution data. Such methods are appealing, since grain
size distribution data can more easily be obtained than hydraulic data. Somemethods
for estimating parameters appearing in saturation-capillary pressuremodels are based
on statistical analyses of measured data (e.g., McCuen et al. 1981; Campbell 1985;
Rauls and Brakensiek 1985; Carsel and Parrish 1988), while others employ quasi-
physical models (e.g., Arya and Paris 1981; Mishra et al. 1989).

Various authors have proposed analytical expressions for the general shape of
capillary pressure curves. Each of the proposed expressions involves a number of
coefficients that must be determined by solving the inverse problem, i.e., by fitting
the analytical expression to measured experimental data.

• Brooks and Corey (1964, 1966) proposed the relationship for an air-water (w)
system:

Swe =
⎧

⎨

⎩

(
pb

pc

)λ

for pc ≥ pb,

1 for pc < pb,

(6.1.14)

where:

Swe = Sw − Swr

1.0 − Swr
, (6.1.15)

is called the effective, or reducedwetting fluid saturation, In (6.1.14), λ is called pore
size distribution index, and pb is the bubbling pressure. This is, approximately, the
minimum value of pc on a drainage capillary pressure curve at which a continuous
air phase exists in the void space. The coefficients λ, Swr and Snr (= residual non-
wetting fluid saturation; see Fig. 6.7 for a ≡ n) are fitting parameters whose values
may vary, depending on the conditions under which the saturation-capillary pressure
data are measured. The 1.0 in the denominator of (6.1.15), is, sometimes, replaced
by the maximum wetting fluid saturation, 1 − Snr , where Snr denoting the residual
nonwetting fluid saturation.

• Brutsaert (1966), also for an air-water system, proposed the relationship

Swe =
⎧

⎨

⎩

1

1 + (Aψ)B for ψ ≥ 0,

1 for ψ < 0,
(6.1.16)

where A and B are positive curve fitting coefficients.

• Vauclin et al. (1979) introduced the relationship
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Swe =
⎧

⎨

⎩

1

1 + (A ln ψ)B for ψ ≥ 1 cm,

1 for ψ < 1 cm,

(6.1.17)

where A and B are positive curve fitting coefficients.

• van Genuchten (1980), for unsaturated flow, proposed the relationship:

S′
we ≡ Sw − Swr

1 − Sar − Swr
=

⎧

⎨

⎩

[
1

1 + (Aψ)B

]C

for ψ ≥ 0,

1 for ψ < 0,
(6.1.18)

where A, B and C (= 1 − 1/B) are positive curve fitting coefficients.

• van Genuchten (1980), for the more general case of two-phase flow, proposed:

S
′′
we ≡ Sw − Sr

Sw,max − Sr
=

[

1 +
(

pc

p′
c

)n]−m

, or pc = p′
c

(
1

(S ′′
we)

1/m
− 1

)1/n

,

(6.1.19)

where Sw,max denotes the maximum saturation, not necessarily 1.0, and p′
c, n and m

are porous medium coefficients that have to be determined experimentally.
The Brooks and Corey capillary expression (6.1.14) is a limiting form of the van

Genuchten relation for pc/p′
c 	 1.

D. Leverett Function

Using dimensional analysis and a semi-empirical approach, Leverett (1941) intro-
duced the dimensionless function L = L(Sw), called the Leverett function for an
isotropic porous medium:

L(Sw) = pc

γ

√

k

φ
, pc = pc(Sw), k = k(Sw), (6.1.20)

inwhich the quotient
√

k/φ represents the hydraulic radius of the void space. Leverett
showed that the curves L = L(Sw) of a number of unconsolidated sands reduce to a
common curve.

E. Hysteresis in Capillary Pressure

The concept of capillary pressure as the difference pc = pn − pw is motivated by the
pore-scale interfacial pressure difference between the two fluids. However, strictly,
the Laplace formula (2.4.12) is valid only for a spherical meniscus. Marle (1981)
noted that this formula is strictly valid for a conical capillary in which the interface is
spherical. Under such conditions, we obtain a unique relationship between capillary
pressure and saturation.However, in a real porousmedium, such relationship does not
really exist due to the complexity of the shape of the channels constituting the void
space. A single length scale characterizing the void space can no more be identified

http://dx.doi.org/10.1007/978-3-319-72826-1_2


6.1 Macroscopic Capillary Pressure 383

for a given porous medium. Capillary hysteresis, to be discussed below, as well as the
void space heterogeneity lead to hysteresis effects in the capillary pressure-saturation
relationship. Furthermore, the Laplace formula does not take into account dynamic
effects, i.e., dynamic phenomena that occur when changes in saturation occur when
the fluids are in motion (see, for example, Stauffer 1978; Das and Mizrahei 2012;
Cueto-Felgueroso and Juanes 2012. Thus, several authors describe capillary pressure
under dynamic conditions by expressions of the kind (e.g., Dahle et al. 2005)

pn − pw = pc(Sw) + F
(

Sw,
∂Sw

∂t

)

, (6.1.21)

where pc(Sw) is any of the published formula, without the dynamic effect, while F
denotes a functional relationship that introduces the latter.

A dynamic capillarity theory was developed by Hassanizadeh and Gray (1990)
using a thermodynamic approach. A review of dynamic capillary effects can be found
in Hassanizadeh et al. (2002)

The dependence of the capillary pressure curve on the history of drainage and
wetting of a sample, i.e., at a point in a porous medium domain, is an observed
phenomenon called hysteresis. It is attributed to a number of causes. One, called the
ink-bottle effect, results from the shape of the pore space, with interchanging narrow
(throats) and wide passages (see Bear and Cheng 2010, p. 280). During drainage
and rewetting, menisci having the same radius of curvature occur at different pores,
thus yielding the same capillary pressure for different wetting fluid saturations. As
water is drained, the radius of curvature of the w − n meniscus diminishes. At the
narrowest part of the throat, the curvature of themeniscus cannot continue to increase
gradually; instead, the meniscus abruptly retreats to a nearby throat. This sudden
change is called Haines jump (Haines 1930). A similar phenomenon occurs during
wetting. Altogether, the drying curve depends on the narrow throats (small radii of
meniscus curvature), while wetting depends on the maximum diameter of the large
pores. The hysteresis effect is more significant in coarse-textured porous medium,
in the low-suction range, where pores may empty at an appreciably higher suction
than that at which they fill-up (Hillel 1980).

Another effect, called the raindrop effect (seeBear andCheng 2010, p. 280), is due
to the fact that the contact angle is larger at the advancing trace of a w − n interface
on a solid than at the receding one, because of impurities, possible variability in the
minerals that compose the surface, solid roughness, and gravity. Also, when a fluid
is polar, as is water, the contact angle depends on whether the solid surface has been
previously wetted by the fluid, or not.

A third cause for hysteresis is the entrapment of the non-wetting fluid, as an
initially wetting fluid saturated sample is drained and then rewetted. Also, during
imbibition, the displacing wetting fluid is continuous, while during drainage (of the
wetting fluid) part of the wetting fluid may be by-passed by the non-wetting one, and
become immobile. Altogether, we observe a higher capillary pressure after drainage
than after imbibition.
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Finally, consolidation, swelling, and shrinkage of the solidmatrix as it is dried and
wetted may also contribute to hysteresis in the capillary pressure curve, especially
in fine, unconsolidated porous media.

Theoretical analyses of hysteresis in the air-water capillary pressure curve have
been presented by Poulovassilis (1962), Topp (1969, 1971), Mualem (1974, 1976,
1984), Kool and Parker (1987), Luckner et al. (1989), and others. Hysteresis in oil-
water and gas-oil systems have also been studied by numerous researchers (e.g., Naar
and Henderson 1961; Snell 1962; Land 1968; Schneider and Owens 1970; Parker
and Lenhard 1987).

Nowadays, the most commonly used theory that explains and describes soil water
hysteresis is the independent domain theory (Poulovassilis 1962). Mualem (1973)
suggested a similarity hypothesis, according to which the bivariate domain den-
sity distribution function is represented as a product of two univariate distribution
functions. The resulting model significantly reduced the amount of data required
for calibration. In subsequent years, Mualem (1974, 1977) introduced the universal
hysteresis model based on a non-dimensional formulation (Mualem, 1979). Exten-
sion of the domain theory to the prediction of hysteresis in unsaturated hydraulic
conductivity has been successfully initiated by Mualem (1976).

Joekar-Niasar et al. (2013) summarize a number of studies on trapping and hys-
teresis in two-phase flow in porous media and use a pore-network model to study
how the fluids in the (simulated) pore-space. They investigated how the topology
of the fluids changes during drainage and imbibition including first, main and scan-
ning capillary curves. They found a strong hysteretic behavior in the relationship
between disconnected nonwetting fluid saturation and the wetting fluid saturation in
a water-wet medium. They noted how the invading nonwetting phase coalescence
with the existing disconnected nonwetting phase and how this behavior depends crit-
ically on the presence (or lack) of a connected nonwetting phase at the beginning
of the drainage process as well as on the pore geometry. This concluded that this
dependence involves a mechanism that they called reversible corner filling.

A method for obtaining up to two scanning drainage and imbibition curves is
described by Finsterle et al. (1998) and Doughty (2007, 2013).

6.2 Advective Fluxes in Multiple Phases

Basically, like Darcy’s law for a single fluid phase that occupies the entire void space,
the advective flux of a phase that occupies only part of the void space in multiphase
flow is also a simplified version of the momentum balance equation for that phase.
Thus, the starting point is the momentum balance equation of the considered phase.
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6.2.1 Two Fluid Phases

Let us return to Figs. 6.1, 6.2 and 6.3. In all these figureswe note the interface between
a wetting fluid and a nonwetting one, as well as well as on interface between the
wetting fluid and the solid. In principle, there is no interface between the nonwetting
fluid and the solid. In reality the wetting fluid that separates the solid from the
nonwetting fluid is very thin and for the sake of simplicity its effects are neglected.
Thus, the total surface surrounding the wetting fluid is made up of (1) a wetting
fluid-solid part (disregarding the presence of the thin film) and (2) a wetting fluid-
nonwetting fluid one. Similarly, the nonwetting fluid is in contact with both the solid
(across the film) and the wetting fluid, through relevant portions of the total surface
surrounding it.

Themomentum that can be exchanged between the twofluids across their common
interphase boundary must be taken into account when writing the macroscopic (=
averaged) momentum balance equation for each of the fluids. Thus, for the wetting
fluid, the (macroscopic) momentum transfer at a point in the porous medium domain
must be expressed by two terms: one related to the surface (Sws) between the wetting
fluid and the solid, and the other related to the surface (Swn) between the wetting fluid
and the nonwetting one. In this way, two expressions are required in order to express
interphase momentum transfer: one for each of these surfaces, in terms of averaged
velocities, viscosities and coefficients that represent the configuration of the phase
within the REV. This conceptual model serves as a basis for the derivation of flux
expressions that will exhibit coupling between the two adjacent immiscible fluids,
due to momentum transfer across the microscopic interfaces that separate them. As
a consequence, the pressure gradient in one fluid will also cause movement in the
other fluid.

As a starting point, we consider the macroscopic momentum balance equation for
single phase flow, (3.6.4), repeated here for convenience as:

φρ
DV
Dt

= ∇·(φμ∇V) − φ(∇ p + ρg∇z) − φ
μR

�2
· (V − Vs). (6.2.1)

We recall that the last term on the r.h.s. of the above equation expresses momentum
transfer from the solid to the fluid, per unit volume of porous medium per unit time,
as presented and discussed in Sect. 3.5.1.

Following this phenomenological approach, we assume that the same momentum
balance equation applies also to the wetting phase that occupies only part of the void
space, at the volumetric fraction θw (≡ φSw), except that we have to take into account
momentum transfer across both w-n and w − s interfaces. As usual, we use f M

s→α to
denote themomentum transfer from the solid to theα-fluid, per unit volume of porous
medium. We shall use the characteristic length � both for representing the length
characterizing the hydraulic radius of a phase at the point (e.g.,�αs = Voα/Sαs) and
the characteristic distance from the interior of the α-phase to the solid surface. Thus:

http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_3
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f M
s→α = Rα,sμα · Vs − Vα

�αs

Sαs

Vo

Voα

Voα
= θαRα,sμα · Vs − Vα

�2
αs

,

θα = Voα

Vo
, �αs = Voα

Sαs
,

where the second rank symmetric tensor R is a coefficient of proportionality.
Accordingly, for the wetting phase, we write the momentum balance equation:

θwρw

DVw

Dt
= ∇·(θwμw∇Vw) − θw(∇ pw + ρwg∇z)

− θw

μwnRw,n

�2
wn

(Vw − Vn) − θw

μwRw,s

�2
ws

(Vw − Vs), (6.2.2)

and for the non-wetting phase:

θnρn
DVn

Dt
= ∇·θnμn∇Vn − θn(∇ pn + ρng∇z)

− θn
μnwRn,w

�2
nw

(Vn − Vw) − θn
μnRn,s

�2
ns

(Vn − Vs). (6.2.3)

Note that each term in the above momentum balance equation expresses added
momentum per unit volume of fluid per unit time. We have introduced the fluid
viscosities μnw and μwn (assumed equal) for the thin fluid domains on both sided of
the (microscopic) n − w interfaces.

Again, in the above momentum balance equations, �ws , and �ns denote charac-
teristic distances from the interior of the w-phase and that of the n-phase, to the Sws

and Sns surfaces, respectively, and �nw(≡ �wn) denotes a length characterizing the
distance between the interiors of the two phases. TheRα,s andRα,β symbols denote
second rank symmetric tensors. Later, we shall suggest how they are related to the
tortuosities of the α and β fluids, each occupying a portion of the void-space. Both
the R-coefficients and the �-lengths are functions of the fluids’ saturations. Some
introductory remarks about tensors are presented in Sect. 9.1.

When considering an REV, there exist two additional surfaces on the external
boundary of an REV across which momentum is transmitted by advection: a wetting
fluid-wettingfluid surface, andnonwettingfluid-nonwettingfluid one.Thepossibility
that a solid surface will coincide with the boundary of an REV is assumed negligible.

Neglecting inertial effects and the momentum flux resulting from ∇V, we obtain
for the wetting phase,

θw(∇ pw + ρwg∇z) = −θw

μwnRwn

�2
wn

(Vw − Vn) − θw

μwRws

�2
ws

(Vw − Vs), (6.2.4)

and for the non-wetting phase,

http://dx.doi.org/10.1007/978-3-319-72826-1_9
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θn(∇ pn + ρng∇z) = −θn
μnwRnw

�2
nw

(Vn − Vw) − θn
μnRns

�2
ns

(Vn − Vs). (6.2.5)

At this point, let us simplify the discussion by changing the notation:

kws = θw�2
wsR

T

ws . (6.2.6)

Recall that the μwn (= μnw) denotes the fluids’ viscosity in the vicinity of the w-n
interface, on both sides of the latter.

We can now rewrite the simplified momentum balance equation for the wetting
phase in the form:

θw(∇ pw + ρwg∇z) = −θw

μwn

kwn
(Vw − Vn) − θw

μw

kws
(Vw − Vs), (6.2.7)

and for the non-wetting phase,

θn(∇ pn + ρng∇z) = −θn
μnw

knw

(Vn − Vw) − θn
μn

kns
(Vn − Vs). (6.2.8)

Dividing (6.2.7) and (6.2.8) by the θ’s, with

∇Fw = ∇ pw + ρwg∇z, ∇Fn = ∇ pn + ρng∇z,

x1 = Vw − Vn, x2 = Vw − Vs; x3 = Vn − Vs,with x3 = −x1 + x2,

Awn = μwn/kwn, Bws = μw/kws, Anw = μnw/knw, Bns = μn/kns,

we obtain:

− ∇Fw = Awn x1 + Bws x2.

−∇Fn = −(Anw + Bns)x1 + Bns x2. (6.2.9)

By multiplying 1st equation by (Anw + Bns) and 2nd equation by Awn , we obtain,

− (Anw + Bns)∇Fw = Awn(Anw + Bns)x1 + (Anw + Bns)Bws x2,

−Awn∇Fn = −(Anw + Bns)Awn x1 + Bns Awn x2. (6.2.10)

By adding the two equations, we obtain

−(Anw + Bns)∇Fw − Awn∇Fn = x2[(Anw + Bns)Bws + Bns Awn],

or

x2 = − (Anw + Bns)

(Anw + Bns)Bws + Bns Awn
∇Fw − Awn

(Anw + Bns)Bws + Bns Awn
∇Fn.
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Similarly,

x1 = − Bns

Awn Bns + (Anw + Bns)Bws
∇Fw − Bws

(Anw + Bns)Bws − Aws Bns
∇Fn.

One may express this viscous coupling, say between the flux of a wetting phase
(w) and of a nonwetting one (n), both with respect to the solid, in the form:

qrw = −kw
w(Sw)

μw

·(∇ pw + ρwg∇z) − kn
w(Sn)

μn
·(∇ pn + ρng∇z), (6.2.11)

qrn = −kw
n (Sw)

μw

·(∇ pw + ρwg∇z) − kn
n(Sn)

μn
·(∇ pn + ρng∇z). (6.2.12)

Recall that the subscript r above means “relative to the solid”.
In this way, at least in principle, the motion in each of the two phases is coupled

to that of the other; a pressure gradient in one fluid produces flow also in the other
fluid.

We note the coupling (between the two phases) coefficients in the above equations.
Coupled two-phase flow in homogeneous, isotropic porous media has been studied
by many authors (e.g., Rose 1972, 1988; Sanchez-Palencia 1980; Whitaker 1986a;
Kalaydjian 1987; Auriault et al. 1989). The significance of this coupling has been
also extensively debated in the literature, starting in the 1950s (e.g., Yuster 1951;
Odeh 1959; Bentsen and Manai 1993; Goode and Ramakrishnan 1993; Lasseux
et al. 1996). Rose (1972, 1988, 1990, 1997) and Rose and Rose (2005) suggested a
relationship between the two cross-permeability coefficients. Avraam and Payatakes
(1995) discussed this topic and reported on experimental investigations. Unfortu-
nately, relatively few experiments (e.g., Liang and Lohrenz 1994; Dullien and Dong
1996) have been conducted to determine the significance of coupling that takes place
in multiphase flow due to momentum transfer across fluid-fluid interfaces.

Rose (1972) attributed the coupling to Onsager’s theory of coupled processes
(Sect. 2.6), and hence suggesting that K n

w/μw = K w
n /μn , although the macroscopic-

level coupling suggested here is not due to molecular-level phenomena, but to
macroscopic-level momentum transfer across interphase boundaries.

In case of temperature and concentration gradients, Bear and Bachmat (1991, p.
186) show that an additional term appears in each of the above equations, due to
gradients in (averaged) surface tension between the two fluid phases.

Byneglecting themomentumexchange across the (microscopic)w − n interfaces,
the resulting averaged momentum balance equation, written separately for each fluid
phase, is identical in form to that written for that phase when it occupies the entire
void space. However, since the shape and size of the solid-fluid surfaces and of the
volumes occupied by these phases within an REV vary with the saturation of the
considered phase, the resistance to the flow of each fluid phase depends also on its
saturation. As presented earlier, the permeability of a fluid that occupies the entire
void space of a porous medium depends on (1) certain geometric features of the
fluid-solid interface, (2) a length (hydraulic radius) that characterizes the distance

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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between the interior of the volume occupied by the considered phase (within the
REV) and the fluid-solid interface, and (3) the porosity. When a fluid occupies only
part of the void space, the geometrical features, e.g., the tortuosity, become functions
of the fluid’s saturation, while the porosity is replaced by the volumetric fraction of
the void space occupied by the fluid. The conclusion is that the permeability of a
considered fluid phase is a function of the saturation of that fluid.

With the above considerations in mind, we can now write the macroscopic equa-
tions that describe the simultaneousmotion of two (assumed) immiscible fluids (w, n)
each occupying part of the void space, in the form:

qrw = −kw(Sw)

μw

· (∇ pw + ρwg∇z), qrw ≡ θn (Vw − Vs) , (6.2.13)

qrn = −kn(Sn)

μn
· (∇ pn + ρng∇z), qrn ≡ θn (Vn − Vs) , (6.2.14)

withVs denoting the velocity of the (possibly moving) solid, kw and kn denoting the
effective permeability tensors, and Sw and Sn denoting the respectivefluid saturations.
Note that the above equations arewritten for the general case of an anisotropic porous
medium.

It is interesting to note that already in the early 30s of the 20th century,Wyckoff and
Botset (1936) andMuskat (1946) have also proposed the use (6.2.13) and (6.2.14), as
a generalization of Darcy’s law for single phase flow, in connection with two phase
flow (oil-water) in reservoir engineering.

We recall that in two phase flow, the pressures pw and pn are not independent of
each other, as the difference between them is the capillary pressure which, in turn,
depends on the saturations of the two phases.

When the density of the two fluids remains constant, the above flux equations can
be expressed in terms of the piezometric head, hα = z + pα/ραg, α = w, n, and in
terms of the hydraulic conductivity, Kα = kαραg/μα, instead of the permeability, kα.

In modeling flow and transport in the unsaturated zone (= air-water system),
soil physicists often, but not always, assume that the air in the unsaturated zone is
stationary (actually, the correct assumption is that pa ≈ const.), and use the concept
of suction head, defined by (6.1.3), as the variable. They express the water flux by
Darcy’s law in terms of ψw,

qrw = Kw(ψw) · ∇(ψw − z), (6.2.15)

where we recall that ρw = const., and the (mass) balance equation, without the
source term, in the form or Richard’s equation:

∂θw

∂t
= ∇·[Dw(θw) · ∇θw] + ∇·[Kw(θw) · ∇z]. (6.2.16)
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If the effect of gravity, represented by the second term on the right-hand side of
(6.2.16), is neglected, or the flow is horizontal, (6.2.16) reduces to

∂θw

∂t
= ∇·[Dw(θw) · ∇θw], (6.2.17)

known as moisture diffusivity equation.
When the porousmedium is deformable,∂φ/∂t �= 0, and the flow equation should

be written in terms of saturation as a state variable.
The (tensor) coefficients kw and kn denote the effective permeabilities to the

wetting and to the nonwetting phases, respectively, discussed in Sect. 6.2.2. Equa-
tions (6.2.13) and (6.2.14) are written for the general case of an anisotropic porous
medium and for fluid densities that may depend on pressure, concentration of dis-
solved components, and temperature. These two equations are not independent of
each other. They are linked by the condition Sw + Sn = 1, and by the relationship
between the saturation and the (macroscopic) capillary pressure, pc = pc(Sw), dis-
cussed in Sect. 6.1.

6.2.2 Effective Permeability

The (macroscopic) coefficients kw and kn are properties of the (microscopic) geo-
metrical configuration of the portion of void space occupied by each fluid phase.
Since, for each phase, this configuration depends on the phase saturation, the effec-
tive permeability also depends on phase saturation, i.e.,

kw = kw(Sw) and kn = kn(Sn).

For an anisotropic porous medium, each of these effective permeabilities is a second
rank symmetric tensor; otherwise, they are scalars. In component notation, we write
kwi j (Sw) and kni j (Sn) to emphasize that each of the i j-components, of either kw,
or kn , may have a different functional relationship to saturation (Bear and Verruijt
1987; Stephens and Heermann 1988; McCord et al. 1991; and Friedman and Seaton
1996).

For an isotropic porous medium, a relative permeability to the w-fluid and to the
n-fluid may be defined by (Bear and Verruijt 1987)

krw(Sw) = kw(Sw)

ksat
and krn(Sn) = kn(Sn)

ksat
, (6.2.18)

where ksat is the permeability at full saturation (Sw = 1). The relative permeability is
a dimensionless number in the range 0 ≤ krw ≤ 1, and 0 ≤ krn ≤ 1. It is a convenient
and commonly used concept when considering the permeability in multiphase flow,
mainly in reservoir engineering. There, the concept is often applied also to anisotropic
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Fig. 6.9 Typical relative permeability curves: a Without hysteresis, and b with hysteresis

porous media, assuming, implicitly, that the same value of relative permeability is
applicable to all components of the effective permeability tensor.

Figure6.9 shows typical relative permeability curves for the unsaturated zone,
where water and air are the wetting and the non-wetting phases, respectively. Con-
sider the unsaturated zone below ground surface. Starting the drainage from a water
saturated soil sample, we note a rapid decline in krw as the larger pores are drained
first, and flow of water takes place through the smaller pores. This means that a
smaller cross-sectional area is available for flow. This trend is expressed by (4.3.9).
When thewater saturation is below the irreducible water saturation Swr (Sect. 6.1D),
the water remaining in the soil is in the form of isolated pendular rings (Sect. 6.1A),
and very thin films that cover the solid surface in the larger pores from which water
has already been drained. In this form, the water constitutes a discontinuous, immo-
bile phase that cannot transmit pressure. Thus, krw = 0 for Sw ≤ Swr . In reality,
given enough time, the wetting phase will continue to drain by gravity in the form of
films, reducing the saturation to below the irreducible saturation (Dullien 1992). For
Sw = 1, temporarily overlooking themeaning of the dashed portion of the krw-curve,
we have krw = 1, i.e., krw(Sw)

∣
∣

Sw=1 ≡ ksat.
When a nonwetting fluid is being displaced by a wetting one to below a critical

saturation value, Snr , referred to as the residual nonwetting fluid saturation, the latter
breaks down into isolated blobs, or globules. Usually, these remain immobile under
the pressure gradient that drives the wetting fluid. The value of Snr is determined by
properties of the nonwetting fluid and of the solid. This phenomenon can easily be
explained by the concept of capillary pressure discussed in Sect. 6.1. The shape of
the globules within the void space is established in response to the capillary forces.
These forces establish a pressure gradient within each globule that opposes that in
the mobile fluid around it. Following the Laplace formula (2.4.12), the capillary
pressure is of the order 2γwn/r , where r denotes some characteristic radius of a
pore. Thus, in an immobile globule, the menisci configurations adjust themselves
to maintain a pressure equilibrium with the mobile wetting fluid, as long as the

http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_2
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pressure gradient in that fluid is not too high. As this pressure gradient increases,
at some point, equilibrium can no longer be maintained, and the globule will be
displaced, until equilibrium is re-established.

This explains why the nonwetting fluid becomes immobile below the critical
saturation Snr . This phenomenon is of major significance in reservoir (petroleum)
engineering and contaminant hydrology, as large quantities of oil remain immobile
in the form of globules; they cannot be mobilized by the displacing water (which
is the wetting fluid). The same phenomenon occurs also in an air-water system, as
water displaces air.

If, at the some value of Sw, the drainage process is stopped and wetting of the
sample begins, the latter cannot be brought back to full saturation. The air saturation
of the sample cannot be lowered to below the residual air saturation, Sar , because
of entrapped air. The amount of entrapped air, in the form of air bubbles and air-
filled portion of the void space completely surrounded by water in the larger pores,
grows gradually as the sample is rewetted. Sometimes, this means that effective
permeability never rises back to more than 0.5 ksat, especially in view of the fact
that for many soils, the slope of the effective permeability-saturation-curve becomes
steeper as full saturation is approached.

The relative permeability curve for air is also shown in Fig. 6.9. Again, we note
that kra = 0 for Sa < Sar , and that due to the irreducible water saturation, kra cannot
rise above kra

∣
∣

Sa=1−Swr
, unless we start by wetting an initially dry sample at Sa = 1.

We emphasize that relative permeability curves have to be determined experimen-
tally for each particular soil. However, various investigators have suggested analytical
expressions for the relationship between relative permeability (or relative hydraulic
conductivity) and saturation. These expressions were usually obtained by analyzing
simplified models of porous media, such as a bundle of parallel capillary tubes, or a
network of such tubes. The results, while highlighting themain features of the sought
relationship, always contain numerical coefficients that characterize the considered
model. They cannot be used for soils that have a much more complicated irregular
structure. For a particular soil, the numerical values of the coefficients have to be
determined by fitting the analytical expression to experimental curves. Analytical
expressions (as compared with tables of experimental results) have the advantages
that they can be used in analytical or semi-analytical solutions, and can more easily
be used as input to numerical models.

Following are a few examples, all for isotropic porous media.

• Gardner (1958) suggested, for unsaturated flow, the expression

Kw = a

b + |ψ|m , (6.2.19)

where a, b and m are constants, with m ≈ 2 for heavy clay soil, and m ≈ 4 for
sand. He also suggested the exponential model

Kw = Ksat e−αψ, (6.2.20)
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where α is a soil index parameter, related to pore size distribution, or, according
to Raats (1976), to the reciprocal of a macroscopic capillary length scale.

• Childs and Collis-George (1950), for the flow of water in the unsaturated zone,
introduced the expression

Kw = B
θ3w
�vs

, (6.2.21)

where �vs is the specific surface area of the soil, and B is a coefficient.
• Irmay (1954), for unsaturated flow, suggested

Kw(Sw) = Ksat
(

Swe
)3

, Swe = Sw − Swr

1 − Swr
, (6.2.22)

where Swe is the effective water saturation defined in Sect. 6.1.
• Corey (1957), for unsaturated flow, suggested a relationship proportional to

(

Swe
)4
.

• Brooks and Corey (1964, 1966) suggested

kw =
⎧

⎨

⎩

ksat for pc < pb,

ksat

(

pb
pc

) 2+λ
λ

for pc ≥ pb,
(6.2.23)

where pb is the bubbling pressure, or air entry pressure, related to the largest pore
size forming a continuous network of water occupied channels within the porous
medium, and λ is an index of the pore-size distribution of the porous medium.
In this equation, ksat is the permeability at Swe = 1, and not at Sw = 1. When
combined with (6.1.14), Brooks and Corey (1964) obtained

kw(Swe) = ksat (Swe)
ε , ε = 2 + 3λ

λ
, (6.2.24)

and

ka(Swe) = ksat
(

1 − Swe
)2[

1 − (Swe)
γ
]

, γ = 2 + λ

λ
, (6.2.25)

where Swe is less than some maximum value (usually ≈0.85) at which ka still
exists.

• Combined with the work of Mualem (1976), van Genuchten (1980) work leads to
the relationship:

kw(Swe) = ksat S
1
2
we

[

1 −
(

1 − S
1
m
we

)m
]2

, (6.2.26)

in which because water is immobile at saturations in the range Sw ≤ Swr , we made
use of the effective water saturation, Swe, defined in (6.2.22).
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• A combination of Burdine’s expression for permeability with Mualem’s (1976)
work, leads to:

kw(Swe) = ksat S2
we

[

1 −
(

1 − S
1
m
we

)m
]

. (6.2.27)

Effective permeability, or effective hydraulic conductivity, may also be presented
as a function of the pressure head, ψ. However, the relationship kw(ψ) shows much
more hysteresis than kw(Sw), probably due to the large hysteresis in the function
ψ(Sw). Hysteresis in kw(Sw) is generally ignored because the function pc(Sw) usu-
ally exhibits far greater hysteretic effects and because the values of the parameters
required to describe hysteresis in kw(Sw) are highly uncertain.

6.2.3 Relative Permeability-Capillary Pressure Relationship

It is of interest to note the relationship between the capillary pressure, pc = pc(Sw)

and the effective permeabilities, kw = kw(Sw) and ka = ka(Sa). The discussion is
limited to an isotropic porous medium, and to water and air as typical wetting and
non-wetting fluids. This relationship is called Burdine’s equations (Burdine 1953).

Following Wylie and Gardner (1958), we consider the flow of water in a porous
medium visualized as a bundle of capillary tubes with radii, r , in the range rmin ≤ r ≤
rmax (corresponding to Swr ≤ Sw ≤ 1, overlooking the presence of entrapped air).

To make the bundle of capillaries better resemble an actual porous medium, let
the bundle be cut into a large number of short pieces. Then, the resulting pieces of
capillary tubes are rearranged randomly, and re-assembled.

As explained earlier in this section, the drainage process may be simplified by
assuming that, for a given capillary pressure, pc, air occupies all the pores (here,
capillary tubes) that are larger than a size (= radius of tube) r ′, defined by

r ′ = 2γwa

pc
, (6.2.28)

where γwa denotes the water-air surface tension. The effective water saturation, Swe,
can then be expressed by

Swe =
∫ r ′

rmin
πr2α(r) dr

∫ rmax

rmin
πr2α(r) dr

, (6.2.29)

where α(r) is a probability distribution function describing the probability that a
capillary tube has a radius between r and r + dr . In principle,α(r) can be determined
from the pc = pc(Swe) curve. In any slice of total (bundle) area A, the area φ(Sw −
Swr )A ≡ φSwe(1 − Swr )A ≡ φ ≡ Ŝw A is occupied bywater occupying pores of radii
between rmin and r ′. An equal area is occupied by the water in neighboring slices.
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However, portions of these areas are not connected, due to the random distribution
of the ‘pores’ in the model.

Considering a point on the interface between adjacent slices, the probability that
it lies in the water portion of the cross-section in one of two adjacent slices is φŜw.
Hence, the probability that it lies in the water simultaneously in both slices is (φŜw)2.
Using similar reasoning, Wylie and Gardner (1958) show that since the probability
of a water-filled pore in one slice is φŜw, the area common to a single pore of
cross-sectional area πr2 in one slice, and all the water-filled pores in a neighboring
slice is, therefore, πr2φŜw. Thus, the passage of water takes place from an area πr2

to a constricted area πr2φŜw. One may visualize the constricted area as a pore of
smaller radius r ′′, such that πr ′′2 = πr2φ(Sw − Swr )/λ, where λ (≥ 1) is a numerical
coefficient that reflects the size distribution of the total interconnected pore area; it
also depends on α(r).

We now use the Hagen–Poiseuille law (e.g., Bear 1972, p. 162) to describe the
discharge, Qcap, through a capillary tube in the model

Qcap = πr ′′4ρwgβ

8μ
J = πφ2 Ŝ2

wr4ρwgβ

8μλ2
J , (6.2.30)

where β is a coefficient that accounts for the nonuniformity of tube diameters and
J is the hydraulic gradient, which is assumed to be approximately uniform over all
tubes. For the entire bundle, per unit area A, we obtain

q = φ3 Ŝ2
wβρwg

8μλ2
J

∫ r ′
rmin

πr4α(r) dr
∫ rmax

rmin
πr2α(r) dr

, (6.2.31)

where

φA =
∫ rmax

rmin

πr2α(r) dr,

and we have assumed that both λ and β are independent of α(r). By differentiating
(6.2.29) with respect to r ′, we obtain

d Ŝw = πr ′2α(r ′) dr ′
∫ rmax

rmin
πr2α(r) dr

. (6.2.32)

Eliminating r ′ from (6.2.31), using (6.2.28) and (6.2.32), we obtain

q = φ3 Ŝ2
wβρwgγ2

wa

2μλ2
J

∫ Swe

0

d S′
we

p2
c (S′

we)
. (6.2.33)

Hence, the effective permeability for the water is
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kw(Swe) = φ3 Ŝ2
wβγ2

wa

2λ2

∫ Swe

0

d S′
we

p2
c (S′

we)
. (6.2.34)

The saturated permeability is found by setting Swe = 1,

ksat = φ3(1 − Swr )
2βγ2

wa

2λ2

∫ 1

0

d S′
we

p2
c (S′

we)
. (6.2.35)

The relative permeability to water then takes the form:

krw = S2
we

∫ Swe

0

d S′
we

p2
c (S′

we)

/ ∫ 1

0

d S′
we

p2
c (S′

we)
, (6.2.36)

where it is assumed that β/λ2 is not sensitive to changes in Sw. Similarly, for the air

kra = (1 − Swe)
2
∫ 1

Swe

d S′
we

p2
c (S′

we)

/ ∫ 1

0

d S′
we

p2
c (S′

we)
. (6.2.37)

Thus, given a pc(Swe)-curve, estimates of kw and ka can be obtained.
For an anisotropic porous medium, each of the effective permeability compo-

nents, kwi j and kai j , may have a different functional relationship with respect to
Sw. Hence, the concept of a relative permeability is not permissible. Bear et al.
(1987) have shown, by using computer experiments to simulate an anisotropic porous
medium with a three-dimensional network of capillary tubes of random diameters,
that the ratio between the principal values of kw in the x and y principal direc-
tions, kw,xx/kw,yy , is a function of saturation and not a constant. For example, if
kw,xx > kw,yy is due to larger pores (or larger pore cross-sections) oriented in the
x-direction, then as saturation is reduced, and since the larger pores drain first, we
reach a point where kw,xx = kw,yy . At still lower saturation, kw,xx < kw,yy .

The subject of hysteresis in the retention curve, which stems from the difference
in the configuration of the water-occupied portion of the void space during the two
processes–imbibition and drainage–will be discussed later in this subsection. This
difference in configuration leads also to a certain degree of hysteresis in the relation-
ships kw(Sw) and ka(Sw). Figure6.9 shows hysteresis in typical relative permeability
curves.

In Fig. 6.9, we note that upon rewetting back to zero capillary pressure, the per-
meability is less than at full saturation due to entrapped air. As explained above, the
amount of entrapped air and its effect on reducing permeability, is a function of the
drainage-imbibition history.
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6.3 Specific Storativity

In Sect. 5.1.5, in the discussion on the mass balance equation for flow of a single fluid
that occupies the entire void space, we have introduced the effect of fluid and solid
matrix compressibility through the concepts of storativity and specific storativity for
flow in a confined aquifer. The same concepts can be extended to two or more fluid
phases that, simultaneously, occupy the void space. In fact, we have also introduced
there the concept of effective stress, which can also be extended to multiphase flow.

Thus, our next step is to focus on the l.h.s. of the mass balance equations (6.4.3),
with

∂

∂t
φSwρw = φSw

∂ρw

∂t
+ Swρw

∂φ

∂t
+ φρw

∂Sw

∂t
. (6.3.38)

For the case of two fluids (w and n) that together fill up the void space, with
negligible shear stress in both fluids, we define an average pressure in the two fluids
(subscript and superscript v) that fill up the void space, by

pv
v = Sw pw

w + Sn pn
n. (6.3.39)

We can now return to the fundamental definition of effective stress in (5.1.28)
and extend it to the case of two phase flow, replacing the single fluid pressure by the
average fluid pressure. We obtain the more general case:

σ = σ′
s − pv

vI, (6.3.40)

in which we recall that σ′
s denotes the (macroscopic) effective stress and pv

v is the
average pressure in the void-space.

Thus, for two fluid phases, with (6.3.39), Eq. (5.1.28) takes the form:

σ = (1 − φ)σs
s − θw pw

wI − θn pn
nI

= (1 − φ){σs
s + pv

vI} − (1 − φ)pv
vI

−θw pw
wI − θn pn

nI = σ′
s − θw

φ
pw

wI − θn

φ
pn

nI, (6.3.41)

and the effective stress is defined by

σ′
s = (1 − φ){σs

s + pv
vI}. (6.3.42)

In unsaturated flow (= air-water flow), the nonwetting fluid is air while thewetting
one is water. When we assume the air to be everywhere at atmospheric pressure, i.e.,
pa

a ≡ 0, (6.3.41) reduces to

σ = σ′
s − Sw pw

wI. (6.3.43)

http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5


398 6 Modeling Multiphase Mass Transport

In determining the average void pressure, pv
v , we have taken a volume average

of the pressure in the various fluids occupying the void space. Other weights in
determining pv

v would lead to equations that are different from (6.3.41) and (6.3.43).
For example, some authors (e.g., Aitchison and Donald 1956) use for air - water flow
(with pa

a = 0)
σ = σ′

s − χ(Sw)pw
wI, (6.3.44)

where χ(Sw) is some function of the moisture content, θw. Bear et al. (1984) used
(6.3.44) with χ(Sw) = Sw.

Making use of χ(Sw), we obtain for two-phase flow:

∂φ

∂t
= (1 − φ)α

(

χ(Sw)
∂ pw

∂t
+ pw

∂χ

∂Sw

∂Sw

∂t

)

. (6.3.45)

To obtain an expression for the third term on the r.h.s. of (6.3.38), we apply the
chain rule of differentiation to the term ∂Sw/∂t , and noting that Sw = Sw(pc), we
obtain

∂Sw

∂t
= dSw

dpc

∂ pc

∂t
= dSw

dpc

(
∂ pa

∂t
− ∂ pw

∂t

)

. (6.3.46)

We define the water (moisture) capacity, Cw, by

Cw = −φ
dSw

dpc
. (6.3.47)

Then,
∂Sw

∂t
= Cw

φ

(
∂ pw

∂t
− ∂ pa

∂t

)

. (6.3.48)

If pa is constant, ∂ pa/∂t = 0, and

∂Sw

∂t
= Cw

φ

∂ pw

∂t
. (6.3.49)

In this case, we may also write Sw = Sw(pw); therefore,

∂Sw

∂t
= d Sw

dpw

∂ pw

∂t
, and Cw = φ

dSw

dpw

. (6.3.50)

Altogether, we obtain

∂

∂t
(φSwρw) = ρw

{

φSwβw + φ
dSw

dpw

+ Sw(1 − φ)α

[

χ(Sw) + pw

dχ

dSw

dSw

dpw

]}
∂ pw

∂t
, (6.3.51)
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in which the coefficients α and χ(Sw) are defined by (5.1.44) and (6.3.44), respec-
tively.

Equation (6.3.51) can be rewritten in a form similar to (5.1.46), with a specific
mass storativity that takes into account also the change in saturation. For the saturated
zone, Sw = 1, χ(Sw) = 1, and (6.3.51) reduces to (5.1.46).

With the above developments, themass balance equation forwater in a deformable
porous medium, (6.4.1), takes the form:

ρw

{

φSwβw + φ
dSw

dpw

+ Swα

[

pw

dχ

dSw

dSw

dpw

+ χ(Sw)

]}
∂ pw

∂t

= −∇·(ρwqrw) + ρw�′w. (6.3.52)

We can write this equation also in the form (5.1.49), repeated here for convenience:

Sm
op

∂ pw

∂t
= −∇·(ρwqrw) + ρw�′w, (6.3.53)

in which the coefficient is defined by (6.3.52). Note that Sm
op is different from the

coefficient Sm∗
op defined by (6.3.51), and that in the divergence term on the r.h.s. we

have qrw rather than qw. The explanation is given following (5.1.50).

6.4 Mass Balance Equations and Complete Model

As in the case of single phase flow, the core of a two-phase flowmodel (NP= 2) is the
two mass balance equations of the phases. We assume that each of the fluid phases
is a single component phase, and remains so. We added the adjective “complete” to
emphasize that we mean both the mass balance equation and the initial and boundary
conditions. In Chap.7 we consider multi-species phases.

6.4.1 The Flow Model

Our starting point is (3.3.7) which expresses themass balance equation for a fluid that
occupies part of the void space at the volumetric fraction θα. Although there are no
(microscopic level) mass sourceswithin any of the phases, macroscopic level sources
and sinks, in the form of point sources (= wells) may exist. We may then represent
the macroscopic � by a dirac-delta function (see discussion in Sect. 5.1). Recalling
that there is no molecular diffusion nor dispersion of the total mass, and assuming
no mass transfer of the phases across interphase boundaries, the macroscopic mass
balance equations take the form:

http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
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http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_5
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∂

∂t
(φSwρw) = −∇·(ρwqw) + ρw�′

w, (6.4.1)

∂

∂t
(φSnρn) = −∇·(ρnqn) + ρn�

′
n, (6.4.2)

where qα(= θαVα) denotes the flux, or specific discharge (= volume of the α-phase
per unit time per unit area of porousmedium), we have assumed that the areal fraction
of the phase is equal to its volumetric fraction. The symbol�′

α denotes a macroscopic
level source of theα-phase (= volume of fluid withdrawn from the void space per init
time per unit volume of porous medium); a negative value means fluid withdrawal.
Note that the above equations involve qα and not qrα. Since Darcy’s law provides
information on the relative specific dischargeqr , eitherwe dealwith a case ofVs ≈ 0,
or we have to consider Vs(= qs/θs) as an additional variable of the problem, i.e., a
deformable porous medium.

Note that in the above two mass balance equations, we have made the assumption
(based on the concept of immiscible fluids) that there is no (or no significant) fluid
mass exchange (w → nw, nw → s) across the microscopic interfaces, say, due to
phase change. Otherwise, we should add mass transfer terms, e.g., f w

w→nw-term, and
f nw
nw→w-terms, in the mass balance equations, to denote phase change (e.g., evapora-

tion and condensation), respectively of the respective fluids.
The complete statement of a two-phase flow problem contains more information.

For example, the complete set of equations that describes the simultaneous isothermal
flow of two compressible single species fluid phases (n, w), in a stationary rigid
porous medium (i.e., Vs = 0, ∂φ/∂t = 0, qr → q), in the absence of interphase
mass transfers and external sources, are:
• Mass balances:

∂φSwρw

∂t
= −∇·(ρwqw),

∂φSnρn

∂t
= −∇·(ρnqn). (6.4.3)

In the case of phase change, e.g., by adding heat at a point by microwave energy,
fw→n-type phase transfer terms should be added to the abovemass balance equations.
Of course, �-type source terms can also be added when necessary.

Mass balance equations that consider production of chemical species by chemical
reactions and mass transfer across (microscopic) interphase boundaries (expressed
as macroscopic terms in the mass balance equations) are discussed in Chap. 7. Phase
changes, like aporation/condensation, are considered in Chap.8.
• Flux equations:

qw = −kw(Sw)

μw

· (∇ pw + ρwg∇z) , qn = −kn(Sn)

μn
· (∇ pn + ρag∇z) .

(6.4.4)
• Capillary pressure and density:

pc = pc(Sw) = pn − pw, ρw = ρw(pw), ρn = ρn(pn). (6.4.5)

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_8


6.4 Mass Balance Equations and Complete Model 401

• Sum of saturations:
Sw + Sn = 1. (6.4.6)

Altogether, 8 equations to be solved simultaneously for the 8 variables:

pw, pn, Sw, Sn, ρw, ρn, qw, qn.

However, following the discussion in Sect. 3.9, we have here 2 components: H2O and
air (all the gases together), i.e. NC= 2, and two phases (liquid and gas), i.e., NP= 2.
Hence, using (3.9.1) we find that this problem involves only two degrees of freedom.
This means that this problem involves only two independent variables, e.g., pw and
Sn , or pn and Sw, andwe have to solve only two partial differential equations for these
variables. In three-dimensional domains, we may read this problem as involving 12
scalar variables, 2 degrees of freedom and 2 PDE’s to be solved for these variables.
More on the number of degrees of freedom is presented in Sect. 3.9.

However, under certain conditions, in two (and more so in three) phase flow, the
fact that Sα ≤ 1, may leads too the situation that at some point in the course of
solution, the initially selected set of primary variables is no more permissible, and
we have to switch to a new set of primary variables. This is part of the routine in
numerical solutions of multiphase flow problems.

Comment on primary variable switching (PVS) are presented in Sects. 6.5.3 and
7.5.4

6.4.2 Initial and Boundary Conditions

The need for initial and boundary conditions and their role inmodels has already been
presented and discussed in Sect. 5.2, in connection with single phase flow. There, we
have also discussed the general concept, the representation of boundary surfaces,
and the principles that serve as the basis for determining boundary conditions. Here,
we are discussing the simultaneous flow of two (assumed immiscible) fluids, like
water and air, or water and oil, with no sharp (macroscopic) interface between them.
Instead, there always exists a transition zone across which the saturations of both
fluids vary in space and time. In Sect. 5.2.4, we have presented a number of boundary
conditions that are commonly encountered in single phaseflow.Here,we shall discuss
conditions that are usually encountered when modeling two phase flow. The case of
flow in3 the unsaturated (air-water) zone in the subsurface will also be presented and
discussed as a special example of interest.

As discussed in Sect. 6.4.1, themodel describing the flowof two (assumed) immis-
cible fluids has two degrees of freedom. This means that the flow is described by
two independent variables for which we have to solve two partial differential mass
balance equations. The kind of PDE describing these mass balance requires only one
condition on each boundary segment. We should prefer a condition based on flux
continuity, if such information is available. If not, we base the boundary condition

http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_3
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http://dx.doi.org/10.1007/978-3-319-72826-1_5
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on available information on values of a scalar variable, e.g., pressure or saturation.
Sometimes, approximations concerning the continuity of fluxes produce a jump in
the values of the variables; we have to accept this consequence.

A. Initial Conditions

Initial conditions specify the values of the two selected independent variable, e.g.,
pw, pa , Sw, θw, or hw, at all points within the modeled domain at some initial time,
usually taken as t = 0. For example, in terms of pw, initial conditions may take the
form (5.2.4), in which we replace p by pw.

B. General Boundary Condition

We note that (5.2.6) is already written for the general case of multiple fluid phases.
However, we have to be careful in the case of a boundary of discontinuity between
two different porous media. The pressure in each fluid must undergo no jump, but,
there is always a jump in saturation across the boundary between two porous media.
This is acceptable, because the average pressure is not a thermodynamic variable.

In two phase flow, e.g., in an oil-water or gas-water reservoir, we encounter the
same kinds of boundary conditions that were presented in Sect. 5.2.4, where we have
considered the case of a single phase. Specifically, for each of the phases, we specify
the pressure, the saturation, or the normal flux on the boundary.Most of the conditions
presented below, in connection with the unsaturated zone, are also applicable to any
case of two-phase flow.

Following are some of the more commonly encountered boundary conditions
for the special case of unsaturated (i.e., air-water) flow. In each case, the boundary
condition is stated in terms of the relevant state variable of the problem. The geometry
of the boundary surface is stated by the equation F(x, y, z, t) = 0, discussed in
Sect. 5.2.1.

C. Boundary of Prescribed Saturation

In this case, the external domain imposes a certain saturation on the domain’s bound-
ary. In practice, this kind of boundary seldom occurs, except in the case of full satura-
tion, Sw = 1, such as when the considered domain is in contact with a body of water
(a lake, a river, or a pond). For example, Sw = 1 is prescribed on the bottom of a
water pond, dictating there a surface at full saturation (even in the limiting case, when
a very thin layer of water is present in the pond). Similarly, under the assumption of
completely dry soil, the condition Sa = 1 is prescribed at ground surface (overlain
by the atmosphere) that serves as a boundary to the unsaturated domain.

When ground surface without ponding serves as the upper boundary for the unsat-
urated zone, neither the water pressure on it, nor the water saturation are known. The
only information that we have is the rate of water infiltration through such boundary
(including the case of no-infiltration). This information is then used to specify the
boundary condition (see below).

D. Boundary of Prescribed Pressure

As in the case of prescribed saturation, the value of pw is seldom known on a bound-
ary, except when a porous medium domain is bounded by a body of water (e.g., a

http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
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pond). In the latter case, the pressure along the pond’s bottom is dictated by the depth
of water in the pond.

In air-water flow, we use atmospheric conditions at ground surface to specify
conditions of known air pressure, pa = patm.

Another type of boundary condition at ground surface, for air-water flow in the
unsaturated zone, is pa = patm for the air phase, and a known flux for the water
phase. The boundary condition under a pond, is known water pressure, and no flux
of air.

The boundary condition that specifies the value of Sα, or pα, α = w, n, along a
boundary segment is a boundary condition of the first type, or Dirichlet boundary
condition.

E. Boundary of Prescribed Flux

When the flux, qα = qα(x, t), is known along the external side of a boundary seg-
ment, e.g., f (x, t), then the condition on the boundary is:

qα·ν = f (x, t), (6.4.7)

Thus condition is based on the no-jump condition presented in Sect. 5.2.3.
A special case of interest of such boundary is when water, e.g., from rainfall,

infiltrates through the unsaturated zone (= vadose zone) at a known rate through
ground surface, which serves as a boundary to the unsaturated zone. This includes
the case of no-flow (i.e., f (x, t) = 0) through such a boundary.

Because ground surface is a material surface with respect to the solid, (5.2.9) is
applicable, i.e.,

(Vs − u)
∣
∣
side 1 · ν = (Vs − u)

∣
∣
side 2 · ν = 0. (6.4.8)

Since the microscopic water-solid and air-solid interfaces are material with respect
to fluid mass, (5.2.6) can be written separately for each fluid phase.

With [[ ρf ]]1,2 = 0, and replacing (V − u) by (Vα − Vs) + (Vs − u), the general
boundary condition (5.2.6) for such a surface takes the form:

[[ θα(Vα − u) ]]1,2 · ν = 0. (6.4.9)

Thus, with (5.2.9), for an α-fluid phase, α = w, a, the last equation reduces to the
form of (5.2.11), repeated here for convenience as

[[ qrα ]]1,2 · ν = 0, or qrα

∣
∣
1 · ν = qrα

∣
∣
2 · ν, (6.4.10)

in which one of the sides, say side 2, is the external (atmospheric) one. The relative
specific flux, qrα, is expressed by an appropriate motion equation.

For an impervious boundary, say, a pervious side 1 and an impervious side 2,
Eq. (5.2.11) reduces to (5.2.12). Note that this equation constrains only the normal
component of the flux. The tangential components may take on any value, meaning
that we may have, and usually have, slip along the boundary.
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F. Ground Surface as a Boundary

Consider the unsaturated zone, bounded from above by ground surface, and let N
denote the prescribedflux (say, upward for evaporation and downward for infiltration)
on the external side of this stationary (u = 0) boundary. This boundary is described
by F = F(x), with ν ≡ ∇F/|∇F | denoting the unit outward normal vector to it.
We assume that the water density, ρw, on the external side is the same as within
the unsaturated zone, and that it is a constant. Then, the prescribed flux boundary
condition takes the form of (5.2.13), repeated here for convenience as

qrα · ∇F = N |∇F |, N = N · ν. (6.4.11)

In this equation, qrα can be expressed by any of the motion equations presented in
Sect. 6.2. For example, in terms of ψ, we use (6.2.15) and (5.2.13) becomes

[Kw(ψ) · ∇(ψ − z)] · ν = N · ν. (6.4.12)

As this condition specifies the gradient of a scalar variable on the boundary, it is a
boundary condition of the second kind, or a Neumann boundary condition.

For a horizontal ground surface that serves as the upper boundary of the unsatu-
rated zone, ν ≡ ∇z. If the soil is isotropic and the infiltration is vertically downward,
i.e., N = −N∇z, we obtain from (6.4.12):

N = −Kw(ψ)
∂ψ

∂z
+ Kw(ψ). (6.4.13)

The boundary condition (6.4.13) specifies a constraint that involves both ψ and ∇ψ.
This is a boundary condition of the third type, or a Robin boundary condition.

The condition of prescribed flux provides no explicit information on the values
of the state variables, say ψ, at (i.e., just inside) the boundary. These values will
adjust themselves (thus modifying also the values of the effective hydraulic conduc-
tivity, Kw(ψ)) to accommodate the specified rate of flow through the boundary. The
flux from rainfall through ground surface that serves as the upper boundary of the
unsaturated zone, requires special attention.

G. Infiltration and Evaporation at Ground Surface

This type of boundary always occurs when ground surface serves as the upper bound-
ary of a modeled unsaturated domain (= vadose zone). For the air, we can specify
atmospheric pressure as a known value. However, for the water, neither the pressure
nor the saturation is known. The boundary condition to be used in such a case is that
of specified flux (due to infiltration or evaporation), with the special case of zero
flux when no infiltration from precipitation or from irrigation takes place. There are
two approaches that one can take: (1) specify the net infiltration flux (= precipitation
minus evaporation), if it is known, or (2) model the evaporation by specifying the rel-
ative humidity, hr , in the air close to ground surface, and use Kelvin’s law in (2.5.3)
to specify the resulting suction in the water that occupies the void space close to

http://dx.doi.org/10.1007/978-3-319-72826-1_5
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ground surface. The specified suction is then used as a first type boundary condition.
The second approach usually requires that thermal effects be also modeled.

To gain some understanding about what is involved in determining infiltration, let
us start with a few remarks on infiltration. More information on this subject may be
found in standard texts on hydrology (e.g., Bras 1990; Maidment 1993).

Dependingon the local conditions during a rainfall event, e.g., rate of precipitation,
type of soil, vegetation cover, surface topography, climatic conditions, antecedent soil
moisture, etc., part of the precipitation reaching ground surface infiltrates through
the latter and continues to percolate downward towards an underlying water table.
The remaining part will either pond above ground surface, or become surface runoff.
When the supply of water to ground surface exceeds the rate of infiltration, which
is commensurate with the properties of the soil and its moisture content, the infil-
tration rate is the maximum possible one, under the prevailing conditions. This rate
is referred to as infiltration capacity. The processes of infiltration and percolation
are accompanied by changes in saturation within the unsaturated zone. The redis-
tribution of moisture in the subsurface will continue for some time after cessation
of infiltration. This process, its relationship to the rate of infiltration, and to the rate
at which water is applied at ground surface, are of major interest in the design of
irrigation systems.

The issue ofwhat happens to the air in the unsaturated zone between thewater table
(i.e., the surface in the saturated zone where p = patmos) and ground surface during a
period of infiltration requires special attention.Under conditions of heavy infiltration,
the soil zone close to groundwatermaybecome saturatedwith a downward infiltrating
water, and the entrapped air is compressed, unless it has the opportunity to escape
sidewise. At the increased air pressure. air may locally escape through the downward
advancing saturated zone.

In principle, the rate of (actual) infiltration, should be derived by solving amodel of
flow in the unsaturated zone, subject to appropriate boundary conditions, especially
at ground surface. The properties of the soil and the precipitation characteristics
will be represented in such a model. However, the rate of infiltration to be used
as a boundary condition is not known, as it seldom equals the rate at which water
is applied at ground surface. This fact, combined with the difficulties inherent in
solving such a problem, hasmade this approach impractical, at least until recent years.
Instead, in the practice of hydrology, various empirical formulas have been employed.
In recent years numerical models, solved by appropriate software, have been been
developed. Obviously, appropriate boundary conditions have to be specified within
the framework of such models. An exact analytical solution of a model that describes
flow in a vertical soil column, from ground surface to an underlying water table.
subject to recharge conditions at ground surface is not possible, due the nonlinearity
of suchmodel. In a series of papers, Philip (1957a, b, c, d, e, 1958a, b, 1969) proposed
an approximate solution for the distribution of moisture in the subsurface in the form
of an infinite series. Based on this solution, the infiltration capacity, Ic(t), may be
estimated from the formula:

Ic = Ic∞ + s

2
√

t
, (6.4.14)
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Fig. 6.10 Effect of initial
soil moisture on the rate of
infiltration
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in which s is a coefficient that depends on the initial soil moisture. We note that
initially, Ic = ∞. In the limit, as t → ∞, Ic(t) → Ic∞. Figure6.10 shows the effect
of the initial soil moisture on the infiltration capacity.

It can easily be shown that as infiltration proceeds, in the absence of ponding and
air entrapment, the soil close to ground surface becomes saturated, and the rate of
infiltration approaches the hydraulic conductivity at saturation. At the same time, the
saturation gradient at ground surface vanishes asymptotically. The combination of
these two processes leaves gravity as the only driving force, with the result that the
flux becomes equal to K

∣
∣
sat.

With the above introductory remarks, we can now proceed to discuss the infiltra-
tion boundary condition.

Let R(x, t) (≥ 0) denote the rate at whichwater is applied in a downward direction
to ground surface by precipitation, or irrigation, with x denoting points on ground
surface.We start by assuming that this rate is also equal to the rate of (vertically down-
ward) infiltration, i.e., I (x, t) = R(x, t). We are faced with two important questions:

• Under what conditions is this assumption valid?
• What do we do when it is not valid, i.e., we know R, but not I?

Consider the case of rainfall at a rate R over a horizontal ground surface, resulting
in infiltration at a rate I ; the soil is assumed to be isotropic. The boundary condition,
say (6.4.13), may then be rewritten as:

I = −Kw(ψ)
∂ψ

∂z
+ Kw(ψ). (6.4.15)

or, in terms of θw:

I = Dw(θw)
∂θw

∂z
+ Kw(θw). (6.4.16)

From our discussion so far, it follows that at any instant, depending on soil prop-
erties and on the prevailing moisture content and distribution, the soil just below
ground surface can transmit only a certain flux of water, provided such water quan-
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tity is applied at ground surface. If the rate of application is higher, the difference will
pond on ground surface, or produce surface runoff. The behavior above and below
ground surface is, thus, coupled by the common condition at ground surface. To avoid
modeling what happens above ground surface, the verbal constraint is often added
that ‘no ponding of water is allowed to take place above ground surface’. In reality,
because of ground surface roughness, some ponding may take place before surface
runoff actually begins. The no-ponding constraint limits the rate of infiltration at
every instant to what the soil can transmit at the prevailing saturation and saturation
gradient conditions. This constraint has to be incorporated in the statement of the
boundary conditions at ground surface.

From (6.4.15), it follows that as the soil just below ground surface approaches full
saturation, overlooking entrapped air, θw → φ (or θw → φ − θao, if entrapped air is
considered), and ∂θw/∂z → 0, the first term on the right-hand side vanishes, while
the second one approaches the value of the saturated hydraulic conductivity, K

∣
∣
sat

(or, with entrapped air, K
∣
∣
φ−θao

). In an anisotropic porous medium, it will approach

the value of the vertical component, Kz

∣
∣
sat. In the current discussion on infiltration,

for brevity, we shall use Kz

∣
∣
sat to mean K

∣
∣
φ−θao

, when entrapped air may be present.
Let us consider two situations. In both cases, we shall assume that R is constant,

and that, initially, the soil is relatively dry, say at field capacity. We shall assume that
the water table is sufficiently deep so that its influence on soil moisture near ground
surface can be neglected.

CASE A. Precipitation is applied at a constant rate R > Kz

∣
∣
sat. At first, even

at low saturations, the soil can absorb the incoming water at a very high rate, as
the gradient in moisture content that is produced at ground surface is very high.
Theoretically, this rate is infinite at the initial time. Thus, for a certain period, we
have I = R. We use this value in the boundary condition (6.4.16). During this initial
period, as a wetting front advances downward, the infiltrating water produces two
phenomena:

• At ground surface, and just below it, the water content in the soil gradually
increases. In the limit, full saturation may be reached (i.e., water content equals
porosity). The increase in water content is accompanied by an increase in effec-
tive hydraulic conductivity, up to the limiting value of Kz

∣
∣
sat, corresponding to a

saturated soil.
• As water percolates downward, the gradient in the soil’s water content close to
ground surface decreases with time. In the limit, this gradient at ground surface
approaches the value of zero, so that gravity remains the only driving force there.

The initial period continues until the soil at ground surface reaches a point atwhich
the combination of saturation (and effective hydraulic conductivity) and saturation
gradient are such that the soil can no longer transmit water at the rate applied at
ground surface. This occurs when the pressure in the water occupying the pore space
at ground surface approaches atmospheric pressure. With pw = pa

∣
∣
atm, we also have

full water saturation (or practically so) at ground surface. During this period, the
infiltration rate remains constant, equal to the (assumed constant) rate of accretion.
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Actually, because of the (discontinuous, i.e., composed of isolated air bubbles)
entrapped air that remains in the void space, the soil will never reach full saturation.
Although the volumetric fraction of entrapped air depends on the wetting-drainage
history, we shall approximate it as a constant, θao. Thus, upon rewetting, the moisture
content of water cannot exceed φ − θao.

In ourmodel, the initial period continues as long as θw < φ − θao, or, equivalently,
as long as pw < pa

∣
∣
atm. Once full saturation is reached (θw = φ − θao), we have to

replace (6.4.16) by the first type boundary condition

pw = pa

∣
∣
atm, (6.4.17)

(where we often assume pa

∣
∣
atm = 0 as the datum) corresponding to a condition just

below a state of zero ponding depth.
Next, we calculate the rate of infiltration, I (t)(< R) by substituting the solutions

for θw(t) in (6.4.16).Wewould then observe a gradual reduction in I (t), approaching
the limiting value of K

∣
∣
φ−θao

.
Let us now consider the time-varying case R = R(t). The discussion presented so

far remains valid. With the resulting value of I (t), we should keep track of whether
the calculated rate of infiltration, I , is less than that of application, R(t). As soon
as we reach the situation of I ≥ R, we should switch back to the condition (6.4.16),
with I = R.

It is important to emphasize again that initially, and for some time (which may
be significant when considering irrigation, or an individual storm event), the rate of
infiltration will exceed the limiting value of Kz

∣
∣
sat. The latter is approached from

above, provided the rate of application of water to ground surface remains larger
than the rate of infiltration.

CASE B. Precipitation is applied at a constant rate R < Kz

∣
∣
sat. Initially, the

saturation gradient at ground surface will be very high, and the soil will absorb all
incoming water. However, rather rapidly, as infiltration continues, and saturation
at ground surface increases, the saturation gradient there will decrease. Eventually,
asymptotically, a saturation level is reached with a zero saturation gradient, so that
the rate of infiltration (which equals to the rate of application) becomes equal to the
effective hydraulic conductivity at the prevailing saturation. Under such conditions,
the only force driving infiltration at ground surface is gravity. Capillarity still plays
a role in the part of the wetting front that is ahead of the (practically) saturated zone.

For R = R(t) < Kz

∣
∣
sat, the same phenomena, as described above, will occur, viz.,

the rate of infiltration will equal that of accretion, but saturation at ground surface
will vary, without leveling off at any asymptotic value.

These phenomena have been known to hydrologists formany years. Here, we have
expressed them as constraints associated with the boundary conditions at ground
surface.

We may summarize the discussion of the above two cases as follows:

(a) If pw(t) = pa

∣
∣
atm, then,
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• If R(t) ≥ I (t), use (6.4.17).
• If R(t) < I (t), use (6.4.16) with I = R(t).

(b) If pw(t) < pa

∣
∣
atm, use (6.4.16) with I = R(t).

Let us comment about the case of evaporation, or evapotranspiration, produced by
solar radiation reaching ground surface. Also in this case, the boundary conditions
must be based on the equality of water andwater vapour fluxes across ground surface.
In this case, as water leaves the soil in the form of vapour, the soil dries out. As
the saturation at (i.e., just below) ground surface reaches the irreducible saturation
level, Swr , water effective permeability reduces to zero. In the isothermal flowmodels
discussed here, it is usually assumed that when the soil at ground surface reaches Swr ,
it can no longer transmit liquid water. The boundary condition has to be switched
to one of no-flow at ground surface until the water saturation rises above Swr . In
more sophisticated, say, nonisothermal models, which are beyond the scope of this
book, the water saturation can reduce to below the irreducible value. Obviously, as
saturation drops to below the irreducible one, e.g., by evaporation and/or root uptake,
the effective permeability to water vanishes. Under non-isothermal conditions, the
situation may be more complicated, as a drying front may move up and down below
ground surface.

H. Ponding Above Ground Surface

Finally, let us consider the possibility of ponding. This occurs when the liquid’s
pressure at ground surface satisfies the condition pw > pa

∣
∣
atm. Suppose we allow

ponding up to a maximum depth that can be specified as pw

∣
∣
max/ρwg. Instead of

condition (6.4.17) at Sw = 1, we treat pw|z=0 as an unknown, and introduce the
condition

R(t) − I (t) ≡ R(t) − kz

∣
∣
sat

μw

(
∂ pw

∂z
+ ρwg

)

= 1

ρwg

∂

∂t

(

pw

∣
∣
z=0 − pa

∣
∣
atm

)

,

(6.4.18)
allowing pw

∣
∣
z=0 to rise up to pw

∣
∣
max + pa

∣
∣
atm. We usually assume pa

∣
∣
atm = 0.

We do not allow pw to rise above the specified maximum. If, as a result of R(t),
the water level tends to rise higher, it is set at the maximum value. As it drops and
reaches zero, or atmospheric gas pressure, we switch to the condition (6.4.17), as
long as Sw = 1.

We may also assume that ponding occurs within an external soil domain that
may have different soil characteristics. Defining a specific yield of such a soil by Sy

(similar to its definition for a phreatic aquifer), the boundary condition with ponding
may be rewritten as

R(t) − I (t) ≡ R(t) − kz

∣
∣
sat

μw

(
∂ pw

∂z
+ ρwg

)

= Sy
1

ρwg

∂

∂t

(

pw

∣
∣
z=0 − pa

∣
∣
atm

)

.

(6.4.19)
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6.4.3 Pressure-Saturation Form of the Balance Equation

Let us rewrite themass balance equations for two-phase flow in a form that will better
expose their nature, using an approach that is often used in petroleum engineering.
We shall refer to the two fluids as water (w) and oil (o). The considered domain is
assumed anisotropic.

By summing the two equations in (6.4.3), with φ = const. and Sw + So = 1, we
obtain the balance equation for the total mass of fluids in the void space:

φ
∂

∂t
[Swρw + (1 − Sw)ρo] = −∇·(ρwqw + ρoqa). (6.4.20)

Next, we define a total specific discharge:

qt = qw + qo, (6.4.21)

and an average pressure of the fluids filling up the void space:

P = 1
2 (pw + po), (6.4.22)

with
pw = P − 1

2 pc, po = P + 1
2 pc. (6.4.23)

We introduce two mobility tensors for the respective phases:

Mw = kw/μw, Mo = ko/μo, (6.4.24)

and a total mobility, defined by:

Mt = Mw + Mo, (6.4.25)

where M indicates a second rank tensor (for an anisotropic porous medium).
Substituting (6.4.23) and (6.4.24) into the two flux equations (6.4.4), leads to a

restatement of the two flux equations in the form:

qw = −Mw·(∇P − 1
2∇ pc + ρwg∇z), (6.4.26)

qo = −Mo·(∇P + 1
2∇ pc + ρog∇z). (6.4.27)

Substituting these equations into (6.4.20) leads to another formof themass balance
equation,
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φ
∂

∂t
[Swρw + (1 − Sw)ρo] = ∇·[(ρwMw + ρoMo)·∇P]

− 1
2∇·[(ρwMw − ρoMo)·∇ pc] + g∇·[ρ2wMw + ρ2oMo)·∇z],

(6.4.28)

in terms of the three variables, Sw, po and pw. Equation (6.4.5) can be used to express
fluid densities in terms of the fluids’ pressures. If densities are assumed constant, or
are assumed to be functions of P , then the above equation is written only in terms
of Sw and P .

In reservoir engineering, (6.4.28), with P as the dependent variable, is called the
pressure equation. The term on the left-hand side is often quite small.

Equation (6.4.28) can be solved only if Sw, po and pw are known, because the
coefficients appearing in it depend on Sw, po, or pw.

Consider the total specific discharge, qt , which may now be written as

qt = −Mt ·∇P − 1
2 (Mw − Mo)·∇ pc − g(ρwMw + ρaMo)·∇z. (6.4.29)

Multiplying (6.4.26) by M−1
w and (6.4.27) by M−1

o , and subtracting the resulting
equations, yields

M−1
w ·qw − M−1

o ·qo = ∇ pc − (ρw − ρo)g∇z. (6.4.30)

Then, using (6.4.21) to eliminate qo from (6.4.30), we obtain

M−1
w ·qw − M−1

o ·qt + M−1
o ·qw = ∇ pc − (ρw − ρo)g∇z, (6.4.31)

which can be rearranged to the form:

qw = Me f f ·M−1
o ·qt + Me f f ·∇ pc − (ρw − ρo)gMe f f ·∇z. (6.4.32)

The coefficient
Me f f = (M−1

w + M−1
o

)−1
(6.4.33)

is called the effective mobility.
The equation for Sw is obtained from (6.4.3) and (6.4.32), in the form:

φ
∂(Swρw)

∂t
= −∇·(ρwMe f f ·M−1

o ·qt ) − ∇·(ρwMe f f ·∇ pc)

+∇·[(ρw − ρo)gMe f f ·∇z], (6.4.34)

whichmust be solved in conjunction with appropriate density-pressure relationships.
The above equation is the sought equation,written in terms of pressure and saturation.
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For simplicity, let us assume that the fluids are incompressible, and the solidmatrix
nondeformable, so that φ, ρw, ρo μw, and μo are constants. We may then make the
following interpretation of (6.4.34). First, we define:

Fw = Me f f ·M−1
o , Gw = −Me f f , Hw = (ρw − ρo)gMe f f . (6.4.35)

We note that Fw can also be written as Fw = Mw(Mw + Mo)
−1. If Mw and Mo are

scalars, Fw is called the fractional flow function for the water phase.
Then, (6.4.34) can be written as:

φ
∂Sw

∂t
= −∇·(Fw·qt ) + ∇·(Gw·∇Sw) + ∇·(Hw·∇z). (6.4.36)

Expanding the second term of this equation as

∇·(Fw·qt ) = qt ·(∇·Fw) + (∇qt )·Fw, (6.4.37)

and, noting that Fw = Fw(Sw), we may write:

∇·Fw = dFw

d Sw

·∇Sw. (6.4.38)

Thus, Eq. (6.4.36) can be rewritten in the form:

φ
∂Sw

∂t
= −

(
dFw

d Sw

·qt

)

·∇Sw + ∇·(Gw·∇Sw)

+∇·(Hw·∇z) − (∇qt ) ·Fw. (6.4.39)

Wenote that (6.4.39) is nowa single equation in the single variable Sw .OftenGw·∇Sw

is small compared to other terms on the right-hand side.
The standard equations derived and used in reservoir engineering, differ from

(6.4.28) and (6.4.34) presented here. The main difference results from the treat-
ment of the effective mobilities, Mw and Mo. Reservoir engineers often limit the
analysis to isotropic porous media in which the effective permeability reduces to a
scalar. They then introduce the definition of relative permeability—also a scalar—
for each of the phases, with kw = kkrw and ko = kkro, in which permeabilities are
defined as scalars. This assumption of scalar permeabilities simplifies the results
becauseMwMo = MoMw, whereas in the general case of an anisotropic medium,
Mw·Mo �= Mo·Mw. This affects the development of qw and, hence, the resulting
saturation equation.

For completeness,we present the pressure and saturation equations for an isotropic
medium. Equation (6.4.28) becomes:
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φ
∂

∂t
(Swρw + Saρo) = ∇·[(ρwMw + ρoMo)∇P]

− 1
2∇·[(ρwMw − ρaMo)∇ pc]

+ g∇·[(ρ2wMw + ρ2oMa)∇z], (6.4.40)

in which the mobilities are now scalars. Equation (6.4.34) becomes:

φ
∂

∂t
(Swρw) = −∇·{ρwMe f fM−1

o

[

qt − Mo(ρa − ρw)g∇z
]}

−∇·(ρwMe f f ∇ pc
)

, (6.4.41)

where Me f f is defined in (6.4.33).

6.4.4 Linear Displacement and Fingering

In Sect. 5.2.1A and B we have introduced the “sharp interface” approximation that
separates two fluids from each other as they move together within a considered
domain. However, earlier in the current chapter, we have introduced the concept
of (macroscopic) capillary pressure which produces a gradual saturation transition
zone between the two fluids. Here, we wish to discuss an important phenomenon that
affects the saturation distribution as an initially sharp interface that separates the two
moving fluids is being displaced. This instability, referred to as “viscous fingering”
(e.g., Bear 1972, p. 544), is strongly dependent on the mobility ratio between the two
fluids, where mobility is defined by (6.4.24).

Consider the horizontal 1-d flow in the direction +x of two incompressible fluids
in a homogeneous porous medium domain of length L . Initially, the two fluids are
separated by an interface in the form of a plane whose normal is in the direction of
+x . When flow is initiated, say by a pressure gradient, the interface advances: fluid
1 which is a wetting fluid, say water, displaces fluid 2 which is a non-wetting fluid,
say oil. At some time t the interface reaches a distance x f from the origin at x = 0.
We can describe the location of this interface by the equation:

F(x, t) ≡ x − x f (t) = 0. (6.4.42)

For the horizontal flow considered here, we shall express the model in terms
of pressure: we wish to determine the pressure distributions: pw = pw(x, t) and
pnw = pnw(x, t). and the displacement, x f (t), such that:

∂2 pw

∂x2
= 0, 0 ≤ x ≤ x f (t),

∂2 pnw

∂x2
= 0, x f (t) ≤ x ≤ L , (6.4.43)

http://dx.doi.org/10.1007/978-3-319-72826-1_5
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pw = pnw(neglecting pc) on xf = xf(t), (6.4.44)

kwo

μw

∂ pw

∂x
= knwo

μnw

∂ pnw

∂x
= −qx , on x f = x f (t), (6.4.45)

in which kwo denotes the wetting fluid permeability at residual non-wetting fluid
saturation, and knwo denotes the non-wetting fluid permeability at irreducible wetting
fluid saturation.

The conditions at the boundaries are

x = 0, pw = pwo, x = L , pnw = pnwL . (6.4.46)

By integrating (6.4.43) and using conditions (6.4.44) through (6.4.46), we obtain:

pw = po − pL

Mr L + (1 − Mr )x f
x + pwo, pnw = po − pL

Mr L + (1 − Mr )x f
M(L − x) + pnwL ,

(6.4.47)
in which Mr = (kwo/μw)/(knwo/μnw) is called the mobility ratio. Hence:

qx = kwo

μw

pwo − pnwL

Mr L + (1 − Mr )x f
. (6.4.48)

Since ∂F/∂t = −∂x f /∂t and V V ·∇F = Vx∂F/∂x = Vx ,= qx/φ, we obtain:

− ∂x f

∂t
+ kwo

μwφ(1 − Swo − Snwo)

pwo − pnwL

Mr L + (1 − Mr )x f
= 0. (6.4.49)

Replacing ∂x f /∂t by dx f /dt and integrating, we obtain:

t = μwφ (1 − Swo − Snwo) L2

kwo(pwo − pnwL)

[

Mr

( x f

L

)

+ 1

2
(1 − Mr )

( x f

L

)2
]

(6.4.50)

for the time required for the front to advance from x = 0 to some distance x = x f (t).
From the last equation it follows that the front either accelerates or decelerates,
depending on whether Mr > 1 or Mr < 1. In the special case of Nr = 1, the front
moves at a constant speed.

Figure6.11 shows (6.4.50) in a graphical form (following Collins 1961, p. 175)
Contrary to the above development, which is based on a “sharp interface approx-

imation”, reality is different. An important phenomenon has been overlooked when
assuming that “a sharp interface separates the two moving fluids”. This is the phe-
nomenon of instability referred to as viscous fingering (e.g., Bear 1972, p. 544).
Figure6.12 shows the instability that occurs when two fluids, initially separated by
a sharp interface, displace each other in the void space.

To explain the process that produces instability, consider the case of an advancing
front as described above, but due to the irregular shape of the void space at the
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Fig. 6.11 Displacement of a sharp front (Bear 1972, p. 528)

Fig. 6.12 Instability at a moving interface (flow is from left to right)

microscopic level, a small “bump”, of length ε(� xf ) starts on the advancing front
between the two fluids. Collins (1961, p. 197) writes (6.4.49) in the form:

dε

dt
= − kw

φμw(1 − Swr − Snr )

(1 − Mwn)ε

[Mwn L + (1 − Mwn)xf ]2 (pw,0 − pw,L), (6.4.51)

concluding that after a bump has been initiated, ifMwn > 1, then ε will grow expo-
nentially with time; when Mwn < 1, the bump will decay exponentially with time.
This simple example shows that if the displacing fluid is more mobile than the dis-
placed one, any small perturbation of the advancing front produces fast growing
irregularities in the form of “fingers”, or “viscous fingers” that extend from the
advancing front.

According to Scheidegger (1960a, 1960b), a finger will develop only if its forma-
tion will consume less energy than the corresponding stable front displacement of
the front. He also reaches the conclusion that a finger will develop whenMwn > 1.

The above analysis does not include the effects of gravity and capillarity on
fingering at an advancing sharp interface. Bear (1972, p. 547), followingMarle (1965,
p. 150), discussed the effect of gravity by investigating the vertical displacement of
horizontal front shown in Fig. 6.13. In the stable case, i.e., without a finger, we write:
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Fig. 6.13 Gravity effect on
instability at a moving
interface

q1 = − k1
μ1

(
∂ p1

∂z
+ ρ1z

)

, q2 = − k2
μ2

(
∂ p2

∂z
+ ρ2z

)

. (6.4.52)

The rising front moves at the velocity VF = q1/φ
∗ = q2/φ

∗, where φ∗ represents the
porosity for complete separation between the fluids, and for φ(1 − Swo − Snwo) in
the case of incomplete separation. and k1 and k2 are effective permeabilities. When
a finger is formed, let VD, qD denote the velocity of the advancing “finger” (point D)
in Fig. 6.13. Within this finger:

qD = − k1
μ1

(
∂ p2

∂z
+ ρ2z

)

= φVD. (6.4.53)

In the above equation, ∂ p2/∂z is used because the finger is completely surrounded
by fluid 2, which imposes its pressure on the fluid within the finger. VD > VF means
that the finger tends to grow, and vice versa. From the last two equations, it follows
that:

VD − VF = − k1
φμ1

(
∂ p2

∂z
− ∂ p1

∂z

)

, (6.4.54)

or,

VD − VF = − k1
φμ1

[

φVF

(
μ1

k1
− μ2

k2

)

+ g(ρ1 − ρ2)

]

, (6.4.55)

or:

VD − VF = (M1,2 − 1)(VF − VC), VC = − k1g

φμ1
(ρ1 − ρ2)(1 − M1,2) (6.4.56)

where M1,2 = (k1/μ1)/(k2/μ2) denotes the mobility ratio, with subscripts 1 and 2
denoting the displacing and displaced fluids, respectively.

Marle (1965, p. 150) summarizes the conditions for the development of fingers,
making use of Fig. 6.13, which shows a vertical cross-section, with Vf > 0 denoting
the velocity of the upward moving front, and VD denoting the velocity at which the
finger (Point D) advances:
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• If μ2/k2 < μ1/k1 i.e., M1,2 < 1, and ρ1 > ρ2, Vc < 0, then always, VD < Vf ,
and the front is stable.

• if μ2/k2 < μ1/k1 i.e., M1,2 < 1, and ρ1 < ρ2, always Vc > 0, but there are two
possibilities: if Vf > Vc, the front is stable; if Vf < Vc, the front is unstable, where
Vc = −(k1/φμ1)g(ρ1 − ρ2)(1 − M1,2) is a critical velocity that determines the
stability of the front.

• If μ2/k2 > μ1/k1, i.e.,M1,2 > 1, and ρ1 < ρ2, the displacement is stable if Vf <

Vc, and unstable if Vf > Vc.
• If μ2/k2 > μ1/k1, i.e.,M1,2 > 1, and ρ1 < ρ2, we cannot have Vf < Vc, because

Vc > 0, and the front is always unstable,

Although the subject of fingering was introduced above in connection with two
immiscible fluid phases, it is possible that fingering due to density difference will
occur also at the interface between two miscible fluids, e.g., domains that contain
the same fluid, but with a large difference in the concentration of dissolved solutes.
Salt water above fresh water may serve as an example. Natural convection of CO2

dissolved in water is another example.
Note that a difference in densitymay be produced not only by solute concentration

but also by different temperatures. Nield and Bejan (2013) considered this case.

6.4.5 The Buckley Balance Equation

Consider a model of one-dimensional flow along the z-axis (positive upward) of
constant density (w and o)-fluids in a stationary nondeformable porous medium.
Then, (6.4.41) takes the form:

φ
∂Sw

∂t
+ ∂

∂z

{

Me f f

[
qt

Mo
+ ∂ pc

∂z
− (ρw − ρo)g

]}

= 0. (6.4.57)

Note that

− ∂ pw

∂z
= ρwg + rw

Mw

qt , rw ≡ qw

qt
, (6.4.58)

− ∂ po

∂z
= ρog + ro

Mo
qt , ro ≡ qo

qt
, (6.4.59)

where, Mo and Mw denote the o and w mobilities.
By subtracting (6.4.59) from (6.4.58), and using rw + ro = 1, we obtain:

rw = Me f f

{
1

Mo
+ 1

qt

[
∂ pc

∂z
− (ρw − ρo)g

]}

. (6.4.60)
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The balance equation for total mass, ∂qt/∂z = 0, implies that qt (≡ qw + qo)
= const., or possibly qt = qt (t). Note that since pc, Mo, and Mw are functions of
water saturation, we have rw = rw(Sw, t). As a result, (6.4.57) reduces to the form:

∂Sw

∂t
+ qt (t)

φ

∂rw

∂z
= 0. (6.4.61)

Even in this simplified case, obtaining solutions of the nonlinear governing equa-
tions is difficult and, generally, requires computer-based methods. Buckley and Lev-
erett (1942) proposed an analytic solution for cases in which the effects of capillary
pressure and gravity may be neglected. Their solution is often used in reservoir engi-
neering to investigate horizontal one-dimensional displacement of oil by water in a
reservoir.

Let two fluids, water (wetting fluid, w) and oil (nonwetting fluid, n), flow in
a one-dimensional horizontal reservoir. If the effects of capillary pressure may be
neglected, relative to the other terms in (6.4.61), i.e., when |dpc/dx |(krnw/μnw) � 1,
the saturation equation becomes

∂Sw

∂t
+ qt (t)

φ

d

r w
dSw

∂Sw

∂x
= 0, (6.4.62)

with which (6.4.60) reduces to the fractional flow function

rw = Me f f

Mnw

= 1

1 + Mnw

Mw

= 1

1 + krnw

krw

μw

μnw

. (6.4.63)

Neglecting the effect of capillary pressure is justified only in certain regions.
When saturation gradients are large, this assumption is not valid, and a numerical
solution is required.

We note that rw is a function of Sw only, through the dependence on kw and knw.
Figure6.14 shows rw = rw(Sw) for this case.

Fig. 6.14 Fractional flow function, rw = rw(Sw)



6.4 Mass Balance Equations and Complete Model 419

Equation (6.4.62) is known as the Buckley–Leverett equation. This is a quasi-
linear, homogeneous, first-order partial differential equation, which can be solved by
the method of characteristics (e.g., Marle 1981).

From Sw = Sw(x, t), it follows that

dSw

dt
= ∂Sw

∂x

dx

dt
+ ∂Sw

∂t
.

If x = ξ(t) is chosen to coincide with an advancing point of fixedwater saturation,
say, Sw = S, then dSw/dt = 0 at this point, and its velocity is

uw = dξ

dt

∣
∣
∣
∣

Sw=S

= − ∂Sw/∂t

∂Sw/∂x
. (6.4.64)

By combining (6.4.62) with (6.4.64), we obtain:

uw = qt (t)

φ

drw

dSw

∣
∣
∣
∣

Sw=S

. (6.4.65)

Then, integrating (6.4.65), the position of the point with specified water saturation,
Sw = S, at time t is given by

x
∣
∣

Sw=S(t) − x
∣
∣

Sw=S(0) = V(t)

φ

drw

dSw

∣
∣
∣
∣

Sw=S

, (6.4.66)

where

V(t) =
∫ t

0
qt (t) dt

denotes the volume of the wetting phase that passes through the horizontal column
(per unit area normal to the flow). For qt equal to a constant, we obtain

x
∣
∣

Sw=S(t) = x
∣
∣

Sw=S(0) + qt t

φ

drw

dSw

∣
∣
∣
∣

Sw=S

. (6.4.67)

Figure6.15 illustrates the function drw/dSw. Figure6.16 shows the solution in
graphical form. Note that both small and large values of Sw travel at a velocity that
is smaller than that of intermediate Sw-values. As a consequence, it is possible that
at a given point in space and time we shall have three saturation values. Obviously,
this is a non-physical solution. The reason for this situation is that we have neglected
the effect of capillary pressure. Mathematically, the triple saturation points in the
solution at a given x, t is a result of replacing a second order partial differential
equation by a first order one.

Let us demonstrate how to overcome this situation by considering a case in which
the nonwetting fluid is injected into a column (representing one-dimensional flow
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Fig. 6.15 The function drw/dSw

Fig. 6.16 Triple saturations in a Buckley–Leverett solution

in a reservoir) initially at residual water saturation, with the end maintained at the
maximum value, i.e.,

t = 0, 0 < x < L , Sw = Swr ,

x = 0, t > 0, Sw = 1 − Snwr .

By injecting water at x = 0 at the constant rate, qt , the saturation at x = 0 is raised to
1 − Snwr . To avoid the non-physical solution, when the flow rate is sufficiently high,
we introduce a discontinuity, or shock, i.e., a sudden spatial change in the saturation
profile. Let us denote the saturation at the advancing shock or front by Sw f . This shock
travels along the column as Sw f = Sw f (t). Obviously, mass must still be conserved.

Figure6.17 shows this shock. In this figure, we note that the rectangular area is:
xf (Sw f − Swr ). With x(0) = 0 in (6.4.66), this area must equal
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(a) (b)

Fig. 6.17 Introducing a saturation discontinuity

∫ Sw f

Swr

x dSw ≡
∫ Sw f

Swr

u(t)

φ

drw

dSw

dSw

= u(t)

φ

∫ rw f

rwr

drw = u(t)

φ

drw

dSw

∣
∣
∣
∣

Sw f

(Sw f − Swr ),

or
drw

dSw

∣
∣
∣
∣

Sw f

=
rw

∣
∣

Sw f
− rw

∣
∣

Swr

Sw f − Swr
=

rw

∣
∣

Sw f

Sw f − Swr
. (6.4.68)

Thus, the velocity of the front is determined by

uf ≡ dx

dt
= qt

φ

[[ rw ]]1,2
[[ Sw ]]1,2

, (6.4.69)

where [[ (..) ]]1,2 denotes the jump in (..) from side 1 to side 2 across the shock. The
location of this moving front is

x = u(t)

φ
=

r
∣
∣

Sw f

Sw f − Swr
.

This relationship, along with Fig. 6.17b, serve as the basis for the graphical deter-
mination of xf and Sw f suggested by Welge (1952).

Figure6.18 shows an advancing shock for the case where initially the column is at
Sw = Sw1, Sn = 1 − Sw1. By injecting the wetting fluid at x = 0, at a constant rate,
qtrw2, and the nonwetting fluid at a constant rate qt (1 − rw2), the saturation at x = 0
rises to Sw2, and stays at that saturation level. We note how from point (Sw1, rw1),
we draw a tangent to the curve rw = rw(Sw) to determine the location of the point
(Sw f , rw f ), thus determining the value Sw f from the relationship:
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Fig. 6.18 Graphical solution for Sw f ; initially, Sw �= Swr

Fig. 6.19 Effect of capillarity

drw

dSw

∣
∣
∣
∣

Sw f

=
rw

∣
∣

Sw f
− rw

∣
∣

Sw1

Sw f − Sw1
.

As the rw(Sw)-curve shifts to the right, the shock saturation, Sw f , becomes higher,
while the shock velocity (i.e., the slope of the curve) becomes smaller. Even at high
shock saturations, we observe, in experiments and in the field, the effect of the
neglected capillary pressure on smearing the shock front (Fig. 6.19).

Obviously, the Welge method described above is valid only when the fractional
flow function has an inflection point. Otherwise, we may have one of the two situa-
tions shown in Fig. 6.20

So far, in applying the Buckley–Leverett approach to horizontal flow, we have
neglected the effect of gravity. This effect is represented by the term (ρw − ρn)g in
(6.4.60). For an inclined system, this term is replaced by (ρw − ρn)g sinα. When
α �= 0, we should take this effect into account when calculating rw. As a result, the
rw-curve will shift to the right when the ratio (ρw − ρn)g sinα/qtμw increases (i.e.,
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Fig. 6.20 No inflection point in the rw-curve

at low qt in updip displacements (α > 0), and at high qt in a downdip displacements
(α < 0)).

Finally, for a column of length L , breakthrough (i.e., appearance of the injected
water at x = L) will occur at time tb, given by

tb = Lφ

qt (drw/dSw)
∣
∣

Sw f

. (6.4.70)

Note that Lφ/qt expresses the mean residence time of the injected water in the
column. The breakthrough time, tb, increases as the rw-curve shifts to the right.

We may also estimate the volume of produced nonwetting fluid at x = L , from:

Vproduced = A
∫ t

0
qnwdt = A

∫ t

0
qt (1 − rw

∣
∣
x=L

)dt. (6.4.71)

Figure6.21 shows some of these relationships.
The multi-dimensional Buckley–Leverett problem can be derived by taking the

constant density form of (6.4.41), and ignoring the∇Sw term. More on the Buckley–
Leverett solution can be found in the reservoir engineering literature, e.g., Marle
(1981), and Barenblatt et al. (1990).
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6.4.6 Two Phases with Interphase Mass Transfer

Often, in multiphase flows, components are exchanged among the fluid phases. Air
dissolved in water and evaporation of water in the unsaturated zone, may serve as
examples. Gas dissolution, retrograde condensation, and vaporization and condensa-
tion of injected gases, encountered in oil recovery operations, may serve as additional
examples. In fact, terms that express the transfer of an extensive quantity, E , from
the wetting phase to the nonwetting one, or vice versa, appear in the fundamen-
tal E-balance equations (3.3.4). This equation will serve as the basic mass balance
equation for the following presentation.

Let us introduce the subject through three examples.

• Example 1: Air solubility and water vaporization

In this example, the wetting phase is an aqueous liquid, denoted by subscript �,
and the nonwetting phase is a gas, denoted by subscript g. The liquid is made up of
liquid water and dissolved air. The gas phase is made up of air (a) and water vapor
(w). Isothermal conditions are assumed.

The mass balance equation for water (H2O) in the liquid phase:

∂φS�ρ
w
�

∂t
= −∇·φS�(ρ

w
� V� + Jw

h�) + f w
g→� + φS�ρ��

w
� , (6.4.72)

where φ is the porosity, which under certain circumstances may vary in space (het-
erogeneity) and time (in a deformable porous medium) and Jw

h� denotes the w-flux
by hydrodynamic dispersion (dispersion + diffusion) in the �-phase.

• The mass balance equation for water vapor in the gaseous phase:

∂φSgρ
w
g

∂t
= −∇·φSg(ρ

w
g Vg + Jw

hg) + f w
�→g + φSgρg�

w
g , (6.4.73)

http://dx.doi.org/10.1007/978-3-319-72826-1_3


6.4 Mass Balance Equations and Complete Model 425

where Jw
hg denotes the w-flux by hydrodynamic dispersion (dispersion + diffusion)

in the g-phase.

• For dissolved air in the liquid phase:

∂φS�ρ
a
�

∂t
= −∇·φS�(ρ

a
�V� + Ja

h�) + f a
g→� + φS�ρ��

a
� . (6.4.74)

• For air in the gaseous phase:

∂φSgρ
a
g

∂t
= −∇·φSg(ρ

a
gVg + Ja

hg) + f a
�→g + φSgρg�

a
g . (6.4.75)

• Advective fluxes of liquid and gas phases:

q� ≡ φS�V� = −k�

μ�

·(∇ p� + ρ�g∇z), (6.4.76)

qg ≡ φSgVg = −kg

μg
·(∇ pg + ρgg∇z), (6.4.77)

in which the effective permeabilities are known functions of the respective Sα’s.

• The capillary pressure:

pg − p� = pc(S�), (6.4.78)

in which pc(S�) is a known function that relates the capillary pressure to phase
saturation.

