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Preface

This book is about reliability and reliability related stochastics. It focuses on
shocks modeling, burn-in and heterogeneous populations. At the first sight, it looks
that these three areas of research in stochastic modeling are not so close. However,
it turns out that they can be naturally combined in the unified framework and some
of the results of this kind have been already reported in our recent publications.
Indeed, there is no pure homogeneity of items (industrial or biological) in real life.
Therefore, it is only an assumption that makes the corresponding statistical
analysis much easier. As most of the real life populations are heterogeneous,
taking this property into account in reliability analysis of various problems is only
increasing the adequacy of stochastic modeling. Furthermore, all objects are
operating in a changing environment. One of the ways to model an impact of this
environment is via the external shocks occurring in accordance with some sto-
chastic point processes. We understand the term ‘‘shock’’ in a very broad sense as
some instantaneous and potentially harmful event (e.g. electrical impulses of large
magnitude, demands for energy in biological objects, insurance claims in finance
etc.). Shock models are widely used in practical and theoretical reliability and in
the other disciplines as well. Numerous shock models have been studied in the
literature during the past 50 years. However, only a few of most recent publica-
tions deal with heterogeneous items subject to shock processes. Finally, we also
focus on burn-in as a method of elimination of ‘weak’ items from heterogeneous
populations. It is well-known that burn-in can be justified when the failure rate of
items is initially decreasing (infant mortality). Heterogeneity of populations is one
of the main causes for this remarkable shape of the failure rate. Burn-in is often
performed in industry in the accelerated environment and this means that at certain
instances shocks can play the role of this environment when the time of burn-in
decreases.

Our presentation combines classical and recent results of other authors with our
research over the past 5 years. The excellent encyclopedic books [4] and [5] give a
broad picture of the modern mathematical reliability theory and also present useful
sources of references. Along with the classical text [2], the excellent textbook [6],
and a mathematically oriented reliability monograph [1], these books can be
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considered as complementary or further reading. The recent monograph of one of
the authors [3] was also extensively used in this book, especially for the intro-
ductory Chap. 2 and for stochastic descriptions of heterogeneous populations.

We hope that our text will be useful for reliability researchers and practitioners
and to graduate students in reliability or applied probability. It contains numerous
stochastic models that can be of interest to applied mathematicians and
statisticians.

This project started in a natural way. One of us was very much interested in his
research in mathematical and applied aspects of burn-in, whereas the other pub-
lished intensively on failure rate modeling for heterogeneous populations and
various shocks models. Therefore, at a certain stage we decided to combine our
efforts and consider burn-in via shocks and also burn-in for heterogeneous pop-
ulations. Along with that some theoretical work on shocks modeling was initiated.
When the critical mass of the obtained results in these directions reached a certain
level, we decided to write them down in the form of the book. Of course, some
introductory information had to be added along with classical, well-established
results.

Maxim Finkelstein acknowledges the support of the University of the Free
State, the National Research Foundation (South Africa) and the Max Planck
Institute for Demographic Research (Germany).

Ji Hwan Cha’s work was supported by the National Research Foundation of
Korea (NRF), grant funded by the Korea government (MEST) (No. 2011-
0017338). Ji Hwan Cha acknowledges the support of the Ewha Womans Uni-
versity (Republic of Korea).

We are also grateful to our colleagues, co-workers, and the students of Ji Hwan
Cha (Hyunju Lee, Jihyun Kim, Haebyur Nam, and Eunjung Jang). Their support
and discussions contributed a lot to this project. Finally, we are indebted to Grace
Quinn, Anthony Doyle, and the Springer staff for their editorial work.

November 2012 Maxim Finkelstein
Ji Hwan Cha
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Chapter 1
Introduction

1.1 Aim and Scope of the Book

As the title suggests, the book is devoted to stochastic models for reliability. This
very wide topic is naturally ‘censored’ by the current research interests of the
authors in the field which are: shock models, burn-in and stochastic modeling in
heterogeneous populations. At first sight, it seems that these three areas of research
are rather ‘independent’. However, it turns out that they can be naturally combined
in the unified framework and some of the results of this kind have already been
reported in our recent publications. As most of the real-life populations are het-
erogeneous, taking this property into account in reliability analysis of various
problems is only increasing the adequacy of the corresponding modeling. Fur-
thermore, all objects are operating in a changing environment. One of the ways to
model an impact of this environment is via the external shocks occurring in
accordance with some point process (e.g., the Poisson process or the renewal
process). By a ‘shock’ we understand an ‘instantaneous’, potentially harmful
event. Depending on its magnitude, a shock can destroy an operating system
(failure), leave it unchanged (as good as old), or, e.g., increase its wear (deterio-
ration) on some increment. Numerous shock models were developed and reported
in the reliability-related literature during the past 50 years. However, only a few
papers (mostly of the authors) deal with shocks in heterogeneous populations and
with shocks as a method of burn-in.

Burn-in is a method of ‘elimination’ of initial failures in field usage. To burn-in
a component or a system means to subject it to a period of simulated use prior to
the actual operation. Due to the high failure rate at the early stages of a compo-
nent’s life, burn-in has been widely accepted as an effective method of screening
out early failures before systems are actually used in field operation. Under the
assumption of decreasing or bathtub-shaped failure rate functions, various prob-
lems of determining optimal burn-in have been intensively studied in the literature.
In the conventional burn-in, the main parameter of the burn-in procedure is its
duration. However, in order to shorten the length of this procedure, burn-in is often
performed in an accelerated environment. This indicates that high environmental
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stress can be more effective in eliminating weak items from a population. In this
case, obviously, the larger values of stress should correspond to the shorter
duration of burn-in. By letting the stress to increase, we can end up (as some limit)
with very short (negligible) durations, in other words, with shocks.

One of the essential features of conventional burn-in is that it is performed for
the items with decreasing (at least, initially) failure rate. Indeed, by burning-in
items for some time we eventually decrease the failure rate for future usage. One
of the main causes that ‘force’ the failure rate to decrease is heterogeneity of
populations of items: the weakest subpopulations are dying out first. When a
population consists of ordered (in some suitable stochastic sense) subpopulations,
the population failure rate is usually initially decreasing. It can have the bathtub or
a more complex shape as well. It turns out that under certain assumptions, burn-in
for populations of heterogeneous items can be justified even in the case when the
population failure rate is increasing. This counter intuitive finding among others
shows the importance of taking into account heterogeneity of the manufactured
items.

We consider the positive (non-negative) random variables, which are called
lifetimes. The time to failure of an engineering component or a system is a lifetime,
as is the time to death of an organism. The number of casualties after an accident
and the wear accumulated by a degrading system are also positive random vari-
ables. Although we deal here mostly with engineering applications, the reliability-
based approach to lifetime modeling for organisms is one of the important topics
for several meaningful examples and applications in the book. Obviously, the
human organism is not a machine, but nothing prevents us from using stochastic
reasoning developed in reliability theory for life span modeling of organisms.

An important tool and characteristic for reliability analysis in our book is the
failure rate function that describes the lifetime. It is well known that the failure rate
function can be interpreted as the probability (risk) of failure in an infinitesimal
unit interval of time. Owing to this interpretation and some other properties, its
importance in reliability, survival analysis, risk analysis, and other disciplines is
hard to overestimate. For example, the increasing failure rate of an object is an
indication of its deterioration or aging of some kind, which is an important
property in various applications. Many engineering (especially mechanical) items
are characterized by the processes of ‘‘wear and tear’’ and, therefore, their life-
times are described by an increasing failure rate. The failure (mortality) rate of
humans at adult ages is also increasing. The empirical Gompertz law of human
mortality defines the exponentially increasing mortality rate. On the other hand,
the constant failure rate is usually an indication of a non-aging property, whereas a
decreasing failure rate can describe, e.g., a period of ‘‘infant mortality’’ when early
failures, bugs, etc., are eliminated or corrected. This, as was mentioned, is also
very important for justification of burn-in, which is usually performed with items
characterized by the decreasing or bathtub failure rate. Therefore, the shape of the
failure rate plays an important role in reliability analysis. When the lifetime dis-
tribution function FðtÞ is absolutely continuous, the failure rate kðtÞ can be defined
as F0ðtÞ=ð1� FðtÞÞ. In this case, there exists a simple, well-known exponential
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representation for FðtÞ (Sect. 2.1). It defines an important characterization of the
distribution function via the failure rate kðtÞ. Moreover, the failure rate contains
information about the chances of failure of an operating object in the next suffi-
ciently small interval of time. Therefore, the shape of kðtÞ is often much more
informative in the described sense than, for example, the shapes of the distribution
function or of the probability density function. On the other hand, the mean
remaining lifetime contains information about the remaining life span and in
combination with the failure rate creates a useful tool for reliability analysis.

In this text, we consider several generalizations of the ‘classical’ notion of the
failure rate kðtÞ. One of them is the random failure rate. Engineering and bio-
logical objects usually operate in a random environment. This random environ-
ment can be described by a stochastic process fZt; t� 0g (e.g., a point process of
shocks) or by a random variable Z as a special case. Therefore, the failure rate,
which corresponds to a lifetime T , can also be considered as a stochastic processes
kðt; ZtÞ or kðt; ZÞ. These functions should be understood conditionally on real-
izations kðtjzðuÞ; 0� u� tÞ and kðtjZ ¼ zÞ, respectively. Similar considerations
are valid for the corresponding distribution functions Fðt; ZtÞ and Fðt; ZÞ.

Another important generalization of the conventional failure rate kðtÞ deals with
repairable systems and considers the failure rate of a repairable component as an
intensity process (stochastic intensity) fkt; t� 0g. The ‘randomness’ of the failure
rate in this case is due to random times of repair. Assume for simplicity that the
repair action is perfect and instantaneous. This means that after each repair a
component is ‘as good as new’. Let the governing failure rate for this component
be kðtÞ. Then the intensity process at time t for this simplest case of perfect repair
is defined as

kt ¼ kðt � T�Þ;

where T� denotes the random time of the last repair (renewal) before t. Therefore,
the probability of a failure in ½t; t þ dtÞ is kðt � T�Þdt, which should also be
understood conditionally on realizations of T�. This and a more general notion of
stochastic intensity for general orderly point processes will be intensively
exploited throughout the book.

Our presentation combines classical and recent results of other authors with our
research findings of recent years. We discuss the subject mostly using necessary
tools and approaches and do not intend to present a self-sufficient textbook on
reliability theory. The choice of topics is driven by the research interests of the
authors. The excellent encyclopedic books by Lai and Xie [6] and Marshall and
Olkin [7] give a broad picture of modern mathematical reliability theory and also
present the up-to-date reference sources. Along with the classical text by Barlow
and Proschan [2], an excellent textbook by Rausand and Hoylandt [8] and a
mathematically oriented reliability monograph by Aven and Jensen [1], these
books can be considered the first-choice complementary or further general reading.
On the other hand, a useful introduction to burn-in can be found in Jensen and
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Petersen [5], whereas numerous relevant facts and results on stochastics for
heterogeneous populations are covered in Finkelstein [4].

The book is mostly targeted at researchers and ‘quantitative engineers’. The
first two chapters, however, can be used by undergraduate students as a supple-
ment to a basic course in reliability. This means that the reader should be familiar
with the basics of reliability theory. The other parts can form a basis for graduate
courses on shocks modeling, burn-in, and on mixture failure rate modeling for
students in probability, statistics, and engineering.

Note that all necessary acronyms and nomenclatures are defined below in the
appropriate parts of the text, when the corresponding symbol or abbreviation is
used for the first time. For convenience, where appropriate, these explanations are
often repeated later in the text as well. This means that each section is self-
sufficient in terms of notation.

1.2 Brief Overview

Chapter 2 is devoted to reliability basics and can be viewed as a brief introduction
to some reliability notions and results that are extensively used in the rest of the book.
We pay considerable attention to the crucial reliability notions of the failure (hazard)
rate and the remaining (residual) life functions. The shapes of the failure rate and of
the mean remaining life function are especially important for the presentation of
chapters devoted to burn-in and heterogeneous populations. On the other hand,
sections devoted to basic properties of stochastic point processes are helpful for the
presentation of Chaps. 3 and 4 that deal with the theory and applications of shock
models. Note that, in this chapter, we mostly consider only those facts, definitions,
and properties that are necessary for further presentation and do not aim at a general
introduction to reliability theory.

Chapter 3 deals mostly with basic shock models and their simplest applications.
Along with discussing some general approaches and results, we present the nec-
essary material for describing our recent results on shocks modeling in Chap. 4. As
in the other chapters of this book, we do not intend to perform a comprehensive
literature review of this topic, but rather concentrate on notions and results that are
vital for further presentation. We understand the term ‘‘shock’’ in a very broad
sense as some instantaneous, potentially harmful event (e.g., electrical impulses of
large magnitude, demands for energy in biological objects, insurance claims in
finance, etc.). It is important to analyze the consequences of shocks for a system
(object) that can be basically two-fold. First, under certain assumptions, we can
consider shocks that can either ‘kill’ a system, or be successfully survived without
any impact on its future performance (as good as old). The corresponding models
are usually called the extreme shock models, whereas the setting when each shock
results in an additive damage (wear) to a system is often described in terms of the
cumulative shock models. In the latter case, the failure occurs when the cumulative
effect of shocks reaches some deterministic or random level and, therefore, this
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setting is useful for modeling degradation (wear). We first briefly discuss several
simplest stochastic models of wear that are helpful in describing basic cumulative
shock models. In the rest of the chapter, we mostly consider the basic facts about
the extreme and cumulative shock models and also describe several meaningful
modifications and applications of the extreme shock modeling.

In Chap. 4, we extend and generalize approaches and results of the previous
chapter to various reliability-related settings of a more complex nature. We relax
some assumptions of the traditional models except the one that defines the
underlying shock process as the nonhomogeneous Poisson process (NHPP). Only
in the last section of this chapter, we suggest an alternative to the Poisson process
to be called the geometric point process. It is remarkable that although the
members of the class of geometric processes do not possess the property of
independent increments, some shock models for this class can be effectively
described without specifying the corresponding dependence structure. The chapter
is rather technical in nature, however, the formulation of results is reasonably
simple and is illustrated by meaningful examples. In extreme shock models, only
an impact of the current, possibly fatal shock is usually taken into account,
whereas in cumulative shock models, an impact of the preceding shocks is
accumulated as well. In this chapter, we also combine extreme shock models with
specific cumulative shock models and derive probabilities of interest, e.g., the
probability that the process will not be terminated during a ‘mission time’. We also
consider some meaningful interpretations and examples.

Chapter 5 deals with heterogeneity in stochastic modeling. Homogeneity of
objects is the unique property that is very rare in nature and in industry. Therefore,
one can hardly find homogeneous populations in real life, however, most of
reliability modeling deals with a homogeneous case. Due to instability of pro-
duction processes, environmental and other factors, most populations of manu-
factured items in real life are heterogeneous. Similar considerations are obviously
true for biological items (organisms). Neglecting heterogeneity can lead to serious
errors in reliability analysis of items and, as a consequence, to crucial economic
losses. Stochastic analysis of heterogeneous populations presents a significant
challenge to developing mathematical descriptions of the corresponding reliability
indices. Mixtures of distributions usually present an effective mathematical tool
for modeling heterogeneity, especially when we are interested in the failure rate,
which is the conditional characteristic. In heterogeneous populations, the analysis
of the shape of the mixture (population) failure rate starts to be even more
meaningful. It is well known, e.g., that mixtures of decreasing failure rate (DFR)
distributions are always DFR. On the other hand, mixtures of increasing failure
rate (IFR) distributions can decrease, at least, in some intervals of time. Note that
the IFR distributions are often used to model lifetimes governed by the aging
processes. Therefore, the operation of mixing can dramatically change the pattern
of population aging, e.g., from positive aging (IFR) to negative aging (DFR).
These properties are very important when considering burn-in for heterogeneous
populations of manufactured items. In this chapter, we first present a brief survey
of results relevant for our further discussion in this and the subsequent chapters.
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In the rest of the chapter, some new applications of the mixture failure rate
modeling are discussed and basic facts to be used in the subsequent chapters are
presented.

In Chap. 6, we introduce the concept of burn-in and review the ‘initial research’
in this area. Burn-in is a method of elimination of initial failures (infant mortality)
in items before they are shipped to customers or put into field operation. It is
important to obtain an optimal duration of burn-in, because, if this procedure is too
short, then the items with shorter lifetimes will still remain in the population. On
the other hand, if the procedure is too long, then it decreases the life spans of items
with ‘normal’ lifetimes and also results in additional costs. By investigating the
relationship between the population failure rate and the corresponding perfor-
mance quality measures, we illustrate how the burn-in procedure can be justified
for items with initially decreasing failure rates. First, we review some important
‘classical’ papers that consider minimization of various cost functions for the
given criteria of optimization. Burn-in is generally considered to be expensive and,
therefore, the length of burn-in is usually limited. Furthermore, for today’s highly
reliable products, many latent failures or weak components require a long time to
detect or identify. Thus, as stated in Block and Savits [3], for decreasing the length
of this procedure, burn-in is often performed in an accelerated environment.
Therefore, in the last part of this chapter, we introduce several stochastic models
for accelerated burn-in.

Chapter 7 mostly deals with burn-in for repairable items. When a non-repairable
item fails during burn-in, and this case was considered in the previous chapter, it is
just scraped and discarded. However, when dealing with expensive products or
complex devices, the complete product will not be typically discarded because of
failure during burn-in, but rather a repair will be performed. Following an influ-
ential survey by Block and Savits [3], there has been intensive research on burn-in
for repairable systems. The main directions of recent studies include the following:
(i) various reliability models which jointly deal with burn-in and maintenance;
(ii) burn-in procedures for general failure models; (iii) stochastic models for
accelerated burn-in. In this chapter, recent developments on burn-in methodology
will be reviewed mainly focusing on the burn-in procedures for minimally
repairable systems. The general repair models for burn-in can constitute an inter-
esting and challenging topic for further studies.

Chapter 8 is devoted to burn-in for heterogeneous populations of items. In
Chaps. 6 and 7, burn-in procedures for homogeneous populations have been dis-
cussed. Burn-in can be usually justified when the failure rate of a population is
decreasing or bathtub-shaped. It is well known that heterogeneity of populations is
often the reason for the initial decrease in the failure rate. In this chapter, the
optimal burn-in procedure is investigated without assuming that the population
failure rate is bathtub-shaped. We consider first the mixed population composed of
two ordered subpopulations—the subpopulation of the strong items (items with
‘normal’ lifetimes) and that of the weak items (items with shorter lifetimes). Then
the continuous mixture model is also discussed in detail. Our goal is to describe
optimization of various characteristics of the performance quality of items after
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burn-in. It is well known that when the failure rate of a component is increasing
there is no need to perform the burn-in procedure and only when it is decreasing or
non-monotonic there is a possibility for burn-in. We show that this reasoning is
usually valid only for homogeneous populations. However, when we deal with
heterogeneous populations the situation can be dramatically different and burn-in
can be justified even for increasing failure rates. Furthermore, for heterogeneous
populations, there exist the risks of selecting items with poor reliability charac-
teristics (i.e., with large failure rates), which is undesirable in practice. Therefore,
to account for this situation, we also develop the special burn-in procedure that
minimizes these specific risks.

In Chap. 9 we apply the stochastic theory of shocks described in the previous
parts of this book to burn-in modeling. In conventional burn-in, the main
parameter of the burn-in procedure is its duration. However, in order to shorten the
length of this procedure, burn-in is often performed in an accelerated environment.
This indicates that a large environmental stress can be effective in eliminating
weak items from a population. In this case, obviously, the larger values of stress
should correspond to the shorter duration of burn-in. By letting the stress to
increase, we can end up (as some limit) with very short (negligible) durations, in
other words, with shocks. Then the stress level can be considered as a controllable
parameter for the corresponding optimization, which in a loose sense is an analog
of the burn-in duration in accelerated burn-in. This general reasoning suggests that
‘electrical’, ‘thermal’, and ‘mechanical’ shocks can be used for burn-in in heter-
ogeneous populations of items. Therefore, in this chapter, we consider shocks (i.e.,
‘instantaneous’ stresses of large level) as a method of burn-in and develop the
corresponding optimization model. As in the previous chapters, we also assume
that our population is the mixture of stochastically ordered subpopulations. As
before, we consider both discrete and continuous mixture models. Under this and
some other natural assumptions, we discuss the problem of determining the
optimal severity level of a stress. We also develop a burn-in model for items that
operate in the environment with shocks. For this we assume that there are two
competing risk causes of failure—the ‘usual’ one (in accordance with aging pro-
cesses in a system) and environmental shocks. A new type of burn-in via the
controlled (laboratory) test shocks is considered and the problem of obtaining the
optimal level (severity) of these shocks is investigated as well.

Chapter 10 describes Environmental Stress Screening (ESS) as another
(although related to burn-in) method of eliminating weak items. There are different
ways of improving reliability characteristics of manufactured items. The most
common methodology adopted in the industry, as described in the previous
chapters, is burn-in, which is a method of ‘elimination’ of initial failures (infant
mortality). Usually, to burn-in a component or a system means to subject it to a
fixed time period of simulated use prior to actual operation. Thus, the ‘sufficient
condition’ for employing the traditional burn-in is the initially decreasing failure
rate. It should be noted, however, that not all populations of engineering items that
contain ‘weaker’ items to be eliminated exhibit this shape of the failure rate. For
example, the ‘weakness’ of some manufactured items can result from latent
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defects that can create additional failure modes. The failure rate in this case is not
necessarily decreasing and, therefore, traditional burn-in should not be applied.
However, by applying the short-time excessive stress, the weaker items in the
population with increasing failure rate can be eliminated by the ESS and, there-
fore, the reliability characteristics of the population of items that have successfully
passed the ESS test can be improved. This is a crucial distinction of the ESS from
burn-in. Another important distinction of the considered model from burn-in is that
the ESS can also create new defects in items that were previously defect-free. In
this chapter, we develop stochastic models for the ESS, analyze its effect on the
population characteristics of the screened items, and describe related optimization
problems. We assume that, due to substandard materials of faulty manufacturing
process, some of the manufactured items are susceptible to additional cause of
failure (failure mode), i.e., shocks (such as electrical or mechanical shocks). We
define the ESS as a procedure of applying a shock of the controlled magnitude, i.e,
a short-time excessive stress.
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Chapter 2
Basic Stochastics for Reliability Analysis

In this introductory chapter, we partially follow, revise, and expand the relevant
portions of Chaps. 2 and 4 of Finkelstein [25] and also add other material that
should be helpful when reading the rest of this book. Therefore, we will often refer
to this chapter in the subsequent parts of the text. It covers the notions and some
basic properties of the failure rate, the mean residual lifetime, stochastic point
processes, minimal and general repair, multivariate accelerated and proportional
hazards models and, finally, the simplest stochastic orders.

2.1 Failure Rate

Throughout this book we will use the term ‘‘failure rate’’ which is equivalent to the
widely used synonym ‘‘hazard rate’’. The choice of the term is just the matter of
taste and habit for us. The importance of this notion to reliability analysis is hard to
overestimate. The failure rate defines the probability that an operating object will
fail in the next sufficiently small unit interval of time and, therefore, plays an
exceptional role in reliability engineering, survival analysis, and other disciplines
that mostly deal with positive (nonnegative) random variables. They are often
called lifetimes. As a random variable, a lifetime is completely characterized by its
distribution function. A realization of a lifetime is usually manifested by a failure,
death or some other ‘end event’. Therefore, information on the probability of
failure of an operating item in the next (usually sufficiently small) unit interval of
time is really important in reliability analysis. If the failure rate function is
increasing, then our object is usually degrading in some suitable stochastic sense.
For example, it is well-known that the failure (mortality) rate of adult humans
increases exponentially with time, whereas the failure rate of many mechanically
wearing devices is often increasing as a power function (Weibull law). Thus,
understanding and analyzing the shape of the failure rate is an essential part of
reliability and survival analysis.

M. Finkelstein and J. H. Cha, Stochastic Modeling for Reliability,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-5028-2_2,
� Springer-Verlag London 2013

9



Let T � 0 be a continuous lifetime random variable with a cumulative
distribution function (Cdf)

FðtÞ ¼ PðT � tÞ; t � 0;
0; t \ 0:

�

Unless stated specifically (e.g., in Chap. 4), we will implicitly assume that this
distribution is ‘proper’, i.e., F�1ð1Þ ¼ 1, and that Fð0Þ ¼ 0. The support of FðtÞ
will usually be ½0;1Þ, although other intervals of <þ ¼ ½0;1Þ will also be used
especially when considering the limiting behavior of mixture failure rates in Chap. 5.
We can view T as some time to failure (death) of a technical device (organism), but
other interpretations and parameterizations are possible as well. Inter-arrival times
in a sequence of ordered events or the amount of monotonically accumulated
damage on the failure of a mechanical item are also relevant examples of ‘lifetimes’.

Denote the expectation of the lifetime variable E½T � by m and assume that it is
finite, i.e., m \1. Assume also that FðtÞ is absolutely continuous and, therefore,
the probability density function (pdf) f ðtÞ ¼ F0ðtÞ exists (almost everywhere). In
accordance with the definition of E½T� and integrating by parts:

m ¼ lim
t!1

Z t

0

xf ðxÞdx

¼ lim
t!1

�tFðtÞ þ
Z t

0

FðxÞdx

2
4

3
5;

where

FðtÞ ¼ 1� FðtÞ ¼ PðT [ tÞ:

Assuming that 0 \
R1

0 FðxÞdx \1, it is easy to conclude that

m ¼
Z1

0

FðxÞdx; ð2:1Þ

which is a well-known fact for lifetime distributions. Thus, the area under the
survival curve defines the mean of T .

Let an item with a lifetime T and the Cdf FðtÞ start operating at t ¼ 0 and let it
be operable (alive) at time t ¼ x: The remaining (residual) lifetime is of significant
interest in reliability and survival analysis. Denote the corresponding random
variable by Tx. Its Cdf FxðtÞ is obtained using the law of conditional probability
(on condition that an item is operable at t ¼ x), i.e.,
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FxðtÞ ¼ PðTx � tÞ ¼ Pðx \ T � x þ tÞ
PðT [ xÞ

¼ Fðxþ tÞ � FðxÞ
FðxÞ

:

ð2:2Þ

Therefore, the corresponding conditional survival probability is given by

FxðtÞ ¼ PðTx [ tÞ ¼ Fðx þ tÞ
FðxÞ

: ð2:3Þ

We have everything in place now for defining the failure rate, which is crucial
for reliability analysis and other disciplines that deal with lifetimes. Consider an
interval of time ðt; t þ Dt�. We are interested in the probability of failure in this
interval given that it did not occur before in ½0; t�: This probability can be inter-
preted as the risk of failure (or of some other harmful event) in ðt; t þ Dt� given the
stated condition. Thus

Pðt \ T � t þ DtjT [ tÞ ¼ Pðt \ T � t þ DtÞ
PðT [ tÞ

¼ Fðt þ DtÞ � FðtÞ
FðtÞ

:

As the pdf f ðtÞ exists, the failure rate is defined as the following limit

kðtÞ ¼ lim
Dt!0

Pðt \ T � t þ DtjT [ tÞ
Dt

¼ lim
Dt!0

Fðt þ DtÞ � FðtÞ
FðtÞDt

¼ f ðtÞ
FðtÞ

:

ð2:4Þ

Therefore, when DðtÞ is sufficiently small,

Pðt\T � t þ DtjT [ tÞ � kðtÞDt;

which gives a very popular and important interpretation of kðtÞDt as an approxi-
mate conditional probability of a failure in ðt; t þ Dt�. Note that, the similar
product for the density function, f ðtÞDt defines the corresponding approximate
unconditional probability of a failure in ðt; t þ Dt�. It is very likely that, owing to
this interpretation, failure rate plays a pivotal role in reliability analysis, survival
analysis and other fields. In actuarial and demographic disciplines, it is usually
called the force of mortality or the mortality rate.

Definition 2.1 The failure rate kðtÞ, which corresponds to the absolutely contin-
uous Cdf FðtÞ, is defined by Eq. (2.4) and is approximately equal to the probability
of a failure in a small unit interval of time ðt; t þ Dt� given that no failure has
occurred in ½0; t�.
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As f ðtÞ ¼ F0ðtÞ; we can view Eq. (2.4) as the first-order differential equation
(with respect to FðtÞwith the initial condition Fð0Þ ¼ 0. Integration of this equation
results in the main exponential formula of reliability and survival analysis:

FðtÞ ¼ 1� exp �
Z t

0

kðuÞdu

0
@

1
A: ð2:5Þ

It is clear now that for the proper distribution,

lim
t!1

Z t

0

kðuÞdu ¼ 1;

which is the necessary and sufficient condition for an arbitrary positive function to
be a failure rate for some proper distribution. The finite limit corresponds to
improper distributions that will be considered in Chap. 4 with respect to the cure
models (see the relevant definitions in Sect. 4.7).

The importance of Eq. (2.5) is hard to overestimate as it presents a simple
characterization of FðtÞ via the failure rate. Therefore, along with the Cdf FðtÞ and
the pdf f ðtÞ, the failure rate kðtÞ uniquely describes a lifetime T . At many
instances, however, especially for lifetimes, this characterization is more conve-
nient, which is often due to the meaningful probabilistic interpretation of the
probability kðtÞDt and the simplicity of Eq. (2.5).

The failure rate can also be defined for the discrete distributions. Let our
random variable T have support Nþ ¼ f1; 2; . . .g. Then the analogue of the density
for continuous distributions is the following probability

f ðnÞ ¼ PðT ¼ nÞ; n ¼ 1; 2; . . .

and the corresponding survival function is

FðnÞ ¼ PðT [ nÞ ¼
X1

i¼nþ1

f ðiÞ; n ¼ 1; 2; . . .:

Similar to (2.4), the discrete failure rate is defined as the following quotient

kðnÞ ¼ f ðnÞ
Fðn� 1Þ

¼ Fðn� 1Þ � FðnÞ
Fðn� 1Þ

;

which is now the (exact) conditional probability of failure at time n given that the
failure did not happen before. Therefore, in contrast to kðtÞ, the failure rate of
discrete distributions is less or equal to 1. On the other hand, similar to kðtÞ, the
necessary and sufficient condition for a sequence kðnÞ; n� 1 to be a failure rate is

X1
i¼1

kðiÞ ¼ 1:
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Various properties of discrete failure rates can be found, e.g., in Lai and Xie
[37]. However, in this book, we will mostly consider the absolutely continuous
lifetime distributions.

2.2 Mean Remaining Lifetime

Along with the failure rate, the mean remaining lifetime is also the main reliability
characteristic. It turns out (see Eq. 2.10) that, similar to Eq. (2.5), the mean
remaining lifetime function also uniquely defines the corresponding Cdf. How
much longer will an item of age t survive? This question is vital for reliability
analysis, survival analysis, actuarial applications and other disciplines. The dis-
tribution of this remaining time is defined by Eq. (2.2), where for the sake of
notation, the variable x has been interchanged with the variable t.

Assume that E½T � � m\1. Denote the mean remaining lifetime (MRL)
function by E½Tt� � mðtÞ, mð0Þ ¼ m. It defines the mean lifetime left for an item of
age t and plays a crucial role in reliability analysis, survival analysis, demography
and other disciplines. In demography, for example, this important population
characteristic is called the ‘‘life expectancy at time t’’ and in risk analysis the term
‘‘mean excess time’’ is often used.

Whereas the failure rate function at t provides information on a random variable
T about a small interval after t, the MRL function at t considers information about
the whole remaining interval ðt;1Þ [27]. Therefore, these two characteristics
complement each other, and reliability analysis of, e.g., engineering systems is
often carried out with respect to both of them. It will be shown in this section that,
similar to the failure rate, the MRL function also uniquely defines the Cdf of T and
that the corresponding exponential representation is also valid. In accordance with
Eqs. (2.1) and (2.3),

mðtÞ ¼ E½Tt� ¼ E½T � tjT [ t�

¼
Z1

0

FtðuÞdu

¼
R1

t FðuÞdu

FðtÞ
:

ð2:6Þ

Definition 2.2 The MRL function mðtÞ ¼ E½Tt�, mð0Þ � m\1, is defined by
Eq. (2.6), obtained by integrating the survival function of the remaining lifetime Tt.

In accordance with Eq. (2.3) and exponential representation (2.5), the survival
function for Tt can be written as
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FtðxÞ ¼ PðTt [ xÞ ¼ exp �
Ztþx

t

kðuÞdu

8<
:

9=
;; ð2:7Þ

which also means that the failure rate that corresponds to the distribution FtðxÞ is

ktðxÞ ¼ kðt þ xÞ: ð2:8Þ

The first simple observation based on Eq. (2.7) tells us that if the failure rate is
increasing (decreasing) in ½0;1Þ, then (for each fixed x [ 0) the function FtðxÞ
is decreasing (increasing) in t. Therefore, the MRL function mðtÞ ¼

R1
0 FtðxÞdx is

decreasing (increasing). The inverse is generally not true, i.e., a decreasing mðtÞ
does not necessarily lead to an increasing kðtÞ.

An interesting relationship can be obtained between the MRL and the reciprocal
of the failure rate [7]:

mðtÞ ¼
Z1

0

FtðuÞdu

¼
Z1

0

kðt þ uÞFðt þ uÞ=kðt þ uÞFðtÞdu

¼ E
1

kðTÞ jT [ t

� �
:

Specifically, for t ¼ 0,

mð0Þ ¼ E
1

kðTÞ

� �
;

which means that the mean time to failure is the expectation of the reciprocal of
the failure rate (in the defined sense). For the exponential distribution with the
constant failure rate k, obviously, m ¼ 1=k. Thus, the foregoing relationship for
mðtÞ shows the origin of departures from this simple equality.

Assume that mðtÞ is differentiable. Differentiation in (2.6) yields

m0ðtÞ ¼
kðtÞ

R1
t FðuÞdu� FðtÞ

FðtÞ
¼ kðtÞmðtÞ � 1:

ð2:9Þ

From Eq. (2.9) the following relationship between the failure rate and the MRL
function is obtained:

kðtÞ ¼ m0ðtÞ þ 1
mðtÞ :
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This simple but meaningful equation plays an important role in analyzing the
shapes of the MRL and failure rate functions.

The following useful exponential representation for FðtÞ via the MRL function
[compare with (2.5)] also describes the relationship between the MRL function
and the reciprocal of the failure rate [40]

FðtÞ ¼ m

mðtÞ exp �
Z t

0

1
mðuÞ du

8<
:

9=
;: ð2:10Þ

Equation (2.10) can be used for ‘constructing’ distribution functions when mðtÞ
is specified. Zahedi [48] shows that in this case, differentiable functions mðtÞ
should satisfy the following conditions:

• mðtÞ[ 0; t 2 ½0;1Þ;
• mð0Þ\1;
• m0ðtÞ[ � 1; t 2 ð0;1Þ;

•
R1
0

1
mðuÞ du ¼ 1:

The first condition is obvious. The second means that we are considering
distributions with the finite first moment. The third condition is obtained from
Eq. (2.8) and states that kðtÞmðtÞ is strictly positive for t [ 0. Note that,
mð0Þkð0Þ ¼ 0 when kð0Þ ¼ 0. The last condition states that FðtÞ is a proper dis-
tribution as limt!1 FðtÞ ¼ 0 in this case.

2.3 Monotonicity of the Failure Rate and the MRL
Function

Monotonicity properties of the failure rate and the MRL functions are important in
different applications. As the failure rate defines the conditional probability of
failure in ðt; t þ dt�, the shape of this function can describe the aging properties of
the corresponding distributions, which are crucial for modeling at many instances.

Survival and failure data are frequently modeled by monotone failure rates.
This may be inappropriate when, e.g., the course of a disease is such that the
mortality reaches a peak after some finite interval of time and then declines [28].
In such case, the failure rate has an upside-down bathtub (UBT) shape and the data
should be analyzed with the help of, e.g., lognormal or inverse Gaussian distri-
butions. On the other hand, many engineering devices possess a period of ‘infant
mortality’ when the failure rate declines in an initial time interval, reaches a
minimum, and then increases. In such a case, the failure rate has a bathtub (BT)
shape and can be modeled, e.g., by mixtures of distributions (see Chap. 5).
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If kðtÞ increases (decreases) in time, then we say that the corresponding
distribution belongs to the increasing (decreasing) failure rate [IFR (DFR)] class.
These are the simplest nonparametric classes of aging distributions. Unless stated
specifically, as usual, by increasing (decreasing) we understand nondecreasing
(nonincreasing). On the other hand, as already mentioned, the increasing
(decreasing) failure rate results in the decreasing (increasing) MRL function
(DMRL and IMRL classes, respectively).

It is well-known that the lognormal and the inverse Gaussian distributions have
a UBT failure rate. We will see in Chap. 5 that many mixing models with an
increasing baseline failure rate result in the UBT shape of the mixture (observed)
failure rate. For example, mixing in a family of increasing (as a power function)
failure rates (the Weibull law) ‘produces’ the UBT shape of the observed failure
rate. From this point of view, the BT shape is ‘less natural’ and often results as a
combination of different standard distributions defined for different time intervals.
For example, infant mortality in ½0; t0] is usually described by some DFR distri-
bution in this interval, whereas the wear out in ðt0;1Þ is modeled by an IFR
distribution. However, mixing of specific distributions can also result in the BT
shape of the failure rate as, e.g., in Navarro and Hernandez [43].

It turns out that the function

gðtÞ ¼ � f 0ðtÞ
f ðtÞ ð2:11Þ

appears to be extremely helpful in the study of the shape of the failure rate
kðtÞ ¼ f ðtÞ=FðtÞ. This function contains useful information about kðtÞ and is much
simpler because it does not involve FðtÞ. In particular, the shape of gðtÞ often
defines the shape of kðtÞ [28].

The rationale behind this statement becomes apparent when limt!1 f ðtÞ ¼ 0.
Indeed, by using L’Hopital’s rule: limt!1 kðtÞ ¼ limt!1 f ðtÞ=FðtÞ ¼ limt!1
�f 0ðtÞ=f ðtÞ.

The following theorem is a ‘more modern’ variation of the famous result by
Glaser [31].

Theorem 2.1 [38]. Let the density f ðtÞ of a lifetime random variable be strictly
positive and differentiable on ð0;1Þ, such that limt!1 f ðtÞ ¼ 0. Then

(i) If gðtÞ is increasing, then the failure rate kðtÞ is also increasing.
(ii) If gðtÞ is decreasing, then kðtÞ is also decreasing.
(iii) If there exists t1 for which gðtÞ is decreasing in t � t1 and increasing in

t � t1, then there exists t2 ( 0 � t2 � t1), such that kðtÞ is decreasing in
t � t2 and increasing in t � t2.

(iv) If there exists t1 for which gðtÞ is increasing in t� t1 and decreasing in
t � t1, then there exists t2 ( 0 � t2� t1), such that kðtÞ is increasing in t � t2

and decreasing in t � t2.
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This important theorem states that monotonicity properties of kðtÞ are defined
by those of gðtÞ, and because gðtÞ is often much simpler than kðtÞ, its analysis is
more convenient. The simplest meaningful example is the standard normal dis-
tribution. Although it is not a lifetime distribution, the application of Theorem 2.1
is very impressive in this case. Indeed, the failure rate of the normal distribution
does not have an explicit expression, whereas the function gðtÞ, as can easily be
verified, is very simple:

gðtÞ ¼ ðt � lÞ=r2;

where l and r are the corresponding mean and the standard deviation, respec-
tively. Therefore, as gðtÞ is increasing, the failure rate is also increasing, which is a
well-known fact for the normal distribution. Note that Gupta and Warren [30]
generalized Glaser’s theorem to the case where kðtÞ has two or more turning
points.

Example 2.1 Failure Rate of the Lognormal Distribution.
A random variable T � 0 follows the lognormal distribution if Y ¼ ln T is

normally distributed. Therefore, we assume that Y is Nða; r2Þ, where a and r2 are
the mean and the variance of Y , respectively. The Cdf in this case is given by

FðtÞ ¼ U
ln t � a

r

� �
; t� 0;

where, as usual, Uð�Þ denotes the standard normal distribution function. The pdf is
given by

f ðtÞ ¼
exp � ðln t�aÞ2

2r2

n o
ðt
ffiffiffiffiffiffi
2p
p

rÞ
;

and it can be shown [37] that the failure rate is

kðtÞ ¼ 1

t
ffiffiffiffiffiffi
2p
p

r

exp � ðln a tÞ2
2r2

n o
1� U ln a t

r

� � ; a � expf�ag:

The function gðtÞ for the lognormal distribution is

gðtÞ ¼ � f 0ðtÞ
f ðtÞ ¼

1
r2t
ðr2 þ ln t � aÞ:

It can be shown that gðtÞ 2 UBT [37] and taking into account that

lim
t!0

kðtÞ ¼ 0; lim
t!1

kðtÞ ¼ 0

it can be concluded that kðtÞ 2 UBT as well.
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Glaser’s approach was generalized by Block et al. [12] by considering the ratio
of two functions GðtÞ ¼ NðtÞ=DðtÞ, where the functions on the right-hand side are
continuously differentiable and DðtÞ is positive and strictly monotone. Similar to
(2.11), we define the function gðtÞ as

gðtÞ ¼ N 0ðtÞ
D0ðtÞ :

These authors show that the monotonicity properties of GðtÞ are ‘close’ to those
of gðtÞ. Consider, for example, the MRL function

mðtÞ ¼
R1

t FðuÞdu

FðtÞ
:

We can use it as GðtÞ. It is remarkable that gðtÞ in this case is simply the
reciprocal of the failure rate, i.e.,

gðtÞ ¼ FðtÞ
f ðtÞ ¼

1
kðtÞ :

Therefore, the functions mðtÞ and 1=kðtÞ can be close in some suitable sense, as
already stated before.

Glaser’s theorem defines sufficient conditions for BT (UBT) shapes of the
failure rate. The next theorems (see [25] for the proofs) establish important rela-
tionships between the shapes of kðtÞ and mðtÞ. The first one is obvious and, in fact,
has already been mentioned before.

Theorem 2.2 If kðtÞ is increasing then mðtÞ is decreasing.

Thus, a monotone failure rate always corresponds to a monotone MRL function.
The inverse is true only under additional conditions.

Theorem 2.3 Let the MRL function mðtÞ be twice differentiable and the failure
rate kðtÞ be differentiable in ð0;1Þ. If mðtÞ is decreasing (increasing) and is a
convex (concave) function, then kðtÞ is increasing (decreasing).

Theorem 2.3 gives the sufficient conditions for the monotonicity of the failure
rate in terms of the monotonicity of mðtÞ. The following theorem generalizes the
foregoing results to a non-monotone case [25, 29, 41]. It states that the BT (UBT)
failure rate under certain assumptions can correspond to a monotone MRL func-
tion (compare with Theorem 2.3, which gives a simpler correspondence rule).

Theorem 2.4 Let kðtÞ be a differentiable BT failure rate in ½0;1Þ:

• If

m0ð0Þ ¼ kð0Þmð0Þ � 1� 0;
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then mðtÞis decreasing;

• If m0ð0Þ[ 0, then mðtÞ 2 UBT.

Let kðtÞ be a differentiable UBT failure rate in ½0;1Þ:

• If m0ð0Þ� 0, then mðtÞ is increasing;
• If m0ð0Þ\0, then mðtÞ 2 BT.

Corollary 2.1 Let kð0Þ ¼ 0. If kðtÞ is a differentiable UBT failure rate, then mðtÞ
has a bathtub shape.

Example 2.2 [29] Consider a lifetime distribution with kðtÞ 2 BT, t 2 ½0;1Þ of
the following specific form:

kðtÞ ¼ ð1þ 2:3t2Þ � 4:6t

1þ 2:3t2
:

It can easily be obtained using Eq. (2.6) that the corresponding MRL is

mðtÞ ¼ 1
1þ 2:3t2

;

which is a decreasing function. Obviously, the condition kð0Þ� 1=mð0Þ is
satisfied.

2.4 Point Processes

Applied probabilistic analysis of point processes and, specifically, of shock pro-
cesses is one of the main topics of this book. Various shock models are considered
in most of the subsequent chapters. Therefore, in this introductory chapter, we
discuss relevant properties of the point processes that are used throughout our
book.

2.4.1 Characterization of Point Processes

The randomly occurring time points (instantaneous events) can be described by a
stochastic point (counting) process fNðtÞ; t� 0g with a state space f0; 1; 2; . . .g.
For any s; t� 0 with s\t, the increment

Nðs; tÞ � NðtÞ � NðsÞ

is equal to the number of points that occur in ½s; tÞ and NðsÞ�NðtÞ for s� t.
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Assume that our process is orderly, which means that there are no multiple
occurrences, i.e., the probability of the occurrence of more than one event in a
small interval of length Dt is oðDtÞ: Assuming the limits exist, the rate of this
process krðtÞ is defined as

krðtÞ ¼ lim
Dt!0

PðNðt; t þ DtÞ ¼ 1Þ
Dt

¼ lim
Dt!0

E½Nðt; t þ DtÞ�
Dt

We use a subscript r here, which stands for ‘‘rate’’, to avoid confusion with the
notation for the ‘ordinary’ failure rate of an item kðtÞ. However, in the forthcoming
chapters, where it does not lead to confusion, the corresponding notation will be
kðtÞ or mðtÞ. Thus, krðtÞdt can be interpreted as an approximate probability of an
event occurrence in ½t þ dtÞ. The mean number of events in ½0; tÞ is given by the
cumulative rate

E½Nð0; tÞ� � KrðtÞ ¼
Z t

0

krðuÞdu:

The rate krðtÞ does not completely define the point process and, therefore, a
more detailed description should be used for this type of characterization. The
heuristic definition of the corresponding stochastic process that is sufficient for our
presentation (see [2, 3] for mathematical details) is as follows.

Definition 2.3 An intensity process (stochastic intensity) kt; t� 0 of an orderly
point process NðtÞ; t� 0 is defined as the following limit:

kt ¼ lim
Dt!0

PðNðt; t þ DtÞ ¼ 1jHt�Þ
Dt

¼ lim
Dt!0

E½Nðt; t þ DtÞjHt��
Dt

;

ð2:12Þ

where Ht� ¼ fNðsÞ : 0 � s \ tg is an internal filtration (history) of the point
process in ½0; tÞ, i.e., the set of all point events in ½0; tÞ.

This definition can be written in a compact form via the following conditional
expectation:

ktdt ¼ E½dNðtÞjHt��: ð2:13Þ

Thus the deterministic rate krðtÞ ‘turns into’ the corresponding stochastic
process. More precisely: the rate of the orderly point process krðtÞ can be viewed
as the expectation of the intensity process kt; t � 0 over the entire space of pos-
sible histories, i.e., krðtÞ ¼ E½kt�. Note that the term ‘‘complete intensity function’’
for krðtÞ is also sometime used in the literature (e.g., Cox and Isham [15]).
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The intensity process completely defines (characterizes) the corresponding
point process. We will consider several meaningful examples of kt; t� 0 in the
subsections to follow.

Relation (2.13) can be also written as

E½dNðtÞ � ktdtjHt�� ¼ 0: ð2:14Þ

Thus, if we define the process

MðtÞ ¼ NðtÞ �
Z t

0

ksds;

Eq. (2.14) can be rewritten as

E½dMðtÞjHt�� ¼ 0;

which is the intuitive definition of the martingale (see, e.g., Aalen et al. [1]). Thus,
the intuitive definition of the intensity process (2.13) is equivalent to asserting that
the counting process minus the cumulative intensity process,

Kt ¼
Z t

0

ks ds

is a martingale.

2.4.2 Poisson Process

The simplest point process is where the points occur ‘totally randomly’. The
following definition is formulated in terms of conditional characteristics and is
equivalent to the standard definitions of the Poisson process [44].

Definition 2.4 The nonhomogeneous Poisson process (NHPP) is an orderly point
process such that its intensity process is equal to the rate, i.e.,

kt ¼ kðtjHt�Þ ¼ krðtÞ: ð2:15Þ

Obviously, the property of independent increments holds automatically for this
process. When krðtÞ � kr, the process is called the homogeneous Poisson process,
or just the Poisson process. The number of events in any interval of length d is
given by

Pr½NðdÞ ¼ n� ¼ expf�KrðdÞg
ðKrðdÞÞn

n!
; ð2:16Þ
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where KrðtÞ ¼
R t

0 krðuÞdu is the cumulative rate. The distribution of time since
t ¼ x up to the next event, in accordance with Eq. (2.3), is

FðtjxÞ ¼ 1� exp �
Zxþt

x

krðuÞdu

8<
:

9=
;: ð2:17Þ

Therefore, the time to the first event for a Poisson process that starts at t ¼ 0 is
described by the Cdf with the failure rate krðtÞ.

Let the arrival times in the NHPP with rate krðtÞ be denoted by Si; i ¼ 1; 2; . . .;
S0 ¼ 0. The following remarkable property will be used extensively in Chap. 4.
Consider the time-transformed process with arrival times

~S0 ¼ 0; ~Si ¼ KrðSiÞ �
ZSi

0

krðuÞdu:

It can be shown that the process defined by ~Si; i ¼ 1; 2; . . . is a homogeneous

Poisson process with the rate equal to 1, i.e., ~krðtÞ ¼ 1. This can be described
formally by the following theorem:

Theorem 2.5 [18]. Let KrðtÞ; t� 0 be a positive-valued, continuous, non-
decreasing function. Then the random variables Si; i ¼ 1; 2; . . .; S0 ¼ 0 are the
arrival times corresponding to a nonhomogeneous Poisson process with the
cumulative rate KrðtÞ if and only if KrðSiÞ are the arrival times corresponding to a
homogeneous Poisson process with rate 1.

The importance of this result in reliability applications is hard to overestimate.
While considering various shock models, we will use this theorem in combination
with the following result:

Theorem 2.6 [16] Let Si; i ¼ 1; 2; . . .; S0 ¼ 0 be the arrival times of a nonho-
mogeneous Poisson process with a continuous cumulative rate function KrðtÞ
Then, conditional on the number of events Nðt0Þ ¼ n; the arrival times Si; i ¼
1; 2; . . . are distributed as order statistics from a sample with distribution function
FðtÞ ¼ KðtÞ=Kðt0Þ for t 2 ½0; t0�.

Finally, we will briefly describe the operation of thinning of the Poisson pro-
cess, which will be also studied in Chap. 4 in a much more general setting. Assume
that a function krðtÞ is bounded by the rate of the homogeneous Poisson process,
i.e, krðtÞ � kr \1. Suppose now that each event from the process with rate kr is
counted with probability krðtÞ=k, then the resulting thinned process of counted
events is the nonhomogeneous Poisson process with rate krðtÞ [44]. This operation
can be generalized to the case when the initial nonhomogeneous Poisson process
with rate krðtÞ is thinned with the time-dependent probability pðtÞ, which results
in the thinned process with rate pðtÞkrðtÞ(see also the Brown-Proschan model of
Sect. 2.5).

22 2 Basic Stochastics for Reliability Analysis

http://dx.doi.org/10.1007/978-1-4471-5028-2_4
http://dx.doi.org/10.1007/978-1-4471-5028-2_4


2.4.3 Renewal Process

As the renewal process is the main tool and the basis for probabilistic analysis of
repairable items, we will consider this process in more detail.

Let fXigi� 1 denote a sequence of i.i.d. lifetime random variables with common
Cdf FðtÞ. Therefore, Xi; i� 1 are the copies of some generic X. Let the corre-
sponding arrival times be defined as

S0 ¼ 0; Sn ¼
Xn

1

Xi;

where Xi can also be interpreted as the interarrival times or cycles, i.e., times
between successive renewals. Obviously, this setting corresponds to perfect,
instantaneous repair. Define the corresponding point process as

NðtÞ ¼ supfn : Sn� tg ¼
X1

1

IðSn� tÞ;

where, as usual, the indicator is equal to 1 if Sn� t and is equal to 0 otherwise.

Definition 2.5 The described counting process fNðtÞ; t� 0g and the point pro-
cess Sn; n ¼ 0; 1; 2; . . . are both called renewal processes.

The rate of the process defined by Eq. (2.12) is called the renewal density
function in this specific case. Denote this function by hðtÞ. Similar to the general
setting, the corresponding cumulative function defines the mean number of events
(renewals) in ½0; tÞ, i.e.,

HðtÞ ¼ E½NðtÞ� ¼
Z t

0

hðuÞdu:

The function HðtÞ is called the renewal function and is the main object of study
in renewal theory. This function also plays an important role in different appli-
cations, as, e.g., it defines the mean number of repairs or overhauls of equipment in
½0; tÞ. Applying the operation of expectation to NðtÞ results in the following
relationship for HðtÞ:

HðtÞ ¼
X1

1

FðnÞðtÞ; ð2:18Þ

where FðnÞðtÞ denotes the n-fold convolution of FðtÞ with itself. Assume that FðtÞ
is absolutely continuous and, therefore, the density f ðtÞ exists. Denote by
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H	ðsÞ ¼
Z1

0

expf�stgHðtÞdt and f 	ðsÞ ¼
Z1

0

expf�stgf ðtÞdt

the Laplace transforms of HðtÞ and f ðtÞ, respectively.
Applying the Laplace transform to both sides of (2.18) and using the fact that

the Laplace transform of a convolution of two functions is the product of the
Laplace transforms of these functions, we arrive at the following equation:

H	ðsÞ ¼ 1
s

X1
k¼1

ðf 	ðsÞÞk ¼ f 	ðsÞ
sð1� f 	ðsÞÞ : ð2:19Þ

As the Laplace transform uniquely defines the corresponding distribution,
(2.19) implies that the renewal function is uniquely defined by the underlying
distribution FðtÞ via the Laplace transform of its density.

The functions HðtÞ and hðtÞ satisfy the following integral equations:

HðtÞ ¼ FðtÞ þ
Z t

0

Hðt � xÞf ðxÞdx; ð2:20Þ

hðtÞ ¼ f ðtÞ þ
Z t

0

hðt � xÞf ðxÞdx: ð2:21Þ

Let us prove Eq. (4.10) by conditioning on the time of the first renewal, i.e.,

HðtÞ ¼
Z t

0

E½NðtÞjX1 ¼ x�f ðxÞdx ¼
Z t

0

½1þ Hðt � xÞ�f ðxÞdx

¼ FðtÞ þ
Z t

0

Hðt � xÞf ðxÞdx:

ð2:22Þ

If the first renewal occurs at time x � t, then the process simply restarts and the
expected number of renewals after the first one in the interval ðx; t� is Hðt � xÞ.
Note that Eq. (2.19) can also be obtained by applying the Laplace transform to
both parts of Eq. (2.20). In a similar way, the equation

hðtÞ ¼
Z t

0

d
dt
ðE½NðtÞjX1 ¼ x�Þf ðxÞdx ð2:23Þ

eventually results in (2.21).
Denote, as usual, the failure rate of the underlying distribution FðtÞ by kðtÞ. The

intensity process, which corresponds to the renewal process, is
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kt ¼
X
n� 0

kðt � SnÞIðSn� t\Snþ1Þ; t� 0; ð2:24Þ

where Ht� ¼ 0 � S1 \ S2 \ . . . \ SNðtÞ is the history of the renewal process in
½0; tÞ Thus, at each fixed t, the intensity process can also be compactly written as
kðt � SNðtÞÞ, where SNðtÞ is the random time of the last renewal. This means that the
whole history of the process in this case reduces only to the time since the last
renewal. In fact, this simplification makes the process mathematically tractable.

In contrast to the Poisson process, when the underlying Cdf FðtÞ is nonexpo-
nential, the renewal process does not possess the Markov property and, therefore,
its increments are not independent. However, the Markov property is preserved
only at renewal times, as the process restarts after each renewal.

Asymptotic behavior of renewal processes is also usually of interest in different
applications. A well-known result [44] states the intuitively expected asymptotic
properties for the renewal function and the renewal density function as t!1,
i.e.,

HðtÞ ¼ t

m
½1þ oð1Þ�; hðtÞ ¼ 1

m
½1þ oð1Þ�; ð2:25Þ

where we assume that E½X� ¼ m \1 exists. Thus, in contrast to the Poisson
process with the rate defined by an ‘arbitrary’ function krðtÞ, the rate of the
renewal process tends to a constant as t!1.

2.5 Minimal Repair

The renewal points of the renewal process can be interpreted as instants of perfect
repair of a repairable system. But in reality the repair is usually not perfect.
Therefore, researches came up with different models of imperfect repair. The first
in this row was the, so-called, minimal repair. The concept of minimal repair is
crucial for analyzing the performance and maintenance policies of repairable
systems. It will be also of prime interest for burn-in and heterogeneity modeling of
the forthcoming chapters of this book. It is the simplest and the best understood
type of imperfect repair in applications. Minimal repair was introduced by Barlow
and Hunter [8] and was later studied and applied in numerous publications devoted
to modeling of repair and maintenance of various systems. It was also indepen-
dently used in bio-demographic studies [47].

The term minimal repair is meaningful. In contrast to an overhaul (perfect
repair), it usually describes a minor maintenance or repair operation. The math-
ematical definition is as follows.

Definition 2.6 The survival function of an item (with the Cdf FðtÞ and the failure
rate kðtÞ) that had failed and was instantaneously minimally repaired at age x is
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Fðxþ tÞ
FðxÞ

¼ exp �
Zxþt

x

kðuÞdu

8<
:

9=
;: ð2:26Þ

In accordance with Eq. (2.3), this is exactly the survival function of the
remaining lifetime of an item of age x. Therefore, the failure rate just after the
minimal repair is kðxÞ, i.e., the same as it was prior the repair. This means that
minimal repair does not change anything in the future stochastic behavior of an
item, as if a failure did not occur. It is often described as the repair that returns an
item to the state it had been in prior to the failure. Sometimes this state is called as
bad as old. The term state should be clarified. In fact, the state in this case depends
only on the time of failure and does not contain any additional information.
Therefore, this type of repair is sometimes referred to as statistical or black box
minimal repair [10, 25]. However, to comply with tradition, we will use the term
minimal repair (without adding ‘‘statistical’’) for the operation described by
Definition 2.6.

Comparison of (2.26) with (2.17) results in the important conclusion that the
process of minimal repairs is a nonhomogeneous Poisson process with rate
krðtÞ ¼ kðtÞ. Therefore, in accordance with Eq. (2.15), the intensity process
kt; t� 0 that describes the process of minimal repairs that is ‘performed on an
item’ with the failure rate kðtÞ is also deterministic, i.e., kt ¼ kðtÞ:

There are two popular interpretations of minimal repair. The first one was
introduced to mimic the behavior of a large system of many components when one
of the components is perfectly repaired (replacement). It is clear that in this case
the performed repair operation can be approximately qualified as a minimal repair.
We must assume additionally that the input of the failure rate of this component in
the failure rate of the system is sufficiently small.

The second interpretation describes the situation where a failed system is
replaced by a statistically identical one, which was operating in the same envi-
ronment but did not fail. The following example interprets in terms of minimal
repairs the meaningful notion of a deprivation of life that is used in demographic
literature.

Example 2.3 Let us think of any death in ½t; t þ dtÞ, whether from accident, heart
disease, or cancer, as an ‘accident’ that deprives the person involved of the
remainder of his expectation of life [33], which in our terms is the MRL function
mðtÞ, defined by Eq. (2.6). Suppose that everyone is saved from death once but
thereafter is unprotected and is subject to the usual mortality in the population.
Then the average deprivation can be calculated as

D ¼
Z1

0

f ðuÞmðuÞdu;
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where f ðtÞ is the density which corresponds to the Cdf FðtÞ. In our terms, D is the
mean duration of the second cycle in the process of minimal repair with rate kðtÞ.
Note that the mean duration of the first cycle is mð0Þ ¼ m. The case of several
additional life chances or, equivalently, subsequent minimal repairs is considered
in Vaupel and Yashin [47]. These authors show that the mortality (failure) rate
with a possibility of n minimal repairs is

knðtÞ ¼ kðtÞ KnðtÞ
n!
Pn

r¼0
KrðtÞ

r!

;

where kðtÞ is the mortality rate without possibility of minimal repairs.

Example 2.3 deals with the limited number of minimal repairs. Another option
is to consider the situations when this number is limited in some probabilistic way,
e.g., in terms of relevant expectations. The meaningful example of this is the
Brown-Proschan model. As it was already stated, real-life repair is neither perfect
nor minimal. It is usually intermediate in some suitable sense. Note that it can even
be worse than a minimal repair (e.g., correction of a software bug can result in new
bugs).

One of the first imperfect repair models was suggested by Beichelt and Fischer
[9] (see also [13]). This model combines minimal and perfect repairs in the
following way. An item is put into operation at t ¼ 0. Each time it fails, a repair is
performed, which is perfect with probability p and is minimal with probability
1� p. Thus, there can be k ¼ 0; 1; 2; . . . imperfect repairs between two successive
perfect repairs. The sequence of i.i.d. times between consecutive perfect repairs
Xi; i ¼ 1; 2; . . ., as usual, forms a renewal process.

The Brown–Proschan model was extended by Block et al. [11] to an age-
dependent probability pðtÞ; where t is the time since the last perfect repair.
Therefore, each repair is perfect with probability pðtÞ and is minimal with prob-
ability 1� pðtÞ. Denote by FpðtÞ the Cdf of the time between two consecutive
perfect repairs. Assume that

Z1

0

pðuÞkðuÞdu ¼ 1; ð2:27Þ

where kðtÞ is the failure rate of our item. Then

FpðtÞ ¼ 1� exp �
Z t

0

pðuÞkðuÞdu

8<
:

9=
;: ð2:28Þ

Note that Condition (2.27) ensures that FpðtÞ is a proper distribution
(Fpð1Þ ¼ 1). Thus, the failure rate kpðtÞ that corresponds to FpðtÞ is given by the
following meaningful and simple relationship:
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kpðtÞ ¼ pðtÞkðtÞ: ð2:29Þ

The formal proof of (2.28–2.29) can be found in Beichelt and Fischer [9] and
Block et al. [11]. On the other hand, the following simple general reasoning leads
to the same result. Let an item start operating at t ¼ 0 and let Tp denote the time to
the first perfect repair. We will now ‘construct’ the failure rate kpðtÞ in a direct
way. Owing to the properties of the process of minimal repairs, we can reformulate
the described model in a more convenient way that will be frequently used in the
next chapter. Assume that events are arriving in accordance with the NHPP with
rate kðtÞ. Each event independently from the history ‘stays in the process’ with
probability qðtÞ ¼ 1� pðtÞ and terminates the process with probability pðtÞ.
Therefore, the random variable Tp can now be interpreted as the time to termi-
nation of our point process. The intensity process that corresponds to the NHPP is
equal to its rate and does not depend on the history Ht� of the point process of
minimal repairs. Moreover, owing to our assumption, the probability of termina-
tion also does not depend on this history. Therefore,

kpðtÞdt ¼ PðTp 2 ½t; t þ dtÞjHt�; Tp� tÞ ¼ pðtÞkðtÞdt: ð2:30Þ

On the other hand, as we will frequently use the similar reasoning (in more
advanced settings) in the next chapter, it is reasonable to present the formal,
detailed proof of Eqs. (2.28–2.29). We will derive the distribution of time to
termination of the process. As it was stated, the process of minimal repairs (before
termination) is the nonhomogeneous Poisson process, fNðtÞ; t� 0g with rate kðtÞ.
Thus, denoting the arrival times by Ti; i ¼ 1; 2; . . ., the cumulative rate by KðtÞ ¼
E½NðtÞ� ¼

R t
0 kðuÞdu and conditioning on this process (in each realization) gives

PðTp� tjNðsÞ; 0� s\tÞ ¼
YNðtÞ
i¼0

qðTiÞ;

where qðT0Þ � 1 corresponds to the case when NðtÞ ¼ 0. Then the corresponding
expectation is

PðTp� tÞ ¼ E½
YNðtÞ
i¼1

qðTiÞ�:

Define N	ðtÞ � NðK�1ðtÞÞ; t� 0, and T	j � KðTjÞ; j� 1. As follows from
Theorem 2.5, fN	ðtÞ; t� 0 g : is a stationary Poisson process with rate 1 and
T	j ; j� 1, are the times of occurrence of events in the new time scale. Let s ¼ KðtÞ.
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Then

E½
YNðtÞ
i¼1

qðTiÞ� ¼ E½
YN	ðsÞ
i¼1

qðK�1ðT	i ÞÞ� ¼ E½E½
YN	ðsÞ
i¼1

qðK�1ðT	i ÞÞjN	ðsÞ��:

The joint distribution of T	1 ; T
	
2 ; � � �; T	n

	 

given N	ðsÞ ¼ n is the same as the

joint distribution of V 1ð Þ;V 2ð Þ; � � � ;V nð Þ
	 


, where V 1ð Þ �V 2ð Þ � � � � �V nð Þ are the
order statistics of i.i.d. random variables V1;V2; � � � ;Vn which are uniformly dis-
tributed in the interval 0; s½ � ¼ 0;KðtÞ½ �. Thus

E

�YN	ðsÞ
i¼1

qðK�1ðT	i ÞÞjN	ðsÞ ¼ n

�

¼ E

�Yn

i¼1

qðK�1ðT	i ÞÞjN	ðsÞ ¼ n

�

¼ E

�Yn

i¼1

qðK�1ðV ið ÞÞÞ
�

¼ E

�Yn

i¼1

qðK�1ðViÞÞ
�

¼ E½qðK�1ðV1ÞÞ�
	 
n¼ E½qðK�1ðsUÞÞ�

	 
n
;

where U � V1=s ¼ V1=KðtÞ is a random variable uniformly distributed in the unit
interval [0,1]. Therefore,

E½qðK�1ðsUÞÞ� ¼
Z1

0

q K�1 suð Þ
	 


du ¼
Z1

0

q K�1 KðtÞuð Þ
	 


du ¼ 1
KðtÞ

Z t

0

qðxÞkðxÞdx:

Hence,

E

�YN	ðsÞ
i¼1

qðK�1ðT	i ÞjN	ðsÞ ¼ n

�
¼ 1

KðtÞ

Z t

0

qðxÞkðxÞdx

0
@

1
A

n

And, finally,
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PðTp� tÞ ¼ E½
YNðtÞ
i¼1

qðTiÞ�

¼
X1
n¼0

1
KðtÞ

Z t

0

qðxÞkðxÞdx

0
@

1
A

n

� ðKðtÞÞ
n

n !
e�KðtÞ

¼ exp �
Z t

0

pðxÞkðxÞdx

8<
:

9=
; �

X1
n¼0

Rt
0

qðxÞkðxÞdx

� �n

n !
�

exp �
Z t

0

qðxÞkðxÞdx

8<
:

9=
; ¼ exp �

Z t

0

pðxÞkðxÞdx

8<
:

9=
;:

ð2:31Þ

Thus, the time till the first perfect repair is distributed in accordance with
Eq. (2.31). Moreover, this setting can be considered more generally (not neces-
sarily with termination), when each event from the original NHPP with rate kðtÞ is
classified with probability pðtÞ as an event of the Type 1 and with probability
qðtÞ ¼ 1� pðtÞ, as an event of the Type 2. Then we arrive at the sum of two NHPP
processes with rates

pðtÞkðtÞ and qðtÞkðtÞ;

respectively. More discussion on this classification can be found in Chap. 4, where
more general point processes will be also considered.

2.6 General (Imperfect) Repair

The conventional models for burn-in of repairable items usually deal with mini-
mally repaired items. However, this assumption is often violated in practice.
Therefore, a more general type of repair should be considered. As was discussed in
the previous section, minimal repair is the specific case of imperfect or general
repair (we will use these terms interchangeably). After imperfect repair, the system
is usually in the intermediate state (between the state that corresponds to perfect
repair and the state that corresponds to minimal repair). However, the situation
when this state is ‘worse’ than that after the minimal repair sometimes can also
occur in practice. In order to deal effectively with models of imperfect repair we
must refer to the concept of virtual age [25].

2.6.1 Virtual Age

Consider a degrading item that operates in a baseline environment (regime) and
denote the corresponding Cdf of time to failure by FbðtÞ. Let another statistically
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identical item be operating in a more severe environment with the Cdf of time to
failure denoted by FsðtÞ. Denote by kbðtÞ and ksðtÞ the failure rates in two envi-
ronments, respectively. We want to establish an age correspondence between the
systems in two regimes by considering the baseline as a reference. It is reasonable
to assume that degradation in the second regime is more intensive and, therefore,
the time for accumulating the same amount of degradation or wear is smaller than
in the baseline regime. Therefore, assume that the lifetimes in two environments
are ordered as (see Sect. 2.7 for the description of the main stochastic orders)

FsðtÞ\ FbðtÞ; t 2 ð0;1Þ: ð2:32Þ

Inequality (2.32) implies the following equation:

FsðtÞ ¼ FbðWðtÞÞ; Wð0Þ ¼ 0; t 2 ð0;1Þ: ð2:33Þ

Equation (2.33) can be interpreted as a general Accelerated Life Model (ALM)
([17, 24, 39], to name a few) with a time-dependent scale-transformation function
WðtÞ.

Definition 2.7 Let t be the calendar age of a degrading item operating in a
baseline environment. Assume that ALM (2.33) describes the lifetime of another
statistically identical item, which operates in a more severe environment for the
same duration t.

Then the function WðtÞ[ t defines the statistical virtual age of the second item,
or, equivalently, the inverse function W�1ðtÞ\t defines the statistical virtual age
of the first item when a more severe environment is set as the baseline
environment.

The ALM defined by (2.33) can be viewed as an equation for obtaining WðtÞ, i.e.,

exp �
Z t

0

ksðuÞdu

8<
:

9=
; ¼ exp �

ZWðtÞ

0

kbðuÞdu

8><
>:

9>=
>;

)
Z t

0

ksðuÞdu ¼
ZWðtÞ

0

kbðuÞdu:

ð2:34Þ

Hence, the statistical virtual age WðtÞ is uniquely defined by Eq. (2.34). Assume
that WðtÞ is differentiable. Then WðtÞ ¼

R t
0 wðuÞdu and wðtÞ can be interpreted as

the rate of degradation.

