


Theory of Adaptive Fiber Composites



SOLID MECHANICS AND ITS APPLICATIONS
Volume 161

Series Editor: G.M.L. GLADWELL
Department of Civil Engineering
University of Waterloo
Waterloo, Ontario, Canada N2L 3GI

Aims and Scope of the Series

The fundamental questions arising in mechanics are: Why?, How?, and How much?
The aim of this series is to provide lucid accounts written by authoritative researchers
giving vision and insight in answering these questions on the subject of mechanics as it
relates to solids.

The scope of the series covers the entire spectrum of solid mechanics. Thus it includes
the foundation of mechanics; variational formulations; computational mechanics; statics,
kinematics and dynamics of rigid and elastic bodies: vibrations of solids and structures;
dynamical systems and chaos; the theories of elasticity, plasticity and viscoelasticity;
composite materials; rods, beams, shells and membranes; structural control and stability;
soils, rocks and geomechanics; fracture; tribology; experimental mechanics; biomechan-
ics and machine design.

The median level of presentation is the first year graduate student. Some texts are mono-
graphs defining the current state of the field; others are accessible to final year under-
graduates; but essentially the emphasis is on readability and clarity.

For other titles published in this series, go to
www.springer.com/series/6557



Tobias H. Brockmann

Theory of Adaptive Fiber
Composites

From Piezoelectric Material Behavior
to Dynamics of Rotating Structures



T.H. Brockmann
Donauwörth
Germany
tobias.brockmann@eurocopter.com

Approved Dissertation – Helmut-Schmidt-Universität, Hamburg, Germany

ISSN 0925-0042
ISBN 978-90-481-2434-3 e-ISBN 978-90-481-2435-0
DOI 10.1007/978-90-481-2435-0
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009925999

c©Springer Science+Business Media B.V. 2009
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose of
being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Adaptive Structural Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objective and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Helicopter Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Noise and Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Areas of Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Main Rotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Rotational Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Impulsive Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Broadband Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Passive Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 External Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Aeroelastic Conformability . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Active and Adaptive Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Pitch Control at the Blade Root . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Discrete Flap Actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Integral Blade Actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Adaptive Beam Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.1 Beam Actuation Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.2 Adaptive System Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.3 Development Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Fundamental Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Euclidean Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Tensor Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Matrix Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



vi Contents

3.2 Deformable Structures–Mechanical Fields . . . . . . . . . . . . . . . . . . . 22
3.2.1 Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Mechanical Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.4 Strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.5 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Dielectric Domains–Electrostatic Fields . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Electric Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Electric Flux Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Electrostatic Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.4 Electric Field Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Principle of Virtual Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.1 General Principle of Virtual Work . . . . . . . . . . . . . . . . . . . 31
3.4.2 Principle of Virtual Displacements . . . . . . . . . . . . . . . . . . . 32
3.4.3 Principle of Virtual Loads . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.4 Principle of Virtual Electric Potential . . . . . . . . . . . . . . . . 34
3.4.5 D’Alembert’s Principle in the Lagrangian Version . . . . . 35
3.4.6 Summation of Virtual Work Contributions . . . . . . . . . . . . 37

3.5 Other Variational Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.1 Extended Dirichlet’s Principle of Minimum Potential

Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.2 Extended General Hamilton’s Principle . . . . . . . . . . . . . . 39

4 Piezoelectric Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1 Piezoelectric Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Historical Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Crystal Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Constitutive Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 Mechanical Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Electrostatic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.3 Electromechanical Coupling . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.4 Spatial Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.5 Analogy of Electrically and Thermally Induced

Deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Constitutive Examination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Constitutive Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Converse Piezoelectric Effect . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.3 Direct Piezoelectric Effect . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Constitutive Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.1 Unidirectional Electrostatic Fields . . . . . . . . . . . . . . . . . . . 57
4.4.2 Planar Mechanical Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.3 Planar Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.4 Negated Electric Field Strength . . . . . . . . . . . . . . . . . . . . . 64



Contents vii

4.5 Actuator and Sensor Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5.1 Actuator Application with Voltage and Current Source . 65
4.5.2 Sensor Application with Voltage and Current

Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Piezoelectric Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1 Classification of General Composites . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Topology of the Inclusion Phase . . . . . . . . . . . . . . . . . . . . . 69
5.1.2 Laminated Composites and Laminated Fiber Composites 70

5.2 Conception of Piezoelectric Composites . . . . . . . . . . . . . . . . . . . . 70
5.2.1 Interdigitated Electrodes and Piezoelectric Fibers . . . . . 71
5.2.2 Electroding Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.3 Development Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.4 Representative Volume Element and Fiber Geometry . . 74
5.2.5 Modeling Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Micro-Electromechanics with Equivalent Inclusions . . . . . . . . . . 77
5.3.1 Mean Fields and Concentration Matrices . . . . . . . . . . . . . 78
5.3.2 Elementary Rules of Mixture . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.3 Equivalence of Inclusion and Inhomogenity . . . . . . . . . . . 79
5.3.4 Non-Dilute Concentrations . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Micro-Electromechanics with Sequential Stacking . . . . . . . . . . . . 82
5.4.1 Stacking of Constituents with Uniform Fields . . . . . . . . . 82
5.4.2 Normal Mode Stacking Coefficients . . . . . . . . . . . . . . . . . . 83
5.4.3 Shear Mode Stacking Coefficients . . . . . . . . . . . . . . . . . . . . 86
5.4.4 Stacking Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4.5 Non-Homogeneous Electrostatic Fields . . . . . . . . . . . . . . . 89
5.4.6 Stacking Sequences for Non-Homogeneous

Electrostatic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5 Validation of the Micro-Electromechanics . . . . . . . . . . . . . . . . . . . 93

5.5.1 Experiments and Finite Element Models . . . . . . . . . . . . . 94
5.5.2 Dielectric, Piezoelectric, and Mechanical Properties . . . . 95

6 Adaptive Laminated Composite Shells . . . . . . . . . . . . . . . . . . . . . 99
6.1 Macro-Electromechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1.1 Lamination Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.1.2 Laminates with Groups of Electrically Paralleled

Laminae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Kinematics and Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.1 General Thin Shell Kinematics . . . . . . . . . . . . . . . . . . . . . . 103
6.2.2 Cylindrical Thin Shell Kinematics . . . . . . . . . . . . . . . . . . . 104
6.2.3 Cylindrical Thin Shell Equilibrium . . . . . . . . . . . . . . . . . . 106

6.3 Constitutive Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.1 Negligence of Strain and Stress Components . . . . . . . . . . 107
6.3.2 Potential Energy Considerations . . . . . . . . . . . . . . . . . . . . . 109



viii Contents

7 Adaptive Thin-Walled Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.1 General Beam Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1.1 Positions and Displacements . . . . . . . . . . . . . . . . . . . . . . . . 115
7.1.2 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.1.3 Simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.1.4 Strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Thin-Walled Beam Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2.1 Differential Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2.2 Cartesian and Curvilinear Positions and Displacements . 121
7.2.3 Strains of Wall and Beam . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2.4 Electric Field Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Torsional Out-of-Plane Warping for Thin Walls . . . . . . . . . . . . . 126
7.3.1 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.3.2 Non-Branched Open and Closed Cross-Sections . . . . . . . 128
7.3.3 General Cross-Sections with Open Branches and

Closed Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.3.4 Exemplary Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.3.5 Consistency Contemplations . . . . . . . . . . . . . . . . . . . . . . . . 134

7.4 Rotating Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.4.1 Rotor Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.4.2 Transformation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8 Virtual Work Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.1 Internal Virtual Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.1.1 Internal Loads of Beam and Wall . . . . . . . . . . . . . . . . . . . . 140
8.1.2 Constitutive Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.1.3 Constitutive Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.1.4 Partially Prescribed Electric Potential . . . . . . . . . . . . . . . 146

8.2 External Virtual Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.2.1 Applied Load Contributions . . . . . . . . . . . . . . . . . . . . . . . . 148
8.2.2 Inertia Load Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.2.3 Equilibrium and Boundary Conditions . . . . . . . . . . . . . . . 150

8.3 Second-Order Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.3.1 Additional Internal Load Contributions . . . . . . . . . . . . . . 152
8.3.2 Reformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9 Solution Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.1 Statics of the Non-Rotating Structure . . . . . . . . . . . . . . . . . . . . . . 155

9.1.1 Configuration Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.1.2 Extension, Torsion, and Warping Solution . . . . . . . . . . . . 156
9.1.3 Shear and Bending Solution . . . . . . . . . . . . . . . . . . . . . . . . 159

9.2 Dynamics of the Rotating Structure . . . . . . . . . . . . . . . . . . . . . . . 160
9.2.1 Virtual Work Roundup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.2.2 Finite Element Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.2.3 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165



Contents ix

10 Demonstration and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
10.1 Beam Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

10.1.1 Actuation and Sensing Schemes . . . . . . . . . . . . . . . . . . . . . 169
10.1.2 Set-Up of Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
10.1.3 Set-Up of Cross-Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
10.1.4 Constitutive Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

10.2 Elementary Examinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
10.2.1 Beam Geometry Influences on the Actuation Schemes . . 178
10.2.2 Beam Property Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 180
10.2.3 Wall Geometry Optimization . . . . . . . . . . . . . . . . . . . . . . . 182

10.3 Validation and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
10.3.1 Reference Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
10.3.2 Reference Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
10.3.3 Static Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
10.3.4 Free Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
10.3.5 Forced Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
11.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
11.2 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

A Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

B Helicopter Rotor Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217



List of Figures

2.1 Noise- and vibration-related problems of the helicopter. . . . . . . . . . 6
2.2 Aerodynamic sources of noise and vibrations. . . . . . . . . . . . . . . . . . . 8
2.3 Blade-mounted pendulum absorber. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Hub-mounted bifilar absorber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Lead lag damper between blade attachments. . . . . . . . . . . . . . . . . . . 11
2.6 Lead lag damper at blade attachment. . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Main rotor blade tip shapes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Rotor blade with trailing edge flaps. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Rotor blade with piezoelectric fiber composite patches. . . . . . . . . . 15
2.10 Actuation schemes for reduction of beam-bending oscillations. . . . 16
2.11 Control of beam oscillations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Stress vectors with associated components. . . . . . . . . . . . . . . . . . . . . 24
3.2 Deformation of a continuum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Qualitative representation of hysteresis loops of PZT material. . . . 43
4.2 Elementary crystal cell in cubic and tetragonal configuration. . . . . 45
4.3 Normal mode of the converse piezoelectric effect. . . . . . . . . . . . . . . . 52
4.4 Shear mode of the converse piezoelectric effect. . . . . . . . . . . . . . . . . 53
4.5 Normal mode of the direct piezoelectric effect. . . . . . . . . . . . . . . . . . 55
4.6 Shear mode of the direct piezoelectric effect. . . . . . . . . . . . . . . . . . . . 55
4.7 Electric potential distribution due to shear in a cube. . . . . . . . . . . . 56
4.8 Electric potential distribution due to shear in cuboids. . . . . . . . . . . 58
4.9 Transition between unidirectional field strength and flux density. . 61
4.10 Correlation of polarization direction and plane of planar stress. . . 63

5.1 Classification of composites by the spatial extent of inclusions. . . . 70
5.2 Variants of patches for actuation or sensing. . . . . . . . . . . . . . . . . . . . 71
5.3 Sectional view of the interdigitated electroding scheme. . . . . . . . . . 72
5.4 Macro-Fiber Composite (MFC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 Scaled model of a vertical tail fin with actuator patches. . . . . . . . . 74
5.6 Simplified representative volume element. . . . . . . . . . . . . . . . . . . . . . 75



xii List of Figures

5.7 Dimensions of the simplified representative volume element. . . . . . 76
5.8 Stacking of material phases in the axial directions. . . . . . . . . . . . . . 82
5.9 Cross-sectional substitution sequences for the stacking of phases. . 88
5.10 Over-all substitution sequences for the stacking of phases. . . . . . . . 92
5.11 Directional variation of the piezoelectric coupling coefficient e33. . 93
5.12 Variants of fiber shapes and arrangements for 1–3 composites . . . . 94
5.13 Relative dielectric permitivity εσ33/ε0. . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.14 Relative dielectric permitivity εσ33/ε0. . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.15 Induced strain piezoelectric coupling coefficient d33. . . . . . . . . . . . . 96
5.16 Induced strain piezoelectric coupling coefficient d33. . . . . . . . . . . . . 96
5.17 Induced strain piezoelectric coupling coefficient d31. . . . . . . . . . . . . 97
5.18 Compliance coefficient S11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.19 Compliance coefficient S33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.20 Stiffness coefficient C33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1 Geometry of a laminate with K layers. . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Coordinates and displacements for a cylindrical thin shell. . . . . . . . 105

7.1 Position of a point on the cross-section. . . . . . . . . . . . . . . . . . . . . . . . 121
7.2 Description of an exemplary cross-section. . . . . . . . . . . . . . . . . . . . . . 130
7.3 Warping displacement of a double cell cross-section. . . . . . . . . . . . . 133
7.4 Warping displacement of a combined cross-section. . . . . . . . . . . . . . 134

9.1 Normalized influence of the decay length parameter. . . . . . . . . . . . . 158

10.1 Relative sign of electric field strength and polarization. . . . . . . . . . 170
10.2 Set-up of the beam wall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
10.3 Characterization of a rectangular single-cell cross-section. . . . . . . . 175
10.4 Characterization of a convex double-cell cross-section. . . . . . . . . . . 175
10.5 Geometry influence on direct & ext.-coupled twist actuation. . . . . 180
10.6 Geometry influence on warping-coupled twist actuation. . . . . . . . . 180
10.7 Relative thickness of the lengthwise oriented fiber layer. . . . . . . . . . 183
10.8 Beam tip rotation due to direct twist actuation. . . . . . . . . . . . . . . . 184
10.9 Beam tip rotation due to combined extension & twist actuation. . 185
10.10 Influence of fiber volume fraction on layer geometry & tip twist. . 186
10.11 Convex cross-section beam with shell finite elements. . . . . . . . . . . . 191
10.12 Torsion of the box beam via piezoelectric coupling. . . . . . . . . . . . . . 193
10.13 5th flapping mode of rectangular cross-section beam (beam FE). . 194
10.14 3rd lead-lag mode of convex cross-section beam (beam FE). . . . . . 195
10.15 5th flapping mode of rectangular cross-section beam (shell FE). . . 195
10.16 5th flapping mode of convex cross-section beam (shell FE). . . . . . . 196
10.17 Torsional modes of rectangular cross-section beam (shell FE). . . . 196
10.18 Torsional mode of convex cross-section beam (shell FE). . . . . . . . . 196
10.19 Tip twist in response to harmonic excitation. . . . . . . . . . . . . . . . . . . 198



List of Tables

3.1 Tensors of different order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Matrices of different dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 General assumptions for the stacking of material phases. . . . . . . . . 83
5.2 Stacking of material phases with respect to normal modes. . . . . . . 84
5.3 Stacking of material phases with respect to shear modes. . . . . . . . . 86
5.4 Assumptions for stacking of material phases in fiber direction. . . . 90

7.1 Association functions for a cross-section with two adjoining cells. . 132

10.1 Actuation or sensing of beam deformations. . . . . . . . . . . . . . . . . . . . 171
10.2 Actuation schemes for the torsional deformation of a beam. . . . . . 172
10.3 Beam stiffness coefficients resulting from property adaptation. . . . 182
10.4 Maximum tip twist for the different actuation schemes. . . . . . . . . . 185
10.5 Constitutive properties of rectangular single-cell cross-section. . . . 188
10.6 Constitutive properties of convex double-cell cross-section. . . . . . . 190
10.7 Beam extension due to centrifugal forces. . . . . . . . . . . . . . . . . . . . . . 192
10.8 Beam torsion due to piezoelectric coupling. . . . . . . . . . . . . . . . . . . . . 192
10.9 Natural angular frequencies of the non-rotating systems. . . . . . . . . 193
10.10 Natural angular frequencies of the rotating systems. . . . . . . . . . . . . 194

A.1 Properties of the applied reinforcement material. . . . . . . . . . . . . . . . 203
A.2 Properties of polymer materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
A.3 Properties of piezoelectric materials. . . . . . . . . . . . . . . . . . . . . . . . . . . 204

B.1 Stiffness and geometry properties of BO 105 main rotor system. . 205



List of Symbols

Indices

1, 2, 3 axial directions in the material coordinate system
s, n, x axial directions in the shell coordinate system
x, y, z axial directions in the beam coordinate system
i, f , m association with inclusion respectively fiber phase or matrix phase
i, j, k association with branches, junctions, and cells of a cross-section
†, ‡ association with unknown respectively prescribed degrees of freedom
EA, GL association with Euler Almansi or Green Lagrange approach

Greek Symbols

α rotation angle
α vector of thermal strain coefficients
β, β rotation angle; column matrix of rotational parameters
β inverse dielectric permittivity matrix
γ shear strain component
Γ constraint matrix
δ (·) virtual quantity
ε, ε dielectric permittivity, matrix
ε normal strain component
ε, ε strain tensor, column matrix
ζ generating half angle
η warping influence function
ϑ shell middle surface rotation
θ integrands of warping displacement
Θ warping function
κ, κ shell bending curvature; shell curvature column matrix
λ decay length parameter; eigenvalue
Λ, ∂Λ spatial domain, surrounding boundary
μ column matrix of remaining strain/electric field strength measures



xvi List of Symbols

ν inclusion respectively fiber fraction
ν column matrix of all degrees of freedom
ξ normalized lengthwise coordinate
Ξ concentration matrix for strains and electric field strengths
ρ mass density
� material, geometry, and load case constant
σ, σ, σ normal stress component, column matrix, tensor
ς column matrix of integrands for side conditions of variational prob.
Σ concentration matrix for stresses and electric flux densities
τ shear stress component
υ unidirectional electrostatic field transition
Υ equivalent inclusion constraint matrix
φ beam twisting angle
Φ warping influence abbreviation
ϕ electric potential
ϕ column matrix of all electric degrees of freedom
χ strain and electric field strength column matrix
χ̂, χ̌ rearranged strain and electric field strength column submatrix
ψ shell twisting curvature
ω natural frequency
Ω rotor angular velocity

Latin Symbols

a cross-sectional dimension; height
a beam constitutive coefficient ratio
a acceleration vector
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Introduction

In this first chapter, we discuss the definition of adaptive structural systems as
well as their associated constituents and relevant applications. On this basis,
the targets of the work at hand are set and the necessary steps are illustrated.

1.1 Adaptive Structural Systems

According to Beitz and Küttner [11], a system is characterized by the de-
limitation from its environment. Consequently, the links to the environment,
represented by input and output values, pass through the system’s bound-
aries. A system may be divided into subsystems. For a structural system, the
input and output values are mechanical loads or displacements. An adaptive
system, sometimes also called smart or intelligent, is able to respond to chang-
ing environmental conditions. To realize an adaptive structural system, the
structural properties need to be complemented by sensory capabilities, control
resources, and actuation authority. This multiplicity of functions may be im-
plemented by means of discrete subsystems, for example a host structure, load
cells, control unit, and hydraulic actuators. A higher degree of integration can
be achieved by making use of multifunctional materials which, in addition to
their structural properties, are able to provide actuation authority and might
even have sensory capabilities. Since such materials themselves do not have
any kind of control resources, the term smart or intelligent appears to be an
overstatement.

Due to the reversibility of the piezoelectric effect, materials exhibiting
such an electromechanical coupling may be used to handle actuation as well
as sensing tasks. The different piezoelectric materials are able to provide these
properties in a frequency spectrum ranging beyond the level of acoustics. On
the one hand, there are several monocrystals and polycrystalline ceramics,
which are hard and brittle and therefore are suitable only for relatively small
strains. On the other hand, there are semicrystalline polymers, which are soft
and elastic but show less pronounced coupling properties. Another kind of
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electromechanical coupling occurs in electrostrictive materials. This non-linear
behavior is limited to actuation and typically applies also to some polycrys-
talline ceramics with similar consequences. Magnetostrictive materials may
be used for actuation and sensing by virtue of non-linear magnetomechani-
cal coupling. Thus, alloys of iron and rare earth elements are able to handle
slightly higher strains than those that occur in electromechanical coupling ex-
amples in a frequency range up to the level of acoustics. To establish or detect
the associated magnetic fields, comparatively massive devices need to be em-
ployed. Actuation with large strains may be realized by using phase changes
of shape memory alloys. This highly non-linear thermomechanical coupling,
however, is confined to very low frequencies. Carbon nanotubes possess excel-
lent mechanical properties and their use for actuation as well as sensing is a
promising subject of intense research activity in the field of material science.

The perfect multifunctional material is not yet available. However, many
adaptive structural systems based on the above or alternative materials have
been investigated and several have found their way into service. Typical ap-
plication areas are the modification of shape or stiffness and especially the
reduction of noise and vibration. When a structure is able to adapt to various
operating conditions, design and dimensioning may differ substantially from
that for conventional structures in so far as these are able to fulfill the mission
at all. Therefore, possible implications of employing such adaptive structural
systems are the extension of the operational range and a reduction in weight.
Both criteria are of particular interest for spacecraft and aircraft applications
where extreme environmental conditions need to be handled and a high de-
gree of integration is entailed by high costs of space and weight. With the
maturing of appropriate technologies, other application emerge: automobiles,
gas turbines, machine tools, measurement machines, and sports equipment.

1.2 Objective and Scope

Piezoelectric ceramics have been found to be the most useful material class
for integrating actuation and sensing functions into structures. To alleviate
the mechanical shortcomings of these multifunctional materials, they may be
embedded in the shape of fibers into a conventional material matrix. Con-
sequently, the anisotropic constitutive properties can be tailored according
to requirements and the failure behavior improves. With their inherited fast
response in actuation as well as sensing, such adaptive fiber composites are
well-suited to noise and vibration reduction. Helicopter rotor systems provide
an interesting and widely perceptible field of application. Their oscillations
can be reduced with the aid of aerodynamic coupling and fast manipulation
of the angle of attack, induced by twist actuation of the rotor blade. On the
one hand, the sensing properties may be used to determine the current state
of deformation, while on the other hand, the actuation properties may be used
to attain the required state of deformation. The implementation of such con-
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cepts requires a comprehensive knowledge of the theoretical context from the
examination of the material behavior to the simulation of the rotating struc-
ture. Control resources are also part of adaptive structural systems, but the
associated means and algorithms represent a relatively self-contained topic,
on which we will not focus in particular.

1.3 Outline and Overview

Chapter 2 describes the problem areas and solution approaches in helicopter
rotor systems to exemplify the application of adaptive structural systems.
Chapter 3 gives the necessary mathematical and physical fundamentals and
completes these with a systematic approach to variational principles. Chap-
ter 4 examines the constitutive properties of piezoelectric materials and de-
duces simplifying assumptions. Chapter 5 describes an enhanced method for
determining constitutive properties of piezoelectric composites, compares it
with alternative approaches, and validates it by using experimental results
and finite element modeling. Chapter 6 derives a comprehensive description
of composite shells containing piezoelectric layers. Chapter 7 develops a novel
beam theory accounting for more than membrane-only wall properties of ar-
bitrary cross-sections without additional degrees of freedom, as well as for
shear flexibility and torsional warping effects. Chapter 8 shows how the prin-
ciple of virtual work is able to obtain constitutive coefficients, equilibrium
and boundary conditions, and rotation-induced prestress effects. Chapter 9
obtains the solutions to the static problem of the non-rotating structure in
analytic fashion and to the dynamic problem of the rotating structure with
the aid of finite element discretization. Chapter 10 uses the analytic solution
for design optimization and checks the developed beam finite elements against
an independent approach with commercial shell finite elements. Chapter 11
reviews the achievements concerning theory development and validation re-
sults and provides an outlook to possible extensions, implementations, and
applications.
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Helicopter Applications

“The air was drowsy with the murmur of bees and helicopters.”

In The Brave New World of Huxley [102], the helicopter represents the
dominant means of personal transportation. Huxley’s shining but essentially
dark vision of the future is still in the future for the most part. No one today
would seriously dare to compare the noise of helicopters with the buzzing of
bees. Noise and vibrations limit the use of helicopters: they are too noisy in
towns, too easily detected in warfare. Cabin noise stresses both pilots and
passengers. Vibrations can fatigue components and imply frequent and ex-
pensive inspections. Adaptive structural systems can mitigate these effects
and improve flight performance. Vibration induced problems had to be ad-
dressed since the early days of rotorcraft development; noise related problems
become more and more critical with today’s versatile deployment. Figure 2.1
shows how these problems are interrelated and points at their economic im-
pact.

2.1 Noise and Vibration

This section gives an overview of the causes of helicopter noise and vibration,
as well as of their effects on the aircraft and its environment.

2.1.1 Generation

Structural vibration and the emitted noise of a rotorcraft are closely related.
This concerns especially those parts with aeroelastic interaction where aero-
dynamic loads and mechanical reactions excite the structure on the one hand
and cause acoustic effects in the circumfluent air on the other hand. The in-
duced vibrations tend to spread over the entire system and might initiate
noise emission or other problems at different locations.

T.H. Brockmann, Theory of Adaptive Fiber Composites,
Solid Mechanics and Its Applications 161,
c© Springer Science + Business Media B.V. 2009



6 2 Helicopter Applications

Fig. 2.1. Complexity of noise- and vibration-related problems of the helicopter.

Main Rotor

The main rotor of a helicopter is very susceptible to oscillations. The slender
blades have considerable aerodynamic damping only in the flapwise direction.
To attain balanced a lift on advancing and retreating blades in non-hover
flight, the swash plate mechanism of the rotor hub varies the angle of at-
tack. The resulting aerodynamic flow is complicated, leading to undesirable
structural and acoustic effects. The subsequent Section 2.2 gives a detailed
description of the rotor-related processes.

Tail Rotor

The lateral thrust of the tail rotor of a helicopter has to compensate for the
main rotor torque. For maximum effectiveness, it is operated with a rota-
tional speed as high as permitted by the blade tip velocity, but well below the
speed of sound. In general, the noise- and vibration-generating mechanisms
are similar to those of the main rotor. While there is no cyclic blade pitch,
the interaction with the main rotor outflow has to be taken into account. Due
to the comparatively small diameter of the tail rotor, its rotational speed is
significantly higher than that of the main rotor and thus the emitted noise
and vibrations have higher frequencies, see Staufenbiel et al. [168].
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Engine and Drivetrain

In the early days of helicopter development, the engine was a major source of
noise and vibration. Contemporary turboshaft engines with optimized com-
pressors produce excitations at higher frequencies with lower intensities, be-
coming significant only in certain flight situations, see Allongue et al. [5].
Another subordinate source of oscillations is the tooth engagement in the
gearbox, as reported by Gembler [79].

2.1.2 Areas of Relevance

The noise and vibration sources discussed above have very different character-
istics. Consequently, the various implications and their respective perception
depend strongly on the location of the observer. The situation will be discussed
briefly in the following from the three basic points of view.

Noise in the Distance

The sound radiated by the rotorcraft into its environment is what the crit-
ical observer perceives as noise pollution and what delivers a characteristic
acoustic signature for aircraft detection and classification. The typical rotor-
craft sound is composed of several components with destinctive directivity
and intensity, depending on the flight conditions. In general, at a distance,
the main rotor noise is dominant, the high frequency emissions of the tail
rotor have some relevance, and the engine noise is secondary.

Vibrations of the Structure

The vibrations generated by the different sources all over the rotorcraft are
transmitted throughout the entire structure. For example, the loads, due to
the various processes occurring at the main rotor blades, are transmitted via
the rotor hub to the main drive shaft and then via the bearings, casing, and
mounting of the gearbox to the fuselage. Thus, the effects of the spreading
oscillations can be reduced by improvements at their point of origin or by
decoupling somewhere on the path of propagation. Vibration fosters wear and
fatigue. This entails intensive maintenance with regular exchange of critical
parts.

Noise and Vibrations Inside the Cabin

Oscillations travel through the structure to the cabin and reach pilots and
passengers, as well as vibration sensitive navigation equipment; some of this
energy is radiated to the air inside the cabin. In addition to this structural
sound path, there is the direct air sound path, see Gembler [79]; for example
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the noise emitted by the gearbox casing is transferred through the air volumes
in between. There is also an aerodynamic interaction between the fuselage
and the passing blades of the main rotor, which especially hits the window
and panel areas close to the pilots. Seats with vibration isolation and active
head sets can partially decouple the human body from the structure and
surrounding air respectively, to retain the health and concentrativeness of
crew and passengers.

2.2 Main Rotor

As has been shown in the previous section, the main rotor plays the decisive
role for many noise and vibration problems. It is best to tackle such a prob-
lem at the source before diffusion and diversification. Figure 2.2 shows the
excitation mechanisms at the main rotor. Their characteristics are discussed
in detail based on the investigations of Brentner and Farassat [25], Schmitz
and Yu [161], Edwards and Cox [71].

Fig. 2.2. Aerodynamic sources of noise and vibration at the helicopter main rotor;
original photograph by Eurocopter.

2.2.1 Rotational Sources

Rotational noise comprises two mechanisms related to linear aerodynamic
theory: thickness noise caused by the displacement and reconnection of the
air by the rotor blades; loading noise due to the forces that the rotor blades
exert on the air. For a fixed location of the rotor plane, these processes occur
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periodically with the blade passage frequency, delivering a discrete spectrum
with corresponding higher harmonic frequencies. As both effects depend on
the relative velocity of the blade against the surrounding medium, the sound
waves originate in the forward flight situation from the advancing side of the
rotor plane and propagate ahead of the blade in the flight direction. While
the thickness noise radiates mainly in the rotor plane, the emission of loading
noise tends slightly downwards.

2.2.2 Impulsive Sources

The impulsive noise of a helicopter leads to several effects with pulsing charac-
teristic and high amplitudes at discrete frequencies. Again, we are concerned
with the higher harmonics of the blade passage frequency. These types of
noise occur in different flight situations and are recognized by the human ear
as extremely annoying.

Blade Vortex Interaction

As for any airfoil, a vortex wake is shed at the tip of a rotor blade. In for-
ward flight, the rotor plane is tilted slightly forward, so these tip vortices do
not come into direct contact with the rotor again. In steady descending flight
however, the blades pass through the tip vortices of their predecessors. This
means that the strength and size of the vortex, as well as interaction angle and
vertical separation of blade and vortex line are important. Especially when
they are almost in parallel, the interaction is comparable to a rapid change
in the angle of attack with the respective consequences. The effect is aerody-
namically similar to ordinary loading noise, but with an impulsive character.
Most relevant are the outer blade regions on the advancing side, while blade
vortex interaction (BVI) noise is recognizable also on the retreating side. The
radiation takes place below and ahead of the blade.

High Speed Flow Conditions

In forward flight, the blade rotational speed and the flight speed are super-
imposed; these components add up on the advancing side of the rotor plane.
When this leads to blade tip velocities close to sonic speed, the maximum
cruising velocity is reached. In such a critical flow condition, the transonic
flow region mainly on the upper side of the airfoil expands with a shock at
its end due to compressibility effects. This increases noise radiation and pro-
file drag, which is accountable for the induction of vibrations. Just like the
thickness noise, the high-speed impulsive (HSI) noise propagates ahead of the
blade in the rotor plane.
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Retreating Blade Stall

On the retreating side of the rotor plane, the flight velocity is subtracted from
the blade rotational speed. This leads, especially at the inner region of the
rotor blades, to very low flow rates at high angles of attack resulting in stall.
Close to the center, the flow is approaching from the backside of the profile.
Due to the relatively low velocities, the energy radiated as noise is smaller
than in other impulsive cases. However, the vibrations excited by the periodic
and local loss of lift are more noticeable.

2.2.3 Broadband Sources

Broadband noise is essentially generated by random pressure fluctuations on
the blade surface; it can be classified as non-deterministic loading noise. A rea-
son for such random pressure fluctuations can be turbulence, existing in the
surrounding atmosphere, caused by the interactions of the preceding blades,
or generated on the blade itself. Mechanisms for the latter case are the separa-
tion and reattachment of boundary layers, the tip vortex formation, laminar
vortex shedding, and trailing edge noise. The directivity of the broadband
noise is mostly out of the rotor plane.

2.3 Passive Concepts

The examination of the helicopter main rotor has yielded a multitude of exci-
tation mechanisms for noise and vibration. Dealing with such a complicated
system, it is unlikely that a single solution exists to produce relief in all as-
pects. Thus, a variety of partially very different approaches has been discussed
and developed. In this section, the major ideas involving non-active elements
will be presented for the classical helicopter configuration. Details on these
elements are given by Bielawa [21], Bramwell et al. [23].

2.3.1 External Devices

As vibrations have historically been the dominant problem and are easier to
solve without a detailed understanding of their generation processes, a number
of devices to improve the situation locally at specific mount points have been
developed.

Absorbers

The usual absorber devices consist of mass elements connected by springs or
elastic mountings. Often the spring stiffness is provided by the centrifugal
force field, for example in blade-appended pendulum absorbers, shown in Fig-
ure 2.3, to compensate out-of-plane loads, or hub attached bifilar absorbers,
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exemplified in Figure 2.4, for in-plane loads. As an explicit limitation, such
devices are adjusted to a specific frequency proportional to the rotor speed
and thus exhibit only a certain degree of self-tuning. In general, they are rela-
tively simple in design and application but introduce additional weight, drag,
and maintenance effort for moving parts.

Fig. 2.3. Blade-mounted pendu-
lum absorber; original photograph
by Domke [63].

Fig. 2.4. Hub-mounted bifilar absorber; original
photograph by Domke [63].

Dampers

The task of damper elements is to reduce the amplitudes of an oscillation
below a critical margin. Most often they are applied at the blade root in
the lead lag direction, as the oscillations in the rotor plane are only slightly
damped by the aerodynamic forces. Different variants are given in Figures 2.5
and 2.6.

Fig. 2.5. Lead lag damper between
blade attachments; original photograph
by Domke [63].

Fig. 2.6. Lead lag damper at blade
attachment; original photograph by
Domke [63].

2.3.2 Aeroelastic Conformability

When attempting to alter the elastomechanic and aerodynamic behavior of
the rotor blade with its diverse couplings, and thus the susceptibility to vi-
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bration and noise, complicated interrelations have to be kept in mind. As the
blade responds to a composition of several excitation loads, these interrela-
tions might lead to a significant reduction or cancellation of vibrations, in
principle just like an absorber. Regrettably, this composition depends on the
flight situation and therefore a beneficial coupling effect for a specific case
might lead to adverse effects in other situations.

Elastomechanic Modifications

There are many parameters that can be adjusted to achieve desired features.
A number of tuning/coupling effects can be achieved by the arrangement of
the neutral axis, principal axes of inertia, or shear center relative to the posi-
tion and direction of the loads. Moreover, the exploitation of the anisotropic
properties of fibrous composites allows for additional tailorable couplings. Un-
like the traditional rotor blade with almost constant structural properties over
the blade length, future blades may be developed with the aid of advanced
computational methods to evaluate arbitrary designs.

Aerodynamic Modifications

Similar progress has taken place in the sector of aerodynamics and with in-
creasing insight especially into the phenomena of noise generation, more effi-
cient blade designs have emerged. As many problems are closely related to the
outer blade regions, the blade tip has been object of intense studies. Different
variants of blade tip shapes are shown in Figure 2.7. Benefits are attained
for the BVI noise by diffusing the tip vortex, as well as for the HSI noise by
reducing the intensity of the transonic flow. For the latter case, a reduction of
the blade tip speed can be considered at the expense of performance, which

Fig. 2.7. Main rotor blade tip shapes; original photographs by Domke [63].
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then has to be gained by further costly sanctions. Modulated blade spacing
is conceptually quite different, see Edwards and Cox [71]. In contrast to the
traditional evenly spaced rotor, several blade passage frequencies with indi-
vidual sets of harmonics are generated, and thus the energy is distributed.
Practically, this means, for example, that the vortex wakes of the preceding
blades are hit with different delays and at different positions.

2.4 Active and Adaptive Concepts

The passive methods available for the reduction of noise and vibration are
not able to achieve completely satisfying results. The most serious drawback
is that they are usually optimal only to a specific situation and are not able
to extend their usefulness in a more general way. This is especially critical in
maneuver flight with rapidly changing conditions which are very difficult to
predict. Different concepts involving control systems have been developed for
active intervention, ranging with an increasing degree of structural integration
from active, covered by Bielawa [21] and Bramwell et al. [23], to adaptive,
discussed for example by Büter [40].

2.4.1 Pitch Control at the Blade Root

In order to achieve equal lift on the advancing and retreating side of the rotor
in spite of the unsymmetric flow velocity distribution, the common helicopter
concept makes use of a varying angle of attack. This is introduced with the
necessary cycle duration of one revolution by the swash plate mechanism. The
idea is to actively control the blade pitch, and cancel or reduce the appearing
vibrations by superposition of an adequate signal.

Higher Harmonic Control

As most of the characteristic perturbations occur with the blade passage fre-
quency and its higher harmonics, the simplest approach is to employ such sig-
nals to achieve cancellation. With sensors at relevant points of the airframe,
the vibratory load factors are measured and then processed by a control sys-
tem. The necessary motion is produced by stationary hydraulic actuators,
inducing a vertical displacement of the swash plate and thus a collective ac-
tuation of the blades. Such an actuation mechanism may also modify the
inclination of the swash plate, but it still is not possible to respond to events
at an individual blade.

Individual Blade Control

To improve this situation, the blade root actuation mechanism was advanced
by inserting hydraulic actuators between the swash plate and blade roots in
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the control rods. With an adequate control algorithm, it would be possible
to implement a very flexible and powerful noise and vibration suppression
system. For example, the blade vortex interaction might be alleviated signifi-
cantly by steering the blade in the ideal case around the approaching vortex.
Admittedly, the expenditure for such a hydraulic system in the rotating part
of the rotor hub is very high and therefore has been implemented only in
prototype aircraft.

2.4.2 Discrete Flap Actuation

Apart from further development of control algorithms, there is a need for effi-
cient actuation mechanisms. The integration of flaps into rotor blades presents
some challenges. In order to be aerodynamically effective, the intervention
needs to be located in the outer blade region, where extreme centrifugal loads
are present. Moreover, spatial restrictions apply there, and the mass distribu-
tion preferably should not be altered. Under these conditions, the application
of hydraulic systems is hardly conceivable, and multifunctional materials come
into operation. Piezoelectric ceramics with their dynamic capabilities over a
broad frequency range are used for such actuators. Different configurations
have been in discussion or realized, like leading or trailing edge flaps, as shown
in Figure 2.8, and the related active blade tips. Still, a discrete flap always
disturbs the air flow and consequently reduces the aerodynamic performance,
particularly in the extreme flow conditions exhibited by a helicopter rotor.
Although the actuators themselves are designed to operate without too many
moving parts, quite a few hinges and connections are necessary and these
increase complexity and maintenance effort.

Fig. 2.8. Experimental rotor blade with trailing edge flaps; from Klöppel et al. [112].

2.4.3 Integral Blade Actuation

Multifunctional materials are currently not able to provide the performance
needed for blade-root actuation. In order to influence the aerodynamically
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interesting outer region of the blades, they can be applied to induce twist or
manipulate the blade shape in other ways. A number of schemes to twist the
blades have been developed involving directionally attached monolithic piezo-
electric ceramics or passive couplings of the anisotropic blade skin to convert
the excitation of an actuator. The highest degree of integration is reached with
the distributed application of piezoelectric fiber composites, see Figure 2.9,
with tailorable active, sensoric, and passive properties. In such a configura-
tion, adaptive layers are used as, or merged into, the blade skin and therefore
provide actuation authority without moving parts or flow disturbance, and
with only a minor weight penalty as they contribute to the passive structural
behavior. Certain limitations in the material properties have to be considered
for piezoelectric fibers. Due to their ceramic nature, they are relatively brittle
and should carry loads in compression rather than in tension.

Fig. 2.9. Scaled active twist rotor blade with piezoelectric fiber composite patches
attached to the spar; from Cesnik [44].

2.5 Adaptive Beam Aspects

In this discussion, the integral blade actuation has been identified to be a
promising development direction to alleviate noise and vibration problems
of rotorcraft in the long term. While other technologies based on conven-
tional materials or designs are closer to the market introduction, fundamental
questions need to be answered with regard to material science and struc-
tural mechanics for the integral blade actuation. Thus, the focus of research
is placed upon the application of adaptive fiber composites because of their
versatile adjustable capabilities. With these it is possible to induce displace-
ments or rotations with respect to the blade axis as well as deformations in
the cross-sectional plane. The latter, also known as chamber variation, might
be of interest for fixed-wing aircraft but is improbable for implementation
on rotating-wing aircraft due to the complex load and excitation situation of
the blade structure. Such a slender structure can be efficiently idealized as a
beam. Further on, the set-up of a rotor blade with foam-filled chambers will
require modeling by means of a thin-walled beam. Thus, an adequate and
comprehensive theoretical framework for adaptive thin-walled beams will be
developed here.
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2.5.1 Beam Actuation Concepts

In Section 2.2, the essential noise and vibration phenomena occurring at the
helicopter main rotor have been analyzed. They lead to bending oscillations
of the blades, which may be modeled by thin-walled beams. Equipping such a
structure with adaptive fiber composites permits different actuation schemes
to compensate for bending-related displacements, see Figure 2.10. It is pos-
sible to accomplish this for static operation by inducing opposing displace-
ments. Such bending actuation may be realized directly through expansion
and contraction of opposing wall sectors and through shear deformation of
transversely oriented wall sectors. Alternatively, coupling effects due to con-
stitutive anisotropy of the walls may be exploited, for example transforming
a lengthwise expansion of piezoelectric layers, which is applied consistently
throughout the cross-section, into the desired beam bending. In a rotating
environment, it is possible to amplify the rather small attainable displace-
ments with the aid of aerodynamic forces. Since a small change in the angle
of attack may lead to a significant change in lift and drag with the associated
blade displacements, twist actuation becomes important. It can be achieved
again either directly through the consistent induction of shear in the walls
or via structural couplings related to the constitutive anisotropy of the walls
as well as to the warping of the cross-section. The prior couples, for exam-
ple, extension with torsion and the latter warping with torsion. Naturally,
not all of the various actuation schemes are equally suitable for reducing the
helicopter rotor problems. The research reported in the literature is clearly
focused upon the direct torsion, see Section 2.5.3. Here a general approach

Fig. 2.10. Actuation schemes for the reduction of beam-bending oscillations in
consideration of aerodynamic forces in a rotating environment.
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will be developed, capable of describing all potential actuation schemes by
means of a single theory of thin-walled beams incorporating adaptive fiber
composites.

2.5.2 Adaptive System Concepts

Since the piezoelectric effect comprises two aspects, direct and converse, com-
posites with such properties may be used for both sensing and actuation.
Combining these two with a control unit makes an adaptive system. Both
actuators and sensors may be either discrete, at a specific location, or inte-
gral, spatially distributed. The latter case typically can be accomplished with
piezoelectric fiber composites. Figure 2.11 illustrates the possible combina-
tions with elementary control schemes. Using open-loop control, a signal for
the actuator is prescribed based on knowledge about the system. For a he-
licopter rotor, this usually involves higher harmonic frequencies, sufficiently
covering a constant flight condition. For more versatile tasks, corresponding
to changing flight conditions, closed-loop control provides actuator signals in
response to sensor signals. Such control concepts for helicopter rotor blades
have mainly been developed for pitch actuation at the blade root or the trail-
ing edge flap, see for example Konstanzer [115]. Further on in Figure 2.11,
passive control stands for the use of piezoelectric material with inductive res-
onant, resistive, capacitive, and switched shunt circuits, see Lesieutre [122].
A shunt circuit with a combination of resistance and inductance allows us
to induce tunable damping and absorption of vibrations. The suitability of
piezoelectric fiber composites for such an application has been demonstrated
by Adachi et al. [3]. A single element acts in turn as actuator and sensor.
For better efficiency, it should be of integral type, since neither electric nor
aeroelastic amplification can be utilized.

Fig. 2.11. Control of beam oscillations.

2.5.3 Development Status

The initial examinations of directly induced torsion were conducted for mono-
lithic piezoelectric ceramics being attached in a ±45◦ direction to the upper
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and lower side of the blade. Modeling aspects are reported by Chen and Chopra
[51,52], while experiments including hover testing of a scaled rotor are covered
by Park et al. [138] and Park and Chopra [137]. The application of piezoelec-
tric fiber composites has been carried out by Du Plessis and Hagood [65] in
theory and experiment by means of a scaled rotor blade of a Boeing-Vertol
CH-47D helicopter. Predictions of the static twist performance of a box beam
were gained with the aid of a finite beam element model. Test results of
this blade in the rotating environment are reported by Rodgers and Hagood
[155]. Further development and testing of an active twist rotor with actua-
tor patches of piezoelectric fiber composites attached to the spar, Figure 2.9,
has been conducted according to Cesnik et al. [47]. In a series of wind tun-
nel experiments with open-loop control, it has been shown that the vibratory
loads at the rotor hub can be reduced significantly, Wilbur et al. [180], and
that there also is a potential for noise reduction, Booth and Wilbur [22]. The
blades have been modeled with two cells and thin walls, determining the cross-
sectional properties in a linear analysis and the global dynamic behavior in
a non-linear analysis for small strains and finite rotations with beam finite
elements, Cesnik and Shin [46], and with additional consideration of the aero-
dynamics, Cesnik et al. [48]. An asymptotic analysis approach led them to a
beam description without explicit degrees of freedom for transverse shear and
out-of-plane warping. A subsequent adjustment to a Timoshenko-like beam
was described by Cesnik and Palacios [45]. Further modeling approaches are
reported in the context of an aeroelastic analysis by Wilkie and Park [181]
and of a multi-body simulation by Ghiringhelli et al. [82]. The former is re-
stricted to extension, torsion, and structurally uncoupled uniaxial bending,
while the latter use a finite element discretization of the cross-section to de-
termine the beam stiffness and actuation properties. A review of previous
work is presented in the references [26–37].
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Fundamental Considerations

This chapter describes the fundamental theories for investigating physical sys-
tems with regard to deformable structures and dielectric domains as examined
by mechanics and electrodynamics, respectively, within the field of theoretical
physics, see for example Schaefer and Päsler [160]. It clarifies the essential
interrelations and provides a consistent basis to serve as a reference for the
subsequent chapters, where more detailed and specific models will be devel-
oped.

3.1 Mathematical Preliminaries

For the required representation of the laws of physics independent of a special
coordinate system, tensor calculus is invaluable. As matrix calculus is quite
convenient with regard to component representation and implementation, it
shall be employed when applicable. The tensor- and the matrix-based observa-
tion concept include or depict vector algebra. We assume that the mathemati-
cal fundamentals are known and therefore give only a fragmentary overview to
clarify notation and to introduce utilized rules and conventions. A useful and
comprehensive collection of formulas is given by R̊ade and Westgren [147],
while the tensors are the subject of Sokolnikoff [167], Prager [144], Itskov
[105], Brunk and Kraska [38] as well as the matrices of Lax [119], Zurmühl
and Falk [188].

3.1.1 Euclidean Vectors

The examinations will be accomplished in the three-dimensional Euclidean
vector space, where the scalar product of vectors is defined beyond the prop-
erties of the affine space. Cartesian coordinates with their orthogonal, straight,
and normalized base are sufficient for the problems at hand and therefore will
be used.

T.H. Brockmann, Theory of Adaptive Fiber Composites,
Solid Mechanics and Its Applications 161,
c© Springer Science + Business Media B.V. 2009
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Vectorial Products

The scalar or dot product processes two vectors, for example v and w, of
arbitrary dimension into a scalar. The scalar product is commutative:

v · w =

⎧
⎨

⎩

v1
v2
. . .

⎫
⎬

⎭
·

⎧
⎨

⎩

w1

w2

. . .

⎫
⎬

⎭
= v1w1 + v2w2 + · · · , v · w = w · v. (3.1)

The vector or cross product determines a so-called axial vector with orthogonal
orientation from two spatial vectors. The vector product is anti-commutative:

v × w =

⎧
⎨

⎩

v1
v2
v3

⎫
⎬

⎭
×

⎧
⎨

⎩

w1

w2

w3

⎫
⎬

⎭
=

⎧
⎨

⎩

v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w3

⎫
⎬

⎭
, v × w = −w × v. (3.2)

3.1.2 Tensor Representation

With the chosen type of coordinates and for the sake of simplicity, it can
be abstained from the index notation. The classification of tensors with the
applied typesetting conventions is given in Table 3.1.

Table 3.1. Tensors of different order.

Order Denotation Example

0th scalar s
1st vector v, w

2nd dyad c,d

nth general tensor

Tensorial Products

The double contracting or double inner product of general tensors results
in a tensor with the added order of the multiplied tensors lowered by four.
The employed symbol of two dots alludes to the two scalar products of the
particular base vectors. In the case of two tensors of second order, the outcome
is of zeroth order, leading to the denomination as a scalar product of dyads.
The double contracting product is commutative, given here for the case of
dyads:

c · · d = d · · c. (3.3)

When only a single scalar product of base vectors is involved, the result of
such a product has the added order of the multiplied tensors lowered by two.
This contracting or inner product of general tensors thus comprises the scalar
product of vectors as a special case. Further on, the tensorial or outer product
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of general tensors leads to a result with a summed order of the multiplied
tensors. Therefore, its application to vectors results in a dyad, giving reason
to the denomination as the dyadic product of vectors often indicated by the
symbol ⊗. The contracting product, Eq. (3.4a), and the tensorial product,
Eq. (3.4b), of general tensors are non-commutative:

v · d �= d · v, (3.4a)
vd �= dv. (3.4b)

For the occurrence of a transposed dyad within consecutive contracting prod-
ucts, the following rearrangement is permissible:

(
dT · v

)
· w = v · (d · w) . (3.5)

Theorems

Concerning the partial differentiation of tensors, the following abbreviations
for gradient and divergence are introduced:

grad(·) = �(·),
div(·) = �(·).

For the manipulation of equations with products containing these operators,
Gauss’s divergence theorem will be needed. It is given for the usual case with
the product of a scalar and a vector in Eq. (3.6a) and for the contracting
product of a transposed dyad and a vector in Eq. (3.6b):

� (sv) = s�v + v · �s, (3.6a)
�
(
dT · v

)
= v · �d + d · ·�v. (3.6b)

When Λ is a spatial domain with the closed boundary ∂Λ and the respective
unit vector field of the surface normals en is directed outwards, then Gauss’s
integral theorem states

∫

Λ

�v dV =
∫

∂Λ

v · dA =
∫

∂Λ

v · en dA. (3.7)

3.1.3 Matrix Representation

Depending on the circumstances, it makes sense to apply either tensor or
matrix calculus. Occasionally it may be useful to switch the representation.
Typically, the results of a derivation requiring tensors are written in the more
accessible matrix form. While operations involving scalars and vectors are
applicable for both, the more general case is subjected to restrictions:

• A tensor of second order may be represented by a square matrix, but a
general non-square matrix cannot be represented by a tensor.
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• A tensor of more than second order cannot be represented by a single
matrix without rearrangement of components.

