
Appendix A
A Euclidean Viewpoint on Statistics

This appendix gives the main algebraic and geometric principles used in the
descriptive statistic methods presented in this book.

A.1 Inner and Dot Products

Let us consider two vectors x and y of R
n. The inner product is a function that

associates a real number to the pair of vectors x and y:

〈 | 〉 : Rn × R
n → R

with the following properties:

• Symmetric: 〈x|y〉 = 〈y|x〉, ∀x, y ∈ R
n

• Bilinear:

– 〈x|y + z〉 = 〈x|y〉 + 〈x|z〉, ∀x, y, z ∈ R
n

– 〈x|αy〉 = α 〈x|y〉, ∀x, y ∈ R
n and ∀α ∈ R

• Positive definite: 〈x|x〉 ≥ 0, ∀x ∈ R
n

• Non-degenerate: 〈x|x〉 = 0 ⇒ x = 0, ∀x ∈ R
n

In R
n, the dot product is the inner product defined in the standard basis by:

〈x|y〉 =
n∑

i=1

xiyi = y	x

If A is an n × n symmetric positive definite matrix, then the bilinear form y	Ax
satisfies the four properties and defines thus an inner product denoted:
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〈x|y〉A =
n∑

i=1

n∑

j=1

aij xj yi

In R
n, the usual dot product defined in the standard basis is obtained by setting

A to the identity matrix In. More generally, given a basis {v1, . . . , vn} of Rn, the
matrix A defined by aij = 〈

vi |vj

〉
A is the unique matrix representing the dot product

〈x|y〉A. Indeed, we have x =
n∑

i=1
xivi and y =

n∑
i=1

yivi , ∀x, y ∈ R
n, and:

〈x|y〉A =
〈

n∑

i=1

xivi |
n∑

j=1

yj vj

〉

A

=
n∑

i=1

n∑

j=1

xi

〈
vi |vj

〉
A yj

=
n∑

i=1

n∑

j=1

xiaij yj = y	Ax

A.2 Length, Projection, Angle and Distance

The norm (or length) of a vector x is defined by:

‖x‖A = √〈x|x〉A

Note that ‖αx‖A = |α| ‖x‖A.
The distance between two vectors x and y is the norm of their difference:

dA (x, y) = ‖x − y‖A

The projection of y on the nonzero vector x is a vector z parallel to x so that y−z
is orthogonal to x. It is given by:

z = 〈x|y〉A

〈x|x〉A
x
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It follows that

cos(θxy) = ‖z‖A

‖y‖A
= 〈x|y〉A

‖x‖A ‖y‖A

0 ≤ θxy ≤ π

and thus

〈x|y〉A = ‖x‖A ‖y‖A cos(θxy)

Hence, two vectors x and y are orthogonal if 〈x|y〉A = 0. Moreover, we have

∣∣〈x|y〉A
∣∣ ≤ ‖x‖A ‖y‖A (Cauchy-Schwartz inequality)

and

‖x + y‖A ≤ ‖x‖A + ‖y‖A (triangular inequality)

A.3 Mean and Variance

The observed values of a quantitative variable for n individuals are stored in
x = (x1, · · · , xn)

	, a vector of Rn. The mean of x is equal to

m(x) = 1

n

n∑

i=1

xi

and its variance is

v(x) = 1

n

n∑

i=1

(xi − m(x))2

Let us consider the uniform inner product of Rn associated to the diagonal matrix
1
n

In. In a geometric viewpoint, the standard mean is computed by an inner product
and corresponds to a Euclidean projection (Fig. A.1):

m(x) = 〈x|1n〉 1
n

In
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Fig. A.1 Centring a variable seen as an orthogonal projection.