• Sum of saturations:

S� + Sg = 1. (6.4.79)

• Concentrations of components related to phase densities:

ρ� = ρw
� + ρa

� , ρg = ρa
g + ρw

g . (6.4.80)

At this point, we have 14 scalar equations in terms of 18 scalar variables:

ρw
� , ρa

� , ρ
a
g, ρ

w
g ,V�,Vg, p�, pg, S�, Sg, ρ�, ρ,

and the two rates of phase changes (= interphase transfers):

f w
�→g(= − f w

g→�), f a
g→�(= − f a

�→g).
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The total fluxes, J�, Jg have not been counted as variables, because they can easily
be related to the advective phase fluxes and to concentration gradients. The source
functions, �a

� , �
a
g , etc., are also assumed known, and so are the constitutive relations:

μ�(p�, ρ
w
� , . . .), and μg(pg, ρ

a
g, . . .). The temperature, T is assumed here a known

constant.
To eliminate the rates of phase change from the component balance equations,

we sum up, for each chemical substance, the corresponding component balance
equations for the two phases. The result is a single balance equation for the considered
substance in the porous medium.

Thus, the two mass balance equations for the chemical substances, obtained for
the porous medium as a whole, are:

• Mass balance equation for pure water

This equation is obtained by summing (6.4.72) and (6.4.73):

∂

∂t
(φS�ρ

w
� + φSgρ

w
g ) = −∇·(φS�ρ

w
� V� + φSgρ

w
g Vg)

−∇·(φS�Jw
h� + θgJw

hg) + φS�ρ��
w
� + φSgρg�

w
g . (6.4.81)

• Mass balance equation for dry air

This equation is obtained by summing (6.4.74) and (6.4.75):

∂

∂t
(φS�ρ

a
� + φSgρ

a
g) = −∇·(φS�ρ

a
�V� + φSgρ

a
gVg)

−∇·(φS�Ja
h� + φSgJa

hg) + φSgρg�
a
g + φS�ρ��

a
� . (6.4.82)

In this way, we have eliminated the rates of phase change, but now each of the
substance balance equations involves component concentrations in both phases.

Altogether, we now have 12 scalar equations for the 16 scalar variables. The
required additional equations must express thermodynamic relationships between
components in the two phases. This calls for the introduction of two additional
variables, the partial pressures for the gaseous phase, pa

g and pw
g , with the relationship

pa
g + pw

g = pg. (6.4.83)

Now there are 13 equations and 18 state variables to be solved for. Following are
5 additional relationships.

The relationship between component concentrations, densities, and pressures:

ρa
� = ρa

�(pg, p�, T ), (6.4.84)

which relates air solubility in liquid water to air and water pressures. Alternatively,
we may use Henry’s law, which relates the mole fraction of a gas component (= the
solute) in a dilute liquid solution (= the solvent) to its partial pressure in the solution.
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Assuming that water vapor and dry air components in the gaseous phase behave
as ideal gases, we write for the gaseous (air) phase:

pw
g = RT

Mw
ρw

g , pa
g = RT

Ma
ρa

g, (6.4.85)

in which R(= 8.1347J/mole◦K) is the universal gas constant, T is the absolute tem-
perature (in ◦K), and Mw(= 18g/mole) and Ma(= 29g/mole) are the molar masses
of ‘pure’ water and ‘dry’ air, respectively.

The relative humidity, hr (= (ρw
g /ρw

g

∣
∣)sat), in which ρw

g

∣
∣

sat
, is the vapor’s concen-

tration (= density) at saturation. It is given by Edelfsen and Anderson (1943). Let us
rewrite it here for convenience in the form:

ρw
g

(ρw
g )

∣
∣

sat

= exp

{

− pg − p�

ρ�

Mw

RT

}

. (6.4.86)

Finally, the liquid phase mass density is related to its pressure, to the temperature
and to the amount of air dissolved in it by:

ρ� = ρ�(p�, T, ρa
� ). (6.4.87)

Altogether we now have 18 scalar equations in 18 scalar variables. In principle,
with appropriate initial and boundary conditions, a solution can be obtained.

Example 2: Black - oil model

Thismodel is often employed in reservoir engineering. Phase behavior is presented
in Sect. 2.3.

The main features introduced here are:

(a) The distinction between the density of a fluid phase when under the conditions
of pressure and temperature prevailing in a reservoir, recalling that the balance
equations are actually written for these conditions, and the density of that phase,
as determined when it is brought to ground surface and exposed to pressure and
temperature under atmospheric or stock tank conditions.

(b) The possibility of a gas dissolving in the oil.

We shall make use of the definition of phase formation volume factor, Bα, of an
α-phase (α = w, n, or α = o, w, g for oil, water and gas), presented in Sect. 2.3.1,
but express it here in a slightly different form:

Bα = Volume of phase under RC

Volume of phase under SC
= ρα,SC

ρα,RC

, (6.4.88)

where subscripts RC and SC denote reservoir conditions and standard, or stock tank,
conditions, respectively. We note that a liquid phase under reservoir conditions may
also include dissolved gas. Its density is affected by this fact. Similarly, a liquid phase
may be volatile, so that the gas may contain also a vapor of the liquid.

http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
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Models of multiple multicomponent phases, the so called compositional model,
are discussed in Chap.6. Here, we shall introduce a simpler form of this model.

Consider the case of three phases: a wetting phase (water, w), an intermediate
wetting phase (oil, o) and a nonwetting one (gas, g). For these phases, we have:

Bo = Voil,RC
+ Vdis.gas,RC

Voil,SC

= Bo(po).

Bw = Vwater,RC

Vwater,SC

= Bw(pw).

Bg = Vdis.gas,RC

Vgas,SC

= Bg(pg).

Within the reservoir gas solubility in the oil is expressed by:

Rg
o = Vdis.gas,SC

V oil,SC

= Rg
o(po),

i.e., the ratio of the volume of gas dissolved in oil to the volume of the latter, both
under standard conditions.

Similarly, the gas solubility in water is given by:

Rg
w = Vdis.gas,SC

Vwater,SC

= Rg
w(pw).

The mass of (liquid) oil in a reservoir is made up of the mass of oil component in
the liquid and that of gas dissolved in the latter, as they are separated on the ground
surface, i.e.

moil,RC
= moil,SC

+ mgas,SC .

Expressing this relationship in terms of volumes and densities, we obtain:

ρo,RCVoil,RC
= ρo,SCVoil,SC

+ ρg,SCVdis.gas,SC

= ρo,SCVoil,SC
+ Rg

oρg,SCVoil,SC

= Voil,SC
(ρo,SC + Rg

oρg,SC),

or:
ρo,RC(Voil − Vdis.gas)RC = Voil,SC

+ (ρo + Rg
oρg)SC .

or:
ρo,RC(Voil − Vdis.gas)RC = Voil,SC

+ (ρo + Rg
oρg)SC .

http://dx.doi.org/10.1007/978-3-319-72826-1_6
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Hence, the density of the oil under reservoir conditions is expressed as:

ρo ≡ ρo,RC = 1

Bo
(ρo,SC + Rg

oρg,SC). (6.4.89)

Similarly, for the water:

ρw ≡ ρw,RC = 1

Bw

ρw,SC, (6.4.90)

and for the gas:

ρg ≡ ρg,RC = 1

Bg
ρg,SC. (6.4.91)

Making use of the above definitions, we can write the balance equation for oil (as
a component) in the oil phase in the reservoir, in the form:

∂

∂t

(
φSo

Bo

)

= −∇·
(
qo

Bo

)

− Qo

ρo,SC
, (6.4.92)

where Qo is the rate of oil withdrawal (in mass per unit volume of porous medium
per unit time). Each term expresses volume of oil under stock tank conditions (SC),
per unit volume of porous medium per unit time.

The corresponding balance equation for the water phase, takes the form:

∂

∂t

(
φSw

Bw

)

= −∇·
(
qw

Bw

)

− Qw

ρw,SC
, (6.4.93)

To write the gas balance equation under reservoir conditions, we note that gas is
present both as free gas and as gas dissolved in the oil. Hence:

∂

∂t

{

n

(
Rg

o So

Bo
+ Sg

Bg
+ Rg

w Sw

Bw

)
}

= −∇·
(

Rg
o

Bo
qo + 1

Bg
qg + Rg

w

Bw

qw

)

− Qg

ρg,SC
− Rg

o Qo

ρo,SC
. (6.4.94)

The appropriate specific discharge expressions for oil, gas and water have to be
introduced into all the relevant balance equations. We note that these expressions
contain, in gravity term, densities which have also to be expressed in terms of SC-
densities, using phase formation volumes.

Example 3: Solution gas drive

We introduce this case as an example, encountered in reservoir engineering, in
which the liquid, �, and the gas, g, aremulticomponent phases, forwhich the densities
depend on pressure, component composition and temperature:
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ρ� = ρ�(p�, Xγ
� , T ), ρg = ρg(pg, Xγ

g , T ), (6.4.95)

and so are the viscosities:

μ� = μ�(p�, Xγ
� , T ), μg = μg(pg, Xγ

g , T ), (6.4.96)

where Xγ
α (≡ (ργ

α/Mγ)/
∑N

j=1(ρ
j
α/M j )) denotes the molar fraction of the γ-

component in the α-phase, with γ = 1, 2, . . . , N , and α = �, g.
For the sake of simplicity, we shall assume that the solid matrix is nondeformable,

and that conditions are isothermal. The effect of temperature changes and solidmatrix
compressibility, can always be added.

The mass balance equation for a γ-component, this time expressed in terms of
moles of γ, per unit volume of porous medium, in both phases, is given by

φ
∂

∂t

(

Xγ
�

ρ�

M�

S� + Xγ
g

ρg

Mg
Sg

)

= −∇·
(

Xγ
�

ρ�

M�

q� + Xγ
g

ρg

Mg
qg

)

, (6.4.97)

where component dispersive and diffusive fluxes, as is common in reservoir engi-
neering, have been neglected, Mα = ∑N

γ=1 Xγ
αMγ is the molecular weight of the

α-phase, with Mγ denoting the molecular weight of the γ-component, and the satu-
rations satisfy

S� + Sg = 1. (6.4.98)

Assuming that the two phases are at equilibrium, (2.3.7) is applicable, with g and
� replacing V and L.

Altogether, we have 3N+12 variables to solve for:

Xγ
g , Xγ

� Xγ, X�, Xg, ρg, ρ�, μg, μ�, pg, p�, qg, q�, Sg, S�.

In order to achieve this goal, we have:

• N balance equations, (6.4.97), one for every component in every phase.
• Two flux equations, one for each phase.
• Two equations of state for phase density.
• Two equations of state for phase viscosity.
• The capillary pressure that expresses the difference in pressure in the two phases.
• The sum of saturations (6.4.98).
• N Eq. (2.3.7), one for each component.
• N equations Xγ = Xγ

� X� + Xγ
g Xg (see Sect. 2.2.5).

• Two equations
∑N

γ=1 Xγ
α = 1, α = �, g.

• One equation
∑N

γ=1 Xγ = 1.
• One equation X� + Xg = 1.

http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
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6.5 Three Fluid Phases

The possibility that the void space is occupied by three (NP = 3) rather than two
fluid phases has already been presented in Fig. 2.11c. As examples, we may mention
petroleum reservoirs in which the void-space is occupied simultaneously by water,
oil and gas. Another example is the case where the unsaturated zone below ground
surface is contaminated by a spill (at ground surface) of a nonaqueous fluid phase
(NAPL; or DNAPL, when the nonaqueous phase is heavier than water). Although
the NAPL dissolves in water, air dissolves in water, water and NAPL evaporate,
etc., the three fluid phases, water, NAPL and gas(air) maintain rather ‘sharp’ visible
microscopic interfaces between them. In what follows, we shall briefly shows how
the two-phase flow and transport processes discussed earlier can be extended to three
fluid phases.

6.5.1 Statics

Let the entire void space be occupied by three fluid phases: a wetting phase (w), e.g.,
an aqueous phase, an intermediate wetting phase, e.g., an oil-phase (o), and a gas,
which is a nonwetting phase (g). Each of the three phases may be composed of a
number of chemical species.

Let Sα, α = w, n, g, denote the saturation of the three fluid phases that together
occupy the void space, with

Sw + Sn + Sg = 1. (6.5.1)

The discussion below is an extension of Sect. 6.1 on two fluid phases.

A. Capillary Pressure

The concept ofwettability, introduced for two fluid phases in Sect. 2.4.2, is applicable
also to three fluid phases. Usually, the wetting phase is in the immediate contact with
the solid, while the nonwetting phase is occupying pore space domains which are
away from the solid. However, oil-wet, or mixed oil-water-wet soils (= solids) may
be encountered, e.g., soils with high content of organic matter, or in cases where
mineral surfaces exhibit natural organic coatings. This phenomenon has a strong
influence on the behavior of fluid phases within the void space. In what follows, we
shall consider the more common case of soils for which water is the wetting phase,
oil is the intermediate wetting phase, and air (= gaseous phase) is the nonwetting
phase.

A schematic example of the three fluid phases in a typical cross-section of a ‘pore’
is shown in Fig. 6.22 for the phases: water (the wetting fluid), oil (the intermediate
wetting fluid), and air (the nonwetting fluid). The three phases are separated from
each other by two fluid-fluid (assumed sharp) interfaces: an intermediate wetting-
nonwetting interface, and a wetting-nonwetting one. Actually, it is difficult to pre-
cisely define a ‘pore’ and the ‘radius of a pore’ in a porous medium. Intuitively, let us

http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
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Fig. 6.22 Schematic pore
cross-section with three fluid
phases

Air

Oil
Water

SolidSolid

define a ‘radius of a pore’ (or effective radius) as the radius of the largest sphere that
can be placed in a considered portion of the void space, with the solid being tangent
to the sphere at least at two points. Due to the assumed order of wettability of the
three fluids, the wetting phase occupies primarily pores with the smallest effective
radii, the non-wetting phase occupies pores with the largest radii, and the intermedi-
ate wetting phase occupies intermediate size pores. Accordingly, the mean radius of
curvature of the wetting-intermediate wetting interfaces will always be smaller than
that of non-wetting-intermediate wetting interfaces.

The concept of macroscopic capillary pressure, introduced in Sect. 6.1 for two
fluid phases, can be extended to three phases that occupy the void space. The inter-
face curvature is related to the respective capillary pressures by a generalization of
Laplace’s formula (6.1.5). When the three phases are water (w, the wetting fluid),
oil (o, the intermediate wetting fluid) and gas (g, the non-wetting fluid), it takes the
form:

pcow ≡ po − pw = 2

r∗
ow

γow, pcgo ≡ pg − po = 2

r∗
go

γgo, (6.5.2)

where pcow and pcgo are oil-water and gas-oil capillary pressures, respectively, r∗
ow

and r∗
go are the average radii of oil-water and gas-oil fluid interfaces, respectively,

and γow and γgo are the respective interfacial tensions. The effect of the respective
contact angles, appearing as factors in cos θLG , can be included in (6.5.2), but are
commonly neglected in the ensuing analysis. The average radii of curvature of each
of the fluids are functions of the respective fluid saturations:

r∗
ow = r∗

ow(Sw), r∗
go = r∗

go(S�), (6.5.3)

where S� = (Sw + So) is the total liquid saturation. We note that r∗
ow is a function

of Sw only, since all pores with radii smaller than r∗
ow are assumed to be occupied

by water only. However, all pores with radii smaller than r∗
go are assumed to be

occupied by both water and oil, having a combined saturation of S� (= 1 − Sg). The
main assumption here is that, with respect to gas (which is the most nonwetting
fluid), the two liquids behave as a single wetting fluid.
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Since surface tension depends on temperature and concentration of dissolved
matter, e.g., expressed by the mass fractions ωγ

α, we could express the capillary
pressure curves in the general forms:

pg − po ≡ pcgo = pcgo(S�, γgo(T,ωγ
o )), (6.5.4)

po − pw ≡ pcow = pcow(Sw, γow(T,ωγ
w)), (6.5.5)

in which the superscript γ represents all dissolved components.
On the basis of the discussion on the difference between capillary pressure curves

and retention curves in two-phase flow, we can also introduce here the retention
curves

pg − po ≡ rcgo = rcgo(S�, T,ωγ
o ), (6.5.6)

po − pw ≡ rcow = rcow(Sw, T,ωγ
w). (6.5.7)

By extending (6.5.1) and (6.5.3) to three fluid phases, we obtain

pcnw(Sw) = 2

r∗(Sw)
γow, pcgn(S�) = 2

r∗(S�)
γgo. (6.5.8)

Again, we may replace the surface tension by its product with the cosine of the
contact angle.

This implies that, for a given pair of fluids, Sw is a function of pcow only, and
S� is a function of pcgo only. Let us use the superscripts II and III denote two- and
three-phase systems, respectively. Based on our previous assumptions, for a given
value of pcow, the resulting saturation, SIII

w (pcow), in a three-fluid phase system at
equilibrium should be identical, or almost identical, to the saturation SII

w(pcow) for
a two-phase, oil-water system, except for the influence of the cos θ’s.. Similarly,
at a given value of pcow, the saturation SIII

� (pcgo) for a three phase system should
be identical, or nearly identical, to the saturation SII

� (pcgo) for a two-phase (air-oil)
system. Put succinctly, we can write

SIII
w (pcow) = SII

w(pcow), SIII
� (pcgo) = SII

� (pcgo). (6.5.9)

This protocol, based on the assumption that gas does not touch the solid in the
presence of water and oil, was first proposed on theoretical grounds by Leverett
(1941), and verified experimentally by Lenhard et al. (1989).

The phenomenon of hysteresis in the relationship between capillary pressure and
saturation, discussed in Sect. 6.1 for two-phase systems, occurs also in three-phase
ones. Again, the reasons are nonwetting fluid entrapment, contact angle hysteresis,
and the ink bottle effect.
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Fig. 6.23 Schematic cross-section of an LNAPL lens above a sloping water table

B. Vertical Equilibrium Saturation Distributions

Consider a sufficiently large spill of LNAPL just above ground surface, such that
the percolating LNAPL (n) will reach and accumulate on an underlying water table
in the form of a floating lens that spreads out laterally (Fig. 6.23), primarily in the
direction of the downward sloping water table. The plume will move in the direction
of the water table slope. As it moves, LNAPL will dissolve in the water and a plume
of dissolved NAPL will develop.

The vertical distribution of LNAPL saturation, Sn , under the LNAPL source at
ground surface depends on the spilled volume, such that the infiltrating LNAPL will
become immobile when all the LNAPL is reduced to residual LNAPL saturation, Snr .
A sufficiently larger spill will create the lens described above. Figure6.24 shows the
vertical distribution of LNAPL in the subsurface resulting from spills of increasing
volumes (V1 < V2 < V3, . . . ,V8).

Because of the essentially horizontal movement of the lens, we may assume that
at any instant, the LNAPL in the subsurface is hydrostatically distributed along the
vertical, and, hence, vertical flow (of all phases) is negligible. This is often called
“vertical-equilibrium (VE-)hypothesis”, which is equivalent to stating that the ver-
tical pressure distribution within each phase is hydrostatic. The vertical distribution
within the LNAPL source area is shown schematically in Fig. 6.25.Outside the source
area, a similar distribution occurs, except that the upper extent of the lens will be
where the LNAPL saturation reaches the residual level. Above this point, no LNAPL
will be present.

To determine the vertical distributions of the three fluids, say air, water and
LNAPL, in the subsurface, under equilibrium conditions, assuming that fluid density
of each phase is constant, we define an equivalent piezometric head for each phase.
Taking water (w, wetting fluid) density as the reference density for all fluids, i.e.,
ρref = ρw, the equivalent piezometric heads, href,α, are defined by
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Fig. 6.24 Equilibrium LNAPL distributions in a three-fluid system for various spill volumes

Fig. 6.25 Equilibrium fluid distributions in a three-fluid system with LNAPL
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href,w = πw + z, href,n = πn + z
ρn

ρw

, href,a = πa + z
ρa

ρw

, (6.5.10)

where πα = pα/ρwg denotes the equivalent pressure head in the α-phase (i.e., the
height of an equivalent column of water that produces the pressure pα), and z denotes
the elevation above an arbitrary datum.

To facilitate the understanding of the distributions of the three fluid phases in the
subsurface, we consider the two wells shown in Fig. 6.25: Well 1, which is screened
along its entire length, and Well 2, which is screened only in the water-saturated
zone. We note fluid-fluid interfaces in both wells. Well 1 has an air-LNAPL (n)
interface at the elevation zan , and an LNAPL-water interface at the elevation znw.
Well 2 has only one air-water interface at the elevation zaw. Pressure is continuous
(i.e., no jumps) across these interfaces. Let us refer to the atmospheric pressure in
the air at (i.e., immediately above) the air-LNAPL interface inside Well 1 as zero
pressure (pa = 0). This is, then, also the pressure in the LNAPL at that point. At the
LNAPL-water interface, pn = pw so that pcnw = 0 there. Note that Sw = 1 occurs
at the LNAPL-water interface, where the LNAPL-water capillary pressure, pcnw,
is zero, while the soil remains fully water saturated for some distance above this
elevation. The reason is that LNAPL cannot enter pores until a certain capillary
pressure is exceeded. Inside Well 2, the air-water interface, where the pressure is
atmospheric, is at an elevation zaw. We note that S� = 1 occurs at the air-LNAPL
interface, while air does not enter pores for some distance above this elevation. The
thickness of the capillary fringe above the air-LNAPL interface is smaller than that
for the LNAPL-water one, because the air-LNAPL capillary pressure increases with
elevation in proportion to the LNAPL’s specific gravity, ρn/ρw, while the LNAPL-
water capillary pressure increases in proportion to (1 − ρn/ρw).

Hydrostatic conditions require that ∂href,α/∂z = 0, i.e., the reference piezometric
head, defined in (6.5.10), is a constant, independent of z, forα = a, n, w. Sinceρa/ρw

� 0, the pressure gradient in the air may be assumed to be negligible, or, equivalently,
the pressure in the air may be taken as approximately constant, equal to patm = 0.
As a consequence, we shall take the reference pressure head in the air, patm/ρwa =
πa = 0. For the LNAPL, the value of the constant for href is determined by noting that
at z = zan , pa = pn = 0, and hence href,n

∣
∣
z=zan

= zan(ρn/ρw). Accordingly, within
the LNAPL, href,n = zan(ρn/ρw). For the water, the value of href,w is determined by
noting that at z = zaw, pw = pa = 0. Hence, href,w = zaw. Altogether (Fig. 6.25):

πw = zaw − z, πn = (zan − z)
ρn

ρw

, (6.5.11)

for the water and for the LNAPL, respectively.
Since pw = pn at z = znw, we have

p
∣
∣
z=znw

= ρwg(zaw − znw) = ρng(zgn − znw). (6.5.12)

It follows that the various interface elevations are related to each other by
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zaw − znw = Hn
ρn

ρw

, Hn = zan − znw, (6.5.13)

where Hn is the thickness of the layer of LNAPL inside Well 1, as long as the
fluids in the well are in equilibrium with those in the soil. Stipulating any two of
the three interface elevations, completely defines the three phase static vertical head
distributions within the surrounding soil.

To determine the fluid saturation distributions, we recall that water saturation is
controlled by the gas-LNAPL capillary pressure, while total liquid saturation is con-
trolled by the nonwetting-water capillary pressure. Because of the different densities
of the three fluids, we introduce here equivalent capillary pressure heads, defined,
respectively, by

πan = πa − πn = pcan

ρwg
, πnw = πn − πw = pcnw

ρwg
. (6.5.14)

In view of (6.5.11) and (6.5.13), we write:

πan = (z − zao)
ρo

ρw

, πaw = (z − zaw)

(

1 − ρa

ρw

)

. (6.5.15)

The two equations in (6.5.15) express the relationships between the equivalent cap-
illary pressure and the elevation in the soil for the LNAPL and for the water. On
the other hand, following the discussion on capillary pressure presented above, since
the three phase capillary pressure relationships, πgn(S�) and πnw(Sw), between these
equivalent pressure heads and the liquid saturation (i.e., combinedwater andLNAPL)
and water, respectively, are known, we may readily compute the sought saturation
distributions along the vertical, S�(z) and Sw(z). For example, if hysteresis is disre-
garded, and the two-phase van Genuchten capillary pressure model, (6.1.18), is used,
we obtain

Sw = (1 − Swr )
[

1 + (Aβnwπnw)B]−C + Swr , (6.5.16)

S� = (1 − Swr )
[

1 + (Aβanπan)
B]−C + Swr , (6.5.17)

where A, B and C = 1 − 1/B are van Genuchten parameters for the soil, Swr is the
irreducible water saturation, and βan and βnw are fluid-dependent scaling factors.

6.5.2 Motion Equations

Continuing to assume no momentum transfer across the microscopic interfaces
between two fluid phases that jointly occupy the void space, the motion equations
for three fluid phases, say water (w), oil (o), and gas (g), are similar to (6.2.13) and
(6.2.14), except that an equation is required also for the third phase:
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qrw = −kw(on)(Sw)

μw

· (∇ pw + ρwg∇z), (6.5.18)

qro = −ko(wn)(Sw, Sn)

μo
· (∇ po + ρog∇z), (6.5.19)

qrn = −kn(ow)(Sn)

μn
· (∇ pn + ρng∇z). (6.5.20)

In these equations, kw(on) is the effective permeability to the wetting phase, in the
presence of the intermediate and nonwetting phases. Similar definitions apply to
ko(wn) and kn(ow).

Based on studies by Corey et al. (1956) and Snell (1962), although they actually
studied only relative permeabilities of isotropic porous media, we assume that

kw(on) = kw(Sw), kn(ow) = kn(Sn), ko(wn) = ko(Sw, Sn).

Following are some key interpretations of these equations:

• The effective permeabilities to the wetting phase and to the nonwetting one in a
two-phase system, are functions of their respective saturations only, i.e.,

kw(n) = kw(n)(Sw), kn(w) = kn(w)(Sn).

• In a three-phase system the effective permeabilities to the wetting (w), and non-
wetting (n),phases are the same functions of their respective saturations as they
are in a two-phase one, i.e.,

kw(on)(Sw) = kw(o)(Sw), kn(ow)(Sn) = kn(o)(Sn).

• The effective permeability to the intermediate wetting phase, (o), is a function of
both the wetting and the nonwetting saturations, i.e.,

ko(wn) = ko(wn)(Sw, Sn).

It is rather difficult to obtain, experimentally, the effective permeabilities as
functions of the various saturations (even for isotropic porous media). Practical
approaches in petroleum reservoir engineering (where the three phases are hydrocar-
bon gas, liquid hydrocarbon, and aqueous solution, for the nonwetting, intermediate
wetting, and wetting phases, respectively) are based on the estimation of three-
phase effective (or relative) permeabilities. Two sets of two phase data are used:
ko(w) = ko(w)(Sw), which is the effective permeability to the o-phase in an o-w-
system, and ko(n) = ko(n)(Sn) in an o-n-system. The same approach is valid when
the intermediate wetting phase is NAPL and the nonwetting phase is air. The under-
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Fig. 6.26 Two phase relative permeability curves: a NAPL-water, (o, w), and b gas-NAPL, (n, o),
in a three phase system

lying conceptual model, say, for a water-NAPL-air system, is that for the water, both
the NAPL and the air may be considered as more nonwetting phases, while for the
air, both the water and the NAPL are regarded as more wetting phases.

Figure6.26a, b show relative permeability curves for three phases (w, o, n) in an
isotropic porous medium. The point where kro = 0 corresponds to So = 1 − Sw max,
where Sw max is themaximum value occurring in the NAPL-water system, rather than
to the residual o-saturation, Sor , in a NAPL-water-air system. The latter saturation
can be further reduced by increasing air saturation.

Stone (1970, 1973), Aziz and Settari (1979) and Aleman and Slattery (1985)
proposedmethods and equations for determining three-phase relative permeabilities.
As in the case of two-phase flow, hysteresis is also exhibited in three-phase flow.

6.5.3 Compositional Model–three Multicomponent Phases

Compositional models are ones that track and describe what happens to individual
components, rather than individual phases or chemical species, during a transport
problem. This kind of modeling is very common in reservoir engineering, where
the phases are oil, gas and water. Components are chemical substances, or chemical
species, that have uniquely definedproperties. Thus,CO2,H2O,CH4 are components,
but an aqueous phase is not a component, because it may contain H2O, dissolved
gases, etc. Oil is generally not a component, as it usually contains many chemi-
cal species that behave differently, say, in interphase exchange, and phase change.
However, in many cases, to simplify the model, a mixture of several hydrocarbons
with similar properties is considered a pseudo-component. Air may be considered a
component if we assume that the O2 to N2 proportion does not change. However, if
we attempt to be accurate in tracking O2 to N2 relations (e.g., because O2’s solubility
in H2O is much higher than that of N2), then we cannot use “air” as a component.
Instead, we have to track its two constituent components: O2 and N2, separately. This
type of model is to be compared with the models considered in Chap.7.

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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As an example, we consider the flow of three fluid phases: an aqueous liquid, a
nonaqueous liquid, and a gas. Water, oil and gas that together occupy the entire void
space, may serve as an example. Each phase is made up of a number of components.
The components, or at least some of them, can move from any phase to an adjacent
one by such mechanisms as dissolution, volatilization, condensation, adsorption etc.

We shall simplify the discussion by assuming that the solid matrix is rigid and
stationary. The term compositional model, originating in reservoir engineering, is
often used for such a model.

The considered solid and fluid phases are:

• A nonaqueous phase, N , containing a volatile component, d, that can dissolve in
the aqueous phase, and the rest of the phase, regarded as a second (non-volatile)
component, r . We shall assume that the d-component can evaporate from both the
aqueous and the nonaqueous phases, to become a component in the gaseous one.

• An aqueous phase, A, that contains ‘pure water’ as a component, w, and the d-
component as a solute.

• A gas, g, composed of two components: ‘dry air’, a, and the volatile d-component.
• A solid on which the d-component can be adsorbed, but only from the A-phase.

The three phases, their components, and the interphase transfer rates, are shown,
schematically, in Fig. 6.27. No other transfers will be considered.

To facilitate the presentation, let us introduce the balance operator, B:

Bγ
α(ωγ

α) ≡ ∂

∂t
(θαωγ

αρα) + ∇·θα

[

ωγ
αραVα − ραD∗γ

α ·∇ωγ
α − Dα·∇ωγ

αρα

]

.

Note that the mass fractions, ωγ
α, are used rather than the usual mass concentrations,

cγ
α. One reason is that, from thermodynamics, the density function of a fluid phase
is of the form ρα = ρα(p, T,ωγ

α). If the mass concentration is used, we are left with
the circular result, ρα = ρα(p, T, cγ

α/ρα).
In some cases, one or more of the modes of transport (advection, dispersion, or

diffusion), appearing in Bγ
α, may not exist.

Fig. 6.27 Schematic
diagram for component
transport in three phase flow

�
�

�
��

g: d,w, a A: d,w, a

N : d,w, a

s: d

fdg→A �
fwg→A �
fag→A �

fdA→s�

fdN→A

�

fwN→A

�

faN→A

�
fdN→g

�

fwN→g

�

faN→g

�



6.5 Three Fluid Phases 441

Employing this operator, we can write the mass balance equation for each of
the components in all the phases. We shall assume no external sources and sinks of
phases and components, no decay and growth, and no chemical interactions. The only
sources and sinks of components are due to adsorption and volatilization. Moreover,
we assume that the temperature is uniform throughout the domain.

The mass balance equations for the three components in the A-phase are:

Bw
A (ωw

A ) = f w
N→A + f w

g→A, Ba
A(ω

a
A) = f a

N→A + f a
g→A, (6.5.21)

Bd
A (ω

d
A ) = f d

N→A + f d
g→A + f d

s→A. (6.5.22)

The mass balance equations for the three components in the g-phase are:

Bw
g (ωw

g ) = f w
N→g − f w

g→A, Ba
g (ω

a
g ) = f a

N→g − f a
g→A, (6.5.23)

Bd
g (ωd

g ) = f d
N→g − f d

g→A, (6.5.24)

and, for the N -phase, they are:

Bw
N (ωw

N ) = − f w
N→A − f w

N→g, Ba
N(ω

a
N) = − f a

N→A − f a
N→g, (6.5.25)

Bd
N (ωd

N ) = − f d
N→A − f d

N→g. (6.5.26)

The mass balance equation for the d-component adsorbed on the s-surface is

Bd
ads(c

d
ads) = − f d

s→A, cd
ads ≡ (1 − φ)ρs Fd , (6.5.27)

where the balance operator is defined by:

Bd
ads(c

d
ads) ≡ ∂cd

ads

∂t
.

In order to eliminate the interphase transfers, we sum up the mass balance equa-
tions for the d-component in all phases, i.e.,

Bd
A (ω

d
A ) + Bd

N (ωd
N ) + Bd

g (ωd
g ) + Bd

ads(c
d
ads) = 0.

We then obtain:

∂

∂t

[

θAω
d
A ρA + θNω

d
N ρN + θgω

d
g ρg + (1 − φ)ρs Fd

]

+∇·(θAω
d
A ρAVA + θNω

d
N ρNVN + θgω

d
g ρgVg

)

−∇·(θAρAD∗d
A ·∇ωd

A + θNρND∗d
N ·∇ωd

N + θgρgD∗d
g ·∇ωd

g

)

−∇·(θADA·∇ωd
A ρA + θNDN ·∇ωd

N ρN + θgDg·∇ωd
g ρg

) = 0. (6.5.28)
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In a similar way, we obtain the mass balance for the water component:

∂

∂t

[

θAω
w
A ρA + θNω

w
N ρN + θgω

w
g ρg

]

+∇·(θAω
w
A ρAVA + θNω

w
N ρNVN + θgω

w
g ρgVg

)

−∇·(θAρAD∗w
A ·∇ωw

A + θNρND∗w
N ·∇ωw

N + θgρgD∗w
g ·∇ωw

g

)

−∇·(θADA·∇ωw
A ρA + θNDN ·∇ωw

N ρN + θgDg·∇ωw
g ρg

) = 0, (6.5.29)

and the mass balance equation for the air component:

∂

∂t

[

θAω
a
AρA + θNω

a
NρN + θgω

a
g ρg

]

+∇·(θAω
a
AρAVA + θNω

a
NρNVN + θgω

a
g ρgVg

)

−∇·(θAρAD∗a
A ·∇ωa

A + θNρND∗a
N ·∇ωa

N + θgρgD∗a
g ·∇ωa

g

)

−∇·(θADA·∇ωa
AρA + θNDN ·∇ωa

NρN + θgDg·∇ωa
g ρg

) = 0. (6.5.30)

We note that the mass balance equations for any γ-component have the form:

∂

∂t

⎡

⎣
∑

α=A,N ,g

θαωγ
αρα + (1 − φ)ρs Fγ

s

⎤

⎦ + ∇·
⎡

⎣
∑

α=A,N ,g

θαωγ
αραVα

⎤

⎦

−∇·
⎡

⎣
∑

α=A,N ,g

θαραD∗γ
α ·∇ωγ

α

⎤

⎦ − ∇·
⎡

⎣
∑

α=A,N ,g

θαDα·∇ωγ
αρα

⎤

⎦ = 0,

γ = d, w, a; Fw
s = Fa

s = 0. (6.5.31)

In these equations, the advective fluxes: θAVA, θNVN , and θgVg , are given by the
motion equations, which, neglecting momentum exchange between adjacent fluid
phases, are:

θαVα = −kα

μα
· (∇ pα + ρα∇z) , α = A, N, g. (6.5.32)

We assume that in these balance equations, the following variables:

φ, ρs, ρA, ρg, ρN ,μA,μg,μN ,

kA, kg, kN ,D∗d
A ,D∗d

g ,D∗d
N ,DA,Dg,DN ,

are either known constants or functions of the thermodynamic state, as defined by the
pressure, temperature, and mass fractions in the appropriate phase. The remaining
variables, or unknowns, are:

pA, pg, pN , θA, θg, θN ,
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cd
s ,ωd

A ,ω
d
g ,ωd

N ,ωw
A ,ωw

g ,ωw
N ,ωa

A ,ω
a
g ,ω

a
N .

The following constraints, on the volumetric fractions:

θA + θg + θN = φ, (6.5.33)

and on the phase pressures through the capillary pressure relations:

pg − pN = pcgN(θg), pN − pA = pcN A(θA), (6.5.34)

allow us to eliminate some of the unknown variables. For example, we can eliminate
θN in (6.5.33), by using the equation θN = φ − θA − θg , leaving θA and θg . Using
(6.5.34), we may eliminate two of the phase pressures, say pN and pA, leaving only
pg.

So far, after eliminating the above variables, we are left with the following thirteen
unknown variables:

pg, θA, θg , cd
s , ω

d
A , ω

d
g , ω

d
N , ω

w
A , ω

w
g , ω

w
N . ω

a
A , ω

a
g , ω

a
N .

To further reduce the number of unknown variables, we now use thermodynamic
relationships to relate the concentrations of the components in adjacent phases to
each other. For example, we may use the linear isotherm for the adsorption on the
solid:

K d
d = Fd

ωd
A ρA

, (6.5.35)

to eliminate the variable cd
s , leaving twelve unknowns in our list. For the fluid com-

ponents, when the solutions are dilute, we may use Henry’s law:

Hd
g,A = ωγ

g

ω
γ
A

, Hγ
g,N = ωγ

g

ω
γ
N

, γ = d, w, a, (6.5.36)

in which (here)Hγ
g,A andHd

A,N are Henry’s law coefficients, appropriately converted
to ratios of mass fractions. These six relationships allow us to express six of the mass
fractions in terms of the others, leaving six unknowns in our list. However, the mass
fractions must also satisfy the following constraints:

ωd
A + ωw

A + ωa
A = 1, ωd

g + ωw
g + ωa

g = 1, (6.5.37)

ωd
N + ωw

N + ωa
N = 1. (6.5.38)

In order to satisfy these constraints, we select for each component a mass fraction
in some particular phase, which will be its corresponding ‘basis phase’. For example,
suppose we select the gas phase to be the basis phase for all components (although,
in general, the basis phase does not have to be the same for all components), so that
the ‘basis mass fractions’ are ωd

g , ω
w
g , and ωa

g . We then use Henry’s law to express
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the other mass fractions in terms of these, and substitute the results into (6.5.37) and
(6.5.38) to obtain the following system of three linear equations:

ωd
g + ωw

g + ωa
g = 1, (6.5.39)

Hd
g,Aω

d
g + Hw

g,Aω
w
g + Ha

g,Aω
a
g = 1, (6.5.40)

Hd
g,Nω

d
g + Hw

g,Nω
w
g + Ha

g,Nω
a
g = 1, (6.5.41)

which may be solved for ωd
g , ωw

g , and ωa
g ; these may, therefore, be considered as

functions of pressure and temperature.
Thus, we are left with the following three unknowns, or primary variables:

pg, θA, θg , to be determined by solving the three balance equations in (6.5.31).
Obviously, a complete model also requires initial conditions and boundary con-

ditions for the equations, in terms of the selected extensive quantities.

A. Switching Primary Variables

Sometimes, a phase may initially be absent in some portions of a considered porous
medium domain. For example, a NAPL phase may initially be present in only certain
portions of the domain. Then, the five variables:

θN , pN , ωd
N , ω

w
N ,ω

a
N ,

will not appear in the initial list of unknown variables. Also, we no longer have
one of the capillary pressure constraints. This means that one of the mass fraction
constraints, and the three Henry’s law relationships disappear. We proceed with the
elimination of unknown variables as before, except that we find that (6.5.33) gives
θA + θg = φ, so that θA, θg, which are in our final list of variables, are no longer
independent of each other. We also find that the remaining linear equations, (6.5.39)
and (6.5.40), includes only two equations in three unknowns. Hence, we replace one
of the interdependent variables, say θg, by one of the mass fractions that are left, say
ωd

A , to give the three primary variables: pg , θA, ωd
A . We then move the terms with

ωd
A to the right-hand side in (6.5.39) and (6.5.40), and solve for the remaining mass

fractions.
In three-phase flow, the above approach is applicable also when two phases are

not present, i.e., when only one phase exists in a particular portion of the domain. For
example, when only the aqueous phase exists in a certain subdomain, then a possible
set of primary variables for that subdomain is pA,ω

d
A ,ω

a
A .

In another situation, a phase may disappear at some later time from a portion
of a considered domain. An example is a rising water table which leaves only an
entrapped air phase that eventually dissolves. Another possible case is when a phase
that is not present appears later, for instance, in front of an advancing NAPL front.
In such cases, we use the procedure described above to obtain a new set of primary
variables. We then switch from the current set of variables to the new one.

How do we determine whether a phase appears or disappears? It is easy to tell
when a phase disappears by simply checking whether its volumetric fraction θα goes
to zero. However, the volumetric fraction cannot be used to check whether a phase
that has not been present, appears, since, in such a case, that variable is not part of
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the set of primary variables and is not being computed (it is set to a zero value).
The usual method is to compute the mass fractions (or mole fractions), using the
equilibrium relationships, such as Henry’s law, as if the phase is present, and see if
the condition:

ωd
α + ωw

α + ωa
α ≥ 1 (6.5.42)

is satisfied for the α-phase in question. If so, then the phase is considered to be
present. The primary variables are then switched accordingly. When this algorithm
is implemented in a computer code, the volumetric fraction for that phase is given
some small, but nonzero, value, in order for the equations to be nonsingular at this
stage of the computation. Condition (6.5.42) is equivalent to ρd

α + ρw
α + ρa

α ≥ ρα,
which states that the components are present in sufficient mass to constitute a phase.

B. Flash Calculations

The procedure whereby the mass fractions were eliminated by using Henry’s law,
is a simple example of what is often called flash calculations, whereby the compo-
sition of a system at some pressure and temperature is computed, given the known
quantity (mass) of each component. The assumptions underlying Henry’s law, as
given by (6.5.36), may not always be satisfied. The mass fractions appearing in the
balance equations remain, but are now considered as (nonlinear) functions of the
mole fractions, through:

ωγ
α(nd

α, nw
α , na

α) = nγ
αMγ

nd
αMd + nw

α Mw + na
αMa

, γ = d, w, a; α = A, N , g.

When the phases are not dilute solutions, then the flash calculations cannot be
based on simple relationships, such asHenry’s law. Instead,more general partitioning
expressions must be used, such as:

f γ
g = aγ

A K γ
g,A, f γ

g = aγ
N K γ

g,N , γ = d, w, a. (6.5.43)

In the above equation, aγ
α is the activity, f γ

α is the fugacity, and K γ
α,β is the equilibrium

constant of the γ-component. In general, these relationships are nonlinear in the
unknown concentrations, whether they be mole or mass fractions. For our system,
they yield six independent equations. The three additional relationships in (6.5.37)
and (6.5.38) provide a total of nine equations for the nine mass fractions in our
problem.

6.5.4 Complete Model for Multiple Components

In Sect. 7.5.5, a list was given of what constitutes a complete model for a single
component problem. For example, in a model with multiple species or components
in a multi-phase system:

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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(a) A mathematical description of the boundaries of the problem domain.
(b) A list of the independent variables that describe the macroscopic state of the

system. These may include (1) pressure of each fluid phase (2) volumetric frac-
tion of each fluid and solid phase, (3) concentrations, cγ

α, of all considered γ-
components, or species, within all phases (or molar concentration, mass or molar
fractions). In cases with chemical reactions, we start from a list of all involved
species, before selecting the components of the problem. In the case of adsorp-
tion, Fγs for all adsorbed γ-species are also included in the list of state variables.

(c) A list of stoichiometric equations for all the reactions among the chemical species
present in the system, indicating which ones are assumed to be in equilibrium.

(d) A partial differential equation that describes the mass balance of every consid-
ered γ-component within every considered α-phase. If there are equilibrium
reactions, redundant component mass balance equations must be eliminated,
using the procedures that have been described.

(e) A flux equation for every phase and component of a phase.
(f) Constitutive equations of phases and components. These include also thermody-

namic relationships that express the partitioning of components between adja-
cent phases under equilibrium conditions, mass action equations, expressions
for the rates of the various chemical reactions involved, and transfer functions
for nonequilibrium conditions.

(g) All the constraints imposed on the independent variables. For example: the sum
ofmass or molar fractionsmust be equal to unity, the sum of volumetric fractions
must equal the porosity, and the capillary pressure is equal to the difference in
pressures between adjacent fluid phases.

(h) A list of primary variableswhose number is equal to the number of non-redundant
mass balance equations.

(i) Expressions for the various external sources and sinks.
(j) Initial conditions for each of the relevant primary variables.
(k) Boundary conditions for each of the relevant extensive quantities.

Altogether, we have 18 scalar equations for the 18 scalar variables:

pα, qα, Sα, ρα, α = w, n, g.

However, following the discussion in Sect. 3.9, we have only 3 (independent!) pri-
mary variables for whichwe have to solve the three partial differential (mass balance)
equations. Obviously, each partial differential equation requires appropriate initial
and boundary conditions.

http://dx.doi.org/10.1007/978-3-319-72826-1_3


6.5 Three Fluid Phases 447

References

Aitchison GD, Donald IB (1956) Effective stresses in unsaturated soils. In: Proceedings of 2nd
Australian-New Zealand conference soil mechanics and foundation engineering institution of
engineers, 1956

Aleman MA, Slattery JC (1985) A linear stability analysis for immiscible porous media contami-
nation by organic compounds, 2. Numerical simulation. Water Resour. Res. 21:19–26

Arya LM, Paris JF (1981) Physicoempirical model to predict the soil moisture characteristic from
particle size distribution and bulk density data. Soil Sci Soc Am J 45:1023–1030

Auriault J-L, Lebaigue O, Bonnet G (1989) Dynamics of two immiscible fluids flowing through
deformable porous-media. Transp Porous Media 4:105–128

Avraam DG, Payatakes AC (1995) Flow regimes and relative permeabilities during steady-state
two-phase flow in porous media. J Fluid Mech 293:207–236

Aziz K, Settari A (1979) Petroleum reservoir simulation. Applied Sciences Publishers, London, p
476

Barenblatt GI, Entov VM, Rhyzik VM (1990) Theory of fluid flows through natural rocks. Springer,
Berlin, p 395

Bear J (1972) Dynamics of fluids in porous media, American Elsevier, 764 pp (also published by
Dover Publications, 1988; translated into Chinese)

Bear J, Bachmat Y (1984) Transport equations in porous media-Basic equations. In: Bear J, Corap-
cioglu MY (eds) Fundamentals of Transport Phenomena in Porous Media. Martinud Nrijhoff,
Dordrecht, pp 3–61

Bear J, Bachmat Y (1991) Introduction to modeling phenomena of transport in porous media.
Kluwer Publishing Company, Dordrecht, p 553

Bear J, Cheng AH-D (2010) Modeling groundwater flow and contaminant transport. Springer,
Berlin, p 834

Bear J, Verruijt A (1987)Modeling groundwater flow and pollution. D. Reidel Publishing Company,
Dordrecht, p 414

Bear J, ZaslavskyD, IrmayS (1968) Physical principles ofwater percolation and seepage,UNESCO,
465 pp

Bentsen RG, Manai AA (1993) On the conventional cocurrent and countercurrent modeling of
two-phase flow. Transp Porous Media 11:243–262

Bras RL (1990) An introduction to hydrologic science. Addison-Wesley, Reading, 643 pp
Brooks RH, Corey AT (1964) Hydraulic properties of porous media. In: Hydrology papers no. 3,
Colorado State University, Fort Collins, Colorado, p 27

Brooks RH, Corey AT (1966) Properties of porous media affecting fluid flow. J Irrig Drain Div
ASCE 9(2):61–87

Brutsaert W (1966) Probability laws for pore size distribution. Soil Sci 101:85–192
Buckley SE, Leverett MC (1942)Mechanism of fluid displacement in sands. Trans AIME 146:107–
116

Burdine NT (1953) Relative permeability calculations from poe-size distribution data. Trans AIME
198:71–77

Campbell GS (1985) Soil physics with BASIC: transport models for soil-plant systems. Elsevier,
New York, p 150

Carsel RF, Parrish RS (1988) Developing joint probability distributions of soil water retention
characteristics. Water Resour Res 24(5):755–769

Childs EC, Collis-George N (1950) The permeability of porous materials. Proc R Soc Lond Ser A
2(01):392–405

Collins RE (1961) Flow of fluids through porous media. Reinhold, New York, p 270
Corey AT (1957) Measurement of water and air permeability in unsaturated soils. Proc Soil Sci Soc
Am 21:7–10

Corey AT, Rathjens CH, Henderson JH, Wyllie MRJ (1956) Three-phase relative permeability.
Trans AIME 207:349–351



448 6 Modeling Multiphase Mass Transport

Cueto-Felgueroso L, Juanes R (2012) Macroscopic phase-field model of partial wetting: bubbles
in a capillary tube. Phys Rev Lett 108(14):144502, 5 pp

Dahle HK, Celia MA, Hassanizadeh SM (2005) Bundle-of-tubes model for calculating dynamic
effects in the capillary pressure-saturation relationship. Transp Porous Media 58:5–22

Das DB, Mizrahei M (2012) Dynamic effects in capillary pressure relationships for two-phase flow
in porous media: experiments and numerical analyses. AIChE J 58(12):3891–3903

Dullien FAL (1992) Porous media, 2nd edn. Academic Press, San Diego, p 574
Doughty C (2007) Modeling geologic storage of carbon dioxide: Comparison of non-hysteretic and
hysteretic characteristic curves. Energy Conversion and Management, 48(6)pp. 1768–1781

Doughty C (2013) User’s Guide for Hysteretic Capillary Pressure and Relative Permeability Func-
tions in TOUGH2 Earth Sciences Division Lawrence Berkeley National Laboratory, pp 27

Dullien FAL, DongM (1996) Experimental determination of the flow transport coefficients. Transp
Porous Media 25:97–120

Edelfsen NE, Anderson ABC (1943) Thermodynamics of soil moisture. Hilgardia 15:31–298
Finsterle S, Sonnenborg TO, Faybishenko B (1998) Inverse modeling of a multi-step outflow exper-
iments for determining hysteretic hydraulic properties. In: Proceedings of TOUGH workshop
1998, Lawrence Berkeley National Laboratory, Berkeley, California, 4–6 May 1998

Friedman SP, Seaton NA (1996) On the transport properties of anisotropic networks of capillaries.
Water Resour Res 32:339–347

Gardner WR (1958) Some steady state solutions of the unsaturated moisture flow equation, with
application to evaporation from a water table. Soil Sci 85:228–232

Goode PA, Ramakrishnan TS (1993) Momentum transfer across fluid-fluid interfaces in porous
media: A network model. AIChE J. 39:1124–1134

Haines WB (1930) The hysteresis effect in capillary properties and the modes of moisture distribu-
tion associated therewith. J Agric Sci 20:96–105

Hassanizadeh SM, Gray WG (1990) Mechanics and thermodynamics of multiphase flow in porous
media including interphase boundaries. Adv Water Res 13:169–186

Hassanizadeh M, Celia M, Dahle HK (2002) Dynamic effect in the capillary pressure-saturation
relationship and its impacts on unsaturated flow. Vadose Zone J 1:38–57

Hillel D (1980) Fundamentals of soil physics. Academic Press, Dublin, p 413
IrmayS (1954)On the hydraulic conductivity of unsaturated soil. TransAmGeophysUnion 35:463–
468

Joekar-Niasar V,Hassanizadeh SM, LeijnseA (2008) Insights into the relationships among capillary
pressure, saturation, interfacial area and relative permeability using pore-scale networkmodelling.
Trans Porous Media 74:201–219

Joekar-NiasarV,Doster F,ArmstrongRT,WildenschildD,CeliaMA (2013)Trapping and hysteresis
in two-phase flow in porous media: a pore-network study. Water Resour Res 49:4244–4256

Kak C, Slaney M (1987) Principles of computerized tomographic imaging. IEEE Press, New York
Kalaydjian F (1987) A macroscopic description of multiphase flow in porous media involving
space-time evolution of fluid-fluid interface. Transp Porous Media 2:537–552

Kool JB, Parker JCP, van Genuchten MTh (1987) Parameter estimation for unsaturated flow and
transport models-a review. J Hydrol 91:255–293

Land CS (1968) Calculation of imbibition relative permeability for two- and three-phase flow from
rock properties. Trans Am Inst Min Metall Pet Eng 243:149–156

LasseuxD, QuintardM,Whitaker S (1996) Determination of the permeability tensors for two-phase
flow. Transp Porous Media 24:107–137

LenhardRJ, Parker JC andKaluarachchi JJ, (1989)Amodel for hysteretic constitutive relations gov-
erning multiphase flow, 3. Refinement and numerical simulations. Water Resour Res. 25:1727–
1736

Leverett MC (1941) Capillary behaviour in porous media. Trans AIME 142:341–358
Liang Q, Lohrenz J (1994) Dynamic method of measuring coupling coefficients of transport equa-
tions of two-phase flow in media flow. Transp Porous Media 15:771–779



6.5 Three Fluid Phases 449

Luckner L, van Genuchten MTh, Nielsen DR (1989) A consistent set of parametric models for the
two-phase flow of immiscible fluids in the subsurface. Water Resour Res 25:2187–2193

Maidment DR (ed) (1993) Handbook of hydrology. McGraw-Hill, Maidenheach
Marle CM (1965) Cours de Production in Écoulements Polyphasiques, vol 4. Institut Francais du
Petrole

Marle CM (1981) Multiphase flow in porous media. Editions Technip, Paris, p 267
McCord JT, Stephens DB,Wilson JL (1991) Hysteresis and state-dependent anisotropy in modeling
unsaturated hillslope hydrologic processes. Water Resour Res 27:1501–1518

McCuen RH, Rawls WJ, Brakensiek DL (1981) Statistical-analysis of the Brooks-Corey and the
Green-Ampt parameters across soil texture. Water Resour Res 17:1005–1013

Mishra S, Parker JC, Singhal N (1989) Estimation of soil hydraulic-properties and their uncertainty
from particle-size distribution data. J Hydrol 108:1–18

MualemY (1973)Modified approach to capillary hysteresis based on a similarity hypothesis. Water
Resour Res. 9:1324–1331

Mualem YA (1974) A conceptual model of hysteresis. Water Resour Res 10:514–520
Mualem Y (1976) A new model for predicting the hydraulic conductivity for unsaturated porous
media. Water Resour Res 12(3):513–522

Mualem YA (1977) Extension of the similarity hypothesis used for modeling the soil water char-
acteristics. Water Resour Res 13:773–780

Mualem YA (1979) Theory of universal hysteretical properties of unsaturated porous media. In:
Morel-Seytoux HJ, Surface and Subsurface Hydrology, Proc. 3rd Int. Hydrology Symp. Water
Resour Publ. Fort Collins, Colorado pp. 387–399 Water Resour Res 13:773–780

Mualem YA (1984) A modified dependent domain theory of hysteresis. Soil Sci 137:283–291
Muskat M (1946) The flow of homogeneous fluids through porous media. J.W. Edwards Inc, Ann
Arbor (1st Ed. 1937), 763 pp

Naar J,Henderson JH (1961)An imbibitionmodel-its application to flowbehavior and the prediction
of oil recovery. Trans Soc Pet Eng AIME 2(22):61–70

Nield DA, Bejan A (2013) Convection in porous media, 4th edn. Springer, Berlin, p 778
Odeh AS (1959) Effect of viscosity ratio on relative permeability. Trans AIME 2(16):346–352 and
discussion by Wienaug CF, 352–353

Parker JC, Lenhard RJ (1987) A model for hysteretic constitutive relations governing multiphase
flow, 1. Saturation-pressure relations. Water Resour Res 23:2187–2196

Philip JR (1957a) The theory of infiltration. 1. The infiltration equation and its solution. Soil Sci
83:345–357

Philip JR (1957b) The theory of infiltration. 2. The profile at infinity. Soil Sci 83:435–448
Philip JR (1957c) The theory of infiltration. 3. Moisture profile and relation to experiments. Soil
Sci 84:163–178

Philip JR (1957d) The theory of infiltration. 4. Sorptivity and algebraic infiltration equations. Soil
Sci 84:257–264

Philip JR (1957e) The theory of infiltration. 5. The influence of initial moisture content. Soil Sci
84:329–339

Philip JR (1958a) The theory of infiltration. 6. Effect of water depth over soil. Soil Sci 85:278–286
Philip JR (1958b) The theory of infiltration. 7. Soil Sci 85:333–337
Philip JR (1969) Theory of infiltration. In: Chow VT (ed) Advances in hydrosciences. Academic
Press, New York, pp 215–296

Poulovassilis A (1962) The hysteresis of porewater: an application concept of independent domains.
Soil Sci 97:405–412

Raats PAC (1976) Analytical solutions of a simplified flow equation. Trans ASAE 19:683–689
Rauls WJ, Brakensiek DL (1985) Prediction of soil water properties for hydrologic modeling. In:
Jones EB, Ward TJ (eds) Watershed mananement in the Eiahties. Proceedings of the symposium
sponsored by comm. on Wateished Managemeit, Irrigation and drainage division, ASCE. ASCE
convention, Denver, Colorado 30 April–l May, pp 293–299



450 6 Modeling Multiphase Mass Transport

Reeves PC, Celia MA (1996) A functional relationship between capillary pressure, saturation, and
interfacial area as revealed by. Water Resources Research 32(8):2345–2358

Rose W (1972) Some problems connected with the use of classical descriptions of fluid/fluid dis-
placement processes. In: Proceedings of 1st international IAHR symposium on the fundamentals
of transport phenomena in porous media, Haifa, Israel, pp 229–240

Rose W (1988) Measuring transport coefficients to describe coupled two-phase flows in porous
media. Transp Porous Media 3:163–171

RoseW (1990) Coupling-coefficient for two-phase flow in porous space of simple geometry. Transp
Porous Media 5:97–102

Rose W (1997) An upgraded viscous coupling measurement methodology. Transp Porous Media
28:221–23

Rose W, Rose D (2005) An upgraded porous medium coupled transport process algorithm. Transp
Porous Media 59:357–372

Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory, vol 127. Lecture notes
in physics, Springer, New York

Scheidegger AE (1960a) Growth of instabilities in the displacement fronts in porous media. Physics
of Fluids 1(3):94–104

Scheidegger AE (1960b) On the stability of displacement fronts in prous media. Canadian J. of
Physics 38:13–162

Schneider FN, Owens WW (1970) Sandstone and carbonate two- and three-phase relative perme-
ability characteristics. Soc Pet Eng J 10:75–84

Snell RW (1962) Three phase relative permeability and residual oil data. J Inst Pet 12:80–88
Stauffer F (1978) Time dependence of the relations between capillary pressure, water content and
conductivity during drainage of porous media. In: IAHR symposium on scale effects in porous
media, Thessaloniki, Greece, 29 Aug 1978

Stephens DB,Heermann S (1988) Dependence of anisotropy on saturation in a stratified sand.Water
Resour Res 24:770–778

Stone HL (1970) Probability model for estimating three-phase relative permeability. Trans Soc Pet
Eng AIME 49(2):214–218

Stone HL (1973) Estimation of three-phase relative permeability and residual oil data. J Can Pet
Technol 12:53–61

Topp GC (1969) Soil water hysteresis measured in a sandy loam compared with the hysteretic
domain model. Soil Sci Soc Am Proc 33:645–651

Topp GC (1971) Soil water hysteresis in silt loam and clay loam soils. Water Resour Res 7:914–920
van Genuchten MTh (1980) Models for describing water and solute movement through soils with
large pores. American Society of Agronomy, Agronomy abstracts

Vauclin M, Haverkamp R, Vachaud G (1979) Resolution Numerique d’une Equation de Diffusion
Non-Lineare. Presses Univer, Grenoble

Welge HJ (1952) A simplified method for computing oil recovery by gas or water drive. Trans
AIME 195:91–98

Whitaker S (1986a) Flow in porous media. 1. A theoretical derivation of Darcy’s law. Transp Porous
Media 1:3–25

Wyckoff RD, Botset HG (1936) The flow of gas-liquid mixture through unconsolidated sands.
Physics 7:325–345

Wylie MRJ, Gardner GHF (1958) The generalized Kozeny–Carman II. A novel approach to prob-
lems of fluid flow. World oil production sect, pp 210–228

Yuster ST (1951) Theoretical considerations of multiphase flow in idealized capillary systems. Proc
3rd World Pet Congres, II:437–445

Hassanizadeh SM, Gray WG (1993) Toward an improved description of the physics of two-phase
flow. Adv Water Resour 16:53–67



Chapter 7
Modeling Transport of Chemical Species

In this chapter, we consider the transport of chemical species dissolved in one ormore
fluid phases that occupy the void space.We shall also consider adsorption of a chemi-
cal species on the solid phase comprising the solidmatrix, dissolution of the latter and
precipitation of a dissolved species. The objective is to predict how the concentra-
tions of dissolved and adsorbed species vary with time and space within a considered
porous medium domain. To describe the space and time-dependent concentration
changes, we shall take into account the travel of the considered species by advection,
diffusion (discussed in Sect. 7.2.2), and dispersion (introduced in Sect. 3.4.3) in the
fluid phases that occupy the void space. The considered models include interphase
exchanges as well as sources and sinks, including those that result from chemi-
cal reactions. As usual, we shall supplement the solute’s mass balance equation by
appropriate initial and boundary conditions that are required for complete, well-
posed mathematical models that describe the transport of dissolved chemical species
in porous medium domains, i.e., at the macroscopic level.

To facilitate the discussion, we shall review selected topics of chemistry that
are required in order to understand the nature of source/sink phenomena that occur
within the considered domain and should be included in the considered models. One
such topic is chemical reactions that occur within the fluids that occupy the void
space. They are referred to as homogeneous reactions. Another topic is the transfer
of chemical species across fluid-fluid and fluid-solid inter-phase boundaries. These
are referred to as heterogeneous reactions.

The solid matrix itself may be composed of portions of various chemical sub-
stances. This aspect may play an important role when chemical reactions take
place across fluid-solid microscopic (e.g., adsorption/desorption and dissolution of
the solid matrix) interfaces. Dissolution is an example of interface exchange, here
between a the solid comprising the solid matrix and the adjacent fluid in the void
space.

We shall also consider sources in the form of extraction and injection of fluids
carrying the solutes through wells. As usual, once phenomena are understood at the
microscopic level, where they really occur, we shall describe and incorporate them
in macroscopic models.
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The presentation of the chemical aspects should be considered merely as very a
brief introduction to some of the essentials and to the employed terminology. For
digging deeper into the chemical phenomena (e.g., in connection with groundwa-
ter contamination, or CO2 sequestration), much more knowledge and experience
are required. Books on chemistry and chemical engineering should be consulted
(e.g., Weber 1972; Sawyer et al. 2002; Stumm and Morgan 1995; Sposito 2004;
Schwarzenbach et al. 2002; Sawyer et al. 2002).

The discussion in this chapter will include the effects of temperature, although the
subject of flow and transport under nonisothermal conditions is discussed in Chap. 8.

In line with the mode of presentation in this book, the discussion in this chapter
starts by consideringmodeling solute transport, with andwithout chemical reactions,
at the microscopic level, i.e., at a point in a fluid continuum. Then, we continue
to discuss modelling at the macroscopic level. The objective, if course, is to derive
models that describe solute transport not only at laboratory scale domains, but also at
large natural domains, primarily in heterogeneous geological formations. However,
as is manifested by quite a large number of publications, the macroscopic level
models, based on averaging the solute’s mass balance equations at the microscopic
level, do not correctly describe solute transport in geological formations. A brief
discussion on this subject is, therefore, presented.

The material presented in this chapter, as, in fact, the material presented in the
entire book should be of use for those dealing with phenomena of transport in geo-
logical formations. However, the material will also be useful to chemical engineers
who design chemical reactors in the Chemical Engineering industry. Appendix A
discusses chemical reactors, and the various phenomena of transport that occur in
them.

7.1 Measures of Phase Composition

Liquid, gas, and solid phases may be comprised of many chemical species. Hydrol-
ogists and soil physicists are, usually, interested in the aqueous phase that occupies
the entire void space in aquifers, or part of it (in the vadose zone). This phase is
comprised primarily of water, with certain quantities of various chemical species
dissolved in it. Although chemical reactions that involve solid matrix minerals, e.g.,
ion exchange or dissolution, do occur, and may play a significant role in changing
the structure and configuration of the solid matrix, when dealing with the subsurface,
it is usually assumed that the numerous minerals constituting the soil’s solid matrix
are represented by a single pseudo-species, referred to as ‘solid’, or “solid matrix”.
However, whenwe are interested in the dissolution of specificminerals that comprise
part of the solid matrix, we identify them specifically. On the other hand, each fluid
phase that occupies the void space, or part of it, whether a liquid or a gas, is, usually,
composed of more than a single species. It is, therefore, necessary to consider the
composition of each individual phase present in the void space.

http://dx.doi.org/10.1007/978-3-319-72826-1_8
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As everywhere in this book, we shall use a subscript (e.g., α), to denote a phase
and a superscript (e.g., γ) to denote a dissolved chemical species. When we measure
the concentration at a point in a porous medium domain, or in a sample taken at such
point, we shall assume that the fluid’s volume is Voα, i.e., the volume of the α-phase
within an REV (Sect. 1.1.6) centered at the point.

The liquid phase is referred to as a ‘solvent’, when it is the dominant species in
a phase. The dissolved chemical species is referred to as a ‘solute’ if it constitutes
only a small portion of the phase.

The commonly used unit for expressing the mass of a chemical species is the
kilogram, abbreviated kg. The standard unit for volume in the metric system is the
cubic meter. However, we often us the liter, defined as the volume of one kilogram
of water at 20 ◦C and a pressure of one atmosphere. A commonly used and very
convenient SI unit for expressing the quantity of chemical species is the mole. Its
symbol in the SI system is mol. It is defined as the amount of a chemical substance
that contains as many elementary entities, e.g., atoms, molecules, ions as there are
atoms in 12g of carbon-12 (12C). This number is the Avogadro number, which has
a value of 6.02214×1023 mol−1. The mole is one of the base units of the SI system,
and has the unit symbol mol.

The concentration of a given chemical γ-species within a liquid α-phase (= solu-
tion) can be expressed in a number of ways.
• Mass fraction. The mass fraction, ωγ

α, expresses the mass of a γ-species per unit
mass of the α-fluid phase,

ωγ
α = mγ

α

mα
≡ ργ

α

ρα
,
∑

(γ)

ωγ
α = 1. (7.1.1)

This (dimensionless) measure is applicable to a γ-species in solution in a fluid α-
phase. When chemical reactions occur also in the solid phase, we may extend the
values of α to include also the solid (s).

The unit ppm, ‘parts per million’, defines the number of grams of solute per
million grams of solution.
• Mass concentration. The mass concentration (= mass density) of a γ-species in
an α-phase, cγ

α, expresses the mass, mγ
α, of a γ-species, per unit volume of a fluid

α-phase (usually, per liter):

cγ
α ≡ ργ

α = mγ
α

Vα
. (7.1.2)

The common SI units are kg/m3 (= kg of γ per m3 of fluid), or g/� (= grams of γ
per liter of fluid), or mg/� (= milligrams of γ per liter of fluid). However, this is not
a convenient measure when chemical reactions are involved.

•Molarity of a γ-species in an α-phase solution is defined as the number of γ-moles
per unit volume of the α-phase solution (usually in liter):
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ηγ
α = nγ

α

Vα
. (7.1.3)

• Molar phase and species density. The molar phase density, or concentration, ηα,
expresses the number of moles, nα, of all species, per unit volume of an α-solution
(usually liter):

ηα = nα

Vα
, nα =

∑

(γ)

nγ
α. (7.1.4)

•Molality of a γ-species in anα-phase solution, is defined as the number of γ-moles
per unit mass of the α-phase solution (usually in kg):

m̂γ
α = nγ

α

mα
. (7.1.5)

Note thatmolality is used extensively in electrolyte solutions because, unlikemolarity
(see below) it is independent of temperature.

• Mole fraction, Xγ
α, is defined as the ratio between the number of moles of γ and

the total number of moles in the α-phase:

Xγ
α = nγ

α

nα
, nα =

∑

(γ)

nγ
α,

∑

(γ)

Xγ
α = 1, ηαX

γ
αM

γ = cγ
α, (7.1.6)

where Mγ is themolecular mass of the γ-species. It is a useful measure of concentra-
tionwhenmodeling reactive transport, i.e., the flowand transport of chemical species
which undergo chemical reactions. Recall that molecular mass is usually measured
in a.m.u’s (atomic molecular units; 1a.m.u = 1.66053904×10−27 kg), while molar
mass is measured in gr/mole.

• Molar mass of a γ-species (an atom or a combination of atoms in a molecule or
an ion) is the standard atomic weight of the atom or the considered combination of
atoms, multiplied by the molar mass constant which is equal to 1g per mole:

W γ = (standard atomic weight of γ) × 1 kg/mol. (7.1.7)

For example, Molar mass of NaCl is:

WNaCl = (22.989 + 35.453) × 1 kg/mol = 58.442 kg/mol,

WH2O = (2 × 1.007 + 15.999) × 1kg/mol = 18.013 kg/mol.
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• Average molar mass of a mixture is defined as:

W̄ =
∑

γ

XγMγ, (7.1.8)

where Xγ and Mγ denote the molar fraction and the molar mass of the involved γ
species in the mixture.

• Molar concentration. Another definition for molar concentration (in moles per
unit volume), is:

[γ]α = ηαX
γ
α = cγ

α

Mγ
. (7.1.9)

• Equivalent concentration, cγeq
α , is defined as

cγeq
α = nγeq

α

Voα
, (7.1.10)

where nγeq
α denotes the number of equivalents of γ in the α-phase. It expresses the

quantity of γ that reacts with, or is equal to the combined value of a specified quantity
of another substance with respect to a given reaction.

Other often encountered definitions of concentration are the equivalents per liter
(≡ eq/�), defined as the number of moles of a solute, multiplied by the valence of
the solute species, per liter of solution, and equivalents per million, epm, defined as
the number of moles of a solute, multiplied by the valence of the solute species, per
106 gram of solution.

Electrical conductivity, EC, measures the ability of a solution to conduct electrical
current. Although this is not a measure of concentration, it is included here because
it is related to the quantity of ions that are present in a solution. The unit is the
reciprocal of ohm-meters, or, in the SI system, siemens per meter (S/m). Often, the
EC is measured in terms of the reciprocal of milli-ohms or, micro-ohms, known as
milli-mhos (in mS), or micro-mhos (in μS), respectively.

In Sect. 7.3.3we shall introduce two additional definitions: activity, {γ}, and activ-
ity coefficient, γ A, which contribute to bridging the gap between the ideal behavior
of an interacting γ-chemical species and its real one.

When any of the abovemeasures of concentration is assigned to a point in a porous
medium domain, e.g., c = c(x, t), it is implicitly assumed that the concentrations at
points within the REV centered at the point x at time t do not deviate much from that
average. We can refer to this condition as the ‘assumption of a well mixed REV’.
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7.2 Fluxes of Dissolved Species

The discussion is at the macroscopic level. As already mentioned in Sect. 3.4, the
total macroscopic flux of a solute (as, in fact, of any extensive property) is made up
of three fluxes: advective, diffusive and dispersive.

7.2.1 Advective Flux

We consider the transport of a γ-species dissolved in a fluid α-phase that occupies
the entire void space, or part of it, at a volumetric fraction θα. With Vα (dims. LT−1)
denoting the (intrinsic phase) average velocity of the phase, and cγ

α (dims. M L3)
denoting the (intrinsic phase) average concentration of the solute (expressed as mass
of solute per unit phase volume), the advective flux, Jγ

α,adv (dims. ML−2T−1), of the
considered species is given by the product:

θαJ
γ
α,adv(≡ qγ

α,adv) = θαVαc
γ
α. (7.2.1)

This flux expresses the mass of the chemical species passing through a unit area of
porous medium, normal to Vα, per unit time. Note that we have assumed here that
the areal and volumetric porosities are identical.

In the case of reactive transport, i.e.,mass transportwith reacting chemical species,
it is more convenient tomeasure themass of chemical species inmoles (see Sect. 7.1),
and determine the mass transport in terms of averaged molar velocity:

Vmol
α = 1

nα

∑

(γ)

nγ
αV

γ,mol
α , (7.2.2)

jγ,mol
α = nγ

αV
γ,mol
α . (7.2.3)

We can then express the macroscopic molar advective flux of γ in α in terms of
the number of γ-moles passing through a unit area of porous medium per unit time:

θαJ
γ,moles
α,adv = θαηγ

αX
γ
αVα. (7.2.4)

When a single fluid occupies the entire void space, we replace θα by the porosity,
φ. When it is obvious from the text that we measure the quantity of γ in moles, the
superscript “moles” can be omitted.

Note that the last two equations involve the α-fluid velocity, Vα, while Darcy’s
law provides information on the fluid’s velocity relative to the possibly moving solid,
i.e., Vr (≡ Vα − Vs).

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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7.2.2 Diffusive Flux

Diffusive flux was already introduced in Sects. 3.1.3 and 3.4.1E. Briefly, a fluid
phase is composed of a number of chemical species (Sect. 1.1.1), each made up of
a large number of identical atoms, molecules, ions, etc., that are continuously in
random motion (Brownian motion). At the microscopic level, i.e., within a fluid,
each intensive quantity of a chemical species of a phase, e.g., its concentration,
may be regarded as a continuum. The behavior of this continuum is obtained by
averaging the relevant properties of the individual molecules that comprise it. For
example, each molecule has mass, momentum, and energy. By averaging, we obtain
the densities (i.e., per unit phase volume), or specific value per unit phase mass of
these quantities at points within the phase. The transport of these extensive quantities
at the microscopic level is obtained by averaging their transport by the individual
molecules.

The diffusive flux, jEdi f , of any extensive quantity, E , was already introduced in
(3.1.10). Briefly, the (total) flux, jE , of an extensive quantity, E , is expressed at the
microscopic level in the form:

jE = eVE = eV + e
(
VE − V

) = jEadv + jEdi f , (7.2.5)

where V denotes the mass averaged velocity.

A. Diffusive Mass Flux of a Chemical Species

For E denoting the mass of a γ-species, E = mγ , e′ = cγ , the flux, denoted by
jm

γ ≡ jγ , is:

jγdi f = cγV + cγ (Vγ − V) = jγadv + jγdi f , (7.2.6)

where jγdi f = cγ (Vγ − V),
∑

(γ) j
γ
di f = 0. In words, the microscopic mass flux of a

γ-species is made up of:

• an advective mass flux, cγV, carried by the (mass-weighted) velocity of the phase,
with respect to a fixed coordinate system, and

• a diffusive flux, jγdi f , resulting from the random motion of the γ-molecules.

Both fluxes are in terms of the mass of chemical species per unit area of fluid phase
within a planar cross-section.

Still at the microscopic level, we consider a fluid containing only two species: γ
and δ (= binary system). The mass flux by molecular diffusion of the γ-species, jγdi f ,
is expressed by Fick’s law of molecular diffusion in the form:

jγdi f = cγ(Vγ − V) = −ρDγδ∇ωγ, jγ + jδ = 0, (7.2.7)

where ωγ = ργ/ρ denotes the mass fraction of γ, and ωγ + ωδ = 1. The scalar Dγδ

is the coefficient of molecular diffusion (dims. L2/T) of the γ-species in a fluid phase

http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_3
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that contains only two species, γ and δ. The diffusive flux of the δ-species is given by
jδdi f = −ρDδγ∇ωδ . Note that the condition jγdi f + jδdi f = 0 implies that for a binary
system Dγδ = Dδγ . In principle, Dγδ = Dγδ(cγ). However, it is usually assumed,
especially at low concentrations, that Dγδ is independent of cγ . In general, it is a
function of pressure and temperature.

When ∇ρ = 0, i.e., the fluid is homogeneous, we may write Fick’s law, (7.2.7),
in terms of the concentration, cγ , as:

jγ ≡ cγ(Vγ − V) = −Dγδ∇cγ . (7.2.8)

Fick’s law, (7.2.7), also holds, as an approximation, for the diffusive flux of a
γ-chemical species in a multicomponent system, as long as the δ-component is the
solvent component and all components, except δ and γ, are at dilute concentrations.

In the above forms of Fick’s law, as in those that will be presented throughout this
chapter, we shall not take into account Onsager’s coupled processes, introduced in
Sect. 2.6.

The diffusive flux may also be expressed as a molar flux, i.e., in moles per unit
time per unit fluid area. In fact, this is a more convenient way to express the diffusive
flux in the case of chemical reactions as the concentrations of the involved species
are expressed in moles. Fick’s law for the molar diffusive flux (dims. moles/L2T ) of
γ is:

jγ,moles

di f = ηγ
(
Vγ − Vmol

) = −ηDγδ∇Xγ . (7.2.9)

where η is the molar phase concentration and ηγ(≡ ργ/Mγ) is the molar γ-
concentration (= number of moles of γ per unit volume of fluid) defined by (7.1.4).
Note that the flux in the diffusive flux in above equation is with respect to the molar
velocity, Vmol .

With Xγ
α denoting the mole-fraction of γ, Fick’s law for the molar flux of a γ-

species in a binary system takes the form:

jγ,moles
α,di f = −ηαDγδ

α ∇Xγ
α, Xγ

α + X δ
α = 1, jγ,moles

α,di f + jδ,molesα,di f = 0. (7.2.10)

The coefficient Dγδ
α is very sensitive to the nature of the phase. It depends on the

fluid’s pressure and temperature. In a liquid phase it is very sensitive to the viscosity.
In a gas, the value of this coefficient grows approximately as T 3/2 and is inversely
proportional to the pressure.

The coefficient Dγδ in (7.2.7) and (7.2.9) are the same.
More generally, the diffusive mass flux of a γ-component is driven by spatial

gradients in the chemical potential, μγ = μγ(p, nγ, T ) (defined in Sect. 2.2.4). It is
given by:

jγ = − η2

ρRT
XγDγδ∇μγ

∣∣
p,T

(
= η2

ρRT
X δDγδ∇μδ

∣∣
p,T

)
, (7.2.11)

http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
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where ∇μγ
∣∣
p,T ≡ (∂μγ/∂nγ)|p,T∇nγ denotes the gradient taken while keeping p

and T fixed. For a dilute or ideal solution (Denbigh 1981), it follows from (2.2.35) that
(∂μγ/∂nγ)|p,T = RT/nγ . Equation (7.2.11) should be used when the composition-
dependent body forces, such as gravity or surface forces, affect the diffusive flux, or
when the dilute or ideal solution assumption is not applicable (see Nitao and Bear
1996).

So far, we have discussed the diffusion of (electrically) neutral species. Next we
shall consider electrically charged ions.

B. Diffusive Flux of Ions

The diffusion of an ion (considered as a γ-species) in an aqueous solution, away from
any charged solid surface, is affected by the electrical field generated by all ions in
the solution. To express this effect, an additional term is added to the flux law. In a
dilute solution, with this effect, the diffusive mass flux is given by:

jγdi f = − ρF
RT

zγDγωγ∇ϕe − ρDγ∇ωγ, (7.2.12)

where ϕe denotes the potential of the electrical field and zγ is the electrical charge of
the γ-ion. The coefficient F is Faraday’s constant, which is defined as the charge of
one mole of singly-charged ions (= 9.65 × 104 Coulombs/mole). Equation (7.2.12)
is derived from the Nernst-Planck equation (Probstein 1994).

It is observed experimentally that in (nonorganic) electrolytic solutions, the con-
dition of electro-neutrality holds: the net charge at any given point in a solution,
away from charged surfaces, is essentially zero. That is,

∑

(γ)

zγnγ = 0. (7.2.13)

Combined with the mass balance equation, this requires that the diffusive fluxes
satisfy the condition:

∑

(γ)

zγjγ/Mγ = 0. (7.2.14)

The electrical field between the ions, which is proportional to the gradient,−∇ϕe,
counteracts the tendency of molecular diffusion to disturb charge neutrality. We,
therefore, substitute (7.2.12) into (7.2.14) and solve for −∇ϕe, obtaining:

−∇ϕe = RT

F

∑
(γ) z

γDγ∇ωγ/Mγ

∑
(γ)(z

γ)2Dγωγ/Mγ
. (7.2.15)

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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Substituting this expression into (7.2.12) gives:

jγ = zγρDγωγ

∑
(λ) z

λDλ∇ωλ/Mλ

∑
(λ)(z

λ)2Dλωλ/Mλ
− ρDγ∇ωγ . (7.2.16)

In principle, this expression is the diffusive mass flux of an ionic species in an elec-
trically neutral dilute solution; it can be used for modeling the transport of multiple
ionic species (Lichtner 1995).

Calculating this kind of diffusion becomes complicated as in an electrolytic solu-
tion each species has a different diffusion coefficient (e.g., DH+

= 9.31×10−9 m2/s,
DOH−

= 5.27×10−9 m2/s). Although a lot of data is available in the literature, data
for complexes is missing. As a result, anions and cations diffuse at different rates.
However, they must also maintain charge balance. Usually, the problem is resolved
by assuming that the various aqueous diffusion coefficients are species indepen-
dent. Accounting for species-dependent diffusion coefficients leads to much more
complicated reactive transport models (Lichtner 1985).

Typical values of Dγ at 25 ◦C, for a solute in an aqueous phase, are in the
range of 5–100×10−10 m2/s. For example, for Ca2+, Dγ = 7.9 × 10−10 m2/s; for
K+, Dγ = 19.6 × 10−10 m2/s; and for Cl−, Dγ = 20.3 × 10−10 m2/s. For a dilute
component in air: for water vapour, Dγ = 2.2 × 10−5 m2/s; and for TCE vapour,
Dγ = 7.8 × 10−6 m2/s. The diffusivities of a broad range of compounds as a func-
tion of temperature and pressure are given by Poling et al. (2000).

C. The Macroscopic Coefficient of Molecular Diffusion

The macroscopic diffusive flux was already introduced in Sect. 3.4.2F. To obtain
the macroscopic law, we follow the phenomenological approach (see (3.4.43)). We
shall use the symbol Jγ

di f for the macroscopic diffusive flux, expressed in terms of
mass of γ-species (or number of moles) per unit area of fluid in the porous medium
cross-section.We assume that Fick’s law remains valid also at the macroscopic level,
i.e., the macroscopic flux is also proportional to a driving force, which is equal to
minus the gradient of the (macroscopic) concentration.Accordingly, themacroscopic
diffusive flux law has the form:

Jγ
di f = −D∗γ ·∇cγ, or Jγ

di f = −ρD∗γ ·∇ωγ, or Jγ
di f = −ηD∗γ ·∇Xγ,

(7.2.17)

inwhichD∗γ is themacroscopic coefficient ofmolecular diffusion.Note that (7.2.17)
is nothing but the first term on the r.h.s. of (3.4.43).

Let us elaborate on the nature of the macroscopic coefficient of molecular
diffusion.

We start from the case of saturated (i.e., single phase) flowandno solute adsorption
on themicroscopic solid surface within the REV.Molecular diffusion within the fluid
occupying the void-space obeys Fick’s law, say (7.2.8), repeated here for an isotropic
porous medium in the form:

http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_3
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jγdi f = −Dγ∇cγ . (7.2.18)

As in the discussion on advective fluid mass flow in Sect. 4.2.5A, we envision a
parallelepiped block of porous mediumwith diffusion occurring within stream-tubes
that extend from one face at constant concentration to the opposite face, at another
constant concentration, a distance L , apart, say in the direction x . Actually, as in the
discussion on the advective mass flow, the flux takes place through these tortuous
stream-tubes that are longer than the distance between the opposite sides of the porous
medium block, L → Le > L . Their cross-section also varies along the stream-tube.
The driving force (= gradient of the solute concentration) along a stream-tube is
also different from the average macroscopic driving force in the porous medium as
a whole, �cγ/L → (�cγ/L)(L/Le) and the flux jγdi f ,x → (L/Le)( j

γ
di f ,c)Le . Alto-

gether, ( jγdi f ,c)Le = −Dγ�cγ/Le → ( jγdi f ,c)L = −Dγ(�cγ/L)(L2/L2
e). When aver-

agedover all the stream-tubes in the porousmediumblock,weobtain themacroscopic
Fick’s law:

J γ
i,di f = −Dγ (L/Le)

2 ∂cγ

∂xi
,

or, generalized to 3-D and an anisotropic porous medium:

J γ
i,di f = −D∗γ

i j

∂cγ

∂x j
, D∗γ

i j = DγT ∗
i j , (7.2.19)

In this equation, the second rank symmetric tensor, T ∗
i j , denotes the tortuosity of

the porous medium for this case. Like other coefficients, it has to be determined
experimentally for a considered porous medium.

In (7.2.19), D∗γ (components D∗γ
i j ) is the macroscopic coefficient of molecu-

lar diffusion. It is a symmetric second rank tensor expressed as the product of the
scalar molecular diffusivity in a fluid continuum, Dγ , and the void space geometri-
cal property, T∗, called tortuosity, which is a symmetric second rank tensor. Thus,
D pm = T∗D (see Sect. 4.2.5). For the case of variable fluid density, we use (3.4.25).

From the discussion on tortuosity in Sect. 4.2.5, it follows that the tortuosity of
a fluid phase that occupies part of the void space depends on the saturation of that
fluid. Thus, T∗

α = T∗
α(θα).

For the special case of unsaturated flow (i.e., air water flow for which we assume
that the pressure in the air is constant), Millington (1959) suggested the following
relationship for the tortuosity in an isotropic porous medium:

T ∗(θ) = θ
7
3

φ2
. (7.2.20)

Recall that the flux Jγ
α,di f expresses the mass of γ per unit area of α in the cross

section. Because T ∗
i j ≤ 1, the value of the diffusivity in a fluid that occupies the void

space of a porous medium, or part of it, is smaller than the corresponding value in a
fluid body.

http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_4
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Sometimes a diffusing chemical species, within the wetting phase, or the non-
wetting one, crosses interphase (fluid-solid, or fluid-fluid) boundaries (Sect. 7.4), e.g.,
due to adsorption, dissolution and volatilization.When a solute diffuses in both fluids,
“solute stream-tubes” may extend from one fluid to the other. The Bear-Bachmat
definition of tortuosity, expressed by (1.4.15), may then facilitate the discussion of
tortuosity for such cases. For example, Case A in Sect. 1.4.2A4, corresponds to the
case with no adsorption or interphase transfer, while Case C considers interphase
transfer.

In Sect. 4.2.5, we have introduced tortuosity as a phenomenon produced primar-
ily by the difference between the tortuous shape of the microscopic stream-tubes
within the void space, and the macroscopic ones. In the current subsection, we have
extended this idea also to the case of molecular diffusion inside the void space (and in
multiphase flow inside the phase-occupied portion of the latter), leading to themacro-
scopic coefficient of molecular diffusion as a product of the microscopic molecular
diffusivity and the tortuosity of the porousmedium,where the latter is a property (i.e.,
a coefficient) of the void space configuration. However, when the diffusing species
can adsorb on the solid surface (Sect. 7.4.1), the idea of diffusion through fixed-in-
space stream-tubes is no longer valid, and some correction must be introduced to
represent the effect of solute adsorption on the solid surfaces, or crossing interphase
boundaries. In fact, the very configuration of the two phases within the void space
may also be affected by the mobility ratio of the two fluids.

If the phenomena of coupled processes are taken into account (Sect. 2.6), the
diffusive flux of a solute is expressed (for example) by

Jγ
di f,α = −ραD∗γ

α ∇ωγ
α − �γH

α (θα)·∇T, (7.2.21)

where �γH denotes the Soret (effect) coefficient (Sect. 2.6). This effect is usually
very small and is neglected.

D. Knudsen Diffusion

As mentioned already in Sect. 3.4.1E, Knudsen diffusion of a gas occurs when the
mean free path of its molecules is not much larger than the characteristic dimension
of the flow channel, e.g., the size of a pore or a of a capillary passage. Under such
conditions, the gas molecules collide more often with the pore walls than with other
gas molecules For molecular flow diffusion of such a gas, we may still use Fick’s
(microscopic) law in the form:

JA
g = −DA

K ·∇cA, (7.2.22)

whereDA
K denotes theKnudsen diffusivity. Cummingham andWilliams (1980, p. 77)

discusses and provides expressions for Knudsen diffusivity.

E. Surface Diffusion

Surface diffusion (e.g., is a phenomena which is analogous to that of molecular
diffusion of molecules, atoms and ions in a bulk fluid, except that it takes place

http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_3
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when the latter are adsorbed to a solid surface, or when they are present within the
double layer. Similar to diffusion within the bulk fluid, this flux (here mass per unit
length in the surface per unit time) is a consequence of various random phenomena
at the surface, e.g., random temperature fluctuation at the surface. Both atoms that
constitute part of the solid and adsorbed particles (atoms, molecules or clusters)
can move by the mechanism of surface diffusion. Like in molecular diffusion, the
presence of a concentration gradient will result in a net flux in the opposite direction
to the concentration gradient.

Although, under certain circumstances, surface diffusionmay play significant role
in mass and heat transport in porous media (due to the large surface area), we shall
not expand on this subject (see, for example, Cunningham andWilliams 1980; Tsong
2001).

7.2.3 Dispersive Flux

The phenomenon of dispersion of any extensive property of a fluid moving within
the void space has already been introduced in Sect. 3.4.3. Here, we shall focus on
the dispersive flux of the mass of a dissolved chemical γ-species. The presenta-
tion considers dispersion as a macroscopic level phenomenon in a homogenous, or
slightly heterogeneous domain. We recall, however, that real geological formations
are usually highly heterogeneous.

To understand the meaning of dispersion, let us briefly review the work of Taylor
(1953), who was one of the first to suggest a model—the Taylor model—for disper-
sion. He visualized a porous medium as a bundle of straight parallel circular capillary
tubes. For a single capillary tube in the x direction, he studied the displacement of a
liquid of solute concentration c = 0, by another one, miscible with the first, of con-
centration c = co. Both liquids have the same density and viscosity, and the laminar
flow rate through the tube is Q = const .

We recall that for a steady flow of a single fluid through a capillary tube of constant
diameter 2R, the parabolic velocity distribution is given by the Hagen-Poisseuille
law (4.1.3),

V (r) = 2V̄

(
1 − r2

R2

)
, with V̄r = Q

πR2
, Vmax = 2V̄ .

Fig. 7.1 shows the parabolic velocity distribution in the tube.
It is easy to show that the mass balance equation that describes the movement by

advection and diffusion (Fick’s law) of a solute through the tube is:

∂c

∂t
= D

(
∂2c

∂r2
+ 1

r

∂c

∂r
+ ∂2c

∂x2

)
− 2V̄

(
1 − r2

R2

)
∂c

∂x
, (7.2.23)

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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Fig. 7.1 Taylor’s analysis of
solute transport in a capillary
tube
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whereD is the coefficient of molecular diffusion of the solute, assumed independent
of the concentration, c = c(x, r). Neglecting longitudinal diffusion as much smaller
than the radial one, i.e., ∂2c/∂x2 	 ∂2c/∂r2 + (1/r)∂c/∂r , the above equation
reduces to:

∂2c

∂r ′2 + 1

r ′
∂c

∂r ′ = R2

D
∂c

∂t
+ 2

V̄ R2

D
(
1

2
− r ′2

)
∂c

∂x
, r ′ = r/R, (7.2.24)

with x = 0, c = co, and r ′ = 1, ∂c/∂r ′ = 0. Also, r ′ = 0, c is finite. Initially, t = 0,
c = 0 for x > 0; c = co for x ≤ 0.

Taylor (1953, 1954) studied and obtained two approximate solutions for the two
extreme cases:
•Case 1: 2L/V̄ 	 R2/14.4D, i.e., axial convection dominates over radial diffusion,
and
• Case 2: 2L/V̄ 
 R2/14.4D i.e., radial diffusion dominates, or the time required
for radial concentration differences to be approximately reduced by radial diffusion
is short relative to the time required for longitudinal convection to cause appreciable
radial concentration variations. The latter assumption is applicable to relatively low
velocities.

For Case 1, with:

c(x, t) = co

(
1 − x2

4V̄ 2t2

)
, c(L , t) = co

(
1 − U 2

o

4Q2t2

)
, Uo = πR2L .

(7.2.25)

Equation (7.2.24), can be rewritten in the form:

∂2c

∂r ′2 + 1

r ′
∂c

∂r ′ = 2V̄ R2

D
(
1

2
− r ′2

)
∂c

∂ξ
, ξ = x − V̄ t, r ′ = r

R
, (7.2.26)
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in which ∂c/∂ξ, taken as independent of r ′, is solved by Taylor for ∂c/∂ξ = 0 at
r ′ = 1. He obtained:

c = c∗ + R2V̄

4D
∂c

∂ξ

(
r ′2 − 1

2
r ′4
)

, (7.2.27)

in which c∗ ≡ c|r ′=0. With c̄ denoting the mean concentration over a cross-section,
and ∂c̄/∂ξ ≈ ∂c∗/∂ξ, he obtained:

Jc = Qc

πR2
= − R2V̄ 2

48D
∂c

∂ξ
= −D′ ∂c

∂ξ
. (7.2.28)

This means that the solute is dispersed (i.e., it spreads out) by longitudinal advection
and radial molecular diffusion, relative to a plane moving with the velocity V̄ , as if
it were being diffused by a process which obeys Fick’s law of molecular diffusion,
but with D′ = (R2/48D)V̄ 2. It is interesting to note the dependence of D′ on V̄ 2.
The condition that longitudinal molecular diffusion is negligible with respect to
longitudinal dispersion, expressed by D′, leading to the above results, is:

(48)1/2L

R
<

LV̄

D < 4

(
L

R

)2

.

Note that LV̄ /D is the Peclet number, Pe, which defines the ratio between the rate
of transport by advection and that by molecular diffusion. Like in Fick’s law, the
solute flux here is proportional to the concentration gradient.