However, the latter statement implies that tensors can be converted to matri-
ces involving the rearrangement of components. Therewith tensors of second
order may be expressed by column matrices, also referred to as vectors. This
will be implemented in the following section for stresses and strains. The
classification of matrices with the applied typesetting conventions is given in
Table 3.2.

Table 3.2. Matrices of different dimensions.

Dimension Denotation Example

column vector v, w

row transposed
vector vT , wT

general matrix m

Substitution of Vectorial Products

Usually within the framework of matrix calculus, the vector operations are
retained or may be replaced with pure matrix algebra. In matrix notation,
the scalar product of two vectors may be represented by the matrix product
of a row and a column matrix:

v · w = w · v ↔ vT w = wT v. (3.8)

For the vector product, the components of one of the vectors need to be
rearranged into a skew-symmetric matrix and then multiplied with the column
matrix of the other:

v × w ↔ 〈v〉 w = 〈w〉T
v

with v =

⎧
⎨

⎩

v1
v2
v3

⎫
⎬

⎭
↔ 〈v〉 = − 〈v〉T =

⎡

⎣
0 −v3 v2
v3 0 −v1

−v2 v1 0

⎤

⎦ . (3.9)

3.2 Deformable Structures–Mechanical Fields

A mechanical system may consist of several different parts. When such a part
is able to undergo deformations, it will be regarded as a deformable structure.
It may be modeled with a certain complexity, for example with the aid of
shell or beam theory, but can be traced back to the basic configuration of
the continuum, which is the subject of investigation within the homonymous
branch of mechanics. Such a continuum is a continuous domain of spatial,
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planar, or linear extent filled with matter. It consists of elements denominated
as particles, which are small in the macroscopic view and thus mathematically
point-shaped but ample in the microscopic view compared with the materials
texture. Introductory literature for this topic is given, for example, by Becker
and Gross [9] as well as beyond by Wempner [177], Green and Zerna [88],
Sokolnikoff [166].

3.2.1 Loads

Loads may be distinguished with respect to the location of their origin and
nature of their action. External loads act from the outside of the mechanical
system, while the internal loads appear within, and become visible when the
system is cut. Applied or physical loads are regarded as given, whereas reactive
or geometric loads are initially unknown, and result from restrictions on the
motion and deformation. Loads may act upon a volume, a surface, or in ideal
limit cases as line or point loads. They are representable by tensors of first
order, thus taking the form of vectors. For a force F affecting a volume or an
area, the vector fields of force density with a volume force f̌ or an area force
f̂ describe the three- or two-dimensional distribution respectively:

f̌ =
dF

dV
, (3.10a)

f̂ =
dF

dA
. (3.10b)

While forces and moments are considered for the general mechanical system,
the continuum usually is limited to the introduction of the concept of forces.
From this point of view, the Cosserat theory is mentioned here as an exception,
see Rubin [157] for details.

3.2.2 Stresses

The loading of a continuum due to external forces is characterized by the
stresses observed at the individual particles. When the continuum is cut, the
internal force dF at a particle is found to be acting upon the associated surface
element dA in the section plane. The stress vector f̂ can then be defined
in accordance with Eq. (3.10b). The stress tensor σ again results from the
stress vectors of three orthogonal section planes unfolding between the unit
vectors e1, e2, e3 of the Cartesian coordinate system. Given by Eq. (3.11),
it is commonly denominated as the Cauchy stress tensor and is of second
order. Demanding the local balance of moments, its symmetry can be shown
as elucidated by Figure 3.1. An alternative representation may be gained by
resorting the six remaining independent components into a vector as of the
right-hand side of Eqs. (3.12).
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σ =
[
f̂1 f̂2 f̂3

]T
, (3.11)

σ = σT =

⎡

⎣
σ1 τ12 τ31
τ12 σ2 τ23
τ31 τ23 σ3

⎤

⎦ ↔ σ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

τ23
τ31
τ12

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (3.12)

In turn it is possible to deduce the stress vector f̂n acting upon a surface with
the unit normal vector en from the stress tensor. Such an equilibrium relation
is especially useful when it comes to the description of boundary conditions.
This is the Cauchy theorem:

f̂n = σ · en ↔ f̂n = σT en. (3.13)

Fig. 3.1. Stress vectors with associated components by means of an infinitesimal
volume element.

3.2.3 Mechanical Equilibrium

Transitioning from the stress state of a particle to the stress field of the contin-
uum, the interaction of the Cauchy stress tensor components of neighboring
points needs to be investigated. They have to satisfy the conditions of local
equilibrium to be established with the aid of an arbitrary infinitesimal volume
element. Such an element with faces in parallel to the planes of the Cartesian
coordinate system is subjected to the volume force f̌Λ and on the faces to
the components of the Cauchy stress tensor with additional increments in the
form of the first element of Taylor expansions on one of the respective oppos-
ing faces. The balance of moments proves the symmetry of the stress tensor,
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whereas the balance of forces leads to the equation of internal mechanical
equilibrium

�σ + f̌Λ = 0 in Λ. (3.14)

Here the continuum is denoted by the domain Λ and the respective boundary
∂Λ is subdivided to consider two types of boundary conditions. The area ∂Λσ

is subjected to the prescribed loads f̂∂Λ of the physical boundary conditions
in equilibrium with the boundary stresses expressed by application of the
Cauchy theorem of Eq. (3.13) (Neumann boundary conditions):

f̂∂Λ = σ · en on ∂Λσ. (3.15)

The prescribed displacements u∂Λ of the geometric boundary conditions are
imposed on the area ∂Λu (Dirichlet boundary conditions):

u∂Λ = u on ∂Λu. (3.16)

3.2.4 Strains

The deformation of a continuum may be described by the displacement u of
its particles and their strain state. For that purpose, it is convenient to dis-
tinguish between the initial configuration of the undeformed and the current
configuration of the deformed body. A particle can be identified either by its
original position X in the initial configuration, Figure 3.2(a), thus tracking
the particle’s individual state at subsequent positions, or by its momentary
position x in the current configuration, Figure 3.2(b), thus tracking the state
of subsequent particles at this fixed position. The former is the Lagrangian
approach, the latter case is called the Eulerian approach. The strain field of
the continuum may be expressed by the difference of the squared lengths of a

Fig. 3.2. Deformation of a continuum—(a) reference configuration with particle
position X and (b) momentary configuration with particle position x in the inertial
frame of reference.
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line element in the deformed and undeformed state as dxT dx−dXT dX with
dx = dX + du. Contingent upon the elimination either of dx following the
Lagrangian approach or of dX for the Eulerian approach, the Green Lagrange
εGL and the Euler Almansi εEA strain tensor may be derived. The former is
expressible in terms of the displacement gradient:

εGL =
1
2
(
�u + �T u + �T u · �u

)
. (3.17)

The non-linear term is symmetric, as it is represented by a contracting product
involving a dyad and its transpose. We will later demonstrate the evident
symmetry of the linear terms. The general Green Lagrange strain tensor εGL

can represent finite deformations, but for many applications the displacement
gradient remains small and so the non-linear term can be neglected. With
this assumption, the difference in the gradients regarding the deformed and
undeformed line element vanishes and both the Green Lagrange and Euler
Almansi strain tensors become identical:

ε =
1
2
(
�u+�T u

)
= εGL,lin = εEA,lin. (3.18)

When the displacement gradient is split into its symmetric and skew sym-
metric portions, the infinitesimal strain tensor of Eq. (3.18) is identified to
be the former, while the latter represents infinitesimal rotations that do not
contribute to the strain field:

�u =
1
2
(
�u + �T u

)

︸ ︷︷ ︸
ε=�usym

+
1
2
(
�u − �T u

)

︸ ︷︷ ︸
�uskew

. (3.19)

So the infinitesimal strain tensor is established as a symmetric tensor of sec-
ond order. With provision for the engineering shear-strain measures aside the
diagonal, the components can be assigned as given by the left-hand side of
Eqs. (3.20). An alternative representation may be gained by resorting the six
independent components into a vector as shown on the right-hand side of
Eqs. (3.20):

ε = εT =

⎡

⎢
⎣

ε1
1
2γ12

1
2γ31

1
2γ12 ε2

1
2γ23

1
2γ31

1
2γ23 ε3

⎤

⎥
⎦ ↔ ε =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
γ23
γ31
γ12

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (3.20)

3.2.5 Transformations

The transformation of a tensor is accomplished by changing its base vector
system. Such a change from the orthonormal base vectors e1, e2, e3 to the
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arbitrarily rotated orthonormal base vectors es, en, ex may be expressed with
the aid of transformation coefficients in the form of directional cosines between
these vectors, Eq. (3.21a), respectively, their scalar products, Eq. (3.21b):

cai = cos (ea, ei) with a ∈ [s, n, x] and i ∈ [1, 2, 3] , (3.21a)

cai = ea · ei ↔ cai = eT
a ei. (3.21b)

These transformation coefficients may be summarized in the transformation
matrix T for the subsequent transformation of stresses, respectively strains,
in matrix representation:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σs

σn

σx

τnx

τxs

τsn

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
σ(s,n,x)

= T

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

τ23
τ31
τ12

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
σ(1,2,3)

,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

εs
εn
εx

1
2γnx

1
2γxs

1
2γsn

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

= T

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3

1
2γ23
1
2γ31
1
2γ12

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (3.22)

As it is dealt with second-order tensors, the associated base vector pairs need
to be considered, and thus products of the transformation coefficients appear
in the transformation matrix:

T =

⎡

⎢
⎢
⎣

c2
s1 c2

s2 c2
s3 2cs2cs3 2cs3cs1 2cs1cs2

c2
n1 c2

n2 c2
n3 2cn2cn3 2cn3cn1 2cn1cn2

c2
x1 c2

x2 c2
x3 2cx2cx3 2cx3cx1 2cx1cx2

cs1cn1 cs2cn2 cs3cn3 cs2cn3 + cn2cs3 cs1cn3 + cn1cs3 cs1cn2 + cn1cs2
cs1cx1 cs2cx2 cs3cx3 cs2cx3 + cx2cs3 cs1cx3 + cx1cs3 cs1cx2 + cx1cs2
cn1cx1 cn2cx2 cn3cx3 cn2cx3 + cx2cn3 cn1cx3 + cx1cn3 cn1cx2 + cx1cn2

⎤

⎥
⎥
⎦ .

(3.23)
A significant simplification is to be noted when the rotation is performed
around a common base vector. Thus, for example, for a rotation α around the
coincident vectors e2 and en, the transformation coefficients take the following
form:

cs1, cx3 = cosα, cx1 = cos
(π

2
+ α

)
, cs3 = cos

(π

2
− α

)
, (3.24a)

cn2 = cos 0, cn1, cs2, cx2, cn3 = cos
π

2
. (3.24b)

Therewith the transformation matrix reduces to

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos2 α 0 sin2 α 0 −2 sinα cosα 0
0 1 0 0 0 0

sin2 α 0 cos2 α 0 2 cosα sinα 0
0 0 0 − sinα 0 cosα

cosα sinα 0 − sinα cosα 0 cos2 α − sin2 α 0
0 0 0 cosα 0 sinα

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(3.25)
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As visible on the right-hand side of Eqs. (3.22), the transformation of strains
does not yet cope with the engineering shear-strain measures introduced in
the previous subsection. This can be accomplished, as shown for the planar
case by Jones [107], by multiplication with the correction matrix R:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εs
εn
εx
γnx

γxs

γsn

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
ε(s,x,n)

= R

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εs
εn
εx

1
2γnx
1
2γxs
1
2γsn

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
γ23
γ31
γ12

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
ε(1,2,3)

= R

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3

1
2γ23
1
2γ31
1
2γ12

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

with R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.26)

When these equations are utilized for the strain transformation relation on
the right-hand side of Eqs. (3.22), the transformation matrix is multiplied
from the left by the correction matrix and from the right by its inverse. For
the rotation around a common base vector, it is straightforward to show that
this results in a transposed and inverted transformation matrix:

ε (s, x, n) = RTR−1ε (1, 2, 3) =
(
TT

)−1
ε (1, 2, 3) . (3.27)

Complementarily, the stress transformation relation of the left-hand side of
Eqs. (3.22) will be given in the corresponding form:

σ (s, n, x) = Tσ (1, 2, 3) . (3.28)

3.3 Dielectric Domains–Electrostatic Fields

In contrast to conductive material with the ability to accommodate electric
flow fields, dielectric matter, as well as vacuum, may exhibit electrostatic
fields. Although the physical condition of the examined dielectric domain is
not limited to solid state, it may be described in analogy with deformable
structures as a continuum. In comparison to the mechanical fields, the tensors
characterizing the electrostatic fields will be one order lower. A comprehensive
description of electrical engineering is given by Paul [140], while electromag-
netic fields are detailed by Fischer [74], Lehner [120], and Reitz et al. [153].
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3.3.1 Electric Charge

Length, mass, and time are the elementary quantities of mechanics. For elec-
tric phenomena, they have to be complemented with the electric charge Q.
The charge of particles, usually denominated as charge carriers, implicates a
repulsive or attractive force between them for charges of identical or opposite
sign, respectively. When charge is distributed over a volume or an area, the
scalar fields of the electric charge density with volume charge q̌ or area charge
q̂ describe the three- or two-dimensional distribution, respectively:

q̌ =
dQ
dV
, (3.29a)

q̂ =
dQ
dA
. (3.29b)

With the exception of the limit case of vacuum, a dielectric holds charge
carriers just like a conductor. The substantial difference and reason for the
distinct types of electric fields is that in the dielectric the charge carriers are
not able to move. Thus, the induced electric field is static, although magnitude
and direction may change due to variable charges.

3.3.2 Electric Flux Density

The electrostatic field expands between charges separated by a dielectric and
may be illustrated by the lines of electric flux connecting them. Positive and
negative charges are sources and drains of the electric flux. So the electric
flux only depends on the charges but not on the dielectric. The contribution
of a charge Q can be expressed by the integral of the electric flux density D,
occasionally also denoted electric displacement, over an arbitrary enclosing
envelope with the surface normal ēn in an outward direction:

Q =
∮

D · dA → dQ = D · dA = D · ēn dA. (3.30)

This is the Gaussian law of electrostatics in integral and differential form. The
latter may be reorganized to express the electric flux density with the aid of
the charge density of the dedicated area, as given by Eq. (3.29b), leading to
the equivalent of the Cauchy theorem of mechanics from Eq. (3.13):

dQ
dA

= q̂ = D · ēn = DT ēn. (3.31)

3.3.3 Electrostatic Equilibrium

The charge affecting the surrounding domain Λ may be expressed in terms
of the spatial charge density through integration of Eq. (3.29a) as well as in
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terms of the electric flux density on its boundary ∂Λ given by the Gaussian
law in Eq. (3.30):

Q =
∫

Λ

q̌Λ dV, (3.32a)

Q =
∫

∂Λ

D · dA. (3.32b)

The surface integral in Eq. (3.32b) can be transformed into a volume integral
over the enclosed domain by using Gauss’s integral theorem, Eq. (3.7). Equat-
ing with Eq. (3.32a) leads to the electrostatic equilibrium condition, which is
known as one of Maxwell’s equations in integral form:

∫

Λ

q̌Λ dV =
∫

Λ

�D dV . (3.33)

As the considered domain may be arbitrarily chosen, this relationship between
spatial charge density and divergence of flux density needs to be satisfied at
every point. Thus, the differential form of Maxwell’s equation can be obtained:

�D − q̌Λ = 0 in Λ. (3.34)

Just as in the mechanical case, the boundary ∂Λ of the dielectric domain Λ
is subdivided to consider two types of boundary conditions. The equilibrium
between prescribed charges q̂∂Λ on the area ∂ΛD and the electric flux density
can be established with Eq. (3.31). Since these charges are located on the
outside, the appearing normal vector ēn is pointing inward. Thus, for an
outward oriented surface normal en = −ēn on the boundary of the dielectric
domain, it may be written as

−q̂∂Λ = D · en on ∂ΛD. (3.35)

For the area ∂Λϕ, the electric potential ϕ∂Λ is prescribed as

ϕ∂Λ = ϕ on ∂Λϕ. (3.36)

3.3.4 Electric Field Strengths

The vector field of electric field strength E represents the force action of the
charges already mentioned in Section 3.3.1. It is defined as the ratio of the
vector of exerted force F and scalar of causative charge Q at every point
within the field

E =
F

Q
. (3.37)

The work dW performed by a force along the differential distance vector ds
is formulated in Eq. (3.38a). Assuming that the considered field is a poten-
tial function field and thus irrotational, the work done by a charge may be
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expressed as of Eq. (3.38b):

dW = F · ds, (3.38a)
dW = −Q dϕ. (3.38b)

Equating Eqs. (3.38a) and (3.38b) and couching the relation of force and
charge as of Eq. (3.37), the electric field strength E may be determined as
a function of the electric potential ϕ after auxiliary expansion with the unit
vector es of the above-mentioned differential distance vector ds:

E · ds = −dϕ,
E dses · es = −dϕes,

E = − dϕ
ds

es = −�ϕ.
(3.39)

Examining a single component Ei of the electric field strength vector E, it
may be described for a linear electric potential distribution between two points
with the potentials ϕa and ϕb and the distance vector component si in the
regarded direction by

Ei = −ϕb − ϕa

si
. (3.40)

3.4 Principle of Virtual Work

The field of analytical mechanics is characterized by variational principles pos-
tulated as axioms and dealing with scalar quantities like work or energy. In
addition to the actual states of the mechanical system, there are virtual states,
which in general are supposed to be independent of time, small, and admissi-
ble, but notional: they do not necessarily have to occur. From the mathemat-
ical point of view, these virtual states represent test functions. While for the
case of actual quantities, the letter “d” is usually used to indicate differentially
small values, such virtual values are denoted with the symbol “δ” following
the notation in the calculus of variations. This approach can be applied to the
electric properties of a system, too. The principles of mechanics may be found
in Päsler [139], Budó [39], Lanczos [118], Szabó [172], or Dym and Shames
[70], while the extension to coupled electrostatic fields is accredited to Holland
and EerNisse [100] and given, for example, by Ghandi and Hagood [81].

3.4.1 General Principle of Virtual Work

This fundamental principle of physics is given by the axiom of Remark 3.1 in
its most general formulation, where δW is the total virtual work of the system.
For mechanical fields in deformable structures as well as for electrostatic fields
in dielectric domains, it can be restated by the equality of internal δU and
external δV contributions.
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Remark 3.1. A physical system will be in equilibrium only if the total virtual
work in accordance with the admissibility criteria vanishes.

δW = δU − δV = 0. (3.41)

Mechanical work at every particle of a continuum results from acting force
and respective displacement or local stress and strain. correspondingly. So the
above axiom of Remark 3.1 actually comprises two principles involving either
virtual loads or virtual displacements. A brief derivation of both will be given
in the following subsections. Similarly, the electric work can be treated, but
we will present only one of the variants. The different formulations of the
principle of virtual work are independent of a constitutive law and may be
denoted as the weak forms of equilibrium, as only the equilibrium conditions
have to be fulfilled in the integral mean. Weaker requirements with regard
to differentiability of the involved functions have to be fulfilled, since the
order of derivatives is reduced in comparison to the equilibrium formulation
of Eqs. (3.14) and (3.34).

3.4.2 Principle of Virtual Displacements

The mechanical equilibrium of an infinitesimal volume element of a deformable
structure, given by Eq. (3.14), may be multiplied with the vector field of
virtual displacements δu and integrated over the domain Λ yielding

∫

Λ

δu · (�σ + f̌Λ) dV = 0. (3.42)

Separation of the terms leads to Eq. (3.43a), where the first term can be split
into two parts with the aid of the divergence product rule of Eq. (3.6b), as
shown in Eq. (3.43b). With the commutativity of the terms in the first inte-
grand according to Eq. (3.3) and application of Gauss’s integral theorem of
Eq. (3.7) to the second integrand, while interchanging the multipliers accord-
ing to Eq. (3.5), the formulation of Eq. (3.43c) is reached:

∫

Λ

δu · �σdV +
∫

Λ

δu · f̌Λ dV = 0, (3.43a)

−
∫

Λ

σ · · �δudV +
∫

Λ

�
(
σT · δu

)
dV +

∫

Λ

δu · f̌Λ dV = 0, (3.43b)

−
∫

Λ

�δu · · σ dV +
∫

∂Λ

δu · σ · en dA+
∫

Λ

δu · f̌Λ dV = 0. (3.43c)

The transformation of the volume integral over Λ into a surface integral over
the volumes closed surface ∂Λ allows for the application of the physical bound-
ary conditions of Eq. (3.15). The virtual displacement gradient �δu may be
split into its symmetric and skew symmetric portions, as has been shown for
the actual case in Eq. (3.19). The influence of the skew-symmetric portion in
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the contracting product with the stress tensor σ disappears due to the sym-
metry of the latter. As the remaining part represents a virtual variant δε of
the linear Green strain tensor of Eq. (3.18), one obtains:

−
∫

Λ

δε · · σdV +
∫

∂Λσ

δu · f̂∂Λ dA+
∫

Λ

δu · f̌Λ dV = 0. (3.44)

Consequently, with transition to the alternative vectorial arrangement of the
stress and strain components as given on the right-hand sides of Eqs. (3.12)
and (3.20), the final form in matrix representation is

∫

∂Λσ

δuT f̂∂Λ dA+
∫

Λ

δuT f̌Λ dV
︸ ︷︷ ︸

δV md

=
∫

Λ

δεT σ dV
︸ ︷︷ ︸

δU md

. (3.45)

This formulation of the principle of virtual work is the principle of virtual
displacements, which appears in the literature sometimes under the name
of the preceding. Naturally, the virtual strain energy δU md exists only for
mechanical systems with deformable parts. As the contained virtual strain
tensor is assembled from derivatives of the virtual displacements, these have
to be continuously differentiable. The virtual work of external impressed loads
δV md also includes the limiting cases of line or point loads. External reactive
loads do not contribute when the virtual displacements are required to vanish
at the points of action of these loads, and thus the virtual displacements have
to comply with the actual geometric or displacement boundary conditions of
Eq. (3.16). With these presumptions, the initial axiom of Remark 3.1 may
now be reformulated for the virtual displacements.

Remark 3.2. A uniform mechanical system will be in equilibrium if the virtual
work of the actual external and internal loads for arbitrary admissible virtual
displacements vanishes.

3.4.3 Principle of Virtual Loads

The other formulation of the principle of virtual work for mechanical systems
requires the introduction of virtual loads instead of virtual displacements.
Therefore, only those variations of external loads and stress tensor are con-
sidered admissible that are compatible with the equations of equilibrium in-
side the mechanical system and on the boundary. The interior equilibrium of
Eq. (3.14) for the virtual loading leads to the following form:

�δσ + δf̌Λ = 0 in Λ. (3.46)

As the actual external loads of the physical boundary conditions, given by
Eq. (3.15), completely satisfy the equilibrium on the boundary ∂Λσ, the su-
perimposed virtual external loads have to vanish there. On the boundary ∂Λu,
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they indeed have to be in equilibrium with the virtual boundary stresses in
accordance with the Cauchy theorem of Eq. (3.13):

δf∂Λ = δσ · en on ∂Λu. (3.47)

Now the virtual equilibrium of Eq. (3.46) may be multiplied by the vector
field of actual displacements u and integrated over the Volume Λ yielding

∫

Λ

u · (�δσ + δf̌Λ) dV = 0. (3.48)

When Eq. (3.48) is manipulated as before, considering the actual and virtual
boundary conditions on ∂Λu given by Eqs. (3.16) and (3.47), the principle of
virtual loads, also known as the principle of complementary virtual work, may
be formulated as

∫

∂Λu

uT
∂Λδf̂∂Λ dA+

∫

Λ

uT δf̌Λ dV
︸ ︷︷ ︸

δV ml

=
∫

Λ

εT δσ dV
︸ ︷︷ ︸

δU ml

. (3.49)

Here δV ml is the complementary virtual work of external loads, and δU ml the
complementary virtual strain energy. The initial axiom of Remark 3.1 may
now be reformulated for the virtual loads.

Remark 3.3. A uniform mechanical system will be in equilibrium if the virtual
work of arbitrary compatible virtual external and internal loads for actual
displacements vanishes.

3.4.4 Principle of Virtual Electric Potential

Electric systems may be treated like mechanical ones; the quantities appearing
in electricity have a lower tensorial order: the mechanical displacement is a
vector field, the electric potential is a scalar field. The electrostatic equilibrium
of an infinitesimal volume element of a dielectric domain, given by Eq. (3.34),
may be multiplied by the scalar field of a virtual electric potential δϕ and
integrated over the Volume Λ, yielding

∫

Λ

δϕ(�D − q̌Λ) dV = 0. (3.50)

Separation of the terms leads to Eq. (3.51a), where the first term can be
split into two parts with the aid of the divergence product rule of Eq. (3.6a),
as shown in Eq. (3.51b). With the commutativity of the terms in the first
integrand according to Eq. (3.1) and application of Gauss’s integral theorem
of Eq. (3.7) to the second integrand, the formulation of Eq. (3.51c) is reached:
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∫

Λ

δϕ�D dV −
∫

Λ

δϕq̌Λ dV = 0, (3.51a)

−
∫

Λ

D · �δϕdV +
∫

Λ

�(δϕD) dV −
∫

Λ

δϕq̌Λ dV = 0, (3.51b)

−
∫

Λ

�δϕ · D dV +
∫

∂Λ

δϕD · en dA −
∫

Λ

δϕq̌Λ dV = 0. (3.51c)

The transformation of the volume integral over Λ into a surface integral over
the volume’s closed surface ∂Λ allows for the application of the surface flux
boundary conditions of Eq. (3.35). The virtual electric potential gradient �δϕ
may be represented by the virtual variant δE of the electric field strength
vector of Eq. (3.39):

∫

Λ

δE · D dV −
∫

∂ΛD

δϕq̂∂Λ dA −
∫

Λ

δϕq̌Λ dV = 0. (3.52)

With rearrangement of terms and conversion to matrix representation, the
principle of virtual electric potential takes its final form as

∫

∂ΛD

δϕq̂∂Λ dA+
∫

Λ

δϕq̌Λ dV
︸ ︷︷ ︸

δV ep

=
∫

Λ

δET D dV
︸ ︷︷ ︸

δU ep

. (3.53)

Here δV ep is the virtual work of external charges, and δU ep the virtual work of
internal charges. As the contained virtual electric field strength vector δE is
assembled from derivatives of the virtual electric potential δϕ, the latter has
to be continuously differentiable. Further on, the virtual electric potential has
to comply with the actual conductive boundary conditions of Eq. (3.36). The
initial axiom of Remark 3.1 may now be reformulated for the virtual electric
potential.

Remark 3.4. An electrostatic system will be in equilibrium if the virtual work
of the actual external and internal charges for an arbitrary admissible virtual
electric potential vanishes.

3.4.5 D’Alembert’s Principle in the Lagrangian Version

The previous examinations of mechanical systems can be extended to acceler-
ated motions by means of a rigid particle with the mass dm and volume dV ,
which are proportional via the density ρ:

dm = ρdV. (3.54)

Following Szabó [172], the resultant dF of impressed forces acting upon the
particle may be split vectorially as follows:

dF = dF ∗ + dF̄ . (3.55)
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When dF ∗ is equivalent to the inertia contributions for an acceleration a
in accordance with the fundamental Newtonian law of motion, as given by
Eq. (3.56a), then the remainder dF̄ needs to take the form of Eq. (3.56b):

dF ∗ = a dm, (3.56a)
dF̄ = dF − a dm. (3.56b)

In compliance with Lanczos [118], dF̄ may be called the effective force. As
stated by Eq. (3.56b), it reflects the extension of the impressed force resul-
tant dF by the inertia term −a dm. In this way it is possible to reduce a
problem of dynamics formally to one of statics and, thus, to deduce the dif-
ferential equations describing the effects of accelerated motion. This is known
as d’Alembert’s principle. Because of its reactive character, as mentioned by
Budó [39] and discussed in Section 3.4.2, the effective force dF̄ does not per-
form virtual work. With the virtual displacements δu, it may be written for
the particle with the aid of Eq. (3.56b):

δuT dF̄ = δuT (dF − a dm) = 0. (3.57)

For the rigid continuum of volume Λ consisting of such particles in accelerated
motion, the virtual work may be formulated as given by Eq. (3.58). This ex-
tension of the principle of virtual displacements is referred to as d’Alembert’s
principle in the Lagrangian version:

∫

Λ

δuT dF̄ =
∫

Λ

δuT (dF − a dm) = 0. (3.58)

The result of impressed forces dF = dF Λ + dF ∂Λ consists of contributions
from volume f̌Λ and area f̂∂Λ loads and therefore may be replaced by means
of Eqs. (3.10a) and (3.10b). Further on, the density ρ as given by Eq. (3.54)
is introduced. Therewith the final representation of d’Alembert’s principle in
the Lagrangian version is obtained:

∫

∂Λσ

δuT f̂∂Λ dA+
∫

Λ

δuT f̌Λ dV
︸ ︷︷ ︸

δV md

−
∫

Λ

δuT aρdV
︸ ︷︷ ︸

δV dl

= 0. (3.59)

The criteria of admissibility for the virtual displacements have been discussed
in Section 3.4.2. As rigidity has been assumed in the case at hand, the oc-
curring displacements do not cause strains. Therefore, virtual strains do not
exist and, consequently, there are no contributions of internal loads to the
virtual work. As expected, the virtual work of external impressed loads δV md

is identical to the term in the static principle of virtual displacements. The
accelerated motion results in the additional term δV dl representing the virtual
work of the loads of inertia. In general, the principle may be formulated as
follows:

Remark 3.5. A mechanical system of rigid parts in accelerated motion will be
in equilibrium if the virtual work of the actual impressed and inertia loads for
arbitrary admissible virtual displacements vanishes.
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3.4.6 Summation of Virtual Work Contributions

In Sections 3.4.2 and 3.4.5, the virtual work contributions of a mechanical
system being either static and deformable or dynamic and rigid were derived.
They can be combined to picture a deformable dynamic system with the terms
of Eqs. (3.45) and (3.59) as follows:

δV md + δV dl = δU md, (3.60a)
∫

∂Λσ

δuT f̂∂Λ dA+
∫

Λ

δuT (f̌Λ − aρ) dV =
∫

Λ

δεT σ dV. (3.60b)

Alternatively, this formulation may be deduced starting from the interior con-
servation of momentum, Eq. (3.61), which upgrades the interior mechanical
equilibrium, Eq. (3.14), with the inertia contributions of d’Alembert’s prin-
ciple, Eq. (3.56b). Thereby the derivation steps can be transferred from Sec-
tion 3.4.2.

�σ + f̌Λ − aρ = 0 in Λ. (3.61)
The electric contributions from the principle of virtual potential, as derived in
Section 3.4.4 and given by Eq. (3.53), still have to be incorporated. This can
be achieved equivalently by the addition or subtraction of Eqs. (3.60b) and
(3.53). In conformance with Allik and Hughes [4] and in view of the symmetry
properties of the not yet introduced constitutive relation, the electrostatic
expressions will be subtracted from the mechanical ones. The virtual work of
external contributions takes the following form:

δV = δV md + δV dl − δV ep

=
∫

∂Λσ

δuT f̂∂Λ dA+
∫

Λ

(
δuT

(
f̌Λ − aρ

)
− δϕq̌Λ

)
dV −

∫

∂ΛD

δϕq̂∂Λ dA

=
∫

∂Λ

{
δuT −δϕ

}
{

f̂∂Λ

q̂∂Λ

}

dA+
∫

Λ

{
δuT −δϕ

}
{

f̌Λ − aρ
q̌Λ

}

dV.

(3.62)

Since the forces f̂∂Λ and charges q̂∂Λ on the boundary are zero apart from
their respective working surface, the surface integrals may be summarized.
Then the integrands can be collated in vector form, as shown in the last line.
Similarly, the virtual work of internal contributions can be formulated, where
the vectors of virtual strains δεT and virtual electric field strength δET , as
well as the vectors of actual stresses σ and actual electric flux density D, can
be merged:

δU = δU md − δU ep

=
∫

Λ

δεT σ dV −
∫

Λ

δET D dV

=
∫

Λ

{

δεT δĒ
T
}{

σ
D

}

dV. (3.63)

Here the negative sign has been incorporated into the representation of the
electric field strength by setting Ē = −E.
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3.5 Other Variational Principles

The principle of virtual work is suitable for solving a wide range of problems.
There are tasks however where different but related formulations might be
more useful. Thus, two prominent variational principles will be extended here
to take into account materials with electromechanical couplings. This novel
approach to Dirichlet’s principle of minimum potential energy will be em-
ployed later in Section 6.3.2. In comparison to the principle of virtual work,
the extended general Hamilton’s principle is considered to be equivalent and
even more versatile, but only its derivation will be demonstrated here.

3.5.1 Extended Dirichlet’s Principle of Minimum Potential Energy

Another important principle of mechanics, see Dym and Shames [70] or Sokol-
nikoff [166] for details, will be extended here to electromechanically coupled
problems. Let there be a function U0 to establish the following relation be-
tween the fields of mechanical stress σ and electric flux density D on the one
hand, and the fields of mechanical strain ε and, for reasons to be clarified in
Section 4.4.4, negative electric field strength Ē on the other:

{
σ
D

}

=
∂U0

∂
{ ε

Ē

} =

{
∂U0
∂ε

∂U0

∂Ē

}

. (3.64)

Such a function U0 can be shown to exist for conservative systems with their
reversible processes, see Dym and Shames [70]. Thus, unlike the principle
of virtual work derived above, the subsequent examination is limited to cer-
tain material properties. For mechanical fields, the demand for reversibility
implies elastic material behavior, linear as well as non-linear. Hence, in the
accustomed representations restricted to mechanical fields, the function U0 is
called the elastic potential or strain energy density. In anticipation of subse-
quent chapters, it needs to be stated here that mechanical behavior as well
as electromechanical coupling and electrostatic behavior of the considered
piezoelectric materials is conservative as long as repolarization is avoided, see
Figure 4.1. The function U0 will be determined and analyzed in Section 4.4.4
using the then available constitutive relation. For the extended examination
at hand, the function U0 may be described as electroelastic energy density;
sometimes it is termed electric enthalpy density, see Tichý and Gautschi [174].
Consequently, integration over the entire structure results in the electroelastic
energy

U =
∫

Λ

U0 dV. (3.65)

In the virtual work of internal contributions given by Eq. (3.63), the field
quantities appearing in virtual and actual form are in no way connected.
With the substitution of Eq. (3.64) into Eq. (3.63), this independence from
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the material behavior is abolished:

δU =
∫

Λ

{

δεT δĒ
T
} ∂U0

∂
{ ε

Ē

} dV = δ
∫

Λ

U0 dV. (3.66)

In the static portions of the virtual work of external contributions, the forces
and charges acting on the constant volume and surface of the structure are
not altered by the arbitrary variations δu of displacements and δϕ of electric
potential respectively. Thus, the left-hand sides of Eqs. (3.45) and (3.53) may
be written in the following form:

δV md = δ
(∫

∂Λσ

uT f̂∂Λ dA+
∫

Λ

uT f̌Λ dV
)

, (3.67a)

δV ep = δ
(∫

∂ΛD

ϕq̂∂Λ dA+
∫

Λ

ϕq̌Λ dV
)

. (3.67b)

Equations (3.66) and (3.67) change the principle of virtual work of Eq. (3.41)
to the following representation:

δ
(

U − V md + V ep
)

= 0. (3.68)

To satisfy this statement, the expression in parentheses describing the poten-
tial energy is required to assume a stationary value. Furthermore, it can be
shown that this extremum has to be the minimum of the potential energy,
see Sokolnikoff [167] or Knothe and Wessels [113]. Thus, Dirichlet’s principle
of minimum potential energy can be extended to electromechanically coupled
materials:

Remark 3.6. A uniform electromechanically coupled system will be in equilib-
rium for the set of displacements and electric potential satisfying the boundary
conditions that produces the absolute minimum of potential energy.

U − V md + V ep ⇒ min. (3.69)

3.5.2 Extended General Hamilton’s Principle

D’Alembert’s principle in the Lagrangian version, as derived in Section 3.4.5,
uses infinitesimal virtual displacements about the instantaneous system state.
For this reason, it is referred to as a differential principle. When infinitesimal
virtual deviations from the entire motion of a system between two instants in
time are examined, then it is an integral principle like Hamilton’s principle, see
Goldstein [86], Sokolnikoff [167], Szabó [172] or Morgenstern and Szabó [126].
Here the derivation from the prior to the latter principle will be demonstrated,
starting with conversion of the virtual work of the inertia loads δV dl, included
in Eq. (3.59). With Eq. (3.54) and acceleration as derivative of velocity, it
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may be split as follows:

δV dl = −
∫

Λ

δuT a dm with a =
dv

dt

= −
∫

Λ

δuT dv

dt
dm = − d

dt

∫

Λ

δuT v dm+
∫

Λ

d
dt
δuT v dm. (3.70)

The last term, with the aid of Schwarz’s theorem stating the possibility to
interchange the order of taking partial derivatives and velocity as derivative
of displacement, can be shown to represent the virtual change of kinetic en-
ergy V ke:

δV ke =
∫

Λ

d
dt
δuT v dm with

d
dt
δuT = δ

duT

dt
= δvT

=
∫

Λ

δvT v dm = δ
1
2

∫

Λ

|v|2 dm. (3.71)

Application of Eq. (3.71) to (3.70) leads to Lagrange’s central equation:

δV dl = − d
dt

∫

Λ

δuT v dm+ δV ke. (3.72)

With its substitution into d’Alembert’s principle in the Lagrangian version of
Eq. (3.59), one obtains Eq. (3.73). Integration over the period of time from t0
to t1, where the virtual displacements are zero by definition at these end points
such that δu (t0) = δu (t1) = 0, leads to the general Hamilton’s principle of
Eq. (3.74):

δV md + δV ke =
d
dt

∫

Λ

δuT v dm, (3.73)
∫ t1

t0

(
δV md + δV ke

)
dt = 0. (3.74)

Instead of using d’Alembert’s principle in the Lagrangian version, Lagrange’s
central equation, Eq. (3.72), may be substituted into the complete principle
of virtual work, Eq. (3.41) with (3.62) and (3.63). After the intermediate step
of Eq. (3.75), this finally leads to the general Hamilton’s principle with an
extension to deformable piezoelectric bodies of Eq. (3.76):

δV md − δV ep + δV ke − δU md + δU ep =
d
dt

∫

Λ

δuT v dm, (3.75)
∫ t1

t0

(δV md − δV ep + δV ke − δU md + δU ep) dt = 0. (3.76)
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Piezoelectric Materials

As pointed out in the introductory chapter, there are many multifunctional
materials that can be applied to realize adaptive structural systems. They
are distinguished by means of excitation mechanism, application range, and
maturity of development. While research in material science will widen the
choice in the future, currently only piezoelectric materials are suitable for
the intended purpose. Therefore, the piezoelectric effect and its constitutive
description is examined in detail in this chapter.

4.1 Piezoelectric Effect

Piezoelectricity represents the interdependence between mechanical and elec-
trostatic fields, which is approximately proportional for the majority of ap-
plications. The direct piezoelectric effect describes the electrostatic reaction
to a mechanical load, while the converse piezoelectric effect describes the me-
chanical reaction to an electrostatic load. Thorough portrayals of the physical
background are given by Cady [41], Ikeda [103], Tichý and Gautschi [174]
as well as application oriented presentations by Chopra [53], Janocha [106],
Elspass and Flemming [72].

4.1.1 Historical Development

According to Cady [41], tourmaline crystals came from Ceylon to Europe
in the early 18th century and were found to possess a number of remark-
able characteristics. Although a relationship between mechanical and elec-
trical behavior had been expected by the scientific community, it could not
be demonstrated experimentally for many years. Finally in 1880, the broth-
ers Pierre and Jacques Curie [59,60] discovered the proportionality of pres-
sure applied in specific directions and electric charges appearing with op-
posed signs on opposed surfaces. The following year, the term piezoelectric
effect has been proposed for the observed behavior by Hankel [91]. The prefix

T.H. Brockmann, Theory of Adaptive Fiber Composites,
Solid Mechanics and Its Applications 161,
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“piezo” is derived from the Greek verb “πιέζω” meaning to press or squeeze.
The Curie brother also experimentally demonstrated the existence of the
converse piezoelectric effect. Since then, other naturally occurring monocrys-
talline piezoelectric materials have been examined, the most important being
quartz. Significant impetus has been generated by the discovery of piezo-
electricity in polycrystalline ceramic materials like barium-titanate (BT) in
the 1940’s and lead-zirconate-titanate (PZT) in the 1950’s; the latter still
dominates transducer applications. Semicrystalline piezoelectric polymers on
the basis of polyvinylidenefluoride (PVDF) usually in the form of thin films
have been available since the late 1960’s. Newer development tendencies are
directed towards the improvement of PZT ceramics by doping them with
additional components or producing artificial piezoelectric monocrystals, see
Nelson et al. [131].

4.1.2 Crystal Structures

The piezoelectric effect is associated with the existence of an electric dipole in
the elementary cell of the crystal structure. Such an electric dipole represents
positive and negative charges with non-coinciding centers of concentration.
The polar axis describes the dipole orientation with the polar direction from
the negative to the positive center. Charge quantity and center-to-center spac-
ing define the dipole moment. Relating the latter to the associated volume
characterizes the polarization. An electric dipole and thus polarization can
exist only when the elementary cell is not symmetric with respect to a point
referred to as the inversion center, see Giacovazzo [83]. So the piezoelectric
effect occurs only in such non-centrosymmetric crystals.

Polar Crystals and Polar-Neutral Crystals

The non-centrosymmetric crystals may be divided into two groups with re-
spect to the occurrence of polar directions, see Tichý and Gautschi [174] or
Moulson and Herbert [128]. When all dipoles are aligned with a unique polar
direction, the crystals possess a spontaneous polarization and are denominated
as polar crystals. The change of this existing polarization due to mechanical
implications leads to the piezoelectric effect. Thermal influences may also
change the spontaneous polarization of polar crystals; the resulting behavior
is called the pyroelectric effect. In the case of non-unique polar directions,
a neutralization occurs and prevents a spontaneous polarization. Therefore,
such crystals are called polar-neutral crystals. Here the deformation causes
a modification of the crystal symmetry, such that a unique polar direction
emerges and the crystal becomes polarized along this direction. Thus, the
polar-neutral crystals exhibit the piezoelectric effect but not the pyroelectric
effect.
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Ferroelectric Polar Crystals

There is an important subgroup of the polar crystals which possesses the abil-
ity to change the spontaneous polarization in reaction to electrostatic fields
to another stable orientation, respectively, to a reverse configuration. Due to
the analogy to ferromagnetic behavior, the name ferroelectricity has been in-
troduced. Corresponding to the magnetic domains associated with the name
of Pierre-Ernest Weiss, domains of largely uniform dipole orientations develop
in the process of minimization of the free energy. These domains cause the
non-linear properties of ferroelectric materials, especially with respect to the
electrostatic polarization resulting in a hysteresis curve in alternating fields,
Figure 4.1(a). In general, the polarization is also associated with a change in
material properties and shape due to the implied modifications of the crystal
structure. Therefore, the existence of a residual polarization in ferroelectric
materials consequently leads to a lasting deformation, Figure 4.1(b). As repo-

Fig. 4.1. Qualitative representation of hysteresis loops of PZT material; (a) polar-
ization P and (b) strain ε as functions of the applied electric field strength E.
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larization reduces the life span of ferroelectric material, it is usually polarized
once and then operated within subcritical field levels. For PZT materials, this
often is an electric field strength in the range between −0.5 and 1.5 kV·mm−1.
As shown in Figure 4.1(b), the electromechanical coupling is still not fully lin-
ear within this range. Details on the matters of hysteretic behavior and non-
linear coupling are provided, for example, by Kamlah [109] and Zhou [187].
Another ferroelectric characteristic is the limitation of the spontaneous po-
larization state to a certain temperature range. Above a critical temperature,
called the Curie temperature, there is a phase change to a centrosymmetric
crystal class, and the piezoelectric effect vanishes.

Monocrystalline Examples

The monocrystalline seignette salt NaKC4H4O6·H2O was the first found to
belong to the group of ferroelectric polar crystals, while aluminum-boron-
silicate (Na,Ca)(Mg,Fe)3B3Al6Si6(O,OH,F)31, known as tourmaline, is an
example of a non-ferroelectric polar crystal. Siliciumdioxide or quartz SiO2

below a temperature of 573◦C is a typical representative of a polar-neutral
crystal. Recent developments in material science are concerned with ferro-
electric single crystal systems like (1 − x)Pb(Mg1/3Nb2/3)O3−x PbTiO3 or
(1 − x)Pb(Zn1/3Nb2/3)O3−x PbTiO3, where x indicates the share of lead-
titanate. These materials with the abbreviations PMN-PT and PZN-PT have
very competitive electromechanical properties.

Polycrystalline Characteristics

While monocrystals are characterized by a continuous spatial arrangement
of elementary cells, polycrystals consist of a multitude of crystalline grains,
so-called crystallites, with alike properties inside their boundaries but chang-
ing orientations across the boundaries. A regular spatial pattern of oriented
crystallites is called texture. In order to exhibit the piezoelectric effect, such
textures also must not possess an inversion center, otherwise, even when the
crystallites are piezoelectric, the effect would be neutralized. Piezoelectric ce-
ramics are a typical example of polycrystalline materials. Most prominent with
respect to a broad application are barium-titanate BaTiO3 and particularly
lead-zirconate-titanate Pb(Zr,Ti)O3. The structure of both materials may be
summarized by the general formula A2+B4+O2−

3 . With respect to their ferro-
electric nature, they switch from the non-centrosymmetric tetragonal crystal
class to the centrosymmetric cubic crystal class when their respective Curie
temperature is exceeded and thus loose their piezoelectric properties. Both
configurations are shown in Figure 4.2 with the decisive asymmetric disloca-
tion of the B4+ component.
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Fig. 4.2. Elementary crystal cell; (a) cubic configuration and (b) tetragonal config-
uration due to polarization along the e3-direction.

Semicrystalline Characteristics

Semicrystalline polymers are thermoplastics and consist of crystallites sur-
rounded by a transitional phase which again is embedded into an amor-
phous phase. Polyvinylidenefluoride is such a material with piezoelectric prop-
erties. Its long molecular chains, typical for a polymer, may be found in
different configurations of spatial arrangement with a polar and a polar-
neutral crystal structure for each of these configurations. Subjected to ther-
mal, mechanical, and electrostatic influences, the properties may be altered
significantly. The reaction on electrostatic influences points to the ferroelec-
tric nature of semicrystalline polymers. Details are given, for example, by
Elspass and Flemming [72].

4.2 Constitutive Formulation

The fundamental considerations of Chapter 3 are independent of the proper-
ties of the materials and therefore are not sufficient to describe the behavior
of the mechanical or electrostatic system. The missing links are the consti-
tutive relations between stresses and strains on the mechanical side, between
flux density and field strength on the electrostatic side, and the connection
between the mechanical and electrostatic side. Effects like piezoelectricity cou-
ple the mechanical and electrostatic fields. For the subsequent considerations
identical material properties at every location of the continuum can be pre-
sumed due to its macroscopic homogeneity.
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4.2.1 Mechanical Fields

We limit our examination to materials with a unique coherence between the
present local stress and strain states, where deformation history or time-
dependent processes do not matter. Under these conditions, the removal of
loads leads to a complete reversal of deformations. In addition, we demand
independence from mechanical field intensities within the intensity levels of
interest:

Remark 4.1. The mechanical behavior of the materials will be assumed to be
elastic and linear.

The Cauchy stress tensor σ and Green Lagrange strain tensor εGL are of
second order and may be connected for a general anisotropic linear elastic
material via a fourth-order tensor. The originally 81 constants of such an
elasticity tensor reduce to 36 due to the symmetry of the stress and strain
tensor, and may be represented by a square matrix of dimension six. Because
of the potential property of elastic materials, such a matrix is symmetric and
thus the number of independent components is further reduced to 21. For
small displacements, the mechanical constitutive relation with the stiffness
matrix C or with the compliance matrix S reads

σ = Cε or ε = Sσ with S = C−1. (4.1)

Technically relevant applications are hardly concerned with complete aniso-
tropy. Composites with a regular distribution of constituents along the princi-
pal axes are an example of a material with three orthogonal planes of symme-
try. The description of such orthotropic properties requires nine independent
matrix entries:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

τ23
τ31
τ12

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
γ23
γ31
γ12

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (4.2)

Composites with uniformly distributed unidirectional fibers aligned with a
principal axis additionally possess a plane of isotropy in the transverse direc-
tion, where the material behavior is invariant to rotations. For such trans-
versely isotropic properties, the number of constants is reduced to five. When
the concerned axis of rotation is oriented in the e3-direction,

C22 = C11, C23 = C13, C55 = C44, C66 =
1
2

(C11 − C12) . (4.3)
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If every arbitrary section plane is a plane of isotropy, the material is isotropic;
there only two independent constants remain:

C33 = C22 = C11, C23 = C13 = C12,

C44 = C55 = C66 =
1
2
(C11 − C12).

(4.4)

4.2.2 Electrostatic Fields

Presuming that there is no electrostatic equivalent to mechanical inelasticity,
compare with Remark 4.1, the essential demand concerning the properties of
dielectric materials is independence of the electrostatic field intensities within
the intensity levels of interest:

Remark 4.2. The electrostatic behavior of the materials will be assumed to be
linear.