The variance is equal to the squared norm of the centred vector x∗

v(x) = ‖x − m(x)1n‖2
1
n

In
= ∥∥x∗∥∥2

1
n

In

A.4 Weighted Mean and Varianc

A weighting function can be defined to give some individuals more influence on the
result than other individuals. Weights for the n individuals are stored in a vector w
of Rn. They are positive and their sum is equal to 1:

w = (w1 · · ·wn)
	 with

n∑

i=1

wi = 1 and wi > 0

Using w, the weighted mean of x is

mw(x) =
n∑

i=1

wixi

and the weighted variance equals

vw(x) =
n∑

i=1

wi (xi − mw(x))2

Considering the diagonal matrix Dw = diag(w) as the inner product of Rn, the
weighted mean and variance are given by:



Appendix A A Euclidean Viewpoint on Statistics 299

mw(x) = 〈x|1n〉Dw

and

vw(x) = ‖x − mw(x)1n‖2
Dw

The standard mean and variance (m(x), v(x)) correspond to the particular cases
of weighted statistics (mw(x), vw(x)) when uniform weights wi = 1

n
are chosen.

From a geometric viewpoint, computing standard or weighted statistics corresponds
to the same operation (i.e., a projection) but using different inner products.

A.5 Covariance and Correlation

The values of two quantitative variables are stored in the vectors x and y. This
information can be considered either as n points (individuals) in R

2 or as 2 points
(variables) of Rn. In the first case, data centring corresponds to moving the origin of
the system of axes (Fig. A.2a). In the second case, it corresponds to two orthogonal
projections on the vector 1n (Fig. A.2b).

The vectors x∗ and y∗ contain centred data. The standard covariance is equal to

cov(x, y) = cor(x, y)
√

v(x)
√

v(y)

= 1

n

n∑

i=1

(xi − m(x))(yi − m(y)) = 1

n

n∑

i=1

x∗
i y∗

i

1

3
2 510

8
14

7 17

4

11

13

9
12

16
6

15

a b

1

3

2

5

10 8

14

7

17

4

11

13

9

12

16

6 15

Fig. A.2 Two geometric viewpoints on centring (example with 2 variables and 17 individuals). It
corresponds to (a) move the origin in R

2 and to (b) two orthogonal projections in R
17.



300 Appendix A A Euclidean Viewpoint on Statistics

It can be rewritten as:

cov(x, y) = 〈
x∗|y∗〉

1
n

In

= ‖x‖ 1
n In

‖y‖ 1
n In

cos(θxy)

As ‖x‖ 1
n In

= √
v(x) and ‖y‖ 1

n In
= √

v(y), it follows that:

cor(x, y) = cos(θxy)

Hence, the covariance is equal to the dot product between the two vectors
whereas the correlation is the cosine of the angle formed by the two vectors. Note
that weighted covariance and correlation could be obtained by using the appropriate
inner product Dw.

A.6 Linear Regression

The linear model that aims to explain the variation of y by the dependent variable x
can be written as:

y = βx + α1n + ε

Estimates of α and β are chosen to minimise the sum of squared residuals
n∑

i=1
ε2
i =

n∑
i=1

(yi − α − βxi)
2 (Fig. A.3a). The least squares estimates of parameters

are given by:

α̂ = m(y) − β̂m(x) and β̂ = cov(x, y)

v(x)

Considering the centred variables x∗ and y∗, the estimate of the slope can be
rewritten as:

β̂ =
〈x∗|y∗〉 1

n
In

‖x∗‖2
1
n

In

Thus, the vector of predicted values ŷ can be decomposed as follows:

ŷ = β̂x + (m(y) − β̂m(x))1n

= β̂(x∗ + m(x)1n) + (m(y) − β̂m(x))1n

= β̂x∗ + m(y)1n
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=
〈x∗|y∗〉 1

n
In

‖x∗‖2
1
n

In

x∗ + 〈y|1n〉 1
n

In
1n

The previous equation shows that the vector of predicted values y can be
computed as the sum of two vectors (Fig. A.3b). The first vector corresponds to
the projection of the centred variable y∗ on x∗. The second vector corresponds to
the projection of y on 1n.