Solute mass balance during fluid displacement that involves both advection and
dispersion in a capillary tube leads to the solute balance equation:

∂c̄

∂t
= D′ ∂

2c̄

∂ξ2
, or

∂c̄

∂t
= D′ ∂

2c̄

∂x2
− V̄

∂c̄

∂x
. (7.2.29)

For the conditions:
I.C. t = 0 c̄(x ≥ 0, 0) = 0,
B.C. t ≥ 0 c̄(x = 0, t) = c̄o,
B.C. t ≥ 0 c̄(x = ∞, t) = 0,

the above equation yields (Ogata and Banks 1961):

c̄

c̄o
= 1

2

[
erfc

(
x − V̄ t

2
√D′t

)
+ exp

(
V̄ x

D′

)
erfc

(
x + V̄ t

2
√D′t

)]
(7.2.30)

in which erf x = (2/
√
ß)
∫ x
0 exp(−2)d. The point c̄/co = 50%moves with the fluid’s

average velocity, V̄ . Defining a transition zone, say, between 90 and 10% of total
concentration, its width grows proportional to the square root of the velocity, and
inversely proportional to the square root D′ (Bear 1972, p. 585).
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Other authors (e.g., Aris 1956) extended Taylor’s type of analysis to a bundle of
capillary tubes of different diameters, and to non-circular tubes. Using the presenta-
tion in Sect. 4.1.2, it is possible to relate capillary tube diameter to the permeability
of a porous medium. Bear (1960) used a model consisting of an array of small cells
with interconnecting short tubes. He assumed that a liquid carrying a dissolved solute
enters a cell occupied by a liquid at a different solute concentration, displaces part of
it, and then mixes (perfect mixing) with the remaining part to form a new concentra-
tion. The liquid is transferred from one cell to the next by the fluid’s discharge rate,
or average velocity. He solved for an array of N such cells, and, for a sufficiently
large number of cells, obtained the final concentration in the form of:

c(x, t)

co
= 1√

4πD′t
exp

(
− (x − x̄)2

4D′t

)
, (7.2.31)

where x̄ = V̄ t , and D′ = aL V̄ , and aL = 1
2 (��′)2/�� is a medium property that

he called longitudinal dispersivity. Thus, in both the mixing cell model and in the
capillary tube model, the coefficient of dispersion, D′, depends on the velocity.
However, in a mixing cell model, the coefficient of dispersion is proportional to the
first power of the velocity, while in a capillary tube model, it is proportional to V̄ 2.
To understand the reason for this difference, one should recall that in a capillary tube
model, dispersion results from solute transport at different velocities along different
microscopic streamlines within the void space (say, as a collection of interconnected
network of cells). Solute is exchanged by diffusion between adjacent stream-tubes.
The velocity itself remains unchanged. In fact, the velocity appears in the form of
the path length V̄ t , independent of the velocity. In the array-of-cells model, there
is no velocity distribution and a perfect mixing is caused only by diffusion. The
velocity appears as a parameter. In a real porous medium, especially at field scale,
with significant heterogeneity, the appropriate model may be some combination of
the two models. Before leaving this subject, it may be interesting to mention one
more effort to construct a theoretical model for dispersion, especially to find how the
dispersive flux is related to the fluid’s velocity.

One more model–the random walk model–will be discussed in Sect. 7.6.2A.
Altogether, we have introduced a few models to explain the spreading of a solute

relative to mean flow. One model is based on the fact that we have decided to express
the advective flux at a point in a porous medium domain as the product of the
average velocity and the average concentration at that point (see (3.4.35)). The other
models are combination of flow at different velocities within the void space, with
exchange by molecular diffusion between adjacent stream-tubes and the averaging
over elementary such tubes. The third mechanism is some kind of mixing, in addition
to the translation. the last models, and various combinations of them seems more
appropriate for solute transport in highly heterogeneous domains. In all models, the
driving force is the concentration gradient. As a first simplification we assume the
first power of ∇c, i.e., the assumption of Fickian type transport by dispersion.

http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_3
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With the above discussion in mind, our next task is to express the dispersive flux,
introduced above, in terms of averaged (andmeasurable) quantities, such as averaged
velocity and averaged concentration. Investigations starting around the mid-50’s
(e.g., Josselin and de Jong 1958; Saffman 1959; Bear 1961a, b; Scheidegger 1961;
Bear 1972; and Bear and Bachmat 1991, p. 401), have led to the conclusion that the
dispersive flux of a chemical species (per unit area of fluid) in a porous medium can
be expressed as a Fickian-type law (i.e., a law that resembles Fick’s (linear) law of
molecular diffusion) in the form:

Jdis ≡ c̊V̊
f = −D·∇c f , (7.2.32)

or, in indicial notation, making use of Einstein’s summation convention::

Jdis,i ≡ c̊V̊i

f = −Di j
∂c f

∂x j
, (7.2.33)

where the Di j ’s (dims. L2/T) are components of a coefficientD, called the coefficient
of (mechanical, or advective) dispersion, or thedispersion coefficient. This coefficient
is a second rank symmetric tensor that relates the flux vector Jdis to the driving force
vector−∇c f . Equation (7.2.33) is valid for the general case of an anisotropic porous
medium. The dispersion coefficient is characterized by:

• The Di j–matrix isnon-negative definite (or positive definite). This is a consequence
of thermodynamics: the rate of entropy production, Ṡ, is related to the thermody-
namic driving force, X, and the thermodynamic flux, Y, (referred to by De Groot
and Mazur (1962) as conjugated flux and force, respectively) by Ṡ = Yi Xi . Here,
the driving force X is proportional to the negative concentration gradient, −∇c f .
In this case, the rate of entropy production can be expressed by:

Ṡ = χ

(
−Di j

∂c f

∂x j

)
× χ

(
−∂c f

∂xi

)
≥ 0, or χ2Di j

∂c f

∂x j

∂c f

∂xi
≥ 0, (7.2.34)

in which, Y = χJdis = −χD·∇c f and X = −χ∇c f . In the above, χ is a param-
eter that depends on the considered extensive quantity; for each such quantity, it
transforms the flux and the driving force, in the form of a gradient of an appropri-
ately considered scalar (here∇c f ), into conjugated thermodynamic flux and force
(De Groot and Mazur 1962).

• The Di j–matrix is symmetric, i.e.,

Di j = Dji . (7.2.35)

This is a consequence of the conjugated force and flux relation (De Groot and
Mazur 1962), i.e., they satisfy:
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∂Yi
∂X j

= ∂Y j

∂Xi
. (7.2.36)

Because we have circumvented the need to know the details (of velocity and con-
centration) at the microscopic level by ‘escaping’ to the macroscopic level, we are
required to introduce a set of coefficients, in this case, Di j . This situation occurs
whenever we try to overcome the lack of information about details of interphase
surfaces at the microscopic level by switching to the macroscopic level.

It is interesting to note that although Darcy’s law, and the Fick’s type law that
governs the dispersive flux, (7.2.33), look similar, there is a basic difference between
the coefficients Ki j andDi j : the former is a function only of themicroscopic geometry
of the void space (and of fluid properties), while the latter depends also on the
macroscopic velocity field. Another difference is that there is no microscopic Darcy
law, as the latter is an approximation of a momentum balance equation and is not a
phenomenological law.

Several authors (e.g., Nikolaevski 1959; Bear 1961a; Scheidegger 1961) have
derived the following expression for the components Di j :

Di j = ai jk�
VkV�

V
, (7.2.37)

in which ai jk� is a coefficient called dispersivity, and Vk ≡ Vk
f
. Henceforth, for

simplicity, we shall continue to drop the notation for intrinsic phase averaging. Bear
and Bachmat (1967, 1991) suggested:

Di j = ai jk�
VkV�

V
f (Pe, r), f (Pe, r) = Pe

Pe + 1 + r
, (7.2.38)

where V (≡ |V|) is the magnitude of the average velocity, r represents the ratio
between characteristic lengths, in the direction of the flow and normal to it, within a
pore, and Pe is a Peclet number defined by:

Pe = V�f

Df
, (7.2.39)

which expresses the ratio between the rates of transport of the considered mass of
chemical species, respectively, by advection and by diffusion, both at themacroscopic
level. In this definition, �f is the hydraulic radius of the fluid occupied portion of
the void space, serving as a characteristic length of the void space, and Df denotes
the coefficient of molecular diffusion in the fluid phase. Since r = O(1), f (Peγ, r)
is an increasing function of Peγ , but at a decreasing rate. For Peγ 	 1, f (Peγ, r) =
O(Peγ). For Peγ 
 1, f (Peγ, r) ≈ 1. Henceforth, as is common in practice, we shall
assume f ≈ 1.

As is common in practice, we shall assume f (Pe, r) ≈ 1, so that the coefficient
of dispersion is expressed in the form (7.2.37).
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Note that in the latter equation, the coefficient of dispersion is proportional to
the first power of the velocity, contrary to the results of the analysis presented in
Sect. 3.4.4. Currently, there is no experimental validation of the proportionality to
V 2, and, therefore, we shall focus on the commonly accepted relationship (7.2.37).

The coefficients ai jk� (dims. L) appearing in (7.2.37) are components of a fourth
rank tensor, a, called the dispersivity of the porous medium. It expresses the effect,
on the flow, of the microscopic configuration of the interface between the considered
fluid phase and all other phases within the REV. In a saturated system, this interface
is that between the fluid and the solid. When, in multi-phase flow, a fluid occupies
only part of the void space, each of the dispersivity components, ai jk�, is a function
of the volumetric fraction of the fluid.

In a three-dimensional space, the dispersivity tensor, ai jk�, has 34 = 81 compo-
nents. However, because of various symmetry considerations, the number of inde-
pendent coefficients is smaller. Specifically:

(a) From the expression for the rate of entropy production, Ṡ, and following the
discussion leading to (7.2.34), we have:

Ṡ = χ

(
−Di j

∂c f

∂xi

)
× χ

(
−∂c f

∂x j

)
= χ2ai jk�

∂c f

∂xi

∂c f

∂x j

VkVl

V
≥ 0. (7.2.40)

It follows that ai jk� is positive definite. This means that all principal minors of
ai jk� are positive.

(b) The values of the ai jk� are invariant under the permutation of indices:

ai jk� = ai j�k, ai jk� = a j ik�. (7.2.41)

Hence, only 36 of the 81 components are independent of each other. It is interest-
ing to note that the 36 components are constrained by 26 − 1 = 63 constraints. As
the material has more symmetry properties, the number of independent coefficients
decreases, until, when the material is isotropic, this number is reduced to two (Bear
et al. 2009).

A. Isotropic Porous Medium

In an isotropic porous medium, it has been demonstrated (Bear and Bachmat 1991;
see also Sirotine and Chaskolskaya 1984, p. 651–2) that the 36 independent compo-
nents reduce to two. This can be shown by considering fourth rank tensors that satisfy
the relationships (7.2.41) and are invariant under the action of full rotational (orthog-
onal) symmetry. The two coefficients are designated as aL and aT , and are called the
longitudinal and the transverse dispersivities of the porous medium, respectively.
The parameter aL is a length that characterizes the microscopic level heterogeneity
within the REV. Furthermore, by the positive definiteness of ai jk�, it follows that:

aL ≥ 0, aT ≥ 0. (7.2.42)

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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De Josselin de Jong (1958) and laboratory column experiments (e.g., Bear 1961b)
have shown that aT is 8–24 times smaller than aL .

In terms of aL and aT , the components of the dispersivity tensor for an isotropic
porous medium are expressed in the form:

aik j� = aTδi jδk� + aL − aT

2
(δikδ j� + δi�δ jk), (7.2.43)

where δi j is the Kronecker delta. The coefficient of dispersion can then be expressed
as

Di j =
[
aTδi j + (aL − aT )

ViVj

V 2

]
V, V = |V|, (7.2.44)

in which Vi denotes the i th component of the average velocity vector V.
In Cartesian coordinates, with Vx , Vy , and Vz denoting average velocity compo-

nents in the x , y, and z directions, respectively, we obtain from (7.2.44):

Dxx =
[
aT + (aL − aT )

V 2
x

V 2

]
V = 1

V

(
aLV

2
x + aT V

2
y + aT V

2
z

)
,

Dyy =
[
aT + (aL − aT )

V 2
y

V 2

]
V = 1

V

(
aT V

2
x + aLV

2
y + aT V

2
z

)
,

Dzz =
[
aT + (aL − aT )

V 2
z

V 2

]
V = 1

V

(
aT V

2
x + aT V

2
y + aLV

2
z

)
,

Dxy =
[
(aL − aT )

VxVy

V 2

]
V = Dyx ,

Dxz =
[
(aL − aT )

VxVz

V 2

]
V = Dzx ,

Dyz =
[
(aL − aT )

VyVz

V 2

]
V = Dzy . (7.2.45)

Like any second rank tensor, D also has three principal directions. Using these
principal directions as Cartesian coordinate axes, x1, x2, x3, we may write D, in the
matrix form:

D =
⎡

⎣
Dx1x1 0 0
0 Dx2x2 0
0 0 Dx3x3

⎤

⎦ . (7.2.46)

In the special case of uniform flow, say Vx = V , Vy = Vz = 0, Eq. (7.2.45) reduces
to Dxx = aLV , Dyy = aT V , Dzz = aT V , Dxy = Dxz = Dyz = 0; or, in matrix form:

D =
⎡

⎣
aL 0 0
0 aT 0
0 0 aT

⎤

⎦ V =
⎡

⎣
DL 0 0
0 DT 0
0 0 DT

⎤

⎦ , (7.2.47)
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Fig. 7.2 Principal directions
of dispersion coefficient in
an isotropic porous medium

Streamlines
τ, x1

ν, x2

β, x3

ν, x2

τ, x1

β, x3

where DL and DT are, respectively, the longitudinal and transversal dispersion coef-
ficients of an isotropic porous medium.

We have alreadymentioned that the tensorD (and its principal directions) depends
also on the (macroscopic) velocity field. Specifically, if we consider a point on a
macroscopic (instantaneous) streamline in a flow domain, we may construct at that
point:

• a unit vector, τ , in the direction of the tangent to the streamline, (i.e., in the
direction of the flow),

• a unit vector, ν, called the principal normal to the streamline (defined by
κν = dτ/ds, where s is the distance measured along the streamline, and κ is
the curvature of the streamline at the point), and

• a unit vector, β (= τ × ν), normal to both τ and ν (Fig. 7.2).

In an isotropic porous medium, the principal directions of the tensor D coincide
with the directions of these three unit vectors. As such, as the velocity varies, these
directions may vary from point to point and in time.

If, locally, we select τ , ν and β, as basis vectors of the coordinate system,
x1, x2, x3, then D takes the form (7.2.46). In such a case, Dx1x1 is called coefficient
of longitudinal dispersion, while Dx2x2 and Dx3x3 are called coefficients of transverse
dispersion.

B. Anisotropy with Axial Symmetry

In an anisotropic porous medium, the number of independent dispersivity coeffi-
cients is larger, depending on the kind of symmetry exhibited by the anisotropic
medium. As an example, consider an axially symmetrical porous medium (= trans-
verse isotropy), i.e., a porous medium with one axis of rotational symmetry, with
the vector e (components ei ) indicating the axis of symmetry. For such medium,
there exist six independent ai jk�-coefficients. The dispersivity components can then
be expressed by (Bear et al. 2009):

ai jk� = a1δi jδk� + a2
2

(δikδ j� + δi�δ jk) + a3ei e jδk� + a4eke�δi j

+a5
2

(ei ekδ j� + e j ekδi� + ei e�δ jk + e j e�δik) + a6ei e j eke�, (7.2.48)
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with a1 through a6 indicating the six independent dispersivity coefficients. Fel
and Bear (2010) determined the constraints that the six ai ’s have to satisfy as a
consequence of the positive definiteness of the entropy production, expressed by
(7.2.34). We note that by dropping terms associated with ei in (7.2.48), we obtain
the isotropic case, described by (7.2.43), i.e., with a1 = aT , and a2 = aL − aT , and
a3 = a4 = a5 = a6 = 0. These six dispersivity coefficients, a1–a6, are properties of
the porous medium only, meaning that they are independent of the flow taking place
in the porous medium, and the chosen coordinate system.

Based on (7.2.37), the corresponding expression for the dispersion coefficients
Di j is:

Di j =
[
a1δi j + a2

ViVj

V 2
+ a3ei e j + a4δi j

(Vkek)2

V 2

+a5
Vkek
V

Vie j + Vjei
V 2

+ a6ei e j
(Vkek)2

V 2

]
V . (7.2.49)

We note that the dispersion coefficient, which is used for determining the dispersive
flux by means of (7.2.32), depends not only on the porous medium (through the
dispersivity coefficients), but also on the velocity vector. As velocity may vary in
space and time, so does the dispersion coefficients.

In order to model solute transport in a transversely isotropic porous medium
under general flow conditions, we need to determine the six independent dispersivity
coefficients. These ai coefficients can be determined by conducting tracer tests in the
field, and comparing tracer concentrations within a plume with available analytical
or numerical solutions.

As the expression for dispersive flux, say, (7.2.32), involve six dispersion coeffi-
cients Di j (six, instead of nine, because of the symmetry Di j = Dji ), the first step in
a parameter estimation procedure is to determine these six components of the disper-
sion coefficient. Given a transversely isotropic aquifer with known axis of symmetry
(i.e., known vector components ei ), and known flow (i.e., known Vi ), in principle,
it is possible to determine the dispersion coefficients from information on observed
concentrations during a controlled experiment.

Let us examine some special cases. Consider a horizontally layered material, with
the z-axis coincidingwith the axis ofmaterial symmetry, i.e., e3 = 1 and e1 = e2 = 0.
We express (7.2.49) as:

Dxx =
(
a1 + a2

V 2
x

V 2
+ a4

V 2
z

V 2

)
V,

Dyy =
(
a1 + a2

V 2
y

V 2
+ a4

V 2
z

V 2

)
V,

Dzz =
[
a1 + a3 + (a2 + a4 + 2a5 + a6)

V 2
z

V 2

]
V,
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Dxy = Dyx = a2
VxVy

V 2
V,

Dxz = Dzx = (a2 + a5)
VxVz

V 2
V,

Dyz = Dzy = (a2 + a5)
VyVz

V 2
V . (7.2.50)

By eliminating the factor (a2 + a5) between the fifth and sixth equations in (7.2.50),
we can clearly see that Dxz and Dyz are related to each other. Further analysis shows
that the matrix is of rank four, and the following constraints must be satisfied in order
for the system of equations to have a solution:

Dyz = Vy

Vx
Dxz, Dxx = Dyy + V 2

x − V 2
y

VxVy
Dxy . (7.2.51)

Hence, only four of the six dispersion coefficients are independent.
Often, it is convenient to use a local coordinate system that coincides with the

flow direction at the considered location. For example, in the case of uniform flow
in the direction of the x1-axis (see Fig. 7.2), such that V1 = V and V2 = V3 = 0, we
can show that

Dxy = ey
ez

Dxz, Dyy = Dzz + e2y − e2z
eyez

Dyz, (7.2.52)

i.e., again, only four of the dispersion coefficients are independent.
The main conclusions of the above analysis are:

(a) In a single field experiment, in which the flow conditions remain unchanged, it
is possible to determine only four dispersion coefficients at any one location,
due to the required interdependency given either by (7.2.51) or by (7.2.52).

(b) Given these four independent dispersion coefficients, it is not possible to resolve
the six dispersivity coefficients, a1–a6.

(c) However, as demonstrated below (see also Fel and Bear 2010), it is possible to
determine the six dispersivity coefficients if two experiments are conducted.

(d) In a forwardmodeling problem, in which values of six dispersion coefficients are
required as input, one needs to check the consistency of the assigned dispersion
values. These values need to be either determined from (7.2.49), based on the six
dispersivity coefficients, or satisfy the relations as shown in (7.2.51) or (7.2.52).

Next, let us consider two special flow cases in the layered medium considered
above. In the following discussion, we shall choose the z-axis to coincide with the
material axis of symmetry, i.e., e3 = 1 and e1 = e2 = 0.

In the first case, we consider uniform flow normal to the layers, that is, in the
z-direction, such that V3 = V and V1 = V2 = 0. Using this condition in (7.2.49), we
obtain:
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DV =
⎡

⎣
aV

T H 0 0
0 aV

T H 0
0 0 aV

LV

⎤

⎦ V,
aV

T H = a1 + a4,
aV

LV = a1 + a2 + a3 + a4 + 2a5 + a6,
(7.2.53)

where the superscript (.)V is used to emphasize that the flow direction is vertical, aV
T H

is the transverse dispersivity in the horizontal direction (only one value because of the
isotropy in the horizontal plane), and aV

LV is the longitudinal dispersivity in the vertical
direction. Altogether, to describe dispersion in a layered horizontal porous medium,
when the flow is uniform and normal to the layers, we need only one longitudinal
and one transversal dispersivities.

As a second case, we consider uniform flow parallel to the layers, say, in the
+x-axis direction, such that V1 = V and V2 = V3 = 0. Equation (7.2.49) becomes:

DH =
⎡

⎣
aH

LH 0 0
0 aH

T H 0
0 0 aH

TV

⎤

⎦ V,

aH
LH = a1 + a2,

aH
T H = a1,

aH
TV = a1 + a3,

(7.2.54)

where aH
T H and a

H
TV are, respectively, the transverse dispersivities in the horizontal and

in the vertical directions, and aH
LH is the longitudinal dispersivity in the horizontal

direction. Thus, to describe dispersion in a layered horizontal porous medium, when
flow is uniformandparallel to the layers,weneedone longitudinal and two transversal
dispersivities.

As observed in the cases discussed above, under uniform flow conditions, we can
only determine two, three, or four independent dispersion coefficients in a single
experiment, depending on whether the flow is perpendicular, parallel, or at an angle,
to thematerial symmetry axis. This implies that at least two flow tests in different flow
directions are needed, and one of the two directions must be inclined with respect
to the direction of the material symmetry axis. For example, if we conduct a hori-
zontal flow test, and obtain result as in (7.2.54), we can determine three dispersivity
coefficients, a1, a2 and a3. For the second test, the flow should be neither in the
vertical, nor in the horizontal, direction, as there will not be sufficient information to
determine the remaining three coefficients. The flow of the second test must be in an
inclined direction with the horizontal plane and the vertical axis, which will provide
four additional equations. The remaining three coefficients can then be determined
under over-determinacy condition. Similar statement was presented by Fel and Bear
(2010) for the special case of flow in the horizontal direction, and making a 45◦ angle
with the axis of symmetry.

In the above, we have assumed that the direction of the axis of symmetry is known
a priori, i.e., we know the three values: e1, e2 and e3 that appear in (7.2.49). If this
direction is not known, we have to use the experimental data to solve the inverse
problem also for two of these three components of e (because e21 + e22 + e23 = 1),
for a total of 8 unknown values. In this case, two flow tests in two different inclined
directions (with respect to the materials axis of symmetry) are sufficient for the
determination of these 8 unknowns.
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C. Anisotropy with Tetragonal Symmetry

As an example of such porous medium material, we may consider one that is made
up of orderly packed solid boxes a × b × c, with equal spacing between the boxes
in all directions (or cubes with 3 different spaces). For this case, the 36 independent
ai jk�-components can be expressed by 7 independent, parameters, which are subject
to certain constraints (Bear et al. 2009). It is interesting to note that this case is not
identical to the case with axial symmetry (such as a stratified aquifer), considered
above. Here, we also need information on the directions in which the boxes, a ×
b × c, are positioned in space, e.g., in the form of two of the three ei ’s. This case is
analyzed in detail by Bear et al. (2009).

D. Anisotropy with Orthorhombic Symmetry

An example is a porous medium material made up of orderly packed solid boxes
a × b × c with equal spacing between the boxes in all directions (or cubes with
three different spaces). For this case, the 36 independent dispersivity components
can be expressed by twelve independent parameters. We also need information on
the directions in which the boxes, a × b × c, are oriented in space (and this, as
indicated earlier, requires information on two ei ’s).

It is possible to analyze three special cases of flow, each one with uniform flow
parallel to one of the three axes. To describe dispersion in each of these three cases
we need only three coefficients: a longitudinal dispersivity and two transversal ones.

In each of the material symmetry cases discussed above, the number of indepen-
dent coefficients is accompanied by a number of constraints that these coefficients
have to satisfy. The information concerning the number of independent coefficients
and the constraints among them (Bear et al. 2009) is important when experiments are
conducted aimed at determining the values of these coefficients for a specific porous
medium, by using an inverse method.

Similar to the discussion presented with respect to the experimental procedure for
determining the dispersivity coefficients in the case of transverse isotropy, here also,
a number of independent experiments will be required.

E. Another Model for Dispersion in Anisotropic Domains

Some authors, on the basis of field observations, have suggested that for flow parallel
to the horizontal stratification in a stratified (= layered) aquifer, transverse dispersion
is much smaller in the vertical direction than in the horizontal one, i.e., aH

T H 
 aH
TV

in (7.2.54) (Robson 1974, 1978; Garabedian et al. 1991; Gelhar et al. 1992). Based
on the above observation, Burnett and Frind (1987) (see also Jensen et al. 1993;
Zheng and Bennett 1995) suggested a ‘working model’ for transversely isotropic
porous medium, in which the dispersion tensor is defined by three dispersivities only
(rather than six, see Sect. 7.2.3B): a longitudinal dispersivity, aL , and two transversal
dispersivities: a horizontal one, aT H , and a vertical one, aTV . The components of
the dispersion tensor in three dimensions, with the z-axis as the axis of material
symmetry, are presented as:
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(aL − aTV ) VxVz,

Dyz = Dzy = 1

V
(aL − aT V ) VyVz . (7.2.55)

These expressions can be compared with those for the isotropic case, (7.2.45).
Burnett and Frind (1987) further assumed that aT H 
 aTV . The relations presented
in (7.2.55), however, are not consistent with (7.2.49). In fact, Lichtner et al. (2002)
have demonstrated that (7.2.55) does not conform with tensor transformation rules,
suggesting that it is not an acceptable model.

Based on a turbulence model investigated by Batchelor (1959), using a method
introduced by Robertson (1940), Poreh (1965) suggested a model that is based on
four dispersivity coefficients:

Di j =
[
α1δi j + α2

ViVj

V 2
+ α3ei e j + α4

2

ei Vj + e j Vi

V

]
V . (7.2.56)

Lichtner et al. (2002) examined the Poreh (1965) model and discussed the need
for introducing cos θ as a factor in the constitutive model. As a result, they proposed
a four parameter model when the principal axes are not aligned with the flow; they
suggested three parameters.

F. The Role of Diffusion in Dispersion

Although, in this section, we have discussed the phenomena of diffusion and dis-
persion separately, and presented expressions for their fluxes, we have to understand
that they are inseparable. The difference between them stems from the very defini-
tion of dispersion: molecular diffusion always exists in a fluid, whether stationary or
in motion, as long as a concentration gradient of some dissolved chemical species
exists. For dispersion, we need two conditions: (1) fluid motion and a (2) concentra-
tion gradient. Consider an imaginary case of steady flow of a fluid in the void space
of a porous medium containing a dissolved tracer, but without diffusion. Spreading
of an initial quantity of tracer, say within a fluid that occupies the void space of an
REV, will still occur, as the tracer will be carried within the tortuous stream-tubes at
variable velocity. The spreading within a stream-tube can be by advection. However,
each fluid particle will stay in its original stream-tube. Theoretically, reversing the
flow, will bring all tracer particles back to the original position in the REV.
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Only diffusion, driven by lateral concentration gradient can cause tracer particles
tomove laterally, fromone stream-tube to the next.An important feature of spreading
by diffusion is that it is irreversible. Altogether, because of diffusion, there is no
way to bring the tracer particles back to their original position. Thus, dispersion is
irreversible.

Dispersion is velocity dependent, while diffusion is not. Thus, at high velocity,
dispersion dominates, while diffusion dominates at low velocity. The dimensionless
Peclet number, Pe, defined in (7.2.39), provides a measure of the ratio between the
two.

An interesting issue arises in the following case. We consider an aquifer with
uniform flow, say, specific discharge qo in the +x-direction. Suppose tracer labelled
water is injected during a relatively short period through a well at (0, 0) into the
aquifer, creating a “stain” of labelled water. Along the x-axis, we have ∂c/∂x < 0
in the downstream direction, i.e., x > 0, and ∂c/∂x > 0 in the upstream direction,
i.e., x < 0. The tracer advective + dispersive flux along the x-axis is expressed by:

qc = qoc − qaL

∂c

∂x
, q = |qo|.

For x > 0, ∂c/∂x < 0, and the solute will continue to be displaced downstream.
However, for x < 0, the unlabeled water pushes the labelled water, but it is possible
that the above expression for qc will lead to qc < 0, i.e., tracer transport against the
flow in the aquifer, a result that does notmake sense. This seems to be an inconsistency
in the dispersion theory presented here (see, for example, Simpson 1978).

G. Some Comments on Dispersion in Single and Multiphase Flow

• Dispersion is a consequence of using averaged fluid velocity instead of the actual
velocity within the void space. Hence, in the case of multiphase flow, a dispersivity
is defined for each of the phases present in the void space and that dispersivity
depends on the saturation, ai jkl,α = ai jkl,α(θα). Very little information is available
on this subject.

• A special interesting case is that of unsaturated flow, i.e., air and water that occupy
the void space. In Sect. 6.1 we have introduced the concepts of irreducible water
saturation and that of immobile water. The presence of such domains certainly
affect the water’s velocity distribution within the void space, thus affecting the
dispersivity of the water occupying part of the void space. Furthermore, a solute
may be exchanged between themobile and the immobile potions of the void space.
This situation will also affect the dispersivity of the water that occupies part of the
void space.

• Ion exclusion. In the case of an ionic species–an anion or a cation–in water.
Because of the electrical charge on certain solid surfaces, the considered species
may be repelled from the solid wall, where water velocity is small (recalling that
we assume that water adsorbs to the solid wall). Thus, the considered species
moves mainly in the regions of higher velocity within the void space. The average
velocity of the water that carries and disperses the solute is, thus, higher than for a

http://dx.doi.org/10.1007/978-3-319-72826-1_6
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non-ionic solute. As a consequence, the advective flux will be higher, and so will
the coefficient of dispersion, which is proportional to the average velocity. This
phenomenon has also been called charge exclusion (e.g., Gvirtzman et al. 1989;
Gvirtzman and Gorelick 1991).

• Size exclusion Some molecules or ions are so large that their travel is restricted to
the larger pores. As a consequence, they are carried (by advection) at a higher aver-
age fluid velocity. The higher average velocity also results in a higher coefficient
of dispersion.

Although we have considered here dispersion in connection with the spreading
of the mass of a dissolved species, the same ideas are valid also for thermal energy
(heat) by a diffusive process (= conduction) and by thermal dispersion.

7.2.4 Field Scale Solute Dispersion

In Sect. 3.4.3, the phenomenon of solute dispersion was shown to be a consequence
of porous medium heterogeneity at the microscopic scale, i.e., due to the presence of
both a solid matrix and a void space within the REV. A grain, or pore diameter, or the
hydraulic radius of the void space, was suggested as the scale of this heterogeneity.
The latter produces velocity variations within the void space. The dispersive flux, a
macroscopic level concept, obtained by averaging over an REV, was introduced as
a means for circumventing the need to know the details of the velocity distribution
at the microscopic level. We have also introduced the dispersive flux as a Fickian-
type model, with the concentration gradient as the driving force and a dispersion
coefficient that is proportional to the average velocity according to some models,
and to the square of that velocity according to some other.

Actually, efforts to verify the Fickian-type solute transport model introduced so
far in this chapter, with a coefficient of dispersion proportional to the first power of the
average velocity, by comparing model predictions with field observations, showed
that the model is valid for rather small and very homogeneous domains. Often, the
term “laboratory scale” is used to describe such domains. In fact, some authors (e.g.,
Levy and Berkowitz 2003) claim that the Fickian model is not valid even for very
short (assumed homogeneous) sand columns (i.e., at ‘laboratory scale’).

As emphasized throughout this book, a characteristic feature of all subsurface
(or geological) domains, and here we focus only on such domains, is that they are
highly heterogeneous with respect to their macroscopic coefficients, e.g., porosity
and (mainly) permeability. We have suggested the term ‘megascopic level’, obtained
by smoothing out variations at the macroscopic level, and introduced the concept of
‘scale of heterogeneity’, indicating that at the macroscopic level, variations, say in
permeability, may occur at different scales. In fact, this multiple scale heterogeneity
is a dominant factor in geological formations. Because pressure propagates very
fast, the effect of this inherent heterogeneity is less noticeable when considering
fluid flow. However, its effect is significant on the mass transport of a dissolved

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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chemical species. There exist abundant evidence in the literature that shows that
the dispersion model discussed so far in this section does not describe what really
happens in geological formations, or under “field scale” conditions.

Megascopic Scale Averaging

It should be possible to solve a transport problem at the macroscopic level in any
heterogeneous domain in which the spatial variations of the permeability and of the
other relevant coefficients are known. Indeed, in small scale field problems, e.g.,
in the vicinity of an injection well, or within a small distance downstream of a
pollution source, the formation properties (porosity, permeability, dispersivity) may
be known (or estimated), and the problem of predicting the concentration distribution
of an injected solute can be solved by making use of the (macroscopic level) model
described earlier in this chapter. However, when considering a solute, or pollution
plume that advances a large distance, sometimes kilometers, we face a situation
similar to that which is encountered at the microscopic level, viz., that the detailed
information about the spatial variation of the relevant parameters is unknown, due
to the heterogeneity inherent in such domains. The way we overcome the lack of
information about the heterogeneity at the microscopic level (resulting from pore
scale heterogeneity) is to use homogenization, or averaging over anREV, as discussed
in Sect. 1.1. The same averaging, or smoothing approach, may also be applied to
heterogeneities that are encountered at the macroscopic level, to obtain a continuum
at the megascopic level. In Sect. 1.1.6, this kind of averaging volume was referred
to as the Representative Macroscopic Volume (RMV). The characteristic size of this
volume, �∗, is constrained by:

d∗ 	 �∗ 	 L ,

where L is a length characterizing the porous medium domain; d∗ is the length that
characterizes the macroscopic heterogeneity that we wish to smooth out. Similar to
what happens during microscopic-to-macroscopic smoothing, here, the information
about the heterogeneity at the macroscopic level appears at the megascopic level in
the form of various coefficients.

Denoting the volume of an RMV by Vo, and the macroscopic value of e by e, we
define the megascopic value of e by:

e(x, t) = 1

Vo

∫

Vo

e(x′, t; x) dVo(x′), (7.2.57)

where x and x′ denote the centroid of the RMV and a point (of the porous medium
regarded as a continuum) inside it, respectively. With this definition, we may now
derive the total flux of a γ-component at the megascopic level, by averaging (3.4.31)
over an RMV. For saturated flow, we obtain:

http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_3


480 7 Modeling Transport of Chemical Species

φJγ = c f q + φ (Jγ + J∗γ)

= c f q + ĉ f q̂ + φ (Jγ + J∗γ)

≈ c f q + ĉ f q̂, (7.2.58)

where a double bar over a macroscopic value indicates a megascopic value obtained
by averaging over an RMV, with c = φc f , and ˆ(..), defined by:

ˆ
(..)

f = (..)
f − (..)

f
,

is the deviation of a macroscopic value at any point within an RMV from its average
over the RMV. We note that the flux on the left-hand side of (7.2.58) (and hence all
other terms) is per unit area of porous medium.

As could have been expected, the megascopic total flux contains two new addi-
tional dispersive fluxes, which result from the variability of the relevant macroscopic

quantities. One is ĉ f q̂, which will be referred to as the macrodispersive flux of the
chemical species. The other is the average over the RMV of the sum of the dispersive
and diffusive fluxes at the macroscopic level. Note that on the last line of (7.2.58),
we have neglected the second dispersive flux as being much smaller than the first.

Altogether, the total flux is again the sumof an advectivemass flux and a dispersive
one. There is no reference here to the diffusive flux, as we have neglected it. At very
low velocities, we may not neglect the average of the macroscopic diffusive flux.

We have to express the dispersive flux at the megascopic level in terms of megas-
copic quantities, in the same manner as is done in the description of transport at
the macroscopic level. We usually assume that a Fickian-type dispersion law, e.g.,
(7.2.32), is also valid for describing the macrodispersive flux. A macrodispersivity,
Ai jkm , can be defined in the same way as the dispersivity was defined earlier in
(7.2.37). Bear (1979), while developing the vertically integrated mass balance equa-
tion for a component of a phase, suggested for the general case of an anisotropic
porous medium, an expression for macrodispersivity in the form:

Ai jkm = K̂in K̂ j�

Kkn Km�

L̃, (7.2.59)

where Ki j denotes the i j-th component of the hydraulic conductivity tensor, and
L̃ is a length that characterizes the inhomogeneity of the aquifer, resulting from
stratification. It is a fourth rank tensor, which is analogous to the dispersivity at the
macroscopic level (i.e., with AL and AT , etc.). In an isotropic porous medium, the
macrodispersivity reduces to a scalar. Gelhar (1976) andGelhar et al. (1979) analyzed
the dependence of macrodispersion on permeability variations. For horizontal flow
in an isotropic confined aquifer, they suggested that:
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AL = 1

3

L2
1σ

2
ln k

aT

, (7.2.60)

in which L1 is a correlation distance (= distance along which permeabilities are still
correlated), σln k is the standard deviation of ln k, and aT is the transverse dispersivity.

Altogether, we may summarize this approach by suggesting that dispersion and
macrodispersion are analogous phenomena, in that both are consequences of velocity
variations that are due to heterogeneity, but at different scales. Dispersion arises from
velocity variations within the void space (i.e., at the microscopic level), caused by
the presence of the solid surfaces. Macrodispersion is produced by macroscopic
velocity variations, caused by variations (i.e., heterogeneity) in the permeability and
porosity. In both cases, the flux is the sum of an advective flux and a (hydrodynamic)
dispersive one, written at the respective levels. The structure of the coefficient of
dispersion is the same in both cases, and so is the relationship between the coefficient
of dispersion, the dispersivity, and the average velocity. In practice, we use exactly the
same mathematical model (except that in the case of field scale, we usually neglect
the flux due to molecular diffusion), but select the magnitude of the dispersivity
according to the scale of heterogeneity.

In laboratory column experiments, the porous medium is more or less homo-
geneous, say with respect to permeability and porosity. The scale of heterogeneity
is that of the size of a grain or a pore. Indeed, the magnitude of longitudinal dis-
persivity found in many column experiments is approximately equal to a pore- or
grain-size. However, under field conditions, the scale of heterogeneity, due to vari-
ability in permeability and porosity, is much larger. In fact this scale grows with the
size of the domain, i.e., the distance between the source of concentration and the point
of observation. Gelhar et al. (1992) compiled a large number of field experiments
and presented the observed longitudinal dispersivity, AL , as a function of the travel
distance, Ls , as shown in Fig. 7.3. It is clear that macrodispersivity is proportional
to the size of the field, although the data shows a wide range of scatter. Lallemand-
Barrés and Peaudecerf (1978) analyzed published values of plume concentration and
showed that, on the average, the dispersivity increases with the distance (between a
few meters and 10km), between the source and the point of observation. As a ‘rule
of thumb’, they concluded that the dispersivity can be approximated as 1/10 of the
distance traveled by the plume. This is often referred to as a ‘scale effect’.

Based on the argument of self-similar (fractal) hierarchy of logarithmic hydraulic
conductivity, Neumann (1990) suggested a universal scaling law and presented the
following equations based on the least square fit of the data:

AL = 0.017 L1.5
s ; Ls ≤ 100 m; (7.2.61)

AL = 0.32 L0.83
s ; Ls > 100 m. (7.2.62)

These two empirical formulas are plotted in Fig. 7.3. Gelhar et al. (1992, 1993),
however, cautioned the use of these power laws by pointing out the large scatter in
data (2–3 orders of magnitude) in Fig. 7.3.
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Fig. 7.3 Longitudinal
dispersivity versus plume
travel distance for various
types of observations and
media (Gelhar et al. 1992).
Line marked as (1): Eq.
(7.2.61); and (2): Eq. (7.2.62)

Gelhar and Axnes (1983) and Dagan (1984) (see also (7.2.60)) showed that the
longitudinal dispersivity is also proportional to the product of the variance of the
logarithm of the hydraulic conductivity, and the correlation length scale, i.e.,

AL ∼ L1 σ2
ln k . (7.2.63)

This can explain the range of scatter observed in Fig. 7.3.
Another issue that may be raised in connection with the above averaging (over

an RMV) approach is that of monitoring. In the averaged model, the megascopic

concentration, c f , should be measured over the volume of an RMV. Can this be done
in practice?

At the end of Sect. 7.1, we introduced the notion of the “well-mixed” REV. How-
ever, it questionable whether we can assume that a considered solute is “well mixed”
also within an RMV, in the case of highly heterogeneous domains, especially geo-
logical ones. Two issues will be raised. One is the possibility that the pore space of an
RMVmay contain a significant sub-domain of dead-end pores (Sect. 1.1.7), in which
flow is very slow, so that the notion of a well-mixed RMV at (i.e., in the vicinity of)
a point may be questionable. A second issue is that raised already in Sect. 1.1.4E in
connection with REV averaging of solute concentration and of heat. For an average
over an RMV to represent what happens in its interior, it has to be “well mixed”, and
this requires a sufficiently small Peclet number within it. This ensures good mixing.

To summarize the discussion so far, under field conditions, we observe the spread-
ing, or dispersion of an advancing plume as it advances in a geological formation.
The reason is the heterogeneity inherent in geological formations.

http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_1
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7.3 Mass Balance Equation for Reacting Species

Often, phenomena of mass transport of single and multiple fluid phases in porous
media involve reactions among chemical species that are present in a considered
fluid. In many types of chemical reactors (see App. A), the objective is to provide the
appropriate environment and conditions in which desired chemical reactions take
place. Reactions may also take place among chemical species in the fluid(s) and
those comprising the solid matrix. Many aquifer clean-up techniques rely on chem-
ical reactions. Some methods utilize chemical or biological reactions to degrade a
contaminant into harmless products by introducing appropriate reactants or nutrients
into the subsurface, either through an injection well, or by placement into a perme-
able trench, also known as a Permeable Reactive Barrier (PRB) (e.g., Czurda and
Haus 2002). Chemical reactions occur also in a Carbon Capture and Storage (CCS)
project, in which CO2 is injected into deep usually brine containing formations (e.g.,
Al-Khoury and Bundschuh 2014). The CO2 that dissolves in the brine participates
in a variety of chemical reactions with the various species that comprise the brine.

7.3.1 Species Balance Equations

As in the case of mass of a fluid phase, the expression for the mass flux of a chemical
species contains two variables: the flux of the species and its concentration. An
additional equation is called for–the mass balance for the species.

The mass balance equation for a γ-species in a fluid (liquid, or gas) α-phase that
occupies the entire void space was already presented as (3.6.2). Repeated here for
convenience, recalling that cγ

α ≡ ραωγ
α, J

mγ

α,adv ≡ Jγ
α,adv = ραωγ

αVα, we have:

∂φραωγ
α

∂t
= −∇·φ (ραωγ

αVα + Jm
γ

α,di f + Jm
γ

α,dis

)+ f m
γ

s→α + φρα�mγ

α . (7.3.1)

In the above equation, the symbol f m
γ

s→α(≡ f γ
s→α) denotes the transport of γ-mass

from the solid (s) phase to the α-phase across their common interphase boundaries,
with f m

γ

s→α = − f m
γ

α→s . Obviously, solid-fluid transfer, e.g., due to adsorption on the
solid, to solid dissolution and to precipitation on the solid, call for the introduction of
the mass balance equation for the relevant species in the thin layer next to the solid’s
surface (e.g., (7.4.9)).

The term φρα�mγ

α denotes the source (= negative of sink) of γ-mass in α per unit
volume and unit time, say by chemical reactions (see Sect. 7.3.3). Often, in dealing
with ground water flow in aquifers, this term is used for expressing added mass of
γ by injection wells (see Sect. 7.3.2) per unit volume of porous medium. In what
follows, we shall focus on sources of γ that are due only to chemical reactions.

Still considering single phase (α) flow, expressing the sum of diffusive +
dispersive mγ-fluxes, Jm

γ

α,di f + Jm
γ

α,dis , by −D′
α·∇cγ

α, and assuming that the fluid’s

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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mass balance equation can be approximated by∇·φραVα(≡ ∇·ραqα) = 0, the solute
mass balance equation for cγ

α = cγ
α(x, t), reduces to:

φ
∂cγ

α

∂t
= −φVα·∇cγ

α − ∇ · (D′
α · ∇cγ

α) + f m
γ

s→α + φρα�mγ

α . (7.3.2)

often called advection-dispersion-reaction equation, abbreviatedADE, although this
is nothing but the mass balance equation for the considered γ-species.

Into (7.3.1), as into the other γ-balance equations, we can now insert appropriate
expressions for the diffusive and dispersive fluxes of a considered γ-species, for the
transfer of γ from the solid to the fluid, as well as source terms that express the
source/sink term by injection and pumping and the production of γ in the fluid by
chemical reactions.

For an α-phase in two phase (α,β) flow, (7.3.1) takes the form:

∂φSαραωγ
α

∂t
= −∇·φSα

(
ραωγ

αVα + Jγ
α,di f + Jγ

α,dis

)
+
∑

δ=β,s

f m
γ

δ→α + φSαρα�γ
α,

(7.3.3)

in which Sα denotes α-saturation, cγ
α = ραωγ

α, and the sum is over all processes
of mass transfer from the solid (noting that the solid may be composed of several
minerals/phases) and from all non-α fluid phases.

The abovemass balance equation for a γ-species in anα-phase, can also bewritten
in terms of the mole fraction, Xγ

α:

∂

∂t
φSαηαX

γ
α = −∇·φSαηα

(
Xγ

αVα − Dα,di f ·∇Xγ
α − Dα,dis ·∇Xγ

α

)

+
∑

δ=β,s

f γ
δ→α + φSαρα�γ

α, (7.3.4)

inwhich Xγ
α denotes themole-fraction of the γ-species in theα-phase, ηα is themolar

density of the α-phase (= nα/Vα), ηαXγ
α = [cγ

α] denotes the molar concentration of
a γ-species in an α-phase, φSαVα ≡ qα denotes the specific discharge of the α-
phase, and Dα,di f and Dα,dis are, respectively, the (second rank tensor) coefficients
of molecular diffusion and of dispersion in the α-phase within a porous medium,∑

δ=β,s f γ
δ→α denotes the rate of γ-species transfer per unit volume of the porous

medium, from all non-α-phases to the α-phase, and �γ
α is the rate of production

of the mass of γ per unit mass of the α-phase). Each term in the above equation
expresses the number of moles of γ per unit volume of porous medium per unit time.

So far, we have written species mass balance equations for a γ-species within an
α-phase present in the void space, noting that the same species may be present in
more than one phase (actually, also adsorbed on the solid, or present in a mineral).
Under thermodynamic equilibrium, the concentrations of γ in adjacent phases are
related to each other. With this in mind, another option is to make use of the notion
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of component, defined in Sect. 1.1.1, and write component mass balance equations.
In such equations, we write a balance equation for a considered species which is a
component (indicated as a superscript) present in all phases comprising the porous
medium domain. If necessary, we can include the solid also as a participating phase.

When the same γ-species is present in all fluid phases, and possibly (as adsorbed)
also on the solid matrix, especially when chemical equilibrium is assumed, it is
convenient to write a single mass balance equation for every γ-species in/on all
phases.

Consider the case of two fluid phases, a liquid and a gas denoted by subscripts
� and g that, together, occupy the entire void space (θ� + θg = φ), and solid phase
(φs = 1 − φ), and 3 chemical species, towhichwe’ll now refer as components, which
can be present in both the liquid and the gas. An example is the case of: carbon
dioxide (CO2),methane (NH4), and water (H2O). From (7.3.3), with f γ

α→β = f γ
β→α,

we obtain for every γ-species, regarded as a γ-component:

∂

∂t
φ
∑

δ=α,β

Sδρδω
γ
δ = −∇·φ

∑

δ=α,β

Sδ

(
ρδω

γ
δVδ + Jγ

δ,di f + Jγ
δ,dis

)
+ φ

∑

δ=α,β

Sδρδ�
γ
δ ,

(7.3.5)

Or, in terms of the mole fraction, Xγ
δ :

∂

∂t
φ
∑

δ=α,β

SδηδX
γ
δ = −∇·φ

∑

δ=α,β

Sδ

(
ηδX

γ
δVδ + Jγ

δ,di f + Jγ
δ,dis

)
+ φ

∑

δ=α,β

Sδρδ�
γ
δ .

(7.3.6)

As a second example, consider the case of two phases: a liquid (�) and a gas (g).
The �-phase is composed of two species: water (w) and dissolved air (a). The gas (g)
is composed of air (a) and water vapour (w). Here, we write two balance equations:
one for the water component (in both �, g phases):

∂

∂t
φ
∑

δ=l,g

Sδρδω
w
δ = −∇·φ

∑

δ=l,g

Sδ

(
ρδω

w
δ Vδ + Jw

δ,dis+di f

)
+ φ

∑

δ=l,g

Sδρδ�
w
δ ,

(7.3.7)

and one for the air component (in the � and g phases):

∂

∂t
φ
∑

δ=l,g

Sδρδω
a
δ = −∇·φ

∑

δ=l,g

Sδ

(
ρδω

a
δVδ + Jaδ,dis+di f

)
+ φ

∑

δ=l,g

Sδρδ�
a
δ .

(7.3.8)

Further to the above presentation, let us consider the case of a salt (say, NaCl).
We focus on the sodium (denoted by Na) which is dissolved in the liquid, and is also

http://dx.doi.org/10.1007/978-3-319-72826-1_1
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adsorbed (from the liquid) on the solid (s). We then add a balance equation for the
sodium (as a third component), again, for the porous medium as a whole:

∂

∂t

[
φSlρlω

Na
l + (1 − φ)ρsω

Na
s

] = −∇·φSlJNa
total,l + φSlρl�

Na
l + (1 − φ)ρs�

Na
s ,

(7.3.9)

where f Na
l→s = − f Na

s→l , and we have allowed for sources, say by chemical reactions,
both in the liquid and on the solid.

Finally, consider the case of three components: water (H2O), methane (CH4),
carbondioxide (CO2) indicated by superscripts byw,m, c respectively, that, together,
occupy the void space in the form of two phases: a liquid (�) and a gas (g). We write
three component mass balance equations: one for the water component (in both
phases):

∂

∂t
φ
∑

δ=l,g

Sδρδω
w
δ = −∇·φ

∑

δ=l,g

Sδ

(
ρδω

w
δ Vδ + Jw

δ,dis+di f

)
+ φ

∑

δ=l,g

Sδρδ�
w
δ ,

(7.3.10)

one for the (dissolved and gaseous) methane component:

∂

∂t
φ
∑

δ=l,g

Sδρδω
m
δ = −∇·φ

∑

δ=l,g

Sδ

(
ρδω

m
δ Vδ + Jmδ,dis+di f

)
+ φ

∑

δ=l,g

Sδρδ�
m
δ ,

(7.3.11)

and one for the (dissolved and gaseous) carbon dioxide component:

∂

∂t
φ
∑

δ=l,g

Sδρδω
c
δ = −∇·φ

∑

δ=l,g

Sδ

(
ρδω

c
δVδ + Jcδ,dis+di f

)
+ φ

∑

δ=l,g

Sδρδ�
c
δ .

(7.3.12)

Note that the γ-mass balances presented above are written in terms of the phase
velocitiesVα, while Darcy’s law provides information on the relative velocity,Vα −
Vs .When, albeit very seldom,we cannot assume thatVs 	 Vα, we have to regardVs

as an additional variable and to solve the case of flow and transport in a deformable
porous medium (see Chap. 9).

7.3.2 Injection and Pumping of a γ-Species Through Wells

Injection and pumping through wells, regarded as point sources and sinks of fluid
mass, in a porous medium domain, have been presented in Sect. 5.1.1. There, in
(5.1.5), the term ρmQm(xm, t)δ(x − xm), expresses the mass of the considered fluid

http://dx.doi.org/10.1007/978-3-319-72826-1_9
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
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added, per unit time, through a point of injection (m) to a porous medium domain,
per unit volume of porous medium. Extending the same approach to the case of a
γ-solute, at mass-fraction ωγ , the source term, φSαρα�γ

α, appearing in the solute
balance equation (7.3.4), takes the form

φSαρα�γ
α =

∑

(M)

ρmωγ
mQm(xm, t)δ(x − xm), (7.3.13)

where M indicates the number of m-wells, and δ denotes the Dirac delta function.

7.3.3 Chemical Reactions

In the previous subsection, the product φSαρα�γ
α, appearing in the mass balance

equation (7.3.3) expresses the rate at which the mass of a γ-species is produced
at a point in a fluid phase, per unit time, per unit volume of porous medium, due
to chemical reactions, or decay phenomena in the α-phase. The objective of this
subsection is to discuss such sources (= negative sinks). These kinds of reactions
are often referred to as ‘homogeneous reactions’, because they occur within a single
phase.

A. Conditions for Chemical Equilibrium

We are dealing with chemical reactions that occur among dissolved chemical species
that are present in a fluid that occupies the void-space or part of it. The phase may
be stationary or moving.

In order to interact, chemical species, e.g., in the form of ions, must collide
at the proper ‘orientation’, and have the required amount of energy to perform the
interaction, that is, to break andmake chemical bonds. Another factor is the chemical
structure of the interacting species. In order to interact, a chemical species may
have to follow a rather intricate path before it can interact with another species.
This is especially true in the case of large organic molecules. Obviously, the net
rate of production (or consumption) of chemical species participating in a reaction,
as indicated by the number of molecules (and ions) reacting per unit time, is a
statistical quantity. In order to describe a reaction at the microscopic level, its rate
must be statistically averaged over the μREV. Therefore, we require that the size of
the μREV be much greater than the mean distance traveled by a molecule before
reacting with another molecule.

Themacroscopic rate of reaction of a species at a point in a porousmediumdomain
is defined as the volume-averaged microscopic rate over all points in the REV that is
centered at the considered point. For homogeneous reactions, it is usually assumed
that the deviations in the thermodynamic state within the REV are sufficiently small
such that the same form of the microscopic rate law can be used at the macroscopic
level.
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When there is no net transfer of mass into a μREV, each reaction will eventually
reach equilibrium.Thismeans that the rates of consumption and production are equal,
and the net rate, which is equal to the difference between forward and backward rates
vanishes. Each reaction has a characteristic time constant that indicates how fast it
reaches equilibrium. A reaction may actually be the result of several simpler ones,
often referred to as elementary reactions. Some such reactions may be considerably
slower than others. The slowest reaction is the rate-limiting reaction; it will determine
the speed of the overall reaction.

The reaction in a given system may be characterized as falling into one of two
groups: equilibrium and kinetic reactions. This classification depends on the time
scales inherent in the aspects of the considered problem. The importance of this
classification is that it facilitates the identification of the type of a considered reaction.
The Damköehler number (see below) determines whether a reaction satisfies local
equilibrium conditions, or is a kinetic one.

When all the reactions in a given system are equilibrium ones, then the μREV
is said to be in a state of local chemical equilibrium. If every μREV in a domain
satisfies this condition, then the domain is said to satisfy the condition of local
chemical equilibrium at the microscopic level.

Obviously, in the case of multiple reactions that occur simultaneously, we may
be in a situation of partial chemical equilibrium. This occurs when some reactions
are rather quick to occur, while others take a much longer time.

Any experiment intended to determine the time of a reaction will involve some
time interval required for ‘mixing’ by flow and diffusion. This is the time required
for bringing species sufficiently close to each other, thus enabling them to interact.
A well-mixed batch reactor experiment provides information about the behavior of
a closed system at a microscopic point, i.e., within a μREV.

In order to move now to macroscopic equilibria and kinetics, let us consider an
REV as a domain at the macroscopic level surrounded by constant pressure and
temperature conditions. First, suppose there is no mass transfer across the outer
boundaries of the domain. With the aid of diffusion, unless a reactant completely
dissolves. a reaction will eventually reach a state of equilibrium; this will happen
when the rate of disappearance of all reactants equals that of appearance of all prod-
ucts. Also, at equilibrium, any initial (microscopic) concentration gradient within
the REV will eventually disappear due to diffusion, so that concentration becomes
uniform over the REV. Each reaction has a characteristic time constant that defines
how fast it reaches equilibrium. If the concentrations are initially uniform, the time
constant of a reaction in an REV is equal to the time constant of the same reaction
in a μREV in which the values of the thermodynamic state variables are equal to
those within the REV. Otherwise, the two time constants can be different, because
the reaction rates will vary over the REV in accordance with the spatially varying
concentration. This observation motivates the requirement that concentration gradi-
ents within an REV be sufficiently small so that the time constant for a reaction be
approximately equal to those inside a μREV under similar conditions.
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In a porous medium system, an REV is never a closed system. Mass of fluids
and chemical species are continuously transported by diffusion and advection within
the REV, in addition to chemical reactions which may occur. Let us consider the
case in which mass transfer occurs at the boundary of the REV. There exist time
constants associated with changes in species concentrations produced by advective
and diffusive fluxes across the outer boundaries of the REV and inside the REV itself.
If the time constant for a reaction is much smaller than these time constants, then the
reaction is an equilibrium reaction; otherwise, it is a kinetic reaction.

If all of the reactions in an REV are equilibrium ones, then the REV is said
to be in local chemical equilibrium. If every REV in a porous medium domain is
in chemical equilibrium, then the domain is said to obey the assumption of local
chemical equilibrium at the macroscopic level.

Given the time required for a reaction to reach equilibrium, we wish to discuss
the conditions under which the assumption of equilibrium within an REV—usually
referred to as the Assumption of Local Equilibrium is justified. Here, we focus on
homogeneous reactions.

The use of dimensionless numbers as a tool for comparing terms in a balance
equation, which, actually, means comparing processes in a transport problem, is
presented in detail in Sect. 3.10. There, in the example of modeling contaminant
transport, we introduced dimensionless numbers that are relevant to the discussion
here: the Strouhal (St), the Peclet (Pe) and the Damköhler (DmI ), DmI I ) numbers.
They are defined for an REV as the domain of interest:

St ≡ Lc

Vctc
= tc,adv

tc
,

Pe ≡ LcVc

D = tc,dif
tc,adv

,

Dm I ≡ Lc/Vc

tc,react
= tc,adv

tc,react
,

Dm I I ≡ L2
c/D

tc,react
= tc,dif

tc,react
. (7.3.14)

where tc is a characteristic time, e.g., the duration of the period over which the
problem is being modeled, the characteristic length, Lc, is the size of the REV, the
characteristic fluid velocity, Vc, is the maximum fluid velocity within the REV, and
D is the coefficient of diffusion at the microscopic level.

The characteristic time of reaction, tc,react, is determined by a batch reactor exper-
iment. It is defined as the time at which the concentration of an important species
in the reaction, c(t), decays to the extent that a characteristic concentration change
satisfies:

�cc ≈ ∣∣c(tc,react) − c(0)
∣∣ . (7.3.15)

For a first order reaction, (see (7.3.61)), the characteristic time is 1/k. This is the
time it takes to reach steady state.

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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We also need the dimensionless diffusion time, t�dif , and the dimensionless reaction
time, t�react , defined by:

t�di f ≡ L2
c/D
tc

= tc,di f
tc

= St · Pe,

t�react ≡ tc,react
tc

= St

Dm I . (7.3.16)

In order to ensure chemical equilibrium, we require that:

• The characteristic time for diffusion must be much smaller than the characteristic
time of the considered problem, so that

t�dif 	 1, or, equivalently, St 	 Pe. (7.3.17)

• The characteristic time for the reaction be much smaller than that for advection
and diffusion, i.e.,

Dm I 
 1, Dm I I 
 1. (7.3.18)

• The characteristic time for the reaction be much smaller than the characteristic
time of the problem:

t�react 	 1, or, equivalently, St 	 Dm I . (7.3.19)

Altogether, conditions (7.3.17) through (7.3.19) ensure local chemical equilibrium
of the reaction within an REV.

The discussion presented above on conditions for chemical equilibriumaddressed,
primarily, solute transport that occurs at the macroscopic scale. Under field condi-
tions, to which we refer as ‘formation scale’, the assumption of chemical equilibrium
is more complicated.

B. Chemical Reactions

We start by considering reactions at a point in a porous medium domain. Subse-
quently, we shall combine these reactions with solute transport in a porous medium
domain. Examples of chemical reactions in reactors in the chemical industry are
presented in App. A.

Chemical reactions were already briefly introduced in Sect. 2.2.6 in connection
with Gibbs free energy.

An irreversible chemical reaction at a point in a liquid continuum is described by
expressions like:

A → B + C, A + B → AB,

A + A → A2, aA + bB → cC + dD, (7.3.20)

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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in which A, B, AB, C, and D are species, or compounds, present in the liquid, and
a, b, c, d are positive numbers. Any of the equations in (7.3.20) is referred to as a
stoichiometric equation. For a reaction proceeding from left to right, the species on
the left-hand side are referred to as reactants, while those on the right-hand side are
called products. The last equation describes two reactants and two products. When
a reaction is also reversible, the symbol → is replace by �.

The general form of a stoichiometric equation is:

νAA + νBB + . . . → νPP + νQQ + . . . . (7.3.21)

where νA, . . . , νP, . . ., with νγ > 0, are numbers to be discussed below.
In all reactions, the involved species may be atoms, molecules, free radicals, or

ions. In each stoichiometric equation, the same total number of each kind of atom
appears on both sides. In a closed batch reactor, products or reactants may disappear
as a consequence of processes that occur. This balance enables the calculation of the
amounts of every kind of involved atom or compound.

The reaction rate expresses the decrease in the concentration of a reactant, or the
increase in that of a product, per unit time.

Consider a homogeneous reaction described by:

A + B → C. (7.3.22)

The reaction rate, Rr (dims: (moles/unit vol.)/unit time), is defined as:

Rr = −d[A]
dt

= −d[B]
dt

= d[C]
dt

, (7.3.23)

in which [A] ≡ cA/MA represents the molar concentration of A, with MA denoting
themolarmass ofA. Thus, the reaction rate expresses the number of moles (produced
or disappearing) per unit volume of solution per unit time. We note that we have
defined a single rate for the entire reaction.

The derivatives in the above equation have their usual meaning, i.e.:

dcA

dt
= lim

�t→0

cA|t+�t − cA|t
�t

. (7.3.24)

For a more complicated chemical reaction, e.g., expressed by the stoichiometric
equation:

A + 2B → 3C + D, (7.3.25)

the reaction rate, Rr , is given by:

Rr = −d[A]
dt

= −1

2

d[B]
dt

= 1

3

d[C]
dt

= d[D]
dt

. (7.3.26)
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For the general form of the stoichiometric equation (7.3.21), the reaction rate can be
expressed as:

Rr = − 1

νA

d[A]
dt

= − 1

νB

d[B]
dt

= . . . = 1

νP

d[P]
dt

= 1

νQ

d[Q]
dt

= . . . , (7.3.27)

in which the νγ , for γ = A, B, . . . ,P, Q, . . ., are the stoichiometric coefficients.
They describe the relative number ofmoles of each reactant and those of each product
that participate in the considered reaction.

The rate of reaction depends on the concentration of the participating species and
on the pressure and on the temperature, i.e., Rr = Rr (p, T, [A], [B], . . .). It can be
obtained only experimentally.

Let us introducehere some remarks concerning the source term,ρα�γ
α, that appears

in the γ-balance equations presented above, e.g., (7.3.4). In general, this source term
expresses sources like injection through wells, and added mass of a chemical species
by chemical reactions. In what follows, we shall focus on the latter.

When a number of γ-species participate in a reversible chemical reaction, the
stoichiometric equation can be written in the compact form:

∑

(γ)

νγMγ � 0, (7.3.28)

inwhichMγ denotes the chemical symbol for the respectiveγ-species andνγ denotes
the corresponding stoichiometric coefficient. Following standard convention, νγ < 0
for a reactant, and νγ > 0 for a product.

The corresponding rate of reaction, Rr , measured as moles per liter per second,
is given by:

Rr = 1

νγ

d[γ]
dt

, (7.3.29)

in which [γ] ≡ ργ/Mγ represents the molar concentration of the γ-species, with
Mγ denoting the molar mass of γ. Thus, Rr expresses the number of moles that are
produced, or that disappear, per unit volume of solution per unit time.

In many cases, the considered γ-species participates in a number ( j) of chemical
reactions that occur simultaneously. In such cases, the rate of production of the mass
of γ, per unit mass of the phase, denoted by �γ , is expressed in the form:

ρ�γ = Mγ
∑

( j)

ν
γ
j Rr, j (7.3.30)

where Mγ denotes the molar mass of the γ-component, and ν
γ
k /Mγ is proportional

to the stoichiometric coefficient appearing with the γ-component in the equation
that describes the kth chemical reaction. The above expression for ρ�γ can now be
inserted in the mass balance equation (7.3.4) for the γ-species.
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For the irreversible reaction (7.3.21), the reaction rate often takes the form:

Rr = k[A]λA [B]λB
. . . , (7.3.31)

in which the product is only over the reactant species, and the λγ’s are powers,
which, in general, are not necessarily equal to the νγ’s. Equation (7.3.31) is an
example of a rate law. The coefficient k is called the rate constant of the reaction.
The ratelaw expresses the reaction rate, Rr , determined experimentally, as a function
of the concentrations of all reactants present in the solution. The reaction expressed
by (7.3.31) is said to be λA-order in A, λB-order in B, etc. The total order of the rate
law is the sum of these exponents. For example, for the reaction:

[A] + [B] → [C], (7.3.32)

we have:

Rr ≡ −d[A]
dt

= k[A][B]. (7.3.33)

A reversible reaction like:

A + 2B � C, (7.3.34)

consists of a forward reaction and a reverse one:

A + 2B
k for−→ C, and A + 2B

krev←− C. (7.3.35)

The rate of a reversible reaction is the difference between the reaction rates of the
forward and reverse reactions. The forward reaction rate may be written as:

Rr,for = k for[A][B]2, (7.3.36)

and the reverse reaction rate as:

Rr,rev

(
= d[C]

dt

)
= krev[C], (7.3.37)

with
d[A]
dt

= −1

2

d[B]
dt

= d[C]
dt

= Rr .

The resulting reaction rate, Rr , is:

Rr = Rr,for − Rr,rev = k for[A][B]2 − krev[C], (7.3.38)

i.e., the net rate is the difference between the forward and backward rates. At equi-
librium the net rate is zero and the forward and backward rates are non-zero, but
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equal, i.e., Rr. f or = Rr,rev, Rr = 0. This leads to:

Rr, f or

Rr,rev
= [C]

[A][B]2 = Keq = k f or

krev
, (7.3.39)

where Keq is the equilibrium constant, to be further discussed below.
For ideal, or dilute, solutions, where the solvent activity of the solvent can be

assumed to be unity, the rate law for an elementary reversible reaction can be shown
to be (De Groot and Mazur 1962):

Rr = k for

∏

(γ, νγ<0)

[Xγ
react]−νγ − krev

∏

(γ, νγ>0)

[Xγ
prod ]ν

γ

, (7.3.40)

where [Xγ] denotes the concentration (in this case, in terms of mole fraction) of the
(reactant or product) γ-species, and we have followed the standard sign convention
for ν mentioned earlier.

Consider the reversible reaction:

[A] � [B],

in which both forward and reverse reactions are first-order (see below), but with
different constants:

A
k f−→ B; Rr f = −d[A]

dt

∣∣∣∣
1

= kf [A] = d[B]
dt

∣∣∣∣
1

, (7.3.41)

A
kr←− B; Rr = −d[B]

dt

∣∣∣∣
2

= kr [B] = d[A]
dt

∣∣∣∣
2

, (7.3.42)

where subscripts f ≡ f or , r ≡ rev. In this equation, we note how, simultaneously,
A is depleted by the forward reaction, at a rate kf [A], and produced by the reverse
reaction, at a rate kr [B]. The net rate of production of A is:

d[A]
dt

≡ d[A]
dt

∣∣∣∣
1

+ d[A]
dt

∣∣∣∣
2

= −kf [A] + kr [B]. (7.3.43)

From:

d[B]
dt

≡ d[B]
dt

∣∣∣∣
1

+ d[B]
dt

∣∣∣∣
2

= −d[A]
dt

, (7.3.44)

it follows that:

d

dt

(
[A] + [B]

)
= 0, or, [A] + [B] = [A]∣∣t=0 + [B]∣∣t=0. (7.3.45)
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Thus, if [B]∣∣t=0 = 0, we may integrate (7.3.43) to obtain:

[A] =
(
kr + kf e−(kf +kr )t

kf + kr

)
[A]∣∣t=0. (7.3.46)

As t → ∞, the concentrations reach their equilibrium values:

[A] = kr
kf + kr

[A]∣∣t=0, [B] = kf
kf + kr

[A]∣∣t=0. (7.3.47)

Thus, at equilibrium:

kf [A] = kr [B], and Keq = kf
kr

, (7.3.48)

where Keq is referred to as the (thermodynamic) equilibrium constant of the con-
sidered reaction. If Keq is known for a reaction, and one of the rate constants is also
known, the other one can be determined by this relationship.

For the reaction:

A + B
k f

�
kr

C + D, (7.3.49)

which is second order in both directions, suppose:

Forward reaction : d[A]
dt

∣∣∣∣
f

= −kf [A][B], (7.3.50)

Reverse reaction : d[A]
dt

∣∣∣∣
r

= kr [C][D], (7.3.51)

Net gain in A : d[A]
dt

= −kf [A][B] + kr [C][D]. (7.3.52)

At equilibrium, the net gain in A vanishes, so that:

Keq = [C][D]
[A][B] = kf

kr
. (7.3.53)

This equation is a special case of the law of mass action to be discussed later. The
coefficient Keq (= kf /kr ) is the equilibrium constant defined above. The law of mass
action is valid for any type of reaction, e.g., the dissolution of minerals, the formation
of complexes between dissolved species, and the dissolution of gases in water.

In reality, however, experiments with dissolved species lead to the conclusion
that the mass action law is valid only when written in terms of modified values
of species concentrations called activities. Thus, for the reaction described by the
general stoichiometric equation:
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aA + bB + · · · � pP + qQ + · · · , (7.3.54)

the law of mass action takes the form:

Keq = {P}p{Q}q . . .

{A}a{B}b . . .
, (7.3.55)

in which {γ} , γ = P, Q, A, B. Denotes the activity of the indicated species
In Sect. 2.2.4 we have introduced the chemical potential, of an A-species:

μA = μ∗A + RT ln X A, (7.3.56)

where μ∗A is a function only of p and T . However, the above relationship is valid
only for ideal solution (Denbigh 1981, p. 270).

The activity {A} of a species A, is related to its molal concentration, or molality
m̂A, which is the number of moles of the latter per unit mass (e.g., kg) of solvent
(usually, in the context of aqueous solutions), by:

{A} = γAm̂A → γA = {A}
m̂A

, (7.3.57)

where γA is the dimensionless activity coefficient of A. For dilute solutions, γA ≈ 1
and {A} ≈ m̂A. This definition of the activity coefficient is the standard one used in
geochemistry. Note that γA depends on the standard state selected for the species,
and that γA → 1 as m̂A → 0.

For an ionic aqueous species, the activity coefficient, as defined by (7.3.57), is
given by various empirical formulas, e.g., by the Debye-Hueckel expression for the
activity coefficient, as modified by Helgeson (1969):

log γA = −A (zA)2
√
I

1 + Brγ
√
I

+ C I, (7.3.58)

where zA is the charge on the A-species and rγ denotes the effective diameter of
the hydrated ion (in cm). The coefficients A, B, and C are temperature-dependent
constants that are independent of γ. The symbol I denotes the ionic strength of the
solution, defined by

I ≡ 1

2

∑

(γ)

m̂γ (zγ)
2 , (7.3.59)

where superscript γ denotes the γth ionic species. This equation gives good agree-
ment with experimental data for ionic strengths up to around 1 molal solution. At
higher ionic strengths, more complicated expressions are required (e.g., Pitzer 1979).

When a species participates in several chemical reactions that cause its concen-
tration within a fluid phase to increase (or decrease), we express the strength of the

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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source (= rate of production) of that species in the macroscopic balance equation of
the latter, say, (7.3.3):

φSαρα�γ
α = φSαM

γ
∑

( j)

ν
γ
j Rr, j , (7.3.60)

in which Rr, j is the reaction rate of the j th homogeneous chemical reaction in the
fluid α-phase and ν

γ
j is the stoichiometric coefficient of the γ-species in the j th

reaction. This rate of production is in addition to the rates of production resulting
from other sources.

Although we have referred above to the characteristic time of the reaction
described by a given stoichiometric equation, often, the actual reaction goes through a
number of intermediate steps that do not appear explicitly in the stoichiometric equa-
tion and in the corresponding rate law. However, when such an intermediate step is
much slower than the one explicitly referred to, it dictates the rate-determining, or
rate-limiting step of the overall reaction.

C. First and Higher Order Reactions

Consider the case:
A → B.

The first-order rate law for the consumption of a reactant A, is expressed in the form:

Rr ≡ −d[A]
dt

= k[A], (7.3.61)

in which k is referred to as the first-order rate constant (dims. T−1). An example of
a first-order reaction is the radioactive decay of tritiated water, HTO, where T stands
for tritium (≡H3), to ordinary water, H2O: HTO→H2O, for which the rate constant
is k = 1.78 × 10−9 s−1.

By integrating (7.3.61) from [A] = [Ao] at t = 0, to any time, t , we obtain:

[A](t) = [Ao]e−kt , (7.3.62)

often referred to as the integrated rate law. A plot of ln([A](t)/[Ao]) versus time, will
yield a straight linewith a slope−k. A larger k indicates a faster rate of disappearance,
or decay, of the A-species. Using (7.3.61), we may define the half-life, t1/2, of the
A-species in the considered reaction, i.e., the time in which its concentration will be
reduced by a factor 2 is:

t1/2 = ln 2

k
= 0.693

k
. (7.3.63)

In a first-order reaction, e.g., (7.3.61), the half-life of the reactant is independent of
the concentration.
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Radioactive and certain other decay phenomena,A→Products,may be expressed
as the first-order rate law:

dN

dt
= −λN, (7.3.64)

in which λ is the first order rate constant for the radioactive decay, and N is the
number of atoms of the radioactive material. We can also use molar concentrations
instead of N . Integrating the above expression from N = No at t = 0, to any t , gives:

N (t) = Noe
−λt . (7.3.65)

The half-life is defined by (7.3.63), in which k is replaced by λ. In principle, no
equilibrium can be reached until the radioactivematerial has completely disappeared.

Let us add a fewwords on higher order reactions. Consider, for example, the case:

A + A → A2,

with the second order rate of production (of A) law given by:

d[A]
dt

= −k ′[A]2, (7.3.66)

in which k ′ (positive for a product) is referred to as a second order rate constant
(dims. M−1T−1). By integration, as above, we obtain:

[A](t) = [Ao]
1 + k ′[Ao]t . (7.3.67)

In this case, the half-life of A is given by:

t1/2 = 1

k ′[Ao] .

As a second example, consider the case:

A + B → C,

with the second order rate law (but first order in the reactants A and B):

d[A]
dt

= k ′′[A][B], (7.3.68)

in which k ′′ (dims. M−1T−1) is a second-order rate constant. In this case, integration
makes use of the stoichiometry of the reaction. Formally, we may write:
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t1/2 = ln 2

k ′′[B] ,

with [B]= [B]o, and k ′′[B] referred to as a pseudo-first-order rate constant. However,
since [B] is a function of time, we cannot determine the half-life, t1/2, unless [B] ≈
constant.

Whenwe consider a γ-species in a fluidα-phase (concentration cγ
α) that undergoes

radioactive decaywithin a porousmedium domain, the sink (= negative source) term,
expressing the rate of disappearance of the species in a macroscopic mass balance
equation, say, (7.3.3), is given by:

φSαρα�γ
α = −φSαλcγ

α. (7.3.69)

With �s representing the rate of radioactive decay of an adsorbed radioactive
species, the source term may be expressed as:

�s = −λFγ, (7.3.70)

where Fγ expresses the mass of the adsorbate per unit mass of solid.
For decay, or degradation of a γ-species in a fluid α-phase, or of an adsorbate,

the sink term takes in the form:

φSαρα�γ
α = −θαk

γ
αc

γ
α, ρb�

γ
s = −ρbk

γ
s F

γ, (7.3.71)

where kγ
α is a degradation rate constant for the species in the fluid phase.

D. Catalytic Reactions

A catalyst is a substance that enhances the rate of a chemical reaction, i.e., increasing
the reaction rate, Rr , although it remains unchanged by the time the reaction has
ended. A chemical reaction in which a catalyst in involved is called a catalytic
reaction. Often, a very small quantity of a catalyst is required. The reason for this
phenomenon is that with a catalyst, the reaction requires less activation energy. This
is the kind of reaction that occurs, for example, in catalytic reactors discussed in
App. A.

An example of a catalytic process, consider the overall reaction: P + Q � R.
With a catalyst C , it takes the form:

P + C � PC
PC + Q � PQC

PQC � RC
RC � R +C.

(7.3.72)

An example is the catalytic reaction that produces ammonia (NH3(g)) from N2 and
3H2:



500 7 Modeling Transport of Chemical Species

N2(g) + 2C � 2NC
3H2(g) � 6H(g)

2NC + 6H(g) � 2NH3C
2NH3C � 2NH3(g)+2C.

(7.3.73)

In both cases, we note the role of the catalyst C . If we add all left hand side and all
right hand side, the catalyst C , as well as NH3C disappear. In App. A, we discuss
the catalysis in a catalytic converter.

E. Matrix Representation of Reactions

Consider the case in which NS γ-species participate in NR independent (homoge-
neous) chemical reactions represented in the compact form:

NS∑

γ=1

ν
γ
i Mγ = 0, i = 1, . . . ,NR, (7.3.74)

or, replacing superscript γ by subscript j :

NS∑

j=1

νi jM j = 0,

{
i = 1, . . . ,NR,

j = 1, . . . ,NS,

⎧
⎪⎪⎨

⎪⎪⎩

νi j > 0 for products,
νi j < 0 for reactants,
νi j = 0 for species that

do not participate,

(7.3.75)

recalling thatM j represents the chemical formula of the j’s species andνi j represents
the stoichiometric coefficient of the j th species in the i th reaction. Each reaction
has its own rate Rr . In the above equation, we may invoke Einstein’s summation
convention and omit the sum symbol. Thus, the left hand side of the above equation
is a product of the matrix νi j by the vector M j , or ν·M = 0:

⎡

⎢⎢⎢⎣

ν1
1 ν2

1 ν3
1 . . . νNS

1
ν1
2 ν2

2 ν3
2 . . . νNS

2
...

...
...

. . .
...

ν1
N R ν2

N R ν3
N R . . . νNS

N R

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

M1

M2

M3
...

MNS

⎤

⎥⎥⎥⎥⎥⎦
� 0, (7.3.76)

Note that if a species doesn’t take part in a reaction, we just set νγ
r = 0. We assume

that the reactions are linearly independent, i.e., no reaction can be written in terms
of a linear combination of other reactions. This condition is equivalent to saying that
the rows of the matrix of stoichiometric coefficients: are, in the terminology of linear
algebra, linearly independent. It is, then, always possible to rewrite the transformed
set of reactions, Q = λ·P, in the form:
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Qr �
NC∑

γ=1

λγ
r P

γ, r = 1, . . . ,NR, γ = 1, . . . ,NC, λγ
r = −

N R∑

r=1

νγ
r [νr ]−1,

(7.3.77)

where the Pγ (γ = 1, . . . ,NC)’s are the set of NC primary, or basis, species, also
referred to as components (see below), the Qr ’s (r = 1, . . . ,NR) are the set of sec-
ondary species, and (the 2nd rank matrix) λ

γ
r is another kind of stoichiometric coef-

ficients (see the references given by Lichtner (1996)). Note that a distinct secondary
species is associated with each reaction, while all other species in the reaction are
primary. This equivalent representation of the set of reactions is called a canonical
form Lichtner 1985). For a given set of reactions, this form is not necessarily unique.
It is constructed by first identifying a (non-unique) set of NC = NS − NR primary
species from which all other NR species can be expressed through the appropriate
reactions.

The canonical form is convenient for cataloging and storing properties of reac-
tions in a database, with the common ionic forms of each element often used as the
primary species (e.g., the common ionic forms of iron are Fe2+ and Fe3+). All species
participating in a reaction can be written in terms of their primary forms; their prop-
erties can be stored together with the stoichiometric coefficients for the canonical
reaction associated with each of the secondary species. The canonical form is also
advantageous in certain numerical models.

An important advantage of the canonical form is that the law of mass action for
each reaction takes the form:

{
Qr
} = 1

Kr

NC∏

γ=1

{Pγ}λγ
r , (7.3.78)

so that the activity (denoted as {..}) of each secondary species is expressed directly
in terms of those of the primary species.

F. Temperature Dependence of Reaction Rate

It is found empirically that the rate of many chemical reactions increases with a rise
in temperature, following the relationship:

k = Ae−Ea/RT , (7.3.79)

known as theArrhenius equation (e.g., Lasaga andKirpatrick 1981). Here, A is a pre-
exponential factor, and Ea is like an activation energy that expresses the minimum
energy required for reactants to form products.

G. Heat of Reaction

In Sect. 2.2.6, we have already mentioned that like phase change, a chemical reac-
tion is also associated with energy (expressed as heat or enthalpy) change: heat is
absorbed (i.e., taken from the environment), or released (to the environment) during

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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the reaction. Pressure and temperature remain unchanged. The reason is due to the
difference in the sum of internal energies of the products and the sum of the internal
energies of the reactants:

�Er =
∑

Eproducts −
∑

Ereactants,

in which subscript r indicates the reaction. For example, in terms of molar enthalpy,
h, we can write:

�hreaction(= �hr ) = h|products − h|reactants.

where h is measured, for example, in terms of Joules per mole. Heat is released when
the energy of the reactants is larger than that of the products. Heat is absorbed when
the energy of the products is larger than that of the reactants. For example, for the
reaction:

H2(g) + 1
2O2(g) → H2O(liq),

with the pressure (= say, 1 atmosphere) remaining constant, and at unchanged 25 ◦C,
heat equivalent to 58kcal/mole is released. This is the heat of formation; it is an
exothermic reaction. In an endothermic reaction, (�h > 0) heat is absorbed.

Another example is:

CaO(s) → Ca(s) + 1
2O2(g), �H = 151.9 kcal,

CO2(g) → C(s) + O2(g) �H = 94.1 kcal

Ca(s) + C(s) + 3
2O2(g) → CaCO2(s) �H = −288.5 kcal,

− − − − − − − − − − − − − − − − −− − − − − − − −
CaO(s) + CO2(g) → CaCO3(s) �H = −42.5 kcal,

7.3.4 Transport of Chemically Reacting Species

Let us elaborate on how we handle multiple chemically interacting species.
For convenience, let us introduce the balance operator symbol B(c), defined as:

B(cγ) ≡ ∂

∂t
θcγ + ∇ · θ (cγV − Dh · ∇cγ) . (7.3.80)

It expresses the net rate of accumulation of the γ-species, per unit volume of porous
medium, due to interphase transfers and to sources, including those due to chemical
reactions.When we consider a model that involves a number of fluid phases, we shall
use the mass balance operator symbol, Bγ

α(cγ
α), defined in (7.3.80), in which θα and

Vα are the volumetric fraction and the velocity of the α-phase in the mass balance
equation of the γ-species in the α-phase.
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We note that from the linearity of the B-operator, it follows that:

B([γ]) = 1

Mγ
B(cγ), (7.3.81)

where Mγ is the molecular mass of the species. Therefore, B([γ]) is, formally, equal
to the net rate of accumulation of the γ-species, in number of moles per unit volume
of porous medium per unit time.

In general, because Dh depends on the coefficient of molecular diffusion, the
operator B depends on the considered component. However, in what follows, we
shall first assume that B is independent of γ. After that, we shall consider the more
general case of a γ-dependent B, denoting it as Bγ .

For the NS interacting species that are present in the fluid phase, we have NS
mass balance equations of the form of (3.6.2), with the source term given by (7.3.1).
In terms of the B(cγ), we can express the balance equations for all γ-species present
in the pore space in the compact form:

B(cγ) = Mγ
N R′∑

j=1

ν
γ
j Rpm, j , γ = 1, 2, . . . ,NS, (7.3.82)

where Rpm, j (≡ θRr, j ) denotes the rate of the j th reaction, expressed in terms of the
number of reacting moles per unit volume of porous medium per unit time, with

θρ�γ = Mγ
N R′∑

j=1

ν
γ
j Rpm, j , (7.3.83)

and NR′ refers to the total number of homogeneous and heterogeneous reactions.
Or, in terms of the molar concentration, in the form:

B([γ]) =
N R′∑

j=1

ν
γ
j Rpm, j , γ = 1, 2, . . . ,NS. (7.3.84)

In each of the above sets of NSmass balance equations, we haveNSmolar concentra-
tion variables, say [γ]. If all reaction rates, Rpm, j , are assumed to be known functions
of the concentrations, then we have NS equations in NS unknowns. However, often,
some or all of the reaction rates are not known. On the other hand, because of the
mass action law, not all species’ concentrations are independent of each other, and
some of the balance equations become redundant.

A. Primary and Secondary Species

In Sect. 1.1.1, we defined components as the smallest set of species required to com-
pletely define the chemical composition of a phase under equilibrium conditions.

http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_1
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Thus, the primary species may be considered as the components of such a system.
Note that the set of components is not unique.

The chemical analysis of an aqueous solution is often reported in terms of the
number of moles of the various elements in the system. It is possible to translate
the number of moles of each element into the corresponding number of moles of
each primary species. As illustrated in the following example, this translation can be
easily done by associating a unique primary species with each element.

Example of the Canonical Form:

Consider the set of reactions:

OH− + H+ � H2O,

CO2−
3 + H+ � HCO−

3 ,

CO2(aq) + H2O � HCO−
3 + H+,

HSiO−
3 + H+ � SiO2(aq) + H2O.

Selecting H+, H2O, HCO−
3 , SiO2(aq) as the set of primary species, the canonical

form of the reactions is:

OH− � −H+ + H2O,

CO2−
3 � −H+ + HCO−

3 ,

CO2(aq) � H+ − H2O + HCO−
3 ,

HSiO−
3 � −H+ + H2O + SiO2(aq).

Suppose an experimental analysis of a solution yields the number of moles of the
elements: H, O, C, and Si. To convert to the amount of each primary species, we may
associate each mole of H+ with one mole of H, each mole of H2O with one mole of
O, each mole of HCO−

3 with a mole of C, and each mole of SiO2(aq) with one mole
of Si.

An alternative canonical form is obtained by choosing OH−,H2O,CO2−
3 ,HSiO−

3
as the set of primary species. We then obtain:

H+ � −OH− + H2O,

HCO−
3 � −OH− + H2O + CO2−

3 ,

CO2(aq) � −2OH− + H2O + CO2−
3 ,

SiO2(aq) � HSiO−
3 − OH−.

We may associate each mole of OH− with a mole of O, each mole of H2O with two
moles of H, each mole of CO2−

3 with a mole of C, and each mole of HSiO−
3 with a

mole of Si.
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B. Speciation

The procedure for determining the concentrations of all species in a given chemical
system under equilibrium, given the total amount of all relevant components is called
speciation. Here, we consider speciation within a single-phase solution.

Let nγ
total denote the mole fraction of the γ component (= basis species) contained

within all species in a solution (i.e., number of γ-moles per mole of solution). Then,
the molar balance equations for the components are:

nγ
total = nγ +

∑

(r)

λγ
r n

′r , γ = 1, . . . ,NC, (7.3.85)

where nγ is the mole fraction of the γ-component, subscript r runs over all reactions,
the n′r ’s are the mole fractions of the secondary species associated with the r th
reaction, and the λ

γ
r ’s are the stoichiometric coefficients for the γ-components in the

r th reaction. Note that this yields a system of NC equations, where NC is the number
of components.

The mole fractions can be written in terms of molar concentrations by the rela-
tionships:

nσ = m̂σ/
∑

(δ)

m̂δ, (7.3.86)

where the sum is taken over all species. Therefore, (7.3.85) can be viewed as written
in terms of molar concentrations, m̂δ , thus constituting the set of unknown variables
that needs to be determined.

We also need the system of NR equations given by (7.3.78). It is assumed that the
activity of each species is a known function of the m̂δ’s, using, for example, (7.3.57)
and (7.3.58), so that (7.3.78) is a system of equations with m̂δ as the unknown
variables. Therefore, (7.3.78) and (7.3.85) together form a system of NC + NR =
NS equations in the NS unknowns, m̂δ . This system is nonlinear, and, therefore, it
must, usually, be solved by numerical means.

Because, in many cases, the concentrations of certain species can vary by many
orders of magnitude, it is, usually, preferable to use the logarithm of concentrations
as the unknown variables, in order to avoid an ill-conditioned system of equations
(Wolery 1983). In some cases, the set of primary species may have to be changed in
order to obtain a suitable set.

PHREEQC (Appelo and Postma 2005; Parkhurst and Appelo 1999) is probably
the most commonly used public-domain computer program designed to perform
a wide variety of low temperature aqueous geochemical speciation calculations for
natural waters of the kind described above. It is based on the ion-association aqueous
model described above. It can: (1) perform speciation and saturation-index calcula-
tions in a batch-reactor. It can also solve a one-dimensional flow and transport model
involving reversible reactions, which include aqueous, mineral, gas, solid-solution,
surface-complexation, and ion-exchange equilibria, and irreversible reactions, such
as specified mole transfers of reactants, kinetically controlled reactions, mixing of
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solutions, and temperature changes. In fact, PHREEQC can also perform inverse
modeling, which finds sets of mineral and gas mole transfers that account for dif-
ferences in composition between waters, within specified compositional uncertainty
limits. PHREEQCversion 2, can also perform: kinetically controlled reactions, solid-
solution equilibria, fixed-volume gas-phase equilibria, variation of the number of
exchange or surface sites in proportion to a mineral or kinetic reactant, diffusion or
dispersion in 1-D transport, 1-D transport coupled with diffusion into stagnant zones,
and isotope mole balance in inverse modeling.

C. Equilibrium Reactions

We start from the case in which all reactions are in equilibrium, i.e., NR = NReq.
In Sect. 7.3.4A, we saw that any set of independent equilibrium reactions can be
transformed into the canonical form:

Qi �
NC∑

j=1

νP j

i P j , i = 1, . . . ,NR (= NReq), (7.3.87)

in which P j ( j = 1, . . . ,NC) is the set of primary species (or components), Qi

(i = 1, . . . ,NReq) is the set of secondary species, and νP j

i denotes the stoichiometric
coefficient of the i th canonical reaction associated with the primary species P j . Here,
NC = NS − NReq is the number of components. When the reactions are written in a
canonical form, then the system of balance equations (7.3.84), becomes:

B([Qi ]) = −Rpm i , i = 1, 2, . . . ,NReq, (7.3.88)

B([P j ]) =
NReq∑

i=1

νP j

i Rpm i , j = 1, 2, . . . ,NC. (7.3.89)

Substituting the reaction rates, Rpm i , from (7.3.88) into (7.3.89), gives:

B([P j ]) = −
NReq∑

i=1

νP j

i B([Qi ]), j = 1, 2, . . . ,NC. (7.3.90)

From the linearity of the balance operator, we then obtain:

B([∗P j ]) = 0, j = 1, 2, . . . ,NC, (7.3.91)

where the total concentration (in units of molar concentration) of a primary species,
P j , is defined as:

[∗P j ] ≡ [P j ] +
NReq∑

i=1

νP j

i [Qi ], j = 1, 2, . . . ,NC. (7.3.92)
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Note that the total molar concentration [∗P j ] can be positive or negative, depending
on the sign of the stoichiometric coefficients νP j

i , and the relative magnitudes of the
primary and secondary species concentrations (Lichtner 1985).

Any given set of reactions written in canonical form can lead to a unique decom-
position of every species in terms of the primary species. For example, if CO2−

3 , and
H+ are primary species, then one mole of the secondary species H2CO3 contains
one mole of CO2−

3 , and two moles of H+. In this way, it is possible to consider the
total number of moles of a primary species as it exists within all species present in
a system. This number, per unit volume of the phase, is defined as the total concen-
tration of the primary species. It is common to associate a chemical element with a
primary species, where the element is a constituent of the primary species. If there
are N moles of an element per mole of primary species, and the element does not
occur in any other primary species, then the total concentration of that element is
equal to N times the total concentration of the primary species.

The set of NC balance equations (7.3.91) must be solved in terms of the total
concentrations, [∗P j ]. Note that the equations are decoupled, so that they may be
solved individually. Boundary conditions and initial conditions involving the primary
species must be expressed in terms of the total concentration, using the mass action
law (7.3.78).

For a dilute solution, the mass action law can be written as:

[Qi ] = 1

K ′
eq i

NC∏

j=1

([P j ]νP j

). (7.3.93)

Then, substituting this expression into (7.3.92), gives:

[∗P j ] ≡ [P j ] +
NReq∑

i=1

(
νP j

i

K ′
eq i

NReq∏

k=1

([Pk])νPk

)
, j = 1, 2, . . . ,NC, (7.3.94)

which is a function solely of the primary species concentrations. Note that [∗ . . .] can
be positive, zero, or negative. Thus, in this case, the total concentrations are easily
computed from the primary species concentrations. However, in order to obtain the
primary species concentrations from the total concentrations, a nonlinear equation
must, in general, be solved numerically. Once the primary species are found, then
(7.3.93) can be used to obtain the concentrations of the secondary species.

When the dilute solution assumption is not valid, the law of mass action to be
used is (7.3.78), which is rewritten here as:

{
Qi
} = 1

Keq i

NC∏

j=1

{
P j
}νP j

, (7.3.95)

where the {..}’s denote the activities of the species, each of which is usually some
nonlinear function of the other species concentrations. Thus, to convert from primary
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concentrations to total concentrations, as required for the initial and boundary con-
ditions, we need to first find the concentrations of the secondary species in terms the
primary species by solving the nonlinear system of equations presented in (7.3.95),
and then substitute these concentrations into (7.3.91).

D. Nonequilibrium Reactions

We now consider the case where some of the reactions are kinetic, i.e., not in equilib-
rium (say, NReq < NR). Let NRne (= NR − NReq) represent the number of nonequi-
librium reactions. As in the case of equilibrium, we select the primary and secondary
species on the basis of the canonical form of the equilibrium reactions. As before,
the stoichiometric coefficients are denoted as λP j

i . The nonequilibrium reactions do
not have to be expressed in any special form; they include the usual stoichiometric
coefficients, ν

γ
k , for the γ-species participating in the kth nonequilibrium reaction

(k = 1, 2, . . . ,NRne). However, it is often convenient to write them also in canonical
forms. If there are no equilibrium reactions, then there are no secondary species, and
all species are primary. The resulting balance equations are:

BQi ([Qi ]) = −Req
pm i +

NRne∑

k=1

νQi

k Rne
pm k, i = 1, 2, . . . ,NReq, (7.3.96)

BP j ([P j ]) =
NReq∑

i=1

νP j

i Req
pm i +

NRne∑

k=1

νP j

k Rne
pm k, j = 1, 2, . . . ,NC, (7.3.97)

where the number of components is given by NC ≡ NS − NReq. Note that now we
have allowed the balance operator to be different for different γ-species, so that
the coefficient Dh can depend on the relevant species, say, because of molecular
diffusion. Also, some of the species may now be immobile on the solid phase, or
they may have different advective velocities, such as in the case of colloids, or in
the presence of ion exclusion phenomena. We have also made a distinction between
the equilibrium reaction rates, Req

pm i , and the nonequilibrium reaction rates, Rne
ki . We

assume that the Rne
ki ’s are known functions of the species concentrations.

By substituting the equilibrium reaction rates appearing in (7.3.96) into (7.3.97),
we obtain the system of balance equations:

BP j ([P j ]) +
NReq∑

i=1

νP j

i BQi ([Qi ]) =
NRne∑

k=1

aP j

k Rne
pm k, j = 1, 2, . . . ,NC, (7.3.98)

where:

aP j

k ≡ νP j

k +
NReq∑

i=1

λP j

i νQi

k . (7.3.99)
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This set of NC partial differential equations, combined with the NReq algebraic equa-
tions (7.3.95), gives a total of NS equations in the NS unknown species concentra-
tions, [γ]. This type of coupled equations is called a system of algebraic-differential
equations (ADE) (although the term is most often used in the context of ordinary,
not partial, differential equations).