The electric flux density D and electric field strength E are vectors, i.e.
tensors of first order and therefore may be related via a tensor of second order
with nine constants for the three dimensions. Due to the potential property
also observed for electrostatic fields, the tensor is symmetric and thus con-
tains six independent entries. The electrostatic constitutive relation can be
expressed with the aid of the dielectric permittivity matrix ε (to be distin-
guished from the strains ε) or its inverse β:

D = εE or E = βD with β = ε−1. (4.5)

Thereby these specifications occasionally are given relative to the dielectric
permittivity of vacuum ε0:

ε = ε̄ε0 with ε0 = 8.855 × 10−12 As
Vm

. (4.6)

The rhombic crystal class as well as composites with adequate constituents
and layout, for instance, possess orthotropic properties in analogy to the me-
chanical material properties. Therefore, only the three entries on the diagonal
of the constitutive matrix are retained:

⎧
⎨

⎩

D1

D2

D3

⎫
⎬

⎭
=

⎡

⎣
ε11 0 0
0 ε22 0
0 0 ε33

⎤

⎦

⎧
⎨

⎩

E1

E2

E3

⎫
⎬

⎭
. (4.7)

Transversely isotropic properties, as exhibited, for example, by the tetragonal
crystal class, require two dielectric constants and thus using the distinct axis
again in the e3-direction this implies

ε22 = ε11. (4.8)

For isotropic properties, as exhibited for example by the cubic crystal class,
there is only one dielectric constant:

ε33 = ε22 = ε11. (4.9)
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4.2.3 Electromechanical Coupling

In continuation of the presumptions formulated in Remarks 4.1 and 4.2, also
the coupling between mechanical and electrostatic fields will be limited to the
linear case, considering piezoelectricity but disregarding electrostriction and
other highly non-linear effects.

Remark 4.3. The electromechanical coupling in the materials will be assumed
to be linear.

The subsequent characterization of electromechanical coupling covers the
various classes of piezoelectric materials. Details with respect to definition and
determination of the constants describing these materials have been standard-
ized by the Institute of Electrical and Electronics Engineers [104]. Stresses σ
and strains ε on the mechanical side, as well as flux density D and field
strength E on the electrostatic side, may be arbitrarily combined into four
forms of coupled constitutive equations:

{
σ
D

}

=

C
︷ ︸︸ ︷[
CE −e
eT εε

]{
ε
E

}

,
{

ε
D

}

=

S
︷ ︸︸ ︷[
SE d
dT εσ

]{
σ
E

}

, (4.10a)
{

σ
E

}

=
[
CD −h

−hT β
ε

]

︸ ︷︷ ︸
S−1

{
ε
D

}

,
{

ε
E

}

=
[

SD g
−gT β

σ

]

︸ ︷︷ ︸
C−1

{
σ
D

}

. (4.10b)

For the subsequent classification of the appearing constants, their determi-
nation by means of a test specimen should be kept in mind. The mechanical
conditions of constant strain, satisfied by clamped configurations, are desig-
nated by (·)ε and those of constant stress, satisfied by free boundaries, by (·)σ.
The electrostatic conditions of constant field strength, satisfied with short cir-
cuited electrodes, are designated by (·)E and those of constant flux density,
satisfied with open circuited electrodes, by (·)D. The constants of the matri-
ces e and d thus stand, respectively, for induced stress and strain, whereas
the constants of the matrices h and g represent, respectively, sensed stress
and strain. While the constitutive matrices of Eqs. (4.10a) and (4.10b) may
be converted into one another by complete inversion, the sub-matrices within
each line can be transformed as given below:

CE =
(
SE

)−1
, e = CEd, εε = εσ − dT CEd; (4.11a)

CD =
(
SD

)−1
, h = CDg, β

ε = β
σ + gT CDg. (4.11b)

It is the forms of constitutive equations given by Eqs. (4.10a) that are used
most often.The one on the left-hand side is suggested by the formulation of
the virtual work of internal contributions in Eq. (3.63).
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4.2.4 Spatial Rotation

The mechanical constitutive relations of Eqs. (4.1) are set up with respect to
the orthonormal base vectors e1, e2, e3, which usually represent the principal
axes of the material. When a material description in rotated coordinates with
the orthonormal base vectors es, en, ex is necessary, this can be achieved with
the aid of the transformation relations of Eqs. (3.27) and (3.28) as follows:

σ (s, n, x) = TCTT ε (s, n, x) , (4.12)

ε (s, n, x) =
(
T−1

)T
ST−1σ (s, n, x) . (4.13)

As the electrodes necessary to capture the electrostatic fields are generally at-
tached with respect to the associated principal axes, they follow the rotation
and thus the electrostatic fields do not undergo the transformation. Never-
theless, their interaction with the mechanical fields via the electromechanical
coupling coefficients needs to be taken into account. This is accomplished
by extending the mechanical transformation matrix T with the identity ma-
trix I for the transformation of the electromechanical constitutive relation of
Eqs. (4.10). For the variant on the left-hand side of Eq. (4.10a), this means

{
σ (s, n, x)
D (1, 2, 3)

}

=
[
T

I

]

︸ ︷︷ ︸
T

[
CE −e
eT εε

]

︸ ︷︷ ︸
C

[
T

I

]T

︸ ︷︷ ︸
TT

{
ε (s, n, x)
E (1, 2, 3)

}

. (4.14)

When the multiplication is executed for the sub-matrices, it can be recognized
that the transformation behavior of the mechanical stiffness coefficients given
by Eq. (4.12) is reproduced in the upper left part, and the unchanged dielectric
permittivity coefficients remain in the lower right part of the resulting matrix.
As expected, the electromechanical coupling coefficients to be found off the
diagonal are transformed, preserving their properties of being transposed and
negated to each other:

TCT
T =

[
TCETT −Te
eT TT εε

]

. (4.15)

4.2.5 Analogy of Electrically and Thermally Induced Deformations

The simulation of component parts exhibiting electromechanical coupling with
the aid of commercial finite element packages is subject to some restrictions.
Usually the piezoelectric effect is considered only in connection with volume
elements, see Freed and Babuska [76]. For complex structures, the modeling
with volume elements often does not represent a viable procedure with respect
to implementation and calculation expenditure. A prominent example for this
are structures with thin walls made of multiple layers. Their mechanical be-
havior may be simulated efficiently with layered structural shell elements,
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which are in addition able to capture thermal effects. In the absence of fur-
ther couplings, the temperature and its mechanical implications in general
may be utilized to depict the electromechanical coupling. But a number of
essential differences has to be considered:

• While the coupling of mechanical and electrostatic fields is mutual, the
temperature has mechanical implications without a noticeable converse.

• While electrostatic fields may change almost instantaneously, the temper-
ature is subject of a comparatively slow heat transfer problem.

• While electrostatic fields are vector fields, the temperature is a scalar field.

The first item restricts the exploitation of the analogy to the case of actuator
applications and thus excludes sensor applications. Although the second item
is not reflected in the constitutive relation, the usual treatment of the temper-
ature in finite element codes confines such a simulation of electromechanical
couplings to the static case. By virtue of the third item, it is dealt with a dif-
ferent number and arrangement of constitutive coefficients, but this fact does
not cause any restrictions and can be handled by the subsequently described
substitution. The mechanical constitutive relation of the general anisotropic
case, given by Eq. (4.1), can be extended to thermal influences with the aid
of the vector of thermal expansion and shear coefficients α̃ and the thermal
gradient ΔT :

ε = Sσ + α̃ΔT with α̃ = d
E
ΔT

+ α, S = SE . (4.16)

When α̃ is substituted as outlined above and the compliance coefficients SE

associated with the induced strain coefficients d are used, then the formu-
lation turns into the upper part of the constitutive equations given on the
right-hand side of Eqs. (4.10a). In addition, the actual thermal coefficients
may be taken into consideration by the vector α. Thus, supplying specialized
finite elements also capable of capturing anisotropic thermal effects with the
constitutive coefficients and electric field strength of the electromechanically
coupled problem, as given by Eq. (4.16), is a convenient procedure for the
case of static actuation.

4.3 Constitutive Examination

Although examples of constitutive matrices have been shown, the material
properties have not yet been specified and analyzed. These characteristics
will be discussed in this section by means of piezoelectric materials like the
widely used ferroelectric ceramics and monocrystals.

4.3.1 Constitutive Relation

For piezoelectric materials with at least orthotropic behavior and polarization
along the e3-direction, the constitutive equation is
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(4.17)
Together with the mechanical and electrostatic simplifications introduced by
Eqs. (4.3) and (4.8), transversely isotropic properties can be characterized for
the piezoelectric coupling by

e32 = e31, e15 = e24. (4.18)

It should be mentioned that the otherwise transversely isotropic properties of
the typical piezoelectric materials, given by Table A.3 in the Appendix, show
deviations of a different degree from the last relation of Eqs. (4.3) expressing
the dependence of CE

66. While these deviations are relatively small in the case
of the PZT ceramics, the properties of PMN-PT single crystals do not comply
with this condition at all.

Partial Coupling

In the structure of the constitutive equation for the mechanically and electro-
statically orthotropic piezoelectric material of Eq. (4.17), the partial coupling
needs to be noted. The normal stresses and strains in all three directions
are solely connected to flux density and field strength along the polarization
direction: ⎧
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. (4.19)

The shear stresses and strains in the planes between polarization and trans-
verse directions are coupled to flux density and field strength along the re-
spective transverse axis:

{
τ31
D1

}

=
[
CE

55 −e15
e15 εε11

]

︸ ︷︷ ︸
G1

{
γ31
E1

}

and
{
τ23
D2

}

=
[
CE

44 −e24
e24 εε22

]

︸ ︷︷ ︸
G2

{
γ23
E2

}

.

(4.20)
Complete decoupling is found in the case of shear in the plane transverse to
the polarization direction:

τ12 = CE
66γ12. (4.21)
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4.3.2 Converse Piezoelectric Effect

To illustrate the behavior of piezoelectric material, the constitutive equations
of the previous subsection will be observed in further detail by means of a cube
of such matter. The principal axes of the polarized macroscopically homoge-
neous material are aligned with the edges of the cube. For actuator applica-
tions use is made of the converse piezoelectric effect, and thus the cube has to
be subjected to electrostatic fields. This is usually accomplished by supplying
a pair of electrodes in the form of opposed conductive surfaces with opposed
electric charges. This electric potential difference, together with the distance
between the electrodes, leads to an associated electric field strength compo-
nent according to Eq. (3.40). The aligned electric flux density component may
be determined via the dielectric permittivities, lower third of Eq. (4.17), while
the field strength and flux density components in all other directions are zero.
Depending on the mechanical boundary conditions applied to the cube, ei-
ther strains in the free configuration or stresses in the clamped configuration
are induced. For electrostatic fields opposed or transverse to the polarization
direction, the field levels are limited by the risk of repolarization.

Normal Mode Actuation

Electrostatic field components in parallel with the polarization direction in-
duce normal mode actuation, see Eq. (4.19). Not visible in the constitutive
equation, but explainable by a behavior corresponding to Poisson’s effect in-
cluded in the piezoelectric constants, the signs of strains or stresses parallel
and transverse to the applied electrostatic fields are opposed. The deforma-
tion of a piezoelectric cube subjected to electrostatic fields in the direction of
polarization is shown in Figure 4.3.

Fig. 4.3. Normal mode of the converse piezoelectric effect.

Shear Mode Actuation

Electrostatic field components transverse to the direction of polarization in-
duce shear mode actuation, see Eq. (4.20). The particular shear strains or
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shear stresses appear in the plane unfolding between the direction of the ap-
plied electrostatic field component and the polarization direction. The defor-
mation of a piezoelectric cube subjected to electrostatic fields transverse to
the direction of polarization is shown in Figure 4.4.

Fig. 4.4. Shear mode of the converse piezoelectric effect.

4.3.3 Direct Piezoelectric Effect

For sensor applications, use is made of the direct piezoelectric effect and thus
the piezoelectric cube described above now has to be subjected to mechan-
ical fields. Strains and stresses are applied via associated surfaces either by
prescribed displacements in a clamped configuration or by applied forces in a
free configuration. Besides the intended sensor application, this, of corrse, is
also relevant to the case of solely passive transmission of loads. Consequently,
the subsequent examinations are also important for the general application of
electromechanically coupled materials in adaptive structures. For mechanical
fields operating opposed or transverse to the polarization direction, the field
levels are limited by the risk of repolarization similar to the actuation case.

External Electric Influences

The electrostatic fields forming in a single direction as the result of basic load
cases depend on the electric boundary conditions and are thus influenced by
the electrode configuration. When the electrodes on the associated surfaces are
non-existent or disconnected, only the particular electric field strength compo-
nent shows a constant non-zero distribution. The resulting electric potential
difference with accumulating charges on the electrodes may be determined
by voltage measurement and is proportional to strain or stress, respectively.
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When the electrodes on the associated surfaces are connected, only the par-
ticular electric flux density component shows a constant non-zero distribution
with opposed orientation. Charges cannot accumulate on the electrodes as
they flow off instantaneously. For a dynamic process, this flow of charges may
be determined by a current measurement, and is proportional to the strain
rate, respectively stress rate. From the energetic point of view, the charge
compensation must also have consequences for the mechanical fields. This
becomes apparent by reorganization of the constitutive relation for these con-
ditions and is reflected in the dissimilar stiffness and compliance matrices of
Eqs. (4.10a) and (4.10b). These influences may be summarized for the basic
load cases with resulting electrostatic fields in q-direction:

• Non-existent or disconnected electrodes
→ Di = 0, Ei �=q = 0, Ei=q �= 0,

higher effective stiffness.
• Connected electrodes

→ Ei = 0, Di �=q = 0, Di=q �= 0 (opposed orientation),
lower effective stiffness.

These switchable properties may be used to tune the frequency response of
a structure, for example, when eigenfrequencies need to be avoided during
the run-up of rotating machinery. Furthermore, the connection of electrodes
via resistors or inductors permits the damping or insulation of vibrations by
passive means.

Normal Mode Sensing

When a cube is subjected to normal strains or stresses in any of the three
spatial directions, one of the electrostatic fields, contingent upon the electric
boundary conditions, is induced parallel or anti-parallel to the polarization
direction. Thus, without additional information, the directions of mechanical
stimulus cannot be distinguished by such a sensor. For the different cases of
electric boundary conditions, the electrostatic fields developing in a piezoelec-
tric cube subjected to normal loads are shown in Figure 4.5 together with the
corresponding deformations of the transversely isotropic material.

Shear Mode Sensing

When the cube is subjected to shear strains or stresses in the plane perpendic-
ular to the polarization direction due to the non-existent coupling, no sensor
signal can be detected. In the remaining cases, a unique association of plane
of shear and direction of electrostatic field is ensured as inversion of the ac-
tuator behavior. For the different cases of electric boundary conditions, the
electrostatic fields developing in a piezoelectric cube subjected to shear loads
are shown together with the corresponding deformations in Figure 4.6.
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Fig. 4.5. Normal mode (surface loads F ) of the direct piezoelectric effect with non-
existent or disconnected (E �= 0, D = 0; light colored state) or connected (D �= 0,
E = 0; dark colored state) electrodes normal to the e3-direction.

Fig. 4.6. Shear mode (surface loads F ) of the direct piezoelectric effect with non-
existent or disconnected (E �= 0, D = 0; light colored state) or connected (D �= 0,
E = 0; dark colored state) electrodes (a) normal to the e2-direction and (b) normal
to the e1-direction.
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Complications

For the considered uniform mechanical fields, the induced electrostatic fields
observed by means of the exemplary cube are also expected to be uniform.
This holds true as long as the electrodes are appropriately mounted, thus per-
pendicular to the electrostatic field. Things change significantly when other
surfaces are furnished with conductive elements; the previously immobile and
unequal charges are now able to balance on such surfaces. This kind of dis-
turbance has consequences for the electrostatic field and thus also for the
mechanical behavior. The linear electric potential distribution, corresponding
to a constant e1-direction component of the electric field strength as a result
of pure shear load, is shown in Figure 4.7(a). The identical loading case, just
with provision for conductivity on the surfaces transverse to the e3-direction,
and the resulting non-linear inhomogeneous electric potential distribution is
demonstrated in Figure 4.7(b). A noticeable decrease is observed, when the
arising deformations are used to calculate the effective shear stiffness.

Fig. 4.7. Electric potential distribution in a piezoelectric cube subjected to shear in
the 3-1-plane (a) without electrodes (b) with connected or disconnected electrodes
transverse to the e3-direction.

4.4 Constitutive Reduction

For the typical applications of piezoelectric materials, simplifying assumptions
with respect to the mechanical and electrostatic fields are reasonable. These
may be introduced in consequence of the spatial extent and electroding of the
considered structure and, namely, are assumptions of planar mechanical and
unidirectional electrostatic fields. Thereby, the variants of the latter, although
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frequently discussed, have not been conclusively assessed, see for example
Benjeddou et al. [12] or Gopinathan et al. [87]. The subsequent analysis in
consideration of the electroding influences leads to a decisive statement.

4.4.1 Unidirectional Electrostatic Fields

For the application of electromechanically coupled materials, the electric con-
nection in general is provided by opposing pairs of electrodes having their
effective direction aligned with one of the material principal axes. When these
electrodes are used for the polarization of the material, this is consequently
the associated e3-direction. Neither in the actuator nor in the sensor case
is such a configuration able to consider the electrostatic field components
in the transverse plane responsible for the coupling with shear stresses and
strains, Eqs. (4.20). This basically implies two possible assumptions in order to
simplify the constitutive equations for essentially unidirectional electrostatic
fields. As the simultaneous omission of electric field strength and flux density
components along the transverse axes generally would have undue implica-
tions on the mechanical fields via the coupling, either the first or the latter
components may be forced to zero:

• Unidirectional electric field strength ↔ E1 = 0, E2 = 0.
• Unidirectional electric flux density ↔ D1 = 0, D2 = 0.

Omission of Shear Associated Electrostatic Fields

When shear appears in the planes with corresponding piezoelectric coupling,
as shown in Figure 4.6, in addition to the intended normal mode actuation
or sensing, then it needs to be examined with regard to the electric boundary
conditions. At first, the complications induced by electrodes on surfaces other
than those associated with the individual shear case will be ignored. There-
fore, the theoretically possible electric boundary conditions have the following
implications, which correlate with the above assumptions:

• Non-existent or disconnected electrodes for the individual shear cases:
E1 �= 0 respectively E2 �= 0; D1 = 0 and D2 = 0
(light colored state in Figure 4.6)
→ unidirectional electric flux density.

• Connected electrodes for the individual shear cases:
D1 �= 0 respectively D2 �= 0; E1 = 0 and E2 = 0
(dark colored state in Figure 4.6)
→ unidirectional electric field strength.

For the intended normal mode actuation or sensing with electrodes respon-
sible for the polarization direction, the latter case is practically not possible,
while the prior needs to be further examined. The complications considered in
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Fig. 4.8. Electric potential distribution due to shear in piezoelectric cuboids with
electrodes transverse to the e3-direction and with an aspect ratio (a) of l3/l1 = 4
and (b) of l3/l1 = 1/2.

the previous subsection have to be taken into account. As illustrated by Fig-
ure 4.7(b), the mismatched electroding disturbs the otherwise linear electric
potential distribution. But away from the electrodes this influence is fading
and, therefore, the relative distance of electrodes needs to be considered. The
resulting overall behavior ranges between the following extremes:

• Marginal penetration by the disturbance due to mismatched electroding:
E1 �= 0, D1 ≈ 0, D2 = 0, respectively, E2 �= 0, D2 ≈ 0, D1 = 0
(linear electric potential distribution in the center of Figure 4.8(a))
� unidirectional electric flux density.

• Extensive penetration by the disturbance due to mismatched electroding:
D1 �= 0, E1 ≈ 0, E2 = 0, respectively, D2 �= 0, E2 ≈ 0, E1 = 0
(vanishing electric potential difference in the center of Figure 4.8(b))
� unidirectional electric field strength.

Unidirectional Electric Field Strength

For unidirectional electric field strength confined to the component E3, the
transverse electric flux density components D1, D2 as well as shear stress
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components τ31, τ23 only depend on the associated shear strains γ31, γ23, as
illustrated by Eqs. (4.20):

E1 = 0 → D1 = e15γ31, τ31 = CE
55γ31; (4.22a)

E2 = 0 → D2 = e24γ23, τ23 = CE
44γ23. (4.22b)

The internal energy of an electrostatic system is represented by the product
of the correlated field strength and flux density components, as exemplarily
derived for the virtual work of internal charges, Eq. (3.53). The shear strain
induced flux density components D1 and D2, as given in Eq. (4.22), do not
contribute by virtue of the above assumption. Thus, the assumption of unidi-
rectional electric field strength is equivalent to the neglect of shear associated
electrostatic energy contributions.

Unidirectional Electric Flux Density

For the remaining case of unidirectional electric flux density confined to the
component D3, the transverse electric field strength components E1, E2 may
be expressed in terms of the shear strains γ31, γ23. Therewith E1 and E2 can
be eliminated from the constitutive equations by static condensation. Thus,
this modification of Eqs. (4.20) represents a purely mechanical interaction
with strengthened shear stiffnesses as the result of the piezoelectric effect:

D1 = 0 → E1 = −e15
εε11
γ31 → τ31 =

(

CE
55 +

(e15)
2

εε11

)

γ31; (4.23a)

D2 = 0 → E2 = −e24
εε22
γ23 → τ23 =

(

CE
44 +

(e24)
2

εε22

)

γ23. (4.23b)

Thereby, from the energetic point of view again, the shear associated electro-
static energy contributions, so to speak, are transferred to the elastic energy.

Summary of Unidirectional Electrostatic Fields

The implications of both discussed simplifications of the constitutive relations
may be illustrated by summarizing all the shear cases. With the assumption of
unidirectional electric field strength for the stresses of Eqs. (4.22), respectively,
unidirectional electric flux density for the stresses of Eqs. (4.23), whereby the
additional terms of the latter are furnished with the variables υ23 and υ31,
and Eq. (4.21), this reads as follows:
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The case of unidirectional electric field strength is expressed by υ23 = υ31 = 0,
while the case of unidirectional electric flux density is indicated by υ23 =
υ31 = 1. The above discussion on the influences of mismatched electroding for
the shear cases identified the two unidirectional field assumptions as extremes
with the actual effective properties in between. Thus, υ23 and υ31 may be
determined as functions of the electrostatic field distributions affected by the
geometry of structure and electrodes as well as the material properties in
the ranges 0 � υ23 � 1 and 0 � υ31 � 1. This might be used to represent
the macroscopic mechanical behavior of piezoelectric structures subjected to
shear induced transverse electrostatic fields within the simplified framework
of assumingly unidirectional electrostatic fields. Thereby the essential and
beneficial consequences would be inherited as conclusively formulated:

Remark 4.4. By virtue of either unidirectional electric field strength or uni-
directional electric flux density aligned with the polarization direction, the
shear stresses may be completely decoupled from the electric field strengths.

Transition between Unidirectional Electrostatic Fields

In order to gain an impression of the dependencies indicated above, the es-
sential influence of electroding geometry will be examined by means of a
simple example. A cuboid of piezoelectric material PZT-5H with edge lengths
l1 = l2 = 1 cm and variable l3, also representing the distance between the two
conductive surfaces transverse to the e3-direction, is subjected to a shear load
of τ31 = 10 N/cm2. As depicted in Figure 4.8, the resulting distributions of
the electric potential and thus the shear strains are non-homogeneous. How-
ever, the average value of the shear strain γ31 may be requisitioned in the
rearranged second line of Eq. (4.24), to determine the associated variable υ31
for the examined structure, as

υ31 =
(
τ31
γ31

− CE
55

)
εε11

(e15)
2 . (4.25)

Based on calculations with the finite element package ANSYS, this has been
done for a number of geometric configurations, as recorded in Figure 4.9. The
aspect ratio l3/l1 of the cuboid reflects the distance between the electrodes in
one direction of the shear plane (l3) and the extent of the electrodes in the
other direction of the shear plane (l1). As expected, υ31 tends towards zero for
relatively close electrodes while it asymptotically approaches one with increas-
ing distance. In consideration of an additional dimensionless quantity cf to
capture further influences like material properties and boundary conditions,
this behavior may be roughly approximated by the following function:

υ31 =
2
π

arctan
(

1
cf

l3
l1

)

. (4.26)
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Fig. 4.9. Transition between unidirectional electric field strength (υ31 = 0) and
unidirectional electric flux density (υ31 = 1) as a function of electroding geometry
depicted by finite element calculations (•) according to Eq. (4.25) and approximated
(−) as stated by Eq. (4.26) with cf = 1.75.

In general, it becomes apparent that for relatively thin structures the unidi-
rectionality of the electric field strength can be confidently assumed. A fre-
quently occurring example is the application of through-thickness polarized
piezoelectric materials as part of laminated shell-like structures with over-
all aspect ratios of usually less than l3/l1, l3/l2 = 1/10. This examination
provides an unambiguous answer with respect to the ongoing debate in the
literature, see for example Benjeddou et al. [12] or Gopinathan et al. [87]. The
meaning for piezoelectric structures with interdigitated electrodes will be dis-
cussed together with the explanation of this concept in the following chapter.
The gained insight may also be transferred to structures electroded for shear
actuation or sensing but also subjected to loads in the normal directions.

4.4.2 Planar Mechanical Fields

When the spatial extent of a structure is substantially smaller in the dis-
tinguished thickness direction compared to the remaining dominating dimen-
sions, simplifications in this respect are reasonable. Therefore, either the pla-
nar stress or the planar strain assumption may be employed for a such thin,
shell-like structure. When it is unconstrained in the thickness direction, the
first assumption needs to be utilized:

Remark 4.5. Normal and shear stresses in the thickness direction are assumed
to be negligible small.

Considering materials with either unidirectional electric field strength or
unidirectional electric flux density aligned with the polarization direction, as
described in the previous subsection, different choices concerning the relative
orientation of the thickness direction need to be discussed.
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Planar Stress Transverse to Polarization

Assuming planar stress as of Remark 4.5 on the plane perpendicular to the
polarization direction, see Figure 4.10(a), and thus aligning the latter with
the thickness direction, has the following implications and consequences when
substituted into Eqs. (4.19) and (4.24):

σ3 = 0 → ε3 = −C
E
13

CE
33

ε1 − CE
23

CE
33

ε2 +
e33
CE

33

E3 and

τ23 = 0 → γ23 = 0,
τ31 = 0 → γ31 = 0.

(4.27)

Thereby the neglected shear stresses and consequently vanishing shear strains,
given on the right-hand side of Eqs. (4.27), ensure complete constitutive equal-
ity of both variants of Remark 4.4 for this configuration. This is, on the one
hand, due to the discard of those coefficients in Eq. (4.24) representing the
differences and, on the other hand, due to the ultimately vanishing transverse
electric flux densities to be found in the middle of Eqs. (4.22). With elimina-
tion of the normal strain in thickness direction, the constitutive relation then
takes the following form:
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(4.28)

Planar Stress in Plane with Polarization

Assuming planar stress as of Remark 4.5 in the plane of the polarization di-
rection, see Figure 4.10(b), and thus having the latter perpendicular to the
thickness direction selected to be the e2-direction, has the following implica-
tions and consequences when substituted into Eqs. (4.19) and (4.24):

σ2 = 0 → ε2 = −C
E
12

CE
22

ε1 − CE
23

CE
22

ε3 +
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CE

22

E33 and

τ23 = 0 → γ23 = 0,
τ12 = 0 → γ12 = 0.

(4.29)

Since no assumptions are made here concerning the piezoelectrically coupled
shear behavior in the plane spanning between the e3- and e1-direction, the
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Fig. 4.10. Correlation of polarization direction (P) and plane of planar stress.

two variants of Remark 4.4 for this configuration are still to be distinguished
by the additional term of the respective shear stiffness:
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4.4.3 Planar Rotation

By virtue of the assumptions of unidirectional electrostatic fields and planar
mechanical stress, the electromechanically coupled constitutive relations have
been modified significantly. In example, the formulation on the left-hand side
of Eq. (4.10a) reduces to Eq. (4.28) or (4.30). A transformation of coordi-
nates on the considered plane may be performed as a rotation around the
axis normal to this plane. In the case of Eq. (4.30), the base vector e2 repre-
sents the axis of rotation and thus this planar rotation may be formulated as
follows: ⎧

⎪⎪⎨

⎪⎪⎩

σx

σs

τxs

D3

⎫
⎪⎪⎬

⎪⎪⎭

= T̃Q̃T̃
T

︸ ︷︷ ︸
Q

⎧
⎪⎪⎨

⎪⎪⎩

εx
εs
γxs

E3

⎫
⎪⎪⎬

⎪⎪⎭

. (4.31)
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The transformation matrix T̃ can be adapted from the spatial case of Eq. (4.14)
by removing the unnecessary rows and columns. To account for the modified
arrangement of components in Eq. (4.30), the respective rows and columns
also need to be exchanged in the transformation matrix; it takes the following
form:

T̃ =

⎡

⎢
⎢
⎣

cos2 α sin2 α 2 cosα sinα 0
sin2 α cos2 α −2 sinα cosα 0

− sinα cosα cosα sinα cos2 α − sin2 α 0
0 0 0 1

⎤

⎥
⎥
⎦ . (4.32)

4.4.4 Negated Electric Field Strength

In the derived expression for the virtual work of internal contributions,
Eq. (3.63), as well as in the definition of the electroelastic energy density,
Eq. (3.64), the electric fields strength appears in a negated form represented
by the vector Ē. With the adoption of such an arrangement in the asso-
ciate constitutive relation, to be found on the left-hand side of Eq. (4.10a),
it is possible to compensate for the unsymmetry in the matrix of constitutive
properties C of the electromechanically coupled material. Thus a symmetric
variant C̄ = C̄

T of this matrix may be introduced as follows:

{
σ
D

}

︸ ︷︷ ︸
Y

=
[
CE −e
eT εε

]

︸ ︷︷ ︸
C

{
ε
E

}

︸ ︷︷ ︸
Z

=
[
CE −e
eT εε

] [
I

−I

]{
ε

− E

}

=
[
CE e
eT −εε

]

︸ ︷︷ ︸
C̄

{
ε
Ē

}

︸ ︷︷ ︸
Z̄

.

(4.33)

Correspondingly, the consequent modifications of the constitutive relation
may be treated. For the case of planar stress and unidirectional electric in
transformed coordinates, this yields:

⎧
⎪⎪⎨

⎪⎪⎩

σx

σs

τxs

D3

⎫
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= Q

⎡

⎢
⎢
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1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
Q̄

⎧
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⎪⎪⎩

εx
εs
γxs

Ē3

⎫
⎪⎪⎬

⎪⎪⎭
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Electroelastic Energy Density

In Section 3.5.1, Dirichlet’s principle of minimum potential energy has been
extended to electromechanically coupled problems. With the exception of re-
ferring to the required potential property, the electroelastic energy density U0

has not yet been further specified. With Eq. (3.64) a second relation linking
the fields of the constitutive relation is available, such that it may be used
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to determine the electroelastic energy density U0. This leads to the following
formulation:

U0 =
1
2

{

εT Ē
T
}[CE e

eT −εε

]

︸ ︷︷ ︸
C̄

{
ε
Ē

}

with Ē = −E, C̄ = C̄
T . (4.35)

It can be verified by substitution into Eq. (3.64) which should result in the
constitutive relation. Thus it becomes apparent that the utilized matrix of
constitutive properties has to be symmetric. While this is given for the for-
mulation with the matrix C̄ introduced on the right-hand side of Eq. (4.33),
the conventional variant C to the left-hand side proves to be of no avail.

4.5 Actuator and Sensor Conditions

In Section 4.3, the piezoelectric effect has been examined in an illustrative
manner with respect to actuation and sensing. To quantify these findings
for more complicated structures, calculation procedures can be developed,
based on the principle of virtual work derived in Section 3.4. Therefore, the
different variants of actuation, depending on the type of electric power supply,
and of sensing, depending on the type of measurement, will be studied here
with regard to the associated boundary conditions. Without practical loss of
generality, the following simplification may be introduced for all instances:

Remark 4.6. For the actual application of piezoelectric materials, free charges
in the volume are excluded.

q̌Λ = 0. (4.36)

Since no volume charges q̌Λ will be specified, the corresponding term in
the virtual work of external charges δV ep vanishes, see Eqs. (3.53) and (3.62)
respectively.

4.5.1 Actuator Application with Voltage and Current Source

To induce mechanical deformation with an actuator based on piezoelectric
material, electric power needs to be supplied. In electrical engineering, two
ideal power sources are distinguished. A voltage source provides a constant
voltage, while the wattage may then be adjusted via the current. A current
source the other way round keeps the current constant, while the wattage may
then be adjusted via the voltage.

Voltage Source

When a voltage source is connected to the electrodes of a piezoelectric actu-
ator, the electric potential ϕ is prescribed. This includes the compensation
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of possibly superimposed mechanical influences. So the electric potential ϕ
does not represent an unknown, and thus its variation δϕ vanishes as well as
the variation of the electric field strength δE in consideration of Eq. (3.39).
Therewith, all contributions of the principle of virtual electric potential of
Eq. (3.53) disappear:

δϕ = 0 → δV ep = 0, δE = 0 → δU ep = 0. (4.37)

Hence, the principle of virtual work of Eqs. (3.62) and (3.63) reduces to its
mechanical part. Via the dependence of mechanical stresses σ = σ(ε,E) in the
electromechanically coupled constitutive relation, see Eq. (4.17), the electric
field strength E however enters the formulation as a parameter:

∫

Λ

δεT σ + δuT aρdV =
∫

∂Λσ

δuT f̂∂Λ dA+
∫

Λ

δuT f̌Λ dV . (4.38)

Current Source

When a current source is connected to the electrodes of a piezoelectric actu-
ator, the electric potential ϕ is unknown. Therefore, the contributions of the
principle of virtual electric potential of Eq. (3.53) need to be retained. Since
the current describes the derivative trend of charge with respect to time, it
prescribes the area charge q̂∂Λ on the electrodes. An adequate formulation of
the principle of virtual work from Eqs. (3.62) and (3.63), in consideration of
Eq. (4.36), reads

∫

Λ

{

δεT δĒ
T
}{

σ
D

}

+ δuT aρdV

=
∫

∂Λ

{
δuT −δϕ

}
{

f̂∂Λ

q̂∂Λ

}

dA+
∫

Λ

δuT f̌Λ dV . (4.39)

4.5.2 Sensor Application with Voltage and Current Measurement

The different variants of the sensor application have become obvious from
observing Figure 4.5. A mechanical load on piezoelectric material induces an
electric field strength field when the electrodes are disconnected and an electric
flux density field when the electrodes are connected. This corresponds to the
possibilities of measurement of electric quantities. As with the actuator appli-
cation, only the ideal cases shall be considered here, leaving the complications
of the actual circuits, including the necessary amplification, to the competent
electrical engineering literature, see for example Tichý and Gautschi [174].

Strain Sensor–Voltage Measurement

To determine the voltage, a measuring instrument with high inherent resis-
tance is used such that the current and thus the flow of charges is low. In the
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ideal case, this corresponds to disconnected electrodes. Then the difference of
electric potential ϕ at the opposing electrodes and, consequently, the electric
field strength E can be determined without changing the area charge q̂∂Λ on
the electrodes. In practical applications, the latter is often zero, see Carpen-
ter [43]. To simulate the outcome of such a measurement proportional to the
strain state, it may be proceeded from Eq. (4.39) as well.

Strain Rate Sensor–Current Measurement

To determine the current, a measuring instrument with low inherent resis-
tance is used such that the caused voltage drop is low. In the ideal case, this
corresponds to connected electrodes. Then the difference of electric potential
ϕ at the opposing electrodes levels out, and thus the electric field strength E
is cancelled. This permits us to draw the conclusions as of Eq. (4.37). Conse-
quently, the mechanical state of the system can be determined with the aid
of the principle of virtual work formulation of Eq. (4.38). Via the electro-
mechanically coupled constitutive relation, the outcome may then be utilized
to deduce the electric flux density, charge, and finally the current being pro-
portional to the strain rate.
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Piezoelectric Composites

The integration of piezoelectric materials into composites allows for the im-
provement of constitutive properties as well as of failure behavior and con-
sequently for an extension of the application spectrum. So this chapter is
concerned with the conception and modeling of such piezoelectric composites
for structural applications. For the prediction of the effective composite prop-
erties, different methodologies of micro-electromechanics are investigated and
validated through experiments and finite element analyses.

5.1 Classification of General Composites

Composites provide the possibility to combine the advantageous characteris-
tics of different materials and qualities are often achieved that none of the con-
stituents possesses. Essential criteria in general are stiffness, strength, weight,
damping, thermal and electric conductivity, as well as resistance against envi-
ronmental influences, wear, and fatigue. Further on they make possible the op-
timization of anisotropic mechanical, thermomechanical, and electromechani-
cal couplings. Introductory literature on composites is provided, for example,
by Jones [107], Altenbach et al. [6], Chawla [50], Matthews and Rawlings [123].
Besides a classification by means of the constituent materials, composites may
be distinguished by the spatial arrangement of the material phases. To be a
composite at least two such phases need to occur whereby the matrix phase
surrounds and connects one or more inclusion phases.

5.1.1 Topology of the Inclusion Phase

The diverse shapes of inclusions may be used for a classification of composites,
as shown for the basic cases of particulate, fibrous, and lamellar topologies
in Figure 5.1. There are also composites which represent a combination of
these inclusion types. In steel concrete, for example, mineral particles and
metal fibers are joined by a binder material. For aerospace applications, the

T.H. Brockmann, Theory of Adaptive Fiber Composites,
Solid Mechanics and Its Applications 161,
c© Springer Science + Business Media B.V. 2009
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combination of glass fibers and aluminum laminae is becoming increasingly
popular. The listed types of inclusions may be further categorized with respect
to their geometry and relative arrangement. In the case of fibrous inclusions,
there are continuous or discontinuous fibers of straight or curled shape in
a regular or irregular layout. More complicated fiber structures arise when
textile techniques like stitching, braiding, or knitting are involved, see for
instance Poe et al. [142] or Cox and Flanagan [57].

Fig. 5.1. Classification of composites by the spatial extent of inclusions: (a) partic-
ulate, (b) fibrous, (c) lamellar.

5.1.2 Laminated Composites and Laminated Fiber Composites

A prominent position is taken by the combination of lamellar inclusions of
continuous as well as planar extent with only a small amount of matrix ma-
terial. This description in terms of the above classification is synonymous
with monolithic laminae bonded with a thin film of adhesive representing
the widely used concept of laminated composites. The individual laminae do
not necessarily have to be monolithic but may consist of composite materi-
als again. With the contained inclusions being existent in fibrous shape, the
outcome is a laminated fiber composite. Especially, the case of continuous,
straight, and parallel fibers is of great importance with regard to lightweight
structures. Corresponding to their setup, the analysis of laminated fiber com-
posites may be organized in two steps to be subsequently demonstrated in
consideration of electromechanically coupled materials. First, on the level of
micro-electromechanics in this chapter, the effective properties of the laminae
are determined from the characteristics of matrix and inclusions. Second, on
the level of macro-electromechanics in the next chapter, the effective proper-
ties of the laminate are determined from the characteristics of the laminae.

5.2 Conception of Piezoelectric Composites

To enable actuation and sensing of structures with laminar elements like plates
and shells, the application of piezoelectric materials is well established. In the
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simplest case, monolithic ceramic materials are attached in the form of thin
patches on one or both sides. In view of the above discussion, such an assembly
constitutes a laminated composite. For any case of structural deformation,
the aspired effective direction of the piezoelectric effect lies in the plane of the
piezoelectric laminae. Initially areal electrodes on its top and bottom surface
have been employed to provide or perceive the electrostatic field respectively,
Figure 5.2(a). To avoid unintentional and possibly creeping repolarization, the
directions of polarization and electric field strength should be aligned. Thus,
both of these directions are oriented normal to the plane of the considered
patch and only the minor piezoelectric effect in the isotropic transverse plane,
as e31 < e33 and d31 < d33 to be found in Table A.3, can be exploited.

Fig. 5.2. Variants of patches for actuation or sensing: (a) monolitic material with
areal electrodes, (b) monolitic material with interdigitated electrodes, (c) fiber com-
posite with areal electrodes, (d) fiber composite with interdigitated electrodes.

5.2.1 Interdigitated Electrodes and Piezoelectric Fibers

To increase the electromechanical coupling and allow for anisotropic and thus
directional actuation and sensing, the concept of interdigitated electrodes has
been introduced by Hagood et al. [90] for monolithic piezoelectric laminae,
as shown in Figure 5.2(b). Thereby in-plane placement of the parallel direc-
tions of polarization and electric field strength is permitted. These directions
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jointly change sign from one interval between opposing polarity electrodes to
the next and, in this manner, assure uniform behavior, see Figure 5.3. To
compensate for the drawbacks caused by the brittle and inflexible nature of
ceramic materials, the embedding of piezoelectric materials in the form of
fibers into a polymer matrix has been implemented by Bent et al. [16,17] for
areal electrodes, as shown in Figure 5.2(c). Thus, besides increased strength
and conformability the advantageous possibility of optimizing the anisotropic
properties is also gained. Further improvements are achieved when, in addi-
tion, interdigitated electrodes are applied, Bent and Hagood [14,15], as shown
in Figure 5.2(d).

Fig. 5.3. Sectional view of the interdigitated electroding scheme with qualitative
distribution of lines of electric field strength (E) and directions of polarization (P).

5.2.2 Electroding Implications

As examined in detail in Section 4.4, it is possible to simplify the constitutive
relation of piezoelectric materials in consideration of loading, electroding, and
associated geometry of the structure. The two variants of electroding intro-
duced above have different implications.

Areal Electrodes

In the case of areal electrodes, as shown in Figures 5.2(a) and (c), the out-
of-plane shear modes suggest, for the small characteristic ratio of thickness
to the other extents of the laminae, the assumption of unidirectional elec-
tric field strength in polarization/through-thickness direction, compare with
Figure 4.8(b). When only planar stress in the plane transverse to the polar-
ization direction is regarded, then the constitutive relation anyway reduces to
Eq. (4.28).

Interdigitated Electrodes

While for areal electrodes, the in-plane shear mode is free of electromechanical
coupling, a structure with interdigitated electrodes, as shown in Figures 5.2(b)
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and (d), exhibits such a coupling. The characteristic ratio relates the spac-
ing between electrodes to the length of the electrode fingers. This again is
very small for the existent specimens, see for example Figure 5.4. The other
mode of electromechanically coupled shear occurs in the plane unfolding be-
tween the through-thickness (e2) and the polarization (e3) direction. Here the
electric connection of the electrode pairs on the top and bottom sides, see
Figure 5.3, leads to a non-homogeneous behavior in analogy to both cases
of Figure 4.6(b). The conditions underneath the electrodes correspond to the
case with connected electrodes, while the situation in the intervals between
opposing polarity electrodes resembles the case without electrodes. When only
planar stress in the plane of the laminae is regarded, this out-of-plane shear
mode is discarded and the in-plane shear mode, as discussed above, implies
υ31 = 0 in the associated constitutive relation of Eq. (4.30).

Fig. 5.4. NASA Langeley Research Center (LaRC) Macro-Fiber Composite (MFC);
original photograph by the National Aeronautics and Space Administration [130].

5.2.3 Development Status

A number of different approaches to realizing composites with piezoelectric
fibers and interdigitated electrodes have been developed or proposed. These
may be distinguished by the process of fiber production and the application
of electrodes. Suitable fibers can be fabricated in a sintering process from
piezoelectric powders with techniques like extrusion of polymer supported
powders, Strock et al. [171], or sol-gel spinning, Helbig et al. [92]. With the
co-extrusion of a tube of polymer-supported piezoelectric powder filled and
surrounded by material to be burned off afterwards, it is possible to pro-
duce hollow fibers, Cannon and Brei [42]. For these complex manufacturing
processes, a greater number of parameters needs to be established and con-
trolled in order to maintain the required quality. Less complicated and costly
is the dicing of monolithic piezoelectric materials into rectangular fibers pro-
viding good accuracy and repeatability, Wilkie et al. [182]. Several different
types of electrodes have been discussed. Interlaminar electroding structures
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attached to the top and bottom sides of a piezoelectric laminae, as depicted
in Figures 5.2(b) and (d), have been realized by etching copper on a support-
ing film, see for example Bent and Hagood [14] or Wilkie et al. [182]. Such
films package the laminae and thus provide insulation to other possibly con-
ductive laminae, for example when carbon fibers are contained. To take the
electrodes closer to the fibers, the use of conductive adhesives was investigated
by Pannkoke et al. [136]; rings of silver paint have been applied on the inside
and outside of hollow fibers by Cannon and Brei [42]; and linked conductive
rings around solid circular fibers have been proposed by Tan and Tong [173].
So far, only the combination of diced rectangular fibers made of PZT-5H-type
material with interlaminar copper electrodes has reached batch production,
High and Wilkie [94], see Figure 5.4. A research application of such actuators
to alleviate the buffet effect at twin tail aircraft, Sheta et al. [162], is shown
in Figure 5.5. A promising development direction of this actuator concept is
the employment of fibers made of single crystal PMN-PT-type materials, as
reported by Wilkie et al. [183], with significantly improved electromechanical
coupling properties, compare Section 4.1.2 and Table A.3. Further surveys
with respect to piezoelectric fiber composites are given by Williams and In-
man [184] as well as by Nelson [132]. A comparison of the performance of
packaged piezoelectric actuators for industrial applications representing all
four variants of Figure 5.2 has been conducted by Pretorius et al. [145].

Fig. 5.5. Scaled model of a vertical tail fin with applied macro-fiber composite
actuator patches; original photograph by the National Aeronautics and Space Ad-
ministration [130].

5.2.4 Representative Volume Element and Fiber Geometry

While a composite as the whole thing is a rather complicated structure, the
essential relations may be illustrated by means of a small but representative
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piece of it. Such a representative volume element therefore is utilized as the
basis of some analysis approaches. In order to portray the characteristics of
the entire composite, it will be defined as follows:

Remark 5.1. A representative volume element is the smallest region of the
composite over which mechanical as well as electrostatic fields are macroscop-
ically uniform.

On account of the heterogeneous properties of the constituents, these fields
are likely to be microscopically non-uniform. Accordingly, the appropriate
geometry and boundary conditions need to be identified. Size and complexity
of a representative volume element depend on the topology of the compos-
ite. Elaborate configurations are necessary, for example, to embody textile
composites, whereas the consideration of a single inclusion together with the
connected portion of matrix material is often sufficient. Furthermore, advan-
tage can be taken of the symmetry of the examined region, being especially
valuable for the finite element discretization. Such a simplified representative
volume element is shown in Figure 5.6 for a composite patch with a single
fiber layer. It contains a quarter of the cross-section of fiber and surround-
ing matrix and its length may be limited to half of the electrode spacing. In
the conventional case without electromechanical coupling, the length in direc-
tion of the fiber is arbitrary, since stresses and strains do not vary along this
direction.

Fig. 5.6. Simplified representative volume element in consideration of fibrous in-
clusions and interdigitated electrodes.

Fiber Volume Fraction

The essential statement about the composition of the considered composite is
provided by the fiber volume fraction ν. As the material distribution does not
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change along the fiber direction, only the geometric relations in the plane of
the fiber cross-section are relevant. The associated directional fiber fractions
ν1 and ν2 may be determined from the fiber dimensions af

1 and af
2 and fiber

spacings a1 and a2:

ν1 =
af
1

a1
, ν2 =

af
2

a2
, (5.1a)

ν = ν1ν2. (5.1b)

The characteristic cross-sectional dimensions are depicted together with elec-
trode spacing a3 and electrode width b3 in Figure 5.7 by means of the simpli-
fied representative volume element.

Fig. 5.7. Characteristic dimensions of the simplified representative volume element.

Fiber Cross-Sectional Shape

The cross-sectional shape of the fibers is primarily of local importance, for
instance with respect to stress concentrations along the edges. Aiming at the
determination of the overall behavior, only the directional fiber fractions have
to be considered. This is equivalent to the mapping of an arbitrary shape onto
a rectangle with the appropriate edge lengths for approaches based on repre-
sentative volume elements like the one outlined above. For other approaches
with an elliptic elementary fiber shape, it can be proceeded correspondingly
by determining the appropriate ellipticity coefficient. Further insight may be
gained using the method of cells presented by Aboudi [1,2]. It divides the rep-
resentative volume element into subcells with interfacial conditions and thus
allows for a discretization of the fiber cross-section. The examination of slices
of the simplified representative volume element is considered in the work of
Tan and Tong [173].
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5.2.5 Modeling Preliminaries

To continue the analysis of laminae with piezoelectric fibers just as in the
monolithic case, it is necessary to homogenize the heterogeneous properties
of fibers and matrix. Thus, the objective is to determine the presupposedly
homogeneous overall behavior of the composite based on the known character-
istics of the individual constituents and their interaction. For this purpose, in
the context of conventional composites, a greater number of theories has been
developed and several have been extended to capture the implications of the
piezoelectric effect. In general, the analytical homogenization methods may be
roughly subdivided into two categories. On the one hand there are approaches
which make use of the “Theory of Elasticity” as completely as possible, while
on the other hand approaches utilize ad hoc assumptions within the frame-
work of the “Mechanics of Materials”. Representatives of both categories will
be investigated in the subsequent sections. Although these approaches possess
diverging abilities, which will be indicated individually, the current require-
ments will function as a common foundation.

Remark 5.2. The subsequent discussion of micro-electromechanical approaches
to determine the macroscopic constitutive properties of a composite will be
concentrated on properties within the following categories:

• Constituents
→ homogeneous, linearly elastic materials with piezoelectric properties.

• Topology
→ continuous, straight, perfectly aligned and regularly spaced fibers.

• Connection
→ perfect bonding of constituents, no direct contact between inclusions.

Typically, the fiber material is at most transversely isotropic, Eq. (4.17)
with Eqs. (4.3), (4.8), and (4.18), while the matrix material is isotropic,
Eq. (4.17) with Eqs. (4.4), (4.9), and vanishing piezoelectric moduli. The
subsequent theories are not confined to such a behavior. However, it will be
presumed that the distinguished axes are aligned. Deviating cases may be con-
sidered in conjunction with an appropriate transformation, see Section 3.2.5.
In accordance with the considerations of Section 4.4.4, the notation with a
negated electric field strength will be utilized throughout the entire chapter.