Example 2.4 Let the failure rates in both regimes be increasing, positive power
functions (the Weibull distributions), which are often used for lifetime modeling of
degrading objects, i.e.,

kbðtÞ ¼ a tb ; ksðtÞ ¼ l tg; a; b; l; g[ 0:
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The statistical virtual age WðtÞ is defined by Eq. (2.34) as

WðtÞ ¼ lðbþ 1Þ
aðgþ 1Þ

� � 1
bþ1

t
gþ1
bþ1:

In order for the inequality WðtÞ [ t to hold, the following restrictions on the
parameters are sufficient: g� b; lðbþ 1Þ[ aðgþ 1Þ:

As follows from Eq. (2.33), the failure rate that corresponds to the Cdf FsðtÞ is

ksðtÞ ¼
F0bðWðtÞÞ
FbðWðtÞÞ

¼ wðtÞkbðWðtÞÞ: ð2:35Þ

Let an item start now operating in a baseline regime at t ¼ 0, which is switched
at t ¼ x to a more severe regime. In accordance with Definition 2.7, the statistical
virtual age immediately after the switching is Vx ¼ W�1ðxÞ, where the new
notation Vx is used for convenience. Assume now that the governing Cdf after the
switching is FsðtÞ and that the Cdf of the remaining lifetime is FsðtjVxÞ, i.e.,

FsðtjVxÞ ¼ 1� Fsðt þ VxÞ
FsðVxÞ

: ð2:36Þ

Thus, an item starts operating in the second regime with a starting age Vx

defined with respect to the Cdf FsðtÞ. Note that the form of the lifetime Cdf after
the switching given by Eq. (2.36) is our assumption and that it does not follow
directly from ALM (2.33). Alternatively, we can proceed starting with ALM (2.33)
and obtain the Cdf of an item’s lifetime for the whole interval ½0;1Þ, and this will
be performed in what follows.

According to our interpretation the rate of degradation is 1 in t 2 ½0; xÞ. Assume
that the switching at t ¼ x results in the rate wðtÞ[ 1 in ½x;1Þ, where
wðtÞ ¼ W 0ðtÞ. Under the stated assumptions, the item’s lifetime Cdf in ½0;1Þ, to
be denoted by FbsðtÞ, can be written as [25]

FbsðtÞ ¼
FbðtÞ; 0� t\x;

Fb xþ
Rt
x

wðuÞÞdu

� �
; x� t\1:

8<
: ð2:37Þ

Transformation of the second row on the right-hand side of this equation results
in

Fb xþ
Z t

x

wðuÞdu

0
@

1
A ¼ Fb WðtÞ �WðsðxÞÞð Þ; ð2:38Þ

where sðxÞ\x is uniquely defined from the equation
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x ¼
Zx

sðxÞ

wðuÞdu ¼ WðxÞ �WðsðxÞÞ: ð2:39Þ

Thus, the cumulative degradation in ½sðxÞ; xÞ in the second regime is equal to
the cumulative degradation in the baseline regime in ½0; xÞ, which is x. Therefore,
the age of an item just after switching to a more severe regime can be defined as
~Vx ¼ x� sðxÞ. Let us call it the recalculated virtual age.

Definition 2.8 Let a degrading item start operating at t ¼ 0 in the baseline regime
and be switched to a more severe regime at t ¼ x. Assume that the corresponding
Cdf in ½0;1Þ is given by Eq. (2.37), which follows from the ALM (2.33). Then the
recalculated virtual age ~Vx after switching at t ¼ x is defined as x� sðxÞ, where
sðxÞ is the unique solution to Eq. (2.39).

Equation (2.39) has the solution:

sðxÞ ¼ W�1ðWðxÞ � xÞ:

As Vx ¼ W�1ðxÞ, the equation Vx ¼ ~Vx can be written in the form of the fol-
lowing functional equation:

x�W�1ðxÞ ¼ W�1ðWðxÞ � xÞ:

Applying operation Wð�Þ to both parts of this equation gives

Wðx�W�1ðxÞÞ ¼ WðxÞ � x:

It is easy to show that the linear function WðtÞ ¼ wt is a solution to this
equation. It is also clear that it is the unique solution, as the functional equation
f ðxþ yÞ ¼ f ðxÞ þ f ðyÞ has only a linear solution. Therefore, the recalculated vir-
tual age in this case is equal to the statistical virtual age. When WðtÞ is a nonlinear
function, the statistical virtual age Vx ¼ W�1ðxÞ is not equal to the recalculated
virtual age ~Vx ¼ x� sðxÞ and this should be taken into account.

2.6.2 Models of General Repair

The virtual age concept can also be applied to repairable systems. Keeping the
notation but not the literal meaning, assume that initially the lifetime of a
repairable item is characterized by the Cdf FbðtÞ and the imperfect repair changes
it to FsðtjVxÞ defined by Eq. (2.36), where Vx is the virtual age just after repair at
t ¼ x. This will be our definition for the virtual age for repairable systems, whereas
the terms ‘‘statistical’’ and ‘‘recalculated’’ virtual age refer to nonrepairable
objects. The important special case FsðtÞ ¼ FbðtÞ will be also considered. Thus, we
have two factors that define a distribution after repair. First, the imperfect repair
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changes the Cdf from FbðtÞ to FsðtÞ. As an option, parameters of the Cdf FbðtÞ can
be changed by the repair action. Second, the model includes the virtual age Vx as
the starting (initial) age for an item described by the Cdf FsðtÞ, which was called in
Finkelstein [22] ‘‘the hidden age of the Cdf after the change of parameters’’.

Example 2.5 Suppose that a component with an absolutely continuous Cdf FðtÞ is
supplied with an infinite number of ‘warm standby’ components with Cdfs FðqtÞ,
where 0 \ q � 1 is a constant. This system starts operating at t ¼ 0. The first
component operates in a baseline regime, whereas the standby components operate
in a less severe regime. Upon each failure in the baseline regime, the component is
instantaneously replaced by a standby one, which is switched into operation in the
baseline regime. Thus, the virtual age (which was called the recalculated virtual
age previously) Vx of a standby component that had replaced the operating one
at t ¼ x is qx. The corresponding remaining lifetime Cdf, in accordance with
Eq. (2.3), is

FðtjVxÞ ¼ FðtjqxÞ ¼ Fðt þ qxÞ � FðqxÞ
FðqxÞ

: ð2:40Þ

Note that Eq. (2.40) is obtained using the age recalculation approach of
Sect. 2.6.1, which is based on the specific linear case of Eq. (2.33). When q ¼ 1,
(2.40) defines minimal repair; when q ¼ 0, the components are in cold standby
(perfect repair).

The age recalculation in this model is performed upon each failure. The cor-
responding sequence of interarrival times fXigi� 1 forms a generalized renewal
(g-renewal) process. Recall that the cycles of the ordinary renewal process are i.i.d.
random variables. In the g-renewal process, the duration of the ðnþ 1Þth cycle,
which starts at t ¼ sn � x1 þ x2 þ . . .þ xn, n ¼ 0; 1; 2. . .; s0 ¼ 0, is defined by
the following conditional distribution:

PðXnþ1� tÞ ¼ FðtjqsnÞ;

where sn is a realization of the arrival time Sn:

We will now generalize this example to the case of nonlinear ALM (2.33). Let a
failure, not necessarily the first one, occur at t ¼ x. It is instantaneously imper-
fectly repaired and the virtual age after the repair is Vx ¼ W�1ðxÞ � qðxÞ, where
qðxÞ is a continuous increasing function, 0 � qðxÞ � x. Thus the Cdf of the time to
the next failure is FðtjVxÞ. The most important feature of the model is that FðtjVxÞ
depends only on the time x and not on the other elements of the history of the
corresponding point process. This property makes it possible to generalize renewal
equations (2.20) and (2.21) to the case under consideration. The point process of
imperfect repairs NðtÞ; t � 0, as in the case of an ordinary renewal process, is
characterized by the corresponding renewal function HðtÞ ¼ E½NðtÞ� and the
renewal density function hðtÞ ¼ H0ðtÞ:
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HðtÞ ¼ FðtÞ þ
Z t

0

hðxÞFðt � xjqðxÞÞdx; ð2:41Þ

hðtÞ ¼ f ðtÞ þ
Z t

0

hðxÞf ðt � xjqðxÞÞdx; ð2:42Þ

where f ðt � xjqðxÞÞ is the density that corresponds to the Cdf Fðt � xjqðxÞÞ.
The strict proof of these equations and the sufficient conditions for the corre-

sponding unique solutions can be found in Kijima and Sumita [35].

Example 2.6 Let qðxÞ ¼ 0. Then f ðt � xjqðxÞÞ ¼ f ðt � xÞ and we arrive at
ordinary renewal equations (2.20) and (2.21).

Example 2.7 Let qðxÞ ¼ x (minimal repair). Equations (2.41) and (2.42) can be
explicitly solved in this case. However, we will only show that the rate of the
nonhomogeneous Poisson process krðtÞ, which is equal to the failure rate kðtÞ of
the governing Cdf is a solution to Eq. (2.42). As

f ðt � xjxÞÞ ¼ f ðtÞ=FðxÞ;
ð1=FðxÞÞ0 ¼ kðxÞ=FðxÞ;

the right-hand side of Eq. (2.42) is equal to kðtÞ, i.e.,

f ðtÞ þ
Z t

0

hðxÞf ðt � xjqðxÞÞdx ¼ f ðtÞ þ f ðtÞ
Z t

0

kðxÞ
FðxÞ

dx ¼ kðtÞ;

as the process of minimal repairs is the NHPP.

Each cycle of this renewal-type process is defined by the same governing Cdf
FðtÞ with the failure rate kðtÞ and only the starting age for this distribution is given
by the virtual age Vx ¼ qðxÞ. Therefore, the cycle duration after the repair at t ¼ x
is described by the Cdf FðtjVxÞ. The formal definition of the g-renewal process can
now be given via the corresponding intensity process [compare with (2.24)].

Definition 2.9 The g-renewal process is defined by the following intensity
process:

kt ¼ kðt � SNðtÞ þ qðSNðtÞÞÞ; ð2:43Þ

where, as usual, SNðtÞ denotes the random time of the last renewal.

The function qðxÞ is usually continuous and increasing and 0 � qðxÞ � x. Thus,
as in the case of an ordinary renewal process, the intensity process is defined by the
same failure rate kðtÞ, only the cycles now start with the initial failure rate
kðqðSnðtÞÞ; nðtÞ ¼ 1; 2; . . .:
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One of the important restrictions of this model is the assumption of the ‘fixed’
shape of the failure rate. However, this assumption is well motivated, e.g., for the
spare-parts setting. Therefore, we will keep the ‘sliding along the kðtÞ curve’
reasoning and will generalize it to a more complex case than the g-renewal case
dependence on a history of the point process of repairs.

Assume that each imperfect repair reduces the virtual age of an item in
accordance with some recalculation rule to be defined for specific models. As the
shape of the failure rate is fixed, the virtual age at the start of a cycle is uniquely
defined by the ‘position’ of the corresponding point on the failure rate curve after
the repair. Therefore, Eq. (2.43) for the intensity process can be generalized to

kt ¼ kðt � SNðtÞ þ VSNðtÞ Þ; ð2:44Þ

where VSNðtÞ is the virtual age of an item immediately after the last repair before t.
From now on, for convenience, the capital letter V will denote a random virtual
age, whereas v will denote its realization. Equation (2.44) gives a general defi-
nition for the models with a fixed failure rate shape. It should be specified by the
corresponding virtual age model. It follows from Eq. (2.44) that the intensity
process between consecutive repairs can be ‘graphically’ described as horizontally
parallel to the initial failure rate kðtÞ as all corresponding shifts are in the argu-
ment of the function kðtÞ [21]. We will consider now a specific but very mean-
ingful and important for practical applications general repair model.

Let an item start operating at t ¼ 0. Therefore, the first cycle duration is
described by the Cdf FðtÞ with the corresponding failure rate kðtÞ. Let the first
failure (and the instantaneous imperfect repair) occur at X1 ¼ x1. Assume that the
imperfect repair decreases the age of an item to qðx1Þ, where qðxÞ is an increasing
continuous function and 0� qðxÞ� x. Thus, the second cycle of the point process
starts with the virtual age v1 ¼ qðx1Þ and the cycle duration X2 is distributed as
Fðtjv1Þ with the failure rate kðt þ v1Þ; t � 0. Therefore, the virtual age of an item
just before the second repair is v1 þ x2 and it is qðv1 þ x2Þ just after the second
repair, where we assume for simplicity that the function qðxÞ is the same at each
cycle. The sequence of virtual ages after the ith repair fvigi� 0 at the start of the
ðiþ 1Þth cycle in this model is defined for realizations xi as

v0 ¼ 0; v1 ¼ qðx1Þ; v2 ¼ qðv1 þ x2Þ; . . .; vi ¼ qðvi�1 þ xiÞ ð2:45Þ

or, equivalently,

Vn ¼ qðVn�1 þ XnÞ; n� 1:

For the specific linear case, qðxÞ ¼ qx; 0 \ q \ 1, this model was considered
on a descriptive level in Brown et al. [14] and Bai and Yun [5]. Following the
publication of the paper by Kijima [34] it usually has been referred to as the
Kijima II model, whereas the Kijima I model describes a somewhat simpler ver-
sion of age reduction when only the duration of the last cycle is reduced by the

36 2 Basic Stochastics for Reliability Analysis



corresponding imperfect repair [6, 46]. The Kijima II model and its probabilistic
analysis was also independently suggested in Finkelstein [23] and later considered
in numerous subsequent publications. The term ‘virtual age’ in connection with
imperfect repair models was probably used for the first time in Kijima et al. [36],
but the corresponding meaning was already used in a number of publications
previously.

When qðxÞ ¼ qx, the intensity process kt can be defined in the explicit form.
After the first repair the virtual age v1 is qx1, after the second repair
v2 ¼ qðqx1 þ x2Þ ¼ q2x1 þ qx2,…, and after the nth repair the virtual age is

vn ¼ qnx1 þ qn�1x2 þ . . .þ qxn ¼
Xn�1

i¼0

qn�ixiþ1; ð2:46Þ

where xi; i� 1 are realizations of interarrival times Xi in the point process of
imperfect repairs. Therefore, in accordance with the general Eq. (2.44), the
intensity process for this specific model with a linear qðxÞ ¼ qx is

kt ¼ k t � SNðtÞ þ
XNðtÞ�1

i¼0

qn�iXiþ1

 !
: ð2:47Þ

Example 2.8 Whereas the repair action in the Kijima II model depends on the
whole history of the corresponding stochastic process, the dependence in the
Kijima I model is simpler and takes into account the reduction of the last cycle
increment only. Similar to (2.45),

v0 ¼ 0; v1 ¼ qx1; v2 ¼ v1 þ qx2; . . .; vn ¼ vn�1 þ qxn: ð2:48Þ

Therefore,

vn ¼ qðx1 þ x2 þ . . .þ xnÞ; Vn ¼ qðX1 þ X2 þ . . .þ XnÞ;

and we arrive at the important conclusion that this is exactly the same model as the
one defined by the g-renewal process of the previous section [36]. These con-
siderations give another motivation for using the Kijima I model for obtaining the
required number of aging spare parts. In accordance with Eqs. (2.44) and (2.48),
the intensity process for this model is

kt ¼ kðt � SNðtÞ þ VSNðTÞ Þ ¼ kðt � SNðtÞ þ qSNðtÞÞ
¼ kðt � ð1� qÞSNðtÞÞ:

The obtained form of the intensity process suggests that the calendar age t is
decreased in this model by an increment proportional to the calendar time of the
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last imperfect repair. Therefore, Doyen and Gaudoin [21] call it the ‘‘arithmetic
age reduction model’’.

The two types of the considered models represent two marginal cases of history
for the corresponding stochastic repair processes, i.e., the history that ‘remembers’
all previous repair times and the history that ‘remembers’ only the last repair time,
respectively. Intermediate cases are analyzed in Doyen and Gaudoin [21]. Note
that, as q is a constant, the repair quality does not depend on calendar time, or on
the repair number.

The original models in Kijima [34] were, in fact, defined for a more general
setting when the reduction factors qi; i � 1 are different for each cycle (the case of
independent random variables Qi; i � 1 was also considered). The quality of repair
that is deteriorating with i can be defined as 0 \ q1 \ q2 \ q3; . . ., which is a
natural ordering in this case. Equation (2.47) then becomes

vn ¼ x1

Yn

i¼1

qi þ x2

Yn

i¼2

qi þ . . .þ qnxn ¼
Xn

i¼1

xi

Yn

k¼i

qk; ð2:49Þ

and the corresponding intensity process is

kt ¼ k t � SNðtÞ þ
XNðtÞ
i¼1

Xi

YNðtÞ
k¼i

qk

 !
: ð2:50Þ

The virtual age in the Kijima I model is

vn ¼ vn�1 þ qnxn ¼
Xn

1

qixi;

and the corresponding intensity process is defined by

kt ¼ k t � SNðtÞ þ
XNðtÞ
i¼1

qiXi

 !
: ð2:51Þ

The practical interpretation of (2.49) is quite natural, as the degree of repair at
each cycle can be different and usually deteriorates with time. The practical
application of Model (2.51) is not so evident. Substitution of a random Qi instead
of a deterministic qi in (2.50) and (2.51) results in general relationships for the
intensity processes in this case.

Note that, when Qi � Q; i ¼ 1; 2; . . . are i.i.d. Bernoulli random variables, the
Kijima II model can be interpreted via the Brown–Proschan model (2.27–2.28). In
this model, the repair is perfect with probability p and is minimal with probability
1� p. [25].
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2.7 Multivariate Accelerated Life and Proportional
Hazards Models

The Accelerated Life Model (ALM) and the proportional hazards (PH) model are
very popular in reliability theory and applications as convenient tools for mod-
eling, e.g., an impact of a more severe environment on reliability characteristics of
items defined for some baseline environment. These models were extensively
studied in the literature for single items or systems (see, e.g., Bagdonavicius and
Nikulin [4] and references therein).

The univariate ALM is defined by Eq. (2.33), whereas the time-dependent PH
model can be defined as

ksðtÞ ¼ kðtÞkbðtÞ; t 2 ½0;1Þ; ð2:52Þ

where kbðtÞ; ksðtÞ are the failure rates of an item in the baseline and a more severe
environment, respectively and kðtÞ[ 1.

It should be noted that generalizations of the ALM and the PH models to the
case of possibly dependent items, which can be meaningful for reliability practice,
are not trivial and, therefore, challenging. We will be mostly interested in the
corresponding competing risks problem for possibly dependent items and start, for
the presentation sake, with the independent items case.

Survival functions of a series system of n statistically independent items under
the baseline and a more severe environment, in accordance with (2.33), are [25]:

FbðtÞ ¼
Yn

1

FbiðtÞ; FsðtÞ ¼
Yn

1

FbiðWiðtÞÞ; ð2:53Þ

respectively, where WiðtÞ is the scale transformation function for the ith item. Thus
WðtÞ for the system can be obtained from the following equation

FbðWðtÞÞ ¼
Yn

1

FbiðWiðtÞÞ ð2:54Þ

or, equivalently, using relationships similar to (2.34):

ZWðtÞ

0

Xn

1

kbiðuÞdu ¼
Xn

1

ZWiðtÞ

0

kbiðuÞdu: ð2:55Þ

Example 2.9 Let n ¼ 2 and W1ðtÞ ¼ t, W2ðtÞ ¼ 2t, which can be interpreted by
assuming that the first component is somehow protected from the more severe
environment. Then Eq. (2.55) can be transformed to
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ZWðtÞ

0

ðkb1ðuÞ þ kb2ðuÞÞdu ¼
Z t

0

kb1ðuÞduþ
Z2t

0

kb2ðuÞdu:

Assume further that the failure rates are linear, kb1ðtÞ ¼ k1t, kb2ðtÞ ¼ k2t,
k1; k2 [ 0. Then

WðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ 4k2

k1 þ k2

s !
t

If the components are statistically identical in the baseline environment

(k1 ¼ k2), then WðtÞ ¼
ffiffiffiffiffiffiffiffi
5=2

p
t � 1:6t.

It obviously follows from (2.52) that, due to independence (PH model), for each
item

ksiðtÞ ¼ kiðtÞkbiðtÞ; t 2 ½0;1Þ;

whereas for the series system, assuming the time-independent impact of a more
severe environment on the baseline failure rates of items, we have:

ksðtÞ ¼
Xn

1

kikbiðtÞ: ð2:56Þ

What happens when our items are statistically dependent? We will consider for
simplicity of notation the case of two components, n ¼ 2. Before generalizing the
ALM to this case, we first describe the dependence of components via the concept
of copulas. A formal definition and numerous properties of copulas can be found,
e.g., in Nelsen [42]. Copulas create a convenient way of representing multivariate
distributions. In a way, they ‘separate’ marginal distributions from the dependence
structure. It is more convenient for us to consider the survival copulas based on
marginal survival functions. In order to deal with the series system (competing
risks), we must first consider a general bivariate (n ¼ 2) case. For n [ 2, the
discussion is similar.

Let Tb1 � 0; Tb2 � 0 be the possibly dependent lifetimes of items in the
baseline environment and let

Fbðt1; t2Þ ¼ PðTb1� t1; Tb2� t2Þ;
FbiðtiÞ ¼ PðTbi� tiÞ; i ¼ 1; 2

be the absolutely continuous bivariate and univariate (marginal) Cdfs, respectively
(in the baseline environment). The similar notation with the sub index ‘‘s’’ is for
the more severe environment. Denote the bivariate (joint) survival function by

Sbðt1; t2Þ � PðTb1 [ t1; Tb2 [ t2Þ ¼ 1� Fb1ðt1Þ � Fb2ðt2Þ þ Fbðt1; t2Þ ð2:57Þ
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and the univariate (marginal) survival functions with the corresponding failure
rates kbiðtiÞ; i ¼ 1; 2 by

Sb1ðt1Þ � PðTb1 [ t1; Tb2 [ 0Þ ¼ PðTb1 [ t1Þ ¼ Sbðt1; 0Þ;
Sb2ðt2Þ � PðTb1 [ 0; Tb2 [ t2Þ ¼ PðTb2 [ t2Þ ¼ Sbð0; t2Þ:

It is well-known [42] that the bivariate survival function can be represented as a
function of SbiðtiÞ; i ¼ 1; 2 in the following way:

Sbðt1; t2Þ ¼ CðSb1ðt1Þ; Sb2ðt2ÞÞ; ð2:58Þ

where the survival copula Cðu; vÞ is a bivariate function in ½0; 1� 
 ½0; 1�. Note that,
such function always exists when the inverse functions for SiðtiÞ; i ¼ 1; 2 exist:

Sbðt1; t2Þ ¼ SbðS�1
b1 Sb1ðt1Þ; S�1

b1 Sb2ðt2ÞÞ ¼ CðSb1ðt1Þ; Sb2ðt2ÞÞ:

When the lifetimes are independent, the following obvious relationship holds:

Sbðt1; t2Þ ¼ Sb1ðt1ÞSb2ðt2Þ , Cðu; vÞ ¼ uv: ð2:59Þ

Thus, when the copula and marginal distributions are known the solution of our
competing risks problem (t1 ¼ t2 ¼ t) for the baseline regime is the following
survival function:

SbðtÞ ¼ CðSb1ðtÞ; Sb2ðtÞÞ: ð2:60Þ

Let the statistically identical system of two items operate now in a more severe
environment. All foregoing relationships obviously hold with the substitution of
the sub index ‘‘b’’ by the sub index ‘‘s’’ where appropriate. However, (2.58) and
(2.60) should be discussed in more detail. For that we need to make the following
crucial assumption [26]:

Assume that the copula that defines the dependence structure of a system do not
depend on the environment.

Taking into account (2.33), it means that Eqs. (2.58) and (2.60) can be now
written as

Ssðt1; t2Þ ¼ CðSs1ðt1Þ; Ss2ðt2ÞÞ ¼ CðSb1ðW1ðt1Þ; Sb2ðW2ðt2ÞÞ; ð2:61Þ

SsðtÞ ¼ CðSs1ðtÞ; Ss2ðtÞÞ ¼ CðSb1ðW1ðtÞ; Sb2ðW2ðtÞÞ; ð2:62Þ

respectively. Thus, under the stated assumption:

Definition 2.10 The ALM for the series system of two possibly dependent items
is defined by Eq. (2.62), where Cðu; vÞ is the survival copula that describes the
corresponding dependence structure of the system.

Our assumption seems to be rather natural at many instances, but need to be
justified by some ‘physical properties’ of a system or by the corresponding data, as
obviously, it is not a ‘universal law’, as, e.g., illustrated by the Example 2.10.
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Basically, it means that the environment can impact the processes of deterioration in
items but cannot influence the dependence properties. The simplest illustrative case
is when the items are independent in the baseline environment and the corresponding
copula is a product given by Eq. (2.59). It is natural to assume that the independence
is preserved under a more severe regime and, therefore, the same product holds.
Thus, in this case, a more severe regime does not ruin the property of independence.
However, this can happen theoretically when, e.g., the stress defining the severe
environment is sufficiently large. Another meaningful example is as follows:

Example 2.10 Consider a system of two components in series. Each component is
subject to its own (independent) homogeneous Poisson shock process with rate kb.
Assume that the shocks constitute the only cause of failure: each shock results in
failure of a component with probability pbi; i ¼ 1; 2 and is survived (without any
consequences) with the complementary probability qbi ¼ 1� pbi, where, as pre-
viously, the sub index ‘‘b’’ stands for ‘‘baseline’’ (environment). Then, obviously,
the survival probability for the series system is the following product:

SbðtÞ ¼ðexpf�kbtg
X1

0

ðkbtÞi

i!
ðqb1ÞiÞðexpf�kbtg

X1
0

ðkbtÞi

i!
ðqb2ÞiÞ

¼ expf�pb1kbtg expf�pb2kbtg:

Let the HPP of shocks with rate kb be the only one now and let it affect both
components with given above probabilities. However, the components are not
independent now (on the contrary, they are dependent via the mutual shock pro-
cess). Therefore, the probability of survival of a system under a single shock is
qb1qb2, whereas the probability of failure is 1� qb1qb2 ¼ pb1 þ pb2 � pb1pb2 and
the corresponding survival probability is:

~SbðtÞ ¼ expf�ð1� qb1qb2Þkbtg ¼ expf�pb1kbtg expf�pb2kbtg expfpb1pb2kbtg:

Comparison of SbðtÞ and ~SbðtÞ suggests that the term expfpb1pb2kbtg is
responsible for the described dependence. Thus, the corresponding copula can be
written as

Cðu; vÞ ¼ uvv�pb1 ¼ uvu�pb2 ¼ uvqb1 ¼ uqb2 v:

Let a more severe environment be modeled by the shock process with a larger
rate, i.e., ks [ kb, whereas the probabilities of failure pbi; i ¼ 1; 2 do not change.
As we can see, this does not have any effect on the form of the copula as a function
of the corresponding marginals. Therefore, the copula in the described setting is
invariant with respect to environment! The same conclusion can be made when
one of the components experiences the increased probability of failure under a
more severe shock, whereas the other one retains the same probability (a kind of
‘‘protection’’). On the other hand, it can be easily seen that if both components
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experience the increased probability of failure under a more severe shock, then the
corresponding copula is not invariant.

Example 2.11 The widely used (especially in survival analysis) Clayton bivariate
distribution [19, 20] is given by the following survival copula

Cðu; vÞ ¼ ðu�h þ v�h � 1Þ�1=h;

where h[ 0. Therefore,

SbðtÞ ¼ ððSb1ðtÞÞ�h þ ðSb2ðtÞÞ�hÞ�1=h;

SsðtÞ ¼ ððSb1ðW1ðtÞÞ�h þ ðSb2ðW2ðtÞÞÞ�hÞ�1=h:

We see that if parameter h is the same for both environments, then this case
complies with our definition of the ALM. The best way to check it is to conduct
the corresponding hypothesis testing (given the data).

Example 2.12 The similar reasoning obviously holds for the Farlie–Gumbel–
Morgenstern distribution. This bivariate distribution is defined as [32]

Sðt1; t2Þ ¼ S1ðt1ÞS2ðt2Þð1þ að1� S1ðt1ÞÞð1� S2ðt2ÞÞÞ;

where �1� a� 1.

As in the univariate case defined by Eq. (2.52), the PH model for the bivariate
case can constitute the alternative to the ALM while modeling the impact of a
more severe environment [26]. The environment in this case ‘acts directly’ on the
failure rate. The problem is, however, that now, in contrast to the univariate setting
where SðtÞ ¼ expf�

R t
0 kðuÞdug, the single failure rate that defines the corre-

sponding distribution function does not exist. Moreover, it was proved in
Finkelstein [25] that the following exponential representation holds (for the
baseline environment) in this case:

Sbðt1; t2Þ ¼ exp �
Zt1

0

kb1ðuÞdu

8<
:

9=
; exp �

Zt2

0

kb2ðuÞdu

8<
:

9=
;


 exp

Zt1

0

Zt2

0

ðkbðu; vÞ � �kb1ðu; vÞ�kb2ðu; vÞÞdudv

8<
:

9=
;;

ð2:63Þ

where kbiðuÞ, i ¼ 1; 2 are the failure rates of marginal distributions and the failure
rates kbðu; vÞ, �kbiðu; vÞ are defined by the following equations, respectively:
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kbðt1; t2Þ ¼ lim
Dt1;Dt2!0

Pr½t1� Tb1\t1 þ Dt1; t2� Tb2\t2 þ Dt2jTb1\t1; Tb2 [ t2�
Dt1Dt2

¼ fbðt1; t2Þ
Sbðt1; t2Þ

;

ð2:64Þ

�kbiðt1; t2Þ ¼ lim
Dt!0

1
Dt

Pr½ti� Tbi\ti þ DtjTb1 [ t1; Tb2 [ t2�

¼ � o

oti
ln Sðt1; t2Þ; i ¼ 1; 2 ;

ð2:65Þ

Thus, kbðt1; t2Þdt1dt2 þ oðdt1dt2Þ can be interpreted as the probability of failure
of both items in intervals of time ½t1; t1 þ dt1Þ; ½t2; t2 þ dt2Þ, respectively, on
condition that they did not fail before. Similar, e.g., �kb1ðt1; t2Þdt can be interpreted
as the probability of failure of the first item in ðt1; t1 þ dt� on condition that it did
not fail in ½0; t1� and that the second item also did not fail in ½0; t2�.

For the series system, (2.63) is obviously modified to:

SbðtÞ ¼ exp �
Z t

0

kb1ðuÞdu

8<
:

9=
; exp �

Z t

0

kb2ðuÞdu

8<
:

9=
;


 exp

Z t

0

Z t

0

ðkbðu; vÞ � �kb1ðu; vÞ�kb2ðu; vÞÞdudv

8<
:

9=
;;

ð2:66Þ

A natural generalization of the univariate PH model, ksðtÞ ¼ kkbðtÞ; k [ 0 to
the case of a series system of two possibly dependent components would be to
consider multiplying each failure rate in (2.66) by its own multiplier, i.e.,

SsðtÞ ¼ exp �a1

Z t

0

kb1ðuÞdu

8<
:

9=
; exp �a2

Z t

0

kb2ðuÞdu

8<
:

9=
;


 exp

Z t

0

Z t

0

ðb1kbðu; vÞ � b2
�kb1ðu; vÞ�kb2ðu; vÞÞdudv

8<
:

9=
;;

ð2:67Þ

where ai [ 0; bi� 0; i ¼ 1; 2. Thus a more severe environment acts directly on
each type of the failure rate.

It can be proved [25] that the sufficient conditions for SsðtÞ to be a survival
function are:

• b2� b1;
• ai � b2� 0; i ¼ 1; 2;

• kðu;vÞ
�k1ðu;vÞ�k2ðu;vÞ

� b2
b1

; u; v� 0.
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Thus under these assumptions, (2.67) defines the bivariate competing risks PH
model. The generalization to n [ 2 can be performed, but it is much more cum-
bersome. The following example will help to understand the meaning of the
quantities involved.

Example 2.13 As a specific case, we will consider the Clayton survival function of
Example 2.11, but now we can define parameter h [ 0 explicitly via the failure
rates as it should be done in the PH-type reasoning. Let

kbðu; vÞ
�kb1ðu; vÞ�kb2ðu; vÞ

¼ 1þ h:

Thus,

kbðu; vÞ � �kb1ðu; vÞ�kb2ðu; vÞ ¼
h

1þ h
kbðu; vÞ:

Constructing the PH model for this case results in:

b1kbðu; vÞ � b2
�kb1ðu; vÞ�kb2ðu; vÞ

¼ bðkbðu; vÞ � �kb1ðu; vÞ�kb2ðu; vÞÞ;

where b denotes 1þh
h b1 � b2

1þh

 �
. Thus we have reduced the number of parameters

of proportionality to 3. Eventually, the corresponding survival function for a more
severe regime can be written as

SsðtÞ ¼ Sa1�b
b1 ðtÞS

a2�b
b2 ðtÞ S�h

b1 ðtÞ þ S�h
b2 ðtÞ � 1

	 
�bh�1

;

which generalizes the Clayton survival function.

2.8 Simplest Stochastic Orders

Throughout this book, we will extensively use several simplest stochastic orders
for random variables of interest that will be briefly defined in this section. For the
comprehensive theory of stochastic ordering, the reader should refer to Shaked and
Shanthikumar [45].

Let X and Y be the lifetimes (non-negative random variables) with distribution
functions FðtÞ and GðtÞ, respectively. Assume that the corresponding means are
finite. The simplest and one of the weakest stochastic orders is the order with
respect to the means. Thus, we say that X is larger than Y in this sense, if

E½X� �E½Y �: ð2:68Þ
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The first moment is a useful characteristic, but usually more information is
needed for better characterization of random variables. Therefore, we say that the
random variable X is stochastically larger than the random variable Y and write
[44]

X� stY

if FðtÞ � GðtÞ; 8t � 0, or equivalently,

FðtÞ� �GðtÞ 8t� 0: ð2:69Þ

Sometimes in the literature, the terms ‘‘usual stochastic ordering’’ or ‘‘sto-
chastic dominance’’ are also used. It is obvious that (2.52) follows from (2.53) as,
in accordance with (2.1),

E½X� ¼
Z1

0

FðuÞdu�
Z1

0

�GðuÞdu ¼E½Y �:

The next type of ordering is defined via the corresponding failure rates. The
failure rate is a crucial characteristic for reliability and survival analysis and,
therefore, this type of ordering is used very often. Assume that the failure rates
kXðtÞ and kYðtÞ exist. We say that X is larger than Y in the sense of the hazard
(failure) rate ordering, if

kXðtÞ� kYðtÞ; 8t� 0: ð2:70Þ

It is clear that Inequality (2.69) follows from Inequality (2.70) as

FðtÞ ¼ exp �
Z t

0

kXðuÞdu

8<
:

9=
;� exp �

Z t

0

kYðuÞdu

8<
:

9=
; ¼ �GðtÞ:

Thus, the hazard rate ordering is obviously stronger than the usual stochastic
ordering.

Denote by f ðtÞ and gðtÞ the probability density functions that correspond to FðtÞ
and GðtÞ, respectively. We say that X is larger than Y in the sense of the likelihood
ratio ordering and write

X� LRY

if

f ðxÞ
gðxÞ �

f ðyÞ
gðyÞ for all x� y; ð2:71Þ
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which means that the ratio of the densities f ðxÞ=gðxÞis increasing in x. We will use
this ordering extensively in Chap. 5. It turns out that (2.71) is a natural ordering for
lifetimes in heterogeneous populations. It can be easily proved [44] that ordering
in the sense of the likelihood ratio is stronger than the hazard rate ordering.

Sometimes we need to compare the ‘variability’ of random variables. Assume
that E½X� ¼ E½Y � and that

E½hðXÞ��E½hðYÞ� for all convex hðxÞ: ð2:72Þ

Then intuitively, it is clear that X will be more variable than Y . For instance,
when hðxÞ ¼ x2, it is easy to see that VarðXÞ�VarðYÞ.

It can be proved that (2.72) is equivalent to the following inequality that can be
already effectively analyzed:

Z1

t

FðuÞdu�
Z1

t

�GðuÞdu 8t� 0: ð2:73Þ

When t ¼ 0, (2.73) obviously reduces to (2.68).
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Chapter 3
Shocks and Degradation

This chapter is mostly devoted to basic shock models and their simplest appli-
cations. Along with discussing some general approaches and results, we want to
present the necessary material for describing our recent findings on shocks mod-
eling of the next chapter. As in the other chapters of this book, we do not intend to
perform a comprehensive literature review of this topic, but rather concentrate on
notions and results that are vital for further presentation.

We understand the term ‘‘shock’’ in a very broad sense as some instantaneous,
potentially harmful event (e.g., electrical impulses of large magnitude, demands
for energy in biological objects, insurance claims in finance, etc.). Shock models
are widely used in practical and theoretical reliability and in the other disciplines
as well. They can also constitute a useful framework for studying aging properties
of distributions [2, 3]. It is important to analyze the consequences of shocks to a
system (object) that can be basically two fold. First, under certain assumptions, we
can consider shocks that can either ‘kill’ a system, or be successfully survived
without any impact on its future performance. The corresponding models are
usually called the extreme shock models, whereas the setting when each shock
results in an additive damage (wear) to a system is often described in terms of the
cumulative shock models ([18–20] to name a few). In the latter case, the failure
occurs when the cumulative effect of shocks reaches some deterministic or random
level, and therefore, this setting is useful for modeling of degradation (wear)
processes. The combination of these two basic models has been also considered in
the literature [5, 6, 19].

In Sect. 3.1, we first briefly discuss several simplest stochastic models of wear
that are helpful in describing basic cumulative shock models. In the rest of this
chapter, we mostly consider the basic results with respect to the extreme and
cumulative shock models, and also describe several meaningful modifications, and
applications of the extreme shock model. For instance, in Sect. 3.8, a meaningful
safety at sea application is considered and in Sect. 3.9, the famous in demography
Strehler–Mildvan model of human mortality is discussed from our view point.

M. Finkelstein and J. H. Cha, Stochastic Modeling for Reliability,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-5028-2_3,
� Springer-Verlag London 2013
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3.1 Degradation as Stochastic Process

Stochastic degradation in engineering, ecological, and biological systems is nat-
urally modeled by increasing (decreasing) stochastic processes. The additive
nature of the cumulative shock models implies that the corresponding degradation
should be strictly monotone. However, it is well-known (e.g., [3] that, for example,
the Wiener process with drift (see Definition 3.1) with the nonmonotone realiza-
tions under certain assumptions can be also considered as a useful tool for mod-
eling the monotone degradation. In the previous chapter, several point processes
were discussed that can be used for modeling degradation induced by shocks in the
corresponding cumulative shock models. We will consider now the simplest
continuous-time stochastic processes, and will be interested in modeling stochastic
degradation as such and in obtaining the corresponding distributions for the first
passage times when this degradation reaches the predetermined or random level D
for the first time. When D defines some critical safety boundary, the latter inter-
pretation can be useful for risk and safety assessment. For instance, when degra-
dation in some structures results in the decreasing resistance to loads, it can result
not just in an ‘ordinary’ failure, but in a severe catastrophic event.

We will briefly define now several approaches, which are most often used in
engineering practice for degradation modeling. The simplest and the widely used
one is the path model. Its stochastic nature is described either by the additive or by
the multiplicative random variable in the following way:

Wt ¼ g tð Þ þ Z; ð3:1Þ

Wt ¼ g tð ÞZ; ð3:2Þ

where fWt; t � 0g denotes our stochastic process, g tð Þ is an increasing, contin-
uous function (g 0ð Þ ¼ 0; limt!1 g tð Þ ¼ 1) and Z is a nonnegative random
variable with the Cdf GðzÞ. Therefore, the sample paths (realizations) for these
models are monotonically increasing. The ‘nature’ of this stochastic process is
simple and meaningful: let the failure (catastrophe) be defined as reaching by
fWt; t� 0g the degradation threshold D [ 0 and TD be the corresponding time to
failure random variable with the Cdf FDðtÞ. It follows, e.g., for the model (3.2)
that:

FD tð Þ ¼ P Wt� Dð Þ ¼ Pr Z � D

g tð Þ

� �
¼ 1� G

D

g tð Þ

� �
: ð3:3Þ

Example 3.1 Let g tð Þ ¼ t and assume that Z is described by the Weibull distri-

bution, i.e., G zð Þ ¼ 1� exp � k zð Þk
n o

, k; k [ 0. Then, in accordance with (3.3),

FD tð Þ ¼ exp � kD

t

� �k
( )

;
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which is often called the Inverse-Weibull distribution [1]. Specifically, when
k ¼ 1; k ¼ 1 :

FD tð Þ ¼ exp �D

t

� �
:

It is clear that the value at t ¼ 0 for this distribution should be understood as

FD 0ð Þ ¼ lim
t!0

FD tð Þ ¼ 0:

The Inverse-Weibull distribution is a convenient simple tool for describing
threshold models with a linear function g tð Þ.

Assume now that the threshold D is a random variable with the Cdf F0 dð Þ ¼
Pr D� dð Þ and let, at first, degradation be modeled by the deterministic, increasing
function W tð Þ (W 0ð Þ ¼ 0; limt!1W tð Þ ¼ 1). Equivalently, the problem can be
reformulated in terms of the fixed threshold and random initial value of degra-
dation. Denote by T the random time to failure. As events T � t and W tð Þ are
equivalent, similar to (3.3) [12],

F tð Þ � P T � tð Þ ¼ P D� W tð Þð Þ ¼ F0 W tð Þð Þ; ð3:4Þ

where the last equality is due to the fact that the Cdf of D is F0 dð Þ. Substituting d
by W tð Þ, finally results in (3.4).

Let now the deterministic degradation W tð Þ in (3.4) be replaced by a stochastic
process Wt; t� 0. In order to derive the corresponding distribution of the time to
failure in this case we must obtain the expectation of F0ðWtÞ with respect to the
process Wt; t� 0:

F tð Þ ¼ E F0 Wð Þt
� �

: ð3:5Þ

This equation is too general, as the stochastic process is not specified. The
following example considers the multiplicative path model for Wt; t� 0.

Example 3.2 Let, e.g., F0 dð Þ ¼ 1� exp �kdf g and Wt ¼ gðtÞZ, where Z is also
exponentially distributed with parameter l. Direct integration in (3.5) gives:

F tð Þ ¼E 1� exp �kg tð ÞZf g½ �

¼
Z1

0

1� exp �kg tð Þzf gð Þl exp �lzf g

¼1� l
lþ kg tð Þ :
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The path model can be very useful for illustration. However, obviously, the real
life stochastic processes are much more complex. Probably, the most popular in
applications and well investigated from the formal point of view stochastic process
is the Wiener process. The Wiener process with drift is often used for modeling
wear although its sample paths are not monotone (but the mean of the process is a
monotonically increasing function).

Definition 3.1 Stochastic process Wt; t� 0f g is called the Wiener process with
drift

Wt ¼ lt þ X tð Þ;

where l [ 0 is a drift parameter and X tð Þ is a standard Wiener process: for the
fixed t� 0, the random variable X tð Þ is normally distributed with zero mean and
variance r2t.

It is well-known (see, e.g., Cox and Miller [8] that the first passage time TD, i.e.,

TD ¼ inf
t

t;Wt [ Df g

for this process is described by the inverse Gaussian distribution:

FD tð Þ ¼ Pr TD [ tð Þ ¼ U
D� ltffiffi

t
p

r

� �
� exp �2Dlf gU Dþ ltffiffi

t
p

r

� �
ð3:6Þ

and

E TD½ � ¼
D

l
; Var TDð Þ ¼

Dr2

l3
;

where, as usual, UðtÞ, denotes the Cdf of the standard normal random variable.
Another popular process for modeling degradation is the gamma process (see,

e.g., the perfect survey by Van Nortwijk [30]). Although, parameter estimation for
the degradation models driven by the gamma process is usually more complicated
than for the Wiener process, it better captures the desired monotonicity.

Definition 3.2 The gamma process is a stochastic process ðWt; t � 0Þ, W0 ¼ 0
with independent nonnegative increments having a gamma Cdf with identical scale
parameters. The increment Wt �Ws has a gamma distribution with a shape
parameter v tð Þ � v sð Þ and a scale parameter u, where v tð Þ is an increasing function
(m 0ð Þ ¼ 0).

Thus Wt for each fixed t is gamma-distributed with shape parameter v tð Þ and
scale parameter u, whereas

E Wt½ � ¼
v tð Þ

u
; Var Wtð Þ ¼

v tð Þ
u2

:

The first passage time TD, is described in this case by the following distribution
[30]
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FDðtÞ ¼ PrðTD� tÞ ¼ PrðWt� DÞ ¼ CðvðtÞ;DuÞ
CðvðtÞÞ ;

where C a; xð Þ ¼
R1

x ta�1e�tdt is an incomplete gamma function for x [ 0. Thus,
deterioration with independent increments can be often modeled by the gamma
process.

3.2 Shocks and Shot Noise Process

A natural way of modeling additive degradation is via the sum of random vari-
ables, which represent the degradation increments:

Wt ¼
Xn

1

Xi;

where Xi; i ¼ 1; 2; . . .; n are positive i.i.d. random variables with a generic vari-
able denoted by X, and n is an integer.

The next step to a more real stochastic modeling is to view n as a random variable
N (the compound random variable) or a point process Nt; t � 0f g. The latter is
counting the point events of interest in ½0; tÞ; t � 0 (the compound point process):

Wt ¼
XNt

1

Xi: ð3:7Þ

Denote by Yi; i ¼ 1; 2; . . . a sequence of inter-arrival times for Nt; t� 0f g. If
Yi; i ¼ 1; 2; . . . are i.i.d (and this case will be considered in what follows) with a
generic variable Y , then the Wald’s equation [26] immediately yields

E Wt½ � ¼ E Nt½ �E X½ �;

where, specifically for the compound Poisson process with rate m: E Nt½ � ¼ mt.
Note that [9] under certain assumptions the stationary gamma process (v tð Þ ¼ vt)
can be viewed as a limit of a specially constructed compound Poisson process.

Relationship (3.7) has a meaningful interpretation via shocks, as Xi; i ¼ 1; 2; . . .
can be interpreted as an amount of damage caused by the ith shock. An important
modification of this additive model is given by the shot noise process [25, 26]. In a
shot noise point process, an additive input of a shock of magnitude Xi is decreased
in accordance with some decreasing (nonincreasing) response function h t � sð Þ.
Therefore, Eq. (3.7) turns to

Wt ¼
XNt

1

Xih t � sið Þ; ð3:8Þ

where s1\s2\s3; . . . is the sequence of the corresponding arrival (waiting) times
in the point process. This setting has a lot of applications in electrical engineering,
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materials science, health sciences, risk, and safety analysis. For instance, cracks
due to fatigue in some materials tend to close up after the material has borne a
load, which has caused the cracks to grow. Another example is the human heart
muscle’s tendency to heal after a heart attack [27]. Thus, the inputs of each shock
in the accumulated damage decrease with time.

Equivalently, (3.8) can be written as:

Wt ¼
Z t

0

Xh t � uð ÞdNu;

where dNu ¼ N u; u þ duð Þ denotes the number of shocks in ½u; uþ duÞ.
First, we are interested in the mean of the defined process. Assume that

E X½ �\1. As Xi; i ¼ 1; 2; . . . are independent from the point process fNt; t� 0g,

E½Wt� ¼ E½X�
Z t

0

hðt � uÞdNu ¼ E½X�
Z t

0

hðt � uÞmðuÞdu; ð3:9Þ

where m uð Þ ¼ dE Nu½ �=du is the rate (intensity) of the point process. For the
Poisson process, mðuÞ ¼ m and:

E½Wt� ¼ mE½X�
Z t

0

hðuÞdu: ð3:10Þ

Therefore, asymptotically the mean accumulative damage is finite, when the
response function has a finite integral, i.e.,

lim
t!1

E½Wt�\1 ; if

Z1

0

hðuÞdu\1:

This property has an important meaning in different engineering and biological
applications. It can be shown directly that, if E X2½ �\1:

Cov Wt1 ;Wt2ð Þ ¼ mE X2
� � Zt1

0

hðt1 � uÞhðt2 � uÞdu; t1� t2:

The central limit theorem for the sufficiently large m also takes place in the
following form [23, 24]:

Wt � E½Wt�
Var Wtð Þð Þ1=2

!D Nð0; 1Þ; t!1 ; ð3:11Þ
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where the sign ‘‘D’’ means convergence in distribution and Nð0; 1Þ denotes the
standard normal distribution. The renewal case with the interarrival time denoted
by X gives similar results

lim
t!1

E½Wt� ¼
1

E½X�

Z1

0

hðuÞdu:

Example 3.3 Consider a specific exponential case of the response function hðuÞ
and the Poisson process of shocks with rate m:

Wt ¼
XNt

1

Xi exp a t � sið Þf g:

By straightforward calculations [26], using the technique of the moment gen-
erating functions, it can be shown that the stationary value of Wt for t sufficiently
large is described by the gamma distribution with mean m=ka and variance m=k2a.
Moreover, the distribution of the first passage time is given by

FDðtÞ ¼ PrðTD� tÞ ¼ PrðWt � DÞ ¼ Cðm=a;DkÞ
Cðm=aÞ :

It is well-known from the properties of the gamma distribution that as m=k
increases, it converges to the normal distribution and, therefore, there is no con-
tradiction between this result and asymptotic relation (3.11).

In the next chapter, we will consider another shot noise model where the shot-
noise process models the failure rate of an object. Some meaningful generaliza-
tions will be also considered.

3.3 Asymptotic Properties

In many applications, the number of shocks in the time interval of interest is large,
which makes it possible to apply the corresponding asymptotic methods.

Consider a family of nonnegative, i.i.d, two-dimensional random vectors Xi;Yi

	 

;

�
i � 0g;X0 ¼ 0; Y0 ¼ 0, where

Pn
1 Xi is the accumulated damage after n shocks and

Yi; i ¼ 1; 2; . . . is the sequence of the i.i.d inter-arrival times of the corresponding
renewal process. Recall that the renewal process is defined by the sequence of the
i.i.d inter-arrival times. Specifically, when these times are exponentially distributed,
the renewal process ‘reduces’ to the Poisson process. We will assume for simplicity
that X and Y are independent, although the case of dependent variables can be also
considered [19]. Let 0\E½X�; E½Y �\1; 0\VarðXÞ; VarðYÞ\1. It follows
immediately from (3.7) and the elementary renewal theorem [26] that
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lim
t!1

E½Wt�
t
¼ lim

t!1

E½Nt�E½X�
t

¼ E½X�
E½Y � : ð3:12Þ

The corresponding central limit theorem can be proved using the theory of
stopped random walks [19]

Wt � ðE½X�=E½Y �Þt
E½Y �ð Þ�3=2r t1=2

! Nð0; 1Þ; t!1: ð3:13Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var E½Y �X � E½X�Yð Þ

p
.

Relationship (3.13) means that for large t, the random variable Wt is approxi-
mately normally distributed with expected value E½X�=E½Y �ð Þt and variance

E½Y �ð Þ�3 r2 E½X�ð Þ2 t. Therefore, we need only E½X�, E½Y� and r for the corre-
sponding asymptotic analysis, which is very convenient in practice.

Similar to (3.12),

lim
t!1

E½TD�
D
¼ lim

D!1

E½ND�E½Y�
D

¼ E½Y �
E½X� ; ð3:14Þ

where ND denotes a random number of shocks to reach the cumulative value D.
Equation (3.13) can be now rewritten for the distribution of the first passage time
TD as [19]

TD � ðE½Y �=E½X�ÞD
ðE½X�Þ�3=2 r D1=2

! Nð0; 1Þ; D!1:

This equation means that for large threshold D the random variable TD can be
approximately described by a normal distribution with expected value

E½Y �=E½X�ð ÞD, and variance E½X�ð Þ�3 r2 D. Therefore, the results of this section
can be easily and effectively used in safety and reliability analysis.

3.4 Extreme Shock Models

Let the shocks occur in accordance with a renewal process or a nonhomogeneous
Poisson process. Each shock independently of the previous history leads to a
failure of a system with probability p and is survived with the complementary
probability q ¼ 1� p. Assume, that a shock is the only cause of failure. We see
that there is no accumulation of damage and the fatal ‘damage’ can be a conse-
quence of a single shock. Numerous problems in reliability, risk, and safety
analysis can be interpreted by means of this model. This setting is often referred to
as an extreme shock model [12, 18]. Our main interest in the rest of this chapter
will be in different settings, and applications that are described within the
framework of the extreme shock model. We will use these results and reasoning in
the rest of this book.
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Consider first, a general point process Tnf g; T0 ¼ 0; Tnþ1 [ Tn; n ¼ 0; 1; 2; . . .,
where Tn is the time to the nth arrival of an event with the corresponding
cumulative distribution function FðnÞðtÞ. Therefore, FðnÞðtÞ � Fðnþ1ÞðtÞ is the
probability of exactly n events in ½0; tÞ; Fð0ÞðtÞ � 1; Fð1ÞðtÞ � FðtÞ. Let G be a
geometric variable with parameter p (independent of fTngn� 0) and denote by T a
random variable with the following survival function

PðtÞ ¼
X1
k¼0

qk FðkÞðtÞ � Fðkþ1ÞðtÞ
� 

: ð3:15Þ

Thus PðtÞ is the system’s survival probability for the described extreme shock
model. We can also interpret the setting in terms of the terminating point process
when 1� PðtÞ is the probability of its termination in ½0; tÞ.

Obtaining probability PðtÞ is an important problem in various reliability and
safety assessment applications. It is clear that in this general form, Eq. (3.15) does
not allow for explicit results that can be used in practice, and therefore, assump-
tions on the type of the point process of shocks should be made. Two specific point
processes are mostly used in reliability applications, i.e., the Poisson process and
the renewal process. For the homogeneous Poisson process with rate k, the deri-
vation is trivial

PðtÞ ¼
X1

0

qk exp �ktf g ktð Þk

k!
¼ exp �pk tf g: ð3:16Þ

It follows from (3.16) that the corresponding constant failure rate, which
describes the lifetime of our system T , is given by a simple and meaningful
relationship

kS ¼ p k: ð3:17Þ

Thus, the rate of the underlying Poisson process k is decreased by the factor
p� 1.

This result can be generalized to the case of the NHPP with rate kðtÞ and time-
dependent probability pðtÞ. It is clear that the Brown–Proschan model of Chap. 2
described by Eqs. (2.17–2.19) can be interpreted in terms of our extreme shock
model, and therefore,

PðtÞ ¼ 1� exp �
Z t

0

pðuÞkðuÞdu

8<
:

9=
; ð3:18Þ

with the corresponding failure rate

kSðtÞ ¼ pðtÞkðtÞ:

Numerous generalizations of these results under the assumption of the under-
lying NHPP of shocks will be considered further in this chapter and in the next
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chapter as well. In spite of its relative simplicity, the renewal process of shocks does
not allow for the similar explicit relationships. However, it is well-known (see, e.g.,
[21]) that, as p! 0, the following convergence in distribution takes place:

PðtÞ ! exp � pt

l

� �
; 8t 2 ð0;1Þ ; ð3:19Þ

where l is the mean that corresponds to the governing distribution. Thus, (3.19)
constitutes a very simple asymptotic exponential approximation. In practice, how-
ever, parameter p is not usually sufficiently small for using effectively this
approximation, and therefore, the corresponding bounds for PðtÞ can be very helpful.

The simplest and useful in practice but a rather crude bound for the survival
function can be obtained via the following identity:

E qNt
� �

¼
X1
k¼0

qk FðkÞ ðtÞ � Fðkþ1Þ ðtÞ
� 

:

Finally, using Jensen’s inequality [12]:

PðtÞ ¼ E qNt
� �

� qE½Nt �:

In the next three sections, the extreme shock model with the homogeneous
Poisson process of shocks will be generalized to different settings that can occur in
practice [13]. For instance, the probability of a failure of an operable system under
a shock, which is in conventional models either a constant or depends only on
chronological time t, can depend also on a state of a system. This is a natural
assumption, as resistance to shocks, e.g., in multistate systems (discrete or con-
tinuous) often depends on the current state of a system. Another extension of
conventional models to be considered is when the failure occurs if two successive
shocks ‘are too close’ to each other. A system in this case cannot recover from the
consequences of the previous shock. This setting is similar to that of the r -shock
model considered in the literature [22, 28], however, our method allows for more
general and flexible results. The main analytical tool allowing for the explicit
solutions for all mentioned settings is the method of integral equations developed
in Finkelstein [12]. These equations can be effectively solved in terms of the
Laplace transform and explicitly inverted for the sufficiently simple cases.

3.5 State-Dependent Probability of Termination

Consider first, the Poisson process of shocks with rate k and probability of failure
(termination) on each shock, p. In this case, the survival probability is given by
Eq. (3.16). In order, to illustrate the method of integral equations to be used further
[13] we will describe how it works for this simplest case. It is easy to see that the
following integral equation with respect to PðtÞ holds
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PðtÞ ¼ e�k t þ
Z t

0

ke�kxq Pðt � xÞdx : ð3:20Þ

The first term, on the right hand side is the probability that there are no shocks
in ½0; tÞ and the integrand defines the probability that the first shock that have
occurred in ½x; x þ dxÞ was survived and then the system have survived in ½x; tÞ.
Due to the properties of the homogeneous Poisson process, the probability of the
latter event is Pðt � xÞ.

We have now a simple integral equation with respect to the unknown function
PðtÞ. Applying the Laplace transform to both sides of Eq. (3.20) results in

ePðsÞ ¼ 1
s þ k

þ kq

s þ k
ePðsÞ ) ePðsÞ ¼ 1

s þ kp
;

where ePðsÞ denotes the Laplace transform of PðtÞ. The corresponding inversion
results in exp �pk tf g.

Consider now a repairable system with instantaneous, perfect repair that starts
functioning at t ¼ 0. Let its lifetime be described by the Cdf FðtÞ , which is a
governing distribution for the corresponding renewal process with the renewal
density function to be denoted by hðtÞ. Assume, that the quality of performance of
our system is characterized by some deterministic for simplicity function of per-
formance QðtÞ to be called the quality function. The considered approach can be
generalized to the case of a random QðtÞ. It is often a decreasing function of time, and
this assumption is quite natural for degrading systems. In applications, the function
QðtÞ can describe some key parameter of a system, e.g., the decreasing in time
accuracy of the information measuring system or effectiveness (productivity) of
some production process. As repair is perfect, the quality function is also restored to
its initial value Qð0Þ. It is clear that the quality function of our system at time t is now
random and equal to QðYÞ, where Y is a random time since the last (before t) repair.

The system is subject to the Poisson process of shocks with rate k. As previ-
ously, each shock can terminate the performance of the repairable system and we
are interested in obtaining the survival probability PðtÞ. Note, that the repaired
failure of the system does not terminate the process and only a shock can result in
termination. Assume, that the probability of termination depends on the system’s
quality at the time of a shock. This is a reasonable assumption meaning that the
larger value of quality implies the smaller probability of termination. Let the first
shock arrive before the first failure of the system. Denote by p� QðtÞð Þ the corre-
sponding probability of termination in this case. Now we are able to obtain pðtÞ—
the probability of termination of the operating system by the first shock at time
instant t. Using the standard ‘renewal-type reasoning’ [13], the following rela-
tionship for pðtÞ can be derived

pðtÞ ¼ p�ðQðtÞÞFðtÞ þ
Z t

0

hðxÞFðt � xÞ p�ðQðt � xÞÞdx ; ð3:21Þ

where FðtÞ � 1� FðtÞ.
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The first term on the right-hand side of Eq. (3.21) gives the probability of
termination during the first cycle of the renewal process, whereas hðxÞF ðt � xÞdx
defines the probability that the last failure (renewal) of the system before t had
occurred in ½x; x þ dxÞ (as hðxÞdx is the probability that a failure (renewal) had
occurred in ½x; x þ dxÞ and Fðt � xÞ is the probability that no failure had occurred
in x þ dx; t½ �. Therefore, the corresponding probability of termination at t is equal
to p�ðQðt � xÞÞ.

Thus, the probability of termination under the first shock pðtÞ, which is now
time-dependent, has been derived. Assume, now that the survived shock can be
interpreted as an instantaneous, perfect repair of the system (the ‘repaired shock’ is
survived, the ‘non-repaired’ results in termination). Therefore, the instants of
survived shocks can be also considered as the renewal points for the system.
Having this in mind, we can now proceed with obtaining the survival probability
PðtÞ. Using the similar reasoning as when deriving Eq. (3.20)

PðtÞ ¼ e�k t þ
Z t

0

ke�kx qðxÞPðt � xÞdx ; ð3:22Þ

where qðxÞ � 1� pðxÞ.
Applying the Laplace transform to Eq. (3.22):

ePðsÞ ¼ 1
sþ k

þ keqðsþ kÞePðsÞ
) ePðsÞ ¼ 1

ðsþ kÞð1� keqðsþ kÞÞ :
ð3:23Þ

Given the functions FðtÞ and p�ðQðtÞÞ, Eqs. (3.21) and (3.23) can be solved
numerically, but we can still proceed with the Laplace transforms under an
additional assumption that the underlying distribution is exponential, i.e.,
FðtÞ ¼ 1� exp �htf g. In this case, hðxÞ ¼ h and the Laplace transform of
Eq. (3.21) results in [13]

epðsÞ ¼ ep�ðsþ hÞ 1þ h

s

� �
; ð3:24Þ

where ep�ðsÞ ¼ R10 e�sxp�ðQðxÞÞdx denotes the Laplace transform of the function
p�ðQðtÞÞ. Substituting (3.24) into (3.23) and taking into account thateqðsÞ ¼ ð1=sÞ � epðsÞ

ePðsÞ ¼ 1
sþ k ep�ðsþ hþ kÞðsþ hþ kÞ : ð3:25Þ

To proceed further with inversion, we must make some assumptions on the
form of the function p�ðQðtÞÞ. Let p�ðQðtÞÞ ¼ 1� expf�atg ; a� 0. This is a
reasonable assumption (as the probability of termination increases as QðtÞ
decreases with t) that allows for a simple Laplace transform. Then
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ePðsÞ ¼ sþ hþ kþ a
s2 þ sðkþ hþ aÞ þ ak

and the inversion gives

PðtÞ ¼ s1 þ kþ a
s1 � s2

expfs1tg � s2 þ kþ a
s1 � s2

expfs2tg ;

where

s1;2 ¼
�ðhþ kþ aÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhþ kþ aÞ2 � 4ka

q
2

:

An important specific case is when the system is absolutely reliable (h ¼ 0) but
is characterized by the quality function QðtÞ. Then s1 ¼ �k; s2 ¼ �a; a 6¼ k and

PðtÞ ¼ k
k� a

expf�atg � a
k� a

expf�ktg : ð3:26Þ

If, for instance, p�ðQðtÞÞ ¼ 1, which means that a!1, then PðtÞ ¼ expf�ktg
as expected, the probability that there are no shocks in ½0; tÞ. On the contrary, if
a ¼ 0, which means that p�ðQðtÞÞ ¼ 0, the survival probability is equal to 1.
Another marginal case is defined by the value of the rate k. If k ¼ 0, then again, as
expected, PðtÞ ¼ 1. On the other hand, it follows from (3.26) that as k!1,

PðtÞ ! expf�atg ; ð3:27Þ

which can be confusing at first sight, as one would expect that when the rate of a
shock process tends to infinity, the probability of survival in ½0; tÞ should tend to 0,
but this is not the case because the function p�ðQðtÞÞ ¼ 1� expf�atg is close to 0
for small t and each survived shock is the renewal point for our system. Therefore,
as the number of shocks increases, due to the properties of exponential function,
relationship (3.27) holds.

3.6 Termination with Recovery Time

In the previous sections, the only source of termination was an immediate effect of
a shock. Consider now another setting that can be often encountered in practical
reliability and safety analysis. Let, as previously, each shock from the Poisson
process with rate k terminate the process with probability p and be survived with
probability q ¼ 1� p. Assume, now that termination additionally can also occur
when the consecutive shocks are ‘too close’, which means that the system cannot
recover from the consequences of a previous shock. Therefore, the time for
recovering should be taken into account. It is natural to assume that it is a random
variable s with the Cdf RðtÞ (different values of damage need different time of
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recovering and this fact is described by RðtÞ). Thus, if the shock occurs while the
system still has not recovered from the previous non-terminating shock, it termi-
nates the process. It is the simplest criterion of termination of this kind. Other
criterions can be also considered. As previously, we want to derive PðtÞ—the
probability of survival of our system in ½0; tÞ.

First, assume that a shock had occurred at t ¼ 0 and has been survived. Denote
the probability of survival under this condition by P�ðtÞ. Then the corresponding
supplementary integral equation is

P�ðtÞ ¼ e�k t þ
Z t

0

ke�kxqRðxÞP�ðt � xÞdx ; ð3:28Þ

where the multiplier RðxÞ in the integrand is the probability that the recovery time
after the first shock at t ¼ 0 (and before the next one at t ¼ x) is sufficient (smaller
than x).

Applying, the Laplace transform to both sides of (3.28) results in the following
relationship for the Laplace transform of P�ðtÞ:

eP�ðsÞ ¼ 1

ðsþ kÞð1� kqeRðsþ kÞÞ
; ð3:29Þ

where eRðsÞ is the Laplace transform of the Cdf RðtÞ.
Using probability P�ðtÞ, we can derive now the following equation:

PðtÞ ¼ e�k t þ
Z t

0

ke�kxqP�ðt � xÞdx: ð3:30Þ

As previously, the first term on the right-hand side of this equation is the
probability of shocks absence in ½0; tÞ, ke�kxqdx is the probability that the first
shock has occurred and was survived in ½x; xþ dxÞ. Finally, P�ðt � xÞ is the
probability that the system survives in ½x; tÞ.

We can obtain PðtÞ, applying the Laplace transform to both sides of (3.30), i.e.,

ePðsÞ ¼ 1
sþ k

þ kq

sþ k
eP�ðsÞ ;

where eP�ðsÞ is defined by (3.29). This gives the general solution of the problem
under the stated assumptions in terms of the Laplace transforms. In order to be able

to invert ePðsÞ, assume additionally that the Cdf RðtÞ is exponential, i.e.,
RðtÞ ¼ 1� expf�c tg; c [ 0. Performing simple algebraic transformations

ePðsÞ ¼ sþ 2kþ c� pk

s2 þ sðcþ 2kÞ þ k2 þ ckp
: ð3:31Þ
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Inversion of (3.31) gives

PðtÞ ¼ s1 þ cþ 2k� pk
s1 � s2

expfs1tg � s2 þ cþ 2k� pk
s1 � s2

expfs2tg ; ð3:32Þ

where

s1;2 ¼
�ðcþ 2kÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcþ 2kÞ2 � 4ðk2 þ ckpÞ

q
2

:

Equation (3.32) presents the exact solution for PðtÞ. In applications, it is con-
venient to use simple approximate formulas. Consider the following meaningful
assumption [13]:

1
k
	 s �

Z1

0

ð1� RðxÞÞdx ; ð3:33Þ

where s denotes the mean time of recovery.
Relationship (3.33) means that the mean inter-arrival time in the shock process

is much larger than the mean time of recovery, and this is often the case in
practice. In the study of repairable systems, the similar case is usually called the
fast repair condition. Using this assumption, the equivalent rate of termination for
our process for ks! 0, kt 	 1 can be written as

kðtÞ ¼ B kð1þ oð1ÞÞ; ð3:34Þ

where B is the probability of termination for the occurred shock due to two causes,
i.e., the termination immediately after the shock and the termination when the next
shock occurs before the recovery is completed. Therefore, for sufficiently large
t t 	 sð Þ the integration in the following integral can be performed to1 and the
approximate value of B is

B ¼ hþ ð1� hÞ
Z1

0

ke�kxð1� RðxÞÞdx:

Assuming, as previously, that RðtÞ ¼ 1� exp �ctf g; c[ 0 gives

B ¼ kþ hc
kþ c

:

Finally, the fast repair approximation for the survival probability is

PðtÞ 
 exp � kþ pc
kþ c

kt

� �
: ð3:35Þ
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It can be easily seen that when c!1 (instant recovery), Relationship (3.35)
reduces to Eq. (3.16). The accuracy of the fast repair approximation (3.35)
with respect to the time of recovery can be analyzed similar to Finkelstein and
Zarudnij [14].

3.7 Two Types of Shocks

Assume now that there are two types of shocks [13]. As in the previous section,
potentially harmful shocks (to be called redshocks) result in termination of the
process when they are ‘too close’, i.e., when the time between two consecutive red
shocks is smaller than a recovery time with the Cdf RðtÞ. Therefore, in this case,
the system does not have enough time to recover from the consequences of the
previous red shock. Assume for simplicity that the probability of immediate ter-
mination on red shock’s occurrence is equal to 0 p ¼ 0ð Þ. The model can be easily
generalized to the case when p 6¼ 0. On the other hand, our system is subject to the
process of ‘good’ (blue) shocks. If the blue shock follows the red shock, termi-
nation cannot happen no matter how soon the next red shock will occur. Therefore,
the blue shock can be considered as a kind of an additional recovery action.