Wemay express (7.3.98) by using the total concentrations as the unknowns, as long
as the Bγ-operators are independent of γ. However, this may not be advantageous
whenever the nonequilibrium rates, Rne

ki , are functions of the species concentrations,
instead of the total concentrations. In some cases, it may be better to simply regard
the species concentrations as the unknown variables. If the solution is dilute, themass
action law, (7.3.93), can be used to eliminate the secondary species concentrations,
reducing (7.3.98) to a smaller set of NC balance equations, with NC primary species
concentrations, ĉP j ,

The system of equations described above can be quite nonlinear and the involved
concentrations may vary over many orders of magnitude, causing the system to
be numerically ill-conditioned. To overcome this difficulty, the logarithm of the
concentrations are often used as the unknown variables instead of the concentrations
themselves, similar to what is done in dealing with speciation (Sect. 7.3.4B). Also,
whenever the concentration of a primary species becomes very small, the set of
primary variables may have to be changed.

We emphasize that (7.3.98) may include equilibrium solid-fluid reactions through
the corresponding mass action law (7.3.95), and nonequilibrium reactions through
appropriate mass balance equations and reaction rates. We also recall that we have
referred to the exchange of a species between two adjacent phases as a ‘heterogenous
reaction’; it may occur under equilibrium or nonequilibrium conditions. It is, thus,
included in this analysis. In fact, the method of summing component balance equa-
tions to eliminate exchange terms, whichwe have presented earlier for heterogeneous
reactions, is a special case of the more general procedure presented here.

Let us demonstrate the above procedure, consider the following examples.

Example 1 Consider a case of saturated flow, with two chemical species, A and B
(NS = 2), which participate in a single fast chemical reversible reaction A � B (NR
= 1). We assume that the system is continuously in equilibrium (NReq = 1). The
reaction is already written in its canonical form:

A → B, λB = 1, (7.3.100)

where A is a secondary species and B is the primary species. The two mass balance
equations are:

B([A]) = −Rpm,

B([B]) = λBRpm = Rpm, as λB = 1, (7.3.101)
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leading to the balance equation:

B([A]) + [B]) ≡ B([B]) = 0. (7.3.102)

The component with total concentration [∗B] is a conservative one. No sources
appear in its balance equation.

We now solve the last equation for [∗B] = [∗B](x, t) within the considered
domain, subject to appropriate initial and boundary conditions on [∗B]. Since we
have assumed equilibrium conditions, we use the mass action law for a dilute
solution:

K ′
eq = [B]

[A] , (7.3.103)

to solve algebraically for [A] and [B]:

[A] = 1

1 + K ′
eq

[∗B], [B] = K ′
eq

1 + K ′
eq

[∗B]. (7.3.104)

The number of degrees of freedom is presented in Sect. 3.9. According to the phase
rule, we note that in this problem, we have two chemical species, but only one
chemical degree of freedom (for which a PDE has to be solved).

Example 2 We return to the first example of A � B, but now the chemical reaction
is slow, i.e., the system is under nonequilibrium conditions. For this case, Rpm =
θ f ′([A], [B]). For example, f ′([A], [B]) = k[A][B].

Again, with νA = −1, νB = 1, the two balance equations are:

B([A]) = νARpm = −θ f ′([A], [B]),
B([B]) = νBRpm = θ f ′([A], [B]). (7.3.105)

By eliminating f ′([A], [B]), we obtain the PDE:

B ([A] + [B]) ≡ B([∗B]) = 0. (7.3.106)

We solve this homogeneous PDE, subject to appropriate initial and boundary condi-
tions. We obtain the solution in the form of [∗..] = [∗B](x, t). We then have to solve
another, this time inhomogeneous PDE:

B ([B]) = θ f ′ ([∗B] − [B], [B]) , (7.3.107)

for [B]. Finally, we compute [A](x, t) by using [A] = [∗B] − [B].
In Example 1, the number of chemical degrees of freedom was one. Here it is

two, since we cannot use the law of mass action. Therefore, we need to solve for two
unknowns, [∗B] and [B].

http://dx.doi.org/10.1007/978-3-319-72826-1_3


7.3 Mass Balance Equation for Reacting Species 511

Example 3 Another example of equilibrium reactions is the case of the carbonate
system. This system contains NS = 7 chemical species:

H2O, OH−, H+, H2CO3, HCO
−
3 , CO

2−
3 , CO2(aq),

which participate in the following NReq = 4 equilibrium chemical reactions:

H2O � H+ + OH−,

H2CO3 � HCO−
3 + H+,

HCO−
3 � CO2−

3 + H+,

CO2(aq) + H2O � H2CO3.

(7.3.108)

Thus, the number of components is NC = NS − NReq = 3.
The carbonate system is important, because, in natural systems, it includes some

of the important reactions affecting the pH (≡ − log aH+
), which has a major effect

on other aqueous and mineral reactions. Note that in the above example, we have
ignored carbonate complexes involving cations such as MgCO3, CaCO3, CaHCO

+
3 ,

and MgHCO+
3 . Also note that CO2(aq) and H2CO3 are usually treated as equivalent

species.
For the sake of illustration, let us select the species:

P1=H+, P2=H2CO3, P3=H2O,

as the primary species, and:

Q1=OH−, Q2=HCO−
3 , Q

3=CO2−
3 , Q4=CO2(aq),

as secondary species.
The corresponding reactions, written in canonical form, are given by:

R1 : OH− � H2O − H+,

R2 : HCO−
3 � H2CO3 − H+,

R3 : CO2−
3 � HCO−

3 − H+ = H2CO3 − 2H+,

R4 : CO2(aq) � H2CO3 − H2O,

(7.3.109)

with the corresponding stoichiometric coefficients given by:

[
λQ j

i

]
=

⎡

⎢⎢⎣

−1 0 1
−1 1 0
−2 1 0
0 1 −1

⎤

⎥⎥⎦ . (7.3.110)

Note how in the above equation, every primary species reaction has coefficients that
multiply every secondary species, Q j ; the coefficients λP of the secondary species
are all equal to 1 by the definition of the canonical formulation.
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The speciesH2CO3 differs from the species CO2 by a singlewater (H2O)molecule
and, therefore, these species are considered equivalent since they only differ by
hydration and one of them can be omitted (usually H2CO3). In this context, it would
be useful to point out that all species present in an aqueous solution are hydrated,
i.e., surrounded by some number of loosely bound water molecules.

The mass balance equations for the four secondary species are:

B([Q1]) = B([OH−]) = −Rpm 1, (7.3.111)

B([Q2]) = B([HCO−
3 ]) = −Rpm 2, (7.3.112)

B([Q3]) = B([CO2−
3 ]) = −Rpm 3, (7.3.113)

B([Q4]) = B([CO2(aq)|]) = −Rpm 4. (7.3.114)

The mass balance equations for the three primary species are given by:

⎡

⎣
B([P1])
B([P2])
B([P3])

⎤

⎦ =
⎡

⎣
−1 −1 −2 0
0 1 1 1
1 0 0 −1

⎤

⎦

⎡

⎢⎢⎣

Rpm 1

Rpm 2

Rpm 3

Rpm 4

⎤

⎥⎥⎦ , (7.3.115)

where themiddlematrix in the above equation is the transpose of the one in (7.3.110).
Thus, rewriting (7.3.115) as individual equations, we obtain:

B([P1]) ≡ B([H+]) = −Rpm 1 − Rpm 2 − 2Rpm 3, (7.3.116)

B([P2]) ≡ B([H2CO3]) = Rpm 2 + Rpm 3 + Rpm 4, (7.3.117)

B([P3]) ≡ B([H2O]) = Rpm 1 − Rpm 4. (7.3.118)

Substituting (7.3.111) through (7.3.114) into the right-hand sides of the above
equations, and from the definition of total concentrations, we obtain:

B([∗H+]) = 0, [∗H+] ≡ [H+] − [Q1] − [Q2] − 2[Q3],
B([∗H2CO3]) = 0, [∗H2CO3] ≡ [H2CO3] + [Q2] + [Q3] + [Q4],

B([∗H2O]) = 0, [∗H2O] ≡ [H2O] + [Q1] − [Q4], (7.3.119)

in which the meaning of the ∗-symbol is explained in (7.3.94). There is a one-to-one
correspondence between the number of moles of carbon and the number of moles of
the primary species H2CO3. Thus:

[∗H2CO3] ≡ [H2CO3] + [HCO−
3 ] + [CO2−

3 ] + [CO2(aq)] (7.3.120)

is the total number ofmoles of carbon per unit volume of aqueous phase. The negative
of the total concentration [H+] is the total alkalinity of the system. It is defined as
the equivalent amount of a base that is titratable with a strong acid.
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The results of laboratory analyses of groundwater samples are often reported in
terms of the total concentrations of chemical elements. Hence, in the model that
represents the groundwater transport problem, the initial conditions will likely be
presented also in terms of these units.

When the initial conditions are given in terms of the concentrations of the primary
species, instead of total concentrations, we need to determine also the secondary
species concentrations, in order to determine simultaneously the total concentrations.
When the solution is diluted, we may use the following law of mass action for the
considered reactions:

[OH−] = [H2O]
[H+]K ′

eq1

, [HCO−
3 ] = [H2CO3]

[H+]K ′
eq2

, (7.3.121)

[CO2−
3 ] = [H2CO3]

([H+])2K ′
eq3

, [CO2(aq)] = [H2CO3]
[H2O]K ′

eq4

, (7.3.122)

in which [H2O] ≈ 1, and the K ′
eqs are known equilibrium coefficients.

Often, the quantity of water (H2O) involved in the reactions is in excess, so that
the balance equation for water is not needed. Then, the number of components is
reduced from three to two, NC = 2, and the remaining two balance equations are:

B([H+]) = 0, and B([H2CO3]) = 0. (7.3.123)

Note that in the mass action equation the activity of H2O is used, with the activity of
H2O approximately 1.

Example 4 Here, we wish to consider an example with cation exchange (Sect. 7.4.2)
and two phases: an aqueous solution and a solid (Kinzelbach 1992). The example
is the same as Example 3 above, except for the cation exchange. The species in the
aqueous phase are mobile, while those on the solid are immobile. The species in
solution participate in the same chemical reactions as in Example 3, where we have
assumed that the system is continuously under conditions of equilibrium. In addition
to the species in Example 3, we have the following cations in the aqueous solution:

Ca2+, Mg2+, Na+, K+,

and their counterparts adsorbed on the solid surface:

Ca2+(s) , Mg2+(s) , Na
+
(s), K

+
(s).

Altogether, we have NS = 15 chemical species.
The ion exchange reactions are:

Mg2+(s) + Ca2+ � Mg2+ + Ca2+(s) ,

2Na+
(s) + Ca2+ � 2Na+ + Ca2+(s) ,

2K+
(s) + Ca2+ � 2K+ + Ca2+(s) ,

(7.3.124)
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The entire set of reactions, written in canonical form, is:

R1 : OH− � H2O − H+,

R2 : HCO−
3 � H2CO3 − H+,

R3 : CO2−
3 � H2CO3 − 2H+,

R4 : CO2(aq) � H2CO3 − H2O,

R5 : Mg2+(s) � Mg2+ + Ca2+(s) − Ca2+,

R6 : Na+
(s) � Na+ + 1

2Ca
2+
(s) − 1

2Ca
2+,

R7 : K+
(s) � K+ + 1

2Ca
2+
(s) − 1

2Ca
2+,

(7.3.125)

where we selected the following primary species:

P1 = H+, P2 = H2CO3, P3 = H2O,
P4 = Mg2+, P5 = Na+, P6 = K+, P7 = Ca2+, P8 = Ca2+(s) .

The secondary species are:

Q1 = OH−, Q2 = HCO−
3 , Q

3 = CO2−
3 , Q4 = CO2(aq),

Q5 = Mg2+(s) , Q
6 = Na+

(s), Q
7 = K+

(s).

The resulting stoichiometricmatrix for the primary species, obtained from the canon-
ical form of the reactions, is:

[
λQ j

i

]
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 1 0 0 0 0 0
−1 1 0 0 0 0 0 0
−2 1 0 0 0 0 v0 0
0 1 −1 0 0 0 0 v0
0 0 0 1 0 0 −1 1
0 0 0 0 1 0 − 1

2
1
2

0 0 0 0 0 1 − 1
2

1
2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.3.126)

The balance equations for the secondary species, which have not already been given
in Example 3, are:

Bads([Q5]) ≡ Bads([Mg2+(s) ]) = −Rpm 5 = f Mg2+
�→s ,

Bads([Q6]) ≡ Bads([Na+
(s)]) = −Rpm 6 = f Na+

�→s,

Bads([Q7]) ≡ Bads([K+
(s)]) = −Rpm 7 = f K+

�→s . (7.3.127)

In the above equations, the molar concentration, [. . .], of an adsorbed cation species
is defined as the number of moles attached to the solid per unit surface area of the
solid; the mass balance equation operator is defined by (7.3.80).

By taking the transpose of the stoichiometric matrix, we obtain the balance equa-
tions for the primary species, in the form:
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B�([P4]) ≡ B�([Mg2+]) = Rpm 5 = − f Mg+2

�→s .

B�([P5]) ≡ B�([Na+]) = Rpm 6 = − f Na+
�→s,

B�([P6]) ≡ B�([K+]) = Rpm 7 = − f K+
�→s,

B�([P7]) ≡ B�([Ca2+]) = Rpm 5 + 1
2 Rpm 6 + 1

2 Rpm 7,

= − f Mg2+
�→s − 1

2 f
Na+
�→s − 1

2 f
K+
�→s,

Bads([P8]) ≡ Bads([Ca2+(s) ]) = −Rpm 5 − 1
2 Rpm 6 − 1

2 Rpm 7,

= + f Mg2+
�→s + 1

2 f
Na+
�→s + 1

2 f
K+
�→s . (7.3.128)

As before, we eliminate the balance equations for the secondary species to obtain
the balance equations for the primary species:

B�([Mg2+]) + Bads([Mg2+(s) ]) = 0,

B�([Na+]) + Bads([Na+
(s)]) = 0,

B�([K+]) + Bads([K+
(s)]) = 0,

B�([Ca2+]) + Bads([Ca2+(s) ]) = 0,

Bads([∗Ca2+(s) ]) = 0. (7.3.129)

In the above equations, the concentration:

[Ca2+(s) ] ≡ [Ca2+(s) ] + [Mg+
(s)] + 1

2
[Na+

(s)] + 1

2
[K+

(s)] (7.3.130)

may be interpreted as the total amount of cations on the solid surface, in equivalent
moles of a doubly-charged cation per unit volume of porous medium. This concen-
tration is equal to twice the cation exchange capacitymeasured in equivalents, using
a solution with a singly-charged cation.

We have four balance equations, in addition to the ones in Example 3, for a total
of eight balance equations. There are eleven unknowns:

[∗H+], [∗H2CO3], [∗H2O],
[Ca2+], [Mg2+], [Na+], [K+], [Ca2+(s) ], [Mg2+(s) ], [Na+

(s)], [K+
(s)]. (7.3.131)

The last three unknown concentrations can be expressed in terms of the other ones,
using the three equilibrium conditions for the cation exchange reactions:

[Mg+2
(s) ] = [Mg+2][Ca+2

(s) ]
K ′

Ca/Mg[Ca+2] ,
(
[Na+

(s)]
)2 =

([Na+])2 [Ca+2
(s) ]

K ′
Ca/Na[Ca+2] , (7.3.132)

(
[K+

(s)]
)2 =

([K+])2 [Ca+2
(s) ]

K ′
Ca/K[Ca+2] , (7.3.133)
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where K ′
Ca/Mg, K

′
Ca/Na, and K ′

Ca/K are known selectivity coefficients (see any chemistry
textbook, e.g., Schwarzenbach et al. 2002, and Sparks 2003) written here for molar
concentrations.

By inserting these expressions into the balance equations, we obtain a set of eight
equations in eight unknowns. The above equilibrium relationships assume a dilute
solution. The concentrations need to be replaced by their respective activities, and
a system of nonlinear equations for the mass action laws must be solved, together
with the balance equations.

Example 5 This example is similar to Example 3, except that we introduce an
additional species, CO2(g) that can participate in a non-equilibrium heterogeneous
reaction— its dissolution in the aqueous phase.We also have amineral called calcite,
CaCO3(s), which can dissolve in the aqueous phase as a non-equilibrium reaction.
Precipitation of the mineral is also possible. This chemical system is called the cal-
cium carbonate system.

So far, we have considered the solid matrix as consisting of a single inert solid
phase. In fact, for reacting minerals, the solid matrix may be regarded as comprised
of several phases. In this example, the solid matrix consists partly of the calcite
mineral (subscript calci te) and partly of a non-reactive solid (subscript inert). The
volumetric fractions of these phases will be denoted by θcalcite and θinert, respectively.
It is assumed that θinert is known. Note that the porosity in this model varies with
time as it is related to θcalcite through:

1 − φ = θcalcite + θinert, �φ = −�θcalcite. (7.3.134)

We select the following species as primary:

P1 = H+, P2 = H2CO3, P3 = H2O, P4 = CO2(g), P5 = CaCO3(s),

and:
Q1 = OH−, Q2 = HCO−

3 , Q
3 = CO2−

3 , Q4 = CO2(aq),

as secondary. The corresponding reactions, with the equilibrium reactions presented
in canonical form, are:

Req
1 : OH− � H2O − H+,

Req
2 : HCO−

3 � H2CO3 − H+,

Req
3 : CO2−

3 � H2CO3 − 2H+,

Req
4 : CO2(aq) � H2CO3 − H2O,

Rne
1 : CO2(g) � CO2(aq),

Rne
2 : CaCO3(s) � Ca2+ + CO2−

3 .

(7.3.135)

The non-equilibrium reactions do not have to be presented in canonical form, but
they must be consistent with whatever rate law is used.
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For non-equilibrium reaction rates, we use the rate law:

Rne
pm 1 = ��,gα

�CO2

{
[CO2(g)] − [CO2(aq)]/K ′CO2

eq

}
. (7.3.136)

Using the rate law proposed by Aagaard and Helgeson (1983) on the basis of the
transition state theory, we obtain:

Rne
pm 2 = ��,calcitekcalcite

{
1 − [Ca+2][CO2−

3 ]
K ′calcite

eq

}
, (7.3.137)

where K
′CO2
eq and K

′calcite
eq are the equilibrium coefficients for the reactions, α�CO2 is a

transfer coefficient, and kcalcite is a rate constant. There also exist calcite rate laws
based on experiment. The specific interfacial areas, ��,g and ��,calcite, are functions
of the fluid and solid volumetric fractions.

The balance equations for the secondary species are:

B�([Q1]) ≡ B�([OH−]) = −Req
pm 1,

B�([Q2]) ≡ B�([HCO−
3 ]) = −Req

pm 2,

B�([cQ3 ]) ≡ B�([cCO2−
3 ]) = −Req

pm 3 + Rne
pm 2,

B�([Q4]) ≡ B�([CO2(aq)]) = −Req
pm 4 + Rne

pm 1.

(7.3.138)

The balance equations for the primary species are:

B�([P1]) ≡ B�([cH+]) = −Req
pm 1 − Req

pm 2 − 2Req
pm 3,

B�([P2]) ≡ B�([H2CO3]) = Req
pm 2 + Req

pm 3 + Req
pm 4,

B�([P3]) ≡ B�([H2O]) = Req
pm 1 − Req

pm 4,

Bg([P4]) ≡ Bg([CO2(g)]) = −Rne
pm 1,

Bcalcite([P5]) ≡ Bcalcite([CaCO3(s)]) = −Rne
pm 2.

(7.3.139)

The molar concentration of the precipitating species (in this case, calcite) is defined
as the number of moles per unit volume of porous medium, with the balance operator
for calcite taking the form:

Bcalcite([CaCO3(s)]) ≡ ∂[CaCO3(s)]
∂t

. (7.3.140)

We solve for the equilibrium reaction rates of the secondary species in the balance
equations, and then substitute these rates into the balance equations of the primary
species to obtain the following final set of balance equations for each component:
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B�([∗P1]) ≡ B�([∗H+]) = −2Rne
pm 2,

B�([P2]) ≡ B�([∗H2CO3]) = Rne
pm 1 + Rne

pm 2,

B�([∗P3]) ≡ B�([∗H2O]) = −Rne
pm 1,

Bg([P4]) ≡ Bg([CO2(g)]) = −Rne
pm 1,

Bs([P5]) ≡ Bs([CaCO3(s)]) = −Rne
pm 2.

(7.3.141)

Altogether, we have here NS = 9 species concentrations, NC = 5 balance equations,
and NReq = 4 mass action laws for the equilibrium reactions, i.e., a total of NC +
NReq equations. The mass action laws can be used to eliminate the secondary species
concentrations from the balance equations, andwehaveNC= 5 balance equations for
theNC= 5 primary variables. In some formulations, however, the total concentration
is solved for as an independent variable. This has the advantage that the accumulation
and flux terms in the mass balance equations are linear in the total concentrations,
which is useful if no heterogeneous reactions are considered. However, the above
is limited to cases where diffusion is independent of the concentration of the ionic
species.

From (7.3.134), we obtain the change in porosity in the form −�θcalcite (=
−�([CaCO3(s)]MCaCO3(s) /ρcalcite)). When changes in porosity and tortuosity, rela-
tive to their initial values are significant, the flow field based on the unaltered values
cannot be used in the transport and flow equations must be solved simultaneously as
a coupled set of equations.

7.4 Interphase Mass Transfers

Consider two fluid phases in a porous medium domain: two liquids or a liquid and a
gas that, together occupy the void-space. In the macroscopic mass balance equation
for a γ-species in an α-phase, e.g., (7.3.3), the term f γ

β→α(= − f γ
α→β) expresses the

rate of γ-mass transferred from a β-fluid phase to a considered α-phase (or α to
β), per unit volume of porous medium, per unit time. We may also encounter f γ

α→s ,
expressing the transfer from theα-phase to the solid (s), or f γ

s→α for the transfer from
solid to fluid. All f -terms express themass of γ per unit volume of porousmedium per
unit time transferred through the entire area of the interphase boundary surfacewithin
the REV around the considered (macroscopic) point. In fact, interphase transfers, of
all extensive quantities, across interphase (microscopic) surfaces, are included also
in (1.4.71) developed within the framework of the Hassanizadeh and Gray averaging
approach described in Sect. 1.4.2C. Whitaker (1999) also presents a species mass
balance equation for the interface between two phases.

To obtain an expression for the (macroscopic) f γ
α→β-term, we have first to under-

stand and express what happens at a point on an α − β-interface at the microscopic
level. Following the phenomenological approach, once we understand and express
what happens at the microscopic level, say per unit surface area of an interphase

http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_1
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boundary, we can easily transform this information to obtain the behavior per unit
volume of a porous medium. Thus, by taking into account the specific surface area,
i.e., interphase surface area per unit volume of porous medium, we’ll obtain the
sought value of f γ

α→β .
Interphase transfer processes are often referred to as heterogeneous reactions.
In Sect. 2.2.5 we have considered what happens at the interface between two fluid

phases that occupy the void-space. For example, we noted the laws of Henry and
Raoult that govern what happens at a point on such an interface. However, there, we
have not discussed the transfer of extensive quantities of the relevant phases across
interphase (microscopic) boundaries. This subject is discussed here.We shall start by
considering the transport of mass of a chemical species at a (microscopic) point on
an interphase surface, but eventually lead to the macroscopic exchange rate, f γ

α→β .
Several processes γ-mass transfer can occur in a number of forms:

• Transfer of a γ-species from a liquid to a gas and from a liquid to a liquid.
• Adsorption, i.e., the transfer γ from a liquid or a gas to a solid (and desorption).
• Ion exchange between a solvent and the solid, or between a liquid and an adjacent
liquid.

• Volatilisation (from a liquid to a gas) and condensation (from a gas to a liquid).
• Dissolution (from a solid to a liquid) and precipitation (from a liquid to a solid).
Dissolution may occur also when certain solids are added to a liquid. e.g., sodium
chloride added to water:

NaCl(s) = Na+
(aq) + Cl−(aq).

In what follows, we shall discuss these processes in details, with the objective of
leading to an appropriate expression for the f γ-term. Mass transfer is demonstrated
in many of the examples presented in Appendix A.

Let Sα,β denote the microscopic interface between two phases: α and β. We
may use (7.3.15) to define a characteristic reaction time, tc,react . However, in this
case, the characteristic time also depends on the involved volumes of the phases
relative to the interface area. In fact, the characteristic time is proportional to the
volume-to-surface ratio Vα/Sα,β (= �α), where �α is a characteristic length of the
phase-occupied domain. Thus, �α/tc,react (≡ κα) is a quantity that is independent
of the size of the experimental system and is, therefore, a true characteristic of the
reaction (≡ transfer) at the interface.

Next we consider a porous medium containing the two phases. The (microscopic)
characteristic length Lc for the α-phase is equal to �α. The relevant dimensionless
numbers: the Peclet number for the α-phase, Damköhler and Strouhal numbers are
presented in Sect. 3.10. They are:

(Pe)α = (Vα)c �α

Dα
,

(Dm I )α = �α/(Vα)c

tc,react
= 1/(Vα)c

1/κα
,

http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_3
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(St)α = �α

(Vc)αtc
,

(Dm I I )α = �2α/Dα

tc,react
= �α/Dα

1/κα
. (7.4.1)

Similar expressions apply also to the dimensionless numbers of the β-phase. There-
fore, the conditions for equilibrium of a heterogeneous reaction must hold for both
phases.

In what follows, we shall discuss these processes and how to express each of them
in terms of relevant state variables.

As we shall see, each of the f γ-transfer expressions involves a geometrical coef-
ficient that is associated with the actual microscopic configuration of the relevant
surface within the void space, e.g., the solid-fluid surface, or the characteristic dis-
tance between the fluid and solid surfaces within the void space. Although they can
be estimated, like all macroscopic coefficients related to the geometry of the phases
within an REV, these coefficients have to be determined experimentally. For manu-
factured porousmedia, especially those that have a repetitivemicroscopic structure, it
is possible to estimate the values of these coefficients. In two-phase flow, the specific
interfacial area will depend on the saturation of the phases involved.

7.4.1 Adsorption

Adsorption and desorption are terms used for fluid-to-solid and solid-to-fluid mass
transfers, with ‘fluid’ referring here to both a liquid and a gas. An example for the
latter case is the removal of toxic gases, e.g., stack gases like SO2 into a solvent. This
creates a thin film of the adsorbate on the surface of the adsorbent. We distinguish:

• Chemisorptionwhen the adsorbed ions, atoms ormolecules, form a chemical bond
with atoms or molecules of the adsorbent.

• Physical adsorption is when a species is attached to the solid by weak physical
bonds, like van der Walas (intermolecular) forces and hydrogen bonds.

The macroscopic balance equation of a chemical species, say (7.3.1), includes a
term ( f m

γ

s→α) that expresses the mass of a γ-species passing from the solid to the fluid,
across their common (microscopic) interface, per unit volume of porous medium.
This term expresses solid desorption. The opposite, i.e., from the fluid to the solid
(s → α) expresses adsorption. Thus, essentially, this is amicroscopic level that takes
place on the internal solid surface of the solid matrix and, when the latter is porous,
also on the solid-fluid interface within the solid matrix.

In the discussion below, we shall assume that the solid matrix is composed of
a single substance, although, in principle, it may be composed of a mixture of two
or more substances. Adsorption occurs at a point on the fluid-solid interface. How-
ever, as everywhere else in this book, eventually, we are interested in adsorption
at the macroscopic level, i.e., per unit volume of porous medium, assigned to the
macroscopic point in the considered domain.
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A. The Concept

Adsorption, or sorption, the opposite of desorption, is the process in which mass of
a chemical species dissolved in the liquid, or molecules of a gas (= adsorbate) that
occupies the void space, or part of it. Adheres to and accumulates on the surface of
a solid (= adsorbent). This phenomenon can take on two forms:

• Physical adsorption in which molecules, say of a gas, or of a liquid, adsorb to the
solid surface by van der Waals forces, hydrogen bonds, or electrical forces.

• Chemi-sorption, where chemical species present in the solid’s surface actually
interact chemically with dissolved chemical species present in the liquid.

An interesting observation here is that the valance of the solid’s surface is usually not
electrically neutral, as the atoms are built to bond in three dimensions. In principle,we
are considering what happens at a solid-fluid interface. Actually, under a powerful
microscope, that allows observation at the molecular level, this ’surface’ is much
more complicated; it allows various types of bonds between ions and molecules on
both sides of the assumed smooth solid-fluid interface. In principle, chemi-sorption
may also take place between a gaseous phase and a solid.

Switching to the microscopic level, one option is to assume that equilibrium
exists at every point on the fluid-solid interface. Primarily, this means equality of the
chemical potentials on both sides of the liquid-solid interface. Or, we can express
the same relationship by a law which is analogous to Henry’s law. Eventually, for
(macroscopic level) modeling purposes, we have to translate our understanding of
what happens at a point on a (microscopic) solid-fluid interface to a description of the
solid-fluid interaction per unit volume of porousmedium, i.e., taking into account the
specific area of the solid-fluid interface. In earlier subsections, we have been using
the symbol f γ

f →s to denote the mass of dissolved γ-species that moves from the fluid
to be adsorbed on the solid matrix, per unit volume of porous medium.

With the above comments on adsorption, a simple (and common) treatment of
adsorption under equilibrium conditionsmakes use of a tool referred to as adsorption
isotherm introduced in Sect. 2.1. Under such conditions, the amount of adsorbed
species on a solid matrix at a point in a porous medium domain, i.e., within an REV,
depends on the solid and is solely a function of the concentration of the species in
the liquid. This assumption is valid as long as the concentration of all other dissolved
species affecting adsorption do not change appreciably in time. In general, however,
this condition does not hold and a more complicated analysis is required, involving
also the reactions on the solid surface. The term sorption also includes ion exchange
and surface complexation. Examples of such reactions are introduced below.

In some adsorption theories (e.g., Weber 1972), the solid is always assumed to be
covered by a (wetting) fluid boundary layer, or film, that has properties and compo-
sition different from those of the bulk fluid. Then, the term ‘equilibrium’ mentioned
above means equilibrium between the adsorbed species and the concentration of the
species in that film. To obtain a macroscopic description of adsorption, we make
certain assumptions, e.g., that because of diffusion and the short distances involved,
the average concentration, say in an REV, is the same as that close to the solid, so
that we can express the isotherm in terms of average concentration.

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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To understand what happens at a liquid-solid interface we shall make use of
the concept of a’film’, or ‘boundary layer’, discussed in more detail in Sect. 7.4.3.
Because advective liquid flow within this boundary layer is negligible, to reach the
solid surface, the adsorbate has first to pass from the bulk solution through this layer
bymolecular diffusion. Then, after passing through the boundary layer, the adsorbate
can interact with the solid. The desorbed species can return to the bulk solution in a
similar way.

We should make a distinction between adsorption, as defined above, and absorp-
tion. The latter term is used when the solid matrix itself is porous, albeit with tiny
pores, which means a huge void-solid internal surface area per unit volume of solid
matrix. The terms micropores and macropores are often used. When permeability
inside the saturated solidmatrix, or grains, is very low, solute advectionwith the liquid
is not possible. However, species diffusion may still occur. A dissolved species can
diffuse into and within the (saturated) porous solid matrix, and adsorb on the internal
surface within it. We use the term absorption to indicate the solute that enters (=
absorbed by) the porous solid. A porous medium as described here is often referred
to as a double porosity porous medium, (Sect. 1.1.7A). Charcoal, often referred to
as ‘active carbon’ is an example of a solid matrix of this kind. It has a network of
interconnected tiny pores, providing a huge surface area for adsorption. A very large
mass of a chemical species can adsorb on such surface, per unit volume of porous
medium.

Note that the term ‘double porosity medium’ is used also for fractured rock
domains, in which the blocks are porous (Sect. 1.3.6B). However, the pores in the
blocks may be larger, allowing (single or multi-phase) flow in the porous blocks.

In many cases, when considering the rate of adsorption, or the characteristic time
involved, the rate determining (or rate limiting) step is not the chemical interaction
with the solid, but the diffusion through the film and (in the case of a porous matrix)
through the tiny pores within the solid matrix.

When adsorption of a dissolved chemical species takes place in saturated (i.e.,
single phase) flow, the total mass of a considered species, say within every REV of
the porous medium, is partitioned between the solution and the (surface of the) solid
matrix. Any increase in the quantity of a considered species in the liquid is associated
with an appropriate increase in its quantity on the solid, and vice versa. Obviously,
there is a limit to the quantity of a chemical species that can adsorb on the solid. In
desorption, the quantity of the species on the solid decreases; this is associated with
an appropriate increase in the species’ quantity in solution.

B. Adsorption Isotherm

An adsorption isotherm is the expression that relates the quantity of a species
adsorbed on the solid to its quantity in the liquid phase that occupies the void space
(or part of it), at a fixed temperature, under conditions of (chemical) equilibrium
between the two quantities.

Let the symbol F A denote the mass of the A-species (= adsorbate) adsorbed on
the solid (= adsorbent), per unit mass of the latter. Note that the concentration F A

may be measured in kg/kg, or in moles/kg, while the concentration in the liquid, cA,

http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_1
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is measured in kg/�, or in moles/�. Although it would seem more natural to define
the mass of the species on the solid per unit surface area of the solid, the reference to
‘unit mass of solid’, stems from the way this quantity is measured in the laboratory.

Different adsorbate-adsorbent pairs have different isotherms, stemming from the
different mechanisms involved. The isotherm for a given adsorbate-adsorbent pair
can be obtained by performing a batch adsorption experiment. A fixed amount of
porous medium (e.g., soil) is mixed in separate containers with an aqueous solution
at different concentrations, and the change in the latter, resulting from adsorption, is
recorded as time elapses, until the systems reach equilibrium. By performing a mass
balance within each container, the adsorbed quantity is computed, yielding a point
on the isotherm. If the time for reaching equilibrium is too long, equilibrium may
not be assumed. A review of a large number of adsorption isotherms is provided by
Foo and Hameed (2010).

Following are examples of some more commonly used isotherms for a specified
γ-species:

• Freundlich (1907) suggested the nonlinear isothermn

Fγ = b(cγ)n, (7.4.2)

where b and the power n are constant coefficients (functions of temperature), and
cγ denotes the concentration of the γ-adsorbate in the solution. The case n < 1
means that as Fγ increases, it becomes more difficult for additional quantities of the
adsorbate to be adsorbed. The opposite situation is described by n > 1.
• For n = 1, and replacing the symbol b by the more commonly used symbol Kd ,
the relationship (7.4.2) reduces to the linear adsorption isotherm:

Fγ = K γ
d c

γ . (7.4.3)

The coefficient K γ
d , which expresses the affinity of the γ-species for the solid, relative

to that for the liquid (usually for an aqueous phase), is called the distribution coeffi-
cient, or partitioning coefficient of γ in the considered fluid. From (7.4.3), it follows
that K γ

d (≡ Fγ/cγ), with K γ
d = Kd(cγ, T ), gives, at every instant, the mass of the

adsorbed γ-species on the solid, per unit mass of the latter, per unit concentration
of that species in the liquid phase. It describes the partitioning of the total amount
of the species between the solid surface and the liquid phase, say, in a unit volume
of porous medium. We note that K γ

d has the dimensions of γ-mass per unit volume,
and should be described by the corresponding units (e.g., kg/�).

It is always possible to rewrite the isotherm in terms of other measures of solute
concentration, (e.g., moles/�).

Sometimes, K γ
d for an adsorption process differs from that for the desorption one.

This implies that the process is not completely reversible. Another observation is
that, often, especially in chemisorption, there exists a limit to the adsorptive capacity
of a solid surface. This requires a modification of the isotherm (7.4.3).
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In unsaturated (air-water) flow, as the larger pores are occupied by air, part of
the solid’s surface is less readily accessible to pore water. This may make K γ

d in
(7.4.3) a function of the saturation. On the other hand, we recall that water is usually
the wetting liquid, and, as such, it is everywhere adjacent to the solid surface, albeit
as a very thin film, with diffusion of chemical species through it. Hence, we may
conclude that (7.4.3) is valid also in unsaturated flow, unless the moisture content is
very low, a situation that, under certain conditions, may occur, for example, close to
ground surface.

• Langmuir (1915, 1918) suggested the nonlinear equilibrium isotherm:

Fγ = k3cγ

1 + k4cγ
, k3, k4 = constant coefficients. (7.4.4)

Note that Fγ → const. when k4cγ 
 1.

• Lindstrom et al. (1971) and Van Genuchten (1974), present the nonlinear isotherm:

Fγ = k5 c
γ exp(−2k6F

γ), k5, k6 = constant coefficients. (7.4.5)

For 2k6Fγ 	 1, we have Fγ � k5cγ/(1 + 2k5k6cγ) and the isotherm reduces to
Langmuir one.

Some of the above isotherms can be expressed as Fγ = Kd(cγ)cγ . Thus, for any
γ-species, we have:

mγ
∣∣
in the fluid(w)

mγ
∣∣
on the solid(s)

= cγ
Vw

Fγ ms
= 1

ρbK
γ
d (cγ)

φ

, (7.4.6)

mγ
∣∣
in the fluid(w)

mγ
∣∣
in the porous medium

= cγ
Vw

cγ Vw + Fγ ms
= 1

1 + ρbK
γ
d (cγ)

φ

, (7.4.7)

in which φ is the porosity, and ρb denotes the bulk density of the solid matrix.
Altogether, an adsorption isotherm provides information on the quantity of an

adsorbed species when a solid and an aqueous phase are in equilibrium, i.e., when
the net rate of mass transfer of the species between the aqueous liquid and the solid
is zero.

In most cases, the time characterizing the adsorption reaction may be sufficiently
small, relative to the times characterizing advection and diffusion in the liquid phase
within the void space, so that equilibrium may be assumed to prevail. However, we
may encounter cases where equilibrium is not a valid assumption, and the kinetic
approach and rate of reaction, discussed earlier in this subsection has to be taken into
account.

In the case of adsorption in two-phase (α and β) flow, the rates of interphase
transfer from α to s and from β to s are expressed by f γ

α→s and f γ
β→s . We recall



7.4 Interphase Mass Transfers 525

that only one of the two fluids is wetting the solid. Also, a chemical species that can
adorb on the solid may be present only in one of the fluids.

C. Retardation

Let us introduce the concept of retardation through the case of single phase flow,
i.e., the void space is fully occupied by a liquid α-phase. We can eliminate the
term expressing the rate of interphase γ-mass transfer by summing up the balance
equations for the considered γ-species: (7.3.3) for the liquid, i.e., δ = s only:

∂φραωγ
α

∂t
= −∇·φ

(
ραωγ

αVα + Jγ
α,di f + Jγ

α,dis

)
− f γ

α→s + φρα�γ
α, (7.4.8)

and for the solid phase:
∂(ρbFγ)

∂t
= f γ

α→s + ρb�
γ
s . (7.4.9)

By summing up the above two equations, we obtain:

∂(φραωγ
α + ρbFγ)

∂t
= −∇·φ

(
ραωγ

αVα + Jγ
α,di f + Jγ

α,dis

)
+ ρb�

γ
s + φρα�γ

α,

(7.4.10)
When we use the linear isotherm:

Fγ
α = (Kd)

γ
αραωγ

α, (7.4.11)

we can rewrite (7.4.10) in the form:

∂(φραωγ
α + ρbFγ)

∂t
= −∇·φ

(
ραωγ

αVα + Jγ
α,di f + Jγ

α,dis

)
+ ρb�

γ
s + φρα�γ

α,

(7.4.12)
or, with Rγ

d = const., and ∂φ/∂t = ∂ρb/∂t = 0,

Rγ
dφ

∂ραωγ
α

∂t
= −∇·φ

(
ραωγ

αVα + Jγ
α,di f + Jγ

α,dis

)
+ ρb�

γ
s + φρα�γ

α, (7.4.13)

in which:

Rγ
d ≡ 1 + ρbK

γ
d

φ
(> 1) (7.4.14)

is called the retardation factor of the γ-species.
To understand the reason for this name, consider the case of a liquid that occupies

the entire void space, and (a) no external sources or sinks exist, (b) ρ = const., ρs =
const., and ∂φ/∂t = 0, (c) no degradation or decay phenomena take place, (d) the
considered γ-species adsorbs on the solid under conditions of equilibrium, following
a linear isotherm, with K γ

d > 0 and ∂K γ
d /∂t = 0, and (e) diffusion is negligible with

respect to dispersion. Then, (7.4.13) reduces to the form:
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With adsorption (D = aLV/Rd)

0
x

co

L = Vt

Without adsorption (D = aLV)

2
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Rd
VL = t

Fig. 7.4 Effect of retardation

φ
∂ωγ

∂t
= −∇ · φ

(
ωγ V

Rγ
d

− D

Rγ
d

· ∇ωγ

)
. (7.4.15)

Under identical assumptions, except (d), i.e., in the absence of adsorption, we obtain
the same equation, but with Rγ

d = 1.
Altogether, the cases with adsorption and without it are similar, except that in the

former equation, the average fluid velocity is replaced by V/Rγ
d , and the coefficient

of hydrodynamic dispersion is replaced by Dh/R
γ
d . Thus, under the assumption of

equilibrium adsorption, described by a linear isotherm, the effect of adsorption is
to retard the advance of the component (as part of it is adsorbed onto the solid).
Instead of advancing with the fluid, moving at a velocity V, the mean movement
of the contaminant is at the reduced, or retarded velocity, V/Rγ

d . At the same time,
spreading by dispersion occurs as if the coefficient of mechanical dispersion, D, is
also reduced by the factor Rγ

d . For a constant Rd , we may rewrite the l.h.s. of (7.4.13)
in the form φ∂ραωγ

α/∂(t/Rγ
d ), i.e., R

γ
d expresses a change in time scale.

Figure7.4 shows the effect of retardation in the example of a semi-infinite porous
medium column, with cγ = cγ

o at t = 0, and with c = 1.0 at x = 0 for t ≥ 0. The
curves were obtained by an analytical solution. We note that in the case with adsorp-
tion, the point c = 0.5 advances at a speed V/Rγ

d , and that the curve is steeper,
indicating, apparently, a smaller coefficient of hydrodynamic dispersion.

D. Effect of Surface Diffusion

Surface diffusion of an adsorbed species, briefly introduced in Sect. 7.2.2E, may
affect the adsorption-desorption phenomena, we shall not discuss this topic here.

7.4.2 Ion Exchange

In ion exchange reactions, already mentioned in Example 4 (Sect. 7.3.4), ions that
are held by electrostatic forces to a charged functional group on the surface of the
solidmatrix are exchanged by ions of a similar charge present in the aqueous solution
occupying the void space.Multivalent exchange is also possible, e,g., Ca++ ↔ 2Na+.



7.4 Interphase Mass Transfers 527

The exchange continues until equilibrium is reached for all ions present in the porous
mediumdomain.Aprocess of this kind occurs, for example, in synthetic ion exchange
resins. For example, the cation exchange:

HR(s) + Na+
(aq) � NaR(s) + H+

(aq),

where R denotes a resin, or the anion exchange:

ROH(s) + (Cl)−(aq) � RCl(s) + OH−
(aq),

were R represents the organic part of a resin.
In the soil, ion exchange processes occur primarily on clay minerals and on

oxides/oxihydroxides (in connection with both cation and anion exchange). The
explanation is based on the observation that oxides/oxihydroxides can be positively
charged (anion exchange), or negatively charged (cation exchange), depending on
their point of zero charge and the pH of the water. When not charged, they are not
available for ion-exchange. It is of interest to note that, as charge forces act over
larger distances, compared to hydrophobic adsorption, ion-exchange is an extremely
fast process.

Ion exchange is also an important water treatment process commonly used for
water softening or demineralization. It is also used to remove other certain substances
from the water in processes such as de-alkalization, de-ionization, and disinfection.
In all these examples, unwanted dissolved ions are exchanged for other ions with a
similar charge that are present on the solid’s surface.

Some ion exchange theories envision the presence of a thin liquid boundary layer
(= film) that covers the solid. The time characterizing ion exchange depends on the
relative times of (1) transport of the ions from the bulk solution to the boundary
layer and (2) diffusion through the layer. In the case of a porous solid matrix, ions
diffuse into the porous solid to adhere on the internal surface of the porous solid. Ion
exchange involves also the transport of the released ions back to the bulk solution.
The limiting rate is often dictated by the various diffusive steps, rather than by the
actual exchange process (Weber 1972).

Without going into details, which can be found in the literature, especially that
dealing with clay minerals (e.g., Grim 1968), the structure of most clay minerals can
be described as composed of layers of aluminum silicates, each layer being made up
of sheets of SiO4 tetrahedral units and Al(OH)xO6−x octahedral ones, where the two
kinds share some oxides with each other. For example, kaolinite, Al2Si2O5(OH)4, is
composed of tetrahedral SiO4 and octahedral Al(OH)4O2 sheets. The Al3+ ion in the
octahedral unit may be substituted by such ions as Mg2+, Fe2+, Mg2+, and Mn2+.
This isomorphic substitution creates an excess negative charge on the sheets, such
that the clay surface can attract other positive ions from the solution.

Reversible ion exchange for a univalent component may take the form:

X+ + AS � A+ + XS, (7.4.16)
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in which X+ is a dissolved cationic species, XS is the species in the adsorbed state
on the solid, denoted by S, and A+ is the cation, initially on the solid, remaining in
the liquid phase. Upon reaching equilibrium, we obtain, according to the law of mass
action (Sect. 7.3.3A; and, e.g., Chang and Cruickshank 2003),

KX
eqA = {XS} {A+}

{AS} {X+} , (7.4.17)

where KX
eqA is the equilibrium coefficient for the exchange reaction, and the bracketed

terms represent activities (Sect. 7.3.3A).
Ion exchange is further discussed in Appendix A.

7.4.3 Gas to Liquid γ-Mass Transfer

We consider a γ chemical species dissolved in a liquid that maintains an interface
with an adjacent gas domain. A stream of γ-atoms ormolecules crosses the interface–
from the liquid to the gas and back. The transferred substance is moving in and out
through the interface. Volatilization takes over when more vapour exits the interface
than vapour condenses on it.

The term dissolution refers here to the case in which a chemical species in a
gas dissolves in an adjacent liquid body, in excess of the stream of these molecules
leaving the liquid. These phenomenon are encountered, for example, in groundwater
contamination. Water (fresh or saline) and air that together occupy the void space
may serve as an example. Hydrocarbon gas and saline water in a gas reservoir, may
serve as another example. Appelo and Postma (2005, p. 490) present the example of
benzene, C6H6(g), and liquid water:

C6H6(aq) � C6H6(g), for which KH = pC6H6(g)

MC6H6(aq)
, (7.4.18)

where M denotes molar density, and discuss the γ-mass exchange between them.
Our objective here is to determine f γ

α→β , i.e., the rate at which the γ-species is
transferred across a liquid-gas interface.

Let us use this case to introduce the two-film model which is a convenient tool
to envision and evaluate interphase mass transfer, say of a γ-species present in two
adjacent phases separated by a common interface. The film is sometimes referred to
as boundary layer. Each of the surfaces that bounds the film is located such that up to
it the presence of the phase on the other side of the film is hardly felt.

Here we are considering gas dissolution, i.e., when a γ-species is transferred from
a gaseous phase (g) to a liquid (�) one. Figure7.5 shows a (microscopic) interface
segment of an (assumed sharp) interface between a gas, and a liquid. On each side of
this interface we envisage a thin stagnant layer, or ‘film’, of the relevant fluid. The
idea, as suggested by Nernst (1904) for a single film and Whitmanm (1923) for a
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Fig. 7.5 Two-film model for interphase � → g-transfer

double film, is that the resistance to the mass transfer by diffusion across the interface
occurs across these two stagnant thin films, or boundary layers.While in the bulk fluid
zones, we may encounter both γ-advection and diffusion, across the two films we
have only diffusion, at a rate proportional to the concentration gradient across each
of the two films. These gradients act as driving forces. The interface itself is assumed
to offer no resistance to the mass transfer. It is assumed that equilibrium between the
two phases exists at the interface itself. Thus, there is no change in the concentration
relationship between the species concentration at/across the interface; the values on
both sides of the interface are determined by the thermodynamic relationship between
them, say Henry’s law (Sect. 2.2.5), or similar laws of equilibrium. Altogether, a gas
molecule starting at a point in the interior of the gas domain has to travel through the
gas film, cross the interface, cross the liquid film, and end up in the liquid domain.

With the nomenclature shown on Fig. 7.5, and replacing the gradient in Fick’s law
by a difference over distance, we us (7.1.4) and (7.2.9) to write:

From bulk liquid to interface : jγ�, f ilm = η�Dγ
�

Xγ
� − Xγ

�,int

�x�

. (7.4.19)

From interface to bulk gas : jγg, f ilm = ηgDγ
g

Xγ
g,int − Xγ

g

�xg
, (7.4.20)

where ηα denotes the molar α-phase density, and the fluxes are in moles per unit area
per unit time.

Note that, the quotients �xg/Dγ
g and �x�/Dγ

� act as two ‘resistances’ to the
diffusive fluxes. The model presented here may therefore be also called the ’two-
resistance model’.

On the interface, the two phases are in equilibrium, so that any Henry-like law
takes the form:

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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Xγ
g,int

Xγ
�,int

= H∗
g,�. (7.4.21)

Since jγ�, f ilm = jγg, f ilm = jγg→�, with (7.4.21), we obtain:

jγg→� = Xγ
g /H∗

g,� − Xγ
�

�xg

ηgDγ
g

1
H∗

g,�

+ �x�

η�Dγ
�

, (7.4.22)

Note that the denominator in the above equation may be regarded as the resistance
of the interface to the transfer of mass. It depends on the transported species and
the nature of the two phases, but it also involves some characteristic distances of the
interface.

Actually, the above two fluxes are not necessarily equal if we take into account
the possibility of accumulation of mass in the surface itself, as suggested in (1.4.71).
However, here we shall assume that these two fluxes are equal, as γ-mass does not
accumulate in/on the surface. Surfactants were introduced in Sect. 2.4.1B. A γ-mass
balance, say per unit area of interface, with or without the spreading of the surfactant
within the interface, will lead to a model for a surfactant.

Finally, as our objective is to find an expression for the mass transfer term, f γ
α→β

that appears in the macroscopic γ-mass balance equation, we have to relate the flux
jγα→β to f γ

α→β . Since the former is the flux through an interface of unit area, it is
obvious that we have to multiply jγα→β by the surface area of the α − β-interface,
per unit volume of porous medium, �αβ . This area of the α-β surface depends on
the saturation (Sα) of the α-phase. The �x values representing the thickness of the
films are also geometrical parameters. Thus,

f γ
g→� = jγg→��g,�(S�). (7.4.23)

Altogether, based on the above development, we may now express the term f γ
g→�

in the form:
f γ
g→� = K γ

g,�(X
γ
g /H∗ − Xγ

� ), (7.4.24)

where

K γ
g,� = K γ

g,�(g, �, Sg) = �g,�(S�)
�xg

ηgDγ
g

1
H∗

g,�

+ �x�

η�Dγ
�

(7.4.25)

is the coefficient of gas to liquid mass transfer to be determined experimentally for
any gas, liquid and solid matrix.

It is interesting to note that the mass transfer considered here is due only to
diffusion; it is assumed to be independent of the advective flow of the two phases–a
wetting fluid and a non-wetting one—that simultaneously occupy and move through
the void space.

http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_2
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7.4.4 Liquid to Liquid γ-Mass Transfer

We consider the case in which the void-space is occupied by two immiscible liquids–
a wetting liquid and a non-wetting one. Water and oil in a petroleum reservoir may
serve as an example. The case of two liquids in a chemical reactor is presented in
Appendix A.

Actually, the two-film model underlying the presentation in the previous sub-
section, where we have considered mass transfer between a gas and a liquid, and
vice-versa, is applicable also to the case of mass transfer between two immiscible
liquids that together occupy the void space of a porous medium domain.

We consider mass transfer of a γ-species that dissolves in two immiscible liquid
phases that together occupy the void space of a porousmediumdomain. The dissolved
species can cross the (microscopic) interface between the two liquids. In a petroleum
reservoir, the dissolution of a hydrocarbon species in water, may serve as examples.
Partitioning at the interface is assumed to occur almost instantaneously; this means
that chemical equilibrium is always assumed there. For the sake of simplicity, let
us assume that no chemical reactions occur within the fluid phases. However, non-
equilibrium conditions in the phases may exist in the form of concentration gradients
and movement of species. Interphase mass transfer rates are, therefore, controlled
by diffusive and advective transport of species as occurring within each fluid phase
close to the interface.

As in the cases of liquid to gas mass transfer, our objective to find an expression
for the case of liquid to liquid, say non-wetting (nw) to wetting (w), mass transfer
of a γ-chemical species. Figure7.6 shows a point on the interface between a wetting
and a non-wetting liquid. We note how the wetting liquid covers the solid surface,
also in non-wetting liquid domain. Following the two-film model presented earlier,
the concentrations on the interface are cγ

w on the w-side and cγ
nw on the nw-side.

Thus, from bulk nw-liquid to interface:

jγnw, f ilm = ρnwDγ
nw

cγ
nw − cγ

nw,int

�xnw

. (7.4.26)

Fig. 7.6 Mass transfer across liquid–liquid interface
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From interface to bulk w-liquid:

jγw, f ilm = ρwDγ
w

cγ
w,int − cγ

w

�xw

, (7.4.27)

where the fluxes are in mass, say per unit interface area per unit time.
On the interface, the two phases are in equilibrium, so that Henry’s law is:

cγ
nw,int

cγ
w,int

= H̃γ
wn,w, (7.4.28)

where H̃γ
wn,w is an appropriate Henry coefficient.

Since jγw, f ilm = jγnw, f ilm = jγnw→w, with (7.4.28), we obtain:

jγnw→w = cγ
nw/H̃ − cγ

w

�xnw

ρnwDγ
nw

1
H∗

g,�

+ �xw

ρwDγ
w

, (7.4.29)

With �w,nw = �w,nw(Sw) denoting the specific surface area of the w − nw-
interface, the γ-mass transferred from the non-wetting fluid to the wetting one, per
unit volume of porous medium is f γ

nw→w = jγnw→w�w,wn . Altogether, we can write:

f γ
nw→w = K γ

nw→w

(
cγ
nw/H̃ − cγ

w

)
, K γ

nw→w = �nw,w(Snw)
�xnw

ρnwDγ
nw

1
H∗

g,�

+ �xw

ρwDγ
w

, (7.4.30)

where K γ
nw→w is an experimentally determined liquid-to-liquid mass transfer coef-

ficient, to be determined experimentally.
As γ-particles move across the film-interface-film domain representing the fluid-

fluid interface, a characteristic time is associated with each step. The characteristic
time of the entire process is determined by the slowest process. This will be the ‘rate
limiting step’ for the entire transfer process. Usually, diffusion through the liquid
phase is the ‘rate limiting step’.

In Sect. 7.3.3, we have already discussed the conditions that justify the assumption
of equilibrium for a heterogeneous reaction in anREV.The conditionswere expressed
in terms of the Strouhal, Peclet, andDamköhler numbers, using a characteristic length
�α that is equal to the local volume-to-surface area ratio of the phase. If condition
(7.3.19), based on these numbers, is satisfied, then the reaction at the interface is
fast enough so that it may be considered to be in equilibrium. However, it is still
possible that condition (7.3.17) does not hold, because advectionmight dominate over
diffusion, or diffusion could take place slowly. In such a case, we need expressions for
the rate of interphasemass transfer. Usually such expressions are derived empirically.

Essentially, the two film model assumes, as a good approximation, that the con-
centration within each film varies linearly with the distance from the interface. Such
a situation may be expected to hold for a diffusion-dominated system under quasi-
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steady conditions, with no chemical reactions. However, if the system is dominated
by advection, then the concentration profile, and, hence, the resulting mass transfer
coefficients, will depend also on the magnitude of the mean fluid velocity.

Like in the case of gas-to liquid mass transfer discussed above, the mass exchange
is not affected by the advective fluxes in the liquids, which may be co-current or
counter-current.

Although we have used the concentration, cγ , in the above formal derivations, we
could have used the mass fraction ωγ(= cγ/ρα) instead, as it is convenient to use ωγ

when ρ is (almost) unchanged.

7.4.5 Solubility and Precipitation

These phenomena often occur during reactive transport through the void-space of a
porous medium domain. Our objective here is to present the conditions under which
mass transfer resulting from dissolution and precipitation occur in a porous medium
domain in which a liquid with a dissolved chemical species is transported through
the void space.

• A. Saturation index

Under certain (c, p, T )-conditions, a solid which is in contact with a liquid that
occupies the void-space, will dissolve in the liquid. We refer to this process as solid
dissolution. In general, it is not necessarily the ‘solid’ as such that dissolves, but only
certain chemical species that constitute part of the solid’s (very thin) layer that is in
contact with the liquid.

Precipitation is the opposite of dissolution. Under certain (c, p, T )-conditions,
when two solutions that contain the ions of a salt aremixed, some salt will precipitate,
i.e., it will emerge from the solution as a solid. Under any prevailing p.T conditions,
there exists a limit at which any additional solid salt added to the solution cannot be
dissolved. Instead, the additional salt will remain undissolved. The solution is said
to be ‘saturated’ with respect to that solid under the prevailing conditions. The solute
concentration at that point is referred to as solubility of the considered solute in the
solvent, under the prevailing p, T conditions.

Whether, under prevailing p, T conditions, saturation or precipitation will occur
or not depends on a saturation index. (see (7.4.32)).

There is a limit to the amount of ions (at a given p and T ) that can be present in
a solution. Any addition of ions beyond that limit cannot dissolve; instead ions will
merge into a solid that will precipitate.

A simple starting point is the law of mass action presented as Sect. 7.3.3B.
Following (7.3.28), a precipitation/dissolution reaction can be written in the

canonical form of the stoichiometric equation:

∑

(γ)

νγ
m A

γ � Mm, (7.4.31)
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in which γ as a superscript denotes a γ-species,Mm denotes a consideredmineral, Aγ

denotes a primary γ-species, and ν
γ
m denotes the corresponding stoichiometric coef-

ficient for the considered m-mineral. The saturation index, SIm , for the m-mineral
is defined as:

SIm = Keq,mQm . (7.4.32)

where Keq,m , defined in (7.3.39), (7.3.48), and (7.3.55), denotes the equilibrium
constant for the considered m-mineral, and Qm denotes the activity product of the
m-mineral, defined by;

Qm =
∏

(γ)

({γ}m̂γ
)νγ

m
, (7.4.33)

where m̂γ denotes the molality of the γ primary species, and {γ} denotes the activity
coefficient of the γ-species.

With the above definitions, the criterion for dissolution/precipitation is:

SIm =
⎧
⎨

⎩

> 1, precipitation,
= 1, equilibrium,

< 1, dissolution.
(7.4.34)

• B. Dissolution

An ionic solid is a solid built of negative and positive ions that attract each other.
When placed in a liquid, e.g., water, the solid’s ions are attracted to the liquid’s
ones and the solid dissolves. An equilibrium is established between the ions in the
saturated solution and the ions remaining in the solid at their contact domain. For
example (Sienko and Plane 1966, p. 272), in the case of excess silver chloride in
contact with a saturated solution of silver chloride, we have:

AgCls � Ag+ + Cl−,

with equilibrium established between the ions in solution and the excess AgCl.
Making use of the equilibrium relationship (7.3.55), we write:

{Ag+}{Cl−}
{AgCl(s)} = Keq , (7.4.35)

where we recall that {(..)} denotes the activity of (..), and that the activity of a pure
solid is equal to one, {AgCl(s)} = 1, independent of the solid-solution area of contact.
It follows that to determine whether a solid will dissolve or not, we have to examine:

{Ag+}{Cl−} � Keq, (7.4.36)

The actual value of Keq is determined experimentally.
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The product on the l.h.s. of the above equation is called the ion product. In other
words, the ion product must equal Ksp when the ions of a saturated solution are in
equilibrium with excess solid.

The case ofCO2 disposal in deep brine containing formationsmay serve as another
example. As the brine becomes acidic, it tends dissolves minerals that comprise the
solid matrix, increasing the porosity and permeability of the void space.

As a third example, consider the case of barium sulfate (BaSO4). In solution, we
have:

BaSO4 � Ba2+ + SO.
4 (7.4.37)

Since SIBaSO4 = 1, we have:

Keq = {Ba2+}{SO2−
4 } = (3.9 × 10−5)(3.9 × 10−5) = 1.5 × 10−9. (7.4.38)

to be compared with the appropriate value of Keq(p, T ) defined above.
Thus, for any solution containing Ba2+ and SO2−

4 in equilibrium with solid
BaSO4, the product of the concentrations of Ba2+ and SO2−

4 is equal to 1.5 ×
10−9. Since Keq is a very small number, BaSO4 is practically an insoluble salt.
When {Ba2+}{SO2−

4 } < 1.5 × 10−9, the solution is unsaturated and BaSO4 must
dissolve to increase the concentrations of both Ba2+ and SO−

4 . However, when{Ba2+ × SO2−
4 } > 1.5 × 10−9, the solution is supersaturated and precipitation will

take place (in order to reduce the concentrations).
The solid-to-solution mass transfer flux associated with solid dissolution can be

expressed by using the two-thin-films model, presented in the previous subsections.
We assume that next to the solid surface, we have a thin film (film1) with solid ions at
saturation concentration at the prevailing p, T conditions, cA

s,max . Next to it, we have
a second thin film (film2), of thickness �x f ilm2, across which the ion concentration
drops to that of the solution in the void space, cA

� . We may then express the flux from
the solid to the liquid by:

j As→� = DA

(
cA
s,max − cA

�

)

�x f ilm2
, (7.4.39)

in which cA
� denotes the concentration in the liquid, say, average concentration in the

liquid, and DA is the coefficient of molecular diffusion in the liquid �.
To obtain the flux due to dissolution, per unit volume of porous medium, we have

to multiply j As→� by the specific s − � surface, �s,�, leading to:

f A
s→� = j As→��s,�,= Ks→�

(
cA
s,max − cA

�

)
, Ks→� = DA�s,�

�x f ilm2
(7.4.40)

where Ks→� is the solid’s dissolution mass transfer coefficient.
The two concentrations in the above equation are average values at the considered

point in the porous medium domain. It may be interesting to comment that actually
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the value of cA
� should be the average over an REV of the concentration close to the

solid surface, rather than the average over the REV. The latter concentration is lower
than the average. This comment can be understood if we recall the development by
Taylor model presented in Sect. 7.2.3. Taylor’s solution for solute transport through
a capillary tube, makes a clear distinction between the average concentration and the
distribution of solute concentration at the microscopic level.

• C. Precipitation

An example may be useful (Sienko and Plane 1966, p. 276). We mix 50ml of
5.0×10−4 moles of Ca(NO3)2 with 50ml of 2.0×10−4 moles of NaF. Together we
have 100ml of solution. The Keq of CaF2 is 1.7×10−10. In general:

Ca(NO3)2(s) + 2NaF � CaF2 + 2NaNO3.

We have to determine whether precipitation will occur or not.
In the considered mixture, because of the 2-fold dilution of the Ca(NO3)2,

we have 2.5×10−4 moles of Ca2+. The F is also diluted in the mixture to
1.0×10−4 moles.

To determine whether or not we’ll have precipitation, we have to determine the
value of Keq :

[Ca2+][F2−]2 = (2.5 × 10−4)(1.0 × 10−4)2 = 2.5 × 10−12.

Since the above value is smaller than the Keq of CaF2, (= 1.7 × 10−10), precip-
itation will not occur. The resulting mixture will be an unsaturated solution with
respect to the mixture of solutions.

7.5 Complete Solute Transport Model

When we consider a single, non-reacting and non-adsorbing dissolved chemical
species, the single dependent variable for which a solution is sought is the concen-
tration of that species in the fluid, say cγ(x, t). Obviously, we may use ωγ , or Xγ , as
variables. In multi-phase flow, say, α and β, the same species may be present in more
than one phase within an REV. Phase transfer may occur and we have to consider
ωγ

α and ω
γ
β , as additional variables.

In what follows, as long as we consider a single phase, which may occupy only
part of the void space, no special subscriptwill be used to denote that phase. Similarly,
no superscript will be used to denote the considered chemical species, as long as we
are considering only a single species.

Because the velocity distribution within a considered domain is required as input
information to the problem of transport of a chemical species, it is always necessary
to solve simultaneously also the problem of transport of the (total) mass of the fluid
phases that carry the considered chemical species, before solving the component’s
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transport problem.Obviously, when the component’s concentration affects the fluid’s
density (and possibly also its viscosity), the two problems are coupled and must be
solved simultaneously.

To obtain a unique solution of a balance equation in a given porous medium
domain, we have to specify initial and boundary conditions. In the case considered
here, that balance equation is of the mass of the considered species. The basic ideas
underlying the concept of boundary conditions have been presented in Sect. 5.2,
where we have discussed boundary conditions for flow, i,e., fluid mass transport. As
we have done there, we shall continue to make the assumption that the boundary,
which is material with respect to the solid matrix, is an abrupt surface, defined by
the equation F = F(x, t).

As in the case of flow, we start by discussing the general boundary condition,
which expresses the continuity of the flux of the considered chemical species across
a boundary. We shall then present a number of the more commonly encountered
particular cases of practical interest.

7.5.1 General Boundary Condition

We wish to solve an equation that expresses the mass balance of a chemical species
transported in a fluid phase. As stated in Sect. 5.2.3, in the absence of sources or
sinks on a boundary, the general boundary condition for any extensive quantity, is
that there is no-jump in the total flux of that quantity across the boundary. This is
clearly expressed by the no-jump condition (5.2.6). If such sources are present, the
jump is equal to the strength of the sources. For a solute transported by a fluid phase,
this condition states that in the absence of sources and sinks of the considered solute
on the boundary, which is usually the case, the component normal to the boundary of
the total flux of that solute, with respect to the (possiblymoving) boundary, undergoes
no-jump as the latter is crossed. Thus, with θ denoting the volumetric fraction of the
phase, ν denoting the unit vector normal to the boundary, and u denoting the velocity
of the latter, this statement takes the form:

[[ θ [c(V − u) − Dh ·∇c] ]]1,2 ·ν = 0, (7.5.1)

where [[ (..) ]]1,2 ≡ (..)
∣∣
1 − (..)

∣∣
2 denotes the jump in (..) from side 1 to side 2 of the

boundary. For example, sides 1 and 2 may represent the internal side and the external
one, respectively. Obviously, we may express the above equation in terms of ωγ

α, or
Xγ

α.
Since we have assumed that the boundary is material with respect to the solid

matrix, viz.,
(Vs − u)

∣∣
1 = (Vs − u)

∣∣
2 = 0,

http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
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we may rewrite (7.5.1) in the form:

[[ (cqr − θDh ·∇c) ]]1,2 ·ν = 0, (7.5.2)

where qr (≡ θ(Vf − Vs)) (= specific discharge relative to the solid) is expressed by
Darcy’s law, or by any other motion equation.

For (7.5.2) to become a condition for c on a boundary, information on what
happens on the external side of the latter (in this case, the total flux relative to the
boundary) must be known as a function of space and time.

In addition to boundary conditions that stem from the continuity of flux, as pre-
sented above, a second fundamental assumption exists, namely, that of continuity
of the value of the intensive quantity of the considered phase, or of the considered
chemical species, as the boundary is approached from both sides. We usually know
the value on the external side, and assume that at every point on a boundary, there
exists no discontinuity in the (intrinsic phase average of) scalar intensive quantities,
such as density, temperature and (here) concentration. The motivation for making
this assumption is that otherwise, the infinite gradient associated with a discontinu-
ity will instantaneously equalize the values of such quantities on both sides of the
boundary by the process of diffusion (= conduction, for heat).

In what follows, we shall apply the general condition (7.5.2) to a number of
particular cases. We shall assume that all boundaries are stationary, except for the
phreatic surface.

When necessary, subscripts 1 and 2will be used to denote the internal and external
sides of a boundary surface, respectively. The latter is described by F(x, t) = 0, with
a normal unit vector given by n = ∇F/|∇F |. We shall use c to denote concentration,
although othermeasuresmay also be used.We shall assume that the considered phase
occupies only part of the void space, at volume fraction θ, with the possibility that
θ = φ.

7.5.2 Particular Cases

A. Boundary of Prescribed Concentration

When the value of c(x, t) are imposed as a known function, f (1)(x, t), at all points
of a boundary segment, B, due to phenomena that take place on the external side of
the considered domain, independent of what happens within the latter, we employ
the boundary condition

c(x, t) = f (1)(x, t) on B, (7.5.3)

where c(x, t) denotes the concentration on the internal side of the boundary and
f (1)(x, t) is a known function that represents c on the external side. This is a first
type, or Dirichlet boundary condition.
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Although (7.5.3) is used very often, probably because of its simplicity, it is not
a direct consequence of the general condition of no-jump in the normal compo-
nent of the total solute flux across a boundary. Instead, as explained in the previous
subsection, it is based on the assumption of no jump in the values of scalar inten-
sive quantities. Whenever possible, we should avoid using this condition as, usually
(except, for example, at a boundary of inflow from a reservoir of known concentra-
tion), we do not have information concerning solute concentration on the external
side of a boundary.

B. Boundary of Prescribed Solute Flux

When phenomena occurring in the external domain impose a known total flux,
f (2)(x, t), of the considered component normal to a boundary segment, B, at all
points of the latter, regardless of what happens within the considered domain itself,
the condition obtained from (7.5.2) is

(cqr − θDh ·∇c) ·ν = f (2)(x, t) on B. (7.5.4)

Since both c and∇c are involved in (7.5.4), this is aCauchy, or third type boundary
condition. When qr = 0, Eq. (7.5.4) reduces to a Neumann, or second type boundary
condition.

A boundary of special interest is the impervious boundary. For such a boundary,
with f (2)(x, t) = 0, and qr ·n = 0, Eq. (7.5.4) reduces to

(Dh ·∇c)·ν = 0 on B. (7.5.5)

This is a particular case of a Neumann boundary condition.
For an impervious boundary surface that coincideswith the vertical xz-plane, with

Vy = 0, Vx , Vz �= 0, νy = 1, νx , νy = 0, Dhyx = Dhyz = 0, Dhyy = aT V + D∗, the
condition (7.5.5), of zero total flux normal to an impervious boundary, reduces to

(
aT V + D∗) ∂c

∂y
= 0, or

∂c

∂y
= 0.

C. Boundary Between Two Porous Media

Along such a boundary, we allow for the possible existence of discontinuities in all
solid matrix characteristics, e.g., φ, ki j , ai jk�, etc. Neither the concentration nor the
flux are a-priori known on the boundary. Actually, each side serves as an external
side to the other one.

Two conditions must be satisfied on such a boundary. The first is that of no-jump
in component concentration, expressed in the form:

c
∣∣
1(x, t) = c

∣∣
2(x, t) on B. (7.5.6)
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The second condition is that of continuity in the normal component of the total
flux of the considered component,

(cqr − θDh ·∇c)
∣∣
1·ν = (cqr − θDh ·∇c)

∣∣
2·ν. (7.5.7)

Because qr |1·ν = qr |2·ν, and c|1 = c|2, the last equation reduces to

(θDh ·∇c)
∣∣
1·ν = (θDh ·∇c)

∣∣
2·ν. (7.5.8)

The reason for requiring two conditions on such a boundary, rather than one,
stems from the observation that the partial differential (balance) equations cannot
be solved for domains with discontinuities in the coefficients. To overcome this
difficulty, we divide the problem domain along the surfaces of discontinuity into sub-
domains in each of which no such discontinuity exists. We write a complete model
for each of these sub-domain. Such a model requires that conditions be specified
also along the surface of discontinuity (which now serves as a boundary to both
sub-domains). We need one condition for each side (= sub-domain), for a total of
two conditions. Because each of these conditions involves the variables for the two
adjacent sub-domains, the two models are coupled, and have, therefore, to be solved
simultaneously.

D. Boundary with a Body of Liquid

We consider the boundary between a porous medium domain (pm) and a body
of fluid ( f b), assumed to be a ‘well-mixed’ domain, that is, at a known uniform
concentration of the considered component. A large lake and a river may serve as
examples (Fig. 7.7). For the gaseous phase in the soil, the atmospheric air above
ground surface may serve as another example.

To simplify the discussion, we consider a saturated porous medium domain in
hydraulic contact with a ‘well-mixed’ body of fluid which contains the considered
component at a known uniform concentration, cH . The boundary is assumed station-
ary.

The condition of no-jump in the normal component of the total flux of the con-
sidered component, takes the form of:

(cHV)
∣∣
f b·ν − (

cqr + φJγ + φJ∗γ
) ∣∣

pm ·ν = 0, (7.5.9)

where φ
∣∣
f b = 1. Equation (7.5.9) expresses the continuity in the mass flux across

the boundary, of the component in the water, by advection, diffusion and dispersion.
Since the fluid body is assumed to be at a uniform concentration, only advection takes
place in it. The use of qr stems from the assumption that the boundary is material
with respect to the solid matrix. When Vs = 0, we have qr ≡ q.

Expressing the dispersive and diffusive fluxes in terms of ∇c, we may rewrite
(7.5.9) in the form:

(cHV)
∣∣
f b

·ν − (cqr − φDγ
h ·∇c)

∣∣
pm

·ν = 0. (7.5.10)
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Fig. 7.7 A well-mixed zone

Consequently, whenV
∣∣
f b·ν = qr ·ν = 0, i.e., no advection takes place across the

boundary, the dispersive flux, J∗γ , vanishes, and (7.5.10) reduces to

(D∗γ ·∇c)
∣∣
pm ·ν = 0. (7.5.11)

This implies that no transport of mass by molecular diffusion takes place across
such a boundary, even when c

∣∣
pm �= cH . This conclusion is unacceptable. Under

the physical conditions of this example, we should expect transport by molecular
diffusion of the component to take place between the porous medium domain and
the adjacent fluid body, as this remains the only possible mode of transport.

The error in the conclusion expressed by (7.5.11) stems from the assumption that
a ‘well-mixed’ zone exists on the external side of the boundary. This assumption, in
the absence of advection, combined with the sharp boundary approximation, must
yield no mass flux by diffusion across it. In order to reinstate the diffusive-dispersive
flux, which takes place in reality, we introduce the concept of a transition zone,
boundary layer, or buffer zone, at the boundary (Fig. 7.7). We may associate the
width of this transition zone, �, with the magnitude of an REV, assuming that the
abrupt boundary passes through its midpoint. Instead of the boundary between the
body of fluid and the porous medium, we now consider the boundary between the
latter and the transition zone.Assuming that the sumof dispersive and diffusive fluxes
through the transition zone is proportional to the average concentration gradient, and
that the latter is proportional to the concentration difference cH − c, we express the
condition of continuity of flux at the boundary by
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cHV
∣∣
f b·ν + α�(cH − c) = (cqr − φDγ

h ·∇c)
∣∣
pm ·ν, (7.5.12)

whereα� is a transfer coefficient, such that α�(cH − c) represents the sumof diffusive
and dispersive fluxes through the transition zone.

Since, V
∣∣
f b·ν = qr ·ν, Eq. (7.5.12) reduces to

(cH − c
∣∣
pm)(qr ·ν + α�) = −φDγ

h ·∇c
∣∣
pm ·ν, (7.5.13)

which now serves as the boundary condition.
In the absence of advection, or when |qr ·ν| 	 α�, Eq. (7.5.13) reduces to

α�(cH − c
∣∣
pm) = −φD∗γ ·∇c

∣∣
pm ·ν. (7.5.14)

We note that if we accept (7.5.13), then cH
∣∣
f b

�= c
∣∣
pm

on the boundary, i.e., a jump
in concentration takes place on the boundary. This is a consequence of introducing
the transition zone and the ‘well-mixed zone’ approximation.

When |qr ·ν| 
 α�, Eq. (7.5.13) reduces to

(cH − c
∣∣
pm)qr ·ν = −φDγ

h ·∇c
∣∣
pm ·ν, (7.5.15)

which is a boundary condition of the third type, identical to (7.5.10), yet is based on
different reasoning.

It is interesting to note here the comment concerning discharge averaged concen-
tration presented at the end of Sect. 7.5.2A.

E. Phreatic Surface

We recall that the phreatic surface is defined as the surface at every point of which the
water pressure is atmospheric. It, thus, serves as the upper boundary of the saturated
domain. At the same time, it serves also as the lower boundary of the unsaturated
one.

The condition for fluid mass transport at a phreatic surface is presented in
Sect. 5.2.4E. Here we consider the In all cases, the boundary conditions are derived
from the requirement of no-jump in the solute’s’s flux normal to the phreatic surface.

As has already been stated in Sect. 5.2.4E, the main difficulty associated with the
phreatic surface as a boundary is that its shape and position are not known a-priori. In
fact, in flow problems, they are the objective of modeling. The shape of the phreatic
surface can be described by the equation F(x, t) = 0. However, since the pressure
is atmospheric everywhere on this surface, or h(x, t) = z, i.e., the piezometric head
is equal to the elevation, the equation that describes the shape of the phreatic surface
may be written also (in cartesian coordinates) in the form:

F = F(x, t) = h(x, y, z, t) − z = 0. (7.5.16)

http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
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When this surface moves at a velocity u, we have

ν = ∇F

|∇F | , ∇F = ∇(h − z),
dF

dt
≡ ∂F

∂t
+ u·∇F = 0,

∂F

∂t
= ∂h

∂t
= −u·ν|∇F |, (7.5.17)

where ν denotes the unit vector normal to the phreatic surface.

CASE A: The phreatic surface is an upper boundary of the saturated zone. As is
usually done in groundwater hydrology, we neglect the details of the movement of
water through the unsaturated zone, and consider only some mean value of natural
replenishment, N, infiltrating at ground surface, percolating through the unsaturated
zone, and reaching the phreatic surface. Let the concentration of the considered
component in the infiltrating water, as it approaches the phreatic surface, be denoted
by cN . We assume that (here and elsewhere in this section), in spite of concentration
differences, the mass density of the water remains constant.

In the unsaturated zone, just above the phreatic surface, the moisture content is
assumed to be equal to θ = θwr = constant. The component’s total flux, relative to the
moving phreatic surface, is given by cN (N − θwru) ·ν. The total flux in the saturated
zone, relative to the moving phreatic surface, is expressed by φ [c(V − u) − Dh ·∇c].
Thus, the no-jump condition can be expressed as:

{φ [c(V − u) − Dh ·∇c]} ·ν = cN(N − θwru)·ν.

When combined with the flow boundary condition (5.2.26), we obtain

(c − cN)

(
N·∇F + θwr

∂F

∂t

)
− φ(Dh ·∇c)

∣∣
sat

·∇F = 0. (7.5.18)

Wemay insert F = h(x, y, z, t) − z in the last equation. This is a third type boundary
condition for c. We note that [[ c ]]sat,unsat ≡ c − cN �= 0. Thus, the unsaturated zone
just above the phreatic surface acts as a ‘well-mixed zone’ in the sense discussed
earlier. However, we have simplified the expression for the flow through the transition
zone by neglecting the dispersive-diffusive flux through it.

CASE B: The phreatic surface is the lower boundary of the unsaturated zone. We
shall now assume that the saturated zone is a ‘well-mixed zone’ at concentration c

∣∣
sat
.

The no-jump condition takes the form:

φ [(V − u)c]
∣∣
sat

·ν + α�(c
∣∣
sat

− c) = θ [(V − u)c − Dh ·∇c] ·ν, (7.5.19)

or, with φ ≈ θ at the phreatic surface,

[
(V − u) + α�

] (
c
∣∣
sat

− c
) ·ν = − (Dh ·∇c) ·ν. (7.5.20)

http://dx.doi.org/10.1007/978-3-319-72826-1_5


544 7 Modeling Transport of Chemical Species

In this expression, we have to know, or assume, c
∣∣
sat
. We can always use (7.5.17) to

express ν and u·ν in terms of h.

F. Seepage Face

The seepage face is discussed in Sect. 5.2.4F. Here, the water leaving the porous
medium domain through a seepage face carries the dissolved component.

Because there is no porous medium on the external side of this boundary, the
condition of continuity of flux of a component takes the form:

(φcV − φDh ·∇c)
∣∣
pm

·n = (cV)
∣∣
env

·ν, (7.5.21)

where symbols ‘pm’ and ‘env’ denote the porous medium domain and its external
environment, respectively, and we have assumed a stationary seepage face, u ≡ 0.
With

c
∣∣
pm

= c
∣∣
env

, (φV)
∣∣
pm

·ν = V
∣∣
env

·ν,

i.e., assuming neither volatilization, nor precipitation, (7.5.21) reduces to the bound-
ary condition

(Dh ·∇c)
∣∣
pm

·ν = 0. (7.5.22)

This is a boundary condition of the second type.

G. Discharge Dependent Boundary Condition

Sometimes, in a case of solute transport through a geological formation, a boundary
is chosen arbitrarily, to delineate the investigated domain of interest. An outflow
boundary is another case in which a solute leaves the domain, but we do not know,
a-prior, at what concentration or flux. Especially, we do not know the concentration
gradient that controls the dispersive and the diffusive fluxes. On such boundary,
neither the concentration nor its flux are a-priori known. What condition should be
specified on such boundary?

Information for such boundary can be obtained by collecting the fluid emerg-
ing through a boundary segment, determining the time and space dependent solute
concentration as the condition along such boundary. This concentration is often
referred to as ‘discharge dependent concentration boundary’. However, we really
cannot assign a boundary condition to such domain. One possible approximation is
to assume that this domain is sufficiently far away from where the real ‘action’ is
so that the initial condition remains unchanged (we often use the term “clamped”)
along such boundary. It is then a boundary of the first kind.

There exist certain numerical approximate (mostly, iterative) techniques for this
kind of boundary, but these are beyond the scope of this book.

http://dx.doi.org/10.1007/978-3-319-72826-1_5


7.5 Complete Solute Transport Model 545

7.5.3 Initial Condition

Initial conditions state the spatial distribution of the considered state variable, here
the concentration of the considered component, at some initial time, usually taken
as t = 0. We require that the solution c(x, t) satisfies

c(x, 0) = f (3)(x), (7.5.23)

where f (3) is a known function.

7.5.4 A Comment on Primary Variables Switching

The subject of degrees of freedom was discussed in Sect. 3.9. We have shown there
that Gibbs phase rule (3.9.2), repeated here for convenience:

NF = NC − NP + 2, (7.5.24)

is used for determining the number of thermodynamic degrees of freedom (NF) for
a problem with NP phases and NC components.

In Sect. 6.4.1 we have mentioned the need for primary variables switching. In
Sect. 2.3.1 we have discussed the number of degrees of freedom for NP fluid phases
and NC components. Let us now consider the case of 2 phases and two components.

7.5.5 Complete Model for a Single Solute

Themathematical model of a multi-phase flow problem, combined with the transport
of a single chemical component, possibly with first order decay, adsorption, and
volatilization, consists of the following parts:

• A mathematical description of the configuration of the surface that bounds the
porous medium problem domain.

• A list of the dependent variables. These are the concentrations, say, cγ
α, or the mole

fractions, Xγ
α, of the considered γ-component within all α-fluid phases present in

the system. In the case of adsorption, Fγ
α→s is included in the list of state variables.

For the flow model, depending on the number of fluid phases that are in motion,
we add such variables as piezometric heads, pressures, saturations, etc.

• Flux equations for the mass of the considered fluid phases. Darcy’s law is usually
employed.

• Partial differential (≡ mass balance) equations for the relevant fluid phases.
• Mass andmomentumbalance equations for the solid,when the latter is deformable.

http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_2
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• Partial differential equations that describe mass balances of the considered
chemical species within all fluid phases present in the system and (in the case
of adsorption) on the solid. These balance equations may contain source terms
that correspond to decay, and chemical reactions, and terms that express phase
transfers, e.g., due to adsorption, and volatilization of the solutes.

• Dispersive, and diffusive flux equations for the mass of the considered species.
• Constitutive equations for the fluid phases, and for the solid (in the case of a
deformable solid). These include also thermodynamic relationships that describe
the partitioning of the species between adjacent phases under equilibrium condi-
tions, or transfer functions for non-equilibrium transfers.

• Expressions for the various external sources and sinks for the mass of the consid-
ered fluid phases and the considered species.

• In the case of reacting species, we’ll need all the relevant chemical reactions and
various related coefficients.

• Initial conditions for each of the relevant state variables.
• Boundary conditions for each of the relevant extensive quantities—mass of fluid
phases, and of the considered species.

• Numerical values, or functional relationships for all the coefficients that appear in
the various balance equations and constitutive relations included in the model.

The content of a problem statement, especially the separation into a flow and
contaminant transport sub-problems, has been introduced in a rather simplified form
in order to emphasize the structure of amathematicalmodel of contaminant transport,
and the roles played by the various types of equations (balance, flux, constitutive,
and definitions). Based on the standard content of a model, as presented above, we
usually end up with a large number of variables that describe the state of the system.
To obtain a closed set of equations, within the framework of awell posed problem, we
need an equal number of equations. However, following the discussion on primary
variables (or degrees of freedom), presented in Sect. 3.9, the next step is to determine
the number of primary variables (or degrees of freedom) of the problem. The number
of partial differential equations of balance that has to be solved is then equal to the
number of the primary variables. All other variables are obtained from the known
values of the selected primary variables, using the remaining equations.

Actually, when we assume that interphase mass transfers take place under equi-
librium conditions, a single mass balance equation can be written for the component
in the porous medium as a whole. The single variable is, then, the concentration of
the component within some fluid phase in the porous medium. The boundary condi-
tion for such an equation is on the concentration or total mass flux of the component
in the porous medium as a whole. Similarly, initial conditions are written for the
concentration or total mass of the component in all the phases present in the system.

The statement of the transport model for a particular site must also include infor-
mation on all relevant porous medium parameters, such as porosity, permeability and
dispersivity. Information is also required concerning the coefficients that appear in
the constitutive relations, e.g., decay and growth coefficients, partitioning coefficients
and reaction rate coefficients.

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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7.5.6 Multiple Reacting-Species in Multiple Phases

Consider the case of two or three fluid phases that together occupy the void space.
Phase changes may occur. The phases involve a number of chemical species with
the possibility of chemical reactions within the phases and interphase transfers. The
flow and transport may be under non-isothermal conditions with T denoting the
temperature which is common to all phases at a point. All these cases have been
presented and discussed throughout the book.

With Xγ
α denoting the molar concentrations of the γ-species in the α-phase, we

have the following constraints on the problem variables:

NC∑

γ=1

Xγ
α = 1, NP = 2 or 3. (7.5.25)

For the saturations, we write the constraint

NP∑

α=1

Sα = 1, NP = 2 or 3. (7.5.26)

Under the assumption of chemical equilibrium (Sect. 2.1) among the phases,
When non-isothermal conditions are stipulated, we need to include in the model

also the energy balance equation, say (8.4.15), and, obviously, provide appropriate
initial and boundary conditions for that equation.

Actually, we have introduced this subsection only for the sake of completeness,
as all the information (balance equations, constitutive equations, etc.) required for
the construction of well posed models of “reactive transport”, the term often used
for the transport of multiple reacting chemical species in multiple fluid phases, has
been presented and discussed throughout the book:

• Multi-phase flow is presented and discussed in Chap.6.
• Multiple interacting chemical species, including chemical reactions and interphase
mass transfer are discussed in the current chapter.

• Non-isothermal conditions are considered in Chap. 8.
• Flow and transport in the void-space of deformable porous media are considered
in Chap.9.

• In Appendix A, we have presented models of chemical reactors encountered in the
Chemical Industry, in which phenomena of interphasemass transfers and chemical
reactions occur in multi-phase flow under non-isothermal conditions.

In view of all these presentation, there is no need at this point to elaborate here
on modeling chemical reactions in multi-phase flow.

http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_8
http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_8
http://dx.doi.org/10.1007/978-3-319-72826-1_9
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7.6 Stochastic Modeling and CTRW

7.6.1 Comments on the Stochastic Approach

In Sect. 1.1.6, we discussed the conditions that have to be satisfied in order to facilitate
the treatment of a geological formation as a continuum. Here, ’treatment’ means the
setting up of a well-posed mathematical (continuum) model of flow and transport in
a specified porous medium domain and solving it in order to predict the domain’s
future behavior in response to imposed excitations in the form of external sources and
boundary conditions.However,we have emphasized thatmost geological formations,
e.g., petroleumreservoirs, groundwater aquifers andgeothermal reservoirs, arehighly
heterogeneous to the extent that an REV, or an RMV cannot be found. The use of
the continuum approach for such formations if often questioned.

In certain cases, heterogeneity of a geological domain manifests itself in the
form of subdomains, or layers, each of which may be homogeneous, or slightly
heterogeneous, so that a solution to the difficulties of high heterogeneity can be found
by dividing the considered domain into sub-domains, each of which is homogeneous,
or only slightly heterogeneous.

In fact, even if an RMV can be found, or assumed to exist, strong heterogeneity
of a geological formation may produce phenomena which do not exist, or have been
neglected as insignificant, in the case of homogeneous, or slightly heterogeneous
formations. In addition, usually, there is not enough information concerning the
spatial variability of the relevant coefficients, because of the high cost of drilling and
data acquisition. Interpolation does not solve the problem, as it leaves a high level of
uncertainty as to the values of the considered coefficients between points at which
actual data are available.

In spite of the lack of sufficient information about coefficients, in the real world,
decisions (based on predicting excitation-response relations) have to be made with
respect to flow and transport in such (highly heterogenous) reservoirs. This led to
efforts to find techniques for copingwith the lack of sufficient information concerning
model coefficients, obviously at the cost of a certain degree of uncertainty in the
predicted values.

We consider phenomena of transport of mass of fluid phases and of dissolved
substances in large, often deep, geological formations. It is obvious that no model
(e.g., of the continuum-type discussed throughout this book) can provide predictions
of flow and transport regimes unless information is available on the spatial distribu-
tions of model coefficients. Unfortunately, in many situations, sufficiently accurate
information on formation coefficients (i.e., ones that appear in these models) cannot
be obtained, due to the lack of sufficiently good monitored information (in terms
of quality and quantity). Under such conditions, most planners and decision-makers
will be satisfied with information on the future transport of an extensive quantity
within an investigated formation provided in the form of a statistical description of
the transport of that quantity. Forecasts may take the form not of the future water
levels, or concentrations, at a considered point, but of the statistics of possible values

http://dx.doi.org/10.1007/978-3-319-72826-1_1
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of such variables at that point. Values of coefficients at a point still should be inter-
preted as representing the behavior of the porous medium in the vicinity of the point,
but there is no need to specify the porous medium domain represented by the point
value. For many decision making purposes, this is sufficient and valuable informa-
tion. The trigger for using such techniques is always insufficient information on
the spatial distribution of formation coefficients, and the usefulness of a statistical
description of model predictions.

Stochastic modeling is an important branch of modeling transport phenomena,
especially in heterogeneous geological formations, in which statistical description
of model coefficients leads to statistics of predicted values of state variables. There
is no doubt that this is a very important tool for dealing with problems of flow and
transport in highly heterogenous domains, and this means practically in all large
and deep geological formations. One such technique, the Monte Carlo simulation
technique, has been presented in Sect. 5.4. Stochasticmodeling is beyond the scope of
this book. The reader should consult the literature, e.g., Gelhar (1986), the excellent
text by Dagan (1989), and Dagan and Neuman, eds. (1997).

7.6.2 Statistical Approaches and the CTRW Method

The usual dispersion-based solute transport models fail to describe what happens
in a geological formation, especially, but not only, in large scale cases. Significant
deviations of field observations of solute concentration from model predicted values
are observed inmost cases. This is usually attributed to the high heterogeneity of geo-
logical formations. The commonly accepted conclusion is that the usually employed
dispersion model, in which the dispersive flux is Fickian-type law and a dispersiv-
ity that depends on the size of the considered field, is inappropriate, especially in
the case of solute plumes. The CTRW (= Continuous Time Random Walk) method
presented below is an attempt to overcome some of the above difficulties.

In Sect. 7.2.4, we have upscaled the solute transport model, from the macroscopic
level the megascopic one, by the same averaging approach as used for the upscaling
from the microscopic to the macroscopic levels. We have assumed that the disper-
sive flux, introduced by the averaging procedure, is Fickian, i.e., proportional to the
concentration gradient. In recent years, some researchers of dispersive flux, on the
basis of field observations of solute plume propagation, reached the conclusion that
under field conditions (and some concluded that even under laboratory ones) the
dispersive flux is often non-Fickian. They related this conclusion mainly to the het-
erogeneity of the porous medium domain, which, as emphasized earlier, is an inherent
characteristic of natural domains, especially when the latter are large. The heteroge-
nous nature of a domain introduces phenomena that have not been represented in
the discussion on macroscopic level modeling. Furthermore, they show that for the
Fickian dispersive flux to be valid, the solute migration timemust be sufficiently long
before the solute mass balance equation (or the advection-dispersion equation, as
it is sometimes referred to) becomes applicable. According to Levy and Berkowitz

http://dx.doi.org/10.1007/978-3-319-72826-1_5
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(2003) and Cortis et al. (2004), the above observation is valid even in relatively
homogeneous geological formations, say, with respect to porosity and permeabil-
ity. Actually these authors concluded that non-Fickian behavior is exhibited even in
rather short laboratory columns (e.g., demonstrated in the form of long time tails of
solute concentration). Their analysis showed that the motion and spreading of solute
plumes are characterized by distinct temporal scaling, i.e., the time dependence of
the spatial moments does not correspond to the normal (or Gaussian) distribution
that characterizes Fickian-type transport.

We recall that porous medium coefficients, like porosity and permeability, are
introduced in the microscopic-to-macroscopic averaging process, to replace the
(unavailable) information concerning the geometry of (microscopic) interphase
boundaries. In the passage to higher levels of continuum, the same kind of coefficients
were used, e.g., permeability and porosity, adjusted to the higher scale, presumably
accounting also for the field-scale heterogeneity. Is that the right way to account for
real formation heterogeneity?

Based on the above observations,

• that the dispersive flux cannot be described by a Fickian type law,
• that geological domains are heterogeneous, often highly so, characterized by a
multi-scale heterogeneity, i.e., depending on the size of the advancing plume, and

• that the parameters that affect solute spreading are time dependent,

some researchers proposed approaches other than stating and solving the solute’s
mass balance PDE also in highly heterogeneous porous media with scale affected
coefficients. These approaches include the stochastic modeling introduced above.