5.3 Micro-Electromechanics with Equivalent Inclusions

The micro-electromechanical methodology stemming from the category of the
“Theory of Elasticity” to be presented in this section is capable of modeling
inclusions of ellipsoidal geometry. Such a description of the inclusion geometry
allows us to consider fibrous and lamellar inclusions by means of one or two
semiaxes approaching infinity, respectively.
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5.3.1 Mean Fields and Concentration Matrices

Subjecting a homogeneous body to homogeneous boundary conditions results
in homogeneous fields. These homogeneous fields can be shown to agree with
the volumetric average of the fields found in a non-homogeneous body exposed
to identical boundary conditions, see Aboudi [1] or Dunn and Taya [66]. Con-
sequently, these mean macroscopic fields may be expressed as an average of
the mean fields inherent to the individual material phases weighted by their
volume fraction. For electromechanically coupled composites with the volume
fraction ν of a single inclusion phase, this leads to

Z̄ = νZ̄i + (1 − ν) Z̄
m, (5.2a)

Y = νY i + (1 − ν) Y m. (5.2b)

Mean stresses and electric flux densities Y as well as mean strains and elec-
tric field strengths Z̄ are composed of the corresponding mean fields in the
inclusion and matrix phase as indicated by the superscripts i and m. Cross-
connecting these fields, the constitutive relations of the homogenized compos-
ite, as well as of the individual material phases, may be given as follows:

Y = C̄Z̄, Y i = C̄
iZ̄

i, Y m = C̄
mZ̄

m. (5.3)

The unique dependence of strains and electric field strengths as well as stresses
and electric flux densities in the individual material phases upon the overall
fields of the composite may be formulated with the aid of the concentration
matrices Ξi and Ξm, respectively, Σi and Σm:

Z̄
i = ΞiZ̄, Z̄

m = ΞmZ̄, with νΞi + (1 − ν)Ξm = I; (5.4)

Y i = ΣiY , Y m = ΣmY , with νΣi + (1 − ν)Σm = I. (5.5)

Starting off with Eq. (5.2b) and subsequent substitution of stresses and electric
flux densities Y , Y i, and Y m from the constitutive relations of Eq. (5.3), of
strains and electric field strengths Z̄

m from Eq. (5.2a) and Z̄
i from Eq. (5.4),

the effective properties may be written as

C̄ = ν
(
C̄

i − C̄
m
)
Ξi + C̄

m. (5.6)

Analogously, the inverted representation, see Eqs. (4.10), may be treated in
consideration of Eq. (5.5), leading to

(
C̄
)−1 = ν

((
C̄

i
)−1 −

(
C̄

m
)−1

)
Σi +

(
C̄

m
)−1 . (5.7)

Thus, the effective properties C̄ of a composite are described in Eqs. (5.6) and
(5.7) by the known fiber volume fraction ν and constituent properties C̄

i and
C̄

m, as well as by the concentration matrices Ξi and Σi of the inclusion phase
to be determined by the succeeding theories.
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5.3.2 Elementary Rules of Mixture

For the sake of comprehensiveness and later comparison, the most elementary
options to determine the overall properties of a composite will be given here
for the derived formulation. Assumptions in analogy to parallel and series
connections of springs typical for the “Mechanics of Materials” are utilized,
dating back to the works of Voigt [175] and Reuss [154]. The assumption
of uniform strains and electric field strengths Z̄

i = Z̄
m = Z̄ leads with

Eqs. (5.4) to the concentration matrices Ξi = Ξm = I. Applied to Eq. (5.6),
such a parallel connection of material phases results in the weighted addition
of the electroelastic moduli:

C̄ = νC̄i + (1 − ν) C̄
m. (5.8)

Correspondingly, the assumption of uniform stresses and electric flux den-
sities Y i = Y m = Y leads with Eqs. (5.5) to the concentration matrices
Σi = Σm = I. Applied to Eq. (5.7), such a series connection of material
phases results in the weighted addition involving the inverse matrices of the
electroelastic moduli:

(
C̄
)−1 = ν

(
C̄

i
)−1

+ (1 − ν)
(
C̄

m
)−1

→ C̄ =
(
ν
(
C̄

i
)−1

+ (1 − ν)
(
C̄

m
)−1

)−1

. (5.9)

The above assumptions, however, have incorrect implications. For a parallel
connection of material phases, the equilibrium conditions are violated at phase
boundaries, while for a series connection of material phases, the compatibility
conditions may not hold at phase boundaries. Nevertheless, it can be shown
that these estimates may serve as upper and lower bounds enclosing the actual
electroelastic moduli of the composite. For a discussion of bounds on effective
elastic properties, see Christensen [54].

5.3.3 Equivalence of Inclusion and Inhomogenity

Let there be a homogeneous ellipsoidal inclusion filling the domain Λi with
the electroelastic properties C̄

i embedded into an infinite homogeneous matrix
with the electroelastic properties C̄

m. Such a composite filling the domain Λ
will be subjected to uniform boundary conditions

Y ∂Λ = Y , respectively Z̄∂Λ = Z̄. (5.10)

The overall strains and electric field strengths Z̄ of the composite can be
either interpreted as a response to the applied stresses and electric flux den-
sities or are the direct implication of the boundary conditions. In absence
of the inclusion, they would prevail throughout the domain Λ. The resulting
strains and electric field strengths Z̄

i inside the inclusion may be assembled
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in consideration of perturbation fields Z̄
• caused by the deviating material

properties of the inclusion:
Z̄

i = Z̄ + Z̄
•. (5.11)

Thus, the stresses and electric flux densities inside the inclusion can be deter-
mined from the corresponding constitutive relation of Eq. (5.3) as

Y i = C̄
i
(
Z̄ + Z̄

•
)

. (5.12)

The considered inclusion may be replaced by matrix material subjected to
additional so-called eigenfields Z̄

∗ such that the stresses and electric flux
densities inside the domain Λi remain unchanged and thus can be described
by

Y i = C̄
m
(
Z̄ + Z̄

• − Z̄
∗
)

. (5.13)

The equivalence of an inclusion with deviating material properties and an
inhomogenity on account of eigenfields has been introduced for the elastic
case by Eshelby [73] and extended to the piezoelectric case by Deeg [61]. It
was shown that the eigenfields Z̄

∗ are uniform for an ellipsoidal shape of the
domain Λi. In conjunction with the presumed uniform boundary conditions on
the enclosing surface ∂Λ at infinite distance, this leads to an entirely uniform
distribution of fields inside the domain Λi. Therefore, a linear transformation
between perturbation fields Z̄

• and eigenfields Z̄
∗ can be established:

Z̄
• = ΥZ̄

∗. (5.14)

The constraint matrix Υ depicts the effect of the constraining matrix on the
inclusion and is a function of matrix material properties and ellipsoidal inclu-
sion shape. It represents the piezoelectric analog to Eshelby’s tensor in the
elastic case, see Dunn and Taya [66]. Expressions for cylindrical inclusions
to model fibrous composites are provided by Dunn and Taya [67] (this refer-
ence uses a different notation, Υ is called S). Equating Eqs. (5.12) and (5.13)
and making use of Eq. (5.14) to replace the eigenfields Z̄

∗ and Eq. (5.11) to
eliminate the perturbation fields Z̄

• after some manipulations, leads to

Z̄
i =

(
I + Υ

(
C̄

m
)−1 (

C̄
i − C̄

m
))−1

︸ ︷︷ ︸
Ξi

dil

Z̄. (5.15)

The concentration matrix Ξi
dil may be identified with the aid of Eq. (5.4).

As its derivation is based on a single inclusion within an infinite matrix,
it is applicable only to very low volume fractions of the inclusion or fiber
phases, respectively. Such a configuration is usually denominated as a dilute
concentration.
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5.3.4 Non-Dilute Concentrations

To accomplish their specific task, most of composites require a portion of
the inclusion phase that certainly cannot be described as dilute. Therefore,
methods based on the equivalence of inclusion and inhomogenity derived above
had to be developed to extend the range of applications to practicable volume
fractions.

Mori–Tanaka Approach

Almost a standard procedure, due to its relative simplicity while allowing for
dependable results and documented by a thorough theoretical discussion in
the literature, the Mori–Tanaka approach was initiated by Mori and Tanaka
[127]. Its major assumption may be formulated for electromechanically cou-
pled composites as follows:

Remark 5.3. Strains and electric field strengths inside an inclusion in the non-
dilute case behave with respect to the average fields of the matrix phase just
like they would do in the dilute case with respect to the overall fields of the
composite.

Z̄
i = Ξi

dilZ̄
m. (5.16)

Since the overall fields of the composite with dilute concentration already
account for the interaction between inclusion and matrix, this means that the
inclusion is now considered to be embedded into a matrix containing other
inclusions. Eliminating strains and electric field strengths Z̄

m of the matrix
phase in Eq. (5.2a) by utilization of Eq. (5.16) results after a few manipulations
in

Z̄
i = Ξi

dil

(
νΞi

dil + (1 − ν) I
)−1

︸ ︷︷ ︸
Ξi

MT

Z̄. (5.17)

Again, the concentration matrix Ξi
MT for the Mori–Tanaka approach can be

identified with the aid of Eq. (5.4). It has been proposed in this form for the
elastic case by Benveniste [18] and extended to the piezoelectric case by Dunn
and Taya [67].

Other Approaches

There are a number of other ways to consider non-dilute concentrations within
equivalent inclusion approaches. Among them are the self-consistent schemes,
see Aboudi [1], where an inclusion is examined that is surrounded in the
classical variant by an effective medium of a priori unknown properties and
the generalized variant by matrix material, which again is embedded into such
an effective medium. The resulting concentration matrices are comparable to
the dilute case of Eq. (5.15), but with fundamental difference of a dependence
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on the unknown properties. Thus, the effective properties of the composite
may only be determined in a computationally expensive iterative manner.
This can be avoided by replacing the effective medium with homogenization
results obtained with the aid of another approach, see Dvorak and Srinivas
[68] and Odegard [135] for the extension to piezoelectric materials.

5.4 Micro-Electromechanics with Sequential Stacking

The micro-electromechanical methodology stemming from the category of the
“Mechanics of Materials”, to be presented in this section, is base on a simpli-
fied rectangular representative volume element, as described in Section 5.2.4.
Correspondingly, the fiber shape is approximated by a cuboid stretching over
the full length, but aligned non-continuous inclusions may be also considered
in a straightforward manner. Different from the methodology of the previ-
ous section, simplifying assumptions are imposed at the starting point of the
derivation. As subsequently shown in detail, this concerns the distribution of
mechanical and electrostatic fields within the individual material phases and
the interaction between phases. While the rules of mixture have been applied
collectively in Section 5.3.2, the latter aspect will be handled here by a field
and direction specific application of the associated assumptions. For fiber com-
posites with piezoelectric properties, such examinations have been conducted
by Bent and Hagood [15] for the normal modes and subsequently by Tan and
Tong [173] on the foundations laid by Newnham et al. [133] as well as Smith
and Auld [165]. Further piezoelectric composite modeling approaches based
on the “Mechanics of Materials” have been developed, for example, by Banno
[8] or Aboudi [2].

5.4.1 Stacking of Constituents with Uniform Fields

The visual inspection of the simplified representative volume element in Fig-
ure 5.7 suggests a determination of the composite’s overall behavior via the
examination of the stacking of constituents in axial directions transverse to
the fibers, as shown on the left and in the middle of Figure 5.8. Ahead of con-
sidering the possibilities of how to combine these elementary cases, they first
of all will be studied separately. In order to gain an impression of the effective

Fig. 5.8. Stacking of material phases in the axial directions.
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properties of such a stack of two materials, its response to all load cases needs
to be tested. Being subjected to arbitrary homogeneous boundary conditions,
the mechanical and electrostatic fields within the individual material phases
may not be entirely homogeneous in consequence of the dissimilar material
properties. Since such effects are predominantly of local importance, they will
be neglected by virtue of the uniform fields assumption:

Remark 5.4. Mechanical and electrostatic fields are assumed to be homoge-
neous throughout the individual material phases.

As the entire composite structure happens to be assembled from simplified
representative volume elements by symmetric completion and repetition, the
edges have to remain straight and parallel in any event. Transferred to the
mechanical and electrostatic fields, this requirement may be fulfilled on the
grounds of the following assumption:

Remark 5.5. The macroscopic mechanical and electrostatic fields either coin-
cide with field quantities found to be identical in all material phases or result
from the average of field quantities in the individual material phases weighted
by their directional fraction in accordance with the scheme of Table 5.1.

Table 5.1. General assumptions for the stacking of material phases with respect to
the relation of macroscopic to microscopic mechanical and electrostatic fields.

Stress/El. Flux Density Strain/El. Field Strength

Stacking Direction coincidence weighted average
Transverse Plane weighted average coincidence

These assumptions can be applied immediately in the directions e1 and e2
of the cross-sectional plane of the fibers. As the constitutive relation of the
considered piezoelectric materials exhibits only a partial electromechanical
coupling, normal modes and each of the shear modes may be treated inde-
pendently, as illustrated by Eqs. (4.19) to (4.21). In accordance with the con-
siderations of Section 4.4.4, the notation with negated electric field strength
and the associated constitutive submatrices Ē, Ḡ1, and Ḡ2 will be utilized.

5.4.2 Normal Mode Stacking Coefficients

The implications of Remark 5.5 are summarized in Table 5.2 for the stacking
of material phases transverse to the fiber direction with respect to fields asso-
ciated with the normal modes. While the macroscopic mechanical and electro-
static fields carry the usual denominations, the association with the individual
phases is indicated by the superscripts f and m for fields in the fiber and ma-
trix phase respectively. The normal mode constitutive relation of Eq. (4.19)
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Table 5.2. Assumptions for the stacking of material phases with respect to normal
modes.

Direction Stress/El. Flux Density Strain/El. Field Strength

e1 σ1 = σf
1 = σm

1 ε1 = ν1ε
f
1 + (1 − ν1) εm

1

σ2 = ν1σ
f
2 + (1 − ν1) σm

2 ε2 = εf
2 = εm

2

σ3 = ν1σ
f
3 + (1 − ν1) σm

3 ε3 = εf
3 = εm

3

D3 = ν1D
f
3 + (1 − ν1) Dm

3 Ē3 = Ēf
3 = Ēm

3

e2 σ1 = ν2σ
f
1 + (1 − ν2) σm

1 ε1 = εf
1 = εm

1

σ2 = σf
2 = σm

2 ε2 = ν2ε
f
2 + (1 − ν2) εm

2

σ3 = ν2σ
f
3 + (1 − ν2) σm

3 ε3 = εf
3 = εm

3

D3 = ν2D
f
3 + (1 − ν2) Dm

3 Ē3 = Ēf
3 = Ēm

3

can be rewritten for every material phase in terms of those mechanical and
electrostatic fields that are identical in all material phases. For the stacking in
the e1- and e2-directions with the associated partially inverted matrices F̄

f
1 ,

F̄
m
1 and F̄

f
2 , F̄

m
2 of normal mode constitutive coefficients, this yields:

e1:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

εf1

σf
2

σf
3

Df
3

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= F̄
f
1

⎧
⎪⎪⎨

⎪⎪⎩

σ1

ε2
ε3
Ē3

⎫
⎪⎪⎬

⎪⎪⎭

,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

εm1
σm

2

σm
3

Dm
3

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= F̄
m
1

⎧
⎪⎪⎨

⎪⎪⎩

σ1

ε2
ε3
Ē3

⎫
⎪⎪⎬

⎪⎪⎭

, (5.18a)

e2:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σf
1

εf2

σf
3

Df
3

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= F̄
f
2

⎧
⎪⎪⎨

⎪⎪⎩

ε1
σ2

ε3
Ē3

⎫
⎪⎪⎬

⎪⎪⎭

,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σm
1

εm2
σm

3

Dm
3

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= F̄
m
2

⎧
⎪⎪⎨

⎪⎪⎩

ε1
σ2

ε3
Ē3

⎫
⎪⎪⎬

⎪⎪⎭

. (5.18b)

Furthermore, those mechanical and electrostatic fields that are assumed to
be a weighted average, as stated in Table 5.2, may be arranged collectively.
Then the vectors of the phase specific fields can be replaced by substitution
of Eqs. (5.18a) and (5.18b), respectively:

e1:

⎧
⎪⎪⎨

⎪⎪⎩

ε1
σ2

σ3

D3

⎫
⎪⎪⎬

⎪⎪⎭

= ν1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

εf1

σf
2

σf
3

Df
3

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+ (1 − ν1)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

εm1
σm

2

σm
3

Dm
3

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=
(
νf
1 F̄

f
1 + (1 − ν1) F̄

m
1

)

︸ ︷︷ ︸
F̄1

⎧
⎪⎪⎨

⎪⎪⎩

σ1

ε2
ε3
Ē3

⎫
⎪⎪⎬

⎪⎪⎭

,

(5.19a)

e2:

⎧
⎪⎪⎨

⎪⎪⎩

σ1

ε2
σ3

D3

⎫
⎪⎪⎬

⎪⎪⎭

= ν2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σf
1

εf2

σf
3

Df
3

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+ (1 − ν2)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σm
1

εm2
σm

3

Dm
3

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=
(
ν2F̄

f
2 + (1 − ν2) F̄

m
2

)

︸ ︷︷ ︸
F̄2

⎧
⎪⎪⎨

⎪⎪⎩

ε1
σ2

ε3
Ē3

⎫
⎪⎪⎬

⎪⎪⎭

.

(5.19b)
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These still partially inverted macroscopic constitutive relations with the
weighted average of material properties of both phases comprised in the ma-
trices F̄1 and F̄2, may be reverted to the original form of the normal mode
constitutive relations:

e1:

⎧
⎪⎪⎨

⎪⎪⎩

σ1

σ2

σ3

D3

⎫
⎪⎪⎬

⎪⎪⎭

= Ē
1

⎧
⎪⎪⎨

⎪⎪⎩

ε1
ε2
ε3
Ē3

⎫
⎪⎪⎬

⎪⎪⎭

, e2:

⎧
⎪⎪⎨

⎪⎪⎩

σ1

σ2

σ3

D3

⎫
⎪⎪⎬

⎪⎪⎭

= Ē
2

⎧
⎪⎪⎨

⎪⎪⎩

ε1
ε2
ε3
Ē3

⎫
⎪⎪⎬

⎪⎪⎭

. (5.20)

The coefficients of the constitutive matrices Ē
1 and Ē

2, as of Eq. (4.19), thus
stem from the matrices F1 and F2, respectively. They can be derived from
each other by interchanging the indices 1 and 2 of directional fiber fractions
as well as constitutive coefficients of fiber and matrix material again indicated
by the superscripts f and m. So the presentation of these coefficients can be
confined to the matrix Ē

1 as a result of the stacking of constituents in the
e1-direction. The entries of the principal diagonal contained therein are

C1
11 =

Cf
11

ν1(1 + 1−ν1
ν1

Cf
11

Cm
11

)
, (5.21a)

C1
22 = ν1C

f
22 + (1 − ν1)

⎛

⎝Cm
22 − (Cf

12 − Cm
12)

2/Cm
11

1 + 1−ν1
ν1

Cf
11

Cm
11

⎞

⎠ , (5.21b)

C1
33 = ν1C

f
33 + (1 − ν1)

⎛

⎝Cm
33 − (Cf

13 − Cm
13)

2/Cm
11

1 + 1−ν1
ν1

Cf
11

Cm
11

⎞

⎠ , (5.21c)

−ε133 = −ν1εf33 − (1 − ν1)

⎛

⎝εm33 − (ef31)
2/Cm

11

1 + 1−ν1
ν1

Cf
11

Cm
11

⎞

⎠ . (5.21d)

Those coefficient tied to the particular stacking direction, C1
11 in case of the

e1-direction, are represented by a series connection of phase properties, com-
pare with Section 5.3.2. The coefficients in the transverse directions, C1

22,
C1

33, and ε133 for stacking the e1-direction, are represented by a parallel con-
nection of phase properties complemented by a term describing the interaction
with the stacking direction, which therefore again resemble a series connec-
tion. A similar behavior is found for coefficients in charge of the mechanical
and piezoelectric coupling between directions transverse to the stacking direc-
tion:

C1
23 = ν1C

f
23 + (1 − ν1)

⎛

⎝Cm
23 − (Cf

12 − Cm
12)(C

f
13 − Cm

13)/C
m
11

1 + 1−ν1
ν1

Cf
11

Cm
11

⎞

⎠ , (5.21e)
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e132 = ν1e
f
32 − (1 − ν1) ef31

(Cf
12 − Cm

12)/C
m
11

1 + 1−ν1
ν1

Cf
11

Cm
11

, (5.21f)

e133 = ν1e
f
33 − (1 − ν1) ef31

(Cf
13 − Cm

13)/C
m
11

1 + 1−ν1
ν1

Cf
11

Cm
11

. (5.21g)

As the remaining mechanical and piezoelectric coupling coefficients directly
affect the stacking direction, no additional terms appear but series-connection-
like modifications of phase properties arise within a parallel connection:

C1
12 =

Cf
12 + Cm

12
1−ν1

ν1

Cf
11

Cm
11

1 + 1−ν1
ν1

Cf
11

Cm
11

, C1
13 =

Cf
13 + Cm

13
1−ν1

ν1

Cf
11

Cm
11

1 + 1−ν1
ν1

Cf
11

Cm
11

, e131 =
ef31

1 + 1−ν1
ν1

Cf
11

Cm
11

.

(5.21h)

Due to the abandonment of piezoelectric properties for the matrix material, all
of the piezoelectric coupling coefficients as well as the dielectric permittivity
appear in a simplified form.

5.4.3 Shear Mode Stacking Coefficients

The implications of Remark 5.5 are summarized in Table 5.3 for the stack-
ing of material phases transverse to the fiber direction with respect to fields
associated with the shear modes. These are decoupled of one another: the
electrostatic fields in the e1- and e2-directions interact with the shear fields
in the e2-e3-plane and e3-e1-plane, respectively; the e1-e2-plane transverse to
the fiber direction is free of piezoelectric coupling, see Eqs. (4.20) and (4.21).

Table 5.3. Assumptions for the stacking of material phases with respect to shear
modes.

Direction Stress/El. Flux Density Strain/El. Field Strength

e1 τ31 = τf
31 = τm

31 γ31 = ν1γ
f
31 + (1 − ν1) γm

31

D1 = Df
1 = Dm

1 Ē1 = ν1E
f
1 + (1 − ν1) Em

1

τ23 = ν1τ
f
23 + (1 − ν1) τm

23 γ23 = γf
23 = γm

23

D2 = ν1D
f
2 + (1 − ν1) Dm

2 Ē2 = Ēf
2 = Ēm

2

τ12 = τf
12 = τm

12 γ12 = ν1γ
f
12 + (1 − ν1) γm

12

e2 τ31 = ν2τ
f
31 + (1 − ν2) τm

31 γ31 = γf
31 = γm

31

D1 = ν2D
f
1 + (1 − ν2) Dm

1 Ē1 = Ēf
1 = Ēm

1

τ23 = τf
23 = τm

23 γ23 = ν2γ
f
23 + (1 − ν2) γm

23

D2 = Df
2 = Dm

2 Ē2 = ν2E
f
2 + (1 − ν2) Em

2

τ12 = τf
12 = τm

12 γ12 = ν2γ
f
12 + (1 − ν2) γm

12
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Since the coupled fields have an agreeing direction, they are subjected to the
same kind of assumption of Remark 5.5. Hence, the macroscopic constitutive
submatrices Ḡ

1
1, Ḡ

2
1, Ḡ

1
2, and Ḡ

2
2, where the upper index is associated with

the stacking direction and the lower with the agreeing direction of the coupled
mode, can be determined either directly or via complete inversion from the
weighted average:

e1:
{
τ31
D1

}

=
(

ν1

(
Ḡ

f
1

)−1

+ (1 − ν1)
(
Ḡ

m
1

)−1
)−1

︸ ︷︷ ︸
Ḡ1

1

{
γ31
E1

}

, (5.22a)

e2:
{
τ31
D1

}

=
(
ν2Ḡ

f
1 + (1 − ν2) Ḡ

m
1

)

︸ ︷︷ ︸
Ḡ2

1

{
γ31
E1

}

, (5.22b)

e1:
{
τ23
D2

}

=
(
ν1Ḡ

f
2 + (1 − ν1) Ḡ

m
2

)

︸ ︷︷ ︸
Ḡ1

2

{
γ23
E2

}

, (5.22c)

e2:
{
τ23
D2

}

=
(

ν2

(
Ḡ

f
2

)−1

+ (1 − ν2)
(
Ḡ

m
2

)−1
)−1

︸ ︷︷ ︸
Ḡ2

2

{
γ23
E2

}

. (5.22d)

The plane transverse to the fiber direction is always involved with the stacking
in the considered directions. Thus, for both directions, the macroscopic stress
component τ12 of the entirely decoupled shear mode coincides with those of
the individual phases and the resulting shear stiffnesses C1

66 and C2
66 only

differ by the participating directional fiber fraction:

e1: τ12 =
(

ν1

(
Cf

66

)−1

+ (1 − ν1) (Cm
66)

−1

)−1

γ12 =
Cf

66

ν1(1 + ( 1−ν1
ν1

)Cf
66

Cm
66

)
︸ ︷︷ ︸

C1
66

γ12,

(5.23a)

e2: τ12 =
(

ν2

(
Cf

66

)−1

+ (1 − ν2) (Cm
66)

−1

)−1

γ12 =
Cf

66

ν2(1 + ( 1−ν2
ν2

)Cf
66

Cm
66

)
︸ ︷︷ ︸

C2
66

γ12.

(5.23b)

5.4.4 Stacking Sequences

So far, the two necessary cases of stacking of constituents have been examined
for normal as well as shear modes and macroscopic constitutive relations have
been obtained for each of them. In the next step, their integration with the goal
to depict the simplified representative volume element needs to be considered.
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Fig. 5.9. Substitution sequences for the stacking of material phases in the fiber
cross-sectional plane.

Remark 5.6. The macroscopic properties of the composite may be gained by
employing the effective constitutive coefficients of one stacking direction as
initial constitutive coefficients of the fiber material of the next.

Two possible sequences of these substitutions in the directions of the fiber
cross-sectional plane arise, as illustrated in Figure 5.9. Thus, the parallel
and series connections, as well as combinations thereof, given for instance
by Eqs. (5.21a) to (5.21h), are nested in different ways with in fact diverg-
ing results. While Bent and Hagood [15] commit themselves to one of them
without particular discussion, Tan and Tong [173] interpret the individu-
ally distinct coefficients in an extension of the elementary cases considered
in Section 5.3.2 as upper and lower bounds on the effective composite prop-
erties. Further insight can be gained with the aid of the following considera-
tions.

Remark 5.7. For composites in accordance with Remark 5.2 consisting of
aligned transversely isotropic fiber and matrix materials, the overall material
behavior is expected to be at most orthotropic and, in the case of identical
directional fiber fractions ν1 and ν2, to be transversely isotropic.

When the two stacking sequences are applied to such a configuration with
ν1 = ν2, in neither case is transversely isotropic material behavior predicted,
but both variants show deviations which agree in magnitude but not in axial
direction. Therefore however, their average is consistent with the expected
transverse isotropy. Thus, the individual stacking sequences sort of introduce
an artificial degree of orthotropy which may be balanced out by considering
the combination of both stacking sequences. The two possible stacking se-
quences and their combination can be written symbolically with respect to
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the stacking directions as

1 ⇒ 2, 2 ⇒ 1,
〈

1 ⇒ 2
2 ⇒ 1

〉

.

The following fact may be reflected for an illustrative explanation for such
an artificial degree of orthotropy. By substituting the effective constitutive
coefficients of one stacking direction as initial constitutive coefficients of the
fiber material of the next, the matrix material is partitioned and subjected to
diverging conditions, possibly leading to violations of equilibrium and com-
patibility.

5.4.5 Non-Homogeneous Electrostatic Fields

Neither the micro-electromechanical modeling approaches using equivalent
inclusions nor the preceding application of the sequential stacking procedure
consider non-homogeneous electrostatic fields. As long as the examined piezo-
electric fiber composites are subjected to arbitrary but homogeneous mechan-
ical as well as electrostatic fields, these approaches can be applied successfully.
While these requirements may be sufficiently fulfilled with the application of
areal electrodes, this is hardly the case when interdigitated electrodes are uti-
lized, as illustrated by Figure 5.3. Between electrodes with identical polarity
on the top and bottom sides, an inactive zone comes into being, while the
active zone unfolds in the intervals between electrode pairs with opposing po-
larity. In between, a transitional region may be identified where, especially
close to the electrodes, high field concentrations can be a cause for failure
of the composite. For a finite element based analysis of these problems, see
Beckert and Kreher [10].

Stacking in Fiber Direction

A suitable modeling method is sought to capture the losses of actuation and
sensing authority due to the imperfect alignment of the electrostatic fields
with the fiber direction. Relevant parameters are spacing a3 and width b3 of
the electrodes as well as thickness (a2 − af

2 )/2 and dielectric properties of
the matrix material between electrode and fiber in addition to the dielectric
and piezoelectric properties of the fiber material. As the operative direction
of the electrodes is aligned with the polarization direction, the discussion will
be confined to the normal modes. The examination of the simplified repre-
sentative volume element with the assistance of the stacking of constituents
in the direction of the fibers is not as obvious as in the previous cases. Ex-
amining the implications of Remark 5.5 for the current case, summarized in
Table 5.4, in consideration of the fact that the constituents are actually not
stacked in this direction and thus the fibers with their superior properties
clearly dominate the composite’s behavior, suggests assuming the directional
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Table 5.4. Assumptions for the stacking of material phases in fiber direction.

Direction Stress/El. Flux Density Strain/El. Field Strength

e3 σ1 = ν3σ
f
1 + (1 − ν3) σm

1 ε1 = εf
1 = εm

1

σ2 = ν3σ
f
2 + (1 − ν3) σm

2 ε2 = εf
2 = εm

2

σ3 = σf
3 = σm

3 ε3 = ν3ε
f
3 + (1 − ν3) εm

3

D3 = Df
3 = Dm

3 Ē3 = ν3Ē
f
3 + (1 − ν3 + c3) Ēm

3

fiber fraction ν3 = 1. As the lines of electric field strength, sketched in Fig-
ure 5.3, not only pass through the fibers in the e3-direction but, in addition,
traverse the matrix material, it may be justified to introduce the additional
factor c3 in conjunction with the electric field strength Ēm

3 in the matrix ma-
terial. In analogy to the considerations of Bent and Hagood [15], the factor c3
may be roughly approximated as the share of the matrix material along the
lines of the electric field strength on their way through both material phases:

c3 =
(a2 − af

2 )

a3 + (a2 − af
2 )

=
(1 − ν2)

a3
a2

+ (1 − ν2)
. (5.24)

The appearing geometric quantities of the representative volume element
are elucidated in Figure 5.7 and the associated directional fiber fractions are
defined in Eq. (5.1a). In addition to assuming a rectangular path of field
lines, such an approximation neglects the certainly important electrode width
b3. Thus, it primarily tackles the influences of transitional regions, while the
inactive zones are left aside.

Determination of the Stacking Coefficients

To proceed just like in the other stacking cases, the constitutive relation of
Eq. (4.19) may be rewritten for fiber and matrix material as follows:
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. (5.25)

Again, those mechanical and electrostatic fields that originally have been as-
sumed to be a weighted average, as stated in Table 5.4, may be arranged
collectively and Eqs. (5.25) inserted:
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(5.26)
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This still partially inverted macroscopic constitutive relation may be reverted
correspondingly to the original form of the normal mode constitutive rela-
tions:

e3:
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(5.27b)

Unlike the procedure laid out above, which introduces the factor c3, in the
publications of Bent and Hagood [14,15] and Bent [13], the fraction ν3 is set
to one only for the mechanical fields, while it is retained for the electrostatic
fields. The resulting constitutive matrix of Eq. (5.27b) therefore becomes non-
symmetric with respect to the piezoelectric coupling coefficients. Since the
undermost line of the normal mode constitutive relation is not used there any
further, this has no consequences.

Discussion of the Stacking Coefficients

As intended, the geometric factor c3 gives rise to the consideration of the
dielectric properties of the matrix material. The resulting piezoelectric and
dielectric properties are extended in the denominator by the product of the
factor c3 with the ratio of dielectric permittivities of fiber and matrix material
εf33/ε

m
33. In comparison to the pure fiber material, these properties therefore

are decreased by a thick matrix layer between fibers and electrodes according
to the approximation of Eq. (5.24) and by a high dielectric mismatch, which is
significant for the typical materials listed in Tables A.2 and A.3. In both cases,
the insulation of the fibers from the electrodes is increased and results in a
reduction of effectivity of the piezoelectric coupling. The mechanical proper-
ties, as they result from the stacking in fiber direction, consist of the stiffness
coefficients of the fiber material complemented by an additional term, which
represents the strengthening due to the piezoelectric effect and again contains
the discussed influence factors.
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5.4.6 Stacking Sequences for Non-Homogeneous Electrostatic
Fields

Succeeding to the above analysis, the question for the sequence of substitutions
arises again in consideration of two appropriate possibilities. In accordance
with Remark 5.6, either the results of the stacking in the transverse directions,
Section 5.4.4, are utilized to represent the fiber phase for the stacking in
the fiber direction, Section 5.4.5, or the other way round. These possibilities
are illustrated in Figures 5.10(a) and (b), respectively, and may be written
symbolically as

〈
1 ⇒ 2
2 ⇒ 1

〉

⇒ 3 and 3 ⇒
〈

1 ⇒ 2
2 ⇒ 1

〉

.

The discussion with regard to the stacking in the fiber direction was bound
for the loss in efficiency of the piezoelectric coupling inherent only to the fiber
material. Therefore, it may be concluded to begin the substitution sequence
with the e3-direction, as the matrix material otherwise would exert additional
influence by means of its share in the preceding stacking cases. Such consider-
ations, however, depend on the definition of the factor c3, which needs to be
refined requiring detailed experimental studies and finite element simulations
with non-homogeneous polarization. Figure 5.11 exemplarily illustrates the
influence of the substitution sequence by means of the essential piezoelectric

Fig. 5.10. Over-all substitution sequences for the stacking of material phases.
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Fig. 5.11. Variation of the piezoelectric coupling coefficient e33 with the directional
fiber fractions ν1 and ν2. The values are normalized with respect to the bulk piezo-
electric material and homogeneous electrostatic fields. Both substitution sequences
are shown for different factors c3; the results are identical for the homogeneous
conditions of c3 = 0.

coupling in the fiber direction. When the coefficients of the stacking in the
fiber direction are substituted first, the results have the same character as in
the case of undisturbed electrostatic fields present for a factor c3 = 0. When
they are substituted last, distinct deviations are visible which decay with a
decreasing factor c3. Further on, the ability of piezoelectric fiber composites
to improve the piezoelectric coupling over the monolithic case of ν1, ν2 = 1
may be observed. Finally, it shall be noted that in principle it is also possible
to combine the stacking in the fiber direction to approximate the influence
of non-homogeneous electrostatic fields with any other methodology lacking
such a capability.

5.5 Validation of the Micro-Electromechanics

In this section, the previously derived micro-electromechanical methodologies
will be validated from the results of experiments as well as finite element mod-
els. Such examinations are reported in the literature with adequate topology
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Fig. 5.12. Variants of fiber shapes and arrangements for 1–3 composites before
insertation of matrix material; original photographs by the Fraunhofer Institute for
Ceramic Technologies and Systems.

and necessary completeness only for the class of 1–3 composites, see Fig-
ure 5.12. Dating back to the connectivity terminology of Newnham et al.
[133], this identifies composites where the piezoelectric inclusion phase is con-
nected to itself in one direction and thus consists of continuous fibers and
the matrix phase fills the remaining volume, being self-connected in all three
spatial directions. Unlike piezoelectric fiber composites for structural applica-
tions, the usual 1–3 composites have fibers oriented in the thickness direction
of specimens predominantly applied as ultrasonic transducers. With such a
set-up, it is not necessary to employ interdigitated electrodes, but the desired
electrostatic fields in the fiber direction can be accessed with areal electrodes.
Further on, the arrangement of fibers in their cross-sectional plane is uni-
form, implying equal directional fiber fractions ν1 = ν2. With the subsequent
comparison, it will, therefore, neither be possible to address the issues of non-
homogeneous electrostatic fields nor of arbitrary aspect ratios. Nevertheless,
a fundamental validation of the Mori–Tanaka method, Section 5.3.4, relying
on the constraint tensor for fibrous composites given by Dunn and Taya [67],
as well as of the sequential stacking procedure with combined substitution
sequence, Section 5.4.4, may be demonstrated.

5.5.1 Experiments and Finite Element Models

In the work of Chan and Unsworth [49], discs with a diameter of 14 mm and
a thickness of 1.2 mm, made of Araldit D matrix and PZT 7A fibers with a
square shape as well as arrangement and varying fiber volume fractions, are
examined. The respective material properties are given in Tables A.2 and A.3
as provided by the manufacturer. Measurements of the bulk material proper-
ties conducted by Chan and Unsworth [49] have shown large variations from
batch to batch and in the case of the induced strain piezoelectric coupling
coefficient d33 led to an adjustment to d33 = 167 × 10−12 m/V. This has also
been adopted by Poizat and Sester [143] for their finite element model of the
described set-up as well as for the associated current modeling efforts. In the
work of Steinhausen [169], 1–3 composites made of Araldit 2020 matrix and
PIC 151 fibers, Tables A.2 and A.3, with varying fiber volume fraction are
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examined. For this purpose, fibers with a square shape in a square arrange-
ment, with a cylindrical shape in a hexagonal arrangement, as well as with
a cylindrical shape in a statistical distribution, have been manufactured, see
Figure 5.12. Unless otherwise indicated, these geometry variants do not show
significant effects and will not be distinguished in the following. Steinhausen
[169] also conducted finite element simulations, which are in good agreement
with the analytical models and will be reproduced here only in uncertain
cases.

5.5.2 Dielectric, Piezoelectric, and Mechanical Properties

As mentioned above, the correlation between specified and measured bulk
material properties is problematic and further implications will become obvi-
ous in the subsequent detailed comparison between experiments and theory.
Within the bounds of such variations and of the measurement accuracy, both
representatives of the different micro-electromechanical modeling methodolo-
gies can be successfully validated.

Dielectric Properties

The dielectric permittivity εσ33 in the fiber and polarization direction exhibits
a largely linear dependence on the fiber volume fraction ν. In Figures 5.13
and 5.14, the Mori–Tanaka method and the sequential stacking procedure de-
liver identical results, which agree well with the experimental findings. In the
second of these figures, slight deviations of the slope may indicate that the
material data of the constituents is not entirely precise. For the fiber mate-
rial, this impression is supported by measured value for ν = 1 being smaller

Fig. 5.13. Variation of the relative di-
electric permittivity εσ

33/ε0 with the fiber
volume fraction ν; experimental results
from Chan and Unsworth [49].

Fig. 5.14. Variation of the relative di-
electric permittivity εσ

33/ε0 with the fiber
volume fraction ν; experimental results
from Steinhausen [169].
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than the presumed value at the end of the plot of the modeling results. Corre-
spondingly, the lower fiber volume fractions point towards a higher dielectric
permittivity of the matrix material.

Piezoelectric Properties

Also for the induced strain piezoelectric coupling coefficient d33 in the fiber
and polarization direction, the modeling results cannot be distinguished and,
as depicted in Figures 5.15 and 5.16, agree well with the experimental results.
While there are some deviations of the experimental data points in the first
of these graphs, the finite element results agree almost perfectly with the an-
alytical modeling results. In the second of these graphs, again just a small
deviation between the fiber properties according to the manufacturer and the
measurement needs to be noted. Experimental investigations of the induced
strain piezoelectric coupling coefficient d31 have been conducted by Stein-
hausen [169]. It is reported that the obvious deviations visible in Figure 5.17
are due to surface effects occurring in the experiment, which are not consid-
ered in the analytical modelling approaches. Unlike the previously examined
properties, the coefficient d31 is sensitive to the stacking sequence in the fiber
cross-sectional plane, and the conformity of the combination of substitution
sequences with Mori–Tanaka as well as the finite element results supports the
argumentation of Section 5.4.4.

Fig. 5.15. Variation of the induced
strain piezoelectric coupling coefficient
d33 with the fiber volume fraction ν;
experimental results from Chan and
Unsworth [49] and finite element results
from Poizat and Sester [143].

Fig. 5.16. Variation of the induced
strain piezoelectric coupling coefficient
d33 with the fiber volume fraction ν;
experimental results from Steinhausen
[169].
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Mechanical Properties

The finite element analysis of Steinhausen [169] has identified the compliance
coefficient S11 transverse to the fiber direction as the only one susceptible
to shape and arrangement of fibers. This has been confirmed vaguely by the
experiments, but in Figure 5.18 only the results for the square shape and
arrangement of fibers are given. Still the slightly higher compliance values for
cylindrical fibers in a hexagonal arrangement might explain the difference

Fig. 5.17. Variation of the induced
strain piezoelectric coupling coefficient
d31 with the fiber volume fraction ν;
experimental and finite element results
from Steinhausen [169].

Fig. 5.18. Variation of the compliance
coefficient S11 with the fiber volume
fraction ν; experimental and finite ele-
ment results from Steinhausen [169].

Fig. 5.19. Variation of the compliance
coefficient S33 with the fiber volume
fraction ν; experimental results from
Steinhausen [169].

Fig. 5.20. Variation of the stiffness co-
efficient C33 with the fiber volume frac-
tion ν; experimental results from Stein-
hausen [169].
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between the Mori–Tanaka method and sequential stacking procedure as the
prior emanates from round fibers and the latter from rectangular fibers. Al-
together, the accord is less pleasing for this coefficient. Due to requirements
of the measurement technique, Steinhausen [169] used different piezoelectric
fibers with inaccurate material data for the determination of the compliance
coefficient S33 in the fiber direction. Therefore, these experiments are com-
pared in Figure 5.19 with the analytical models using the original constituent
properties outlined above and yet a good correlation of results is found. Again,
the Mori–Tanaka method and sequential stacking procedure lead to indistin-
guishable results. This also holds for the stiffness coefficient C33 in the fiber
direction displayed in Figure 5.20.



6

Adaptive Laminated Composite Shells

In this chapter, the transition from voluminous to areal structures, as already
prepared in Section 4.4, will be implemented with special regard to laminated
composites and adaptive capabilities making use of the piezoelectric effect
for actuation as well as sensing. Therefore, a comprehensive constitutive de-
scription is developed and appropriate kinematic relations are specified. After-
wards, possibilities of different complexity for the reduction to a less general
description are considered in view of specialized application cases.

6.1 Macro-Electromechanics

The examination of the micro-electromechanics in the previous chapter aimed
at the homogenized representation of fiber composites with substantial exten-
sion in all three dimensions. Within the macro-electromechanics to be con-
sidered now, the homogenized representation of laminated composites with
a substantial extension only in two dimensions is sought. The graduation in
terminology alludes to the course of modeling. So laminated fiber composites
first pass through the analysis on the micro scale, Section 5.3 or 5.4, and af-
ter constitutive reduction, Section 4.4, they enter the analysis on the macro
scale.

6.1.1 Lamination Theory

The classical lamination theory, as described by Jones [107] or Whitney [178]
for conventional laminates, may be extended to model the assembly of layers
or (synonymous) laminae of materials with piezoelectric properties. Here the
following will be assumed:

Remark 6.1. The laminate is composed of laminae which are perfectly con-
nected by infinitesimally thin and shear resistant bonds.

T.H. Brockmann, Theory of Adaptive Fiber Composites,
Solid Mechanics and Its Applications 161,
c© Springer Science + Business Media B.V. 2009
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Further on, for sufficiently thin laminates, the following kinematic assump-
tion shall be applicable, usually being denoted as the Kirchhoff–Love hypoth-
esis in shell theory:

Remark 6.2. Normal strain and shear strains transverse to the laminate are
presumed to be negligible small.

Regarding a straight line connecting two opposed points on the laminate’s
faces, this assumption implies that under deformation this line conserves its
length and remains straight as well as perpendicular to the laminate’s middle
surface. Such deformations can be expressed by the remaining strains as
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Initially, the implications of the above assumption will also be adopted to
describe the negated electric field strength Ē3. Thus, strains as well as electric
field strength are confined to a linear variation through the laminate thickness
with a constant portion ε0 associated with the middle surface of the laminate
and a linear portion nκ. The through thickness coordinate n has its origin at
the middle surface and the gradient is represented by κ. In the case of the
strains, the latter corresponds to the curvatures of the middle surface. With
such a collective description of strains and electric field strength across the
layers of the laminate and the individual laminae properties Q̄k, the stresses
and electric flux density of every layer k may be determined as
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This equation stems from the general constitutive relation of a thin arbitrarily
oriented lamina given by Eq. (4.31). Stresses and electric flux density of the
individual laminae may be summarized in in-plane resultants N and out-of-
plane resultants M by integration over the laminate thickness, in the latter
case, in consideration of the distance to the middle surface:
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Fig. 6.1. Geometry of a laminate with K layers.

The integration over the total laminate thickness N may be replaced by the
sum of integrals over the thicknesses nk − nk−1 of each of the altogether K
laminae. The geometry of such a laminate is illustrated in Figure 6.1. The
stresses and electric flux density in Eqs. (6.3) may be substituted with the aid
of the laminae constitutive relation of Eq. (6.2), and the collective description
of strains and electric field strength with respect to the middle surface may be
introduced by Eq. (6.1). As the latter do not depend on the through thickness
coordinate n, they can be removed from under the integration and summation
sign for the following formulation:
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=
[
A B

B D

]{
ε0

κ

}

, (6.4a)

A =
K∑

k=1

Q̄k (nk − nk−1) , B =
K∑

k=1

Q̄k

n2
k − n2

k−1

2
, D =

K∑

k=1

Q̄k

n3
k − n3

k−1

3
.

(6.4b)

6.1.2 Laminates with Groups of Electrically Paralleled Laminae

The above representation is identical to classical lamination theory just that
the matrix dimensions are extended by virtue of the included electrostatic
fields. But the so-far utilized analogous assumptions for the latter need to be
thought over, as the effect of the electrodes on the electrostatic field distribu-
tion within the individual layer and the parallel connection of electrode pairs
of several layers is not yet considered.

Remark 6.3. The electric field strength is assumed to be constant across the
thickness of the individual laminae and to be identical in all laminae with
paralleled electrode pairs with respect to absolute values.

While a linear through thickness variation of mechanical strains is consid-
ered, the electroding by groups of piezoelectric layers results in a piecewise
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constant distribution of the in-plane electric field strength. Thus, on the one
hand the electric field strength gradient F3 introduced in Eq. (6.1) is discarded
and therefore also the resultant H3 of Eq. (6.3b) is not required anymore,
while on the other hand, the electrostatic fields of electrically connected lami-
nae have to be treated separately for every group. Corresponding to Eqs. (6.1)
and (6.2), the stresses and electric flux density of layer k belonging to group
g may be expressed in accordance with the above assumption. With the rela-
tive sign pk of the electric field strength governed by the electrode connection
within the group, this yields

⎧
⎪⎪⎨

⎪⎪⎩

σx

σs

τxs

Dg
3

⎫
⎪⎪⎬

⎪⎪⎭
k

= Q̄k

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 pk

⎤

⎥
⎥
⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε0x
ε0s
γ0

xs

Ēg
3

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+ n

⎧
⎪⎪⎨

⎪⎪⎩

κx

κs

ψxs

0

⎫
⎪⎪⎬

⎪⎪⎭

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

with pk ∈ {1,−1} .

(6.5)
When the laminate resultants are formed by through thickness integration as
in Eqs. (6.3), then the electrostatic fields of every group with connected elec-
trodes have to be considered separately. Thus, individual rows and columns
are introduced in the coefficient matrix of the laminate constitutive relation.
Explicitly written out for two groups denoted by the letters c and d, the
constitutive relation may be formulated as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nx

Ns

Nxs−
Mx

Ms

Mxs−
Gc

3

Gd
3

...

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
L

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

� � � � � � � �
A1..3,1..3 B1..3,1..3 Ac

1..3,4 Ad
1..3,4 . . .

� 	 � 	 � 	 � 	
� � � � � � � �

B1..3,1..3 D1..3,1..3 Bc
1..3,4 Bd

1..3,4 . . .

� 	 � 	 � 	 � 	
�� Ac

1..3,4
�T

	 �� Bc
1..3,4

�T

	 Ac
44 0

�� Ad
1..3,4

�T

	 �� Bd
1..3,4

�T

	 0 Ad
44

...
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
K

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε0x
ε0s
γ0

xs−
κx

κs

ψxs−
Ēc

3

Ēd
3

...

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
χ

.

(6.6)
The mechanical stiffness coefficients, which are unchanged in comparison to
the classical lamination theory, have been arranged just as they appear in
the latter. They may be determined in accordance with Eqs. (6.4b). As the
remaining coefficients are involved with the negated electric field strengths
Ēg

3 and appertaining resultants Gg
3 of the electric flux density, they have to

be established in consideration of the group association represented by the
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functions fg
k :

Ag
1..4,4 =

K∑

k=1

fg
kpk (Q̄1..4,4)k (nk − nk−1) ,

Bg
1..3,4 =

K∑

k=1

fg
kpk (Q̄1..3,4)k

n2
k − n2

k−1

2
, with fg

k =

{
1, k ∈ g,
0, k /∈ g.

(6.7)

As there is no electrical connection between the considered groups, the respec-
tive coupling coefficients in the constitutive relation, given by Eq. (6.6), have
to be zero. This includes the presumption that the electrodes of a piezoelec-
tric layer in general have no influence on other piezoelectric layers, which has
to be guaranteed by the stacking sequence or additional measures. The com-
mon theories provide no instruments to collate the electrostatic fields and do
without resultants of the electric flux density, see Crawley and Lazarus [58],
Leibowitz and Vinson [121], or Bent et al. [17]. Thus the resulting constitu-
tive description is not compatible to the general form of the energy principles,
compare with Eq. (3.63).

6.2 Kinematics and Equilibrium

The strain measures of the laminate have been introduced without specifica-
tion of their relation to the displacements field. As the strain measures have
been established with respect to the middle surface of the laminate, it will
also be the reference for the displacements field.

6.2.1 General Thin Shell Kinematics

To be able to represent arbitrary shapes, the orthogonal curvilinear coordi-
nates s1 and s2 on the middle surface are introduced together with the asso-
ciated Lamé parameters A1 and A2, see for example Dym [69] or Novozhilov
[134]. The undeformed middle surface is characterized by the respective prin-
cipal radii R1 and R2 in agreement with the following condition:

Remark 6.4. Besides being thin with regard to the overall dimensions, the
considered shell-like structure is presumed to have a thickness substantially
smaller than its smallest radius of curvature.