As x = x∗ + m(x)1n, the three vectors x, x∗ and 1n are linearly dependent and
thus lie in the same plane. It follows that vector of fitted values ŷ corresponds to the
orthogonal projection of y on the plane spanned by the vectors x and 1n. Applying
the Pythagorean theorem to the triangle formed by the vectors y, ŷ and ε = y − ŷ,
we obtained the well-known decomposition of variance (Fig. A.4):

‖y‖2
1
n

In
= ∥∥ŷ

∥∥2
1
n

In︸ ︷︷ ︸
explained variance

+ ∥∥y − ŷ
∥∥2

1
n

In︸ ︷︷ ︸
residual variance

The coefficient of determination, R2
y|x measures the proportion of variance of the

dependent variable y explained by the explanatory variable x. Geometrically, it is
the cosine of the angle formed by the vectors ŷ and y (Fig. A.4):

R2
y|x =

∥∥ŷ
∥∥2

1
n

In

‖y‖2
1
n

In

= cos(θŷy)

a b
Fig. A.3 Two geometric viewpoints on linear regression with intercept (example with one
explanatory variable and 20 individuals). In R

2 (a), the usual representation shows that the
regression line minimises the residual sum of squares. In R

20 (b), fitted values are obtained by
orthogonal projection of y on the plane spanned by vectors x and 1n.
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Fig. A.4 Geometric decomposition of the variance using the Pythagorean theorem.

A.7 Categorical Variables

A categorical variable is a variable that can take one of a finite number of possible
values, each individual being assigned to a particular group (category, level or
class). If we consider a categorical variable with m categories measured for n

individuals, the information can be coded as a vector q of integers. An n × m table
X = [x1| . . . |xm] of dummy variables can be built. For the k-th category, the dummy
variable xk is equal to 1 if the individual belongs to this category and 0 otherwise:

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

Category

1 blue
2 red
3 blue
4 green
...

...

n black

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡

⎢⎢⎢⎢⎢⎢⎣

q
1
2
1
3
...

m

⎤

⎥⎥⎥⎥⎥⎥⎦
→

⎡

⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 · · · xm

1 0 0 · · · 0
0 1 0 · · · 0
1 0 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

⎤

⎥⎥⎥⎥⎥⎥⎦

Whereas a quantitative variable corresponds to a vector, a categorical variable
defines a subspace spanned by vectors x1, . . . , xm. If we consider a diagonal matrix
of weights Dw, the dummy variables are orthogonal by definition (i.e.,

〈
xi |xj

〉
Dw

for

i �= j ). The weight w+
k associated to the k-th category is equal to the sum of the

weights of the individuals belonging to this category. It is equal to the squared norm
of the associated dummy variable, w+

k = ‖xk‖2
Dw

.
Let us consider a quantitative variable y. The projection of y on the k-th dummy

variable is equal to:

Pxk
(y) = 〈y|xk〉Dw

‖xk‖2
Dw

xk =

∑
i/qi=k

wiyi

w+
k

xk = mw/k
(y)xk
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The value mw/k
(y) is the conditional mean of y given k (i.e., the weighted mean

of the variable y computed only on the individuals belonging to the k-th category).
Hence, the vector Pxk

(y) takes the value mw/k
(y) for the individuals of the k-th

category and 0 otherwise.
It follows that the projection of the centred variable y∗ = y − mw(y)1n on xk is

simply given by:

Pxk
(y∗) = (mw/k

(y) − mw(y))xk

As the dummy variables are orthogonal, the projection on the subspace spanned
by the vectors x1, . . . , xm is simply the sum of the individual projections on each
vector xk:

PX(y∗) =
m∑

k=1

Pxk
(y∗)

After some substitutions, the squared norm of this projection can be rewritten as:

∥∥PX(y∗)
∥∥2

Dw
=

m∑

k=1

w+
k (mw/k

(y) − mw(y))2 = b(y)

The quantity b(y) is the between-group variance that measures the differences
among categories. Using the Pythagorean theorem, the within-group variance is
defined by

w(y) = ∥∥y∗ − PX(y∗)
∥∥2

Dw

and we obtain the standard ANOVA decomposition of variance:

∥∥y∗∥∥2
Dw

= ∥∥PX(y∗)
∥∥2

Dw︸ ︷︷ ︸
between-group variance

+ ∥∥y∗ − PX(y∗)
∥∥2

Dw︸ ︷︷ ︸
within-group variance

The correlation ratio η2(q, y) = b(y)
vw(y)

measures the proportion associated to the
between-group variance. It varies between 0 and 1. Geometrically, it is the cosine of
the angle formed by the vectors PX(y∗) and y∗.