The basic idea underlying the statistical approaches to solute transport in porous
media is that it is impossible to provide an exact mathematical description of the
motion of a single solute particle of a species dissolved in amovingfluid, a description
that is required for any forecast of spreading, or dispersion, of a cloud of such
particles. The path of a single species particle, say an ion or a molecule, should not be
identified with that of a liquid particle, which is an instantaneous ensemble of a large
number of molecules the identity of which changes as a result of molecular diffusion.
The path of a species particlemay be visualized as the vectorial result of twomotions:
one along pathlines (or streamlines in steady state) of liquid particles, and another
one which involves the passage from one pathline to an adjacent one by molecular
diffusion. The nature of both motions, the first determined by the intricate internal
geometry of the void space, and the second by the random character of molecular
diffusion, prevents any deterministic prediction of paths of solute particles.

A. Some Early Statistical Approaches to Dispersion

state. Instead of considering a single state of the system, we consider many such
states, each of which is likely to occur. We refer to a all of them together as an
ensemble of states. This ensemble contains all the states that cannot be distinguished
macroscopically because we are ignorant as to the microscopic details of the consid-
ered system. Then, the expected value of an observable quantity is the average of that
quantity over all states of the ensemble. For these expectation values, we try to deduce
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predictions from what possible at any single given time. Then ensemble average and
time average variables may be interchanged. This is the ergodic hypothesis.

Around 1950, at the early stages of research on ‘miscible displacement’ (later
called ‘solute dispersion’), the movement of a solute was envisaged as the random
movement of solute mass particles. The randomness was envisaged as a consequence
of the randomstructure of the void space.Bear (1972, pp. 587–603) summarizes some
of these statistical models. The underlying postulate of the statistical approach is that
although it is impossible to predict the exact path of an individual solute particle,
one may employ the rules of probability theory to predict the spatial distribution, at
any later time, of a cloud of many solute particles that (1) were, initially, at a close
proximity, and (2) move under the same average conditions. Obviously, the flow
itself obeys the laws of physics, and our reference to ‘random motion’, or ‘random
walk’, is a way to express our ignorance as to the motion’s details. The random
motion of an anonymous particle is assumed to represent the motion of an ensemble
of many such particles (see any book on stochastic processes, e.g., Todorovic 1992).
The probability distribution of the location of a single particle is interpreted as rep-
resenting the spatial distribution of the concentration of a cloud of tracer particles
originating from the neighborhood of a certain point at a certain time, and moving
under the same average flow conditions. Rather than investigate a specific porous
medium, Scheidegger (1958, and a review in Bear 1972, pp. 590–592) suggested to
investigate an ensemble of porous media, assumed to be macroscopically identical,
i.e., having identical macroscopic properties. This analysis led to the description of
particle spreading as a random walk. Scheidegger’s work was based on the following
assumptions:

(a) The homogeneous isotropic porous medium constitutes an ensemble of a large
number of systems, or samples, having identical macroscopic characteristics.

(b) Laminar flow of a homogeneous fluid, regarded as a continuum. Each of the
ensemble particles has its own path,

(c) The motion of a particle through a specific porous medium sample is made up
of a sequence of straight elementary displacements of equal duration.

(d) The direction and length of each displacement take on random values, with no
correlation among displacements.

The above are actually the characteristics of ‘random walk’.
Under these conditions, a sufficiently long path of a particle through a specific sys-

tem incorporates all the conditions encountered in the ensemble of systems. Hence,
we may apply the ergodic property, which enables us to interpret a temporal average
along a single path as a spatial average over a large ensemble of paths.

The one-dimensional random walk model is, probably, the simplest statistical
model that describes dispersion. In this model, a solute particle performs displace-
ments along a straight line in the form of a series of steps taken either forward, say to
the right, or backward, i.e., to the left, with equal probability of 50%. After N such
steps, the particle may be at any of the points:

−N ,−N + 1, . . . − 1, 0,+1, . . . , N − 1, N
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Assuming that each step is equally likely to be taken in either direction, indepen-
dent of the history of all proceeding displacements, the probability of any sequence
of N steps is

(
1
2

)N
. Hence, the probability P(M, N ) that a particle will arrive at point

M after N displacements is:

(
1
2

)N ×
(
the number of distinct sequences which
will lead to a point M after N steps.

)
.

In order to arrive at M after N steps, (N + M)/2 steps must be taken in the
positive direction, while (N − M)/2 steps must be taken in the negative one. Hence,
the total number of distinct sequences is:

P(M, N ) = N !
[(M + N )/2]![(N − M)/2]!

1
2
N ,

which is Bernoulli’s distribution. The root mean square displacement is N 1/2. As
N → ∞, and M 	 N , we obtain:

P(M, N ) = (2πN )1/2 exp(−M2/2N ).

With � denoting the length of a step, and x = M�. The probability element
P(x)�x that the particle is likely to be in the interval (x, x + �x) after N dis-
placements, with �x > � is:

P(x, N )�x = P(M, N )·(�x/2�),

or:

P(x, N ) = 1

2πN�2
exp

( −x2

2N�2

)
. (7.6.1)

If a particle undergoes n displacements of length l per unit time, i.e., u = n�, the
probability that it will find itself between x and x + �x at time t is:

P(x, t)�x = 1

2
√

πDt
exp

(−x2

4Dt

)
�x, D = n�2 = l

2
u. (7.6.2)

When, in the random walk described above, the duration of a time step of length
� is �t , and the probability of the particle taking a step in the +x-direction is p,
with q = 1 − p denoting the probability that the particle will take a step in the −x
direction, we obtain:

P(x, t + �t) = pP|(x−�x,t) + q�2|(x+�x,t).

Developing in a Taylor series and (1) neglecting terms beyond the second order,
(2) passing to the limit with �x → 0, �t → 0, but such that the mean and the
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variance of the displacement will remain finite for all values of t, and (3) taking p
and q of O(�x), we obtain for P:

∂P

∂t
= D

∂2P

∂x2
− V

∂P

∂x
, (7.6.3)

inwhich D = (�x)2/2�t ,V = 2(p − q)D/�x . This is the partial differential equa-
tion that describes random walk after a large number of elementary displacements.
Its elementary solution is:

P(x, t) = 1√
4πDt

exp
−(x − V t)2

4Dt
, (7.6.4)

which is the same as (7.6.2).
Scheidegger (1954, 1958) suggested that the application of the statistical approach

requires:

(a) An assumption about the statistical (average) properties of the porous medium
(= the ensemble).

(b) An assumption on the micro-dynamics of the flow, i.e., on the relationships
between the forces, the liquid properties, and the resulting velocity during each
small time step; in general, the flow is assumed laminar.

(c) A choice of a type of statistics to be employed, i.e., the probability of occurrence
of events during small time intervals within the chosen ensemble. This may
take the form of correlation functions between velocities at different points or
different times, or joint-probability densities of the local velocity components
of the particle as functions of time and space, or a probability of an elementary
particle displacement. In the case of dispersion considered here, the selected
correlation function determines the type of dispersion equation derived.

The statistical approaches are based on the movement of (here solute) particles.
As the total particle travel time becomes much larger than the time interval during
which its successive (local) velocities are still correlated, the total displacement may
be considered as a sum of a large number of elementary displacements which are
statistically independent. Then, the probability distribution of the particle’s total
displacement tends to the normal (Gauss) distribution. This observation is based
on the central limit theorem of probability, which states that no matter what the
probability distribution of each elementary displacement (or of the velocity during
each elementary displacement) is, as the number of steps increases, the probability
distribution of the total displacement tends to normal. In viewof the ergodic principle,
this distribution also represents the spatial distribution of displacements of a cloud
of initially close particles.

In order to express these concepts in amathematical form, let V̄ denote the average
velocity vector of uniform flow of a homogeneous fluid through a homogeneous
porous medium of infinite areal extent. At any instant t , the velocity component
V̄i of a marked fluid (i.e., solute) particle is expressed by Vi (t) = V̄i + V̂i (t), with
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V̂i (t), 1 = 1, 2, 3,, denoting the (random) deviation from the average. Scheidegger
suggests the following development:

The location of a particle that starts at the origin at t = 0, reaching x̂(t) at time t :

x̂i (t) = xi (t) − x̄i (t), i = 1, 2, 3. (7.6.5)

A particle starting from the origin at t = 0, will reach a point x̂i (t) at time t , such
that:

dx̂i (t) = V̂i (t)dt, x̂i (t) =
∫ t

0
V̂i (θ)dθ. (7.6.6)

The spread of the particles’ possible displacements around its average displace-
ment, x̄i (t), is described by thematrix of covariances (= correlation moments) x̂i x̂ j .
Thus, with f (xi , x j ) denoting the joint probability function of xi and x j , we have:

Cov(xi , x j ) = x̂i x̂ j =
∫ +∞

−∞

∫ +∞

−∞
(xi − x̄i )(x j − x̄ j ) f (xi , x j )dxidx j

= xi x j − x̄i x̄ j , f (xi , x j ) = correlation function. (7.6.7)

The covariances become the variances σ2 of xi :

μi i = σ2(xi ) = Var(xi ) = (x̂i )2, (7.6.8)

with σ denoting the standard deviation of xi .
The two components Vi (t) and Vj (t) of V(t) in the i and j directions, are two

stationary random functions of time. This means that the correlation coefficient,
r(t, t ′) is independent of t, t ′, but depends only on the interval (t − t ′) between
them:

ri j (t, t
′) = V̂i (t)Vj (t ′)

σ[Vi (t)]σ[Vj (t ′)] , (no summation), (7.6.9)

and we require that the average, the variance and the other moments remain constant
in time, i.e., ri j (t, t ′) = ri j (t, t + τ ) = ri j (τ ), τ = t ′ − t .Weconsider the derivative:

d

dt
[x̂i (t)x̂ j (t)] = dx̂i (t)

dt
x̂ j (t) + x̂i (t)

dx̂ j (t)

dt

=
∫ t

0
V̂i (t)V̂ j (θ)dθ +

∫ t

0
V̂i (θ)V̂ j (t)dθ. (7.6.10)

By averaging, we obtain:

d

dt
[x̂i (t)x̂ j (t)] = 2ri j (θ)V̂i (t)V̂ j (t)

∫ t

0
ri j (τ )dτ , (7.6.11)
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in which ri j (τ ) is the coefficient of correlation between the velocity component Vi (t)
and Vi (t + τ ). From the above equation, we obtain:

x̂i (t)x̂ j (t) = 2ri j (0)V̂i (t)V̂ j (t)
∫ t

0

∫ θ

0
ri j (τ )dτdθ

= 2ri j (0)V̂i (t)V̂ j (t)
∫ t

0
(t − τ )ri j (τ )dτ . (7.6.12)

Because Vi (t) and Vj (t) are stationary random functions, V̂i (t)V̂ j (t) is a constant,
independent of t . If to is the time duringwhich velocities are still effectively correlated
(i.e., correlation time), then:

to =
∫ ∞

0
ri j (τ )dτ . (7.6.13)

Scheidegger (1954, 1958) investigated two cases:

• t 
 to. then (7.6.12) reduces to

x̂i (t)x̂ j (t) ≈ 2ri j (0)V̂i (t)V̂ j (t)tot, (7.6.14)

which can be written as:

Di j = x̂i x̂ j

2t
= ri j (0)V̂i V̂ j to. (7.6.15)

For i = j , ri j (0) = 1, and:

Dii = x̂2i
2t

= V̂ 2
i to; σ2(xi ) = 2Dii t. (7.6.16)

• t 	 to. Scheidegger (1960) obtains:

x̂i x̂ j = ri j (0)V̂i V̂ j t
2, Di j = x̂i x̂ j

2t
= 1

2
ri j (0)V̂i V̂ j t,

Dii = V̂ 2
i

2t
= V̂ 2

i

2
t, σ2(xi ) = V̂ 2

i t
2, (7.6.17)

which expresses the fact that for very short time intervals, there is no random process
and every particle progresses at its velocity. If each elementary displacement, dx̂i (t),
is a random variable, the total deviation of the particle’s position from its average
position tends to a normal distribution only if t 
 to. This is a consequence of the
central limit theorem (Chandrasekhar 1943, see Bear 1972, p. 594):
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�(x1, x2, x3, t) = 1

(2π)3/2|μ|1/2 exp
[
−1

2

μ
′
i j

|μ| (xi − xi )(x j − x j )

]
, (7.6.18)

in which |μ| is the determinant of the correlation matrix [μi j ], i, j = 1, . . . , n, and
the summation convention is employed. The symbol � denotes the relative solute
mass concentration in percent of total mass per unit volume of porous medium at
the considered point. The solute concentration, c is related to � by c = �m/φ. Note
that �(x1, x2, x3, t) = �1(x1, t)�2(x2, t)�3(x3, t), where �i (xi , t), i = 1, 2, 3, is
a normal density function of a single random variable xi at time t3. Thus, in the
one-dimensional case,

�x (x, t) = 1

(2π)1/2σ
exp

[
− (x − x)2

2σ2

]
, σ = (2Dt)1/2, D ≡ Dii . (7.6.19)

The above results do not show the relationships between σi , or μi j , and statisti-
cally averaged medium and flow parameters. This information may be obtained by
choosing the microdynamics of the flow within each elementary time interval. How-
ever, the above discussion explains why the solute distribution predicted by solving
the macroscopic solute mass balance equation for the spreading of particles from a
point source takes the form of a normal (Gaussian) distribution, with σ2 = √

2Dt .
Under these conditions, Scheidegger’s analysis for uniformflow lead to the normal

(Gaussian) distribution after a sufficiently large number of steps:

P(x, y, z, t) = 1

4πDt
exp

(
− (x − x̄)2 + (y − ȳ)2 + (z − z̄)2

4Dt

)
,

in which D = σ2/2t = σ2/2�t . x̄ = Vx t ,ȳ = Vyt , z̄ = Vzt , with V denoting the
uniform velocity. In view of the ergodic property, the above equation describes the
spatial distribution at time t of a large number of particles that started (t = 0) from
the vicinity of the same origin, and travelled along independent paths under similar
statistical conditions. Such an ensemble of particles is normally distributed around
its center, which travels at the average flow velocity.

Chandrasekhar (1943; see Bear 1972, p. 594) presented a discussion on the gen-
eral, three-dimensional randomwalk, usingMarkov’smethod.His analysis of random
displacements in which the particles undergo, on the average, n̄ displacements per
unit time, n = n̄t (r1, r2, . . .), led to the probability distribution of the particles’ loca-
tions, after n displacements, n = n̄t , we define the average velocity of the particle
by Vx = n̄ x̄ = nx̄/t = X̄/t and similar expressions for y and z. Then, in the form
of the normal distribution:

W (R)dR = 1

(2π)3/2σXσYσZ

exp

{
− (X − X̄)2

2σ2
X

− (Y − Ȳ )2

2σ2
Y

− (Z − Z̄)2

2σ2
Z

}
,

(7.6.20)
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in which X = ∑n
1 xi , X̄ = (1/n)

∑n
1 xi , etc. Eventually, his analysis led to:

W (R, t)dR

= dXdYdZ

(4πt)3/2(D11D22D33)1/2
exp

{
− (X − Vx t)2

4D11t
− (Y − Vyt)2

4D22t
− (Z − Vzt)2

4D33t

}
,

(7.6.21)

in which D11 = n X̄2/2t = σ2
X/2t , etc. The above equation is an elementary solution

of the PDE:
∂W

∂t
= Dik

∂2W

∂Xi ∂Xk
− Vi

∂W

∂Xi
, (7.6.22)

which is nothing but a simplified form of the dispersion equation (called ADE):

∂c

∂t
= D

∂2c

∂x2
− V

∂c

∂x
, (7.6.23)

with D denoting the coefficient of dispersion.
Dankwerts (1953) alsomade use of the randomwalk approach.However, he added

the assumption of residence time of an elementary step, i.e., the time during which a
fluid particle passes through an elementary channel, or through an elementary length
of the medium. In his random residence time model, the flow takes place through a
sequence of cells in which complete mixing takes place. Josselin and de Jong (1958)
was probably the first to express, in an analytical way, the fact that the longitudinal
dispersion is larger than the transversal one. In earlier random walk models, each
unit step is characterized by the lack of relationship among displacements and with
respect to the main flow direction. Also, all steps had the same duration. In de Jong’s
work, the residence time of a particle in a channel depends on the direction of the
channel with respect to that of the uniform (averaged) fluid velocity. All channels
have the same length, but the velocity in them varies with their direction. This leads
to a random walk in which each particle undergoes a different number of elementary
displacements in a given time interval. A similar analysis was presented also by
Saffman (1959, 1960).

It is interesting to note that as the total travel time of a solute particle becomes
much larger than the time interval during which its successive (local) velocities
are still correlated, the total displacement may be considered as a sum of a large
number of elementary displacements which are statistically independent of each
other. Then, the probability distribution of the particle’s total displacement tends
to the normal (Gauss) distribution. This is based on the central limit theorem of
probability, which states that no matter what the probability distribution is for the
elementary displacements (or for the velocity during these displacements), as the
number of steps increases, the probability distribution of the total displacement tends
to normal. In view of the ergodic principle, this distribution also represents the spatial
distribution of displacements of a cloud of initially close particles.

Todorovic (1992, p. 17) suggests that random walk representing the movement
of particles in the void space of a porous medium should be with time intervals,
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or delays, between successive particle displacements. These can be attributed to
the effect of the very slow motion in dead-end pores. For sufficiently long times,
he found that the coefficient of dispersion D is proportional to V n , n > 1. This
should be compared with a randomwalk development by Scheidegger (1960, p. 193)
that resulted in D = const. × V n , with n = 2 in a dynamic model, and n = 1 in a
geometrical model.

B. The Continuous Time Random Walk (CTRW) Method

The Continuous Time Random Walk (abbrev. CTRW) method is a generalized
statistics-based random walk method, applicable to a variety of subjects in many
disciplines. It is a random walk model in which particle transitions between differ-
ent states are controlled by a probabilistic waiting-time distribution function. This
waiting time is a feature that does not exist in the usual random walk models. Here
we focus on its application to solute transport, and the relevant particles are solute
particles carried by the fluid moving in the void space.

The random walk approach to solute transport was introduced above as a back-
ground to the CTRW method considered here. We are presenting this method here
because of its ability to handle non-Fickian dispersion and certain effects of hetero-
geneity (at all levels) of geological formations (e.g., Berkowitz et al. 2008, p. 226).
The method was initially introduced byMontroll andWeiss (1965) as a purely math-
ematical generalization of the regular random walk. It was first applied to transport
problems by Scher and Lax (1973a, b). Further developments and applications were
published, among others, by Scher andMontroll (1975), Metzler and Klafter (2000),
Berkowitz et al. (2002), Dentz and Berkowitz (2003), Cortis and Berkowitz (2004),
Berkowitz et al. (2006), and Rhodes et al. (2008).

Like in a random walk, also in the CTRW method, we consider the random
movement and spreading of a cloud of labeled (e.g., solute) particles that execute a
series of movements at a variable velocity. However, in the CTRW method, these
random elementary displacements are:

• Strongly affected by properties of the void space configuration, as manifested by
the relevant porous medium properties, especially by the heterogeneity inherent
in geological formations, and

• Characterized by a time interval separating successive particle displacements, for
example, due to delays associated with dead end pores, or, in general, zones of
slow fluid movement. These may require the introduction of a distribution of delay
intervals between random walk steps.

The CTRW is a random walk model (see discussion in Sect. 7.6.2A) that is
not based on solving the solute’s mass balance equation referred to as ‘Advection-
Dispersion Equation (ADE)’. Instead, it is based on solving a different mass balance
formulation. Berkowitz et al. (2000) and Cortis et al. (2004) show that the ADE can
be obtained as the limiting case in a very homogeneous domain.
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An important feature of the CTRWmethod is that it can incorporate critical effects
of porous medium heterogeneity. For example, CTRW can distinguish between
porosity and effective porosity. The latter is equal to the difference between the
porosity and the dead end porosity (Sect. 1.1.7A). The CTRWalso takes into account
residence times and delays of particles between consecutive steps in the randomwalk
model, as a consequence of various delay processes, dead-end pores, slow transport
zones, and trapping zones. It also takes into account the notion of ‘preferential path-
ways’, as well as ‘mobile-immobile’ portions of the porous medium domain. These
are typical characteristics of heterogeneous geological domains. The method can
also take into account the inherent multi-scale heterogeneity of geological domains
(Berkowitz et al. 2006).

In the CTRW approach, the transport of a solute is envisioned as the movement of
a series of particles that move between nodal points at a specified probability. This
is similar to the basic idea of random walk presented earlier in this section, except
that the random walk is generalized here by considering a more general probability
function that governs the passage of a particle from one stage to the next. A major
building block of theCTRWmethod is the probability,ψ(t; i, j), of a particle arriving
at time t at node i ‘hopping’ to another node ( j) at time t + �t .

Berkowitz et al. (2006) and Berkowitz et al. (2008) show that a wide range of
particle spreading patterns can be described by the continuum-level equation:

uc̃(s, u) − co(s) = −M̃(u)
[
Vψ·∇ c̃(s, u) − Dψ·∇∇ c̃(s, u)

]
, (7.6.24)

where the ˜(.) denotes the Laplace transform of (.), co(s) represents the initial value
of c, Vψ is the ‘transport velocity’, which is different from the fluid’s flow velocity
V, and M̃ represents a ‘memory function’, defined by:

M̃(u) = t̄u
ψ̃(u)

1 − ψ̃(u)
, (7.6.25)

in which t̄ denotes a characteristic time. Berkowitz et al. (2000) emphasize that the
‘dispersion coefficient’ Dψ in (7.6.24) has a different physical interpretation than the
coefficient of dispersion appearing in the classical ADE.

Under relatively homogeneous conditions, M̃(u) = 1 and (7.6.24) reduces to the
usual ADE. With other choices of M̃(u), other common equations, such as mul-
tirate and mobile-immobile equations can be recovered. Berkowitz et al. (2000)
show that the CTRW method can also be used to handle solute transport that takes
into account delays as a result of the presence of trapping, low permeability lenses,
adsorption/desorption and various delay mechanisms. Altogether, a key result of the
CTRW approach is its solute transport equation, say (7.6.24), represents a significant
generalization of the ADE.

A variety of specific mathematical formulations of the CTRW approach have
been considered to date. Obviously the actual implementation of CTRW requires
appropriate numerical solutions. The CTRW method is outlined below.

http://dx.doi.org/10.1007/978-3-319-72826-1_1
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Let Pn(�) denote the probability of a particle arriving at the position � after n
steps, and let p(�, �′) denote the probability that the particle will move from � to
�′ under the constraint that

∑
�′ p(�, �′) = 1. Then, the considered kind of random

walk obeys
Pn+1(�) = p(�, �′)Pn(�′). (7.6.26)

Next, the time variable n in the above equation is converted into a continuous
time, t , while keeping the spatial distribution discrete. With this, the probability per
unit time, R(s, t), of a particle just arriving at a site s at time t , can be written as a
function of the probability of moving between two discrete locations separated by
a length s, with a difference in arrival times of t , expressed in the form (Scher and
Lax 1973b):

R(s, t) =
∑

s ′

∫ t

0
ψ(s − s ′, t − τ )R(s ′, τ )dτ . (7.6.27)

where ψ denotes transit time probability. The next step is to impose a periodic
boundary conditions on the lattice (Scher and Lax 1973b). This takes the form

s =
∑

i

siai , , |ai | = a; (7.6.28)

si + ji N → si , i, j ∈ I, (7.6.29)

where a is the lattice constant and s are integers given by condition (7.6.29). If Na
is the length of the lattice condition, (7.6.29) can be rewritten as:

si = −N − 1

2
, . . . ,

N − 1

2
, (7.6.30)

The next step is to make a distinction between the probability of a particle just
arriving at a site and the probability that it will remain at that site for a given time
before taking the next jump. This requires an analogy to the Pn in (7.6.26). Using the
concept of theMaster Equation (Shlesinger 1996) and an ensemble average approach
(Klafter and Silbey 1980) leads to:

∂P(s, t)

∂t
=
∑

s′

∫ t

0
φ(s − s′), (t − τ )P(s′, τ )dτ −

∫ t

0
φ(s′ − s), (t − τ )P(s, τ )dτ ,

(7.6.31)
where P(s, t) is the probability of a walker being at s at a time t . Equation (7.6.27)
is related to Eq. (7.6.31) through the following integral (Berkowitz et al. 2001)

P(s, t) =
∫ t

0
	(t − τ )R(s, τ )dτ , 	(t) = 1 −

∫ t

0
ψ(τ )dτ , (7.6.32)
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where 	(t) denotes the probability of remaining at s, and

ψ(τ ) =
∑

s

ψ(s, τ ), ψ(s, τ ) = L−1

(
uψ̃(s, u)

1 − ψ̃(u)

)
, (7.6.33)

with ψ̃ denoting the Laplace transform of ψ.
The CTRW approach accounts naturally for transport in preferential pathways,

with mass transfer to stagnant and slow flow regions; CTRW can account for these
physical transport mechanisms, as well as other factors that influence transport of
reactive contaminants, such as sorption. Of specific interest here are the analyses by
Cortis and Berkowitz (2004) of transport in partially saturated, laboratory columns.
Three typical breakthrough curves from a series of miscible displacement experi-
ments in partially saturated soils, presented by Nielsen and Biggar (1961, 1962) and
Jardine et al. (1993) were re-analysed using the CTRW approach. They measured
breakthrough curves on undisturbed cylindrical soil columns (8.5cm diameter, 24
cm length). The soil columns were saturated with 0.05 M CaCl2 from the bottom,
and were then allowed to drain. Bromide was used as the non-reactive, passive tracer.
Cortis and Berkowitz (2004) re-examined three breakthrough curves obtained from
three different degrees of saturation. The CTRW solutions were found to reproduce
the breakthrough behavior far more effectively than the advection-dispersion equa-
tion solution. Nielsen and Biggar (1961, 1962) reported systematic deviations in the
calculated parameter values using the advection-dispersion equation from the exper-
imental data, which displayed non-Fickian transport behavior. Again, the CTRW
solutions were found to reproduce the breakthrough behavior far more effectively.

7.7 Colloidal and Nanoparticle Transport

Colloids in the soil were introduced in Sect. 1.3.2. here we shall discuss colloids as
possible carriers of contaminants and the models that describe the transport of such
colloids in a porous medium domain.

7.7.1 Mass Balance Equations for a Contaminant

We assume that the contaminant does not, in any way, affect the transport of the
colloids, so that the colloid balance equations, (7.7.19)–(7.7.21), do not depend on
the contaminant concentration. Thus, the colloid balance equations may be solved
independently of the contaminant transport problem. The resulting colloidal con-
centrations and colloid transfer rates will then be used in the contaminant balance
equation to determine the contaminant concentrations. This subject will be discussed
as the next step.

http://dx.doi.org/10.1007/978-3-319-72826-1_1
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The mass balance equation for the contaminants in the aqueous phase (volumetric
fraction θ ≡ θ�) is

B�(c�) = fads→� + fm→� + fim→� + fint→�. (7.7.1)

For the adsorbed contaminant, the mass balance equation is

Bads(cads) = − fads→�. (7.7.2)

For the contaminant on the mobile colloids, the mass balance equation is

Bm(cm) = − fm→� + fim→m + fint→m, (7.7.3)

For the contaminant on the immobile colloids, the mass balance equation is

Bim(cim) = − fim→� − fim→m, (7.7.4)

and for the contaminant attached to the air-water interface, themass balance equation
is

Bint (cint ) = − fint→� − fint→m . (7.7.5)

In the above equations, the mass balance operators are defined by:

B�(c�) ≡ ∂(c�θ)

∂t
+ ∇·θ (c�V� − Dh�·∇c�) , (7.7.6)

Bm(cm) ≡ ∂(cmccol,mσcolθ)

∂t
+ ∇·θcmσcol,m

(
ccol,mVcol,m − Dcol ·∇ccol,m

)
,

(7.7.7)

Bads(cads) ≡ ∂(cads�s,�)

∂t
, Bim(cim) ≡ ∂(cimccol,imσcol)

∂t
, (7.7.8)

Bint (cint ) ≡ ∂(cint ccol,intσcol)

∂t
, (7.7.9)

where σcol is the surface area on the colloid particles per unit mass of the colloids.
Note that cm , cim , and cint , are defined as the mass of contaminant per unit surface
area of their respective colloidal particle type, and cads is the mass of contaminant
per unit surface of the solid phase.

The exchange terms for the contaminants on the colloidal particles are defined
by:

fim→m ≡ cim f ∗
col,im→m − cm f ∗

col,m→im (7.7.10)

and
fint→m ≡ −cint f

∗
col,int→m + cm f ∗

col,int→m, (7.7.11)
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where

f ∗
col,im→m ≡ max( fcol,im→m, 0), f ∗

col,m→im ≡ max(− fcol,im→m, 0),

f ∗
col,int→m ≡ max( fcol,int→m, 0), f ∗

col,int→m ≡ max(− fcol,int→m, 0),

and the terms fcol,im→m and fcol,int→m are computed from (7.7.24) and (7.7.25).
The terms that express the transfer from the colloids to thewater phase aremodeled

as:

fads→� = (�s,�)α
�
ads→�(cads − ρbKdc�/�s,�), (7.7.12)

fm→� = σcolccol,mα�
m→�(cm − Keq,colc�), (7.7.13)

fim→� = σcolccol,imα�
im→�(cim − Keq,colc�), (7.7.14)

fint→� = σcolccol,intα
�
int→�(cint − Keq,colc�). (7.7.15)

The coefficients Kd and Keq,col are defined such that under equilibrium conditions,
we have:

cads�s,� = ρbKdc�, (7.7.16)

cm = Keq,colc�, cim = Keq,colc�, cint = Keq,colc�. (7.7.17)

Altogether, we have five mass balance equations in the five concentrations: c�, cads ,
cm , cim , and cint .

If equilibrium adsorption of the contaminant on the solid and on colloidal particles
is assumed, then all the mass balance equations may be combined, thus eliminating
all of the exchange terms.We then obtain the following singlemass balance equation,
in terms of c�:

∂

∂t

{
c�

[
(θ + ρbKd) + σcol Keq,col

(
ccol,mθ + ccol,im + ccol,int

)] }

+∇·θ
[
(1 + σcolccol,mKeq,colαcol)c�V�

−Dh�·∇c� − c�σcol Keq,colDcol ·∇ccol,m

]
= 0. (7.7.18)

The general flux boundary condition for the above balance equation is

[[ θ(1 + σcolccol,mKeq,colαcol)c�V� − θDh�·∇c�

−θc�σcol Keq,colDcol ·∇ccol,m ]]1,2 ·n = 0,

in which the mobile colloid concentration, ccol,m , must first be obtained by solving
the colloid mass balance equations.
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area. . What is their role in contaminant transport (e.g., the transport of adsorbed
contaminants). However, evidence gathered over the last few decades, indicate that
they are capable of traveling through the void space. Because of their size, their
surface area per unit volume is huge, thus they can adsorb large quantities of various
chemicals, including contaminants.

7.7.2 Colloids as Carriers of Contaminants

So far in this chapter, we have considered only contaminants that are transported
within a fluid in the form of dissolved species or components. Contaminants that
are adsorbed on or are part of a solid phase have been assumed to be immobile.
However, there exists enough evidence (e.g., McCarty and Zachara 1989; McCarty
and Degueldre 1993) that contaminants may travel also on colloidal size solid par-
ticles (viz., particles with diameters less than 10µm), e.g., clay-like particles, or
microorganisms, that are transported by groundwater. Organic colloidal particles, or
humic colloids, present close to ground surface, are of special interest, because of
their ability to adsorb and absorb non-polar organic contaminants. These colloids
include humic substances, viruses, and the organic coating on very tiny inorganic
particles. In Sect. 1.3.2, we have mentioned the presence of colloidal size matter in
the soil, and the possibility that such matter may be a significant carrier of contami-
nants. This occurs when contaminants adsorb on the (external and internal) surfaces
of colloidal particles. Thus, colloidal matter may serve as carrier of contaminants.
In some cases, a contaminant, such as a radionuclide, participates in the formation
of a colloid and is transported as a constituent, rather than as an adsorbate on the
particles. Altogether, a contaminant may be transported by colloidal particles. An
introduction to soil colloidal particles and is presented in Sect. 1.3.2.

Colloidal particles that are repelled from solid walls will have a mean veloc-
ity larger than that of the fluid. Because of their size, colloidal particles may also
be affected by the phenomenon of size-exclusion (Sect. 7.2.3). Such particles will
mix only with a portion of the fluid rather than with the entire fluid volume in the
pore space of an REV; therefore, their mean velocity will be higher than that of a
conservative contaminant.

Following Corapcioglu and Choi (1996), we shall present below a model for
colloidal transport in a porous medium filled with two fluid phases: water and air. A
single non-reacting and non-volatile contaminant will be considered that can adsorb
onto an immobile solid phase (ads), onto an immobile colloidal phase (im), and
onto a mobile colloidal phase (m) attached to the solid. Because the contaminant
is non-volatile, we only consider transport in the water phase (�). The colloids are
assumed to be hydrophobic so that they have a tendency to attach themselves to the
air-water interface. We shall, therefore, represent this interface as a pseudo-phase
(int). This interface is assumed to be immobile, and its surface area to be a function
of water saturation.

http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_1
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7.7.3 Mass Balance Equations for Colloids

Using the balance operator notation,Bα, introduced earlier, themass balance equation
for mobile non-aggregated colloidal particles is

Bcol,m(ccol,m) = fcol,im→m + fcol,int→m . (7.7.19)

The mass balance equation for immobile aggregated colloid particles is

Bcol,im(ccol,im) = − fcol,im→m . (7.7.20)

The mass balance equation for colloidal particles attached to the air-water interface
is

Bcol,int (ccol,int ) = − fcol,int→m . (7.7.21)

The mass balance operators appearing in these equations are defined as:

Bcol,m(ccol,m) ≡ ∂(ccol,mθ)

∂t
+ ∇·θ (ccol,mVcol,m − Dcol,m ·∇ccol,m

)
, (7.7.22)

and

Bcol,im(ccol,im) ≡ ∂(ccol,im�s,�)

∂t
, Bcol,int (ccol,int ) ≡ ∂(ccol,im��,g)

∂t
. (7.7.23)

The concentration ccol,m expresses the mass of mobile colloids per unit volume of
water phase. The concentrations ccol,im and ccol,int express the mass of colloids per
unit surface area of their respective (immobile) interfaces.

It is assumed that the specific interfacial surface areas, �s,� and ��,g , are known
functions of the saturation or of the volumetric fraction of the water phase.

The following forms will be used for the terms that represent the transfer from
the mobile colloidal particles and the immobile particles

fcol,im→m = ��,s(kim→mccol,im − km→imccol,m), (7.7.24)

and the transfer of immobile particles to the air-water interface:

fcol,int→m = �g,�(kint→mccol,int − km→int ccol,m). (7.7.25)

We shall express the velocity of the mobile colloidal particles as:

Vcol = αcolV�, (7.7.26)

where αcol (≡ |Vcol |/|V�|) denotes the ratio between the mean velocities of the
mobile colloidal particles and of the water phase. This coefficient depends on the
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size of the colloidal particles and on ion exclusion effects; in principle, αcol > 1. It
will also depend on the prevailing chemical conditions, and, perhaps, on the velocity
of the fluid. In determining the value of this coefficient experimentally, it must be
remembered that Vcol is the mean velocity of the non-aggregated particles that does
not include the apparent loss in velocity due to particle aggregation. That effect is
included, elsewhere, through the exchange terms in the mass balance equations.

7.8 Electromigration and Electrokinetics

Electric charge is also an extensive quantity that can accumulate in and be transported
through a porous medium domain, provided the liquid occupying the void space
and/or the solid matrix are electrically conductive. This occurs, for example, when
the interconnected void space of a porous geological formation is occupied by an
electrically conducting liquid, e.g., water with dissolved salts. At the microscopic
level, Ohm’s law, e.g., jEL

α = −κEL
α ∇�EL

α expresses the flux in an electrically EL-
conducting substance, and �EL denotes the voltage. The microscopic charge balance
equation, ∂ρEL/∂t = −∇·jEL , where ρEL denotes the charge density, can also be
written. The modeling routine discussed in this book is applicable.

However, there are some special electrical phenomena that are associated primar-
ily with soils and with geological formations. One such phenomenon is the double
layer introduced in Sect. 1.3.1. The conduction of electric currents through (or, equiv-
alently, the corresponding electrical resistivity of) a porous geologic domain is the
basis of an array of powerful geophysical (e.g., electromagnetic) methods used for
determining the occurrence, saturation and eventually the volume of subsurface flu-
ids of economic importance such as oil and gas. Some additional special features
are introduced below. The objective is merely to introduce certain definitions that
may be useful to the reader. Addition information can be found in the literature (e.g.,
Kirby 2010).

A. Electroosmosis

When an electrical field is applied to a porous medium (fully or partly) saturated
saturated by an electrically conducting (= ionic) fluid, the movement of the fluid is
enhanced. The added motion of the fluid is called electroosmosis. It is the result of
the force that acts on ions in the double layer (Sect. 1.3.1).

B. Electrokinetic and Streaming Potential

These phenomena occur in the subsurface when a liquid that has certain electri-
cal properties passes through a porous medium with different electrical properties.
Electro-osmotic flow is caused by the Coulomb force induced by an electric field on
the net mobile electric charge in a solution. When the pore space is fully, or partially,
saturated by an electrolytic solution, such as water with dissolved salts, a layer of
mobile ions, known as an electrical double layer (Sect. 1.3.1), orDebye layer, forms
at the fluid-solid interface.

http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_1
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When an electric field is applied to a fluid that occupies the void space, especially
in a very fine-grained medium, the net charge in the electrical double layer may
force liquids to move by the resulting Coulomb force. This resulting flow is called
electro-osmotic flow (Barbour and Fredlund 1989).

Anumber of additional examples associatedwith electrical charge in porousmedia
are briefly introduced in Sect. 7.8. The objective of the presentation in this section is
just to bring the subjects to the attention of the reader, as it is often mentioned in the
literature.

C. Electromigration

Electromigration is the movement of ions in an electrolytic solution that occupies
the void space in response to an applied electric field. When two electrodes are
placed some distance apart in a saturated porous medium domain, and an electric
voltage is applied, the anions (= negative ions) in the fluid will travel towards the
anode (= positively charged electrode), while the cations (= positive ions) will
travel towards the cathode (= negatively charged electrode). This phenomenon is
often mentioned as a remediation technique, i.e., removal of contaminants, in low
permeability formations. If the electrodes are placed in an electrically conductive
domain, such as an aquifer, and a DC voltage is applied, then cations, such as those
of heavymetals or uranium,will be drawn to the cathode, where they can be removed.
Anions, such as those of cyanide or nitrate, can also be removed, since they will be
drawn to the anode. An advantage of electro-migration is that it may be applied to
low permeability sediments, such as clays.

However, chemical speciation in a fluid, and adsorptive properties of mineral
surfaces, may be strongly affected by the fluid’s pH with consequences that may
run counter to the ultimate remediation goals. At the cathode, water dissociates
into hydrogen gas and hydroxyl ions, through the reaction 2H2O + 2e− → 2OH− +
H2(g). At the anode, water dissociates into oxygen gas and hydrogen ions by the
reaction 2H2O → 4H+ + O2(g) + 4e−. The addition of hydroxyl ions increases the
pH in the region around the cathode, while the added hydrogen ions decrease the
pH in the region near the anode. In the region of low pH, metallic ions will go into
solution by desorption from the solid, or by other reactions, such as dissolution of
metal solids. These ions will be drawn to the cathode, where they can be removed.
However, the pH in the solution increases as the ions move towards the cathode,
causing immobilization of some or most of the ions by precipitation, formation of
complexes, or solid adsorption, before the cathode is reached (Probstein and Hicks
1993).

D. Electrokinetic Phenomena

Electrokinetic phenomena are the phenomena resulting from the coupling between
an electric field and the mechanical motion of a fluid, or of a chemical species within
a fluid. One such phenomenon is the double layer mentioned in.

At the solid-liquid interface that bounds the pore space in a porous medium, an
electric potential difference is created. The charge on the liquid side will be opposite
to that on the solid surface.
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Three types of electrokinetic phenomena may be mentioned:

• Electroosmosis. This is the generation of an advective flow field, usually that of
an aqueous phase, by the application of an electric field. The fluid is pulled along by
the viscous drag from the moving positive ions that are concentrated in the double
layer, because of their attraction to the cathode. Thus, the application of a DC voltage
to a pair of electrodes placed in an aquifer will produce water at the cathode. Note
that electro-migration of ions in the water will also take place. This method could
be used to remove contaminants from clay formations, which, because of their low
permeability, are difficult to clean otherwise (Shapiro and Probstein 1993).

•Electrophoresis. Herewehave themovement of charged particles, or a charged sur-
face (and any attached material), in response to an electrical field. This phenomenon
may find application in the removal of contaminated colloids or polar organic phases.

• Zeta and streaming potentials. When a solid comes into contact with liquid, an
electric potential difference between the two comes arises at the interface. Conse-
quently, the liquid will be charged oppositely to the solid (wall). Ions of the liquid
accumulate near the solid surface and produce an electrical double layer at the solid-
liquid interface. Thus, when a liquid is forced to flow through a capillary tube, the
liquid stream carries with it part of the mobile part of that electrical double layer
near the walls of the capillary. The convection at a local velocity V of an electrical
charge of density e at a local velocity Ve results in a streaming current eVe, where
e denotes the current’s density. As a consequence of the streaming current, a poten-
tial difference will be established between the ends of the capillary which, in turn,
generates a conductive current opposite in sense to the streaming current. At steady
state, the two currents are equal, and the potential difference induced will be the
streaming potential. This streaming current and potential have been shown to be
related to the pressure gradient that forces the liquid’s flow. This phenomenon has
been shown also to exist also when flow occurs through porous medium domains
(e.g., Adamson 1982; Davies and Rideal 1963). The flow induced by the streaming
potential is superimposed on any flow caused by a pressure gradient, as described
by Darcy’s law.
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Chapter 8
Modeling Energy and Mass Transport

In Chaps. 5 and 6, we considered mass transport of a single fluid phase, and of
multiple fluid phases. Most of the presentation focused on flow under isothermal
conditions, although we did mention that when non-isothermal conditions prevail,
fluid density and viscosity depend also on temperature. In Chap.7, we discussed
the transport of mass of chemical species in single phase flow, and in the flow of
multiple multi-species phases. Again, we did mention the possible effects of temper-
ature variations, and the possibility of heat sources and sinks as a result of endogenic
and exogenic reactions, but, in general, the underlying assumption was that the flow
and transport take place under isothermal conditions. In this chapter, we remove
this constraint and discuss energy transport under non-isothermal conditions, i.e.,
simultaneous mass and energy transport. The effects of natural thermal gradients,
produced by solar radiation at ground surface, on water and water vapour movement,
as well as on the chemical and biological behavior in the subsurface, may serve as
examples of interest to soil scientists. In dealing with contaminated groundwater, a
number of remediation techniques are associated with heating the soil, and injection
of steam. Other interesting cases that require knowledge of heat and mass trans-
port in porous media are the storage of energy in aquifers, or in the unsaturated
zone, the production of geothermal energy, the disposal of CO2 in deep geological
formations, the geological storage of high-level nuclear waste, and the thermally
enhanced production of petroleum. Change of phase (evaporation/condensation and
freezing/melting) of fluids within the void space as a result of temperature changes in
the subsurface may serve as an additional example. Finally, in the chemical industry,
most processes that take place in reactors (e.g., phase change, dissolution, chem-
ical reactions) occur under non-isothermal conditions. Because of its importance,
we have added an appendix (AppendixA) that presents and discusses modeling of
phenomena of transport that take place in chemical reactors.
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Within a porous medium domain, thermal energy may be transported by four
mechanisms:

• Advection by a fluid (or fluids) moving in the void space.
• Conduction in all solid and fluid phases (overlooking advection in a deformable
solid). We shall limit the discussion to the case in which the solid matrix is com-
posed of a single substance.

• Mass diffusion in the fluid phases.
• Thermal dispersion in the fluid phase(s).

All thesemodes of energy transport will be discussed in this chapter.We shall assume
that radiation plays no role in energy transport in porous media.

Fluid mass moving through the void space (= advection) carries with it thermal
energy, and, therefore, any complete heat transport model must also treat, simulta-
neously, the transport of fluid mass. As we shall see below, the coupling between the
transport of mass and heat is also due to the fact that both the fluid’s density and its
viscosity are temperature dependent. Most partitioning and equilibrium coefficients,
discussed inChaps. 6 and 7, are strongly temperature dependent. The chemical poten-
tial discussed in Sect. 2.2.4 is also temperature-dependent. Temperature may also
affect the permeability (e.g., through the swelling of clay, mineral reactions, and bio-
logical matter clogging of pores) and the capillary pressure (e.g., through the effect
on surface tension). Finally, especially in chemical engineering, many processes that
take place in chemical reactors involve absorption and generation of heat.

Unlike the case of fluidmass transport,where the solid is assumed to be impervious
to the transport of mass, heat is also transported (by conduction) through the solid
matrix. In general, the average temperatures of the solid and of the fluids that occupy
the void space are not the same. For example, a hot fluid flowing through the void
space can, at least over a certain period of time, have a different temperature than that
of the solid matrix. However, in general, after a while, the temperature of the solid
will equilibrate with that of the fluid if the average (microscopic level) distance from
a point inside the solid to the fluid in the void space is sufficiently small, as long as
the thermal conductivity of the solid is not too small. The discussion in this chapter
will be based on the assumption that the time required to reach thermal equilibrium
between all phases present at a point in a porous medium domain, i.e., within an
REV centered at the point, including the solid, is sufficiently short so that it can be
ignored. This assumption, referred to as local thermal equilibrium, or as approximate
equilibrium, (Sect. 2.1) between the phases, states that at every (macroscopic) point
within a porous medium domain, the (average) temperature is essentially the same
for all phases present at that point, including the solid, i.e., within the REV centered
at the point. An important case where the assumption of local thermal equilibrium
does not apply is the flow of a hot geothermal fluid through widely spaced fractures
in a solid rock domain.

In spite of the statement that in most cases we assume that all phases present in
an REV are in thermal equilibrium, i.e., at the same temperature, there are certain
cases of counter-current flow in chemical reactors, in which, intentionally, fluids in
counter-current flow are maintained at different temperatures. The temperature of

http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
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the solid matrix may also be different from that of either of the two fluids. This
possibility will be discussed in AppendixA.

As suggested in the preamble of Chap.2, following the phenomenological
approach, the various thermodynamic variables and relationships presented at the
microscopic level are assumed to be valid also at themacroscopic one. In this chapter,
we shall make use of them to develop and discuss complete well-posed models for
the phenomenon of heat transport in porous medium domains.

8.1 Microscopic Energy Fluxes

As for every extensive quantity, the total flux of energy at the microscopic level is
made up of advective and diffusive (= conductive) fluxes.

8.1.1 Advective and Diffusive Fluxes; Single Species Fluid

At themicroscopic level, the total energy flux, j tE, at a pointwithin a phase containing
only a single species is the sum of the internal (IE), kinetic (KE), and potential
energy (PE) fluxes:

j tE ≡ jIE + jKE + jPE, (8.1.1)

jIE ≡ (ρu)VIE, jKE ≡
(
1

2
ρV 2

)
VKE, jPE = (ρϕpot )VPE, (8.1.2)

with u and ρu(≡ u′) denoting the specific internal energy, i.e., internal energy per unit
mass, and internal energy density, i.e., per unit volume, respectively. The advective
energy flux is the total energy carried by the phase at its velocity, while the diffusive
energy fluxes contain the remaining portions of the total energy flux:

jIEdi f≡ ρu
(
VIE − V

)
, diffusive flux of internal energy,

jKEdi f ≡ 1
2ρV

2
(
VKE − V

)
, diffusive flux of kinetic energy,

jPEdi f ≡ ρϕpot
(
VPE − V

)
, diffusive flux of potential energy.

The total energy flux can also be written as the sum of the total advective energy
flux and three diffusive energy fluxes:

j tE = ρ

(
u + 1

2
V 2 + ϕpot

)
V + jIEdi f + jKEdi f + jPEdi f . (8.1.3)

http://dx.doi.org/10.1007/978-3-319-72826-1_2


576 8 Modeling Energy and Mass Transport

A. Diffusive Flux of Internal Energy

The (microscopic) diffusive flux of internal energy within a phase, j IE, is identical to
the heat flux by conduction, jH, expressed by Fourier’s law:

j IEdi f (≡ jH ) = −λ∇T, (8.1.4)

with λ and T denoting the thermal conductivity and the temperature of the phase,
respectively. Equation (8.1.4) is valid at a point within any isotropic solid, or fluid
phase.

B. Diffusive Flux of Kinetic Energy

The diffusive flux of kinetic energy, jKE, is expressed by:

jKE = −σ·V, (8.1.5)

in which σ denotes the stress tensor (e.g., Bear and Bachmat 1991, p. 81).

C. Diffusive Flux of Potential Energy

The diffusive flux of potential energy, jPE, vanishes in the case of a single species
phase.

D. Total Energy Flux

From the discussion above, it follows that at a point within an isotropic phase, the
total energy flux is expressed as:

jtE = ρ

(
u + 1

2
V 2 + ϕpot

)
V − λ∇T − σ·V. (8.1.6)

We usually assume that u � 1
2V

2 + ϕpot , leading to the total flux:

jtE = ρuV − λ∇T − σ·V. (8.1.7)

8.1.2 Advective and Diffusive Fluxes; Multi-species Fluid

We consider a multiple γ-species phase. As before, the total energy flux is expressed
by (8.1.3), as the sum of advective and diffusive parts.
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A. Diffusive Flux of Internal Energy

From the theory of irreversible processes (e.g., De Groot and Mazur 1962, p. 26), it
follows that the diffusive flux of internal energy, jIEdi f , is the sumof the heat conductive
flux, jH , and that of internal energy transported by the diffusive mass fluxes, jγ , in
the form:

j t IE = jH +
∑
(γ)

hγjγ = −λ∇T +
∑
(γ)

hγjγ, (8.1.8)

in which hγ denotes the specific enthalpy of the γ-species (Sect. 2.2.2).
Other types of mass diffusion laws that depend on the temperature gradient, in

addition to the concentration gradient, are also possible. If such laws are used, the
above expression for jIE must be modified (De Groot andMazur 1962), reflecting the
fact that the transport of energy by mass diffusion and by conduction are interrelated.

B. Diffusive Flux of Kinetic Energy

The diffusive flux of kinetic energy is given by:

jKE = −σ·V, V =
∑
(γ)

Vγ . (8.1.9)

C. Diffusive Flux of Potential Energy

The diffusive flux of potential energy, e.g., the gravitational potential, is given by:

jPE =
∑
(γ)

ϕ
γ
pot j

γ . (8.1.10)

It represents the work done by the diffusive mass fluxes against the conservative
forces. Here, the partial specific potential energy with respect to mass, ϕ

γ
pot , is

defined by:

ϕ
γ
pot ≡ ∂ϕpot

∂mγ

∣∣∣∣
p,T,mδ �=γ

. (8.1.11)

The external force, fγ , acting on the γ-species per unit mass of the species, is given
by fγ = −∇ϕγ . Thus, the force on the species per unit mass of the phase is equal
to ργfγ = −ργ∇ϕγ . When the potential energy, ϕpot , is a homogeneous function of
the mass of each species, then,

ϕpot =
∑
(γ)

ωγϕ
γ
pot . (8.1.12)

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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From the above discussion, it follows that the sum of advective and diffusive
energy fluxes of a multiple species phase is given by:

j tE = ρ

(
u + 1

2
V 2 + ϕpot

)
V − λ∇T − σ·V

+
∑
(γ)

(
hγ + ϕ

γ
pot

)
jγ . (8.1.13)

Or, neglecting the kinetic and potential energy, as is commonly done:

j tE = ρuV − λ∇T − σ·V +
∑
(γ)

hγjγ . (8.1.14)

8.2 Microscopic Energy Balance Equation

Here, the considered extensive quantity is the energy and the state variable is the
temperature.

8.2.1 Basic Equation

Following the discussion in Sect. 3.2.1 on the fundamental balance equation for any
extensive quantity, and using the total energy flux given by (8.1.13), the microscopic-
level energy balance equation for a multi-species fluid phase is:

∂ρ
(
u + 1

2V
2 + ϕpot

)
∂t

=

−∇·
⎡
⎣ρ

(
u + 1

2
V 2 + ϕpot

)
V +

∑
(γ)

(
hγ + ϕ

γ
pot

)
jγ − λ∇T − σ·V

⎤
⎦

+
∑
(γ)

[
ργ ∂ϕ

γ
pot

∂t
+ (

hγ
R + ϕ

γ
pot

)
�′γ

]
+ �′M·V + �′H, (8.2.1)

where�′γ indicates a mass of γ-source. The terms on the second line denote the rates
of added energy per unit volume of the phase. The first part of the first term expresses
the rate at which potential energy is added. The second part expresses the energy
added from a mass source, �′γ . The third term is the added energy associated with a
momentum source, �′M. The last term, �′H, represents a heat source. All �′-sources
are per unit volume of the phase. When �′γ < 0, the quantity hγ

R is defined as equal
to the value of hγ in the fluid at the location of the �′γ-source; when �′γ > 0, it is

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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equal to the value of hγ in the species flux at the source. �′H denotes energy sources.
These can take the form of point sources of energy carrying mass, but also in the
form of point heat injection by microwave techniques.

To derive the balance equation for the internal energy of a fluid phasewithmultiple
species, we start from the microscopic momentum balance equation:

∂ρV
∂t

= −∇· (ρVV − σ) −
∑
(γ)

ργ∇ϕ
γ
pot + �′M, (8.2.2)

where VV (≡ ViVj ) is the dyadic product of vectors. By combining this equation
with the mass balance equation, we obtain the balance equation for kinetic energy,
in the form:

∂ 1
2ρV

2

∂t
= −∇·

(
1

2
ρV 2V − σ·V

)
− σ : ∇V −

∑
(γ)

ργ∇ϕ
γ
pot ·V + �

′M·V.

(8.2.3)
Turning to the balance equation for potential energy, we find that:

∂ρϕpot

∂t
=

∑
(γ)

ϕ
γ
pot

∂ργ

∂t
+

∑
(γ)

ργ ∂ϕpot

∂t

= −∇·
⎛
⎝∑

(γ)

ργϕ
γ
potV

γ

⎞
⎠ +

∑
(γ)

ργ∇ϕ
γ
pot ·Vγ

+
∑
(γ)

ϕ
γ
pot�

′γ +
∑
(γ)

ργ ∂ϕ
γ
pot

∂t
. (8.2.4)

By subtracting (8.2.3) and (8.2.4) from (8.2.1), we obtain the balance equation
for internal energy:

∂ρu

∂t
= −∇·

⎡
⎣ρuV +

∑
(γ)

hγjγ − λ∇T

⎤
⎦

+σ : ∇V −
∑
(γ)

∇ϕ
γ
pot j

γ +
∑
(γ)

hγ
R�

′γ + �
′H , (8.2.5)

in which hγ
R is defined after (8.2.1). The first term on the second line of the above

equation represents the added internal energy due to the work caused by pressure
and internal stress. The second term on the same line expresses the work performed
by the diffusive mass fluxes. If the only potential energy is due to gravity, then
∇ϕ

γ
pot = ∇z. This second term vanishes because

∑
(γ) j

γ = 0. In general, this term
will vanish if each potential energy is proportional to the mass of the respective
species. Henceforth, we shall assume that this statement is true, and that the above
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second term vanishes. The third term on the second line of the equation is the addition
of internal energy due tomass sources. The last term is the energy due to heat sources.

For a fluid phase, σ = τ −pδ, where τ is the deviatoric stress, and δ is the unit
tensor. The energy balance equation then takes the form:

∂ρu

∂t
= −∇·

⎛
⎝ρhV +

∑
(γ)

hγjγ − λ∇T

⎞
⎠

+V·∇ p + τ : ∇V +
∑
(γ)

hγ
R�

′γ + �
′H . (8.2.6)

Assuming that:

|τ : ∇V| � |∇·j t IE |, and |V·∇p| � |∇·j tIE|,

where j t IE is the total internal energy flux defined as:

j t IE ≡ ρhV +
∑
(γ)

hγjγ − λ∇T, (8.2.7)

we may approximate (8.2.6) by:

∂ρu

∂t
= −∇·

⎛
⎝ρhV +

∑
(γ)

hγjγ − λ∇T

⎞
⎠ +

∑
(γ)

hγ
R�

′γ + �
′H . (8.2.8)

The same equation can be derived by subtracting the potential energy balance equa-
tion (8.2.4) from the total energy balance equation (8.2.1), provided we assume that
(1) the kinetic energy term, 1

2ρV
2, is negligible, compared to that of the internal

energy, ρu, (2) that the magnitude of the term due to the deviatoric stress (τ : V), is
negligible compared to that of the total internal energy flux, j t IE , and (3) the source
term related to momentum is small compared to the other source terms.

8.2.2 For a Fluid Phase Under Simplifying Assumptions

Let
∑

(γ) h
γ
R�

′γ = hR�
′m , and we assume that |τ : ∇V| � |j t IE |. Then, expanding

(8.2.6), and using the mass balance equation (3.2.15), we obtain:

ρ
∂h

∂t
− ∂ p

∂t
= −ρV·∇h −

∑
(γ)

∇·hγjγ − ∇·jH + V·∇ p + �
′H + (hR − h)�

′m,

(8.2.9)
or, equivalently,

http://dx.doi.org/10.1007/978-3-319-72826-1_3


8.2 Microscopic Energy Balance Equation 581

ρ
Dh

Dt
− Dp

Dt
= −

∑
(γ)

∇·hγjγ − ∇·jH + �
′H + (hR − h)�

′m, (8.2.10)

where D(..)/Dt ≡ ∂(..)/∂t + V·∇(..), and, as before, jH ≡ −λ∇T .
From the first and second laws of thermodynamics, it follows that:

dH = TdS + Vdp +
∑
(γ)

∂G

∂mγ

∣∣∣∣
p,T,mδ �=γ

dmγ

= T
∂S

∂T

∣∣∣∣
p,mγ

dT +
(

V + T
∂S

∂ p

∣∣∣∣
T,mγ

)
dp +

∑
(γ)

hγdmγ,

in which V, S, H and G denote volume, entropy, enthalpy and Gibbs free energy,
(defined in Sect. 2.2.2), respectively.

One of Maxwell’s relations (Denbigh 1981, p. 91) states that:

∂S

∂ p

∣∣∣∣
T,mγ

= −∂V

∂T

∣∣∣∣
p,mγ

,

so that:

dH = CpdT +
(

V − T
∂V

∂T

∣∣∣∣
p,mγ

)
dp +

∑
(γ)

hγdmγ, (8.2.11)

where we used the following identity for the specific heat at constant pressure:

Cp = 1

m

∂H

∂T

∣∣∣∣
p,mγ

.

Thus, we may divide (8.2.11) by the mass, m, to obtain:

dh = CpdT + (1 − TβT )vdp +
∑
(γ)

hγdωγ,

where the thermal compressibility of the fluid phase is defined as:

βT ≡ 1

v

∂v

∂T

∣∣∣∣
p,mγ

.

Then, (8.2.10) becomes:

ρCp
DT

Dt
− TβT

Dp

Dt
+

∑
(γ)

ρhγ Dωγ

Dt
= −

∑
(γ)

∇·hγ jγ − ∇·jH + �
′H + (hR − h)�

′m .

(8.2.12)

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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Consider the following three cases:
CASE A. Let:

∂ p

∂t
= 0,

∂ωγ

∂t
= 0, ∇ωγ = 0,

where the last condition implies that jγ = 0. Then, the energy balance equation is:

ρCp
∂T

∂t
= −ρCpV·∇T − ∇·jH + TβTV·∇ p + �

′H + (hR − h)�
′m . (8.2.13)

CASE B. Let:

βT = 0,
∂ωγ

∂t
= 0, ∇ωγ = 0.

Then, the energy balance equation takes the form:

ρCp
∂T

∂t
= −ρCpV·∇T − ∇·jH + �

′H + (hR − h)�
′m . (8.2.14)

CASE C. Suppose that:

∂ p

∂t
= 0, ∇ p = 0,

∂ωγ

∂t
= 0, ∇ωγ = 0,

then:

ρCp
∂T

∂t
= −ρCpV·∇T − ∇·jH + �

′H + (hR − h)�
′m . (8.2.15)

Furthermore, if: (
∂Cp

∂ p

)
T

=
(

∂Cp

∂T

)
p

= 0, ∇Cp = 0,

then, by first multiplying both sides of themass balance equation byCpT , and adding
the result to (8.2.15), we obtain the energy balance equation:

∂(ρCpT )

∂t
= −∇· (

ρCpTV
) − ∇·jH + ρ�H + CpT�

′m + (hR − h)�
′m . (8.2.16)

8.2.3 For a Deformable Elastic Solid Phase

Weconsider themicroscopic energy balance equation for the deformable elastic solid
matrix. There are two alternative approaches to derive this balance equation. One
approach is to define the heat capacity under constant stress conditions (which is
equivalent to constant pressure conditions, if the medium is isotropic, with no shear
stresses), and to write the balance equation in terms of the stress field within the solid.
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The other approach is to define the heat capacity under constant strain conditions
(which is equivalent to constant volume conditions, if the medium is isotropic with
no shear strains). Both approaches are valid. Since, for most geological problems, it
is the stress that is known, the derivation presented here will follow the first approach.

Considering an infinitesimal solid volume undergoing heating, the first law of
thermodynamics implies that for a reversible transformation:

δQ = dU − Voσ : dε, (8.2.17)

where Vo is the initial volume, σ and ε denote stress and strain, respectively, and
−σ : dε is the strain energy per unit volume (Landau and Lifshitz 1986, p. 8). By
extending the enthalpy (H) concept to a solid, we obtain:

H = U − Voσ : ε. (8.2.18)

Substituting U, obtained from this expression, into (8.2.17), yields:

δQ = dH + Voε : dσ

= ∂H

∂T

∣∣∣∣
σ

dT +
(

∂H

∂σi j

∣∣∣∣
T

+ Voεi j

)
dσi j , (8.2.19)

in which Einstein’s summation convention, defined after (3.1.6), is applicable.
One result from (8.2.19) is that, under constant stress conditions, we have: δQ =

(∂H/∂T )|σdT . It then follows that:

C∗
σ ≡ ∂H

∂T

∣∣∣∣
σ

is the solid’s heat capacity under constant stress.
Next, we derive an expression for the term (∂H/∂σi j )|T that appears in (8.2.19).

From the second lawof thermodynamics, and from (8.2.19), it follows that the change
in entropy, S, of the solid, is given by:

dS = δQ

T
= 1

T

(
dH + Voεi j dσi j

)

= 1

T

∂H

∂T

∣∣∣∣
σ

dT + 1

T

(
∂H

∂σi j

∣∣∣∣
T

+ Voεi j

)
dσi j .

Because dS is an exact differential, we must have:

∂

∂σi j

(
1

T

∂H

∂T

∣∣∣∣
σ

) ∣∣∣∣
T

= ∂

∂T

[
1

T

(
∂H

∂σi j

∣∣∣∣
T

+ Voεi j

)] ∣∣∣∣
σ

.

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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By expanding the above expression, we obtain:

∂H

∂σi j

∣∣∣∣
T

+ Voεi j = VoT
∂εi j

∂T

∣∣∣∣
σ

.

Hence, (8.2.19) becomes:

δQ = C∗
σdT + T

∂εi j

∂T

∣∣∣∣
σ

dσi j . (8.2.20)

Equating with the first law, (8.2.17), we obtain

dU = C∗
σdT + TV

∂εi j

∂T

∣∣∣∣
σ

dσi j + Vσi j dεi j , (8.2.21)

where V denotes the volume of the system, and higher terms in dVdσi j and dVdεi j
have been dropped. Dividing by the mass of the solid, we obtain (see (2.3.20)):

du = CσdT + T vβT i j dσi j + σi j dεi j . (8.2.22)

Here:

Cσ ≡ 1

m
C∗

σ = 1

m

∂H

∂T

∣∣∣∣
σ

is the specific heat capacity under constant stress, and the thermal compressibility
tensor can be defined, for a thermo-elastic medium, by:

βT i j ≡ ∂εi j

∂T

∣∣∣∣
σ

.

We assume that energy transported by mass diffusion (if there are dissolved
species) is negligible, and that there is no source of mass. Then, by employing
(8.2.5) and the mass balance equation, the energy balance equation can be written in
the form:

ρ
Du

Dt
= −∇ · jH + σ : ∇V + �

′H . (8.2.23)

From (8.2.22), we have:

ρ
Du

Dt
= ρCσ

DT

Dt
+ TβT

Dσ

Dt
+ σ : ∇V. (8.2.24)

Here, we used the identity (Bear and Bachmat 1991, p. 82):

σ : Dε

Dt
= σ : ∇V.

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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Substituting (8.2.24) into (8.2.23), we obtain the following form for the energy bal-
ance equation of a deformable solid (s):

ρsCσ
DT

Dt
+ TβT

Dσ

Dt
= −∇·jHs + �

′H
s . (8.2.25)

Consider the following three cases:
CASE A. Uniform stress, i.e., ∇σ = 0. We obtain:

ρsCσ
DT

Dt
+ TβT

∂σ

∂t
= −∇·jHs + �

′H
s . (8.2.26)

CASE B. Steady stress, i.e., ∂σ/∂t = 0. We obtain:

ρsCσ
DT

Dt
= −TβTVs·∇σ − ∇ · jHs + �

′H
s . (8.2.27)

CASE C. Steady and uniform stress, i.e., ∂σ/∂t = ∇σ = 0. We obtain:

ρsCσ
DT

Dt
= −∇·jHs + �

′H
s . (8.2.28)

Moreover, if Cσ is a constant, then, through the use of the mass balance equation,
we obtain:

∂(ρsCσT )

∂t
= −∇ · (ρsCσTVs) − ∇·jHs + �

′H
s . (8.2.29)

8.3 Macroscopic Heat and Mass Fluxes

Only two kinds of energy fluxes appear in the microscopic balance equations pre-
sented in the previous section: advection and diffusion (= heat carried by the diffusive
mass flux and by conduction). To obtain their macroscopic counterparts, these fluxes
have to be averaged over an REV. Similar to what happens in the case of mass flux,
by averaging the microscopic advective E-flux of an α-phase, at E-density e′, we
obtain:

e′
αVα

α = e′
α

α
Vα

α + e̊′
αV̊α

α

, (8.3.1)

in which the first term on the right-hand side expresses the macroscopic advective
E-flux, carried by the macroscopic mass-weighted velocity, while the second term
expresses the dispersive E flux.

In terms of the specific value e of E , and using intrinsic mass averaging, following
(3.4.36), we obtain:

http://dx.doi.org/10.1007/978-3-319-72826-1_3


586 8 Modeling Energy and Mass Transport

ραeαVα
α = ρα

αẽαVα

α = ρα
α

(
ẽα

αṼα
α + ˜ěαV̌α

α)

= ρα
αẽα

αṼα
α + ρα

α ˜ěαV̌α

α

. (8.3.2)

These two fluxes—advection and dispersion of E , as well as the macroscopic
diffusive (for heat, conductive) flux, are discussed below.

8.3.1 Advective and Dispersive Energy Flux

Let us first consider the macroscopic advective internal energy (U) flux of an α-
phase, JUα,adv (≡ JHα,adv). At the microscopic level, this flux is expressed by u′V, or
ρuV. We use (8.3.1) to express the advective part of the average of this microscopic
flux:

JU = u′αVα
. (8.3.3)

In terms of the specific value u of U, following (8.3.2), we can write:

ραuαVα
α = ρα

αũαVα

α = ρα
α

(
ũα

αṼα
α + ˜ǔαV̌α

α)

= ρα
αũα

αṼα
α + ρα

α ˜ǔαV̌α

α

. (8.3.4)

Thus, the average of the microscopic level advective flux is expressed as the sum
of two fluxes: and advective flux and a dispersive one:

JUα,adv = ρα
αũα

αṼα
α
, JUα,dis = ρα

α ˜ǔαV̌α

α

, (8.3.5)

where both fluxes are per unit area of the α-phase. To obtain the fluxes per unit area
of porous medium, we have to multiply these expressions by the volumetric fraction,
θ, of the phase.

A similar equation can be written for the advective and dispersive fluxes of phase
enthalpy:

ραhαVα
α = ρα

αh̃α
α
Ṽα

α + ρα
α ˇ̃hαV̌α

α

. (8.3.6)

In the above expressions, we may replace u, or h, by an appropriate expression in
terms of the temperature, e.g., h = CpT , where Cp is the heat capacity at constant
pressure for a fluid phase. The dispersive flux is further considered in Sect. 8.3.6.

Note that although we have introduced the dispersive energy flux by REV-
averaging considerations, we could have introduced this flux by the phenomeno-
logical approach, as we know and understand phenomenologically that always, at
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the macroscopic level, the total flux of any extensive quantity is made up of an
advective, dispersive and diffusive fluxes. The reason is explained in Sect. 3.4.3.

8.3.2 Advective Mass Flux

As shown in the previous subsection, in order to calculate the advective heat flux,
we need an expression for the advective mass flux.

The advective mass flux under isothermal conditions is considered in Chap.4.
In principle, the same expression, say Darcy law, e.g., in the form of (4.2.44) is
still valid under nonisothermal conditions, except that we have to take into account
the fact that both the density and the viscosity depend on the temperature, and that
the pressure, through the capillary pressure relationship, which, in turn, depends on
surface tension, is also related to the temperature.

For the sake of simplicity, we shall consider saturated flow in a stationary, non-
deformable solid matrix, Vs = 0 =⇒ qr ≡ q. Under such conditions, the advective
mass flux of a fluid phase at a volumetric fraction θ, θρV(≡ ρq), is obtained from
(4.2.44). We may write this equation in terms of a reference density, ρref (at selected
reference values of p, ργ , T ), in the form:

qm ≡ ρq ≡ ρθV = −ρk
μ

(∇ p + ρg∇z)

= −ρk
μ

(∇ p + ρre f g∇z
) + ρk

μ
(ρref − ρ)g∇z, (8.3.7)

in which k = k(θ) is the permeability tensor of the fluid phase, ρ = ρ(p, cγ, T ) is the
mass density of the phase,μ = μ(p, cγ, T ) is the dynamic viscosity of the phase, and
cγ denotes the concentration of the species in the fluid phase. The last term expresses
the effect of density variations; it is often used in discussing natural convection (see
Sect. 8.5).

In the case of a deformable porous medium, q and V are replaced by qr and
Vr = V − Vs .

From (8.3.7) it follows that we may interpret the advective mass flux as produced
by two driving forces: one resulting from a gradient in a reference piezometric head,
href = z + p/ρref g, of a fictitious fluid of a reference density ρref , and the second
resulting from a buoyancy force, directed vertically upward, acting on a fluid of
density ρ, embedded in the fluid of density ρref .

The two forces are of the orders of magnitude:

O

(
kρref g

μ

(�href )c

L(h)
c

)
and O

(
kg(�ρ)c

μ

)
,

http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_4
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respectively, where (�href )c and (�ρ)c are characteristic piezometric head differ-
ence and characteristic density difference, respectively, and L(h)

c is a length over
which href varies significantly. The ratio between the two is of order O(R), with
R ≡ {(�ρ)c/ρref }/{(�href )c/L(h)

c }.
When R � 1, the flow is governed mainly by head gradients. The flow regime is

then referred to as forced convection. When R � 1, the flow is determinedmainly by
the buoyancy force, and the flow regime is referred to as free (or natural) convection.
Altogether, the dependence of the density difference appearing in the second term on
the right-hand side of (8.3.7) on temperature (in fact, also the effect of temperature
on viscosity) produces coupling between the advective mass and heat fluxes.

From the (linear) approximate relationship (see Sect. 2.3.2)A, it follows that for
ρ = ρ(p, T, cγ, γ = 1, ..., N γ),

�ρ ≡ ρ − ρref = βp�p + βT�T +
∑
(γ)

βcγ �cγ,

where the β’s are coefficients. For example,

ρ = ρo exp[βp(p − po) − βT (T − To)]. (8.3.8)

The buoyancy force term in (8.3.7) is given by:

ρk
μ

(ρre f − ρ)g∇z = −ρk
μ

·
⎛
⎝βp�p + βT�T +

∑
(γ)

βcγ �cγ

⎞
⎠ g∇z.

Usually, we assume that βp|�p| � ∑
(γ) βcγ |�cγ |, so that the buoyancy force is due

primarily to variations in temperature and concentration.
Some comments on natural convection are presented in Sect. 8.5.
In a multi-phase system, the advective fluxes of heat and mass are coupled due

to the dependence of the momentum transfer across fluid-fluid interfaces on surface
tension, γwn (say, between a wetting fluid and a nonwetting one). The latter, in turn,
depends on the temperature.

Temperature also affects the effective permeability values, again, through its
effect on surface tension, which, in turn, affects the spatial distribution of the fluid
phases within the void space.

Bear and Bachmat (1991, p. 186) develop the averaged momentum balance equa-
tion for each phase in two-phase flow, leading to a motion equation that, in addition
to coupling between the phases that is due to momentum exchange across interphase
surfaces, includes also a term (in each of the two flux equations) that is due to gra-
dients in surface tension. The latter depends on temperature and concentration of
dissolved species.

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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8.3.3 Diffusive Mass Flux of a γ-Species

In this subsection, we are considering diffusive heat and mass transport in a multi-
species fluid phase. We shall take into account coupled phenomena as presented in
Sect. 2.6: the Soret and the Dufour effects. The macroscopic diffusive flux of a γ-
species in a amulti-component fluid phase that occupies the entire void space or part
of it within a porous medium domain under nonisothermal conditions, is expressed
in the form:

Jγ
α = ρ̂2α

ραRT

∑
(δ)

MγMδ D∗γδ
α X δ

α·
[
∇μδ

α

∣∣∣∣
pα,T

+ Mδ
(
vδ

α − vα

) ∇ pα

+ Mδ

⎛
⎝∇ϕδ

α −
∑
(λ)

ωλ
α∇ϕλ

α

⎞
⎠

⎤
⎦ − D∗γT

α ∇T, (8.3.9)

(Bird et al. 1960, p. 567) in which D∗γδ
α (≡ Dγδ

α T∗
α) is the coefficient of molecular

diffusion of the γ-species in a multi-species α-phase within the void space; Dγδ is
the same coefficient for the phase, but not within a porous medium; and T∗

α is the
tortuosity of the phase (Bear and Bachmat 1991). Here, ρ̂α denotes the molar density
of the α-phase, v̂γ

α denotes the partial molar volume of a γ-species in an α-phase, R
(= 8.1347 J/mol◦K) is the universal gas constant, T is the absolute (◦K) temperature,
Mγ is the molar mass of a γ-species, and Xγ

α = nγ
α/nα is the molar fraction of the

γ-species in the α-phase, with nγ
α denoting the number of moles of the γ-species in

the α-phase. The variables ωγ
α and ϕγ

α are the mass fraction and the potential energy
of the γ-species, respectively.

The chemical potential for a species of a phase, μγ
α, is defined (see (2.2.52)) by:

μγ
α ≡ ∂Gα

∂N γ
α

∣∣∣∣
pα,T,nδ �=γ

, (8.3.10)

where Gα is the Gibbs free energy (defined in Sect. 2.2.3) of the phase. The first
term in the square brackets on the right-hand side of (8.3.9) is an extension of Fick’s
law for a multi-species phase. The second and third terms express diffusion due to
mechanical and potential energy, respectively. The coefficient D∗γT

α (≡ DγT
α T∗

α) is
the coefficient for the molecular diffusive flux due to temperature gradients, known
as the thermo-diffusive effect, or Soret effect (see Sect. 2.6, or any text on irreversible
thermodynamics, e.g., De Groot and Mazur 1962), and DγT

α is the same coefficient,
but not in a fluid continuum.

The diffusion coefficients Dγδ
α satisfy the relationships:

Dγγ
α = 0, and

∑
(γ)

[
MγMδDγδ

α − MγMλDγλ
α

] = 0.

http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
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For a dilute solution, we have:

∇μ̂γ
α

∣∣∣∣
p,T,nδ �=γ

= RT

nγ
α

∇nγ
α.

By expanding (8.3.9) for a binary system, γ = A, B, we obtain:

JA
α = −ραD∗AB

α ∇ωA
α

− ρ̂αωA
α ωB

α

RT
MAMBD∗AB

α

[(
vA

α − vB
α

) ∇ pα + ∇(ϕA
α − ϕB

α )

]

−D∗A T
α ∇T, (8.3.11)

JBα = −ραD∗AB
α ∇ωB

α

− ρ̂αωA
α ωB

α

RT
MAMBD∗AB

α

[(
vB

α − vA
α

) ∇ pα + ∇(ϕB
α − ϕA

α )

]

−D∗B T
α ∇T, (8.3.12)

where we made use of the relationshipD∗AA
α = D∗BB

α = 0, and, for a binary system,
D∗AB

α = D∗BA
α . We also used the identities v = ωAvA + ωBvB and ϕ = ωAϕA +

ωBϕB . When the only external forces acting on the species are gravitational, then
ϕA = ϕB = gz, and the terms that contain the species’ potential energies in the flux
expressions vanish.

We note here the coupling between the diffusive mass flux of a species and the
concentration gradient, as well as coupling to the pressure, to the species potential
energies, and to the temperature. The flux due to the concentration gradient usually
dominates over the fluxes due to pressure and temperature gradients, except when
these gradients are very large. A brief discussion on coupled transport fluxes is
presented in Sect. 2.6.

8.3.4 Diffusive Heat Flux (≡ Conduction)

At the microscopic level, the diffusive heat flux within an α-phase, also referred to
as heat conduction, is expressed by Fourier’s law:

jHα = −λα∇Tα, (8.3.13)

where λα denotes the thermal conductivity of the α-phase.
To obtain the macroscopic form of Fourier’s law, we average the microscopic law

over an REV, employing the definition of averages and the averaging rules presented
in Sect. 1.1.4.

In order to apply these averaging rules to thermal conductivity in a fluid-solid
system (α = f, s), we assume that the λα, of each α-phase is constant within the

http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_1
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REV. We also assume that the gradient of the microscopic temperature on the outer
boundary of the REV is approximately equal to the gradient of the macroscopic (=
average) temperature assigned to the center of the REV. Let us consider two cases:

CASE A. A fluid ( f ) occupies the entire void space and the solid (s) is a thermal
insulator. This corresponds to CASE A in Sect. 1.4.2A4. From (1.4.17), we obtain:

JHf = −λfT∗
f ·∇T

f = −λ∗
f ·∇T

f
, (8.3.14)

in which λ∗
f (= λfT∗

f ) is the coefficient of thermal conductivity of the f -phase that
occupies the void space, and T∗

f is the second rank tensor of tortuosity of that phase
(components T ∗

f i j ). Note that the above coefficient is a second rank symmetric tensor.

CASE B. We assume that both phases, f and s, are thermally conductive and Tf
f

= Ts
s
. Then, from CASE B in in Sect. 1.4.2A4, we obtain for the heat flux through

the porous medium as a whole, qH
pm :

qH
pm ≡ φjHf

f + (1 − φ)jHs
s = −φλf ∇T

f − (1 − φ)λs∇T
s

= − [
φλ∗

f + (1 − φ)λ∗
s

] ·∇T
f = −�H

pm·∇T
f
, (8.3.15)

where:
�H

pm = φλ∗
f + (1 − φ)λ∗

s = φT∗
f λf + (1 − φ)T∗

sλs (8.3.16)

is the thermal conductivity of a saturated porous medium as a whole.
Omitting the averaging symbols, we can express the law of heat conduction in a

saturated porous medium as a whole in the form:

qH
pm = φJHf + (1 − φ)JHs = −�H

pm·∇T, T
f = T

s = T . (8.3.17)

We recall that all Jα-fluxes are per unit area of the considered phase, while qH
pm is

per unit area of porous medium.
Oneof the assumptionsmade in the abovederivation, that the approximate equality

of the gradient of the microscopic temperature at the boundary of the REV with
the gradient of the macroscopic temperature at its center, does not always hold.

For example, while, as a consequence of the equilibrium assumption Tf
f � Ts

s
, the

gradients of themacroscopic temperature in the twophases are the same, the gradients
of the microscopic temperatures in the solid and fluid phases may be quite different
from each other when their conductivities are highly contrasting. It is important
to realize that when the assumption under discussion does not hold, the thermal
conductive flux in a porous medium is not the sum of the individual fluxes in the two
phases, as given in (8.3.15). Despite this fact, the general Fourier form of the heat
conductive flux, with all phases at the same averaged temperature, T :

qH
pm = −�H

pm·∇T, (8.3.18)

http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_1
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has been found, empirically, to apply to a large variety of situations in porousmedium
domains.

When we consider coupled phenomena (Sect. 2.6), say in single phase multi-
species flow, the above equation takes the form:

qH
pm = −�H

pm·∇T −
N∑

γ=1

Dγ·∇ωγ, (8.3.19)

The coefficient �H
pm in (8.3.19) is referred to as the effective thermal conductivity

(of the porous medium domain). It depends on (1) the thermal conductivities of the
individual phases, and (2) the microscopic geometry of the phases distributed within
the REV. In practice, since this distribution is not known (unless the medium is well-
ordered), it is impossible to determine the conductivity from first principles. Instead,
it is determined through experiments in which a known heat flux is forced to pass
through a given porous medium domain, and the resulting temperature gradient is
measured. Care must be taken that the temperature gradient is predominantly due to
heat transport by conduction, and not due to advection or mass diffusion.

The lowest value of effective thermal conductivity can be obtained by visualizing
the solid and fluid as alternating parallel layers, with heat being conducted normal
to them. We then obtain for saturated flow:

1

�H
pm,min

= φ

λf
+ 1 − φ

λs
.

The maximal value is obtained when heat is conducted parallel to the layers:

�H
pm,max = φλf + (1 − φ)λs .

Many combined, parallel-series, models are given in the literature. Following are a
few examples.

• For the case in which the solid is made of spheres of uniform size, without
mutual influence between them, i.e., for large porosity,Maxwell (1892) suggested the
relationship:

�H
pm

λf
= (2λf /λs + 1) − 2(1 − φ)(λf /λs − 1)

(2λf /λs + 1) + (1 − φ)(λf /λs − 1)
. (8.3.20)

• Kampf and Karsten (1970) suggested the relationship:

�H

λf
= 1 − (1 − φ)(λf /λs − 1)

1 + (1 − φ)
1
2 (λf /λs − 1)

. (8.3.21)

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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• Schulz (1981) suggested the relationship:

�H
pm

λf
=

[
λs − �H

φ(λs − λf )

]3

. (8.3.22)

Expressions for saturated flow were also proposed by Chan and Tien (1973), Cook
and Peckover (1983), Hadley (1986), and Duncan (1989).

An expression for the coefficient of thermal conductivity in a multiphase system
(e.g., unsaturated flow) is discussed in Sect. 8.5.1.

8.3.5 Diffusive Vapour Flux

The diffusive mass flux of a species in a phase under isothermal conditions is dis-
cussed in Sect. 7.1.2. In general, unless we wish to consider fluxes due to gradients in
temperature (Sect. 8.3.3), the only modification required when nonisothermal con-
ditions prevail, is in the value of the coefficient of molecular diffusion, which is
temperature dependent. However, when a liquid and a gas occupy the void space
under nonisothermal conditions, such that a change of phase may take place from
liquid to vapour, by evaporation, or from vapour to its liquid, by condensation, the
diffusive mass flux of the vapour requires special attention. We shall focus our atten-
tion on the special case of water as the liquid and water vapour as a species of a
gaseous phase, which we will take to be air.

In principle, this is a flux of the mass of a species of a phase, and as such it could
be expressed by Fick’s law at the macroscopic level, say, in the form of (7.2.17) Here,
this equation takes the form:

Jw
g = −ρgD∗w

g ·∇ωw
g , (8.3.23)

where Dw∗
g (= Dw

g T
∗
g) is the coefficient of molecular diffusion of the vapour in the

gaseous phase in a porous medium domain, and ωw
g (= ρw

g /ρg) is the mass fraction
of the vapour in the gaseous phase.

De Vries and Kruger (1966) suggested an expression for Dw
g for a gas at

atmospheric pressure and temperature T , in ◦C, of the form:

Dw
g = Dw

g (T ) = 0.217

(
T + To
To

)1.88

cm2/s, (8.3.24)

where To is a reference temperature (= 273.15 ◦C).
We usually assume that as long as liquid water is present in the void space,

the vapour concentration in the gaseous phase, ωw
g , is at saturation, ωw

g |sat =
ωw

g |sat (�m,ωγ
w, pg, T ), with ωγ

w denoting the mass fractions of the various species
(solutes) in the liquid water, and �m denoting the matric potential defined in

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
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Sect. 2.5.1B. In most cases of very low concentrations, the effect of solute con-
centrations is negligible. It may be significant in cases of water with a high salinity.
For the sake of simplicity, we neglect this effect here. Note that ωw

g |sat defines the
mass fraction of saturated water vapour that occupies the void space. This is distinct
from the mass fraction of water outside a porous medium, due to the influence of the
matric potential.

We shall assume that the gas pressure, pg , is approximately constant and uniform.
Then, the expression for the vapour flux can be written in form:

Jw
g = −ρgD∗w

g ·∇ωw
g |sat = −ρgD∗w

g ·
(

∂ωw
g |sat

∂�m
∇�m + ∂ωw

g |sat
∂T

∇T

)
. (8.3.25)

Let us introduce the concept of relative humidity, defined by:

hr ≡ ωw
g

ωw
go

∣∣
sat (pg, T )

(see also (2.3.24)), where ωw
go

∣∣
sat (pg, T ) denotes the vapour mass fraction at satura-

tion in a gas, at the pressure pg and temperature T , which is in contact with a flat
water surface (outside a porous medium).

Following Edelfsen and Anderson (1943), under thermodynamic equilibrium,
the relative humidity in a porous medium, is given by Kelvin’s equation, (2.3.35),
rewritten in the form:

hr = ωw
g |sat

(ωw
go)

∣∣
sat

= exp

(
�w

m Mw

RT

)
, (8.3.26)

where �w
m is the water matric potential for the liquid, defined in (2.3.38), for which

we need the constitutive relationship:

�w
m = �w

m (pg, Sw,ωγ
w, T ). (8.3.27)

The function ωw
go

∣∣
sat (pg, T ) obeys the identity:

ωw
go

∣∣
sat = ρw

go|sat
ρw

go|sat + ρag
,

in which we can use the relationship (Kimball et al. 1976):

ρw
go

∣∣
sat (T ) = 10−6exp

[
19.819 − 4975.9

T + T0

]
g/cm3, (8.3.28)

valid for pg = atmospheric pressure.

http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
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Another possible expression that can be used is:

ωw
go|sat = Mwnw

go|sat
Mwnw

go|sat + Manag
, (8.3.29)

with:

nw
go|sat = psat (T )

pg
, nag = 1 − nw

go|sat , (8.3.30)

in which psat (T ) is the saturatedwater vapour pressure given in Steam Tables (Meyer
et al. 1968), with Mw and Ma denoting the molecular mass of water and of air,
respectively.

Neglecting gradients in pg , we can, therefore, rewrite (8.3.25) as:

Jw
g = −ρgDw∗

g ·
[(

hr
dωw

go

∣∣
sat

dT
+ ∂hr

∂T

)
∇T + ωw

go

∣∣
sat

∂hr
∂�m

∇�m

]

= JwT ′
g + Jw�′

g , (8.3.31)

where:

JwT ′
g = −ρgDw∗

g

(
hr

dωw
go

∣∣
sat

dT
+ ∂hr

∂T

)
·∇T (8.3.32)

is the temperature-driven part of the diffusive vapour flux, and:

Jw�′
g = −ρgDw∗

g ωw
go

∣∣
sat

∂hr
∂�m

·∇�m, (8.3.33)

is the matric-potential-driven part.
However, it has been observed in experiments (e.g., Rollins et al. 1954) that in

the presence of a temperature gradient, the actual temperature-driven part of the
diffusive flux of vapour mass is larger than that predicted by Fick’s law of mass
diffusion in a gaseous phase for a non-condensible vapour.DeVries (1958) and Philip
and de Vries (1957) developed a conceptual model for vapour flux that involves an
additional transport of vapour through the liquid phase (= ‘pure water’) from low to
high temperatures, due to the processes of condensation and evaporation.

To understand why the temperature-driven part of the diffusive vapour flux is
underestimated by (8.3.32), let us consider the movement of vapour in the gaseous
phase, say, in the x direction. As the vapour diffuses, its movement is obstructed
by a pocket of water. This pocket, say, a pendular ring of size �x , is bounded by
gas-water interfaces at x and at x + �x . As we have assumed that (a) the gas is
saturated by the vapour, and (b) a local temperature gradient exists between the two
gas-water curved surfaces (menisci) that bound the water pocket in the x-direction,
vapour must condense at the lower temperature boundary, and water must evaporate
at the higher temperature one. The two rates, of evaporation and condensation, must
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be identical if the moisture content of the liquid phase is to remain unchanged.
The simultaneous condensation-evaporation processes, is then averaged to form an
additionalmacroscopicmass flux of the vapour (through the liquid) in the unsaturated
zone. Alternatively, this amounts to an increase in the cross-sectional area available
to vapour diffusion, beyond the value dictated by the cross-section of the gaseous
domain. For example, θg is increased to θg + f (θg)θ�, with f (θg) = 1 for θg ≥ θr�,
and f (θg) = θg/θr� for θg ≤ θr�.

Philip and de Vries introduced an additional enhancement factor that is due to
the fact that in the presence of vapour, the thermal conductivity in the gaseous phase
is larger than that corresponding to the average temperature. It is equal to the ratio
between the gradient of the temperature in the gas and that of the averaged temper-
ature in the soil as a whole. However, observations indicate that beyond an average
temperature of 62 ◦C, the vapour flux is overestimated by (8.3.32).

Jury and Latey (1979) supplemented this theory by taking into account the thermal
properties of the phases. Cass et al. (1984) conducted experiments at temperatures
up to 35 ◦C, and compared results with the various theories. They concluded that

• The enhancement factor rises exponentially with moisture content up to the mois-
ture content for which the water becomes a continuous phase. Beyond that point,
the contribution of the liquid phase to vapour flux decreases.

• The enhancement factor decreases with temperature.

Bensabat (1986), modifying the theory developed by Philip and de Vries (1957),
proposed a model for an isotropic porous medium that replaces (8.3.32) by the form:

θgJwT
g = −κ(T )ζ(θg)ρgDw∗

g

(
hr

dωw
go

∣∣
sat

dT
+ ∂hr

∂T

)
·∇T, (8.3.34)

where:
ζ(θg) = θgT∗

g + θ�T∗
� f

T (T ) f θ(θ�)

is the enhancement coefficient for which Childs and Malstaf (1982) suggested (for
the isotropic case) the expression

ζ(θg) = 2.0 − 10(φ − θg),

and κ(T ) is a mass flow factor (Childs and Malstaf 1982) introduced as a correction
in order to take into account the fact that the pressure in the gas is not zero, and
f T (T ) and f θ(θ�) are enhancement coefficients. The value of f θ vanishes both at
low and at high water contents. We note the additional flux due to transport through
the water in the expression for ζ. Bensabat (1986) suggested expressions for f θ(θ�).

The correction κ should also be applied to (8.3.33), so that the pressure-driven
part of the diffusive vapour flux should be written as:

Jw�
g = −κ(T )ρgDw∗

g ωw
go

∣∣
sat

∂hr
∂�m

·∇�m . (8.3.35)
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This flux, arising from the dependence of the relative humidity of the air on thematric
potential, has a significant magnitude at very low values of water content, when the
tension is high (on the order of tens of bars).

Childs andMalstaf (1982) suggested an expression for the mass flow factor of the
form:

κ = κ(T ) = 1

{[(AκT + Bκ) T − Cκ] T − Dκ} T + Eκ
, (8.3.36)

where Aκ = −9.575 × 10−9, Bκ = 3.42 × 10−7,Cκ = 3.63 × 10−5, Dκ = 1.463 ×
10−4, and Eκ = 0.99321.

The developments mentioned above relate to ‘pure water’ in the unsaturated
zone, i.e., water without any dissolved matter. Obviously, the presence of the latter
affects vapour pressure, and (8.3.34) and (8.3.35) have to be modified to include
the effects of gradients in concentration, since with this effect we have ωw

gsat
= ωw

gsat (�m,ωγ
w, pg, T ). Here, γ denotes all species in the gaseous phase, except

water.
Bear et al. (1991) applied these developments to calculations associated with

experiments on heat storage in the unsaturated zone in the soil (Sect. 8.5.1). The
subject of enhanced vapour diffusion is also discussed by Clifford (2006, p. 38).

8.3.6 Dispersive Heat Flux

The phenomenon of dispersion in heat transport is analogous to that of species
dispersion in mass transport. Both stem from the fact that at the microscopic level,
fluid velocities vary from point to point within the void space. Hence, the average
of the microscopic advective heat flux (carried by the mass averaged velocity of the
phase) over an REV, yields the sum of two fluxes: a macroscopic advective flux,
discussed in Sect. 8.3.1, and a dispersive heat flux.

The expression for the dispersive heat flux follows from (8.3.6):

JHα,dis = ρα
α ˇ̃hαV̌α

α

. (8.3.37)

Because of the analogy to the dispersive mass flux of a species, most of the
discussion in Sect. 8.3.1, with the obviousmodifications resulting from the difference
in the transported extensive quantity, is applicable also to thermal dispersion. Thus,
in analogy to (7.2.32), the expression for the dispersive heat flux in a fluid α-phase,
with ραhα (≡ eHα ) = ραCα,pT , takes the form:

JHα,dis = −D′H
α ·∇(ραCα,pT ), (8.3.38)

where D′H
α denotes the coefficient of thermal dispersion, which is a second rank

symmetric tensor. It is common to rewrite (8.3.38) in the form:

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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JHα,dis = −DH
α ·∇T, (8.3.39)

where DH
α denotes another coefficient of thermal dispersion.

To obtain an expression for DH
α , we have to insert in (7.2.38), a thermal Peclet

number, PeHα , defined by:

PeHα = Vα�α

λαραCα,p
, (8.3.40)

in which Vα is the magnitude of the macroscopic velocity of the α-fluid, �α is the
hydraulic radius of the α-fluid-filled portion of the void space, λα is the thermal
conductivity of the α-fluid phase, and λα/ραCα,p is its thermal diffusivity. This
definition of the Peclet number can be understood by comparing it to the one defined
by (7.2.39).