A variety of theories for thin shells are available. For the anticipated ap-
plications, it is reasonable to confine the examination to linear theories:

Remark 6.5. The occurring displacements shall be small.

The well-known and generally accepted thin shell theory of Sanders [158]
and Koiter [114] eliminated the deficiency of the preceding developments of
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non-vanishing strains for small rigid-body motions. The kinematic relations
obtained by these authors will be adapted here. The deformation of the struc-
ture are described by the displacements u, v tangential to the middle surface
along the directions of coordinates s1, s2 and the displacement w normal to
the middle surface. Therewith, the extensional strains ε01, ε

0
2 and shear strain

γ0
12 of the middle surface are given by

ε01 =
1

A1

∂u

∂s1
+

1
A1A2

∂A1

∂s2
v +

w

R1
, ε02 =

1
A2

∂v

∂s2
+

1
A1A2

∂A2

∂s1
u +

w

R2
,

(6.8a)

γ0
12 =

1
A1A2

(

A2
∂v

∂s1
+ A1

∂u

∂s2
− ∂A1

∂s2
u−∂A2

∂s1
v

)

. (6.8b)

The bending curvatures κ1, κ2 and the twisting curvature ψ12 of the middle
surface are given with respect to the rotations ϑ1 and ϑ2 by

κ1 =
1
A1

∂ϑ1

∂s1
+

1
A1A2

∂A1

∂s2
ϑ2, κ2 =

1
A2

∂ϑ2

∂s2
+

1
A1A2

∂A2

∂s1
ϑ1, (6.9a)

ψ12 =
1

A1A2

(
A2

∂ϑ2
∂s1

+ A1
∂ϑ1
∂s2

− ∂A1
∂s2
ϑ1− ∂A2

∂s1
ϑ2

+ 1
2

(
1

R2
− 1

R1

)(
∂A2v

∂s1
− ∂A1u

∂s2

)

)

. (6.9b)

As the shear strains γ0
1 and γ0

2 , transverse to the middle surface, are negli-
gible by virtue of the assumptions formulated in Remark 6.2, the rotations
appearing above may be expressed by the displacements as follows:

γ0
1 =

1
A1

∂w

∂s1
− u

R1
+ ϑ1, γ0

2 =
1

A2

∂w

∂s2
− v

R2
+ ϑ2; (6.10a)

γ0
1 = 0 → ϑ1 =

u

R1
− 1

A1

∂w

∂s1
, γ0

2 = 0 → ϑ2 =
v

R2
− 1

A2

∂w

∂s2
.

(6.10b)

6.2.2 Cylindrical Thin Shell Kinematics

Cylindrical shells in undeformed configuration are only curved along one of
the coordinate directions, see Figure 6.2, and frequently appear in technical
applications.

Remark 6.6. The considered shells are presumed to be cylindrical.

Due to the less complicated geometry, the representation of the kinematic
relations may be simplified with the following substitutions:

R1 → ∞, R2 = R, (6.11a)
s1 = x, s2 = s, A1 = A2 = 1. (6.11b)
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Fig. 6.2. Orientation of coordinates and displacements for a cylindrical thin shell.

Accordingly, the strain measures as well as rotations have to be renamed.
Then the introduction of Eqs. (6.11) into Eqs. (6.8) and (6.9) yields:

ε0x =
∂u

∂x
, ε0s =

∂v

∂s
+

w

R
, γ0

xs =
∂v

∂x
+
∂u

∂s
, (6.12)

κx =
∂ϑx

∂x
, κs =

∂ϑs

∂s
, ψxs =

∂ϑs

∂x
+
∂ϑx

∂s
+

1
2R

(
∂v

∂x
− ∂u

∂s

)

. (6.13)

Similarly the rotations of Eqs. (6.10a) and, consequently, (6.10) reduce to

γ0
x =

∂w

∂x
+ ϑx, γ0

s =
∂w

∂s
− v

R
+ ϑs, (6.14a)

γ0
x = 0 → ϑx = −∂w

∂x
, γ0

s = 0 → ϑs =
v

R
− ∂w

∂s
. (6.14b)

and so they can be eliminated from Eqs. (6.13) resulting in

κx = −∂
2w

∂x2
, κs = −∂

2w

∂s2
+
∂

∂s

(
v

R

)
, (6.15a)

ψxs = −2
∂2w

∂x∂s
+
∂

∂x

(
v

R

)
+

1
2R

(
∂v

∂x
− ∂u

∂s

)

. (6.15b)

Thus, with Eqs. (6.12) and (6.15), the complete set of strain measures in
terms of displacements is established for thin cylindrical shells. By neglecting
the underlined terms of Eqs. (6.15), this formulation based on the theory
of Sanders [158] and Koiter [114], may be reduced to the also well-known
formulation of Donnell [64] or Girkmann [84]. Theories similar to the latter
likewise have been developed by Mushtari and Vlasov, see Novozhilov [134].
The inspection of the constituents of terms involving the radius shows that
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derivatives of displacements divided by radius as well as displacements divided
by squared radius are neglected, while displacements divided by radius are
retained. As the divergence in the order of magnitude of these ratios increases
with the radius, such a practice appears to be reasonable, especially for greater
radii of curvature with respect to the shell dimensions. The implications of the
simplifications on the theory for circular cylindrical shells have been discussed
extensively in the literature, see Kempner [111], Hoff [99], Simmonds [163],
Dym [69].

6.2.3 Cylindrical Thin Shell Equilibrium

The principle of virtual displacements, given by Eq. (3.45), may be utilized
to determine the equations of equilibrium. We will refrain from considering
external loads. For the two-dimensional shell structure still with the transverse
shear strains γ0

x and γ0
s and associated internal transverse forces Qx and Qs,

the principle of virtual displacements may then be reformulated as follows:

δU md =
∫∫

Λ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δε0x

δε0s

δγ0
xs

δκx

δκs

δψxs

δγ0
x

δγ0
s

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

T ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nx

Ns

Nxs

Mx

Ms

Mxs

Qx

Qs

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dsdx = 0. (6.16)

The virtual strain measures are related to the virtual displacements, just as
it is given for the actual case in Eqs. (6.12), (6.13), and (6.14a). When these
kinematic relations are substituted into the principle, different derivatives
of the virtual displacements appear. These may be eliminated with the aid
of integration by parts to summarize the contributions connected to every
virtual displacement. In order to satisfy the principle, each of the resulting
integrands needs to vanish. Not to be pursued here, the natural boundary con-
ditions therewith can be determined. The sought-after equilibrium conditions
in directions of the coordinates x, s, and n take the following form

∂

∂x
Nx +

∂

∂s
Nxs − 1

2
∂

∂s

(
Mxs

R

)

= 0, (6.17a)

∂

∂s
Ns +

∂

∂x
Nxs +

1
2
∂

∂x

(
Mxs

R

)

+
Qs

R
= 0, (6.17b)

∂

∂x
Qx +

∂

∂s
Qs − Ns

R
= 0, (6.17c)
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while the moment equilibrium conditions about the directions of the coordi-
nates x and s read

∂

∂x
Mx +

∂

∂s
Mxs − Qx = 0, (6.18a)

∂

∂s
Ms +

∂

∂x
Mxs − Qs = 0. (6.18b)

Since the transverse shear strains γ0
x and γ0

s will be neglected by virtue of
Remark 6.2, the associated internal transverse forces Qx and Qs may be elim-
inated by substitution of Eqs. (6.18) into Eqs. (6.17b) and (6.17c). Thus, the
set of equilibrium conditions then consists of Eq. (6.17a) and, considering that
the radius R of a cylindrical shell is not a function of the coordinate x, of the
following:

∂

∂s
Ns +

∂

∂x
Nxs +

1
R

(
3
2
∂

∂x
Mxs +

∂

∂s
Ms

)

= 0, (6.19a)

∂2

∂x2
Mx + 2

∂2

∂x∂s
Mxs +

∂2

∂s2
Ms − Ns

R
= 0. (6.19b)

6.3 Constitutive Reduction

From the mechanical point of view, the theory developed so far allows for the
consideration of adaptive laminated shells subjected to arbitrary loads and
strains within the framework of Remarks 6.1 to 6.6. For many applications,
such a level of generality is not necessary as particular knowledge with respect
to mission and design may be used to imposed simplifying assumptions.

6.3.1 Negligence of Strain and Stress Components

In the simplest case, certain strain measures are assumed to be negligible and
thus the associated column in the matrix of constitutive properties may be
eliminated. As the corresponding line in the constitutive relation with regard
to the energy contribution is not required either, it can also be removed.
In the other case, when an internal force or moment is to be abandoned,
the corresponding line in the constitutive relation may be used to determine
the associated strain measure. Substituting the result back into the remaining
lines of the constitutive relation leads to an adequate condensation. Analogous
procedures have already been applied in Section 4.4.

Membrane Response

Here the consequences of typical assumptions for the employment of the de-
scribed shells as thin walls of a beam will be demonstrated.
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Remark 6.7. Membrane response dominates the structural behavior and forces
acting along the curved coordinate direction are negligible.

The reasons for these assumptions are illustrated within the context of
the theory of thin-walled beams in the following chapter. The first part of
Remark 6.7 demands negligence of the shell bending and twisting curvatures,
while the second part sets the internal forces along the s-direction to zero:

κx = 0, κs = 0, ψxs = 0, (6.20a)
Ns = 0. (6.20b)

These equations are to be applied to the constitutive relation of Eq. (6.6),
exemplarily for two groups of electrically paralleled laminae. By virtue of
Eqs. (6.20a), the associated columns and lines are eliminated, while the con-
densation due to Eq. (6.20b) on top leads to an additional term in every
remaining component of the constitutive matrix:

⎧
⎪⎪⎨

⎪⎪⎩

Nx

Nxs

Gc
3

Gd
3

⎫
⎪⎪⎬

⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A11 − (A12)
2

A22
A13 − A12A23

A22
Ac
14 − A12A

c
24

A22
Ad
14 − A12A

d
24

A22

A13 − A12A23
A22

A33 − (A23)
2

A22
Ac
34 − A23A

c
24

A22
Ad
34 − A23A

d
24

A22

Ac
14 − A12A

c
24

A22
Ac
34 − A23A

c
24

A22
Ac
44 − (Ac

24)
2

A22
− Ac

24A
d
24

A22

Ad
14 − A12A

d
24

A22
Ad
34 − A23A

d
24

A22
− Ac

24A
d
24

A22
Ad
44 − (Ad

24)
2

A22

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε0x
γ0

xs

Ēc
3

Ēd
3

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

(6.21)
It needs to be noted that those components responsible for the direct electric
interaction between laminae groups are modified from 0, see Eq. (6.6), to
−Ac

24A
d
24/A22. As the electrostatic fields of both groups have been coupled to

the considered mechanical fields, the condensation of the latter has converted
the indirect coupling to a virtually direct one.

Reduced Shell Response

Since the assumptions of Remark 6.7 are rather restrictive, the course of
derivation in the subsequent chapters will rely on one of the following more
general variants with regard to the theory of thin-walled beams:

Remark 6.8. For structures with minor influence of stress and strain states in
the curved coordinate direction, either the internal loads or the strain mea-
sures may be assumed to be negligibly small for this direction.

Ns = 0, Ms = 0 (6.22)

or

ε0s = 0, κs = 0. (6.23)
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The negligence of the force Ns and the moment Ms, as of Eq. (6.22), re-
quires two condensations to be carried out in analogy to the above discussion.
The resulting properties are to be distinguished by the use of (̀·). The con-
densations again lead to non-zero direct electric interaction between laminae
groups symbolized by Àcd

44. While the matrix for the reduced shell response is
still symmetric, a loss of symmetry in the off-diagonal submatrices is observed
and captured by B̀31. Consequently, the constitutive relation reads:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Nx

Nxs

Mx

Mxs

Gc
3

Gd
3

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

À11 À13 B̀11 B̀13 Àc
14 Àd

14

À13 À33 B̀31 B̀33 Àc
34 Àd

34

B̀11 B̀31 D̀11 D̀13 B̀c
14 B̀d

14

B̀13 B̀33 D̀13 D̀33 B̀c
34 B̀d

34

Àc
14 Àc

34 B̀c
14 B̀c

34 Àc
44 Àcd

44

Àd
14 Àd

34 B̀d
14 B̀d

34 Àcd
44 Àd

44

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ε0x
γ0

xs

κx

ψxs

Ēc
3

Ēd
3

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (6.24)

Neglecting strain ε0s and curvature κs, as of Eq. (6.23), allows us to delete
the associated columns and rows of the matrix, respectively, vectors in the
original constitutive relation of Eq. (6.6). However, Eq. (6.24) may be used to
represent both cases of the reduced shell response, since the latter is included
as a special case:

(̀·) = (·) with B̀31 = B̀13 = B13 and Àcd
44 = 0. (6.25)

6.3.2 Potential Energy Considerations

Another possibility to reduce the number of components in the constitutive
relation of adaptive laminated shells is to employ the extended Dirichlet’s
principle of minimum potential energy derived in Section 3.5.1.

Remark 6.9. External mechanical loads, as well as external electric charges,
will be confined to minor changes in comparison to the internal states.

Therefore, the minimization is not affected by these external influences
and, consequently, Eq. (3.69) reduces to

U ⇒ min . (6.26)

With the preceding constitutive modeling, the associated electroelastic energy
density U0, see Eq. (3.65), may now be given for adaptive laminated shells as

U0 =
1
2
χT

Kχ with K = K
T , (6.27a)

=
1
2
χ̂T

K̂χ̂ + χ̂T
K̊χ̌ +

1
2
χ̌T

Ǩχ̌, K̂ = K̂
T , Ǩ = Ǩ

T . (6.27b)
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Here the considerations of Section 4.4.4 again warrant the symmetry of the
laminate constitutive matrix K, introduced in Eq. (6.6), together with the vec-
tor χ consisting of shell strains and groupwise electric field strengths. Equa-
tion (6.27a) may be rewritten for an arbitrary rearrangement of the compo-
nents of χ in the vectors χ̂ and χ̌ with the corresponding property matrices
K̂, Ǩ, and K̊ as given by Eq. (6.27b). For such a partitioning, the constitutive
relation of Eq. (6.6) with the vector L of shell internal loads and groupwise
electric flux density resultants reorganized in the vectors L̂ and Ľ reads as
follows: {

L̂
Ľ

}

=
[

K̂ K̊

K̊
T

Ǩ

]{
χ̂
χ̌

}

. (6.28)

Constrained Variational Problem of Several Independent Variables

In the first instance, the general formulation of such a problem shall be con-
sidered. As the expression U0 is a function of functions, in the current case
contained in the vector χ, it is denoted as functional. The functions and
thus the functional may depend on several mutually independent variables,
whereby, without loss of generality, the two-dimensional case will be exam-
ined. Correspondingly, the appearance of first derivatives of the functions is
incorporated. The extremum of the integral

U =
∫ x1

x0

∫ s1

s0

U0(x, s,χ(x, s),χ,x(x, s),χ,s(x, s)) dsdx (6.29)

is sought after. The functions contained in the vector χ will be subjected to
an arbitrary number of side conditions. These constraints are of the following
form:

∫ x1

x0

∫ s1

s0

ς(x, s,χ(x, s)) dsdx = c, (6.30a)
∫ x1

x0

ς(x, s,χ(x, s)) dx = c (s) ,
∫ s1

s0

ς(x, s,χ(x, s)) ds = c (x) , (6.30b)

ς
(
x, s,χ(x, s),χ,x(x, s),χ,s(x, s)

)
= 0. (6.30c)

Euler’s differential equations in conjunction with the introduction of La-
grangian multipliers constitute the necessary conditions for a minimum, see
Courant and Hilbert [56] or Denn [62]. Thereby the integrand U0 of Eq. (6.29)
is extended by the product of appropriate parameters known as Lagrangian
multipliers and integrands of the side conditions. In the vectorial representa-
tion to be given here, this results in U0 + λT ς with the vector of Lagrangian
multipliers λ and respective vector of integrands ς from Eqs. (6.30). To ob-
tain Euler’s differential equations, the variation of this expression is equated
to zero:

∂

∂s

∂

∂χ,s

(
U0 + λT ς

)
+
∂

∂x

∂

∂χ,x

(
U0 + λT ς

)
− ∂

∂χ

(
U0 + λT ς

)
= 0. (6.31)
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To determine the Lagrangian multipliers, the side conditions have to be con-
sulted. The different types of side conditions given in Eqs. (6.30), identify
the dependencies of the Lagrangian multipliers. In the case of Eq. (6.30a),
it is dealt with a constant, while for Eqs. (6.30b) the Lagrangian multipliers
depend on the variables s, respectively x. Consequently in the general case
of Eq. (6.30c), the Lagrangian multipliers are functions of all independent
variables. For a sophisticated discussion of the sufficient conditions for a min-
imum in the calculus of variations, see the pertinent literature, for example
Funk [77].

Actual Problem

Inspecting Eqs. (6.27), it is found that the actual problem at hand is signif-
icantly simpler and can be deduced from the above implementations. As the
goal was to reduce the number of components in the constitutive relation,
the vector χ may be subdivided, see Eq. (6.27b), into a portion χ̂ to be re-
tained and a portion χ̌ to be expressed in terms of the prior. This can be
accomplished by minimizing the electroelastic energy U with respect to the
functions contained in the vector χ̌:

U =
∫ x1

x0

∫ s1

s0

U0(x, s, χ̌(x, s)) dsdx. (6.32)

The minimization with respect to a subset of functions is permissible insofar
as the examination of a subset of Euler’s differential equations has no limiting
implications on an eventually succeeding complete solution of the problem.
The imposed side conditions will be given in the form of the right-hand side
of Eqs. (6.30b) and are supposed to be linear with respect to the vector χ̌
involving a proportionality matrix Γ:

∫ s1

s0

Γ(x, s) χ̌(x, s) ds = c (x) . (6.33)

Thus, for the problem at hand, Euler’s differential equations, given in general
form by Eq. (6.31), reduce to

∂

∂χ̌

(
U0 + λT Γχ̌

)
= 0. (6.34)

Solving Eq. (6.34) in consideration of the electroelastic energy density U0 as
given by Eq. (6.27b) for the vector χ̌, it can be established in terms of the
vectors χ̂ and λ:

χ̌ = −Ǩ
−1

K̊
T χ̂ − Ǩ

−1ΓT λ. (6.35)

Finally, the Lagrangian multipliers have to be determined by substitution of
Eq. (6.35) into Eq. (6.33). The associated vector λ can be easily isolated as
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it does not depend on the integration variable s:

λ = −
∫ s1

s0

(
ΓǨ

−1ΓT
)−1

ds
(

c +
∫ s1

s0

ΓǨ
−1

K̊
T χ̂ ds

)

. (6.36)

Congeneric findings are reported by Volovoi and Hodges [176] for the solely
mechanical case. As noted there, similarities to a procedure applied by Reiss-
ner and Tsai [152] exist involving the partial inversion of the constitutive
relation. Such an approach is also found in further works by Reissner [151],
Murakami et al. [129], and Jung et al. [108].

Implications of the Potential Energy Minimization

The operating characteristics of the elaborated procedure may be recalled in
the following statement:

Remark 6.10. The eliminated set of components adjusts such that the poten-
tial energy is minimal for the remaining set of components being assumed as
given.

Simplifications tied to already eliminated components cannot be applied
anymore. Therefore, such constraints have to be considered during the min-
imization with aid of the Lagrangian multipliers. To assess further conse-
quences of the partial minimization, the result of Eq. (6.35) is substituted
into the associated constitutive relation of Eq. (6.28). After a couple of re-
arrangements, this yields

{
L̂
Ľ

}

=

[

K̂ − K̊Ǩ
−1

K̊
T

0

]

χ̂ −
[

K̊Ǩ
−1

I

]

ΓT λ. (6.37)

Examining the lower part of Eq. (6.37), it is observed that the shell inter-
nal loads and groupwise electric flux density resultants in the vector Ľ only
depend on the constraint contributions ΓT λ and thus directly reveal the im-
plications of the minimization. Due to the integral form of the regarded side
conditions, given by Eq. (6.33), the Lagrangian multipliers in the vector λ rep-
resent elements of internal loads or flux density resultants that are constant
along the s-direction. In the case of components to be eliminated without the
existence of associated side conditions, the constraint contributions vanish as
a matter of course and the following can be concluded:

Remark 6.11. Minimization with respect to unconstrained components is
equivalent to neglecting the corresponding internal loads or groupwise electric
flux density resultants respectively.

Examining the upper part of Eq. (6.37), the shell internal loads and group-
wise electric flux density resultants in the vector L̂ are found to be composed
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of two parts. The second of them again represents the constraint contribu-
tions just that the adjustment K̊Ǩ

−1
is incorporated here. The first part is

a function of the retained shell strains and groupwise electric field strengths
in the vector χ̂ depending on both the coordinates x and s. The submatrix
K̂ is complemented by an additional term. It contains the transposed subma-
trix K̊, originally responsible for the coupling with the eliminated vector χ̌,
in conjunction with the above-mentioned adjustment K̊Ǩ

−1
. As suggested by

Remark 6.11, the additional term agrees with the corresponding findings of
Section 6.3.1.

Example

To illustrate the above procedure, at least the set up of a typical problem will
be given. Therein it is dealt with a single-cell closed cross-section beam and
the associated kinematic constraints. Again for the theoretical background
and information on the appearing quantities, we will refer to the subsequent
chapter. The vectors and matrices to be inserted into Eqs. (6.36) and (6.37)
are

χ̂ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε0x
κx

ψxs

Ēc
3

Ēd
3

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, χ̌ =

⎧
⎨

⎩

ε0s
γ0

xs

κs

⎫
⎬

⎭
, Γ =

⎡

⎢
⎢
⎣

0 1 0
0 0 1
0 0 y
0 0 z

⎤

⎥
⎥
⎦ ,

(6.38a)

c =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂φ
∂x

∮

S

rn ds

0
0
0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, λ =

⎧
⎪⎪⎨

⎪⎪⎩

λ1

λ2

λ3

λ4

⎫
⎪⎪⎬

⎪⎪⎭

,

K̂ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A11 B11 B13 Ac
14 Ad

14

B11 D11 D13 Bc
14 Bd

14

B13 D13 D33 Bc
34 Bd

34

Ac
14 Bc

14 Bc
34 Ac

44 0
Ad
14 Bd

14 Bd
34 0 Ad

44

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, K̊ =

⎡

⎢
⎢
⎢
⎢
⎣

A12 A13 B12

B12 B13 D12

B23 B33 D23

Ac
24 Ac

34 Bc
24

Ad
24 Ad

34 Bd
24

⎤

⎥
⎥
⎥
⎥
⎦

,

(6.38b)

Ǩ =

⎡

⎣
A22 A23 B22

A23 A33 B23

B22 B23 D22

⎤

⎦ .

By substitution of Γ, χ̌, and c from Eq. (6.38a) into the side condition of
Eq. (6.33) it becomes clear that the strain ε0s is unconstrained and thus the
internal force Ns is neglected. Further on, the integral of the shear strain γ0

xs

is equated to a function of x, while in the case of the bending curvature κs,
it is the constant zero.
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Adaptive Thin-Walled Beams

Based upon the adaptive shell description given in the previous chapter, a
thin-walled beam formulation for general anisotropic cross-sections with arbi-
trary open branches and/or closed cells will be derived in this chapter. After
the deduction of non-linear kinematic relations for the general beam and the
linear kinematic relations for the thin-walled beam, the torsional warping ef-
fects of the latter are examined. Subsequently, the constitutive relation and
the equations of equilibrium are established.

7.1 General Beam Kinematics

With regard to the dynamics of rotating structures on the one hand, non-
linear influences in the beam kinematics have to be taken into account, while
analytical formulation of the constitutive relation of beams with complicated
cross-sections on the other hand, is only possible for thin walls and linear
kinematics. This gives rise to a combined procedure with a linear analysis
to determine the beam properties and a succeeding non-linear analysis to
investigate the global beam behavior. For the latter, a general beam with
adequate kinematics will be examined first and subsequently transcribed into
the intended thin-walled beams.

7.1.1 Positions and Displacements

Like in the case of the shell in Section 6.2, the displacement field needs to be
specified for the beam as well. Since the course of analysis will lead to rotating
beams, which rather do without curvature, we will agree on the following:

Remark 7.1. The beam will be prismatic with unvarying cross-sectional prop-
erties along a reference line which is straight in the initial state.

The coordinate x accounts for the essential dimension of the beam and
initially coincides with its reference line, while the orthogonal coordinates y

T.H. Brockmann, Theory of Adaptive Fiber Composites,
Solid Mechanics and Its Applications 161,
c© Springer Science + Business Media B.V. 2009
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and z characterize the transverse plane. In this reference system, the posi-
tion P o(x, y, z) of an arbitrary point within the undeformed beam may be
described by

P o (x, y, z) = xo (x) + so (y, z) with xo (x) =

⎧
⎨

⎩

x
0
0

⎫
⎬

⎭
, so (y, z) =

⎧
⎨

⎩

0
y
z

⎫
⎬

⎭
.

(7.1)
The intersection point of the cross-sectional plane with the beam reference
line will be called the reference point. In the initial state, the vector xo(x)
marks this reference point, while the vector so(y, z) specifies the position of
the considered point on the cross-sectional plane. Consequently, its position
po(x, y, z) in the deformed state can be given with the aid of the total dis-
placement uo(x, y, z) as

po (x, y, z) = P o (x, y, z) + uo (x, y, z) . (7.2)

We will start with a geometrically exact specification of the total displacement.
Here a separation of displacements with respect to the reference line and cross-
section is utilized. Thus, the displacement of the reference point is expressed
by the vector u(x), while the remaining terms account for the displacement
associated with the cross-section:

uo (x, y, z) = u (x) + R (x) (so (y, z) + uΘ (x, y, z)) − so (y, z)

with u (x) =

⎧
⎨

⎩

u (x)
v (x)
w (x)

⎫
⎬

⎭
, uΘ (x, y, z) =

⎧
⎨

⎩

uΘ (x, y, z)
vΘ (x, y, z)
wΘ (x, y, z)

⎫
⎬

⎭
. (7.3)

The vector uΘ(x, y, z) contains the displacements due to the deformation of
the cross-section usually entitled “warping”. Together with the vector so(y, z),
it describes the position relative to the reference point sitting on the now-
deformed reference line requiring the rotational transformation R(x) to com-
ply with the reference system. To gain the displacement portion, the cross-
sectional position in the initial state so(y, z) needs to be subtracted.

7.1.2 Rotations

There are a number of possibilities including Euler angles and quaternions
to express finite rotations in three dimensions, see Gérardin and Rixen [80].
To avoid a dependency on the sequence of three separate transformations, as
encountered for example by Hodges and Dowell [98] or Kaza and Kvaternik
[110], the angular coordinates of Rodriguez can be utilized, see Gasch and
Knothe [78] or Sauer [159]. Therewith the transformation matrix R(x) can
be formulated as

R (x) = I +
sinβ
β

〈β (x)〉 +
1 − cosβ
β2

〈β (x)〉2 with β = β (x) = ‖β (x)‖ .

(7.4)
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This contains the rotational angle β(x) and the skew-symmetric matrix
〈β(x)〉, defined in Eq. (3.9), whereby both are associated with the vector
β(x) of rotational parameters. In the cases of moderate or small rotations,
the latter turn into the rotational angles around the axes of the reference
system:

β (x) =

⎧
⎨

⎩

φ (x)
βy (x)
βz (x)

⎫
⎬

⎭
. (7.5)

For moderate rotations, Eq. (7.6a), and small rotations, Eq. (7.6b), the Ro-
driguez formula of Eq. (7.4) reduces as follows:

sinβ = β, cosβ = 1 − β2

2
→ R (x) = I + 〈β (x)〉 +

1
2

〈β (x)〉2 , (7.6a)

sinβ = β, cosβ = 1 → R (x) = I + 〈β (x)〉 . (7.6b)

Thus, for small rotations only the sum of the identity matrix and skew-
symmetric matrix remains. In any case, such rotational transformations shall
be reversible and therefore orthogonality is required:

R (x)T R (x) = I. (7.7)

The substitution of the simplified transformation matrices of Eqs. (7.6) into
this condition reveals those terms which have been neglected by the associ-
ated assumptions. In the case of moderate rotations, Eq. (7.6a), and small
rotations, Eq. (7.6b), these are the products of four, respectively of two, ro-
tational angles given in Eq. (7.5). Since the rotational angles in the latter
case are thereby decoupled, the outcome is identical to the results of other
rotational transformations, for example involving Euler angles.

7.1.3 Simplifications

The geometrically exact specification of displacements not unexpectedly leads
to fairly complicated expressions, and also for moderate rotations, it is usu-
ally sought after reduction with the aid of ordering schemes. For the sake of
transparency and analytic insight, it will be continued as follows:

Remark 7.2. The beam may be subjected only to small rotations.

Applying the rotational transformation for such small rotations, as out-
lined in Eq. (7.6b), to the total displacement vector uo(x, y, z) of Eq. (7.3)
leads to

uo (x, y, z) = u (x) + (I + 〈β (x)〉) (so (y, z) + uΘ (x, y, z)) − so (y, z) . (7.8)

So far, the warping displacements uΘ(x, y, z) have not been considered beyond
their pure existence. Yet, they somehow must be related to the displacements
u(x) or rotations β(x) of the beam. A detailed analysis of the warping effects
will be given later in this chapter, illustrating the subsequent warping-related
statements.
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Remark 7.3. The warping displacements are presumed to be functions of the
rotational angles.

Therefore, the multiplication of the skew-symmetric matrix 〈β(x)〉 with
the warping displacements uΘ(x, y, z) in Eq. (7.8) results in products of two
angles or derivatives thereof respectively. In consequence of the above discus-
sion on the orthogonality condition, these terms have to be neglected and the
expression of the total displacements simplifies significantly:

uo (x, y, z) = u (x) + β (x) × so (y, z) + uΘ (x, y, z) . (7.9)

The deformation of the cross-section is considered to be subdivided into
the out-of-plane warping uΘ(x, y, z) and the in-plane warping vΘ(x, y, z),
wΘ(x, y, z). The latter is neglected with the introduction of a classical as-
sumption of beam theory:

Remark 7.4. The cross-section remains undeformed in its plane.

vΘ (x, y, z) = 0, wΘ (x, y, z) = 0. (7.10)

For the thin-walled beams to be subsequently discussed, this is a fairly
rough assumption since the bending stiffness of their walls might be com-
parably low. Some approaches are reported in the literature to incorporate
the in-plane deformation of the cross-section, see Heo et al. [93], Rand [148],
or Rand [149], but in return have to accept other limitations or drawbacks.
Concentrating on the out-of-plane warping here and in anticipation of the de-
tailed discussion in Section 7.3, the associated displacement component may
be described by

uΘ (x, y, z) = Θ (y, z)φ,x (x) . (7.11)

Therein the warping function Θ(y, z) accounts for the cross-sectional proper-
ties, while the lengthwise dependency is provided by the rate of twist φ,x(x).
Supplying Eq. (7.9) with Eq. (7.11), the components of the total displacement
of the classic beam theory of Euler and Bernoulli with extension to shear flexi-
bility and torsional warping usually associated with the names of Timoshenko,
respectively Vlassov, are obtained:

uo (x, y, z) =

⎧
⎨

⎩

u0 (x, y, z)
v0 (x, y, z)
w0 (x, y, z)

⎫
⎬

⎭

=

⎧
⎨

⎩

u (x) + zβy (x) − yβz (x) +Θ (y, z)φ,x (x)
v (x) − zφ (x)
w (x) + yφ (x)

⎫
⎬

⎭
. (7.12)

Due to the elongated nature of beams in general, their resistance against
extension is drastically higher than against bending. Correspondingly, the
displacement u(x) in the axial direction in almost any case is significantly
smaller than the displacements v(x), w(x) in the transverse directions. Hence,
the following may be concluded:
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Remark 7.5. The beam may be subjected to finite displacements, whereof the
displacement in the axial direction may be considered as moderate without
loss of generality.

7.1.4 Strains

In order to determine the strain measures of the general beam, the Green
Lagrange strain tensor for finite deformations may be utilized as outlined in
Section 3.2.4. It is symmetric and contains, in general, six independent com-
ponents, to be obtained from Eq. (3.17) for the total displacements u0(x, y, z).
However, due to the assumption of Remark 7.4, both normal strains and the
shear strain in the cross-sectional plane have to vanish. So the remaining
components are the normal strain as well as the two shear strains associated
with lengthwise direction. Resorting them into a vector in consideration of
the factor for the engineering shear strains, yields

εGL(x, y, z) =

⎧
⎪⎪⎨

⎪⎪⎩

∂
∂xu0 + 1

2 ( ∂
∂xu0)2 + 1

2 ( ∂
∂xv0)

2 + 1
2 ( ∂

∂xw0)2

∂
∂xv0 + ∂

∂yu0 + ∂
∂xu0

∂
∂yu0 + ∂

∂xv0
∂
∂y v0 + ∂

∂xw0
∂
∂yw0

∂
∂xw0 + ∂

∂zu0 + ∂
∂xu0

∂
∂zu0 + ∂

∂xv0
∂
∂z v0 + ∂

∂xw0
∂
∂zw0

⎫
⎪⎪⎬

⎪⎪⎭

.

(7.13)
Next, the components of the total displacement as given by Eq. (7.12) may
be substituted into Eq. (7.13). In consideration of Remark 7.5, the derivative
of the axial displacement may be neglected in comparison to unity:

1 + u,x (x) ≈ 1. (7.14)

Thus, as well as with the abandonment of any product of two rotational angles
by virtue of Remark 7.2, the remaining Green Lagrange strain components
may be significantly simplified. Arranging the non-linear strain measures for
finite displacements but small rotations of the beam in the vector ε̆GL(x),
leads to

εGL (x, y, z)

=

[
1 0 0 0 z −y Θ (y, z)
0 1 0 Θ,y (y, z) − z 0 0 0

0 0 1 Θ,z (y, z) + y 0 0 0

]

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u,x(x) + 1
2
(v,x(x)2 + w,x(x)2)

−βz (x) + v,x (x) + w,x (x) φ (x)

βy (x) + w,x (x) − v,x (x) φ (x)

φ,x (x)

βy,x (x) − v,x (x) φ,x (x)

βz,x (x) − w,x (x) φ,x (x)

φ,xx (x)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
ε̆GL(x)

.

(7.15)

Analogous treatment of those Green Lagrange strain components, which are
expected to vanish as discussed above, reveals only terms with products of two
rotational angles. These again have to be neglected by virtue of Remark 7.2,
and so the implications of Remark 7.4 are confirmed.



120 7 Adaptive Thin-Walled Beams

7.2 Thin-Walled Beam Kinematics

So far, the shape of the cross-section of the considered beams has not been
discussed, while the Green Lagrange strain tensor has been brought up for
a continuum only confined with respect to the deformations in the cross-
sectional plane by Remark 7.4. Subsequently, a special class of cross-sectional
topologies will be examined:

Remark 7.6. The beam is constructed from walls which are thin in comparison
to the cross-sectional dimensions.

Under these conditions, it is possible to analytically handle beams with
complex cross-sections, since the formation of the one-dimensional structure
from two-dimensional walls instead of a three-dimensional continuum allows
us to introduce the associated simplifications. Therefore, the relation between
the strain measures of the beam and of the thin wall is sought. To describe
the shape of such a cross-section, the curvilinear coordinate s may be utilized
as a parameter for the cross-sectional position

so (y, z) =

⎧
⎨

⎩

0
y
z

⎫
⎬

⎭
=

⎧
⎨

⎩

0
y (s)
z (s)

⎫
⎬

⎭
= so (s) . (7.16)

Correspondingly, the above derivations may be adjusted to account for the
coordinate s in the cross-sectional plane.

7.2.1 Differential Geometry

The curvilinear coordinate s will be given such that it represents the arc length
and therefore, just as in the case of the Lamé parameters for the cylindrical
shell in Section 6.2.2, the following is required:

∣
∣
∣
∣
∂

∂s
so(s)

∣
∣
∣
∣ =

√

(y,s(s))
2 + (z,s(s))

2 = 1. (7.17)

The unit tangent vector es(s) is given by the corresponding derivative of the
cross-sectional position so(s). Further on, the unit normal vector en(s) is
defined orthogonal to the unit axis vector ex in parallel to the undeformed
reference line and to the unit tangent vector es(s). Thus, the moving trihedral
is given as

ex =

⎧
⎨

⎩

1
0
0

⎫
⎬

⎭
, es(s) =

∂
∂sso(s)

| ∂
∂sso(s)|

=

⎧
⎨

⎩

0
y,s(s)
z,s(s)

⎫
⎬

⎭
, (7.18a)

en (s) = ex × es (s) =

⎧
⎨

⎩

0
−z,s(s)
y,s(s)

⎫
⎬

⎭
. (7.18b)
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In the description of spatial curves or surfaces, the radius of curvature is
usually an absolute value and the direction of curvature is given by the unit
principal normal vector, pointing towards the center of curvature. Then the
unit binormal vector results from the vector product of unit tangential and
unit principal normal vector, see R̊ade and Westgren [147] or Wygodski [185].
Instead, here the unit axis vector ex needs to be prearranged just as the unit
tangent vector es(s) and thus, for the sake of orthogonality, the unit normal
vector en(s) is not necessarily oriented towards the center of the curvature,
while the radius R(s) may then also become negative. The sequence of spatial
directions in the wall description (x, s, n) has been chosen in Eq. (7.18b) to
begin with the coincidental coordinate x, as appears in the beam description
(x, y, z). For this reason, a positive radius R(s) is now associated with an
outward oriented unit normal vector en(s), as visible in Figure 7.1, and a
negative sign needs to be introduced into the corresponding relation:

−en (s) =
∂2

∂s2
so(s)R (s) . (7.19)

With Eqs. (7.16) and (7.18), this relations allows us to express the radius R(s)
in terms of the cross-sectional position:

R (s) = − y,s(s)
z,ss(s)

=
z,s(s)
y,ss(s)

. (7.20)

Fig. 7.1. Position of a point on the cross-section and associated unit vectors.

7.2.2 Cartesian and Curvilinear Positions and Displacements

To transform vector-valued functions from the Cartesian coordinate system
of the beam to the curvilinear coordinate system of the wall, the unit vec-
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tors of the latter, as given by Eq. (7.18), may be encapsulated in the ma-
trix

E (s) =
[
ex es (s) en (s)

]T =

⎡

⎣
1 0 0
0 y,s(s) z,s(s)
0 −z,s(s) y,s(s)

⎤

⎦ . (7.21)

It is helpful to introduce the distances in wall normal direction rn(s) and in
wall tangential direction rs(s) from the cross-sectional reference point to the
considered point on the beam wall. They are shown in Figure 7.1 and may be
gained with the above transformation:

r (s) = E (s) so (s) → r (s) =

⎧
⎨

⎩

0
rs (s)
rn (s)

⎫
⎬

⎭
=

⎧
⎨

⎩

0
y,s(s)y (s) + z,s(s)z (s)
y,s(s)z (s) − z,s(s)y (s)

⎫
⎬

⎭
.

(7.22)

Then with the aid of Eq. (7.20), respectively in addition with Eq. (7.17), the
following relationships are found:

rs (s)
R (s)

= rn,s (s) ,
rn (s)
R (s)

= 1 − rs,s (s) . (7.23)

With the introduction of the parameter s, the total displacement of a point
on the beam wall, according to Eq. (7.12), is given in the Cartesian coordinate
system of the beam as

uo (x, s) =

⎧
⎨

⎩

u0 (x, s)
v0 (x, s)
w0 (x, s)

⎫
⎬

⎭

=

⎧
⎨

⎩

u (x) + z (s)βy (x) − y (s)βz (x) +Θ (s)φ,x (x)
v (x) − z (s)φ (x)
w (x) + y (s)φ (x)

⎫
⎬

⎭
. (7.24)

With separation of cross-sectional properties in the matrix K(s) and beam
deformation descriptions in the vector ŭ(x), the total displacement of a point
on the beam wall may also be written as

uo (x, s) =

⎡

⎣
1 0 0 0 z (s) −y (s) Θ (s)
0 1 0 −z (s) 0 0 0
0 0 1 y (s) 0 0 0

⎤

⎦

︸ ︷︷ ︸
K(s)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u (x)
v (x)
w (x)
φ (x)
βy (x)
βz (x)
φ,x (x)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
ŭ(x)

. (7.25)
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To determine the strains in the beam wall, the total displacement must be
expressed in the associated curvilinear coordinate system. With the aid of the
transformation of Eq. (7.21), this may be expressed in the following form:

⎧
⎨

⎩

u (x, s)
v (x, s)
w (x, s)

⎫
⎬

⎭
= E (s) uo(x, s). (7.26)

7.2.3 Strains of Wall and Beam

Since the thin walls of the prismatic beams under discussion resemble the
cylindrical thin shells of Section 6.2.2, the associated formulation of strains
may be adopted. Thereby, also the respective assumptions are inherited. A
comparison of Remarks 6.4 and 7.6 reveals that the ratio of thickness and
radius of curvature is additionally confined and Remark 6.5 indicates a linear
strain displacement relation. These shell strains are given by Eqs. (6.12) and
(6.15). The insertion of Eqs. (7.26) and (7.24) leads to rather complicated
expressions. Through tedious manipulations with the aid of Eqs. (7.17), (7.22),
and (7.23), a remarkably compact formulation may be found. For the sake of
correlation to the beam displacements and rotations again in anticipation of
the upcoming considerations of torsional warping, the warping function Θ(s)
is employed and also appears in the abbreviation

Φ (s) = Θ,s (s) − rn (s) . (7.27)

The underlining of terms in accordance with the discussion in the end of
Section 6.2.2 will be retained to analyze their meaning in the context of thin-
walled beams, where they are frequently neglected. So the relation between
the strains in the beam wall and the displacements of the beam may be written
as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε0
x

ε0
s

γ0
xs

κx

κs

ψxs

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 (1 − 1)z,sss 0
0 0 0 0 −(1 − 1)y,sss 0
0 0 0 0 −(1 − 1)rs,ss 0
0 0 z,s 0 0 − 1

2
y,ss

0 0 −y,s 0 0 − 1
2
z,ss

1 0 0 0 0 0
0 0 y,s 0 0 (2 − 3

2
)z,ss

0 0 z,s 0 0 −(2 − 3
2
)y,ss

0 0 Φ 0 0 −2rs,s + (2rs,s − 2 − 1
2

Φ
R

)

z 0 0 0 0 0
−y 0 0 0 0 0
0 0 0 z,s 0 0
0 0 0 −y,s 0 0
Θ 0 0 −rs 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v
w
φ
βy

βz

u,x

v,x

w,x

φ,x

βy,x

βz,x

v,xx

w,xx

φ,xx

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(7.28)
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Shell Strain Comprehension

A couple of interesting issues need to be noted here. It is shown that the cross-
sectional strain component ε0s(x, s) vanishes in accordance with Remark 7.4.
The same is expected from the cross-sectional bending curvature κs(x, s), but
this is only the case when the underlined terms are included or the cross-
sectional shape is simplified so that the appearing higher derivatives of the
cross-sectional position vanish. It is even more important to retain the under-
lined terms for the twisting curvature ψxs(x, s), since it would otherwise not
be possible to introduce the beam shear strains

γxy (x) = −βz (x) + v,x (x) , γxz (x) = βy (x) + w,x (x) . (7.29)

The key observation for a general treatment of thin-walled beams is the in-
evitability of an adequate strain formulation for cylindrical thin shells as pre-
sented here on the basis of the theory of Sanders [158] and Koiter [114].
Therefore, all terms have to be retained and distinction through underline-
ment is not necessary any more. With these considerations and the resulting
initiation of the beam shear strains, Eq. (7.28) reduces significantly.

Beam Strain Comprehension

In comparison to the strain measures of the general beam in Eq. (7.15),
there still exist two additional components, namely v,xx(x) and w,xx(x), which
would require corresponding internal loads in the constitutive relation of the
beam. Generally, this may be avoided by more or less advanced reductions,
see Section 6.3, with respect to the associated bending curvature κx(x, s). The
derived formulation, however, allows for a more elegant proceeding. In the
classical beam theory aiming at slender beams, the shear strains of Eq. (7.29)
are considered to be negligible. With regard to a stouter beam geometry, at
least the rate of these shear strains may be discarded:

Remark 7.7. The derivatives of the beam shear strains are assumed to be
negligible.

Differentiating Eqs. (7.29), this may be utilized to express the second deriv-
atives of reference line displacements v(x) and w(x) by the first derivatives of
the rotations of the cross-sectional plane βy(x) and βz(x):

γxy,x (x) ≈ 0 → v,xx (x) = βz,x (x) , (7.30a)
γxz,x (x) ≈ 0 → w,xx (x) = −βy,x (x) . (7.30b)

Hence from Eq. (7.28) with the support of Eqs. (7.29) and (7.30), the desired
relation between the strain measures of wall and beam can be obtained:
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⎧
⎪⎨

⎪⎩

ε0
x (x, s)

γ0
xs (x, s)

κx (x, s)
ψxs (x, s)

⎫
⎪⎬

⎪⎭

︸ ︷︷ ︸
ε(x,s)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 y,s (s) 0 1

2
z,ss (s)

0 z,s (s) 0 − 1
2
y,ss (s)

0 Φ (s) 0 −2 − 1
2

Φ(s)
R(s)

z (s) 0 y,s (s) 0
−y (s) 0 z,s (s) 0
Θ (s) 0 −rs (s) 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

︸ ︷︷ ︸
J(s)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u,x (x)
−βz (x) + v,x (x)
βy (x) + w,x (x)

φ,x (x)
βy,x (x)
βz,x (x)
φ,xx (x)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
ε̆(x)

.

(7.31)

As mentioned above, the underlying shell theory is confined to small dis-
placements such that the description of wall strains ε(x, s), and consequently
of beam strains ε̆(x) of the thin-walled beam, is linear. A comparison of
Eqs. (7.15) and (7.31) reveals that ε̆(x) is the linearized version of ε̆GL(x).
The achievement of analogous formulations gives rise to the possibility of a
combined approach, where the constitutive properties of the thin-walled beam
are determined in a linear analysis while the global behavior is subsequently
obtained in a non-linear analysis. In some respects, the latter is essential for
the employment in a rotating environment.

7.2.4 Electric Field Strength

The above derivations are concerned with the relation between the strain
measures in the beam and in the wall description. Correspondingly, such a
relation is also required for the electric field strength. The latter is accessed
with the aid of electrodes that necessarily connect certain areas and thus
induce an equalization therein. To achieve unified behavior for the beam de-
scription, a complete connection in parallel needs to be introduced along the
cross-sectional coordinate s:

Remark 7.8. The electric field strength of a group of electrically paralleled
laminae in the wall is assumed to be identical in all sectors of the cross-section
with respect to the absolute value.

To be able to model different actuation and sensing schemes, the relative
sign of polarization and electric field strength may alternate around the cross-
section. It will be summarized in the vector p(s) with an entry for every group
of electrically paralleled laminae, as exemplarily introduced by Eq. (6.6):

p (s) =

⎧
⎪⎨

⎪⎩

pc (s)
pd (s)

...

⎫
⎪⎬

⎪⎭
with pc (s) , pd (s) , . . . ∈ [1,−1] . (7.32)

So the mechanical relation of Eq. (7.31) can be extended to incorporate the
electric case. Thus, the strain and electric field strength measures of the wall,
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contained in the vector χ(x, s) as shown in Eq. (6.6), can be obtained as
follows:

χ (x, s) =
{

ε (x, s)
Ē (x, s)

}

=
[
J (s) 0
0 I p (s)

]

︸ ︷︷ ︸
J(s)

{
ε̆ (x)
Ĕ (x)

}

︸ ︷︷ ︸
χ̆(x)

. (7.33)

The vector χ̆(x) therein again contains the strain measures ε̆(x) and elec-
tric field strength measures Ĕ(x) of the beam. The former are specified by
Eq. (7.31) and the latter will be itemized as

Ĕ (x) =
{
Ĕc (x) Ĕd (x) . . .

}T
. (7.34)

7.3 Torsional Out-of-Plane Warping for Thin Walls

As stated in Remark 7.4, the developed beam theory is confined to the out-
of-plane warping of the cross-section. By means of Remark 7.3, the cause for
such a warping displacement has been narrowed down to the three rotations of
the cross-section. With respect to the undeformed beam, the bending related
inclination of the cross-sectional plane represents deformations in a direction,
which deviates, according to Remark 7.2, only slightly from the direction of the
out-of-plane warping. So since both are almost equidirectional and the higher-
order phenomenon of warping is generally presumed to be significantly smaller,
the bending related out-of-plane warping may be neglected. In contrast, there
is no torsion-related deformation in the out-of-plane direction besides the
associated warping.

Remark 7.9. The relevant out-of-plane warping of the cross-section is governed
by the influence of torsion.

7.3.1 General Formulation

In order to determine the warping displacement uΘ(x, s) in accordance with
Remark 7.9, the case of pure torsion of the beam needs to be considered.
Therefore, all components not related to the twist angle φ(x) or warping
displacement uΘ(x, s), have to be omitted in the description of wall strains.
Without the preemptive introduction of the warping function Θ(s) by virtue
of Eqs. (7.11) and (7.27) in Eq. (7.31), this yields

ε̃0x (x, s) = uΘ,x (x, s) , γ̃0
xs (x, s) = −rn (s)φ,x (x) + uΘ,s (x, s) , (7.35a)

κ̃x (x, s) = −rs (s)φ,xx (x) , ψ̃xs (x, s) =
(
rn (s)
2R (s)

− 2
)

φ,x (x) − uΘ,s (x, s)
2R (s)

.

(7.35b)
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The special load case at hand is elucidated by (̃·). In the preceding examination
of displacements not related to the warping effect, the constitutive relation of
the shell-like wall has not been involved. Since a kinematic assumption like
the vanishing shear strain γ̃0

xs(x, s) = 0 for isotropic open cross-sections is
not possible in the general case, the material properties need to be consid-
ered now. For isotropic closed cross-sections, this has been accomplished by
means of shear flow named after Bredt [24], see Roik et al. [156], Wiedemann
[179], or Gjelsvik [85]. Its constancy could be assumed in conjunction with
the consideration of the internal shear force Nxs(x, s) in the axial shell equi-
librium. To assure consistency with the formulation shown to be adequate in
Section 7.2, it is necessary to comply with the associated equilibrium condi-
tion of Eq. (6.17a). Therein the derivative of the internal axial force Nx(x, s)
may be neglected in conjunction with Remark 7.9, while the underlined term
with the internal twisting moment Mxs(x, s) appears additionally. Integra-
tion of the remaining expression yields a constant result with respect to the
cross-sectional direction and shall be called warping resultant Wxs(x):

∂

∂s

(

Ñxs (x, s) − M̃xs (x, s)
2R (s)

)

= 0 → Ñxs (x, s) − M̃xs (x, s)
2R (s)

=Wxs (x) .