Denote by k and b the rates of the independent Poisson processes of red and
blue shocks, respectively. First, assume that the first red shock has already
occurred at t ¼ 0. An integral equation for the probability of survival in ½0; tÞ,
P�ðtÞ for this case is as follows:

P�ðtÞ ¼ e�ktþ
Z t

0

be�bxe�kx
Zt�x

0

ke�k yP�ðt � x� yÞdydx

þ
Z t

0

e�bxke�kxRðxÞP�ðt � xÞdx;

ð3:36Þ

where

• The first term on the right-hand side is the probability that there are no other red
shocks in ½0; tÞ;

• be�bxe�kxdx is the probability that a blue shock occurs in ½x; xþ dxÞ and no red
shocks occur in ð0; xÞ;

• ke�kydy is the probability that the second red shock occurs in
½xþ y; xþ yþ dyÞ;

• P�ðt � x� yÞ is the probability that the system survives in ½xþ y; tÞ given the
red shock has occurred at time xþ y;

• e�bxke�kxdx is the probability that there is one red shock (the second) in ð0; tÞ
and no blue shocks in this interval of time;
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• RðxÞ is the probability that the recovery time x is sufficient and, therefore, the
second red shock does not terminate the process;

• P�ðt � xÞ is the probability that the system survives in ½x; tÞ given the red shock
has occurred at time x.

Using P�ðtÞ that can be obtained from Eq. (3.36), as previously, we can now
construct an equation with respect to PðtÞ—the probability of survival without
assuming occurrence of the red shock at t ¼ 0. Thus

PðtÞ ¼ e�k t þ
Z t

0

ke�kxP�ðt � xÞdx : ð3:37Þ

Applying the Laplace transform to Eq. (3.36) results in

eP�ðsÞ ¼ sþ bþ k

ðsþ bþ kÞðsþ kÞ � bk� kðsþ bþ kÞðsþ kÞeRðsþ bþ kÞ
: ð3:38Þ

Applying the Laplace transform to Eq. (3.38) gives

ePðsÞ ¼ 1
sþ k

þ k
sþ k

eP�ðsÞ:
This equation gives a general solution of the problem under the stated

assumptions in terms of the Laplace transforms. In order to be able to invert ePðsÞ,
as in the previous section, assume that the Cdf RðtÞ is exponential
RðtÞ ¼ 1� expf�ctg; c[ 0. Performing simple algebraic transformations

ePðsÞ ¼ sþ cþ bþ 2k

s2 þ sðcþ bþ 2kÞ þ k2 : ð3:39Þ

Inversion of (3.39) results in

PðtÞ ¼ s1 þ cþ bþ 2k
s1 � s2

expfs1tg � s2 þ cþ bþ 2k
s1 � s2

expfs2tg ; ð3:40Þ

where

s1;2 ¼
� cþ 2kþ bð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcþ bÞ2 þ 4kðcþ bÞ

q
2

:

When c ¼ 0, there is no recovery time and the process is terminated when two
consecutive red shocks occur.

Equation (3.40) gives an exact solution for PðtÞ. Similar to the previous section,
it can be simplified under certain assumptions. Assume that the fast repair con-
dition (3.33) holds. The first red shock cannot terminate the process. The proba-
bility that the subsequent shock can result in termination is
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B ¼
Z t

0

ke�kx

Zt�x

0

ke�kye�byð1� RðyÞÞdydx:

For the exponentially distributed time of recovery

B ¼ k
kþ bþ c

� k
bþ c

e�kt þ k2

ðkþ bþ cÞðbþ cÞ e
�ðkþbþcÞt:

For the sufficiently large t, B 
 k=kþ bþ c and this approximate value can be
used for subsequent shocks as well. Therefore, the relationship

PðtÞ 
 exp � k2

kþ bþ c
t

� �
:

is the fast repair approximation in this case.
The considered in Sects. 3.5-3.7 method of integral equations, which is applied

to deriving the survival probability for different shock models is an effective tool
for obtaining probabilities of interest in situations where the object under con-
sideration has renewal points. As the considered process of shocks is the homo-
geneous Poisson process, each shock (under some additional assumptions)
constitutes these renewal points. When a shock process is the NHPP, there are no
renewal points, but the integral equations usually can also be derived. For the
illustration, consider the corresponding generalization of Eq. (3.20). Denote by
Pðt � x; xÞ the survival probability in ½x; tÞ; x \ t for the ‘remaining shock pro-
cess’ that has started at t ¼ 0 and was not terminated by the first shock at time x.
Note that this probability depends now not only on x� t as in the homogeneous
case, but on x as well. Equation (3.20) is modified now to

PðtÞ ¼ exp �
Z t

0

kðuÞdu

8<
:

9=
;þ

Z t

0

kðxÞ exp �
Zx

0

kðuÞdu

8<
:

9=
;qPðt � x; xÞdx:

It can be seen by substitution that

Pðt � x; xÞ ¼ exp �p

Z t

x

kðuÞdu

8<
:

9=
;; 0� x; t

is the solution to this equation.
One can formally derive integral equations for other models (with the NHPP

process of shocks) considered in this section, however, the corresponding solutions
can be obtained only numerically, as the explicit inversions of the Laplace
transforms are not possible in these cases.

The method of integral equations can be also obviously applied to the renewal
process of shocks, as in this case we also have ‘pure renewal points’. For instance,
the simplest Eq. (3.20) turns into
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PðtÞ ¼ ð1� FðtÞÞ þ
Z t

0

f ðxÞ qPðt � xÞdx ;

where FðtÞ and f ðtÞ are the Cdf and the pdf of the inter-arrival times, respectively.
Applying the Laplace transform gives

ePðsÞ ¼ 1� ef ðsÞ
sð1� qef ðsÞÞ ;

which is a formal solution to our problem in terms of the Laplace transforms. Note
that it can be usually inverted only numerically.

3.8 Spatial Extreme Shock Model

In this section, we consider a two-dimensional model of spatial survival [10, 12]. It
is a meaningful generalization of the univariate extreme shock model to the case of
the spatial Poisson process of shocks. The random obstacles along the route of a
moving object will play the role of these shocks. Although the initial setting is
bivariate, the constructed failure rate is an univariate function and, therefore, our
previous one-dimensional results can be used.

The setting of the problem is as follows: a sufficiently small normally or tan-
gentially oriented interval is moving along a fixed route in the plane, crossing
points of the spatial Poisson random process. Each crossing leads to a termination
of the process (failure, accident) with a predetermined probability. As previously,
the probability of passing the route without termination is of interest. An imme-
diate application of the method to be considered is the safety at sea assessment.
Our approach takes into account the fixed obstacles (e.g., shallows), which can
lead to foundering and the moving obstacles (e.g., other ships), which can lead to
collisions. The latter setting is not considered in this section and can be found in
Finkelstein [12].

The field of fixed obstacles is considered to be random. In this application, there
are two types of fixed obstacles: obstacles with known coordinates, marked in the
corresponding navigational sea charts (and, therefore, not random), and obstacles
with unknown coordinates, which following the subjective approach can be con-
sidered random. It turns out that, owing to the accuracy of navigation and motion
control systems of a ship, weather influences, currents, etc., the obstacles with the
known coordinates can also be modeled as random points in the plane. The
‘geometric densities’ of these obstacles, which can be obtained from the naviga-
tional charts, define the rates of the corresponding planar point processes to be
used in the model [12].

The values of probabilities of accidents in ‘‘safety at sea’’ analysis are usually in
the range 10�4 to 10�6. Such estimates are often meaningless since there are not
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enough data to justify them. Therefore, simple relations for comparison of these
probabilities can be very helpful in practice.

The developed approach can also be used for obtaining solutions that are
optimal, for example, for finding a route with maximal probabilities of safe per-
formance with or without specific restrictions (time on the route, fuel consumption,
etc.). In what follows we consider the two-dimensional setting, but the general-
ization to n ¼ 3 is straightforward and can be applied to assessing air traffic safety.

Denote by fNðBÞg an orderly point process in the plane, where NðBÞ is a
number of points in some domain B � <2. We shall consider points of the process
as prospective point influences (shocks) on our system (shallows for a ship, for
instance). Similar to (2.12), the rate of this process kf ðnÞ can be formally defined as

kf ðnÞ ¼ lim
S dðnÞð Þ!0

E N dðnÞð Þ½ �
S dðnÞð Þ ; ð3:41Þ

where B ¼ dðnÞ is the neighborhood of n with the area S dðnÞð Þ and the diameter
tending to zero. The subscript f stands for ‘‘fixed’’ obstacles.

Definition 3.3 The spatial nonhomogeneous Poisson process is defined similar to
the one-dimensional case by the following relations [7]:

P N dðnÞð Þ ¼ 1jHdðnÞ
	 


¼ kf ðnÞS dðnÞð Þ þ o S dðnÞð Þð Þ;

P N dðnÞð Þ[ 1jHdðnÞ
	 


¼ o S dðnÞð Þð Þ;

where HdðnÞ denotes the configuration of all points outside dðnÞ.

It can be shown for an arbitrary B that NðBÞ has a Poisson distribution with
mean

Z
B

kf ðnÞdn

and that the numbers of points in nonoverlapping domains are mutually inde-
pendent random variables [7].

Our goal is to obtain a generalization of Eq. (3.18) to the bivariate case. The
main feature of this generalization is a suitable parameterization allowing us to
reduce the problem to the one-dimensional case [12]. Assume for simplicity that
kf ðnÞ is a continuous function of n in an arbitrary closed circle in <2. Let Rn1;n2

be
a fixed continuous curve connecting two distinct points in the plane, n1 and n2. We
will call Rn1;n2

a route. A point (a ship in our application) is moving in one
direction along the route. Every time it ‘crosses the point’ of the process fNðBÞg
(see later the corresponding regularization), an accident (failure) can happen with a
given probability. We are interested in assessing the probability of moving along
Rn1;n2

without accidents. Let r be the distance from n1 to the current point of the
route (coordinate) and kf ðrÞ denote the corresponding rate. Thus, the one-
dimensional parameterization is considered. For defining the corresponding
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Poisson measure, the dimensions of objects under consideration should be taken
into account.

Let cþn ðrÞ; c�n ðrÞ
	 


be a small interval of length cnðrÞ ¼ cþn ðrÞ þ c�n ðrÞ in a
normal direction to Rn1;n2

at the point with the coordinate r, where the upper index
denotes the corresponding direction (cþn ðrÞ is on one side of Rn1;n2

, whereas c�n ðrÞ
is on the other). Let R � jRn1n2

j be the length of Rn1;n2
and assume that the interval

is small compared with the length of the route, i.e.,

R [ [ cnðrÞ;8r 2 ½0;R�:

The interval cþn ðrÞ; c�n ðrÞ
	 


is moving along Rn1;n2
, crossing points of a random

field. For ‘‘safety at sea’’ applications, it is reasonable to assume the symmetrical
cþn ðrÞ ¼ c�n ðrÞ
	 


structure of the interval with length cnðrÞ ¼ 2ds þ 2doðrÞ, where
2ds; 2doðrÞ are the diameters of the ship and of an obstacle, respectively. For
simplicity, we assume that all obstacles have the same diameter. Thus, the ship’s
dimensions are already ‘included’ in the length of our equivalent interval. There
can be other models as well, e.g., the diameter of an obstacle can be considered a
random variable.

Taking Eq. (3.41) into account, the equivalent rate of occurrence of points,
ke;f ðrÞ is defined as

ke f ðrÞ ¼ lim
Dr!0

E N Bðr;Dr; cnðrÞð ÞÞ½ �
Dr

; ð3:42Þ

where NðBðr;Dr; cnðrÞÞ is the random number of points crossed by the interval
cnðrÞ when moving from r to r þ Dr. Thus, the specific domain in this case is
defined as an area covered by the interval moving from r to r þ Dr.

When Dr ! 0, cnðrÞ ! 0, and taking into account that kf ðnÞ is a continuous
function [12],

E N Bðr;Dr; cnðrÞÞð Þ½ � ¼
Z

B r;Dr;cnðrÞð Þ

kf ðnÞdS dðnÞð Þ

¼ cnðrÞkf ðrÞdr 1þ oð1Þ½ �;

which leads to the relationship for the equivalent rate of the corresponding one-
dimensional nonhomogeneous Poisson process, i.e.,

ke f ðrÞ ¼ cnðrÞkf ðrÞ 1þ oð1Þ½ � ; Dr ! 0; cnðrÞ ! 0:

As the radius of curvature of the route RcðrÞ is sufficiently large compared with
cnðrÞ, i.e.,

cnðrÞ � RcðrÞ ;

the domain covered by the interval cþn ðrÞ; c�n ðrÞ
	 


when it moves from r to r þ Dr
along the route, is asymptotically (D r ! 0) rectangular with area cnðrÞD r. Hence,
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the performed r -parameterization along the fixed route reduces the problem to the
one-dimensional setting.

Assume now, as in the previous sections of this chapter, that the crossing of a
point with a coordinate r leads to an accident (termination) with probability pf ðrÞ
and to the survival with the complementary probability qf ðrÞ ¼ 1� pf ðrÞ. Denote
by R the random distance from the initial point of the route n1 to a point of the
route where an accident has occurred. Similar to (3.18), the probability of passing
the route Rn1;n2

without accidents can be derived in the following way:

PðR [ RÞ ¼ exp �
ZR

0

ka f ðrÞdr

8><
>:

9>=
>;; ð3:43Þ

where

ka f ðrÞ � hf ðrÞke f ðrÞ ð3:44Þ

is the corresponding failure (accident) rate. As previously, Eq. (3.43) and (3.44)
constitute a simple and convenient tool for obtaining probabilities of safe (reliable)
performance of our object. Thus, the univariate extreme shock model can be
effectively applied to this initially two-dimensional setting.

3.9 Shock-Based Theory of Biological Aging

As a remarkable application to health sciences, we will show how the extreme
shock model ‘works’ for obtaining the law of mortality of human populations. For
this reason, we discuss and generalize the famous result by Strehler and Mildvan
[29]. Our reasoning will mostly follow Finkelstein [15]. In this section, in
accordance with the demographic and actuarial terminology, we will use the term
‘‘the force of mortality’’ (mortality rate) instead of the failure rate.

The Strehler–Mildvan [29] model suggests the justification of an exponential
increase in the force of mortality lðtÞ, and describes some formal properties of the
Gompertz mortality curve [17]:

lðtÞ ¼ aebt: ð3:45Þ

The conventional generalization is the Gompertz–Makeham model, which adds
a constant term c to the right-hand side of (3.45) in order to account for the
‘background’ mortality. In the current section, as in the original publication, we
will assume that this term is negligible. Equation (3.45) usually provides a satis-
factory fit to human mortality data for ages since maturity to the upper limit of
around 90–100 years.

The goal of this section is to discuss the underlying assumptions of the Strehler–
Mildvan (SM) shock model and the SM-correlation, which defines a negative
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correlation between parameters a and b. For several decades, the SM-correlation
was believed to be a universal demographic law valid both for period and cohort
mortality data [32].

The SM-model relies on the notion of vitality, i.e., an organism is characterized
by its vitality function VðtÞ; Vð0Þ � V0, which decreases with age t. In the rest of
this book, we will come back several times to the notion of vitality or its equiv-
alents and will suggest a more mathematically advanced modeling of the vitality-
related problems. Specifically, several strength–stress models will be considered
when the failure (death) occurs if the magnitude of the stress (shock) exceeds the
value of the strength (vitality).

According to Strehler and Mildvan [29], an organism is subject to stresses of
internal or external nature that cause demands for energy. Those are shocks in our
terminology. Let ðTi; YiÞ; i ¼ 1; 2; . . . be the sequence of pairs of i.i.d. random
variables (therefore, the notation will be ðT; YÞ), characterizing the times at which
stress events (demands for energy) occur, and the value of the demand for energy
that is needed to recover from these stresses, respectively. Let KðtÞ be the rate of
the corresponding counting process describing arrival times of stress events. The
following assumptions were made in the original paper:

Assumption 1 Yi are exponentially distributed:

P Y [ yð Þ ¼ e�
y
D; ð3:46Þ

where, D is the mean value of this demand.

Assumption 2 An organism is characterized by its vitality function VðtÞ; Vð0Þ �
V0 which decreases with age t. Yashin et al. [33], as in the original paper, called
this function the maximum capacity of energy supply for an organism at age t. It
can be also obviously interpreted as the stress resistance of an organism. Death
occurs at age t when, for the first time, Y [ VðtÞ. We discuss this assumption in
conjunction with the last one.

Assumption 3 The rate KðtÞ ¼ K is a constant and the force of mortality is
defined as [compare with Eq. (3.18)]

lðtÞ ¼ KPðY [ VðtÞÞ ¼ Ke�
VðtÞ

D : ð3:47Þ

Equation (3.47) is called ‘‘a postulate’’ in Strehler and Mildvan [29]. However,
it follows from the theory of point processes that (3.47) (see Chap. 2 and Sect. 3.4)
is true only when the underlying point process fTigi� 1 is the homogeneous
Poisson process and, therefore, that the inter-arrival times of events (stresses) are
exponentially distributed. This is a rather stringent condition, which was not
pointed out in the original and subsequent papers discussing the SM-model. It
should also be noted that, while (3.47), similar to (3.18), can be generalized to the
case of the nonhomogeneous Poisson process with the age-dependent rate KðtÞ,
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the Poisson property of the underlying process is crucial for the product in the
right-hand side of (3.47).

The following remark should be also made: as the force of mortality is a
population characteristic, the vitality VðtÞ should also be understood in this sense.
However, it is obviously introduced by Assumption 1 as an individual (stochastic)
characteristic. Therefore, we cannot simply substitute it with the corresponding
expectation, as the exponential function is not linear:

E½e�
VðtÞ

D � 6¼ e�
E½VðtÞ�

D :

Thus, while there are a few important deficiencies in the original formulation of
the model, it formally leads to the justified in practice properties of mortality rates.

Now we are ready to equate (3.45) and (3.47). As in the original paper, we will
show using elementary derivations that VðtÞ is linearly declining with age. It
should be noted that this ‘shape’ is in consensus with the current understanding of
the decline in the essential biological markers and the corresponding data, at least,
for the human middle-age span [16]. Thus

lðtÞ ¼ aebt ¼ Ke�
VðtÞ

D ð3:48Þ

and taking logarithms of both sides (Vð0Þ � V0):

VðtÞ ¼ V0ð1� ðb=V0ÞtÞ ¼ V0ð1� BtÞ; ð3:49Þ

where formally, B ¼ b= lnðK=aÞ ¼ Db=V0, and this quantity is usually called the
individual rate of aging (in contrast with the population rate of aging b). Substi-
tuting (3.49) into (3.48):

lðtÞ ¼ aebt ¼ Ke�
V0ð1�BtÞ

D ¼ Ke�
V0
D e

V0Bt
D ð3:50Þ

and thus

a ¼ Ke�
V0
D ; b ¼ V0B=D: ð3:51Þ

Comparing two equations for the force of mortality, we see the dependence
between a and b (negative correlation): the larger a results in the smaller b. From
(3.51), this dependence can be written as

ln a ¼ ln K � 1
B

b; ð3:52Þ

which is known in the literature as SM-correlation. This correlation has been
observed empirically in various human populations. It follows from (3.52) that

ln lðtÞ ¼ ln aþ bt ¼ ln K þ bðt � 1=BÞÞ; ð3:53Þ

meaning that the logarithms of mortality rates for different populations (e.g., with
different a) intersect in one point with coordinates ðln K; 1=BÞ. This has been
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experimentally observed and reported in the literature, although some criticism
and violations of this rule were also discussed (see e.g., [32, 33]).

At first sight, it seems intriguing that the SM-correlation, which is derived using
some general, partially unjustified assumptions, complies with the real mortality
data. However, recently a certain departure from this pattern has been observed. A
possible explanation is in consideration of the vitality-independent approach. It is
based on the concept of lifesaving: i.e., that the environment not only supplies
additional energy under stress, but due to the crucial advances in healthcare in
recent decades, saves lives that previously would have been lost. The stochastic
‘lifesaving model’ (with a discussion of necessary assumptions) was developed in
Finkelstein [11, 12]. It should be noted that Vaupel and Yashin [31] assumed that
there can be a finite number of lifesavings, whereas we are dealing with a random
number of these events.

Consider a lifetime that is characterized by the force of mortality lðtÞ and the
corresponding Cdf FðtÞ. Assume that a stress event affecting an organism, which
occurs in accordance with this Cdf at age t1 is fatal with probability pðt1Þ and is
‘cured’ with probability 1� pðt1Þ. The next stress occurs at age t2 [ t1 in
accordance with the Cdf ðFðt þ t1Þ � FðtÞÞFðt1Þ and it is fatal with probability
pðt2Þ and ‘is cured’ with probability 1� pðt2Þ, etc. It should be noted that the
decreasing in age vitality of an organism can be still part of this model, if we
assume that 1� pðtÞ is a decreasing function of age. In this case, 1� pðtÞ has a
meaning of probability that the magnitude of a stress is smaller then the value of
vitality at age t (probability of survival under a single shock). Therefore, in
accordance with the lifesaving model [11], the initial nonhomogeneous Poisson
process of stress events with rate lðtÞ is terminated (i.e., each event terminates the
process with probability pðtÞ and is ‘harmless’ with probability 1� pðtÞ) and the
Cdf of time to termination is characterized by the force of mortality pðtÞlðtÞ. Thus,
we again arrive at our extreme shock model (3.18)!

In order to explain the departures from the Srtehler–Mildvan correlation that
were observed in recent decades, assume now that probability pðtÞ in the described
lifesaving model is not age-dependent any more, i.e., pðtÞ � p. Obviously, the state
of an organism (vitality) can ‘affect’ this probability, However, today it is mostly
defined by the new ‘technical’ abilities of treating, e.g., medical conditions that
could not be treated before or performing medical operations that were not pos-
sible before. Therefore, we can consider this probability as approximately con-
stant. Our assumption also means that the proportion of conditions that can be now
cured does not depend on age. Thus, the resulting force of mortality plðtÞ follows
the proportional hazards (PH) model. In order to illustrate our further reasoning,
consider the following example. Let Eq. (3.45) define the baseline force of mor-
tality for a developed country at, e.g., chronological time xb ¼ 1950. Then it can
be modified for time x [ xb to

lsðtÞ ¼ psaebt; ð3:54Þ
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where s ¼ x� xb and ps is constant in age for the fixed s. Thus, the environment,
due to lifesaving and in accordance with the extreme shock model, ‘decreases’
only parameter a without affecting the slope of the logarithmic mortality rate b.
This perfectly complies with the Gompertz shift model of Bongaarts and Feeney
[4] and with other experimental studies. It also can explain the change in the
rectangularization pattern (that is usually attributed to the Strehler–Mildvan cor-
relation) to shifts in the corresponding survival curves (which can be explained by
the PH model). The mortality data for developed countries in recent decades
support these claims. It should be noted that the assumption of the underlying
Gompertz law is essential for the described change in the pattern, which can be
easily seen from Eq (3.54), as ps ¼ eln ps (ln ps\0) creates shifts in age for the
baseline mortality rate. It is also worth mentioning that, although the method of
constructing the resulting force of mortality in the SM model, which is captured by
Eq (3.47), formally resembles our lifesaving approach, the difference lies in the
fact that the corresponding probabilities are ‘applied’ to each stress event (with a
constant rate) in the former case and to events occurring in accordance with the
nonhomogeneous Poisson process with rate lðtÞ, in the latter case.
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Chapter 4
Advanced Theory for Poisson
Shock Models

In this chapter, we extend and generalize approaches and results of the previous
chapter to various reliability-related settings of a more complex nature. We relax
some assumptions of the traditional models except the one that defines the under-
lying shock process as the nonhomogeneous Poisson process (NHPP). Only in the
last section, we suggest an alternative to the Poisson process to be called the
geometric point process. It is remarkable that although the members of the class of
geometric processes do not possess the property of independent increments, some
shock models can be effectively described without specifying the corresponding
dependence structure. Most of the contents of this chapter is based on our recent work
[5–11] and covers various settings that, we believe, are meaningful both from the
theoretical and the practical points of view. The chapter is rather technical in nature,
however, general descriptions of results are reasonably simple and illustrated by
meaningful examples. As the assumption of the NHPP of shocks is adopted, many of
the proofs follow the same pattern by using the time-transformation of the NHPP to
the HPP (see the derivation of Eq. (2.31)). This technique will be used often in this
chapter. Sometimes the corresponding derivations will be reasonably abridged,
whereas other proofs will be presented at full length.

Recall that in extreme shock models, only an impact of the current, possibly
fatal shock is usually taken into account, whereas in cumulative shock models, the
impacts of the preceding shocks are accumulated as well. In this chapter, we
combine extreme shock models with specific cumulative shock models and derive
probabilities of interest, e.g., the probability that the process will not be terminated
during a ‘mission time’. We also consider some meaningful interpretations and
examples. We depart from the assumption that the probability of termination does
not depend on the history of the process and this makes the modeling more
complex on the one hand, but more adequate on the other hand.

M. Finkelstein and J. H. Cha, Stochastic Modeling for Reliability,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-5028-2_4,
� Springer-Verlag London 2013

79

http://dx.doi.org/10.1007/978-1-4471-5028-2_2


4.1 The Terminating Shock Process with Independent
Wear Increments

4.1.1 General Setting

Consider a system subject to a NHPP of shocks with rate mðtÞ. Let it be ‘absolutely
reliable’ in the absence of shocks. As in Chap. 3, assume that each shock
(regardless of its number) results in the system’s failure (and, therefore, in the
termination of the corresponding Poisson shock process) with probability pðtÞ and
is harmless to the system with probability qðtÞ ¼ 1� pðtÞ. Denote the corre-
sponding time to failure of a system by TS. Then Eq. (3.18) can be written now as

PðTS [ tÞ � �FSðtÞ ¼ exp �
Z t

0

pðuÞmðuÞ du

0
@

1
A; ð4:1Þ

whereas the corresponding failure rate is

kSðtÞ ¼ pðtÞmðtÞ:

The formal proof of (4.1) can be found in Beichelt and Fisher [3] and Block
et al. [4]. A ‘non-technical proof’, based on the notion of the conditional intensity
function (CIF) (see [15]) is given e.g., in Nachlas [25] and Finkelstein [17]. Thus,
(4.1) describes an extreme shock model, as only the impact of the current, possibly
fatal shock is taken into account. For convenience, we shall often call the
described model the pðtÞ , qðtÞ model.

It is clear that the extreme shock model can be easily modified to the case when
a system can also fail from causes other than shocks. Denote the corresponding
Cdf in the absence of shocks by FðtÞ and assume that the process of failure from
other causes and the shock process are independent. It follows from the competing
risks considerations that

PðTS [ tÞ ¼ �FðtÞ exp �
Z t

0

pðuÞmðuÞ du

0
@

1
A: ð4:2Þ

A crucial assumption for obtaining Eqs. (4.1) and (4.2) is the assumption that
with probability qðtÞ ¼ 1� pðtÞ, a shock does not result in any changes in a
system. However, in practice, shocks can also increase deterioration, wear, etc.
The effect of different shocks is also usually accumulated in some way. Therefore,
we start with the following setting [5]:

Let the lifetime of a system in a baseline environment (without shocks) be
denoted by R. Thus, PðR � tÞ ¼ FðtÞ. We interpret here R as some initial, random
resource, which is ‘consumed’ by a system (with rate 1) in the process of its oper-
ation. Therefore, the age of our system in this case is equal to a calendar time t, and a
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failure occurs when this age reaches R. It is clear that when the remaining resource
decreases with time, our system can be considered as aging (deteriorating).

Let fNðtÞ; t � 0g denote an orderly point process of shocks with arrival times
Ti; i ¼ 1; 2; . . . Denote also by FSðtÞ the Cdf that describes the lifetime of our
system, TS in the presence of shocks. Assume that the ith shock causes immediate
system’s failure with probability pðtÞ, but in contrast to the extreme shock model,
with probability qðtÞ, it now increases the age of a system by a random increment
Wi � 0. In terms of repair actions, this repair is ‘worse than minimal’. In accor-
dance with this setting, a random age of a system at time t (which is similar to the
‘virtual age’ of Finkelstein [16, 17]) is

Tv ¼ t þ
XNðtÞ
i¼ 0

Wi;

where, formally, W0 ¼ 0 corresponds to the case NðtÞ ¼ 0 when there are no
shocks in ½0; t�. Failure occurs when this random variable reaches the boundary R.
Therefore,

PðTS [ tjNðsÞ; 0 � s� t; W1; W2; . . .;WNðtÞ; RÞ

¼
YNðtÞ
i¼ 0

qðTiÞ IðTv � RÞ

¼
YNðtÞ
i¼ 0

qðTiÞ I
XNðtÞ
i¼ 0

Wi � R� t

 !
;

ð4:3Þ

where qðT0Þ ¼ 1 describes the case when NðtÞ ¼ 0 and IðxÞ is the corresponding
indicator. This probability should be understood conditionally on realizations of
NðtÞ; Wi; i ¼ 1; 2; . . .; NðtÞ and R.

Relationship (4.3) is very general and it is impossible to ‘integrate out’
explicitly NðtÞ; Wi; i ¼ 1; 2; . . .; NðtÞ and R without substantial simplifying
assumptions. Therefore, after the forthcoming comment we will consider two
important specific cases [5].

The described model can be equivalently formulated in the following way. Let
FðtÞ be the distribution of a lifetime of the wearing item in a baseline environment.
Failure occurs when this wear, which in the standardized form is equal to t, reaches
the resource (boundary) R. Denote the random wear in a more severe environment

by Wt; t � 0: Specifically, for our shock model, Wt ¼ t þ
PN tð Þ

i¼ 0 Wi, where Wi; i ¼
1; 2; . . .; NðtÞ; are the random increments of wear due to shocks and W0 � 0 [18].
For convenience, in what follows we will use this wear-based interpretation.
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4.1.2 Exponentially Distributed Boundary

In addition to the previous assumptions, we need the following:
Assumption 1. NðtÞ; t � 0; is the NHPP with rate mðtÞ.
Assumption 2. Wi; i ¼ 1; 2; . . . ; are i.i.d. random variables characterized by the

moment generating function MWðtÞ and the Cdf GðtÞ.
Assumption 3. NðtÞ; t � 0; Wi; i ¼ 1; 2; . . . and R are independent of each other.
Assumption 4. R is exponentially distributed with the failure rate k, i.e.,

FðtÞ ¼ expf�ktg.
The following result gives the survival function and the failure rate function for

TS [5].

Theorem 4.1 Let mðtÞ � EðNðtÞÞ ¼
R t

0 mðxÞ dx. Suppose that Assumptions 1–4

hold and that the inverse function m�1ðtÞ exists for t [ 0. Then the survival
function for TS and the corresponding failure rate kSðtÞ are given by

PðTS [ tÞ ¼ exp �kt �
Z t

0

vðxÞ dxþMW �kð Þ �
Z t

0

qðxÞ vðxÞ dx

8<
:

9=
;; t � 0;

and

kSðtÞ ¼ kþ ð1�MWð�kÞ � qðtÞÞ mðtÞ; ð4:4Þ

respectively.

Proof Given the assumptions, we can directly ‘integrate out’ the variable R and
define the corresponding probability as

PðTS [ t jN sð Þ; 0� s� t; W1; W2; � � � ; WNðtÞÞ

¼
YN tð Þ

i¼ 0

q Tið Þ
 !

� exp �
Ztþ
PNðtÞ

i¼ 0
Wi

0

k du

8>><
>>:

9>>=
>>;

¼ exp �kt � k
XNðtÞ
i¼ 1

Wi þ
XNðtÞ
i¼ 1

ln q Tið Þ
( )

:

Thus

PðTS [ t jN sð Þ; 0� s� tÞ

¼ exp �ktf g � exp
XNðtÞ
i¼ 1

ln q Tið Þ
( )

� E exp �
XNðtÞ
i¼ 1

kWi

( )" #

¼ exp �ktf g � exp
XNðtÞ
i¼ 1

ln q Tið Þ þ ln MW �kð Þð Þ½ �
( )

: ð4:5Þ
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We use now the same reasoning as when deriving Eq. (2.31). Therefore, some
evident intermediate transformations are omitted. More details can be found in
the original publication [5]. A similar approach is applied to our presentation in the
rest of this chapter.

Define N� tð Þ � N m�1 tð Þð Þ; t � 0, and T�j � m Tj

� �
; j � 1. It is well-known that

fN� tð Þ; t � tg is a stationary Poisson process with intensity one (see, e.g., [14])
and T�j ; j� 1, are the times of occurrence of shocks in the new time scale. Let
s ¼ m tð Þ. Then

E exp
XNðtÞ
i¼ 1

ln q Tið Þ þ ln MW �kð Þð Þ½ �
( )" #

¼ E E exp
XN�ðsÞ
i¼ 1

ln q m�1 T�i
� �� �

þ ln MW �kð Þð Þ
� �( )

jN� sð Þ
" #" #

:

ð4:6Þ

The joint distribution of T�1 ; T�2 ; . . .; T�n
� �

given N� sð Þ ¼ n is the same as the

joint distribution of V 1ð Þ; V 2ð Þ; . . .; V nð Þ
� �

, where V 1ð Þ � V 2ð Þ � . . .�V nð Þ are the
order statistics of i.i.d. random variables V1; V2; . . .;Vn which are uniformly dis-
tributed in the interval 0; s½ � ¼ 0; m tð Þ½ �. Then

E exp
XN�ðsÞ
i¼ 1

ln q m�1 T�i
� �� �

þ ln MW �kð Þð Þ
� �( )

jN� sð Þ ¼ n

" #

¼ E exp
Xn

i¼ 1

ln q m�1 V ið Þ
� �� �

þ ln MW �kð Þð Þ
� �( )" #

¼ E exp
Xn

i¼ 1

ln q m�1 Við Þ
� �

þ ln MW �kð Þð Þ
� �( )" #

¼ E exp ln q m�1 sUð Þ
� �

þ ln MW �kð Þð Þ
� �� �� �n

;

ð4:7Þ

where U � V1=s ¼ V1=m tð Þ is a random variable uniformly distributed in the unit
interval [0,1]. Therefore,

E exp ln q m�1 sUð Þ
� �

þ ln MW �kð Þð Þ
� �� �

¼
Z1

0

exp ln q m�1 m tð Þuð Þ
� �

þ ln MW �kð Þð Þ
� �

du

¼ MW �kð Þ
m tð Þ

Z t

0

q xð Þv xð Þ dx:

ð4:8Þ
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From Eqs. (4.5)–(4.8),

PðTS [ tÞ ¼ exp �ktf g �
X1
n¼ 0

MW �kð Þ
m tð Þ

Z t

0

q xð Þv xð Þdx

0
@

1
A

n

sn

n !
e�s:

¼ exp �ktf g � e�s � exp MW �kð Þ � s

m tð Þ

Z t

0

q xð Þv xð Þdx

8<
:

9=
;

¼ exp �kt �
Z t

0

v xð Þ dxþMW �kð Þ �
Z t

0

q xð Þv xð Þ dx

8<
:

9=
;:

Therefore, the failure rate of the system, kSðtÞ, is given by

kSðtÞ ¼ kþ 1�MWð�kÞ � qðtÞð ÞmðtÞ: h

The following corollary defines the failure rate that describes TS when Wi’s are
distributed exponentially with mean l.

Corollary 4.1 If the Wi’s are distributed exponentially with mean l then the
failure rate kSðtÞ is given by

kSðtÞ ¼ kþ 1� qðtÞ
kl þ 1

� 	
mðtÞ: ð4:9Þ

We present now a qualitative analysis of the obtained result. Eq. (4.4) suggests
that the failure rate kSðtÞ can be interpreted as a failure rate of a series system with
dependent (via R) components. When l!1, from Eq. (4.9), we obtain
kSðtÞ ! kþ mðtÞ, which means that a failure occurs either in accordance with the
baseline FðtÞ or as a result of the first shock (competing risks). Note that, in
accordance with the properties of Poisson processes, the rate mðtÞ is equal to the
failure rate, which corresponds to the time to the first shock. Therefore, the two
‘components’ of the described series system are asymptotically independent as
l!1.

When l ¼ 0, which means that Wi ¼ 0; i� 1, Eq. (4.9) becomes
kSðtÞ ¼ kþ pðtÞmðtÞ. Therefore, this specific case describes the series system with
two independent components. The first component has the failure rate k and the
second component has the failure rate pðtÞ mðtÞ.

Let qðtÞ ¼ 1 (there are no ‘killing’ shocks) and let Wi be deterministic and
equal to l. Then MWð�kÞ ¼ expf�lkg and Eq. (4.4) becomes

kSðtÞ ¼ kþ ð1� expf�lkgÞmðtÞ:

Assume for simplicity of notation that there is no baseline wear and all wear
increments come from shocks. Then from Theorem1
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PðTS [ tÞ ¼ exp �
Z t

0

v xð Þ dxþMW �kð Þ �
Z t

0

q xð Þv xð Þdx

8<
:

9=
;:

The form of this equation suggests the following probabilistic interpretation [6].
A system can fail from (i) the critical shock or (ii) the accumulated wear caused by
the shocks. Suppose that the system has survived until time t. Then, as the dis-
tribution of the random boundary R is exponential, the accumulated wear until

time t,
PN tð Þ

i¼ 0 Wi, does not affect the failure process of the component after time t.
That is, on the next shock, the probability of the system’s failure due to the
accumulated wear given that a critical shock has not occurred, is just
PðR�WNðtÞ þ 1Þ. This probability does not depend on the wear accumulation
history, that is,

PðR�W1 þW2 þ . . .þWn jR [ W1 þW2 þ . . .þWn�1Þ
¼ PðR [ WnÞ; 8n ¼ 1; 2; . . .; W1; W2; . . .;

where W1 þW2 þ . . .þWn � 1 � 0 when n ¼ 1. Finally, each shock results in the
immediate failure with probability pðtÞ þ qðtÞPðR � W1Þ; otherwise, the system
survives with probability qðtÞPðR [ W1Þ. Although we have two (independent)
causes of failure in this case, the second cause also does not depend on the history
of the process and, therefore, our initial pðtÞ , qðtÞ model can be applied after an
obvious modification. In accordance with (4.1), the corresponding failure rate can
then be immediately obtained as

kSðtÞ ¼ pðtÞ þ qðtÞPðR � W1Þð Þ mðtÞ
¼ 1� qðtÞPðR [ W1Þð Þ mðtÞ
¼ 1� qðtÞMW �kð Þð ÞmðtÞ:

The validity of the above reasoning and interpretation can be verified by
comparing this failure rate function with that directly derived in (4.4) (k ¼ 0).

It is clear that this reasoning can be applied due to the specific, exponential
distribution of the boundary R, which implies the Markov property for the wear
‘accumulation’. In the next section, the case of a deterministic boundary will be
considered and, obviously, the foregoing interpretation ‘does not work’ for this case.

4.1.3 Deterministic Boundary

Let R ¼ b be the deterministic boundary. Let other assumptions of Sect. 4.3.1
hold. We consider the case when t \ b, which means that a failure cannot occur
without shocks. The following result gives the survival function for TS.
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Theorem 4.2 Suppose that Assumptions 1–3 of Sect. 4.3.1 hold and that the
inverse function m�1 tð Þ exists for t [ 0. Furthermore, let the Wi’s be i.i.d. expo-
nential with mean 1=g. Then the survival function for TS is given by

PðTS [ tÞ ¼
X1
n¼ 0

X1
j¼ n

g b� tð Þð Þ j

j !
exp �g b� tð Þf g

 !

	 1
m tð Þ

Z t

0

q xð Þv xð Þ dx

0
@

1
A

n

�m tð Þn

n !
exp �m tð Þf g; 0 � t \ b:

ð4:10Þ

Proof Similar to the previous subsection,

PðTS [ tjN sð Þ; 0 � s � t; W1; W2; . . .;WNðtÞÞ

¼
YNðtÞ
i¼ 1

q Tið Þ
 !

� I t þ
XNðtÞ
i¼ 1

Wi� b

 !
:

Thus, we have

PðTS [ tjN sð Þ; 0 � s � tÞ

¼
YNðtÞ
i¼ 1

q Tið Þ
 !

P
XNðtÞ
i¼ 1

Wi � b� t

 !

¼
YNðtÞ
i¼ 1

q Tið Þ
 !

G NðtÞð Þ b� tð Þ;

where G nð Þ tð Þ is the n-fold convolution of G tð Þ with itself.
As a special case, when the Wi’s are i.i.d. exponential with mean 1=g,

PðTS [ tjN sð Þ; 0 � s � tÞ ¼
YN tð Þ

i¼ 1

q Tið Þ
 !

�W N tð Þð Þ;

where

W N tð Þð Þ �
X1

j¼N tð Þ

g b � tð Þð Þ j

j!
exp �g b� tð Þf g;

and

PðTS [ tÞ ¼ E
YN tð Þ

i¼ 1

q Tið Þ
 !

�W N tð Þð Þ
" #

¼ E E
YN tð Þ

i¼ 1

q Tið Þ
 !

�W N tð Þð ÞjN tð Þ
" #" #

;
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where

E
YN tð Þ

i¼ 1

q Tið Þ
 !

�W N tð Þð ÞjN tð Þ ¼ n

" #

¼ W nð Þ � E
YN tð Þ

i¼ 1

q Tið Þ
 !

jN tð Þ ¼ n

" #
:

Using the same notation and properties as those of the previous subsection, we
have

E
YN tð Þ

i¼ 1

q Tið Þ
 !

jN tð Þ ¼ n

" #
¼ E q m�1 sUð Þ

� �� �� � n

and

E q m�1 sUð Þ
� �� �

¼ 1
m tð Þ

Z t

0

q xð Þv xð Þ dx:

Therefore,

E
YN tð Þ

i¼1

q Tið Þ
 !

�W N tð Þð ÞjN tð Þ ¼ n

" #

¼ W nð Þ � 1
m tð Þ

Z t

0

q xð Þv xð Þ dx

0
@

1
A

n

:

Finally, we obtain a rather cumbersome Eq. (4.10).
h

It can be easily shown that the survival function in (4.10) can be written in the
following compact form [6]:

PðTs [ tÞ ¼ exp �
Z t

0

p xð Þ v xð Þ dx

8<
:

9=
; �

X1
n¼0

P Z1 � nð Þ � P Z2 ¼ nð Þ; ð4:11Þ

where Z1 and Z2 are two Poisson random variables with parameters gðb� tÞ andR t
0 qðxÞ mðxÞ dx, respectively. The following presents a qualitative analysis for two

marginal cases of Eq. (4.11) for each fixed t \ b.
When g ¼ 1=l!1, which means that the mean of increments Wi tends to 0,

Eq. (4.11) ‘reduces’ to (4.1). Indeed, as g!1,

X1
n¼ 0

PðZ1 � nÞPðZ2 ¼ nÞ !
X1
n¼ 0

PðZ2 ¼ nÞ ¼ 1;
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because PðZ1 � nÞ ! 1 for 8n � 1 and PðZ1 � 0Þ ¼ 1. From ‘physical consid-
erations’, it is also clear that as increments vanish, their impact on the model also
vanishes.

When g! 0, the mean of the increments tends to infinity and, therefore, the
first shock will kill the system with probability tending to one as g! 0. The
infinite sum in the right-hand side in the following equation vanishes in this case:

X1
n¼ 0

PðZ1 � nÞPðZ2 ¼ nÞ ¼ PðZ1 � 0ÞPðZ2 ¼ 0Þ

þ
X1
n¼ 1

PðZ1 � nÞPðZ2 ¼ nÞ ! PðZ2 ¼ 0Þ;

as PðZ1 � 0Þ ¼ 1 and PðZ1 � nÞ ! 0 for 8n � 1 when g! 0. Therefore, finally

PðTS [ tÞ ! exp �
Z t

0

pðxÞmðxÞ dx

8<
:

9=
; exp �

Z t

0

qðxÞmðxÞ dx

8<
:

9=
;

¼ exp �
Z t

0

mðxÞ dx

8<
:

9=
;;

which is the probability that no shocks have occurred in ½0; t�. This is what we also
expect from general considerations for g! 0, as the system can survive for t \ b
only without shocks.

4.2 History-Dependent Termination Probability

Consider first, the orderly point process with the conditional (complete) intensity
function (CIF) mðtjHðtÞÞ [2, 15], where HðtÞ is the history of the process up to t.
This notion is similar to the intensity process defined in (2.12). Whereas the
intensity process is considered as a stochastic process defined by filtration Ht�, the
CIF is usually a realization of this process defined by the realization of filtration
HðtÞ. We will use these terms in our book interchangeably. Accordingly, let the
probability of termination under a single shock be adjusted in a similar way and,
therefore, also depend on this history, i.e., pðtjHðtÞÞ. Denote, as previously, by TS

the corresponding lifetime. It is clear that in accordance with our assumptions, the
conditional probability of termination in the infinitesimal interval of time can be
written in the following simplified form [17]:

P½TS 2 ½t; t þ dtÞjTS � t; HðtÞ� ¼ p tjHðtÞð Þ m tjHðtÞð Þ dt:

The only way for p tjHðtÞð Þ mðtjHðtÞÞ to become a ‘full-fledged’ failure rate that
corresponds to the lifetime TS is when there is no dependence on HðtÞ for both
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multipliers in the right-hand side. It is obvious that elimination of this dependence
for the second multiplier uniquely leads to the NHPP. In what follows, we will
consider this case. However, specific types of dependence on history in the first
multiplier will be retained and this will give rise to the new classes of extreme
shock models.
Model A. We will consider the NHPP of shocks with rate mðtÞ and with the
history-dependent termination probability

p tjHðtÞð Þ ¼ pðtjNðsÞ; 0 � s \ tÞ:

Let this be the simplest history case, i.e., the number of shocks, NðtÞ that our
system has experienced in ½0; tÞ. This seems to be a reasonable assumption, as
each shock can contribute to ‘weakening’ of the system by increasing the prob-
ability p tjHðtÞð Þ � p t; NðtÞð Þ and, therefore, the function p t; NðtÞð Þ is usually
increasing in nðtÞ (for each realization, NðtÞ ¼ nðtÞ). To obtain the following
result, we must assume the specific form of this function. It is more convenient to
consider the corresponding probability of survival. Let

q t; nðtÞð Þ � 1� p t; nðtÞð Þ ¼ qðtÞ q nðtÞð Þ; ð4:12Þ

where q nðtÞð Þ is a decreasing function of its argument (for each fixed t). Thus the
survival probability at each shock decreases as the number of survived shocks in
½0; tÞ increases. The multiplicative form of (4.12) will be important for us as it will
be ‘responsible’ for the vital independence to be discussed later.

The survival function of the system’s lifetime TS is given by the following
theorem.

Theorem 4.3 Let mðtÞ � E NðtÞð Þ ¼
R t

0 mðxÞ dx and WðnÞ �
Qn

i¼ 0 qðiÞ (qð0Þ � 1).
Suppose that the inverse function m�1ðtÞ exists for t [ 0. Then

PðTS � tÞ ¼ E W NqmðtÞ
� �� �

� exp �
Z t

0

p xð Þ mðxÞ dx

8<
:

9=
;; ð4:13Þ

where fNqmðtÞ; t � 0g follows the NHPP with rate qðtÞmðtÞ.

Proof Obviously, conditioning on the process (in each realization) gives

PðTS� tjNðsÞ; 0 � s \ tÞ ¼
YNðtÞ
i¼ 0

qðTiÞqðiÞ;

where formally qðT0Þ � 1 and qð0Þ � 1 corresponds to the case when NðtÞ ¼ 0.
Also, by convention,

Qn
i¼ 1 ð�Þi � 1 for n ¼ 0. Then the corresponding expectation is

PðTS � tÞ ¼ E
YNðtÞ
i¼ 1

qðTiÞ qðiÞ
" #

:
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As previously, define the stationary Poisson process with rate 1: N�ðtÞ � N m�1ð
ðtÞÞ; t � 0, and T�j � mðTjÞ; j � 1 are the times of occurrence of shocks in the
new time scale. Let s ¼ mðtÞ. Then

E
YNðtÞ
i¼ 1

qðTiÞ qðiÞ
" #

¼ E E
YN�ðsÞ
i¼ 1

q m�1ðT�i Þ
� �

qðiÞjN�ðsÞ
" #" #

:

The joint distribution of T�1 ; T�2 ; . . .; T�n
� �

given N�ðsÞ ¼ n is the same as the

joint distribution of V 1ð Þ; V 2ð Þ; . . .; V nð Þ
� �

, where V 1ð Þ � V 2ð Þ � � � � � V nð Þ are
the order statistics of i.i.d. random variables V1; V2; . . .; Vn which are uniformly
distributed in the interval 0; s½ � ¼ 0; mðtÞ½ �. Thus omitting derivations that are
similar, to those in the proofs of Theorems 4.1 and 4.2 (see [6] for more details):

E
YN�ðsÞ
i¼ 1

q m�1ðT�i Þ
� �

qðiÞjN�ðsÞ ¼ n

" #
¼
Yn

i¼ 1

qðiÞ E q m�1ðsUÞ
� �� �� �n

;

where U � V1=s ¼ V1=mðtÞ is a random variable uniformly distributed in the unit
interval [0,1]. Therefore,

E qðm�1ðsUÞÞ
� �

¼
Z1

0

q m�1 suð Þ
� �

du ¼
Z1

0

q m�1 mðtÞuð Þ
� �

du

¼ 1
mðtÞ

Z t

0

qðxÞmðxÞ dx:

Hence,

E
YN�ðsÞ
i¼ 1

qðm�1ðT�i Þ qðiÞjN�ðsÞ ¼ n

" #
¼
Yn

i¼ 1

qðiÞ � 1
mðtÞ

Z t

0

qðxÞmðxÞ dx

0
@

1
A

n

:

Using WðnÞ �
Qn

i¼ 1 qðiÞ;

PðTS� tÞ ¼ E
YNðtÞ
i¼ 1

qðTiÞqðiÞ
" #

¼
X1
n¼ 0

WðnÞ 1
mðtÞ

Z t

0

qðxÞmðxÞ dx

0
@

1
A

n

� ðmðtÞÞ
n

n !
e�mðtÞ

¼ exp �
Z t

0

pðxÞmðxÞ dx

8<
:

9=
; �

X1
n¼0

WðnÞ �
R t

0 qðxÞmðxÞ dx
� �n

n !
�

exp �
Z t

0

qðxÞmðxÞ dx

8<
:

9=
; ¼ E WðNqmðtÞÞ

� �
� exp �

Z t

0

pðxÞmðxÞ dx

8<
:

9=
;;
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where fNqmðtÞ; t� 0g follows the NHPP with rate qðtÞmðtÞ.
h

Example 4.1 Let qðiÞ ¼ qi � 1; i ¼ 1; 2; . . .. Then WðnÞ � qnðn � 1Þ=2 and

PðTS� tÞ ¼
X1
n¼ 0

qnðn � 1Þ=2 �
R t

0 qðxÞmðxÞ dx
� �n

n !
� exp �

Z t

0

qðxÞmðxÞ dx

8<
:

9=
; � exp �

Z t

0

pðxÞmðxÞ dx

8<
:

9=
;

¼
X1
n¼ 0

qnðn� 1Þ=2 �
R t

0 qðxÞmðxÞ dx
� �n

n !
� exp �

Z t

0

mðxÞ dx

8<
:

9=
;:

ð4:14Þ

The following discussion will help us in the further presentation of our time-
dependent results. Let fNðtÞ; t� 0g be the NHPP with rate mðtÞ. If an event occurs
at time t, it is classified as a Type I event with probability pðtÞ and as a Type II
event with the complementary probability 1� pðtÞ, as in our initial pðtÞ , qðtÞ
model. Then fN1ðtÞ; t� 0g and fN2ðtÞ; t� 0g are the independent NHPP with
rates pðtÞ mðtÞ and qðtÞ mðtÞ; respectively, and NðtÞ ¼ N1ðtÞ þ N2ðtÞ. Accordingly,
e.g., given that there have been no Type I events in ½0; tÞ, the process fNðtÞ; t� 0g
reduces to fN2ðtÞ; t� 0g, as in our specific case when a Type I event (fatal shock)
leads to the termination of the process (failure). Therefore, in order to describe the
lifetime to termination, it is obviously sufficient to consider fN2ðtÞ; t� 0g, and not
the original fNðtÞ; t� 0g.

We will use a similar reasoning for a more general pðtjHðtÞÞ , qðtjHðtÞÞ
model considered above, although interpretation of the types of events will be
slightly different in this case. In the following, in accordance with our previous
notation, N2ðtÞ ¼ NqmðtÞ and the arrival times of this process are denoted by
TðqmÞ1; TðqmÞ2; . . ..

The multiplicative form of the specific result in (4.13) indicates that it might be
also obtained and interpreted via the following general reasoning, which can be
useful for probabilistic analysis of various extensions of standard extreme shock
models. Considering the classical pðtÞ , qðtÞ extreme shock model, assume that
there can be other additional causes of termination dependent either directly on a
history of the point process (as in Model A) or on some other variables, as for the
marked point process, when each event is ‘characterized’ by some variable (e.g.,
damage or wear). Just for the sake of definiteness of presentation, let us call this
‘initial’ cause of failure, which corresponds to the pðtÞ , qðtÞmodel, the main or
the critical cause of failure (termination) and the shock that leads to this event—
the critical shock (Type I event). However, distinct from the pðtÞ , qðtÞ model,
the Type II events, which follow the Poisson process with rate qðtÞ mðtÞ; can now
also result in failure.
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Let ECðtÞ denote the event that there were no critical shocks until time t in the
absence of other causes of failures. Then, obviously,

PðTS� tjECðtÞÞ ¼
PðTS � t; ECðtÞÞ

PðECðtÞÞ
¼ PðTS � tÞ

PðECðtÞÞ
;

and, thus,

PðTS� tÞ ¼ PðTS� tjECðtÞÞPðECðtÞÞ;

where

PðECðtÞÞ ¼ PðN1ðtÞ ¼ 0Þ ¼ exp �
Z t

0

p xð ÞmðxÞ dx

8<
:

9=
;: ð4:15Þ

Therefore, in accordance with our previous reasoning and notation, we can
describe PðTS� tjECðtÞÞ in terms of the process fNqmðtÞ; t� 0g (and not in terms
of the original processfNðtÞ; t� 0g) in the following general form to be specified
for the forthcoming model:

PðTS� tjECðtÞÞ ¼ EðIðWðNqmðtÞ; HÞ 2 SÞjECðtÞÞ;

where Ið�Þ is the corresponding indicator, H is a set of random variables that are
‘responsible’ for other causes of failure (see later), WðNqmðtÞ; HÞ is a real-valued
function of ðNqmðtÞ; HÞ which represents the state of the system at time t (given
ECðtÞ i.e., no critical shock has occurred), and S is a set of real values which
defines the survival of the system in terms of WðNqmðtÞ; HÞ. That is, if the critical
shock has not occurred, the system survives when WðNqmðtÞ; HÞ 2 S.

In order to apply effectively Model A, we have to reinterpret it as follows.
Suppose first, that the system is composed of two parts in series and that each
shock affects only one component. If it hits the first component (with probability
pðtÞ), it directly causes its (and the systems) failure (the critical shock). On the
other hand, if it hits the second component (with probability qðtÞ), then this
component fails with probability 1� qðnðtÞÞ and survives with probability qðnðtÞÞ.
This interpretation nicely conforms with the two independent causes of failure
model in (4.12). Note that, in fact, we are speaking about the conditional inde-
pendence of causes of failure (on condition that a shock from the Poisson process
with rate mðtÞ has occurred).

Another (and probably more practical) interpretation is as follows. Assume that
there are some parts of a system (component 1) that are critical only to, e.g., the
shock’s level of severity, which is assumed to be random. This results in failure
with probability pðtÞ. On the other hand, the other parts (component 2) are critical
only to accumulation of damage (failure with probability 1� qðnðtÞÞ). Assuming
the series structure and the corresponding independence, we arrive at the survival
(on shock) probability (4.12).
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We can define now the function WðNqmðtÞ; HÞ for Model A. Suppose that there
have been no critical shocks in ½0; tÞ and let ui ¼ 1 if the second component
survives the ith shock, and ui ¼ 0, i ¼ 1; 2; 3; . . .NðtÞ otherwise. Then

WðNqmðtÞ; HÞ ¼
YNqmðtÞ

i ¼ 1

ui;

and S ¼ f1g. Therefore, as events ECðtÞ and WðNqmðtÞ; HÞ 2 S are ‘related’ only
to the first and the second causes of failure, respectively, and these causes of failure
are independent, we have:

PðTS� tjECðtÞÞ
¼ EðIðWðNqmðtÞ; HÞ 2 SÞjECðtÞÞ
¼ EðIðWðNqmðtÞ; HÞ 2 SÞÞ

¼ E I
YNqmðtÞ

i¼ 1

ui ¼ 1

 ! !
¼ E P

YNqmðtÞ

i¼ 1

ui ¼ 1jNqmðtÞ
 !" #

¼ E
YNqmðtÞ

i¼ 1

qðiÞ
 !

:

Combining this equation with (4.15), we arrive at the original result in (4.13).
Model B. Consider now another type of extreme shock model, which is, in fact, a
generalization of Model A. In model A, the second cause of failure (termination)
was due to the number of noncritical shocks, no matter what the severity of these
shocks was. Now, we will count only those shocks (to be called ‘dangerous’) with
severity larger than some level j. Assume that the second cause of failure
‘materializes’ only when the number of dangerous shocks exceeds some random
level M. That is, given M ¼ m, in the absence of critical shocks, the system fails as
soon as it experiences the ðmþ 1Þth dangerous shock.

Assume that the shock’s severity is a random variable with the Cdf GðtÞ, and the
survival function for M, PðM [ lÞ; l ¼ 0; 1; 2; ::, is also given. Suppose that there
have been no critical shocks until time t and let ui be the indicator random variable
(ui ¼ 1 if the ith shock is dangerous and ui ¼ 0 otherwise). Then, as previously,

W NqmðtÞ; HÞ ¼ IðM �
XNqmðtÞ

i¼ 1

ui

 !
;

and S ¼ f1g. Thus

PðTS� tjECðtÞÞ ¼ EðIðWðNqmðtÞ; HÞ 2 SÞÞ ¼ E I M�
XNqmðtÞ

i¼ 1

ui

 ! !

¼ P M�
XNqmðtÞ

i¼ 1

ui

 !
¼ E P M�

XNqmðtÞ

i¼ 1

uijNqmðtÞ
 !" #

;
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where,

P M�
XNqmðtÞ

i¼ 1

uijNqmðtÞ ¼ n

 !

¼ PðM [ njNqmðtÞ ¼ nÞ þ
Xn

m¼ 0

P M�
Xn

i¼ 1

uijNqmðtÞ ¼ n; M ¼ m

 !
�PðM ¼ mjNqmðtÞ ¼ nÞ:

¼ PðM [ nÞ þ
Xn

m¼ 0

Xm

l¼ 0

n

l

� 	
�GðjÞl GðjÞn � l �PðM ¼ mÞ

¼ PðM [ nÞ þ
Xn

l¼ 0

Xn

m¼ l

n

l

� 	
�GðjÞl GðjÞn � l �PðM ¼ mÞ

¼ PðM [ nÞ þ
Xn

l¼ 0

n

l

� 	
�GðjÞl GðjÞn � l � PðM� lÞ � PðM� nþ 1Þð Þ

¼
Xn

l¼ 0

n

l

� 	
�GðjÞl GðjÞn � l � PðM� lÞ:

Thus, similar to the derivations of the previous section

PðTS� tjECðtÞÞ ¼
X1
n¼ 0

Xn

l¼ 0

PðM� lÞ � n
l

� 	
�GðjÞl GðjÞn � l

" #

� mqðtÞn
exp �mqðtÞ
� �

n!
;

where mqðtÞ �
R t

0 qðxÞmðxÞ dx, and finally, we have

PðTS� tÞ ¼ exp �
Z t

0

pðxÞmðxÞ dx

8<
:

9=
; �

X1
n¼ 0

Xn

l¼ 0

PðM� lÞ � n
l

� 	
GðjÞl GðjÞn � l

" #

� mqðtÞn
exp �mqðtÞ
� �

n!

Note that, when the expression for PðTS� tjECðtÞÞ involves not only the
number of shocks NqmðtÞ but also the filtration generated by ðNqmðsÞ; 0� s� tÞ,
the computation becomes intensive and the results might not be useful in practice.
The corresponding example with numerical results can be found in [6].

4.3 Shot Noise Process for the Failure Rate

4.3.1 Shot Noise Process Without Critical Shocks

Assume that a system is subject to the NHPP of shocks fNðtÞ; t� 0g with rate mðtÞ,
which is the only possible cause of its failure. The consequences of shocks are
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accumulated in accordance with the ‘standard’ shot noise process XðtÞ, Xð0Þ ¼ 0
(see e.g., [26], [27] and the previous chapter). Similar to (3.8), but in a slightly
different and more convenient for us here notation, define the level of the cumu-
lative stress (wear) at time t as the following stochastic process:

XðtÞ ¼
XNðtÞ
j¼ 1

Djhðt � TjÞ; ð4:16Þ

where Tn is the n-th arrival time in the shock process, Dj; j ¼ 1; 2; . . . are the i.i.d.
magnitudes of shocks and hðtÞ is a non-negative, nonincreasing for t� 0, deter-
ministic function (hðtÞ ¼ 0 for t\0). The usual assumption for considering
asymptotic properties of XðtÞ is that hðtÞ vanishes as t!1 and its integral in
½0; 1Þis finite, however, we formally do not need this rather restrictive assump-
tion here. The shock process fNðtÞ; t� 0g and the sequence fD1; D2; . . .g are
supposed to be independent.

The cumulative stress eventually results in failures, which can be probabilis-
tically described in different ways. Denote by TS, as previously, the failure time of
our system. Lemoine and Wenocur [23, 24], for example, modeled the distribution
of TS by assuming that the corresponding intensity process is proportional to XðtÞ
(see (2.12) for a general definition). As we are dealing with the intensity process,
we will rather use the term ‘‘stress’’ instead of ‘‘wear’’. Proportionality is a rea-
sonable assumption that describes the proportional dependence of the probability
of failure in the infinitesimal interval of time on the level of stress

kt � k XðtÞ ¼ k
XNðtÞ
j ¼ 1

Dj hðt � TjÞ; ð4:17Þ

where k [ 0 is the constant of proportionality. Then

PðTS [ tjNðsÞ; 0� s� t; D1; D2; . . .; DNðtÞÞ

¼ exp �k

Z t

0

XNðxÞ
j ¼ 1

Dj hðx � TjÞ dx

8<
:

9=
;;

ð4:18Þ

Therefore, it means that the intensity process (4.17) can be also considered as
the failure rate process [22]. Probability (4.18) should be understood conditionally
on the corresponding realizations of fNðsÞ; 0� s� tg and D1; D2; . . .; DNðtÞ.
Therefore, ‘integrating them out’,

PðTS [ tÞ ¼ E exp �k

Z t

0

XðuÞ du

8<
:

9=
;

2
4

3
5:

Lemoine and Wenocur [24] had finally derived the following relationship for
the survival probability PðTS [ tÞ:
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PðTS [ tÞ ¼ expf�mðtÞg exp

Z t

0

LðkHðuÞÞ mðt � uÞ du

8<
:

9=
;; ð4:19Þ

where mðtÞ ¼
R t

0 mðuÞ du; HðtÞ ¼
R t

0 hðuÞ du and Lð�Þ is the operator of the
Laplace transform with respect to the distribution of the shock’s magnitude. In
what follows, we generalize the approach of these authors to the case when a
system can also fail due to a fatal shock with the magnitude exceeding the time-
dependent bound, which is more realistic in practice.

4.3.2 Shot Noise Process with Critical Shocks
and Deterioration

Model 1. In addition to the general assumptions of Lemoine and Wenocur [24]
stated in the previous subsection, let on each shock, depending on its magnitude
Dj; j ¼ 1; 2. . ., the following mutually exclusive events occur [11]:

(i) If Dj [ gUðTjÞ, then the shock results in an immediate system’s failure
(ii) If Dj� gLðTjÞ, then the shock does not cause any change in the system

(harmless)
(iii) If gLðTjÞ\Dj� gUðTjÞ, then the shock increases the stress by Dj hð0Þ,

where gUðtÞ; gLðtÞ are the decreasing, deterministic functions.
The functions of operating time, gUðtÞ; gLðtÞ define the corresponding upper

and lower bounds. Because they are decreasing, this means that the probability that
the shock arriving at time t results in the system’s failure is increasing in time,
whereas the probability that the shock is harmless is decreasing with time.
Therefore, obviously, a deterioration of our system is described in this way. The
function gUðtÞ can also be interpreted as the strength of our system with respect to
shocks, whereas the function gLðtÞ, can be interpreted as the ‘sensitivity’ to shocks.
At many instances, they can be defined from the general ‘physical considerations’
on the criterion of failure of a system. For instance, the minimum peak voltage that
can ruin a new electronic item is usually given in its specifications.

Define the following ‘membership function’:

nðTj; DjÞ ¼
1; gLðTjÞ\Dj� gUðTjÞ

0; Dj� gLðTjÞ

(
: ð4:20Þ

Using this notation, the cumulative stress, similar to (4.16), can be written as

XðtÞ �
XNðtÞ
j¼1

nðTj; DjÞDj hðt � TjÞ; ð4:21Þ
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provided that the system is operating at time t [i.e., the event Dj [ gUðTjÞ; j ¼
1; 2; . . . did not happen in ½0; tÞ].

Generalizing (4.17), assume that the conditional failure rate process k̂t (on
condition that the event Dj [ gUðTjÞ; j ¼ 1; 2; . . . did not happen in ½0; tÞ and
fNðtÞ; T1; T2; . . .; TNðtÞg and fD1; D2; . . .; DNðtÞg are given) is proportional to XðtÞ

k̂t � k XðtÞ ¼ k
XNðtÞ
n¼ 1

nðTj; DjÞDjhðt � TjÞ; k [ 0: ð4:22Þ

It is clear that conditionally on the corresponding history

(i) If Dj [ gUðTjÞ, for at least one j, then

PðTS [ t jNðsÞ; 0� s� t; D1; D2; . . .; DNðtÞÞ ¼ 0;

(ii) If Dj� gUðtÞ, for all j, then

PðTS [ t jNðsÞ; 0� s� t; D1; D2; . . .; DNðtÞÞ ¼ exp �k

Z t

0

XNðxÞ
j¼ 1

nðTj; DjÞDj hðx � TjÞ dx:

8<
:

9=
; :

Therefore,

PðTS [ t j NðsÞ; 0� s� t; D1; D2; . . .; DNðtÞÞ

¼
YNðtÞ
j¼ 1

cðTj; DjÞ � exp �k

Z t

0

XNðxÞ
j¼ 1

nðTj; DjÞDjhðx � TjÞ dx

8<
:

9=
;;

ð4:23Þ

where

cðTj; DjÞ ¼
0; Dj [ gUðTjÞ
1; Dj� gUðTjÞ



: ð4:24Þ

Thus, we have described a rather general model that extends (4.18) to the defined
deterioration pattern. Indeed, if gUðtÞ ¼ 1; gLðtÞ ¼ 0, then nðTj;DjÞ � 1and
(4.23) reduces to (4.18) with the corresponding survival probability (4.19). On the
other hand, let gUðtÞ ¼ gLðtÞ ¼ gðtÞ: Then, defining pðtÞ ¼ PðDj [ gðtÞÞ as the
probability of failure under a shock at time t (qðtÞ ¼ PðDj� gðtÞÞ, we obviously
arrive at the pðtÞ , qðtÞ model described by Eq. (4.1).

On the basis of the above described model, we will derive now the (uncondi-
tional) survival function and the corresponding failure rate function. First, we need
the following general lemma (see, [13] for the proof):

Lemma 4. 1 Let X1; X2; . . .; Xn be i.i.d. random variables and Z1; Z2; . . .; Zn be
i.i.d. continuous random variables with the corresponding common pdf. Further-
more, let X ¼ ðX1; X2; . . .; XnÞ and Z ¼ ðZ1; Z2; . . .; ZnÞ be independent. Suppose
that the function uðx; zÞ : Rn 	 Rn ! R satisfies uðX; tÞ ¼d uðX; pðtÞÞ, for
any vector t 2 Rn and for any n-dimensional permutation function pð�Þ. Then
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uðX; ZÞ ¼d uðX; Z�Þ;

where Z� ¼ ðZð1Þ; Zð2Þ; . . .; ZðnÞÞ is the vector of the order statistics of Z.

We are ready now to prove the following theorem [11].

Theorem 4.4 Let HðtÞ ¼
R t

0 hðvÞ dv; m tð Þ � EðNðtÞÞ ¼
R t

0 m xð Þ dx and fDðuÞ;
FDðuÞ be the pdf and the Cdf of D ¼d Dj; j ¼ 1; 2; . . .. Assume that the inverse
function m�1 tð Þ exists for t [ 0. Then the survival function that corresponds to the
lifetime TS is

PðTS [ tÞ ¼ exp �
Z t

0

�FDðgLðuÞÞ mðuÞ du

8<
:

9=
;

exp

Z t

0

ZgUðsÞ

gLðsÞ

expf�kuHðt � sÞg fDðuÞ du mðsÞ ds

8><
>:

9>=
>;;

ð4:25Þ

and the corresponding failure rate is

kSðtÞ ¼ PðD [ gUðtÞÞ kðtÞ

þ
Z t

0

ZgUðsÞ

gLðsÞ

kuhðt � sÞ expf�kuHðt � sÞg fDðuÞ du mðsÞ ds: ð4:26Þ

Proof Observe that

PðTS [ t j NðsÞ; 0� s� t; D1; D2; . . .; DNðtÞÞ

¼
YNðtÞ
j¼ 1

cðTj; DjÞ exp �k
XNðtÞ
j¼ 1

nðTj; DjÞDj Hðt � TjÞ
( )

¼ exp
XNðtÞ
j¼ 1

ðln cðTj; DjÞ � knðTj; DjÞDj Hðt � TjÞÞ
( )

:

Therefore,

PðTS [ tÞ ¼ E exp
XNðtÞ
j¼ 1

ðln cðTj; DjÞ � knðTj; DjÞDjHðt � TjÞÞ
( )" #

¼ E E exp
XNðtÞ
j¼ 1

ðln cðTj; DjÞ � knðTj; DjÞDj Hðt � TjÞÞ
( )

NðtÞj
 !" #

:
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As previously, if m�1 tð Þ exists, then the joint distribution of T1; T2; . . .; Tn,
given NðtÞ ¼ n, is the same as the joint distribution of the order statistics
T 0ð1Þ � T 0ð2Þ � . . .� T 0ðnÞ of i.i.d. random variables T 01; T

0
2; . . .; T 0n, where the pdf of

the common distribution of T 0j ’s is given by mðxÞ=mðtÞ. Thus,

E exp
XNðtÞ
j¼ 1

ðln cðTj;DjÞ � knðTj;DjÞDj Hðt � TjÞÞ
( )

NðtÞ ¼ nj
 !