Thus, in indicial notation, omitting the subscript α, the coefficient of thermal
dispersion of a fluid phase is given by:

DH
im = ρCpa

H
ik�m

VkV�

V
f (PeH , �H/�), (8.3.41)

where the characteristic length, �H , which indicates the distance of correlation
between the velocities of energy particles, and the hydraulic radius,�, depend on the
spatial distribution of the phase within the void space. As such, they are functions of
the saturation of the phase. In this expression, aH

ik�m denotes the thermal dispersivity.
We usually assume that �γ ≈ �H , and, therefore, the thermal dispersivity tensor,

aH , and themass of species’ dispersivity tensor, aγ , are approximately the same. This
means that for PeH � 1, f (PeH , r) = PeH/(1 + PeH + �H/�) = O(1), and the
coefficients of thermal and mass dispersion are the same. However, when PeH � 1,
f (PeH , r) ≈ PeH/(1 + �H/�). Under these conditions, Bear and Bachmat (1991)
examine the relative magnitudes of the advective, dispersive, and conductive heat
fluxes. They found that thermal advection dominates over thermal dispersion as long
as:

L(T )
c

ac
� (�T )c

Tc
, (8.3.42)

where subscript c denotes characteristic values. If PeH � 1, advection dominates
when:

L(T )
c

ac
� (�T )c

Tc
PeH . (8.3.43)

Usually ac and L(T )
c are represented by the hydraulic radius, �, and the char-

acteristic length of an REV, respectively. The ratio L(T )
c /ac is then often taken as

100.

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
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This means that under most practical circumstances, thermal dispersion can be
neglected with respect to thermal advection. Cheng et al. (1991) discuss thermal
dispersion in porous media.

8.3.7 Coupled Transport Fluxes

The subject of coupled phenomena (in theOnsager sense)was introduced in Sect. 2.6.
Herewe shall repeat the case of coupling between heat transport andmass transport of
chemical γ-species, in a slightly different form. Fourier’s law describes the diffusive
flux of heat, and Fick’s law describes the diffusive flux of mass of a γ-species in a
fluid phase bymolecular diffusion. According toOnsager’s theory, they are particular
cases of a general linear law that describes the coupled (macroscopic) diffusive fluxes
of heat and γ-mass:

JH = −LHH ·∇T −
∑
(i)

LHγi ·∇ωγi , (8.3.44)

Jγi = −
∑
(i)

Lγiγi ·∇ωγi − Lγi H ·∇T, (8.3.45)

where the coefficients LHγi represent the Dufour effect, and the coefficients Lγi H

represent the Soret effect. The coefficientsLγiγi ≡ D∗γi represent the coefficients of
molecular diffusion, whileLHH ≡ �∗ represents the coefficient of thermal conduc-
tivity, both in a phase within a porous medium domain. All fluxes are per unit area
of the considered phase, and all coefficients are second rank symmetric tensors.

The phenomena of coupling between fluxes of heat and mass of species as
described here are neglected in this.

8.4 Macroscopic Heat and Mass Transport Models

Whenever we assume thermal equilibrium among the solid and fluid phases at points
within a porousmedium domain (which is the underlying assumption here, as inmost
cases of heat and mass transport in the subsurface and in geological formations), the
only variable, T (x, t), is the average temperature of the porous medium as a whole,

T (x, t) = 1

Vo

∫
Vo

∑
α

Tα(ξ, t; x)γα(ξ)dV, α = w, n, s.

Thus, we need to state and solve only a single energy balance equation–for the porous
medium as a whole. We obtain this equation by summing the equations for all the
individual phases present in the system.

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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8.4.1 Energy Balance without Chemical Reactions

A. In Terms of Temperature

In the absence of chemical chemical reactions, it is convenient to write this equation
in terms of the temperature.We start from themicroscopic equation (8.2.16), inwhich
we assumed that (a) |τ f : ∇Vf | � |∇·j I Ef |, (b) Cf ≡ Cp = const., (c) |Dp/Dt | �
|ρf CfDT/Dt |, and (d) the effect of concentration changes on the energy balance is
negligible. Adding the assumption that there exist no energy and mass sources or
sinks, i.e., �H = �

′m = 0, we obtain the microscopic energy balance equation for a
fluid that fills the void space, or part of it,

∂

∂t
(ρf Cf Tf ) = −∇·(ρf Cf TfVf + jHf ). (8.4.1)

We have written the fluid’s energy balance equation in the above form to emphasize
the interpretation of ρf Cf Tf as the enthalpy density. Energy sources can always be
added if such sources exist.

By averaging this equation, with

|ρ̊f T̊f
f | � |ρf

f Tf
f |, so that ρf Tf

f � ρf
f Tf

f
,

and
ρf Tf ∇·Vf

f � ρf
f Tf

f ∇·Vf
f
,

which is based on the assumption that the absolute value of the average of a product
of two or three deviations is much smaller than that of the products of the corre-
sponding averages (Bear and Bachmat 1991, p. 142). Or directly by employing the
phenomenological approach, we obtain:

∂

∂t
(φρf

f Cf Tf
f
) =

−∇·φ
[
ρf

f Cf Tf
f
Vf

f + (ρf C̊f Tf )V̊f

f + jHf
f
]

− f Hf →s . (8.4.2)

The term (ρf C̊f Tf )V̊f

f
(≡ JHdis) expresses the dispersive flux of heat.We note that the

total heat flux is made up of an advective, a dispersive, and a diffusive (≡ conductive)
heat fluxes. The term:

f Hf →s ≡ 1

Vo

∫
S f s

[
ρf Cf Tf (Vf − u) + jHf

] ·ν f dS f s,

represents the rate of heat transferred from the fluid to the solid, per unit volume
of porous medium. We note that, in general, this transfer takes place in two modes:
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by advection of mass across the (microscopic) interphase boundary, and by thermal
diffusion (= conduction). In the case of saturated flow considered here, the fluid-solid
interface is a material surface with respect to the fluid’s mass, so that (Vf − u)·ν f ≡
0, andonly the secondmodeof transport remains.However, ifwe consider adsorption,
the energy of the adsorbate is carried across the fluid-solid interface.

Next, we average (8.2.29) for an isotropic thermo-elastic solid phase, assuming
that (a)Cs ≡ Cσ = constant, i.e., that the heat capacity at constant stress is a constant,
(b) |βT i j T (Dσi j/Dt)| � |D(ρsCsT )/Dt |, i.e., the stress is a constant or almost so,
(c) �

′m = 0, i.e., that there are no sources of solid phase mass, and (d) that:

|ρs sCsTs
s | � |ρ̊s(CsT̊s)

s

|, hence: ρsCsTs
s � ρs

sCsTs
s
,

|(ρsCs T̊s)V̊s

s | � |ρs sCsTs
s
Vs

s |.

Noting also that Ss f is a material surface with respect to the solid’s mass, i.e., (Vs −
u)·νs ≡ 0, the averaged, or macroscopic heat balance equation for the solid is:

∂

∂t
(1 − φ)ρs

sCsTs
s = −∇·(1 − φ)

[
ρs

sCsTs
s
Vs

s + jHs
s
]

− 1

Vo

∫
S f s

jHs ·νs dSs f , (8.4.3)

in which we have made use of ν f = −νs and jHs ·νs = −jHf ·ν f at every point on
Ss f . We recall that the last terms on r.h.s. of the above equation expresses the rate of
heat transferred from the fluid to the solid, per unit volume of porous medium.

Equations (8.4.2) and (8.4.3) are the two macroscopic heat balance equations for
the fluid and for the solid phases, respectively. In order to express these equations
in terms of average temperatures as the only state variables, we have to introduce

appropriate expressions for the macroscopic conductive fluxes, jHf
f
and jHs

s
, as well

as for the surface integrals that express the (average) rate of exchange of heat between
the two phases.

Usually, at the microscopic level, we assume, on the basis of thermodynamic
considerations, a condition of no-jump in the temperatures of the fluid and the solid at
their commonboundary, i.e., [[ T ]] f,s = 0. Evenwhenwe do invoke this condition of
no-jump in temperature at the microscopic interfaces, Ss f , this does not necessarily
imply the equality of the macroscopic temperatures of the two phases at a point.

Thus, when Ts
s �= Tf

f
, the two balance equations have to be solved simultaneously

because they are linked by the terms that express the exchange of heat between the
solid and fluid continua. This is, for example, the case when large solid blocks are
surrounded by relatively narrow fluid filled fractures.

Under the condition of Tf
f �= Ts

s
, heat is transferred from the phase having a

higher temperature to the other phase. This exchange is expressed by the surface
integrals in (8.4.2) and (8.4.3). Very often, this rate of transfer is expressed as:
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1

Vo

∫
Ss f

jHf ·ν f dS = α�
T (Tf

f − Ts
s
), (8.4.4)

where α�
T is referred to as a heat transfer coefficient

In geological formations, because solid grains, or blocks, are relatively small and
the velocity of the fluid in the void space is small, the two phases are assumed to

maintain thermal equilibrium, or approximately so, i.e., Ts
s = Tf

f = T . Then, by
adding (8.4.2) and (8.4.3), we obtain the energy balance equation for the porous
medium domain:

∂

∂t
(ρC)pmT = −∇·

[
φρf

f Cf TVf
f + φ(ρf C̊f T )V̊f

f + (1 − φ)ρs
sCsTVs

s
]

,

(8.4.5)
where

(ρC)pm = φρf
f Cf + (1 − φ)ρs

sCs (8.4.6)

denotes the heat capacity of the porous medium as a whole, i.e., including the solid
matrix, andwehaveused the equality of heat flux at points on thefluid-solid boundary,
S f s .

We can always add heat sources on the r.h.s. of the above equation.
Next, we assume that the solid is stationary or approximately so. More precisely,

we assume that:
|∇·(ρsTVs)| � |D(ρsT )/Dt |.

Then, omitting the symbols that denote averages, (8.4.5) reduces to:

∂

∂t
(ρC)pmT = −∇· [

φ
(
ρf Cf TVf + JHf,dis + JHf

) + (1 − φ)JHs
]
, (8.4.7)

in which JHf and JHf,dis are the conductive and dispersive fluxes in the fluid, respec-
tively, and JHs denotes the conductive heat flux in the solid matrix.

Finally, by combining (8.4.7) with the mass balance equations for the fluid and
the solid, and making the same assumptions as those leading to (8.4.7), we obtain:

∂(ρC)pmT

∂t
= −∇·(ρf Cf Tq) + ∇·(�∗H

pm·∇T ), (8.4.8)

where the coefficient �∗H
pm is defined by

φJHf + (1 − φ)JHs + φJHf,dis = −�H
pm·∇T + φJHf,dis = −�∗H

pm·∇T, (8.4.9)

in which �∗H
pm is the combined coefficient of thermal conductivity and dispersion of

the saturated porous medium. Equation (8.4.8) combines both the conductive heat
fluxes in the fluid and in the solid, as well as the dispersive heat flux in the fluid
(unless the latter flux is neglected). If necessary, we can add an energy source term
to the above equation.
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B. In Terms of Enthalpy

We consider a void space occupied by two fluid phases, α, β (e.g., two liquids (w,
n), or a liquid (�) and a gas (g)). When we are interested in the chemical species that
comprise the phases, possibly with chemical reactions, it is convenient to express the
energy balance equations in terms of the relevant enthalpy, h (see Sect. 2.2.2).

By mass averaging the microscopic energy balance equation (8.2.8) for an α-
phase over an REV, or directly by the phenomenological approach, we obtain the
macroscopic energy (E) balance for a porous medium domain, with two fluid phases
occupying the void space. Making use of the operator defined by (7.3.80), this equa-
tion takes the form:

BE

α(ωγ
α, pα, Tα) = f Es→α + f Eβ→α + �E

α , (8.4.10)

where we have defined the energy balance operator,

BE

α(ωγ
α, pα, Tα) ≡ ∂θαραuα

∂t
+ ∇·θα

⎛
⎝ραhαVα +

∑
(γ)

hγ
αJ

γ
h,α + J∗H

α

⎞
⎠

−∇·(�∗
α∇Tα), (8.4.11)

in which Jγ
h,α is the hydrodynamic dispersive flux of the mass of the γ-species,

J∗H
α denotes the dispersive heat flux within a fluid α-phase, and the enthalpy of a

γ-species, hγ
α, is defined by

hγ ≡ uγ
α + pαvγ

α. (8.4.12)

For the solid phase, the macroscopic energy balance equation is

BE

s (Ts) = − f Es→α − f Es→β + �E

s , (8.4.13)

The heat exchange between the adjacent phases is represented by the term

f Eα→β = − 1

Vo

∫
Sαβ

[
ραhα(Vα − uαβ) +

∑
(γ)

hγ
αj

γ
α

+pαuαβ − λα∇Tα

]
·ναdS, (8.4.14)

where it is understood that the summation in this term is over all phases β �= α.
The first term in the integrand is the advective flux of enthalpy across the interface,
at a velocity relative to that of the interface, denoted here as uαβ . The second term
represents the transport of energy by the diffusive mass fluxes. The third and fourth
terms express, respectively, the work done on the interface by the fluid pressure, and
the transport of heat by conduction.

http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_7
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By adding the balance equations (8.4.10) and (8.4.13), the terms that express the
exchange of energy between the various phases cancel, and we obtain

BE

� + BE

n + BE

g + BE

s = �E
pm,

where �E
pm(≡ ∑

(α) �E
α ) denotes the rate at which energy is added to the porous

medium per unit volume of the latter from both internal (e.g., heat of wetting, or
heat released in chemical reactions) and external sources (e.g., energy injected for
heating the soil, and energy extracted (= sink) with extracted gas). We then obtain
the macroscopic energy balance equation for the porous medium as a whole in the
form:

∂

∂t

⎡
⎣∑

(α)

(θαραuα) + (1 − φ)ρsCσT

⎤
⎦

= −∇·
∑
(α)

θα

⎡
⎣ραhαVα +

∑
(γ)

hγ
αJ

γ
h,α + J∗H

α

⎤
⎦

+∇·(�∗H
pm∇T ) + �E

pm, (8.4.15)

in which α = �, n, g, Cσ(≡ Cs) is the specific heat capacity of the solid, and the
second sum on the second line is taken over all γ-species present in the phase. The
J’s denote macroscopic fluxes (per unit phase area). Here, Jγ

h,α is the hydrodynamic
dispersive flux of the mass of the γ-species, and J∗H

α denotes the dispersive heat flux
within a fluid α-phase. The source term �E

pm expresses the energy (= heat) added
per unit volume of porous medium.

To obtain the specific enthalpies and internal energies of the three multi-species
fluid phases, we need appropriate constitutive relations. These relations, which have
to be determined experimentally for all fluid phases, have the functional form:

uα =
∑
(γ)

ωγ
αu

γ
α, uγ

α = uγ
α(pα, T,ωγ, θα), α = �, n, g. (8.4.16)

hα =
∑
(γ)

ωγ
αh

γ
α, hγ

α ≡ uγ
α + pαvγ

α. (8.4.17)

We have included θα as a factor that affects the internal energy, because of possible
surface effects. At lower saturations, the fact that the fluid’s energy close to the solid
surface is much higher than at a distance from that surface may dominate the internal
energy per unit volume of the fluid. By including this factor, we enable the inclusion
of heat of wetting in the model.

For dilute contaminant concentrations, Steam Tables (Meyer et al. 1968) may be
used for the liquid phase, while for the gaseous phase we may obtain the internal
energy by assuming ideal gas behavior.
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∗ ∗ ∗

In Chap.6, we have discussed cases in which more than one phase occupies the
void space. In Sect. 2.3.1 we have discussed how phase changes are represented on
a phase diagram. With the above in mind, we are now ready to consider multiphase
flow and heat transport when the considered substances may change phase pressure
and temperature vary.

8.4.2 Energy Balance with Phase Change

Fluids that occupy the void space, aswell as the solidmatrix itself,may undergo phase
changes in response to certain changes in pressure, temperature, and concentration
of dissolved species. Phase changes may occur also as a consequence of exothermic
or endothermic chemical reactions. The subject of phase change has already been
introduced in Sect. 2.3.1. In principle, all fluid and solid phases present in a porous
medium domain may undergo changes of phase. However, in this book, which deals
with phenomena of transport porous medium domains, we assume that the solid
matrix does not undergo a change of phase. Furthermore, we do not consider the
behavior of fluids in the micro-pores inside the solid matrix. Obviously, all the basic
flow and transport models, as well as the fundamental thermodynamic relationships
discussed thus far in this chapter, apply also when phase changes occur.

When a problem of phase change involves a moving boundary surface that sepa-
rates the two phases from each other, the problem is referred to as a Stefan problem.
Examples of phase changes occur in hydrocarbon reservoirs, where the void space
is occupied by one or two liquid phases and a gas, in geothermal reservoirs where
hot water changes to steam, as evaporation from a shallow ground water table of a
phreatic aquifer, and when water freezes in the subsurface.

Examples of phase change in a porous medium domain include evaporation of
a liquid (i.e., a change from liquid to vapor/gas), condensation (= change from gas
to liquid), solidification (when a liquid turns into solid), e.g., freezing (when water
becomes ice), melting(like when ice turns into a liquid), and Drying when a liquid
turns into vapor. At the microscopic level, all these changes are initiated at interphase
boundaries. In a macroscopic model, when heat enters or leaves a domain through a
latter’s external boundary (or at point sources/sinks that act like boundaries), phase
changes are initiated at such boundary and propagate into the domain’s interior.

As emphasized through the book, especially in Chap.6, at the macroscopic level,
there is no sharp/macroscopic interface between the phases that occupy the void
space (unless we simplify the problem and assumea (possibly moving) sharp inter-
face that separates the phases in the considered domain. Thus, what we have in the
macroscopic balance equation is a phase change that occurs at macroscopic points
within a considered domain according to the changes in p, T and cγ’s.

Consider the sharp boundary is between two states of aggregation (≡ phases of the
same substance within the void space. Across such a (possibly moving) boundary, a

http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_6
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change of phase (e.g., freezing, thawing, evaporation, condensation) takes place. We
assume that the solid matrix remains unchanged, although it is possible to consider
cases in which the solid matrix melts, or dissolves.We assume that only a single state
(rather than a mixture of states) of a fluid, is present in the void space on each side of
the boundary. The condition of no-jump in the total flux of any considered extensive
quantity in crossing the boundary. Obviously, case, [θs]1,2 = 0, and we recall that
[T ]1,2 = 0. According to Denbigh (1981), only a small portion of the energy required
for producing a change of phase is derived from the volume change.

From (3.3.5) we have for mass of a liquid-phase that changes from liquid (�) to
gas (g), per unit volume of porous medium:

f m�

�→g = − 1

Vo

∫
S�→g

[
ρ�(V� − u�g)

] ·ν�dS, (8.4.18)

• A. Conditions for Mass
We recall that the interface between phases is a material surface with respect to

the two phases. From (5.2.6), we obtain:

[θρ(V − u) − θDh·∇ρ]1,2·ν = 0, (8.4.19)

recalling that a different state of aggregation (gas, or liquid) of the considered sub-
stance occupies the entire void space on each side of the boundary. Since [θ]1,2
≡ [φ]1,2 = 0, and [u]1,2·ν = 0, Eq. (8.4.19) takes the form

[ρV]1,2·ν − [ρ]1,2u·ν − [Dh·∇ρ]1,2·ν = 0. (8.4.20)

Equation (8.4.20) cannot be further reduced, because, in general, [ρ]1,2 �= 0, and
[V]1,2 �= 0.

The first inequality stems from the nature of the phase change, except at the
critical point, where the densities of the two states of the considered substance are
identical (e.g., Amyx et al. 1960, pp. 212–217). The jump in the normal component
of the velocity arises from the change in the density, or specific volume, of the
substance upon the change of state. For a change from solid to liquid, or vice versa,
this effect may be negligible. However, changes from liquid to vapor, and vice versa,
are associated with significant changes in the specific volume of the considered
substances.

Since the mass of a considered substance does cross it, the boundary of phase
change considered here is not a material surface, so that (V − u)

∣∣
�
·ν �= 0, � = 1, 2.

However, we recognize that in crossing the boundary, the mass assumes a different
state of the same substance.

• B. Conditions for Energy

Since [u]1,2·ν = 0, and [θ]1,2 = 0, the condition of no-jump in the total energy
flux in the direction normal to the boundary, reduces to:

http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_5
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θ[ρuV]1,2·ν − θ[ρu]1,2u·ν − [�∗H ·∇T ]1,2·ν = 0. (8.4.21)

inwhich the jump in internal energy, [u]1,2 ≡ [ρCVT ]1,2 ( �= 0), in (8.4.21), expresses
the jump in the energetic state of the substance in the void space, on both sides of
the boundary.

When we consider a change of phase from solid to liquid, or from liquid to
vapor, the jump in energy represents the additional energy required to produce a
more disordered state of the molecular structure, i.e., the energy required to further
separate themolecules from each other. The jump in the energetic state of a substance
is manifested by the fact that for the thermal flux, we have [−�∗H ·∇T ]1,2 �= 0; this
means that part of the sum of dispersive and diffusive heat fluxes entering or leaving
the boundary is compensating for the energy consumed by the phase change.

An alternative form of (8.4.21) is obtained by expressing the internal energy in
terms of the enthalpy, h:

[(ρh − p)V]1,2·ν − [ρh − p]1,2u·ν − [�∗H ·∇T ]1,2·ν = 0, (8.4.22)

where h = u + p/ρ, with the quantity p/ρ expressing the energy associated with
the volume per unit mass. Since it is often assumed that only a small part of the
energy required for producing a phase change is derived from the change in volume,
(8.4.22) reduces to:

[ρhV]1,2·ν − L1,2u·ν − [�∗H ·∇T ]1,2·ν = 0, (8.4.23)

where L1,2(= [ρh]1,2) is the latent heat of phase change, defined per unit volume. It
represents the energy required to produce a change in the state of a unit volume of
substance. It may also be defined with respect to the density of one of the states of a
considered fluid phase, e.g., in the form:

L1,2 = [ρh]1,2 = ρ1L1 − ρ2L2, (8.4.24)

where L1 and L2 are the latent heat per unit mass of states 1 and 2, present on sides 1
and 2, of a boundary, respectively. In (8.4.23), the quantity [ρhV]1,2·ν, is associated
with the change in volume of the fluid in the void space, due to phase change, and
the resulting advective energy flux that is induced across the boundary.

8.4.3 Vaporization

Vaporization is a phenomenon in which the stream of a considered chemical species
that is dissolved in a liquid crosses the interface from that liquid into an adjacent
gaseous body, in excess of the stream moving in the opposite direction, i.e., from
the gaseous phase to the liquid. Boiling is a special kind of vaporization. We use
this term when a liquid from an open container passes into the vapour state through



608 8 Modeling Energy and Mass Transport

the formation of bubbles. This occurs at the temperature called boiling point. This is
the temperature at which the vapour pressure of the liquid is equal to the prevailing
atmospheric pressure. At the boiling point, the vapour pressure of the liquid is suf-
ficiently high such that the atmospheric air can be displaced; vapour bubbles can be
formed in the liquid’s interior, thus allowing vaporization. The boiling point depends
also on the pressure to which the liquid is subjected.

The change of phase from liquid to vapour and vice versa was already discussed
in Sect. 2.3.1.

The amount of heat required to vaporize one mole of liquid is the latent heat of
vaporization mentioned earlier.

8.4.4 Initial and Boundary Conditions

As for any extensive quantity, a complete well-posed model requires information on
initial and boundary conditions. These are based on the no-jump condition introduced
in Sect. 5.2.3. Briefly, this condition states that for any extensive quantity the condi-
tion on the boundary is that of no-jump in the normal component of the total flux of
that quantity (through all phases present in the porous medium domain) across the
boundary. The condition takes into account the possibility that the boundary itself
may be moving. In this chapter, the considered extensive quantity is energy, and
conditions may be expressed in terms of specific internal energy, specific enthalpy,
or temperature.

It is important to realize that in order to state boundary condition for a considered
case, we must know (or assume) what happens on the external side of the boundary
(fluxes and/or values of state variables) in that case.

In what follows, we shall continue to refer to the averaged temperature, T (x, t),
in the porous medium as the main state variable, and assume that all (fluid and solid)
phases are in thermal equilibrium. Thus, we are dealing with the boundary condition
associated with an extensive quantity that is the energy of the porous medium as a
whole. Boundaries will be assumed to be stationary or moving, and the solid matrix
will be assumed to be rigid and stationary. We shall assume that the void space is
occupied by a single fluid ( f ); the extension to multiple fluids is obvious.

The discussion is analogous to that on initial and boundary conditions for conta-
minant transport presented in Sect. 7.5.3.

Initial conditions for an energy transport problem include information on the ini-
tial distribution of temperature within the considered porous medium domain. In a
coupled energy and mass transport problem, values of other state variables, such as
pressure and concentration, must also be specified.

A. General No-Jump Conditions

Boundary conditions are based on the statement of “no-jump” across the boundary.
Specifically, we shall make use of the no-jump condition (5.2.6). Thus, analogous to

http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_5
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the discussion in Sect. 7.5.1, on the transport of a chemical species, we have to satisfy
the condition that without phase change (see item F below), there is no temperature
jump across any surface within a domain nor on its boundary, B:

[[ T ]]1,2 = 0, on B, (8.4.25)

where 1, 2 represent the interior and exterior of the domain.
In addition, we have to satisfy the condition of no-jump in the total energy flux,

unless there is a phase change (see item F. below).
The total energy flux carried by any α-phase, is given by

ρα

(
uα + 1

2
V 2

α

)
Vα − σα·Vα + JHα,dis + JHα,di f . (8.4.26)

Assuming that the boundary is a material surface with respect to the solid matrix
(although, under certain conditions, it may be displaced), and neglecting the disper-
sive heat flux in the solid, the condition of no-jump in the total energy flux through
a porous medium as a whole, takes the form:

[[ θf ρf

(
uf + 1

2
V 2
f

)
(Vf − u) − θf σ f ·Vf + θf (JHf,di f + JHf,dis) ]]1,2 ·ν
+ [[ − θsσs·Vs + θsJHs,di f ]]1,2 ·ν = 0. (8.4.27)

The expression [[ θf σ f ·Vf + θsσs·Vs ]]1,2 ·ν appearing in (8.4.27) can be rewrit-
ten in the form

[[ θf (Vf − u)·σ f + θs(Vs − u)·σs ]]1,2 ·ν + u· [[ θf σ f + θsσs ]]1,2 ·ν.

We note that the first term reduces to θf (Vf − u) [[ σ f ]]1,2 ·ν. However, since
[[ p ]]12 = 0, [[ τ ]]1,2 ·˚ = 0, we have [[ σ f ]]1,2 = 0. The second term vanishes
in view of the no-jump in solid displacement. Finally, the last term vanishes as there
is no jump in stress in the solid. Altogether, the above equation reduces to:

[[ θf ρf
(
uf + 1

2
V 2
f

)
(Vf − u) + θf (JHf,di f + JHf,dis) ]]1,2 ·ν

+ [[ θsJHs ]]1,2 ·ν = 0. (8.4.28)

As stated earlier, the fluid-solid portion of the boundary is not a material surface
with respect to (the conductive part of the) energy transport. Hence, as in the case
of momentum, energy may be exchanged between the fluid phase and the solid one
across their common portion of the boundary, and energy is not conserved within
any of the phases alone. Equation (8.4.28) includes the possible exchange between
the two phases, and it is impossible to separate this equation into two equations, one
for each phase.

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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Altogether, (8.4.28) reduces to the no-jump condition:

{ρf qr f [[ uf ]]1,2 + [[
∑

(α= f,s)

θαJHα + θf JHf,dis ]]1.2}·ν = 0. (8.4.29)

Also, we have to satisfy the no-jump condition for energy flux. For a single fluid
phase that occupies the entire void space, and a stationary boundary, in the absence
of phase change and sources on the boundary, this condition takes the form:

[[ ρf h f qf + φJ∗H
f + φJHf + (1 − φ)JHs ]]1,2 ·ν = 0, on B. (8.4.30)

Or, equivalently,

[[ ρf h f qf − �∗H
pm·∇T ]]1,2 ·ν = 0, on B. (8.4.31)

However, since we also have [[ ρf ]]1,2 = 0, [[ hf ]]1,2 = 0, and [[ qf ]]1,2 ·ν = 0,
the above condition reduces to

[[ �∗H
pm·∇T ]]1,2 ·ν = 0, on B. (8.4.32)

To obtain the boundary condition in a multicomponent multiphase system, both
the advective and conductive–dispersive fluxes in (8.4.30) have to be replaced by
terms that express their sums over all fluid phases and species,

[[
∑

(α= f,s)

ραhαqα +
∑

(α= f,s)

∑
(γ)

hγ
αθαJγ

α − �∗H
pm·∇T ]]1,2 ·ν = 0, on B. (8.4.33)

Boundary conditions with phase change are discussed in F. below.

B. Boundary of Prescribed Temperature

This kind of boundary condition occurs when phenomena that take place outside the
considered domain impose a specified temperature, say, f1(x, t), on the domain’s
boundary, B. This boundary condition takes the form:

T (x, t) = f1(x, t), on B. (8.4.34)

This is a Dirichlet, or a first kind boundary condition

C. Boundary of Prescribed Heat Flux

Here, phenomena that take place in the environment impose a certain energy (in
or out) flux through the boundary. Denoting this heat flux by f2(x, t), and using
(8.4.31), the boundary condition takes the form:



8.4 Macroscopic Heat and Mass Transport Models 611

(
ρf h f qf − �∗H

pm·∇T
) ·ν = f2(x, t), on B. (8.4.35)

When the single phase fluid that occupies the void space consists of multiple
species, it follows from (8.4.33) that the condition at the boundary is

⎛
⎝ρf h f qf +

∑
(γ)

hγ
f θf J

γ
f − �∗H

pm·∇T

⎞
⎠ ·ν = f2(x, t) on B. (8.4.36)

In the case of multiphase flow with multiple species, the condition is

⎛
⎝∑

(α)

ραhαqα +
∑
(α)

∑
(γ)

hγ
αθαJγ

α − �∗H
pm·∇T

⎞
⎠ ·ν = f2(x, t), on B. (8.4.37)

D. Boundary Between Two Porous Medium Domains

Here, the conditions should express both the continuity of energyflux and the equality
of temperature on the boundary. Both the temperature and the flux at the boundary are
a-priori unknown. They are determined as part of the solution. This type of boundary
condition is similar to that expressed by (7.5.6) and (7.5.7).

For a single fluid phase that occupies the entire void space, the above conditions
take the form:

[[ ρf h f qf − �∗H
pm·∇T ]]1,2 ·ν = 0, on B. (8.4.38)

[[ T ]]1,2 = 0, on B. (8.4.39)

When there are no fluid sources and no phase changes take place as fluids cross
the boundary, the two conditions simplify to

[[ �∗H
pm·∇T ]]1,2 ·ν = 0, on B, (8.4.40)

[[ T ]]1,2 = 0, on B. (8.4.41)

This simplification follows from (8.4.38), when we make use of the equality

[[ ρf h f qf ]]1,2 ·ν = 0, (8.4.42)

which results from [[ hf (pf , T ) ]]1,2 = 0, and from the continuity of the fluid mass
flux, [[ ρf qf ]]1,2 ·ν = 0. The condition on hf follows from (8.4.39) and from
[[ pf ]]1,2 = 0, which is part of the required problem boundary condition.

In the case of multiple species in multiple fluid phases, the boundary condition at
the interface between two porous media is

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
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[[
∑
(α)

ραhαqα +
∑
(α)

∑
(γ)

hγ
αθαJγ

α − �∗H
pm·∇T ]]1,2 ·ν, on B, (8.4.43)

and
[[ T ]]1,2 = 0, on B. (8.4.44)

When there are no phase change as a fluid crosses the boundary, the conditions
simplify to (8.4.40). This follows from the continuity of the specific enthalpies and
of the mass fluxes at the boundary,

[[ hα ]]1,2 = 0, [[ hγ
α ]]1,2 = 0, (8.4.45)

[[ ραqα ]]1,2 ·ν = 0, [[ θαJγ
α ]]1,2 ·ν = 0. (8.4.46)

Thus, under the stated conditions, the complicated boundary conditions given by
(8.4.38) and (8.4.43), which include the transport of heat by mass transport, reduce
to the much simpler condition (8.4.40). The latter states that the conductive heat flux
is continuous across the boundary.

E. Boundary with a ‘Well-Mixed Zone’

From (8.4.31), and with the same approach as in Sect. 7.5.1, the flow condition for a
single fluid phase with a single species across such boundary is

ρ′′
f h

′′
f q

′′
f + α�

T (T ′′ − T
∣∣
pm

) = (
ρf h f qf − �∗H

pm·∇T
) ∣∣

pm
·ν. (8.4.47)

Here, α�
T is a heat transfer coefficient (for the entire porous medium), T ′′ is the

temperature in the ‘well-mixed domain’, and we express the fluid flux by

q ′′
f = α�

f (p
′′
f − pf

∣∣
pm). (8.4.48)

When no phase change occurs, it follows from the continuity of mass flux that
ρ′′
f q

′′
f = (ρf qf )

∣∣
pm·ν = qm

f , and the boundary condition takes the form:

(h′′
f − hf

∣∣
pm)qm

f + α�
T (T ′′ − T

∣∣
pm) = −�∗H

pm·∇T
∣∣
pm·ν. (8.4.49)

Whenh′′
f = hf |pm , orwhen there is no advection, i.e.,qm

f = 0,Eq. (8.4.49) reduces
to

α�
T (T ′′ − T

∣∣
pm) = −�∗H

pm·∇T
∣∣
pm·ν. (8.4.50)

We note that we may have T ′′ �= T
∣∣
pm on the boundary, i.e., a jump in tempera-

ture may take place on the boundary between the porous medium domain and the
fluid body. As in the case of concentration, this jump (that contradicts the condition

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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expressed by (8.4.39)) is a consequence of introducing the transition zone and the
‘well-mixed zone’ approximation.

When |(h′′
f − hf |pm) qm

f | � |α�
T (T ′′ − T )|, i.e., advection dominates over con-

duction in the well-mixed zone, (8.4.49) reduces to

(h′′
f − hf

∣∣
pm) qm

f = −�∗H
pm·∇T

∣∣
pm·ν. (8.4.51)

For multiple phases with multiple species, we use (8.4.33) to obtain the boundary
condition for a well-mixed domain, in the form:

∑
(α)

ρ′′
αh

′′
αq

′′
α +

∑
(α)

∑
(γ)

h′′γ
α J ′′γ

α + α�
T (T ′′ − T

∣∣
pm) =

⎛
⎝∑

(α)

ραhαVα +
∑
(α)

∑
(γ)

hγ
αθαJγ

α − �∗H
pm·∇T

∣∣
pm

⎞
⎠ ·ν, (8.4.52)

where the advective fluxes in the well-mixed zone are expressed as:

q ′′
α ≡ α�

α(p′′
α − pα

∣∣
pm), (8.4.53)

and the diffusive mass fluxes of the species are given by

J ′′γ
α ≡ α�γ

α (ω′′γ
α − ωγ

α

∣∣
pm). (8.4.54)

When no phase changes occur as the boundary between the well-mixed zone and
the porous medium domain is crossed, we write

∑
(α)

(h′′
α − hα

∣∣
pm)qm

α +
∑
(α)

∑
(γ)

(h′′γ
α − hγ

α

∣∣
pm)J γ

α

+α�
T (T ′′ − T

∣∣
pm

) = −�∗H
pm·∇T

∣∣
pm

·ν, (8.4.55)

where

qm
α ≡ ρ′′

αq
′′
α = (ραVα)

∣∣
pm·ν, J γ

α ≡ θ′′
α J

′′γ
α = (θJγ

α)
∣∣
pm·ν. (8.4.56)

F. Fluid Phase Change at a Boundary

We consider an (assumed) sharp boundary between two states of aggregation of the
fluid(s) within the void space. Across such a (possiblymoving) boundary, a change of
state (e.g., freezing, thawing, evaporation, condensation) of a fluid phase may take
place (but the solid matrix remains unchanged!). Problems with such a (possibly
moving) boundary are often referred to as Stefan problems.

We consider a single fluid phase that occupies the entire void space, and assume
that (1) the flux of kinetic energy is negligible with respect to the thermal one, and
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(2) the boundary between phases is a material surface with respect to the mass of
the phases. Together with [[ u ]]1,2 ·ν = 0, and solid phase properties, with [[ θ ]]1,2
= 0, the condition of no-jump in the total energy flux in the direction normal to the
boundary, reduces to:

θ [[ ρuV ]]1,2 ·ν − θ [[ ρu ]]1,2 u·ν − [[ �∗H ·∇T ]]1,2 ·ν = 0. (8.4.57)

Although the underlying assumptions lead to [[ T ]]1,2 = 0, the jump in inter-
nal energy, [[ u ]]1,2 ≡ [[ ρCVT ]]1,2 ( �= 0), in (8.4.57), expresses the jump in the
energetic state of the substance in the void space on both sides of the boundary.

When we consider a change of phase from solid to liquid, or from liquid to
vapour, the jump in energy represents the additional energy required to produce a
more disordered state of the molecular structure, i.e., the energy required to further
separate themolecules from each other. The jump in the energetic state of a substance
is manifested by the fact that for the thermal flux, we have [−�∗H ·∇T ]1,2 �= 0; this
means that part of the sum of dispersive and diffusive heat fluxes entering, or leaving,
the boundary is compensating for the energy consumed by the phase change. This is
an example of a sink, �SE , on the boundary.

Alternative forms of (8.4.21) are obtained by expressing the internal energy in
terms of the enthalpy, h, viz.

[(ρh − p)V]1,2·ν − [ρh − p]1,2u·ν − [�∗H ·∇T ]1,2·ν = 0, (8.4.58)

where u denoting the speed of displacement of the boundary and h = u + p/ρ, with
the quantity p/ρ expressing the energy associated with the volume per unit mass. It
is often assumed that:

[A2.16] Only a small part of the energy required to produce a change of phase is
derived from the change in volume (Denbigh, 1981).

Then, (8.4.58) is reduces to (8.4.23). where L1,2(= [ρh]1,2) is the latent heat of phase
change, defined per unit volume.

In (8.4.23), the quantity [ρhV]1,2·ν, is associated with the change in volume of
the fluid in the void space, due to phase change, and the resulting advective energy
flux that is induced across the boundary.

(d) Boundary Shape

In the case of a solid–liquid (= liquified solid) or a liquid-vapour (= gas containing
the liquid’s vapour) boundary, the shape of the boundary, can be derived (Sect. 2.7.5)
from the condition [T ]1,2 = 0, viz.,

F(x, t) = T (x, t)
∣∣
1 − T (x, t)

∣∣
2 = 0. (8.4.59)

The above relationship is valid also for changes from a solid state to a liquid one,
and vice versa (of the material that occupies the void space).

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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8.5 Introduction to Natural Convection

Only a brief introduction to natural convection in a porous medium domain will be
introduced here. For a comprehensive presentation on natural and forced convection,
the reader is referred to Nield and Bejan (2013).

8.5.1 The Oberbeck–Boussinesq Model

As a first step, let us introduce here theOberbeck–Boussinesq1 approximate heat and
mass transport model. The model deals with heat and mass transport of a single fluid
(no solutes) saturating the void space.We added the possibility of thermal conduction
through the solid, and neglected thermal dispersion in the fluid. The model involves
6 equations:

(1) An expression that relates liquid density to pressure and temperature. We
may make use of the approximate equation (2.3.20). Then, for a homogeneous liq-
uid, and |βp(p − po)| � |βT (T − To)|, |βc(c − co)| � |βT (T − To)|, we obtain the
approximate expression for ρ = ρ(T ) in the form:

ρ = ρ(T ) = ρo {1 + βT (T − To)} , ρo = ρ|To . (8.5.1)

If we take concentration changes into account, then, from (2.3.20), we may write:

ρ = ρf (T, c) = ρ f o {1 − βT (T − To) + βc(c − co)} . (8.5.2)

(2) For the momentum balance equation, we adopt the approximation presented
as CASE A in Sect. 4.2.4, with Vs = 0. This leads to Darcy’s law:

q(≡ φV) = −k
μ

· {∇ p + ρ(T )g∇z} . (8.5.3)

(3) We adopt the Boussinesq approximation of the fluid’s mass balance equation,
as discussed as Example 1 in Sect. 3.10:

∇·q = 0. (8.5.4)

(4) For themass balance of a γ chemical species (if wewish to take solute transport
into account), we use the species balance equation (7.3.2), rewritten here for the case
of single phase flow, no sources and no interphase transfer, in the form:

1We follow the comment by Nield and Bejan (2013, p. 29) that Oberbeck (1879) suggested this
approximation, which was later followed by Boussinesq (1903).

http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_7
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φ
∂cγ

∂t
= −qα·∇cγ + ∇· (

D′·∇cγ
)
. (8.5.5)

(5) For the heat balance equation, we make use of (8.4.8) and (8.4.9), except that
we neglect the dispersive heat flux:

(ρc)pm
∂T

∂t
= −∇·(ρf cf Tq) + ∇· (

�H
pm·∇T

)
, (8.5.6)

where the thermal conductivity, which includes conduction also through the solid
phase, �H

pm , is expressed by

JHpm ≡ φJHf + (1 − φ)JHs = −�H
pm·∇T . (8.5.7)

In principle, the above five equations can be solved for ρ,q, c, T, p.

8.5.2 Natural Convection

The term natural convection is used describes fluid motion produced by density
variations in a gravity field. Such changes may be caused by changes in temperature
and/or solute concentration. The non-uniform density produced by such changes
causes motion due to buoyancy effects. The term convective currents describes the
nature of the motion produced by such effect.

When buoyancy effects produce motion, the latter encounters resistance due to
internal “friction” within the fluid and to friction at the solid-fluid (microscopic)
interfaces. Both are proportional to the fluid’s viscosity. The latter resistance is pro-
portional to the inverse of the permeability. Under certain conditions, the resistance
to motion is such that the initial motion produced by the disturbance will decay.
Under other conditions, it will develop and grow, leading to convective currents.

As an example, consider an initial situation in which a layer of stationary cold
(hence, heavier) fluid overlies a layer of stationarywarmer (hence, lighter) one.Under
certain conditions, to be discussed below, this may be an unstable situation, meaning
that even a small disturbance may completely change this initial regime. Molecular
diffusion and thermal conduction tend to reduce the produced currents by smoothing
out density differences.

For the sake of simplicity, the discussion on this example, as throughout this
subsection will be based on the following assumptions:

• The fluid contains no dissolved components.
• The fluid is a ‘Boussinesq fluid’, i.e., one in which the density is assumed to
be independent of the temperature, except in the gravity term that appears in the
expression for the advective flux.

• in order to write the mathematical model in a dimensionless form, we select μ
= μc, and (ρCV)c = 1. We then have
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(�i j )
∗ = δi j , (ρC)∗f = 1.

• The solid properties are also independent of temperature.
• The porous medium is homogeneous and isotropic. With k = kc, we then have k∗

i j= δi j .
• We neglect effect of thermal dispersion, so that �∗H is replaced by �H .

Making use of the methodology outlined in Sect. 3.10, the corresponding heat and
fluid mass transport (Oberbeck–Boussinesq) model outlined above will involve the
following set of dimensionless equations:

• The fluid’s mass balance equation is:

∇∗·q∗ = 0. (8.5.8)

• The fluid’s motion equation is (7.1.10):

q∗ = −∇∗
(
p∗ + z∗

Eu Fr2

)
+ Ra′ T ∗∇∗z∗. (8.5.9)

• The heat balance equation for the porous medium is:

∂T ∗

∂t∗
= −q∗·∇∗T ∗ + ∇∗2T ∗. (8.5.10)

Our objective in the following paragraphs, Following Bear and Bachmat (1991,
p. 474) is to investigate the conditions under which convective currents will develop
in a porous medium domain. In doing so, we shall also demonstrate the methodology
of such investigations.

We shall consider two typical cases of natural convection:

• An infinite horizontal fluid saturated porous medium domain heated from below.
• A fluid saturated porous medium domain in the form of an infinite strip bounded
by vertical surfaces at different temperatures.

CASEA.An InfiniteHorizontal LayerHeated FromBelow. The layer’s thickness
is chosen equal to the characteristic length, Lc. Hence the dimensionless thickness
is 1.

The boundary conditions are:

z∗ = 0, z∗ = 1, q∗
z = 0,

z∗ = 0, T ∗ = 1,

z∗ = 1, T ∗ = 0.

(8.5.11)

We note that the governing equations and the above boundary conditions are
satisfied by the no-flow solution, which also involves no convective currents:

http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_7
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q∗(o) ≡ 0, T ∗(o) ≡ 1 − z∗, p∗ + z∗

EuFr2
= Ra′ z∗

(
1 − z∗

2

)
, (8.5.12)

where:

Eu = (�p)cT ∗
c

ρcV 2
c

≡ φ2
c(�p)cT ∗

c

ρcq2
c

, (Euler number),

Fr = Fr(V ) = Vc(
T ∗
c gL(V )

c
) 1

2

≡ qc/φc(
T ∗
c gL(V )

c
) 1

2

, (Froude number),

Ra′ = gT ∗
c βT (�T )c(k/φT ∗)cLc

DH

f l,cνc
, (Rayleigh number). (8.5.13)

Note that all dimensionless number are for a porous medium.
Next we look for the existence of additional solutions to the same problem, this

time with q∗ �= 0. If we find that a solution with convective currents does exist, we
shall investigate the conditions under which the stationary solutions will be unstable.

To find additional solution(s), we perturb the flow regime around the stationary
solution:

q∗ = q∗(0) + εq∗′,
T ∗ = T ∗(0) + εT ∗′,
p∗ = p∗(0) + εp∗′,

(8.5.14)

where εq∗′, εT ∗′ and εp∗′ are the perturbations, and ε is a small parameter.
To eliminate the term involving the pressure from the motion equation, we apply

the curl operator to (8.5.9), making use of the identity ∇ × (∇ × q) ≡ −∇2q, valid
when ∇·q = 0. We obtain:

∇∗2q∗ = −Ra′ ∇∗ × (∇∗ × T ∗∇∗z∗). (8.5.15)

This equation can also be written in the form:

∇∗2q∗ = −Ra′L∗(T ∗), (8.5.16)

where the operator L∗ is defined as:

L∗ ≡ 1x∗ ∂2

∂x∗∂z∗ + 1y∗ ∂2

∂y∗∂z∗ + 1z∗
(

∂2

∂x∗2 + ∂2

∂y∗2

)
.

By inserting (8.5.14) into (8.5.10) and (8.5.16), making use of the already known
solution (8.5.12), and neglecting terms of order of magnitude O(ε2), we obtain the
two linearized equations for the perturbed regime:

∇∗2q∗′ = −Ra′L∗(T ∗′), (8.5.17)
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∇∗2T ∗′ = −Ra′L∗(q∗′), (8.5.18)

where we have noted from (8.5.12) that ∇∗T ∗(0) ≡ −∇∗z∗ and, therefore

q∗′
z∗ ≡ q∗′·∇∗z∗ ≡ q∗(0)·∇∗T ∗(0).

Thus, the solution for the perturbed temperature distribution is coupled only to
the vertical component of q∗′. We have to solve the pair of equations:

∇∗2q∗′
z∗ = −Ra′∇∗2

x∗ y∗T ∗′, (8.5.19)

and (8.5.18).
We can decouple these equations, leading to the equations:

{(
∂

∂t∗
− ∇∗2

)
∇∗2 − Ra′∇∗2

x∗ y∗

}
T ∗′ = 0, (8.5.20)

{(
∂

∂t∗
− ∇∗2

)
∇∗2 − Ra′∇∗2

x∗ y∗

}
q∗′
z∗ = 0, (8.5.21)

noting that the two equations are, actually, identical. The boundary conditions to be
satisfied by the perturbation solution, are:

q∗′
z∗ = T ∗′ = 0, on z∗ = 0, 1. (8.5.22)

The final step is to solve for q∗′
z∗ and T ∗′, as a superposition of normal modes, and

examining the stability with respect to each mode. When this is done, it is shown
that the perturbations decay as long as the stability condition:

Ra′ < 4π2 (8.5.23)

is satisfied. The value of 4π2 is referred to as the critical value of Ra.
To summarize CASE A, we have seen that

• In the case of an infinite horizontal layer heated from below, a no-flow solution
exists. This solution is stable, as long as the Rayleigh number does not exceed the
critical value of 4π2. Then the heat is transferred only by conduction.

• When theRayleigh number exceeds its critical value, the no-flow solution becomes
unstable, disturbances will be amplified and natural convection will develop.

A linear analysis carried out for the case of an infinite layer heated from above,
will reveal that the no-flow solution is unconditionally stable. Therefore, convective
currents are traditionally associated with heating from below, while the case of heat-
ing from above is regarded as a state of no flow, with heat transfer taking place by
conduction only.
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CASE B. An Infinite Vertical Strip Between Two Impervious Walls at Different
Temperatures. This case (in the vertical xz-plane) is introduced here in order to
show that convective currents will always occur whenever a horizontal temperature
gradient exists.

Because the domain here is infinite in the z-direction, we have:

∂q∗
z∗

∂z∗ = 0, and
∂T ∗

∂z∗ = 0. (8.5.24)

Hence, the mass balance equation reduces to:

∂q∗
x∗

∂x∗ = 0. (8.5.25)

By combining this equation with the boundary condition:

q∗
x∗

∣∣
x∗=0 = q∗

x∗
∣∣
x∗=1 = 0, (8.5.26)

we obtain the solution:

0 ≤ x∗ ≤ 1, −∞ < z∗ < ∞, q∗
x∗ ≡ 0. (8.5.27)

From this solution, it follows that:

∂ p∗

∂x∗ = 0, q∗
z∗ = − ∂

∂z∗

(
p∗ + z∗

EuFr2

)
+ Ra′ T ∗. (8.5.28)

Then, q∗
x∗ = 0, ∂T ∗/∂x∗ ≡ ∂2T ∗/∂x∗2 = 0, and the heat balance equation

(8.5.10) reduces for the steady state to

∂2T ∗

∂x∗2 = 0. (8.5.29)

We note that this equation indicates that in this case, heat transport is governed
by conduction only.

The boundary conditions are

x∗ = 0, T ∗ = 0, x∗ = 1, T ∗ = 1. (8.5.30)

The solution for the temperature, T ∗, is

T ∗ = x∗. (8.5.31)

In order to determine the specific discharge, we add the constraint
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Fig. 8.1 Temperature and
flux distributions in an
infinite vertical strip between
two walls at different
temperatures

∫ 1

0
q∗
z∗dx∗ = 0,

expressing mass conservation at any horizontal cross-section. The solution for the
specific discharge is then

q∗
z∗ = Ra′

(
x∗ − 1

2

)
. (8.5.32)

This magnitude of the convective flux, which always exists, is dictated by the
value of the Rayleigh number. The two solutions, for the mass and heat fluxes, are
shown in Fig. 8.1.

From the results of this analysis, we may conclude that

• the natural convection that develops does not affect the heat transfer which, in this
case, is governed by conduction only, and

• the strength of the natural convection is determined by the value of the Rayleigh
number.

We note that an analytical solution could be derived in this case, because the two
equations could be decoupled.

Obviously, we have demonstrated here only a very simple case. Cheng (1985) and
Boris (1987) review more complex cases. Nield and Bejabn (1998, 2013) devote a
book to the subject of convection in porous media.
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Chapter 9
Poromechanics and Deformation

The objective of this chapter is to present and discuss deformation in porous medium
domains, focussing on cases in which fluids are extracted from or injected into geo-
logical formations, possibly under non-isothermal conditions. The models presented
in this chapter describe phenomena of deformation of porous medium domains in
response to imposed stresses:

• Land subsidence as a consequence of pumping water from aquifers.
• Ground surface upheaval, as a consequence of injection.
• Development of fractures as a consequence of injecting fluids into a tight (e.g.,
rock and shale) geological formation.

• Waves in porous media.
• Induced seismicity as a result of fluid injection into confined formations.
• Soil liquefaction.

In principle, any change in the flow regime is associated with fluid pressure changes,
and thus with stress changes within a considered porous medium domain. These
changes produce deformation, sometime reaching a level that causes formation fail-
ure. No effort is made here to cover the subjects of Soil Mechanics, Geomechanics,
or Poroelasticity. These subjects are well covered in the literature (e.g., Verruijt
2010; Cheng 2016). However, certain principles and concepts will be presented as a
background for the presentation.

This is not a chapter on soil or rock mechanics. We shall focus on stress, strain
and deformation associated with phenomena of flow and transport in porous medium
domains. Often, the subject considered here is referred to as poroelasticity. Here, we
are using the name poromechanics, as our discussion is not limited to elastic solid
matrices.

Like everywhere else in this book, the fluid(s) within the void space, the solid
matrix and the porous medium domain as a whole are regarded as continua. Accord-
ingly, we start by introducing the concepts of stress and strain in a single phase
continuum–first at the microscopic level and then at the macroscopic one. Then,
following the phenomenological approach, we regard the multi-phase (solid-fluid)
porous medium also as a continuum, so that we can extend the theories of (single

© Springer International Publishing AG 2018
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phase) solid andfluidmechanics to (multi-phase) porousmedia. The core of the defor-
mation model is the momentum balance equation for the (fluid-solid) system. Con-
stitutive equations are presented for fluid-saturated (single or two-phase) domains,
with experimentally derived coefficients. The objective is to evaluate solid matrix
strain and deformation in response to changes in applied stress, primarily when such
changes are a consequence of changes in fluid pressure.

Like in the case of reactive transport (Chap. 7) and nonisothermal flow (Chap.8),
we assume that the considered porous medium domain is continuously under con-
ditions of local (stress) equilibrium. This means that at every instant of time, the
processes, e.g., pressure and stress changes, as well as fluid motion and solid defor-
mation that take place in the vicinity of a point at the macroscopic level, as a result
of changes at the boundaries have reached instantaneous equilibrium. The averaged
values represent what happens at the point at that instant. As everywhere else in this
book, we understand that (instantaneous) equilibrium does not mean steady state.
This may vary with time, while still being under equilibrium conditions at every
instant.

The solid matrix itself may be composed of portions of various chemical sub-
stances, each having its own (microscopic level) stress–strain relationships.However,
this aspect will not be considered here.

Actually, the subject was already introduced in Sects. 5.1.4 and 5.1.5, in connec-
tion with the definitions of specific storativity and storativity of groundwater aquifers
and of the unsaturated zone.Here,we shall extend the discussion to the general case of
porous medium deformation. The concept of effective stress, which produces defor-
mation, was already introduced in Sect. 5.1.4, in connection with (fluid) storativity
in a confined aquifer. Here, the discussion will focus on solid matrix deformation.

Consider a granular porous medium sample. For the sake of simplicity, let the
void space be filled with a gas under atmospheric pressure. When this sample is
loaded, it is obvious that (microscopic level) stresses are transmitted from grain to
grain at the points of contact (or contact areas) between adjacent grains. There is no
need to elaborate on why stresses within a granular domain cannot be calculated at
this microscopic level. Instead, by averaging over an REV, or by making use of the
phenomenological approach, we create a macroscopic domain, with a macroscopic
(or averaged) stress at every pointwithin that domain. This is the approach undertaken
also in this chapter. Unless otherwise specified, we use here the terms stress, and
strain, as well as their mathematical symbols, to indicate both their microscopic and
macroscopic values.

As stated above, the objective is to determine the strain, or the deformation, of a
stressed porousmedium domain. This strain is produced by the effective stress, which
is the strain-producing stress. The latter is affected not only by the stress imposed on
the domain’s boundaries, but also by the pressure of the fluid or the fluids that occupy
the void space. This produces a link between the mechanical problem that involves
the determination of the stress and the resulting strain within a considered domain
and the hydraulic one that involves pressure variations in the (compressible) fluids
that occupy and move in the void space. Solving these two problems provides the
information required for determining the strain within a considered porous medium

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_8
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
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domain. The case of non-isothermal conditions will also be presented and discussed.
We shall not consider the case in which the fluids in the void-space may contain
chemical species which may interact with each other and with minerals comprising
the solid matrix (Chap. 7). When necessary, this aspect can be added to the model
considered here.

When the resulting strain exceeds certain values, failure of the solid matrix will
occur. This may manifest itself, for example, as cracks that appear a consolidated
rock and damage in the form of shear bands. Although the presentation addresses any
porous medium domain, we shall focus on geological formations, with the examples
of land subsidence as a result of pumping from an aquifer and CO2 disposal in deep
geological formations as typical cases of interest.

It is important tomake here a comment on the various coefficients that appear in the
stress–strain relationships discussed in this chapter. In the first part of the chapter, we
introduce a number of SolidMechanics concepts at the microscopic level, like stress,
strain and displacement, and how they are related to each other. Then, following
the phenomenological approach underlying the presentation in this book, we have
assumed that the macroscopic relations, e.g., the stress–strain relationship, have the
same form as the microscopic ones, but with different values of the coefficients that
appear in them. These have to be determined experimentally! In principle, the stress–
strain relationship of a fluid saturated porous medium should be affected also by the
pressure and the compressibility of the fluid, or fluids, that occupy the void space.
Thus, the constitutive relationship used for a solid are the same as those used for
the solid matrix. Of course, the values of the various coefficients appearing in these
relationships are different. Asmentioned earlier, we have also introduced the concept
of effective stress that does not exist at the microscopic level.

This chapter (like all other ones in this book) is written under the assumption
that the reader is familiar with tensors and tensor operations. Nevertheless, some
comments about tensors are presented in the following section.

9.1 Stress, Strain, and Effective Stress

In Sect. 2.3.4, for the convenience of the reader, we have reviewed some well known
basic concepts of fluid and solid mechanics, like stress and strain. Here we shall
make use of these concepts in connection with stresses and strains in porous media
domains. As has been done throughout this book, we shall regard the porous medium
domain as a continuum, or as multiple overlapping (solid and fluid) continua, and
make use of the phenomenological approach to extend the single phase continuum
concepts to porous medium domains.

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_2
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9.1.1 Effective Stress in Two-Phase Flow

Consider a porous medium domain in which the void space is occupied by two fluid
phases: a wetting fluid (w), at saturation Sw, and a non-wetting fluid (n), at Sn . From
(1.1.12), it follows that the volume averaged stress (or total stress), σ, at a point in
a porous medium domain, is defined by (3.3.15), repeated here for convenience, in
the form:

σ = 1

Vo

∫
�o

σdV = 1

Vo

∑
(α=s,n,w)

∫
Voα

σαdVα

=
∑

(α=s,n,w)

σα ≡ σs + σn + σw, (9.1.1)

where the overbar indicates volumetric phase average. Thismeans that the total stress
is equal to the sum of the volumetric phase averaged stresses in the solid phase and in
the two fluid phases. To facilitate the discussion on fluid stress–strain relationships,
we express the averaged stress in the fluid(s) that occupy the void space, σf,i j , in the
form:

σf,i j = τf,i j − pf δi j , (9.1.2)

where τf,i j is the viscous stress tensor, pf (= − 1
3

∑
(i) σf,i j − τf,i j ) is the pressure

and δi j is the Kronecker delta (≡ components of the unit tensor, I). Recall that, as
is common is fluid mechanics, pf is considered positive for compression, while the
components of σ and τ are considered positive for tension, as is common in solid
mechanics.

Using (9.1.2), the total stress is also given by (3.3.19), repeated here for conve-
nience:

σ = σs + τ n + τw − pn I − pw I. (9.1.3)

In the case of two fluids (w and n) that together fill up the entire void space, with
negligible shear stress within both fluids, we define an average fluid pressure (in the
two fluids) at a point in a porous medium continuum, by:

pv
v =

∑
(α=n,w)

pα = 1

φ

(
θw pw

w + θn pn
n
)
, (9.1.4)

recalling that θα = φSα, α = w, n.
The concept of effective stress, has already been introduced in Sect. 5.1.4, and,

for multiphase flow, in Sect. 6.4.1. Here, the effective stress plays a major role in
analyzing porous medium deformation.

http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_6
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We start by expressing the total stress by (6.3.41) and (6.3.42), leading to:

σ = σ′
s − pv

vI, (9.1.5)

where:

σ′
s = (1 − φ){σs

s + pv
vI}, and pv

v = Sw pw
w + Sn pn

n, (9.1.6)

express the effective stress (Sect. 5.1.4) and average fluid pressure for this case.
Thus, (9.1.5) relates the (total) stress at a point in a porous medium domain to the
(macroscopic) fluid pressure and to the effective stress at the point. Note that the
expression for pv in the above equation is not the only possible one (see Sect. 6.4.1).
We also wish to emphasize again that the effective stress at a point is the strain
producing stress at that point.

Henceforth, we shall remove the overbar symbols that indicate averages. We shall
also make use of the dimensionless Biot coefficient, αB , so that (9.1.5) will take the
form:

σ = σ′
s − αB pvI, (9.1.7)

where σ denotes the (total) stress at a point in the porous medium domain, σ′
s

denotes the effective stress (tensor) at the considered point, and pv denotes the
average fluid pressure in the void space. The averaged pressure, pv , needs not be the
simple saturation-weighted pressure in the fluids. For example, Bishop and Blight
(1963) andGray and Schrefler (2007) suggested for two phase flow (w, n), aweighted
average pressure:

pv = apw + (1 − a)pn, (9.1.8)

in which a(Sw) is a weighting coefficient that depends on the saturation. In general,
for two phase flow, we may write:

σ = σ′
s − αBχ(Sw)pwI, (9.1.9)

in which χ(Sw) expresses the relative contributions of the two fluids to the average
pressure in the void-space (see Sect. 6.4.1).

9.1.2 Stress–Strain Relationship

In Sect. 2.3.5, we have presented Hooke’s law, which is an example of a constitutive
equation for a linearly elastic solid. Other equations of state will, obviously, describe
the behavior of other kinds of materials. Originally, these EOS are at themicroscopic
level, i.e., at a point within a solid phase, regarded as a continuum. However, to
investigate stress–strain relationships in a porous medium domain, with the void

http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_2
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Fig. 9.1 Strain in a sample
under 1-d stress in the z
direction

σszz

σszz

space occupied by one or more (possibly moving) fluids, we need an EOS at the
macroscopic level.

Following the phenomenological approach underlying the presentation in this
book, we assume that the macroscopic level EOS maintains the same stress–strain
relationship as the macroscopic one, except that the state variables are macroscopic
and the values of the coefficients appearing in the this relationship are different.
These have to be determined experimentally for samples of the considered porous
medium. It is interesting to note that Bear and Bachmat (1991, p. 304) average the
microscopic level EOS and show the approximations assumed when neglecting the
terms that express solid-fluid interactions at the microscopic level.

To understandwhat happens when stress is applied at a point of a surface, consider
the 2-d porous medium sample shown in Fig. 9.1. The only applied (here, effective)
stress is σ′

szz . It produces two strain components: εszz , and εsxx :

εzz = σ′
szz

E
, εxx = ν

σ′
szz

E
, (9.1.10)

recalling that σ′
szz = σszz − pv , or = σszz − αB pv , if we use Biot’s coefficient, αB

(Sect. 5.1.4). The coefficient ν is the drained Poisson coefficient (as water is allowed
to drain during the experiment). In words, the displacement in the stress direction is
accompanied by a displacement in a direction normal to it.

Linearly Elastic Isotropic Porous Medium

In Fig. 2.10, we have presented a number of types of solid materials, distinguishable
by their elastic or non-elastic behavior. We may encounter similar stress–strain rela-
tionships when considering porous medium domains, including geological ones, i.e.,
at the macroscopic level. One example is the first equation in (2.3.73), rewritten at
the macroscopic level for an isotropic solid matrix under isothermal conditions, in
the form:

http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
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σsi j = λsεkkδi j + 2μsεi j , (9.1.11)

or:

εsi j = 1

2μs
σi j − λs

2μs(3λs + 2μs)
σi jδi j , (9.1.12)

in which λs and μs (sometimes denoted as Gs), are two macroscopic coefficients
known as the Lamé constants for the solid matrix; we are adding the subscript s to
indicate that these coefficients are for the solid matrix, i.e., at the macroscopic level
(see Sect. 2.3.5).

In the literature on the theory of elasticity, we find expressions for σ = σ(ε) also
in terms of other coefficients:

Es = μs(3λs + 2μs)

λs + μs
, νs = λs

2(λs + μs)
, (9.1.13)

where Es and νs are Young’s modulus and Poisson’s ratio, and:

λs = νs Es

(1 + νs)(1 − 2νs)
, μs(= Gs) = Es

2(1 + νs)
, (9.1.14)

in which Gs is the shear modulus of elasticity. Another often used coefficient is the
drained bulk modulus, Ks :

Ks = Es

3(1 − 2νs)
, (9.1.15)

with:

σi j =
(
Ks − 2Gs

3

)
εkkδi j + 2Gsεi j . (9.1.16)

Cheng (2016, p. 69) added on the r.h.s. of (9.1.16) a term that represents the effect
of change in fluid content in the case where the drained water is replaced by air at
atmospheric pressure.

Returning to the general case, let us assume that the saturated porous medium
comprising an investigated geological formation behaves as a linearly elastic porous
medium, for which Hooke’s law (2.3.72), or in the form (2.3.80), serves as the con-
stitutive equation. To obtain their porous medium equivalent, following the phe-
nomenological approach, we assume that the shape of these relationships remains
unchanged, except that the variables and the coefficients represent their macroscopic
level values. Thus, for example, we apply the stress–strain relationship (2.3.80) also
to a geological formation, assumed to behave as a linearly elastic porous medium.
Accordingly, we obtain (in vector notation):

http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
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σ′
s = KsεvI + 2Gs

(
ε − εv

3
I
)

= 3KsεmI + 2Gsεv = 2Gsε + λεvI, (9.1.17)

where εv and εm , are defined in (2.3.71). Or, in the inverted form:

εs = 1 + νs

E
σ′

s − 3νs
Es

σmI = σ′
m

3Ks
I + 1

2Gs

(
σ′

s − σ′
mI

)
. (9.1.18)

In the above equations, the bulk modulus, Ks , is defined in (9.1.15).
Based on (2.3.80), another form of the stress–strain relationship (under isothermal

conditions) for an isotropic linearly elastic solid, takes the form:

σ′
s = μs

[∇ws + ∇(ws)
T
] + λs∇·ws . (9.1.19)

Note that the above relationship relates the displacement to the effective stress, which
is the “strain producing stress”.

9.1.3 Non-isothermal Conditions

Non-isothermal conditions occur, for example, in projects that involve injection of
fluids into deep geological reservoirs, with the injected fluid being at a temperature
that is different from that of the indigenous fluid in the formation. Modeling flow
and transport under such conditions is discussed in Chap. 8.

When considering solid matrix deformation under non-isothermal conditions, we
have to take into account the stress–strain relation of the considered solid matrix also
under such conditions. A commonly encountered case is the thermo-elastic solid.
For such solid, the stress–strain relationship for the solid takes any of the forms
(2.3.84)–(2.3.87). Then, following the phenomenological approach, we modify the
stress–strain relationship by adding the effect of thermally produced strain to (9.1.18),
and expressing σ′ by σ, we obtain the stress–strain relationship for the saturated
porous medium:

ε = 1 + νs

Es
σ − 3νs

Es
σmI − 1 − 2νs

Es
pvI − αT�T I, (9.1.20)

in which σm is defined in (2.3.64), pv denotes the average fluid pressure in the
void space, αT is the linear thermal expansion coefficient of the thermo-elastic solid
matrix, and�T is the temperature change in the thermo-elastic constitutive equation.
The above equation can also be written in the form:

σ′
s = 2Gsε + λsεvI − (2Gs + 3λs)αT�T I, (9.1.21)

obtained from (9.1.20). In the above equation, Ks = 2Gs + 3λs .

http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_8
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
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9.1.4 Anisotropic Elastic Solid Matrix

Equation (2.3.81) expresses the stress–strain relationship for an anisotropic elastic
solid matrix, assuming that (in line with the phenological approach employed in
this book) the same structure of this relationship is maintained at the macroscopic
level, except that the values of the various coefficients appearing in the stress–strain
relationship, e.g., Young modulus, will be different.

Let us use the discussion here to introduce another common way to express the
stress–strain relationship for an elastic solid. For convenience, let us repeat here the
generalized Hooke’s law (2.3.72):

σi j = Ci jk� εk�, (9.1.22)

where Ci jk� denotes the i jk� component of the stiffness coefficient.
We recall that the fourth rank tensor Ci jk� has 81 components. However, because

σi j is symmetric in i, j , we have the relationship:

Ci jk� = C jik�.

Since the strain, εk� is also symmetric in k and �, we also have

Ci jk� = Ci j�k .

Altogether, we reach the conclusion that the 81 components reduce to 36. Thus, each
stress is linearly related to the six independent strains via six of the independent
elastic constants Ci jk�. For example:

σxx = C1111εxx + C1122εyy + C1133εzz + C1123εyz + C1131εzx + C1112εxy,
(9.1.23)

usually abbreviated as:

σxx = C11εxx + C12εyy + C13εzz + C14εyz + C15εzx + C16εxy, (9.1.24)

As an example of anisotropy, consider the case of an elastic solid body that has
three mutually orthogonal planes of elastic symmetry. This kind of symmetry is
referred to as orthotropic symmetry. It can be shown that for this kind of anisotropy
the elastic modulus matrix takes the form:

http://dx.doi.org/10.1007/978-3-319-72826-1_2
http://dx.doi.org/10.1007/978-3-319-72826-1_2
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Cpq =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 O
C21 C22 C23 0 0 0
C31 C32 C33 0 0 O
0 0 0 C44 0 0
0 0 0 0 C55 O
0 0 0 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎦

, (9.1.25)

where C12 = C21, and C23 = C32 and C13 = C31.

9.2 Modeling Non-isothermal Flow and Deformation

As stated in the preamble to this chapter, our interest here is, primarily, in models that
lead to determining the strain and deformation of porous medium domains in which
the void space is occupied by one or more fluids, possibly under non-isothermal
conditions. In particular, we focus on geological formations. We shall not refer to
the modeling of reactive transport; this part can be added when needed.

To achieve the above stated goal, we need to determine the space and time dis-
tribution of the strain in the formation, produced by the effective stress. The latter,
defined by (9.1.5), is linked to both the total stress and to the pressure of the fluid
in the void space. As outlined in Chaps. 5 and 6, the pressure can be obtained by
solving the mass balance equations for the fluids in the void space. Changes in stress
are produced by loading at the domains boundaries.

In the case of non-isothermal conditions, the temperature is another variable and
we have to solve also the energy balance equation,written in terms of the temperature.

Altogether, the above introductory comments lead to the conclusion that in order
to determine the deformation in a fluid-saturated porous medium domain under non-
isothermal conditions, but (in the example considered here) without any chemistry,
say, in the case of two phase flow,we have to solve amodel that involves the following
E-balance equations:

• The mass balance equations for the fluid, or fluids that occupy the void space. This
part (presented in Chaps. 5 and 6) is usually referred to as the hydraulic model, or
H -model.

• The energy balance equation for the porous medium as a whole, with porous
medium temperature as a single variable. This part, discussed inChap.8, is referred
to as the thermal or T -model.

• The momentum balance equation for the porous medium as a whole. We refer to
this part as the mechanical, or M-model. As we shall see, because the momentum
balance equation involves porosity and solid matrix velocity, we’ll have to use also
the solid matrix mass balance equation.
When inertial effects may be neglected, the momentum balance equation reduces
to a force balance. This model is considered in the current chapter.

http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_8


9.2 Modeling Non-isothermal Flow and Deformation 635

As we have seen, these three models (and this is true also had we added the
solute transport model) are strongly interrelated and must be solved simultaneously.
Practically, the only way to solve this interrelated set of models is by numerical tech-
niques. Efficient computer codes are available for implementing such solutions (in
fact, including also the reactive transport, orC-model). However, each of the models
(or sub-models), has to be stated as a well posed one. This means that the state-
ment of each model (or sub-model) should include appropriate initial and boundary
conditions. It is interesting to note that changes within each of the models can be
triggered either by changes in boundary conditions and/or changes in any of the
linked sub-models.

9.2.1 The Mechanical Model

A. The Momentum Balance Reduced to the Equilibrium Equation

We start from Sect. 3.3.2D, where we have developed the equation that expresses
the momentum balance for a porous medium as a whole, with a void space that is
occupied by one fluid, or by two fluid phases: a wetting fluid and a non-wetting
one. This balance is expressed by (3.3.13). By assuming continuity of traction, i.e.,
[[ σ ]]w,s ·νw = 0 and [[ σ ]]s,n ·νs = 0, on their common interfacial surfaces, and
neglecting surface tension phenomena at fluid-solid interfaces, the last two surface
integrals in (3.3.13) vanish. By further neglecting the force, Fc, resulting from cap-
illary pressure, we obtain the momentum balance equation for the porous medium
as a whole:

∑
(α=n,w,s)

θαρα
DVα

Dt
= ∇·σ + ρF, (9.2.1)

where the average total stress, σ, and the average body force, ρF, are defined by
(3.3.15) and (3.3.16), respectively. The l.h.s. of the above balance equation expresses
inertial forces. We shall consider them when dealing with waves in porous medium
domains (Sect. 9.4). Here, however, we shall neglect them, as beingmuch smaller that
the other terms, leading to the momentum balance equation, or equilibrium equation,
for the porous medium as a whole, (5.1.37), repeated here for convenience:

∇·σ + ρF = 0, (9.2.2)

In this equation, which actually expresses a balance of forces,σ is the averaged total
stress, produced, for example, by loading the considered domain, and ρF represents
the total body force. We shall use the symbol b ≡ ρF to denote the body force due
to gravity, per unit volume of porous medium:

http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_3
http://dx.doi.org/10.1007/978-3-319-72826-1_5
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b = −g [(1 − φ)ρs + φSwρw + φSnρn]∇z, (9.2.3)

recalling that ∇z is a unit vector directed upward.
The force b depends on the fluids’ saturations and densities. The latter depend

on fluids’ pressures. This means that we have to present and solve also a two-phase
flow (hydraulic) model. In the case of non-isothermal conditions, the fluid and solid
densities are also affected by temperature changes.

Altogether, in the absence of inertial effects, the momentum balance equation
used for deformation analysis is the equilibrium equation:

∇·σ + b = 0, (9.2.4)

in which we have now removed the over-bar symbol. Since, in the case of gravity as
the only body force, bx = by = 0, only σzz �= 0, and σi j = 0 for all i �= j , and for
all i j = xx and yy. However, we may still encounter σi, j �= 0 for i �= j if boundary
conditions impose the latter stress.

With the definition of effective stress, and (9.1.7), we can rewrite (9.2.4) in the
form:

∇·σ′ − αB∇ pv + b = 0, (9.2.5)

where pv , denotes the average pressure in the fluids that occupy the void space, say
χ(Sw)pw. This equation involves the tensor variable, σ′, to be solved for. It can also
be rewritten as 6 scalar equations in terms of the 6 scalar variables: σ′

xx , σ
′
yy , σ

′
zz , σ

′
xy ,

σ′
xz , σ

′
yz . However, to achieve this goal, we need onemore (scalar) equation for pv (or

two equations, for pn and pw, in the case of two fluid phases). We also need to know
the force b, which means information on ρw = ρw(pw, T ) and ρn = ρw(pn, T ). We
also need information on the possibly time-dependent variable porosity, φ = φ(x, t).

Next, we write (9.2.5) in terms of solid displacement ws . Making use of (2.3.69)
and (9.1.21), we obtain:

Gs∇2ws + (Gs + λs)∇(∇·ws) = b + αB∇ pv + (2Gs + 3λs)αT∇(T − To),
(9.2.6)

in which Gs and λs are the Lamé constants, pv , T , and ws are state variables and b
is expressed by (9.2.3). The above equation may be regarded as a single equation for
the variable ws , or as three equations for the scalar variables wsx , wsy, wsz . It is the
equation that constitutes the core of the M-model.

We have assumed (for the sake of the discussion here) that changes in solute
concentrations do not affect fluids’ densities. Otherwise, we have to add and solve
also the reactive (solute) transport (C−)model.

Oncewe solve themodel for the effective stress, we can use the appropriate stress–
strain relationship to obtain the sought distribution of strain within the domain.

http://dx.doi.org/10.1007/978-3-319-72826-1_2
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B. Variable Porosity

Equation (9.2.5) contains the porosity, φ, as a variable: it is included in the definition
of the body force b. In Chaps. 5 and 6 the subject of time-dependent porosity (due
to porous medium compressibility) was handled by making use of the coefficient of
porous medium compressibility,αpm , as defined by (5.1.44), leading to the definition
of specific storativity. Here, we shall take another approach.

From the solid’s mass balance equation (5.1.6), repeated here for convenience in
the form:

∂

∂t
[(1 − φ)ρs] = −∇·[(1 − φ)ρsVs], (9.2.7)

in which Vs is approximated by (5.1.19). Equation (5.1.19) may be regarded as an
equation for determining the time and space variations of porosity, recalling that a
good approximation is ρs ≈ const., and:

∣∣∣∣∂φ

∂t

∣∣∣∣ � |Vs ·(∇φ)|,

C. Possible Domain Boundaries

As in the cases of fluid flow, solute transport, and heat transport, a considered three-
dimensional porous medium domain is bounded by a closed surface that separates
it from its surrounding. The latter imposes certain conditions on the investigated
domain. Here, we are considering only conditions that are associated with the subject
of the current chapter, namely, conditions related to stresses, strains, and displace-
ments. However, we have to keep in mind that the same boundary serves also in
modeling fluid flow, solute transport, and heat transport. Accordingly, a boundary
segment may be:

(a) Stationary and shape maintaining.
(b) Mobile, but shape maintaining.
(c) Mobile and free to deform. Ground surface may serve as an example. It may be

regarded as a free surface, similar to the F(x, y, z, t) = 0-surface discussed in
Sect. 5.2.1D.

In each of the above cases, the external side of the boundary may be occupied by a
rigid, stationary, or deformable solid body, or by a body of fluid (gas or liquid).

D. Initial and Boundary Conditions

Aswe have done throughout this chapter, we shall continue to consider theM-model,
simplified to the equilibrium equation (9.2.4) and to the displacement governed by
(9.2.6). To solve these equations,we have to stipulate appropriate initial and boundary
conditions. Obviously, the conditions to be stipulated for theM-model are in addition

http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
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to conditions related to the flow and energy transport models that prevail on these
boundaries.

• Initial conditions

Initial conditions involve a statement of the stress at t = 0 at every point within
the considered domain. Or, we may stipulate the strain, or displacement, if these are
known. For example, when the considered domain is a geological formation, or part
of it, we assume that initially the shear stress is zero and that the stress at every point
is due to gravity only, taking into account the weight of the solid matrix and the
pressure in the fluid or fluids that occupy the void space above any point within the
domain. Initial pressure is often assumed hydrostatic. However, in the case of two
phase flow, we have to take into account also the capillary pressure in determining
initial pressure conditions. The initial displacement is taken as zero everywhere. We
have to take into account also the load on ground surface due to structures (and a
negative load due to excavations).

• Boundary conditions

As for all extensive quantities, here also, boundary conditions are based on the no-
jump condition on the boundary. The condition to be specified on a boundary segment
may involve any of the following cases:

(a) A statement of the stress acting on the boundary, i.e., force per unit area,
acting at t > 0, if a known such stress is specified. An example is the case of flow in
a confined aquifer. The ceiling of the aquifer is loaded by all soil layers up to ground
surface, plus any load above ground surface, or a negative load due excavation. This
(no-jump) condition can be expressed as:

σ·ν = T(x, t), (9.2.8)

whereT denotes a known traction (vector) acting on the boundary. This is aDirichlet,
or traction type boundary condition.

(b) A statement on the velocity of the solid matrix’ boundary. This condition
is based on the general statement (5.2.6) of no-jump in the flux of any considered
extensive quantity. Here, we consider themomentumflux. Neglecting inertial effects,
the condition reduces to that of no-jump in the normal momentum flux, simplified
to the normal speed of displacement of the boundary. An example is a stationary
boundary that confines a geological formation from above or from below. Obviously,
in each case the conditions express known existing or imposed conditions. Cheng
(2016, p. 216) lists a number of additional possible options.

http://dx.doi.org/10.1007/978-3-319-72826-1_5
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9.2.2 The Hydraulic Model for a Deformable Matrix

As an example, consider two fluids that occupy the void space. To obtain the fluids’
pressures, we have to consider and solve the two-phase flow model presented as
(6.4.3)–(6.4.6) inSect. 6.4.1.Once the pressure distributions in the twofluids has been
determined at a considered time step, the densities, viscosities and other coefficients
which depend on the pressure, can be updated. The details of the hydraulic model
are discussed in Chap.6, with initial and boundary conditions stated in Sect. 6.4.2. If
non-isothermal conditions prevail, we have to solve the thermal model and the use
the resulting pressures and temperature to update density and viscosity.

Let us add one more aspect to the flow model. Since we are considering here a
deformable porous medium, this means that porosity is time-dependent, φ = φ(t),
recalling that we can always add the aspect of heterogeneity, i.e., φ = φ(x). The
temporal variation of porosity was presented in Sect. 5.1.2. There, we have shown
that the solid’s mass balance equation is expressed by (5.1.11). We also recall that
Vs = dws/dt , where we added the subscript s as a reminder that ws denotes the
displacement of the solid matrix. With the material presented in that subsection, we
can now write the solid’s mass balance equation in the form:

1

1 − φ

Ds(1 − φ)

Dt
+ 1

ρs

Dsρs

Dt
= −∇·Vs, (9.2.9)

where we have made use of the approximation (5.1.19). We note here the effects of
changes in both porosity and solid’s density. The latter change is related to changes
in pressure, ρs = ρs(p, T ). For example:

ρs = ρso[βs(p − po) + αs(T − To)], (9.2.10)

(e.g., Olivalla et al. 1994). Equation (9.2.9) can be used to follow porosity changes
as changes in pressure, temperature and displacement occur.

We usually make the (very good) assumption that Dsρs/Dt = 0, so that (9.2.9)
reduces to:

1

1 − φ

Dsφ

Dt
= ∇·Vs . (9.2.11)

Then, assuming |∂φ/∂t | � |Vs ·∇φ|, the solid matrix mass balance equation takes
the approximate form:

1

1 − φ

∂φ

∂t
= ∇·Vs . (9.2.12)

which can be used for upgrading φ.

http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5


640 9 Poromechanics and Deformation

9.2.3 The Chemical Model

When the considered fluid phases carry chemical species which spread out, diffuse,
and dispersewithin each phase, interactwith the solidmatrix, cross interphase bound-
aries, and undergo chemical reactions with each other, we use the reactive transport
model described in Chap.7. The fluid velocities appearing in this model are obtained
from the hydraulic model. Exogenic and endogenic reactions produce sources and
sinks of energy, which serve as input to the thermal model.

9.2.4 The Thermal Model

We assume “thermal equilibrium among all phases at a point”, i.e., the temperatures
of all phases within an REV are the same. The temperature, T = T (x, t), becomes
the sole state variable to be solved for by the thermal model. To determine this
temperature, we have to write and solve a single energy balance equation for the
porous medium domain as a whole.

One option is to use (8.4.8) as the energy balance equation to be solved for
T = T (x, t). In the case of two fluids that occupy the void space, we have to
(1) modify the definition of (ρC)pm , to include the solid and the two fluids, (2)
to replace ρf Cf q by

∑
β=w,n ρβCβqβ , and (3) define �H

pm = ∑
s,w,n θβλβ , with

θs = (1 − φ). We note that this equation includes the fluids’ densities, which have
to be continuously updated as temperature varies. Also, fluid viscosities (which are
used to compute the fluids’ specific discharges) have to be continuously updated, as
they are also temperature-dependent.

Another option, especially when we consider cases with phase change, is to write
the heat energy balance equation in terms of the enthalpy of the fluids and the solid
(see Sect. 8.4.1C). Repeating this energy balance equation here:

∂

∂t

⎡
⎣ ∑

(α=w,n)

(θαραuα) + (1 − φ)ρsCsT

⎤
⎦

= −∇·
∑

(α=w,n)

θα

⎡
⎣ραhαVα +

∑
(γ)

hγ
αJγ

α,hdis + J∗H
α,dis

⎤
⎦ (9.2.13)

+∇·�∗
pm∇T + �E

pm,

in which the second sum on the second line is taken over all γ-species present in
the phase. The J’s denote macroscopic fluxes (per unit phase area). Here, Jγ

α,hdis is
the hydrodynamic dispersive flux of the mass of the γ-species, and J∗H

α,dis denotes the
dispersive heat flux within a fluid α-phase.

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_8
http://dx.doi.org/10.1007/978-3-319-72826-1_8
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Often, the above equation is simplified to the form:

∂

∂t

{∑
w,n

φSαραhα + (1 − φ)ρshs

}
= −∇·JH +

∑
w,n

ραSαφ�γE
α , (9.2.14)

in which hα (≡ uα + pαvα) denotes the enthalpy of the α-phase, uα denotes specific
internal energy, hs denotes the enthalpy of the solid phase, JH denotes the total energy
conductive fluxes (per unit area of porousmedium) in all phases, and�γE

α denotes the
source of heat due to exogenic chemical reactions (in the case of a reactive transport
problem).

In a numerical model, once the pressure distributions in the two fluids and the tem-
perature have been determined at a considered time step, the densities, viscosities and
other coefficients which depend on the pressure and temperature are updated. Note
that we have switched here to the language of a numerical solution (like “updated”),
as it is obvious that this kind of model (or set of interrelated models) can be solved
only by a numerical technique.

9.2.5 The Hydro-Thermal-Mechanical (HTM) Model

One of the more complicated (but interesting!) problems of flow and transport in
porous media is the Hydraulic-Thermal-Chemical-Mechanical (HTCM) one. This,
for example, is the case of modeling possible leakage from a radioactive waste repos-
itory in a deep clay formation, or modeling CO2 disposal in deep brine-containing
geological formations. The latter problem involves non-isothermal two phase flow
(of the indigenous saline water and the injected CO2), with chemical reactions and
with solid matrix deformation. In what follows, we shall consider only the HTM,
problem, i.e., without chemical reactions. Often, one of the objectives of solving
such a problem is determining whether or not a mechanical failure will occur in the
geological formation into which CO2 is injected, or at the interface between that
formation and an overlying confining (and sealing) layer. The chemical aspects can
easily be added, making use of the material presented in Chap.7.

In principle, without the chemical model, to arrive at the strain, ε(x, t), or dis-
placement, w, we have to solve for the values of the following 44 space- and time-
dependent scalar variables:

φ, Sw, Sn, pw, pn, pc, pv, ρw, ρn, ρs, bi , Vni , Vwi , Vsi , T, wsi ,σi j ,σ
′
si j , εi j .

However, only 6 of them: e.g., Sw, pn (or Sn, pw), T, wi , are primary variables for
which we have to solve 6 PDEs (see Sect. 3.9). The other have to be obtained from
definitions, equations of state, etc.

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_3
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Obviously, all coefficients appearing in the model, e.g., kw(Sw), kn(Sn), �∗
pm ,

must be known. Some of them may be time-dependent and have to be continuously
updated. In addition, temperature and pressure-dependent coefficients, like μw(T )

and μn(T ), have to be continuously updated. In a heterogeneous domain, void space
and solid matrix properties vary also in space.

As an example, consider the following solution routine:

(a) Assume that all variables and coefficients are known at the current (= initial)
time t = 0 (= initial conditions). Our objective is to obtain a solution for t +�t .

(b) Solve the two mass balance PDEs (6.4.3) to determine the two primary vari-
ables, e.g., pw, Sn at the new time step, t + �t .

(c) Use the 6 scalar equations (6.4.4)–(6.4.6), the expressions for ρn, ρw, ρs , μn,μw,
and the energy balance equation to determine pn, pw, T, Vsi ,
Sw, Sn, kn, kw. Then determine Vwi , Vni . All updated values (also below) are
functions of (x, t + �t).

(d) Use (6.4.5) to update pc, and (6.3.40) to update pv .
(e) Use an appropriate EOS to determine the current values of hw, hn, uw, un .
(f) Use (8.4.9) to update �∗H ,
(g) Solve the energy balance PDE, e.g., (9.2.14), or its simplified form (9.2.14), to

update the primary variable T (x, t) → T (x, t + �t).
(h) Use (9.2.3) and the current values of ρw, ρn, ρs,φ, to update the force compo-

nents, bi .
(i) Solve the equilibrium equation (9.2.4) for the (total) stress σ(x, t) within the

considered domain.
(j) Use (9.2.6) to update the displacement, ws .

In an analytical solution, all equations have to be solved simultaneously. In a
numerical solution, we move one time step at a time, and adjust values of all coef-
ficients and parameters. Often, iterations are used to improve the updated solutions
until a satisfactory convergence is obtained.

9.2.6 Failure of the Solid Matrix

As suggested in the preamble to this chapter, often, the objective of stating and
solving an M-model, which involves the strain-stress analysis outlined above, is to
examine the possibility of ‘failure’ in the form of damage to the stressed formation,
e.g., the creation of fractures in a porous rock formation, or in theca-rock bounding
it.

In a fragile material, a fracture will occur when, in a certain plain, the shear stress
exceeds the resistance of the rock to overcome this shear. Under such conditions,
a slip will occur along the fracture plane. Accordingly, at a certain time step, we
obtain the distribution of effective stress (recall that we have referred to it as the
“strain producing stress”), σ′

s in the considered domain, we can examine whether or
not this stress exceeds the value of a certain failure criterion.

http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_8
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Fig. 9.2 The Mohr–Coulomb (shear) failure criterion

The Mohr–Coulomb is a commonly used criterion for failure, especially in brittle
rock and granular materials (see Fig. 9.2):

τ ′
s = c′ + σ′

sn tanϕ′, (9.2.15)

where τ ′
s denotes the shear stress (and we recall that τ ′

si j ≡ σ′
si j , when i �= j),

c′ denotes the internal strength of the material, or cohesion, σ′
sn denotes the normal

effective stress component, acting on the considered plane, andϕ′ denotes theangle of
internal friction. For sand, Verruijt (2010, p. 134) suggests that, usually, the cohesion
is practically zero, i.e., c′ = 0, and the friction angle varies in the range 30◦−45◦,
depending upon the angularity and the roundness of the particles. Clay soils usually
have some cohesion, and a certain friction angle, but somewhat smaller than sands.

For a three-dimensional stress–strain problem, the Mohr–Coulomb failure crite-
rion takes the form:

± σ′
s11 − σ′

s22

2
=

[
σ′
s11 + σ′

s22

2

]
sinϕ′ + c′ cosϕ′,

±σ′
s22 − σ′

s33

2
=

[
σ′
s22 + σ′

s33

2

]
sinϕ′ + c′ cosϕ′, (9.2.16)

±σ′
s33 − σ′

s11

2
=

[
σ′
s33 + σ′

s11

2

]
sinϕ′ + c′ cosϕ′.

More on the Mohr–Coulomb criterion can be found in Verruijt (2010).
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9.3 Seepage Forces and Land Subsidence

9.3.1 Seepage Forces and Liquefaction

When flow takes place in a porous medium domain, a force is exerted by the moving
fluid on the solidmatrix. This force, referred to as seepage force,F, plays an important
role in many engineering problems.

According to Terzaghi (1943), Biot (1941), three forces act on a unit volume of
the solid matrix at a point during flow:

• The weight of the solid matrix (acting downward):

F∗
g = −ρsg(1 − φ)∇z = −ρbg∇z, ρb = (1 − φ)ρs, (9.3.1)

where ρs is the solid‘s density, and ρb is the bulk density of the solid matrix. Note
that F∗ (a vector) denotes force per unit volume.

• The buoyancy force (or uplift), which is equal to the resultant of the liquid pressure
acting on the solid particles. Since the force acting on a unit volume of solid
resulting from water pressure is equal to −∇ p, we have:

F∗
u = −(1 − φ)∇ p. (9.3.2)

• The drag, or shear, or seepage force,F∗
d , at the solid-fluid interface, per unit volume

of porous medium,

F∗
d = −φ(ρf g∇z + ∇ p), (9.3.3)

created by the fluid’s motion. In other words, the porous medium exhibits a resis-
tance to the flow through it, e.g., as expressed by (4.2.16).

For an isotropic fluid, F∗
d = φμqf /k. In an isotropic porous medium, this force is

in the direction of the normal to the equipotential surfaces. In an anisotropic porous
medium, the direction of the drag force will not coincide with this normal. We shall
then have:

F∗
d = μφq·kT . (9.3.4)

The resultant force acting on the solid matrix, per unit volume of porous medium,
is:

F∗ = F∗
g + F∗

u + F∗
d = −(gρpm∇z + ∇ p). (9.3.5)

in which ρpm = φρf + (1 − φ)ρs , ρ∗ = (ρs − ρf )(1 − φ) is the submerged density
of the solid, and h = (

z + p/gρf
)
is the fluid’s piezometric head. In the absence of

flow, ∇h = 0.

http://dx.doi.org/10.1007/978-3-319-72826-1_4
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The components of the force F∗ in the x, y, z directions are:

F∗
x = −∂ p

∂x
, F∗

y = −∂ p

∂y
, F∗

z = −gρpm∇z − ∂ p

∂z
. (9.3.6)

Note that in the above equation the F∗
i , i = x, y, z, denotes a scalar.

In order to ensure a downward directed force, we must ensure that F∗
z ≤ 0, i.e.,

∂ p/∂z ≥ −gρpm .
The force component F∗

z acting on the solid may be positive (i.e., directed
upward), zero or negative (i.e., directed downward). When, in a soil profile, this
force is acting downward, i.e., F∗

z ≤ 0, we encounter stable conditions in the soil.
When F∗

z ≥ 0, i.e., the vertical force component is directed upward, we encounter
conditions known as quick conditions, F∗

z ≥ 0. Since, usually, ρ∗/ρf ≈ 1, the critical
gradient is usually taken as unity. Sand under quick conditions is referred to as quick-
sand. Quick conditions often occur in the vicinity of the exit of water from the soil,
e.g., at the exit of flow under structures. Sand (or any assembly of unconsolidated
particles) under quick conditions is also referred to as a fluidized bed. Under quick
conditions, the strength of an unconsolidated sand becomes zero. When a domain
containing an unconsolidated assembly of solid particles, with a liquid filling up the
void space, is subjected to shear stresses, the assembly will collapse, such that the
volume of pore space will decrease.Water is forced to evacuate the void space.When
the permeability is small, this will lead to a pressure rise that leads to a reduction
in the effective stress, possibly down to zero. In the case of soil, it looses its coher-
ence. This phenomenon is referred to as soil liquefaction, or quick sand conditions
(Verruijt 2010, p. 82). Bear (1972, p. 186) presents more on quick conditions.

The drag exerted by a moving fluid on a solid particle was already mentioned in
Chap.4.

9.3.2 Land Subsidence

Land subsidence occurs when large volumes of water have been pumped from cer-
tain types of confined aquifers, e.g., ones composed of fine-grained sediments. As
water is being pumped, the stress within the formation, due to overburden, say as
described by (9.2.4), is not changed. However, noting the definition (9.1.7), as water
pressure is reduced, say, by pumping, the effective stress is increased, and the result
is compaction of the soft layers comprising the pumped formation or part of it.