A.8 Weighted Multiple Regression

Multiple regression aims to explain the variation of a response variable y by
several dependent variables x1, . . . , xp stored in column in an n × p table X
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(X = [x1| . . . |xp] = [xij ]). For a given weighting matrix Dw, the aim of multiple
regression is to predict the observation yi by a linear model:

ŷi = β1xi1 + · · · + βpxip + α = yi − εi

The weighted least-squares estimation leads to minimise the residual sum of
squares:

RSS =
n∑

i=1

wi(ŷi − yi)
2 = ∥∥y − ŷ

∥∥2
Dw

The minimisation of the RSS is provided by the orthogonal projection of y on the
subspace spanned by the vectors x1, . . . , xp, 1n. The vector 1n is added to consider
the intercept in the model so that

ŷ = β1x1 + · · · + βpxp + α1n

The vector of predicted values ŷ exists and is unique. The uniqueness of
the coefficients β1, · · · , βp, α is ensured only if the vectors x1, . . . , xp, 1n are
independent (i.e., no multicollinearity). This independence is obtained if and only
if the centred vectors x∗

1, . . . , x∗
p are independent, with x∗

i = xi − mw(xi )1n. If the
centred vectors are independent, the covariance matrix X∗	DwX∗ is invertible (with
X∗ = [x∗

1| . . . |x∗
p]). In this case, we have:

ŷ = PX∗(y) + P1n
(y)

= PX∗(y∗) + P1n
(y∗) + PX∗(mw(y)1n) + P1n

(mw(y)1n)

By definition, the centred vectors x∗
1, . . . , x∗

p, y∗ are orthogonal to 1n so that the
previous equation simplifies to

ŷ = PX∗(y∗) + P1n
(mw(y)1n)

In the standard basis, the projection operator PX∗(.) is simply equal to
X∗(X∗	DwX∗)−1X∗Dw and the previous equation can be rewritten as:

ŷ = X∗(X∗	DwX∗)−1X∗Dwy∗ + mw(y)1n

The estimates of the parameters are then obtained by

⎡

⎢⎣
β̂1
...

β̂p

⎤

⎥⎦ = (X∗	DwX∗)−1X∗Dwy∗



Appendix A A Euclidean Viewpoint on Statistics 305

and

α̂ = mw(y) − β̂1mw(x∗
1) − · · · − β̂pmw(x∗

p)

As in simple regression, the part of variance explained by the model is equal to
the ratio of two squared norms (and thus the cosine of the angle formed by these
two vectors):

R2
y|X =

∥∥ŷ
∥∥2

Dw

‖y‖2
Dw



Appendix B
Graphical User Interface

Abstract This chapter is a short presentation of ade4TkGUI, a Tcl/Tk Graphical
User Interface (GUI) package for some basic functions of ade4. The ade4TkGUI
package tries to mix the advantages of a GUI (ease of use, no need to learn numerous
commands) with the possibility to use R expressions in the dialog boxes, to generate
understandable R commands, and to manage a session .Rhistory file.

B.1 Introduction

This chapter is based on the paper by Thioulouse and Dray (2007), but only the
most interesting features of ade4TkGUI are detailed here. The ade4 package is a
part of a previous software that was written in C. This software was mainly used by
ecologists, and it had a rich and very useful GUI, written in HyperTalk and based
successively on HyperCard, WinPlus and MetaCard (see Chapter 1, Thioulouse
et al. 1997).

Switching to R and to the command line interface of ade4 was a hard task for
many users, and we decided to make it easier by providing them with a GUI. The
first aim of ade4TkGUI was to give the users of “Classical ADE-4” an easy access
to the main functions of ade4. As most users would also be new to R, we wanted it to
be easy to install, and using Tcl/Tk was a guarantee of easiness and multi-platform
compatibility.