¼ E exp
Xn

j¼ 1

ðln cðT 0ðjÞ;DjÞ � knðT 0ðjÞ;DjÞDjHðt � T 0ðjÞÞÞ
( ) !

:

Let X ¼ ðD1;D2; . . .;DnÞ, Z ¼ ðT 01; T 02; . . .; T 0nÞ and

uðX; ZÞ �
Xn

j¼1

ðln cðT 0j ;DjÞ � knðT 0j ;DjÞDjHðt � T 0j ÞÞ: ð4:27Þ

Note that, as was mentioned, if gUðtÞ ¼ 1; gLðtÞ ¼ 0, then nðTj;DjÞ � 1 and
our model reduces to the original model of Lemoine and Wenocur [24], where
each term in uðX;ZÞ is just a simple product of Dj and Hðt � T 0j Þ. Due to this
simplicity, the rest was straightforward. Now we have a much more complex form
of uðX;ZÞ, as given in (4.27), where the terms in the sum cannot be factorized.

Observe that the function uðx; zÞ satisfies

uðX; tÞ ¼d uðX; pðtÞÞ

for any vector t 2 Rn and for any n-dimensional permutation function pð�Þ. Thus,
applying Lemma 4.1,

Xn

j¼ 1

ðln cðT 0j ;DjÞ � knðT 0j ;DjÞDj Hðt � T 0j ÞÞ

¼d
Xn

j¼ 1

ðln cðT 0ðjÞ;DjÞ � knðT 0ðjÞ;DjÞDj Hðt � T 0ðjÞÞÞ

and, therefore,

E exp
Xn

j¼ 1

ðln cðT 0ðjÞ;DjÞ � knðT 0ðjÞ; DjÞDj Hðt � T 0ðjÞÞÞ
( ) !

¼ E exp
Xn

j¼ 1

ðln cðT 0j ;DjÞ � knðT 0j ;DjÞDj Hðt � T 0j ÞÞ
( ) !

¼ E expfln cðT 01;D1Þ � knðT 01;D1ÞD1 Hðt � T 01Þg
� �� �n

:

As
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E expfln cðT 01;D1Þ � knðT 01;D1ÞD1 Hðt � T 01Þg j T 01 ¼ s
� �
¼ E expfln cðs;D1Þ � knðs;D1ÞD1 Hðt � sÞg½ �

¼
ZgUðsÞ

gLðsÞ

expf�kuHðt � sÞg fDðuÞ du þ PðD1� gLðsÞÞ;
ð4:28Þ

where for D1 [ gUðsÞ, expfln cðs; D1Þ � knðs;D1ÞD1 Hðt � sÞg ¼ 0, for all
s [ 0, the unconditional expectation is

E expfln cðT 01;D1Þ � knðT 01;D1ÞD1 Hðt � T 01Þg
� �

¼
Z t

0

ZgUðsÞ

gLðsÞ

expf�kuHðt � sÞg fDðuÞ du
mðsÞ
mðtÞ ds þ

Z t

0

PðD1� gLðsÞÞ
mðsÞ
mðtÞ ds:

Let

aðtÞ �
Z t

0

ZgUðsÞ

gLðsÞ

expf�kuHðt � sÞg fDðuÞ dukðsÞ ds þ
Z t

0

PðD1� gLðsÞÞ mðsÞ ds;

and we finally arrive at

PðTS [ tÞ ¼
X1
n¼ 0

mðtÞ
mðtÞ

� 	n

� mðtÞn

n!
exp �

Z t

0

mðuÞ du

8<
:

9=
;

¼ exp �
Z t

0

mðuÞ du þ
Z t

0

ZgU ðsÞ

gLðsÞ

expf�kuHðt � sÞg fDðuÞ du mðsÞ dsþ
Z t

0

PðD1 � gLðuÞÞmðuÞ du

8><
>:

9>=
>;;

which is obviously equal to (4.25).
The corresponding failure rate can be obtained as

kSðtÞ ¼ �
d
dt

ln PðTS [ tÞ

¼ mðtÞ � PðgLðtÞ�D1� guðtÞÞ mðtÞ

þ
Z t

0

ZgUðsÞ

gLðsÞ

kuhðt � sÞ expf�kuHðt � sÞg fDðuÞ du mðsÞ ds � PðD1� gLðtÞÞ mðtÞ

¼ PðD1 [ gUðtÞÞmðtÞ þ
Z t

0

ZgUðsÞ

gLðsÞ

kuhðt � sÞ expf�kuHðt � sÞg fDðuÞ du mðsÞ ds;

where the Leibnitz rule was used for differentiation of the double integral. h
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Relationship (4.26) suggests that (4.25) can be equivalently written as

PðTS [ tÞ ¼ exp �
Z t

0

�FDðgUðuÞÞ mðuÞ du

8<
:

9=
; exp �

Z t

0

ZgUðsÞ

gLðsÞ

kuhðt � sÞ expf�kuHðt � sÞg fDðuÞ du mðsÞ ds

8><
>:

9>=
>; :

Therefore, we can again interpret our system as a series one with two inde-
pendent components: one that fails only because of fatal (critical) shocks and the
other that fails because of nonfatal shocks.

Example 4.2 Consider the special case when gUðtÞ ¼ 1 and gLðtÞ ¼ 0. Then the
survival function in (4.25) is

PðT [ tÞ ¼ exp �
Z t

0

�FDðgLðuÞÞ mðuÞ du

8<
:

9=
; exp

Z t

0

ZgUðsÞ

gLðsÞ

expf�kuHðt � sÞg fDðuÞ du mðsÞ ds

8><
>:

9>=
>;

¼ expf�mðtÞg exp

Z t

0

LðkHðt � sÞÞ mðsÞ ds

8<
:

9=
; ¼ expf�mðtÞg exp

Z t

0

LðkHðuÞÞ mðt � uÞ du

8<
:

9=
;;

where Lð�Þ is the operator of the Laplace transform with respect to fDðuÞ. There-
fore, we arrive at Eq. (4.19) obtained in [24].

Example 4.3 Suppose that mðtÞ ¼ m, t� 0, Dj � d, j ¼ 1; 2; . . ., and there exist
t2 [ t1 [ 0 such that

gUðtÞ[ gLðtÞ[ d, for 0� t\t1 (shocks are harmless);
d [ gUðtÞ[ gLðtÞ, for t2\t (shocks are fatal), and
gUðtÞ[ d [ gLðtÞ, for t1\t\t2; gLðt1Þ ¼ gUðt2Þ ¼ d.

Let for the sake of further integration, hðtÞ ¼ 1=ð1 þ tÞ, t� 0, and k ¼ 1=d
(for simplicity of notation). From Eq. (4.28),

E½expfln cðT 01;D1Þ � knðT 01;D1ÞD1Hðt � T 01Þg j T 01 ¼ s�
¼ expfln cðs; dÞ � knðs; dÞ dHðt � sÞg

¼
0; if gUðsÞ[ dðs [ t2Þ

expf�Hðt � sÞg; if gLðsÞ\d � gUðsÞ ðt1\s� t2Þ
1; if d� gLðsÞ ðs� t1Þ

8><
>:

¼ expf�Hðt � sÞg IðgLðsÞ[ d� gUðsÞÞ þ Iðd � gLðsÞÞ
¼ expf�Hðt � sÞg Iðt1 [ s� t2Þ þ Iðs1Þ:
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Thus, ‘integrating T 01 ¼ s out’:

E expfln cðT 01;D1Þ � knðT 01;D1ÞD1 Hðt � T 01Þg
� �

¼ 1
mðtÞ

Z t

0

expf�Hðt � sÞg Iðt1\s� t2Þ mðsÞ ds þ
Z t

0

Iðs� t1Þ mðsÞ ds

2
4

3
5:

Then,

PðTS [ tÞ ¼ exp �
Z t

0

mðuÞ du þ
Z t

0

expf�Hðt � sÞg Iðt1\s� t2Þ mðsÞ ds þ
Z t

0

Iðs� t1Þ mðsÞ ds

8<
:

9=
;

¼ exp �
Z t

0

Iðs [ t1Þ mðsÞ ds þ
Z t

0

expf�Hðt � sÞg Iðt1\s� t2Þ mðsÞ ds

8<
:

9=
;:

Thus [11],

(i) For 0� t� t1, PðT [ tÞ ¼ 1;
(ii) For t1� t� t2,

PðTS [ tÞ ¼ exp �
Z t

t1

kdu

8<
:

9=
; exp k

Z t

t1

expf�Hðt � sÞg ds

8<
:

9=
;

¼ exp �mðt � t1Þf g exp m lnð1 þ t � t1Þf g
¼ exp �mðt � t1Þf gð1 þ t � t1Þm;

(iii) For t2� t,

PðTS [ tÞ ¼ exp �
Z t

t1

mdu

8<
:

9=
; exp m

Zt2

t1

expf�Hðt � sÞg ds

8<
:

9=
;

¼ expf�mðt � t1Þgð1 þ t2 � t1Þm;

which shows (compared with case (ii)) that if the system has survived in 0� t� t1,
then the next shock with probability 1 will ‘kill’ it.

Model 2. We consider now the following useful modification of Model 1:
Let, on each shock, depending on its magnitude Dj; j ¼ 1; 2; ::, the following

mutually exclusive events occur:

(i) If Dj [ gUðTjÞ, the shock results in an immediate system failure (as in Model 1)
(ii) If Dj� gLðTjÞ, the shock is harmless (as in Model 1)
(iii) If gLðTjÞ\Dj� gUðTjÞ, then the shock imposes a (constant) effect on the

system lasting for a random time, which depends on its arrival time and
magnitude.
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In the latter case, assume that the larger are the shock’s arrival time and magni-
tude, the longer this effect lasts. Formally, let the shock increase the system failure
rate by g units (constant) for the random time wðTj; DjÞ, where wðt; dÞ is a strictly
increasing function of each argument. Thus, along with decreasing functions
gUðtÞ; gLðtÞ, the increasing function wðt; dÞ models deterioration of our system.

Similar to (4.22) (where for simplicity of notation, we set k � 1), the conditional
failure rate process (on condition that the event Dj [ gUðTjÞ; j ¼ 1; 2; . . . did not
happen in ½0; tÞ and fNðtÞ; T1; T2; . . .; TNðtÞg and fD1;D2; . . .;DNðtÞg are given) is

k̂t � XðtÞ ¼
XNðtÞ
j¼1

nðTj;DjÞ gIðTj� t\Tj þ wðTj;DjÞÞ:

Then, similar to (4.23),

PðTS [ t j NðsÞ; 0� s� t; D1;D2; . . .;DNðtÞÞ

¼
YNðtÞ
j¼1

cðTj;DjÞ � exp �
Z t

0

XNðxÞ
j¼1

nðTj;DjÞ gIðTj� x\Tj þ wðTj;DjÞÞ dx

8<
:

9=
;:
ð4:29Þ

where the functions nðTj;DjÞ and cðTj;DjÞ are defined in (4.20) and (4.24),
respectively.

Similar to Theorem 4.4, the following result holds.

Theorem 4.5 Let g be the increment in the system’s failure rate due to a single
shock that lasts for the random time wðTj;DjÞ. Under assumptions of Theorem 4.4,
the survival function PðTS [ tÞ is given by

PðTS [ tÞ ¼ exp �
Z t

0

�FDðgLðuÞÞ mðuÞ du

8<
:

9=
;

	 exp

Z t

0

ZgUðsÞ

gLðsÞ

expf�g �minfwðu; sÞ; ðt � sÞgg fDðuÞ du mðsÞ ds

8><
>:

9>=
>;:

ð4:30Þ

Proof Observe that from (4.29),

PðTS [ tjNðsÞ; 0� s� t; D1; D2; . . .; DNðtÞÞ

¼ exp
XNðtÞ
j¼1

ðln cðTj;DjÞ � gnðTj;DjÞminfwðTj;DjÞ; ðt � TjÞgÞ
( )

:
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Therefore,

PðTS [ tÞ ¼ E exp
XNðtÞ
j¼1

ðln cðTj;DjÞ � gnðTj;DjÞ minfwðTj;DjÞ; ðt � TjÞgÞ
( )" #

¼ E E exp
XNðtÞ
j¼1

ðln cðTj;DjÞ � gnðTj;DjÞminfwðTj;DjÞ; ðt � TjÞgÞ
( )

NðtÞj
 !" #

:

Following straightforwardly the procedure described in the proof of Theorem 4.4,
we eventually arrive at (4.30).

h

In contrast to Theorem 4.4 and owing to dependence in (4.30) on the function of
minimum, the corresponding failure rate can only be obtained when specific forms
of gUðtÞ, gLðtÞ, and wðt; dÞ are given. As in the case of Model 1, when gUðtÞ ¼
gLðtÞ ¼ gðtÞ; this model also obviously reduces to the pðtÞ , qðtÞ model (4.1).

Example 4.4 Let gLðtÞ ¼ 0, gUðtÞ ¼ 1, for all t� 0, and wðt; dÞ ¼ d(no deteri-
oration in time). This means that the shocks are not fatal with probability 1 and
that the durations of the shock’s effect do not depend on the arrival times but are
just given by the i.i.d. random variables Dj. In this case, from (4.30),

PðTS [ tÞ ¼ exp �
Z t

0

mðuÞ du

8<
:

9=
;

	 exp

Z t

0

Z1

0

expf�g �minfwðu; sÞ; ðt � sÞgg fDðuÞ du mðsÞ ds

8<
:

9=
;;

where

Z t

0

Z1

0

expf�g �minfwðu; sÞ; ðt � sÞgg fDðuÞdu mðsÞ ds

¼
Z t

0

Zt � s

0

expf�gug fDðuÞ du mðsÞ dsþ
Z t

0

Z1

t � s

expf�gðt � sÞg fDðuÞ du mðsÞ ds:

¼
Z t

0

Zt � u

0

mðsÞ ds expf�gugfDðuÞ du þ
Z t

0

expf�gðt � sÞgFDðt � sÞ mðsÞ ds:

¼
Z t

0

mðt � uÞ expf�gug fDðuÞ du þ
Z t

0

expf�gðuÞgFDðuÞ mðt � uÞ du
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¼ ½�FDðuÞ expf�gugmðt � uÞ�t0 �
Z t

0

FDðuÞ expf�gug mðt � uÞ du

� g
Z t

0

FDðuÞ expf�gugmðt � uÞ du þ
Z t

0

expf�gðuÞgFDðuÞ mðt � uÞ du

¼ mðtÞ � g
Z t

0

FDðuÞ expf�gugmðt � uÞ du:

Therefore,

PðTS [ tÞ ¼ exp �g
Z t

0

expf�gug � FDðuÞ � mðt � uÞ du

8<
:

9=
;;

and thus

kSðtÞ ¼ g
Z t

0

expf�gug � FDðuÞ � mðt � uÞ du:

4.4 Extreme Shock Model with Delayed Termination

Consider an orderly point process (without multiple occurrences) fNðtÞ; t� 0g of
some ‘initiating’ events (IEs) with arrival times T1\T2\T3\. . .. Let each event
from this process triggers the ‘effective event’ (EE), which occurs after a random
time (delay) Di; i ¼ 1; 2; . . ., since the occurrence of the corresponding IE at Ti.
Obviously, in contrast to the initial ordered sequence T1\T2\T3\. . ., the EEs
fTi þ Dig; i ¼ 1; 2; . . . are now not necessarily ordered. This setting can be
encountered in many practical situations, when, e.g., initiating events start the
process of developing the non-fatal faults in a system and we are interested in the
number of these faults in ½0; tÞ: Alternatively, effective events can result in fatal,
terminating faults (failures) and then we are interested in the survival probability
of our system. Therefore, the latter setting means that the first EE ruins our system.
When there are no delays, each shock (with the specified probability) results in the
failure of the survived system and the described model obviously reduces to the
classical extreme shock model ([17]; [19]) considered in the previous section of
this chapter and in Chap. 3.

The IEs can often be interpreted as some external shocks affecting a system, and
for convenience and in the spirit of the current chapter, we will often use this term
(interchangeably with the ‘‘IE’’). We will consider the case of the NHPP of the IEs.
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The approach can, in principle, be applied to the case of renewal processes, but the
corresponding formulas are too cumbersome. However, the obtained results for the
NHPP case are in simple, closed forms that allow intuitive interpretations and
proper analyses. Our presentation in this and the subsequent section will mostly
follow Cha and Finkelstein[7].

Thus, a system is subject to the NHPP of IEs, fNðtÞ; t� 0g to be called shocks.
Let the rate of this process be mðtÞ and the corresponding arrival times be denoted
as T1\T2\T3. . .. Assume that the ith shock is ‘harmless’ to the system with
probability qðTiÞ, and with probability pðTiÞ it triggers the failure process of the
system which results in its failure after a random time DðTiÞ, i ¼ 1; 2; . . ., where
DðtÞ is a non-negative, semicontinuous random variable with the point mass at ‘‘0’’
(at each fixed t). Note that, this ‘point mass’ at 0 opens the possibility of the
‘immediate failure’ of the system on a shock’s occurrence, which is practically
very important. Furthermore, the case of the ‘full point mass’ of DðtÞ at 0 reduces
to the ordinary ‘extreme shock model’. Obviously, without the point mass at 0, we
arrive at an absolutely continuous random variable. The distributions of DðtÞ
having point masses at other values of time could be considered similarly.

Let Gðt; xÞ � PðDðtÞ� xÞ, �Gðt; xÞ � 1 � Gðt; xÞ, and gðt; xÞ be the Cdf, the
survival function and the pdf for the ‘continuous part’ of DðtÞ, respectively. Then,
in accordance with our terminology, the failure in this case is the EE.

First of all, we are interested in describing the lifetime of our system TS. The
corresponding conditional survival function is given by

PðTS [ t j NðsÞ; 0� s� t; DðT1Þ; DðT2Þ; . . .; DðTNðtÞÞ; J1; J2; . . .; JNðtÞÞ

¼
YNðtÞ
i¼ 1

Ji þ ð1� JiÞIðDðTiÞ[ t � TiÞð Þ;

ð4:31Þ

where the indicators are defined as

IðDðTiÞ[ t � TiÞ ¼
1; if DðTiÞ[ t � Ti

0; otherwise



;

Ji ¼
1; if the ith shock does not trigger the subsequent failure process,

0; otherwise:




Assume the following conditions regarding ‘conditional independence’:

(i) Given the shock process, DðTiÞ; i ¼ 1; 2; . . ., are mutually independent.
(ii) Given the shock process, Ji, i ¼ 1; 2; . . ., are mutually independent. (It means

that whether each shock triggers the failure process of the system or not is
‘independently determined’).

(iii) Given the shock process, fDðTiÞ; i ¼ 1; 2; . . .g and fJi; i ¼ 1; 2; . . .g are
mutually independent.
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As in the previous sections, integrating out all conditional random quantities in
(4.31) under the basic assumptions described above results in the following
theorem.

Theorem 4.6 Let m�1ðtÞ; t [ 0 exist ( mðtÞ � EðNðTÞÞ. Then

PðTS� tÞ ¼ exp �
Z t

0

Gðx; t � xÞ pðxÞ mðxÞ dx

8<
:

9=
;; t� 0;

and the failure rate function of the system is

kSðtÞ ¼
Z t

0

gðx; t � xÞ pðxÞ mðxÞ dx þ Gðt; 0Þ pðtÞ mðtÞ; t� 0:

Proof Given the assumptions, we can directly ‘integrate out’ Ji’s and Di’s and
define the corresponding probability in the following way:

PðTS [ t j NðsÞ; 0� s� tÞ ¼
YNðtÞ
i¼ 1

qðTiÞ þ pðTiÞGðTi; t � TiÞ
� �

:

Therefore,

PðTS [ tÞ ¼ E
YNðtÞ
i¼ 1

qðTiÞ þ pðTiÞGðTi; t � TiÞ
� �" #

¼ E E
YNðtÞ
i¼ 1

qðTiÞ þ pðTiÞGðTi; t � TiÞ
� �

j NðtÞ
" #" #

:

ð4:32Þ

As the joint distribution of T1; T2; . . .; Tn given NðtÞ ¼ n is the same as the joint
distribution of order statistics T 0ð1Þ � T 0ð2Þ � . . .� T 0ðnÞ of i.i.d. random variables

T 01; T
0
2; . . .; T 0n, where the pdf of the common distribution of T 0j ’s is given by

mðxÞ=mðtÞ; 0� x� t, we have

E
YNðtÞ
i¼ 1

qðTiÞ þ pðTiÞGðTi; t � TiÞ
� �

j NðtÞ ¼ n

" #

¼ E
Yn

i¼ 1

qðT 0ðiÞÞ þ pðT 0ðiÞÞGðTðiÞ; t � T 0ðiÞÞ
� �" #

¼ E
Yn

i¼ 1

qðT 0i Þ þ pðT 0i ÞGðT 0i ; t � T 0i Þ
� �" #

¼ E qðT 0i Þ þ pðT 0i ÞGðT 0i ; t � T 0i Þ
� �� �n¼ 1

mðtÞ

Z t

0

qðxÞ þ pðxÞGðx; t � xÞ
� �

mðxÞ dx

0
@

1
A

n

:

ð4:33Þ
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From Eqs. (4.32) and (4.33),

PðTS [ tÞ ¼
X1
n¼ 0

1
mðtÞ

Z t

0

qðxÞ þ pðxÞGðx; t � xÞ
� �

mðxÞ dx

0
@

1
A

n

� mðtÞ
n

n !
e�mðtÞ

¼ e�mðtÞ � exp

Z t

0

qðxÞ þ pðxÞGðx; t � xÞ
� �

mðxÞ dx

8<
:

9=
;

¼ exp

Z t

0

qðxÞmðxÞ dxþ
Z t

0

Gðx; t � xÞpðxÞ mðxÞ dx�
Z t

0

mðxÞ dx

8<
:

9=
;

¼ exp �
Z t

0

Gðx; t � xÞ pðxÞ mðxÞ dx

8<
:

9=
;:

Therefore, by Leibnitz rule, the failure rate function of the system, kSðtÞ, is
given in the following meaningful and rather simple form:

kSðtÞ ¼
Z t

0

gðx; t � xÞpðxÞ mðxÞ dxþ Gðt; 0ÞpðtÞ mðtÞ; t� 0: ð4:34Þ

h

Formally, the split of effects to effective and ineffective shocks does not add
any mathematical complexity because of the NHPP nature of the arrival process.
This means that the result would be the same if we had only one type of effects and
the NHPP with the rate function pðtÞ vðtÞ. However, from the practical point of
view and keeping in mind that we are generalizing here the classical extreme
shock model with two types of effects, this splitting seems to be reasonable.
Furthermore, we can consider the case of the multitype delayed consequences of
shocks (n [ 1), where the shock that occurs at time t causes the delayed (with
distribution Giðt; xÞ) effect of type i with probability piðtÞ, whereas the probability
of ‘no effect’ is 1�

Pn
i¼ 1 piðtÞ. Obviously, this model is the same as the single-

type model with Gðt; xÞ ¼
Pn

i¼ 1 p�i ðtÞGiðt; xÞ and pðtÞ ¼
Pn

i¼ 1 piðtÞ, where
p�i ðtÞ ¼ piðtÞ

Pn
i¼ 1 piðtÞ. Therefore, similar to Theorem 4.6,

PðTS� tÞ ¼ exp �
Z t

0

Xn

i¼ 1

piðxÞGiðx; t � xÞ
 !

mðxÞ dx

8<
:

9=
;; t� 0

and

kSðtÞ ¼
Z t

0

Xn

i¼ 1

piðxÞ giðx; t � xÞ
 !

mðxÞ dx þ
Xn

i¼ 1

piðtÞGiðt; 0Þ
 !

mðtÞ:
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4.5 Cumulative Shock Model with Initiated
Wear Processes

Consider now a cumulative model for the IEs, where the accumulated wear can
result in a system’s failure when it reaches the given boundary. Our setting that
follows is different from the conventional one. In the conventional setting, the
wear caused by a shock is incurred at the moment of the corresponding shock (see
Sect. 4.1). In our model, however, the wear process, triggered by a shock, is
activated at the moment of a shock’s occurrence and continuously increases with
time.

Denote by Wðt; uÞ the random wear incurred in u units of time after a single
shock (IE) that has occurred at time t. Let Wðt; 0Þ � 0, for all t� 0. Assume that
Wðt; uÞ is stochastically increasing (see Sect. 2.8) in t and u, that is,

Wðt1; uÞ� stWðt2; uÞ for all t2 [ t1 [ 0 and for all u [ 0;

and

Wðt1; uÞ� stWðt; uÞ for all u2 [ u [ 0 and for all t [ 0:

An example for this type of Wðt; uÞ is the gamma process, with the pdf for
Wðt; uÞ given by

f ðw; t; uÞ ¼ baðt; uÞ � waðt; uÞ � 1 expf�bwg
Cðaðt; uÞÞ ; w� 0;

where aðt; 0Þ ¼ 0, for all t� 0, and aðt; uÞ is strictly increasing in both t and u.
If all shocks from the initial process trigger wear, then the accumulated wear

from all shocks in ½0; tÞ is

WðtÞ ¼
XNðtÞ
i¼ 0

WðTi; t � TiÞ;

which can be considered as a general form of a shot noise process (see Sect. 4.3).
Assume that each shock with probability pðtÞ results in an immediate failure
(termination), otherwise, with probability qðtÞ it triggers the wear process in the
way described above. The failure also occurs when the accumulated wear reaches
the random boundary R and we are interested in obtaining the distribution of the
time to failure, TS.

The corresponding conditional survival probability for this model can be
written as [7]

PðTS [ tjNðsÞ; 0� s� t; WðTi; t � TiÞ; i ¼ 1; 2; . . .;NðtÞ; RÞ

¼
YNðtÞ
i¼ 0

qðTiÞ � I
XNðtÞ
i¼ 0

WðTi; t � TiÞ�R

 !
:
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For obtaining the explicit expression for the unconditional survival probability
in this case assume additionally that R is the exponentially distributed (with
parameter k) random variable.

Theorem 4.7 Let the shock process be the NHPP with rate mðtÞ and suppose that
m�1ðtÞ exists (for t [ 0). Then

PðTS� tÞ ¼ exp �
Z t

0

mðxÞ dxþ
Z t

0

MWðx; t� xÞð�kÞ � qðxÞmðxÞ dx

8<
:

9=
;; t� 0;

and the corresponding failure rate function is

kSðtÞ ¼ pðtÞ mðtÞ �
Z t

0

d
dt

MWðx; t� xÞð�kÞ
� �

� qðxÞ mðxÞ dx; t� 0;

where MWðt; uÞð�Þ is the mgf of Wðt; uÞ (for fixed t and u).

Proof Given the assumptions, we can directly ‘integrate out’ the variable R and
define the corresponding probability in the following way:

PðTS [ tjNðsÞ; 0� s� t; WðTi; t � TiÞ; i ¼ 1; 2; . . .;NðtÞÞ

¼
YN tð Þ

i¼ 0

q Tið Þ
 !

� exp �
Z

PNðtÞ
i¼0

WðTi; t�TiÞ

0

kdu

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼ exp �k
XNðtÞ
i¼ 1

WðTi; t � TiÞ þ
XN tð Þ

i¼ 1

ln q Tið Þ
( )

:

Thus, the survival function can be obtained as

PðTS [ tÞ ¼ E E exp �k
XNðtÞ
i¼1

WðTi; t � TiÞ þ
XN tð Þ

i¼1

ln q Tið Þ
( )

jNðtÞ
" #" #

:

Following the same procedure described in the Proof of Theorem 4.6,

E exp �k
XNðtÞ
i¼ 1

WðTi; t � TiÞ þ
XN tð Þ

i¼ 1

ln q Tið Þ
( )

jNðtÞ ¼ n

" #

¼ E exp �k WðT 01; t � T 01Þ þ ln q T 01
� �� �� �� �n

:
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Observe that,

E exp �k WðT 01; t � T 01Þ þ ln q T 01
� �� �� �

¼ 1
mðtÞ

Z t

0

qðxÞMWðx; t�xÞð�kÞ
� �

mðxÞ dx:

Hence,

E exp �k
XNðtÞ
i¼ 1

WðTi; t � TiÞ þ
XN tð Þ

i¼ 1

ln q Tið Þ
( )

jNðtÞ ¼ n

" #

¼ 1
mðtÞ

Z t

0

qðxÞMWðx; t� xÞð�kÞ
� �

mðxÞ dx

0
@

1
A

n

:

Finally,

PðTS [ tÞ ¼ exp �
Z t

0

mðxÞ dx þ
Z t

0

MWðx; t� xÞð�kÞ � qðxÞ mðxÞ dx

8<
:

9=
;:

Therefore, by Leibnitz rule, the failure rate function of the system, kSðtÞ, is

kSðtÞ ¼ ð1 � MWðt; 0Þð�kÞ � qðtÞÞ mðtÞ �
Z t

0

d
dt

MWðx; t� xÞð�kÞ
� �

� qðxÞ mðxÞ dx

¼ pðtÞmðtÞ �
Z t

0

d
dt

MWðx; t � xÞð�kÞ
� �

� qðxÞ mðxÞ dx: h

Let, for simplicity, limt!1 mðtÞ � mð1Þ � m0\1; m0 [ 0; pðtÞ � p; qðtÞ � q.
It is clear from general considerations that limt!1 kSðtÞ ¼ limt!1 mðtÞ ¼ m0

monotonically approaching the limit from below. Indeed, consider a system
that had survived in ½0; tÞ, which means that the next interval ½t; t þ dtÞ starts with
the same ‘resource’ R, as the boundary is exponentially distributed. Due to the
fact that all previous nonfatal shocks accumulate wear and all triggered wear
processes are increasing, as t increases (WðtÞ ! 1 as t!1), the resource R
is ‘consumed more intensively’ with time. This obviously means that the probability
of failure in ½t; t þ dtÞ is increasing in t and, therefore, kSðtÞ is increasing.
Eventually, when t!1, each triggering shock becomes fatal in the limit, which
means that
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lim
t!1

kSðtÞ ¼ lim
t!1

mðtÞ ¼ m0:

The following example illustrates these considerations.

Example 4.5 Suppose that Wðt; uÞ follows the gamma process, that is, the pdf of
Wðt; uÞ is

f ðw; t; uÞ ¼ baðt; uÞ � waðt; uÞ� 1 expf�bwg
Cðaðt; uÞÞ ; w� 0;

where aðt; 0Þ ¼ 0 for all t� 0, and aðt; uÞ is strictly increasing in both t and u.
Then

MWðx; t� xÞð�kÞ ¼ b
bþ k

� 	aðx; t� xÞ
;

and

d
dt

MWðx; t � xÞð�kÞ
� �

¼ d
dt

aðx; t � xÞð Þ ln
b

bþ k

� 	
� b

bþ k

� 	aðx; t � xÞ
:

Let mðtÞ ¼ m; qðtÞ ¼ q; t� 0; aðt; uÞ ¼ au; t; u� 0. Then

Z t

0

d
dt

MWðx; t� xÞð�kÞ
� �

� qðxÞ mðxÞ dx ¼
Z t

0

a � ln b
bþ k

� 	
� b

bþ k

� 	aðt � xÞ
�q mdx

¼
Zat

0

ln
b

bþ k

� 	
� b

bþ k

� 	x

�q mdx

¼ qm
b

bþ k

� 	at

�1

� 	
:

Therefore, we have

kSðtÞ ¼ pm þ qm 1 � b
bþ k

� 	at� 	
; t� 0

and

lim
t!1

kSðtÞ � m;

which illustrates the fact that every triggering shock in the limit becomes fatal.
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4.6 ‘Curable’ Shock Processes

In this section, we generalize the setting of Sect. 4.4 to the case when each failure
that was initiated (and delayed), has a chance to be repaired or cured as well.
Therefore, as previously, consider a system subject to the NHPP of IEs
fNðtÞ; t� 0g to be called shocks. Let the rate of this process be mðtÞ and the
corresponding arrival times be denoted as T1\T2\T3. . .. Assume that the ith
shock triggers the failure process of the system which can result in its failure after
a random time DðTiÞ, i ¼ 1; 2; . . ., where for each fixed t� 0, the delay DðtÞ is a
non-negative, continuous random variable. Let Gðt; xÞ � PðDðtÞ� xÞ,
�Gðt; xÞ � 1� Gðt; xÞ, and gðt; xÞ be the Cdf, the survival function, and the pdf of
DðtÞ, respectively. Assume now that with probability qðt; xÞ ¼ 1� pðt; xÞ, where
t is the time of a shock’s occurrence and x is the corresponding delay, each failure
can be instantaneously cured (repaired), as if this shock did not trigger the failure
process at all. For instance, it can be an instantaneous overhaul of an operating
system by the new one that was not exposed to shocks before. It should be noted
that this operation is executed at time t þ x and not at time t, as in the classical
extreme shock model without delay. Different cure models have been considered
mostly in the biostatistical literature (see Aalen et al. [1] and references therein).
Usually, these models deal with a population that contains a subpopulation that is
not susceptible to, e.g., a disease (i.e., ‘cured’) after some treatment. This setting is
often described by the multiplicative frailty model with the frailty parameter
having a mass at 0. It means that there exists a nonsusceptible (cured) subpopu-
lation with the hazard rate equal to 0. In our case, however, the interpretation is
different, but the mathematical description is also based on considering the cor-
responding improper distributions [9].

For simplicity of notation, consider the t-independent case, when DðtÞ � D,
Gðt; xÞ � GðxÞ, gðt; xÞ � gðxÞ and pðt; xÞ � pðxÞ. The results can be easily
modified to the t-dependent setting. Having in mind that D denotes the time of
delay, let DC be the time from the occurrence of an IE to the system failure caused
by this IE. Note that DC is an improper random variable, as DC � 1 (with a non-
zero probability) when the corresponding IE does not result in an ultimate system
failure due to cure. Then the improper survival function that describes DC is:

�GCðxÞ � 1 �
Zx

0

pðuÞgðuÞ du ð4:35Þ

with the corresponding density:

gCðxÞ ¼ pðxÞ gðxÞ: ð4:36Þ

Thus, the EE that has occurred in ½x; xþ dxÞ is fatal with probability pðxÞ and is
cured with probability qðxÞ. For the specific case, pðxÞ � p, we can say that the
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proportion p of events of interest results in failure, whereas ‘the proportion 1 � p
is cured’

Another setting, which yields a similar description, is as follows: let each IE
along with the failure development mechanism ignites a repair mechanism
described by the repair time R with the Cdf KðtÞ. If R [ D, then the EE is fatal,
otherwise it will be repaired before the failure (R�D) and therefore, can formally
be considered as cured. Thus, probability pðxÞ in (4.36) has a specific, meaningful
form in this case

pðxÞ ¼ 1 � KðxÞ:

After describing the setting, we are ready now to derive the formal result. The
proof is relatively straightforward and similar to the proofs of the previous sections
of this chapter; however the explicit result to be obtained is really meaningful. We
are interested in describing the lifetime of our system TS (time to the first fatal EE).
The corresponding conditional survival function is given by

PðTS [ tjNðsÞ; 0� s� t; DC1;DC2; . . .;DCNðtÞÞ

¼
YNðtÞ
i ¼ 1

IðDCi [ t � TiÞð Þ;
ð4:37Þ

where the indicators are defined as

IðDCi [ t � TiÞ ¼
1; if DCi [ t � Ti

0; otherwise

(
:

Let

Ji ¼
1; if the ith cure process is successful;

0; otherwise:

(

We assume that given the shock process, (i) Ji, i ¼ 1; 2; . . ., are mutually
independent; (ii) Di, i ¼ 1; 2; . . ., are mutually independent; (iii) fJi; i ¼ 1; 2; . . .g,
fDi; i ¼ 1; 2; . . .g are mutually independent. Therefore, DCi i ¼ 1; 2; . . ., are also
mutually independent.

Integrating out all conditional random quantities in (4.37) under the basic
assumptions described above, we arrive at the following theorem, which modifies
Theorem 4.6 [11]:

Theorem 4.8 Let m�1ðtÞ exist for t [ 0. Then

PðTS� tÞ ¼ exp �
Z t

0

GCðt � uÞmðuÞ du

8<
:

9=
;; t� 0; ð4:38Þ

and the failure rate function of the system is
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kSðtÞ ¼
Z t

0

pðt � uÞ gðt � uÞ mðuÞ du; t� 0: ð4:39Þ

Proof From (4.37),

PðTS [ tjNðtÞ; T1; T2; . . .; TNðtÞ; DC1; DC2; . . .; DCNðtÞÞ

¼
YNðtÞ
i ¼ 1

IðDCi [ t � TiÞð Þ:

Due to the conditional independence assumption described above, we can
‘integrate out’ DCi’s separately and define the corresponding probability in the
following way:

PðTS [ tjNðtÞ; T1; T2; . . .; TnÞ ¼
YNðtÞ
i ¼ 1

�GCðt � TiÞð Þ:

Therefore,

PðTS [ tÞ ¼ E
YNðtÞ
i ¼ 1

GCðt � TiÞ
� �" #

¼ E E
YNðtÞ
i ¼ 1

GCðt � TiÞ
� �

j NðtÞ
" #" #

:

ð4:40Þ

The joint distribution of T1; T2; . . .; Tn given NðtÞ ¼ n is the same as the joint
distribution of order statistics T 0ð1Þ � T 0ð2Þ � . . .� T 0ðnÞ of i.i.d. random variables

T 01; T
0
2; . . .; T 0n, where the p.d.f. of the common distribution of T 0j ’s is given by

mðxÞ=mðtÞ; 0� x� t:

ðT1; T2; . . .; TnjNðtÞ ¼ nÞ ¼d ðT 0ð1Þ; T 0ð2Þ; . . .; T 0ðnÞÞ:

Then

E
YNðtÞ
i ¼ 1

GCðt � TiÞ
� �

jNðtÞ ¼ n

" #

¼ E
Yn

i ¼ 1

GCðt � T 0ðiÞÞ
� �" #

¼ E
Yn

i ¼ 1

GCðt � T 0i Þ
� �" #

¼ E GCðt � T 0i Þ
� �� �n

¼ 1
mðtÞ

Z t

0

Gðt � uÞ
� �

mðuÞ du

0
@

1
A

n

:

ð4:41Þ
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From Eqs. (4.40) and (4.41),

PðTS [ tÞ ¼
X1
n ¼ 0

1
mðtÞ

Z t

0

GCðt � uÞ
� �

mðuÞ du

0
@

1
A

n

� mðtÞ
n

n !
e�mðtÞ

¼ e�mðtÞ � exp

Z t

0

GCðt � uÞ
� �

mðuÞ du

8<
:

9=
;

¼ exp

Z t

0

GCðt � uÞ mðuÞ dx�
Z t

0

mðuÞ du

8<
:

9=
;

¼ exp �
Z t

0

GCðt � uÞ mðuÞ du

8<
:

9=
;;

where GCðt � uÞ is defined by (4.35). Therefore, using Leibnitz rule and
Eq. (4.36), kSðtÞ can be obtained in the following meaningful and a rather simple
form:

kSðtÞ ¼
Z t

0

gCðt � uÞ mðuÞ du ¼
Z t

0

pðt � uÞ gðt � uÞ mðuÞ du: ð4:42Þ

h

We will show now that under certain assumptions the pðtÞ , qðtÞ model (4.1)
and the current one are asymptotically equivalent. Indeed, assume that
limt!1 mðtÞ � m\1. Without loss of generality, let pðtÞ and mðtÞ be the con-
tinuous functions with pðtÞ[ 0, for all t� 0. Then the failure rate (4.42) tends to a
constant as t!1, i.e.,

lim
t !1

kSðtÞ ¼ lim
t!1

Z t

0

pðt � uÞ gðt � uÞ mðuÞ du

¼ v

Z1

0

pðuÞgðuÞ du:

The latter integral obviously is finite as gðtÞ is the pdf and pðtÞ\1 for all t [ 0.
Specifically, when limt!1 pðtÞ ¼ p;

lim
t!1

kSðtÞ ¼ vp:

Thus, under the given assumptions, the failure rate (4.42), ‘asymptotically
converges’ (as t!1) to that of the classical extreme shock model (4.1).
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4.7 Stress–Strength Model with Delay and Cure

Consider now a more specific and practical model with delay and possible cure
that can be applied, e.g., in reliability modeling of materials and mechanical
structures. Let, as previously, mðtÞ be the rate of the NHPP process of shocks (IEs)
affecting our system and Si denote the magnitude of the ith shock (stress). Assume
that Si; i ¼ 1; 2; . . . are i.i.d. random variables with the common Cdf FSðsÞ
(FSðsÞ � 1 � FSðsÞ) and the corresponding pdf fSðsÞ. The system is characterized
by its strength to resist stresses. Let first, the strength of the system Y be a constant,
i.e., Y ¼ y. Assume that for each i ¼ 1; 2; ::, the operable system immediately fails
if Si [ y (fatal immediate failure) and the EE is triggered with the delay time and
possible cure (as in the previous section) if Si� y. It is clear that due to the
described operation of thinning, the initial NHPP splits into two NHPP processes
with rates �FSðyÞ mðtÞ and FSðyÞ mðtÞ. Therefore, combining results of the previous
section with the classical extreme shock model (4.1), Eqs. (4.38) and (4.39) can be
generalized to

PðTS [ tjY ¼ yÞ ¼ exp ��FSðyÞ
Z t

0

mðuÞ du

8<
:

9=
; exp �FSðyÞ

Z t

0

GCðt � uÞ mðuÞ du

8<
:

9=
;; t� 0;

ð4:43Þ

kSðtjY ¼ yÞ ¼ �FSðyÞ mðtÞ þ FSðyÞ
Z t

0

pðt � uÞ gðt � uÞ mðuÞ du; t� 0; ð4:44Þ

accordingly.
In practice, due to various reasons, the strength of a system Y can be considered

as a random variable. Let its support be, e.g., ½0;1Þ. Denote by HYðyÞ
(HYðyÞ � 1 � HYðyÞ) and by hYðyÞ, the corresponding Cdf and the pdf, respec-
tively. The first guess in generalizing (4.43) and (4.44) to the case of a random Y
would be just to replace FSðuÞ and FSðuÞ in these equations by the expectations

Z1

0

FSðyÞ hYðyÞ dy and
Z1

0

�FSðyÞ hYðyÞ dy; ð4:45Þ

accordingly. However, it is not true, as the proper conditioning should be imposed
(on condition that the previous shocks have been survived). This operation is
similar to the Bayesian update of information. It can be easily seen from (4.43) and
(4.44) that the model can be considered now as a mixture, or equivalently as a
frailty model with the frailty parameter Y (see the next Chapter). Therefore, the
mixture (observed) survival function for the lifetime TS is obtained directly from
(4.43) as the corresponding expectation:
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PðTS [ tÞ ¼
Z1

0

PðTS� tjY ¼ yÞ hYðyÞ dy

¼
Z1

0

exp �
Z t

0

ð�FSðyÞ mðuÞ du þ FSðyÞGCðt � uÞ mðuÞÞ du

8<
:

9=
;hYðyÞ dy;

ð4:46Þ

whereas the failure rate is the following conditional expectation:

kSðtÞ ¼
Z1

0

kSðtjY ¼ yÞ hYðyjTS [ tÞ dy; ð4:47Þ

where hYðyjTS [ tÞ is the pdf of the random variable Y jTS [ t, or equivalently,
kSðtÞ, in accordance with the definition, is

kSðtÞ ¼ �
P0ðTS [ tÞ
PðTS [ tÞ :

From (4.43), hYðyjTS [ tÞ can be obtained as

hYðyjTS [ tÞ ¼ exp ��FSðyÞ
Z t

0

mðuÞ du

8<
:

9=
; exp �FSðyÞ

Z t

0

GCðt � uÞ mðuÞ du

8<
:

9=
;hYðyÞ

	
Z1

0

exp �
Z t

0

ð�FSðxÞ mðuÞ du þ FSðxÞGCðt � uÞ mðuÞÞ du

8<
:

9=
;hYðxÞ dx

0
@

1
A
�1

ð4:48Þ

Equations (4.44), (4.47) and (4.48) show that the explicit form of kSðtÞ is rather
cumbersome and numerical methods should be used for calculating it in practice.
However, our goal here is to emphasize the relevant methodological issues.

Specifically, when there is only a fatal immediate failure (i.e., without delays),
Eq. (4.46) simplifies to

PðTS [ tÞ ¼
Z1

0

exp �FSðyÞ
Z t

0

mðuÞ du

8<
:

9=
;hYðyÞ dy ð4:49Þ

and after the change in the order of integration, the corresponding failure rate
becomes

kSðtÞ ¼

R1
0

R s
0 exp �FSðyÞ

Rt
0

mðuÞ du


 �
hYðyÞ dy fSðsÞ ds

R1
0

exp �FSðyÞ
Rt
0

mðuÞ du


 �
hYðyÞ dy

mðtÞ: ð4:50Þ
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The right-hand side of Eq. (4.50) is still much more complex than the corre-
sponding failure rate for the fixed strength model, which is the simple product,
�FSðyÞ mðtÞ. The price for this simplicity is in neglecting the random nature of the
strength of a system.

4.8 Survival of Systems with Protection Subject to Two
Types of External Attacks

Consider a large system (LS) that, because of its importance and (or) large eco-
nomic value, should be protected from possible harmful attacks or intrusions. At
many instances, this protective function is performed by a specially designed
defence system (DS). Therefore, the attacker wants to destroy the DS partially or
completely and then to attack the LS [12].

Let the maximum level of performance of the DS be described by the value of
the initial defence capacity, DM—to be interpreted as, e.g., the total number of
defence units, service points, firewalls, etc. For instance, we may imagine a system
that executes defence against aircraft or missile strikes on some important object
(as, e.g., a power station or a marine port during combat). Another more ‘peaceful
example’ is the computer network that should be protected from hack-attacks
aimed at disabling firewalls.

The attacker executes two types of attacks—those that target the DS and those
that target the system itself. We will model these actions by two different sto-
chastic point processes to be called for convenience, the A1 and the A2 shock
processes, respectively. The shocks from the A1 process damage, i.e., destroy
certain parts of the DS. We assume that the DS is repairable and, therefore, this
effect is temporal. Given the stochastic nature of the setting, the actual defence
capacity at time t can be modeled by a stochastic process fDðtÞ; t� 0g. For
example, it may be maximal for long periods of time, i.e., DðtÞ ¼ DM , or severely
hampered when DðtÞ\\ DM . Thus, distinct from the conventional shock models
with accumulated damage, our model describes a nonmonotonic damage process,
which accounts for, e.g., the corresponding repair actions.

The DS defends the nonrepairable LS from the A2 process of shocks that are
aimed to destroy the LS or, in other words, to completely terminate its operation.
In accordance with reliability terminology, we will call this event a failure.
Assume that, similar to the classical extreme shock models, each shock from the
A2 process results in the LS failure with probability pðtÞ or it is ‘perfectly’ sur-
vived with the complementary probability qðtÞ ¼ 1 � pðtÞ. The latter means in
our case that the DS has neutralized the attack. It is natural to assume that these
probabilities are the functions of the defence capacity in the following sense: for
each realization of DðtÞ ¼ dðtÞ, the failure probability pðtÞ is a decreasing function
of the actual defence capacity, i.e., pðtÞ ¼ p�ðdðtÞÞ, where p�ð�Þ is strictly
decreasing in its argument. As the simplest and meaningful scenario, one may
define a proportion-type function:
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p�ðdðtÞÞ ¼ ðDM � dðtÞÞ=DM :

The failure of the LS occurs when the attack on it is not neutralized by the DS.
We are interested in the survival probability of the LS in ½0; tÞ. An obvious specific
case is when instead of the A2 shock process, only one attack at time instant
t0 2 ½0; tÞ is executed with the corresponding survival probability pðt0Þ ¼ p�ðdðt0ÞÞ.
The foregoing setting indicates that the description of the stochastic process
fDðtÞ; t� 0g is the crucial part of our approach. In order to obtain the mathe-
matically tractable solution, the relatively simple stochastic point processes need
to be adopted as the corresponding models for the A1 and the A2 shock processes.

For a formal description, denote

(i) NðtÞ; t� 0f g the NHPP process of the A1 shocks with rate vðtÞ and (ordered)
arrival times Ri; i ¼ 0; 1; 2; . . .; R1\R2\R3; . . ., where i ¼ 0 formally
means that there were no events in ½0; tÞ.

(ii) QðtÞ; t� 0f g—the NHPP process of the A2 shocks with rate wðtÞ and ordered
arrival times Bi; i ¼ 1; 2; . . .; B1\B2\B3; . . ., where i ¼ 0 formally means
that there were no events in ½0; tÞ. The specific case of the only one A2 event
in ½0; tÞ will be also considered.

Assume that, when DðtÞ ¼ D, the A2 shock at time t directly destroys the
operating LS with probability

pðt j DðtÞ ¼ DÞ ¼ 1 � a
D

DM

and is survived with the complementary probability

qðt j DðtÞ ¼ DÞ � 1 � pðt j DðtÞ ¼ DÞ ¼ a
D

DM
; ð4:51Þ

where fDðtÞ; t� 0g is a stochastic process that models the defence capacity of the
DS, DM ¼ Dð0Þ is its fixed initial maximal value and a ð0\a� 1Þ is a constant.
The coefficient a shows the protection coverage of the LS by the DS. Specifically,
when a ¼ 1 and DðtÞ ¼ DM , the DS executes the 100 % protection of the LS from
the A2 shock at time t. In what follows, for simplicity of notation, we will assume
that a ¼ 1, whereas the general case is obtained by a trivial modification. It should
be noted that Eq. (4.51) means that the survival probability for the A2 shock is
proportional to the normalized defence capacity DðtÞ=DM .

We must set now the model for the process fDðtÞ; t� 0g, which is the major
challenge in this setting. Let the ith A1 shock causes the damage Wi; i ¼ 1; 2; . . .
to the DS. We assume that this effect ‘expires’ in a random time si (e.g., the repair
facility is restoring the DS from the consequences of this shock). As the damages
are accumulated,

DðtÞ ¼ DM �
XNðtÞ
i ¼ 1

Wi1ðt � Ri\siÞ; ð4:52Þ
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where 1ð�Þ is the corresponding indicator. Obviously, the stochastic process
fDðtÞ; t� 0g should not be negative and we will discuss it for the specific models
to follow.

The number of A1 shocks that contribute toward the total damage at time t can
be obviously defined as the following stochastic process

XðtÞ ¼
XNðtÞ
i ¼ 1

1ðt � Ri� siÞ; ð4:53Þ

In other words, XðtÞ counts the number of A1 shocks with ‘active’ damage (not
eliminated or vanished) at time t. Assume further that

(iii) si; i ¼ 1; 2; 3; . . . are i.i.d. random variables with the Cdf GðtÞ and mean �sG.
(iv) Wi; i ¼ 1; 2; 3; . . . are i.i.d. random variables with finite expectation

E½Wi� ¼ dw (for Model 1 to follow).
(v) fNðtÞ; t� 0g; fQðtÞ; t� 0g; Wi; i ¼ 1; 2; . . . and si; i ¼ 1; 2; . . . are inde-

pendent of each other.

We will consider two models for damage accumulation and the resulting
probabilities of interest.
Model 1. In accordance with (4.51) (a ¼ 1Þ,

q1ðtjWi ¼ wi; i ¼ 1; 2; . . .; XðtÞ ¼ rÞ ¼
DM �

Pr
i ¼ 1

wji

DM
; ð4:54Þ

where, j1\j2\. . .\jr are the subscripts of Wi for which ft � Ri\sig is satisfied
and the subscript ‘‘1’’ in q1 stands for the first model. Assume initially that there is
only one A2 shock, whereas the case of the process of A2 shocks will be con-
sidered further. The unconditional probability of survival under a single A2 shock
at time t is the corresponding expectation that, in accordance with Wald’s equality,
can be written as

q1ðtÞ ¼ E½q1ðtjWii ¼ 1; 2; . . .; XðtÞÞ�

¼
DM � E

PXðtÞ
i¼ 1

Wji

" #

DM
¼ 1� E½XðtÞ� dw

DM
:

ð4:55Þ

In this model, we implicitly assume that damages are relatively small compared
with the full size DM , i.e.,dw 
 DM and the rate of the A1 process is not too large,
in order (4.52) to be positive (i.e., the probability that it is formally negative is
negligible). These assumptions in a broader context will be discussed later.
Model 2. Model 1 traditionally describes accumulation of damage via the i.i.d.
increments. However, in view of our two shock processes setting, it can be
interesting and appealing to consider a different new scenario when each shock
decreases proportionally the defence capacity [12]. The damage in this case
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depends on the value of the defence capacity: the larger DðtÞ corresponds to the
larger damage from a shock. This assumption seems to be often more realistic than
the i.i.d. one, as at many instances, the size of the damage depends on the size of
the attacked system. Suppose that a single A2 shock has occurred at time t. Then
our assumption can be formalized as

DðtÞ ¼ kDðt�Þ; ð4:56Þ

where the proportionality factor kð0\k\1Þ describes the efficiency of attacks for
each shock from the A1 process and ‘‘t�’’ denotes the time instant just prior to t.

As the defence system starts at t ¼ 0 at ‘full size’, its capacity at time t is given
by the following random variable (for each fixed t), or equivalently, by the sto-
chastic process fDðtÞ; t� 0g:

DðtÞ ¼ DMkXðtÞ; ð4:57Þ

as the effect of all other damages caused by the process NðtÞ; t� 0 (not counted by
(4.53)), was eliminated (repaired). In contrast to Model 1, DðtÞ is always positive
and no additional assumption for that is needed. In accordance with (4.51):

q2ðtjXðtÞ ¼ rÞ ¼ kr: ð4:58Þ

The unconditional probability of survival under a shock at time t is the cor-
responding expectation with respect to XðtÞ:

q2ðtÞ ¼ E½q2ðtjXðtÞÞ� ¼ E½kXðtÞ�: ð4:59Þ

In practice, k is usually close to 1 meaning that only a small portion of the
defence capability is lost on each A1 shock.

Denote, as previously, by TS the time to failure of the LS. Now we are ready for
obtaining the survival probability, PrðTS [ tÞ. As follows from (4.55) and (4.59),
in order to describe the process fDðtÞ; t� 0g and to derive PrðTS [ tÞ for both
models, we need to obtain the discrete distribution of XðtÞ given by Eq. (4.53). The
proof of the following theorem is rather straightforward and similar to the proofs
of the previous sections and, therefore, it is omitted. However, this result will be
basic for our further derivations in this section.

Theorem 4.9 Let mvðtÞ � EðNðtÞÞ ¼
Rt
0

vðxÞ dx denotes the cumulative rate of the

A1 process of shocks and suppose that m�1
v ðtÞ; t [ 0 exists. Then, the distribution

of XðtÞ for each fixed t is given by the following formula:

PrðXðtÞ ¼ rÞ ¼
R t

0 vðxÞ �Gðt � xÞ dx
� �r

exp �
R t

0 vðxÞ�Gðt � xÞdx
� �

r!
; ð4:60Þ

where �GðtÞ � 1 � GðtÞ is the survival probability for si; i ¼ 1; 2; 3; . . .
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Consider first, the probability of survival under a single A2 shock at time t,
which can be already of a practical interest in applications. In fact, this is our qðtÞ
defined for both models by expectations (4.55) and (4.59), respectively. The fol-
lowing theorem gives the corresponding expressions.

Theorem 4.10 The probability of survival of the operating LS under a single A2
shock at time t is

q1ðtÞ ¼ 1�
R t

0 vðxÞ �Gðt � xÞ dx
� �

dw

DM
ð4:61Þ

for Model 1 and

q2ðtÞ ¼ exp �ð1� kÞ
Z t

0

vðxÞ �Gðt � xÞ dx

8<
:

9=
; ð4:62Þ

for Model 2.

Proof It immediately follows from Eq. (4.60) that

E½XðtÞ� ¼
Z t

0

vðxÞ �Gðt � xÞ dx

and, therefore, (4.61) holds.
Similarly, for Model 2,

q2ðtÞ ¼ E½kXðtÞ�

¼
X1
r¼ 0

kr

R t
0 vðxÞ �Gðt � xÞ dx

� �r
exp �

R t
0 vðxÞ �Gðt � xÞ dx

� �
r!

¼ exp �ð1 � kÞ
Z t

0

vðxÞ �Gðt � xÞ dx

8<
:

9=
;:

h

Theorem 4.11 Let vðtÞ ¼ v; t 2 ½0; 1Þ or limt!1 vðtÞ ¼ v. Then the sta-
tionary values of qiðtÞ, i.e., limt!1 qiðtÞ ¼ qi; i ¼ 1; 2 are given by

q1 ¼ 1 � �sGdw

�sNDM
; ð4:63Þ

q2 ¼ exp �ð1 � kÞ�sG

�sN


 �
; ð4:64Þ
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where �sG ¼
R1

0
�GðxÞ dx is the mean time which corresponds to random variables

si; i ¼ 1; 2; . . . and �sN ¼ 1=v is the mean time (exactly or asymptotically as
t!1) between successive A1 shocks.

Theorem 4.11 is intuitively obvious and can be proved in a straightforward way
by using the variable substitution y ¼ t � x for the integrals in (4.61) and (4.62)
and by applying the Lebesgue’s Dominated Convergence Theorem afterward.
When �sG=�sN\\1, which means a very quick repair of damage with respect to the
time between successive A1 shocks, Model 2 reduces to a very simple (and usually
not practically justified) setting when the repair periods after different A1 shocks
do not overlap. In this case, the probability of failure that corresponds to (4.64) is
just p2 ¼ 1 � q2 � ð1 � kÞ�sG=�sN :

It follows from the above reasoning that the stationary variant of (4.60) (i.e., for
t sufficiently large and vðtÞ ¼ v; t 2 ½0; 1Þ or limt !1 vðtÞ ¼ v) can be of
interest. Denote, �sG=�sN � g. Then the stationary distribution for (4.60) is the
Poisson random variable with this parameter:

PrðXS ¼ rÞ ¼ gr expf�gg
r!

: ð4:65Þ

Theorem 4.10 provides a simple way of obtaining the probability of failure of
the LS under a single attack at time t.

We are ready now to consider the A2 process of shocks and to derive the
corresponding probability of system’s survival, PðTS [ tÞ under the attacks of two
types. However, it turns out that this problem is much more complex than it looks
from the first sight and, therefore, additional assumptions should be imposed in
order to simplify it and to obtain results that potentially can have practical value.
First of all, we must answer the question: are the probabilities qiðtÞ ðpiðtÞÞ obtained
in Theorem 4.10 suitable for using in the classical pðtÞ , qðtÞ model? Recall that
in this extreme shock model, each event from the Poisson process of shocks with
rate wðtÞ is survived with probability qðtÞ and ‘kills’ a system with the comple-
mentary probability pðtÞ ¼ 1� qðtÞ independently of all previous history. In this
case, the system’s survival probability in ½0; tÞ is given by the following expo-
nential representation (see also Eq. (4.1):

PðTS [ tÞ � �FSðtÞ ¼ exp �
Z t

0

pðuÞwðuÞ du

0
@

1
A; ð4:66Þ

and, therefore, the corresponding failure rate function kSðtÞ is

kSðtÞ ¼ pðtÞwðtÞ; t� 0: ð4:67Þ

From the first glance, it looks that we have already everything in place for using
(4.61) and (4.62) in Eq. (4.66). However, it can be shown, that certain dependence
on history prevents from that and the only way to deal with this complexity for
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obtaining some practically meaningful results is to consider additional assump-
tions that allow for additional simplification of the model.

Let both A1 and A2 be the homogeneous Poisson shock processes with rates v
and w, respectively. Let the A2 shocks be sufficiently rare when compared with the
dynamics of the XðtÞ process

�sQ �
1
w
� 1

v
� �sN ; �sG 
 �sQ; ð4:68Þ

which makes sense in practice, as the intensity of attacks on the LS could be
considered as much smaller than that on the DS. The second inequality in (4.68)
implies that the mean time of repair of the DS is much smaller than the mean inter-
arrival time of the potentially terminal A2 shocks, which is also a reasonable
assumption in practice. Inequalities (4.68) can be considered as the analogue to the
fast repair conditions (see e.g., Ushakov and Harrison [28]). Finkelstein and
Zarudnij [20] have used the similar assumptions for approximating the multiple
availability on stochastic demand (i.e., the repairable system should be available at
all demands that occur in accordance with the homogeneous Poisson process in
½0; tÞ). Assumptions (4.68) ‘can help to forget the history’ of the process XðtÞ and,
therefore, a simple pðtÞ , qðtÞ model (4.66)–(4.67) holds. Indeed, under these
assumptions the correlation between values of the process XðtÞ at instants of
occurrence of the A2 shocks is negligible as the time between successive A2
shocks is sufficiently large. Therefore, the probabilities of survival under each A2
shock for both models are given approximately by Eq. (4.66), whereas the fol-
lowing result holds asymptotically:

Theorem 4.12 Let vðtÞ ¼ v; wðtÞ ¼ w; w=v! 0, �sG=�sQ ! 0 and t is sufficiently
large: t��sQ. Then the probabilities of survival for two models, in accordance
with Theorem 4.11, are

P1ðTS [ tÞ ¼ exp �w g
dw

DM

� �
t


 �
ð1 þ oð1ÞÞ; ð4:69Þ

P2ðTS [ tÞ ¼ exp �w 1 � exp �ð1 � kÞgf g½ �tf gð1 þ oð1ÞÞ; ð4:70Þ

where g � �sG=�sN :

It should be noted that for the sufficiently small t, when t
 �sQ, we can
approximately consider the case of only one A2 shock that is arriving in accor-
dance with the distribution FðtÞ ¼ 1 � exp �

R t
0 wðuÞ du

� �
. Then

PiðTS [ tÞ ¼
Z t

0

qiðuÞ f ðuÞ du þ exp �
Z t

0

wðuÞ du

8<
:

9=
;;

where qiðuÞ; i ¼ 1; 2 are given by Eqs. (4.61) and (4.62) and f ðuÞ ¼ F0ðtÞ.
Obviously, as in this case the A2 process can be approximately regarded as one
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first event, we do not need any other assumptions on the A1 process. Dealing with
the A2 process of shocks, however, creates more mathematical difficulties and,
therefore, a number of assumptions and simplifications have been made to arrive at
approximations (4.69) and (4.70).

4.9 Geometric Process of Shocks

The nonhomogeneous Poisson process (NHPP), due to its relative probabilistic
simplicity, is definitely the most popular counting (point) process in applications
and, specifically, in shock modeling. It often allows for rather simple and compact
expressions for the probabilities of interest for the basic and generalized settings as
was shown in the Sect. 4.8. However, in practice, the point events do not neces-
sarily possess the property of independent increments and the number of events in
the fixed interval of time does not necessarily follow the Poisson distribution.
Therefore, other distribution-based counting processes should also be considered
and, therefore, in this section, we will suggest another distribution-based class of
counting processes (with dependent increments) that still allows for compact,
explicit relationships for some applications [10].

The counting (point) processes that describe ‘events’ in the real world should
share certain natural properties that can be formulated in the following way:

(i) two or more events cannot occur ‘at the same time’ (i.e., the process is orderly),
(ii) the mean number of occurrences in ð0; t� as a function of t, i.e.,

KðtÞ � E½NðtÞ�, is sufficiently ‘smooth’, so that its derivative that is called the
rate or intensity, exists at every t, i.e., K0ðtÞ ¼ kðtÞ; t� 0, or KðtÞ ¼

R t
0 kðuÞ du.

It is well-known that these statements (for the sufficiently small Dt) can be
formalized as

(a) Nð0Þ ¼ 0:
(b) PðNðt þ DtÞ � NðtÞ ¼ 1Þ ¼ kðtÞDt þ oðDtÞ:
(c) PðNðt þ DtÞ � NðtÞ� 2Þ ¼ oðDtÞ:

For the sake of notation, let us denote the general class of point processes,
which satisfy (a), (b), and (c) by G. Clearly, if we adopt additionally

(d) fNðtÞ; t� 0g has independent increments,

then we arrive at the NHPP. It is also well-known that assumptions (a)–(d) result in
the Poisson distribution of the number of events in ðt1; t2�. Thus, in what follows,
in accordance with our intention stated above, we will ‘depart’ from the governing
Poisson distribution.

Definition 4.1 The counting process fNðtÞ; t� 0g belongs to the Class of Geo-
metric Counting Processes (CGCP), i.e., fNðtÞ; t� 0g 2 C, if
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(a) Nð0Þ ¼ 0.
(b)

PðNðt2Þ � Nðt1Þ ¼ kÞ ¼ 1
1þ Kðt2Þ � Kðt1Þ

� 	
Kðt2Þ � Kðt1Þ

1þ Kðt2Þ � Kðt1Þ

� 	k

;

k ¼ 0; 1; 2; . . .

ð4:71Þ

It is easy to see that properties (b) and (c) of the general class G can be derived
from (4.71):

(b) PðNðt þ DtÞ � NðtÞ ¼ 1Þ
¼ kðtÞDt þ �kðtÞDt þ 1

1þKðtþDtÞ�KðtÞ

� �
KðtþDtÞ�KðtÞ

1þKðtþDtÞ�KðtÞ

� �n o
;

where the second term in the right-hand side is clearly oðDtÞ;

(c) PðNðt þ DtÞ � NðtÞ� 2Þ ¼ KðtþDtÞ�KðtÞ
1þKðtþDtÞ�KðtÞ

� �2
, which is obviously oðDtÞ.

Therefore, the CGCP becomes a subclass of G.

Observe that the counting distribution in (4.71) is obtained from the time-
dependent reparametrization of the geometric distribution:

PðN ¼ kÞ ¼ dð1� dÞk; k ¼ 0; 1; 2; . . .;

where 0\d\1.
In accordance with (4.71), the mean number of events in ðt1; t2� is

E½Nðt2Þ � Nðt1Þ� ¼ Kðt2Þ � Kðt1Þ ¼
Zt2

t1

kðuÞ du:

Specifically,

PðNðtÞ ¼ kÞ ¼ 1
1þ KðtÞ

� 	
KðtÞ

1þ KðtÞ

� 	k

; k ¼ 0; 1; 2; . . .; ð4:72Þ

where E½NðtÞ� ¼ KðtÞ ¼
R t

0 kðuÞdu:
Thus NHPP and fNðtÞ; t� 0g 2 C can have the same rate, but the crucial

difference is that the members of the latter class, as intended, do not possess the
property of independent increments, which can be easily seen from the following
considerations.

Definition 4.2 The orderly counting process fNðtÞ; t� 0g with Nð0Þ ¼ 0 pos-
sesses the weak positive (negative) dependence, if

Cov IðfNðsþ tÞ � NðsÞ ¼ 0gÞ; IðfNðsÞ ¼ 0gÞð Þ[ 0 ð\0Þ; ð4:73Þ

where Ið�Þ is the indicator function for the corresponding event.

4.9 Geometric Process of Shocks 127



The intuitive meaning of (4.73) for the positive (negative) dependence case is
that the two events fNðsÞ ¼ 0g and fNðsþ tÞ � NðsÞ ¼ 0g have the ‘tendency’ to
occur simultaneously (not to occur simultaneously). We will also interpret this
definition in the other equivalent form after the following simple theorem.

Theorem 4.13 The counting process fNðtÞ; t� 0g 2 C, possesses the weak
positive dependence property.

Proof Observe that, from (4.71),

Cov IðfNðsþ tÞ � NðsÞ ¼ 0gÞ; IðfNðsÞ ¼ 0gÞð Þ
¼ E½IðfNðsþ tÞ � NðsÞ ¼ 0g; fNðsÞ ¼ 0gÞ� � E½IðfNðsþ tÞ � NðsÞ ¼ 0gÞ�E½IðfNðsÞ ¼ 0gÞ�
¼ PðNðsþ tÞ � NðsÞ ¼ 0; NðsÞ ¼ 0Þ � PðNðsþ tÞ � NðsÞ ¼ 0ÞPðNðsÞ ¼ 0Þ
¼ PðNðsþ tÞ ¼ 0Þ � PðNðsþ tÞ � NðsÞ ¼ 0ÞPðNðsÞ ¼ 0Þ

¼ ½1þ KðsÞ�½1þ Kðsþ tÞ � KðsÞ� � ½1þ Kðsþ tÞ�
½1þ Kðsþ tÞ�½1þ Kðsþ tÞ � KðsÞ�½1þ KðsÞ� [ 0: h

It follows from the proof that, as PðNðsÞ ¼ 0Þ[ 0, inequality (4.73) (for
positive dependence) is equivalent to

PðNðsþ tÞ � NðsÞ ¼ 0jNðsÞ ¼ 0Þ[ PðNðsþ tÞ � NðsÞ ¼ 0Þ ð4:74Þ

or to

PðNðsþ tÞ � NðsÞ� 1jNðsÞ ¼ 0Þ\PðNðsþ tÞ � NðsÞ� 1Þ:

The latter means that the absence of events in ð0; s� decreases the probability of
events in ðs; sþ t�. This seems to be a more natural interpretation of a (weak)
positive dependence.