(7.36)

Remark 7.10. For pure torsion, the resultant of internal forces and moments
in the warping relevant axial equilibrium is constant along the cross-sectional
coordinate.

For anisotropic arbitrary cross-sections, the lines of the internal shear force
and twisting moment in the constitutive relation, given by Eq. (6.24), read
regarding the special case at hand:

Ñxs(x, s) = À13 (s) ε̃0x (x, s) + À33 (s) γ̃0
xs (x, s)

+ B̀31 (s) κ̃x (x, s) + B̀33 (s) ψ̃xs (x, s) , (7.37a)

M̃xs(x, s) = B̀13 (s) ε̃0x (x, s) + B̀33 (s) γ̃0
xs (x, s)

+ D̀13 (s) κ̃x (x, s) + D̀33 (s) ψ̃xs (x, s) . (7.37b)

Herein the terms vanishing due to the rigid cross-section of Remark 7.4 have
been deleted and the electric influences are omitted to warrant pure torsion.
When Eqs. (7.35) are substituted into Eqs. (7.37), derivatives of the warp-
ing displacement uΘ(x, s) with respect to both coordinate directions are con-
tained. Their influences may be estimated in accordance with Armanios and
Badir [7] as follows:

Remark 7.11. The torsional shear force component proportional to the deriv-
ative of the warping displacement in the cross-sectional direction is assumed
to dominate over the one with the derivative in the axial direction.
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This assumption, which will become more obvious in view of the final
warping formulation, leads from Eqs. (7.37) to reduced expressions for the
internal shear force and twisting moment

Ñxs(x, s) =
(

B̀33 (s)
(
rn (s)
2R (s)

− 2
)

− À33 (s) rn (s)
)

φ,x (x)

− B̀31 (s) rs (s)φ,xx (x) + uΘ,s (x, s)
(

À33 (s) − B̀33 (s)
2R (s)

)

, (7.38a)

M̃xs(x, s) =
(

D̀33 (s)
(
rn (s)
2R (s)

− 2
)

− B̀33 (s) rn (s)
)

φ,x (x)

− D̀13 (s) rs (s)φ,xx (x) + uΘ,s (x, s)
(

B̀33 (s) − D̀33 (s)
2R (s)

)

. (7.38b)

These relations may then be substituted into Eq. (7.36) to be solved in con-
sideration of an integration constant C(x) for the warping displacement

uΘ (x, s) = φ,x (x)
∫

θ1 (s) ds+ φ,xx (x)
∫

θ2 (s) ds

+Wxs(x)
∫

1
C̀33 (s)

ds+ C (x) . (7.39)

The contained integrands which depend on the cross-sectional coordinate s
are described by the following functions:

θ1 (s) = rn (s) + 2
B̀33 (s) − D̀33(s)

R(s)

C̀33 (s)
, θ2 (s) =

B̀31 (s) − D̀13(s)
R(s)

C̀33 (s)
rs (s) , (7.40a)

with C̀33 (s) = À33 (s) − 3
2
B̀33 (s)
R (s)

+
1
2
D̀33 (s)
R2 (s)

. (7.40b)

7.3.2 Non-Branched Open and Closed Cross-Sections

Cross-sections without branchings can be described with the aid of the coordi-
nate s in a continuous manner. Allowing for an uncomplicated representation,
they will be treated first to illustrate the elementary connections. Since the
warping displacement uΘ(x, s) of Eq. (7.39) still contains the unknown warp-
ing resultant Wxs(x) and integration constant C(x), additional conditions are
required. The appearance of C(x) may be avoided when a zero passage of the
warping displacement is enforced at the origin of the coordinate s, which may
be chosen arbitrarily:

uΘ (x, s = 0) = 0 → C (x) = 0. (7.41)

With respect to the internal forces and moments represented by Wxs(x), it is
necessary to differentiate between the different cross-sectional topologies.
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Open Cross-Sections

In beam theory, the external forces act only upon the beam as a whole sym-
bolized by the reference line. Consequently, no shell loads can be induced at
the free end of an open cross-section, and then by virtue of Remark 7.10, the
warping resultant will be zero all over the non-branched open cross-section:

Remark 7.12. For pure torsion, the resultant of internal forces and moments
in the warping-relevant axial equilibrium vanishes due to a free end of the
cross-section.

Wxs(x) = 0. (7.42)

Thus, with Eqs. (7.41) and (7.42), the warping displacement of Eq. (7.39)
reduces for non-branched open cross-sections, signified by (·)∪, to

u∪
Θ (x, s) = φ,x (x)

∫

θ1(s) ds+ φ,xx (x)
∫

θ2(s) ds. (7.43)

Closed Cross-Sections

As a matter of course, a non-branched closed cross-section has no free ends
and therefore the constant warping resultant of Remark 7.10 needs to be
determined. For this purpose, advantage may be taken of the fact that the
warping displacement cannot possess discontinuities, since the cross-sections
of the considered beams are presumed to be made of one piece:

Remark 7.13. The warping displacements are continuous throughout the cross-
section.

This continuity condition of the warping displacement may be formulated
for the single cell of a non-branched closed cross-section with the circumfer-
ential length S as follows:

∮

S

uΘ,s(x, s) ds = 0. (7.44)

Substituting the warping displacement of Eq. (7.39) into Eq. (7.44) allows us
to determine the wanted warping resultant

Wxs(x) = −φ,x (x)

∮

S
θ1(s) ds

∮

S
1

C̀33(s)
ds

− φ,xx (x)

∮

S
θ2(s) ds

∮

S
1

C̀33(s)
ds

. (7.45)

Therefore the warping displacement of the non-branched closed cross-section,
signified by (·)♦, may be gained by insertion into Eq. (7.39) as

u♦
Θ (x, s) = φ,x (x)

(∫

θ1(s) ds −
∮

S

θ1(s) ds

∫
1

C̀33(s)
ds

∮

S
1

C̀33(s)
ds

)

+ φ,xx (x)

(∫

θ2(s) ds −
∮

S

θ2(s) ds

∫
1

C̀33(s)
ds

∮

S
1

C̀33(s)
ds

)

. (7.46)
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7.3.3 General Cross-Sections with Open Branches and Closed
Cells

A general cross-section consists of the branches i, joined at the junctions
j, and possibly forming the closed cells k. For every branch i, the warping
function uΘ i(x, s) may be derived from Eq. (7.39) with the warping resultant
Wxs i(x) and the integration constant Ci(x), since continuity of the curvilinear
coordinate s is ensured only within the branches:

∀i : uΘ i (x, s) = φ,x (x)
∫

θ1(s) ds+ φ,xx (x)
∫

θ2(s) ds

+Wxs i(x)
∫

1
C̀33 (s)

ds+ Ci (x) . (7.47)

As the curvilinear coordinate s may be defined separately for every branch,
the associated directions are possibly dissimilar at junctions and around cells,
see the example of Figure 7.2. To account for these dissimilar directions in the
subsequent examinations, the following association functions is introduced:

f i
j =

{
1 if i → j,

−1 if i ← j,
f i

k =

{
1 if i⇒ k,

−1 if i� k.
(7.48)

The function f i
j introduces a negative sign when the curvilinear coordinate

s in the branch i is not pointing towards the junction j. Correspondingly,
the function f i

k introduces a negative sign when the curvilinear coordinate s
in the branch i does not coincide with the common sense of direction in the
cell k.

Fig. 7.2. Description of an exemplary cross-section with two adjoined cells k, formed
by two junctions j and three branches i. With the optional slit at the dashed line,
it may be converted into a combined cross-section consisting of a single closed cell
and two branches with free ends.

Open Branches

Here those branches will be considered that do not participate in the formation
of a closed cell. They possess one free end, and the same reasoning as in the
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case of the non-branched open cross-section may be applied. Hence, for every
open branch i not belonging to any of the closed cells k, the warping resultant
Wxs i(x) vanishes by virtue of Remark 7.12:

∀i /∈ k :Wxs i(x) = 0. (7.49)

Closed Cells

Also, just as in the case of the non-branched closed cross-section, the warping
resultant Wxs i(x) does not vanish in a closed cell. In accordance with Re-
mark 7.13, the continuity of warping displacements around such a cell may be
required. The integration around closed cells must be performed in the same
direction over the participating branches, see also Gjelsvik [85]. With the aid
of the association function f i

k, the continuity requirement may be formulated
for every closed cell k with the circumferential length Sk assembled from the
lengths Si of the participating branches i as follows:

∀k :
∮

Sk

uΘ,s(x, s) ds =
∑

i∈k

f i
k

∫

Si

uΘ i,s(x, s) ds = 0. (7.50)

The connection of closed cells through the sharing of a common branch rep-
resents a statically indeterminate system. Due to the excess of branches with
regard to cells and junctions respectively, the unknown warping resultants
may only be determined by both continuity requirements of the cells and
axial equilibrium conditions at the junctions.

Junctions

Such equilibrium conditions are only relevant for the case of multiple adjoined
cells, since the warping resultants of open branches and separate cells are
effectively determined by Eq. (7.49), respectively by Eq. (7.50). The axial
equilibrium at the junctions j requires the consideration of the coordinate
direction in the cross-sectional plane of every involved branch i captured by
the association function f i

j . Thus, the following may be formulated:

∀j :
∑

i∈j

f i
jWxs i(x) = 0. (7.51)

Further on, the continuity requirement, as imposed by Remark 7.13, also
applies to the warping displacements of all branches meeting at a junction,
which thus have to be identical there. Since an arrangement like Eq. (7.41) can
be made only for one branch, the integration constants Ci(x) of the remaining
branches may be determined.
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7.3.4 Exemplary Configurations

To illustrate the rather abstract formulation of the general cross-section out-
lined above, the essential relations for two examples will be given. The first is a
closed cross-section with two cells and thus represents the elementary case of a
statically indeterminate system. The second examines the differences induced
by a slit in one of these cells and therefore is concerned with the combination
of a closed cell and two open branches.

Double Cell Cross-Section

A cross-section with two adjoining cells (k = I, II) possesses two junctions
(j = a, b) connecting three branches (i = 1, 2, 3). For such a cross-sectional
topology with a set-up as depicted in Figure 7.2, the association functions of
Eqs. (7.48) are given by Tables 7.1.

Table 7.1. Association functions for a cross-section with two adjoining cells.

f i
j 1 2 3

a 1 −1 −1
b −1 1 1

f i
k 1 2 3

I 1 1 0
II 0 −1 1

The continuity requirement within each cell formulated for the general
case in Eq. (7.50) takes the following form for the two cells:

I :
∮

SI

uΘ,s(x, s) ds =
∫

S1

uΘ 1,s(x, s) ds+
∫

S2

uΘ 2,s(x, s) ds = 0, (7.52a)

II :
∮

SII

uΘ,s(x, s) ds =
∫

S3

uΘ 3,s(x, s) ds −
∫

S2

uΘ 2,s(x, s) ds = 0. (7.52b)

Since all three branches meet at both of the junctions, identical relations for
the warping resultant as of Eq. (7.51) are gained:

a, b :Wxs 1(x) − Wxs 2(x) − Wxs 3(x) = 0. (7.53)

The warping displacements uΘ 1(x, s), uΘ 2(x, s), uΘ 3(x, s) in the three
branches are sought after as given by Eq. (7.47). Thus, the three warping
resultants Wxs 1(x), Wxs 2(x), Wxs 3(x) and integration constants C1, C2, C3

need to be determined. Since the latter vanish with the substitution of the
cross-sectional derivative of the warping displacement into Eqs. (7.52), the
resulting two relations, together with Eq. (7.53), may serve to solve for the
three warping resultants. As the continuity of warping displacements within
each of the two cells is already ensured, compatibility between cells, also with
reference to Remark 7.13, may be required at either junction:
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a : uΘ 1(x, S1) = uΘ 2(x, 0) = uΘ 3(x, 0), (7.54a)

b : uΘ 1(x, 0) = uΘ 2(x, S2) = uΘ 3(x, S3). (7.54b)

Besides the utilization of two independent relations out of these four rela-
tions, additional information is necessary to determine the three integration
constants. Here the zero passage of the warping displacement in the manner
of Eq. (7.41) may be introduced for one of the branches. For the example at
hand, this could be given for the center of the web as follows:

uΘ 2

(

x,
S2

2

)

= 0.

So, the integration constants can be found and the warping displacement
completed. However, since the formulation is rather lengthy, it will be omitted
here and, instead, only the result is shown in Figure 7.3.

Fig. 7.3. Warping displacement of a cross-section with two closed cells and all
through identical constitutive properties.

Combined Cross-Section

When one of the cells of the previous configuration is slit, for example, at the
dashed line in Figure 7.2, then four branches (i = 1, 2, 3a, 3b) and still two
junctions (j = a, b) need to be considered. The remaining closed cell (k = I)
is formed by the two branches (i = 1, 2), while the other two (i = 3a, 3b)
have free ends. As required by Eq. (7.49), the warping resultants of the latter
therefore have to vanish:

Wxs 3a(x) = 0, Wxs 3b(x) = 0. (7.55)

Consequently, they do not influence the axial equilibrium at the junctions
and, hence, Eq. (7.53) reduces to

a, b :Wxs 1(x) − Wxs 2(x) = 0. (7.56)
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As a matter of course, the continuity requirement for the warping displace-
ment of the retained cell in Eq. (7.52a) remains valid, while Eq. (7.52b) has
to be dropped. Instead, the continuity requirement at the junctions, given
by Eqs. (7.54), is modified such that three of the four relations are indepen-
dent:

a : uΘ 1(x, S1) = uΘ 2(x, 0) = uΘ 3a(x, 0), (7.57)

b : uΘ 1(x, 0) = uΘ 2(x, S2) = uΘ 3b(x, S3b). (7.58)

The resulting warping displacement is shown in Figure 7.4. Since identical geo-
metric and constitutive properties have been employed, it becomes obvious,
in comparison to Figure 7.3, that open branches are much more susceptible
to warping than closed cells.

Fig. 7.4. Warping displacement of a cross-section with a closed cell as well as two
open branches and all through identical constitutive properties.

7.3.5 Consistency Contemplations

As stated by Remark 6.4, the wall thickness of the considered beams is small
in comparison to the cross-sectional dimensions, being reflected in rn(s) and
rs(s), and to the radius of curvature R(s). These geometric orders of mag-
nitude also enter the constitutive description of the laminated beam wall in
Eq. (6.4b). The plate stiffness coefficients D̀13(s) and D̀33(s) and coupling stiff-
nesses B̀31(s) and B̀33(s) essentially depend upon the difference of cubed, re-
spectively squared, laminae positions in the thickness direction, while the
membrane stiffness À33(s) is a function of the laminae thicknesses. To com-
ply with Remark 6.4, it is necessary to revise the formulation of the warping
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displacement with its integrands given by Eqs. (7.40a) and (7.40b). Allow-
ing for different degrees of approximation, a thorough treatment shows the
domination of the membrane response:

θ1 (s) ≈ rn (s) , θ2 (s) ≈ 0, and C̀33 (s) ≈ À33 (s) . (7.59)

Also in consideration of the rather small influence of the warping effect in
general, it seems reasonable to refrain from higher order warping influences
associated with the second derivative of twist φ,xx(x).

Remark 7.14. For the approximation of the torsional out-of-plane warping dis-
placement, only the dependence upon the rate of twist will be considered.

Thus, the description of the warping displacement breaks up into a com-
ponent with axial dependence, the rate of twist φ,x(x), and one with cross-
sectional dependence, the warping function Θ(s), like that being used in Sec-
tion 7.2:

uΘ (x, s) = Θ (s)φ,x (x) . (7.60)

Resulting Simplifications

The implications of the approximation introduced by Eqs. (7.59) will be
demonstrated by means of the warping functions for the non-branched cross-
sections. In the case of an open topology, as described by Eq. (7.43), even
though the wall properties are anisotropic and may vary along the cross-
sectional coordinate, the result is a purely geometric warping function

Θ∪ (s) =
∫

rn(s) ds. (7.61)

In consideration of Eq. (7.27), this simplification leads in Eq. (7.31) to the
decoupling of the shear strain γ0

xs(x, s) from the twist rate φ,x(x). This is not
given in the case of closed cross-sections, since an additional term is contained
in the warping function

Θ♦ (s) =
∫

rn(s) ds − 2A0

∫
1

À33(s)
ds

∮

S
1

À33(s)
ds

. (7.62)

When the constitutive properties of the wall are constant all around the cell,
their influence vanishes and a purely geometric warping function remains,
identical to the one determined via the shear flow of Bredt [24] for the isotropic
case:

Θ♦ (s) =
∫

rn(s) ds − 2A0
s

S
. (7.63)

In Eqs. (7.62) and (7.63), the area enclosed by the wall of the single cell can
be identified and abbreviated by A0. Analogously, such an abridgment may
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be introduced for cross-sections with multiple cells with the area Ak enclosed
by cell k:

∮

S

rn(s) ds = 2A0, (7.64a)

∀k :
∮

Sk

rn(s) ds =
∑

i∈k

f i
k

∫

Si

rn(s) ds = 2Ak. (7.64b)

7.4 Rotating Beams

So far, the beam itself has been described in detail. Now, it will be considered
as part of a rotating system. To herald the examination of inertia effects, it is
necessary to link the above kinematic relations to the description of a guided
motion.

7.4.1 Rotor Kinematics

With regard to a guided motion around a fixed axis of rotation, it is essential
to refer to three different frames of reference. First, the inertial reference frame
defines the global origin. Second, the rotating reference frame implements the
rotation around the origin. And third, the moving reference frame is associated
with the mounting point of the beam. There the beam will be attached with
the following implications:

Remark 7.15. Clamped boundary conditions apply at the origin of the beam’s
coordinate.

Thus, the considered moving reference frame agrees with the coordinate
system introduced to describe the beam. Therein the position of an arbitrary
point is represented by the vector po(x, s, t) according to Eq. (7.2) with the
modified cross-sectional description for thin-walled beams of Eq. (7.16) in
view of Eq. (7.1) and depending on time to accommodate dynamic beam
deformations. This position may be expressed in the inertial reference frame
by the vector

p(x, s, t) = TΩ (t) (r + T321 (t) po(x, s, t)) . (7.65)

The position of the moving reference frame with respect to the rotating ref-
erence frame is given by the vector r, while its orientation is specified by the
rotational transformation T321(t). This may be assembled from the rotations
around individual axes:
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T321 (t) = T3 (t)T2 (t)T1 (t)

with T3 (t) =

⎡

⎣
cos(α3 (t)) − sin(α3 (t)) 0
sin(α3 (t)) cos(α3 (t)) 0

0 0 1

⎤

⎦ ,

T2 (t) =

⎡

⎣
cos(α2 (t)) 0 sin(α2 (t))

0 1 0
− sin(α2 (t)) 0 cos(α2 (t))

⎤

⎦ ,

T1 (t) =

⎡

⎣
1 0 0
0 cos(α1 (t)) − sin(α1 (t))
0 sin(α1 (t)) cos(α1 (t))

⎤

⎦ .

(7.66)

Since the Cardan angles α3(t), α2(t), and α1(t) are prescribed parameters, a
discussion on the uniqueness of representation in analogy to Section 7.1.2 is
not necessary and we may simply agree upon their sequence. The orientation of
the rotating reference frame relative to the inertial reference frame is described
by the rotational transformation

TΩ (t) =

⎡

⎣
cos(αΩ (t)) − sin(αΩ (t)) 0
sin(αΩ (t)) cos(αΩ (t)) 0

0 0 1

⎤

⎦ . (7.67)

For the sake of simplicity, the orientation of the inertial reference frame may
be chosen such that one of its axes represents the axis of rotation. In the case
of Eq. (7.67), the rotation occurs around the third axis of the inertial reference
frame.

7.4.2 Transformation Properties

The angle αΩ(t) may be expressed in terms of the angular velocity Ω(t) as
follows:

αΩ (t) =
∫

Ω (t) dt. (7.68)

Then the derivatives in time of the rotational transformation TΩ (t), as given
by Eq. (7.67), are of the following form:

TΩ,t (t) = Ω (t)T′
Ω (t) , TΩ,tt (t) = Ω,t (t)T′

Ω (t) +Ω2 (t)T′ ′
Ω (t) . (7.69)

The matrices T′
Ω(t) and T′ ′

Ω(t) contained therein represent the external deriv-
atives and consequently read

T′
Ω (t) =

⎡

⎣
− sin(αΩ (t)) − cos(αΩ (t)) 0
cos(αΩ (t)) − sin(αΩ (t)) 0

0 0 0

⎤

⎦ , (7.70a)

T′ ′
Ω (t) =

⎡

⎣
cos(αΩ (t)) − sin(αΩ (t)) 0
sin(αΩ (t)) cos(αΩ (t)) 0

0 0 0

⎤

⎦ . (7.70b)
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In the subsequent derivation, products of the matrix transpose of the transfor-
mation TΩ(t) with itself or its derivatives will appear. The decisive property
of these products is a separation of the time-dependent components from the
matrix structure, such that the angular velocity Ω(t) and its derivative turn
up only as scalar factors:

TT
Ω (t)TΩ (t) = I, (7.71a)

TT
Ω (t)TΩ,t (t) = Ω (t) I′, (7.71b)

TT
Ω (t)TΩ,tt (t) = Ω,t (t) I′ +Ω2 (t) I′ ′. (7.71c)

The matrices I, I′, and I′ ′ are the identity matrix, and are filled with an
antimetric submatrix and a negated identity submatrix, respectively:

I =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ , I′ =

⎡

⎣
0 −1 0
1 0 0
0 0 0

⎤

⎦ , I′ ′ =

⎡

⎣
−1 0 0
0 −1 0
0 0 0

⎤

⎦ . (7.72)

Analogous considerations also hold for the other above-mentioned transforma-
tions of Eq. (7.66). However, when products of such matrices with incorpo-
rated time dependence are nested, complications arise as soon as the central
product contains a derivative. Thus, time-dependent matrices do not occur, for
example, in the product TT

1 (t)TT
Ω(t)TΩ(t)T1(t), which still yields the identity

matrix, but cannot be avoided for the likes of TT
1 (t)TT

Ω(t)TΩ,t(t)T1(t).
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Virtual Work Statements

To determine the equations of equilibrium as well as the constitutive relations
of the beam, the principle of virtual work may be applied and its individual
contributions be examined, respectively. Thus, the foundations for an ana-
lytic solution with regard to the statics of the non-rotating structure can be
provided. Furthermore, the principle of virtual work will serve to set up the
equations of motion in consideration of the dynamics of the rotating struc-
ture. This, in addition, requires the study of inertia effects and the inclusion
of stiffening effects due to kinematic non-linearity with reference to relatively
slender and flexible beams. The derivation of the principle of virtual work for
the general case is presented in Section 3.4, and it will now be adapted and
extended to depict adaptive thin-walled beams. Therefore, the various virtual
work contributions will be discussed individually.

8.1 Internal Virtual Work

The virtual work of internal contributions is assembled in Section 3.4.6 from
the virtual strain energy and virtual work of internal charges, as supplied
by the principle of virtual displacements and of virtual electric potential,
respectively. In Eq. (3.63), the virtual work of internal contributions is given
for a volumetric object. The preceding analysis accomplished a reduction to
two dimensions for the shell-like wall and to one dimension for the beam.
Consequently, the expression for the virtual work of internal contributions
may be reformulated for the wall δU (t) and for the beam δŬ (t) as follows:

δŬ (t) =
∫

X

δχ̆T (x) L̆ (x, t) dx, (8.1a)

�

δU (t) =
∫

X

∫

S

δχT (x, s) L (x, s, t) dsdx

=
∫

X

δχ̆T (x)
∫

S

J
T (s) L (x, s, t) dsdx. (8.1b)

T.H. Brockmann, Theory of Adaptive Fiber Composites,
Solid Mechanics and Its Applications 161,
c© Springer Science + Business Media B.V. 2009
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In the lower line, use has been made of the relation between strain and electric
field strength measures of wall and beam, provided by Eq. (7.33) and adapted
to the virtual expressions.

8.1.1 Internal Loads of Beam and Wall

As a matter of course, the virtual work needs to be independent of the descrip-
tion. Thus, equating Eqs. (8.1) allows us to associate the internal mechanical
as well as electric loads of beam L̆(x, t) and wall L(x, s, t):

δU (t) = δŬ (t) → L̆ (x, t) =
∫

S

J
T (s) L (x, s, t) ds. (8.2)

Obtaining the entries of the matrix J(s) of Eq. (7.33) from Eqs. (7.31) and
(7.32) leads, with the internal loads L(x, s, t) of the wall as listed in Eq. (6.6),
to

L̆ (x, t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N̆(x, t)
Q̆y(x, t)
Q̆z(x, t)
M̆x(x, t)
M̆y(x, t)
M̆z(x, t)
Q̆w(x, t)

−
Ğc (x, t)
Ğd (x, t)

...

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

S
Nx (x, s, t) ds

∫

S
y,s (s)Nxs (x, s, t) + 1

2z,ss (s)Mxs (x, s, t) ds
∫

S
z,s (s)Nxs (x, s, t) − 1

2y,ss (s)Mxs (x, s, t) ds
∫

S
Φ (s)Nxs (x, s, t) − (2 + 1

2
Φ(s)
R(s) )Mxs (x, s, t) ds

∫

S
z (s)Nx (x, s, t) + y,s (s)Mxx (x, s, t) ds

∫

S
−y (s)Nx (x, s, t) + z,s (s)Mxx (x, s, t) ds

∫

S
Θ (s)Nx (x, s, t) − rs (s)Mxx (x, s, t) ds

−
∫

S
pc (s)Gc

3 (x, s, t) ds
∫

S
pd (s)Gd

3 (x, s, t) ds
...

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(8.3)

8.1.2 Constitutive Relation

The constitutive relation of an adaptive laminated composite shell is given in
Eq. (6.6). Being considered for the thin wall of the beam, the lines, respectively
columns, associated with the cross-sectional strain component ε0s(x, s) and
bending curvature κs(x, s) can be dropped in accordance with Remark 7.4.
To comply with the specification of a prismatic beam in Remark 7.1, also
with regard to the material properties, the latter need to be constant along
the lengthwise direction and thus the constitutive matrix K(s) only depends
on the cross-sectional coordinate. The constitutive relation of the wall and the
corresponding formulation for the beam with the constitutive matrix P then
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read:
L (x, s, t) = K (s) χ (x, s, t) , L̆ (x, t) = Pχ̆ (x, t) . (8.4)

Insertion of these constitutive relations into the virtual work of internal loads
of the wall δU (t) and of the beam δŬ (t) as expressed by Eqs. (8.1) results in

δŬ (t) =
∫

X

δχ̆T (x) Pχ̆ (x, t) dx, (8.5a)

�

δU (t) =
∫

X

∫

S

δχT (x, s) K (s) χ (x, s, t) dsdx

=
∫

X

δχ̆T (x)
∫

S

J
T (s) K (s) J (s) dsχ̆ (x, t) dx. (8.5b)

For the lower line, use has been made again of the relation between strain
and electric field strength measures of wall and beam provided by Eq. (7.33).
Similarly, the constitutive matrix of the beam may be identified:

δU (t) = δŬ (t) → P =
∫

S

J
T (s) K (s) J (s) ds. (8.6)

8.1.3 Constitutive Coefficients

For the considered beams of arbitrary cross-sections with anisotropic walls
and adaptive capabilities, a multitude of mechanical and electromechanical
coupling mechanisms arise. They are reflected in the off-diagonal entries of
the beam constitutive matrix P. As defined in Eq. (8.6), the latter contains
the geometry and warping functions responsible for couplings that may be
attributed to the cross-sectional level, as well as the constitutive coefficients
of the shell. These entries of the matrix K(s) may be again assigned to two
different coupling levels. Coupling on the laminae level is founded on the
existence of associated off-diagonal entries in the property matrix Q of the
individual laminae, see Eq. (4.31). It may also appear in the case of sym-
metric laminates. Coupling on the laminate level, in contrast stems from a
non-symmetric set-up of the laminate. For the case at hand, the shell stiffness
coefficients À13(s), B̀13(s), B̀31(s), and D̀13(s) represent the mechanical coupling
on the laminae level, while the coefficients B̀11(s), B̀13(s), B̀31(s), B̀33(s) char-
acterize the mechanical coupling on the laminate level. Since the coefficients
B̀13(s) and B̀31(s) are associated with both levels, they only exist when both
requirements are fulfilled. Analogously, also the electromechanical coefficients
can be associated with the constitutive coupling levels. Such a classification
may be used to examine the consequences of simplifying assumptions on the
different levels.
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Mechanical Coefficients on the Principal Diagonal

The beam stiffness coefficients on the principal diagonal of the matrix P as-
sociated with extension, P11, bending, P55, P66, and warping, P77, depend on
the shell stiffnesses associated with the lengthwise extension, À11(s), bending,
D̀11(s), and the coupling B̀11(s):

P11 =
∫

S

À11 (s) ds, (8.7a)

P55 =
∫

S

À11 (s) z2 (s) + 2B̀11 (s) z (s) y,s (s) + D̀11 (s) y2,s (s) ds, (8.7b)

P66 =
∫

S

À11 (s) y2 (s) − 2B̀11 (s) y (s) z,s (s) + D̀11 (s) z2,s (s) ds, (8.7c)

P77 =
∫

S

À11 (s)Θ2 (s) − 2B̀11 (s)Θ (s) rs (s) + D̀11 (s) r2s (s) ds. (8.7d)

The other beam stiffness coefficients on the principal diagonal associated with
shear, P22, P33, and torsion, P44, are functions of the shell stiffnesses associated
with shear, À33(s), twist, D̀33(s), and the coupling B̀33(s):

P22 =
∫

S

À33 (s) y2,s (s) + B̀33 (s) y,s (s) z,ss (s) + D̀33 (s)
z2,ss (s)

4
ds, (8.8a)

P33 =
∫

S

À33 (s) z2,s (s) − B̀33 (s) z,s (s) y,ss (s) + D̀33 (s)
y2,ss (s)

4
ds, (8.8b)

P44 =
∫

S

À33 (s)Φ2 (s) − 2B̀33 (s)Φ (s)
(

2 +
Φ (s)
2R (s)

)

+ D̀33 (s)
(

2 +
Φ (s)
2R (s)

)2

ds. (8.8c)

Off-Diagonal Mechanical Coefficients without Laminae Level
Coupling

Likewise, the beam stiffness coefficients which couple extension, bending in
both directions, and warping depend on the shell stiffnesses associated with
the lengthwise extension, bending, and coupling between them:

P15 =
∫

S

À11 (s) z (s) + B̀11 (s) y,s (s) ds, (8.9a)

P16 =
∫

S

−À11 (s) y (s) + B̀11 (s) z,s (s) ds, (8.9b)

P17 =
∫

S

À11 (s)Θ (s) − B̀11 (s) rs (s) ds, (8.9c)



8.1 Internal Virtual Work 143

P56 =
∫

S

−À11 (s) y (s) z (s) − B̀11 (s) (y (s) y,s (s) − z (s) z,s (s))

+ D̀11 (s) y,s (s) z,s (s) ds, (8.9d)

P57 =
∫

S

À11 (s)Θ (s) z (s) + B̀11 (s) (Θ (s) y,s (s) − rs (s) z (s))

− D11 (s) rs (s) y,s (s) ds, (8.9e)

P67 =
∫

S

−À11 (s)Θ (s) y (s) + B̀11 (s) (Θ (s) z,s (s) + rs (s) y (s))

− D̀11 (s) rs (s) z,s (s) ds. (8.9f)

The beam stiffness coefficients, which couple shear in both directions and
torsion, are functions of the shell stiffnesses associated with shear, twist, and
the coupling between them:

P23 =
∫

S

À33 (s) y,s (s) z,s (s) +
B̀33 (s)

2
(z,s (s) z,ss (s) − y,s (s) y,ss (s))

− D̀33 (s)
y,ss (s) z,ss (s)

4
ds, (8.10a)

P24 =
∫

S

À33 (s)Φ (s) y,s (s) + B̀33 (s)
(

Φ (s)
z,ss (s)

2
−
(

2 +
Φ (s)
2R (s)

)

y,s (s)
)

− D̀33 (s)
(

2 +
Φ (s)
2R (s)

)
z,ss (s)

2
ds, (8.10b)

P34 =
∫

S

À33 (s)Φ (s) z,s (s) − B̀33 (s)
(

Φ (s)
y,ss (s)

2
+
(

2 +
Φ (s)
2R (s)

)

z,s (s)
)

+ D̀33 (s)
(

2 +
Φ (s)
2R (s)

)
y,ss (s)

2
ds. (8.10c)

Off-Diagonal Mechanical Coefficients with Laminae Level Coupling

The remaining beam stiffness coefficients depend on the shell stiffnesses that
result from coupling on the laminae level. This concerns the coupling be-
tween shear and extension, À13(s), between extension and lengthwise curva-
ture, B̀13(s) and B̀31(s), as well as between lengthwise curvature and twist,
D̀13(s). So, the beam stiffness coefficients responsible for the coupling of ex-
tension with shear and torsion read:
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P12 =
∫

S

À13 (s) y,s (s) +
B̀13 (s)

2
z,ss (s) ds, (8.11a)

P13 =
∫

S

À13 (s) z,s (s) − B̀13 (s)
2

y,ss (s) ds, (8.11b)

P14 =
∫

S

À13 (s)Φ (s) − B̀13 (s)
(

2 +
Φ (s)
2R (s)

)

ds. (8.11c)

The beam stiffness coefficients in charge of the coupling between shear and
bending have the subsequent form:

P25 =
∫

S

À13 (s) z (s) y,s (s) + B̀13 (s) z (s)
z,ss (s)

2
+ B̀31 (s) y2,s (s)

+ D̀13 (s) y,s (s)
z,ss (s)

2
ds, (8.12a)

P36 =
∫

S

−À13 (s) y (s) z,s (s) + B̀13 (s) y (s)
y,ss (s)

2
+ B̀31 (s) z2,s (s)

− D̀13 (s) z,s (s)
y,ss (s)

2
ds, (8.12b)

P26 =
∫

S

−À13 (s) y (s) y,s (s) − B̀13 (s) y (s)
z,ss (s)

2
+ B̀31 (s) y,s (s) z,s (s)

+ D̀13 (s) z,s (s)
z,ss (s)

2
ds, (8.12c)

P35 =
∫

S

À13 (s) z (s) z,s (s) − B̀13 (s) z (s)
y,ss (s)

2
+ B̀31 (s) y,s (s) z,s (s)

− D̀13 (s) y,s (s)
y,ss (s)

2
ds. (8.12d)

The beam stiffness coefficients accounting for the coupling of bending and
twist are given as follows:

P45 =
∫

S

A13 (s)Φ (s) z (s) − B13 (s)
((

2 +
Φ (s)
2R (s)

)

z (s) − Φ (s) y,s (s)
)

− D13 (s)
(

2 +
Φ (s)
2R (s)

)

y,s (s) ds, (8.13a)

P46 =
∫

S

−A13 (s)Φ (s) y (s) + B13 (s)
((

2 +
Φ (s)
2R (s)

)

y (s) + Φ (s) z,s (s)
)

− D13 (s)
(

2 +
Φ (s)
2R (s)

)

z,s (s) ds. (8.13b)

Finally, the beam stiffness coefficients associated with the coupling of shear
and torsion with warping read:
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P27 =
∫

S

À13 (s)Θ (s) y,s (s) + B̀13 (s)Θ (s)
z,ss (s)

2
− B̀31 (s) rs (s) y,s (s)

− D̀13 (s) rs (s)
z,ss (s)

2
ds, (8.14a)

P37 =
∫

S

À13 (s)Θ (s) z,s (s) − B̀13 (s)Θ (s)
y,ss (s)

2
− B̀31 (s) rs (s) z,s (s)

+ D̀13 (s) rs (s)
y,ss (s)

2
ds, (8.14b)

P47 =
∫

S

À13 (s)Φ (s)Θ (s) − B̀13 (s)
(

2 +
Φ (s)
2R (s)

)

Θ (s) − B̀31 (s)Φ (s) rs (s)

+ D̀13 (s)
(

2 +
Φ (s)
2R (s)

)

rs (s) ds. (8.14c)

Electromechanical Coefficients

Corresponding to the mechanical coefficients, those representing the electro-
mechanical coupling due to the piezoelectric effect also may be arranged. The
induction and detection of extension, bending, and warping of the beam de-
pends on the electromechanical shell coefficients associated with extension,
Àc
14(s), and lengthwise curvature, B̀c

14(s):

P18 =
∫

S

Àc
14 (s) pc (s) ds, (8.15a)

P58 =
∫

S

(Àc
14 (s) z (s) + B̀c

14 (s) y,s (s)) pc (s) ds, (8.15b)

P68 =
∫

S

(−Àc
14 (s) y (s) + B̀c

14 (s) z,s (s)) pc (s) ds, (8.15c)

P78 =
∫

S

(Àc
14 (s)Θ (s) − B̀c

14 (s) rs (s)) pc (s) ds. (8.15d)

The induction and detection of shear and torsion of the beam is governed by
those electromechanical shell coefficients associated with shear, Àc

34(s), and
twist, B̀c

34(s):

P28 =
∫

S

(

Àc
34 (s) y,s (s) + B̀c

34 (s)
z,ss (s)

2

)

pc (s) ds, (8.16a)

P38 =
∫

S

(

Àc
34 (s) z,s (s) − B̀c

34 (s)
y,ss (s)

2

)

pc (s) ds, (8.16b)

P48 =
∫

S

(

Àc
34 (s)Φ (s) − B̀c

34 (s)
(

2 +
Φ (s)
2R (s)

))

pc (s) ds. (8.16c)

The dielectric permittivity properties, summarized for the shell in the coeffi-
cient Àc

44(s), are considered for the beam by integration over the cross-section:
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P88 =
∫

S

Àc
44 (s) (pc (s))2 ds =

∫

S

Àc
44 (s) ds. (8.17)

For further groups of electrically paralleled laminae, the formulation is anal-
ogous.

Open Cross-Section Peculiarity

A prominent property of a non-branched and branched open cross-section
as well as of open branches within a combined cross-section will be marked
here. By virtue of Eqs. (7.42) and (7.59), a purely geometric warping func-
tion is found in these cases, as exemplarily shown for the non-branched open
cross-section in Eq. (7.61). Accordingly, the abbreviation Φ(s) introduced in
Eq. (7.27) vanishes:

Φ∪ (s) = 0. (8.18)

This has thorough consequences for all torsion-related entries of the beam
constitutive matrix P, since it eliminates the dependence on the membrane
properties stemming from the shell constitutive sub-matrix A(s). The torsional
stiffness P44 of Eq. (8.8c) is only governed by the twisting stiffness of the wall:

P∪
44 =

∫

S

4D̀33 (s) ds. (8.19)

Since a diagonal entry of the constitutive matrix must not be zero, it is ex-
plained why those thin-walled beam theories, which only account for the mem-
brane response, are limited to closed cross-sections. The above argument cor-
respondingly applies to contributions of open branches within a combined
cross-section.

8.1.4 Partially Prescribed Electric Potential

In Section 4.5, the different variants of actuation and sensing with regard
to the type of electric power supply and electric measurement, respectively,
are discussed. For actuation in conjunction with a voltage source and sens-
ing via current measurement, the electric potential is identified to be a pre-
scribed quantity. Consequently, the variation of the corresponding electric
field strength vanishes and the principle of virtual work therefore needs to be
modified. To provide a general description, the vector of electric field strength
Ĕ(x, t), containing the values for all groups of electrically paralleled laminae,
may be split into two parts, Ĕ†(x, t) and Ĕ‡(x, t). Herein, the unknown fields
are elucidated by ()† and the prescribed fields by ()‡. The virtual work of
internal contributions, given by Eq. (8.5a), therefore can be rewritten as
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δŬ (t) =
∫

X

{

δε̆T (x) δĔ
T

† (x) δĔ
T

‡ (x)
}

︸ ︷︷ ︸
δχT (x)

⎡

⎢
⎣

p p† p‡

pT
† Ip† 0

pT
‡ 0 Ip‡

⎤

⎥
⎦

︸ ︷︷ ︸
P

⎧
⎨

⎩

ε̆ (x, t)
Ĕ† (x, t)
Ĕ‡ (x, t)

⎫
⎬

⎭

︸ ︷︷ ︸
χ̆(x,t)

dx.

(8.20)
The decomposition of the constitutive matrix P of the beam reveals its purely
mechanical part p, its electromechanically coupled parts p† and p‡, and its
dielectric diagonal entries p† and p‡. As addressed above, the virtual electric
field strength of the prescribed fields vanishes and thus δĔ‡(x) = 0. The
summary of vectors and matrices with regard to the remaining degrees of
freedom of the beam, comes to

δμ (x) =
{
δε̆ (x)
δĔ† (x)

}

, P =
[

p p†
pT

† Ip†

]

, μ (x, t) =
{

ε̆ (x, t)
Ĕ† (x, t)

}

.

(8.21)
Thus, the virtual work of internal contributions may be written in terms of
functions of the mechanical and electric degrees of freedom in δŬ me(t) and
electric parameters in δŬ pe(t) such that

δŬ (t) =
∫

X

δμ̆T (x)Pμ̆ (x, t) dx
︸ ︷︷ ︸

δŬ me(t)

+
∫

X

δε̆T (x)p‡Ĕ‡ (x, t) dx
︸ ︷︷ ︸

δŬ pe(t)

. (8.22)

For obvious reasons, such a partition cannot be carried out before the consti-
tutive relation is introduced. Nevertheless, the formulation with internal loads
given by Eq. (8.1a) reduces for the vector L̆†(x, t) of the mechanical loads and
those electric loads not associated with an electric parameter, to

δŬ (t) =
∫

X

δμ̆T (x) L̆† (x, t) dx. (8.23)

8.2 External Virtual Work

Since beam theory is concerned with the representation of structures with
essentially one dimension of extent, the mechanical and electric loads applied
to volumes and areas in Eq. (3.62) need to be assigned to the beam reference
line. The virtual work δV̆ me(t) of such loads will be defined subsequently
and, furthermore, the virtual work δV̆ dl(t) of inertia loads will be derived
for rotating systems. So, the virtual work of external loads altogether for the
beam reads:

δV̆ (t) = δV̆ me (t) + δV̆ dl (t) . (8.24)
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8.2.1 Applied Load Contributions

The virtual work δV̆ me(t) of applied mechanical and electric loads involves
the virtual variant δν̆(x) of the degrees of freedom ν̆(x, t) of the beam and
the actual applied loads l̆(x, t), resulting in

δV̆ me (t) =
∫

X

δν̆T (x) l̆ (x, t) dx. (8.25)

Therefore, only applied loads associated with a degree of freedom are consid-
ered, while consequently those associated with a parameter are discarded, cor-
responding to the nature of the employed electric circuits. The vector ν̆(x, t)
is assembled from the mechanical degrees of freedom ŭ(x, t), which appear in
Eq. (7.25), and from the electric degrees of freedom ϕ̆(x, t), such that

ν̆ (x, t) =
{

ŭ (x, t)
ϕ̆ (x, t)

}

with ϕ̆ (x, t) =
{
ϕc (x, t) ϕd (x, t) . . .

}T , (8.26)

ŭ (x, t) =
{
u (x, t) v (x, t) w (x, t) φ (x, t) βy (x, t) βz (x, t) φ,x (x, t)

}T .

Applied mechanical loads n̆(x, t) and applied electric loads ğ(x, t) form the
vector of actual applied loads l̆(x, t). With the designation of its components
in analogy to the internal loads of Eq. (8.3), it reads

l̆ (x, t) =
{

n̆ (x, t)
ğ (x, t)

}

with ğ (x, t) =
{
ğc (x, t) ğd (x, t) . . .

}T , (8.27)

n̆ (x, t) =
{
n̆(x, t) q̆y(x, t) q̆z(x, t) m̆x(x, t) m̆y(x, t) m̆z(x, t) q̆w(x, t)

}T.

8.2.2 Inertia Load Contributions

D’Alembert’s principle in the Lagrangian version has been obtained in Sec-
tion 3.4.5 in terms of virtual displacements and actual accelerations. Since
it needs to be accounted for a superimposed guided motion, the position
p (x, s, t) in the inertial frame of reference, as described by Eq. (7.65), has
to be taken into consideration. With the density ρ(s, n) in accordance with
Remark 7.1, the virtual work of inertia forces originating from Eq. (3.59) then
reads

δV̆ dl (t) = −
∫

Λ

δpT (x, s, t) p,tt(x, s, t)ρ (s, n) dV . (8.28)

Taking the variation of Eq. (7.65), the global virtual position vector δp(x, s, t)
in the inertial reference frame may be obtained in terms of the local virtual
position vector δpo(x, s) in the moving reference frame:

δp (x, s, t) = TΩ (t)T321 (t) δpo(x, s). (8.29)
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Correspondingly, the acceleration p,tt(x, s, t) as the second derivative of the
global position can be gained from Eq. (7.65). When this is done in considera-
tion of Eqs. (7.69) and (7.70) and the rotational properties of Eqs. (7.71) and
(7.72) are introduced to the vector product in the integrand of Eq. (8.28), we
obtain

δpT (x, s, t) p,tt(x, s, t)

= δpT
o (x, s)TT

321 (t)
(
Ω,t (t) I′ +Ω2 (t) I′ ′) (r + T321 (t) po(x, s, t))

+ 2δpT
o (x, s)TT

321 (t) (Ω (t) I′)
(
T321 (t) po,t(x, s, t) + T321,t (t) po(x, s, t)

)

+ δpT
o (x, s)TT

321 (t)
(
T321 (t) po,tt(x, s, t) + 2T321,t (t) po,t(x, s, t) + T321,tt (t) po(x, s, t)

)
.

(8.30)

In view of the above discussion on the transformation properties, it needs to
be noted that Eq. (8.30) and thus the resulting equations of motion contain
time-dependent matrices. The mathematical theory for such non-autonomous
systems has primarily been developed with regard to a periodic dependence
on time. The most prominent approaches to solve these systems are the meth-
ods of Floquet [75] and of Hill [95]. For further details, see Prothmann [146],
Gasch and Knothe [78], or Meirovitch [125]. To pave the way for an eventu-
ally autonomous system with a less expensive theoretical framework, not to
exceed the scope of the study at hand, we will abstain from a time-dependent
orientation of the clamping of the beam.

Remark 8.1. The rotation around an axis of the inertial reference frame will
be the only guided motion of the considered system.

Thus, the rotational transformation at the clamped end of the beam is
restricted to a constant description of the orientation:

T321 (t) = T321 = T3T2T1 with α3 (t) = α3, α2 (t) = α2, α1 (t) = α1.
(8.31)

To determine the virtual work of inertia forces in terms of the beam displace-
ments, the latter are used to express the beam positions and the derivatives
and variation thereof respectively, as governed by Eqs. (7.2) and (7.25):

po,t(x, s, t) = K (s) ŭ,t (x, t) ,

po(x, s, t) = P o (x, s) + K (s) ŭ (x, t) → po,tt(x, s, t) = K (s) ŭ,tt (x, t) ,

δpo(x, s) = K (s) δŭ (x) .
(8.32)

Then substitution of Eq. (8.30) into (8.28) leads, with simplifications due to
Eq. (8.31), to an expression with the following classification of inertia terms:
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δV̆ dl (t) = −
∫

X

δŭT (x) (

M′ ′ŭ,tt (x, t) relative acc.—effects without rotation
+ M′2Ω (t) ŭ,t (x, t) Coriolis acc.—gyroscopic effects
+ MΩ2 (t) ŭ (x, t) centrifugal acc.—effects due to deformation
+ m (x)Ω2 (t) centrifugal acc.—effects in initial state
+ M′Ω,t (t) ŭ (x, t) angular acc.—effects due to deformation
+ m′ (x)Ω,t (t) angular acc.—effects in initial state
) dx. (8.33)

The appearing matrices and vectors contain the integration over the cross-
section and, as anticipated, do not vary with time:

M′ ′ =
∫

S

KT (s)K (s)
∫

N

ρ (s, n) dnds, (8.34a)

M′ =
∫

S

KT (s)TT
321I

′T321K (s)
∫

N

ρ (s, n) dnds, (8.34b)

M =
∫

S

KT (s)TT
321I

′ ′T321K (s)
∫

N

ρ (s, n) dnds, (8.34c)

m′ (x) =
∫

S

KT (s)TT
321I

′ (r + T321P o (x, s))
∫

N

ρ (s, n) dnds, (8.34d)

m (x) =
∫

S

KT (s)TT
321I

′ ′ (r + T321P o (x, s))
∫

N

ρ (s, n) dnds. (8.34e)

As already obvious from the classification of terms in Eq. (8.33), the inertia
properties contained in the matrix M′ ′ are those of the non-rotating beam.
Therefore, they are necessarily independent of its orientation, which is assured
by the transformation property of the sequence of time-independent matrices
such that TT

321T321 = I.