Only one-table and two-table methods are currently available in ade4TkGUI
and graphical functions are limited to the basic classes. K-table methods are not
included.

We decided to use the Tcl/Tk language to implement ade4TkGUI because the
tcltk package is available in R, and included by default in the base distribution.
Many other GUI development systems are available, but they do not offer the same
level of availability and platform independence as tcltk.
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B.2 Overview of the ade4TkGUI Package

It is not possible to give here a detailed description of all the functions of
ade4TkGUI, and only the main characteristics will be presented. The core of
the package is the ade4TkGUI() function, which opens the main GUI window
(Fig. B.1).

In the main GUI window, buttons are grouped in 6 rows, according to their
function: Data sets, One table analyses, One table analyses with groups, Two
tables analyses, Graphic functions, and Advanced graphics. To avoid cluttering
this window, only a limited subset of functions is displayed. Less frequently
used functions are available through the menus of the menu bar, located at the
top of the window. Right-clicking the buttons opens the ade4 help window for
the corresponding function. The question-head button opens the help window of
ade4TkGUI.

The ade4TkGUI() function takes two boolean arguments, show and
history. The first one determines whether the R commands generated by the GUI

Fig. B.1 The main ade4TkGUI window.
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Fig. B.2 The dudi.pca function GUI window (left), the eigenvalues barchart (right) and the
selection of the number of axes by the user (top-right).

should be printed in the console. When users interact with the GUI, they modify
the status of tcltk widgets, and when they click on the “Submit” button, an R
command is generated from the status of these widgets. This command is executed
and can optionally be displayed in the console. If the history argument is set to
TRUE, the commands generated by the GUI are also stored in the .Rhistory
file, where they can easily be retrieved by users. The state of the two parameters is
recalled in the main window heading “ade4TkGUI(T,T)”.

The “Read a data file” button opens a dialog window that can be used
to set the parameters of the read.table command to read a data text file. The
“Load a data set” just displays the list of ade4 data sets. This list can be used
to choose a particular data set and to load it in memory using the data command.

When the “PCA” button is clicked, a new window appears (Fig. B.2): this is the
GUI window of the dudi.pca function.

In this new window, the “Set” button can be used to choose the PCA input
data frame through a listbox showing the list of data frames in the user global
environment. After the “Input data frame” text field has been filled by the
user, the number of rows and columns (20, 9) are displayed next to it. The output of
the dudi.pca function is an object of class dudi and the user can type the name
of this object in the “Output dudi name” field. If this field is left empty, the
name “Untitled1” is used automatically.

The remaining widgets can be used to set particular options for the PCA: centring
and standardisation, number of principal axes used to compute row and column
coordinates, and row and column weights.
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Fig. B.3 The dudi object display window (left) and the biplot obtained by clicking on the
“scatter” button (right).

Most of the windows created by ade4TkGUI are non-blocking, which means that
the user can do other things in the GUI or in the R console before taking the action
required by this window. This was designed to make the interface more flexible and
easier to use.

Clicking the “Submit” button starts the PCA computations. When they are
completed, the barplot of eigenvalues is displayed (right of Fig. B.2) and, if this
option was chosen in the previous dialog window, the user is asked to select the
number of axes on which the row and column scores should be computed.

After scores are computed, the dudi window is displayed (Fig. B.3, left). This
window shows a summary of the analysis, and displays the elements of the dudi
object under the form of buttons. All these buttons can be used to draw graphs of
the corresponding elements. For example, the row and column coordinates buttons
draw the classical factor maps. In the lower part of the window, the user can choose
which axes are used to draw these graphs.

The last row of buttons gives access to special graphs, according to the particular
properties of the dudi that is displayed. For example, in the case of a normed PCA,
the “s.corcircle” button allows to draw a correlation circle. The “scatter”
button draws a biplot, with a small barchart for eigenvalues (Fig. B.3, right). These
additional buttons are adapted to the type of dudi that is displayed, and they allow
to draw graphs that illustrate particular properties of this dudi.