In order to consider the rate and the corresponding conditional characteristic,
we replace t in (4.74) by the infinitesimal dt. Then

PðNðsþ dtÞ � NðsÞ ¼ 0jNðsÞ ¼ 0Þ � PðNðsþ dtÞ � NðsÞ ¼ 0Þ

¼
R s

0 kðuÞ du
R sþ dt

s kðuÞ du

1þ
R sþ dt

0 kðuÞ du
� �

1þ
R sþdt

s kðuÞ du
� �

¼
kðsÞ

R t
0 kðuÞ du

1þ
R s

0 kðuÞ duþ kðsÞ dt
� �

1þ kðsÞ dtð Þ
ð1þ oð1ÞÞ dt

¼
kðsÞ

R s
0 kðuÞ du

1þ
R s

0 kðuÞ du
� � 1þ oð1Þð Þ dt ¼ kðsÞKðsÞ

ð1þ KðsÞÞ ð1þ oð1ÞÞ dt;

which is obviously positive. However, we can say now more about the corre-
sponding dependence properties. As oð1Þ can be made as small as we wish, it is
sufficient to consider kðsÞKðsÞ=ð1þ KðsÞÞ. This expression (for k0ðsÞ\1) is
increasing in s when

128 4 Advanced Theory for Poisson Shock Models



ðk0ðsÞKðsÞ þ k2ðsÞÞ ð1þ KðsÞÞ � kðsÞ2KðsÞ ¼ k0ðsÞKðsÞ ð1þ KðsÞÞ þ k2ðsÞ[ 0;

ð4:75Þ

which holds, for instance, for increasing kðsÞ. Specifically, when kðsÞ � k, the left-
hand side of (4.75) is equal to k2. Thus, the dependence of the defined type is
‘getting stronger’ with s increasing.

Taking into account that fNðtÞ; t� 0g 2 C is orderly, i.e.,

PðNðsþ dtÞ � NðsÞ ¼ 0jNðsÞ ¼ 0Þ � PðNðsþ dtÞ � NðsÞ ¼ 0Þ
¼ �ðPðNðsþ dtÞ � NðsÞ ¼ 1jNðsÞ ¼ 0Þ � PðNðsþ dtÞ � NðsÞ ¼ 1ÞÞ þ oðdtÞ;

the difference between the conditional rate of fNðtÞ; t� 0g 2 C (the intensity
function) on condition that there were no events in ð0; s� and its unconditional
rate, is obviously also increasing in s when (4.75) holds.

As previously, we will consider shocks as events of point processes. The
described weak dependence means now that the absence of shocks in ð0; s�
decreases the probability of a shock in ðs; sþ dt�, which can be natural for certain
types of shock processes. For instance, the probability of an earthquake is usually
larger when the previous earthquake occurred recently, compared with the case
when it occurred earlier. A similar argument can be true for heart attacks. For
another example, suppose that the ‘realization’ of a shock process is the homo-
geneous Poisson process (HPP) with a constant rate, but the rate is determined
randomly at t ¼ 0 (i.e., the conditional Poisson process). It is well-known [27],
that the conditional Poisson process has dependent increments. It can be easily
shown that it possesses our weak positive dependence property, i.e., the absence of
a shock in ð0; s� decreases the probability of a shock in ðs; sþ dt�.

The NHPP has another important limitation in terms of the mean and variance
relationship for the counting random variable Var½NðtÞ� ¼ E½NðtÞ�, for all t� 0.
However, for fNðtÞ; t� 0g 2 C,

Var½NðtÞ� ¼ KðtÞ ð1þ KðtÞÞ[ E½NðtÞ�; ð4:76Þ

which can describe many other cases that are not covered by the NHPP.
Thus, in our formulation, the rates of the NHPP and the members of the CGCP,

fNðtÞ; t� 0g 2 C can be the same, but because of the dependence of increments,
the corresponding probabilistic properties are different. Different members of this
class can possess different dependence structures sharing some common features
(e.g., the positive dependence of the described type).

Usually for the corresponding stochastic modeling, we need a sufficiently
complete description of a relevant stochastic process. However, there are settings
when probabilistic reasoning and explicit results do not depend on certain prop-
erties of the processes. The shock models to be considered in the following
examples are the perfect examples of that. It turns out that the results to be derived
are valid for any member fNðtÞ; t� 0g 2 C and therefore, they do not depend on
the specific dependence structure of this process [10]. Therefore, in practice, in
order to apply the proposed CGCP, it is sufficient to check the validity of (4.71).
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Example 4.6 Extreme Shock model. Consider an extreme shock model (see 4.1)
for the specific case pðtÞ ¼ p and let the shock process be from the CGCP, i.e.,
fNðtÞ; t� 0g 2 C, with rate kðtÞ and arrival times Ti; i ¼ 1; 2; . . .. Then, due to
the assumption of independence,

PðTS [ tjNðtÞ ¼ nÞ ¼ qn;

and

PðTS [ tÞ ¼ E½PðTS [ tjNðtÞÞ� ¼ E½qNðtÞ�

¼
X1
n¼ 0

qn 1
1þ KðtÞ

� 	
KðtÞ

1þ KðtÞ

� 	n

¼ 1
1þ KðtÞp :

The corresponding failure rate function is

kSðtÞ ¼ �
d ln PðTS [ tÞ

dt
¼ kðtÞp

1þ KðtÞp :

Thus, the survival probability and the failure rate are obtained without speci-
fying the dependence structure of the shock process. It should be noted that when
the process of shocks is NHPP,

kSðtÞ ¼ pkðtÞ; 8t� 0

and the shape of kSðtÞ coincides with that of kðtÞ. However, in the considered case,
the result can be dramatically different. Assume that kðtÞ is differentiable, then

k0SðtÞ ¼
k0ðtÞp� ðkðtÞpÞ2

ð1þ KðtÞpÞ2
;

and thus, kSðtÞ is increasing (decreasing) in ðt1; t2Þ iff

k0ðtÞ� pðkðtÞÞ2 ðk0ðtÞ� pðkðtÞÞ2Þ

in ðt1; t2Þ.
Let, specifically, kðtÞ ¼ k, 8t� 0, and therefore, the failure rate, kSðtÞ is con-

stant when shocks follow the HPP pattern. However, if it is the process,
fNðtÞ; t� 0g 2 C with the same rate k, then the system failure rate, kSðtÞ ¼
pk=ð1þ pktÞ is strictly decreasing with time. This can be loosely interpreted in the
following way: equation PðTS [ tÞ ¼ E½qNðtÞ�, which defines the survival proba-
bility for the extreme shock model with an arbitrary point process fNðtÞ; t� 0Þ
means that the larger t for the survived system results in the ‘sparser’ shocks in
time. The latter, due to the independent increments property of the Poisson pro-
cess, does not change the probability of a system’s failure in the infinitesimal
interval of time ½t; t þ dtÞ. However, forfNðtÞ; t� 0g 2 C, as prompted by (4.74),
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it decreases the chance of shocks in the next interval, which eventually results in
the decreasing failure rate.

Example 4.7 Cumulative Shock Model. Let, as previously, a system be subject to
the process fNðtÞ; t� 0g 2 C of shocks with arrival times Ti; i ¼ 1; 2; . . .. Assume
that the ith shock increases the wear of a system by a random increment Wi� 0. In
accordance with this setting, a random accumulated wear of a system at time t is

WðtÞ ¼
XNðtÞ
i¼ 0

Wi:

As previously, assume that the system fails when the accumulated wear exceeds
a random boundary R, i.e., WðtÞ[ R. The corresponding survival function in this
case is given by

PðTS [ tÞ ¼ PðWðtÞ�RÞ: ð4:77Þ

Explicit derivations in (4.77) can be performed in specific, mathematically trac-
table cases.

Case 1. Suppose that Wi; i ¼ 1; 2; . . . are i.i.d. and exponential with mean h.
Denote, for the sake of notation, the random variable with this distribution by W .
Let fRðrÞ be the pdf of the random boundary R. First of all, the mgf of WðtÞ,
MWðtÞðzÞ, can be expressed as

MWðtÞðzÞ ¼ E½expfzWðtÞg� ¼
X1
n¼0

E½expfzWg�n 1
1þ KðtÞ

� 	
KðtÞ

1þ KðtÞ

� 	n

¼ 1

1þ KðtÞ½1� ð1� hzÞ�1�
¼ 1

1þ KðtÞ �M0ðzÞ þ
KðtÞ

1þ KðtÞ �Mexp½hð1þKðtÞÞ�ðzÞ;

ð4:78Þ

where M0ðzÞ � 1 corresponds to the mgf of the degenerate distribution with
probability 1 at 0 and

Mexp½hð1þKðtÞÞ�ðzÞ �
1

1 � hð1þ KðtÞÞz

� 	

corresponds to the mgf of an exponential distribution with mean hð1þ KðtÞÞ. It
follows from (4.78) that the mgf of WðtÞ is given by the weighted average of the
mgf’s of two random variables, which implies that the distribution of WðtÞ is the
mixture of the corresponding distributions. Therefore, WðtÞ has the point mass at 0
(no shocks had occurred in ½0; t�),

PðWðtÞ ¼ 0Þ ¼ 1
1þ KðtÞ ;

and, for x [ 0; WðtÞ has the pdf
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fWðtÞðxÞ ¼
KðtÞ

hð1þ KðtÞÞ2
exp � x

hð1þ KðtÞÞ


 �
; x� 0:

Then the Cdf of WðtÞ is given by

FWðtÞðxÞ ¼ 1� KðtÞ
1þ KðtÞ exp � x

hð1þ KðtÞÞ


 �
; x� 0:

Finally, the survival function of a system can now be defined as

PðTS [ tÞ ¼
Z1

0

FWðtÞðrÞ fRðrÞ dr; t� 0

¼ 1� KðtÞ
1þ KðtÞ

Z1

0

exp � r

hð1þ KðtÞÞ


 �
fRðrÞ dr; t� 0:

Case 2. Suppose that the distribution of the random boundary R is now expo-
nential with mean h. Let MWðzÞ be the mgf of an arbitrary distributed random
variable W (Wi are i.i.d)).

Observe that, as the distribution of the random boundary R is exponential, the

accumulated wear until time t, WðtÞ ¼
PN tð Þ

i¼0 Wi does not affect the failure process
of the system after time t. That is, on the next shock, the probability of a system’s
failure due to the accumulated wear is just PðR�WNðtÞþ 1Þ, and does not depend
on the wear accumulation history, i.e.,

PðR�W1 þW2 þ . . .þWnjR�W1 þW2 þ . . .þWn� 1Þ
¼ PðR�WnÞ; for all n ¼ 1; 2; . . .; W1; W2; . . .;

where W1 þW2 þ . . .þWn� 1 � 0 when n ¼ 1. Then, finally, each shock
results in the immediate failure of a system with probability PðR\WÞ and it does
not cause any change in the system with probability PðR�WÞ. This interpretation
of the model implies that the cumulative shock model in this setting corresponds to
the extreme shock model considered previously and

p ¼ PðR\WÞ ¼ 1� PðR�WÞ ¼ 1�MWð�hÞ:

Therefore,

PðTS [ tÞ ¼ 1
1þ KðtÞ ð1�MWð�hÞÞ ; t� 0;

and the corresponding failure rate is

kSðtÞ ¼
kðtÞð1�MWð�hÞÞ

1þ KðtÞð1�MWð�hÞÞ ; t� 0:
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Finally, the combined shock model (see also Sect. 4.1 for a more general
setting) can be also considered. Assume that the ith shock, as in the extreme shock
model, causes immediate system’s failure with probability p, but in contrast to this
model, with probability q it increases the wear of a system by a random increment
Wi� 0. The failure occurs when a critical shock (that destroys a system with
probability p) occurs or the random accumulated wear WðtÞ reaches the random
boundary R. Therefore,

PðTS [ tjNðsÞ; 0� s� t; W1;W2; . . .;WNðtÞ; RÞ ¼ qNðtÞI
XNðtÞ
i¼ 0

Wi�R

 !

and the survival function of a system is

PðTS [ tÞ ¼ E½qNðtÞIðWðtÞ�RÞ�:

As previously, for simplicity, let the distribution of a random boundary R be
exponential with mean h. In a similar way, it can be shown that

PðTS [ tjNðtÞ ¼ nÞ ¼ E
Yn

i¼ 1

q expf�hWig
" #

¼ qMWð�hÞð Þn:

Finally,

PðTS [ tÞ ¼ 1
1þ KðtÞð1� qMWð�hÞÞ :

And the failure rate function is

kSðtÞ ¼ �
d ln PðTS [ tÞ

dt
¼ kðtÞð1� qMWð�hÞÞ

1þ KðtÞð1� qMWð�hÞÞ :

Thus, we have shown that survival probabilities for some shock models can be
effectively obtained for any process that belongs to the CGCP without specifying
its dependence structure [10].

4.10 Information-Based Thinning of Shock Processes

4.10.1 General Setting

In this section, we consider some of the settings of the previous sections from a
more general viewpoint that employs the operation of thinning of point processes
[15]. Thinning of point processes is often applied in stochastic modeling when
different types of point events (in terms of their impact, e.g., on a system) occur. In
the previous sections, we were mostly interested in the corresponding survival
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probabilities and, therefore, there was a sequence of ‘survival events’ and one final
event of failure. Now we will be interested in two sequences of events and will use
this characterization for further discussion of the strength–stress model of Sect. 4.7.

When the initial point process is the NHPP, the thinned processes are also
NHPP independent of each other [15]. The crucial assumption in obtaining this
well-known result is that the classification of occurring point events is independent
of all other events, including the history of the process. However, in practice, this
classification is often dependent on the history. In this section, we define and
describe the thinned processes for the history-dependent case using different levels
of available information and apply our general results to the strength–stress type
shock model, which is meaningful in reliability applications. For each considered
level of information, we construct the corresponding conditional intensity function
and interpret the obtained results.

Let us define the setting in formal terms. Suppose that each event from the
NHPP, fNðtÞ; t� 0g with rate (intensity function) mðtÞ is classified as the Type I
event with probability pðtÞ or as the Type II event with the complementary
probability 1� pðtÞ. It is well-known (see, e.g., [4], [5]) that the corresponding
stochastic processes fN1ðtÞ; t� 0g and fN2ðtÞ; t� 0g are NHPPs with rates
pðtÞmðtÞ and ð1� pðtÞÞmðtÞ, respectively, and they are stochastically independent.
This operation for pðtÞ � p is usually called in the literature ‘the thinning of the
point process’ [15]. As stated above, in reality, classification of events is often
history-dependent and the point process is not necessarily Poisson. Therefore,
considering history-dependent thinning appears to be an interesting and important
problem both from theoretical and practical points of view. The following setting
considered in Sect. 4.7 can be helpful as a relevant example.

Suppose that an object (e.g., a system or an organism) is characterized by an
unobserved random quantity U(e.g., strength or vitality). The object is ‘exposed’
to a marked NHPP with rate mðtÞ, arrival times T1\T2\T3. . . and random marks
Si; i ¼ 1; 2; . . ., that can be interpreted as some stresses or demands. If Si [ U,
then the Type I event occurs; if Si�U then the Type II event occurs. We are
interested in probabilistic description of the processes of Type I and Type II
events. It should be noted that probabilities PðSi [ UÞ; i ¼ 2; 3; . . . already
depend on the history, as the distribution of U is updated by the previous infor-
mation, as was mentioned in Sect. 4.7 [8].

First, we will characterize the ‘conditional properties’ of fN1ðtÞ; t� 0g and
fN2ðtÞ; t� 0g, (NðtÞ ¼ N1ðtÞ þ N2ðtÞ). In various practical problems, we are often
interested in the conditional intensity of one of the processes, as only this process
‘impacts’ our system. The conditional intensity or the intensity process and
Eq. (2.12) e.g., for the thinned process, fN1ðtÞ; t� 0g is defined as

k1ðtjH1t�Þ ¼ lim
Dt! 0

E½N1ððt þ DtÞ�Þ � N1ðt�ÞjH1t��
Dt

¼ lim
Dt! 0

P½N1ððt þ DtÞ�Þ � N1ðt�Þ ¼ 1jH1t��
Dt

;

ð4:79Þ
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where H1t� ¼ fN1ðt�Þ; T11; T12; . . .; T1N1ðt�Þg is the history of the Type I process
before time t and T1i, i ¼ 1; 2; . . . are the corresponding sequential arrival times.
In practice, we often observe the process fN1ðtÞ; t� 0g, e.g., as the process of
some ‘effective events’ that can cause certain ‘detectable changes’ (or conse-
quences) in the system. On the other hand, fN2ðtÞ; t� 0g can be the process of
‘ineffective events’ that have no impact on the system at all. Therefore, the
‘observed history’ H1t� is our ‘available information’ that is used for describing
fN1ðtÞ; t� 0g via the corresponding conditional intensity, whereas the ineffective
events are often (but not necessarily) not observed and thus information on
fN2ðtÞ; t� 0g is not available.

As the conditional intensity fully describes the underlying point process, it can
obviously be used for defining the corresponding conditional failure rates, which
describe the times to events of interest. For example, assume that our system fails
at the kth Type I event (e.g., due to accumulation of some damage), whereas Type
II events, as previously, are ineffective. Then, given N1ðt�Þ ¼ k � 1, the condi-
tional intensity k1ðtjH1t�Þ in (4.79) can be viewed as the conditional failure rate
(given the history). Specifically, when our system fails at the first Type I event, the
history of our interest becomes H1t� ¼ fN1ðt�Þ ¼ 0g. Alternatively, let the sys-
tem fail on the kth Type I event with probability pðkÞ and survives with probability
1� pðkÞ independent of all other events. Then, given N1ðt�Þ ¼ k � 1, the con-
ditional failure rate (on condition that the history H1t� is given) at time t is
k1ðtjH1t�Þ pðkÞ. Thus, the Type 1 event could terminate the process, which is
important for different reliability settings.

As illustrated in the above examples, different conditions can be defined that
characterize ‘fatal events’. However, we are primarily interested in a general
description of the process fN1ðtÞ; t� 0g via its conditional intensity k1ðtjH1t�Þ
(without termination). Thus, we will focus first on the conditional intensity (4.79)
for a general history H1t� ¼ fN1ðt�Þ; T11; T12; . . .; T1N1ðt�Þg. For convenience, at
some instances, the notation H1t� for denoting the corresponding realization
fN1ðt�Þ ¼ n1; T11 ¼ t11; T12 ¼ t12; . . .; T1N1ðt�Þ ¼ t1n1g will be used as well.
Furthermore, the case when the given history is partial, i.e., k1ðtjHP

1t�Þ, where HP
1t�

is the partial history of H1t�, will also be investigated. For example, there can be
situations when the arrival times are not observed/recorded but only the number of
Type I events is observed/recorded. In this case, the ‘available information’ at
hand is only N1ðt�Þ.

Coming back to the specific stress–strength example, note that, when
fNðtÞ; t� 0g is the NHPP, U is deterministic, U ¼ u and Si; i ¼ 1; 2; . . . are i.i.d.
with the common Cdf FSðsÞ, the processes fN1ðtÞ; t� 0g and fN2ðtÞ; t� 0g are
NHPPes. Moreover, they are stochastically independent with rates pðtÞmðtÞ and
ð1� pðtÞÞ mðtÞ, respectively, where pðtÞ ¼ PðSi [ uÞ. Thus, obviously,

k1ðtjH1t�Þ ¼ lim
Dt! 0

E½N1ððt þ DtÞ�Þ � N1ðt�ÞjH1t��
Dt

¼ PðSi [ uÞ mðtÞ;

as the process fN1ðtÞ; t� 0g possesses the property of independent increments.
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We will come back to discussing the case when U is random after a general
formulation of the operation of thinning [8].

4.10.2 Formal Description of the Information-Dependent
Thinning

Let fNðtÞ; t� 0g denote an orderly point process of events with arrival times
Ti; i ¼ 1; 2; . . .. We assume that this process is external for the system in the sense
that it may influence its performance but is not influenced by it [21]. On each event
from fNðtÞ; t� 0g; depending on the history of the processes fNðtÞ; t� 0g,
fN1ðtÞ; t� 0g (note that, NðtÞ ¼ N1ðtÞ þ N2ðtÞ and see the corresponding
description in the previous subsection) and also on some other random history
process up to t, Ut�, the event is classified as belonging to either the Type I or to
the Type II category. Specifically, Ut� � U can be just a random variable as, e.g.,
the random quantity U in the previous example. The conditional probability of the
Type I event in the infinitesimal interval of time can be formally written as

P½N1ððt þ dtÞ�Þ � N1ðt�Þ ¼ 1jH1t�;Ht�;Uðtþ dtÞ��
¼ P½N1ððt þ dtÞ�Þ � N1ðt�Þ ¼ 1jH1t�;Ht�;Uðtþ dtÞ�;Nððt þ dtÞ�Þ � Nðt�Þ ¼ 1�
	 P½Nððt þ dtÞ�Þ � Nðt�Þ ¼ 1jH1t�;Ht�;Uðtþ dtÞ��
þ P½N1ððt þ dtÞ�Þ � N1ðt�Þ ¼ 1jH1t�;Ht�;Uðtþ dtÞ�;Nððt þ dtÞ�Þ � Nðt�Þ ¼ 0�
	 P½Nððt þ dtÞ�Þ � Nðt�Þ ¼ 0jH1t�;Ht�;Uðtþ dtÞ��
¼ P½N1ððt þ dtÞ�Þ � N1ðt�Þ ¼ 1jH1t�;Ht�;Uðtþ dtÞ�;Nððt þ dtÞ�Þ � Nðt�Þ ¼ 1�
	 P½Nððt þ dtÞ�Þ � Nðt�Þ ¼ 1jHt��;

ð4:80Þ

where

P½Nððt þ dtÞ�Þ � Nðt�Þ ¼ 1jH1t�; Ht�; Uðtþ dtÞ��

reduces to

P½Nððt þ dtÞ�Þ � Nðt�Þ ¼ 1jHt��;

as the initial point process is defined as external. It should be noted that Ht� is the
history of the initial process fNðtÞ; t� 0g and it does not contain the information
on the type of events and on the corresponding arrival times of events. In other
words, mathematically, Ht� ‘does not define’ H1t� and we need both of them for
conditioning. Accordingly, from (4.80),

P½N1ððt þ dtÞ�Þ � N1ðt�Þ ¼ 1jH1t�;Ht�;UðtþdtÞ��
¼ P½N1ððt þ dtÞ�Þ � N1ðt�Þ ¼ 1jH1t�;Ht�;UðtþdtÞ�;Nððt þ dtÞ�Þ � Nðt�Þ
¼ 1� � mðtjHt�Þ dt;
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where mðtjHt�Þ is the conditional intensity for NðtÞ; t� 0

mðtjHt�Þ � lim
Dt! 0

P½Nððt þ DtÞ�Þ � Nðt�Þ ¼ 1jHt��
Dt

:

Therefore, we arrive at the following result ([8] for the conditional intensity for
a general history-dependent thinned process:

Theorem 4.14 Under the given assumptions, the conditional intensity k1ðtjH1t�Þ
is defined by the following expression:

k1ðtjH1t�Þ ¼ E½P½N1ððt þ dtÞ�Þ � N1ðt�Þ
¼ 1jH1t�;Ht�;Uðtþ dtÞ�;Nððt þ dtÞ�Þ � Nðt�Þ ¼ 1� � mðtjHt�Þ�;

ð4:81Þ

where the expectation is with respect to the joint conditional distribution
ðHt�; Uðtþ dtÞ�jH1t�Þ.

Theorem 4.14 holds for general orderly point processes. Furthermore, when we
observe only the partial history HP

1t�, the conditional intensity k1ðtjHP
1t�Þ can be

obtained from (4.81) by replacing H1t� by HP
1t� and by applying an appropriately

modified conditional distribution ðHt�; Uðtþ dtÞ�jHP
1t�Þ:

In what follows, we will simplify the setting and consider the case when the
dependence on the history in the second multiplier in (4.81) is eliminated, whereas
it is preserved for the first multiplier. Therefore, mðtjHt�Þ is substituted by the rate
of the corresponding NHPP, mðtÞ. This assumption enables to derive the closed-
form results of the following subsection.

4.10.3 Stress–Strength Type Classification Model

Consider first, the case when only the partial information HP
1t� ¼ fN1ðt�Þg is

observed, which means that the corresponding arrival times are not observed.
Thus, only the number of Type 1 events is available. Then, formally,

k1ðtjHP
1t�Þ

¼ E½P½N1ððt þ dtÞ�Þ � N1ðt�Þ ¼ 1jHP
1t�; Ht�; Uðtþ dtÞ�; Nððt þ dtÞ�Þ

� Nðt�Þ ¼ 1�� � mðtÞ;
ð4:82Þ

where the expectation is with respect to the joint conditional distribution
ðHt�; Uðtþ dtÞ�jHP

1t�Þ. Denote the pdf and the Cdf of a random quantity (strength)
U by gUðuÞ and GUðuÞ, respectively. In this case, Uðtþ dtÞ� ¼
fS1; S2; . . .; SNððtþ dtÞ�Þ; Ug and
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P½N1ððt þ dtÞ�Þ � N1ðt�Þ ¼ 1jHP
1t�; Ht�; Uðtþ dtÞ�; Nððt þ dtÞ�Þ � Nðt�Þ ¼ 1�

¼ IðSNðt�Þþ 1 [ UÞ;

where the conditional distribution of UjHP
1t� does depend on the history HP

1t� and,
as previously, Si denotes the value of stress on the ith event. Therefore, in
accordance with Theorem 4.14, k1ðtjHP

1t�Þ can be obtained as

k1ðtjHP
1t�Þ ¼ PðSNðt�Þþ 1 [ UjHP

1t�Þ � mðtÞ:

As the distribution of SNðt�Þþ 1 does not depend on the history
HP

1t� ¼ fN1ðt�Þg, it is sufficient to derive the distribution for UjHP
1t�. Given

U ¼ u, the process fN1ðtÞ; t� 0g is the NHPP with intensity FSðuÞ mðtÞ and thus
the conditional distribution of N1ðt�ÞjU is

PðN1ðt�Þ ¼ n1jU ¼ uÞ ¼
FSðuÞ

R t
0 mðxÞ dx

� �n1

n1!
exp �FSðuÞ

Z t

0

mðxÞ dx

8<
:

9=
;:

Therefore, the conditional distribution of UjN1ðt�Þ is

FSðuÞ
R t

0
mðxÞdx

� �n1

n1! exp �FSðuÞ
R t

0 mðxÞ dx
� �

� gUðuÞ

R1
0

FSðwÞ
R t

0
mðxÞdx

� �n1

n1! exp �FSðwÞ
R t

0 mðxÞ dx
� �

� gUðwÞ dw

:

Finally, from (4.82),

k1ðtjHP
1t�Þ ¼

R1
0

FSðuÞ �
FSðuÞ

R t

0
mðxÞdx

� �n1

n1! exp �FSðuÞ
R t

0 mðxÞ dx
� �

� gUðuÞ du

R1
0

FSðwÞ
R t

0
mðxÞdx

� �n1

n1! exp �FSðwÞ
R t

0 mðxÞ dx
� �

� gUðwÞ dw

� mðtÞ:

ð4:83Þ

For the specific case when HP
1t� ¼ fN1ðt�Þ ¼ 0g, i.e., n1 ¼ 0; the conditional

intensity k1ðtjHP
1t�Þ in (4.83) reduces to

kSðtÞ ¼
R1

0

R s
0 exp �FSðrÞ

R t
0 mðxÞ dx

� �
� gUðrÞ dr fSðsÞ dsR1

0 exp �FSðrÞ
R t

0 mðxÞ dx
� �

gUðrÞ dr
mðtÞ;

which is, obviously the same as Eq. (4.50).
Consider now the case when the full history

H1t� ¼ fN1ðt�Þ ¼ n1; T11 ¼ t11; T12 ¼ t12; . . .; T1N1ðt�Þ ¼ t1n1g
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is observed and, therefore, is available. The crucial step in deriving the conditional
intensity in the previous case was to obtain the conditional distribution of UjHP

1t�.
Intuitively, as the distribution of U depends only on ‘the number of successes’ up
to t, but not on the arrival times of events, it seems that the full history H1t�can be
reduced to the partial history HP

1t� ‘without loss of relevant information’ (i.e., the
full history H1t� is redundant). Thus it would be meaningful to see whether this
statement is true or not. To show this, consider, as before,

P½N1ððt þ dtÞ�Þ � N1ðt�Þ ¼ 1jH1t�; Ht�; Uðtþ dtÞ�; Nððt þ dtÞ�Þ � Nðt�Þ ¼ 1�
¼ IðSNðt�Þþ 1 [ UÞ:

In accordance with Theorem 4.14, k1ðtjH1t�Þ can be obtained as

k1ðtjH1t�Þ ¼ PðSNðt�Þþ 1 [ UjH1t�Þ � mðtÞ:

It is sufficient to derive the distribution for UjH1t�. Note that the joint condi-
tional distribution of ðN1ðt�Þ; T11; T12; . . .; T1N1ðt�ÞjUÞ is given by

exp

Zt11

0

FSðuÞ mðxÞ dx

8<
:

9=
;FSðuÞ mðt11Þ exp �

Zt12

t11

FSðuÞ mðxÞ dx

8<
:

9=
;FSðuÞ mðt2Þ. . .

	 exp �
Zt1n1

t1ðn1 � 1Þ

FSðuÞ mðxÞ dx

8><
>:

9>=
>;FSðuÞ mðt1n1Þ exp �

Z t

t1n1

FSðuÞ mðxÞ dx

8><
>:

9>=
>;

¼ FSðuÞ
� �n1mðt11Þmðt12Þ. . .mðt1nÞ exp �FSðuÞ

Z t

0

mðxÞ dx

8<
:

9=
;:

Therefore, the conditional distribution of ðUjN1ðt�Þ; T11; T12; . . .; T1N1ðt�ÞÞ is

FSðuÞ
� �n1mðt11Þmðt12Þ. . .mðt1n1Þ exp �FSðuÞ

R t
0 mðxÞ dx

� �
� gUðuÞR1

0 FSðwÞ
� �n1mðt11Þmðt12Þ. . .mðt1n1Þ exp �FSðwÞ

R t
0 mðxÞ dx

� �
� gUðwÞ dw

:

Finally, from (4.81)

k1ðtjH1t�Þ ¼
R1

0 FSðuÞ
� �n1 þ 1

mðt11Þmðt12Þ. . .mðt1n1Þ exp �FSðuÞ
R t

0 mðxÞ dx
� �

� gUðuÞ duR1
0 FSðwÞ
� �n1mðt11Þmðt12Þ. . .mðt1n1Þ exp �FSðwÞ

R t
0 mðxÞ dx

� �
� gUðwÞ dw

� mðtÞ :

ð4:84Þ

It can be seen that k1ðtjH1t�Þ in Eq. (4.84) and that in Eq. (4.83) are identical
and, therefore, H1t� can be reduced to the partial history HP

1t� ‘‘without loss of
relevant information’’ as our initial intuition prompted us.

Note that, as the external point process is the NHPP, kðtjHt�Þ ¼ vðtÞ. Then,
using kðtjH1t�Þ ¼ k1ðtjH1t�Þ þ k2ðtjH1t�Þ, the following relationship holds:
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k2ðtjH1t�Þ � lim
Dt! 0

P½N2ððt þ DtÞ�Þ � N2ðt�Þ ¼ 1jH1t��
Dt

¼ mðtÞ � k1ðtjH1t�Þ:

It is clear that the conditional probability that the event that happened at time t
belongs to fN1ðtÞ; t� 0g is

k1ðtjH1t�Þ
k1ðtjH1t�Þ þ k2ðtjH1t�Þ

:

Obviously, both processes fN1ðtÞ; t� 0g and fN2ðtÞ; t� 0g are not NHPPs
now.

The case when we observe the full history of fN1ðtÞ; t� 0g and fN2ðtÞ; t� 0g,
can be considered in a similar way [8].

References

1. Aalen OO, Borgan O, Gjessing HK (2008) Survival and event history analysis. A process
point of view. Springer, New York

2. Anderson PK, Borgan O, Gill RD, Keiding N (1993) Statistical models based on counting
processes. Springer-Verlag, New York

3. Beichelt FE, Fischer K (1980) General failure model applied to preventive maintenance
policies. IEEE Trans Reliab 29:39–41

4. Block HW, Borges WS, Savits TH (1985) Age-dependent minimal repair. J Appl Probab
22:370–386

5. Cha JH, Finkelstein M (2009) On a terminating shock process with independent wear
increments. J Appl Probab 46:353–362

6. Cha JH, Finkelstein M (2011) On new classes of extreme shock models and some
generalizations. J Appl Probab 48:258–270

7. Cha JH, Finkelstein M (2012a) Stochastic survival models with events triggered by external
shocks. Probab Eng Inf Sci 26:183–195

8. Cha JH, Finkelstein M (2012b) Information-based thinning of point processes and its
application to shock models. J Stat Plan Inference 142:2345–2350

9. Cha JH, Finkelstein M (2012c) A note on the curable shock processes. J Stat Plan Inference
142:3146–3151

10. Cha JH, Finkelstein M (2013a) A note on the class of geometric point processes. Proba Eng
Inf Sci 27:177–186

11. Cha JH, Finkelstein M (2013b) On generalized shock models for deteriorating systems. Appl
Stoch Models Bus Ind 29. doi: 10.1002/asmb.1933

12. Cha JH, Finkelstein M, Marais F (2013). Survival of systems with protection subject to two
types of external attacks. Ann Oper Res. doi:10.1007/s10479-013-1315-6

13. Cha JH, Mi J (2011) On a stochastic survival model for a system under randomly variable
environment. Methodol Comput Appl Probab 13:549–561

14. Cinlar E (1975) Introduction to stochastic processes. Prentice Hall, Englewood Cliffs, New
Jersey

15. Cox DR, Isham V (1980) Point processes. University Press, Cambridge
16. Finkelstein M (2007) On statistical and information-based virtual age of degrading systems.

Reliab Eng Syst Saf 92:676–682
17. Finkelstein M (2008) Failure rate modelling for reliability and risk. Springer, London

140 4 Advanced Theory for Poisson Shock Models

http://dx.doi.org/ 10.1002/asmb.1933
http://dx.doi.org/10.1007/s10479-013-1315-6


18. Finkelstein M (1999) Wearing-out components in variable environment. Reliab Eng Sys Saf
66:235–242

19. Finkelstein M, Marais F (2010) On terminating Poisson processes in some shock models.
Reliab Eng Syst Saf 95:874–879

20. Finkelstein M, Zarudnij VI (2002) Laplace transform methods and fast repair approximations
for multiple availability and its generalizations. IEEE Trans Reliab 51:168–177

21. Fleming TR, Harrington DP (1991) Counting processes and survival analysis. Wiley, New
York

22. Kebir Y (1991) On hazard rate processes. Nav Res Logist 38:865–877
23. Lemoine AJ, Wenocur ML (1985) On failure modeling. Nav Res Logist 32:497–508
24. Lemoine AJ, Wenocur ML (1986) A note on shot-noise and reliability modeling. Oper Res

1986(34):320–323
25. Nachlas JA (2005) Reliability engineering: probabilistic models and maintenance methods.

Taylor & Francis, Boca Raton
26. Rice J (1977) On generalized shot noise. Adv Appl Probab 9:553–565
27. Ross SM (1996) Stochastic processes, 2nd edn. Wiley, New York
28. Ushakov IA, Harrison RA (1994) Handbook of reliability engineering. Wiley, New York

References 141



Chapter 5
Heterogeneous Populations

Homogeneity of objects is a unique property that is very rare in nature and in
industry. It can be created in the laboratory, but not outside it. Therefore, one can
hardly find homogeneous populations in real life; however, most of reliability
modeling deals with homogeneous cases. Due to instability of production pro-
cesses, environmental and other factors, most populations of manufactured items
in real life are heterogeneous. Similar considerations are obviously true for
biological items (organisms). Neglecting heterogeneity can lead to serious errors
in reliability assessment of items and, as a consequence, to crucial economic
losses. Stochastic analysis of heterogeneous populations presents a significant
challenge to developing mathematical descriptions of the corresponding reliability
indices. On the other hand, everything depends on the definition, on what we
understand by homogeneous and heterogeneous populations. From the statistical
point of view, these terms mean the following.

In homogeneous populations, the lifetimes of items form a sequence of inde-
pendent and identically distributed random variables (i.i.d.) with the common Cdf
FðtÞ pdf f ðtÞ, and the failure rate, kðtÞ. However, due to instability of production
processes, environmental and other factors, most populations of manufactured
items in real life (and biological organisms in nature as well) are heterogeneous.
This means that these populations can be often considered as a finite or non-finite
collection of homogeneous subpopulations [which are frequently ordered in some
suitable stochastic sense, e.g., in the sense of the hazard rate ordering (2.70)].

As an illustrative discrete example, we can think about the collection of n ¼ 2
subpopulations of statistically identical items produced at different facilities and
mixed together in one population. Assume for simplicity, that each subpopulation
consists of a sufficiently large (infinite) number of items. Let the first subpopu-
lation be described by the failure rate kðtÞ (baseline failure rate), whereas the
second subpopulation, due to the better production quality has a smaller failure
rate kkðtÞ , where k is a fixed constant such that 0 \ k \ 1. Let the proportions of
both subpopulations in the population be p1 and p2, p1 þ p2 ¼ 1. An item is
selected at random from the described heterogeneous population and therefore, we
do not know to which subpopulation it belongs (although the proportions can be

M. Finkelstein and J. H. Cha, Stochastic Modeling for Reliability,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-5028-2_5,
� Springer-Verlag London 2013
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known at some instances). This choice can be described by the discrete random
variable Z (unobserved) with the possible values ‘‘1’’ and ‘‘k’’ and the corre-
sponding probability masses pð1Þ ¼ p1; pðkÞ ¼ p2. Based on the description of Z,
the failure rates of the subpopulation with Z ¼ z can be now specified as kðt; zÞ:
kðt; 1Þ ¼ kðtÞ and kðt; kÞ ¼ kkðtÞ. In the literature, the random variable Z is often
called ‘‘frailty’’. Frailty describes the susceptibility to failures of items from dif-
ferent ordered subpopulations. Various frailty models have been studied in
numerous statistical publications. However, as most of the settings that were
considered in reliability theory and practice are homogeneous, the concept of
frailty has not been sufficiently elaborated in the reliability literature so far.

Instability of production processes, environmental and other factors can obvi-
ously result in more than n ¼ 2 ‘quality levels’ and in the continuous frailty model
as well. Let, as previously, kðtÞ denote now the failure rate of some baseline
subpopulation. For illustration of the continuous frailty concept, consider the
multiplicative (proportional) frailty model. In this model, the failure rates of all
other subpopulations are defined as kðt; zÞ � zkðtÞ, where z is the realization of
Z with support, e.g., in ½0;1Þ. Thus, the failure rate is larger (smaller) for larger
(smaller) values of z and we see here the explicit ordering of the corresponding
subpopulations in the sense of the hazard rate ordering (2.70). The frailty Z is now
the continuous random variable. The term ‘‘frailty’’ was introduced in Vaupel et al.
[63] for the gamma-distributed frailty Z. It is worth noting, however, that this
specific case of the gamma-frailty model was, in fact, first considered by the
British actuary Robert Beard [7, 8].

Mixtures of distributions usually present an effective mathematical tool for
modeling heterogeneity, especially when we are interested in the failure rate,
which is the conditional characteristic. The introductory Sect. 2.3 was devoted to
the shape of the failure rate in the homogeneous setting, which is really important
in many applications (reliability, demography, risk analysis, etc.). In heteroge-
neous populations, the analysis of the shape of the mixture (population) failure rate
starts to be even more meaningful. It is well known, e.g., that mixtures of
decreasing failure rate (DFR) distributions are always DFR [6]. On the other hand,
mixtures of increasing failure rate (IFR) distributions can decrease, at least in some
intervals of time. Note that the IFR distributions are often used to model lifetimes
governed by the aging processes. Therefore, the operation of mixing can dra-
matically change the pattern of population aging, e.g., from positive aging (IFR) to
negative aging (DFR).

In Sects. 5.1–5.6, on the basis of Finkelstein [28, 29], we will present a brief
survey of results relevant for our further discussion in this and in the subsequent
chapters. In the rest of this chapter, some new applications of the mixture failure
rate modeling will be considered.
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5.1 Failure Rate of Mixture of Two Distributions

Suppose, for instance, that a population of some manufactured items consists of
items with and without manufacturing defects. The time to failure of an item
picked up at random from this population can be obviously described in terms of
mixtures. We start with a mixture of two lifetime distributions F1ðtÞ and F2ðtÞ with
the pdfs f1ðtÞ and f2ðtÞ and failure rates k1ðtÞ and k2ðtÞ, respectively, whereas the
Cdf, pdf, and the failure rate of the mixture itself are denoted by FmðtÞ, fmðtÞ and
kmðtÞ, accordingly.

Let the masses p and 1� p define the discrete mixture distribution. The mixture
survival function and the mixture pdf are

�FmðtÞ ¼ p�F1ðtÞ þ ð1� pÞ�F2ðtÞ;
fmðtÞ ¼ pf1ðtÞ þ ð1� pÞf2ðtÞ;

ð5:1Þ

respectively. In accordance with the definition of the failure rate (2.4), the mixture
failure rate in this case is

kmðtÞ ¼
pf1ðtÞ þ ð1� pÞf2ðtÞ

p�F1ðtÞ þ ð1� pÞ�F2ðtÞ
:

As kiðtÞ ¼ fiðtÞ=�FiðtÞ; i ¼ 1; 2; this can be transformed into

kmðtÞ ¼ pðtÞk1ðtÞ þ ð1� pðtÞÞk2ðtÞ; ð5:2Þ

where the time-dependent probabilities are

pðtÞ ¼ p�F1ðtÞ
p�F1ðtÞ þ ð1� pÞ�F2ðtÞ

; 1� pðtÞ ¼ ð1� pÞ�F2ðtÞ
p�F1ðtÞ þ ð1� pÞ�F2ðtÞ

; ð5:3Þ

It follows from Eq. (5.2) that kmðtÞ is contained between minfk1ðtÞ; k2ðtÞg and
maxfk1ðtÞ; k2ðtÞg. Specifically, if the failure rates are ordered as k1ðtÞ � k2ðtÞ,
then

k1ðtÞ � kmðtÞ � k2ðtÞ:

Differentiating (5.1) results in [51]:

k0mðtÞ ¼ pðtÞk01ðtÞ þ ð1� pðtÞÞk02ðtÞ � pðtÞÞð1� pðtÞðk1ðtÞ � k2ðtÞÞ2: ð5:4Þ

Assume that kiðtÞ i ¼ 1; 2 are DFR. Then the mixture failure rate is also
decreasing, which is the well-known fact for general mixtures [6].

As �Fið0Þ ¼ 1; i ¼ 1; 2, the initial value of the mixture failure rate t ¼ 0ð Þ is just
the ‘ordinary’ mixture of initial values of the two failure rates, i.e.,

kmð0Þ ¼ pk1ð0Þ þ ð1� pÞk2ð0Þ:
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When t [ 0, the conditional probabilities pðtÞ and 1� pðtÞ are obviously not
equal to p and 1� p, respectively. Assume that k1ðtÞ � k2ðtÞ. Dividing the
numerator and the denominator in the first equation in (5.3) by �F1ðtÞ it is easy to
see that the proportion of the survived up to t items in the mixed population, i.e.,
pðtÞ is increasing ( 1� pðtÞð Þ is decreasing). This effect can be meaningfully
interpreted in the following way: the weakest items are dying out first. Therefore,

kmðtÞ\ pk1ðtÞ þ ð1� pÞk2ðtÞ; t [ 0: ð5:5Þ

Thus, kmðtÞ is always smaller than the expectation pk1ðtÞ þ ð1� pÞk2ðtÞ.
Assume now that both k1ðtÞ and k2ðtÞ are increasing for t � 0. Can the mixture

failure rate initially (at, least, for small t) decrease? Equation (5.4) helps us to give
the positive answer to this question. The corresponding sufficient condition is

pk01ðtÞ þ ð1� pÞk02ðtÞ � pð1� pÞðk1ð0Þ � k2ð0ÞÞ2 \ 0; ð5:6Þ

where the derivatives are obtained at t ¼ 0. Inequality (5.6), e.g., means that if
jk1ð0Þ � k2ð0Þj is sufficiently large, then the mixture failure rate is initially
decreasing no matter how fast the failure rates k1ðtÞ and k2ðtÞ are increasing in the
neighborhood of 0, which is a remarkable fact, indeed. Let, for instance,

k1ðtÞ ¼ c1t þ a1; k2ðtÞ ¼ c2t þ a2; 0 \ c1 \ c2; 0 \ a1\a2;

Then, if

a2 � a1 [
pc1 þ ð1� p1Þc2

pð1� pÞ

� �1=2

;

kmðtÞ is initially decreasing.
What about the asymptotic (for large t) behavior of kmðtÞ? Due to the weakest

populations are dying first principle the intuitive guess would be: the mixture
failure rate tends (in some suitable sense) to the failure rate of the strongest
population as t!1. Block and Joe [13] give some general conditions for this
convergence. We will just consider here an important specific case of proportional
failure rates that allows formulating these conditions explicitly:

k1ðtÞ � kðt; z1Þ ¼ z1kðtÞ; k2ðtÞ � kðt; z2Þ ¼ z2kðtÞ; z2 [ z1;

where kðtÞ is some baseline failure rate. We will distinguish between the
convergence

kmðtÞ � kðt; z1Þ ! 0 as t!1 ð5:7Þ

and the asymptotic equivalence

kmðtÞ ¼ kðt; z1Þð1þ oð1ÞÞ as t!1; ð5:8Þ

which will mostly be used in the following alternative notation: kmðtÞ� kðt; z1Þ as
t!1.

146 5 Heterogeneous Populations



When kðtÞ has a finite limit as t!1, these relationships coincide. The fol-
lowing theorem [32] specifies the corresponding conditions:

Theorem 5.1 Consider the mixture model (5.1)–(5.3), where

kðt; z1Þ ¼ z1kðtÞ; kðt; z2Þ ¼ z2kðtÞ; z2 [ z1 [ 0;

and kðtÞ ! 1 as t!1.Then

• Relationship (5.8) holds;
• Relationship (5.7) holds if

kðtÞ expf�ðz2 � z1Þ
Z t

0

kðuÞdug ! 0 as t!1: ð5:9Þ

The proof is straightforward and is based on considering the quotient kmðtÞ=kðt; z1Þ
as in Block and Joe [13].

h

Condition (5.9) is a rather weak one. In essence, it states that the pdf of a
distribution with an ultimately increasing failure rate tends to 0 as t!1. All
distributions that are typically used in lifetime data analysis meet this requirement.

Similar reasoning can be used for describing the shape of the failure rate for the
mixture of n [ 2 distributions [13, 28].

We have described some approaches to analyze the general pattern of the shape
of the mixture failure rate for two distributions focusing on initial and tail
behavior. The concrete shapes can be versatile. We will just present here a few
examples. More information on specific shapes of the mixture failure rate of two
distributions can be found in Gurland and Sethuraman [40], Gupta and Waren [39],
Block et al. [14, 18], Lai and Xie [43], Navarro and Hernandez [51], Finkelstein
[28], and Block et al. [16]. Note that the different shapes of the mixture mortality
rate were analyzed in various demographic applications.

• As follows from Gupta and Waren [39], the mixture of two gamma distributions
with increasing failure rates (with the same scale parameter) can result either in
the increasing mixture failure rate or in the modified bathtub (MBT) mixture
failure rate (it first increases and then behaves like a bathtub (BT) failure rate).
This shape agrees with our general reasoning of this section, as it can be easily
verified that condition (5.6) does not hold in this case and therefore the initial
decreasing is not possible.

• Similar shapes occur for the mixtures of two Weibull distributions with
increasing failure rates. Note that in this case, MBT shape results when p in Eq.
(5.1) is less than some n; 0 \ n \ 1 and the mixture failure rate increases for
p � n.
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• Navarro and Hernandez [51] state that the mixture failure rate of two truncated
normal distributions (we are dealing with lifetime random variables), depending
on parameters involved, can also be increasing, BT-shaped or MBT-shaped. The
BT shape obtained via the generalized mixtures (when p is a real number and
not necessarily p 2 ½0; 1�) where studied in Navarro and Hernandez [52].

• Block et al. [18] give explicit conditions which describe the possible shapes of the
mixture failure rate for two increasing linear failure rates. Again the possible
shapes in this case are IFR, BT, and MBT (for the non-crossing linear failure rates).

• Block et al. [16] present an interesting generalization when one of the distri-
butions is itself a continuous mixture of exponentials (and therefore, decreasing)
and the other is a gamma distribution. It is shown that for the specific values of
parameters involved the mixture failure rate has a BT shape. In essence, these
authors are ‘constructing’ the BT shape using the specifically decreasing in
ð0;1Þ to f [ k0 [ 0 failure rate of the first distribution and the increasing to
k0 failure rate of the second distribution. Note that, as follows from (5.3), kmðtÞ
is contained between these two failure rates. Block et al. [16] also prove that
mixtures of DFR gamma distributions with an IFR gamma distribution are
bathtub-shaped and mixtures of modified Weibull distributions (the failure rate
is decreasing not to 0, as for ‘ordinary’ Weibull distribution, but to f ) with an
IFR gamma distribution have also the bathtub-shaped failure rate.

5.2 Continuous Mixtures

Let Z be now a continuous mixing random variable (frailty) with support in ½0;1Þ
and the pdf pðzÞ. Other intervals of support can be also considered. Similar to the
previous section, the mixture survival function and the mixture pdf are defined as
the following expectations:

�FmðtÞ ¼
Z1

0

�Fðt; zÞpðzÞdz;

fmðtÞ ¼
Z1

0

f ðt; zÞpðzÞdz;

ð5:10Þ

respectively, where the notation for conditional functions �FðtjZ ¼ zÞ ¼ �Fðt; zÞ and
f ðtjZ ¼ zÞ ¼ f ðt; zÞ means that a lifetime distribution is indexed by parameter z.
The corresponding conditional failure rate is denoted by kðt; zÞ, whereas the mixture
(observed) failure rate is

kmðtÞ ¼
R1

0 f ðt; zÞpðzÞdzR1
0

�Fðt; zÞpðzÞdz
: ð5:11Þ
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Equation (5.11) can be transformed to [47]:

kmðtÞ ¼
Z1

0

kðt; zÞpðzjtÞdz; pðzjtÞ ¼ pðzÞ�Fðt; zÞR1
0

�Fðt; zÞpðzÞdz
; ð5:12Þ

where pðzjtÞ denotes the conditional pdf of Z on condition that T [ t, i.e., an item
described by a lifetime T with the Cdf FmðtÞ had survived in ½0; t�. Denote this
random variable by Zjt. Obviously the masses pðtÞ and 1� pðtÞ in (5.1) corre-
spond to pðzjtÞ in the continuous case.

Under the mild assumptions (see Theorem 5.2), a property that is similar to the
discrete case (5.5) holds for the continuous case as well, i.e.,

kmðtÞ\kPðtÞ �
Z1

0

kðt; zÞpðzÞdz; t [ 0; kmð0Þ ¼ kPðtÞ ð5:13Þ

meaning that the mixture failure rate is always smaller than the ‘ordinary’
expectation. Thus, owing to conditioning, the mixture failure rate is smaller than
the unconditional one for each t [ 0, which, as in the discrete case, can be
interpreted via the weakest populations are dying out first principle. As time
increases, those subpopulations that have larger failure rates have larger chances of
dying and, therefore, the proportion of subpopulations with a smaller failure rate
increases.

The following theorem [33] states also the condition for kPðtÞ � kmðtÞ to
increase:

Theorem 5.2 Let the failure rate kðt; zÞ be differentiable with respect to both
arguments and be ordered as

kðt; z1Þ\kðt; z2Þ; z1\z2; 8z1; z2 2 ½a; b�; t � 0: ð5:14Þ

Then

• Inequality (5.13) holds;
• If, additionally, okðt; zÞ=ozis increasing in t, then kPðtÞ � kmðtÞ is increasing.

We will consider now two important applications specific in cases of model
(5.12). Let kðt; zÞ be indexed by parameter z in the following additive way:

kðt; zÞ ¼ kðtÞ þ z; ð5:15Þ

where kðtÞ is a deterministic, continuous, and positive function for t [ 0. It can be
viewed as some baseline failure rate. Equation (5.15) defines for z 2 ½0;1Þ a
family of ‘horizontally parallel’ functions. We will be interested in an increasing
kðtÞ. Applying (5.12) to this model results in
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kmðtÞ ¼ kðtÞ þ
R1

0 z �Fðt; zÞpðzÞdzR1
0

�Fðt; zÞpðzÞdh
¼ kðtÞ þ E½Zjt�; ð5:16Þ

where, in accordance with (5.12), E½Zjt� denotes the expectation of the random
variable Zjt. It can be easily shown by direct derivation that
E0½Zjt� ¼ �VarðZjtÞ\0. Differentiating (5.16) and using this property, we obtain
the following result [32, 47].

Theorem 5.3 Let kðtÞ be an increasing, convex function in ½0;1Þ. Assume that
VarðZjtÞ is decreasing in t 2 ½0;1Þ and

VarðZj0Þ[ k0ð0Þ:

Then kmðtÞ decreases in ½0; cÞ and increases in ½c;1Þ, where c can be uniquely
defined from the following equation:

VarðZjtÞ ¼ k0ðtÞ:

It follows from this theorem that the corresponding model of mixing results in
the bathtub shape of the mixture failure rate: it first decreases and then increases,
converging to the failure rate of the strongest population, which is kðtÞ in our case.
It seems that the conditional variance VarðZjtÞ should decrease, as the ‘‘weak
populations are dying out first’’ when t increases. It turns out, however, that this
intuitive reasoning is not true for the general case and some specific distributions
can result in initially increasing VarðZjtÞ. The corresponding counter-example can
be found in Finkelstein and Esaulova [32]. It is also shown that VarðZjtÞ is always
decreasing in ½0;1Þ when Z is gamma-distributed.

The most popular and elaborated applications model of mixing is the multi-
plicative one:

kðt; zÞ ¼ z kðtÞ; ð5:17Þ

where, as previously, the baseline kðtÞ is a deterministic, continuous, and positive
function for t [ 0. In survival analysis, Eq. (5.17) is usually called a multiplicative
frailty model (proportional hazards). The mixture failure rate in this case is

kmðtÞ ¼
Z1

0

kðt; zÞpðzjtÞdz ¼ kðtÞE½Zjt�: ð5:18Þ

Differentiating both sides gives

k0mðtÞ ¼ k0ðtÞE½Zjt� þ kðtÞE0½Zjt�: ð5:19Þ

Thus, when kð0Þ ¼ 0, the failure rate kmðtÞ increases in the neighborhood of
t ¼ 0. Further behavior of this function depends on the other parameters involved.
Similar to the additive case, E0½Zjt� ¼ �kðtÞVarðZjtÞ\0, which means that E½Zjt�
is decreasing in t [38]. Therefore, it follows from Eq. (5.18) that the function
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kmðtÞ=kðtÞ is a decreasing one, which imply that kðtÞ and kmðtÞ cross at most at
only one point. It immediately follows from Eq. (5.19) that when kðtÞ is
decreasing, kmðtÞ is also decreasing (another proof of this well-known property).
When kð0Þ 6¼ 0 and

k0ð0Þ
k2ð0Þ

� VarðZÞ
E½Z� ;

the mixture failure rate is decreasing in ½0; eÞ; e [ 0 meaning, e.g., that for the
fixed E½Z� the variance of Z should be sufficiently large.

Asymptotic behavior of kmðtÞ as t!1 for this and other (more general models
will be discussed in Sect. 5.4). Note that, the accelerated life model (ALM) to be
studied in this section does not allow the foregoing reasoning based on considering
expectation E½Zjt�.

5.3 Examples

5.3.1 Weibull and Gompertz Distributions

Consider multiplicative frailty model (5.17). Let Z be a gamma-distributed random
variable with shape parameter a and scale parameter b and let kðtÞ ¼ c tc�1; c [ 1
be the increasing failure rate of the Weibull distribution, limt!1 kðtÞ ¼ 1. The
mixture failure rate kmðtÞ in this case, can be obtained by the direct integration, as
in Finkelstein [28] (see also [38]):

kmðtÞ ¼
abc tc�1

1þ b tc
: ð5:20Þ

The shape of the mixture failure rate differs dramatically from the shape of the
increasing baseline failure rate kðtÞ. Thus kmðtÞ is equal to 0 at t ¼ 0, increases to a
maximum at

tmax ¼
c� 1

b

� �1
c

and then decreases to 0 as t!1 (Fig. 5.1).
Weibull distribution with c[ 1 is often used for modeling aging processes as

its failure rate is increasing. Therefore the mixture model results in the dramati-
cally different shape (the upside-down bathtub shape). This phenomenon should
certainly be taken in account in reliability practice.

The described shape of the mixture failure rate was observed for a heteroge-
neous sample of miniature light bulbs [28]. The failure rate of the homogeneous
population of these light bulbs, however, follows the Weibull law. Therefore the
observed shape complies with the predicted one.
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Let again the mixing distribution be the gamma distribution with shape
parameter c and scale parameter b, whereas the baseline distribution be the
Gompertz distribution with the failure rate kðtÞ ¼ a expfbtg; a; b [ 0. Owing to
its computational simplicity, the gamma-frailty model is practically the only one
widely used in applications so far. Direct computation in accordance with
Eq. (5.12) for this baseline failure rate results in

kmðtÞ ¼
bc expfb tg

expfb tg þ bb
a � 1

� � : ð5:21Þ

If bb ¼ a, then kmðtÞ � bc. However, if bb [ a, then kmðtÞ increases to bc and
if bb\a, it decreases to bc (Fig. 5.2).

Thus, we are mixing exponentially increasing failure rates and as a result
obtaining a slowly increasing (decreasing) mixture failure rate, which converges to
a constant value.

5.3.2 Reliability Theory of Aging

Consider now a discrete frailty parameter, Z ¼ N with the Cdf F0ðnÞ � PðN � nÞ.
We will be interested in the following meaningful reliability interpretation.

bβ<a

bβ>a

t

λm(t)

bβ=a

Fig. 5.2 Gamma-Gompertz
mixture failure rate

Fig. 5.1 The mixture failure
rate for the Weibull baseline
distribution, c ¼ 2; a ¼ 1
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Let N be a random number of initially (at t ¼ 0) operating independent and
identically distributed components with constant failure rates k. Assume that these
components form a parallel system, which, according to Gavrilov and Gavrilova
[36], models the lifetime of an organism (generalization to the series-parallel
structure is straightforward). These authors also provide a biological justification
of the model. In each realization N ¼ n; n � 1, the degradation process of pure
death can be defined as just the number of failed components. When this number
reaches n, the death of an organism occurs. Denote by knðtÞ the mortality (failure)
rate, which describes Tn—the time to death for the fixed N ¼ n; n ¼ 1; 2; . . .
(n ¼ 0 is excluded, as there should be at least one operating component at t ¼ 0).
It is shown in Gavrilov and Gavrilova [36] that as t! 0, this mortality rate tends
to an increasing power function (the Weibull law), which is a remarkable fact. On
the other hand, for random N, similar to (5.2), (5.3) and (5.11, 5.12), the observed
(mixture) mortality rate is given as the following conditional expectation with
respect to N:

kmðtÞ ¼ E½kNðtÞjT [ t�; ð5:22Þ

where T, as usual, denotes the lifetime of interest. Therefore, as previously, kmðtÞ
is a conditional expectation (on condition that the system is operable at t) of a
random mortality rate kNðtÞ. Note that, for small t, this operation can approxi-
mately result in the unconditional expectation

kmðtÞ � E½kNðtÞ� ¼
X1
n¼1

PnknðtÞ; ð5:23Þ

where Pn � Pr½N ¼ n�, but the limiting transition, as t! 0, should be performed
carefully in this case. As t!1, we observe the following mortality plateau [34]:

kmðtÞ ! k: ð5:24Þ

This is due to the fact that the conditional probability that only one component
with the failure rate k is operating tends to 1 as t!1 (on condition that the
system is operating).

Assume now that N is Poisson distributed with parameter g (on condition that
the system is operable at t ¼ 0). Therefore

Pn ¼
expf�g ggn

n!ð1� expf�ggÞ ; n ¼ 1; 2; . . . :

It can be shown via direct integration that the time to death in our simplified
model has the following Cdf [55]:

FðtÞ ¼ Pr½T � t� ¼ 1� expf�g expf�ktgg
1� expf�gg : ð5:25Þ
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The corresponding mixture mortality rate is

kmðtÞ ¼
F0ðtÞ

1� FðtÞ ¼
gk expf�ktg

expfg expf�ktgg � 1
: ð5:26Þ

Performing, as t!1, the limiting transition in (5.26), we also arrive at the
mortality plateau (5.5).

In fact, the mortality rate given by Eq. (5.26) is far from the exponentially
increasing Gompertz law. The Gompertz law can erroneously follow (as in Gav-
rilov and Gavrilova [36]) from (5.23) if this approximation is used formally,
without considering a proper conditioning in (5.23). However, for some specific
values of parameters and sufficiently small t, exponential approximation can still
hold. The relevant discussion can be found in Steinsaltz and Evans [55].

5.4 Mixture Failure Rate for Large t

The failure (mortality) rate behavior for large t, is important for objects at the last
phase of their useful life (e.g., the above mentioned mortality plateaus). Among the
first to consider the limiting behavior of mixture failure rates for the continuous
mixtures were Clarotti and Spizzichino [23]. They showed that the mixture failure
rate for a family of exponential distributions with parameter a 2 ½a;1Þ converges
to the failure rate of the strongest population, which is a in this case. Block et al.
[17], Block et al. [14], and Li [44] extended this to a general case (see also [15]). As
the approach (and obtained important mathematical results) of these authors is very
general and some assumptions are rather restrictive, it does not provide specific
asymptotic relationship that can be used in practical analysis for mixed populations.
In order to be able to perform this analysis, Finkelstein and Esaulova [33] devel-
oped an approach that was applied to reasonably general survival model that allows
for explicit asymptotic relationships and covers (as specific cases) three most
popular in survival analysis frailty models: additive, proportional, and accelerated
life. The main results that were obtained using this approach are discussed below.
The corresponding proofs that are quite technical can be found in this paper.

Let T � 0 be a lifetime with the cdf FðtÞ, pdf f ðtÞ, and the failure rate kðtÞ. Let,
as previously, these functions be indexed by the realization of the frailty parameter
Z ¼ z, i.e., Fðt; zÞ; f ðt; zÞ; kðt; zÞ, respectively. Consider the following general
survival model:

Kðt; zÞ ¼ Aðz/ðtÞÞ þ wðtÞ; ð5:27Þ

where Kðt; zÞ �
R t

0 kðt; zÞ denotes the corresponding cumulative failure rate and
Að	Þ, wð	Þ and /ð	Þ are increasing differentiable functions of their arguments.
The meaning of relationship (5.27): we perform a scale transformation /ðtÞ in the
argument of the cumulated failure rate KðtÞ and ‘insert’ a frailty parameter. An
important feature of the model is that parameter z is a multiplier.
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This model includes a number of well-known survival analysis and reliability
specific cases, i.e.,
Additive Model: Let

AðuÞ � u; /ðtÞ ¼ t; wð0Þ ¼ 0:

Then

kðt; zÞ ¼ zþ w0ðtÞ; Kðt; zÞ ¼ zt þ wðtÞ: ð5:28Þ

PH (multiplicative) Model: Let

AðuÞ � u; /ðtÞ ¼ KðtÞ:

Then

kðt; zÞ ¼ zkðtÞ;

Kðt; zÞ ¼ zKðtÞ ¼ z

Z t

0

kðuÞdu:
ð5:29Þ

Accelerated Life Model: Let

AðuÞ � KðuÞ; /ðtÞ ¼ t:

Then

Kðt; zÞ ¼
Zzt

0

kðuÞdu ¼ KðztÞ; ð5:30Þ

kðt; zÞ ¼ zkðztÞ: ð5:31Þ

We are interested in asymptotic behavior (as t!1) of kmðtÞ. For simplicity of
notation (and, in fact, not loosing the generality), we will assume further that
wðtÞ ¼ 0.

Theorem 5.4 Let the cumulative failure rate Kðt; zÞ be given by Eq. (5.27)
wðtÞ ¼ 0ð Þ and let the mixing pdf pðzÞ; z 2 ½0;1Þ be defined as

pðzÞ ¼ zap1ðzÞ; ð5:32Þ

where a[ � 1 and p1ðzÞ; p1ð0Þ 6¼ 0 is a function bounded in ½0;1Þ and con-
tinuous at z ¼ 0. Assume also that /ðtÞ ! 1 as t!1 and that A(s) satisfies

Z1

0

expf�AðsÞgsads\1: ð5:33Þ
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Then

kmðtÞ� ðaþ 1Þ/
0ðtÞ

/ðtÞ ; ð5:34Þ

where, as usual, asymptotic notation aðtÞ� bðtÞ as t!1 means that
limt!1 aðtÞ=bðtÞ ¼ 1. As we had mentioned, another possible notation for (5.34)
is kmðtÞ ¼ ðaþ 1Þ/0ðtÞ=/ðtÞð1þ oð1ÞÞ:

The proof of this result is cumbersome and is based on Abelian-type theorems
for the corresponding asymptotic integrals. That is why the multiplicative form in
Aðz/ðtÞÞ is so important.

h

The specific case of this theorem for the multiplicative model (5.31) was inde-
pendently considered by Steinsaltz and Wachter [56]. Assumption (5.32) just states
the ‘form’ of the admissible mixing distribution and holds for the main lifetime
distributions, such as Weibull, gamma, truncated normal, etc. However, it does not
hold for a lognormal distribution, as the corresponding asymptote is proportional to
1=z when z! 0. Assumption (5.33) is a very weak one (weaker than just having a
finite expectation for a lifetime) and can be omitted in practical analysis.

A crucial feature of this result is that the asymptotic behavior of the mixture
failure rate depends only on the behavior of the mixing distribution in the
neighborhood of 0 and on the derivative of the logarithm of the scale function
/ðtÞ, i.e.,

ðlog /ðtÞÞ0 ¼ /0ðtÞ=/ðtÞ:

When pð0Þ 6¼ 0 and pðzÞ is bounded in ½0;1Þ, the result does not depend on the
mixing distribution at all, as a ¼ 0 in this case. Intuitively, the qualitative meaning
is quite clear: as t!1, only the most robust survivors are left and in, accordance
with (5.27), this corresponds to the small values of z (weak populations are dying
out first).

It is easy to see that for the multiplicative model (5.29), Eq. (5.34) reduces to

kmðtÞ�
ðaþ 1ÞkðtÞR t

0 kðuÞdu
: ð5:35Þ

and to

kmðtÞ�
aþ 1

t
ð5:36Þ

for the ALM (5.30), (5.31).
It should be noted that (5.36) is a really surprising result, as the shape of the

mixture failure rate for large t does not depend on the baseline distribution FðtÞ. It
is also dramatically different from the multiplicative case (5.35). This means that
the ‘nature’ of the ALM is such that it ignores’ the baseline distribution for large t.
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Comparing (5.35) and (5.36), we see that the latter never results in the
asymptotically flat observed failure rate (the mortality plateau in human mortality
studies), whereas the multiplicative model can have this possibility, as in the case
of the gamma-frailty model for the Gompertz distribution (see Eq. 5.21).

Note that, by direct integration, Eq. (5.21) can be generalized to the case of an
arbitrary (absolutely continuous) baseline distribution characterized by the failure
rate kðtÞ:

kmðtÞ ¼
ckðtÞ

bþ KðtÞ ¼
ckðtÞ

bþ
R t

0 kðuÞdu
: ð5:37Þ

It is clear that c ¼ aþ 1 for the gamma pdf and this formula perfectly comply
with the general asymptotic result (5.34) and a classical result by Vaupel et al. [63].

Let, for instance, pðzÞ be the uniform density in ½0; 1� and let also
kðtÞ ¼ expftg(a; b ¼ 1 for simplicity of notation). Then kðt; zÞ ¼ z expftg and

Z1

0

�Fðt; zÞpðzÞdz ¼ 1
x
ð1� expf�xgÞ;

Z1

0

f ðt; zÞpðzÞdz ¼ ðxþ 1Þ � expf�xg
x

þ 1
x2
ð1� expf�xgÞ

� �
;

where x ¼ expftg � 1 and x!1 as t!1. Therefore, in accordance with
Eq. (5.11),

lim
t!1

kmðtÞ ¼ 1:

The same limit holds for kmðtÞ in (5.37) for the considered specific values of
parameters. This example illustrates the fact that the asymptotic value of the
mixture failure rate does not depend on a mixing distribution if pð0Þ 6¼ 0.