Inmost cases, land subsidence is small and unnoticeable. It often occurs over large
areas rather than in a small location. It may take the form of lowering ground surface
elevation, or in the form of local sinkholes. Land subsidence me be small per year,
but if pumping continues over many years, the effect may be significant, leading to
disastrous results. Famous are the cases of land subsidence in Mexico City, Venice,
Bangkok, and Central Valley, California. However, the phenomenon is widespread
over the world.

http://dx.doi.org/10.1007/978-3-319-72826-1_4
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Under certain circumstances, water, or other fluids, including a gas, are injected
into a confined formation (e.g., the injection of CO2 into an oil reservoir). The rise
in pressure will cause a reduction in the effective stress, and the result is (actually
observed), or upheaval(≡ uplift), of land surface.

An excellent summary of Geomechanics of subsurface water withdrawal and
injection is presented by Gambolati and Teatini (2015).

Following is a presentation of the mathematical model that describes land subsi-
dence. Actually, in the previous section, we have already presented all the ingredients
of the land subsidence model. Accordingly, assuming a single fluid occupying the
entire void space of a confined formation of thickness B = B(x, y), themathematical
3-d model consists of the following equations:

• Stress, pressure and effective stress relationship (9.1.7):

σ = σ′
s − pI, (9.3.7)

where p denotes the average pressure of the fluid (or fluids) in the void space.
Note that the above equation does not include the Biot coefficient, αB , which can
always be added (see (5.1.30)).

• The equilibrium equation:

∇·σ + ρF = 0, F = −g∇z. (9.3.8)

Note the difference between the forces denoted by F and F∗.
• The mass balance equation for the fluid (5.1.25):

φβ
∂ p

∂t
+ ∂εs

∂t
= −∇·qr + � f , (9.3.9)

where qr is the fluid’s flux expressed by Darcy’s law, β is the fluid’s compressibility,
εs denotes the solid matrix dilatation, and � f denotes the rate of fluid injection per
unit volume of porous medium.

Of course, we could continue to write and solve the model in three dimensions,
but, when considering the effect of pumping from geological formations, it is more
convenient, and practical, to write and solve the model as a two-dimensional one, in
the horizontal (x, y)-plain. We use the procedure described in Sect. 5.3 for passing
from a 3-d model to a 2-d (horizontal) one. For the sake of simplicity we’ll consider
the case of a confined aquifer, with Hubbert’s potential �, defined by (4.1.7).

Our objective is to construct a model that describes land subsidence in response
to pumping from a confined aquifer of thickness B = B(x, y, t). As above, we start
from the mass balance for a compressible fluid in a deformable porous medium in
three dimensions:

∇· qr + ρgφβ
∂�

∂t
+ ∂εsk

∂t
+ P(x, y, z, t) = 0, (9.3.10)

http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_4
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in which ρ denotes fluid’s density, � is Hubbert’s potential, defined by (4.1.7), and
P(x, y, z, t) represents distributed pumping (as volume of water extracted per unit
volume of soil, per unit time).

To obtain a two-dimensional model, we integrate (9.3.10) over the aquifer thick-
ness, B(x, y, t), obtaining:

∫ b2(x,y,t)

b1(x,y,t)

(
∇· qr + ρgφβ

∂�

∂t
+ ∂εsk

∂t
+ P

)
dz

= ∇′ · Bq̃r + qr |F2 · ∇F2 − qr |F1 · ∇F1 + B
∂ε̃sk

∂t
+ ρ̃gφ̃βB

∂�̃

∂t

+ρ̃gφ̃β

(
�

∂B

∂t
+ �

∣∣
F2

∂F2

∂t
− �

∣∣
F1

∂F1

∂t

)
+ B P̃ = 0, (9.3.11)

where Fi = Fi (x, y, z, t) = z − bi (x, y, t) = 0, i = 1, 2, describes the bottom and
top surfaces bounding the aquifer, the prime symbol over an operator indicates that
the operator is in the xy-plane only, and we have made use of the approximation:

∫ b2

b1

ρgφβ
∂�

∂t
dz  ρ̃gφ̃β

∫ b2

b1

∂�

∂t
dz, (̃ ) = 1

B

∫ b2

b1

( ) dz. (9.3.12)

Obviously, all averaged terms are functions of x, y and possibly t .
For the impervious top and bottom bounding surfaces considered here, we use the

boundary condition (5.2.12), rewritten in the form:

qr |F1 · ∇F1 = 0, qr |F2 · ∇F2 = 0. (9.3.13)

Adding the assumption that equipotentials are essentially vertical, i.e., �|F1 
�|F2 = �̃, Eq. (9.3.11) reduces to:

∇′ · Bq̃r + B
∂ε̃sk

∂t
+ ρ̃gφ̃βB

∂�̃

∂t
+ B(x, y, t)P̃(x, y, t) = 0, (9.3.14)

where P̃ represents volume of water withdrawn from the aquifer per unit horizontal
area, per unit time, and Bq̃r = −BK̃ · ∇′h̃∗ represents integrated horizontal flux.

We note that in (9.3.14):

∂�̃

∂t
 1

ρ̃g

∂ p̃

∂t
+ ∂ z̃

∂t
, ∇′�̃  + 1

ρ̃g
∇′ p̃ + ∇′̃z, (9.3.15)

in which z̃ = (b1 + b2)/2 is the elevation of the midpoint of the aquifer.
From (5.1.18) and (5.1.19), we obtain:

B
∂̃εsk

∂t
= B∇̃·Vs = ∇′ · BṼ′

s + Vs

∣∣
F2

· ∇F2 − Vs

∣∣
F1

· ∇F1. (9.3.16)

http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
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Since the top and bottom surfaces of the aquifer are assumed to be material surfaces
with respect to the solid, following (5.2.9), we have on them:

(Vs − u)
∣∣
F1

· ∇F1 = 0, (Vs − u)
∣∣
F2

· ∇F2 = 0. (9.3.17)

or, in view of (5.2.1):

Vs

∣∣
F1

· ∇F1 = −∂F1

∂t
, Vs |F2 · ∇F2 = −∂F2

∂t
. (9.3.18)

Hence, (9.3.16) becomes:

B
∂̃εsk

∂t
= ∇′ · BṼ′

s − ∂(F2 − F1)

∂t
= ∇′ · BṼ′

s + ∂B

∂t
. (9.3.19)

With the solid velocity, Vs , related to the displacement vector, w(≡ ws) by (5.1.11),
noting the approximation included in this equation, we obtain:

BṼ′
s =

∫
(B)

V′
s dz −

∫
(B)

∂w
∂t

dz = ∂

∂t
(Bw̃′) + w̃′|F2

∂F2

∂t
− w̃′|F1

∂F1

∂t

= B
∂w̃′

∂t
+

(
w̃′ ∂B

∂t
+ w′|F2

∂F2

∂t
− w′|F1

∂F1

∂t

)
. (9.3.20)

At this point, we need information on w′|F2 and w′|F1 , which are the displacement
boundary conditions on F1 and F2, respectively. This information is not available.
We circumvent this difficulty by introducing the simplifying assumption that the
horizontal displacement is constant along the vertical, i.e.:

w′|F2 = w′|F1 = w̃′. (9.3.21)

Then:

B
∂ε̃sk

∂t
= ∇′ · B ∂w̃′

∂t
+ ∂B

∂t
. (9.3.22)

Following (Verruijt 1969), we now express the specific discharge and the piezometric
head as a sum of initial steady state values and deviations that express excess above
the latter. By averaging these expressions, we obtain:

�̃(x, y, t) = �̃o(x, y) + �̃e(x, y, t),

q̃′
r (x, y, t) = q̃′

r
o(x, y) + q̃′

r
e(x, y, t),

P̃(x, y, t) = P̃o(x, y) + P̃e(x, y, t). (9.3.23)

http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
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In terms of these variables, the averaged mass balance equation (9.3.14) is separated
into two equations: a steady state mass balance equation:

∇′ · Bq̃′
r
o + P̃o = 0, (9.3.24)

and an unsteady one:

∇′ · Bq̃′
r
e + ∇′ ·

(
B

∂w̃′

∂t

)
+ ∂B

∂t
+ ρ̃gφ̃βB

∂�̃e

∂t
+ B P̃e = 0. (9.3.25)

The last equation can be linearized by introducing:

B(x, y, t) = b2(x, y, t) − b1(x, y, t)

= (bo2(x, y) + wz|F2) − (bo1(x, y) + wz|F1) = Bo(x, y) + �z,

�z = wz|F2 − wz|F1 � Bo. (9.3.26)

We note that �z , denoting compaction, is positive in the +z-direction. Neglecting
the effect of compaction on permeability, this approximation also leads to the flux
equation:

Bq̃′
r
e = −BoK̃′ · ∇′�̃e. (9.3.27)

Altogether, by substituting (9.3.27) in (9.3.25), we obtain a single equation in the
variables �̃e, B, and w̃′. Our next step is to make use of the equilibrium equation.

9.3.3 Integrated Equilibrium Equation

The total stress tensor, σ, at a point within an aquifer, satisfies the equilibrium
equation (5.1.37), rewritten here for convenience in the form:

∇ · σ + ρF = 0, (9.3.28)

where we have omitted the average symbol; the body force acting on the porous
medium, ρF, is assumed to remain unchanged by the compaction of the porous
medium, i.e., (ρF)e = 0, where the superscript e denotes the increment. In (9.3.28),
ρ (= ρpm) = φρf + (1 − φ)ρs , represents the combined density of fluid and solid
matrix.

We start from (5.1.54), which involves the incremental effective stress and effec-
tive pressure. We repeat it here for convenience as:

∇ · σ′
s
e − ∇ pe = 0. (9.3.29)

Note that in this equation, p is positive for compression.

http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
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We then assume that the solid matrix comprising the aquifer behaves like an
isotropic and (for the relatively small displacements considered here) perfectly elastic
body, for which the stress–strain relationship (5.1.55) is valid. By integrating (9.3.29)
(see Fig. 5.1), we obtain:

∫ b2

b1

(∇ · σs
e − ∇ pe

)
dz = ∇′ · Bσ̃′

s
e + (σ′

s
e − peI)

∣∣
F2

· ∇F2

−(σ′
s
e − peI)

∣∣
F1

· ∇F1 − ∇′B p̃e = 0. (9.3.30)

We assume that the porousmedium on both sides of a boundary surface, say the upper
one, F2 = 0, is deformable. On such boundary, we have to maintain the condition of
no-jump in the total stress, i.e.:

[[ σ ]]u,� · ∇F2 = 0, [[ σ′
s − pI ]]u,� · ∇F2 = 0, (9.3.31)

where u and �, respectively, denote the upper and lower sides. Following the method-
ology introduced earlier, this condition leads to an analogous condition related to the
incremental effective stress and pressure:

[[ σ′
s
e − peI ]]u,� · ∇F2 = 0. (9.3.32)

When the excess stress and pressure in an aquifer are due only to pumping, and not
to changes in the overburden load, say, by excavation, the total stress on the upper
side of the boundary, σ

∣∣
u , remains unchanged. Hence, from (9.3.31), we obtain:

σ
∣∣
u · ∇F2 = σo

∣∣
u · ∇F2 = (

σ′
s
o∣∣

�
− po

∣∣
�
I
) · ∇F2, (9.3.33)

and:
σe

∣∣
u
· ∇F2 = (

σ′
s
e∣∣

�
− pe

∣∣
�
I
) · ∇F2 = 0. (9.3.34)

In view of the boundary conditions (9.3.34), Eq. (9.3.30) reduces to

∇′ · B (̃σ′
s
e) − ∇′B p̃e = 0, (9.3.35)

in which averaged values are functions of x , y and t only.
Let us rewrite (9.3.35) in the form:

∂

∂x
B (̃σ′

s
e)xx + ∂

∂y
B (̃σ′

s
e)xy − ∂

∂x
B p̃e − ∂

∂y
B p̃e = 0, (9.3.36)

and two analogous equations in the y and z directions (Bear and Bachmat 1991,
p. 509). We then express the averaged excess effective stress tensor in terms of
averaged displacements, making use of (5.1.18) and (5.1.55), and the assumption
expressed by (9.3.21). We obtain:

http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
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ε̃sk = ε̃xx + ε̃yy + ε̃zz

= ∂w̃x

∂x
+ ∂w̃y

∂y
+ ∂w̃z

∂z
= ∂w̃x

∂x
+ ∂w̃y

∂y
+ �z

B
, (9.3.37)

(̃σ′e
s)xx = λ′′

s ε̃sk + 2μ′
s (̃εsk)xx

= (λ′′
s + 2μ′

s)
∂w̃x

∂x
+ λ′′

s

(
∂w̃y

∂y
+ �z

B

)
, (9.3.38)

and additional analogous equations for (̃σ′
s
e)yy , (̃σ

′
s
e)xy = (̃σ′

s
e)yx , (̃σ

′
s
e)zx = (̃σ′

s
e)xz ,

(̃σ′
s
e)yz = (̃σ′

s
e)zy , and (̃σ′

s
e)zz . For example (Bear and Bachmat 1991, p. 510), we

obtain the linearized equation:

˜

(σ′
s
e)zz = λ′′

s ε̃sk + 2μ′
s

∂w̃z

∂z
= λ′′

s

(
∂w̃x

∂x
+ ∂w̃y

∂y

)
+ (λ′′

s + 2μ′
s)

�z

B
. (9.3.39)

By inserting these expressions into (9.3.36) and the additional, not shown, equations,
and making use of (9.3.21), we obtain three equations in the four averaged variables
p̃e, w̃x , w̃y , and w̃z , all functions of x , y and t only:

∂

∂x

{
B

[
(λ′′

s + 2μ′
s)

∂w̃x

∂x
+ λ′′

s

(
∂w̃y

∂y
+ �z

B

)]}

+ ∂

∂y

[
Bμ′

s

(
∂w̃x

∂y
+ ∂w̃y

∂x

)]
− ∂

∂x
B p̃e = 0, (9.3.40)

∂

∂x

[
Bμ′

s

(
∂w̃y

∂x
+ ∂w̃x

∂y

)]
+ ∂

∂y

{
B

[
λ′′
s

∂w̃x

∂x

+(λ′′
s + 2μ′

s)
∂w̃y

∂y
+ λ′′

s

�z

B

]}
− ∂

∂y
B p̃e = 0, (9.3.41)

∂

∂x

[
Bμ′

s

∂w̃z

∂x
+ μ′

s

(
w̃z + wz

∣∣
F2

∂F2

∂x
− wz

∣∣
F1

∂F1

∂x

)]
+ ∂

∂y

[
Bμ′

s

∂w̃z

∂y

+μ′
s

(
w̃z + wz

∣∣∣∣
F2

∂F2

∂y
− wz

∣∣∣∣
F1

∂F1

∂y

)]
= 0. (9.3.42)

For constant λ′′
s and μ′

s , and with

B(x, y, t) = Bo(x, y) + �z(x, y, t), �z � Bo, (9.3.43)
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we obtain the linearized forms of (9.3.40) and (9.3.41):

μ′
s∇′2w̃x + (λ′′

s + μ′
s)

(
∂w̃x

∂x
+ ∂w̃y

∂y

)
+ λ′′

s

∂(�z/Bo)

∂x
− ∂ p̃e

∂x
= 0, (9.3.44)

μ′
s∇′2w̃y + (λ′′

s + μ′
s)

(
∂w̃x

∂x
+ ∂w̃y

∂y

)
+ λ′′

s

∂(�z/Bo)

∂y
− ∂ p̃e

∂y
= 0. (9.3.45)

With the same linearization, and assuming |Ṽ′
s · ∇′B| � |∂B/∂t |, the second and

third terms in (9.3.25) reduce to Bo∂ε̃sk/∂t . Thus, we may approximate the volume
balance equation, (9.3.25), by (Bear and Bachmat 1991, p. 511):

∇′ · BoK̃

(
1

ρ̃g
∇′ p̃e + ∇′z

)
+ Bo ∂ε̃sk

∂t
+ φ̃βBo ∂ p̃e

∂t
+ Bo P̃e = 0. (9.3.46)

In principle, (9.3.37), (9.3.42) and (9.3.44)–(9.3.46) are five equations in the
variables p̃e, w̃x , w̃y,�z and ε̃sk . However, in (9.3.42) we still have the terms

wz

∣∣
F1

, and wz

∣∣
F2

, with �z ≡ wz

∣∣
F2

− wz

∣∣
F1

, and B = Bo + �z,

which are actually conditions on the surfaces F1 = 0 and F2 = 0, for which we
have no information. In fact, in most subsidence problems, the land subsidence, as
expressed by wz

∣∣
F2
is the very state variable for which a solution is sought.

At this point we may continue by introducing certain simplifying assumptions, as
a substitute for themissing information. For example, wemay assume that the bottom
of the aquifer is fixed, i.e., wz

∣∣
F1

= 0 and that wz varies linearly with elevation, i.e.,

w̃z = 1
2wz

∣∣
F2

= �z/2, where −�z denotes land subsidence (positive downward).

We then end up with equations for w̃x , w̃y,�z and p̃e. In this way, we have achieved
our goal of determining the land subsidence �z(x, y, t). In fact, we have solved,
simultaneously, for the horizontal displacement, w̃x , as well as for the pressure in
the aquifer, p̃e.

Verruijt (1969, p. 347) suggested an approach based on the assumption that con-
solidation occurs under conditions of planar incremental total stress:

σe
zz = 0, σe

xz = σe
zx = 0, σe

yz = σe
zy = 0. (9.3.47)

This is a consequence of the assumption that displacements occur in the vertical direc-
tion only, i.e., wz �= 0, wx = wy = 0, while the total stress remains unchanged, i.e.,
σ ≡ σo andσe = 0. This assumption is justifiedwhen the aquifer is located between
two soft confining layers (e.g., clay) which cannot resist shear stress. Furthermore,
this assumption also justifies (9.3.21), since in a relatively thin aquifer, as implied by
the planar stress assumption, lateral deformation is, more or less, uniform throughout
the relatively small thickness of the layer.
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From (9.3.47), it follows that the equilibrium equation (9.3.29) reduces to:

∇′ · σ′
s
e − ∇′ pe = 0, (9.3.48)

with the boundary condition (9.3.34), and a similar one for F1 = 0, also written in
the xy-coordinates only.

Following the integration procedure, which led above to (9.3.36) and to analogous
equations in y and z, we now obtain only (9.3.36) and an analogous equations in y;
the z-equation has been eliminated.

Accordingly, we now have to solve (9.3.25), or any equivalent form of it, (9.3.44)
and (9.3.45), for p̃e, w̃x , w̃y and �z . The required fourth equation is now obtained
from the first condition in (9.3.47), which leads to

(σ′
s
e
)zz = pe. (9.3.49)

From (9.3.39) and (9.3.49), we now obtain:

p̃e = λ′′
s

(
∂w̃x

∂x
+ ∂w̃y

∂y

)
+ (λ′′

s + 2μ′
s)

�z

B

= λ′′
s ε̃sk + 2μ′

s

�z

B
. (9.3.50)

This completes the formulation of the mathematical model for land subsidence. Usu-
ally we assume that wz

∣∣
F1

= 0, and that −�z = −wz

∣∣
F2
expresses land subsidence.

9.3.4 Terzaghi–Jacob Versus Biot Approaches

Bydifferentiating (9.3.44)with respect to x , Eq. (9.3.45)with respect to y, linearizing
both equations and then adding them, assuming constant λ′′

s , μ′
s , and Bo, we obtain

∇′2{(λ′′
s + 2μ′

s)∇′ · w̃′ + λ′′
s

�z

Bo
− p̃e

} = 0. (9.3.51)

Following Verruijt (1969), we integrate (9.3.51), obtaining

(λ′′
s + 2μ′

s)∇′ · w̃′ + λ′′
s

�z

Bo
= (λ′′

s + 2μ′
s)ε̃sk − 2μ′

s

�z

Bo

= p̃e + �′(x, y, t), (9.3.52)

where �′ satisfies
∇2�′ = 0, for every t.

The case �′ = 0, is presented after (5.1.64).

http://dx.doi.org/10.1007/978-3-319-72826-1_5


654 9 Poromechanics and Deformation

By comparing (9.3.52) with (9.3.50), obtained by introducing the planar stress
assumption, we find that:

�′ = 2μ′
s

(
∇′ · w̃′ − �z

Bo

)
 2μ′

s

(
ε̃sk − 2

�z

Bo

)
, (9.3.53)

where ε̃sk is defined by (9.3.37).
If we assume P̃e = 0, and no horizontal displacement, i.e., w̃′ ≡ 0, Eq. (9.3.25)

reduces to:

∇′ · Bq̃′
r
e + ∂B

∂t
+ ρ̃gφ̃βB

∂h̃∗

∂t
= 0, (9.3.54)

where B = Bo + �z . Under the same conditions, (9.3.50) reduces to:

p̃e = (λ′′
s + 2μ′

s)
�z

B
. (9.3.55)

Together, (9.3.54) and (9.3.55) can now be solved for p̃e and �z .
By combining the two equations, and assuming �z � B, we obtain:

∇′ · Bq̃′
r
e + B

(
1

λ′′
s + 2μ′

s

+ φ̃β

)
∂ p̃e

∂t
= 0. (9.3.56)

By comparing (9.3.56) with (5.1.66), we may conclude that we could have obtained
the last equation by assuming, from the onset, that only vertical compressibility
prevails, with a coefficient of vertical compressibility:

α = 1

λ′′
s + 2μ′

s

(9.3.57)

as in (5.1.66). Furthermore, by comparing (9.3.53), with w̃′ = 0, with (9.3.50),
obtained by assuming (i) planar stress, and (ii) no horizontal displacement, we obtain:

�′ = −2μ′
s

�z

B
. (9.3.58)

It is of interest to return at this point to the end of Sect. 5.1.6 where a comparison is
made between the Terzaghi–Jacob and the Biot approaches.

9.3.5 Land Subsidence Produced by Pumping

As an example for the use of the land subsidence model developed above, consider
the case of land subsidence presented by Bear and Corapcioglu (1981b). In this

http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
http://dx.doi.org/10.1007/978-3-319-72826-1_5
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example, both vertical and horizontal displacements, produced by pumping from a
single well in a homogeneous confined or phreatic aquifer, are considered.

With P̃e denoting the constant pumping rate from a well of radius rw in a con-
fined aquifer, a land subsidence model is constructed in terms of the four variables:
δ(r, t)(≡ �z), w̃r (r, t), − p̃e, and ε̃e, denoting (vertical) subsidence, horizontal dis-
placement, pressure drop, and strain, or volume dilatation, respectively.

Based on certain simplifying assumptions, e.g.,

∂B

∂r
� B

r
, and

1

�z

∂�z

∂t
� 1

B

∂B

∂t
,

the Bear and Corapcioglu (1981b) land subsidence model is composed of the fol-
lowing four equations:

• (Linearized) mass balance equation:

−1

r

∂

∂r

(
r
k̃o

μ̃o

∂ p̃e

∂r

)
+ ∂ε̃

∂t
+ φ̃oβ

∂ p̃e

∂t
= 0. (9.3.59)

• Definition of dilatation, averaged over the vertical:

ε̃e = ∂w̃r

∂t
+ w̃r

r
+ �z

Bo
. (9.3.60)

• A combination of averaged (= integrated over the vertical) equilibrium equa-
tion, combined with the constitutive equations:

(
2μ′

s + λ′′
s

)
ε̃e − 2μ′

s

�z

Bo
= p̃e + 2g(t), (9.3.61)

where g(t) is an arbitrary function of t .

• Averaged constitutive relation, combined with the assumption of plane incre-
mental total stress, suggested by Verruijt (1969):

p̃e = 2μ′
s

�z

Bo
+ λ′′

s ε̃
e. (9.3.62)

These four equations, in the variables: p̃e, ε̃e, w̃r , and �z , are solved for the
boundary and initial conditions:

t ≤ 0, r ≥ re, p̃e, ε̃e, w̃r ,�z = 0

t > 0, r = rw,
∂ p̃e

∂r
= Qwμ̃o

2πrwBok̃o

r = rw, w̃r = 0

r → ∞, p̃e, w̃r , ε̃e, �z = 0. (9.3.63)
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Subject to certain simplifying assumptions, the solutions derived by Bear and
Corapcioglu (1981b) for the excess pressure, expressed in terms of change in
piezometric head, is:

p̃e

ρ̃og
= �h = − Qw

4πT
W (u), u = r2

4Cvt
= Sr2

4T t
, (9.3.64)

which is the usual equation describing drawdown in a confined aquifer, as a result
of pumping from a well (e.g., (Bear, 1979), p. 321). In this equation, Cv(= 1/(μ′

s +
λ′′
s ) ≡ T/S) is a consolidation coefficient, T and S are the aquifer transmissivity and

storativity, respectively, and W (u) is the exponential integral,

W (u) ≡ −Ei(−u) =
∫ ∞

u

e−x

x
dx . (9.3.65)

The vertical displacement is:

δ(≡ −�z) = Qw

8πCv

W (u) = − S

2
�h. (9.3.66)

This is half the value obtained by assuming that only vertical consolidation takes
place (Bear and Corapcioglu 1981a). The horizontal displacement is:

w̃r = − Qwr

16πCvBo

[
W (u) + 1 − e−u

u

]
, (9.3.67)

with a maximum value at

r |wr ,max ≈ 1.1367(Cvt)
1/2 = 1.1367(T t/S)1/2. (9.3.68)

In may be of interest to note that in the four-variables model presented here,
the integrated flow equation, equilibrium equation and constitutive relationship are
coupled. A simpler approach would be to solve for the pressure drop, assuming no
soil deformation, and then to estimate soil compaction, or/and subsidence from

δ(x, y, t) =
∫
B

∂wz

∂z
dz =

∫
B

εsk(x, y, z, t) dz =
∫
B

p̃e

λ̃′′
s + 2μ̃′

s

dz, (9.3.69)

where B denotes the thickness of the considered layer, and we have made use of
(5.1.65) to express εsk in terms of the pressure p̃e. The solution for p̃e can be obtained
by solving (9.3.56), with φ ≈ φ̃.

Some researchers (e.g., Gambolati et al. 1973, 1974; Corapcioglu and Brutsaert
1977) have presented subsidence models that take into account the time lag between
measured changes in piezometric head and the observed resulting compaction. This

http://dx.doi.org/10.1007/978-3-319-72826-1_5
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time lag is an indication that the purely elastic constitutive relations is not appropriate
for clay and silt lenses.

Analytical solutions for land subsidence produced by pumping from a well, are
presented by Bear and Corapcioglu (1981a, b) and by Verruijt (2014).

9.4 Waves in Porous Media

So far, in Chaps. 1–8, we have assumed that inertial forces are negligible, leading
to Darcy’s law as an approximation of the fluid’s momentum balance equation. In
Sect. 4.3.2 we have presented the momentum balance equation for the fluid, when
local acceleration may not be neglected, especially at the onset of flow and in oscil-
latory flows, but the advective acceleration and the internal friction in the fluid may
be neglected. In this section, we shall consider the case when these effects may not
be neglected.

We start from the macroscopic momentum balance equations (9.2.1) rewritten for
a single fluid ( f ) that occupies the entire void space:

φρf
D f V f i

Dt
+ (1 − φ)ρs

DsVsi

Dt
= ∂σi j

∂x j
+ ρFi , (9.4.70)

in which Vf and Vs denote the average velocities of the fluid and the solid, σ
(≡ φσ f

f + (1 − φ)σs
s) is the total stress, and ρF (≡ −(φρf

f + (1 − φ)ρs
s)g∇z)

is the body force, per unit volume of the porous medium, due to gravity.
Just a reminder that for any vector g, Dαgαi/Dt ≡ ∂gαi/∂t + Vα j∂gαi/∂x j .
Since Darcy’s law is written in terms of the relative velocity, Vr ≡ (Vf − Vs), we

can write (9.4.70) as:

φρf
DsVri

Dt
+ ρb

DsVsi

Dt
+ φρf Vr j

∂

∂x j

(
Vri + Vsi

)
= ∂σi j

∂x j
− ρbg

∂z

∂xi
, (9.4.71)

where ρb = φρf
f + (1 − φ)ρs

s denotes the bulk density of the porous medium.
As a momentum balance equation for the fluid alone, we may use (4.2.20). Then,

recalling that we may express the permeability as k = φ�2RT , and neglecting the
term that expresses the internal friction in the fluid, we can rewrite (4.2.2) in the
form:

φρf
Df V f i

Dt
= −φ

(
∂ p

∂xi
+ ρf g

∂z

∂xi

)
− μφ2(ki j )

T Vr j . (9.4.72)

Let us assume that the local acceleration is much larger than the convective one,
i.e., ∣∣∣∣∂V f i

∂t

∣∣∣∣ �
∣∣∣∣V f j

∂V f i

∂x j

∣∣∣∣,
∣∣∣∣∂Vsi

∂t

∣∣∣∣ �
∣∣∣∣Vsj

∂Vsi

∂x j

∣∣∣∣, (9.4.73)
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or, making use of the methodology presented in Sect. 3.10 for deleting non-dominant
effects:

St−1 =
∣∣∣∣

(
�t

)(V )

c(
�x

)(V )

c /Vc

∣∣∣∣ � 1, (9.4.74)

i.e., the time required for a local incremental change in velocity is much shorter than
the time required for observing the same velocity change in space. Then (9.4.72)
reduces to:

φρf
∂V f i

∂t
= −φ

(
∂ p

∂xi
+ ρf g

∂z

∂xi

)
− μφ2(ki j )

T Vr j . (9.4.75)

Note that a high Strouhal number indicates creeping flow.
In terms of Vr and Vs , (9.4.75) takes the form:

φρf
∂Vri

∂t
+ φρf

∂Vsi

∂t
= −φ

(
∂ p

∂xi
+ ρf g

∂z

∂xi

)
− μφ2(ki�)

T Vr�. (9.4.76)

Considerations similar to those leading to (9.4.73) and (9.4.74), will lead to
the deletion of all the convective acceleration terms in (9.4.71). Thus, by neglecting
the convective acceleration also in the solid, andmaking use of (5.1.28) to express the
total stress, σ, in terms of the effective stress, σ′

s and fluid pressure, p, the averaged
momentum balance equation (9.4.70), reduces to:

φρf
∂V f i

∂t
+ (1 − φ)ρs

∂Vsi

∂t
= ∂σ′

s ji

∂x j
−

(
∂ p

∂xi
+ ρbg

∂z

∂xi

)
. (9.4.77)

Or:

φρf
∂Vri

∂t
+ ρb

∂Vsi

∂t
= ∂σ′

s ji

∂x j
−

(
∂ p

∂xi
+ ρbg

∂z

∂xi

)
. (9.4.78)

Thus, (9.4.76) for the fluid and (9.4.78) for the porous medium as a whole, are
two momentum balance equations in terms of Vr and Vs . Using (9.4.76) to express
∂Vri/∂t and inserting in (9.4.78), we obtain:

(1− φ)ρs
∂Vsi

∂t
− ∂σ′

s ji

∂x j
− (1− φ)

[
∂ p

∂xi
+ ρsg

∂z

∂xi

]
− μφ2(ki�)

T Vr� = 0. (9.4.79)

Using (5.1.19) to approximate Vs ≈ ∂ws/∂t , Vf ≈ ∂wf /∂t , the above two
equations can be written as

(1−φ)ρs
∂2wsi

∂t2
− ∂σ′

s ji

∂x j
−(1−φ)

[
∂ p

∂xi
+ ρsg

∂z

∂xi

]
−μφ2(ki�)

T
∂

∂t
(w f �−ws�) = 0.

(9.4.80)
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Similarly, from (9.4.75), we obtain

φρf
∂2w f i

∂t2
+ φ

(
∂ p

∂xi
+ ρf g

∂z

∂xi

)
+ μφ2(ki�)

T
∂

∂t
(w f � − ws�) = 0. (9.4.81)

The above two equations can be shown to be hyperbolic wave equations (Sorek
et al. 1992). We recall that the displacements considered here are at (i.e., at the close
vicinity of) the considered point.

In these two momentum balance equations, the variables are ws , wf , p, ρf , and
σ′

s . To obtain a complete solution for the displacements, we need three additional
equations. These are:

• The constitutive relation that expresses the stress–strain relationship for the solid
skeleton, e.g., (9.1.19).

• A relationship, ρf = ρf (p).
• The fluid’s mass balance equation, e.g., (5.1.22), and we have to use the expression
(4.2.44) for qr .

Because the mass balance equation involves also the skeleton’s dilatation, εsk , as an
additional variable, we add also:

• Equation (5.1.18) that relates εsk to ws .

We thus have a complete set of equations to be solved for the variables of this
problem. Usually, we focus our attention on the solid’s displacement ws .

Often, the effective stress is expressed by (9.1.7), i.e., using Biot’s coefficient αB .
Then, p in (9.4.78) and (9.4.81) is replaced by αB p.

Sorek et al. (1992), using a similar approach, developed a mathematical model
that involves a somewhat different momentum balance equations for a thermo-elastic
porous medium and show that they are waves equations.
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Appendix A
Selected Phenomena of Transport and
Processes in Chemical Engineering

by
Raphael Semiat1 and Jacob Bear

Variousmathematicalmodels of phenomenaof transport ofmass, energy andmomen-
tum in porous media have been presented in Chaps. 5–9. However, the presentation
focussedmainly onphenomena that occur ingeological formations, as encountered in
Reservoir Engineering, Geo-hydrology, Agriculture Engineering and Soil Mechan-
ics. Phenomena that are encountered and treated by Chemical Engineers have hardly
beenmentioned, although such phenomena are the bread and butter of chemical engi-
neers. The presentation in the current appendix focuses on phenomena of transport of
mass energy and momentum that occur in Chemical Engineering, making use of the
same kind of mathematical models that have been presented throughout this book.
We shall describe and discuss the phenomena and processes of transport that occur
in reactors and demonstrate appropriate mathematical models that describe them.

The reactor, or the porous bed (abbreviated ‘bed’) considered here is an enclosed
domain. often a column, within which physical, chemical, and thermodynamic phe-
nomena occur under control achieved by controlling conditions imposed on the
domain’s boundaries. It is common to use the term reactor when chemical reac-
tions occur, while the term contactor is used when the main objective of the setup is
to enable and enhance processes that require contact between different phases. Our
objective here is to demonstrate how the models presented and discussed throughout
this book are used in the important discipline of Chemical Engineering.

With the objectives of this book in mind, we shall focus on enclosed domains,
e.g., reactors, that contain both solids and fluids (i.e., liquids and gases), such that
each of them can be envisioned and treated as a continuum, recalling the conditions
(discussed in Sect. 1.1.2), that allow us to regard and treat a domain occupied by a
solid and one or more fluids as “a porous medium continuum”. Altogether, porous
beds/reactors considered here are composed ofmultiple overlapping (solid and fluid)
continua.

Obviously, this is not a text in Chemical Engineering, nor a comprehensive review
on chemical processes in chemical reactors. Our objective is to present examples of

1Prof. Raphael Semiat is a Professor in the Dept. of Chemical Engineering at the Technion-Israel
Institute of Technology, Haifa, Israel. His main field of expertise is separation processes in the
process industry, with emphasis on desalination and water purification.
© Springer International Publishing AG 2018
J. Bear,Modeling Phenomena of Flow and Transport in Porous Media,
Theory and Applications of Transport in Porous Media 31,
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a selected number of processes and examples of phenomena of flow and transport
in a specific porous medium domains–the reactor–which is of interest to chemical
engineers. The presentation is limited only to the major types of reactors used in
the Chemical Engineering Industry. Only reactors which involve porous medium
domains are included.

Process engineering is the common name for many industrial processes that
are implemented in the chemical industry. Separation, cleaning, and generation of
new materials, may serve as typical examples. The different processes take place in
domains of various configurations, usually called columns, beds, reactors, or con-
tactors. A reactor contactor is a domain surrounded by an impervious envelope,
with inlets and outlets through the latter. Various instruments and devices are placed
within the domain to monitor, serve and enhance processes. A special type of reac-
tors is one in which at least part of its domain is occupied by a porous medium
(as defined in Sect. 1.1.2). This means that the solid matrix and each of the flu-
ids involved may be regarded as continua, and the continuum models are applicable.
When applied to a considered process in a specific reactor, themodels guide planning
and operation decisions. We shall discuss only mass and energy balance equations.
We shall not present the momentum balance equation for a fluid or a gas phase,
as it is usually replaced by Darcy’s law (for sufficiently small Reynolds numbers).
Forchheimer equation (4.3.6), or Ergun’s equation (4.3.17) are usually used for flow
at high Reynolds numbers.

Although the macroscopic mass, momentum and energy balance equations have
been presented throughout the book, for the convenience of the reader, let us repeat
some of them here. Obviously, as for all other E-balance equations, the content of
the equation to be used depends on the details of the considered case, i.e., on the
“assumptions” that are made in each case, or on the conceptual model that underlies
the description of what we envision takes place in the considered domain.

• Mass balance equation of an α-fluid phase in two phase (w, nw) flow:

∂

∂t
(φSαρα) = −∇·(ραqα) + ρα�′

α(x, t), α = w, nw, (A.1)

where w, nw denote the wetting and non-wetting fluids, say liquid (�) and gas (g),
and ρα�′

α(x, t) represents mass injection of an α-fluid at points in the domain, and
qα represents α-specific discharge, expressed by Darcy’s law, e.g.:

qα = −kα(Sα)

μα
· (∇ pα + ραg∇z), qα ≡ φSα (Vα − Vs) , (A.2)

where the solid’s velocity, Vs , is usually neglected, except in a fluidized or a mixed
bed. The complete two-phase flow model is expressed, for example, by (6.4.3)–
(6.4.6). At high Re, Forchheimer or Ergun’s flux expressions are used.

The source term includes also the cases in which, as a result of chemical reactions,
or added energy (at a consideredmacroscopic point),mass of anα-phase is added, per
unit volume of the considered phase. As examples, we may mention a gas produced

http://dx.doi.org/10.1007/978-3-319-72826-1_1
http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_6
http://dx.doi.org/10.1007/978-3-319-72826-1_6
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in a liquid phase because of chemical reactions in the liquid, and added heat at a
point by microwave energy added at a point within a domain to the extent that phase
β is changed to α-phase.

•Massbalance equation of aγ-chemical species in anα-fluidphase in two-phase
flow, without phase change:

∂φSαραωγ
α

∂t
= −∇·φSα

(
ραωγ

αVα + Jγ
α,di f + Jγ

α,dis

)
+

∑
δ=β,s

f γ
δ→α + φSαρα�γ

α,

(A.3)
(see (7.3.3)) where ραωγ

α(≡ cγ
α) is the advective flux, and the two J -fluxes are

due to diffusion and dispersion, respectively, f γ
δ→α represents γ-mass transfer across

interphase (microscopic) boundaries, and the last termon the r.h.s. represents sources,
including ones that are due to chemical reactions. For example, for every α-phase:

ρα�γ
α =

∑
( j)

dργ
α

dt

∣∣∣j th chem.

reaction

= Mγ
∑
( j)

ν
γ
k Rr, j | j,γ in α, (A.4)

where Mγ denotes the molar mass of the γ-component, and Rr, j denotes the rate of
the j th reaction.When considering chemical reactions, it is more convenient to write
the γ-mass balance equation in terms of molar concentration. Accordingly, in this
appendix, the concentration cγ is measured in γ-moles per unit volume of solution.
However, we shall more often use Xγ which denotes γ mole fraction.

• Energy balance equation for multi-phase flow, with multiple γ-species and
phase change.

A number of energy balance equations are presented in Sect. 8.4. The energy
balance equation is (8.4.15), repeated here as:

∂

∂t

⎡
⎣∑

(α)

(θαραuα) + (1 − φ)ρsCsT

⎤
⎦

= −∇·
∑
(α)

θα

⎡
⎣ραhαVα +

∑
(γ)

hγ
αJ

γ
h,α + J∗H

α

⎤
⎦

+ ∇·(�∗H
pm∇T ) + �E

pm, (A.5)

in which α = �, g, the symbol Cs denotes the specific heat capacity of the solid, and
the second sum on the second line is taken over all γ-species present in the considered
phase. The source term in the above equation, �E

pm expresses energy from a variety
of sources, e.g., heat of reaction associated with chemical reactions that occur at
the point, and latent heat, associated with phase change, added at the considered
macroscopic point, per unit volume of porous medium.

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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In what follows, we shall present the basic mass and energy balance equations
mainly in the form of PDE’s. Obviously, to constitute a well posed problem, these
equations have to be supplemented by appropriate initial and boundary conditions.
However, in the chemical industry, another kind of model is often employed–amulti-
cell, or multi-compartment model. In this kind of model, the flow domain is divided
into “stages”, “cells” or “compartments” of finite volume, and mass and energy
balance equations are written for each stage or cell, in terms of variables of state
that relate average values in a cell to properties of the streams that enter and leave it.
The leaving streams are considered to be in equilibrium with respect to temperature
and concentration of the involved phases. Actually, the division of a porous medium
column (a reactor or contactor) into “stages” is not just for computational objectives;
in many cases, the column is really divided into stages, divided by resistance-less
porous plates. The underlying assumption is that each cell (including the solid matrix
and the fluids in the void space) is continuously well mixed so that its state can be
described by a single set of variables, like pressure, temperature, solute concentration,
and fluid saturation (in case of two-phase flow). Obviously, all cells are subject to
specified initial conditions and boundary cells are subject to specified boundary
conditions. We assume that within each stage all phases and components are well
mixed. The structure of this model is similar to a finite difference model of a PDE, or
to the Finite VolumeModel described in Sect. 3.8. We shall also present somemodels
of this kind.

Following is a review of the major kinds of reactors and the processes that occur
in them, as encountered in the Chemical Engineering industry. The presentation is
limited to reactors which involve ‘porous medium domains’, i.e., their active domain
contains a porous medium that may be treated as a continuum, as defined and con-
sidered throughput this book.

A.1 Types of Reactors

Essentially, a reactor, or a contactor, is made up of an impervious shell inside which
we have a porous solid matrix, of one kind or another, and one or two fluids that move
through the void space. The fluids are comprised of chemical species that interact
with each other and with the solid matrix to achieve various goals.

A.1.1 Flow Regimes in a Reactor

The flow regime in a reactor, or a porous bed, may take one of the following forms:

• Single phase flow. This is the more common case: a single phase liquid or gas
enters through one end of the reactor and leaves through the other end. When the

http://dx.doi.org/10.1007/978-3-319-72826-1_3
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reactor is a vertical column, flow may enter the lower end and flow upward, or
through the upper one and flow downward.

• Co-current flow in two-phase flow. This term is used to describe the case where
two phases (two liquids, or a liquid and a gas) are fed into a bed from the same
end of the latter, i.e., both phases flow through the reactor in the same direction.
The objective is to allow interaction (e.g., mass transfer) between them, mainly
across their commonmicroscopic interphase surfaces. In some cases, only a small
fraction of one phase dissolves in the other, or is carried away with the other phase
as small droplets.
A reactor is designed such that it ensures a good contact (at the microscopic level)
between the two fluids inside it. The fluid velocities are controlled in a way that
prevents ‘flooding’, i.e., prevents one fluid from changing the flow direction of
the other fluid. As the two fluids flow, heat and/or mass is transferred from one
fluid to the other across their common microscopic interface. The two film model
(Sect. 7.4.3) can be used to describe such transfers. The interphase transfer may be
implemented with one of the fluids taking the form of drops that flow through the
other (continuous) fluid, or as a wetting fluid that flows next to the solid surfaces,
while the non-wetting fluid is moving in a counter-current direction next to it.

• Counter-current flow. Here, the two immiscible phases, usually two liquids, or
a liquid and a gas, are fed through the opposite ends of the bed. We recall that,
with respect to the solid matrix, one is the wetting fluid while the other is the non-
wetting one. In this case, freshfluid entering fromone endmeets thefluid that enters
through the other end. Heat and/or mass transfer can take place between the two
fluids across their common microscopic interfaces. The heavier fluid is fed from
the top of the reactor, while the lighter one is fed from the bottom. The advantage
of this configuration is that the rates of heat and/or mass exchange between the two
phases is higher than in the case of co-current flow, while improved performance
is obtained.
This counter-current flow regime is used to enhance (1) adsorption-desorption
activities between a gas and a liquid, (2) distillation, where volatile components
are extracted from the less volatile fluid, and (3) liquid-liquid extraction (often
called solvent extraction) processes.

Following is a description of the major two types of reactors.

A.1.2 Fixed Bed Reactors

This type of reactor is composed of a shell in the form of a pipe segment, or an
elongated vessel, fully packed with solid particles. Often, only part of it is occupied
by solid particles. We often refer to such domain as the ‘packed bed’. The void
space is fully occupied by a fluid that moves parallel to the domain’s axis, i.e., in a
(macroscopic) 1-d flow. The flow is governed by conditions imposed on the domain’s
boundaries. We usually refer to the liquid as the ‘solvent’. As we shall see below,

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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sometimes the void space is occupied by two interacting immiscible fluid phases that
may flow in the same direction, or in opposite directions.

The solid matrix is usually composed of solid particles of a variety of shapes
and sizes. These particles, or elements, have random shapes and sizes that can be
described by some statistical size distribution. Or, theymay have knownwell-defined
shapes and sizes. The solid particles, may also have a variety of relevant properties,
like solubility in the flowing solvent, adsorption, ionic exchange, or catalysis proper-
ties that may contribute to the formation of new materials from the chemical species
dissolved in themoving fluid.When super-saturation conditions are reached, crystals
may grow on the particles’ solid surfaces, thus reducing the volume of the initial void
space. In such cases, to avoid clogging, the bed is also made to move. Porosity may
be reduced as a consequence of crystallization, or increased as a result of dissolution
of the solid matrix.

The ‘bed’ has known relevant geometrical properties (usually determined exper-
imentally), like porosity, specific surface area and permeability.

A catalyst may be a molecule dissolved in a phase or a solid particle that partici-
pates in a catalysis process. It has properties that are tailored for a specific reaction.
The solid matrix itself may be neutral, i.e., not interfering in the process, except for
affecting the local microscopic flow regimewithin the void space, or it may be active,
e.g., as an adsorbent, ion exchanger, or catalyst. The process may occur in semi batch
mode, where one of the streams is fed continuously, or in continuous mode, where the
changed species are continuously removed from the system. In both cases, heat may
be added through domain boundaries, or from the process itself, e.g., by exogenic
chemical reactions. During the process, phase changes may occur as pressure and/or
temperature vary. In some cases, a non-consolidated granular bed may become flu-
idized (see below) as a result of pressure changes, or by mechanical mixing, using
an impeller or a pump.

A.1.3 Moving Bed Reactors

Solid particles are moving in two kinds of reactors: in a fluidized bed and in a stirred
bed. In both cases, the solid particles comprising the solid matrix, are free to move
with respect to each other, vibrate or rotate in the fluid environment. Occasionally,
particles touch each other. The movement of the solid particles is controlled by the
drag produced by the moving fluid surrounding them particles, by forces acting at
contact points and by gravity.

Because in both the fluidized and the stirred bed, the bed itself is moving, the
turbulence in the fluid passing through the reactor is increased, leading to an increased
efficiency of mass and heat transfer activities.

The solid particles may continuously stay in the reactor, or exit the latter, as in
fast catalytic reactors. In the latter case, new particles are fed into the reactor in order
to compensate for the ones that leave.
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A.1.4 Other Characteristics of Reactors

Following are some additional characteristics of reactors:

• The type of reactor in which they take place: fixed bed, or moving bed.
• The solid matrix participation in the process. The solid matrix may ‘neutral’, i.e.,
is not interfering with nor participating in the process, or ‘active’. i.e., it may serve
as an adsorbent, ion exchanger, or catalyst.

• The process that takes place. It may be ‘semi-batch’, where one of the phases
moves continuously, while the other phase is fed only at the beginning of the
process, or ‘continuous mode’, where fluids ate fed continuously.

• The number of fluid phases passing through the reactor: one or more.
• Co-current or countercurrent flow of the fluids.
• Heatmay be added from the boundaries of the bed. Itmay be by exogenic reactions,
or it may be generated from the process itself.

• Change of phase. This may occur during the process, and so are processes like
evaporation, condensation, dissolution and crystallization.

• The bed may be fluidized as a result of pressure changes and increased fluid
velocity. Fluidization may also occur during certain processes, like crystallization,
or by mixing of the solid particles with the fluids.

• The kind of process. It may be a batch process, i.e., a process that involves fluid
flow, heat and heat transfer operations, all performed on a fixed quantity of solid.
The process is stopped when the operation’s target has been reached. This type is
used in laboratories or in small scale production units, mainly in fine chemicals
and pharmaceutical industries.

• The process may be a continuous and steady state. The fluid and solid matrix prop-
erties stay unchanged in time at every point along the reactor, while concentration,
temperature, pressure and other transport characteristics vary along the system.
Fluid phases are fed continuously at constant rates. Again, as changes occur along
the reactor, the products leaving the reactor are expected to have constant properties
in time.

A.2 Processes in Fixed-Bed Reactors

In a fixed-bed reactor, operations may be performed (1) with a single fluid phase
passing through the void-space, or (2) two phases that pass through the void-space in
co-current, and in countercurrent (or reverse) flow, i.e., flowing in opposite directions.
The solid matrix may be ‘neutral’, i.e., it does not interfere with the process, or it
may participate in the process, e.g., as an adsorbent, as an ion-exchanger, or as a
catalyst. The process may take place as semi-batch or in continuous mode. In all the
above options, heat may be added through the boundaries of the bed, or internally,
from the reaction itself. Change of phase may occur during the process. Altogether,
the above possibilities may end up in a large number of options, especially if we add
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Schematic sketch of a filter. Pressure variation

(a) (b)

Fig. A.1 Filtration

to the list the chemical species that interact inside the void-space, and sometimes
with the solid matrix itself.

Following is a brief description of processes that occur in fixed-bed reactors. We
shall first focus on processes that take place in single phase flow, and then present
cases which involve two-phase flow.

A.2.1 Processes in Single-Phase Flow

A.2.2 Filtration

The objective of the process of filtration (or cake filtration) is to remove solid particles
from a slurry (= a liquid with solid particles) stream. The process is performed in
a horizontal or vertical column of a constant cross-sectional area A, into which the
slurry is fed at one end and clear liquid (= filtrate) leaves at the other one.

FigureA.1a represents a typical filtration system setup.We note the slurry entering
the system on the right side and leaves on the left side through a relatively thin porous
medium domain-a filter, usually a kind of cloth, located just ahead of the outlet. It
acts as a filter domain that prevents the passage of solid particles carried by the
liquid. The stopped solid particles gradually accumulate next to the filtering domain,
forming a “filtrate cake” of continuously growing thickness. The rate of flow of liquid
and solid particles through the system is controlled by maintaining desired pressures
(or piezometric heads, in the case of a vertical filter) at both ends of the column.
The pressure maintained at the outlet is usually atmospheric. Sometime vacuum is
applied as a boundary condition at the exit side. However, it is possible that tiny solid
particles will penetrate the filter, reducing its permeability, so that the filter may have
to be washed or replaced from time to time.
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Altogether, the flow systemwithin the column is composed of two porousmedium
layers: (1) a thin sieve (e.g., cloth, or porous metal), that prevents the solid particles
carried by the slurry from passing through, and (2) a filtrate cake that is a saturated
porous medium domain, with the solid matrix made up of the solid particles stopped
by the filter, The thickness of the latter layer grows with time as more solid particles
are stopped. We may regard this system as composed of two ‘resistances in series’ to
the flow. As the thickness of the filtrate cake grows, so does the loss of (pressure or
piezometric) head through it. The consequence is that the pressure at the inlet has to
be increased in order to maintain an economic flow rate. It is important to note that
the filtering operation can take place under constant pressure, so that the volumetric
flow rate is decreasing in time, or at constant flow rate by gradually increasing the
pressure at the inlet. A combination of the two modes is also possible

When the thickness of the filtrate cake reaches a certain value, orwhen the required
pressure at the inlet becomes too high, the process is stopped, the filtrate cake is
removed and the sieve is washed.

Consider the horizontal filter of constant cross-sectional area A shown in Fig.A.1,
where the slurry is fed from the right side. At this end, we may either control the flux
of the slurry fed into the system, or the pressure at the inlet point. In what follows,
we shall assume the latter case, i.e., pin , is maintained unchanged. A fixed known
pressure, pout , is also maintained at the downstream end of the filtration setup, where
only fluid exits. Sometimes, a vacuum is maintained there.

The pressure changes along the filter (assumed horizontal) may be expressed as
the sum of three pressure increments::

�p = pin − pout = (�p)si + (�p)ck + (�p)sl , (A.6)

where �p represents the overall pressure drop across the filter, with (�p)si , (�p)ck
and (�p)sl denoting the pressure drops across the sieve, the filtrate cake and the
incoming slurry domains, respectively. We neglect the pressure drop in the slurry, as
(�p)sl � (�p)ck . We denote the length of the filtrate cake by Lc = Lc(t)(� Lsi ).
We also neglect fluid compressibility, and use x to denote length along the filtrate
cake.

• Sieve. Along the sieve of constant thickness (�si ) and permeability (ksi ), the
pressure drop is:

(�p)si = �si
μ

ksi
q(t), q ≡ Q(t)

A
. (A.7)

Recall that q is taken as positive in the direction of −x . Usually, q is calculated by
the Kozeny–Carmen law (see below).

Let us introduce the coefficient Rsi , associated with the flow through this sieve:

q = ksi
μ

(�p)si
�si

→ (�p)si = qRsi , Rsi = μ�si

ksi
, (A.8)
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whereRsi is a constant, independent ofq, as long as cakeporosity remains unchanged.
Along the sieve, the pressure increases linearly by p f (t) = q(t)R f .

• Filtrate cake. At any instant of time, the mass of solids, mc(t), accumulated as
a filtrate cake of length �c(t), at porosity φ. This mass, per unit area of the reactor’s
cross-section, is:

dmc(t) = (1 − φ)ρsdlc, → mc(t) = (1 − φ)ρslc(t). (A.9)

The cake’s length is usually small, say in the range of a fewmillimetres or centimeters.
Thus, under certain conditions, the filtrate cake is assumed to be uniform in terms of
porosity and permeability.

We assume that the flow is laminar and that the fluid’s flux, q, through both the
filter domain and the cake is described by the Kozeny–Carman equation discussed
in Sect. 4.1.2. With q > 0 in the direction of +x , as indicated on the figure, we have:

q = kc
μ

∂ p

∂x
= Coφ

3

μM2
s (1 − φ)2

∂ p

∂x
, where kc = Coφ

3

M2
s (1 − φ)2

, (A.10)

in which μ denotes the fluid’s viscosity, Co is a constant coefficient, referred to as
Kozeny’s constant, and Ms(= Sv/Vpm) is the specific surface area (= surface area
of solid particles per unit volume of porous medium). The pressure gradient along
the cake is:

∂ pck
∂x

= qμ

kc
= qμ

M2
s (1 − φ)2

Coφ3
, q = q(t), (A.11)

where pck denotes the pressure along the cake.
As solid particles accumulate as a filtrate cake, the latter’s length, �c, increases.

With dnc expressed by (A.9), we have

dmc = ρs(1 − φ)d�c, → d�c = dmc

ρs(1 − φ)
= kc

qμ
dpck, (A.12)

leading to:

(�p)ck = qμ

ρs

M2
s (1 − φ)

Coφ3
mc = qRcmc, Rc = μM2

s (1 − φ)

ρsCoφ3
, (A.13)

in which Rc denotes a coefficient associated with the flow though the cake. This
coefficient can be determined experimentally. Recall that here we have assumed that
the filtrate cake is incompressible: its porosity, φ, is constant in space and time.

We can now combine the total known pressure drop at time t , across the sieve and
across the filtrate cake:

�p = pin − pout = (�p)si + (�p)ck = q(Rsi + Rcmc). (A.14)

http://dx.doi.org/10.1007/978-3-319-72826-1_4
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WithVsl denoting the slurry volume per unit area of reactor, its specific discharge,
qsl , is expressed by:

qsl = dVsl

dt
. (A.15)

The mass of solid particles accumulating in the cake can be expressed as:

mc = Vslcsl , (A.16)

where csl denotes the (known) concentration of solids in the incoming slurry, in terms
of mass of solid per unit volume of slurry.

Expressing qsl by (A.13), and mc by (A.14), we obtain:

dt

dVsl
≡ 1

qsl
= 1

�p
(Rsi + RcVslcsl) . (A.17)

Integration of (A.17) yields:

∫ t

0
dt = 1

�p

∫
Vsl

0
(Rsi + RcVslcsl) dVsl (A.18)

leading to:

t = Vsl

�p

(
R f + 1

2RcVslcsl
)

(A.19)

This result describes the growth of the filtrate cake with time and volume of the slurry
passing through the filter. By plotting t/V as function of V, we get a straight line. Its
intercept on the vertical t/V-axis allows us to calculate Rsi , while the slope of the
line allows us to calculate the value of Rc.

FigureA.1 show the pressure variation along the filter: we note the pressure drop
along the sieve and along the cake filtrate.

So far, we have assumed that the cake is incompressible, so that a constant φ
could be employed. However, in some cases, the cake is compressible, so that φ is
replaced by φ̄c = φc( p̄ck), where p̄c denoting the (variable) average pressure within
the cake. According to Kozeny–Carman, kc, which depends on φ, also varies with
x, t . The porosity may be reduced when the cake is compressible and also when
newly arriving small particles enter the void space between particles already in the
cake.

Designing afiltrationunitmeans calculating thefilter area, the cake’s thickness and
the operational pressure. When the cake is compressible, it is common to determine
the dependence of Rc as a function of the operational pressure and take an average
Rc-value, which is already associated with an average φ-value.
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A.2.3 Dissolution

In this process, we enhance the dissolution of a solid material (in the form of solid
particles) in a liquid. The objective is to add the dissolved solid as a component in
the liquid. An example is adding calcium carbonate salt to desalinated water.

Consider a liquid that flows through a cylindrical column that contains a porous
medium made up of (consolidated or non-consolidated) solid particles, or solid ele-
ments of various shapes.

The liquid discharge through the porous column (also referred to as “bed”) is
maintained at a constant rate, Q� (= liquid volume per unit time), entering at z = 0
and leaving at z = L . This can be achieved by a pump delivering the constant
discharge. Another flow regime can be achieved by maintaining fixed pressures at
x = 0 and x = L . Liquid may flow upward or downward. Although there may be
some effects of the space next to the side-walls of the column, we assume that the
flow and transport in this bed are one-dimensional, upward or downward, along the
bed’s’s axis.

The solid matrix is made up, entirely, or partly, of a chemical species γ, which
can dissolve in the moving liquid. Let the concentration in the latter be denoted by
cγ
� = cγ

� (z, t). The liquid’s density varies with cγ , say, ρ� ≈ ρo�(1 + cγ
� ), where c

denotes the concentration of the γ-species dissolved in the liquid.
The liquid’s density, ρ�(z, t) obeys the liquid’s mass balance equation:

∂φρ�

∂t
= −∂φρ�V

∂z
, V = Q

φAcolumn
, (A.20)

ρ�(z, t) = ρo�

(
1 + cγ

� (z, t)

c�.o

)
. (A.21)

The concentration of dissolved γ in the liquid obeys the γ-mass balance equation
(7.3.1), which here takes the form:

∂φcγ

∂t
= − ∂

∂z

[
φ(cγV + J γ

adv + J γ
di f +dis)

]
+ f γ

s→�, (A.22)

where, the symbol Jγ denotes a flux of γ per unit area of fluid in the cross section.
From (7.2.17) and (7.2.33), we have:

J γ
di f +dis = −(D∗

di f + aLV )
∂cγ

∂z
, (A.23)

where aL denotes the coefficient of longitudinal hydrodynamic dispersion. The sym-
bol f γ

s→� denotes the rate at which solid mass is dissolved, i.e., γ moves from solid
(s) to liquid (�) per unit volume of porous medium, per unit time. Following (7.4.40),
we may express this f -value in the form:

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
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f γ
s→�(z, t) = K γ

s→�(c
γ
sol − cγ(z, t)), (A.24)

in which cγ
sol denotes the solubility limit of the solid in the liquid, and the coefficient

K γ
s→� needs to be determined experimentally, or as an expression taken from a known

correlation between the dimensionlessmass transfer coefficient and physical andflow
properties.

The initial porosity, as well as the initial column length are known.
For practical cases, the designer needs to design a column that will be operated

continuously, namely, more dissolvable solid should be added, say, once a day. Solid
particles are added (continuously, or in batches) to maintain (more or less) a constant
column length. Then the pressure drop across the column is not significantly affected
by the dissolution process. This also implies that possible changes of porosity, due
to the dissolution process, may be neglected.

Assuming that the porosity is practically unchanged, the above set of equations
is sufficient to determine the time-dependent concentration of the liquid leaving the
bed. In fact, we have here a single degree of freedom–the concentration, cγ(z, t), for
which we have to solve the single PDE (A.22).

Let us add here a comment on porous medium porosity. In practice, as the solid
dissolves, both the porosity and the length of the bed are changed. We may consider
two cases: one is such that when solid dissolution occurs, φ increases, but the total
length and volume of the porous medium domain remains (practically) unchanged.
This case occurs when the solid matrix is a single consolidated porous solid domain.
The other is the case of unconsolidated particles (e.g., spheres). As each solid particle
dissolves, its size is reduced. The solid particles continuously move and the bed
shrinks and consolidates. The porositymay then varywith time. If fresh solid particles
are not added, the operation is stopped at a certain length of the solid matrix.

The case of a solid matrix made up of non-consolidated granules may serve as an
example. As the granules dissolve, they move, and the column consolidates, unless
newgrains are continuously added from above. In principle, we then haveφ = φ(z, t)
and L = L(z, t).

Let us assume that, initially, the solid particles are well mixed of all sizes such
that we can start from a known specific surface area s = so. As dissolution occurs,
and using fs→ f as an expression for the mass of dissolved γ-species on the solid,
per unit volume of porous medium, we have:

f γ
s→ f = �mA

s

Vpm�t
(A.25)

Neglecting solid and fluid compressibility, the fluid’s mass balance equation
reduces to:

∇·φραVα(≡ ∇·ραqα) = 0. (A.26)
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The solute mass balance equation for cα = cα(x, t), reduces to:

φ
∂cγ

α

∂t
= −φVα·∇cγ

α − ∇·(D′
α·∇cγ

α) + f m
γ

s→α + φρα�mγ

α . (A.27)

into which we can now insert appropriate expressions for the transfer of γ from the
solid to the fluid, as well as source terms that express the production of γ in the fluid,
say by chemical reactions.

A.2.4 Adsorption

The phenomenon of adsorption is discussed in Sect. 7.4.1. In a reactor, the objective
of adsorption is to remove a dissolved species from a liquid (or a certain species from
a gas) by the mechanism of adsorption of that species (= the adsorbate) on the solid
surface (= the adsorbent). To achieve this goal, the chemical species in the fluid that
enters the porous bed should have physical or chemical affinity to the solid comprising
the bed. We assume that equilibrium is quickly reached at the interface between the
liquid and the solid’s surface. The liquid here is represented by a thin liquid film
next to the solid (also introduced in Sect. 7.4.1). As the process progresses, more
adsorbent settles on the solid until a complete or close to complete chemical saturation
is achieved. At any macroscopic point within the bed, this situation develops as
the concentration in the fluid changes, while satisfying the solute’s mass balance
equation, and that on the solid reaches equilibrium with the fresh arriving fluid. The
adsorption process takes advantage of the large internal specific area of the solid
matrix.

It is interesting to note that an isotherm, like Henry’s law, expresses a kind of
equilibrium. The adsorption driving force is proportional to the difference in con-
centration between the fluid and the solid, noting that one expresses solute mass per
unit volume of solution, while the other is per unit area of solid surface.

The model that describes the adsorption process contains two mass balance equa-
tions: one for the considered chemical species in solution and one of that species
adsorbed on the solid. We also need an equation that relates the two concentrations
to each other. Usually, it is assumed that on the fluid-solid interface equilibrium is
reached between the two concentrations (Sect. 7.4.1). This relationship is similar to
that of the dissolution process, except that instead of the constant concentration on the
solid surface, an equilibrium equation is used. Different experimentally determined
adsorption equilibrium relationships may be used, according to the relationship
between the adsorbate and the adsorbent, i.e., the isotherm.

In an adsorption column, liquid is pumped through the porous medium, either in
a batch operation, i.e., a fixed volume of fluid moving once through the bed, or as
continuous feed operation, until all (or most) of the adsorption sites on the solid’s
surface have been occupied by the adsorbate and the concentration in the fluid has
reached the required low level.

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7


Appendix A: Selected Phenomena of Transport and Processes … 675

An example is the removal of benzene from air, using a porous bed of active
carbon. Another example is the removal of phosphate from water by using nano-
particles of iron oxide/hydroxide that are preloaded on a bed of silica gel.

Themathematical model that describes adsorption involves the variables: cγ
f l , c

γ
f i ,

F and f γ
f l→s , where we note the distinction between the concentrations c f l in the

fluid and c f i in the film next to the solid. The model has already been presented in
Sect. 7.4.1C. Repeated here for convenience, this model includes:

• Mass balance for the γ-adsorbate in the fluid (fl):

φ
∂cγ

f l

∂t
= −∇·φ

(
V f l c

γ
f l + Jγ

f l,di f + Jγ
f l,dis

)
− f γ

f l→s, (A.28)

in which the dispersive+diffusive γ-flux is expressed by:

φ
(
J γ
f l,di f + J γ

f l,dis

)
= −φD′∇cγ

f l, (A.29)

and the fluid’s flux, φV f l is determined by Darcy’s law.
• Mass balance equation for the adsorbed species on the solid:

∂(ρbFγ)

∂t
= f γ

f l→s + ρb�
γ
s , (A.30)

where the last term on the r.h.s. denotes the rate at which mass of a γ-species is
produced on the solid, per unit volume of porous medium (= volume of reactor
chamber).

• Rate of γ-mass transferred from the fluid to the solid:

f γ
f l→s = κ

γ
f l→s

(
cγ
f l − cγ

f i

)
, (A.31)

in which the coefficient κ
γ
f i→s is an experimentally determined film-to-solid mass

transfer coefficient. Note that we have to be careful with the difference in concen-
trations in the fluid/film and on the solid, as Fγ is measured in terms of adsorbed γ
mass per unitmass of solid matrix, whereas the concentrations cγ

f l , c
γ
f i are measured

as solute mass per unit volume of solution.
• The isotherm that expresses the assumption of equilibrium between the

concentrations in the film and on the solid, for example:

cγ
f i = K f i→s

ρs

ĕ
Fγ . (A.32)

When a regeneration process of the adsorbent is conducted for the latter’s reuse, a
similar reverse technique may be implemented with another solvent in order to clean
the adsorbent. However, in some cases, e.g., in the case of adsorption of organic
chemicals on active carbon, the cleaning process is performed under high temperature
and controlled oxygen in order to recover the active carbon for reuse.

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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Fig. A.2 Ion exchange
reactor

A.2.5 Ion Exchange

On exchange is discussed in Sect. 7.4.2. FigureA.2 shows, schematically, a typical
ion exchange reactor.

The target is to replace an unwanted ion in an aqueous solution by another ion
that is initially present (or preloaded) on the solid surface, e.g., a resin. The exchange
process occurs between the solid and a liquid (e.g., an aqueous solution); the less
desired ion in the solution is exchanged for amore desirable one. The process ends by
washing the bed with a solution containing a high concentration of the required ion.
In fact the washing/reloading process is exactly the same process with the opposite
ions. This is a batch or semi continuous process; it ends when most of an unwanted
ion is replaced, according to the design, by the other ion.

In a cation (cat) exchange process, cations are replaced by cations. It is possible
to remove all kinds of cations, e.g., Ca+2, or anions, e.g., F−. An example is the
exchange of cations during water treatment for hardness removal. In this process,
calcium ions are exchanged by preloaded H+ ions. This sorption-desorption reaction
may be described by:

2HRcat + Ca+2 → Ca(Rcat )2 + 2H+. (A.33)

In order to remove a Cl-ion, a negatively charged ion is needed:

RanOH + Cl− → RanCl + OH−. (A.34)

Here R−
cat represents a site on the ion exchange resin that can adsorb a cation, while

R+
an is a site that can adsorb an anion.
Obviously, resin materials have a finite exchange capacity that is reached when

all exchange sites will be occupied by the adsorbed ions. When the process ends, the
resin is regenerated to its original condition.

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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The mathematical model of the process which involves the exchange of ion δ on
the solid (s), by ion γ in the liquid (�), includes the following equations (written, for
simplicity, in a 1-d formulation):

• Mass balance of γ in the liquid (�):
We write (7.3.1) in the form:

∂φcγ
�

∂t
= − ∂

∂z

[
φ(cγ

�V f + J γ
�,di f +dis)

]
− f γ

�→s, (A.35)

where the symbol J γ
�,di f +dis denotes a flux by diffusion and dispersion in the z direc-

tion of γ per unit area of liquid in the cross section, and f γ
�→s denotes the rate of

γ-mass transferred from the liquid to the solid, per unit volume of porous medium,
per unit time. The solute’s sum of diffusive and dispersive flux is given by (A.35).

• Mass balance of adsorbed γ on the solid (s):
We write (7.3.1) in the form:

(1 − φ)ρs
∂Fγ

∂t
= f γ

�→s, (A.36)

where Fγ denotes the mass of γ per unit mass of solid matrix, so that each side
expresses added mass of γ per unit volume of porous medium

• Solute-to-solid mass transfer rate:
The rate at which γ-mass moves from the liquid (�) to the solid (s), per unit

volume of porous medium, per unit time, is expressed by:

f γ
�→s(z, t) = φκ

γ
�→s

(
cγ
� − cγ

f i

)
, (A.37)

in which cγ
f i denotes film concentration, and the coefficient κ

γ
�→s is the γ-ion

exchange mass transfer coefficient.
• Equilibrium relationship:
In addition, we assume that the concentration in the bulk liquid is in equilibrium

with the concentration on the solid’s surface, described, for example, by theLangmuir
equilibrium isotherm (e.g., Hokanson 2004):

Fδ

Fδ
o

= K γ
Lang Fγcγ

f i

1 + K γ
Lang Fγcγ

f i

, (A.38)

where K γ
Lang is the Langmuir coefficient that depends on porosity and solid’s density.

Altogether, we have 4 equations for the four variables: cγ
� , c

γ
f i , F

γ , and f γ
s→�.

Obviously, the process will continue as long as there are δ-sites to be taken by
adsorbing γ ions. The number of δ-sites on the solid will be part of the initial con-
ditions.

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
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A.2.6 Chromatography

Chromatography (or partition chromatography) is a separation process that is mostly
used in the chemical industry for identification of different chemical species in a fluid
sample, say for analytical purposes. It is also used for the separation of chemical
species that are difficult to separate by common industrial techniques. The method is
based on the fact that different molecules have different affinities to a solid surface
(here inside a porous medium). The objective is to remove complicated chemical, or
pharmaceutical compounds, from a fluid moving through the void space of a porous
medium in a reactor.

The process is conducted in a reactor that has the form of a long tube containing a
bed of porous grains that have a wide range of adsorption capabilities on the internal
surfaces of the grains. Amass of fluid (= eluent) containing the kinds of molecules to
be separated is fed at the entrance to the reactor tube and is directed to flow through
the latter. The different components have different affinities to the adsorbent (= the
solid surface) and, hence, under the eluent’s pressure, they move along the bed at
different velocities (see Sect. 7.4.1C). This causes the different kinds of molecules
to exit the pipe at a different times. In this way, separation is achieved.

Consider the case in which, initially we have the species γ and δ on the solid
(s) surface. The objective it to replace δ ions by γ ions present in the liquid (�); the
replaced ions move to the liquid.

The model that describes the flow and chemical changes along the bed (i.e., in
the +x direction) is based on the same ideas as those underlying the ion exchange
model described above. It includes the following elements:

• Variables: The concentrations cγ
� , c

δ
� in the liquid, measured as moles per unit

volume of liquid, and Fγ
s , Fδ

s on the solid, measured as moles per unit mass of the
solid matrix. In the film introduced above, we have the concentrations cγ

f , c
δ
f . In

additions, we consider the rates of transfer (in moles per unit volume of liquid) f γ
�→s

and f δ
�→S also as variables that appear in the mass balance equations. Altogether, we

have 6 concentration variables and 2 rates of transfer variables.
• Mass balance equations:

For γ in the liquid:

∂φcγ
�

∂t
= − ∂

∂x

[
φ

(
cγ
�V� + J γ

�,di f + J γ
�,dis

)]
+ f γ

s→�, (A.39)

∂φcδ
�

∂t
= − ∂

∂x

[
φ

(
cδ
�V� + J δ

�,di f + J δ
�,dis

)] + f δ
s→�, (A.40)

where J and V denote liquid flux and liquid velocity in the +x-direction, and we
have assumed no sources (e.g., due to chemical reactions).

For γ on the solid:

∂(ρbFγ)

∂t
= f γ

�→s,
∂(ρbFδ)

∂t
= f δ

�→s . (A.41)

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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• Expressions for interphase transfer:

f γ
�→s = f γ

�→ f i = φκ
γ
�→s

(
cγ
� − cγ

f i

)
. (A.42)

f γ
s→� = f γ

f i→� = φκδ
s→�

(
cδ
f i − cδ

�

)
, (A.43)

with κ
γ
�→s 
= κδ

s→�.• Equilibrium described by a liquid-solid isotherm.
We assume that equilibrium exists between the concentrations of γ in the film and

on the solid, expressed, for example, by the equilibrium isotherm

Fγ = K γcγ
� , Fδ = K δcδ

�, (A.44)

where K γ , K δ are experimentally determined coefficients.
Note that we have focussed here on the chemical aspect only. The liquid velocity

and its dependence on pressure in not included here.
A relatively simple solution for what happens in a chromatographic column is

based on dividing the latter into N cells of volume Vn, n = 1, 2, . . . , N , in each of
which a transfer of chemical species between the solid and the eluent takes place.
The γ-concentration in the liquid is denoted by cγ

� , while the γ concentration on the
solid is denoted by Fγ .

• The γ-mass balance in the fluid in the nth cell. This equation takes the form:

φVn
dcγ

n

dt
+ (1 − φ)ρsVn

dFγ
n

dt
= Qcγ

n−1 − Qcγ
n , (A.45)

recalling that:

cγ
� = mγ

�

V�

= 1

φ

mγ

Vpm
, Fγ = Mγ

s

ms
= 1

ρs(1 − φ)

mγ
�

Vpm
.

where Q denotes the rate of flow through the cells, cγ
n denotes the γ concentration

in the liquid occupying the n’th cell, Qn is the flow rate through cell n, while Fγ
n is

the concentration of the same species on the solid surface, measured in γ-mass per
unit cell mass.

The equilibrium of γ between the two phases is given by:

Fγ
n = Kcγ

n . (A.46)

By rearranging the two above equations, it is possible to show that

dcγ
n

dτ
= cγ

n−1 − cγ
n , (A.47)
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where

τ = t Q

[φ + (1 − φ)K ]Vn
dcγ

n
dt

(A.48)

The initial conditions are:

For τ < 0, cγ
n = 0, n = 1, 2, N ,

For τ = 0, cγ
o = cγ

f ,⇒ cγ
o = cγ

f δ(τ ).

The solution is obtained by using the Laplace transform:

sY γ
n = Y γ

n−1 − Y γ
n . (A.49)

Calculating from cell to cell, leads to:

sY γ
1 = cγ

f − Y γ
1 ⇒ Y γ

1 = cγ
f

s + 1
,

sY γ
2 = Y γ

1 − Y γ
2 ⇒ Y s

2γ = cγ
f

(s + 1)2
,

. . . . . . ,

Y γ
n = cγ

f eed

τ n−1e−τ

(s + 1)n
, (A.50)

or:

cγ
n = cγ

f eed

τ n−1e−τ

(n − 1)! . (A.51)

Since V = ∑
n V

n , we have:

cγ
n (n, t) = cγ

f

(n − 1)!
(

t QN

V(φ + (1 − φ)K )

)(n−1)

exp

(
t QN

[V (φ + (1 − φ)K )]

)
.

(A.52)

This expression provides the distribution of concentration cγ
n at time t in every cell

n along the pipe. It also represents the cδ
n-distribution, which may be different from

that of γ. On a long tube, we reach complete separation between the two components.

A.2.7 Drying

A tray of wetted solid particles, or carrying a wetted consolidated solid matrix, is
dried under heating conditions. FigureA.3 shows a typical drying arrangements In
this figure, we note the trays carrying wet solid particles. The trays are imbedded in
a stream of hot air.
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Fig. A.3 Drying tray

FigureA.3 shows a cabinet type tray drier. Initially, the layer of wet solid particles
on the trays, at irreducible wetting fluid saturation, is what remains in a chemical
reactor at the end of a filtration, or a sedimentation process. It still contains the liquid
solution that remained (at irreducible liquid saturation) at the end of the last stage.
The liquid that remains in the pore space may also be a solution that was used to
wash the solids.

Within the bed, a liquid may occur as a free liquid as well as in the form of a
liquid that adheres to the solid as a free unbound liquid , i.e., not chemically attached
to the solid. The latter will evaporate at a certain temperature. In addition, some
liquid in the cake may also be chemically attached to the solid, like in hydrates, or
in clathrates.

The heat supplied to the bed causes evaporation of the liquid remaining in the void
space, including the layer of liquid that adheres to the solid surfaces. The generated
vapour is removed by the hot gas stream that travels around and through the bed’s
void space. Heat may be added by (1) conduction from the bed’s external surface,
(2) convection of hot gases (air) through the void space, or (3) radiation, either from
above the bed’s outer boundary, or directly into the bed by using micro-waves. The
supplied heat will first heat the wetted cake to above the evaporation temperature at
the operational pressure (sometime under vacuum). Then, vapour starts to leave the
surface, and is pumped out by a vacuum pump, or by the hot gases flowing next to
the tray surface.

The bulk liquid in the void space will evaporate first. Then, the liquid that is bound
to the solid will start to evaporate. This takes place under a temperature that increases
with time and distance from the solid surface, as it requires higher temperature and
higher energy. At the end of the process, there is always some wetness that remains
adhered to the solid under equilibrium with the humid air in the void space. We
assume that thermal equilibrium exists between the solid matrix, the water adhered
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to it and the humid air in the void space. At every (macroscopic) point, thermal
equilibrium exists between all phases at that point, while at that point there is still a
temperature gradient along the reactor.

As the cake is heated, usually by a stream of hot gas (often air), liquid present in
the cake’s void space evaporates and the vapour is removed by a stream of flowing
hot gas. In a batch process, the hot gas flows above a stationary trays filled with a
wet cake. In a continuous operation, trays with wet cakes are made to move along
a furnace, while the vapour is directed to flow through the cakes. In both cases the
hot gases flow along the trays or against the direction of the moving trays when the
latter move. When the liquid occupies only part of cakes’ void space, the hot gases
penetrate them and move through the void space (Fig. A.3).

Consider the case of a hot gas flowing above a stationary tray filled with a wet
cakewith a void space that contains vapour andwater at irreducible water saturation.

The evaporation process depends on the temperature, on gas humidity and on
vapour mass transfer from the liquid adjacent to the solid to the vapour/gas in the
void-space. Assuming that the gas is air and the liquid is water, the rate of drying,
Nc, of the cake on a tray per unit tray area, say, in kg/m2/s, is expressed by:

Nc = k�→g
tray

(
Y �
s − Y v

g

) = κH
g

Lv

(
Tg − Ts

)
. (A.53)

where k�→g
tray is the (tray specific) liquid-to-gas mass transfer coefficient for the gas,

Y �
s is the mass of water per unit solid mass, Y v

g is the mass of water vapour per unit
mass of gas (= humidity), both on a unit tray area, Tg is the gas temperatures, Ts is
the solid’s wet bulb temperature, κH

g is the heat transfer coefficient in the gas, and Lv

is the latent heat of water evaporation.
Under constant air p, T -conditions, Nc for the tray can also be expressed as:

Nc = − 1

As

dm�
s

dt
= −ms

As

dX �
s

dt
= −ρs�s

d X �
s

dt
, (A.54)

where As and ms are the area of the tray and mass of solid on it, m�
s is the mass

of liquid in the void space of the wetted solid matrix on the tray, X �
s denotes the

gradually diminishing liquid content on the tray, per unit mass of solid on the tray
and �s (a few millimeters to a few centimeters) denotes the thickness of porous
medium to be dried (on the tray), assumed to remain practically unchanged during
the drying process, ρs is the dry density of the solid matrix on the tray, and t is time.

By integration, we obtain:

t = ρs�s

Nc

∫ X �
s,2

X �
s,1

dX �
s = ρs�s

Nc
(X �

s,1 − X �
s,2). (A.55)

where subscripts 1 and 2 indicate the initial and a later points in time.
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When the rate of evaporation of the bounded liquid starts to decline, the rate of
drying may be described by:

Nc = aX + b, → = Nc
X �
s − X �

s,3

X �
s,c − X �

s,3

= −ρsds
dX �

s

dt
. (A.56)

By integration, we obtain:

ln
X �
s,2 − X �

s,3

X �
s,1 − X �

s,3

= − Nct

ρsds
(X �

s,c − X �
s,3), (A.57)

where Nc is calculated by (A.54), X �
s,c is the critical point where, in drying, for

example, of soil, sand, or crystals, the evaporation rate varies from constant in time
to a linear reduction. Eventually, the rate reaches the value of X �

s,3, which represents
the water content at the end of the process, recalling that X �

s,2 denotes the water
content at the beginning of the beginning of the second stage. A further decline of
the drying rate requires other kinds of models for the rate calculation.

A.2.8 Chemical Reactions

Here, chemical reaction occur between the material comprising the solid matrix and
chemical species dissolved in the fluid that passes through the reactor. Chemical
reactions are discussed in Sect. 7.3.3. The mass balance equations for processes
in which the mass of a considered species is produced or consumed by chemical
reactions, are discussed in detail in Sect. 7.3.4. The velocities of the fluids may
be given by models of flow through a porous media. The concentration equations
include also the rate of reaction, namely the rate of disappearing/production of every
components in the flowing system. When heat is added or generated, an energy
balance equation and all heat sources are required. Obviously, initial and boundary
condition are also needed.

A.2.9 Catalytic Chemical Reactor

In power stations and in large diesel engines, the process of catalysis is implemented
in a catalytic reactor, also referred to as converter. The catalytic reactor (also referred
to as converter) is built as a long set of parallel square perforated solid partitioning
walls. Ammonia is injected to mix with the incoming gases.

As an example, consider the catalytic reactor used for convertingNOx to harmless
gases by reactions with ammonia (NH3). The process takes place in an elongated
chamber filled with a porous medium that provides a large specific surface area on

http://dx.doi.org/10.1007/978-3-319-72826-1_7
http://dx.doi.org/10.1007/978-3-319-72826-1_7
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Fig. A.4 Catalytic reactor

which the chemical reactions take place. The toxic chemical species that react in
order to form harmless new materials enter the reactor with the feed gas stream,
while the reactions take place on the solid surfaces within the reactor’s impervious
shell. The harmless gases exit the reactor to the atmosphere.

In the converter example shown in Fig.A.4, the porous medium that fills up the
chamber is made up of multiple closely spaced square-shaped tubes of 2–3 mm
side, about 0.4–0.6 m long (see Fig.A.4). The objective is to achieve a large specific
surface area. The tubes are made up of a special metal oxide that allows catalytic
enhancement of the rate of the reactions that take place on the large internal surface
area.

The reactions take place on the surface area of the solid matrix or the surface of
the perforated partitioning walls inside the catalytic chamber. Ammonia is injected
to mix with the incoming gases. The chemical reactions can be summarized in the
form:

4NO + 4NH3 + O2 → 4N2 + 6H2O,

2NO2 + 4NH3 + O2 → 3N2 + 6H2O, (A.58)

These reactions occur on the surface of the tubes that constitute the porous medium.
This example concerns only gas flow, but, in general. we may have catalytic reactors
operating with a liquid phase.
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It is important to distinguish between two cases. If the process is a homogeneous
catalysis, the reactions take place in the gas stream. If it is a heterogenic catalysis, the
reactions take place on the solid surfaces. In the latter case the equations should also
consider the interaction of the catalysis on the solid with the different species and
the mass transfer of the different species from the fluid into the liquid film adjacent
to e solid surface, where the species interact with the catalyst surface and move back
to the gas stream as products.

The process includes a stage of adsorption of the components on the solid sur-
face, followed by chemical reactions that take place on that surface. Eventually, the
(harmless) products are released (desorption) from that surface and released to the
atmosphere with the effluent gas.

Examples f Catalysts and Chemical Reactions

Some examples of catalysts and chemical reactions are presented below.The involved
catalyst of each reaction is listed in parentheses.

• Preparation of oxygen by thermal decomposition of KClO3:

2KClO3 = 2KCl + 3O2, (Manganese dioxide).

• Contact process for the manufacturing of sulphuric acid:

2SO2 + O2 = 2SO3, (Vanadium pentoxide).

• Haber process for ammonia synthesis:

2N2 + 3H2 = 2NH3, (Iron with Al2O3).

The Mathematical Model

The core of the mathematical model that describes what happens inside the reactor,
with the reactions presented in (A.58), i.e., with no phase change, includes mass and
energy balance equations. In the example below, we shall assume that only gas (g)
flows through the reactor. This gas flux is governed by pressure gradient, neglecting
any gravity effect. Obviously to present a complete model, we have to add initial and
boundary conditions.
• Mass balance for gas (g) flow: Assuming steady state flow, we write:

∇·φρgVg = 0, ρg =
∑
(γ)

cγ
g , Vg = − kg

φμg
∇ pg. (A.59)

• Mass balance for multi-component gas (g) flow is represented by:
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∂

∂t

⎛
⎝∑

(γ)

φcγ
g

⎞
⎠ = −∇·

∑
(γ)

φ
(
Vgc

γ
g − D

′γ
α ∇cγ

g

)
+ φρg

∑
(γ)

�γ
g , (A.60)

where �
γ
g presents the production or disappearance of γ mass by chemical reactions.

Assuming steady state operation throughout the entire cross-sectional area of the
catalyst domain, we have for every γ-species:

− ∇·φ
(
Vgc

γ
g − D

′γ
α ∇cγ

g

)
+ φρg�

γ
g = 0, (A.61)

and,
− ∇·

∑
(γ)

φ
(
Vgc

γ
g − D

′γ
α ∇cγ

g

)
+ φρg

∑
(γ)

�γ
g = 0. (A.62)

• Energy balance equation for a gas saturated porous medium:

∂

∂t

[(
φρgug

) + (1 − φ)ρsCsT
]

= −∇·φ
⎡
⎣ρghgVg +

∑
(γ)

hγ
gJ

∗γ
g + J∗H

g

⎤
⎦

+ ∇·(�∗H
pm∇T ) + �E

pm, (A.63)

where ug represents the internal energy of the gas, Cs is the solid’s heat capacity,
since the latter does not change phase,Vg represents the mass weighted gas velocity,
hγ
g represents the enthalpy of the γ-species in the gas, J γ

g,hdis denotes the flux due
the hydrodynamic dispersion, J ∗H

g,hdis denotes the dispersive heat flux within the gas,
�∗

pm is the coefficient of thermal conductivity of the porous medium as a whole,
and �E

pm denotes the rate of heat added by exogenic chemical reactions. Note that
because of the high temperature, condensation does not occur.
• Mass balance for a chemical γ-species in the gas flow:

∂φcγ
g

∂t
= −∇·φ

(
cγ
gVg + Jγ

g,di f + Jγ
g,dis

)
+ f γ

s→g + φρg�
γ
g , (A.64)

where cγ
g denotes the γ-concentration in the gas, with

∑
γ c

γ
g = ρg , �

γ
g , denotes

the γ-mass source term, due to chemical reactions in the gas (= added or removed
γ-mass per unit mass of gas, per unit time). Usually, we assume that gas density, ρg

remains practically unchanged within the reactor. The gas flux, qg is assumed to be
controlled only by the gas pressure difference (�p) between the reactor’s inlet and
outlet.
• Mass balance for a γ-species on the reactor’s internal surfaces of the solid
matrix: This is expressed by (A.30), repeated here for convenience:
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∂(ρbFγ)

∂t
= f γ

g→s + ρb�
γ
s . (A.65)

Assuming that the reactor operates under steady state conditions, themass balance
equations for the fluid (= gas) reduces to:

− ∇·φ
(
cγ
gVg + Jγ

g,di f + Jγ
g,dis

)
− f γ

g→s + φρg�
γ
g = 0, (A.66)

recalling that here and everywhere in this appendix, cγ is molar concentration.
• Gas mass balance. For steady flow inside the reactor, with constant porosity,

the gas mass balance reduces to:

∇·(ρgVg) = 0, Vg = − kg
φμg

∇ p. (A.67)

• Energy balance equation, assuming thermal equilibrium between solid matrix
and gas, is given by:

∂

∂t

[
φρgug + (1 − φ)ρsCsT

]

= −∇·φ
⎡
⎣ρghgVg +

∑
(γ)

hγ
gJ

γ
h,g + J∗H

g

⎤
⎦

+ ∇·(�∗H
pm∇T ) + �H

pm. (A.68)

where every term represents energy per unit volume of porous medium. In the above
equation, ug denotes internal energy of the gas, Cs is the heat capacity of the solid
matrix, hγ

g is the specific enthalpy of the gas, Jγ
hyd,g is the flux of hydrodynamic

dispersion in the gas, �∗H
pm denotes the heat conduction coefficient for the porous

medium as a whole, i.e., the solid matrix and the gaseous phase that occupies the
void space, and �E

pm denotes added energy from exogenic chemical reactions.
Usually, (1) dispersive flux term is neglected, (2) porosity is assumed constant,

(3) there are no external energy sources, the energy balance equation, written for the
reactor as a 1-d domain, reduces to:

∂

∂t
[φρgug + (1 − φ)ρsCs]T = −φ

∂

∂x

⎡
⎣ρghgVg +

∑
(γ)

hγ
g J

∗γ
g + J ∗H

g

⎤
⎦

+�∗H
pm

∂2T

∂x2
+ �H

pm . (A.69)

When, in the above one-dimensional case, heat is added at points along the reactor’s
boundary, we can express it in the above equation by adding a term on the r.h.s., e.g.,
Q̇(x, t), at points along the considered domain.
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For the 1-d example considered here, neglecting the dispersive term, and with
external heating sources along the domain, the energy balance equation simplifies to
the form of:

∂(ρpmCpmT )

∂t
= −∂(ρgCp,gVgT )

∂x
+ �H

eq

∂2T

∂x2
+ �∗H

pm + Q̇(x, t). (A.70)

where Cpm represents the porous medium’s (gas and solid) heat capacity, ρgCp,g

represents the equivalent mass heat capacity, �H

eq represents the equivalent thermal
conductivity of the porousmedium as awhole (i.e., solidmatrix and gas), and Q̇(x, t)
represent heat added at point along the reactor. These points appear as boundary
conditions in a 3-d model, but are approximated in the 1-d model a point sources.

The term�∗H
pm , that represents the net heat produced by the exogenic and endogenic

chemical reactions, is expressed as:

�∗H
pm = −Rr1Hr1 − Rr2Hr2, (A.71)

where the rates of reaction Rr1 and Rr2 refer to the two reactions (see (A.58)), and
the Hri represents the heat of reaction in the i th reaction. Recall that the rates of
reaction are temperature-dependent (see (7.3.79)). Thus,

Rri = kri Pk(c
γ), kri = Aie

−Ea,i RT , i = 1, 2. (A.72)

where Ri denotes the rate of the i th chemical reaction, kri is the Arrhenius constant
for the i th reaction, and the reaction-dependent coefficient Pk is a function of the
concentration.

A.2.10 Processes in Two Phase Flow

Inmany cases, we need to perform a chemical reaction between two chemical species
under certain specified conditions. This can be achieved by using two streams, each
containing a different set of chemical species. The two streams may be of the same
phase or of different fluid phases. Another possibility is just to create a situation
that facilitates the exchange of materials between two phases in order to achieve the
separation of substances (e.g., of a pollutant) between the two phases.

A.2.11 Distillation

Distillation is a process in which a volatile chemical substance dissolved in a liquid
is removed from the latter by selective evaporation and condensation. The removal of
ethanol from a water-ethanol solution in the food industry, and the removal of a light

http://dx.doi.org/10.1007/978-3-319-72826-1_7
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Fig. A.5 Typical porous medium particles filling a distillation column

oil component from a crude oil in the petroleum industry may serve as examples.
The process is an essential feature in many industries, including oil refineries, special
chemicals, pharmaceutical and food industries. It is conducted in a vertical column
filled with a porous medium: bubble cups, perforated plates, or granular material.
FigureA.5 shows some typical particles used as porousmedia in distillation columns.
They are designed to allow countercurrent flow of two phases: an upward vapour flow
and a downwards liquid flow, with good contact between these two streams. We note
that a column filled with such particles has a very high porosity. In gas-liquid flow,
they provide the opportunity for the appearance of drops of liquid streams within
the vapour environment, or two phase bubble-liquid flow in continuous liquid phase
flow. The passage through a long column of this kind creates also an opportunity for a
number of volatile products to be separately transferred from the downward moving
liquid to the rising vapour, at rates that depend on the exchange of their internal
energies. The more volatile substance is removed from the rising vapour stream at
the top of the column, while the less volatile one is removed at the bottom. Thus, the
quality (i.e., pureness) of each product is a controllable parameter.

At its lower end, the column is connected to a reservoir (B) which contains liquid
to be evaporated by a heat exchanger.

Distillation can be carried out in two modes:

(a) Batch distillation.
(b) Continuous distillation.

In both modes, the liquid phase flows downwards while the gas phase that contains
similar components as the liquid, but at a higher concentration of volatiles intended
for removal, flows upward.
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Batch Mode

The batch-type process is initiated by placing the source liquid in the reservoir (B).
This reservoir is also a boiler which evaporates the liquid. In a continuous mode
of operation, the source liquid is fed at one or more points along the column. The
locations of these points depend on the solutions concentration and temperature. It
is essential to cause the two streams - liquid and upward vapour – to be in good
contact along the column in order to allow efficient mass and heat transfer between
them. The presence of a porous medium enhances this contact. A condenser (C) that
includes a heat exchanger is located at the top of the column, It is fed by cooling
water that liquefies the vapour exiting the column. The liquid condensate is divided
into (1) a portion that constitutes the distillate product and a portion that is returned
to the column. The latter liquid is returned to the top of the column so that it flows
downwards through to column to the boiler. The two fluids-the downward moving
liquid and the rising vapour- come into contact as they move simultaneously through
the void space. this mode of operation improves the quality of the final product.
The simultaneous (countercurrent) flow along the column can be described by a
two-phase flow model, with variables S�, Sv, p�, pc, Q�, qv , etc., as discussed in
Chap.6. In what follows, we shall show a different approach, common in chemical
engineering.

Two main issues that concern the gas steams along the column have to be taken
care of:

• Maintaining good contact between the two fluids to allow efficient heat and mass
transfer between them, and

• Preventing the possibility that the gas will force the liquid to accumulate and
change flow direction, referred to as ‘flooding the column’.