8.2.3 Equilibrium and Boundary Conditions

With the aid of the principle of virtual work, the equilibrium and bound-
ary conditions can be obtained for the quasi-static case, where, in principle,
loads may change over time but inertia effects are not considered. The con-
tributions required for this purpose have been already obtained and will be
joined together in the following. The internal virtual work δŬ (t) is given by
Eq. (8.23), while the external virtual work δV̆ (t) of Eq. (8.24) reduces for
the quasi-static case to those contributions δV̆ me(t) due to the applied loads
specified in Eq. (8.25). For the considered situation, the simplified principle
of virtual work then reads:

δŬ (t) = δV̆ (t) →
∫

X

δμ̆T (x) L̆† (x, t) dx =
∫

X

δν̆T (x) l̆ (x, t) . (8.35)
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As was done in Section 6.2.3 to obtain the equilibrium equations of the shell,
integration by parts is applied to the principle of virtual work with the objec-
tive of eliminating the appearing derivatives of the beam’s degrees of freedom.
The geometric boundary conditions (first column) for a cantilever configura-
tion are employed to warrant admissible displacement states. To satisfy the
principle, the integrands collected for all virtual displacements have to vanish,
giving the equilibrium equations (second column). The remaining terms yield
the natural boundary conditions (third column) at the free end:

u (x = 0) = 0, n̆ (x, t) + N̆,x (x, t) = 0, N̆ (x = X) = 0,
(8.36a)

v (x = 0) = 0, q̆y (x, t) + Q̆y,x (x, t) = 0, Q̆y (x = X) = 0,
(8.36b)

w (x = 0) = 0, q̆z (x, t) + Q̆z,x (x, t) = 0, Q̆z (x = X) = 0,
(8.36c)

βy (x = 0) = 0, m̆y (x, t) − Q̆z (x, t) + M̆y,x (x, t) = 0, M̆y (x = X) = 0,
(8.36d)

βz (x = 0) = 0, m̆z (x, t) + Q̆y (x, t) + M̆z,x (x, t) = 0, M̆z (x = X) = 0.
(8.36e)

The coupling of warping and torsion is manifested in the equilibrium equa-
tions, as they do not appear separately:

m̆x (x, t) + M̆x,x (x, t) − q̆w,x (x, t) − Q̆w,xx (x, t) = 0, (8.37a)

φ (x = 0) = 0, M̆x (x = X) − q̆w (x = X) − Q̆w,x (x = X) = 0, (8.37b)

φ,x (x = 0) = 0, Q̆w (x = X) = 0. (8.37c)

The above procedure also provides corresponding sets of equations for the
electric loads of every group of electrically paralleled laminae:

ϕc (x = 0) = 0, ğc (x, t) + Ğc
,x (x, t) = 0, Ğc (x = X) = 0, (8.38a)

ϕd (x = 0) = 0, ğd (x, t) + Ğd
,x (x, t) = 0, Ğd (x = X) = 0. (8.38b)

...
...

...

8.3 Second-Order Theory

First-order theories are bound to the equilibrium of the undeformed system
and therefore are basically suitable for small deformations. Second-order theo-
ries consider the equilibrium of the slightly deformed system and are necessary
to investigate tensioned flexible structures as well as buckling phenomena.
Since the behavior in this context is frequently dominated by the normal
force, it is commonly not accounted for the other initial internal loads, while
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they will be included in the subsequent derivation. Non-linear theories do not
suffer from the implications of the different linearization procedures and are
able to depict larger deformations as they occur, for example, in the post-
buckling state. The capabilities of such elaborate theories have to be acquired
at the cost of analytic insight and computational efficiency. With reference
to Section 7.1, it would be possible to employ a geometrically exact descrip-
tion without reducing to small rotations, as of Remark 7.2. Such theories
have been developed and advanced, for instance, by Simo and Vu-Quoc [164],
Hodges [97], and Gruttmann et al. [89] for beams without adaptive capabili-
ties.

8.3.1 Additional Internal Load Contributions

The non-linear strain measures for the most general comprehensible case,
involving finite displacements but small rotations of the beam, are derived
in Section 7.1 and given by Eq. (7.15). In accordance with the calculus of
variations, see Funk [77], the virtual variant of these strain measures reads

δε̆GL (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

δu,x (x)
−δβz (x) + δv,x (x)
δβy (x) + δw,x (x)

δφ,x (x)
δβy,x (x)
δβz,x (x)
δφ,xx (x)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
δε̆(x)

+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

v,x (x) δv,x (x) + w,x (x) δw,x (x)
φ (x) δw,x (x) + w,x (x) δφ (x)

−φ (x) δv,x (x) − v,x (x) δφ (x)
0

−φ,x (x) δv,x (x) − v,x (x) δφ,x (x)
−φ,x (x) δw,x (x) − w,x (x) δφ,x (x)

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
δέ(x)

.

(8.39)
As shown here, the strains may be split into the linear part δε̆(x) and the
non-linear part δέ(x). The prior corresponds to the variation of the linear
strain measures as they are obtained for the thin-walled beam in Section 7.2
and given by Eq. (7.31). Further on, the internal loads vector N̆(x, t) of the
beam can be subdivided into the portion Ń(x, t), associated with the initial
configuration, and the portion Ǹ(x, t) related to the superposed deformation.
Then the virtual strain energy δU md(t), based on the general formulation of
Eq. (3.45), may be written for the beam as follows:

δU md (t)

=
∫

X

δε̆T
GL (x) N̆ (x, t) dx with N̆ (x, t) = Ǹ (x, t) + Ń (x, t)

=
∫

X

δε̆T (x) N̆ (x, t) dx
︸ ︷︷ ︸

δŬ md(t)

+
∫

X

δέT (x) Ń (x, t) dx
︸ ︷︷ ︸

δŬ ms(t)

+
∫

X

δέT (x) Ǹ (x, t) dx
︸ ︷︷ ︸

.

→ 0

(8.40)
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In the last line of Eq. (8.40), Eq. (8.39) is introduced and expressions are
multiplied out. The first term represents the linearized virtual strain energy
δŬ md (t). The initial internal loads vector Ń(x, t) can be determined in ad-
vance, while the vector Ǹ(x, t) of the other internal loads needs to be sub-
stituted with the aid of a constitutive relation. Therefore, the second term is
free of non-linear products, while the third term contains such products and,
consequently, will be neglected. Such a second-order theory corresponds to
the equilibrium of the slightly deformed system and contributes the virtual
work of initial stresses δŬ ms(t). Thus, the virtual work of internal mechanical
and electric loads with regard to Eq. (8.22) amounts to

δŬ (t) = δŬ me (t) + δŬ pe (t) + δŬ ms (t) . (8.41)

Known Initial Internal Loads

The internal loads vector N̆(x, t) constitutes the mechanical part of the com-
bined internal loads L̆(x, t) of the beam as given by Eq. (8.3). Correspondingly,
the initial internal loads vector Ń(x, t) and the associated initial external
loads vector ń(x, t) have the following components:

Ń (x, t) = {Ń(x, t) Q́y(x, t) Q́z(x, t) Ḿx(x, t) Ḿy(x, t) Ḿz(x, t) Q́w(x, t)}T ,
(8.42a)

ń (x, t) = {ń(x, t) q́y(x, t) q́z(x, t) ḿx(x, t) ḿy(x, t) ḿz(x, t) q́w(x, t)}T .
(8.42b)

As outlined above, the initial internal loads need to be known and, for this
purpose, may be determined with the aid of the first-order theory developed
so far. Due to the absence of non-linear strains related to both rotation and
warping, only normal and transverse forces, as well as bending moments, have
to be obtained. In accordance with the equilibrium equations and natural
boundary conditions of Eq. (8.36), these can be expressed as

Ń (x, t) =
∫ X

x

ń (x, t) dx, (8.43a)

Q́y (x, t) =
∫ X

x

q́y (x, t) dx, Q́z (x, t) =
∫ X

x

q́z (x, t) dx, (8.43b)

Ḿy (x, t) =

∫ X

x

ḿy (x, t) − Q́z (x, t) dx, Ḿz (x, t) =

∫ X

x

ḿz (x, t) + Q́y (x, t) dx.

(8.43c)

8.3.2 Reformulation

Next, the non-linear part δέ(x) of the virtual strain measures, given by
Eq. (8.39), and initial internal loads Ń(x, t), given by Eq. (8.42a), will be sub-
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stituted into the virtual work of initial stresses δŬ ms(t) of Eq. (8.40). Thereby
virtual and actual displacement, respectively rotation, derivatives can be re-
sorted into the appropriate vectors δŭ,x(x) and ŭ,x(x, t), while the known
initial internal load components may be arranged in the matrices Ĝ(x, t) and
Ǧ(x, t):

δŬ ms (t) =
∫

X

⎛

⎜
⎝

δŭT
,x (x) Ĝ (x, t) ŭ,x (x, t)

+ δŭT (x) ǦT (x, t) ŭ,x (x, t)

+ δŭT
,x (x) Ǧ (x, t) ŭ (x, t)

⎞

⎟
⎠ dx. (8.44)

Unlike the matrix Ĝ (x, t), but compensated by the dual appearance in
Eq. (8.44), the matrix Ǧ(x, t) is not symmetric:

Ĝ (x, t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
0 Ń (x, t) 0 −Ḿy (x, t) 0 0 0
0 0 Ń (x, t) −Ḿz (x, t) 0 0 0
0 −Ḿy (x, t) −Ḿz (x, t) 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (8.45a)

Ǧ (x, t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
0 0 0 −Q́z (x, t) 0 0 0
0 0 0 Q́y (x, t) 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8.45b)

The underlying mechanical degrees of freedom ŭ (x, t) are given by Eq. (8.26).
The matrices Ĝ(x, t) and Ǧ(x, t) contain the initial internal loads to be deter-
mined with the aid of Eqs. (8.43). They depend on the initial external loads
ń(x, t), which in turn are composed of the applied external loads n̆(x, t) and
those rotational effects that concern the initial state. The latter have been
obtained implicitly within the derivation of the virtual work of inertia loads.
They are marked in Eq. (8.33), and consequently the initial external loads are
given by

ń (x, t) = n̆ (x, t) − m (x)Ω2 (t) − m′ (x)Ω,t (t) . (8.46)
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Solution Variants

In Section 2.5, the application of adaptive fiber composites to influence the
behavior of helicopter rotor blades is outlined. To simulate such a system,
an adaptive beam, as considered in the two previous chapters, needs to be
examined in the rotating environment. Besides the already complicated in-
teractions due to arbitrary mechanical and electromechanical couplings, this
requires consideration of additional couplings due to gyroscopic and second-
order theory effects. Consequently, the general problem may only be solved
with the aid of discretization, to be accomplished here by means of the finite
element method. Analytic solutions of manageable complexity, however, may
be found for simplified problems and can be utilized for fundamental studies
and to support the validation of the finite element solution.

9.1 Statics of the Non-Rotating Structure

To assess and compare the performance of different configurations, it is suffi-
cient to regard the static behavior of the non-rotating structure in conjunction
with the voltage source driven actuator application, as discussed in Section 4.5.
With the subsequently described restrictions, it is possible to derive an ana-
lytic solution.

9.1.1 Configuration Restrictions

An outline of various actuation schemes has been given in Figure 2.10. On
account of the efficiency with regard to the helicopter application, we will here
focus the derivation of an analytic solution on the variants of twist actuation.
This requires the coupled consideration of extension and torsion as well as
warping and torsion of the beam. The prior is represented by the stiffness
coefficient P14 in the constitutive relation and the latter by the equilibrium of
Eq. (8.37a). To ease the solution, shear and bending of the beam will only be
coupled with each other. This comprises the stiffness coefficients P25 and P36

T.H. Brockmann, Theory of Adaptive Fiber Composites,
Solid Mechanics and Its Applications 161,
c© Springer Science + Business Media B.V. 2009
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in the constitutive relation as well as a crosswise connection in the equilibrium
of Eqs. (8.36d) and (8.36e). For such a configuration, the constitutive matrix
P of Eq. (8.6) with the coefficients of Eqs. (8.7) to (8.17) reduces to

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P11 0 0 P14 0 0 0 P18 0
0 P22 0 0 P25 0 0 0 0
0 0 P33 0 0 P36 0 0 0
P14 0 0 P44 0 0 0 P48 0
0 P25 0 0 P55 0 0 0 0
0 0 P36 0 0 P66 0 0 0
0 0 0 0 0 0 P77 0 P79

P18 0 0 P48 0 0 0 P88 0
0 0 0 0 0 0 P79 0 P99

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (9.1)

For the sake of clarity, separate groups of electrically paralleled laminae are
provided. On the one hand, the electromechanical coupling with respect to
extension and torsion is captured by the coefficients P18 and P48, while on the
other hand, the warping aspects are depicted by the coefficient P79. In addition
to the issue of actuation, the application of constant and linear external loads
to the beam will be permitted. Exemplarily, the lengthwise line force n̆(x),
the transverse line forces q̆y(x) and q̆z(x), as well as the torsional line moment
m̆x(x), are taken into account:

n̆(x) = n̆xx+n̆x, q̆y (x) = q̆yx+ q̆y, q̆z (x) = q̆zx+ q̆z, m̆x(x) = m̆xx+m̆x.
(9.2)

The static behavior of the non-rotating structure will be examined by means
of the properties outlined above. These can be summarized as follows:

Remark 9.1. The sought analytic solution will consider the constitutive cou-
pling of extension and torsion as well as of shear and bending in combination
with actuation of extension, torsion, and warping as well as constant and
linear external loads in view of the line forces and torsional line moment.

9.1.2 Extension, Torsion, and Warping Solution

The described configuration allows us to deal with two separate problems,
whereof the solution involving extension, torsion, and warping will be pre-
sented first. To attain more accessible solutions, a normalized lengthwise co-
ordinate ξ is introduced with the total length X of the considered beam:

ξ =
x

X
. (9.3)

The two equilibrium equations, provided by Eqs. (8.36a) and (8.37a), can
be solved separately with their boundary conditions and external line loads
of Eqs. (9.2) for the internal normal force N̆(x) and for the internal twisting
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moment M̆x(x). The latter contains the first derivative of the internal warping
bimoment Q̆w(x). These three internal loads can be substituted with the aid
of the corresponding lines of the constitutive relation, given on the right-hand
side of Eqs. (8.4) with the constitutive matrix of Eq. (9.1).

Twisting Angle

Both of the two resulting equations contain the first derivative of the length-
wise displacement u(x). Therefore, the latter can be eliminated in order to
solve a single third-order differential equation for the twisting angle φ(x).
With the normalized coordinate of Eq. (9.3) and compiled coefficients, the
solution to the beam torsion can be finally described by

φ (ξ) = −
(
ξ3

6
+
(

1
λ2

− 1
2

)

(ξ − η1 (ξ)) + η0 (ξ)
)

�linear − (ξ − η1 (ξ)) �twist

−
(
ξ2

2
− ξ + η1 (ξ) + η0 (ξ)

)

�const + η0 (ξ) �warp. (9.4)

The impact of linear and constant applied line loads is contained in the con-
stants �linear and �const, while the induction of direct and extension coupled
twist and of warping coupled twist is expressed by the constants �twist respec-
tively �warp:

�linear =
m̆xP11 − n̆xP14

P11P44 − P 2
14

X3, �const =
m̆xP11 − n̆xP14

P11P44 − P 2
14

X2, (9.5a)

�twist =
P11P48 − P14P18

P11P44 − P 2
14

XĔc, �warp =
P79

P77
X2Ĕd. (9.5b)

The particular solution, which represents the influence of the warping effect
on the lengthwise shape of the twist, is comprised in the functions η1(ξ) and
η0(ξ):

η1 (ξ) =
sinh (λ) − sinh (λ (1 − ξ))

λ cosh (λ)
, η0 (ξ) =

1 − cosh (λξ)
λ2 cosh (λ)

. (9.6)

Similar to the formulations of Mehn [124] or Rehfield et al. [150], the constant
λ can be identified as a decay length parameter:

λ =

√

P11P44 − P 2
14

P11P77
X. (9.7)

A warping restraint, resulting, for example, from the clamping at one end of
a beam, locally enhances the beams resistance against torsion. Its influence
however fades with the distance from its point of application depending on
the geometry and stiffness properties of the beam, which are comprised in the
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decay length parameter λ. Small values indicate that the warping restraint
significantly affects the global torsional behavior of the beam. This is given, for
instance, in the case of beams with a relatively stout geometry. A more detailed
analysis will be conducted in Section 10.2.1. The effect on the twist actuation
becomes clear with the study of Figure 9.1. With increasing constant λ in the
function η1(ξ), the fading of the warping restraint influence on the otherwise
linear direct and extension coupled torsion, −(ξ − η1(ξ))�twist in Eq. (9.4),
accelerates, and so the actuation efficiency improves. On the contrary for
warping coupled torsion, η0(ξ)�warp in Eq. (9.4), smaller values of the constant
λ in the function η0(ξ) are favorable.

Fig. 9.1. Normalized influence of the decay length parameter λ on the shape of the
non-linear twist components η1(ξ) and η0(ξ).

Lengthwise Displacement

Again with the normalized coordinate of Eq. (9.3), the lengthwise displace-
ment u(ξ) can be obtained by integration of the associated differential equa-
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tion in consideration of the geometric boundary conditions. While the con-
tained twisting angle φ(ξ) is given by Eq. (9.4), the solution reads

u(ξ) =
1
P11

(

n̆xX
3

(

−ξ
3

6
+
ξ

2

)

+ n̆xX
2

(

−ξ
2

2
+ ξ

)

− P18Ĕ
cXξ − P14φ (ξ)

)

.

(9.8)

9.1.3 Shear and Bending Solution

To complete the analytical solution for the simplified case outlined in Re-
mark 9.1, the remaining four equilibrium equations for shear and bending
need to be considered. The external line loads contained therein are again
provided by Eqs. (9.2), and the internal loads are supplied by the right one of
Eqs. (8.4) in conjunction with Eq. (9.1). Further on, the beam shear angles
are eliminated by virtue of Eq. (7.29).

Inclination Angles

With the above substitutions, the equilibrium relations of Eqs. (8.36b) and
(8.36d) as well as Eqs. (8.36c) and (8.36e) may be combined such that each
resulting equation contains the axial derivative of one of the sought inclina-
tion angles of the cross-section. Integration in consideration of the clamped
boundary conditions at one end, then yields

βy (ξ) =
(

q̆yX

(
ξ3

6
− ξ

2

)

+ q̆y

(
ξ2

2
− ξ

))
P25X

2

P22P55 − P 2
25

−
(

q̆zX

(
ξ4

24
− ξ2

4
+
ξ

3

)

+ q̆z

(
ξ3

6
− ξ2

2
+
ξ

2

))
P22X

3

P22P55 − P 2
25

,

(9.9a)

βz (ξ) =
(

q̆zX

(
ξ3

6
− ξ

2

)

+ q̆z

(
ξ2

2
− ξ

))
P36X

2

P33P66 − P 2
36

+
(

q̆yX

(
ξ4

24
− ξ2

4
+
ξ

3

)

+ q̆y

(
ξ3

6
− ξ2

2
+
ξ

2

))
P33X

3

P33P66 − P 2
36

.

(9.9b)

Transverse Displacements

Analogously, the equilibrium relations of Eqs. (8.36b) and (8.36d) as well as
Eqs. (8.36c) and (8.36e) may be combined so that the axial derivatives of
the inclination angles are eliminated. Then each resulting equation contains
one of the inclination angles besides the axial derivative of one of the trans-
verse displacements. It may be solved for the latter by integration, again in
consideration of the clamped boundary conditions at one end, to find
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v (ξ) = X
∫

βz (ξ) dξ −
(

q̆yX

(
ξ3

6
− ξ

2

)

+ q̆y

(
ξ2

2
− ξ

))
P55X

2

P22P55 − P 2
25

+
(

q̆zX

(
ξ4

24
− ξ2

4
+
ξ

3

)

+ q̆z

(
ξ3

6
− ξ2

2
+
ξ

2

))
P25X

3

P22P55 − P 2
25

,

(9.10a)

w (ξ) = −X
∫

βy (ξ) dξ −
(

q̆zX

(
ξ3

6
− ξ

2

)

+ q̆z

(
ξ2

2
− ξ

))
P66X

2

P33P66 − P 2
36

−
(

q̆yX

(
ξ4

24
− ξ2

4
+
ξ

3

)

+ q̆y

(
ξ3

6
− ξ2

2
+
ξ

2

))
P36X

3

P33P66 − P 2
36

.

(9.10b)

9.2 Dynamics of the Rotating Structure

To obtain a solution without the substantial restrictions dictated by insisting
on an analytical approach, the finite element method will be utilized in this
section. The diverse approaches to model various aspects of helicopter rotor
blades without adaptive capabilities have been reviewed by Hodges [96] and
Kunz [117].

9.2.1 Virtual Work Roundup

Following from the general principle of virtual work of Eq. (3.41), the equality
of internal and external virtual work is also demanded for the beam and shall
serve as the basis for the derivation of the equations of motion:

δŬ (t) = δV̆ (t) . (9.11)

The internal virtual work δŬ (t) is given by Eq. (8.41), and its individual con-
tributions are specified in Eqs. (8.22) and (8.44). The reformulation in terms
of the combined vectors of mechanical and electric variables, see Eqs. (8.21)
and (8.26), results in

δŬ (t) =
∫

X

δμ̆T (x)
[

p p†

pT
† Ip†

]

μ̆(x, t) dx
}

δŬ me (t)

+
∫

X

δμ̆T (x)
[
p‡
0

]

Ĕ‡(x, t) dx
}

δŬ pe (t)

+
∫

X

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

δν̆T
,x (x)

[
Ĝ (x, t) 0

0 0

]

ν̆,x (x, t)

+ δν̆T (x)
[
Ǧ (x, t) 0

0 0

]T

ν̆,x (x, t)

+ δν̆T
,x (x)

[
Ǧ (x, t) 0

0 0

]

ν̆ (x, t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

dx.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

δŬ ms (t)

(9.12)
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The external virtual work δV̆ (t) is given by Eq. (8.24), and its individual
contributions are specified in Eqs. (8.25) and (8.33). Again in terms of the
combined vectors of mechanical and electric variables, this leads to

δV̆ (t)

=
∫

X

δν̆T (x) l̆(x, t) dx
}

δV̆ me (t)

−
∫

X

δν̆T (x)

⎛

⎜
⎜
⎜
⎜
⎝

[
M′′ 0
0 0

]
ν̆,tt(x, t) + 2Ω(t)

[
M′ 0
0 0

]
ν̆,t (x, t)

+ Ω2 (t)
[
M 0
0 0

]
ν̆ (x, t) + Ω2 (t)

{
m (x)

0

}

+ Ω,t (t)
[
M′ 0
0 0

]
ν̆ (x, t) + Ω,t (t)

{
m′ (x)

0

}

⎞

⎟
⎟
⎟
⎟
⎠

dx.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

δV̆ dl (t)

(9.13)

9.2.2 Finite Element Formulation

Above, the various terms of the principle of virtual work have been compiled,
containing different temporal and spatial derivatives of the mechanical dis-
placements and rotations as well as of the electric potential of the adaptive
beam. In the finite element approach, these continuous functions have to be
approximated by discrete values at certain nodal points with adequate local
interpolations in between. The degrees of freedom at such nodal points asso-
ciated with a beam finite element may be summarized in the element vector
ν̆i(t). When elements with two nodes are chosen, the degrees of freedom at
both element ends are contained:

ν̆i (t) =

⎧
⎪⎪⎨

⎪⎪⎩

ŭj=i−1 (t)
ϕ̆j=i−1 (t)
ŭj=i (t)
ϕ̆j=i (t)

⎫
⎪⎪⎬

⎪⎪⎭

with ŭj (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uj(t)
vj(t)
wj(t)
φj(t)
βy;j(t)
βz;j(t)
φ,x;j(t)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, ϕ̆j (t) =

⎧
⎪⎪⎨

⎪⎪⎩

ϕc
j (t)

ϕd
j (t)
...

⎫
⎪⎪⎬

⎪⎪⎭

.

(9.14)

Discretization

For a problem of structural mechanics, the geometric boundary conditions are
essential and thus have to be fulfilled to obtain an admissible displacement
state. In the process of discretization, this has to be taken into account for
the continuity requirements to be warranted by the interpolation functions at
the element boundaries. Thus, the beam displacements u(x, t), v(x, t), w(x, t)
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and cross-sectional rotations βy(x, t), βz(x, t) may be approximated with C0

continuous linear Lagrange polynomials:

f0(xi) =
1
2

− xi

li
, f1(xi) =

1
2

+
xi

li
. (9.15)

Analogously, such linear Lagrange polynomials will be utilized for the ap-
proximation of the electric potential distributions. In the case of the beam
twist, consideration of the warping torsion is associated with the twist rate,
so C1 continuity is required and can be achieved by the use of cubic Hermite
polynomials:

g0(xi) =
1
2

− 3
2
xi

li
+ 2

(
xi

li

)3

, h0(xi) =

[
1
8

− 1
4
xi

li
− 1

2

(
xi

li

)2

+
(
xi

li

)3
]

li,

(9.16a)

g1(xi) =
1
2

+
3
2
xi

li
− 2

(
xi

li

)3

, h1(xi) =

[

− 1
8

− 1
4
xi

li
+

1
2

(
xi

li

)2

+
(
xi

li

)3
]

li.

(9.16b)

By abandoning the warping effect, the beam torsion problem may also be
treated with linear Lagrange polynomials. For the interpolation functions of
Eqs. (9.15) and (9.16), the element coordinate xi is introduced with its origin
at the center of the element and the element length li. Thus, the continuous
blade coordinate x can be expressed with the aid of the distance Li to the
element coordinate origin:

x = Li + xi with Li =
i−1∑

k=1

lk +
li
2

. (9.17)

The discretization of the mechanical and electric degrees of freedom ν̆(x, t),
as well as of mechanical strains and electric field strengths μ̆(x, t), may be
formulated with the aid of the interpolation functions encapsulated in the
matrices A(xi) and B(xi) as follows:

ν̆ (x, t) = A(xi)ν̆i (t) , (9.18a)
μ̆ (x, t) = B(xi)ν̆i (t) . (9.18b)

The interpolation functions have been arranged in the matrix A(xi) for both
nodes, whereas those for the mechanical degrees of freedom are contained in
the matrix Aj(xi) and for the electric degrees of freedom in the matrix A†

j(xi).
As the rate of twist φ,x(x, t) is the longitudinal derivative of the twist φ(x, t),
the derivatives of the dedicated polynomials appear:
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A(xi) =
[
Aj=0(xi) 0 Aj=1(xi) 0

0 A†
j=0(xi) 0 A†

j=1(xi)

]

with A†
j(xi) = Ifj(xi),

(9.19a)

Aj(xi) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

fj(xi) 0 0 0 0 0 0
0 fj(xi) 0 0 0 0 0
0 0 fj(xi) 0 0 0 0
0 0 0 gj(xi) 0 0 hj(xi)
0 0 0 0 fj(xi) 0 0
0 0 0 0 0 fj(xi) 0
0 0 0 gj,xi(xi) 0 0 hj,xi(xi)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(9.19b)

The analogous matrix B(xi) of interpolation functions for the mechanical
strains and electric field strengths arises, when the discretization of the degrees
of freedom, as given by Eq. (9.18a), is substituted into the vector μ̆(x, t) of
mechanical strains and electric field strengths and thus leads to Eq. (9.18b).

Element Matrices

Replacing the integral over the beam length by the sum of the integrals over
the element lengths and introducing the interpolations, as developed above,
leads from Eq. (9.11) with Eqs. (9.12) and (9.13) to the discretized principle
of virtual work:

I∑

i=1

δν̆T
i

⎛

⎜
⎝

M′ ′
i ν̆i,tt (t) + 2Ω (t)M′

iν̆i,t (t)
+
(
Pi + Gi (t) +Ω2 (t)Mi +Ω,t (t)M′

i

)
ν̆i (t)

+ pi(t) +Ω2 (t) mi +Ω,t (t) m′
i − li (t)

⎞

⎟
⎠ = 0. (9.20)

Since the virtual variants of the degrees of freedom are not time-dependent,
the element vector δν̆T

i appearing with every term can be factored out. Those
of the individual matrices of the principle stemming from the virtual work of
internal loads are constructed as follows:

Pi =
∫ li/2

−li/2

BT (xi)
[

p p†

pT
† Ip†

]

B(xi) dxi, (9.21a)

pi(t) =
∫ li/2

−li/2

BT (xi)
[
p‡
0

]

Ĕ‡ (xi, t) dxi, (9.21b)

Gi (t) =
∫ li/2

−li/2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

AT
,x(xi)

[
Ĝ (xi, t) 0

0 0

]

A,x(xi)

+ AT (xi)
[
Ǧ (xi, t) 0

0 0

]T

A,x(xi)

+ AT
,x(xi)

[
Ǧ (xi, t) 0

0 0

]

A(xi)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

dxi. (9.21c)
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The vector Ĕ‡(xi, t) of electric field strength parameters and the geometric
stiffness matrices Ĝ(xi, t) and Ǧ(xi, t) take the element coordinate xi into
account and result from their equivalents with continuous coordinate x in
conjunction with the considerations manifested in Eq. (9.17). The same holds
for the vectors m(xi) and m′(xi), capturing the initial state inertia effects as
they appear in the remaining matrices originating from the virtual work of
external loads:

M′ ′
i =

∫ li/2

−li/2

AT (xi)
[
M′ ′ 0
0 0

]

A(xi) dxi, li (t) =
∫ li/2

−li/2

AT (xi)l̆ (x, t) dxi,

(9.22a)

M′
i =

∫ li/2

−li/2

AT (xi)
[
M′ 0
0 0

]

A(xi) dxi, m′
i =

∫ li/2

−li/2

AT (xi)
[
m′ (xi)

0

]

dxi,

(9.22b)

Mi =
∫ li/2

−li/2

AT (xi)
[
M 0
0 0

]

A(xi) dxi, mi =
∫ li/2

−li/2

AT (xi)
[
m (xi)

0

]

dxi.

(9.22c)

All integrations may be performed symbolically. To avoid the implications
of the effect, which might appear in the context of the description of the
Timoshenko beam, a reduced integration scheme is applied, see for example
Hughes [101]. Alternatively, one may start off from four nodes per element for
the transverse displacements and rotations using cubic Lagrange polynomials
for the interpolation and then reduce the degrees of freedom by means of a
static condensation, see Knothe and Wessels [113].

System Assembly

To set up the equations of the complete system, the boundary conditions have
to be introduced. As the beam will be clamped at the innermost node with
number 0, the assembly of the system matrices may simply begin with node
number 1. Sorting the element matrices and vectors, given in Eqs. (9.21) and
(9.22), into their equivalents on the system level, denoted by (

◦
), allows us to

formulate the equation of motion for the system, discretized with the aid of
the finite elements, as

M̊′ ′ν̊,tt (t) + 2Ω (t) M̊′ν̊,t (t) + P̊Σ (t) ν̊ (t) = p̊Σ (t) . (9.23)

The constitutive properties, geometric stiffness influences, and deformation-
associated inertia effects are summarized in the matrix P̊Σ(t), while the ap-
plied loads, piezoelectric coupling implications of the electric parameters, as
well as initial state inertia effects, are joined in the vector p̊Σ(t):
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P̊Σ (t) = P̊ + G̊ (t) +Ω2 (t) M̊ +Ω,t (t) M̊′, (9.24a)

p̊Σ (t) = l̊ (t) − p̊ (t) − Ω2 (t) m̊ − Ω,t (t) m̊′. (9.24b)

Simplifications

Time-dependent system matrices are relevant only to special technical ap-
plications and would require comparatively complicated solution procedures,
as already pointed out in Section 8.2.2. For this reason, the general system
described by Eqs. (9.23) and (9.24) will be simplified accordingly.

Remark 9.2. To assure time-independent system matrices, the angular velocity
of the considered rotation is presumed to be constant and other time variant
influences will be excluded.

Thus, the appearing angular acceleration and consequently the associated
inertia effects are eliminated:

Ω (t) = Ω = const. → Ω,t (t) = 0. (9.25)

Furthermore, the angular velocity will be incorporated into each of the con-
nected matrices to facilitate a more concise formulation:

M̊′
Ω (Ω) = 2ΩM̊′, M̊Ω (Ω) = Ω2M̊, m̊Ω (Ω) = Ω2m̊. (9.26)

Then the equation of motion and its compound matrix, respectively vector,
given by Eqs. (9.23) and (9.24), may be rewritten for the simplified case of
time-invariant matrices, as demanded by Remark 9.2, in the following form:

M̊′ ′ν̊,tt (t) + M̊′
Ω (Ω) ν̊,t (t) + P̊Σ (Ω) ν̊ (t) = p̊Σ (t, Ω) (9.27a)

with P̊Σ (Ω) = P̊ + G̊ (Ω) + M̊Ω (Ω) , (9.27b)
p̊Σ (t, Ω) = l̊ (t) − p̊(t) − m̊Ω (Ω) . (9.27c)

9.2.3 Solution

The system of differential equations, provided by Eqs. (9.27), is of the gyro-
scopic undamped type with time-invariant matrices, see Gasch and Knothe
[78]. The mass matrix M̊′ ′ is symmetric, the gyroscopic matrix M̊′

Ω(Ω) is
antimetric and the stiffness matrix P̊Σ(Ω) is symmetric as well as positive
definite. The symmetry properties are inherited from the continuous beam
description and become obvious, for instance, in Eqs. (8.34) by means of the
matrices I, I′, I′ ′ from Eqs. (7.72). The solution to the problem at hand con-
sists of three parts that are to be determined separately in the following.
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Steady-State Solution

The steady-state solution is concerned with the oscillation-free system, thus
ν̊,tt(t) and ν̊,t(t) are excluded, and the effects of the time-invariant portion
of loads are retained, which are the constant applied loads, the piezoelectric
coupling implications, and the rotation induced loads:

P̊Σ (Ω) ν̊s = l̊ − p̊ − m̊Ω (Ω) . (9.28)

Inversion of the overall stiffness matrix P̊Σ(Ω) is necessary to find the wanted
steady-state displacements, rotations, and electric potentials encapsulated in
the vector ν̊s. Prerequisite is the determination of the initial internal loads
contained in the geometric stiffness matrix G̊(Ω) in accordance with Re-
mark 9.2 and the considerations of Section 8.3.

Homogeneous Solution

After the separation of the steady-state solution, the natural oscillations are to
be found as the solution to the homogeneous system of differential equations.
However, since the electric degrees of freedom are not associated with any-
thing like the mechanical mass, all matrices except of the constitutive matrix
P̊ are singular. Therefore, the electric degrees of freedom need to be elimi-
nated by means of a static condensation. Those submatrices with components
connected either to the mechanical or to the electrical degrees of freedom are
elucidated by the additional index m, respectively e, while the index me rep-
resents the coupling portions. Then the homogeneous system of differential
equations may be rewritten as

M̊′ ′
mν̊∗

h,tt (t) + M̊′
Ω;m (Ω) ν̊∗

h,t (t) +
(
P̊Σ;m (Ω) − P̊meP̊−1

e P̊T
me

)

︸ ︷︷ ︸
P̊Σ;c(Ω)

ν̊∗
h (t) = 0.

(9.29)
For the given type, solely imaginary or solely real eigenvalues are expected,
portending to either critically stable or monotonously instable behavior. The
usual exponential set-up is applied, leading to the eigenvalue problem to be
solved:

ν̊∗
h (t) = ν̊∗

He
λt →

(
M̊′ ′

mλ
2 + M̊′

Ω;m (Ω)λ+ P̊Σ;c (Ω)
)

ν̊∗
H = 0. (9.30)

For the numerical handling, the eigenvalue problem is converted into the gen-
eral form, where the upper part resembles the original problem and the lower
one delivers an identity:
([

M̊′
Ω;m (Ω) P̊Σ;c (Ω)

P̊Σ;c (Ω) 0

]

− λ
[

−M̊′ ′
m 0

0 P̊Σ;c (Ω)

]){
λν̊∗

H

ν̊∗
H

}

=
{
0
0

}

. (9.31)
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As the outcome, a list of eigenvalues λk and the modal matrix H∗ with the
pairwise conjugate complex eigenvectors of the general problem is obtained.
Due to the normalization of the eigenvectors, the solution has to be matched
to the initial conditions. This is done when the overall solution is assembled
and for this purpose the vector h∗ is provided. The homogeneous solution
thus takes the following form:

{
ν̊∗

h,t (t)
ν̊∗

h (t)

}

= H∗

⎡

⎢
⎢
⎣

. . .
eλkt

. . .

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
E̊∗(t)

h∗. (9.32)

Since the homogeneous solution only takes the mechanical degrees of freedom
into account, its vector and matrix dimensions do not match the other parts
of the solution. This may be adjusted by the introduction of empty rows
and columns at the appropriate positions. To symbolize this modification, the
marker (·)∗ may be dropped and Eq. (9.32) rewritten as

{
ν̊h,t (t)
ν̊h (t)

}

= HE̊(t)h. (9.33)

Particular Solution

At this point, the time-dependent applied loads and piezoelectric coupling
implications of the electric parameters on the right-hand side of the equations
of motion have to be taken into account:

M̊′ ′ν̊p,tt (t) + M̊′
Ω (Ω) ν̊p,t (t) + P̊Σ (Ω) ν̊p (t) = l̊ (t) − p̊ (t) . (9.34)

An investigation will be conducted for a mechanical or electric harmonic ex-
citation with a multiple n of the rotor angular frequency Ω, where l̊p and p̊p

are the respective peak amplitudes:

l̊ (t) − p̊ (t) =
(
l̊p − p̊p

)
cosnΩt =

1
2

(
l̊p − p̊p

) (
ei·nΩt + e−i·nΩt

)
. (9.35)

The solution approach can be handled in real or complex notation. The latter
is chosen, as the system of equations to be solved is smaller and the banded
structure of the involved matrices is sustained. Therefore, the following set-up
is used:

ν̊p(t) = ν̊+ei·nΩt + ν̊−e−i·nΩt. (9.36)

Introducing this set-up, two separate sets of equations are obtained:
(

−M̊′ ′n2Ω2 + iM̊′ (Ω)nΩ + P̊Σ (Ω)
)

ν̊+ =
1
2

(
l̊p − p̊p

)
, (9.37a)

(
−M̊′ ′n2Ω2 − iM̊′ (Ω)nΩ + P̊Σ (Ω)

)
ν̊− =

1
2

(
l̊p − p̊p

)
. (9.37b)
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The complex amplitude vectors ν̊+ and ν̊− are conjugates and so the solution
can be simplified in the following way:

ν̊p(t) = 2�
(
ν̊+ei·nΩt

)
. (9.38)

Solution Assembly

So far, the individual parts of the solution have been obtained and may be
pieced together at this point:

{
ν̊,t(t)
ν̊(t)

}

=
{

0
ν̊s

}

+
{

ν̊h,t(t)
ν̊h(t)

}

+
{

ν̊p,t(t)
ν̊p(t)

}

. (9.39)

Still the homogeneous solution of Equation (9.33) has to be matched with the
initial conditions. Therefore, the solution at the initial point in time t0 = 0
takes the following form:

{
ν̊,t(t0)
ν̊(t0)

}

=
{

0
ν̊s

}

+ Hh +
{

0
ν̊p(t0)

}

. (9.40)

Isolating the hitherto undetermined vector h and substituting it back into the
homogeneous solution completes the last required step:

{
ν̊h,t(t)
ν̊h(t)

}

= HE̊(t)H−1

({
ν̊,t(t0)
ν̊(t0)

}

−
{

0
ν̊s

}

−
{

0
ν̊p(t0)

})

. (9.41)
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Demonstration and Validation

The sequence of theories developed throughout the foregoing chapters, lead-
ing the way from piezoelectric composites via adaptive laminated composite
shells to adaptive thin-walled beams, allows for examinations of almost ar-
bitrary complexity. The attempt to provide examples for the full spectrum
of capabilities will be dropped in favor of an application-oriented approach.
Hence, the subsequent investigations will be carried out in view of the integral
actuation of structures with certain similarity to helicopter rotor blades.

10.1 Beam Configurations

To comply with the objective of demonstration and validation, it is necessary
to engage in example configurations which, on the one hand, are as simple
as possible to warrant intelligibility and, on the other hand, retain enough
features to illustrate the essential capabilities. This effort will be made in
this section, starting with the electric configuration to implement potentially
rewarding actuation and sensing schemes.

10.1.1 Actuation and Sensing Schemes

In Section 2.5.1, the various beam actuation concepts are presented using
the classification illustrated in Figure 2.10. Analogously applying to sensing,
we distinguish between normal (lengthwise) and shear mode actuation in the
plane of the wall as well as between its consistent and sectorial application
across the plane of the cross-section.

Wall Strain Modes

Beyond in-plane actuation and sensing associated with the normal strain
ε0x(x, s) and the shear strain γ0

xs(x, s) of the shell, the derived beam for-
mulation is capable of analyzing the out-of-plane effects associated with the

T.H. Brockmann, Theory of Adaptive Fiber Composites,
Solid Mechanics and Its Applications 161,
c© Springer Science + Business Media B.V. 2009
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bending curvature κx(x, s) and the twisting curvature ψxs(x, s) of the shell.
However, with the exception of the plate strip, the actuation, respectively
sensing, effectiveness with regard to the curvatures κx(x, s) and ψxs(x, s) will
be small by virtue of the beam geometry. For this reason, no further light will
be thrown on the out-of-plane effects during subsequent examinations.

Wall Electroding Sectors

The change of the relative sign of electric field strength and polarization is
associated with the reversal of the deformation direction. To actuate or sense
the different beam deformations, the cross-section can be divided into sectors
with alternating polarization but with common electric field strength by ap-
propriate interconnection of electrodes. For a clear correlation, these sectors
need to be delimited by the relevant principal axes of the cross-section, as
shown in Figure 10.1.

Fig. 10.1. Relative sign of electric field strength and polarization in the cross-
sectional sectors.

Beam Schemes

The beam behavior is governed by the interplay of lay-up related wall modes
and electroding specific wall sectors. For simple cross-sections, as in Fig-
ure 10.1, and exposure of the walls to pure normal strain or pure shear strain,
the beam behavior may be classified as described in Table 10.1. Consistent
shear of the walls throughout the entire cross-section is directly related to
beam torsion. Extension of the walls in the lengthwise direction of cause cor-
responds to beam extension. Normal as well as shear strains with alternating
signs in the cross-sectional quadrants are connected to out-of-plane warping
of the cross-section. Extension and warping of both latter examples may also
be combined with torsion by means of couplings due to the anisotropy of the
walls and the geometry of the cross-section, respectively. Similarly, couplings
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with bending could be utilized, but are less applicable due to the unwanted
implications of the susceptibility to vibrations and external forces. The pre-
ceding considerations give rise to various schemes for actuation and sensing
of beam deformations.

Table 10.1. Actuation or sensing of beam deformations by virtue of strain modes
and electroding sectors of the wall.

Consistent (a) 2 Sectors (b) 4 Sectors (c)

Normal Mode extension bending warping
Shear Mode torsion shear warping

Example Configuration Considerations

The simultaneous consideration of actuation and sensing, as instituted by the
developed theory, becomes interesting as soon as a control unit is incorporated
into the simulation. Since this would exceed the scope of the work at hand, we
will refrain from such additional complexity within the exemplary calculations.
Thus, the consequences for the electrical interconnection of layers read:

Remark 10.1. A single group of electrically paralleled laminae is taken into
account for the example configuration.

Due to the reversibility of the piezoelectric effect and the accomplished
homogeneous representation of mechanical and electric measures, it is suffi-
cient to prove the reliability of the method for either actuation or sensing in
order to validate both.

Example Configuration Schemes

With regard to the above discussions and with the integral blade actuation for
the helicopter application in mind, as illustrated in Section 2.5, the example
configuration schemes will be focused as follows:

Remark 10.2. Applicable beam schemes aiming at twist actuation will be ex-
amined.

The necessary arrangements with reference to the lay-up of Figure 10.2 and
the formulations of the relative sign of electric field strength and polarization
of Eqs. (6.5) and (7.32), see also Figure 10.1, are given in Table 10.2. These
three actuation schemes, plus its variants, combining the different applicable
coupling and actuation types, subsequently will be implemented and their
efficiency compared.
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Scheme I consists of two layer pairs with opposing fiber orientations and rel-
ative polarizations, whereas the relative polarization around the cross-
section is constant over all quadrants. Thus, it represents two pairs of
helical windings one of which contracts while the other expands, resulting
in beam twist of similar direction but compensation of beam elongation.

Scheme II consists of a central lengthwise oriented layer surrounded by a layer
pair with uniform fiber orientation. With an expansion of this unidirec-
tional helical winding, twist and elongation of the beam are induced in
the case of variant a. With an expansion of the lengthwise oriented fibers,
elongation of the beam is achieved and complemented with twist via the
passive coupling due to the helical winding in the case of variant c. Both
mechanisms are employed simultaneously in the case of variant b. The
relative polarization around the cross-section remains constant for any of
the variants.

Scheme III consists of two layer pairs with opposing fiber orientations and
relative polarizations. To induce warping deformation and consequently
beam twist, the relative polarization around the cross-section alternates
from quadrant to quadrant. Similar results could be achieved just by using
lengthwise oriented fibers with such an alternating relative polarization.
But without adjustable fiber orientations, it would not be possible to
adapt to given stiffness properties, especially with regard to torsion.

Table 10.2. Actuation schemes with layup and polarization configuration for the
torsional deformation of a beam.

Wall Relative Polarization
Lay-Up Layers Quadrants

Coupling Actuation Scheme H0
H1

α1
α2

p0 p1 p2 p(q1) p(q2) p(q3) p(q4)

none torsion I 0 −1 1 −1 1 1 1 1

torsion II a h 1 0 1 1 1 1 1 1
torsion &
extension

torsion &
extension

II b h 1 1 1 1 1 1 1 1

extension II c h 1 1 0 0 1 1 1 1
torsion &
warping

warping III 0 −1 1 −1 1 −1 1 −1

10.1.2 Set-Up of Walls

Multiple layers of piezoelectric composites consisting of polymer matrix ma-
terial and piezoceramic fibers form the walls of the considered beams. The
properties of typical materials are given in Tables A.2 and A.3, respectively.
For the calculations which are presented later in this chapter, the data of Epon
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9405 resin and PZT-5H fibers is utilized. The resulting adaptive fiber com-
posites are subjected to the following peak value of the electric field strength:

Ĕc, Ĕd = ±106 V
m
. (10.1)

Such a fixing of the electric field strength implies the utilization of a voltage
source for the actuator application, as described in Section 4.5.

Arrangement of Fibers

The geometry on the micro-electromechanics level will be included into the
upcoming elementary examinations. To confine the range of variables of the
considered problem to the essential ones, we will abstain from analyzing details
beyond the fiber volume fraction ν. For a transversely isotropic layout of
continuous fibers, the directional fiber fractions, defined in Eqs. (5.1), then
become

ν1 = ν2 =
√
ν, ν3 = 1. (10.2)

Since the sequential stacking procedure could be shown to produce results
of equivalent quality, see Section 5.5, with a little more flexibility and less
numerical expenditure in comparison to the Mori–Tanaka method, it will be
applied for the example calculations. Following the discussion of Section 5.4.6,
the factor c3 intended to map the disturbance of electrostatic fields close to
the electrodes will be omitted:

c3 = 0. (10.3)

To avoid the arbitrary increase of complexity without a gain of insight, the
following simplifications shall apply:

Remark 10.3. The composite material used for the subsequent beam configu-
rations will be made of the same constituents and have identical fiber volume
fractions.

Arrangement of Layers

Since the properties of the lay-up will be included in this study, a wall con-
figuration has to be considered that allows for the representation of all an-
ticipated effects and for the adjustment to any stiffness demand. This can be
conveniently realized by a lamina in the center with fixed fiber orientation
along the beam’s lengthwise direction accompanied by two laminae on every
side. Although the developed model is capable of capturing the full range
of anisotropic couplings, the out-of-plane effects should be excluded here to
avoid blurring the results:

Remark 10.4. The beam walls to be examined will be symmetric with respect
to thickness and orientation of associated layers.
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Such a symmetric laminate, as shown in Figure 10.2, is characterized with
the aid of the layer orientation angles α0, α1 and α2 as well as the thicknesses
H0, H1, and H2. For subsequent studies, fewer parameters are required and
the following simplifications are reasonable:

Remark 10.5. The fiber orientation of the center layer will be aligned with the
lengthwise axis of the beam and the off-center layers will be of equal thickness.

α0 = 0, H2 = H1. (10.4)

To ease the representation, the thickness ratio h of the aligned center layer
and arbitrary oriented off-center layers will be introduced as follows:

h =
H0

H1
. (10.5)

Fig. 10.2. Set-up of the beam wall.

10.1.3 Set-Up of Cross-Sections

The presented theory is able to cope with thin-walled beams of arbitrary cross-
section. This includes highly complex configurations with any combination of
closed cells and open branches. In the absence of correspondingly defined
requirements and since such a complexity is not necessary for the purpose
of elementary examination and validation, the focus will be placed upon two
rather unpretentious set-ups, see Figures 10.3 and 10.4. With regard to the
continuity of the wall set-up, the following will be agreed:

Remark 10.6. The wall properties will be constant all around the circumfer-
ential contour of the exemplary cross-sections.
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Fig. 10.3. Characterization of a rectan-
gular single-cell cross-section.

Fig. 10.4. Characterization of a con-
vex double-cell cross-section.

Rectangular Single-Cell Cross-Section

The most simple case with sufficient adjustment options is the rectangular
single-cell cross-section as depicted by Figure 10.3. To describe such a geom-
etry, a separate coordinate si may be introduced with its origin in the middle
of each of the four segments i of 2Si length:

si = −Si . . . Si for i = 1, 2, 3, 4 with S1 = S3 =
b

2
, S2 = S4 =

a

2
. (10.6)

The cross-sectional dimensions of such a box beam are given by the height a
and width b. Thus, the piecewise parameter representation of the wall curve
assumes the following form:

y (s1) = s1, y (s2) =
b

2
, y (s3) = −s3, y (s4) = − b

2
, (10.7a)

z (s1) =
a

2
, z (s2) = −s2, z (s3) = −a

2
, z (s4) = s4. (10.7b)

To achieve actuation or sensing according to schemes I or II of Table 10.2, the
relative sign of electric field strength and polarization needs to be constant
all over the cross-section:

pc (s1) = pc (s2) = pc (s3) = pc (s4) = 1. (10.8)

To utilize the warping effect, as illustrated by scheme III of Table 10.2, the
relative sign has to alternate from quadrant to quadrant of the box beam:

pd (s1 > 0) = pd (s2 < 0) = 1, pd (s2 > 0) = pd (s3 < 0) = −1, (10.9a)

pd (s3 > 0) = pd (s4 < 0) = 1, pd (s4 > 0) = pd (s1 < 0) = −1. (10.9b)
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Convex Double-Cell Cross-Section

Further on, to consider an example with curved walls as well as multiple cells,
a convex cross-section with a central web will be established, as illustrated by
Figure 10.4. In this case, three segments with associated curvilinear coordi-
nates are sufficient:

si = −Si . . . Si for i = 1, 2, 3 with S1 = S3 = ζR, S2 = R (1 − cos ζ) .
(10.10)

The dimensions of such a cross-section may be defined via the constant ra-
dius of curvature R and generating half-angle ζ. So, the piecewise parameter
representation of the wall curve assumes the following form:

y (s1) = R sin
(s1
R

)
, y (s2) = 0, y (s3) = −R sin

(s3
R

)
, (10.11a)

z (s1) = R
(
cos

(s1
R

)
− cos ζ

)
, z (s2) = s2, z (s3) = −R

(
cos

(s3
R

)
− cos ζ

)
.