Theorem 5.4 deals with the case when the support of a mixing distribution
includes 0, i.e., z 2 ½0;1Þ. In this case, the strongest population cannot usually be
properly defined. If, however, the support is separated from 0, the mixture failure
rate can tend to the failure rate of the strongest population as t!1. The fol-
lowing theorem [33] states reasonable conditions for this convergence (we assume,
for simplicity, as previously, that wðtÞ ¼ 0):

Theorem 5.5 Let, as in Theorem 5.4, the class c by Eq. (5.27), where /ðtÞ ! 1,
wðtÞ ¼ 0 and let A(s) be twice differentiable.Assume that, as s!1

A00ðsÞ
ðA0ðsÞÞ2

! 0 ð5:38Þ

and

sA0ðsÞ ! 1: ð5:39Þ
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Also assume that for all b; c [ a; b\c, the quotient A0ðbsÞ=A0ðcsÞ is bounded
as s!1. Finally, let the mixing pdf pðzÞ be defined in ½a;1Þ; a [ 0, bounded in
this interval and continuous at z ¼ a and pðaÞ 6¼ 0. Then

kmðtÞ� a/0ðtÞA0ða/ðtÞÞ: ð5:40Þ

The assumptions of this theorem are rather natural and hold at least for the
specific models under consideration and for the main lifetime distributions.
Assume additionally that the family of failure rates kðt; zÞ is ordered in z (as for
additive or multiplicative models), i.e.,

kðt; z1Þ\kðt; z2Þ; z1\z2; 8z1; z2 2 ½a;1�; a [ 0: ð5:41Þ

The right-hand side of (5.40) can be interpreted in this case as the failure rate of
the strongest population. Specifically, for the multiplicative model:

kmðtÞ� akðtÞ: ð5:42Þ

Thus, as intuition suggests, the mixture failure rate asymptotically does not
depend on a mixing distribution. A similar result holds also for the case when there
is a singularity in the pdf of the mixing distribution of the form:

pðzÞ ¼ ðz� aÞap1ðz� aÞ; ð5:43Þ

where a[ � 1 and p1ðz� aÞ is bounded, p1ð0Þ 6¼ 0.
Missov and Finkelstein [49] have generalized these results to the wider class of

mixing distributions. It turned out that the mixing pdf (5.32) in Theorem 5.4 can be
of a more general form

pðzÞ ¼ zaGðzÞp1ðzÞ;

where G(z) is a regularly varying function. Recall (Bingham et al. [11]) that a
positive function G(t) defined on ð0:1Þ is slowly varying at 0 if for every k [ 0,

lim
t!0

GðktÞ
GðtÞ ¼ 1:

Moreover, a positive function R(t) defined on ð0:1Þ is regularly varying at 0
with power �1\p\1, if

lim
t!0

RðtÞ
tpGðtÞ ¼ 1;

where the function G(t) is slowly varying at 0.
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5.5 Mortality Plateaus

As it was already mentioned, demographers had recently observed the deceleration
in human mortality at advanced ages which eventually results in human mortality
plateaus [58]. The most reasonable explanation of this fact is via the concept of
heterogeneity of human population which obviously takes place. The following
refers to the interpretation of our results for this application.

• As follows from Eq. (5.36), the ALM (5.31) never results in the asymptotically
flat failure rate. Moreover, it asymptotically tends to 0 and does not depend on a
baseline distribution, which is Gompertz for the case under consideration

• The only function g(t), for which gðtÞ=
R t

o gðuÞdu tends to a constant as t!1,
is the exponential function. Therefore, as follows from Relationship (5.35), the
asymptotically flat rate in the multiplicative model (5.29) can result via mixing
of a random lifetime distributed only in accordance with the Gompertz distri-
bution or in accordance with a distribution with the failure rate that asymptot-
ically converges to an exponential function.

• In accordance with Theorem 5.4, the admissible mixing distributions (i.e., the
distributions that can lead to the asymptotically flat mortality rate) are those with
behavior as za; a [ � 1 for z! 0. The behavior outside the neighborhood of 0
does not contribute to asymptotic properties of the failure rate. Therefore, the
power law (Weibull distribution), the gamma distribution, and some other dis-
tributions are admissible. Note that, when the mixing pdf is such that pð0Þ 6¼ 0
has a finite limit when z! 0 (as, e.g., for the exponential distribution), rela-
tionship (5.35) reduces to

kmðtÞ�
kðtÞR t

0 kðuÞdu

• And, therefore, the mixture mortality rate does not depend on the mixing dis-
tribution at all! The same result holds for, e.g., the mixing density that is
1=a; a [ 0 in ½0; a� and is 0 in ða;1Þ (uniform distribution).

In view of the foregoing discussion, the asymptotically flat rate (as for human
populations) can be viewed as an indication of:

• that the mixing model is multiplicative,
• that the underlying distribution is definitely Gompertz or asymptotically con-

verges to the Gompertz distribution,
• that the mixing pdf is proportional to za; z [ � 1, when z! 0, e.g., the gamma

distribution. The form of this distribution outside neighborhood of 0 has no
influence on the asymptotic behavior of kðtÞ.
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5.6 Inverse Problem

There can be different approaches to considering the inverse problem in mixing. In
view of the results of Sect. 5.4, one can be interested in defining the class of
mixing distributions that ‘produce’ the mixture failure rate of the form given by
(5.34). The following theorem [49] solves this problem.

Theorem 5.6 Let conditions of Theorem 5.4 hold and, therefore, Relation (5.34)
takes place.Then the pdf pðzÞ of the mixing (frailty) distribution satisfies for z! 0

R1
0 expf�Aðz/ðtÞÞgzp0ðzÞdzR1
0 expf�Aðz/ðtÞÞgpðzÞdz

� a: ð5:44Þ

Condition (5.44) is not easy to check. However, the following theorem [49]
gives a simple sufficient condition.

Theorem 5.7 Let pðzÞ be a regularly varying function defined by pðzÞ ¼ zaGðzÞ,
where a[ � 1 and p0ðzÞ be asymptotically monotone as z! 0. Then Relationship
(5.44) holds.

A well-known fact from survival analysis states that the failure data alone do
not uniquely define a mixing distribution and additional information (e.g., on
covariates) should be taken into account (a problem of nonidentifiability, as, e.g.,
in Tsiatis [59] and Yashin and Manton [66]). On the other hand, the following
specific inverse problem can be solved analytically, at least for additive and
multiplicative models of mixing [28]:

Given the mixture failure rate kmðtÞ and the mixing pdf pðzÞ, obtain the failure
rate kðtÞ of the baseline distribution.

This means that under certain assumptions any shape of the mixture failure rate
can be constructed by the proper choice of the baseline failure rate. To illustrate
this statement, consider the additive model (5.28):

�Fðt; zÞ ¼ expf�KðtÞ � ztg; f ðt; zÞ ¼ ðkðtÞ þ zÞ expf�KðtÞ � ztg: ð5:45Þ

Therefore, the mixture survival function in (5.10) can be written via the Laplace
transform as

�FmðtÞ ¼ expf�KðtÞ
Z1

0

expf�ztgpðzÞdz ¼ expf�KðtÞgp
ðtÞ; ð5:46Þ

where, p
ðtÞ ¼ E½expf�ztg� is the Laplace transform of the mixing pdf pðzÞ.
Therefore, Eq. (5.15) yields

kmðtÞ ¼ kðtÞ þ
R1

0 z expf�ztgpðzÞdzR1
0 expf�ztgpðzÞdz

¼ kðtÞ � d
dt

log p
ðtÞ ð5:47Þ
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and the solution of the inverse problem for this special case is given by the
following relationship:

kðtÞ ¼ kmðtÞ þ
d

dt
log p
ðtÞ ¼ kmðtÞ � E½Zjt�: ð5:48Þ

If the Laplace transform of the mixing distribution can be derived explicitly,
then Eq. (5.48) gives a simple analytical solution for the inverse problem. Assume,
e.g., that ‘we want’ the mixture failure rate to be constant, i.e., kmðtÞ ¼ c. Then the
baseline failure rate is obtained as

kðtÞ ¼ c� E½Zjt�:

The corresponding survival function for the multiplicative model (5.17) is
expf�zKðtÞg and the mixture survival function for this specific case is

�FmðtÞ ¼
Z1

0

expf�zKðtÞgpðzÞdz ¼ p
ðKðtÞÞ: ð5:49Þ

It is obtained in terms of the Laplace transform of the mixing distribution as a
function of the cumulative baseline failure rate KðtÞ. Therefore,

kmðtÞ ¼ �
d
dt

log p
ðKðtÞÞ: ð5:50Þ

The general solution to the inverse problem in terms of the Laplace transform is
also simple in this case. Note that,

p
ðKðtÞÞ ¼ expf�KmðtÞg; ð5:51Þ

where KmðtÞ denotes the cumulative mixture failure rate. Applying the inverse
Laplace transform L�1ð	Þ to both sides of this equation finally results in

kðtÞ ¼ K0ðtÞ ¼ d
dt

L�1ðexpf�KmðtÞgÞ: ð5:52Þ

The Laplace transform methodology in multiplicative and additive models is
usually very effective. It constitutes a convenient tool for dealing with mixture
failure rates when the Laplace transform of the mixing distribution can be obtained
explicitly. The exponential family [41] presents a wide class of such distributions.
The corresponding pdf is defined in this case as

pðzÞ ¼ expf�hzggðzÞ
gðhÞ ; ð5:53Þ

where g(z) and gðzÞ are some positive functions and h is a parameter. The function
gðhÞ plays the role of a normalizing constant ensuring that the pdf integrates to 1.
The gamma, the inverse Gaussian, and the stable distributions are relevant
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examples. Note that, the Laplace transform of pðzÞ depends only on the normal-
izing function gðzÞ [41], i.e.,

p
ðsÞ �
Z1

0

expf�szgpðzÞdz ¼ gðhþ sÞ
gðhÞ :

This means that under certain assumptions any shape of the mixture failure rate
can be constructed by the proper choice of the baseline failure rate. Specifically,
for the exponential family of mixing densities and the multiplicative model under
consideration, the mixture failure rate is obtained as

kmðtÞ ¼ �
d
dt

log
gðhþ KðtÞÞ

gðhÞ

¼ �kðtÞ
d

dðhþKðtÞÞ gðhþ KðtÞÞ
gðhþ KðtÞÞ :

ð5:54Þ

Therefore, the solution to the inverse problem can be obtained in this case as the
derivative of the following function:

KðtÞ ¼ g�1ðexpf�kmðtÞggðhÞÞ � h: ð5:55Þ

It can be easily calculated [28] that when the mixing pdf is gamma with
parameters a and b, the solution of the inverse problem is obtained as

kðtÞ ¼ b
a

kmðtÞ exp
KmðtÞ

a

� 	
: ð5:56Þ

Assume that the mixture failure rate is constant, i.e., kmðtÞ ¼ c. It follows from
(5.56) that for obtaining a constant kmðtÞ the baseline kðtÞ should be exponentially
increasing, i.e.,

kðtÞ ¼ b
a

c exp
ctÞ
a

� 	
:

But this is what we would really expect. As we already mentioned, this result is
really surprising: we are mixing the exponentially increasing family of failure rates
and arriving at a constant mixture failure rate.

5.7 The Failure Rate Dynamics in Heterogeneous
Populations

The mixture failure rate function and some other measures based on it (e.g., the
reliability function, the mean residual life function, etc.) are conventionally con-
sidered as measures of performance (or quality) of items in heterogeneous
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populations. However, if we pick an operable item at random from this population,
its individual failure rate at each instant of time can be considered as a random
variable, whereas the mixture failure rate is defined as its expectation. As in the
case of ‘ordinary’ random variables, other than expectation characteristics are also
important. The obvious first choice is the corresponding variance.

As an example, consider a system that should perform an important mission.
The quality of its performance can be described by the probability of operation
without failures during a mission time. If a mission is important and its failure
results, e.g., in substantial economic loss, then not only the population (mixture)
failure rate of a system that defines the average value of this probability, but the
deviations from this value due to heterogeneity of a population are of considerable
interest. As the weakest items are dying out first, the composition of the ordered
heterogeneous population is improving in the sense that proportions of stronger
items are increasing. However, does it mean that the ‘quality’ (from a broader
perspective) of the entire population is improving? Not necessarily, as this quality
can depend also on the variability characteristics to be discussed in this section.
Furthermore, when we are dealing with failures that may result in serious con-
sequences, more attention should be paid to the items with a high risk of failure,
i.e., the items with large failure rates. Therefore, the measures for quality of these
items should be also defined.

We consider a heterogeneous population of items (components) that consists of
different homogeneous subpopulations, that are modeled via the frailty Z. The
numbers of items in populations are supposed to be sufficiently large and thus our
problems can be statistically described in terms of infinite populations. As time
progresses, the failed items are discarded and therefore, the composition of the
population of survived items (which is, in fact, the conditional frailty ZjT [ t)
changes. Alternatively, an item is chosen at random from our heterogeneous
population and if it did not fail in ½0; tÞ, then our initial knowledge about its
‘quality’ which is described by the frailty Z is changing in accordance with
ZjT [ t (see Eq. (5.12) and the discussion after it).

For illustrating the dynamics in variability characteristics, consider the case of
n ¼ 2 subpopulations that can be generalized to the arbitrary finite n. Denote the
lifetime of a component from the strong subpopulation by TS and its absolutely
continuous Cdf, pdf, and the failure rate function by F1ðtÞ, f1ðtÞ and k1ðtÞ,
respectively. Similarly, the lifetime, the Cdf, the pdf, and the failure rate function
of a weak component are TW , F2ðtÞ, f2ðtÞ and k2ðtÞ, accordingly. Formal defini-
tions of the strong and weak subpopulations will be given after presenting the
necessary notation. The initial ðt ¼ 0Þ composition of our mixed population is as
follows: the proportion of strong items is p, whereas the proportion of weak items
is 1� p, which means that the distribution of the discrete frailty Z with realizations
z1 and z2 in this case is

pðzÞ ¼
p; z ¼ z1

1� p; z ¼ z2

(
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and z1, z2 (z1\z2), correspond to the strong and the weak subpopulations,
respectively. In accordance with Eqs. (5.1)–(5.3):

The mixture (population) survival function is

FmðtÞ ¼ pF1ðtÞ þ ð1� pÞF2ðtÞ:

The mixture (observed) failure rate is

kmðtÞ ¼
pf1ðtÞ þ ð1� pÞf2ðtÞ

p�F1ðtÞ þ ð1� pÞ�F2ðtÞ
¼ pðtÞk1ðtÞ þ ð1� pðtÞÞk2ðtÞ; ð5:57Þ

where the time-dependent probabilities are

pðtÞ ¼ p�F1ðtÞ
p�F1ðtÞ þ ð1� pÞ�F2ðtÞ

; 1� pðtÞ ¼ ð1� pÞ�F2ðtÞ
p�F1ðtÞ þ ð1� pÞ�F2ðtÞ

:

Thus, the composition of our population is changing in time in accordance with
the following distribution of Zjt � ZjT [ t:

pðzjtÞ ¼
pðtÞ; z ¼ z1

1� pðtÞ; z ¼ z2

(
:

Assume now that the populations are ordered (and therefore, the weak and the
strong subpopulations are defined accordingly) in the sense of the failure rate
ordering:

k2ðtÞ � k1ðtÞ; t � 0:

Then, it is easy to see that the proportion of strong items

pðtÞ ¼ p
pþ ð1� pÞ�F2ðtÞ=�F1ðtÞ

;

is increasing as t is increasing. In the context of burn-in, e.g., it means that the
quality of a population in the defined sense is improving as the time of burn-in is
increasing.

Equation (5.57) defines the observed (mixture) failure rate, which is obviously
an averaged characteristic. However, the above mixture setting implies that an
operable item at time t can be described by a random failure rate kRðtÞ with
realizations k1ðtÞ and k2ðtÞ:

kRðtÞ ¼
k1ðtÞ; with probability pðtÞ;
k2ðtÞ; with probability 1� pðtÞ:

(
ð5:58Þ

Thus, we can also interpret (5.57) as the expectation of the random failure rate
kRðtÞ

kmðtÞ ¼ E½kRðtÞ�:
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Expectation is obviously an important characteristic, but, as in the case of
‘ordinary random variables’ we might be interested in moments and, first of all, in
Var½kRðtÞ� as the variability measure of the population structure. This measure is
important as we want to know (or control) the ‘risks’ (i.e., large deviations from
the mean) that can occur in field usage. Therefore, kmðtÞ and Var½kRðtÞ� can
describe the quality of our heterogeneous population. It is reasonable to assume
that the larger these characteristics are, the worse is the corresponding quality.
Furthermore, at many instances, along with the absolute variability measure
Var½kRðtÞ�, the relative variability is of interest. Thus, in addition to Var½kRðtÞ�, we
will consider the measure for the ‘relative deviation’, i.e., the corresponding
coefficient of variation:

CV ½kRðtÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½kRðtÞ�

p
=E½kRðtÞ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½kRðtÞ�

p
=kmðtÞ:

We will derive now general formulas for the measures of interest. In order to
obtain Var½kRðtÞ�, in accordance with (5.58), it is easier to consider the supple-
mentary random variable kRCðtÞ, which is equal to k1ðtÞ � k2ðtÞ with probability
pðtÞ and to 0 with probability 1� pðtÞ. Then

Var½kRðtÞ� ¼ Var½kRCðtÞ� ¼ ðk1ðtÞ � k2ðtÞÞ2pðtÞð1� pðtÞÞ; ð5:59Þ

and

CV ½kRðtÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½kRðtÞ�

p
=kmðtÞ ¼

ðk2ðtÞ � k1ðtÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðtÞð1� pðtÞÞ

p
pðtÞk1ðtÞ þ ð1� pðtÞÞk2ðtÞ

: ð5:60Þ

As we know, the shape of the mixture failure rate is very important in
describing heterogeneous populations. In accordance with the foregoing consid-
erations, the shape of the functions Var½kRðtÞ� and CV ½kRðtÞ� is also of interest. For
simplicity, we consider first the mixture of two exponential distributions. Let
k2ðtÞ ¼ k2 [ k1ðtÞ ¼ k1. Then, as a special case of Eq. (5.59),

Var½kRðtÞ� ¼ ðk1 � k2Þ2pðtÞð1� pðtÞÞ;

and

k0mðtÞ ¼ �ðk1 � k2Þ2pðtÞð1� pðtÞÞ ¼ �Var½kRðtÞ�: ð5:61Þ

Thus, the slope of the mixture failure rate in this case is equal to the variance of
the random failure rate (with the negative sign). We can consider the following
two cases:

(i) Let the initial proportion of strong components be larger than 0.5 (p [ 0:5);
then pðtÞð1� pðtÞÞ strictly decreases in t from pð0Þð1� pð0ÞÞ. Therefore,
kmðtÞ and Var½kRðtÞ� strictly decrease and, therefore, the population becomes
‘better’ (the failure rate is smaller) and more ‘stable’ (the variance is smaller).
Observe that
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CV 0½kRðtÞ� ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðtÞð1� pðtÞÞ

p
ðk1pðtÞ þ k2ð1� pðtÞÞÞ2

� ½ðk2 � k1Þp0ðtÞf1� 2pðtÞgðk1pðtÞ þ k2ð1� pðtÞÞÞ þ 2ðk2 � k1Þ2p0ðtÞpðtÞð1� pðtÞÞ�

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðtÞð1� pðtÞÞ

p
ðk1pðtÞ þ k2ð1� pðtÞÞÞ2

ðk2 � k1Þp0ðtÞfk2ð1� pðtÞÞ � k1pðtÞg:

Therefore, as p0ðtÞ is positive (pðtÞ is increasing):

CV 0½kRðtÞ�[ 0) k2

k1
[

pðtÞ
1� pðtÞ :

Obviously, pðtÞ=ð1� pðtÞÞ strictly increases to 1 as t increases. Thus, when

k2

k1
[

pð0Þ
1� pð0Þ ; ð5:62Þ

CV ½kRðtÞ� increases and then decreases with one change point t
 such that
k2=k1 ¼ pðt
Þ=ð1� pðt
ÞÞ. When

k2

k1
\

pð0Þ
1� pð0Þ ;

then CV ½kRðtÞ� monotonically decreases.

(ii) Let the initial proportion of strong components be smaller or equal to 0.5
(p � 0:5). As it was stated, the proportion of remaining weak components
1� pðtÞ is always decreasing in time. Therefore, the first guess based on
intuition would be that Var½kRðtÞ� (similar to (i)) is also decreasing. However,
it is easy to see that at time t such that pðtÞ ¼ 0:5, the function, Var½kRðtÞ� (and
as follows from (5.61), jk0mðtÞj as well) has its maximum and only after this
point it strictly decreases. In this case, Inequality (5.62) always holds and thus
CV ½kRðtÞ� increases and then decreases with one change point t
 such that
k2=k1 ¼ pðt
Þ=ð1� pðt
ÞÞ.

Equation (5.59) can be used for analyzing the shape of Var½kRðtÞ� for time-
dependent failure rates. Specifically, when k2ðtÞ � k1ðtÞ is increasing and p � 0:5,
then pðtÞð1� pðtÞÞ first strictly increases and then decreases. Therefore, Var½kRðtÞ�
initially strictly increases.

When k1ðtÞ � k2ðtÞ is decreasing:

(i) If p [ 0:5, then pðtÞð1� pðtÞÞ strictly decreases and Var½kRðtÞ� strictly
decreases.

(ii) If p � 0:5, then, pðtÞð1� pðtÞÞ strictly increases in ½0; t
Þ and decreases in
½t
;1Þ, where t
 is the solution of the following equation: pðtÞ ¼ 0:5. Thus
Var½kRðtÞ� strictly decreases in ½t
;1Þ.
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Equation (5.60) can be used for analyzing the shape of CV ½kRðtÞ�. For instance,
if k2ðtÞ � k1ðtÞ is decreasing and kmðtÞ is increasing, then CV ½kRðtÞ� is strictly
decreasing or it initially increases and then monotonically decreases.

Example 5.1 Let k1ðtÞ ¼ 1, k2ðtÞ ¼ 5 and p ¼ 0:2. Then the mixture failure rate
kmðtÞ is given by Fig. 5.3.

Assume that an item has survived to age 0.4. As follows from the graph:
kmð0:4Þ � 3:0. How much can we rely on this value? To answer this question, it is
reasonable to consider Var½kRðtÞ� given by Fig. 5.4.

We can see that Var½kRðtÞ� has a maximum at t � 0:4 (pð0:4Þ � 0:5). This
means that at t ¼ 0:4, approximately 50 % of survived items have the failure rate
with realization 5.0, and the other 50 % will have it 1.0, whereas the observed
(mixture) failure rate kmðtÞ is 3.0. However, as t increases from 0.4, we may more
and more ‘rely’ on kmðtÞ as variability decreases.

The above example is rather interesting: We may think that the population
would become more and more ‘stable’ (monotonically) as kmðtÞ (monotonically)

Fig. 5.3 Mixture Failure
Rate kmðtÞ

Fig. 5.4 Var½kRðtÞ� and
CV ½kRðtÞ�
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approaches the failure rate of the strongest subpopulation. However, it is not true,
as the variance is not monotonic. The similar conclusion follows when considering
CV ½kRðtÞ� (Fig. 5.4).

Similar consideration s can be applied to continuous mixtures defined by Eqs.
(5.10)–(5.12). Let our subpopulations be ordered in the sense of the failure rate
ordering:

kðt; z1Þ � kðt; z2Þ; z1\z2; 8z1; z2 2 ½0;1Þ; t � 0: ð5:63Þ

Denote the Cdfs of pðzÞ and pðzjtÞ by PðzÞ and PðzjtÞ, respectively, and by Zjt
the conditional frailty (on condition that the item did not fail in ½0; tÞ). The fol-
lowing simple result describes the important property of the family fZjtgt � 0 .

Theorem 5.8 Let our subpopulations be ordered in the sense of the failure rate
ordering (5.64). Then the family of random variables Zjt � ZjT [ t is DLR
(decreasing in the sense of the likelihood ratio) in t 2 ½0;1Þ.

Proof Recall that a random variable X (with the pdf f(t)) is smaller than a random
variable Y (with the pdf gðtÞ) in the sense of the likelihood ratio ordering (LRO) if
f ðtÞ=gðtÞ is decreasing in t (see also (2.71)).Therefore, the DLR property of the
family fZjtgt � 0 means that for all t2 [ t1, Zjt2 is smaller than Zjt1 in the sense of
the LRO.

In accordance with the definition of the conditional mixing distribution (5.12) in
the mixing model (5.11), the ratio of the corresponding densities for different
instants of time is

Lðz; t1; t2Þ ¼
pðzjt2Þ
pðzjt1Þ

¼
�Fðt2; zÞ

R1
0

�Fðt1; zÞpðzÞdz
�Fðt1; zÞ

R1
0

�Fðt2; zÞpðzÞdz
:

Therefore, monotonicity in z of Lðz; t1; t2Þ is defined by the function

�Fðt2; zÞ
�Fðt1; zÞ

¼ exp �
Zt2

t1

kðu; zÞdu

8<
:

9=
;;

which, owing to ordering (5.63), is decreasing in z for all t2 [ t1.
h

As the LRO ordering is stronger than the usual stochastic ordering, it means that
PðzjtÞ is increasing in t for each z [ 0. Therefore, in accordance with (5.63), the
proportion of ‘better’ (with smaller failure rates) items is increasing.

For tractability, consider now the important specific case of the multiplicative
model: kðt; zÞ ¼ zkðtÞ. Therefore,

kRðtÞ ¼ ZtkðtÞ;

168 5 Heterogeneous Populations

http://dx.doi.org/10.1007/978-1-4471-5028-2_2


where Zt ¼ Zjt and

kmðtÞ ¼ E½kRðtÞ� ¼ kðtÞ
Z1

0

zpðzjtÞdz ¼ kðtÞE½Zjt�:

Observe that

Var½kRðtÞ� ¼ ðkðtÞÞ2Var½Zt� ¼ ðkðtÞÞ2Var½Zjt�;

and thus,

CV ½kRðtÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Zjt�

p
E½Zjt� ¼ CV ½Zjt�:

Furthermore, as E0½Zt� ¼ E0½Zjt� ¼ �kðtÞVar½Zjt�\0;

k0mðtÞ ¼ k0ðtÞE½Zjt� � ðkðtÞÞ2Var½Zjt�:

Specifically, when the population is a mixture of exponential distributions, we
have

k0mðtÞ ¼ �ðkðtÞÞ
2Var½Zjt�:

Example 5.2 Consider continuous mixture of exponentials. Let the conditional
failure rate and the mixing distribution be kðt; zÞ ¼ z and pðzÞ ¼ h expf�hzg,
respectively. Then

kmðtÞ ¼ E½kRðtÞ� ¼ E½Zjt� ¼ 1=ðhþ tÞ;

and

Var½kRðtÞ� ¼ Var½Zjt� ¼ 1=ðhþ tÞ2:

Thus

CV ½kRðtÞ� ¼ 1:

Obviously, the quality of the population is defined only by E½Zjt�, which is
decreasing in t. Therefore, the failure rates are ‘improving’ and the variance as
well. However, the CV is constant, and this characteristic often more adequately
describes variability especially when both the failure rate and its variance are
decreasing in time.
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5.8 Stochastic Intensity for Minimal Repairs
in Heterogeneous Populations

In Sect. 2.5, we have defined and described the crucial for the reliability of
repairable systems notion of minimal repair. This was done for items from
homogeneous populations. It is really a challenge to define and study minimal
repair in heterogeneous populations.

Consider a system with an absolutely continuous time to failure Cdf FðtÞ and
the failure rate kðtÞ, which starts operating at t ¼ 0. Assume that the repair action
is performed instantaneously upon failure. Recall that the repair is usually quali-
fied as perfect if the Cdf of the repaired object is FðtÞ (as good as new) and as
minimal at time x, if its Cdf is:

FðtjxÞ � 1� 1� Fðt þ xÞ
1� FðxÞ ð5:64Þ

(as bad as old), which is equivalent to Eq. (2.26). Thus the minimal repair restores
our system (in terms of the corresponding distribution) to the state it had prior to
the failure.

Sometimes, upon failure, we can observe additional information about the state
of an object (e.g., the structure of a system). This can allow us to define a more
general type of repair, which is usually called the information-based (or physical)
minimal repair. The information-based minimal repair brings our object back to
the state (to be defined by the relevant information) it had just prior to the failure
[4, 5, 10, 19, 26, 27, 50].

It is really challenging to generalize the notion of minimal repair to items from
heterogeneous populations. The corresponding attempt was performed in Finkel-
stein [27] and further elaborated in Cha and Finkelstein [20]. Our presentation in
this section will mostly follow the latter paper.

Let failures of repairable items be repaired instantaneously. Then the process of
repairs can be described by a stochastic point process. A convenient way of
mathematical description of these processes is using the concept of the stochastic
intensity (the intensity process) kt; t � 0 defined by Relationship (2.12). A clas-
sical example of kt is the intensity process generated by the renewal process
(perfect, instantaneous repairs):

kt ¼
X1
n¼0

kðt � TnÞIðTn � t \ Tnþ1Þ; T0 ¼ 0;

where T1 \ T2 \ T3 \ . . .; are the random failure times. Another standard
example is the ‘deterministic stochastic intensity’ kt ¼ kðtÞ which defines the
nonhomogeneous Poisson process (NHPP) of repairs with rate (intensity) kðtÞ. It is
well known that this example can also be interpreted as the process of minimal
repairs.
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As in the previous sections, we formally describe heterogeneous populations in
the following way. Let T � 0 be a lifetime r.v. with the Cdf
F(t) �FðtÞ � 1� FðtÞð Þ. Assume that FðtÞ is indexed by a r.v. Z, i.e.,

PðT � tjZ ¼ zÞ � PðT � tjzÞ � Fðt; zÞ

and that the pdf f ðt; zÞ exists. Then the corresponding failure rate kðt; zÞ is
f ðt; zÞ=�Fðt; zÞ. Let Z be a frailty with support in ½a; b�; 0 � a \ b � 1, and the
pdf pðzÞ. The above setting leads naturally to considering mixtures of distributions,
which are useful for describing heterogeneity [see Eqs. (5.10–5.12)].

We can now define two types (scenarios) of minimal repair for heterogeneous
populations, but in a more general context than in Finkelstein [27]. The first type
of minimal repair does not employ any additional information and, therefore, the
failed item is replaced by the statistically identical item. As the failure time dis-
tribution in this case is just the mixture (5.10), the stochastic intensity for the
corresponding process of minimal repairs of this type is obviously equal to the
mixture failure rate, i.e.,

kt ¼ kmðtÞ; t � 0:

The second type of minimal repair (already information-based) restores an item
to a statistically identical item with the same value of frailty Z. It can be realized in
practice by performing the second ‘operation’ resulting in the ‘classical’ minimal
repair when during the repair only a small part of a large system is replaced. It is
natural to suggest that the state of an item is also defined by the corresponding
realization of the frailty parameter (i.e., if Z ¼ z before the failure, it should be
z after the failure). Thus (5.64) is modified to:

Fðt; zjxÞ � 1� 1� Fðt þ x; zÞ
1� Fðx; zÞ :

Our main attention here focuses on this type of minimal repair, as it is the most
‘interesting’ from both a practical and a theoretical points of view.

Let us come back to the definition of the intensity process (2.12) and modify it
with respect to the ‘heterogeneous’ case when the orderly point process is indexed
by the frailty parameter Z. Observe that the stochastic intensity kt (unconditional
with respect to frailty Z) can be specified now as:

kt ¼ lim
Dt!0

E½Pr½Nðt; t þ DtÞ ¼ 1jHt;Z��
Dt

¼ E lim
Dt!0

Pr½Nðt; t þ DtÞ ¼ 1jHt�; Z�
Dt

� �

¼ E½kt;Z �;

ð5:65Þ

where the expectation is with respect to the conditional distribution ZjHt and
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kt;Z � lim
Dt!0

Pr½Nðt; t þ DtÞ ¼ 1jHt; Z�
Dt

: ð5:66Þ

Then kt;z Z ¼ zð Þ in (5.66) can be interpreted as the conditional (with respect to
Z) stochastic intensity of the orderly point process, indexed by frailty Z.

We will specify now our point process. As before, let Z be the frailty of an item
randomly selected at time t ¼ 0 from our heterogeneous population. Upon each
failure we perform the minimal repair of the second type. Note that, in this case, if
Z ¼ z at time t ¼ 0, then the corresponding realization is kt;z ¼ kðt; zÞ for all t � 0
Z. Therefore, for the second type of minimal repair, kt;Z in (5.66) is now given by

kt;Z ¼ kðt; ZÞ; t � 0;

and, in accordance with (5.65), the corresponding stochastic intensity kt is the
expectation of kðt; ZÞ with respect to the distribution of ZjHt. This operation
means that, although the value of Z is chosen at t ¼ 0 and is fixed, its distribution
is updated with time as information about failures and survival times emerges (see
the detailed procedure in what follows).

We see that stochastic modeling for the second type of minimal repair is
dramatically different from that for the first type, as information about the oper-
ational history (failure times and survival times) updates the conditional frailty
distribution ZjHt.

In accordance with our considerations, it is clear that the stochastic intensity
kt ¼ E½kt;Z � defined in (5.65) for t 2 ½0; t1Þ, where t1 is the realization of the failure

time T1, is just the mixture failure rate (5.12), i.e., k1
mðtÞ ¼ kmðtÞ, as the infor-

mation at hand is just the initial distribution pðzÞ (and the fact that the item has
survived in ½0; tÞ).

Consider now the next interval ½t1; t2Þ. Given the additional information (in
addition to the initial distribution pðzÞ) that an item has failed at t ¼ t1, the pdf of
frailty Z ¼ z (we repair an item to the state, defined by the same value of frailty) is

p02ðzÞ �
kðt1; zÞ exp �

R t1
0 kðs; zÞds

� �
	 pðzÞR b

a kðt1; zÞ exp �
R t1

0 kðs; zÞds
� �

	 pðzÞdz
: ð5:67Þ

Thus the ‘initial frailty distribution’ (at the start of the second cycle) just after
the minimal repair is given by (5.67). Furthermore, the ‘remaining survival
function’ at time t ¼ t1 is given by ½Fðt1 þ u; zÞ=Fðt1; zÞ�. Then, the conditional
frailty distribution ZjHt in ½t1; t2Þ is

½Fðt; zÞ=Fðt1; zÞ� 	 p02ðzÞR b
a ½Fðt; zÞ=Fðt1; zÞ� 	 p02ðzÞdz

¼
kðt1; zÞ exp �

R t
0 kðs; zÞds

� �
	 pðzÞR b

a kðt1; zÞ exp �
R t

0 kðs; zÞds
� �

	 pðzÞdz
;

and the corresponding stochastic intensity is, in accordance with (5.65),
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k2
mðtÞ ¼

Zb

a

kðt; zÞ 	
kðt1; zÞ exp �

R t
0 kðs; zÞds

� �
	 pðzÞR b

a kðt1; zÞ exp �
R t

0 kðs; zÞds
� �

	 pðzÞdz
dz; in ½t1; t2Þ: ð5:68Þ

Using another useful (Bayesian) interpretation, we can say that the item fails at
time t1 and, after repair, survives in ½t1; t�. Thus, the corresponding probability
(conditional probability given Z ¼ z at t ¼ 0) is

kðt1; zÞ expf�
Zt1

0

kðs; zÞdsg	 exp �
Z t

t1

kðs; zÞds

8<
:

9=
;dt1

¼ kðt1; zÞ exp �
Z t

0

kðs; zÞds

8<
:

9=
;dt1:

Given this information, the conditional frailty distribution ZjHt should be
updated as

kðt1; zÞ exp �
R t

0 kðs; zÞds
� �

	 pðzÞR b
a kðt1; zÞ exp �

R t
0 kðs; zÞds

� �
	 pðzÞdz

;

which yields (5.68).
Consider now the intensity process in ½t2; t3Þ. As we know that the item has failed

at times t1 and t2 and after minimal repairs has survived to t1-t2, the corresponding
probability (conditional probability given Z ¼ z at t ¼ 0, divided by dt1dt2) is

kðt1; zÞ exp �
Zt1

0

kðs; zÞds

8<
:

9=
; 	 kðt2; zÞ exp �

Zt2

t1

kðs; zÞds

8<
:

9=
; 	 exp �

Z t

t2

kðs; zÞds

8<
:

9=
;

¼ kðt1; zÞkðt2; zÞ exp �
Z t

0

kðs; zÞds

8<
:

9=
;:

Given this information, the conditional frailty distribution ZjHt should be
updated as

kðt1; zÞkðt2; zÞ exp �
R t

0 kðs; zÞds
� �

	 pðzÞR b
a kðt1; zÞkðt2; zÞ exp �

R t
0 kðs; zÞds

� �
	 pðzÞdz

:

Thus, in ½t2; t3Þ, as before,

k3
mðtÞ ¼

Zb

a

kðt; zÞ 	
kðt1; zÞkðt2; zÞ exp �

R t
0 kðs; zÞds

� �
	 pðzÞR b

a kðt1; zÞkðt2; zÞ exp �
R t

0 kðs; zds
� �

	 pðzÞdz
dz; in ½t2; t3Þ:
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More generally, for t 2 ½tn�1; tnÞ, the conditional frailty distribution ZjHt is
defined by

pnðzjt1; . . .; tn�1Þ �
kðt1; zÞ 	 	 	 kðtn�1; zÞ exp �

R t
0 kðs; zÞds

� �
	 pðzÞR b

a kðt1; zÞ 	 	 	 kðtn�1; zÞ exp �
R t

0 kðs; zÞds
� �

	 pðzÞdz
ð5:69Þ

and, therefore,

kn
mðtÞ ¼

Zb

a

kðt; zÞpnðzjt1; . . .; tn�1Þdz in ½tn�1; tnÞ: ð5:70Þ

Based on (5.69) and (5.70), the corresponding stochastic intensity can now be
defined as

kt ¼
X1
n¼1

kn
mðtÞIðTn�1 � t \ TnÞ; T0 � 0: ð5:71Þ

The following result presents a useful ordering of stochastic intensities for
minimal repairs of the first and the second types (Cha and Finkelstein [20]).

Theorem 5.9 Let the values of kðt; zÞ be ordered with respect to z: for all
z1; z2 2 ½a; b�; t � 0

kðt; z1Þ\kðt; z2Þ; if z1\z2:

Then

kmðtÞ � kt; t � 0;

where kt is the stochastic intensity for the second type of minimal repair in (5.71).

Proof Note that if X� stY and gð	Þ is any increasing function, then gðXÞ� st gðYÞ
and, accordingly, E½gðXÞ� � E½gðYÞ�. Observe that both kmðtÞ and kt are expec-
tations of kðt; ZÞ with respect to the mixing distributions

pðzjtÞ ¼ pðzÞ Fðt; zÞR b
a Fðt; zÞpðzÞdz

and

pnðzjt1; . . .; tn�1Þ �
kðt1; zÞ 	 	 	 kðtn�1; zÞ exp �

R t
0 kðs; zÞds

� �
	 pðzÞR b

a kðt1; zÞ 	 	 	 kðtn�1; zÞ exp �
R t

0 kðs; zÞds
� �

	 pðzÞdz
;

respectively. Then it is sufficient to show that

PðvjtÞ � Pnðvjt1; . . .; tn�1Þ; ð5:72Þ
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for all n � 1, 0 \ t1 \ . . . \ tn�1 \ t, where PðzjtÞ and Pnðvjt1; . . .; tn�1Þ are the
corresponding Cdfs. Observe that

pnðzjt1; . . .; tn�1Þ �
kðt1; zÞ 	 	 	 kðtn�1; zÞFðt; zÞpðzÞR b

a kðt1; zÞ 	 	 	 kðtn�1; zÞFðt; zÞpðzÞdz

¼ kðt1; zÞ 	 	 	 kðtn�1; zÞ 	 pðzjtÞR b
a kðt1; zÞ 	 	 	 kðtn�1; zÞpðzjtÞdz

:

It is clear that there exist a � z
ða; vÞ � v and v � z
ðv; bÞ � b such that

Zv

a

kðt1; zÞ 	 	 	 kðtn�1; zÞ 	 pðzjtÞdz ¼ kðt1; z
ða; vÞÞ 	 	 	 kðtn�1; z

ða; vÞÞ

Zv

a

pðzjtÞdz

and

Zb

v

kðt1; zÞÞ 	 	 	 kðtn�1; zÞ 	 pðzjtÞdz ¼ kðt1; z
ðv; bÞÞ 	 	 	 kðtn�1; z

ðv; bÞÞ

Zb

v

pðzjtÞdz:

Thus,

Pnðvjt1; . . .; tn�1Þ ¼
kðt1; z
ða; vÞÞ 	 	 	 kðtn�1; z
ða; vÞÞ 	

R v
a pðzjtÞdz

kðt1; z
ða; vÞÞ 	 	 	 kðtn�1; z
ða; vÞÞ 	
R v

a pðzjtÞdzþ kðt1; z
ðv; bÞÞ 	 	 	 kðtn�1; z
ðv; bÞÞ 	
R b

v pðzjtÞdz

�
Zv

a

pðzjtÞdz ¼ PðvjtÞ:

Since kðt1; zÞ 	 	 	 kðtn�1; zÞ is an increasing function of z,

kðt1; z
ða; vÞÞ 	 	 	 kðtn�1; z

ða; vÞÞ � kðt1; z


ðv; bÞÞ 	 	 	 kðtn�1; z

ðv; bÞÞ;

and, therefore, Inequality (5.72) is justified.
h

Example 5.3 Suppose that Fðt; zÞ is an exponential distribution with parameter
kðt; zÞ ¼ zk and let pðzÞ be an exponential pdf in ½0;1Þ with parameter h. Then
direct integration in (5.11) gives: kmðtÞ ¼ k=ðkt þ hÞ. Observe that

pnðzjt1; . . .; tn�1Þ �
kðt1; zÞ 	 	 	 kðtn�1; zÞ exp �

R t
0 kðs; zÞds

� �
	 pðzÞR b

a kðt1; zÞ 	 	 	 kðtn�1; zÞ exp �
R t

0 kðs; zÞds
� �

	 pðzÞdz

¼ ðzkÞn�1
expf�zktg 	 h expf�hzgR1

0 ðzkÞ
n�1

expf�zktg 	 h expf�hzgdz
;

and, from (5.69) and (5.70),

5.8 Stochastic Intensity for Minimal Repairs in Heterogeneous Populations 175



kn
mðtÞ ¼

R1
0 ðzkÞ

n
expf�ðkt þ hÞzgdzR1

0 ðzkÞ
n�1

expf�ðkt þ hÞzgdz
¼ n

k
kt þ h

:

Finally,

k1 ¼
X1
n¼1

n
k

kt þ h
IðTn�1 � t \ TnÞ; T0 � 0:

Thus, kmðtÞ � kt, t � 0, holds.
Denote by HmðtÞ and HkðtÞ the mean numbers of repairs (failures) in ½0; tÞ that

correspond to the minimal repair processes of type 1 and type 2, respectively. The
following result obviously follows from Theorem 5.9: HmðtÞ � HkðtÞ.

5.9 Preventive Maintenance in Heterogeneous Populations

The previous section dealt with the minimal repair as a specific type of corrective
maintenance (CM). Now we will consider the preventive maintenance in hetero-
geneous populations. Our presentation mostly follows Cha and Finkelstein [21],
whereas the developed approach is related to that of Sect. 5.8.

Preventive maintenance (PM) for non-repairable systems is a schedule of
planned maintenance actions aimed at the prevention of breakdowns and failures of
deteriorating systems. By ‘‘non-repairable’’ in this context we mean that the failure
of a system is considered as an ‘end event’ and, therefore, the CM is not performed.
We shall use this term in the defined sense throughout this section. Detailed surveys
on the PM models for deteriorating systems can be found in, e.g., Valdez-Flores and
Feldman [60] and Wang [65]. However, almost all models, procedures, and
approaches described in the literature and those applied in reliability practice deal
only with the case when the items come from homogeneous populations. Therefore,
as in the case of the minimal repair in the previous section, it is quite a challenge to
generalize PM to the case of heterogeneous populations of items.

As previously, we deal with the population described by the continuous mix-
tures setting (5.10)–(5.12). If the items are not maintained during operation, then
their susceptibility to failures can be described by the ‘ordinary’ failure rate (2.4)
(homogeneous case) or (5.12) (heterogeneous case). However, when maintenance
actions that can affect reliability of items are performed, the corresponding effects
should be taken into account. In the following, we will assume that the times of
maintenance are negligible.

Consider first, reliability of a non-repairable item from a homogeneous popu-
lation under PM (without CM). As PM affects its lifetime, we need to define new
reliability measures in this case. Let TP be the time to failure of item ‘under
preventive maintenance’ and Ht be the maintenance history in ½0; tÞ, i.e., the times
of maintenance actions and the stochastic effects of the corresponding mainte-
nances. Then, in order to describe the susceptibility to failure at time t, it is natural
to define the following conditional failure rate:
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kcðtÞ � lim
Dt!0

Pr½t \ TP � t þ DtjHt; TP [ t�
Dt

; t � 0 ð5:73Þ

Note that when maintenance is deterministic (times and effect), kcðtÞ is also
deterministic. However, if, e.g., times of maintenances are random, then kcðtÞ is
the stochastic process. The following example for the ‘homogeneous items’ is
crucial for our further discussion:

Example 5.4 A non-repairable item with a lifetime described by the increasing
failure rate kðtÞ starts its operation at t ¼ 0. If it operable, it is preventively
maintained at times ktPM, k ¼ 1; 2; . . .. Assume that each preventive maintenance
does not change the ‘shape’ of the function kðtÞ, but the age of the item is reduced
in accordance with the factor 0 \ a \ 1 (the reduced age is called the ‘virtual
age’). Therefore, PM has the effect of decreasing the failure rate as compared to an
item that is not preventively maintained [28, 42]). Under these assumptions, the
‘virtual age’ of the item just after the first PM is atPM, just after the second PM is
aðatPM þ tPMÞ ¼ atPM þ a2tPM; . . .; and the virtual age just after the ðn� 1Þth PM,
is

tn�1 ¼ atPM þ a2tPM þ . . .þ an�1tPM

¼ ½að1� an�1Þ=ð1� aÞ�tPM; n ¼ 2; 3; . . . :
ð5:74Þ

Suppose that the item under this PM schedule has not failed until time t,
t 2 ½ðn� 1ÞtPM; ntPMÞ meaning that it has been preventively maintained for
ðn� 1Þtimes at ktPM, k ¼ 1; 2; . . .; ðn� 1Þ, whereas the last PM was performed at
ðn� 1ÞtPM. Thus, the virtual age of this item at time t is given by
tn�1 þ ðt � ðn� 1ÞtPMÞ. Due to the PM assumptions, the statistical state of the
maintained item at time t is the same as that of an identical (without maintenance)
item with age tn�1 þ ðt � ðn� 1ÞtPMÞ. Accordingly, the conditional failure rate
(5.73) that takes into account the described specific history Ht is given by

kcðtÞ ¼ kðtn�1 þ ðt � ðn� 1ÞtPMÞÞ; t 2 ½ðn� 1ÞtPM; ntPMÞ:

or, equivalently, letting t0 � 0:

kcðtÞ ¼
X½t=tPM�þ1

n¼1

kðtn�1 þ ðt � ðn� 1ÞtPMÞÞIððn� 1ÞtPM � t \ ntPMÞ: ð5:75Þ

where Ið	Þ is the corresponding indicator and ½t=tPM� denotes the integer part of
t=tPM. Therefore, if the original failure rate kðtÞ is increasing, then kcðtÞ � kðtÞ, for
all t and accordingly, PMs increase reliability of our item, i.e.,

exp �
Z t

0

kcðuÞdu

8<
:

9=
; � exp �

Z t

0

kðuÞdu

8<
:

9=
;:
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We will now study the PM considered in Example 5.4, but for items from a
heterogeneous population described by (5.10)–(5.12). Suppose that an item is
randomly selected from this population and is preventively maintained at times
ktPM, k ¼ 1; 2; . . .. Preventive maintenance does not change the shape of the failure
rate of an item but reduces its age in the same way as described by (5.74). Then,
following the similar reasoning as in Example 5.4, one may construct the condi-
tional failure rate by simply replacing kðtÞ in (5.75) with kmðtÞ:

kcðtÞ ¼
X½t=tPM�þ1

n¼1

kmðtn�1 þ ðt � ðn� 1ÞtPMÞÞIððn� 1ÞtPM � t \ ntPMÞ: ð5:76Þ

However, distinct from the homogeneous case, it is now not clear at all how this
age reducing operation can be performed. In what follows, we will investigate the
appropriateness of kcðtÞ in (5.76) in defining the actual susceptibility of the sur-
vived item to failure at time t. For this purpose, we will suggest the operational
profile that results in (5.76) and explain why it is unrealistic in practice. Then, we
will suggest alternative profile with a different form of the conditional failure rate,
which can be already justified in practice. Finally, the corresponding comparison
of two profiles will be performed.

Operation profile 1 An item is chosen at random from our population and
starts operation at t ¼ 0. Furthermore, a statistically identical ‘‘NEW’’ population
is ‘switched on’ at time tPM � atPM (the delayed start). At time t ¼ tPM, if the
selected item has not failed yet, it is replaced by an item randomly selected from
the ‘‘delayed’’ population with age atPM. Then the replaced one starts its opera-
tion. At time t ¼ 2tPM, if the replaced item has not failed yet, it is replaced by an
item randomly selected from another ‘delayed’ population that started its opera-
tion at 2tPM � ða2tPM þ atPMÞ and, therefore, its age is now a2tPM þ atPM. Then the
replaced item starts its operation, and so on.

We will construct the corresponding conditional failure rate for the described
Operation profile 1 and will show that it is eventually given by Eq. (5.76). First, it
is necessary to have in mind that the conditional failure rate defined in (5.73) can
be expressed for the heterogeneous case as

kcðtÞ ¼ lim
Dt!0

E½Pr½t \ TP � t þ DtjHt; TP [ t; Z��
Dt

¼ E lim
Dt!0

Pr½ t \ TP � t þ DtjHt; TP [ t; Z�
Dt

� �

¼ E½kt;Z �;

ð5:77Þ

where the expectation is with respect to the conditional distribution ZjðHt; TP [ tÞ
and

kt;Z � lim
Dt!0

Pr½t \ TP � t þ DtjHt; TP [ t; Z�
Dt

: ð5:78Þ
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Then kt;z Z ¼ zð Þ in (5.78) can be interpreted as the conditional (with respect to
Z in addition to Ht) failure rate of the item, indexed by the frailty Z.

Denote by k1
mðtÞ the failure rate kcðtÞ in the interval ½0; tPMÞ (defined by (5.77)

for the Operation profile 1). It obviously equals the mixture failure rate in this
interval, i.e.,

kcðtÞ � k1
mðtÞ ¼ kmðtÞ; in ½0; tPMÞ;

as information at hand is just the initial distribution pðzÞ (and the fact that the item
has survived in ½0; tÞ).

As the survived item is replaced by an item randomly selected from the statis-
tically identical population (but with the initial age atPM) at t ¼ tPM, the conditional
failure rate kt;Z in ½tPM; 2tPMÞ is

kt;Z ¼ kðatPM þ ðt � tPMÞ; ZÞ; ð5:79Þ

where Z is the frailty randomly selected at the previous PM. Consider now the
conditional distribution ZjðHt; TP [ tÞ. Note that at t ¼ tPM, the initial distribution
of Z is

p02ðzÞ ¼
�FðatPM; zÞpðzÞR1

0
�FðatPM; zÞpðzÞdz

ð5:80Þ

and we know that the item has additionally survived in ðtPM; t�. Therefore, the
corresponding survival function (for Z ¼ z) is

�FðatPM þ ðt � tPMÞ; zÞ
�FðatPM; zÞ

:

After updating, the conditional distribution ZjðHt; TP [ tÞ becomes

�FðatPM þ ðt � tPMÞ; zÞpðzÞR1
0

�FðatPM þ ðt � tPMÞ; zÞpðzÞdz
: ð5:81Þ

Therefore, in accordance with (5.78), the failure rate k2
mðtÞ in ½tPM; 2tPMÞ for the

described operation is

kcðtÞ � k2
mðtÞ

¼
Z1

0

kðatPM þ ðt � tPMÞ; zÞ
�FðatPM þ ðt � tPMÞ; zÞpðzÞR1

0
�FðatPM þ ðt � tPMÞ; zÞpðzÞdz

dz; in ½tPM; 2tPMÞ:

Similar to (5.81), the conditional distribution ZjðHt; TP [ tÞ for the interval
t 2 ½ðn� 1ÞtPM; ntPMÞ is

�Fðtn�1 þ ðt � ðn� 1ÞtPMÞ; zÞpðzÞR1
0

�Fðtn�1 þ ðt � ðn� 1ÞtPMÞ; zÞpðzÞdz
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and we eventually arrive at

kcðtÞ � kn
mðtÞ

¼
Z1

0

kðtn�1 þ ðt � ðn� 1ÞtPMÞ; zÞ
�Fðtn�1 þ ðt � ðn� 1ÞtPMÞ; zÞpðzÞR1

0
�Fðtn�1 þ ðt � ðn� 1ÞtPMÞ; zÞpðzÞdz

dz; in ½ðn� 1ÞtPM; ntPMÞ;

n ¼ 1; 2; 3; . . ., where t0 � 0 and tn�1 are defined in (5.74).
Taking into account Eq. (5.12),

kn
mðtÞ ¼ kmðtn�1 þ ðt � ðn� 1ÞtPMÞÞ; n ¼ 1; 2; 3; . . . ð5:82Þ

and thus, kcðtÞ for the Operation profile 1 is given by (5.76). However, this strategy
can hardly be realized in the PM practice for many reasons. For instance, even if
the item selected at time t ¼ 0 has been described by the frailty Z ¼ z1, its value
can be changed to Z ¼ z2, z1 6¼ z2 just after the first PM at tPM, which is unrealistic.

Then, what is the proper conditional failure rate for our PM policy? It is more
realistic to assume that the original frailty variable Z ¼ z selected at time t ¼ 0 is
preserved throughout the whole operation of an item:

Operation profile 2 An item is chosen at random from our population and
starts operation at t ¼ 0. The original frailty that is ‘acquired’ at t ¼ 0 is pre-
served during the PM actions that follow the pattern of the ‘virtual age structure’
defined in (5.74).

As the PMs are applied to the same item, this operation profile is definitely
more adequate than the first one. However, the construction of the corresponding
failure rate is completely different in this case.

In ½0; tPMÞ, the failure rate is still the same:

kcðtÞ � k1
mðtÞ ¼ kmðtÞ; in ½0; tPMÞ;

as the information at hand is the same as before.
Consider now the second cycle ½tPM; 2tPMÞ. As the survived item was randomly

selected at time t ¼ 0 from the heterogeneous population, the conditional failure
rate kt;Z in ½tPM; 2tPMÞ is given by (5.79), where Z is the frailty ‘randomly selected’
at t ¼ 0. At t ¼ tPM, the survived item has the frailty Z ¼ z with the pdf that in
accordance with (5.12) is

p02ðzÞ �
FðtPM; zÞpðzÞR1

0 FðtPM; zÞpðzÞdz
:

We also have the information that the item with the decreased age atPM after the
PM has additionally survived in ðtPM; t�. Therefore, the corresponding survival
function is

Fðt1 þ ðt � tPMÞÞ; zÞ
Fðt1; zÞ

:
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In accordance with (5.12), the conditional distribution ZjðHt; TP [ tÞ is given
now by

½Fðt1 þ ðt � tPMÞÞ; zÞ=Fðt1; zÞ� 	 p02ðzÞR1
0 ½Fðt1 þ ðt � tPMÞÞ; zÞ=Fðt1; zÞ� 	 p02ðzÞdz

and the failure rate k2
mðtÞ in ½tPM; 2tPMÞ, in accordance with (5.77), is

k2
mðtÞ ¼

Z1

0

kðt1 þ ðt � tPMÞÞ; zÞ 	
½Fðt1 þ ðt � tPMÞÞ; zÞ=Fðt1; zÞ� 	 p02ðzÞR1

0 ½Fðt1 þ ðt � tPMÞÞ; zÞ=Fðt1; zÞ� 	 p02ðzÞdz
dz

¼
Z1

0

kðt1 þ ðt � tPMÞÞ; zÞ 	
½Fðt1 þ ðt � tPMÞÞ; zÞ=Fðt1; zÞ� 	 FðtPM; zÞpðzÞR1

0 ½Fðt1 þ ðt � tPMÞÞ; zÞ=Fðt1; zÞ� 	 FðtPM; zÞpðzÞdz
dz:

In a similar way, for t 2 ½ðn� 1ÞtPM; ntPMÞ,

kn
mðtÞ ¼

Z1

0

kðtn�1 þ ðt � ðn� 1ÞtPMÞÞ; zÞ 	
½Fðtn�1 þ ðt � ðn� 1ÞtPMÞÞ; zÞ=Fðtn�1; zÞ�R1

0 ½Fðtn�1 þ ðt � ðn� 1ÞtPMÞÞ; zÞ=Fðtn�1; zÞ�

�
FðtPM; zÞ 	 Fðt1þtPM;zÞ

Fðt1;zÞ
	 	 	 Fðtn�2þtPM;zÞ

Fðtn�2;zÞ
pðzÞ

FðtPM; zÞ 	 Fðt1þtPM;zÞ
Fðt1;zÞ

	 	 	 Fðtn�2þtPM;zÞ
Fðtn�2;zÞ

pðzÞdz
;

ð5:83Þ

where tn�1, n ¼ 1; 2; 3; . . ., t0 � 0ð Þ are defined in (5.74).
Observe that conditional failure rates for both operation profiles can now be

uniformly written as

kJ
cðtÞ ¼

X½t=tPM�þ1

n¼1

kn
mJðtÞIððn� 1ÞtPM � t \ ntPMÞ; J ¼ I; II;

where Ið	Þ is the corresponding indicator and J ¼ I; II refers to the number of the
profile. Thus, kn

mIðtÞ corresponds to kn
mðtÞ in (5.82) and kn

mIIðtÞ to kn
mðtÞ in (5.83).

Therefore, in practice, kII
c ðtÞ (not kI

cðtÞ) should be applied for the described type
of PM. However, assume that the user, who is performing the PM (via reducing the
age of items by the method described previously), does not know (or does not take
into account) the heterogeneity structure of the population and considers it as
homogeneous with the corresponding time to failure distribution FmðtÞ and the
failure rate kmðtÞ. Then he is using the failure rate kI

cðtÞ to assess reliability of
items in operation. What is the consequence of this error? The following theorem
answers to this question.
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Theorem 5.10 Let the values of kðt; zÞ: be ordered with respect to z: for all
z1; z2 2 ½0;1�; t � 0:

kðt; z1Þ\ kðt; z2Þ if z1 \ z2:

Then

kII
c ðtÞ � kI

cðtÞ; for all t � 0:

The proof of this theorem is rather straightforward (although technical) and can
be found in Cha and Finkelstein [21].

h

It follows from this theorem that using kI
cðtÞ instead of the ‘proper’ kII

c ðtÞ
eventually results in the overestimation of the failure rate of items under operation.
Practically, this may cause unnecessary frequent PMs and therefore, additional
redundant costs.

Example 5.5 Suppose that kðt; zÞ is strictly increasing in t for each z (e.g.,
kðt; zÞ ¼ zkt; k[ 0). An item is randomly selected from the heterogeneous pop-
ulation and it is preventively maintained at times ktPM, k ¼ 1; 2; . . .. Let s be the
mission time of the item in field operation. If the mission is successful, a gain
K [ 0 is obtained, whereas if the mission is not completed (a failure in ½0; sÞ), a
cost cf [ 0 is incurred (K [ cf ). Furthermore, the cost for each PM is cp [ 0.
Then, the following cost function, which is the function of tPM, can be constructed.

cðtPMÞ ¼
s

tPM

 �
cp þ cf 	 PðTp � sÞ � K 	 PðTp [ sÞ

¼ s
tPM

 �
cp � ðK þ cf Þ 	 exp �

Zs

0

kII
c ðuÞdu

8<
:

9=
;þ cf ;

ð5:84Þ

where \s=tPM [ is the largest integer which is strictly less than s=tPM. The
problem is to find the optimal t
PM which satisfies

cðt
PMÞ ¼ min
tPM2ð0;1Þ

cðtPMÞ

It is reasonable to consider only tPM 2 ð0; s� as cðtPMÞ ¼ cðsÞ, for all
tPM 2 ðs;1Þ. When tPM ! 0 ½s=tPM� ! 1ð Þ, obviously,
exp �

R s
0 kII

c ðuÞdu
� �

! expf�kmð0Þsg, which implies that limtPM!0 cðtPMÞ ¼ 1.

On the other hand, cðsÞ ¼ cf � ðK þ cf Þ exp �
R s

0 kmðuÞdu
� �

. Therefore, there
should be an optimal t
PM 2 ð0; sÞ depending on the parameters involved, e.g.,
when s is large enough and K is relatively large compared with cf and cp.
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5.10 Population Mortality at Advanced Ages
(Demographic Application)

In Sects. 5.4 and 5.5, we have briefly discussed asymptotic behavior of mixture
failure rates as t!1. In the current section, we will deal with this problem from
a different view point and in more detail [31].

The shape of the failure rate (force of mortality) at advanced ages especially for
human populations has attracted a considerable interest in the last decades when
more and more centenarians and super centenarians have been recorded. The
International Database on Longevity (http://www.supercentenarians.org/) offers
the detailed information on thoroughly validated cases of super centenarians.
Gampe [35] has used these data to estimate the human force of mortality after the
age of 110. Her analysis revealed that human mortality between ages 110 and 114
levels off regardless of gender. The widely used explanation of this fact is by
employing the corresponding fixed frailty models that account for heterogeneity of
populations. Beard [7, 8] (see also Vaupel et al. [63]) has considered the Gompertz
(baseline)-gamma-frailty model, which results in the asymptotically flat hazard
rate. Note that, the exponentially increasing hazard rate of the Gompertz distri-
bution is the only baseline function that can ‘produce’ this shape in the framework
of the multiplicative frailty model (see Sect. 5.3.1), which can be considered as
another justification of the uniqueness and importance of this distribution for
human mortality modeling. As follows from the results of Sect. 5.4, the gamma
distribution of frailty is not so unique in this respect and all probability density
functions f ðzÞ that behave as za; a[ 1 when z! 0 are equivalent in this sense.

The intuitive meaning of the deceleration of mortality at advanced ages in this
context is simple and meaningful at the same time: the oldest-old mortality in
heterogeneous populations with properly ordered subpopulations is defined by the
small values of frailty, as the subpopulations with larger values of frailty (and,
therefore, larger values of the failure rate) are dying out first.

The first question to be answered is what common statistical distributions are
characterized by the asymptotically flat failure rate? The exponential distribution
that is often used for statistical analysis of non-degrading objects is obviously not
relevant for our topic. The most popular distribution of the desired type is the
inverse Gaussian distribution. It is well known that it describes the distribution of
the first passage time for the Wiener process with drift. Although its sample paths
are nonmonotone and even can be nonpositive, the inverse Gaussian distribution
was widely used, e.g., in reliability analysis of stochastic deterioration (aging) in
engineering objects. It was also applied in vitality models for modeling the life-
span of organisms [3, 45], where the initial vitality (resource) of organisms is
‘consumed’ in the course of life in accordance with the Wiener process with drift.
This model was also studied in the path-breaking papers by Aalen and Gjessing [1]
and Steinsaltz and Evans [55] as an example highlighting the meaning and
properties of the corresponding quasistationary distributions for this particular
case. Our goal in this section is more modest: to exploit further some relevant
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distributional properties in the context of stochastic ordering of lifetimes of sub-
populations in heterogeneous populations. However, the combination of these two
approaches can hopefully be considered as the basis for the future research on
statistical inference in heterogeneous populations with underlying stochastic pro-
cesses (e.g., the Wiener process).

The other example of a distribution with asymptotically flat hazard rate is the
Birnbaum-Saunders distribution [12] that was also derived as a distribution of the
first passage time for the corresponding deterioration process and, therefore, is a
good candidate for vitality models as well. We also consider the gamma process as
a possible model of deterioration (with monotone sample paths), although the
failure rate in this case is decreasing to 0 as t!1. It should be noted, however,
that the initial increase in the failure rates for all these models is not exponential,
as in the case of the Gompertz distribution and, therefore, the possibilities of the
corresponding mortality modeling for human populations for intermediate ages
(30–90 years) are obviously limited.

5.10.1 Fixed and Evolving (Changing) Heterogeneity

Let FðtÞ; f ðtÞ, and kðtÞ be the Cdf, the pdf, and the failure rate (force of mortality)
for some infinite homogeneous population that characterize the corresponding
random lifetime T � 0. As previously, by heterogeneity of a population we mean
that it consists of a finite or non-finite number of homogeneous subpopulations that
differ in some respect to be discussed. For instance, in the multiplicative frailty
model of the form kðt; ZÞ ¼ ZkðtÞ, the difference between subpopulations is
modeled directly by the differences in failure rates: for two realizations z2 [ z1,
this difference is ðz2 � z1ÞkðtÞ. Thus, the multiplicative frailty model describes the
ordering of subpopulations in the sense of the hazard rate ordering (2.70). More
generally, the smaller is the value of z, the larger is the lifetime of the subpopu-
lation Tz in the appropriate stochastic sense (e.g., (2.69), (2.70) or (2.71)):

Tz1 � Tz2 ; z1 � z2: ð5:85Þ

As previously in this chapter, we will understand the fixed heterogeneity
(frailty) of a population as:

Heterogeneity in lifetimes of the corresponding homogeneous subpopulations that
is defined by the appropriate stochastic ordering.

This also means that, if randomization of a parameter (parameters) of a lifetime
distribution leads to the corresponding stochastic ordering, which formally is not
always the case, then this operation can be also interpreted in terms of the fixed
frailty modeling. For example, the Gompertz Cdf Fðt; a; bÞÞ is a function of two
parameters, and the corresponding failure rate is:

kðt; a; bÞ ¼ aebt: ð5:86Þ
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If we randomize a, whereas b is fixed, then (taking care, of course, of the
corresponding baseline constant), we obviously arrive at the multiplicative frailty
model (and to the asymptotically flat rate when the distribution of frailty is,
e.g., gamma), which illustrates ordering (2.70). We just want to emphasize the fact
that in this specific model, frailty acts multiplicatively and directly on the failure
rate, which is not the case in general even when the hazard rate ordering (2.70)
holds. Some relevant aspects of frailty modeling for the bivariate case will be
considered later.

In accordance with our definition, the fixed heterogeneity (frailty) is described
only by ordered subpopulation lifetimes. What can happen, if apart from the
information on failure times (the black box point of view), we possess some
information or adopt a model on a failure process or mechanism (the process point
of view)? In this case, another type of heterogeneity, which is usually referred to as
evolving (or changing) (see, e.g., Li and Anderson [45]) comes into play. This type
of heterogeneity usually does not lead to ordering of lifetimes in the described here
sense. However, it characterizes an important feature of a model, which can be
useful for further analysis.

In order to illustrate our point, consider the model for vitality loss (fixed initial
value) that will be treated in detail further in this section. The loss of vitality of an
organism (deterioration) is modeled by the Wiener process with negative drift, in
which the time to death is determined by the first passage time to the zero
boundary. It is well known that the variance of the Wiener process is increasing
linearly in time and if the drift is positive, the mean is also linearly increasing.
However, due to the boundary, the most vulnerable organisms (or items in reli-
ability engineering applications) are dying out first and linear functions that cor-
respond to the non-boundary case ‘decelerate’. Actual shapes depend on
parameters of the model (see the graphs in Li and Anderson [45] for the corre-
sponding shapes for the specific values of parameters). Thus we do not see here
any frailty parameters or ordered (in the defined in this section sense) lifetimes, but
we observe the changing in time mean and variability in the survived population.
And this is how the evolving heterogeneity should be understood:

Variability in sample paths of the underlying process of deterioration.

In this section, however, we are mostly interested in the fixed heterogeneity of
lifetimes and the evolving heterogeneity of processes will be ‘hidden’ in lifetime
distributions. We feel that this ‘distributional approach’ in the context of ran-
domization of parameters and of the corresponding ordering of lifetimes was not
sufficiently elaborated in the literature so far. For instance, for the first passage
time models to be considered further, randomization of the initial vitality of an
organism and of the corresponding drift parameter of the Brownian motion defi-
nitely illustrates this ordering, as the larger is the vitality and (or) the smaller is the
drift parameter, the larger is the lifetime in some suitable stochastic sense to be
discussed. Note that, there can be other situations when randomization is relevant
but does not lead to the ordered subpopulations.

5.10 Population Mortality at Advanced Ages (Demographic Application) 185

http://dx.doi.org/10.1007/978-1-4471-5028-2_2
http://dx.doi.org/10.1007/978-1-4471-5028-2_2


5.10.2 Fixed Heterogeneity

Equations (5.10)–(5.12) describe the standard statistical mixture (or the fixed
frailty) model for an item and for the collection of items (population) as well. As
was discussed in the previous subsection, we understand heterogeneity as the
property of a population that consists of ordered homogeneous subpopulations
(ordered lifetimes Tz, defined by Inequality (5.85)). But what type of ordering is
sufficient for our reasoning? As we are looking at the failure rates, the first guess
would be that this should be (2.70). How can we interpret in mathematical terms
the well-known and intuitively clear property: ‘‘the weakest populations are dying
out first’’ and the resulting mortality deceleration with time? To answer these
questions, denote, as previously, by PðzÞ the Cdf of Z and by PðzjtÞ the Cdf that
corresponds to the density pðzjtÞ. Therefore, the deceleration can be a consequence
of the increasing in t distribution function PðzjtÞ [28]. This would mean that
PðzjtÞ tends to be more concentrated around small values of Z � 0 as time
increases, which corresponds to stronger populations. The following theorem
proves this result.

Theorem 5.11 Let stochastic ordering (5.85) in the sense of the failure rates hold.
Then PðzjtÞ is a non-decreasing function of t for each fixed z.