The two types of distillation processes, shown on Fig.A.6, will be presented and
discussed below: batch distillation in Fig.A.6a and continuous operation in Fig.A.6b.

Batch Distillation

Adistillation columncan separate two streams. In case of binarymixture, it is possible
to obtain two streams of close to pure products, with some limitations.

Following a certain initial period, the above flows and masses in the column
stabilize and a quasi-steady state is established. The process is terminated when the
product in the distilled product reservoir (D) reaches the quality requirements which
depend on the product’s concentration, density and temperature.

Initially, at t = 0, a liquid mass denoted as mF moles is placed in the bottom
reservoir/boiler, B. We shall use the symbols mB(t), mC(t), mD(t) to denote the fluid
masses (inmoles) in the boiler (B), coming out of the condenser (C) returned from the
condenser to the column (R), and accumulating in the reservoir of distilled product
(D) respectively, with mF = mB at t = 0. We shall use XB(t), XC(t), and XD(t) and
X∗

D(t) to denote, respectively, the mass fractions of the fluids in the boiler, coming
out of the condenser, in the fluid coming out of the condenser and diverted to the
top of the column, and in the reservoir of the accumulating final distilled product (of
mass mD(t)). Actually, XC(t) ≡ XD(t).

http://dx.doi.org/10.1007/978-3-319-72826-1_6
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Fig. A.6 Distillation columns: a batch distillation column, b continuous distillation column, and
c notation of the plates around the feed plate

We note that:
mF = mB(t) + mC(t) + mD(t) ≈ const. (A.73)

Let us start by an example that involves a very simple case. We regard the system
as a closed one and neglect the volume of fluid in the column and in the pipes (=
“holdup”). At any time t > 0, the rate of depletion of the target volatile in the boiler
(B) is equal the rate of accumulation of the volatile as a distilled product in the final
product reservoir (D). In fact, in practice, the volume of the C-reservoir is small and
may be neglected.
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Mass continuity requires that:

− d(XBmB)

dt
= (XCdmC)

dt
= d(X∗

DmD)

dt
, (A.74)

where XB and XD denote the molar concentration of the liquid distillate leaving the
column/reboiler (B) and entering the product tank (D), respectively, mB is the current
mass left in the reboiler (B) from mF , mC is the integrated mass coming out of the
condenser (C), and mD is the mass accumulated in the distilled product reservoir (D).
Since d(XBmB)/dt = d(XCmC)/dt , it can be shown that the time dependence can be
eliminated, so that for any time t , we obtain the values of: XB , mB , XC , mC , X∗

D, mD,
with:

− dmB = dmC = dmD. (A.75)

For distillation of a single volatile component from a binary solution, we have:

d(XCmC) = −d(XBmB), recalling that dmC = −dmB. (A.76)

Thus,
XCdmC = −mBdXB − XBdmB, (A.77)

leading to:
mBdmB = (XC − XB)dmB, (A.78)

with:

At t = 0, mF, XF

At t > 0, mB, XB, dmB = −dmD. (A.79)

where XB denotes the average concentration in B.
It can then be shown that the time dependence can be eliminated, so that we obtain:

− XDdmD = d(XBmB) = XBdmB + mBdXB. (A.80)

The above equation holds also for distillation of a single component, or for a vector
of components that have different equilibria, namely that for different γ-species we
have different values K γ for different pairs of Xγ

C and Xγ
B .

The solution for a single volatile component out of two is given by:

∫ mB

mF

dmB

mB

= ln
mF

mB

=
∫ XF

XB

dX

XC − X
. (A.81)

Assuming equilibrium between XC and XB of the form:

XC = K XB, (A.82)
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where K , specific for every species, is assumed constant within the considered range
of concentrations, it can be shown that the solution for a single volatile component
out of two may be expressed by:

ln
mB

mF

=
∫ XB

XF

d (ln X)

K − 1
= ln(XB/XF)

K − 1
, (A.83)

recalling that:
mF XF = mD X

∗
D + mB XB, (A.84)

mC = XF − mB
mF

XB

1 − mB
mF

, XB = f

(
mB

mF

)
(A.85)

in which values of K for the equilibrium between the two phases is a function of the
concentration and the temperature.

The following development leads to the time needed for completing the distillation
process.

The mass balance of a volatile component is given by the relationship:

mB = mF

XC − XF

XC − XB

. (A.86)

Differentiating with respect to time yields:

dmB

dt
=

[
mF(XB − XF)

(XC − XB)2

]
dXF

dt
. (A.87)

Assuming steady state conditions throughout the system, we obtain:

dmD

dt
= (Qm,� − Qm,v) =

(
1 − Qm,�

Qm,v

)
Qm,v, (A.88)

where Qm,� and Qm,v are the liquid and vapour mass discharges through the column,
respectively. From the last two equations, we can get an expression for the time, t :

t =
∫ t

0
dt = −mF(XC − XF)

QV

∫ XB

XF

dXB

1 − (Qm,�/Qm,v)(XC − XB)2
. (A.89)

The above equation gives the distillation time, i.e., the time needed in order to get
a specified concentration of the volatile component in the final product reservoir. In
order to determine the time required for producing a distillate at a specified concen-
tration X∗

D, we need to add the mass balance equation:

mF XF,� − mB XB.� = mD X
∗
D. (A.90)
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The relation between Qm,� and Qm,v , togetherwith the information concerning the
column’s cross-sectional area, are used for designing the column and the operation
in it. We recall that the above development is based on the assumption that we may
regard the entire column as a single stage.

An additional design parameter at the disposal of the designer is the value of the
portion of the output from the condenser that is diverted back to the column.

We still have to deal with the energy/heat required for the operation described
above.

The energy balance equation can be written in the form:

mFhF + qH
B − qH

C = mDHD + mBhB, (A.91)

where hF , and hB denote the enthalpy per unit mass in F and in B, respectively, qH
B

represents the steam heat added to the reboiler and qH
C is heat removed by cooling

water in the condenser (C) stream.

Continuous Distillation

In a distillation column, the flow regime involves two countercurrent streams – a
downward liquid stream and an upward stream – which interact with each other.
Within each stream the concentration, pressure and temperature vary along the z-axis.
It is convenient to envision the column as composed of a series of segments, referred
to as stages, in each of which the two streams are assumed to reach equilibrium.

Figure A.6c shows such stages. This stage configuration facilitates the handling
of four streams. Each stream has its own temperature, enthalpy, mass flow-rate, and
set of concentrations of the relevant dissolved species. In an ideal stage, equilibrium
is reached between the two counter-current flowing streams.

A simple stage handles two phases running counter-currently as liquid and vapour
streams that enter and leave it under different condition. Upon entering a stage, from
the previous stage, a liquid stream will flow downward to the stage below, while a
vapour will flow upward to the upper stage. Eventually, both streams leave through
column’s exits. The feed stream is made to enter a selected stage. This feed stream
may contain liquid, vapour or both: a liquid will flow down while a gas moves up.
Streams may be withdrawn from various stages along the column.

Within each stage along the column, complete mixing of the two streams–gas and
liquid–is assumed to take place. It is further assumed that within every stage, the
two fluids reach equilibrium of both concentration and temperature so that the two
streams leaving the column, liquid through the stage’s bottom and vapour through
the latter’s top, have the same temperature and their concentrations are in equilibrium
with respect to all chemical components within the stage. Of course, in reality, this
situation cannot always be achieved. This leads to the introduction of stage efficiency
as a factor in the column’s design. The efficiency is a measure (in percents) of how
close to equilibrium is the situation reached at every stage within the column.

Furthermore, it is assumed that whatever happens in the column as a whole, as
well as within any of the individual stages that comprise it, occurs under steady state.
In the case of a system that is intended for long term operation, if not at the outset,
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then after a short time period, the system, here the distillation column is assumed
to reach steady state conditions. Upon entering a stage, the fluid (gas or liquid) is
not in equilibrium with the fluid present in the stage. It takes some time(and travel
length/mixing) to reach equilibrium.

Along the column, we encounter a number of stage types:

• The feeding stage, where liquid is fed into the column. Sometimes, there are
more than one feed stage. The feed position is chosen based on concentration and
temperature, in order to minimize back-flows. It is important to note that the feed
stream may be a supercooled liquid stream, saturated liquid, saturated gas, or a
combination of these two streams. It may also be a superheated gas.

• A purging stage, where a liquid, a vapour, leaves the column.

The stream exiting a stage is assumed to be in equilibrium with the stage it has
just left.

Two main fluid streams enter and leave a distillation column: a heavy product that
leaves the reboiler at the bottom, and a light product that exits the condenser at the
top. Although there are many types of distillation columns, here we shall consider
(1) a stream that leaves the column carrying the product and (2) a streamwith similar
properties that is re-injected back to the column in order to supply a liquid phase
to the upper stages of the column. This stream, referred to as reflux stream, also
improves the quality of the final distilled product.

Notation

The mathematical model of a multi-stage column is based on the following system
of stage numbering:

• Subscripts 1, 2, . . . , n − 1 for stages from the column’s upper end downward to
the feeding cell (i.e., the cell which is also fed from outside).

• Subscript n used for the feeding cell.
• Subscripts n + 1, n + 2, . . . ,m for stages from the feeding point downward to the
reboiler.

The mole concentration of liquid leaving the j th cell is denoted by X�, j , while
the mole concentration of vapour leaving the j th cell is denoted by Xv, j .

We shall use the symbols −Q̃B(t) and Q̃D(t), to denote the time rate at which fluid
mass (in moles) leaves boiler B and the condenser C at time t. Qd(t) denotes the
part of the condensate leaving C. The rest flows down the column as a reflux stream.

The Mathematical Model

The mathematical model of a distillation column involves the following equations:
The mass balance for the entire column states that at every instant, t , the rate

Q̃F(t), at which mass (in moles) is fed into the column is equal to the rate at which
mass (in moles) is leaving the column as distilled product, Q̃D(t), plus the rate at
which mass of heavy product is exits to the boiler, Q̃B(t):
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Q̃F(t) = Q̃B(t) + Q̃D(t). (A.92)

Henceforth, we shall assume that the operation has already reached a steady state,
i.e., all ∂(.)/∂t = 0. Under such conditions, focusing on the mass of a specific
chemical species, we have at any time t :

Q̃F XF = Q̃D XD + Q̃B XB, (A.93)

By eliminating Q̃B , we obtain:

Q̃D

Q̃F

= XF − XB

XD − XB

. (A.94)

By eliminating Q̃D, which is themass of the distilled product leaving the condenser
at the top of the column, we obtain:

Q̃B

Q̃F

= XD − XF

XD − XB

. (A.95)

The last two equations are valid for all vapour and liquid fluxes.
Under the assumed steady state, for any stages j and j + 1 above the feeding

point, the fluid mass balance can be written in the form:

Q̃D = Q̃v, j − Q̃�, j−1, 1 ≤ j < n. (A.96)

Note that phases (e.g., g for a gas and � for a liquid) are indicated by subscripts,
while a component in a phase is indicated by a superscript.

Similarly, the component balance equation for any chemical species can bewritten
for every stage in the form:

Q̃�,D XD = Q̃v, j Xv, j − Q̃�, j−1X�, j−1, 1 ≤ j < n. (A.97)

The l.h.s. represents the most volatile component that leaves as the final product at
the condensate side. It can also represent the vector of the components that leave as
the final product.

In a similar way, the two equations for the part of the column below the feeding
point, may be written for the j th stage:

Q̃B = Q̃�, j−1 − Q̃v, j , n + 1 ≤ j ≤ m. (A.98)

Q̃B XB = Q̃�, j−1X�, j−1 − Q̃v, j Xv, j , n + 1 ≤ j ≤ m. (A.99)

Equilibrium Line

The equilibrium line is the line that represents the equilibrium of a component in a
two phase system as dictated by their nature. It can be found in the literature or by
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laboratory experiments. In the distillation system, each dissolved component has an
equilibrium line.

In this case we have two operating lines, one for the domain below the feeding
point and one for the domain above it. For every fluid feeding or exit point at the
ends or along the column, we need to add an operating line. In the example presented
here, we have one feeding point and two exit points–the condenser and the boiler.

The operating line for a stage j in the upper section 1 ≥ j < n, which is also
called the stripping section is given by:

Xv, j = Q̃�, j+1

Q̃v, j
X�, j+1 + Q̃v, j Xv, j − Q̃�, j−1X�, j−1

Q̃v, j
= Q̃�, j+1

Q̃v, j
X�, j+1 + Q̃D X�,D

Q̃v, j
,

(A.100)
Or, more conveniently, in the form:

Xv, j = 1

Q̃�, j + Q̃�,D

[
Q̃�, j X�, j+1 + Q̃�,D X�,D

]
, 1 ≥ j < n. (A.101)

which relates Xv, j+1 to X�, j , with a slope that expresses the ratio Q̃�/Q̃v in the column.
In a similar way, it is possible to show that the operating line for the lower part of

the column will have the form:

Xv, j = 1

Q̃�, j + Q̃�,B

[
Q̃�, j X�, j+1 − Q̃�,B X�,B

]
, n + 1 ≤ j ≥ m. (A.102)

The energy balance for a stage in the upper part of the column is:

Q̃v, j hv, j − Q̃�, j−1h�, j−1 = Q̃�,Dh�,D + HC, 1 ≤ j < n. (A.103)

where HC is the heat removed by the condenser.
The energy balance equation for the feed stage is:

Q̃v,nhv,n − Q̃�,n−1h�,n−1 − Q̃FhF = HC + Q̃Dh�,D. (A.104)

For the lower part of the column (i.e., below the feeding stage),

Q̃v, j hv, j − Q̃�, j−1h�, j−1 = Q̃�,Bh�,B − HB, (A.105)

HB is the heat supplied to the reboiler.
The overall energy balance equation for the column is expressed by:

Q̃�,BhB − HB + Q̃�,Dh�D + HC − Q̃FhF, (A.106)

where hF denotes the molar heat per unit mass of the feed stream that may contain
liquid and solid particles, as explained above.
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The Reflux Ratio

As stated earlier, without the reflux, i.e., the stream that is returned from the condenser
to become downward flow in the column, the vapour leaving the column to enter the
condenser will have a concentration that is in equilibrium with that of the feed. This
means a product of low quality. The term reflux ratio is used to express the ratio
between the flux of the returned liquid to that of the distillate released as the final
product. Dividing both the numerator and the denominator on the right hand-side
of the upper operating line (A.101) by Q̃

�

D yields the following operating line of the
column’s upper section:

Xv, j = 1

1 + Rd

[
Rd X�, j+1 + X�,D

]
, 1 ≥ j < n. (A.107)

in which Rd = Q̃�, j/Q̃�,D is a parameter that measures the effect of separation on
the product’s quality. The value of Rd depends on the column’s design, the number
of stages, the diameter of the column, the energy supplied for the operation and the
cost of the process.

The Feed Plate

As stated earlier, five feeding options are available, that depend on the nature of
the feed. They cover the range from sub-cooled liquid up to supersaturated vapour.
The liquid introduced as the feed joins the liquid flow that moves down the column,
while the gases move upwards with the gas stream. Beside the concentration of the
feed and the liquid-gaseous portions, the feed also contains enthalpy that affect the
conditions in the column. With a parameter denoted by q that describes the quality
of the feed (in term of how much liquid or vapor is present in the stream) according
to the q-line described by the feed equation, we have:

Xv = − 1

q − 1
[qX� − XF] , (A.108)

where XF ix the feed concentration and q is the enthalpy function calculated from
the two liquid streams above and below the feed plate, expressed by:

q = Q̃�,n − Q̃�,n−1

Q̃F

= Hv − h�,F

L
, (A.109)

where L denotes heat of phase change. Similarly, the following equation is the
enthalpy function calculated from the two gas streams below and above the feed
plate:

q − 1 = Q̃v,n+1 − Q̃v,n

Q̃F

= h� − h�,F

L
, (A.110)

The equilibrium condition within any j th stage is:
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Xγ
v, j = K (p, T, Xγ

� )Xγ
�, j , (A.111)

So far, we have been considering the simple case of a binary system, i.e., the
liquid is composed of two species only: the species of interest and another species.
To simplify the presentation, we have not indicated the species of interest in the
equation. In what follows, we shall assume that the liquid and the vapour contain
a number of γ-species. With this in mind, following are some additional model
relationships:

∑
(γ)

Xγ
v, j = 1.0, j = 1, . . . ,mc.

∑
(γ)

Xγ
�, j

= 1.0, j = 1, . . . ,mc.

Xγ
v, j = K γXγ

�, j , K γ = K γ (T, p, X�, Xv) ,

H� = H� (T, p, X�) , H� = H�(T, p, X�), (A.112)

where mc denotes the number of components in the stream.
As shown above, the full set of equations includes also the energy balance equa-

tion.

A.2.12 Stripping/Absorption

Stripping and absorption processes are two opposite counter-current, liquid-gas pro-
cesses, performed in a vertical column. The process is usually used to clean a
contaminant-containing gas or liquid stream. In both cases, the mass transfer is
performed across the (microscopic) interfaces within the void space between the two
phases. The liquid flows downward, while the gas flows upward, against the solvent’s
direction. The process is usually used to clean gas or liquid streams containing con-
taminants. Since the amounts to transferred are low, no significant energy changes
occur, and an energy balance is not required as part of the process model. Note that
here absorption means the passage of a specis from a gas to be dissolved in a liquid.

A typical set-up is shown in Fig.A.7.
An example of an adsorption process is the adsorption of benzene contaminant

from an air stream by oil as the solvent. The oil may be cleaned and recovered by
stripping the benzene with steam. The steam may be condensed to separate between
the water and the liquid benzene, or fed to a high temperature direct contact boiler
that is fed also with a sufficient stream of oxygen to burn the benzene while the hot
steam is used for heating or power generation in the plant.

Since the process is rather similar to that of distillation, the model presented in
Sect.A.2.13 on distillation is valid also here. Essentially, this is amodel that describes
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Fig. A.7 Stripping and
adsorption columns

two phases-gas and liquid-that flow in opposite directions, and while doing so, a
chemical species moves from one stream to the other.

The Model

As in the distillation column, the two phases flow counter-currently along the column.
In both cases, stripping and absorption, the gas is introduced at the bottom of the
column, as seen in the figure while the liquid is fed from the top of the column and
moves downward. Inmost cases, it is assumed that the system operates adiabatically,
and if heat is transferred between the phases, it is negligible. The target of this process
is to move a γ-contaminant from a gas (g) stream (polluted air, say with SO2) into
a liquid � absorbent like water. The objective is to achieve a low, yet permitted
concentration in the exiting gas. In case of stripping, the process is based on the
removal of a volatile γ-component from a liquid stream (say, oil containing natural
gas) down to a low permitted concentration, with a stream of a gas (say, steam), that
is appropriate for this case. The case of steam as the stripper is involved with energy
transfer, yet here, for simplicity, we assume operation under constant temperature.
The equilibrium assumed in the thin film layer between the two phases–gas (g) and
liquid(�) is considered in the form:

Xγ
g = K Xγ

� = f (Xγ
� ) (A.113)

where Xγ
g denotes the molar fraction of γ in g, and K is the equilibrium constant.

This equilibrium is suited for the two cases–stripping and absorption. At low con-
centrations, this is the Henry’s law, and the functional relationship is a straight line.

Recall that the target in absorption it to reduce a certain initial (feed) concentration
from Xγ

g,n+1 to Xγ
g,1.

The mass balance equation in this case is given by:
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Xγ
g,i+1 = Q̃�

Q̃g
Xγ

�,i +
(
Xγ
g,1 − Q̃�

Q̃g
Xγ

�,0

)
, (A.114)

where Q̃� and Q̃g are the counter-current molar flow rates of the liquid and the gas,
respectively. and cell numbers vary from i = 1 to i = n.

The solution for stripping is similar to the one presented above, except that the
operating line exists on the other side of the equilibrium line.

A.2.13 Solvent Extraction and Leaching

Extraction, also known as solvent extraction for liquids or leaching process for solid
-liquid mass transfer, also known as solid-liquid extraction, liquid-liquid extraction,
or just leaching, is the name of a process in which two phases exchange dissolved
chemical species in order to separate or increase the concentration of a valuable
product in one of them. This is a common process in the organic chemical industry
whenever the separation is required between two nonvolatile compounds or com-
pounds that have a close boiling temperature. It is also a well known process for the
extraction of metal ions in the mining industry. In the mineral industry it is used for
extracting phosphoric acid, copper sulfate, or oil from various grains, e.g., soy bean.

The target product to be separated is dissolved in a solvent or a solid. In these
processes, another solvent is used to collect the desired product and allow to purify
it. At least three components are involved in this process.

Figure A.8 shows a simple extraction process.
Several types of contactors are available for solvent extraction, Here, we shall

focus on a vertical column that is filled with solid particles. The main function of
which is to enable a close contact between the solvents involved in the process. The
heavier phase is allowed to flow down while the lighter one flows counter-currently
upward in a way that one of the phases is broken into drops within the other phase in
order to increase the area available for mass transfer. The drops are allowed to merge
and to form larger fluid particles and to brake again along the column. This causes a
good mixing and re-expose the surfaces to better contact. The process may end by
distillation of the solvent, if possible, or by a second stage of extraction that purifies
the product.

Consider solvent A that contains a component C to be extracted. A lighter solvent
B is introduced at the bottom of a column and flows upward. The feed containing
liquid A+C is heavier than solvent B; it is introduced at the top of the column so that
it flows downwards, as shown in Fig.A.8. Extracts C and some A leave the column
with B as Extract at the top. The exhausted solvent A, containing some B and some
C leaves at the bottom of the column as Raffinate. At least one settler that separates
the drops from the two phase mixture is needed at the ends of the column. Similarly,
as shown in Fig.A.8, opposite directions of the feed and solvent occur when the feed
is lighter than the solvent. Leaching is another process used to achieve extraction,
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Fig. A.8 Extraction columns

e.g., of vegetable oil from grounded soybeans. In this case, the soybeans (packed in
canisters) constitute a packed bed that is moving opposite to the flow of a solvent
(hexane in this case) that extracts the oil. Sometime, the solvent is distilled so that
the product contains very little hexane. An interesting leaching process is used with
supercritical CO2 to extract organic matter from solids, or coffee from grains with
supercritical water.

The Model

As is obvious from the above description, various options are possible for imple-
menting the leaching process. Here we shall focus on a rather simple system of
liquid-liquid extraction, or solvent extraction, which is similar to the process of
stripping in a vertical column (see Sect.A.2.12). The main difference is that here we
introduce another solvent to extract the desired compound or range of compounds
dissolved in the feed solution. Since we are dealing with two solvents, we shall refer
to them as the denser and the lighter ones. Thus, the feed at the top of the column
will include the heavier solvent, in order to benefit from the effect of gravity. The
lighter solvent is fed at the bottom of the column. The density difference between
the two solvents is usually small so that the flow inside the column is slow. In fact,
we have a flow of drops in a continuous solvent. In many cases it is required to
allow the separation of phases inside the column by generating stagnation regions.
Usually, the top and the bottom of the columns are equipped with settlers to allow
phase separation.
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Fig. A.9 Triangular phase diagram for a mixture of two phases

In most cases, equilibrium is presented as a phase diagram, usually drawn as a
triangle. Figure A.9a shows such triangle.

On Fig.A.9a, vertices A, B and C of the triangle represent 100% of solvent A,
100% of solvent B and 100% of solute C, respectively. The distance between the
vertices indicates a linear variation from O% to 100% of the relevant component.
The three coordinates of every point on the diagram represent themixture of the three
components. The colored curve shows the relevant phase diagram. The normals from
a point to the three sides indicate the concentrations. The domain E represents the
extract region, while R represents the raffinate region; both end at the point P. The
line between R and E represents a tie line between points in equilibrium. FigureA.9b
shows the equilibrium line in terms ofmolar ratio concentrations. FigureA.9a demon-
strates this approach through a simple case of two solvents, A, B, and a dissolved
component, C, to be extracted.

We consider a simple case in which we assume that the solvents are completely
immiscible. We define the final target concentrations of the two solvents and try to
determine how many stages are required in order to achieve the desired separation.
The size of each stage is determined by the flow rates of the two solvents and the
relative velocities between them, in order to minimize entrainment and provide good
contact between the phases. The velocities dictate the cross-sectional area of the
stages while the thickness of each stage allows the settling of droplets carried from
stage to stage.

As shown n Fig.A.9b, the equilibrium between phases may be expressed by:

Xlight = K Xheavy, (A.115)

where the superscripts indicate the light and heavy phases.
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The mass balance at the different stages may be written as:

Xlight, j+1 = Qheavy

Qlight
Xheavy, j + (

Xlight, j − Xheavy,F
)
, (A.116)

where light and heavy indicate the two phases, and j indicates the stage.
Like in the stripping model, described in Sect.A.2.12, by solving the mass bal-

ance equation for a stage (A.115), together with the equilibrium equation (A.116),
we can determine the concentrations in the different stages. Calculating the stage
concentration between the feed concentration and the required extract will allow us
to determine the number of stages and complete the design of the entire process.

A.2.14 Chemical Reactions

Here, we discuss a simple case of reactions in counter-current flow along a porous
medium column.

When two components that flow as two streams of different phases in counter-
current motion through a porous bed, they may react to form a newmaterial from the
dissolved components in the two stream. The low concentration at the exit stream
at both ends of the reactor, see high concentration at the surface with the other
stream. This situation maintains better driving forces for the reaction than the case
of co-current flow, where high concentrations take place at stream entrance and low
concentration of the common exit. This allows better recovery of the product, better
mass transfer and better rate of reaction. Also, the Heat needed or transferred along
the reactor is better distributed along the reactor.

A.3 Processes in Moving-Bed Reactors

A moving bed reactor is used when we need a better contact and mixing between
the solid matrix and the fluid. The solid matrix is then made up of individual grains,
each completely surrounded by the flowing liquid or gas. The flow is turbulent,
thus enhancing fluid-solid contact. Two main types of moving beds are used in the
industry: fluidized beds and stirred beds. Batch reactions may be performed in such
contactors. It is possible to add fluid/solid by mechanical means, using an impeller,
or by adding and extracting fluid through the side walls, thus causing fluid circulation
in the bed and continuous reactions. Examples of various cases are presented below.

A.3.1 Fluidized Bed

Theconcept of afluidizedporousmediumwas introduced andexplained inSect. 9.3.1.

http://dx.doi.org/10.1007/978-3-319-72826-1_9
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Fig. A.10 A fluidized bed

Consider a packed bed (Fig.A.10) in which the solid particles, say in the range of
0.1–0.5 cm, are unconsolidated, i.e., they just touch each other, transmitting forces
through the contact points. In upward fluid (liquid or gas) flow through the bed, the
solid particles remain stationary as long as the fluid’s velocity remains sufficiently
low. Under such conditions, the submerged weight of the solid particles overcomes
the fluid’s drag and the solid particles remain stationary. As the fluid’s velocity is
increased, the pressure loss is increased (say, according to any flux expression like
Darcy’s, or Ergun’s law). Recalling stokes law, the drag acting on the solid also
increases. At some fluid velocity, conditions will be such that the drag force will
overcome the weight and the individual solid particles will begin to float. This is
the point at which fluidization begins. We say that the bed is “fluidized upward”
(see Sect.A.1.3) when the solid particles are heavier than the fluid (gas or liquid), or
“fluidized downward” when they are lighter than the latter.

Various processes, e.g., chemical reaction, adsorption crystallization, and heat
transfer, can take place at the (microscopic) interface between the moving fluid and
the surface of the solid particles. One advantage of a fluidized bed, with respect to a
stationary solid matrix, is that it significantly improves the fluid-solid heat and mass
transfer due to the increased turbulence.

Consider a portion of a column of length Lo packed with unconsolidated solid
particles. Let A denote the constant cross-sectional area of the column. Initially, letφo

denote the porosity of the column filled with (loose, just touching) solid particles up
to a (vertical) length Lo. Fluid (liquid or gas) flow is initiated through the column, and
the fluid’s velocity inside the void-space is gradually increased. At first, as velocity
increases, the solid particles, although dragged by the fluid moving through the void
space, remain at rest, as the drag force is smaller than the submerged weight of the
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solid particles. By the Law of Archimedes, the submerged weight of a solid particle
fully surrounded by a fluid is given by g(ρs −ρ f )Vs where Vs denotes the particles’
volume. This situation will continue until a certain velocity is reached at which the
solid particles begin to move, float and occupy a growing volume within the column:

(1−φo)ALo → (1−φ1)AL1 → (1−φ2)AL2, . . . , with Lo < L1 < L2 < L3 · · ·

Note that the subscript m = o (e.g., in Vo, Lo,φo) is used for the time at which
the solid particles just begin to move. Stages indicated by subscripts 1, 2, 3, . . .
correspond to higher fluid velocities (and corresponding higher values of V , φ, and
L).

At every stage, the pressure drop along the fluid column containing floating solid
particles can be related to the fluid’s velocity or to the specific discharge. The latter
can be determined by any of the fluid flux equations discussed inChap. 4. InChemical
Engineering, it is common to use Ergun’s equation (4.3.17), based on a friction factor,
f p, between a flowing fluid and the solid matrix/particles:

f p = �h

L

dp

ρ f q2
f

φ3

1 − φ2
, ρgh = ρgz + p = p∗, (A.117)

where h is the piezometric head (for a constant density fluid), L denotes the length
of the saturated packed bed, along which p∗ drops by �p∗, φ denotes the porosity of
the bed, q f (= Q f /A ≡ φV f ) denotes the fluid’s specific discharge, and dp denotes
the particles’ effective or mean size. In (A.117), all variable may vary with time.. In
certain processes, the solid particles dissolve to the extent that they may completely
disappear, or have to be filtered out. This case is not considered here.

Another form of f p is written in terms of the Reynolds number (Re):

f p = 150

Re
+ 1.75, Re = q f dp

ν f
, ν f ρ f = μ f , (A.118)

where Re for the bed is expressed by:

Re = ρdpq f

μ(1 − φm)
. (A.119)

At any instant, the fluid’s flux, expressed by Ergun’s equation (4.3.17), can be
rewritten in the form:

�p∗

L
= 150

μ

d2
p

(1 − φ)2

φ2
q + 1.75

ρ

dp

1 − φ

φ3
q2. (A.120)

where L denotes the length of the porous medium column across which we have the
p∗-drop of �p∗, and we recall that �p∗ = δ p + ρg�z, and z (positive upward) is
taken above some datum level; ρ ≡ ρ f is assumed constant. This equation is also

http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_4
http://dx.doi.org/10.1007/978-3-319-72826-1_4
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used for determining the fluid’s specific discharge (q = Q/A) at which fluidization
starts.

Once fluidization has started, a balance exists between the three forces that act on
the solid particles, say per unit volume:

• The upward drag produced by the moving fluid, f p expressed in (A.117), with
φo → φm , when Lo → Lm .

• The upward buoyancy, or Archimedes force that depends on the fluid’s density:

fb = (1 − φm)gρ f Lm . (A.121)

• The downward weight of the solid particles:

fg = (1 − φm)ρs Lm .

These three forces maintain the following balance among them:

f p + fb = fg. (A.122)

To determine theminimum upward fluid velocity at which fluidization is initiated,
we seek the point where the drag force associated with the pressure drop becomes
equal to the submerged weight:

�p∗
m = Lm(1 − φm)(ρs − ρ f ), (A.123)

or:
�p∗

m

Lm(1 − φm)
= (ρs − ρ f ) = const., (A.124)

where we note that the column’s cross-sectional area plays no role. In the above
equation, Lm is the length of the fluidized column, and ρs and ρ f (≡ ρ) denote the
solid and fluid densities, resp.

Altogether, for any considered q above the onset of fluidization at qo, we can use
the three equations: (A.120), (A.123) and (A.124) to determine the three variables:
�p∗

m , Lm and φm .
Various phenomenamay occur during the fluidization process. For example, crys-

tals may grow and fall down through the fluidized bed while smaller crystals are
removed through the upper end of the bed where the fluid exits the column. Catalyst
particles may be fouled after some time of operation and may have to be removed
them the system by increasing the velocity.

A stable bed means that all the solid particles move within the same range of
velocities and fluctuations. In an unstable bed, large volumes of the fluid are circu-
lating within the bed and the spatial distribution of particles varies over a wide range
of fluid volumes. Efforts are made to avoid such conditions.

Stable fluidized beds are used, for example, for crystallization and adsorption. Fast
fluidization, associated with a short period of stay of solid particles in the column,
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Fig. A.11 Swensen fluidized suspension crystalliser

is used when solid particles need to be removed for cleaning, e.g., in fast catalysis
(FCC fast catalytic cracker in refineries).

A.3.1.1 Crystallization

Crystallization is a process inwhich the solutes in a fluid producewell structured solid
particles in the form of crystals. These particles have a known size distribution. The
crystals are created as a consequence of changes in the flow regime, e.g., change of
temperature and/or concentration. In the latter case, the addition of chemicals, causes
the concentration of the dissolved matter to exceeds the saturation limit. This limit
indicates the maximum concentration of a dissolved matter before crystallization
starts. Sometime, the generated solid particles are the desired products. In other
cases, the target is to achieve a purer solution as the final product. In both cases,
crystallization needs to take place in a moving stream to prevent internal clogging
by the produced crystals.

The crystals are grown inside the reactor (see Fig.A.11). The larger crystals are
moving down to the bottom of the crystallizer, while the smaller ones move upwards
and continue and grow. The process may be continuous, or batch-wise.

FigureA.11 shows a double-tube crystallizer. The fluidization is achieved by cir-
culating a solution with a pump located at the left lower part of the figure. The
fluid enters the internal tube from above. The tube is maintained under vacuum that
enhances evaporation of the fluid that enters from above (A on the figure). At the
bottom of the crystallizer (B), the fluid changes flow direction and moves up fluidiz-
ing the solid particles (crystals). The fluidization allows the heavy particles to settle
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down and exit at the bottom of the crystallizer. The smaller particles are carried with
the fluid that is pumped out. They dissolve in the fine dissolution tank and then are
fed back to the crystallizer together with the incoming feed. The velocity of the fluid
inside the vessel is dictated by the size of the particles and the flow conditions as
described at the beginning of this subsection.

A.3.2 Fluidized Bed-Catalytic Process

Fast fluidized bed is used for fast chemical reactions that affect the solid particles
and prevent them from regular operation. The best case to demonstrate such reaction
if the case of catalytic cracking that is operated in refineries. Crude oil contains
thousands of organic components. The lighter one, the most volatile are used as
different fuels for our transportation system. Some heavier fuel molecules may be
used in power stations for electricity production. However, heavy, large molecules,
generate large amount of CO2, so there is a trend to use natural gas for power
stations. The FCC (Fast Catalytic Cracker) is designed to break the large molecules
and generate smaller molecules by adding hydrogen to the molecules, hence, large
molecules turn into light fuels and the basis for generating polymers. The catalytic
process generates a by-product, soot that covers the catalytic particles and stops their
action. The fast velocity of the particles through the bed allow them to act, foul and
exit at the top of the reactor. The particles are cleaned outside the reactor and returned
through the bottom of the bed.

A.3.3 Stirred Moving Bed

The stirred bed reactor is basically a mixed slurry reactor where the solid matrix may
be part of the process or inert. The reactor is also a type of a continuous stirred tank
reactor (CSTR) that contains solids. The mixing allows better contact between the
solids and the solution.

A.3.3.1 Dissolution

This process that is opposite to that of crystallization (Sect.A.3.1.1).
The objective here is to dissolve a certain solid material in a solution, e.g., adding

needed calcium salt to desalinated water. In this case, the solids are dissolved com-
pletely or partially in the liquid present in the reactor and the loaded solvent is con-
tinuously removed. With an appropriate filtration system, this may be a continuous
process.

Thus process can be used to prepare a solvent loaded with dissolved solid as a
pretreatment for a chemical reaction, or addition of calcium to pure water.
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A.3.3.2 Adsorption

Adsorption is a process used to remove a specific dissolvedmatter, e.g., a contaminant
in water, from a liquid (= solvent) in a single stage, by attaching it to solid particles
that have some affinity to the removedmaterial. For example, contaminants dissolved
in water can be removed by active carbon particles. Another example is the removal
of toxic organic fumes by adsorbing them on a solid matrix.

A.3.3.3 Ion Exchange

This is a batch process that is similar to that of adsorption, except that here an ion
that is preloaded on the surface of solid particles of an ion exchanger is replaced by
an ion in solution (see Sect. 7.4.2) and Sect.A.2.5 above).

A.3.3.4 Crystallization

The formed crystals are the solids in the system. It is possible to allow at right mixing
system to take the largest species from the bottom of the reactor while the smaller
crystals stay and grow. May be either batch or continuous process.Crystallization is
often used in the pharmaceutical industries and in the production of special chemicals.

A.3.3.5 Catalysis

The catalytic process was describe already in Sect.A.3.2. However, we add here the
possibility of using an impeller to produce bed motion, thus mixing the reactor’s
content. The catalyst may be attached to the solid surface, or dissolved in the liq-
uid,where the solid grain help to generate a better mixing. Depending on the nature
of the catalytic reaction, this operation may be continuous or batch-wise.

∗ ∗ ∗

Altogether, the above brief discussion on reactive transport processes that take
place in contactors and reactors used in the chemical engineering industry demon-
strate important (and very useful) applications of the theory of mass, momentum
and energy transport in porous medium domains, where the latter are envisioned as
continua.

Obviously, only very simple examples are presented, while the real world is much
more complicated. More examples can be found in the Chemical Engineering liter-
ature.

Reference
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An Introductory Remark Concerning the Next Two Appendices

After a most interesting INTERPORE meeting in Prague, I asked myself the fol-
lowing question: “Since the mid-fifties of the last century, I have been watching and
contributing to the development of the exciting field of phenomena of transport in
porous media. I have just been listening for two days to interesting, some innovative,
presentations about transport in porous media, but what are the real new innova-
tions of recent years? “And almost with no hesitation my answer was” Two exciting
subjects are really new:

• The power of imaging. The ability to actually observe, and often also measure
phenomena that occur at the microscopic level—inside the void-space and on the
internal surfaces.

• The power of computing. The exciting development and the tremendous increase
in the power of computing. This enabled the solution of very complex problems,
with multiple variables at field scale. However, it also facilitated the solution of
problems at the micro- and nano-scales, describing phenomena inside the void
space.

Indeed, during the conference, I listened to reports on actually monitoring two
phase flow and adsorption on the solid. This is a real revolution; the ability to solve
a huge number of PDE’s in a very short time. These have revolutionized the field of
modeling phenomena of transport in porous media.

I have asked colleagues who are experts on these subjects to briefly expose them
within the framework of this book, which focuses on the macroscopic level.

Jacob Bear
2017
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Recent Advances in Pore Scale Imaging

by
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Lawrence Berkeley National Laboratory

B.1 Objectives of Pore-Scale Imaging

The primary goal of pore-scale imaging is to provide a detailed three-dimensional
digital model of a porous medium sample at the smallest scale that is relevant to a
considered process, e.g., diffusion or advective flow in the void space. Such digital
model can be immediately used for a qualitative characterization of the sample via
virtual cuts and volume rendering techniques. With a slightly increased effort, 3D-
domains can also be used for a quantitative description of the sample through the
use of digital morphometric analysis of the microstructure These techniques provide
access to a host of structuralmetrics relevant to subsurface flowand transport, ranging
from the simple (porosity) to complex, including 3D grain orientation anisotropy,
matrix fractal properties, and pore connectivity statistics (e.g., Naverre-Sitchler et
al. 2009). A secondary goal, which has only recently become feasible, is to provide
a time sequence of such 3D domains to capture structural evolution in either the
solid or fluid geometry which can then be utilized to validate models of the process
in question, or as part of the scientific discovery process. This capacity to follow
dynamic processes in real time (4D imaging) at temporal resolutions even in the
sub-second range is the current frontier of pore-scale imaging.

With a static or time variable pore-scale model, an investigator can either extract
microscopic geometrical information (e.g. porosity, pore-throat statistics, 2-phase
saturation), or directly calculate flow properties, including permeability, from pore-
scale images by solving the appropriate governing equations. The capacity to directly
simulate pore-scale processes, utilizing static 3D tomographic data-sets, forms the
basis of the growing field referred to as ‘digital rock physics; (Kheem et al. 2001;
Andrew et al. 2013). The appeal of being able to avoid performing actual measure-
ments (such as permeability, ultrasonic wave velocities, etc.), or to simulate destruc-
tive experiments via software, thus preserving the sample (e.g. mercury intrusion
porosimetry) is evident.
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J. Bear,Modeling Phenomena of Flow and Transport in Porous Media,
Theory and Applications of Transport in Porous Media 31,
https://doi.org/10.1007/978-3-319-72826-1

713



714 Appendix B: Recent Advances in Pore Scale Imaging …

B.2 Imaging Techniques

Three-dimensional pore-scale imaging targeting optically opaque materials (e.g.,
soils and rocks) is now conductedwith awide variety of imagingmodalities including
X-rays, neutrons, magnetic resonance imaging (MRI), and a variety of serial abla-
tion/imaging techniques. Of the many relevant factors, these techniques are largely
distinguished by their spatial and temporal resolution, field of view, destructiveness,
and material sensitivity. We shall restrict our discussion to 3D imaging, approaches
on macroscopic samples (mm to cm in size) and neglect purely 2D imaging methods
as well as nano-imaging techniques targeting rock fragments below tens of microns
(e.g., soft X-ray tomography, TEM tomography). Formany of the tomographic imag-
ing techniques, the 3D structure is obtained by collecting a large number of 2D pro-
jections as the sample,or source/receiver system, are rotated. The resulting set of
projections (100s to 1000s of images) is then processed to yield a 3D image volume
that depicts the internal components.

B.3 X-Ray Imaging

Hard X-ray micro computed tomography (XRmCT), using either synchrotron or
conventional tube sources, is currently the dominant technology for both static and
dynamic imaging of opaque porous samples at resolutions from roughly 0.5 microns
to the centimeter range, sufficient for imaging the larger pores in sandstones and
soils (Wildenschild and Sheppard 2013; Cnudde and Boone 2013). First demon-
strated in the late 1980s (Flannery et al. 1987), the technique has steadily improved,
taking advantage of advances in both hardware, e.g., faster and higher resolution
2D detectors and XR sources, with higher brilliance, and software, with greatly
increased computational capabilities for advanced image reconstruction and pro-
cessing approaches.

In conventional XRmCT, a large number of 2D X-ray projections (radiographs)
are acquired and reconstructed into a 3D image volume via filtered back-projection,
or more advanced algorithmic techniques, including iterative reconstruction. The
volume obtained shows the structure of the sample mapping the different X-ray
attenuations values in space. The attenuation values are related to the density and
atomic species (Z number) present in the sample, following, for the ideal case with
polychromatic XR:

Irec =
∫

Io(E)e[�i (μi (E)xi )]dE .

The above equation indicates that for each pixel in the projection, we obtain a
recorded intensity Irec, depending on the initial intensity Io of the XR beam energy
spectrum, on the linear absorption coefficient μi and on the path length xi through
each material i , for each energy, E , of the incident spectrum. The linear attenuation
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coefficient is directly related to the fraction of X-rays absorbed, or scattered, per unit
volume of the material, taking into account the number and species of atoms in a
unit volume of material and the probability of a photon being scattered, or absorbed,
from the atoms present.

The volume obtained, after applying reconstruction procedures to the radiograph
set, is populated with XR attenuation values (e.g., Kak and Slaney 1987; Stock 2008)
for the constituent materials. Typically, porous materials have low values (dark) for
pore space, and higher values for minerals, with dense phases, such as pyrite, being
the brightest in color. This contrast allows for subsequent segmentation of pore and
mineral grains (Andra et al. 2013a) as well as tracking of multiple fluid phases,
assuming a sufficient difference μi (Porter and Wildenschild 2010); in cases where
two phases have similar properties, fluid (e.g. potassium iodide) or gas (e.g., xenon)
phase contrast agents can be utilized to allow effective imaging. Most recently, XR
mCT techniques have been extended to higher time resolutions (>1s), allowing
dynamic monitoring of fast hydrologic processes such as Haines jumps (Berg et
al. 2013; Armstrong et al. 2014). This class of measurement is still confined to
synchrotron light sources which leverage high brilliance XR beams and superfast
CCD detectors to push the boundaries of temporal resolution.

B.4 Neutron Imaging

Imaging porous systems, using neutrons (Strobl et al. 2009) has also advanced con-
siderably, providing a secondary modality for pore/core scale imaging. Neutron
radiography and tomography provide increased sensitivity to water due the higher
absorption cross-section of hydrogen and are capable of penetrating large diameter
samples andmetal pressure vessels. Neutrons also tend to be less damaging to biolog-
ical systems in comparison to high-flux X-rays, providing opportunities for imaging
root/soil interactions and water uptake (e.g., Tumlinson et al. 2008; Warren et al.
2013). With these advantages also come limitations; neutron flux is several orders of
magnitude below X-ray sources, resulting in considerably longer image acquisition
times and, due to detector limits, lower spatial resolution. Neutron sources, both
reactors and spallation sources, are also fewer in number, resulting in more limited
experimental opportunities. Another challenge is the potential activation of samples,
which results in radioactive material after the measurement; the resulting samples
require appropriate handling and disposal.

B.5 Magnetic Resonance Imaging

Imaging techniques based on nuclear magnetic resonance (Magnetic Resonance
Imaging, MRI) are especially useful in obtaining information about fluids in porous
media, typically targeting the relaxation of the radio-frequency signal emitted by
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the nuclei of the hydrogen atoms of water and oils. Laboratory MRI machines can
accommodate relatively large pressure vessels, allowingmeasurements of flow under
non-ambient pressure conditions of samples of few centimeters in diameter; such ves-
sels are by necessity non-magnetic and are often built from ceramics, or engineering
polymers. MRI imaging can provide measurements of the invaded pore volume and
a velocity of the flow (Merrill 1994; Mantle et al. 2001). Given the nature of the MR
signal, this technique has been successfully employed also in the study of gas hydrates
(e.g., Ersland et al. 2010). Despite the low resolution and the limited use in porous
material studies, MRI imaging offers unique opportunities to study permeability and
flow properties in soils and rocks.

B.6 Ablative Imaging Techniques

From a purely etymological point of view, these techniques are a true, or direct,
‘tomography’ approach, the word being composed by the combination of theAncient
Greek words τòμoς , meaning slice, and ϒ ρ′αϕ ω to write/draw. Ablative imaging
techniques do exactly that: they rely on a serial slicing and imaging of the sample,
creating a stack of images that can be converted directly into a 3D volume. As a
principle, any technique capable of serial slicing with subsequent imaging can be
employed. Examples where mechanical slicing by actual grinding, a small amount
of sample with a diamond abrasive tool, and optical imaging (photographs) are used
to obtain 3D information on rocks and similar materials can be found in different
geological labs (e.g., Maloof et al. 2013). At a smaller scale, techniques based on ion
milling and electron imaging are currently employed. Such techniques commonly
known as Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM, Holzer and
Cantoni 2011, are especially useful for 3D imaging of nanoporous materials such
as shales (e.g., Keller et al. 2011), where conventional XRmCT techniques cannot
provide sufficient resolution. It is also worth remarking that the serial slicing tech-
niques can, in principle, because of the direct access to the surface, be more readily
coupled with different imaging techniques, e.g. EDS chemical mapping in FIB/SEM
(Lemmens et al. 2011) when compared to techniques based on the acquisition of
projections.

However, as is clear from the description, ablative techniques are inherently
destructive, while techniques based on X-rays and neutrons are usually non
-destructive in nature, and much less prone to sample preparation artifacts, which are
also common with ablative techniques (e.g. curtaining in FIB/SEM). In the context
of porous media studies, another significant disadvantage of ablative techniques is
their inability to be employed for in-situ experiments.
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Fig. B.1 Steps in quantitative grain scale analysis

B.7 Pore-Scale Imaging for Characterization

One of the goals of tomographic techniques is to provide a 3D characterization of
the microstructure of a given sample, both in a qualitative (by means of volume ren-
derings and virtual sections) and quantitative (by means of morphometric analysis)
fashion. A first qualitative observation of a tomographic dataset by the operator is
usually carried out using one of the many volume rendering software available, after
properly adjusting the dataset for optimal contrast and filtering volumes to minimize
artifacts and noise. Virtual cutting of the sample is often employed to observe the
interior of the sample. The quantitative analysis of tomographic datasets can pro-
vide a large number of morphometric characteristics of a given sample, from the
computationally simple ones, such as the volume fractions of segmentable object
classes (e.g., porosity), to more advanced ones such as shape-based anisotropy, grain
orientation, and pore network properties.

An example of one such analysis procedure focused on the quantitative analysis
of the sand grains within a sandstone sample (from Voltolini et al. 2016) is shown in
Figs.B.1 and B.2.

FigureB.1 shows the initial mCT volume rendering, the binary volume (seg-
mentation of grains and pores), the grains volume after a watershed procedure (to
separate single sand grains), and the labeled grain volume (where a unique value is
assigned to each sand grain, highlighted by a different gray value in figure). Once
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Fig. B.2 Types of statistics which can be extracted

individual grains (or pores) are separated, quantitative morphometric analysis can
be employed, as shown in Fig.B.2, where the grain size histogram, the grain surface
areas frequency histogram (Sphere-Normalized Surface to Volume Ratio, SNSVR,
values i.e., the deviation from a sphere with the same volume of the object), and
the shape preferred orientation (a measure of anisotropy) of the sand grains are dis-
played. These measurements are simple examples of the wide variety of quantitative
spatial analysis approaches which can be applied to 3D images of porous systems;
other examples include pore network attributes (e.g., Dong and Blunt 2009; Keller
et al. 2011), statistical descriptions of porous materials (e.g., Jiang et al. 2012), fea-
ture identification, and, when coupled to secondary measurements, 3Dmineralogical
mapping (e.g., Golab et al. 2010).

B.8 Pore-Scale Imaging for Process Dynamics

With recent advances in XRmCT, particularly at synchrotron light sources, measure-
ments on dynamic systems are now possible with temporal resolutions of a second
or less. Examples of potential fields of application are extremely broad and include
processes in porousmedia driven by flow, reaction, thermal, or mechanical evolution.
Such measurements allow direct observation of pore-scale physical processes and
provide opportunities to both validate numerical models parameterized at this length
scale (e.g.Molins et al. 2014) as well as probe previously unobserved phenomenon at
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the micron length scale. New environmental cells for in situ analysis that have been
used in XRmCT experiments include, but are not limited to, single- and multi- phase
flow at non-ambient conditions (CO2 geological sequestration, oil reservoir char-
acterization), heating (drying in clays and soils, pyrolysis of oil shales, geothermal
processes), freezing (permafrost, clathrates), geochemical alteration (dissolution and
crystallization), and deformation (rock mechanics, fracture evolution). Multiphase
flow experiments at elevated pressures, in particular, provide a rich field of investi-
gation with recent studies using XRmCT to examine the dynamics of drainage and
imbibition at deep reservoir conditions (e.g., Iglauer et al. 2011; Andrew et al. 2013,
2014; Herring et al. 2014).

The opportunities offered by 4D XRmCT comes with a cost in terms of experi-
mental requirements and processing complexity, A first constraint for in situ mea-
surements is the availability of an appropriate environmental cell which can recreate
appropriate conditions (e.g. temperature, stress state) while maintaining sufficient x-
ray transparency. A second set of constraints relate to the rate of system evolution in
comparison to the time required for scanning; the process should be sufficiently slow
that it can be considered close to static over the duration of a scan to avoid motion-
induced reconstruction artifacts. Simultaneously, the system evolution is ideally fast
enough to complete a dynamic experiment over the duration of an experimental
run available at a synchrotron (2–5 days) unless an ex-situ study is selected. These
requirements are quite demanding from an engineering and planning perspective,
but the data acquired in such experiments can be valuable for pore-scale process
observations.

One example of such a process is coupled flow and dissolution in fractured rocks;
we show an example reported in Ajo-Franklin et al. (in press) and Deng et al. (2016)
which utilized a high-pressure in situ cell to track fracture alteration in three dimen-
sions due slow injection of CO2 saturated water. Figure B.3 shows the dynamic
expansion of a fracture in a sample of the Duperow dolomite, a reservoir and seal
formation for natural CO2 accumulations in north centralMontana (USA). The exper-
iment was conducted at pore pressures of 1400 psi (9.6 MPa), equivalent to depths
of approximately 3181 ft (969 m) and representative of leakage from a geological
carbon storage facility.

The example in Fig.B.3 shows the useful capabilities of 4D XRmCT: the ability
to monitor an evolving system in situ with high spatial resolution. In this specific
case it is possible to appreciate the enlargement of the fracture, a self-enhancing
behavior in this case, as a function of time. The CO2 dissolve the carbonates in the
sample, generating fracture zones with an increased aperture while leaving load-
bearing contacts unaltered over these time scales. The generation of a microporous
zone on the surfaces of the fracture is also observed; this is due to the microstructure
of the sample, with mainly dolomite crystals cemented by a small amount of calcite.
The calcite dissolvesmore rapidly than dolomite, leaving thismicroporousweathered
zone. Significantly, the 4D observations coupled to simultaneous fluid chemistry
measurements allowed development of a new micro-continuum reactive transport
model (Deng et al. 2016) which incorporated the observed geometry evolution. The
synergy of 4D XRmCT measurements and pore-scale simulation is evident, with
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Fig. B.3 Evolution of a fracture in a Duperow dolomite sample during the flow of CO2-saturated
water, under pressure. The baseline volume and three different reaction times are shown

the experimental effort targeting the understanding of the important processes in the
system studied and providing a full dataset for model validation. The model, once
able to replicate the experimental data, can be used as a tool to generalize the system,
and used on sample dimensions or lengths of time experimentally inaccessible.

B.9 Frontiers of Pore-Scale Imaging

Experimental developments in recent years have taken three non-exclusive direc-
tions, mainly increased spatial resolution, integration of measurement techniques,
and dynamic experiments at non-ambient conditions. Advances in high resolution
imagining, targeting poreswell below amicron, have allowed studies on finer grained
sediments including shales, chalks, and tight carbonates. The main drawback of
nanometric resolution imaging in general is that the field of view is proportionately
reduced, resulting in small imaging domains sometimes inappropriate for modeling
an REV of material. Sub-micron resolutions are now available using high-quality
laboratory cone beam CT instruments as well as most synchrotron XRmCT beam-
lines. Resolutions below 250 nm, using X-rays, can be obtained using a variety of
XR optics, typically zone plates or parabolic mirrors (Withers 2007), or nanofocused
XR beams, in a 1st generation tomographic setup approach (Suhonen et al. 2012).
Increased resolution, and imaging of materials with similar attenuation values, has
also accelerated research on phase imaging techniques, taking advantage of the high
spatial coherence of synchrotron sources, and free electron lasers, the 4th generation
light sources (Mancuso et al. 2010). Higher resolutions can also be achieved using
3D electron beam systems (e.g., TEM) tomography, FIB/SEM) with the previously
mentioned limitations to very small samples (100 micron3 or less); these systems
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are also improving through deployment of multiple electron beams, higher ion cut
rates for FIB, aberration corrected optics, and improved reconstruction algorithms
for the limited angular coverage available in TEM tomography.

Another frontier in pore-scale imaging is the utilization of integrated (e.g., multi-
modal) imaging techniques to capture more detailed suites of information including
sub-resolution statistical datasets and/or pore-scale chemical data. Techniques that
can be combined with XRmCT include X-ray scattering measurements. Simultane-
ous CT and small-angle scattering (SAX) has proven useful to capture sub-resolution
clay properties (Suuronen et al. 2014) while CT combined with wide angle scattering
(WAX) has been used for X-ray diffraction tomography to capture crystallographic
properties of sample regions (Voltolini et al. 2013). Another recent multimodal imag-
ing approach has been the combination of CTwith X-ray fluorescence (e.g., Suhonen
et al. 2012; Jacques et al. 2013), which, for small samples, has allowed simultaneous
imaging of pore-structure and grain mineralogy.

A last frontier has been the development of dynamic (4D) imaging systems com-
bining more sophisticated environmental cells coupled to higher temporal resolution
acquisition approaches. Environmental cells have evolved in the direction of simu-
lating extreme parameter states such as ultra high temperatures (Baker et al. 2012),
pressures (Wang et al. 2005), as well as high PT combinations (Renard et al. 2016).
Experiments based on environmental cells can be used in principle in lab XRmCT
scanners, but the high brilliance of synchrotron sources and the high penetration of
neutron sources makes those advanced facilities more suited for this kind of experi-
ments. Software advances in 4DmCT is a second direction of advancement; iterative
reconstruction algorithms are being developed and deployed on high performance
computing platforms to allow faster imaging, improved reconstruction quality, and
reconstruction of rapidly changing samples. A final direction of advance is the cou-
pling of these 4D experiments with quantitative predictive models (e.g. Deng et al.
2016) with all the inherent challenges of replicating complex pore-scale systemswith
simultaneous evolution of flow pathways, mechanics, and geochemical properties.

B.10 Conclusions

Recent advances in pore-scale imaging have proven to be a valuable tool in investi-
gating the properties of complex porous media. The variety of techniques and their
flexibility allow a range of scientific questions to be addressed, from sample char-
acterization, to single- and multi- phase flow, reactive transport processes, and rock
mechanics. Giving their nature, 3D and 4D imaging experiments are the perfect
companion to pore-scale modeling, acting both as an investigative and validation
tool. The continuing effort of the scientific community to improve both hardware
and software components of pore-scale imaging has resulted in significant recent
advances, particularly for 4D process characterization. More complex systems at
extreme conditions and requiring higher spatial and temporal resolution are within
reach; during the next decade, experiments probing these limits will likely become
routine and available to an even larger group of scientists.
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Recent Advances in High Performance

Computing
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David Trebotich,
Lawrence Berkeley National Laboratory

High performance (peta-scale) computing has ushered in the ability to perform direct
numerical simulation of flow and transport inside the pore space obtained from real
rock samples by making use of imaging techniques described in Appendix A. We
are now able to model, with high confidence, fundamental processes that determine
emergent time-dependent behavior at larger scales. However, understanding phe-
nomena that occur at pore-scale require modeling at that scale. One example of such
problems is that of flow of a Newtonian fluid in the void space, described by (1.1.1)–
(1.1.3). Such problems, as well as diffusive boundary layers around individual grains
of rock, worm-holing originating from reactive transport in a fracture aperture, dis-
solution of asperities and subsequent collapse of fracture–to name a few–are now
computationally accessible phenomena with pore scale modeling. Furthermore, bet-
ter parameterizations of bulk properties at the larger scale can be obtained from these
high resolution simulations, improving the fidelity of larger scale models.

Innovations due to high performance computing have occurred in three main
areas, bringing about this new found modeling ability: (1) algorithms, (2) software,
and (3) hardware.

C.1 Algorithms

Advanced algorithms have been developed that are consistent with geometry genera-
tion techniques and numerical discretizations that treat the very complex geometries
obtained from arbitrary, heterogeneous pore space obtained from image data of real
rock samples as presented in Appendix A (e.g., Molins et al. 2014) Traditionally,
finite element methods have been used to model flow and transport problems involv-
ing complex geometry. This was changed with the introduction of adaptive, finite
volume methods based on cut cell and embedded boundaries. Adaptive, finite vol-
ume methods are now employed to achieve high fidelity computations of reactive
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transport processes, where the reactive surface area of the mineral is resolved, mak-
ing no assumptions in regard to transport fluxes. In fact, the reactive surface area
obtained from geometry generation of raw image data of real rock is more accurate
than well known and long-used BET theory (Brunauer et al. 1938) from the same
experimental data, which can display up to 15% error. One particular method makes
use of a sharp interface embedded boundary to resolve the surface area of the mineral
(Trebotich and Graves 2015) In this cut cell approach, the pore space is intersected
with a Cartesian grid resulting in ‘cut’ cells near the mineral boundary in the pore
space and regular cells away from the boundary. A finite volume approach based
(Sect. 3.8) can be used in the cut cells to obtain conservative discretization of oper-
ations based on diffusive or viscous and advective fluxes; the discretization in the
regular cells reduce to standard finite differences. The cut cell approach also makes
geometry generation from image data more automatic and, thus, more tractable than
unstructured body fitted gridding approaches like finite elements. In addition, adap-
tive mesh refinement (AMR) is a technique that applies grid resolution only in areas
of the domain where it is needed, say, near a reactive mineral or along a concentra-
tion gradient. Combining these two approaches–embedded boundary methods and
adaptive mesh refinement–provides a powerful tool for multi-scale, multi-physics
modeling in subsurface porous media problems.

C.2 Software

It is one thing to develop advanced algorithms for solving partial differential equa-
tions in complex geometries, as with pore scale flow and transport, and another to
build these algorithms on scalable software that supports the algorithms. One high
level approach is to use an object-oriented programming language like C++ to con-
trol the data and parallelism, while using an imperative language like Fortran for
‘number crunching’, maintaining the best of both worlds.

The software approach to incorporating cut cells into a structured grid AMR
framework needs to be stencil-based, due to the irregularity of the cut cells near
the boundary. The main requirements for software to support these methods are
flexible and efficient data structures, operator-dependent load balancing, a mode of
parallelism for both distributed computing and memory and minimization of com-
munication. The stencil-based approach is critical to high performance; accessing
the geometric information in sparse data structures for cut cells needs to be fast and
not rely on accessing physical memory. Instead, pointers to arrays of data in memory
and integer offsets are stored and recalled for computations in irregular cells (Tre-
botich et al. 2008) For load balancing–i.e., the procedure for distributing pieces of
the computation onto multiple processors–the procedure can be as simple as eval-
uating an operator such as the Laplacian on a decomposed domain of boxes and
measuring the time spent in each box and re-balancing as necessary. Space filling
curves and sophisticated approaches to numbering, such as Morton ordering, can
be used to minimize communication between boxes with load balancing. Of course,
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the software has to support these sophisticated features for performance scalability.
And, in general, the software must be built on a formalism for parallel computing
such as MPI or OpenMP, or both.

C.3 Hardware

Advanced algorithms built on scalable software are the prerequisite to high perfor-
mance computing. The final link is the hardware on which to codes are run to achieve
scientific results. Current supercomputers make use of semiconductor architectures
that contain only a few CPU cores per computer node on the chip. Hybrid CPU-GPU
systems also exist where the GPUs handle parallel, yet lightweight, algorithms. Sev-
eral supercomputing facilities exist in the U.S.A., and around the world, that foster
large scale scientific simulation of the type required for resolved subsurface sim-
ulation. The next generation of supercomputers is imminent. The new many-core
architecture is providing creative and more efficient access to more memory, while
reducing power consumption. Also, as expected with high performance computing,
the data generated by a code is ‘big’ (e.g., one terabyte per time-step dump,) requir-
ing extreme computing measures to accommodate the need for performance and
memory, but also fast IO and storage. New off-chip hardware based on NVRAM
(Non-Volatile Random Access Memory) has been developed to promote faster IO
and in-transit data analysis

C.4 Pore Scale Simulation

Direct numerical simulation of flow and transport in a real pore space is an end-to-
end process: from converting image data to a geometry that supports a well-posed
problem, with the equations of motion, through advanced algorithms for discretizing
the equations of motion and boundary and initial conditions, to high performance
computing for scientific results. FigureC.1 shows some examples of complex pore
structures and low permeability materials that have been modeled using massively
parallel computations. The figure shows results of direct numerical simulation of
flow in a fractured shale (Trebotich and Graves 2015) The computational domain
has been discretized using nearly 2 billion grid points (1920 × 1600 × 640) and a
grid resolution of 48 nanometers. FigureC.1 shows velocity and pressure plots. The
white space in the images is the result of an optimization to reduce memory where
the space that is covered by rock matrix (non-pore space) is not included in stored
data. 40,000 CPU cores were used for this simulation.
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Fig. C.1 Direct numerical simulation from image data of fractured shale, using Chombo-Crunch
(Trebotich and Graves 2015): a Velocity data mapped to surface and data slice, b Pressure mapped
onto the mineral surface with side views. The white space in the images is due to memory opti-
mization; it represents space occupied by rock matrix, where there is no flow. This simulation has
been performed on NERSC Edison, using 40,000 CPU cores
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A
Ablative imaging techniques, 716
Absorption, 522, 699
Accretion, 325, 326, 340
Activation energy, 501
Activity, 113, 496

product, 534
Adhesion tension, 151
Adhesive fluid, 46
Adiabatic process, 103
Adsorption, 520–522, 674

adsorbate, 521
adsorbent, 521
chemical, 521
distribution coefficient, 523
Freundlich isotherm, 523
isotherm, 521, 522
Langmuir isotherm, 524
linear isotherm, 523
nonlinear isotherm, 523, 524
partitioning coefficient, 523
phydical, 521

Advection-dispersion-reaction eqn., 484
Advective flux, 186, 213, 456, 457

mass, nonisothermal, 587
microscopic, 180

Air entry pressure, 323, 374, 393
Air solubility, 424
Algebraic-Differential Equation (ADE),

484, 509
Alkalinity, 512
Analytical solution

unsaturated flow, 405
Anion exchange capacity, 49
Anisotropic porous medium, 279

effective permeability of, 396
Anisotropy

definition of, 39
elastic solid, 633
tortuosity, 268

Aperture, 51
Areal average, 17
Arrhenius equation, 501
Asymptotic expansion, 86
Average

areal, 17
definition of, 13
intrinsic mass, 15
intrinsic phase, 14
of a product, 63
of a sum, 63
of a time derivative, 63
of spatial derivative, 65
volume, 15, 22

Averaging
Bear–Bachmat approach, 63
Hassanizadeh-Gray approach, 75
over RMV, 480
rules for, 62, 63
volume, 63
Whitaker’s approach, 70

Avogadro number, 453
Axioms for constitutive equations, 229

B
Balance equation, 90, 308

component, 485
Eulerian–Lagrangian form, 188
Finite volume, 231
flow confined aquifer, 341
flow, linearized, 345
fundamental, 183
gas under RC, 429
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leaky aquifer, 342
macroscopic, 69, 195, 223, 246, 256, 268
mass flow, 294, 347
mass, 2-D by integration, 335
microscopic, 186
phreatic aquifer, 343
vertically integrated, 336

Barycentric velocity, 186
Bear–Bachmat approach, 63
Beavers–Joseph condition, see Boundary

conditions
Binary system, 457
Biot

coefficient, 302, 629, 659
model, 308, 309, 653

Black-oil model, 427
Body force, 635
Boiling point, 123
Boundary conditions, 312

general, 317
two phases, flow, 401
two phases, impervious, 403
unsaturated, Dirichlet, 403

Boundary conditions, energy, 608
Boundary conditions, flow

Beavers–Joseph, 329
between porous media, 321
Dirichlet, 319
first type, 319
flowing water, 327
free surface, 323
impervious, 320
Neumann, 320
no-slip, 327
open channel flow, 329
phreatic surface, 323
prescribed flux, 319
prescribed head, 319
prescribed pressure, 319
Robin, 321
2-d flow, 346
second type, 320
seepage face, 326
semipervious, 320
third type, 321

Boundary conditions, mechanical
specified traction, 638

Boundary conditions, solute transport, 537
Cauchy, 539
Dirichlet, 538
discharge dependent, 544
impervious, 539
Neumann, 539

phreatic surface, 542
prescribed concentration, 538
prescribed flux, 539
seepage face, 544
two porous media, 539
with a fluid body, 540

Boundary conditions, two phases
first type, 403
flow, 402
flux, 403
infiltration, 406
Neumann, 404
Robin, 404
saturation, 402
second type, 404
suction, 402
third type, 404

Boundary surface, 313
abrupt, 314
between immiscible fluids, 315
between miscible fluids, 315
between states of aggregation, 315
equation of, 316

Boussinesq equation, 295, 344
Boussinesq fluid, 616
Brinkman equation, 272, 282, 319, 328
Brownian motion, 457
Bubble point, 119, 123

curve, 120
Bubbling pressure, 323, 374, 381, 393
Buckley-Leverett

equation, 417, 419
model, 418

Bulk density, 36
Buoyancy, 616
Buoyancy force, 587, 644
Burdine’s equations, 394

C
Calcite, 516
Calcium carbonate, 516
Calibration, 92
Caloric equation of state, 167
Canonical form, 504, 506
Capillary

depression, 155
fringe, 436
number, 376
pressure head, equivalent, 437
rise, 155

Capillary pressure, 152, 153, 201
analytical expressions, 381
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Brooks and Corey, 381
Brutsaart, 381
curve, 373, 433
curve, hysteresis, 384
head, 369
head, threshold, 374
macroscopic, 203, 368
microscopic, 203

Carbonate system, 511
Catalysis, 499, 710
Catalyst, 499
Catalytic reactor, 683
Cation exchange, 49

capacity, 49, 515
Cauchy boundary condition, 539
Cauchy’s equation of motion, 189
Cauchy’s stress, 137
Characteristic length, 249

in dimensional analysis, 278
of void space, 278

Charge exclusion, 478
Chebyschev’s inequality, 26
Chemical

component, 503
equilibrium, 100
potential, 589
reaction, 490
species, 3, 453, 457, 458
species, basis, 501, 506
species, primary, 501, 506

Chemical engineering
transport in, 661

Chemical equilibrium
partial, 488

Chemical potential, 109, 114, 159, 163
Chemical reaction

reversible, 493
Chemisorption, 520
Chromatography, 678
Clapeyron-Clausius equation, 156
Clausius inequality, 103
Clausius-Clapeyron equation, 157
Clay, 47

size of particles, 47
Clay minerals, 48
Clogging, 268
Coefficients, 230

experimental determination of, 92
interpretation of, 91

Cohesion, 643
Cohesive force, 147
Colloidal matter, 49
Colloidal transport, 561

Colloids, 564
humic, 564

Component, 439
Component, definition of, 4
Compositional model, 428, 439, 440
Compressibility

coefficient of fluid, 299
coefficient of porous medium, 309
coefficient of soil, 304
coefficient of vertical, 654
factor of, 133
thermal, 581
water, 303

Computer code
PHREEQC, 505

Computing, high performance, 725
Concentration

equivalent, 455
mass, 453
molal, 496
molar, 454, 491
total, 506

Conceptual model, 89
Condensation, 593

retrograd, 124
Conductive heat flux, 600
Conjugate

flux, 169
force, 169

Connate water saturation, 379
Consolidation

vertical only, 309
Constitutive equations, 90, 167, 225, 227,

308, 331, 332
axioms of, 229
thermoelastic solid, 145

Contact angle, 149, 370, 375
Continuum, 2, 3, 6, 11

approach, 2, 40
concept of, 6
two-dimensional, 21

Convected derivative, 179
Convection

forced, 588
free, 588
natural, 588, 616

Convective currents, 616
Correlation coefficient, 24
Correlation function, 24
Coupled phenomena, 166

Dufour effect, 167
Soret effect, 167

Coupled processes, 1, 166, 462



732 Index

Coupled transport phenomena, 599
Coupling, 588

between immiscible fluids, 385
heat and mass, 588

Coupling, diffusive heat and mass fluxes,
599

Cross coefficient, 168
Cross effects, 166
Cross permeability coefficient, 388
Crystallization, 708
CTRW, 558

D
Dalton’s law, 110, 132
Darcy

law, 263, 271
law, three phase flow, 437
law, unsturated zone, 389
law, validity of, 277
number, 270, 278
permeability unit, 267

Darcy–Forchheimer equation, 283
Darinage

of pores, 371–374
Dead-end pore, 36, 265
Debye-Hueckel activity coefficient, 496
Deformable porous medium, 650
Deformation, 625
Degradation rate constant, 499
Degrees of freedom, 116, 237, 546

number of, 237
Derivative, total, 316
Desorption, 521, 522
Deviatoric stress, 202, 227, 628

in solid, 142
Dew point, 119, 123
Diffusion

binary system, 590
Knudsen, 207
of ions, 459

Diffusion on surface, 462
Diffusive flux, 457

microscopic, 180
molar, 458
momentum, 189, 207
multi-species system, 589
nonisothermal conditions, 589
vapour, 593

Diffusive heat flux, 590
Diffusivity, 460, 461
Dilatation, 143, 298, 659
Dimensionless number, 250

Capillary, 376
Damköhler number, 519

1st, 2nd, 3rd kind, 250
Darcy number, 270, 278
Euler, 617
Fourier number, 250, 252
Froude, 618
Peclet number, 250, 251, 468, 489, 519
Rayleigh, 618
Reynolds number, 278
Strouhal number, 250, 251, 489, 519

Dipolar water molecules, 44
Dirac delta function, 295, 342
Dirichlet boundary conditions, 538
Discontinuity

surface of, 313
Dispersion coefficient, 470, 471

advective, 467
isotropic porous medium, 471
longitudinal, 471
mechanical, 467
principal directions, 470
tensorial nature, 471
transverse, 471

Dispersion, thermal, 597
Dispersive flux, 69, 70, 212, 213

non-Fickian, 549
of heat, 600
Taylor’s model, 463

Dispersivity, 469
anisotropic, 471
anisotropic porous medium, 471
components of, 469, 470
isotropic porous medium, 470
longitudinal, 469, 482
scale effect, 481
thermal, 598
transversal, 469
transverse isotropy, 475

Displacement, 307
linear, 413

Dissolution, 528, 533, 672, 709
Distillation, 688
Divergence of a flux, 186
DNAPL, 431
Double layer, 44, 567, 568

electrical, 568
Double porosity

model, 57
porous medium, 522

Drag force, 285
Drained bulk modulus, 631
Drained conditions, 306
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Driving force
thermodynamic, 215

Drying, 680
front, 409

Dual-permeability model, 58
Dufour effect, 167, 169, 171, 589, 599
Dupré equation, 150
Dupuit assumption, 335, 342
Dynamic viscosity, 208

E
Effective permeability, 390

anisotropic, 390
anisotropic porous medium, 396

Effective porosity, see Porosity, 256
Effective saturation, 381
Effective stress, 299, 300

Biot’s, 302
multiphase flow, 397
two phase flow, 628, 629
unsaturated flow, 397

Effective water saturation, 393
E-flux, 18
Einstein’s summation convention, 180
Elasticity tensor, 142
Electrical conductivity, 455
Electrokinetic phenomena, 566, 567
Electromigration, 567
Electroneutrality, 459
Electroosmosis, 566, 568
Electro-osmotic flow, 567
Electrophoresis, 568
Electrostatic double layer, 44
Endothermic, 112
Energy, 103

balance equation, macroscopic, 599
balance equation, microscopic, 578, 600
boundary conditions, 608
diffusive flux of, 575
flux, 575

advective, 575
flux, microscopic, 576
initial conditions, 608
interna

diffusive flux, 576
internal, 103, 575
kinetic, 575
potential, 575

Energy transport
boundary conditions

with well-mixed domain, 612
Enhancement coefficient, 596

Enhancement factor
diffusive vapour flux, 596

Enthalpy, 102, 104, 112
molar, 105
of solid, 583
specific, 105, 106, 194

Entrapped air, 380, 392, 396, 407, 408
Entropy, 102, 103

definition of, 103
of solid, 583
rate of production, 215, 271, 467
specific, 193

Equation of state, 3, 115, 146
caloric, 167

Equilibrium
chemical, 100
constant, 113, 494, 495
equation, 190, 204, 636, 649
mechanical, 100
ratio, 122
thermal, 100

Equilibrium constant, 113
Equipotential, 647

refraction law, 323
vertical, 342

Equivalent
per liter, 455
per million, 455
unit of, 515

Equivalent concentration, see Concentration
Equivalent continuum model, 57
Ergodicity, 22, 26

hypothesis, 349
Ergodic principle, 553
Ergun’s equation, 285, 706
Estimates

nonrandom, 25
E-transport line, 182
Eulerian approach, 175

formulation of motion, 181
Eulerian coordinates, 177
Eulerian porosity, 37
Euler number, 618
Euler’s equation, 190
Evaporation, 404, 593

flash, 124
Excess pressure, 650
Excess stress, 650
Exclusion, size, 478
Existence of solution, 331
Exothermic reaction, 112
Exponential integral, 656
Extensive quantity
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definition, 2
thermodynamic, 1

Extraction, 701

F
Failure, 642

Mohr-Coulomb criterion, 643
Fair and Hatch formula, 268
Faraday’s constant, 459
Fick’s law, 206, 216, 275, 457, 458, 463, 467

macroscopic, 460
molar flux, 458

Field capacity, 407
Film, 47, 367
Film flow, 391
Filtrate cake, 670
Filtration, 668
Fingering, 414, 415
Finite volume balance equations, 231
First law of thermodynamics, 103
First order reaction, 497
Flash calculations, 445
Flash evapouration, 124
Flow model

complete 3-D, 330
content of, 331
2-D, 335

Fluid content, 37
definition of, 35

Fluidized bed, 7, 645, 704, 709
Fluid saturation, 37
Fluid velocity, 265
Flux, 184

definition of, 16
heat, 585
macroscopic, total, 212
multiple phases, 384
of extensive quantity, 205
thermodynamic, 215
total, microscopic, 205

Flux equation, 90
three phase flow, 437

Flux law
nonlinear, 282

Forchheimer’s law, 283
Formation factor, 276
Formation volume factor, 125
Fourier law, 209, 211, 276, 576, 590
Fractional wettability, 151
Fracture

hydraulic conductivity of, 355
permeability of, 355

Fractured
porous domain, 51
porous medium, 42, 359
rock, 42, 51
rock, flow, 351

Free energy
Gibbs, 107
Gibbs, molar, 130

Friction factor, 285
Froude number, 618
Fugacity, 109
Function of state, 167
Funicular saturation, 371

G
Gas

entry pressure, 378
real, 310
slippage effect, 289
solubility, 124

Gas - oil ratio, 124
Gauss divergence theorem, 185
Gibbs

free energy, 107, 156, 589
in chem. reactions, 112
standard, 113

phase rule, 116, 237, 545
Grain diameter

effective, 267
mean, 278

H
Hagen-Poisseuille law, 258, 463
Haines jump, 383
Half life

reaction, 497
Hassanizadeh-Gray approach, 75
Heat

advective flux, 586
conduction, 590
flux, 585

dispersive, 597
of reaction, 501

Heat balance equation, 601
thermo-elastic solid, 601

Heat capacity, 193
at constant pressure, 106
at constant volume, 105
constant stress, 583
porous medium, 602
specific, 106
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specific, at constant volume, 105
Heat conduction, 209, 228, 276
Heat equation, 306
Heat flux

conductive, 209, 576
Heat transfer coefficient, 602
Heat transport

boundary between porous media, 611
boundary of prescribed temperature, 610

Heat transport, boundary of prescribed flux,
610

Henry’s law, 111, 158, 426, 443
Heterogeneity

definition of, 38
microscopic scale, 479
pore scale, 479
scale of, 478

Heterogeneous reaction, 519
Homogeneity, 38

macroscopic, 24
Homogenization, 82, 83, 175, 328

mathematical theory of, 82
two scales, 85

Hooke’s law
generalized, 142, 633
macroscopic, 631

Horizontal flow
in aquifer, 335

Hubbert’s potential, 259, 647
Humic colloids, 564
Humus, 50
Hydraulic approach, 335
Hydraulic conductivity, 258, 266, 320, 355

hysteresis in, 394
in fracture, 356
of fractures, 358
representative values, 267
units, 266

Hydraulic gradient, 264
Hydraulic radius, 25, 68, 266, 268, 278
Hysteresis, 383, 384, 396

in capillary pressure, 382
ink bottle effect, 383
raindrop effect, 383
universal, 384

I
Ideal gas, 109, 123, 129, 131
Identification problem, 92
Imaging, 41
Imaging techniques, 714
Imbibition, 367, 380

Immiscible fluid, 3
Independent domain theory, 384
Indicator function, 14, 21
Inertial effects, 190
Infiltration, 404–406

capacity, 405
rate, 408

Initial conditions, 90, 312, 401, 545
energy, 608
3-d flow, 346

Insular saturation, see Saturation
Intensive quantity, 3
Interface, 147, 333

as boundary, 332
condition on, 334
fluid-fluid, 146
sharp, 332

Interfacial free energy, 147
Interfacial tension, 148
Intergranular stress, 300
Intermediate wetting, 431
Internal energy, 103–105, 191

specific, 105, 191, 193
Interphase mass transfer

gas to liquid, 528
Interphase transfer

mass, 155
momentum, 220

Inverse problem, 92
Ion exchange, 526, 710

equilibrium coefficient, 528
hydrophobic, 527

Ion exclusion, 477, 508
Ionic product, 535
Ionic strength, 496
Irreducible moisture saturation, 324
Irreversible processes, 169
Isotherm

linear, 525
Isotropic porous medium, 279
Isotropy, 469

J
Jacobian, 180

K
Karst, 52
Kelvin equation, 132, 163
Klinkenberg

approach, 289
effect, 287
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Knudsen
diffusion, 207, 290, 462
flow, 207, 289, 290
layer, 289, 290
number, 207, 289

Kozeny–Carman equation, 260, 670
Kronecker delta, 189

L
Lagrangian approach, 175
Lagrangian porosity, 37
Lamè coefficients, 143
Lamé constants, 631
Laminar flow, 277
Land subsidence, 645
Laplace equation, 295
Laplace formula, 132, 133, 154, 203, 375,

432
Latent heat

of phase change, 607
Leaching, 701
Leakance, 321, 343
Leibnitz’ rule, 65, 337
Leverett function, 382
Lift force, 285
Linear momentum density, 18

of mass, 18
Liquifaction, 644
LNAPL

spill, 434
Local equilibrium

assumption of, 489
Log-normal distribution, 349

M
Macrodispersive flux, 340, 480
Macropore, 47, 522
Macroscopic homogeneity, 24
Macroscopic symmetry, 280
Magnetic resonance imaging, 715
Mass action law, 495, 496, 507, 509, 510,

513, 528
Mass average, 15
Mass balance equation, 297–299, 305–309,

318, 327, 331, 332, 340, 649
Buckley equation, 417
deformable porous medium, 308
leaky aquifer, 343
linearized, 655
macroscopic, 295
phreatic aquifer, 343
solid, 296

Mass balance equation, flow
vertically averaged, 341

Mass flux
advective, 587

Mass fraction, 457
definition of, 453

Material
coordinates, 177
derivative, 179, 187
surface, 296, 334, 403

Material derivative, see Total derivative
Mathematical model, 90

content of, 90
three multicomponent phases, 439

Matric potential, 132, 159, 160, 593
Matric suction, 369
Mean free path, 207
Mechanical equilibrium, 100
Mercury injection technique, 375
Method of characteristics, 419
Micelle, 44
Micropore, 522
Microscopic balance equation

energy, 191
enthalpy, 194
entropy, 194
extensive quantity, 186
heat, 193
linear momentum, 189
mass of phase, 187
of a species, 188

Microscopic reversibility, 168
Mixture theory, 5
Mobility

effective, 411
ratio, 413
tensor of, 410
total, 410

Mobility ratio, 414
Model

bundle of capillaries, 395
calibration of, 91, 92
coefficients of, 91
compositional, 439
conceptual, 439
definition of, 88
double porosity, 57
dual permeability, 58
flow, 312
flow, complete statement, 331
flow, mathematical, 331
mathematical, 90
numerical, 91
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triple porosity, 58
validation of, 92

Modeling, microscopic level, 42
Mohr-Coulomb criterion, 643
Moisture content, 37
Moisture diffusivity equation, 390
Molality, 454
Molar concentration, see Concentration,

455, 458, 491
Molar fraction, 505
Molar Gibbs free energy, 130
Molar mass, 454

of mixture, 455
Molar volume, 130
Mole, 453
Molecular diffusion, 522

coefficient of, 171, 206, 457
coefficient of, macroscopic, 460

Mole fraction, 122, 454, 505
Momentum

balance, 327
interphase transfer, 220

Monte Carlo
realization, 348
simulations, 347

Motion
definition of, 178
Eulerian formulation, 178
Lagrangian formulation, 178, 181

Motion equation, 332
three phase flow, 437

Moving bed reactor, 704
MRI, 715
Multiphase transport

with phase change, 605

N
Nanoparticles, 561
NAPL, 431
Natural convection, 614, 616
Navier–Stokes equation, 190, 327
Nernst-Planck equation, 459
Neutron imaging, 715
Newtonian fluid, 127, 190, 208, 221
Newton’s law, 208

generalized, 209
No-jump, 638
No-jump condition, 317

flux, 403
in total stress, 650
solute flux, 537

Nondimensionalization, 247

Non-dominant effects, 246
Nonrandom function, 24
Nonwetting fluid, 151, 367
Numerical methods, 91
Numerical model, 91

O
Oberbeck–Boussinesq model, 615
Occluded porosity, 35
Ohm’s law, 277
Onsager–Casimir’s

reciprocal relations, 169
Onsager’s

law, 169
theory, 166

Osmotic
potential, 159, 162
pressure, 163–165

P
Packed bed, 1
Packing factor, 268
Parameter estimation problem, 92
Partial air pressure, 426
Partial pressure, 110
Particle, 176, 178

of a continuum, 181
of E-continuum, 179

Partitioning coefficient, see Adsoption
Partitioning factor, 122
Parts per million, 453
Pathline, 182

microscopic, 181
Peclet number, 465

thermal, 598
Pendular ring, 370–372, 375, 391, 595
Perfect fluid, 209
Periodic

function, 84
Periodic cell, 83
Periodic structure, 83
Permeability, 266

darcy, unit of, 267
effective, 389, 390, 392, 409, 438

temperature effect on, 588
empirical formula, 267
hysteresis in, 394
in fracture, 356
intrinsic, 267
of fracture, 355
principal values, 279
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relative, 390–392, 438
NAPL-water, 439

relative,gas-NAPL, 439
relative,three phases, 439
relative,two phase, 439
representative values, 267
saturated, 388
units, 267
unsaturated, 389
variations in time, 268

Permeable reactive barrier, 483
Perturbation method, 85
Perturbations, 618
PF unit, 369
Phase

definition of, 3
Phase change, 196, 605
Phase diagram, 116
Phase formation volume factor, 427
Phase rule

Gibbs, 116
Phenomenological

approach, 87, 627
coefficients, 168
equations, 168
laws, 166

Phreatic surface, 324
boundary condition, 324
shape of, 324

PHREEQC, see Computer code
Piezometric head, 258–260

equivalent, 434
Planar incremental stress, 652
Planar stress assumption, 654
Plateau, 30
Point, 176
Poiseuille law, 395
Poisson’s ratio, 631
Ponding, 409
Pore scale imaging, 713
Pore scale model, 6
Pore size distribution

bi-modal, 47
Poromechanics, 625
Porosity, 13, 21, 22, 35

areal, 265
dead-end, 36
definition of, 35
effective, 36, 256, 265
Eulerian, 37
Lagrangian, 37
non-interconnected, 35
occluded, 35

typical value of, 35
volumetric, 265

Porous medium
definition of, 7
isotropic, 469
thin, 21

Porous plate, 378
Potential, 159, 160, 259

chemical, 159
Hubbert’s, 259, 341, 647
matric, 159, 160, 594
osmotic, 159
solute, 162
streaming, 566, 568
total, 159, 160, 163
zeta, 568

Ppm, see Parts per million
Precipitation, 325, 404, 405, 407, 408, 533,

536
chemical, 452
mineral, 516

Pressure
hydrostatic, 140
thermodynamic, 100, 105

Pressure entry value, 374
Pressure equation, 411
Primary variable, 237, 312, 332, 444, 546,

642
switching, 401, 545

Principal radii of curvature, 154
Probability density function, 349

joint, 350
Process engineering, 662

Q
Quick conditions, 645
Quicksand, 645

R
Radioactive decay, 499
Random

number generator, 349
Random function, of position, 23
Random variable, 23
Random walk

one-dimensional, 551
Random walk model, 551, 556, 558
Raoult’s law, 111
Rate constant, 493

first-order, 497
Rate law, 493

first order, 497
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integrated, 497
Rayleigh number, 618

critical, 619
Reactant, 491
Reaction

canonical form, 501
equilibrium, 506
fast, 252
first order, 497
forward, 493
heat of, 501
higher order, 498
homogeneous, 487, 491
kinetic, 508
matrix representation, 500
nonequilibrium, 508
order of, 493
rate-limiting step, 497
rate of, 491
reverse, 493
slow, 252

Reactive transport, 454
Reactor, 664

a dsorption, 674
chromatography, 678
dissolution, 672
distillation, 688
filtration, 668
fixed bed, 665
fluidized bed, 666
ion exchange, 676
moving bed, 666, 704

Real gas, 310
Realization

of random function, 24
Relative humidity, 132, 427, 594
Relative permeability, 390, 391
Relative vapour pressure, 132
Representative Elementary Volume (REV),

35, 36
linear variation across, 29
lower bound, 21
microscopic, 6
range of, 28
size determination, 19
upper bound, 21

Representative Macroscopic Volume
(RMV), 479

Reservoir conditions, 427
Residual saturation

air, 392
LNAPL, 434

Retardation, 525

factor of, 525
Retention curve, 373, 433
Retrograd condensation, 124
Reverse osmosis, 164
Rewetting, 371
Reynolds number, 270, 277, 278
Reynolds transport theorem, 64, 65
Richard’s equation, 389

S
Saturation, 37

definition of, 37
distribution, three phases, 434
effective, 393
insular, 371
irreducible, 391
reduced, 381
residual, 391

Saturation index, 533, 534
Scale

effect, 481
megascopic, 479
microscopic, 6, 20
molecular, 6
of description, 60
of heterogeneity, 32

Scanning curves, 381
Second law of thermodynamics, 230
Second rank tensor

isotropic, 280
Seepage face, 326, 544
Seepage force, 644
Sensitivity analysis, 93
Shale reservoirs, 290
Shape factor, 268
Sharp interface approximation, 315
Shear coefficient

of viscosity, 208
Shear modulus of elasticity, 631
Shock, 420
Siemens, 455
Sink, 331
Size exclusion, 478, 564
Soil, 43

cohesion, 43
dispersion of soil particles, 43
electrical double layer, 44
flocculation, 43
macrostructure, 47
microstructure, 43
Van der Waals forces, 45
zero point of charge, 43
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Solid matrix, 7
Solid phase, 516
Solubility, 122

air in water, 426
Solubility, gas, 124
Solubility, gas in oil, 428
Solubility, gas in water, 428
Solute, 453
Solute potential, 162
Solution gas drive, 429
Solvent, 453
Solvent extraction, 701
Soret effect, 166, 171, 462, 589, 599
Sorption, 521
Source

point, 295
Sources and sinks

rate of production, 251
Speciation, 504, 505
Species

definition of, 3
thermodynamic, 116

Specific discharge, definition of, 258
Specific heat, 193
Specific heat capacity, 584
Specific internal energy, 167, 193
Specific storativity, 305

unsaturated flow, 396
Specific surface, 38
Specific yield, 344, 377
Sphericity, 35
Spontaneous spreading, 150
Spreading, 149

coefficient, 150
Stability, 619

condition for, 619
of solution, 331

Standard conditions, 427
Stationary random function, 24
Statistically homogeneous, 349
Stefan problem, 315, 605, 613
Stern layer, 44
Stiffness tensor, 142
Stirred bed, 666
Stochastic approach, 548
Stock tank conditions, 125, 427
Stoichiometric coefficient, 492
Stoichiometric equation, 491
Stokes equation, 191, 262
Storage coefficient, 341
Storage equation, 299
Storativity, 305, 341

confined aquifer, 342

phreatic aquifer, 344
random field, 350
specific, mass, 305
specific, volume, 305

Strain, 141
volumetric, 145, 298

Streaming potential, 279, 566, 568
Streamline, 182

refracrtion law, 322
Stress, 137, 189

Cauchy’s, 137
deviatoric, 140
invariant of, 139
mean normal, 209
total, 201, 202, 628
trace of, 139

Stress-strain relationship, 629
Stripping, 699
Strouhal number, 489

definition of, 270
Subsidence, 308, 310, 645, 652, 653

by pumping, 654
vertically integrated model, 655

Suction, 369
head, 389

Surface charge, 49
sites, 49

Surface diffusion, 462, 526
Surface ionization, 49
Surface potential, 161
Surface tension, 148, 152, 153, 203
Surfactant, 151

T
Taylor model, 463
Tension, 369
Tensor

classification of, 138
fourth rank, 208, 469
rank of, 138
second rank, 137, 138, 188, 190, 206,
210, 261, 271, 461, 467

second rank, stress, 628
strain, 141
stress, 189

Terzaghi-Jacob theory, 309, 653
Thermal

compressibility, 581
conduction, 576
conductivity, 171, 590
conductivity, effective, 592
dispersion, 600
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dispersion, coefficient of, 597, 598
dispersivity, 598
effective conductivity, 592
equilibrium, 100, 574, 599

Thermodiffusion, 166, 171
Thermo-diffusive system, 170
Thermodynamic

approximate equilibrium, 100, 101, 152
driving force, 215
equilibrium, 152
first law, 583
flux, 215
force, 168
local equilibrium, 100
macroscopic equilibrium, 152
pressure, 100
second law, 104, 194
species, 116

Thermo-elastic solid, 144, 601, 632
Thermo-mechanical system, 169
Thin porous medium, 20
Three fluid phases, 431

capillary pressure, 431
fluxes, 437

Threshold pressure, 374
Throat, 372
Tortuosity, 66, 221, 261, 270, 273, 278, 461,

589, 591
anisotropic porous medium, 274
diffusive, 66
in heat conduction, 276
in molecular diffusion, 275
in unsaturated flow, 461
tensor of, 274, 287

Total derivative, 187, 296, 297
Traction, 137
Transfer coefficient, 542
Transition zone, 332
Transmissivity

confined aquifer, 342
of fracture, 355
phreatic aquifer, 345
random field, 350

Triple porosity model, 58
Two-film model, 528

U
Undrained test, 306
Uniqueness of solution, 331
Unit tensor, 190
Upheaval, 294, 646
Uplift, 644, 646

Upscaling, 13, 61

V
Vadose zone, 404
Validation of model, 92
Van der Waals forces, 46, 521
Vapor

diffusive flux, 593
pressure, 118, 156

Vaporization, 424, 607
differential, 124
heat of, 608

Velocity
mass averaged, 16, 181
mass-weighted, 181, 187

Verification of code, 91
Vertical

equilibrium hypothesis, 434
integration, 336

Viscosity
dynamic, 266
kinematic, 266

Viscosity, of fluid, 127
Viscous stress tensor, 202, 207, 628
Void

ratio, 35, 36
space, 7
space, interconnected, 35

Voidage, 13
Volatilization, 111
Volume average, 15, 22

intrinsic phase, 14, 71
Volumetric

fraction, 13, 37
phase average, 14
strain, 145

W
Water bipolar structure, 46
Water capacity, 398
Wave equations, 659
Waves in porous media, 657
Welge method, 422
Well-posed problem, 94, 327, 330
Wettability, 149

fractional, 151
intermediate, 431

Wetting
angle, 149
fluid, 151, 367

Whitaker’s approach, 70
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Wilting point, 133
Work, 102

X
X-ray imaging, 714

Y
Young-Laplace formula, 154
Young’s

equation, 150
modulus, 631

Z
Zeta potential, 568
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