(10.11b)

To achieve actuation or sensing according to schemes I or II of Table 10.2, the
relative sign of electric field strength and polarization needs to be constant
around the circumference of the cross-section:

pc (s1) = pc (s3) = 1. (10.12)

To utilize the warping effect, as illustrated by scheme III of Table 10.2, the
relative sign has to alternate from quadrant to quadrant of the convex cross-
section:

pd (s1 > 0) = 1, pd (s3 < 0) = −1, (10.13a)
pd (s3 > 0) = 1, pd (s1 < 0) = −1. (10.13b)

Due to its alignment with a principal axis, the web of the considered cross-
section is free of warping influences:

pc (s2) = 0. (10.14)

10.1.4 Constitutive Coefficients

The properties of the beam cross-section are manifested in the constitutive
coefficients as given in their general formulation in Section 8.1.3. Subsequently,
we will briefly illustrate, how they are obtained.

General Procedure

Due to the symmetry of the wall set-up, as demanded in Remark 10.4, those
shell stiffness coefficients in charge of the coupling between in-plane and out-
of-plane behavior vanish. By virtue of Remark 10.6, the properties of the
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beam wall may be drawn out of the cross-sectional integrals. Further on, the
latter may be split and consequently solved with the aid of the piecewise
representations of the wall curves and the sectorial description of the relative
electroding sign of Table 10.2.

Specific Illustration

For clarity, the printout of the results will be confined to the simple box beam
of Eqs. (10.7). For the immediate, respectively later, use in order to ease the
representation, the following ratios characterizing the box-beam geometry will
be introduced:

na/b =
a

b
, nX/b =

X

b
. (10.15)

Then the beam stiffness coefficients, depending on the shell stiffnesses associ-
ated with lengthwise extension and bending from Eqs. (8.7), become

P11 = 2À11

(
1 + na/b

)
b, (10.16a)

P55 =
À11

6
(
3 + na/b

)
n2

a/bb
3 + 2D̀11b, (10.16b)

P66 =
À11

6
(
1 + 3na/b

)
b3 + 2D̀11na/bb, (10.16c)

P77 =
À11

24
(1 − na/b)2

1 + na/b
n2

a/bb
5 +

D̀11

6
(
1 + na/b

) (
n2

a/b − na/b + 1
)
b3. (10.16d)

Correspondingly, the beam stiffness coefficients, depending on the shell stiff-
nesses associated with shear and twist from Eqs. (8.8), take the following
form:

P22 = 2À33b, P33 = 2À33na/bb, (10.16e)

P44 = 2À33

n2
a/b

1 + na/b
b3 + 8D̀33

(
1 + na/b

)
b. (10.16f)

Those non-zero beam stiffness coefficients, depending on the shell stiffnesses
associated with the coupling between lengthwise extension and shear, read

P14 = −2À13na/bb
2, P25 = À13na/bb

2, P36 = À13na/bb
2. (10.16g)

With regard to the electromechanical coefficients of the beam, two different
cases need to be distinguished. For schemes I and II of Table 10.2 with con-
sistent electric conditions around the cross-section, given by Eqs. (10.8), the
following coefficients are applicable:

P18 = 2Àc
14

(
1 + na/b

)
b, P48 = −2Àc

34na/bb
2, P88 = 2Àc

44

(
1 + na/b

)
b.

(10.16h)
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For scheme III with changes in the electric sign between adjacent quadrants,
as described by Eqs. (10.9), the electromechanical coefficients of the beam
become

P79 = − Àd
14

4
(1 − na/b)2

1 + na/b
na/bb

3, P99 = 2Àd
44

(
1 + na/b

)
b. (10.16i)

Since there is no need for simultaneous actuation with different schemes and
thus the number of groups of electrically paralleled laminae has been limited
to one in Remark 10.1, either Eqs. (10.16h) or (10.16i) are defined for the
example at hand.

10.2 Elementary Examinations

The goal of these examinations is, on the one hand, to gain some insight into
the behavior of beams with adaptive fiber composites and, on the other, to
derive an optimal configuration for the numerical studies following in Sec-
tion 10.3. The starting point is the analytic solution regarding the statics of
the non-rotating structure as developed in Section 9.1. With the helicopter
application in view, special attention is given to the torsion problem. Unrea-
sonable complication should to be avoided at this stage of analysis by virtue
of the following restriction:

Remark 10.7. These examinations are carried out by means of the box beam
as described by Eqs. (10.16) and will be limited to the membrane response of
Eq. (6.20).

10.2.1 Beam Geometry Influences on the Actuation Schemes

With regard to the actuation capabilities, the solution to the beam torsion
problem, as given by Eq. (9.4), contains two different parts indicated by the
constants �twist and �warp. The prior is in charge of direct and extension-
coupled twist, schemes I and II of Table 10.2, and the latter of warping-
coupled twist, scheme III of Table 10.2. The influence of the overall beam
geometry on the efficiency of the actuation schemes will be analyzed on this
basis.

Solution in Terms of Characteristic Ratios

Besides the geometric ratios of Eq. (10.15), the passive and active constitu-
tive coefficients of the beam wall may be represented with reference to the
lengthwise shell stiffness as follows:

a13 =
À13

À11
, a33 =

À33

À11
, ac

14 =
Àc
14

À11
, ac

34 =
Àc
34

À11
, ad

14 =
Àd
14

À11
.

(10.17)
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With these stiffness ratios and the limitation to membrane response, as stated
in Remark 10.7, the dimensionless constants �twist and �warp from Eqs. (9.5b)
as well as the decay-length parameter λ from Eq. (9.7) can be rewritten as

�twist = −nX/b

1 + na/b

na/b

ac
34 − a13ac

14

a33 − a2
13

Ĕc, �warp = −6
n2

X/b

na/b
ad
14Ĕ

d, (10.18a)

λ = 4
nX/b

1 − na/b

√

3 (a33 − a2
13). (10.18b)

While the otherwise unchanged functions η1(ξ) and η0(ξ) of Eqs. (9.6) make
use of the above decay-length parameter λ, the complete solution for the beam
twist due to actuation without the implications of external loads reduces from
Eq. (9.4) to

φ (ξ) = − (ξ − η1 (ξ)) �twist + η0 (ξ) �warp. (10.19)

The first term represents the direct and extension-coupled torsion with a
principally linear distribution along the beam length, disturbed by the non-
linear influences of the warping effect comprised in the function η1(ξ). The
second term captures the warping-coupled torsion with its non-linear behavior
described by the function η0(ξ).

Geometry Influence Discussion

Keeping all the constitutive ratios of Eqs. (10.17) as well as the appearing
electric field strength values constant, while varying the geometric ratios of
Eqs. (10.15), allows for the anticipated examination of the efficiency of the
different actuation schemes. For the graphical representations to be displayed
subsequently, the rotation induced at the beam tip is normalized via divi-
sion by the maximum result within the considered ranges of the two beam
aspect ratios. For direct and extension-coupled twist, schemes I and II of
Table 10.2, the first term of the solution in Eq. (10.19) applies and is shown
in Figure 10.5. As it was to be expected, the influence of the ratio nX/b is
predominantly linear. Hence, the longer the beam is dimensioned, the greater
the tip rotation becomes. Further on, the deviation of cross-sectional aspect
ratio na/b from unity results for fixed wall properties in a reduction of the
torsional stiffness and thus serves as an explanation for the increase of the
tip twist. For warping-coupled twist, scheme III of Table 10.2, the second
term of the solution in Eq. (10.19) is relevant and plotted in Figure 10.6.
Regarding the cross-sectional aspect ratio na/b, the argumentation with the
torsional stiffness in this case should similarly hold. Since the quadratic oc-
currences of the ratio nX/b, within the constant �warp and in the denominator
of the function η0(ξ), cancel each other out, there is hardly any influence of
the relative beam length visible in the examined range of values. The only
warping restraint of the configuration at hand is located at the clamped end
of the beam. It is the source for a non-vanishing rate of twist and consequently
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the warping coupling. Its influence may be slightly enlarged by an increase in
the beam length. Alternatively, this could give rise to segmented designs with
several warping restraints.

Fig. 10.5. Geometry influence on the
direct and extension-coupled twist actu-
ation (normalized).

Fig. 10.6. Geometry influence on the
warping-coupled twist actuation (nor-
malized).

10.2.2 Beam Property Adaptation

To obtain results within the same order of magnitude as expected from the
initially given application example of helicopter rotor blades, the data of an
existing main rotor system will be utilized. The corresponding diagonal entries
P11 to P66 of the beam stiffness matrix are given in Table B.1 for the BO105 of
Bölkow/MBB/Eurocopter. The characteristic ratios regarding geometry and
stiffness of the box beam will now be fitted as far as possible to the real-
life example. Although such an agreement of properties is rather insignificant
for the numerical validation, some premises might be formulated to define
the configuration. First of all, the torsional stiffness should match, since it is
closely related to the major objective of these examinations. Then, however,
the stiffness request in the lengthwise direction of the beam cannot be fulfilled.
Furthermore, one additional deviation has to be accepted:

Remark 10.8. The tensional stiffness P11 and the chordwise shear stiffness P22

are accepted to exhibit deviations from the application example data.

Cross-Sectional Aspect Ratio

Division of the shear stiffness coefficients of the beam, see Eq. (10.16e), by
each other directly yields the cross-sectional aspect ratio

na/b =
P33

P22
. (10.20)
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Similarly, the bending stiffness coefficients, see Eqs. (10.16b) and (10.16c),
may be divided by each other. The resulting polynomial equation has three
solutions, whereof only one is real:

n3
a/b + 3n2

a/b − 3na/b
P55

P66
− P55

P66
= 0. (10.21)

The results of Eqs. (10.20) and (10.21) do not agree exactly. These, as well as
further discrepancies, are caused by the fact that the single-cell thin-walled
box beam, naturally, is not able to represent the properties of a solid configu-
ration with multiple materials and complicated geometry. Consequently, one
or the other beam stiffness coefficient cannot be accurately matched. The pri-
oritization of Remark 10.8 gives preference to the result of Eq. (10.21). With
the values of Table B.1, the cross-sectional aspect ratio is gained:

na/b = 0.133. (10.22)

Beam Aspect Ratio

The division of the torsional stiffness by a shear stiffness can be solved for
the width b of the box beam. This can be done for each of the shear stiffness
coefficients:

b =

√
1 + na/b

n2
a/b

P44

P22
or b =

√
1 + na/b

na/b

P44

P33
. (10.23)

In accordance with Remark 10.8, the variant involving the flapwise shear
stiffness on the right-hand side of Eq. (10.23) is selected. Then with the values
of Eq. (10.22) and Table B.1, the beam aspect ratio may be determined:

b = 0.216 m, X = 4.54 m −→ nX/b = 21.0. (10.24)

Alternatively, the box beam width b could also be gained from dividing the
one or the other bending stiffness by the tensional stiffness. Then, however,
the torsional stiffness would be exceeded significantly and therefore such a
procedure should be avoided, see Remark 10.8.

Relative Shear Stiffness

Analogously, the division of the torsional stiffness by a bending stiffness may
be solved with Eq. (10.17) for the relative shear stiffness a33 of the box-beam
wall. This again can be done for each of the bending stiffness coefficients:

a33 =
P44

P55

(1 + na/b)(3 + na/b)
12

or a33 =
P44

P66

(1 + na/b)(1 + 3na/b)
12n2

a/b

.

(10.25)
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Since the relationship between the stiffness coefficients P55 and P66 has been
utilized to establish the cross-sectional aspect ratio na/b in Eq. (10.22), both
variants of Eq. (10.25) with the values of Table B.1 provide identical results:

a33 = 0.210. (10.26)

Deviation Contemplations

With the characteristic ratios obtained above, it may now be possible to check
how large the deviations tolerated by Remark 10.8 are. The shell stiffness co-
efficients À11 and À33 can be determined by substitution of Eqs. (10.23) and
subsequently Eq. (10.22) into those beam stiffness coefficients of Eqs. (10.16),
which are exactly kept and contain the respective shell stiffness coefficients
to be solved for. Thus, all diagonal entries of the beam stiffness matrix can
be calculated as given in Table 10.3 together with the deviations from the ex-
ample application data, see Table B.1. The great discrepancy in the tensional
stiffness P11 is due to the fact that the thin-walled box beam is not able to
employ fibers close to its neutral axis, where they would primarily contribute
to the tensional stiffness.

Table 10.3. Diagonal entries of the beam stiffness matrix resulting from the prop-
erty adaptation with deviations from the application example data, see Table B.1.

Coefficient Units Value Deviation

P11 106 N 36.1 −50.5 %
P22 106 N 6.71 +8.58 %
P33 106 N 0.89 0
P44 103 Nm2 4.85 0
P55 103 Nm2 6.82 0
P66 103 Nm2 173 0
P77 Nm4 16.8

10.2.3 Wall Geometry Optimization

On the one hand, the relative coupling stiffness a13 of the box-beam wall re-
quiring knowledge about one of the coupling coefficients of the beam stiffness
matrix and, on the other hand, those ratios of Eq. (10.17) representing the
adaptive properties, are not prescribed. These remnants of the box-beam con-
figuration will be specified through the study of the following optimization
problem:

Remark 10.9. Optimize the box-beam configuration with the objective of at-
taining maximum tip twist in consideration of the different actuation schemes
while satisfying the stiffness and geometry constraints of Section 10.2.2.
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The basis of these examinations are the set-up of walls and the associated
actuation schemes as described in Sections 10.1.2 and 10.1.1, respectively.
The variables of the optimization problem at hand are the layer orientation
angles α1 and α2, the relative thickness h of the central, lengthwise oriented
fiber layer, and the fiber volume fraction ν. The effects of the relative sign
of electric field strength and polarization, being allowed to change between
layers as well as between sectors, are represented in a discrete manner by the
actuation schemes of Table 10.2.

Satisfaction of the Stiffness and Geometry Constraints

To integrate the constraint on the relative shear stiffness a33, the correspond-
ing relation from Eqs. (10.17) needs to be filled with the appearing stiffness
coefficients, see Eq. (6.24). It may be rearranged so that the layer thickness
ratio h, necessary to fulfill the constraint value of Eq. (10.26), is found for any
combination of the variables α1, α2, and ν:

h = h (α1, α2, ν) . (10.27)

The behavior represented by Eq. (10.27) is visualized for a fixed fiber volume
fraction in Figure 10.7. It may be recognized that not all angular combinations
are permissible, as the layer thickness ratio h must not become negative.
Since no adaptive properties have been involved so far, these findings are
valid for all actuation schemes. The use of Eq. (10.27) for substitution into

Fig. 10.7. Relative thickness of the lengthwise oriented fiber layer for a fiber volume
fraction ν = 0.475.
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the objective function guarantees the satisfaction of the stiffness constraint
and eliminates the variable h. The geometry constraints of Eqs. (10.22) and
(10.24) are directly inserted.

Compilation of the Objective Function

The objective function of this optimization problem is the evaluation of the
twist solution, being given by Eq. (10.19) in conjunction with Eqs. (10.17)
and (10.18), at the free end of the beam. For the constitutive coefficients
appearing in the respective ratios, the relative layer thickness h of Eq. (10.27)
is required besides the material properties and the particular actuation scheme
configuration from Table 10.2. After introduction of the geometry constraints,
specified in Eqs. (10.22) and (10.24), the tip twist may be found for any
combination of the variables α1, α2, and ν:

φ = φ (α1, α2, ν, ξ = 1) . (10.28)

The behavior represented by Eq. (10.28) is exemplarily visualized for the
cases of direct twist actuation (scheme I of Table 10.2) in Figure 10.8 and
combined actuation of coupled extension and twist (scheme IIb of Table 10.2)
in Figure 10.9 for a fixed fiber volume fraction.

Fig. 10.8. Beam tip rotation due to direct twist actuation for a fiber volume fraction
ν = 0.475.
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Fig. 10.9. Beam tip rotation due to combined actuation of coupled extension and
twist for a fiber volume fraction ν = 0.475.

Comparison of the Different Schemes

The joint observation of Figures 10.8 and 10.7 shows that the wanted extreme
values are associated with the disappearance of the lengthwise-oriented fiber
layer. This is not the case for any of the schemes involving the coupled exten-
sion and twist (schemes IIa, IIb, IIc of Table 10.2) as revealed, for example,
by Figure 10.9. The maximum tip twist results for all schemes are given in
Table 10.4.

Table 10.4. Maximum tip twist for the different actuation schemes and a fiber
volume fraction ν = 0.475.

Coupling Actuation Scheme Tip Twist

none torsion I 9.45◦

torsion II a 5.73◦

torsion &
extension

torsion &
extension

II b 7.70◦

extension II c 1.99◦

torsion &
warping

warping III 0.139◦

By far the best result is achieved by the direct twist actuation (scheme I )
without utilization of anisotropic couplings. Regarding those schemes using
such couplings between torsion and extension, the one with the combined actu-
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ation of the helical wound as well as the lengthwise oriented fibers (scheme IIb)
is superior to the pure variants. It does not involve passive fibers and, con-
sequently, there is no need for surmounting the associated stiffness. Active
warping torsion is not able to provide any similar results for this example
configuration with a decay-length parameter λ ≈ 70. Further on, the imple-
mentation would be more expensive due to the necessary segmented electrod-
ing. Nevertheless, the efficiency improves for comparatively short beams, as
it is visible by comparing Figures 10.5 and 10.6 as well as by examining the
function η0(ξ) in Figure 9.1.

Influence of the Fiber Volume Fraction

All the results shown above have been calculated for a fiber volume fraction
ν = 0.475. This value represents the optimum for the direct twist actuation
and is very close to the optima of the other schemes. In Figure 10.10, the
dependence of tip twist as well as layer orientation and thickness is exemplarily
depicted for the direct twist scheme. The layer thicknessH1 therein is obtained
by taking the formulation for one of the exactly preserved stiffness coefficients
of the example rotor blade, see Remark 10.8 and Table 10.3, supplying it
with all the known constitutive and configurative data, and solving it for the
required value. As obvious here but applicable also for the other cases, it is
found that the influence of the fiber volume fraction is rather good-natured,
confirming the calculations with a collective value of the fiber volume fraction.

Fig. 10.10. Influence of the fiber volume fraction on the necessary layer orientation
and thickness as well as on the resulting tip twist for the direct twist actuation.
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10.3 Validation and Evaluation

While the analytical solution limited to the static problem has been applied at
least in a simplified fashion for the elementary examinations of Section 10.2,
the finite element solution capable of capturing the general problem has not
yet been employed. Both solution variants will now be checked against each
other and against an entirely independent approach with a commercial finite
element software.

10.3.1 Reference Configurations

Again, the exemplary application data of the BO105 rotor system of Table B.1
will be employed. Thus, a beam of length X, clamped perpendicularly to the
axis of rotation at the radius X̄, is rotating with the angular velocity Ω. For
the sake of simplicity, the precone angle as well as the angle of attack, included
in the presented theory, are not put into operation. Since we have abstained
from modeling the complexity associated with the blade attachment, the dy-
namic response results cannot be expected to be comparable to those of a real
helicopter. Dissimilar to the considerations of Section 10.2, with the mem-
brane response assumption of Remark 10.7, the shell representation may now
be taken into account. Besides the already used geometry of the rectangular
single-cell cross-section, the analysis will be extended to the convex double-cell
cross-section, both being described in Section 10.1.3.

Rectangular Single-Cell Cross-Section

The most efficient configuration resulting from the optimization will be
adopted for the subsequent calculations. This, namely, has been the direct
twist actuation (scheme I of Tables 10.2 and 10.4). The relevant specifica-
tions concerning the geometry of the cross-section are given by Eqs. (10.22)
and (10.24) or may be gathered for the wall set-up from Figure 10.10:

α1 = −α2 = −17.6◦, H1 = 1.82 mm. (10.29)

On this basis, the complete set of constitutive coefficients of the beam can
be calculated according to Eqs. (10.16). Due to the symmetric lay-up with
balanced layer orientation of the selected scheme, the walls do not exhibit any
coupling between the lengthwise extension and shear (À13 = 0). Consequently,
the beam neither possesses couplings between extension and torsion (P14 = 0)
nor between bending and shear (P25, P36 = 0). The remaining, non-vanishing
coefficients are given for the two reduced shell response variants in Table 10.5
together with the relative deviations from membrane response as considered in
Table 10.3. The enhanced calculation using the shell description without cross-
sectional loads, Eqs. (6.22), leads to a stiffening of the affected coefficients by
less than one percent. On the contrary, the shell description without cross-
sectional strains, Eqs. (6.23), shows greater deviations since it is valid only for
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the rather special case where any contraction or expansion of the cross-section
is counteracted, for example, by an internal pressurization of the beam.

Table 10.5. Constitutive properties of the exemplary beam configuration with rec-
tangular single-cell cross-section.

Shell without Cross-Sectional
Loads, see Eq. (6.22) Strains, see Eq. (6.23)

Coefficient Units Value Deviation [%] Value Deviation [%]

P11 106 N 36.1 0 41.2 +12.2
P22 106 N 6.71 0 6.71 0
P33 106 N 0.890 0 0.890 0
P44 103 Nm2 4.88 +0.70 4.88 0
P55 103 Nm2 6.85 +0.52 7.81 +12.7
P66 103 Nm2 173 +0.00 197 +12.2
P77 Nm4 17.0 +0.82 19.3 +12.9
P48 10−3 Nm

V
0.178 0 0.178 0

P88 10−12 Nm2

V2 11.4 0 11.4 0

Convex Double-Cell Cross-Section

The curved cross-section is divided by a central web into two cells. The as-
sociated geometric description is given by Eqs. (10.10) and (10.11). On this
basis, the radius of curvature R and generating half-angle ζ may be expressed
in terms of the beam width b and the ratio na/b between the extents along
the cross-sectional axes:

y (s1 = S1) = R sin ζ = b
2 ,

z (s1 = 0) = R (1 − cos ζ) = na/b
b
2

−→ tan ζ =
2na/b

1 + n2
a/b

, R =
1 + n2

a/b

4na/b
b.

(10.30)
Although such a shape still is symmetric with regard to both principal axes,
adaptation of beam properties and optimization of wall geometry cannot be
accomplished with such simple measures as available for the box beam. Not
to exceed the scope of the work at hand, here we will desist from the thrills
of sophisticated optimization procedures; elementary literature is provided by
Collatz and Wetterling [55] or Pierre [141]. Since convex cross-section and
airfoil profile are similar to a certain extent, the blade chord b will be utilized
directly, as given by Table B.1. Together with arbitrary fixing of the cross-
sectional aspect ratio na/b, the generating half-angle ζ and radius of curvature
R, according to Eq. (10.30), read as follows:

b = 0.27 m, na/b = 0.155 −→ ζ = 17.6◦, R = 0.446 m. (10.31)

In Remarks 10.3 to 10.6, the wall properties around the circumferential con-
tour have been specified. For the central web, however, an altered configura-
tion may be selected. In the beam property adaptation of Section 10.2.2 for
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the rectangular single-cell cross-section, it has not been possible to get close to
the tensional stiffness of the example application data due to the lack of fibers
close to the neutral axis. This can be improved by furnishing the web with
purely lengthwise oriented fibers with the greatest possible stiffness. To com-
ply with the assumption of thin walls, included in Remark 6.4, the thickness of
the web will be limited to 1/10 of its height. Adding tensional stiffness to the
center of the cross-section requires a reduction around the contour and thus
allows for a thinner skin and/or increased fiber angle. Such a configuration of
the wall geometry is given in the following.

Web: H0 = 4.19 mm, H1 = 0 mm, (10.32a)
Skin: H0 = 0 mm, H1 = 0.55 mm, α1 = −α2 = 22.5◦. (10.32b)

Using high modulus carbon fibers for the web, see Table A.1, the geometry
specified by Eqs. (10.31) and (10.32) leads to the beam properties given in
Table 10.6 being approximately within the same order of magnitude of the
example application data, see Table B.1. Unlike the case of the box beam, the
couplings between bending and shear (P25, P36) do not only depend on the
coupling of lengthwise extension and shear (À13 = 0) but also on the bending
and twist (D̀13 �= 0) of the outer wall. Such effects, however, are beyond the
scope of the membrane response assumption. Due to the limited thickness of
the web, the selected configuration shows only a minor increase in the tensional
stiffness. Further on, the centered web aligned with one cross-sectional axis is
not able to fully depict the influence pertaining to the both axes as exerted
in real life by a solid spar.

10.3.2 Reference Calculations

The stiffening due to the assumption of a cross-section without strains, respec-
tively curvatures, in its plane visible in the right-hand columns of Tables 10.5
and 10.6, has been found to be not very realistic. Hence, the subsequent cal-
culations will be conducted by means of the assumption of a cross-section
without loads in its plane. The results obtained for such a shell description
of the beam walls are, furthermore, to be compared to the outcome of the
significantly simpler membrane description. As briefly mentioned in the intro-
duction to this section, three different solution approaches will be examined.
The associated individual restrictions are discussed in the following.

Analytic Approach

Within the bounds of the underlying theory, the analytic solution derived
in Section 9.1 can be regarded as exact. It is confined to the statics of the
non-rotating structure as well as certain constitutive couplings and load con-
figurations. Special cases, like the elongation of the rotating beam due to
centrifugal forces, may be simulated with the appropriate choice of loads.
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Table 10.6. Constitutive properties of the exemplary beam configuration with con-
vex double-cell cross-section.

Shell without Cross-Sectional
Membrane, Loads, Strains,

Coefficient Units see Eq. (6.20) see Eq. (6.22) see Eq. (6.23)

P11 106 N 39.2 39.2 44.2
P22 106 N 6.17 6.17 6.17
P33 106 N 0.929 0.929 0.929
P44 103 Nm2 4.84 4.86 4.86
P55 103 Nm2 6.81 6.81 7.98
P66 103 Nm2 77.3 77.3 107.8
P77 Nm4 0.798 0.822 1.14
P25 Nm 0 0.827 1.11
P36 Nm 0 0.0264 0.0355
P48 10−3 Nm

V
0.172 0.172 0.172

P88 10−12 Nm2

V2 6.31 6.31 6.31

Beam Finite Elements

Due to the discretization and interpolation, the finite element method is cate-
gorized as an approximation. The corresponding details are shown throughout
the course of derivation of the beam finite element solution in Section 9.2.
With identical underlying theory but without all the restrictions necessary to
obtain an analytical solution, it is able provide answers to a wide range of
problems.

Shell Finite Elements

As outlined in Section 4.2.5, the implementation of anisotropic thermal effects
in commercial finite element codes may be utilized to simulate the implications
of the piezoelectric effect. To capture the behavior of thin-walled beams with
cross-sections as defined above, spatial shell elements may be employed. With
this methodology, however, it is not possible to examine problems with dy-
namic actuation. The beams with rectangular and convex cross-sections have
been discretized with 2200, respectively 2300, SHELL99 elements of ANSYS
as exemplarily shown for the latter case in Figure 10.11.

10.3.3 Static Behavior

Since neither the analytic approach nor the application of shell finite elements
is able to handle the general problem of dynamic actuation and response in the
rotating environment, the developed beam finite elements need to be counter-
checked by means of the individual solution components, see Section 9.2.3.
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Fig. 10.11. Discretization of the convex cross-section beam with shell finite ele-
ments.

Beam Extension due to Centrifugal Forces

First, the steady-state solution with the elongation of the blade resulting from
the centrifugal forces will be examined. The formulation for the analytical
approach is provided by Eq. (9.8). The required linear and constant portions
of the line force n̆(x) in the lengthwise direction depicting the centrifugal
effects are

n̆x = mΩ2, n̆x = n̆xX̄. (10.33)

The contained constant m represents mass per length of the beam. For the two
different cross-sections under consideration, it takes the following form.

Rectangular cross-section: m = 8
(
1 + na/b

)
bH1ρ, (10.34a)

Convex cross-section: m = 4ζR4H1ρ
skin

+ 2 (1 − cos ζ)RH0ρ
web

. (10.34b)

Although the stiffness properties are largely similar, the total masses of the
two beam variants differ significantly due to the diversity of construction and
materials. While the single-cell rectangular cross-section possesses a mass of
33.8 kg, the double-cell convex cross-section beam gets by with only 20.0 kg.
The beam elongation in response to the centrifugal force field is shown for the
different calculation approaches in Table 10.7. Since both beams are free of
extension torsion coupling (P14 = 0), no plate properties are involved in the
solution to the lengthwise displacement, see Eqs. (9.8) and (8.7a). Therefore,
the comparison of the two analytic variants cannot show any divergence to be
induced by the membrane response assumption. Both finite element solutions
are very close to each other and show only minor deviations to the analytical
solution. Therewith, the vector of centrifugal forces m̊Ω(Ω) as well as the
longitudinal components of the beam stiffness matrix P̊Σ(Ω) of Eqs. (9.27)
and (9.28), respectively, are successfully checked.
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Table 10.7. Beam extension due to centrifugal forces.

Rect. Single-Cell Conv. Double-Cell
u (ξ = 1) Error u (ξ = 1) Error

Method Shell Assumption [cm] [%] [cm] [%]

analytic no cross-sec. loads, Eq. (6.22) 1.4204 0.7760
membrane response, Eq. (6.20) 1.4204 0 0.7760 0

beam FE no cross-sec. loads, Eq. (6.22) 1.4252 +0.34 0.7774 +0.18
shell FE ANSYS SHELL99 1.4245 +0.30 0.7817 +0.74

Beam Torsion due to Piezoelectric Coupling

Next, a constant electric field will be applied to the piezoelectric composites
within the non-rotating structure to verify the constant factor of the piezo-
electric actuation vector p̊(t) as well as the torsional components of the beam
stiffness matrix P̊Σ(Ω). This is done in consideration of the warping effect
with cubic Hermite shape functions and without the warping effect using lin-
ear Lagrange polynomials, see Section 9.2.2. The first shows good agreement
with the exact analytical solution and the shell finite element model, while in
the latter case the torsional rigidity is notably smaller due to abandonment
of the warping restraint at the clamped end. Naturally, the actuation vectors
in both cases are identical. The values of the resulting blade tip rotation are
given in Table 10.8.

Table 10.8. Beam torsion due to piezoelectric coupling.

Rect. Single-Cell Conv. Double-Cell
φ(ξ = 1) Error φ(ξ = 1) Error

Method Shell Assumption [◦] [%] [◦] [%]

analytic no cross-sec. loads, Eq. (6.22) 9.4479 9.1983
membrane response, Eq. (6.20) 9.4484 +0.01 9.1987 +0.00

beam FE no cross-sec. loads, Eq. (6.22) 9.4184 −0.31 9.2076 +0.10
— ” —, without warping 9.5436 +1.01 9.2408 +0.46

shell FE ANSYS SHELL99 9.4584 +0.11 9.2185 +0.22

Different from above, plate properties (D̀33) are involved in the solution to
the twisting angle, see Eqs. (9.4), (9.5), and (8.8c). Due to the closed cross-
sections and thin walls, the implications of the membrane response assumption
are very small for the cases at hand. However, this changes drastically with
the consideration of open cross-section topologies just as well covered by the
developed theory, where the torsional stiffness (P44) of the beam is solely
governed by the twisting stiffness (D̀33) of the walls. As an example, the box
beam subjected to piezoelectrically induced torsion is shown for the shell finite
element approach in Figure 10.12. Close to the clamped end, the influence of
the warping restraint on the beam twist becomes visible.
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Fig. 10.12. Torsion of the rectangular cross-section beam via piezoelectric coupling.

10.3.4 Free Vibrations

Since the essential parts of the right-hand side of the differential equation
system, given by Eqs. (9.27), have demonstrated their operability, the homo-
geneous solution will be examined in detail to complete the inspection of the
left-hand side. As there is no analytic approach available to capture the dy-
namic behavior, the subsequent comparison comprises the formulations with
the developed beam finite elements and with the commercial shell finite el-
ements. The resulting natural frequencies ω for all modes up to the third
torsional mode are given in Table 10.9 for the non-rotating system as well as
in Table 10.10 for the rotating system.

Table 10.9. Natural angular frequencies of the non-rotating systems.

ω[1/s] Rect. Single-Cell Conv. Double-Cell
Mode Shape Beam FE Shell FE Beam FE Shell FE

1st lead-lag 25.92 25.88 22.56 22.61

2nd lead-lag 159.39 158.69 139.79 139.81

3rd lead-lag 433.67 430.11 384.80 383.51

1st flap 5.17 5.16 6.70 6.72

2nd flap 32.28 31.92 41.84 41.82

3rd flap 89.80 87.37 116.42 115.08

4th flap 174.33 164.96 226.13 217.91

5th flap 284.84 258.11 369.70 340.62

6th flap 419.67 357.34 545.08 470.48

7th flap 577.01 452.55 750.04 569.63

1st torsion 127.36 121.84 148.89 145.25

2nd torsion 382.69 314.74 446.71 372.29

3rd torsion 639.82 424.57 744.63 491.20
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Table 10.10. Natural angular frequencies of the rotating systems.

ω[1/s] Rect. Single-Cell Conv. Double-Cell
Mode Shape Beam FE Shell FE Beam FE Shell FE

1st lead-lag 34.73 34.99 32.27 32.53

2nd lead-lag 193.13 192.98 177.46 177.86

3rd lead-lag 473.34 470.79 428.97 428.58

1st flap 48.23 48.41 48.92 48.93

2nd flap 121.18 120.61 124.58 123.32

3rd flap 210.86 208.71 225.04 217.71

4th flap 323.10 315.72 355.98 330.90

5th flap 456.24 435.27 515.80 453.23

1st torsion 127.07 138.17 148.64 154.21

2nd torsion 382.59 342.50 446.63 382.56

3rd torsion 639.82 471.60 744.58 508.03

Influence of the Rotation

Comparing the natural frequencies of the non-rotating and rotating system,
consistently reveals a moderate increase for the lead-lag modes and a steep
increase for the flapping modes. The deviating imprints of the rotational stiff-
ening are founded on the significantly dissimilar structural stiffness proper-
ties with regard to the respective cross-sectional axis. This behavior is also
being reflected in the associated mode shapes as visible in the example of Fig-
ure 10.13 for the fifth bending mode shape of the rectangular cross-section
beam and Figure 10.14 for the third lead-lag mode shape of the convex
cross-section beam. With the increase of beam internal loads towards the
center of rotation, the oscillation amplitudes decrease, while the wavelength
is stretched. For the developed beam finite elements, such effects are captured
by virtue of the second-order theory of Section 8.3. Its derivation, however,
does not indicate similar effects for either rotation or warping, see Eq. 8.39.
Consequently, frequencies as well as shapes of the torsional modes are not
sensitive to rotation in the beam finite element model. In contrast, the shell
finite element model shows at least a small dependence.

Fig. 10.13. Fifth flapping mode of the rectangular cross-section beam for the non-
rotating (light) and rotating (dark) system (beam finite elements).
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Fig. 10.14. Third lead-lag mode of the convex cross-section beam for the non-
rotating (light) and rotating (dark) system (beam finite elements).

Influence of the Modeling Approach

The natural frequencies of the lower lead-lag and flapping modes agree very
well across the models with beam and shell finite elements. The higher ones
show an increasing divergence which cannot be counteracted by a refined
discretization. The reason for the divergence can be found in those effects ex-
hibited by the shell description that are not included in the beam description.
Most prominent among these are the implications of the classical assumption
of beam theory, see Remark 7.4. Stating that the preservation of the cross-
sectional shape in its plane is equivalent to the infinite bending stiffness of
the walls in this plane, such properties obviously do not correspond to the
observations made with the shell model visible in Figures 10.15 and 10.16. It
becomes clear that the neglected warping deformation in the cross-sectional
plane, capable of depicting the local inertia effects of the walls, increasingly
gains importance in comparison to the global inertia effects of the beam with
higher frequencies and shorter wavelengths. The aspect ratio of the latter
with the corresponding edge length of the cross-section may be considered
in analogy to buckling phenomena. In the case of the torsional behavior, the

Fig. 10.15. Fifth flapping mode of the rectangular cross-section beam subjected to
rotation (shell finite elements).
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discrepancy of the natural frequencies with ascending mode shapes is even
more articulate. The considered warping displacements are confined to pro-
portionality with the twist rate and to the direction out of the cross-sectional
plane, see Remarks 7.3 and 7.4 leading to Eq. (7.11). Just like in the case of
the lead-lag and flapping modes, there are no means of accounting for local
inertia effects of the walls and resulting decrease of natural frequencies. In Fig-
ures 10.17 and 10.18, the cross-sectional deformations are already noticeable
for the first torsional mode but become excessive for the third torsional mode.
In addition to relatively thin walls, both example configurations possess very
slim cross-sections being fairly disadvantageous in this context.

Fig. 10.16. Fifth flapping mode of the convex cross-section beam subjected to
rotation (shell finite elements).

Fig. 10.17. First and third torsional
modes of the rectangular cross-section
beam not subjected to rotation (shell fi-
nite elements).

Fig. 10.18. First and third torsional
modes of the convex cross-section beam
not subjected to rotation (shell finite el-
ements).
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Influence of the Cross-Section

In all cases, the agreement of beam and shell finite element results for the
convex double-cell cross-section is superior to the rectangular single-cell cross-
section. On the one hand, the outer walls of the first are thinner and thus
more flexible, but on the other hand, they contribute only a part of the total
mass. Further on, the convex shape and particularly the stiff web, stabilize
the cross-sectional shape. Consequently, the beam with a convex double-cell
cross-section is less sensitive to the influence of the local inertia effects of
the walls in comparison to the global inertia effects of the beam. Moreover,
the not yet explicitly mentioned discrepancy of beam and shell finite element
results for the first torsional mode as well as the rotation dependence of nat-
ural frequencies for torsional mode shapes in the shell model, are diminished
with the convex double-cell cross-section. Therefore, it is permissible to con-
clude that the discovered deviations on the whole are due to the different
handling of the cross-section with the use of beam and shell finite elements
respectively. So which of these two modeling approaches is more appropriate?
As always, there are two faces to the truth. Regarding the results in corre-
spondence with the input data, the shell representation, presuming proper
implementation, is clearly more precise. However, the input data already rep-
resents an idealization, since the actual structure, which in the given example
is equipped with a foam core and thus is prevented from noticeable defor-
mations of the cross-sectional shape, has been replaced by its thin-walled
likeness. To conclude, further pieces of the beam stiffness matrix P̊Σ(Ω) as
well as mass matrix M̊′ ′ and gyroscopic matrix M̊′

Ω(Ω) may be regarded as
validated.

10.3.5 Forced Vibrations

As far as available, the counter-check of individual solution components, see
Section 9.2.3, has been successfully completed in Sections 10.3.3 and 10.3.4.
The developed beam finite elements may now be employed for their propri-
etary task of simulating the universal dynamic behavior of adaptive thin-
walled beams. In the most general case, the developed theory is able to de-
scribe the mechanical as well as the electric response to combined mechanical
and electric excitation. In the context of Remark 10.1, the example config-
uration has been simplified to handle either actuation or sensing and with
the helicopter rotor blade application in mind, the prior has been pursued.
So finally, the response of the rotating beam to a piezoelectrically induced
twist actuation will be sought. To visualize the result, the twist angle of
the last node is selected from the overall solution of Eq. (9.41) and dis-
played over time in Figure 10.19. Since the harmonic excitation with the
threefold of the rotor angular frequency is close to the frequency of the first
torsional mode of the employed box beam, the plot shows the characteristic
beat pattern. With this last step, the three-dimensional dynamic behavior of
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an adaptive thin-walled beam in a rotating environment is completely pre-
dictable.

Fig. 10.19. Tip twist of the box beam in response to harmonic excitation with the
threefold of the rotor angular frequency.
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Conclusion

In this final chapter, we will attempt to review the findings attained during
the various steps of theory derivation and subsequent validation as well as to
present the prospect of potential future development.

11.1 Summary

Adaptive fiber composites have been examined on the basis of a thorough,
systematic treatment of the theory across a wide spectrum from piezoelectric
material behavior to the dynamics of rotating structures. Making a point
of consistency and continuity, the derived formulations are accompanied by
several innovations and improvements, the most relevant of which will be
recalled below:

• Extension of Dirichlet’s principle of minimum potential energy to electro-
mechanically coupled problems.

• Deduction of simplifying assumptions for piezoelectric materials in consid-
eration of spatial extent and electroding configuration via examination of
associated implications on spatial field distributions.

• Proposition of an enhanced micro-electromechanical model to determine
the constitutive properties of piezoelectric composites based on the se-
quential stacking of constituents with uniform fields.

• Derivation of a comprehensive description of composite shells with piezo-
electric layers in arbitrary configuration for possibly combined actuation
and sensing.

• Development of a novel theory for thin-walled beams with arbitrary cross-
sections incorporating more than the usual membrane properties without
additional degrees of freedom.

• Consideration of shear flexibility, torsional warping, and electromechanical
coupling as well as of rotational effects by virtue of including an extended
set of second-order terms.

T.H. Brockmann, Theory of Adaptive Fiber Composites,
Solid Mechanics and Its Applications 161,
c© Springer Science + Business Media B.V. 2009
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• Derivation of an analytic solution to gain insight into the static behavior
of structures with adaptive capabilities and to be used for adjustment and
optimization of beam configurations.

• Derivation of a general solution via the formulation of spatial beam finite
elements, accounting for arbitrary combinations of actuator and sensor
applications with voltage and current source, respectively measurement,
to capture the dynamic behavior of the rotating structure.

To ensure the soundness of the various assumptions and simplifications made
throughout the course of derivation as well as to exclude errors in the imple-
mentation, the obtained results have been successfully counterchecked using
completely independent approaches. Therein, the following steps are regarded,
in particular:

• Validation of the micro-electromechanical model for piezoelectric compos-
ites with the aid of experimental and finite element modeling results avail-
able in the literature.

• Validation of the beam finite elements by comparison of solution compo-
nents to those attainable with commercial shell finite elements for example
configurations with a rectangular single-cell and a convex double-cell cross-
section approximating the properties of an actual helicopter rotor blade.

Using the presented comprehensive formulation of the theoretical framework
and the associated elementary examinations, the recognition and utilization of
causal relationships, in view of the manipulation of structural behavior with
adaptive means, is facilitated. With the resulting spatial beam finite elements,
a versatile modeling tool can be provided as a basis for further investigations.

11.2 Perspective

The focus of this work is directed towards the structural aspects of adaptive
systems with associated actuation and sensing capabilities. The consequen-
tial next step therefore would be to consider the linkage with various control
models to make the abilities of the complete system accessible. With regard
to the application case of helicopter rotor blades, coupling with an aerody-
namics model would allow us to perform the aeroelastic analyses necessary to
prove the effectiveness of the concept. Furthermore, noise emission and im-
pact on the environment might be simulated by means of an acoustics model.
To enhance the comparability of the developed adaptive thin-walled beam
representation with the real rotor system, it could be refined with additional
features, like pre-twist, non-rigid blade mounting, or cyclic pitch to cover for-
ward flight conditions. Another direction for the extension of the developed
theory is the incorporation of alternative constitutive models to take other
multifunctional materials into account. This could be interesting, especially
for the example of composites with electromechanical coupling through carbon
nanotubes.
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To ensure correctness of the partially complex derivation, the symbolic
mathematics software Maple has been employed for each and every step, in-
cluding implementation of the beam finite elements. The numeric computa-
tions could be carried out with the support of integrated routines from the
library of the Numerical Algorithms Group (NAG). Nevertheless, the compu-
tational performance and, moreover, the user-friendliness have never surpassed
the level of a development tool. Therefore, an implementation involving fast
equation-solvers and an easy-to-use interface is advisable. This could be ac-
complished, for instance, through the extension of an existing finite element
or multi-body dynamics code, which in addition would allow for combination
with a variety of other elements. While the presented example calculations
have so far revealed only a touch of the genuine capabilities, such a software
would enable the comfortable accomplishment of comprehensive design stud-
ies. The results to be obtained therewith should be put into practice with the
construction of test specimens and be compared to the ensuing experimental
results.
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Material Properties

Table A.1. Properties of the applied reinforcement material.

Carbon Fibers, Ref. [116]
Units Stiffness Constants Engineering Constants

109 N
m2 C11 = C22 20.0 E1 = E2 15.0

C12 9.98 E3 232
C13 = C23 6.45 G13 = G23 5.01
C33 235 G12 24.0
C44 = C55 24.0 ν13 = ν23 0.0139
C66 5.01 ν12 0.495

103 kg
m3 Density ρ 1.8∗

Table A.2. Properties of polymer materials.

Araldite D Araldite 2020 Epon 9405
Constants Units Ref. [49] Ref. [169] prod. data

C11 = C22 = C33 109 N
m2 8.0 7.28 4.57

C12 = C13 = C23 4.4 4.46 2.46
C44 = C55 = C66 1.8 1.41 1.05

E1 = E2 = E3 109 N
m2 4.88 3.89 2.85

ν12 = ν13 = ν23 0.35 0.38 0.35∗

ε11
ε0

= ε22
ε0

= ε33
ε0

4 5 4∗

ρ 103 kg
m3 1.161

∗ estimated

T.H. Brockmann, Theory of Adaptive Fiber Composites,
Solid Mechanics and Its Applications 161,
c© Springer Science + Business Media B.V. 2009



204 A Material Properties

Table A.3. Properties of piezoelectric materials.

PZT-5A PZT-5H PZT-7A PMN-30%PT
Constants Units Ref. [20] Ref. [20] Ref. [19] Ref. [186]

CE
11 = CE

22 109 N
m2 121 126 148 117

CE
12 75.4 79.5 76.2 103

CE
13 = CE

23 75.2 84.1 74.2 101
CE

33 111 117 131 108
CE

44 = CE
55 21.1 23.0 25.3 71

CE
66 22.6 23.5 36.0 66

SE
11 = SE

22 10−12 m2

N
16.4 16.5 10.7 52.0

SE
12 −5.74 −4.78 −3.2 −18.9

SE
13 = SE

23 −7.22 −8.45 −4.6 −31.1
SE

33 18.8 20.7 13.9 67.7
SE

44 = SE
55 47.5 43.5 39.4 14.0

SE
66 44.3 42.6 27.8 15.2

EE
1 = EE

2 109 N
m2 61.5 60.0 95.0 19.3

EE
3 53.4 48.2 81.9 15.3

GE
13 = GE

23 21.1 23.0 25.3 71.0
GE

12 22.6 23.5 36.0 66.0

νE
13 = νE

23 0.441 0.510 0.384 0.581
νE
12 0.349 0.291 0.322 0.379

e31 = e32
N

Vm
−5.4 −6.55 −2.11 −2.4

e33 15.8 23.3 9.5 27.1
e15 = e24 12.3 17.0 9.2 13.6

d31 = d32 10−12 m
V

−171 −274 −60 −921
d33 374 593 150 1981
d15 = d24 584 741 362 190
εε
11
ε0

=
εε
22
ε0

916 1700 460 3307
εε
33
ε0

830 1470 235 1242

εσ
11
ε0

=
εσ
22
ε0

1730 3130 840 3600
εσ
33
ε0

1700 3400 425 7800

ρ 103 kg
m3 7.75 7.5 7.6 8.04

TCP
◦C 365 193 350



B

Helicopter Rotor Properties

Table B.1. Stiffness and geometry properties of the BO 105 main rotor system,
Ref. [170].

Constants Units Values Description

P11 106 N 73.0 tensional stiffness
P22 106 N 6.18 chordwise shear stiffness
P33 106 N 0.89 flapwise shear stiffness
P44 103 Nm2 4.85 torsional stiffness
P55 103 Nm2 6.82 chordwise bending stiffness
P66 103 Nm2 173 flapwise bending stiffness
X̄ m 0.37 radius of blade bolt position
X m 4.54 blade length from bolt to tip
b m 0.27 blade chord
Ω 1/s 44.4 rotor angular velocity

T.H. Brockmann, Theory of Adaptive Fiber Composites,
Solid Mechanics and Its Applications 161,
c© Springer Science + Business Media B.V. 2009
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[81] K. Ghandi, N.W. Hagood, Nonlinear modeling and characterisation techniques
for phase transition in electro-mechanically coupled devices. Ph.D. Thesis,
Massachusetts Inst. of Tech. (1998)

[82] G.L. Ghiringhelli, P. Masarati, P. Mantegazza, Analysis of an Actively Twisted
Rotor by Multi-Body Global Modeling. ASME Mechanics and Materials Con-
ference (Blacksburg, Virginia, 1999)

[83] C. Giacovazzo, Fundamentals of Crystallography (Oxford University Press,
London, 2002)
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[126] D. Morgenstern, I. Szabó, Vorlesungen über Theoretische Mechanik. Die
Grundlehren der mathematischen Wissenschaften in Einzeldarstellung, vol. 112
(Springer, Berlin, 1961)

[127] T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of
materials with misfit inclusions. Acta Metall. 21, 571–574 (1973)

[128] A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applica-
tions (Wiley, New York, 2003)

[129] H. Murakami, E. Reissner, J. Yamakawa, Anisotropic beam theories with shear
deformation. J. Appl. Mech. 63, 660–668 (1996)

[130] National Aeronautics and Space Administration. NASA Technical Reports
Server, http://ntrs.nasa.gov (2008)

[131] J.G. Nelson, R.R. Neurgaonkar, J.R. Oliver, C. Larson, S.K. Dobbi, J.S. Rosen-
thal, Piezoelectric technology: Research and applications, in Smart Materials
and Structures 1998: Smart Materials Technologies, ed. by M.R. Wuttig. Pro-
ceedings of SPIE, vol. 3324 (SPIE, Bellingham, 1998)

http://ntrs.nasa.gov


214 References

[132] L.J. Nelson, Smart piezoelectric fibre composites. Mater. Sci. Technol. 18(11),
1245–1256 (2002)

[133] R.E. Newnham, D.P. Skinner, L.E. Cross, Connectivity and piezoelectric-
pyroelectric composites. Mater. Res. Bull. 13, 525–536 (1978)

[134] V.V. Novozhilov, Thin Shell Theory (Wolters-Noordhoff Publishing, Gronin-
gen, 1970)

[135] G.M. Odegard, Constitutive modeling of piezoelectric polymer composites.
NASA Contractor Report NASA/CR-2003-212681, National Aeronautics and
Space Administration, Langley Research Center, Hampton, Virginia, USA
(2003)
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