Proof. It follows from (5.12) that

PðzjtÞ ¼
R z

0
�Fðt; uÞpðuÞduR z

0
�Fðt; uÞpðuÞdu

:

It is easy to see that the derivative of this function is nonpositive if
R z

0
�F0tðt; uÞpðuÞduR z

0
�Fðt; uÞpðuÞdu

�
R1

0
�F0tðt; uÞpðuÞduR1

0
�Fðt; uÞpðuÞdu

:

Therefore, it is sufficient to show that the function:

Aðt; zÞ ¼
R z

0
�F0tðt; uÞpðuÞduR z

0
�Fðt; uÞpðuÞdu

is nonincreasing in z. As �F0tðt; zÞ ¼ �lðt; zÞ�Fðt; zÞ, inequality A0zðt; zÞ � 0 is
equivalent to the following one:

lðt; zÞ
Zz

0

�Fðt; uÞpðuÞdu �
Zz

0

lðt; uÞ�Fðt; uÞpðuÞdu;

which obviously follows from Ordering (5.85) which should be understood in the
sense of the hazard rate ordering.

h
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Consider now the bivariate frailty model. We will need the following consid-
erations for analyzing asymptotic failure rates for vitality models of the next
subsection. Let Z1 and Z2 be interpreted as non-negative random variables with
supports in ½0;1Þ. Similar to the univariate case,

PðT � tjZ1 ¼ z; Z2 ¼ z2Þ � PðT � tjz1; z2Þ ¼ Fðt; z1; z2Þ

and

kðt; z1; z2Þ ¼
f ðt; z1; z2Þ
�Fðt; z1; z2Þ

Assume that Z1 and Z2 have the joint pdf pðz1; z2Þ. The mixture failure rate is
defined in this case as [28]:

kðtÞ ¼ f ðtÞ
FðtÞ ¼

R1
0

R1
0 f ðt; z1; z2Þpðz1; z2Þdz1dz2R1

0

R1
0

�Fðt; z1; z2Þpðz1; z2dz1dz2

¼
Z1

0

Z1

0

kðt; z1; z2Þpðz1; z2jtÞdz1dz2;

ð5:87Þ

where the corresponding conditional pdf (on condition T [ t) is

pðz1; z2jtÞ ¼ pðz1; z2Þ
�Fðt; z1; z2ÞR1

0

R1
0

�Fðt; z1; z2Þpðz1; z2Þdz1dz2
: ð5:88Þ

Equation (5.87) is a general result and can be analyzed for some specific cases.
For instance, it can be easily shown that when we assume the independence of
frailties:

pðz1; z2Þ ¼ p1ðz1Þp2ðz2Þ

and the competing risks for the failure model:

Fðt; z1; z2Þ ¼ 1� �F1ðt; z1Þ�F2ðt; z2Þ;

the population failure rate is just the sum kðtÞ ¼ k1ðtÞ þ k2ðtÞ of the corresponding
‘univariate failure rates’.

Although it is difficult to analyze kðtÞ in (5.87) in full generality, certain
qualitative considerations that will be very helpful in the next subsection can be
stated. Indeed, let us first fix the second frailty Z2 ¼ z2. Then the corresponding
failure rate is defined by the univariate frailty model

kðt; z2Þ ¼
Z1

0

lðt; z1; z2Þpðz1; z2jtÞdz1: ð5:89Þ

Thus, at the first stage, we have selected from our overall heterogeneous
population the heterogeneous subpopulation that corresponds to Z2 ¼ z2
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z2 \ Z2 � z2 þ dz2ð Þ and have defined its failure rate. As our goal is to analyze
the failure rate, at the second stage, we consider our overall population as a
‘continuous collection’ of homogeneous subpopulations with failure rates given by
(5.89). Then we can analyze kðtÞ again in the univariate manner. For instance,
assume that the family kðt; z2Þ is ordered in z2 (the smaller values of z2 correspond
to the smaller values of kðt; z2Þ). Therefore, the deceleration in mortality due to
‘the weakest populations are dying out first’ takes place. Specifically, let kðt; z2Þ
for each z2 decreases (nonincreases) at least, asymptotically when t!1. It is
well known that the corresponding population (mixture) failure rate is strictly
decreasing in this case (see, e.g., Ross [54]). Thus, we have described the fol-
lowing result [31]:

Theorem 5.12 Let frailty Z1 ¼ z1 Z2 ¼ z2ð Þ in the bivariate frailty model be first
fixed. Assume that the corresponding univariate frailty model (with respect to Z2

(Z1) results in the decreasing ordered failure rates for all subpopulations.
Then ‘allowing’ random Z1 (Z2), results in the strictly decreasing population

failure rate.
The formal proof of the validity of the two-stage procedure is straightforward

and is based on the representation of the bivariate density pðz1; z2Þ as a product
p1ðz1jZ2 ¼ z2Þp2ðz2Þ and on the similar representation for the conditional density:

pðz1; z2jtÞ ¼ p1ðz1jZ2 ¼ z2; T [ tÞp2ðz2jtÞ:

The latter seems intuitively evident, and can be immediately obtained formally
from Eqs. (5.87), (5.88). Theorem 2 then follows, as the (univariate) mixture of
distributions with decreasing (nonincreasing) failure rates is characterized by the
strictly decreasing failure rate.

h

Example 5.6 An important application that illustrates Theorem 2 deals with the
Gompertz law of mortality (5.86). It is well known that randomization of a (e.g.,
via the gamma distribution of the frailty) results in the mortality plateau as t!1.
Thus, randomization of b (second stage) results in the decreasing force of mortality
as t!1. Therefore, if we observe the mortality plateau for some population that
follows the Gompertz-gamma model, then there should not be noticeable heter-
ogeneity in this population due to parameter b.

The described multistage approach can be applied in a similar way to the case
when there are more than 2 frailties or parameters of distributions that can be
randomized. It is possible that all failure rates from the ordered family converge
asymptotically (as t!1) to one curve (specifically, to a constant). Therefore,
the population failure rate also tends to this curve which will also be illustrated in
the next subsection.

The foregoing discussion will help us to analyze the shape of the failure rate for
some examples of vitality models. We will focus mostly on the vitality model
described by the Wiener process with drift [3, 45, 64]. Parameters of lifetime
distributions after randomization will act as fixed frailties that define the
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corresponding ordered subpopulations. This interpretation adds some simple and
useful additional reasoning from the distributional point of view to the process
point of view approach developed by Aalen and Gjessing [1] and Steinsaltz and
Evans [55].

5.10.3 Vitality Models and Lifetime Distributions

Linear process of degradation. We start with the simplest vitality model that will
be used as an explanatory example for highlighting certain properties and
approaches.

Let v0 [ 0 be the deterministic initial (at t ¼ 0) vitality of an organism, which
is monotonically decreasing with t in accordance with the simplest stochastic
process:

Vt ¼ v0 � Rt; ð5:90Þ

where R is a positive random variable with the Cdf S(t). For each realization
R = r, (5.90) can model the linear decline in physiological functions of organisms
noted by Strehler and Mildvan [57] and in numerous subsequent publications.
However, exponential and logarithmic models for this decline can be also
considered.

Death occurs when Vt reaches 0. Denote the corresponding lifetime by TR.
Therefore, the Cdf that describes this lifetime is

FRðtÞ ¼ Pr½TR � t� ¼ Pr½R � v0=t� ¼ 1� Sðv0=tÞ:

Assume that R is gamma-distributed with the pdf agxg�1e�ax=CðgÞ with the
scale parameter a [ 0 and the shape parameter g[ 0. Then the pdf fRðtÞ ¼ F0RðtÞ
has the form of the inverse gamma distribution:

fRðtÞ ¼
ðv0aÞ
CðgÞ t�g�1e�v0a=t: ð5:91Þ

We will analyze the shape of the corresponding hazard rate using the ‘classic’
Glazer’s theorem [37], formulated in a slightly more general form by Marshall and
Olkin [48] as can be seen from Theorem 2.1 in Chap. 2. We will intensively use
this result and other relevant considerations in what follows.

The essential fact to be exploited is that the behavior of the failure rate kðtÞ is
related to the behavior of the derivative of the logarithm of the density of a lifetime
distribution F(t), namely,

gðtÞ ¼ � d log f ðtÞ
dt

¼ � f 0ðtÞ
f ðtÞ :
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The failure rate kRðtÞ that corresponds to (5.91) can be easily analyzed with the
help of Theorem 2.1. Indeed, as limt!1 fRðtÞ ¼ 0, it follows that
limt!1 kRðtÞ ¼ 0, whereas

lim
t!1

kRðtÞ ¼ lim
t!1

fRðtÞ=�FRðtÞ ¼ lim
t!1
� d log fRðtÞ

dt
¼ 0

and kRðtÞ is bell-shaped with a maximum at t ¼ 2v0a=ðgþ 1Þ.
This simple example, however, can be helpful for discussing the notion of

heterogeneity that we adopt. If we consider the model as a black box with the
lifetime described by the Cdf FRðtÞ, then by definition, the corresponding popu-
lation is homogeneous. However, in view of the model (5.90), we can identify the
corresponding subpopulations for each value of R ¼ r that will be definitely
ordered (in this case the lifetimes that correspond to each realization R ¼ r are
deterministic, and therefore, can be ordered accordingly). Thus, our infinite pop-
ulation can be considered as heterogeneous in the described sense.

The considered vitality model results in the vanishing at the infinity failure rate.
If we are interested in explaining mortality plateaus that has been observed in
human and other populations, then we must look at other, more realistic vitality
models. The first candidate for that is when the simplest stochastic process Rt is
substituted by the more advanced stochastic model given by the Wiener process
with drift.

Wiener process with drift. We modify the degradation model (5.90) with the
fixed initial vitality v0 to

Vt ¼ v0 � Rt;

Rt ¼ rt þWt;
ð5:92Þ

where Rt; t � 0 is the Wiener process with drift, r is a drift parameter and
Wt; t � 0 is the standard Wiener process with normally distributed values (for each
fixed t) with mean 0 and variance r2t.

It is well known (see, e.g., [24]) that the probability distribution for the first
passage time (when Rt reaches the boundary v0 for the first time) is defined by the
inverse Gaussian distribution with the pdf:

fRðtÞ � fRðt; v0; r; rÞ ¼
v0

r
ffiffiffiffiffiffi
2p
p t�3=2 exp �ðv0 � rtÞ2

2r2t

( )
: ð5:93Þ

The exact expression for the corresponding failure rate, kRðtÞ � lRðt; v0; r; rÞ,
is complicated and, therefore, as our goal is just to analyze its shape, we will use
Theorem 2.1. It is easy to derive from (5.93) that

gRðtÞ ¼ �
d log fRðtÞ

dt
¼ 3

2t
þ r2

2r2
� v2

0

2r2t2
: ð5:94Þ
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Note that, (5.93) is written in parameterization v0; r; r. However, reparame-
terization: k ¼ r2=r2, x ¼ rv0=r2 leads to the standard two-parameter form of the
inverse Gaussian distribution (which we need for stating some useful properties):

fRðt; k;xÞ ¼
kx

r
ffiffiffiffiffiffi
2p
p ðktÞ�3=2

exp �ðx� ktÞ2

2kt

( )
: ð5:95Þ

It immediately follows from (5.94) that the failure rate tends to a constant when
t!1(mortality plateau):

lim
t!1

kRðtÞ ¼ lim
t!1
� d log fRðtÞ

dt
¼ k

2
¼ r2

2r2
: ð5:96Þ

It is also obvious that limt!0 kRðtÞ ¼ 0. The ‘rest of the shape’ of kRðtÞ is
defined by Theorem 2.1: kRðtÞis increasing for t 2 ½0 � t2�, where t2 � t1 ¼
2v2

0=3r2 and is asymptotically decreasing to the plateau for t � t2. This form of the
hazard rate for the inverse Gaussian distribution was first described by Chhikara
and Folks [22] using straightforward calculus and asymptotic bounds. We, how-
ever, rely on a general Theorem 2.1 that can be used for analysis of other distri-
butions as well.

Although the ‘underlying physics’ of the inverse Gaussian distribution is given
by the Wiener process with drift, we cannot identify now the corresponding
subpopulations in the sense that we have defined earlier. Therefore, the corre-
sponding population in this ‘black-box’ analysis should be considered as homo-
geneous and there is no (fixed) heterogeneity in the defined sense so far.

From (5.95) it follows that k is the scale parameter. Therefore, obviously, the
corresponding lifetimes are decreasing in k in the sense of the usual stochastic
ordering (2.69), i.e., for the fixed x:

FRðk1t; xÞ � Fðk2t; xÞ; k1 � k2; t 2 ½0;1Þ: ð5:97Þ

This is a simple general fact. However, for the specific case of inverse Gaussian
distribution, it can be shown that the stronger hazard rate ordering (2.70) also takes
place [48], which means:

lRðt; k1;xÞ ¼ k1lRðk1t; x1Þ � k2lRðk2t; x2Þ ¼ kRðt; k2;xÞ;
k1 � k2; t 2 ½0;1Þ:

As k ¼ r2=r2, the distribution of the first passage time fRðt; k;xÞ does not
change when we change r and r proportionally. Thus the mechanism of the failure
process driven by the Wiener process with drift is such that, e.g., the increase in
the drift parameter is compensated by the proportional increase in the standard
deviation r. This is a rather unexpected observation, however, as stated, it is a
consequence of the considered specific setting. Strictly speaking, as parameters k
and x are ‘dependent’ the foregoing orders hold only asymptomatically for large
t and this is how we will understand it in what follows.
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After discussing the issue of stochastic ordering, we can now qualitatively
analyze the shape of kRðt; k;xÞ for large t with respect to the randomized
parameters r and r (m0 is fixed so far) to be denoted by R and R, respectively. Note
that, Aalen and Gjessing [1], have performed the necessary derivations assuming
that R is normally distributed and r is fixed. However, as the drift (-r) can be
positive in this case, the resulting survival distribution is defective. These distri-
butions are often used for describing the corresponding ‘cure models’.

Assume that R and R are non-negative random variables with supports in
½0;1Þ. Thus, the bivariate frailty model discussed in Sect. 3 can be applied. We
proceed as described there: fixing R ¼ r and considering subpopulations with one
frailty parameter R. At the first stage, we select from the overall heterogeneous
population the heterogeneous (with respect to different values of r) subpopulation
that corresponds to R ¼ r and define its failure rate. As the corresponding
homogeneous ‘sub-subpopulations’ (for different fixed values of r) are ordered in
the sense of the hazard rate ordering and ‘have’ the shapes of the failure rates
described above (increasing and then decreasing to a plateau), this heterogeneous
subpopulation has asymptotically decreasing to 0 failure rate [54]. Now, at the
second stage, as these failure rates are ordered with respect to the values of the
second frailty R ¼ r, we can use Theorem 5.12, which means that the population
failure rate is also decreasing as t!1 (and in our specific case, it is decreasing to
0).

Thus, mortality plateaus cannot occur in the described frailty model. However,
this can still happen, if the supports of frailties R and R are modified to ½a;1� and
½0; b�, respectively. Then the population failure rate tends to the failure rate of the
strongest subpopulation which is, in accordance with (5.96) [31],

lim
t!1

kRðtÞ ¼
a2

2b2
: ð5:98Þ

We are ready now to add variability to the initial vitality. Denote the corre-
sponding random variable by V0 � 0 (fixed frailty). It immediately follows from
(5.96) that, in contrast to the other considered fixed frailties, the effect of the initial
vitality vanishes as t!1. Therefore, it has no effect asymptotically on the shape
of the failure rate. This was analytically shown and discussed using the concept of
quasisationary distributions in Aaalen and Gjessing [1], Steinsaltz and Evans [55],
and Li and Anderson [45].

Gamma process and the Birnbaum-Saunders distribution. The Wiener process
is often criticized as a model for degradation and aging as its sample paths are not
necessarily positive and strictly increasing. On the other hand, the gamma process
always possesses these properties. Therefore, let Rt; t � 0 be now the stationary
gamma process with the following density for each t:

fRtðxÞ ¼ Gaðxjr2t=r2; r=r2Þ; l; r [ 0; ð5:99Þ

E½Rt� ¼ rt; VarðRtÞ ¼ r2t;
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where Gaðxja; bÞ denotes the gamma distribution with shape parameter a and scale
parameter b. We see that the mean and the variance of this process have the same
functional form as for the corresponding Brownian motion with drift. The first
passage time distribution function for the vitality model with initial value v0 is

FRtðtÞ ¼ Pr½TR � t� ¼ Pr½Rt � v0�

¼
Z1

v0

fRtðxÞdx ¼ Cðr2t=r2; v0r=r2Þ
Cðr2t=r2Þ ;

ð5:100Þ

where Cða; xÞ ¼
R1

x za�1e�zdz is the incomplete gamma function for x � 0 and
a [ 0. This function can be calculated numerically [61]. It is shown by Liao et al.
[46] that the corresponding failure rate is increasing, whereas Abdel-Hameed [2]
proves that it tends to infinity as t!1, which means that the mortality plateau
cannot occur in accordance with this model.

Park and Padgett [53] have derived a very complex exact expression for the pdf
fRðtÞ. Therefore, a simpler meaningful approximation for (5.100) was suggested by
these authors in the form of the Birnbaum-Saunders distribution that can be
already effectively analyzed. In a general form, this distribution is given by

FBSðt; k; aÞ ¼ Uða�1hðktÞÞ; t [ 0; ð5:101Þ

where k; a[ 0; Uð	Þ is a standard normal distribution function and
hðtÞ ¼ t1=2 � t�1=2. For our specific case, the corresponding approximation reads
[61]:

FRtðtÞ � U

ffiffiffiffiffiffiffi
v0r

r2

r ffiffiffiffiffi
rt

v0

r
�

ffiffiffiffiffi
v0

rt

r� �� �
: ð5:102Þ

It was obtained by Park and Padgett [53] via discretization of the first passage
time and then using the central limit theorem. The error of the approximation was
not assessed, however, it was stated that it can be used at least for the case when
r [ [ r. On the other hand, it should be noted that approximation of distribution
functions does not necessarily mean that the tails of the failure rate functions are
also approximated. Therefore, given our interest in asymptotic behavior of failure
rates, why not to start directly from distribution (5.102) that, similar to the inverse
Gaussian distribution, also has a meaningful process point of view interpretation.
To see this, consider the following damage accumulation model. Let Rt in (5.92)
be modeled by the following shock process: suppose that shocks occur at regular
intervals at times D; 2D; 3D; . . .. Let each shock causes a random damage Yi [ 0:
i.i.d with E½Yi� ¼ Dl; VarðYiÞ ¼ Dr2. Damages accumulate additively and the k-
th shock is survived if the accumulated damage is less than the initial vitality v0,

i.e.,
Pk

1 Yi � v0. Then, letting D! 0 and using the central limit theorem, after
straightforward derivations [48] one can obtain the lifetime distribution (5.100),
where
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a ¼ r=
ffiffiffiffiffiffiffiffi
lv0
p

; k ¼ l=v0: ð5:103Þ

Differentiation of (5.101) results in the following density

fBSðt; k; aÞ ¼
k

2a
ffiffiffiffiffiffi
2p
p 1ffiffiffiffi

kt
p 1þ 1

kt

� �� �
exp � 1

2a2
kt � 2þ 1

kt

� �� 	
: ð5:104Þ

Obviously, limt!0 kBSðt; k; aÞ ¼ 0. Using Theorem 2.1, it can be shown now
that the failure rate is bell-shaped [9] and is decreasing to a constant as
t!1(mortality plateau):

lim
t!1

kBSðt; k; aÞ ¼ lim
t!1
� d log fBSðt; k; aÞ

dt

¼ k
2a2
¼ l2

2r2
:

ð5:105Þ

It follows from (5.105) that, as previously, the effect of initial vitality v0 is
vanishing as t!1. Similar to the case of the inverse Gaussian distribution, it can
be seen from (5.104) that k ¼ l=vo is a scale parameter and, therefore, the usual
stochastic ordering (and the hazard rate ordering) holds, i.e., if voðlÞ is fixed, then
the larger values of l voð Þ will result in the larger (smaller) values of the failure rate
in ½0;1Þ.

The possibility of ordering with respect to the values of r for a general case is
not clear (it is an open question in the theory of this distribution). On the other
hand, as follows from (5.105), this ordering exists asymptotically. Assume now
that l is a realization of a random variable M, whereas r is a realization of a
random variable R with support to ½0;1�. Then, similar to the case of the inverse
Gaussian distribution, the randomization results in the asymptotically decreasing
to 0 population failure rate. Mortality plateaus are theoretically possible in this
model only when the supports of the frailties M and R are ½a;1� and ½0; b�,
respectively.

5.11 On the Rate of Aging in Heterogeneous Populations

In this section, we will consider another application of heterogeneity modeling to
demography [30]. It should be noted that because of the existing heterogeneity,
e.g., in populations for different countries, statistical models describing this
property are crucial for this discipline.

Non-parametric classes of lifetime distributions were extensively studied in
numerous publications of the last decades (see e.g., the excellent encyclopedic
monograph by Lai and Xie [43] and the references therein). One of the main
properties of a lifetime random variable that defines the corresponding non-
parametric class is a property of stochastic aging. This notion can be understood in
many ways. The most intuitively evident and the first to be considered in the
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literature was the class of aging distributions with increasing (nondecreasing)
failure rate (IFR) (see, e.g., Barlow and Proschan [6] for this and other basic
classes).

Let T � 0 be a lifetime with an absolutely continuous Cdf F(t), pdf f(t) and the
failure rate kðtÞ ¼ f ðtÞ=ð1� FðtÞÞ. As in the previous section, we will use the
terms failure rate and mortality rate interchangeably employing the first one
mostly for a more general reasoning and the second one in a demographic context.
Assume that the derivative k0ðtÞ exists. Then, obviously, FðtÞ 2 IFR, if
k0ðtÞ � 0; t � 0. We can compare the ‘extent of aging’ described by different IFR
distributions by the value of this derivative at each instant of time. However, this is
not always the right thing to do, as intuitively, it is clear that at many instances in
order to compare aging for different lifetimes some ‘relative reasoning’ should be
also employed.

In life sciences (e.g., in demography), the rate of aging R(t) is usually defined as

RðtÞ � d ln kðtÞ
dt

¼ k0ðtÞ
kðtÞ : ð5:106Þ

This characteristic already describes the relative change in the failure (mor-
tality) rate in an infinitesimally small unit interval of time. It takes into account the
value of kðtÞ, as intuition prompts that this measure should often depend not only
on the derivative but on the value of the failure rate itself. Indeed, consider, for
instance, two failure rates kðtÞ and kðtÞ þ c, where c is a constant. It is clear that
the relative change for the second failure rate decreases as c increases and when
c is large, the change in the failure rate can be negligible compared with the failure
rate itself.

Thus, not only the change in the derivative is important, but also the level of the
failure rate as well. Formal definition (5.106) is the simplest way to implement this
relative concept. As most of simple definitions that are trying to describe complex
properties, it has its pros and contras (e.g., De Gray [25] mostly focuses on the
contras). However, this approach to defining the rate of aging is well justified in
demography, as for the Gompertz law of mortality (5.86) that describes mortality
rate at adult ages, it is a constant, i.e., RðtÞ ¼ b. Thus, in practical demography, b is
usually estimated as the slope of the Gompertz regression, i.e., the slope of ln kðtÞ.
It should be understood, however, that R(t) is just a useful (at least, for the
Gompertz law) statistical measure, which describes in some ‘integrated way’ the
real aging processes that are manifested by the changes in probabilities of failure
(death) over time.

The foregoing considerations refer to the homogeneous populations, where
obviously, b can be also regarded as the individual rate of aging. However, human
populations are heterogeneous, and it is interesting to consider the rate of aging
for this case. The general mixture model is described in Sect. 5.1 given by
Eqs. (5.10)–(5.12). In what follows, we will focus on the specific multiplicative
model (5.17). We will also need the following example:
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Example 5.6 Let the frailty Z be a gamma-distributed random variable with shape
parameter a and scale parameter b, whereas the baseline distribution be an arbi-
trary distribution with the failure rate kðtÞ. It is well known [28] that (5.21) is
generalized in this case to

kmðtÞ ¼
akðtÞ

bþ KðtÞ ; ð5:107Þ

where KðtÞ is the cumulative failure rate KðtÞ ¼
R t

0 kðuÞdu. Therefore,

E½Zjt� ¼ a
bþ KðtÞ :

As E½Z� ¼ a=b and VarðZÞ ¼ a=b2, Eq. (5.107) can now be written in terms of
E½Z� and VarðZÞ � r2 in the following way:

kmðtÞ ¼ kðtÞ E2½Z�
E½Z� þ r2KðtÞ ; ð5:108Þ

which, for the specific case E½Z� ¼ 1, gives the result of Vaupel et al. [63] that is
widely used in demography:

kmðtÞ ¼
kðtÞ

1þ r2KðtÞ : ð5:109Þ

We will use Eq. (5.109) for analyzing the rate of aging as a function of
parameters of the baseline and frailty distributions.

We start analyzing the rate of aging in heterogeneous populations with the
specific gamma-Gompertz multiplicative model with the failure rate given by Eq.
(5.21). Therefore,

ln kmðtÞ ¼ ln aþ bt � ln 1þ ðar2=bÞðexpfbtg � 1Þ
� �

ð5:110Þ

and the corresponding rate of aging is

RmðtÞ ¼ ðln kmðtÞÞ0 ¼ b� ar2 expfbtg
1þ ðar2=bÞðexpfbtg � 1Þ : ð5:111Þ

Equation (5.111) states a simple and expected fact that the observed (popula-
tion) rate of aging RmðtÞ is smaller than the individual rate of aging b. The latter, as
was staed, corresponds to the homogeneous case. It can be also clearly seen that
when r2 increases, RmðtÞ decreases. Therefore, the following hypothesis makes
sense: the increase in the rate of aging observed in the previous century in the
developed countries could be attributed to the decreasing heterogeneity in mor-
tality of populations in these countries.

Another important feature that follows from (5.111) is that the increase in
parameter a also results in the decrease in RmðtÞ, which can be interpreted as some
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kind of negative correlation between a of the Gompertz mortality law and the rate
of aging.

In the case of arbitrary lifetimes, (5.109) results in

RmðtÞ ¼ ðln kmðtÞÞ0

¼ k0ðtÞ
kðtÞ � r2 kðtÞ

1þ r2KðtÞ ¼ RðtÞ � r2kmðtÞ
ð5:112Þ

and, obviously, the rate of aging is also decreasing as a function of variance of the
gamma-distributed frailty (for the fixed expectation E½Z� ¼ 1). The similar con-
clusion was made in Yashin et al. [67].

Consider now a general case of the multiplicative model (5.17) not restricting
ourselves to the gamma-distributed frailty. It can be shown [30] that

RmðtÞ ¼ ðln kmðtÞÞ0 ¼
k0ðtÞE½ZjT [ t� þ kðtÞE0½ZjT [ t�

kðtÞE½ZjT [ t�

¼ k0ðtÞ
kðtÞ þ

E0½ZjT [ t�
E½ZjT [ t�

¼ RðtÞ � kðtÞVarðZjT [ tÞ
E½ZjT [ t� :

ð5:113Þ

Thus, as previously, the observed (mixture) rate of aging RmðtÞ is smaller than
the individual rate of aging R(t) defined for the baseline distribution with the
failure rate kðtÞ. A similar result using a different approach for derivations was
independently recently obtained by Vaupel and Zhang [62]. As we are focusing on
the specific multiplicative model (5.17), Eq. (5.113) is very helpful in analyzing a
‘proportional effect of environment’ on mortality rates.

Suppose now we have two heterogeneous populations with the same baseline
kðtÞ and different frailties Z1, Z2. In other words, compositions of populations are
different. Let

VarðZ2jT [ tÞ
E½Z2jT [ t� �

VarðZ1jT [ tÞ
E½Z1jT [ t� ; t [ 0: ð5:114Þ

Then it is easy to see that the corresponding rates of aging are ordered as
R2mðtÞ � R1mðtÞ. Thus, the rate of aging decreases as the relative variance
increases, i.e.,

R2mðtÞ � R1mðtÞ ¼ kðtÞ VarðZ1jT [ tÞ
E½Z1jT [ t� �

VarðZ2jT [ tÞ
E½Z2jT [ t�

� �
� 0; 8t � 0:

Inequality (5.114) defines a new class of stochastic ordering of random vari-
ables that can be called ordering in the sense of the relative variance [30]. The
corresponding measure depends not only on the variance (variability), but on the
mean as well.
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Chapter 6
The Basics of Burn-in

In this chapter, we introduce the concept of burn-in and review initial research in
this area. Burn-in is a method of ‘elimination’ of initial failures (infant mortality)
of components before they are shipped to customers or put into field operation.
Usually, to burn-in a component or a system means to subject it to a fixed time
period of simulated use prior to the actual operation. That is, before delivery to the
customers, the components are exposed to electrical or thermal conditions that
approximate the working conditions in field operation. Those components which
fail during the burn-in procedure will be scrapped or repaired and only those,
which have survived the burn-in procedure will be considered to be of the satis-
factory quality. An introduction to this important area of reliability engineering
can be found in Jensen and Petersen [24] and Kuo and Kuo [28]. Surveys of
research on different aspects of burn-in can be found in Leemis and Beneke [29],
Block and Savits [9], Liu and Mazzuchi [30], and Cha [15].

Burn-in has been widely accepted as an effective method of screening out these
initial failures due to the large failure rate at early stages of component’s life. The
failure rate is often initially large, but decreases more or less steeply as the
component goes into its useful life period, where it is usually relatively small and
nearly constant. This is illustrated by the first part of the traditional bathtub-shaped
curve (see Fig. 6.1).

An important question arises: why does the failure rate initially decrease? It is
observed that a population of the manufactured items is often composed of two
subpopulations—the subpopulation with normal lifetimes (Main Distribution) and
the subpopulation with relatively shorter lifetimes (‘Freak’ Distribution). In
practice, items belonging to the ‘freak distribution’ can be produced along with the
items of the main distribution due to, for example, defective resources and com-
ponents, human errors, unstable production environment caused by uncontrolled
significant quality factors, etc. (see, [24, 26]). In this case, the freak distribution
generally exhibits the larger failure rate than the main distribution, which results in
a mixture of stochastically ordered subpopulations (see Chap. 5). As stated in the
previous chapter, the mixture of ordered failure rates is the main cause of the
decreasing population failure rate (see also [1, 20]). Therefore, as will be discussed

M. Finkelstein and J. H. Cha, Stochastic Modeling for Reliability,
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later in this book, the burn-in procedure needs to be studied under the mixture
setting. However, the initial research in this area was mostly done based only on
the given (merged) population failure rate without considering, e.g., the cause of
its initial decrease. Therefore, the objective of this chapter is to introduce basic
concepts of this ‘classical’ burn-in based on the given population failure rate.

As most electronic or mechanical devices often exhibit initially decreasing
failure rate, the goal of the burn-in procedure for these items is to shift the failure
rate function to the left and to avoid in this way its initially large values. It can be
achieved by the fixed time period of simulated use prior to the actual operation.
This is the basic logic of the burn-in procedure.

If burn-in is too short, then the items with shorter lifetimes will still remain in
the population. On the other hand, if the procedure is too long, then it shortens the
lifetime of the items with normal lifetimes. Therefore, to determine the length of
the burn-in period (to be called the ‘burn-in time’) is the most important issue for
the corresponding modeling. The best time to stop the burn-in procedure for a
given criterion to be optimized is called the optimal burn-in time. As burn-in is
generally a costly procedure, certain cost structures have been proposed and the
corresponding problem of finding the optimal burn-in time has been intensively
studied in the literature.

In this chapter, we will provide a detailed background on burn-in. By investi-
gating the relationship between the population failure rate and the performance
quality measures, we illustrate how the burn-in procedure can be justified for items
with initially decreasing failure rates. We will review some methods for opti-
mizing the performance criteria and that for minimizing various cost functions. It
should be noted that latent failures or weak components of highly reliable products
require usually a long time to detect or identify. Thus, as stated in Block and
Savits [9], for decreasing the length of this procedure, burn-in is often performed
in an accelerated environment. In the last part of this chapter, the stochastic models
for accelerated burn-in procedures will be introduced.

Fig. 6.1 Bathtub-shaped
failure rate function
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6.1 Population Distribution for Burn-in

As discussed in the previous section, it is widely believed that many products can
be characterized by the bathtub-shaped failure rate functions. This belief is sup-
ported by the extensive data from industry.

Definition 6.1 The failure rate function rðtÞ is said to have a bathtub shape if there
exists 0 � t1 � t2 � 1 such that

(i) rðtÞ strictly decreases when 0 � t � t1
(ii) rðtÞ is a constant when t1 � t � t2
(iii) rðtÞ strictly increases when t2 � t:

The time instants t1 and t2 are called the first and the second change points,
respectively. The time interval ½0; t1� is called the infant mortality period; the
interval ½t1; t2�; where rðtÞ is flat is called the normal operating life period (useful
life period); the interval t2; 1½ Þ is called the wear-out period. In practice, the
failure rate during the second period is often only approximately constant. Observe
that the above defined bathtub-shaped failure rate function has IFR t1 ¼ 0ð Þ; CFR
t1 ¼ 0; t2 ¼ 1ð Þ and DFR t1 ¼ 1ð Þ as special cases. The typical shape of the

bathtub-shaped failure rate function is shown in Fig. 6.1.
Although lifetime distribution functions with the bathtub-shaped failure rates

are of importance for burn-in, most popular lifetime distributions do not exhibit
this property. However, they can result from the operation of mixing. As discussed
in detail in Chap. 5, mixtures can result in different shapes of failure rates [43]. For
example, in Glaser [21] it is shown that under appropriate conditions the mixture
of two gamma distribution function exhibits a bathtub-shaped failure rate function.
Rajarshi and Rajarshi [42] review bathtub distributions and give many references
on this topic (see also Sects. 5.1–5.3).

The following is a simple example of a mixture which yields a bathtub-shaped
failure rate function.

Example 6.1 Let the population be composed of two subpopulations with sub-
population failure rates r1ðtÞ ¼ 0:01t þ 0:01 and r2ðtÞ ¼ r1ðtÞ þ 1. The corre-
sponding mixture failure rate is given in Fig. 6.2.

In this case, the failure rate is bathtub-shaped with t1 ¼ t2.The mixture pdf is
given in Fig. 6.3.

From Fig. 6.3, it follows that the two subpopulation distributions (the ‘Freak’
and ‘Normal’ distributions) are well separated in this case. The mean residual
lifetime function for this case is given in Fig. 6.4.

From Fig. 6.4, the relationship between the bathtub-shaped failure rate and the
corresponding mean residual lifetime function can be observed, which corresponds
to our general Theorem 2.4 in Sect. 2.3.

In addition to the traditional bathtub-shaped failure rate, there is also so-called
the modified bathtub-shaped failure rate.

6.1 Population Distribution for Burn-in 203

http://dx.doi.org/10.1007/978-1-4471-5028-2_5
http://dx.doi.org/10.1007/978-1-4471-5028-2_5
http://dx.doi.org/10.1007/978-1-4471-5028-2_5
http://dx.doi.org/10.1007/978-1-4471-5028-2_5
http://dx.doi.org/10.1007/978-1-4471-5028-2_5
http://dx.doi.org/10.1007/978-1-4471-5028-2_2
http://dx.doi.org/10.1007/978-1-4471-5028-2_2


Fig. 6.3 Mixture pdf

Fig. 6.2 Mixture failure rate

Fig. 6.4 Mean residual
lifetime (MRL)
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Definition 6.2 The failure rate function rðtÞ is said to have the modified bathtub
shape if there exist 0� t0 � t1 � t2 � 1 such that rðtÞ is strictly increasing in
t 2 ½0; t0�; and has a bathtub shape with change points t1 and t2 on the interval
t 2 t0; 1½ Þ.

The modified bathtub-shaped failure rate can be also obtained from the mixture
of a distribution for strong components (the ‘Main’ distribution) and that of weak
components (the ‘Freak’ distribution) [23]. The typical shape of the modified
bathtub-shaped failure rate is given in Fig. 6.5.

There has been much research on the shape of failure rates of mixed distribu-
tions. For instance, in Block et al. [7, 8] and Klutke et al. [27], the shape of failure
rates of mixture distributions, which is neither of the traditional bathtub shape nor
of the modified bathtub shape are investigated. Klutke et al. [27] pointed out that
the assumption of the traditional bathtub-shaped failure rate could be rather
restrictive for burn-in procedures. Kececioglu and Sun [25] state that the bathtub-
shaped failure rate is relevant only for 10–15 % of practical applications.

Thus, it is natural to consider a more general form of the failure rate that can
describe a wider class of failure rates [18].

Definition 6.3 The failure rate rðtÞ is eventually increasing if there exists
0 � x0\1 such that rðtÞ strictly increases in t [ x0. For the eventually increasing
failure rate rðtÞ; the first and the second wear-out points t� and t�� are defined by

t� ¼ infft � 0jrðxÞ is non-decreasing in x � tg;

t�� ¼ infft � 0jrðxÞ strictly increases in x � tg:

Obviously, 0 � t� � t�� � x0 \1 if rðtÞ is eventually increasing. Observe that if
rðtÞ has a bathtub shape with change points t1 � t2 \1; or rðtÞ has a modified
bathtub shape with 0 � t0 � t1 � t2 \1; then it is eventually increasing with
t� ¼ t1 and t�� ¼ t2: Therefore, the eventually increasing failure rate includes both
the traditional bathtub-shaped and the modified bathtub-shaped failure rates as
special cases.

Fig. 6.5 Modified bathtub-
shaped failure rate
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Definition 6.4 The failure rate rðtÞ is initially decreasing if there exists 0\x0 � 1
such that rðtÞ strictly decreases in t 2 ½0; x0�: For an initially decreasing failure rate
rðtÞ the first and second infancy points t� and t�� are defined by

t� ¼ supft � 0jrðxÞ strictly decreases in x � tg;

t�� ¼ supft � 0jrðxÞ is non-decreasing in x � tg:

Obviously, 0 \ x0 � t� � t�� � 1 if rðtÞ is initially decreasing. Mi [38] and Cha
[13, 14] studied the problem of determining the optimal burn-in time assuming
eventually increasing failure rate function.

6.2 Optimal Burn-in for Performance Criteria

In this section, we will consider burn-in procedures for optimizing system per-
formance measures. There can be different performance measures to be optimized.

a. Mean Remaining Lifetime

We first consider burn-in for maximizing the mean remaining lifetime of a system.
That is, the MRL after burn-in should be maximized. Watson and Wells [46]
initially considered this problem aiming at obtaining the MRL larger than the
initial mean life. Essentially, they considered IFR and DFR distributions and
showed that if the lifetime distribution is IFR (DFR), then the MRL is always
shorter (longer) than the initial mean life. Park [41] examined the effect of burn-in
on the MRL of an item with a bathtub-shaped failure rate. It is shown that the first
change point does not maximize the mean residual life although the failure rate
achieves its minimum value at the point.

Let FðtÞ and rðtÞ be the survival function and the failure rate function of the
lifetime of the system and MðbÞ be the MRL after the burn-in procedure with burn-
in time b. Then, in accordance with (2.6),

MðbÞ ¼
Z1

0

Fðbþ tÞ
FðbÞ

dt ¼ exp fKðbÞg
Z1

b

exp f�KðtÞg dt;

where KðtÞ �
R t

0 rðuÞdu. We will now find the optimal burn-in time b� which
satisfies

Mðb�Þ ¼ max
b � 0

MðbÞ:

When the population failure rate has the bathtub shape with 0 � t1 � t2 � 1;
we have the following result.

Theorem 6.1 Suppose that the failure rate rðtÞ is bathtub-shaped with
0 � t1 � t2 � 1.
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(i) If t1 ¼ 0 and t2 \1; then b� ¼ 0.
(ii) If t1 [ 0 and t2 ¼ 1; then b� ¼ t1.
(iii) If 0 \ t1 � t2 \1, then b� � t1.

Proof Observe that

M0ðbÞ ¼rðbÞ expfKðbÞg
Z1

b

expf�KðtÞgdt � 1

¼ expfKðbÞg
Z1

b

rðbÞ � rðtÞð Þ expf�KðtÞgdt:

(i) If t1 ¼ 0 and t2 \1; then rðbÞ � rðtÞ � 0 for all t [ b and for each b � 0
there exists t0 � t2 such that rðbÞ � rðtÞ\ 0 for all t � t0: Therefore, we can
conclude that M0ðbÞ\ 0 and MðbÞ is strictly decreasing.

(ii) Suppose that t1 [ 0 and t2 ¼ 1. For 0 � b \ t1; rðbÞ � rðtÞ [ 0 for all
t [ b; and for b � t1; kðbÞ � kðtÞ ¼ 0 for all t [ b: Thus, MðbÞ is strictly
increasing in b 2 ½0; t1� and is constant in t1; 1½ �. Therefore, b� ¼ t1.

(iii) Suppose that 0 \ t1 � t2 \1: In this case, similar to the case (i), it can be
shown that M0ðbÞ\ 0 for all b � t1 and therefore we have b� � t1:

h

From the above results, we can conclude that it is not necessary to burn-in
products longer than the first change point t1: More detailed discussions on the
relationship between the shape of failure rate and that of the mean residual lifetime
function can be found in Mi [36] and Finkelstein [20].

b. Probability of a Mission Success

In practice, the systems often perform a given mission in field operation. Let T be
the lifetime of the system and s be the given mission time. The system is required
to complete the mission without failure. Then the corresponding success proba-
bility for the original system is given by FðsÞ. If the system is burned-in for a time
b; the corresponding success probability is

Fðbþ sÞ
FðbÞ

¼ exp �
Zbþs

b

rðuÞdu

8<
:

9=
;: ð6:1Þ

Then it is desirable to maximize the success probability in (6.1). The set of all
optimal burn-in times is defined by

B� ¼ b� � 0
Fðb� þ sÞ

Fðb�Þ

���� ¼ maxb � 0
Fðbþ sÞ

FðbÞ

� �
:
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It is clear that B� can equivalently be expressed as

B� ¼ b� � 0
Zb� þ s

b�

rðuÞ du

������ ¼ minb � 0

Zbþ s

b

rðuÞ du

8<
:

9=
;:

The following theorem characterizes the set B� when the failure rate has a
bathtub shape.

Theorem 6.2 Let the continuous failure rate function rðtÞ have a bathtub shape
with change points t1 and t2; and s[ 0 be a given mission time.

(i) If s � t2 � t1; then B� ¼ ½t1; t2 � s�:
(ii) If s [ t2 � t1, then B� ¼ fb�g, where b� 2 ½0; t1�:

Proof This theorem is proved based on the following property, which can be
intuitively well understood. Let rðtÞ be a continuous bathtub-shaped failure rate
function. If there exist 0 � b1 \ b2 such that rðb1Þ ¼ rðb2Þ and b2 � b1 ¼ s; then

Zbþ s

b

rðtÞ dt �
Zb2

b1

rðtÞ dt; 8 b� 0:

Then the theorem can be rather straightforwardly proved. The details can be found
in Mi [35].

h

Remark 6.1 In practice, the burn-in cost is proportional to the total burn-in time.
Therefore, it is reasonable to define the optimal burn-in time as b� ¼ inf B�. Then
the above theorem states that it is always true that b� � t1.

In certain cases, the mission time may be random. In this case, the optimal
burn-in time is studied by the following theorem.

Theorem 6.3 Let T be a lifetime with bathtub-shaped failure rate function rðtÞ.
Let M1 and M2 be two random mission times having distribution functions G1 and
G2; respectively. Let Tb ¼d ðT � bjT [ bÞ and M1; M2 are independent of T . Then
PðTb [ MiÞ attains its maximum at some finite b�i 2 ½0; t1�; i ¼ 1; 2: If in addition
M1 � st M2; then

maxb � 0 PðTb [ M1Þ � maxb � 0 PðTb [ M2Þ:

Proof The function
R bþ s

b rðtÞdt is increasing in b [ t1 for any s since rðtÞ is
increasing in t� t1: From this, it can be shown that

Z1

0

Fðt1 þ sÞ
Fðt1Þ

dGi ðsÞ�
Z1

0

Fðbþ sÞ
FðbÞ

dGi ðsÞ; 8b [ t1:
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Therefore, the continuous function

Z1

0

Fðbþ sÞ
FðbÞ

dGi ðsÞ

must attain its maximum value at some bi 2 ½0; t1�. The second part of the theorem
can also be easily shown. For more details, see Mi [34, 35].

h

c. Mean Number of Failures

Suppose now that in field operation, we replace a failed component by an identical
component. Then the number of failures in the time interval ½0; t� follows a
renewal process fNbðtÞ; t� 0g; where the subscript b is used to denote that these
i.i.d. components have a common survival function FbðtÞ ¼ Fðbþ tÞ=FðbÞ; i.e.,
they have survived the same burn-in time b: The problem is to minimize the mean
number of failures during a given interval ½0; s�; which is given by

mbðsÞ � E½NbðsÞ� ¼
X1
k¼1

FðkÞb ðsÞ;

where FðkÞb denotes the k-fold convolution of Fb with itself. Then, we have the
following theorem about the optimal burn-in time.

Theorem 6.4 Let

B� ¼ b� � 0j mb� ðsÞ ¼ max
b � 0

mbðsÞ
� �

:

Then B� \ t2; 1½ � ¼ ;: In particular,

(i) if s[ t2 � t1; then optimal burn-in occurs no later than t1; i.e., B� � ½0; t1�;
(ii) if s� t2 � t1; then optimal burn-in occurs at each point of ½t1; t2 � s�; i.e.,

B� ¼ ½t1; t2 � s�.

Proof The proof of the theorem uses the following intuitively clear property. Sup-

pose that F1ðtÞ\F2ðtÞ; for all t� 0; i.e., F1\stF2: Then FðkÞ1 ðtÞ[ FðkÞ2 ðtÞ; for all

t� 0; where FðkÞi ðtÞ is the k-fold convolution of FiðtÞ; i ¼ 1; 2. Based on this basic
property, the theorem can be proved. The details of the proof are given in Mi [35].

h

d. System Availability

An important measure of performance for a repairable system which can be in one
of two states, namely, ‘‘up (on)’’ and ‘‘down (off)’’, is availability. Here, by ‘‘up’’
we obviously mean the system is functioning and by ‘‘down’’ we mean that the
system is not functioning. Let the state of the system be given by a binary variable
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X ðtÞ ¼ 1; if the systemis up at time t
0; otherwise

�

Then the instant availability at time t (or point availability) is defined by

At ¼ P XðtÞ ¼ 1ð Þ:

Reliability can be obviously considered as a measure of system’s effectiveness.
However, it is well-known that availability is a more appropriate measure of
effectiveness for repairable systems, as it takes into account its maintainability.

As it is very difficult to obtain explicit expressions for AðtÞ except for a few
simple cases, other measures of availability have been proposed. Engineers are
often interested in the limiting behavior of this quantity, i.e., the extent to which
the system will be available after it has been run for a long time. One of these
measures is the steady-state availability (or limiting availability) of a system,
which is defined by

A ¼ lim
t!1

At;

if the limit exists. Some other types of availability measures that are useful in
practical applications can be found in Birolini [5, 6] and Høyland and Rausand
[22]. For example, average availability in the interval 0; tð � is defined as

AavðtÞ ¼
1
t

Z t

0

Au du;

which can also be interpreted as the mean fraction of the time interval where the
system is functioning during 0; tð � (Barlow and Proschan [2]). Note that its limit,
limt!1 AavðtÞ; exists and equals A if limt!1 At exists.

Denote the Cdf and the survival function of the system by FðtÞ and FðtÞ ¼
1� FðtÞ; respectively. The system is replaced by a new identical system on
failure. Assume that the repair time distribution is GðtÞ with mean g: In this case, it
is well-known that

A ¼ lim
t!1

At ¼
l

lþ g
;

where l ¼
R1

0 FðuÞdu is the mean value of the system lifetime. If the system is
burned-in for time b; then its limiting availability as the function of burn-in time
b is

AðbÞ ¼ lim
t!1

At ¼
MðbÞ

MðbÞ þ g
;

where
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MðbÞ ¼
Z1

0

Fðbþ tÞ
FðbÞ

dt:

The objective in this case is to find the optimal burn-in time which maximizes
the limiting availability. However, as

AðbÞ ¼ 1
1þ g=MðbÞ ;

this problem is equivalent to finding the optimal burn-in time which maximizes the
mean remaining lifetime MðbÞ. This problem was already considered previously.
Therefore, we will consider now a more general model for systems with two types
of failures: the Type I failure (the minor failure that can be ‘removed’ by a minimal
repair), which occurs with probability 1� pðtÞ; where t is the age of the system at
failure and the Type II failure (the catastrophic failure that can be ‘removed’ only
by a complete repair or a replacement), which occurs with probability pðtÞ: This
model is usually called the general failure model [3, 4, 20].

A new system is burned-in for time b; and it will be put in field use if it survives
burn-in. In the field use, the system is replaced by another system, which has
survived the same burn-in time b, at the ‘‘field use age’’ T or at the time of the first
Type II failure, whichever occurs first. For each Type I failure occurring during
field use, only minimal repair will be performed. Denote the lifetime of a system,
its distribution function, density function, and the failure rate by X; FðtÞ; f ðtÞ
and rðtÞ; respectively.

Assume first that the repair times are negligible. Let the random variable Yb be
the time from 0 to the first Type II failure of a burned-in system, and denote
the distribution and the survival functions of Yb as GbðtÞ; and GbðtÞ; respectively.
Then [3],

GbðtÞ ¼PðYb [ tÞ ¼ exp �
Z t

0

pðbþ uÞ rðbþ uÞdu

8<
:

9=
;

¼ exp � Kpðbþ tÞ � KpðbÞ
� �� �

; 8t� 0;

where KpðtÞ �
R t

0 pðuÞ rðuÞdu: Define Zb ¼ min fYb; Tg. It is easy to see that

EðZbÞ ¼
ZT

0

�GbðtÞdt:

Let Nðb; TÞ be the total number of minimal repairs of a burned-in system
which occur in the interval ½0; Zb�; then [3] the expectation of Nðb; TÞ is
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E Nðb; TÞ½ � ¼
ZT

0

rðbþ tÞ �GbðtÞ dt � GbðTÞ:

To consider the system availability, we now assume that the repair times are not
negligible. Let g1; g2; and g3 be the means of the minimal repair time, the time for
an unplanned replacement caused by the Type II failure, and the mean time for a
replacement at field use age T (preventive maintenance), respectively. We further
assume that

R1
0 pðuÞ rðuÞ du ¼ 1: Then, by similar arguments to those described

in Cha and Kim [17], it can be shown that the steady-state availability of the
system under the policy ðb; TÞ is given by

Aðb; TÞ ¼Eðtotal up time in a renewal cycleÞ
Eðthe length of a renewal cycleÞ

¼
R T

0
�GbðtÞ dtR T

0
�GbðtÞdt þ

R T
0 rðbþ tÞ �GbðtÞ dt � GbðTÞ

h i
g1 þ GbðTÞ g2 þ �GbðTÞ g3

We first consider the simpler case when only the burn-in procedure is applied
but no preventive maintenance is performed, i.e., when T ¼ 1: In this case, the
steady-state availability is given by

AðbÞ ¼
R1

0
�GbðtÞ dtR1

0
�GbðtÞ dt þ

R1
0 rðbþ tÞ �GbðtÞ dt

� �
g1 þ ðg2 � g1Þ

: ð6:2Þ

The objective is to find the optimal burn-in time b� such that

Aðb�Þ ¼ max
b � 0

AðbÞ:

We make the following assumptions:

Assumption 1 The lifetime distribution function FðtÞ has a bathtub-shaped failure
rate function rðtÞ which has change points 0� s1� s2�1.

Assumption 2

g2 [ g1:

Theorem 6.5 Suppose that the lifetime distribution function FðtÞ has a bathtub-
shaped failure rate function rðtÞ which has change points 0� s1� s2\1: Let the
set V be

V � ft : pðuÞ rðuÞ is nondecreasing for all u� tg

and define v1 � inf V; w1 � max s1; v1f g; where v1 � 1 if V ¼ /: Then the
optimal burn-in time, b� agrees with the following inequality: b� �w1.
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If, in addition,

g1rð0Þ þ ðg2 � g1Þpð0Þ rð0Þ[
ðg2 � g1Þ þ g1

R1
0 rðtÞ exp f�KpðtÞg dtR1

0 exp f�KpðtÞg dt
; ð6:3Þ

then b�[ 0.

Proof Observe that maximization of AðbÞ is equivalent to minimization of

uðbÞ � 1
AðbÞ � 1 ¼

R1
0 rðbþ tÞ �GbðtÞ dt

� �
g1 þ ðg2 � g1ÞR1

0
�GbðtÞ dt

¼
R1

0 rðbþ tÞ exp � Kpðbþ tÞ � KpðbÞ
� �� �

dt
� �

g1 þ ðg2 � g1ÞR1
0 exp � Kpðbþ tÞ � KpðbÞ

� �� �
dt

¼
R1

b rðtÞ exp � KpðtÞ � KpðbÞ
� �� �

dt
� �

g1 þ ðg2 � g1ÞR1
b exp � KpðtÞ � KpðbÞ

� �� �
dt

:

ð6:4Þ

Differentiating uðbÞ, we obtain

u0ðbÞ ¼ 1R1
b exp � KpðtÞ � KpðbÞ

� �� �
dt

	 
2 g1

Z1

b

rðtÞ exp � KpðtÞ � KpðbÞ
� �� �

dt

2
4

� g1

Z1

b

rðbÞ exp � KpðtÞ � KpðbÞ
� �� �

dt þ ðg2 � g1Þ

� ðg2 � g1ÞpðbÞrðbÞ
Z1

b

exp � KpðtÞ � KpðbÞ
� �� �

dt

3
5:

Note that, inequality

Z1

b

rðtÞ exp � KpðtÞ � KpðbÞ
� �� �

dt �
Z1

b

rðbÞ exp � KpðtÞ � KpðbÞ
� �� �

dt [ 0

ð6:5Þ

holds for all b� s1; and

pðbÞrðbÞ
Z1

b

exp � KpðtÞ�KpðbÞ
� �� �

dt�
Z1

b

pðtÞrðtÞ exp � KpðtÞ�KpðbÞ
� �� �

dt¼1;

ð6:6Þ
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holds for all b� v1 since
R1

0 pðuÞ rðuÞ du ¼ 1: This implies that u0ðbÞ[ 0;
8 b�w1: Therefore, we can conclude that b� �w1.

We can also see that

u0ð0Þ ¼ 1R1
0 exp �KpðtÞ

� �
dt

	 
2 g1

Z1

0

rðtÞ exp �KpðtÞ
� �

dt

2
4

�g1rð0Þ
Z1

0

exp �KpðtÞ
� �

dt þ ðg2 � g1Þ

�ðg2 � g1Þ pð0Þ rð0Þ
Z1

0

exp �KpðtÞ
� �

dt

3
5:

Thus, we obtain u0ð0Þ\0 by (6.3). This means that uðbÞ is strictly decreasing
in the right neighborhood of b ¼ 0: Therefore, b�[ 0: h

Remark 6.2 Theorem 6.5 indicates that the large value of the initial failure rate,
rð0Þ ‘justifies’ the positive burn-in time (i.e., b�[ 0).

Remark 6.3 If pðtÞ is eventually increasing, then the set V in Theorem 6.5 is not
empty and, therefore, b� has a nontrivial upper bound.

If the Type II failure probability function pðtÞ satisfies certain special condi-
tions, the upper bound for the optimal burn-in time can be found more easily than
in the case of Theorem 6.5. The following results of Corollaries 6.1 and 6.2 discuss
this problem.

Corollary 6.1 Suppose that the lifetime distribution function FðtÞ has a bathtub-
shaped failure rate function rðtÞ which has change points 0� s1� s2\1 and pðtÞ
is the bathtub-shaped function with change points u1 and u2; 0� u1� u2�1: Let
t1 ¼ max s1; u1f g; t2 ¼ min s2; u2f g; and assume that t1� t2 holds. Then b� � t1:
Specifically, if pðtÞ is nondecreasing in t� 0; then b� � s1\1.

Proof Under the assumptions, the function pðuÞ rðuÞ has a bathtub shape with
change points t1; t2: Thus, V ¼ t1; 1½ Þ and v1 ¼ t1: From Theorem 6.5 we have:
b� �max s1; v1f g ¼ v1 ¼ t1: If pðtÞ is nondecreasing, then, obviously, v1� s1:
Thus, b� � s1: h

Definition 6.5 A function hðtÞ is eventually nonconstant if, for any t0 � 0; there
exists t00 � t0 such that hðt0Þ 6¼ hðt00Þ.

Corollary 6.2 Suppose that the lifetime distribution function FðtÞ has a bathtub-
shaped failure rate rðtÞ with change points 0� s1� s2�1 and the Type II failure
probability pðtÞ is eventually nonconstant. Let

V� � ft : pðuÞ is nondecreasing for all u� tg;

and v�1 � inf V�: Then b� �max s1; v�1
� �

:
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Proof First note that inequality (6.6) holds strictly for b�max s1; v�1
� �

since pðuÞ
is eventually nonconstant. This implies that the result of Theorem 6.5 still holds,
even though now s2 can be 1: It is easy to see that pðuÞrðuÞ is nonde-
creasing in u�max s1; v�1

� �
and thus, v1�max s1; v�1

� �
and consequently,

b� �max s1; v1f g�max s1; v�1
� �

: h

We now consider some particular cases of the considered model. First, let FðtÞ
be exponential; that is, its failure rate function is given by rðtÞ ¼ r0; 8 t� 0: In this
case, from (6.4) we see that

uðbÞ ¼ r0g1 þ
g2 � g1R1

0 expf�r0
R bþt

b pðuÞdugdt
: ð6:7Þ

Theorem 6.6 Suppose that the two change points of rðtÞ satisfy: s1 ¼ 0 and
s2 ¼ 1; that is, FðtÞ is an exponential distribution with rðtÞ ¼ r0; 8 t� 0: (i) If
pðtÞ is a nonincreasing and eventually nonconstant function of t; then b� ¼ 1; and
(ii) if pðtÞ is a nondecreasing and nonconstant function of t; then b� ¼ 0.

Proof We prove (i). The result of (ii) can be shown in the similar way. If pðtÞ is a

nonincreasing and eventually nonconstant, then
R bþt

b pðuÞdu is nonincreasing and
eventually strictly decreasing in b for each fixed t [ 0: This implies that the same
properties hold for uðbÞ and, therefore, b� ¼ 1: h

Generally it is widely believed that if the lifetime of the system follows an
exponential distribution, then the burn-in procedure is not necessary b� ¼ 0ð Þ:
However, the following theorem shows that if there are two types of failure, the
burn-in procedure may have to be applied (i.e., b�[ 0), even though the distri-
bution of the system is exponential.

Theorem 6.7 Suppose that the two change points of rðtÞ are s1 ¼ 0 and s2 ¼ 1
and pðtÞ is a bathtub-shaped function with change points u1� u2: (i) If
0\u1� u2\1; then 0� b� � u1; (ii) if 0\u1� u2 ¼ 1, then b� can be any value
from u1; 1½ Þ; (iii) if pðtÞ is not a constant function and pð1Þ� pð0Þ; then
u0� b� � u1; where u0\u1 is uniquely determined by pðu0Þ ¼ pð1Þ.

Proof To prove (i), note that (6.6) holds strictly since u2\1: Hence it is still true
that b� �max s1; v1f g ¼ v1: However, u1 2 V so v1� u1 and consequently
b� � u1.

In the case of (ii) we see that the left side of (6.5) equals 0 for any b� 0, and in
(6.6) the equality holds for all b� u1; but the strict inequality holds for all b 2
0; u1½ Þ: This implies that AðbÞ strictly increases in b 2 0; u1½ � and is a constant in
u1; 1½ Þ and, therefore, (ii) is true.

Now we consider (iii). From the assumptions, we must have 0\u1� u2\1:
The result of (i) shows that b� � u1: By (6.7), b� � u0: Therefore, u0� b� � u1:

h
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In the next theorems we consider the special case when pðtÞ ¼ p.

Theorem 6.8 Suppose that the lifetime distribution function FðtÞ has a bathtub-
shaped failure rate function rðtÞ which has change points 0\s1� s2\1 and
pðtÞ ¼ p; 0\p\1; that is, the Type II failure probability function is a constant
function of t. Then, (i) the optimal burn-in time satisfies 0� b� � s1; (ii) if we
further assume rð1Þ� rð0Þ; then the optimal burn-in time b� satisfies s0� b� � s1;
where s0 is uniquely determined by rðs0Þ ¼ rð1Þ.

Proof When pðtÞ ¼ p; 0\p\1; by Corollary 6.1, we have b� � s1: Moreover, if
rð1Þ� rð0Þ; we can also show that

u0ðbÞ\0; 8 0� b� S0

and so s0� b� � s1: h

Theorem 6.9 Suppose that the lifetime distribution function FðtÞ has a bathtub-
shaped failure rate function rðtÞwhich has change points 0� s1� s2�1 and pðtÞ ¼
p; 0\p\1: Then the following hold: (i) When s1 ¼ 1, i.e., rðtÞ is strictly DFR, the
optimal burn-in time b� ¼ 1: (ii) When s1 ¼ 0; the optimal burn-in time b� ¼ 0: (iii)
When s1 [ 0 and s2 ¼ 1 the optimal burn-in time b� could be any value in s1; 1½ Þ.

Proof For the case (i), from (6.5) and (6.6), it can be easily shown that u0ðbÞ\0
for all b� 0: Hence the desired result follows. Similarly, the cases (ii) and (iii) can
be proved. h

Remark 6.4 In Theorem 6.8, we assume that 0\p\1: Two special cases are
worthy of note.

(i) When pðtÞ ¼ 0; 8t� 0; the steady-state availability AðbÞ does not exist for all
b� 0.

(ii) When pðtÞ ¼ 1; 8 t� 0; the steady-state availability of the model is given by

AðbÞ ¼ lðbÞ
lðbÞ þ g2

;

where lðbÞ ¼
R1

0
�Fðbþ tÞ=�FðbÞdt: In this case, the problem of maximizing the

steady-state availability is equivalent to maximizing the MRL lðbÞ: The latter was
discussed in Park [41] and Mi [36].

Remark 6.5 (Optimal Burn-in Time and Preventive Maintenance Policy). When
both the burn-in procedure and the replacement policy are applied, the problem of
finding the optimal burn-in time b� and optimal replacement policy T� such that

Aðb�; T�Þ ¼ max
b� 0;T � 0

Aðb; TÞ

is equivalent to minimizing

uðb; TÞ � 1
Aðb; TÞ � 1:
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Note that, uðb; TÞ is given by

R T
0 rðbþ tÞ�GbðtÞdt � GbðTÞ

h i
g1 þ GbðTÞg2 þ �GbðTÞg3R T

0
�GbðtÞdt

;

which has the same form as the cost function cðb; TÞ in Cha [12]. Therefore, when
both the failure rate function rðtÞ and pðtÞ are bathtub-shaped, the properties of
optimal burn-in time and replacement policy can be easily obtained from the
results of Cha [12]. In some other more special cases, i.e., when pðtÞ ¼
p; 0� p� 1; the explicit results could be similarly derived from Mi [34] and Cha
[10, 11]. We will discuss these problems in Chap. 7.

6.3 Optimal Burn-in for Minimizing Costs

As burn-in is usually a costly procedure, several cost structures have been con-
sidered in the literature to determine the optimal burn-in time. Many different cost
functions for burn-in are discussed in the review papers of Kuo and Kuo [28] and
Leemis and Beneke [29]. Nguyen and Murthy [40] examine the optimal burn-in
time to achieve a trade-off between the reduction in the warranty cost and the
increase in the manufacturing cost. In this section, we discuss relatively recent
research on optimal burn-in which deals with cost functions.

a. Loss Function Approach

Let T denote the random failure time of the component of interest and FðtÞ its
distribution function. Clarotti and Spizzichino [19] considered the following
choice of decisions in the burn-in problem:

a0 The component is immediately put into operation
ab The component is tested for the time b (burn-in time) and it is put into

operation if it survives the test
a1 As above with b ¼ 1; infinite duration of the test means that the component

is judged not suitable for its mission

Let s be the component mission time. Then the loss function lðab; TÞ is assumed
to have the following form:

lðab; TÞ ¼
c1; if T\b
C; if b\T\bþ s
�K; if T [ bþ s

8<
:

0\c1\C; K [ 0: Then the expected loss is
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/ðbÞ ¼E½lðab; TÞ� ¼ c1FðbÞ þ C½Fðbþ sÞ � FðbÞ� � K½1� Fðbþ sÞ�
¼c1 þ ðC � c1ÞFðbÞ � ðK þ CÞFðbþ sÞ:

The properties of the optimal decision rule are given in the following theorem.

Theorem 6.10 Suppose that gðbÞ � f ðbþ sÞ=f ðbÞ is strictly increasing in b: Then

(i) a1 is optimal if and only if limb!1 gðbÞ\ðC � c1Þ=ðC þ KÞ.
(ii) a0 is optimal if and only if gð0Þ� ðC � c1Þ=ðC þ KÞ.
(iii) ab� 0\b�\1ð Þ is optimal if and only if gðb�Þ ¼ ðC � c1Þ=ðC þ KÞ.

Proof It is easy to see that

/0ðbÞ� 0 if and only if f ðbþ sÞ=f ðbÞ� ðC � c1Þ=ðC þ KÞ:

The condition limb!1 gðbÞ\ðC � c1Þ=ðC þ KÞ implies that /0ðbÞ\0 for all
b [ 0; and thus, /ðbÞ is strictly decreasing in b [ 0 in this case. On the other hand,
the condition gð0Þ� ðC � c1Þ=ðC þ KÞ implies that /0ðbÞ[ 0 for all b [ 0; and
thus, /ðbÞ is strictly increasing in b [ 0 in this case. Finally, if there exists
0\b�\1 such that gðb�Þ ¼ ðC � c1Þ=ðC þ KÞ then this means that /0ðbÞ\0; for
b\b�; and /0ðbÞ[ 0; for b [ b�: Therefore, this b� is the unique optimal burn-in
time. h

Example 6.2 Let T be distributed according to the Weibull distribution with the
scale parameter b; 0\b\1:

f ðtÞ ¼ kbtb�1 expf�ktbg; t [ 0;

gðbÞ ¼ 1þ s
b

� �b�1
expf�k½ðbþ sÞb � bbg:

It is easy to see that gðbÞ is strictly increasing. In this case, ab� 0\b�\1ð Þ is
optimal if there exists 0\b�\1 such that

1þ s
b�

� �b�1
expf�k½ðb� þ sÞb � b�bg ¼ ðC � c1Þ=ðC þ KÞ:

b. Average Cost for Non-repairable Systems

In Mi [33, 36], the problems of minimizing the cost functions that are defined via
the cost of the burn-in procedure as such and of the gain obtained from field
operation were considered.

Consider the fixed burn-in time b and begin to burn-in a new device. If the
device fails before the time b, then it is repaired with the shop repair cost cs; and
the repaired device is burned-in again and so on. It is assumed that the repair is
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complete, i.e., the repaired device is as good as new. If the device survives the
burn-in time b; then it is put into field operation. The cost for burn-in is assumed to
be proportional to the total burn-in time with proportionality constant c0. We will
derive now the average cost incurred for obtaining the first component surviving
the burn-in. Let hðbÞ be the total cost incurred until the first component surviving
burn-in is obtained. Let X1 be the time to failure of a new component, which is first
subject to the burn-in procedure, and FðtÞ be its distribution function. Then, by
conditioning, E ½hðbÞ� can be derived as follows. Given the event X1 [ bf g (the
new component survives burn-in time b at the first trial), the conditional expec-
tation E ½h ðbÞjX1 [ b� is

E ½h ðbÞjX1 [ b� ¼ c0b ¼ c0E½minfb;X1gjX1 [ b�: ð6:8Þ

On the other hand, given the event X1 � bf g (the new component does not
survive burn-in time b at the first trial), the conditional expectation
E ½h ðbÞjX1 � b� is

E½hðbÞjX1 � b� ¼ c0E½X1jX1 � b� þ cs þ E½hðbÞ�
¼ c0E½minfb; X1gjX1� b� þ cs þ E½hðbÞ�:

ð6:9Þ

From (6.8) and (6.9), the following equation holds:

E ½h ðbÞ� ¼ c0E ½minfb;X1g� þ csFðbÞ þ E ½h ðbÞ�FðbÞ: ð6:10Þ

Then from (6.10), E ½h ðbÞ� is given by

E ½h ðbÞ� ¼ 1

FðbÞ
c0

Z b

0
FðtÞdt þ csFðbÞ

 �
;

where FðtÞ ¼ 1� FðtÞ:
Let s be the mission time. In field operation, the cost C is incurred if the burned-

in component fails before s. On the other hand, if the burned-in component sur-
vives the mission time s; then the gain K is obtained. Then the complete cost
function is given by

cðbÞ ¼ �cs þ
c0
R b

0 FðtÞdt þ cs

FðbÞ
þ C

FðbÞ � Fðbþ sÞ
FðbÞ

� K
Fðbþ sÞ

FðbÞ
: ð6:11Þ

For this cost function, the following intuitively obvious result had been shown
in Mi [33]: the optimal burn-in time b� which minimizes cðbÞ in (6.11) never
exceeds the first change point t1 if FðtÞ is described by the bathtub-shaped failure
rate.

We consider now a different cost structure for field operation. The average cost
of the burn-in procedure is the same as before. The second part, which is the gain
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part, is proportional to the mean life of the component used in field operation. That
is, if we denote the proportionality constant by K [ 0; then the gain is given by

K

R1
b FðtÞdt

FðbÞ
:

Thus, the cost function in this case has the following form:

cðbÞ ¼ �cs þ
c0
R b

0 FðtÞdt þ cs

FðbÞ
� K

R1
b FðtÞdt

FðbÞ
: ð6:12Þ

Clearly, the term

c0
R b

0 FðtÞdt þ cs

FðbÞ

in (6.12) is strictly increasing in b� 0: According to the result in Park [41] (see
also Theorem 6.1 in Sect. 6.2) the mean remaining life

lðbÞ ¼
R1

b FðtÞdt

FðbÞ

is decreasing in b� t1 if the failure rate function rðtÞ has the bathtub shape with the
first change point t1: Hence, the minimum value for cðbÞ in (6.12) cannot be
obtained in the interval ðt1;1Þ; i.e., b� � t1: Therefore, we have obtained the
following result.