An example of GUI for one of the graphical functions of adegraphics is given
in Fig. B.4. This is the s.class function, which allows to draw factor maps with
groups of individuals. The user can choose the data frame containing the row scores
(here they come from the “envpca” dudi), and the factor that should be used
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Fig. B.4 The s.class GUI window (left) and the corresponding graph (right).

to draw the groups on the factor map. Many other options can be set to enrich the
graphs.

B.3 Conclusion

The main advantage of a GUI is the ease of use for beginners, occasional users, or
teachers and students. It makes easier learning how to use a software by making
the learning curve smoother, or to get back to work after a long period. This
is particularly important in the case of ade4 in ecological data analysis, because
ecologists are mostly occasional users of R.

An important feature in ade4 is the dudi, a complex R object containing all
the information relating to a duality diagram. The dudi GUI window (Fig. B.3)
was designed to display all the components of a dudi, and to draw automatically
default graphs for each of these components. Therefore, it offers a centralised and
synthetic view of an analysis, and it allows to see rapidly and interactively many
graphs. In command line mode, the user must know all the components of a dudi,
and remember which one is needed to draw a particular graph; this is particularly
difficult for occasional users.

The ade4TkGUI package also facilitates the use of ade4 by pre-selecting the
type of objects that are proposed to users when they must do a selection. For
example, in the dudi.pca dialog window (Fig. B.2), when the user clicks on
the “Set” button to select a data frame, the dialog box contains only data frames
present in the global environment (or in lists present in the global environment).
In the same window, if the user wants to set non-uniform row weights, the “Set”
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button for row weights displays only vectors of length equal to the number of rows
of the data frame. More generally, lists are filtered to propose only objects with
properties consistent with the aim of the action. In the same way, in the dudi
window, the buttons and their functions are coherent with the type of dudi and
with the mathematical properties of its components.

Obviously, a GUI is not well adapted to scripting, and even to simple repetitive
tasks. It is also not good for batch, online or remote use, and it is not easy to
integrate into Sweave or R Markdown documents and vignettes. This is probably
the main drawback of GUIs: they are made for personal and instant use, while the
command line interface (CLI) allows many operations like scripting, re-doing the
same analysis later, sharing pieces of code among colleagues, and batch use for
time-consuming computations.

GUIs and CLIs should not be opposed, but considered as complementary. GUIs
make the learning curve smoother for beginners, and can be used in education to
introduce students to CLI mode. CLI mode is more powerful, it allows to build more
complex analyses, particularly when using several packages jointly. When possible,
the joint use of both CLI and GUI is attractive, as the user gets the benefits of the
two approaches. Joint use can be very intimate: for example, it is possible to use R
expressions in the GUI dialogs, and the GUI can return R expressions that can be
copied and pasted in the console. In the case of ade4TkGUI, the strings typed by
the user in the text fields of the GUI are parsed, and it is therefore possible to use R
expressions, for example, to specify a subset of a data frame in a PCA.

When ade4TkGUI is called with argument “show = TRUE”, R commands
built by the GUI are echoed to the console. It is then possible to copy/paste these
commands and execute them when needed in the console. This is also an effective
way for beginners to learn how to use elaborate R function calls. Occasional users
can thus analyse these command lines and possibly adapt them to their needs, with
the additional benefit of gradually learning the R language.

In addition to this Tcl/Tk GUI, we are developing a new Shiny application to use
the main ade4 functionalities through a Web application. Shiny is an R package
that makes very easy building interactive Web Apps in R. The main advantage is
that users do not have to install R and multiple packages: they only need a web
browser. As an example, a first piece of this “in progress” work is deployed on the
shinyapps.io web site. It can be used to perform a PCA at this URL: https://ade4.
shinyapps.io/ShinyPCA. We plan to develop this approach in the near future and
hope to be able to propose a complete Shiny GUI to the ade4 package.

https://ade4.shinyapps.io/ShinyPCA
https://ade4.shinyapps.io/ShinyPCA
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