Theorem 6.11 Suppose that the failure rate function rðtÞ has a bathtub shape.
Then for the cost function given in (6.12), the optimal burn-in time b� is unique and
0� b� � t1: If, in addition, lð0ÞK � cs [ 0 and rð0Þ[ ðc0 þ KÞ=ðlð0ÞK � csÞ;
then b�[ 0.

c. Average Cost for Systems with Replacement

Consider the case when the system can be replaced at each failure during field
operation. The corresponding cost structure is described as follows. As before, we
burn-in components until we obtain the one that survives burn-in. This component
is then put into field operation. If it fails during field operation, it is replaced by
another burned-in component at a cost cf . We assume that cf [ cs; where cs is the
cost of each shop repair. In this case, it is clear that, by the theory of renewal
reward process (see, e.g, Ross [43]), the long-run average cost rate is given by

220 6 The Basics of Burn-in



cðbÞ ¼ �cs þ
c0
R b

0 FðtÞdt þ cs

FðbÞ
þ cf

 !
	

R1
b FðtÞdt

FðbÞ

� ��1

¼
cf � ðcf � csÞFðbÞ þ c0

R b
0 FðtÞdtR1

b FðtÞdt
:

ð6:13Þ

In this case, we have the following result for the optimal burn-in time. The
proof of the following theorem can be found in Mi [36].

Theorem 6.12 Let the failure rate function rðtÞ be continuous and have a bathtub
shape with change points t1 and t2: If cf [ cs; then the optimal burn-in time b�

minimizing the cost function cðbÞ in (6.13) is unique and satisfies 0� b� � t1:
Furthermore, b�[ 0 if and only if

rð0Þ[ c0lð0Þ þ cf

ðcf � csÞlð0Þ
:

Remark 6.6 For the cost structures considered in Theorems 6.11 and 6.12, we can
see that the large initial failure rate rð0Þ ‘justifies’ burn-in, i.e., b�[ 0.

6.4 Models for Accelerated Burn-in Procedures

Burn-in is generally considered to be expensive and, therefore, the duration of
burn-in is typically limited. Furthermore, for today’s highly reliable products,
many latent failures or weak components require a long time to detect or identify.
Thus, as stated in Block and Savits [9], for decreasing the length of this procedure,
burn-in is often performed in an accelerated environment. Some real examples of
accelerated burn-in procedures in electronic industry can be found in Kuo and Kuo
[28] and Usami and Yoshioka [44] (see also [23–26, 47]). However, most of
stochastic modeling in the literature has been performed only for the normal stress
levels during burn-in. Recently, Cha [13] proposed a new stochastic model for the
accelerated burn-in procedure based on the concept of virtual age. In Cha and
Finkelstein [16], the model of Cha [13] has been extended to the case of pro-
portional (additive) hazards during burn-in. In this section, we will consider
approaches developed in these two papers.

6.4.1 Failure Rate Model for Accelerated Burn-in Procedure

This subsection is devoted to constructing the probabilistic frame for accelerated
burn-in procedure, which employs the basic statistical property commonly used in
accelerated life tests (ALT). Accelerated life tests are frequently used in practice to
obtain timely information on the life distribution or performance over time of
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highly reliable products in an affordable amount of testing time. Test units are used
more frequently than usual or are subjected to larger than usual levels of stress or
stresses like temperature and voltage. Then the information obtained from the test
performed under a larger stress is used to predict actual product performance under
a normal (usual) stress. Nelson [39] provides an extensive and comprehensive
source for practical methodology, basic theory, and examples for accelerated
testing. Meeker and Escobar [31] present a good review paper on these issues.

Let X denote the lifetime of a component (with the Cdf FðtÞ) used under the
usual stress. We assume that X is an absolutely continuous nonnegative random
variable and thus the pdf f ðtÞ and the failure rate rðtÞ exist. Also denote by XA the
lifetime of a component that operates in the accelerated environment and is
characterized by FAðtÞ; fAðtÞ; rAðtÞ accordingly. The Accelerated Failure Time
(AFT) regression model is the most widely used parametric failure time regression
model in ALT. Under this model, the larger stress has the effect of ‘shrinking’ time
through a scale factor. This can be modeled as

FAðtÞ ¼ Fðq 
 tÞ; 8t� 0; ð6:14Þ

where q is a constant that depends on the accelerated stresses. As given in Sect. 3
of Meeker and Escobar [31], a more general model can be defined as

FAðtÞ ¼ FðqðtÞÞ; 8t� 0; ð6:15Þ

where qðtÞ depends on the accelerated environment. Since the accelerated envi-
ronment gives rise to larger stresses than the usual environment, q � 1 for model
(6.14) and qðtÞ � t for all t [ 0 and qð0Þ ¼ 0; for model (6.15). Furthermore, we
assume that qðtÞ in (6.15) is strictly increasing, continuous, and differentiable.
Then, (6.14) and (6.15) imply that XA � st X: Here, the notation � st denotes the
usual stochastic order, that is, we say that Z1 is said to be smaller than Z2 in the
usual stochastic order denoted Z1 � st Z2 if F2ðtÞ � F1ðtÞ; for all t � 0; where
F1ðtÞ and F2ðtÞ are the distribution functions of Z1 and Z2; respectively (see
Sect. 2.8). From (6.15), the failure rate function in the accelerated environment is
given by

rAðtÞ ¼
q0ðtÞf ðqðtÞÞ
1� FðqðtÞÞ ¼ q0ðtÞrðqðtÞÞ:

On the other hand, right after a new component has been burned-in during a
fixed burn-in time b under the accelerated environment, its ‘virtual age’ [20],
transformed to the usual level of stress should be larger than b: Assume that the
survival function in the normal environment of the burned-in (accelerated burn-in
during time b) component is given by

FbðtÞ � exp �
Z t

0

rðaðbÞ þ uÞdu

0
@

1
A ¼ FðaðbÞ þ tÞ

FðaðbÞÞ
; ð6:16Þ
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where the function aðbÞ satisfies aðbÞ � b for all b � 0; a ð0Þ ¼ 0; and is strictly
increasing and differentiable. Equation (6.16) implies that the performance of a
component with accelerated burn-in time b is the same as that of a component that
has been operated under the usual stress during the time aðbÞ: From (6.16), it is
easy to see that the burned-in component with the accelerated burn-in time b and
the ‘field use age’ u has the failure rate

rðaðbÞ þ uÞ; 8u� 0:

Combining the accelerated burn-in phase and the field use phase, the failure rate
function of a component under accelerated burn-in time b; which is denoted by
kbðtÞ; can be defined as

kbðtÞ ¼
q0ðtÞ r qðtÞð Þ; if 0� t� b ðburn-in phase)
r a ðbÞ þ ðt � bÞð Þ; if t� b ðfield use phase):

�
ð6:17Þ

Generally, the shapes of qðtÞ and a ðbÞ depend on the level(s) of stress(es)
during the accelerated burn-in process. Larger levels of stresses would yield
rapidly increasing functions qðtÞand aðbÞ; whereas smaller levels of stresses would
result in slowly increasing qðtÞand aðbÞ:

Similar to the cumulative exposure model described in Nelson [39], assume
now that the virtual age aðtÞ in the normal environment ‘produces’ the same
population cumulative fraction of units failing as the age t does in the accelerated
environment. Formally, it means that

F aðtÞð Þ ¼ FAðtÞ: ð6:18Þ

Applying the inverse operator F�1 to both sides of (6.18):

aðtÞ ¼ F�1ðFAðtÞÞ ¼ F�1ðFðqðtÞÞÞ ¼ qðtÞ; 8t� 0:

Therefore, aðtÞ ¼ qðtÞ; 8t� 0: (See Finkelstein [20] for a similar reasoning). In
what follows, unless otherwise specified, we will implicitly assume this
relationship.

Since the conditions on the functions qðtÞ and aðbÞ are not too restrictive, the
failure rate model in (6.17) can be considered as a general one. It can be used in a
wide range of applications. Also note that, if the burn-in procedure is performed
under normal stresses, then obviously, kbðtÞ ¼ rðtÞ for all t � 0: Therefore, the
accelerated burn-in model under consideration is a generalization of the burn-in
model without acceleration.

6.4.2 Optimal Burn-in Time

In this section we consider the following burn-in procedure under an accelerated
environment.
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• Burn-in procedure: Fix a burn-in time b and begin to burn-in a new component
under the accelerated environment. If the component fails before the burn-in
time b; then repair it completely with shop repair cost cs and then burn-in the
repaired component again, and so on.

During the complete (perfect) repair, the failed component is repaired to the ‘‘as
good as new’’ state. This means that the lifetime of the repaired component is
independent of the lifetime of the original component and has the same distribu-
tion function. Note that the burn-in procedure stops when there is no failure during
the fixed burn-in time for the first time. We assume that the cost for accelerated
burn-in is proportional to the total burn-in time with proportionality constant c1.

Let hðbÞ be the total cost incurred until the first component surviving burn-in is
obtained. Then, following the procedures similar to those described in the previous
section, E½hðbÞ� can be obtained by

E½hðbÞ� ¼ 1

FAðbÞ
c1

Zb

0

FAðtÞdt þ csFAðbÞ

2
4

3
5;

where

FAðtÞ � 1� FAðtÞ ¼ exp �
Z t

0

q0ðuÞrðqðuÞÞdu

8<
:

9=
;:

In the following we discuss three burn-in models, which can be considered as
generalizations of those studied by Mi [37].

a. Model 1: Gain Due to No Failure within Mission Time

Many practical problems require a component to accomplish a task in field
operation with a given mission time s [ 0. This means that the given mission is
accomplished when the component operates continuously without any failure for
the time s. The corresponding cost function consists in this case of the following
three parts:

(i) the mean cost E½hðbÞ� for obtaining a component that survives the accelerated
burn-in time b;

(ii) the cost C incurred by the event fXb � sg;
(iii) the gain K that results from the event fXb [ sg;

where Xb is the time of failure of the component that has survived the accelerated
burn-in time b and thus is described the distribution function FbðtÞ � 1� FbðtÞ:
Then the cost function cðbÞ is given by
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cðbÞ ¼E½hðbÞ� þ C FbðsÞ � K FbðsÞ

¼ 1

FAðbÞ
c1

Zb

0

FAðtÞdt þ csFAðbÞ

2
4

3
5� ðC þ KÞFðaðbÞ þ sÞ

FðaðbÞÞ
þ C:

ð6:19Þ

Let b� be optimal burn-in time that minimizes cðbÞ in Equation (6.19). Then the
following result gives an upper bound for the optimal burn-in time b�:

Theorem 6.13 Suppose that the failure rate function rðtÞ is eventually increasing
with the first wear-out point t�. Then a�1ðt�Þ is an upper bound for the optimal
burn-in time b� satisfying cðb�Þ ¼ minb� 0 cðbÞ; that is, b� � a�1ðt�Þ\1; where
a�1ðt�Þ is the unique solution of the equation aðtÞ ¼ t�: In addition, if

ðC þ KÞa0ð0Þ expf�KðsÞg � csq
0ð0Þ[ 0

and

rð0Þ[ c1 þ ðC þ KÞa0ð0ÞrðsÞ expf�KðsÞg
ðC þ KÞa0ð0Þ expf�KðsÞg � csq0ð0Þ

;

then, b�[ 0, where KðtÞ �
Rt
0

rðuÞdu.

Proof Observe that the cost function cðbÞ in (6.19) can be rewritten as

cðbÞ ¼ c1

Zb

0

expf�KðqðtÞÞgdt 
 expfKðqðbÞÞg þ cs expfKðqðbÞÞg

� ðC þ KÞ 	 expf�½KðaðbÞ þ sÞ � KðaðbÞÞ�g þ ðC � csÞ;

where KðtÞ �
R t

0 rðuÞdu: To prove 0� b� � a�1ðt�Þ; it suffices to show that cðbÞ
strictly increases for all b 2 fb : aðbÞ[ t�g: Then

c0ðbÞ ¼c1 q0ðbÞ rðqðbÞÞ expfKðqðbÞÞg 	
Zb

0

expf�KðqðtÞÞgdt þ 1

2
4

3
5

þ csq
0ðbÞ rðqðbÞÞ 	 expfKðqðbÞÞg

þ ðC þ KÞ a0ðbÞ ½rðaðbÞ þ sÞ � rðaðbÞÞ� 	 expf�½KðaðbÞ þ sÞ � KðaðbÞÞ�g:

Since the functions qðtÞ and aðtÞ are strictly increasing and ½rðaðbÞ þ sÞ �
rðaðbÞÞ� � 0 for all b such that aðbÞ[ t� by the eventually increasing failure rate
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assumption, it holds that c0ðbÞ[ 0 for all b such that aðbÞ[ t�: This means that
cðbÞ is strictly increasing for all b 2 fb : aðbÞ[ t�g:

For the second part of the theorem, consider the derivative of cðbÞ evaluated at
b ¼ 0: It is easy to check that

c0ð0Þ ¼ c1 þ csq
0ð0Þrð0Þ þ ðC þ KÞa0ð0Þ½rðsÞ � rð0Þ� expf�KðsÞg :

Assume that

ðC þ KÞa0ð0Þ expf�KðsÞg � csq
0ð0Þ[ 0

and

rð0Þ[ c1 þ ðC þ KÞa0ð0ÞrðsÞ expf�KðsÞg
ðC þ KÞa0ð0Þ expf�KðsÞg � csq0ð0Þ

;

then c0ðbÞ\0 holds. This means that cðbÞ is strictly decreasing in a right-hand
neighborhood of b ¼ 0: Therefore b�[ 0:

h

b. Model 2: Gain Proportional to the Mean Time to the Failure

In the second model, the cost structure that contains the following two parts will be
considered:

(i) the average cost E½hðbÞ� incurred during the burn-in;
(ii) the gain that is proportional to the mean time to failure in field operation with

proportionality constant K.

Thus, the objective cost function cðbÞ has the following form:

cðbÞ ¼ E½hðbÞ� � K

Z1

0

FbðtÞdt ¼ 1

FAðbÞ
c1

Zb

0

FAðtÞdt þ csFAðbÞ

2
4

3
5

� K

R1
aðbÞ FðtÞdt

FðaðbÞÞ
: ð6:20Þ

Let b� be the optimal burn-in time that minimizes cðbÞ in Eq. (6.20). Then we
have the following result.

Theorem 6.14 Suppose that the failure rate function rðtÞ is eventually increasing
with the first wear-out point t�. Then a�1ðt�Þ is an upper bound for optimal burn-in
time b�; which satisfies cðb�Þ ¼ minb� 0 cðbÞ; that is, b� � a�1ðt�Þ\1; where
a�1ðt�Þ is the unique solution of the equation aðtÞ ¼ t�: In addition, if

Ka0ð0Þ
Z1

0

expf�KðtÞgdt � csq
0ð0Þ[ 0

226 6 The Basics of Burn-in



and

rð0Þ[ c1 þ Ka0ð0Þ
Ka0ð0Þ

R1
0 expf�KðtÞgdt � csq0ð0Þ

;

then b�[ 0:

Proof Observe that the cost function cðbÞ in (6.20) can be rewritten as

cðbÞ ¼ c1

Zb

0

expf�KðqðtÞÞgdt 
 expfKðqðbÞÞg þ cs expfKðqðbÞÞg

� K

Z1

aðbÞ

expf�KðtÞgdt 
 expfKðaðbÞÞg � cs:

By differentiating cðbÞ;

c0ðbÞ ¼ c1 q0ðbÞ rðqðbÞÞ expfKðqðbÞÞg 	
Zb

0

expf�KðqðtÞÞgdt þ 1

2
4

3
5

þ csq
0ðbÞ rðqðbÞÞ expfKðqðbÞÞg þ Ka0ðbÞ

	 1� rðaðbÞÞ
Z1

aðbÞ

expf�KðtÞgdt expfKðaðbÞÞg

2
64

3
75;

where, by the eventually increasing failure rate assumption, for all b such that
aðbÞ[ t�;

Ka0ðbÞ 1� rðaðbÞÞ
Z1

aðbÞ

expf�KðtÞgdt 
 expfKðaðbÞÞg

0
B@

1
CA

�Ka0ðbÞ 1þ
Z1

aðbÞ

�rðtÞ expf�KðtÞgdt 
 expfKðaðbÞÞg

0
B@

1
CA

¼ Ka0ðbÞð1þ ½expf�½KðtÞ � KðaðbÞÞ�g�1aðbÞÞ ¼ 0

hold. Therefore, c0ðbÞ[ 0 for all b such that aðbÞ[ t�. This means that cðbÞis
strictly increasing for all b 2 fb : aðbÞ[ t�g. Thus, we can conclude that
b� � a�1ðt�Þ. For the second part of the theorem, consider the derivative of cðbÞ
evaluated at b ¼ 0: It is easy to check that
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c0ð0Þ ¼ c1 þ csq
0ð0Þ rð0Þ þ Ka0ð0Þ 1� rð0Þ

Z1

0

expf�KðtÞgdt

2
4

3
5:

If

Ka0ð0Þ
Z1

0

expf�KðtÞgdt � csq
0ð0Þ[ 0

and

rð0Þ[ c1 þ Ka0ð0Þ
Ka0ð0Þ

R1
0 expf�KðtÞgdt � csq0ð0Þ

;

then c0ð0Þ\0: This means that cðbÞ is strictly decreasing in the right-hand
neighborhood of b ¼ 0: Therefore, b�[ 0:

h

c. Model 3: Replacement at Failure During Field Operation

The cost structure that is considered in this model is described as follows:

(i) as in the preceding model, burn-in the components until the one that survives
the burn-in is obtained. Then put this component into field operation;

(ii) if the component fails during the field operation, it is replaced by another
burned-in component at the cost cf :

We assume that cf [ cs; where cs is the cost of each shop repair. During field
operation, a failure of a system causes its unavailability and thus it generally incurs
additional high penalty cost. Therefore, the constraint of cf [ cs can be considered
as a reasonable assumption. Let RðtÞ be the total operational cost in the field
operational interval ½0; t�: Then, by the theory of renewal reward process (see, e.g.,
[43]), the long-run average cost rate as a function of the burn-in time b is given by

cðbÞ ¼ lim
t!1

E½RðtÞ�
t
¼ E½Total cost in a renewal cycle�

E½The length of a renewal cycle� ¼
E½hðbÞ� þ cfR1

0 FbðtÞdt
: ð6:21Þ

Let b� be optimal burn-in time that satisfies cðb�Þ ¼ minb� 0 cðbÞ. Then the
following result gives an upper bound for optimal burn-in.

Theorem 6.15 Suppose that the failure rate function rðtÞ is eventually increasing
with the first wear-out point t�: Then the optimal burn-in time b� satisfies
0� b� � a�1ðt�Þ; where a�1ðt�Þ\1 is the unique solution of the equation aðtÞ ¼
t�: In addition, if

a0ð0Þlð0Þcf � q0ð0Þlð0Þcs [ 0

and
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rð0Þ[ c1lð0Þ þ a0ð0Þcf

a0ð0Þlð0Þcf � q0ð0Þlð0Þcs
;

then b�[ 0; where lð0Þ �
R1

0 expf�KðtÞgdt:

Proof Observe that the cost rate cðbÞ in (6.21) can be rewritten as

cðbÞ ¼ gðbÞ
lðbÞ ;

where lðbÞ is given by

lðbÞ � expfKðaðbÞÞg
Z 1

aðbÞ
expf�KðtÞgdt

and gðbÞ is defined by

gðbÞ � c1 expfKðqðbÞÞg
Zb

0

expf�KðqðtÞÞgdt þ cs expfKðqðbÞÞg þ ðcf � csÞ:

It is clear that gðbÞ is strictly increasing in b [ 0: On the other hand, by the
eventually increasing failure rate function assumption, it can be shown that
l0ðbÞ\0 for all b such that aðtÞ[ t�: These consequently imply that cðbÞ strictly
increases for all b 2 fb : aðbÞ[ t�g: Therefore, we can conclude that
b� � a�1ðt�Þ.

For the second part of the theorem, consider the derivative of cðbÞ evaluated at
b ¼ 0: It is easy to see that

c0ð0Þ ¼ 1

½lð0Þ�2
	 Uð0Þ;

where Uð0Þ is given by

Uð0Þ ¼ ½c1 þ csq
0ð0Þrð0Þ�lð0Þ � ½a0ð0Þrð0Þlð0Þ � a0ð0Þ�cf :

If

a0ð0Þlð0Þcf � q0ð0Þlð0Þcs [ 0

and

rð0Þ[ c1lð0Þ þ a0ð0Þcf

a0ð0Þlð0Þcf � q0ð0Þlð0Þcs
;

then c0ð0Þ\0 holds. This means that cðbÞ is strictly decreasing in the right-hand
neighborhood of b ¼ 0: Therefore, b�[ 0: h
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Remark 6.7 In each of the Theorems 6.13–6.15, the sufficient conditions for a
positive burn-in (i.e., b�[ 0) have been obtained in the form of two inequalities.
From these conditions, we can see that (i) the large field cost ðC; cf Þ; the large
field reward ðKÞ;and the small shop repair cost ðcsÞ and (ii) the large initial failure
rate rð0Þ justify the positive burn-in. In particular, if rðtÞ has the bathtub shape
with two change points t1 and t2; then the upper bounds for the optimal burn-in
time b� in the considered models are given by a�1ðt1Þ. Mi [37] considered the
optimal burn-in time for various additive cost models under the usual level of
stress. We can see that the considered burn-in models can be reduced to those
studied by Mi [37] if we set qðtÞ ¼ t for all t� 0 and aðbÞ ¼ b for all b� 0:

Remark 6.8 When qðtÞ ¼ qt; the following simple relationship holds:

E½XA� ¼
Z1

0

FAðtÞdt ¼
Z1

0

FðqtÞdt ¼ 1
q

E½X�;

where parameter q has a clear ‘physical’ meaning. Furthermore, it follows from
Theorems 6.13–6.15 that the upper bound for the optimal burn-in time in this case
is simply given by a�1ðt�Þ ¼ ð1=qÞt�:

6.4.3 Proportional Hazards and Additive Hazards Models

In this subsection, the extended model in Cha and Finkelstein [16] will be intro-
duced. Observe that ALM (ALT) (6.15) is not the only way of modeling the impact
of a severer (accelerated) environment. Consider the proportional hazards (PH)
model for describing the failure rates in both environments. This model is used in
numerous applications:

rAðtÞ ¼ crðtÞ; 8t� 0; ð6:22Þ

where c� 1. Then obviously,

rðtÞ� rAðtÞ; 8t� 0; i:e:;XA� frX

and the failure rate ordering of the corresponding lifetimes (see, e.g., [43] and
Sect. 2.8) holds. In accordance with (6.18) and (6.22), we can formally define the
corresponding virtual age from the following equation:
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FðaðtÞÞ ¼ 1� expf�
ZaðtÞ

0

rðuÞdug ¼1� expf�KðaðtÞÞg;

¼ 1� expf�cKðtÞg ¼ 1� expf�c
Z t

0

rðuÞdug ¼FAðtÞ;

ð6:23Þ

where KðtÞ �
R t

0 rðuÞdu: Then

aðtÞ ¼ K�1ðcKðtÞÞ; 8t� 0;

and the combined failure rate function, similar to (6.17), is defined as

kbðtÞ ¼
crðtÞ; 0� t\b;
ðK�1ðcKðbÞÞ þ ðt � bÞÞ; t� b:

�

Similar to Cha [13], consider the following setting. Let the cost for the
accelerated burn-in is proportional to the total burn-in time with proportionality
constant c1: Then, the expected cost during burn-in is given by

1

FAðbÞ
c1

Zb

0

FAðtÞdt þ csFAðbÞ

2
4

3
5;

where cs; as previously, is the cost of a complete repair (shop repair price). Given
the mission time s; the cost function consists of the following three parts :

(i) The mean ‘aggregated’ cost for ‘obtaining’ a component that survives the
accelerated burn-in time b;

(ii) The cost C incurred by the event fXb� sg (Failure of the Mission);
(iii) The gain K that results from the event fXb [ sg (Success of the Mission),

where Xb is the time to failure of the component which survived the accelerated
burn-in procedure during time b. Then the corresponding total expected cost
function cðbÞ for the proportional hazards model is

cðbÞ ¼ c1

Zb

0

expf�cKðtÞgdt 
 expfcKðbÞg þ cs expfcKðbÞg

� ðC þ KÞ expf�½KðaðbÞ þ sÞ � KðaðbÞÞ�g þ ðC � csÞ;

ð6:24Þ

where aðbÞ ¼ K�1ðcKðbÞÞ:

Theorem 6.16 Suppose that the failure rate function rðtÞ is eventually increasing

with the first wear-out point t�: Then a�1ðt�Þ ¼ K�1 1
c Kðt�Þ
� �

is an upper bound
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for optimal burn-in time b�; which minimizes (6.24), that is,

b� �K�1ð1c Kðt�ÞÞ\1: In addition, if

ðC þ KÞa0ð0Þ expf�KðsÞg � csc [ 0

and

rð0Þ[ c1 þ ðC þ KÞa0ð0ÞrðsÞ expf�KðsÞg
ðC þ KÞa0ð0Þ expf�KðsÞg � csc

;

then b�[ 0.

Proof The cost function in (6.24) is composed of two parts: the average cost
during burn-in and that during field operation. Note that the average cost during
burn-in is obviously strictly increasing for all b [ 0: Similar to the proof of
Theorem 1 in Cha [13], it can be shown that, by the eventually increasing failure
rate assumption, the average cost during field operation is strictly increasing for all
b such that aðbÞ[ t�: This means that c0ðbÞ[ 0 for all b such that aðbÞ[ t�;
which implies the first result.

On the other hand,

c0ð0Þ ¼ c1 þ cscrð0Þ þ ðC þ KÞa0ð0Þ½rðsÞ � rð0Þ� expf�KðsÞg

and it is easy to see that if the two given conditions are satisfied, then c0ð0Þ\0;
which finally implies that the optimal burn-in time b� is positive. h

Example 6.3 Suppose that the failure rate rðtÞ is given by

rðtÞ ¼
�2t þ 2; 0� t� 1;

1; 1� t� 10;
t � 9; 10� t:

8<
:

Let c � 2:0: Clearly it is a traditional bathtub-shaped failure rate and therefore
it is eventually increasing with the first wear-out point t� ¼ 1:0: Then Kðt�Þ ¼ 3=2
and the upper bound is given by

a�1ðt�Þ ¼ K�1ð1
c
Kðt�ÞÞ ¼ 1=2:

Another specific case that can be used for ordering lifetimes in normal and
accelerated environments is the additive hazards (AH) model, which is also widely
used in survival analysis:

rAðtÞ ¼ rðtÞ þ qðtÞ; 8t� 0; ð6:25Þ

where qðtÞ� 0; 8t� 0: From (6.25),
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FAðtÞ ¼ expf�
Z t

0

rðuÞ þ qðuÞdug ¼ expf�KðtÞ � QðtÞg;

where KðtÞ �
R t

0 rðuÞdu and QðtÞ ¼
Rt
0

qðuÞdu: Similar to (6.23),

FðaðtÞÞ ¼ 1� expf�
ZaðtÞ

0

rðuÞdug ¼1� expf�KðaðtÞÞg

¼ 1� expf�KðtÞ � QðtÞg ¼ 1� exp �
Z t

0

rðuÞ þ qðuÞdug ¼FAðtÞ;

8<
:

and the virtual age is given by

aðtÞ ¼ K�1ðKðtÞ þ QðtÞÞ; 8t� 0;

whereas the combined failure rate for this case is defined as

kbðtÞ ¼
rðtÞ þ qðtÞ; 0� t\b;
rðK�1ðKðbÞ þ QðbÞÞ þ ðt � bÞÞ; t� b:

�

The corresponding cost function can be expressed as

cðbÞ ¼c1

Zb

0

expf�KðtÞ � QðtÞgdt 
 expfKðbÞ þ QðbÞg þ cs expfKðbÞ þ QðbÞg

� ðC þ KÞ expf�½KðaðbÞ þ sÞ � KðaðbÞÞ�g þ ðC � csÞ;
ð6:26Þ

where aðbÞ ¼ K�1ðKðbÞ þ QðbÞÞ: Then, similar to Theorem 6.16, the following
theorem can be proved:

Theorem 6.17 Suppose that the failure rate function rðtÞ is eventually increasing.

Then a�1ðt�Þ ¼ ðKþ QÞ�1ðKðt�ÞÞ; where ðKþ QÞ�1ðtÞ is the inverse function of
KðtÞ þ QðtÞ; is an upper bound for optimal burn-in time b� which minimizes

(6.26), that is, b� � ðKþ QÞ�1ðKðt�ÞÞ\1. In addition, if

ðC þ KÞa0ð0Þ expf�KðsÞg � cs [ 0

and
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rð0Þ[ c1 þ csqð0Þ þ ðC þ KÞa0ð0ÞrðsÞ expf�KðsÞg
ðC þ KÞa0ð0Þ expf�KðsÞg � cs

;

then b�[ 0.

Example 6.4 Consider the failure rate function in Example 6.3. Suppose that
qðtÞ ¼ 2t. Then the upper bound for the optimal burn-in time is given by

a�1ðt�Þ ¼ ðKþ QÞ�1ðKðt�ÞÞ ¼ 3=4:

The choice between AL or PH (AH) models actually depends on physical
processes that lead to failures of items and on the impact of changing environment
on these processes. Many types of electronic items can be described by the cor-
responding linear PH model (for two environments), whereas mechanical items are
more likely to be described by the AL model [20].

6.4.4 Relationships Between the Models

In this subsection, in line with burn-in models considered before, we briefly
reformulate some of the obvious but useful relationships for analysis [32]. As it
was already mentioned, the PH model (6.22) and the AH model (6.25) imply the
AL model (6.15). On the other hand, as c in (6.22) is a constant, we can write
rAðtÞ ¼ crðtÞ ¼ rðtÞ þ ðc� 1ÞrðtÞ and the PH model defined in such a way is a
specific case of the AH model. Therefore,

AL � AH � PH:

As the PH model (6.22) and the specific linear case (6.14) of the AL model are
the popular practical tools for modeling the accelerated environment, it makes
sense to point out the relationship between these two models.

Using (6.15), rAðtÞ can be written as

rAðtÞ ¼
q0ðtÞrðqðtÞÞ

rðtÞ

� �

 rðtÞ:

Therefore, if

q0ðtÞrðqðtÞÞ
rðtÞ

� �
¼ c; ð6:27Þ

these models are identical. Specifically, for the linear case (6.14), the condition
(6.27) becomes
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qrðqtÞ
rðtÞ

� �
¼ c: ð6:28Þ

It is satisfied if the distribution of the component is Weibull (specifically,
exponential), which is, of course, is a well-known fact.

The similar reasoning can be used for obtaining formally the conditions for
‘identity’ between the AL and the AD (the AD and the PH), however, only for the
linear case (6.28) these results have a real practical meaning.
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Chapter 7
Burn-in for Repairable Systems

In the previous chapter, the emphasis was made on the burn-in procedures for non-
repairable items. If a non-repairable item fails during burn-in, then, obviously, it is
just scraped and discarded. However, an expensive, complex product or device
will not be discarded on account of failure of its part, but rather a repair will be
performed. Therefore, in this chapter, we deal mostly with repairable items. Note
that the contents of this chapter are rather technical and it can be skipped by a less
mathematically oriented reader.

After the survey provided by Block and Savits [3], there has been much
research on burn-in procedures, especially for repairable systems. These studies
include: (i) various reliability models which jointly deal with burn-in and main-
tenance policies; (ii) burn-in procedures for general failure model; (iii) a stochastic
model for the accelerated burn-in procedure.

7.1 Burn-in and Maintenance Policies: Initial Models

In this section, reliability models that jointly deal with burn-in and maintenance
policies will be considered. We describe properties of joint optimal solutions for
burn-in and replacement times for each of these models. Mi [10] was the first to
consider the joint optimization problem for determining optimal burn-in and
replacement times.

Let FðtÞ be the distribution function of the absolutely continuous lifetime X. Mi
[10] studied an optimal burn-in and maintenance policy under the assumption that
FðtÞ has a bathtub-shaped failure rate function. The following burn-in procedure
was considered.

Burn-in Procedure A
Consider a fixed burn-in time b and begin to burn-in a new device. If the device
fails before the burn-in time b, then repair it completely with the shop repair cost
cs [ 0, then burn-in the repaired device again, and so on. If the device survives
the burn-in time b, then it is put into field operation [10].

M. Finkelstein and J. H. Cha, Stochastic Modeling for Reliability,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-5028-2_7,
� Springer-Verlag London 2013
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We assume here that the repair is complete, i.e., the repaired device is as good
as new. Let the cost of burn-in be proportional to the total burn-in time with
proportionality constant c0 [ 0.

Let h bð Þ denote the total cost incurred for obtaining the device which survives
the burn-in procedure. Then, similar to Sect. 6.3, the mean cost E hðbÞ½ � can be
obtained as

E hðbÞ½ � ¼ c0

R b
0

�FðtÞdt
�FðbÞ þ cs

FðbÞ
�FðbÞ :

7.1.1 Model 1

For field operation, Mi [10] considered two types of replacement policies,
depending on whether the device is repairable or not. For a non-repairable device,
the age replacement policy is considered. That is, the device is replaced by a new
burned-in device at the time of its failure or ‘field-use age’ T , whichever occurs
first. Let cf denote the cost incurred for each failure in field operation and
ca 0 \ ca \ cf

� �
, the cost incurred for each non-failed item which is replaced by a

new burned-in item at its field-use age T . Then, by the theory of renewal reward
processes, the long-run average cost rate cðb; TÞ is given by

cðb; TÞ ¼ kðbÞ þ cf FbðTÞ þ ca �FbðTÞR T
0

�FbðtÞdt
;

where �FbðtÞ is the conditional survival function, i.e., �FbðtÞ � �Fðb þ tÞ=�FðbÞ and
kðbÞ � E hðbÞ½ �. Mi [10] have obtained certain results regarding the optimal burn-
in time b� and the optimal age T� which satisfy

cðb�; T�Þ ¼ min
b� 0; T [ 0

cðb; TÞ

However, there are several useful ‘hidden’ properties which can be found in the
proof of the corresponding theorem and, therefore, we reformulate the result as
follows.

Theorem 7.1 Suppose that the failure rate function rðtÞ is bathtub-shaped and
differentiable. Let

B1 � b � 0 : lðbÞrð1Þ [
cf þ kðbÞ
cf � ca

� �
;

where lðbÞ �
R1

0
�FbðtÞdt, and B2 � 0;1½ ÞnB1. Then properties of the optimal

burn-in time b�and of the optimal replacement policy T�can be stated in detail as
follows:
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Case 1. B1 ¼ 0;1½ Þ;B2 ¼ /. Let T�ðbÞ be the unique solution of the equation

rðb þ TÞ
ZT

0

�Fðb þ tÞ
�FðbÞ dt þ

�Fðb þ TÞ
�FðbÞ ¼ cf þ kðbÞ

cf � ca
: ð7:1Þ

Then the optimal b�; T�ð Þ ¼ b�; T�ðb�Þð Þ, where 0 � b� � t1, is the value that
satisfies

b� þ T�ðb�Þ ¼ min
0 � b � t1

b þ T�ðbÞð Þ:

Case 2. B1 ¼ /;B2 ¼ 0;1½ Þ. The optimal b�; T�ð Þ ¼ b�;1ð Þ, where 0� b� � t1,
is the value that satisfies

cf þ kðb�Þ
lðb�Þ ¼ min

0 � b � t1

cf þ kðbÞ
lðbÞ :

Case 3. B1 ¼ /; B2 ¼ /. For b 2 B1, let T�ðbÞ be the unique solution of Eq.
(7.1). Furthermore, let b�1 2 0; t1½ � \ B1 satisfy

b�1 þ T�ðb�1Þ ¼ min
b � t1; b2B1

b þ T�ðbÞð Þ;

and b�2 2 0; t1½ � \ B2 satisfy

cf þ kðb�2Þ
lðb�2Þ

¼ min
b � t1; b2B2

cf þ kðbÞ
lðbÞ :

If

cf � ca

� �
r b�1 þ T�ðb�1Þ
� �

� cf þ kðb�2Þ
lðb�2Þ

;

then b�; T�ð Þ ¼ b�1; T�ðb�1Þ
� �

. Otherwise the optimal b�; T�ð Þ is b�2; 1
� �

.

Proof The proof for a more general model is given in the proof of Theorem 7.4 in
this chapter and thus it is omitted. h

7.1.2 Model 2

For a repairable device, applying the same burn-in procedure as before, block
replacement with minimal repair on failures is performed in field operation. More
precisely, fix a T [ 0 and replace the component at times T , 2T , 3T , …, with a
new burned-in component. Also, at each intervening failure, a minimal repair is
performed. Let cm [ 0 be the cost of a minimal repair, and cr [ 0 be the cost of
replacement. In this case, the long-run average cost rate is given by
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cðb; TÞ ¼ 1
T

kðbÞ þ cm

Zbþ T

b

rðtÞdt þ cr

0
@

1
A: ð7:2Þ

The following theorem [10] provides the properties of optimal ðb�; T�Þ mini-
mizing cðb; TÞ.

Theorem 7.2 Suppose that the failure rate function rðtÞ is bathtub-shaped and
differentiable. Let

B1 � b � 0 :

Z1

b

rð1Þ � rðtÞ½ �dt

8<
:

[
1

cm �FðbÞ cr � csð Þ�FðbÞ þ cs þ c0

Zb

0

�FðtÞdt

2
4

3
5
9=
;;

and B2 � 0; 1½ ÞnB1. Then the properties of the optimal burn-in time b� and the
replacement policy T� can be stated in detail as follows:

Case 1. B1 ¼ 0; 1½ Þ; B2 ¼ /. Let T�ðbÞ be the unique solution of the equation

Trðb þ TÞ �
ZbþT

b

rðtÞdt ¼ 1
cm �FðbÞ cr � csð Þ�FðbÞ þ cs þ c0

Zb

0

�FðtÞdt

2
4

3
5:
ð7:3Þ

Then, the optimal ðb�; T�Þ ¼ ðb�; T�ðb�ÞÞ, where 0 � b� � t1, is the value
which satisfies

b� þ T�ðb�Þ ¼ min
0� b� t1

b þ T�ðbÞð Þ:

Case 2. B1 ¼ /; B2 ¼ 0; 1½ Þ. The optimal ðb�; T�Þ ¼ ðb�; 1Þ, where b� can
be any value in 0;1½ Þ.

Case 3. B1 ¼ /; B2 ¼ /. For b 2 B1, let T�ðbÞ be the unique solution of the
Eq. (7.3). Then, the optimal ðb�; T�Þ ¼ ðb�; T�ðb�ÞÞ, where b� is the value which
satisfies

b� þ T�ðb�Þ ¼ min
b � t1; b2B1

b þ T�ðbÞð Þ:

Proof The proof for a more general model is given in the proof of Theorem 7.4 in
this chapter and thus it is omitted. h
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7.1.3 Model 3

In Model 2, Burn-in Procedure A is applied to repairable devices. In many cases,
because of practical limitations, products which fail during burn-in are just
scraped, regardless of whether the products are repairable or not. In this case, the
burn-in procedure A can be applied. However, an expensive, complex product or
device will not be discarded on account of failure of its part, but rather a repair will
be performed. Cha [4] proposed the following burn-in procedure.

Burn-in Procedure B
Consider the fixed burn-in time b and begin to burn-in a new component. On each
component failure, only minimal repair is done with shop minimal repair cost
csm [ 0. Continue the burn-in procedure for the repaired component. Immediately
after the fixed burn-in time b, the component is put into field operation [4].

Note that the total burn-in time for this burn-in procedure is a constant b. For a
burned-in component, the block replacement policy with minimal repairs on
failures is adopted in field operation as it was in Model 2. Assume 0 \ csm \ cs,
then this means that the cost of a minimal repair during the burn-in process is
smaller than that of the complete (perfect) repair, which is a reasonable assump-
tion. Then, the long-run average cost rate is

cðb; TÞ ¼ 1
T

c0b þ csmKðbÞ þ cm Kðb þ TÞ � KðbÞð Þ þ crð Þ: ð7:4Þ

where KðtÞ �
R t

0 rðuÞdu. It can be shown that

cBðb; TÞ � cAðb; TÞ; 80 \ b \1; 0 \ T \1;

where cAðb; TÞ and cBðb;TÞ are the cost rate functions in Eqs. (7.2) and (7.4),
respectively. This implies that

cBðb�B; T�BÞ � cAðb�A; T�AÞ;

where ðb�A; T�AÞ and ðb�B; T�BÞ are the optimal solutions which minimize cAðb; TÞ
and cBðb; TÞ, respectively. Thus, we can conclude that the burn-in procedure B is
always preferable to the burn-in procedure A when the minimal repair policy is
applicable.

Let ðb�; T�Þ be the optimal burn-in time and the optimal replacement time that
minimize the cost rate Eq. (7.4). Then the properties of b� and T� are given by the
following theorem.

Theorem 7.3 Suppose that the failure rate function rðtÞ is bathtub-shaped and
differentiable. Let

B1 � b � 0 :

Z1

b

rð1Þ � rðtÞ½ �dt [
1

cm
cr þ c0b þ csmKðbÞ½ �

8<
:

9=
;;
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and B2 � 0; 1½ ÞnB1. Then the properties of the optimal burn-in time b� and of
the replacement policy T� can be stated in detail as follows:

Case 1. B1 ¼ 0; 1½ Þ; B2 ¼ /. Let T�ðbÞ be the unique solution of the equation

Trðb þ TÞ �
Zbþ T

b

rðtÞdt ¼ 1
cm

cr þ c0b þ csmKðbÞ½ �: ð7:5Þ

Then, the optimal ðb�; T�Þ ¼ ðb�; T�ðb�ÞÞ, where 0 � b� � t1, is the value
which satisfies

b� þ T�ðb�Þ ¼ min
0� b� t1

b þ T�ðbÞð Þ:

Case 2. B1 ¼ /; B2 ¼ 0; 1½ Þ. The optimal ðb�; T�Þ ¼ ðb�; 1Þ, where b� can
be any value in 0; 1½ Þ:

Case 3. B1 ¼ /; B2 ¼ /. For b 2 B1, let T�ðbÞ be the unique solution of Eq.
(7.5). Then, the optimal ðb�; T�Þ ¼ ðb�; T�ðb�ÞÞ, where b� is the value which
satisfies

b� þ T�ðb�Þ ¼ min
b � t1; b2B1

b þ T�ðbÞð Þ:

Proof Clearly, b�2 6¼ 1, since c2ð1; TÞ ¼ 1 for any 0 \ T � 1. For any
fixed 0 � b \1,

oc2

oT
¼ cm

T2
WbðTÞ �

1
cm

cr þ c0b þ csmKðbÞ½ �
� �

;

where

WbðTÞ � Trðb þ TÞ �
ZbþT

b

rðtÞdt:

Hence, oc2=oT ¼ 0 if and only if

WbðTÞ ¼
1

cm
cr þ c0b þ csmKðbÞ½ �:

Note that, Wbð0Þ ¼ 0 and that WbðTÞ

strictly decreases if 0 � T � t1 � b

is a constant if t1 � b � T � t2 � b

strictly increases if t2 � b � T

8><
>:
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Then define

B1 � b � 0 : Wbð1Þ ¼
Z1

b

rð1Þ � rðtÞ½ �dt [
1

cm
cr þ c0b þ csmKðbÞ½ �

8<
:

9=
;

and set B2 � 0; 1½ ÞnB1.
Now, as in the proof of Theorem 2 in [10], the following three separate cases

are considered.

Case 1. B1 ¼ 0; 1½ Þ; B2 ¼ /:

Case 2. B1 ¼ /; B2 ¼ 0; 1½ Þ:

Case 3. B1 ¼ /; B2 ¼ /:

Case 1 is equivalent to the condition that Wð1Þ �
R1

b rð1Þ � rðtÞ½ �dt ¼ 1
for at least one b � 0. In particular, it occurs when rð1Þ ¼ 1 and rð0Þ\1. Let
T�2 ðbÞ be the value which satisfies

c2ðb; T�2 ðbÞÞ\ c2ðb; TÞ; 8T 6¼ T�2 ðbÞ;

for all b � 0. Then for Case 2, it is easy to see that for all b � 0,

c2ðb; TðbÞÞ [ c2ðb; 1Þ; 8T [ 0;

i.e., T�2 ðbÞ ¼ 1, for b � 0 and c2ðb; T�2 ðbÞÞ ¼ cmrð1Þ.
For Case 1 and Case 3, it can be shown, as in Case 2, that for every b0 2

B2; T�2 ðb0Þ ¼ 1 and c2ðb0; T�2 ðb0ÞÞ ¼ cmrð1Þ. Moreover, for all b 2 B1, the
following properties can be established:

(i) There exists T�2 ðbÞ; which is the unique solution of Eq. (7.3).
(ii) t2 \ b þ T�2 ðbÞ\1:
(iii) c2ðb; T�2 ðbÞÞ ¼ cmrðb þ T�2 ðbÞÞ:
(iv) For all b0 2 B2;c2ðb; T�2 ðbÞÞ ¼ cmrðb þ T�2 ðbÞÞ\ cmrð1Þ ¼ c2ðb0; T�2 ðb0ÞÞ.
(v) The optimal burn-in time b�2 satisfies: 0 � b�2 � t1.

Therefore, b�2 2 b : 0 � b � t1f g \ B1 and b�2 is the value that satisfies:

b�2 þ T�2 ðb�2Þ ¼ min
b � t1; b2B1

ðb þ T�2 ðbÞÞ:

7.2 Burn-in Procedures for General Failure Model

In this section, we discuss the burn-in procedures for a general failure model that
was partly studied in the previous chapter. Recall that according to this model,
when the unit fails, the Type I failure and the Type II failure may occur with some
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probabilities. We assume that the Type I failure is a minor one and thus can be
removed by a minimal repair, whereas Type II failure is a catastrophic one and
thus can be removed only by a complete repair. Such models have been considered
in the literature (e.g., [1, 2]).

7.2.1 Constant Probability Model

In this model, when the unit fails, Type I failure occurs with probability 1 � p and
Type II failure occurs with probability p; 0 � p � 1: Cha [5] proposed the fol-
lowing burn-in procedure for this model.

Burn-in Procedure C
Consider the fixed burn-in time b and begin to burn-in a new component. On each
component failure, only minimal repair is done for the Type I failure with shop
minimal repair cost csm; 0 � csm � cs; and a complete repair is performed for the
Type II failure with shop complete repair cost cs: Then continue the burn-in
procedure for the repaired component [5].

Cha [5] studied optimal burn-in and replacement policy for the burn-in pro-
cedures A and C under the general failure model defined above.

Note that the burn-in procedure A stops when there is no failure during the fixed
burn-in time ð0; b� for the first time, whereas procedure C stops when there is no
Type II failure during the fixed burn-in time ð0; b� for the first time.

Note that, in field operation, the component is replaced by a new burned-in
component at the ‘field-use age’ T or at the time of the first Type II failure,
whichever occurs first. For each Type I failure occurring during field use, only
minimal repair is done.

Let Yb be the time to the first Type II failure of a burned-in component with the
fixed burn-in time b. If we define GbðtÞ as the distribution function of Yb and GbðtÞ
as 1 � GbðtÞ; then GbðtÞ is given by

GbðtÞ ¼ P(Yb [ tÞ

¼ expf�
Z t

0

prðb þ uÞdug

¼ expf�p½Kðb þ tÞ � KðbÞ�g; 8t � 0; ð7:6Þ

where KðtÞ �
R t

0 rðuÞdu: Let the random variable Nðb; TÞ be the total number of
minimal repairs of a burned-in component which occur during field operation after
the burn-in time b and in accordance with the replacement policy T . Then, using
the results of Beichelt [2], it is easy to see that, when p 6¼ 0; the expectation of
Nðb; TÞ is

244 7 Burn-in for Repairable Systems



E½Nðb; TÞ� ¼ 1
GbðtÞ

ZT

0

Z t

0

ð1 � pÞrðb þ uÞdudGbðtÞ � GbðtÞ

þ
ZT

0

ð1 � pÞrðb þ uÞdu � GbðTÞ

¼ 1
p
� 1

� �
ð1 � expf�p½Kðb þ TÞ � KðbÞ�gÞ: ð7:7Þ

When p ¼ 0 the expectation is given by

E½Nðb; TÞ� ¼ Kðb þ TÞ � KðbÞ:

Let cf denote the cost incurred for each Type II failure in field operation and ca

satisfying 0 \ ca \ cf be the cost incurred for each non-failed item which is
replaced at field use age T [ 0: Denote also by cm the cost of a minimal repair
which is performed in field operation. When p ¼ 0 or p ¼ 1; the burn-in and
replacement model discussed in this section reduces to that in [10] or [4]. Thus, in
the discussion below, we assume that 0 \ p \ 1: Then, using the results given by
Eqs. (7.6) and (7.7), the long-run average cost rate functions for procedures A and
C are given by [5]

cAðb; TÞ ¼ 1R T
0 GbðtÞdt

c0

R b
0 FðtÞdt

FðbÞ
þ cs

FðbÞ
FðbÞ

" # 

þ cm
1
p
� 1

� �
ð1 � expf�p½Kðb þ TÞ � KðbÞ�gÞ

� 	
þ cf GbðTÞ þ caGbðTÞ

�
;

ð7:8Þ

and

cCðb; TÞ ¼
1

RT
0

GbðtÞdt

c0

Rb
0

GðtÞdt

GðbÞ
þ cs

GðbÞ
GðbÞ

þ csm
1
p
� 1

� �
ðexpfpKðbÞg � 1Þ

2
6664

3
7775

0
BBB@

þ cm
1
p
� 1

� �
ð1 � expf�p½Kðb þ TÞ � KðbÞ�gÞ

� 	
þ cf GbðTÞ

þ caGbðTÞ
�
;

ð7:9Þ

where cAðb; TÞ and cCðb; TÞ represent the cost rate for the burn-in procedures A
and C, respectively.

Cha [5] showed that
(i) cCð0; T; pÞ ¼ cAð0; T; pÞ; 80 \ T � 1; 0 \ p \ 1;

(ii) cCðb; T; pÞ\ cAðb; T ; pÞ; 80 \ b \1; 0 \ p \ 1;
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where cAðb; T ; pÞ and cCðb; T ; pÞ are the cost rate functions cAðb; TÞ and
cCðb; TÞ when the Type II probability is p, 0 \ p \ 1. Then, from the above
inequalities, it can be concluded that the burn-in procedure C is always (i.e., for all
0 \ p \ 1) preferable to the burn-in procedure A when the minimal repair method
is applicable.

Now we discuss the properties of optimal burn-in and of optimal replacement
times. Note that the cost rate functions in Eqs. (7.8) and (7.9) can be expressed as

cðb; TÞ ¼ 1R T
0 GbðtÞdt

 
kðbÞ þ cm

1
p
� 1

� �
ð1 � expf�p½Kðb þ TÞ � KðbÞ�gÞ

� 	

þ cf GbðTÞ þ caGbðTÞ
!
;

ð7:10Þ

where kðbÞ is the average cost incurred during the burn-in process for each model.
The properties of the optimal ðb�; T�Þ which minimizes the cost rate Eq. (7.10) are
given by the following theorem.

Theorem 7.4 Suppose that the failure rate function rðtÞ is bathtub-shaped and
differentiable. Let

B1 � b � 0 : prð1Þ
Z1

b

expf�p½KðtÞ � KðbÞ�gdt � 1

8<
:

[
1

½cm
1
p � 1

 �

þ ðcf � caÞ�
ðca þ kðbÞÞ

9=
;;

and B2 � ½0; 1ÞnB1: Then the properties of the optimal burn-in time b� and the
replacement policy T� can be stated in detail as follows:

Case 1. B1 ¼ ½0;1Þ;B2 ¼ /: Let T�ðbÞ be the unique solution of the equation

prðb þ TÞ
Zbþ T

b

exp �p KðtÞ � KðbÞ½ �f gdt þ exp �p Kðb þ TÞ � KðbÞ½ �f g � 1

¼ 1

½cm
1
p � 1

 �

þ ðcf � caÞ�
ðca þ kðbÞÞ:

ð7:11Þ

Then, the optimal ðb�; T�Þ ¼ ðb�; T�ðb�ÞÞ; where 0 � b� � t1; is the value
which satisfies b� þ T�ðb�Þ ¼ min

0 � b � t1
ðb þ T�ðbÞÞ:

Case 2. B1 ¼ /; B2 ¼ ½0; 1Þ: The optimal ðb�; T�Þ ¼ ðb�; 1Þ; where
0 � b� � t1; is the value which satisfies
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1
lðb�Þ cf þ cm

1
p
� 1

� �
þ kðb�Þ

� 	
¼ min

0 � b � t1

1
lðbÞ cf þ cm

1
p
� 1

� �
þ kðbÞ

� 	
:

Case 3. B1 ¼ /; B2 ¼ /: For b 2 B1; let T�ðbÞ be the unique solution of the
Eq. (7.11). Furthermore, let b�1 2 ½0; t1� \ B1 satisfy

b�1 þ T�ðb�1Þ ¼ min
b� � t1; b2B1

ðb þ T�ðbÞÞ;

and b�2 2 ½0; t1� \ B2 satisfy

1
lðb�2Þ

cf þ cm
1
p
� 1

� �
þ kðb�2Þ

� 	
¼ min

b � t1; b2B2

1
lðbÞ cf þ cm

1
p
� 1

� �
þ kðbÞ

� 	
:

If

cm
1
p
� 1

� �
þ cf � ca

� 	
prðb�1

þ T�ðb�1ÞÞ �
1

lðb�2Þ
cf þ cm

1
p
� 1

� �
þ kðb�2Þ

� 	
;

then the optimal ðb�; T�Þ ¼ ðb�1; T�ðb�1ÞÞ: Otherwise the optimal ðb�; T�Þ is
ðb�2; 1Þ.

Proof The cost rate cðb; TÞ in Eq. (7.10) can be rewritten as

cðb; TÞ ¼ 1R T
0 GbðtÞdt

hðbÞ þ c2 þ cm
1
p
� 1

� �
ð1 � expf�p½Kðb þ TÞ � KðbÞ�gÞ

�

þ c1½1 � expf�p½Kðb þ TÞ � KðbÞ�g�
!
;

ð7:12Þ

where c1 � cf � ca and c2 � ca: Clearly, b� 6¼ 1 since cð1; TÞ ¼ 1 for
any 0 \ T � 1:Then, for any fixed 0 � b \1; oc=oT ¼ 0 if and only if

WbðTÞ ¼
1
c3
ðc2 þ hðbÞÞ; ð7:13Þ

where c3 � ½cmð1=p � 1Þ þ c1� and

WbðTÞ � prðb þ TÞ
Zbþ T

b

expf�p½KðtÞ�KðbÞ�gdt

þ expf�p½Kðb þ TÞ � KðbÞ�g � 1:

Note that Wbð0Þ ¼ 0 and
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WbðTÞ
strictly decreases if 0 � T � t1 � b;

is a constant if t1 � b � T � t2 � b;

strictly increases if t2 � b � T :

8><
>:

Define

B1 � b � 0 : Wbð1Þ � lim
T!1

WbðT
�

Þ

¼ prð1Þ
Z 1

b
expf�p½KðtÞ � KðbÞ�gdt � 1 [

1
c3
ðc2 þ hðbÞÞ

�

and set B2 � ½0; 1ÞnB1.

We consider now the following three separate cases.
Case 1. B1 ¼ ½0; 1Þand B2 ¼ /. This is equivalent to the condition that

Wbð1Þ ¼ prð1Þ
Z1

b

expf�p½KðtÞ � KðbÞ�gdt � 1 ¼ 1

for at least one b � 0: In particular, it occurs when rð1Þ ¼ 1 and rð0Þ\1. In
this case, Eq. (7.13) has a unique solution for all b � 0: which we denote by T�ðbÞ.
Furthermore, from the fact that Wbð0Þ ¼ 0 and the monotonicity of Wb, we can
immediately see that WbðTÞ\ 0; for all 0 \ T � t2 � b: This implies that the
unique solution T�ðbÞ of Eq. (7.13) must satisfy T�ðbÞ [ t2 � b for any given
b � 0: Thus, we have shown that

t2 \ T�ðbÞ þ b � 1 ð7:14Þ

As T�ðbÞ satisfies Eq. (7.13),

prðb þ T�(b) )
Z bþT�ðbÞ

b
expf�p½KðtÞ � KðbÞ�gdt

þ expf�p½Kðb þ T�ðbÞÞ � KðbÞ�g � 1 ¼ 1
c3
ðc2 þ hðbÞÞ:

ð7:15Þ

Combining Eqs. (7.12) and (7.15), we obtain

cðb; T�ðbÞÞ ¼ c3prðb þ T�ðbÞÞ:

Thus, minimizing cðb; T�ðbÞÞ is equivalent to minimizing rðb þ T�ðbÞÞ for
0 � b \1: By Eq. (7.14), b þ T�ðbÞ [ t2, so the problem of finding b� mini-
mizing cðb; T�ðbÞÞ is equivalent to finding b� which satisfies

b þ T�ðbÞ ¼ min
b � 0
ðb þ T�ðbÞÞ:
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The inequality b� � t1 is now verified. To prove this inequality, it is sufficient
to show that oðb þ T�ðbÞÞ=ob [ 0 for all b � t1: From Eq. (7.15),

prðb þ T�ðb))
Z bþT�ðbÞ

b

expf�pKðtÞgdt þ expf�pKðb þ T�ðbÞÞg

¼ expf�pKðbÞg 1 þ c2

c3
þ 1

c3
hðbÞ

� 	
:

ð7:16Þ

Taking the derivative with respect to b on both sides of Eq. (7.16), we obtain

pr0ðb þ T�ðbÞÞð1þ T�0ðbÞÞ
Z bþT�ðbÞ

b
expf�pKðtÞgdt � prðb þ T�ðbÞÞ expf�pKðbÞg

¼ expf�pKðbÞg 1
c3

h0ðbÞ � expf�pKðbÞgprðbÞ 1 þ c2

c3
þ 1

c3
hðbÞ

� �

[ � expf�pKðbÞgprðbÞ 1 þ c2

c3
þ 1

c3
hðbÞ

� �
;

ð7:17Þ

since h0ðbÞ [ 0: Then, from the Inequality Eq. (7.17),

pr0ðbþ T�ðbÞÞð1þ T�0ðbÞÞ
ZbþT�ðbÞ

b

exp �pKðtÞdtf g

[ prðbþ T�ðbÞÞ expf�pKðbÞg � exp �pKðbÞ 1þ c2

c2
þ 1

c3
hðbÞ

� �� �
:

ð7:18Þ

However, from Eq. (7.15),

prðb þ T�ðbÞÞ ¼ 1R bþ T�ðbÞ
b exp �p½KðtÞ � KðbÞ�f gdt

	 1 � expf�p½Kðb þ T�ðbÞÞ � KðbÞ�g þ c2

c3
þ 1

c3
hðbÞ

� �
;

ð7:19Þ

and by the bathtub-shaped assumption, if b � t1; it follows that

prðbÞ
Zbþ T�ðbÞ

b

expf�p½KðtÞ � KðbÞ�gdt �
Zbþ T�ðbÞ

b

prðtÞ expf�p½KðtÞ � KðbÞ�gdt

¼ expfpKðbÞg½� expf�pKðtÞg�bþ T�ðbÞ
b

¼ 1 � expf�p½Kðb þ T�ðbÞÞ � KðbÞ�g
� 1:

ð7:20Þ

Then, by combining Eqs. (7.18, 7.19 and 7.20), we obtain
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pr0ðb þ T�ðbÞÞð1 þ T�0ðbÞÞ
Zbþ T�ðbÞ

b

expf�pKðtÞgdt [ 0;

which implies that oðb þ T�ðbÞÞ=ob [ 0 for all b � t1. Therefore, b� � t1 holds.

Case 2. B1 ¼ /; B2 ¼ ½0; 1Þ: In this case, it can easily be shown that

WbðTÞ\
1
c3
ðc2 þ hðbÞÞ; 8T � 0;

which implies that oc=oT \ 0; for every T [ 0 for all fixed b � 0: Hence, for all
T [ 0 and b � 0

cðb; TÞ � cðb; 1Þ

¼ 1
lðbÞ c1 þ c2 þ cm

1

p
� 1

� �
þ hðbÞ

� 	
;

where lðbÞ is defined by

lðbÞ �
Z1

b

expf�p½KðtÞ � KðbÞ�gdt

¼
R1

b GðtÞdt

GðbÞ
;

which is the MRL. Then, as follows from [2, 7], it is easy to see that lðbÞ strictly
decreases for all b � t1; whereas the term

c1 þ c2 þ cm

1

p
� 1

� �
þ hðbÞ

� 	

strictly increases as b increases. Therefore, the inequalities

cðb; TÞ � cðb; 1Þ; 8T [ 0; 8b � 0;

[ cðt1; 1Þ; 8b [ t1;

hold and, consequently, in this case, we have ðb�; T�Þ ¼ ðb�; 1Þ; 0 � b� � t1

and b� þ T� [ t2. Also, the optimal burn-in time b� is the value which satisfies

cðb�; 1Þ ¼ min
0 � b � t1

cðb; 1Þ:

Case 3. B1 ¼ /; B2 ¼ /: In advance, note that Wbð1Þ is strictly decreasing in b
for b � t1 since

Wbð1Þ ¼ prð1ÞlðbÞ � 1;

and the function
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1
c3
½c2 þ hðbÞ�; ð7:21Þ

strictly decreases as b " 1: Then, by similar arguments to those in [10], it can be
shown that 1 cannot be in the closure B1 and there exists 0 � s \1 such that
½s; 1Þ 
 B2: If we set

b � infft : ½t; 1Þ 
 B2g;

then, clearly, ½b; 1Þ 
 B2:

First suppose that b � t1; therefore, obviously ½t1; 1Þ 
 B2: In this case, by
the arguments of Case 2, the set ½t1; 1Þ cannot contain the optimal b�: Hence
b� � t1:

Suppose now that b [ t1: Since Wbð1Þ strictly decreases for b � t1 and the
function in Eq. (7.21) strictly increases, the fact that b [ t1 yields that ½t1; bÞ 

B1: Then, by the procedure described in Case 2, the relationship

min
b2 ½b;1Þ; T [ 0

cðb; TÞ ¼ min
b2 ½b;1Þ

cðb; 1Þ [ cðt1; 1Þ

holds, and, therefore, the set ½b; 1Þ cannot contain the optimal b�: Also, for
b 2 ½t1; bÞ; by the similar arguments to those in Case 1, we can show that
oðb þ T�ðbÞÞ=ob [ 0; for all t1 � b \ b; and therefore we can conclude that
b� � t1:

7.2.2 Time-Dependent Probability Model

In [6], the Constant Probability Model was further extended to the case when the
corresponding probabilities change with operating time. Assume now that, when
the unit fails at its age t, Type I failure occurs with probability 1 � pðtÞ and Type
II failure occurs with probability pðtÞ; 0 � pðtÞ � 1:

In this model, we employ the same notations and random variables used before.
Also, note that if pðtÞ ¼ p a:e: (w.r.t. Lebesgue measure), 0 � p � 1, the models
under consideration can be reduced to those of Mi [10] and Cha [4, 5]. Thus, we
only consider the set of functions P as the set of all of the Type II failure prob-
ability functions, which is given by

P ¼ pð�Þ : 0 � pðtÞ � 1; 8t � 0f gn pð�Þ : pðtÞ ¼ p a:e:; 0 � p � 1f g

It can be shown that

GbðtÞ ¼ exp �½Kpðb þ tÞ � KpðbÞ�
� 

; 8t � 0

where KpðtÞ �
R t

0 pðuÞrðuÞdu, and
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E Nðb; TÞ½ � ¼
ZT

0

rðb þ tÞ �GbðtÞdt � GbðTÞ:

Then, considering both burn-in procedures A and C for this extended model, the
long-run average cost rate functions are given by

cAðb; TÞ ¼ 1R T
0

�GbðtÞdt
c0

Zb

0

exp � KðtÞ � KðbÞ½ �f gdt þ cs exp KðbÞf g � 1½ �

2
4

3
5

0
@

þ cm

ZT

0

rðb þ tÞ �GbðtÞdt � GbðTÞ

2
4

3
5 þ cf GbðTÞ þ ca

�GbðTÞ

1
A;

ð7:22Þ

where KðtÞ �
R t

0 rðuÞdu, and

cCðb; TÞ ¼ 1R T
0

�GbðtÞdt
c0

Zb

0

exp � KpðtÞ � KpðbÞ
� �� 

dt

2
4

0
@

þ cs exp KpðbÞ
� 

� 1
� �

þ csm

Zb

0

ð1 � pðtÞÞrðtÞ exp � KpðtÞ � KpðbÞ
� �� 

dt

3
5

þ cm

ZT

0

rðb þ tÞ �GbðtÞdt � GbðTÞ

2
4

3
5 þ cf GbðTÞ þ ca

�GbðTÞ

1
A:

ð7:23Þ

As before, it can be shown that

ðiÞ cCð0; T ; pð�ÞÞ ¼ cAð0; T ; pð�ÞÞ; 80 \ T � 1; pð�Þ 2 P;

ðiiÞ cCðb; T; pð�ÞÞ � cAðb; T; pð�ÞÞ; 80 \ b \1; 0 \ T � 1; pð�Þ 2 P;

which ensures the superiority of the burn-in procedure C when the minimal repair
method is applicable.

The cost rate functions in Eqs. (7.22) and (7.23) can be rewritten as

cðb; TÞ ¼ 1
RT
0

�GbðtÞdt

 
kðbÞ þ cm

ZT

0

rðb þ tÞ �GbðtÞdt � GbðTÞ

2
4

3
5:

þcf GbðTÞ þ ca
�GbðTÞ

!
;
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where kðbÞ denotes the average cost incurred during the burn-in process. Then,
under the following assumptions, the properties regarding the optimal burn-in time
b�and the optimal replacement policy T� can be obtained.

Assumptions
1. The failure rate function rðtÞ is differentiable and bathtub shaped with the first

change point s1 and the second change point s2.
2. The Type II failure probability function pðtÞ is differentiable and bathtub

shaped with the first change point u1 and the second change point u2.
3. Let t1 � max s1; u1ð Þ and t2 � min s2; u2ð Þ then t1 \ t2 holds.
4. ðcf � caÞ [ cm.

Theorem 7.5 Suppose that assumptions (1)–(4) hold. Let the set B1 be

B1 � b� 0 :f cm

Z1

b

rð1Þ � rðtÞ½ � exp � KpðtÞ � KpðbÞ
� �� 

dt

þ ðcf � caÞ � cm

� �
pð1Þrð1Þ

Z1

b

exp � KpðtÞ � KpðbÞ
� �� 

dt � 1

2
4

3
5

[ ca þ kðbÞð Þg;

and B2 � 0; 1½ ÞnB1. Then the properties of the optimal burn-in time b� and
replacement policy T� can be stated in detail as follows:

Case 1. B1 ¼ 0; 1½ Þ; B2 ¼ /. Let T�ðbÞ be the unique solution of the equation,

cm

Zbþ T

b

rðb þ TÞ � rðtÞ½ � exp �½KpðtÞ � KpðbÞ�
� 

dt þ ðcf � caÞ � cm

� �

pðb þ TÞrðb þ TÞ
ZbþT

b

exp � KpðtÞ � KpðbÞ
� �� 

dt� 1 � exp � Kpðb þ TÞ � KpðbÞ
� �� � � 	2

4

¼ ca þ kðbÞð Þ;

ð7:24Þ

then the optimal ðb�; T�Þ ¼ ðb�; T�ðb�ÞÞ, where 0 � b� � t1 is the value which
satisfies ðb� þ T�ðb�ÞÞ ¼ min

0� b� t1
ðb þ T�ðbÞÞ.

Case 2. B1 ¼ /; B2 ¼ 0; 1½ Þ: The optimal ðb�; T�Þ ¼ ðb�; 1Þ, where
0 � b� � t1 is the value which satisfies
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1
lðb�Þ ðcf � cmÞ þ cm

Z1

b�

rðtÞ exp � KpðtÞ � Kpðb�Þ
� �� 

dt þ kðb�Þ

2
4

3
5

¼ min
0 � b � t1

1
lðbÞ ðcf � cmÞ þ cm

Z1

b

rðtÞ exp � KpðtÞ � KpðbÞ
� �� 

dt þ kðbÞ

2
4

3
5;

where lðbÞ is given by

lðbÞ ¼
Z1

b

exp � KpðtÞ � KpðbÞ
� �� 

dt: ð7:25Þ

Case 3. B1 6¼ /; B2 6¼ /. Let T�ðbÞ; b 2 B1, be the unique solution of the
Eq.(7.24) and lðbÞ be given by Eq. (7.25). Furthermore, let b�1 2 0; t1½ � \ B1 be
the value which satisfies

ðb�1 þ T�ðb�1ÞÞ ¼ min
b � t1; b2B1

ðb þ T�ðbÞÞ;

and b�2 2 0; t1½ � \ B2 be the value which satisfies

1
lðb�2Þ

ðcf � cmÞ þ cm

Z1

b�2

rðtÞ exp � KpðtÞ � Kpðb�2Þ
� �� 

dt þ kðb�2Þ

2
64

3
75

¼ min
b � t1; b2B2

1
lðbÞ ðcf � cmÞ þ cm

Z1

b

rðtÞ exp � KpðtÞ � KpðbÞ
� �� 

dt þ kðbÞ

2
4

3
5:

If

cmr b�1 þ T�ðb�1Þ
� �

þ ðcf � caÞ � cm

� �
p b�1 þ T�ðb�1Þ
� �

r b�1 þ T�ðb�1Þ
� �

� 1
lðb�2Þ

ðcf � cmÞ þ cm

Z1

b�2

rðtÞ exp � KpðtÞ � Kpðb�2Þ
� �� 

dt þ kðb�2Þ

2
64

3
75;

then the optimal ðb�; T�Þ ¼ ðb�1; T�ðb�1ÞÞ. Otherwise, optimal ðb�; T�Þ ¼
ðb�2; 1Þ.

Remark 7.1 In this theorem, we assume that both rðtÞ and pðtÞ are bathtub-shaped
functions. Cha and Mi [7] investigated how this assumption can practically be
satisfied when a device is composed of two statistically independent parts (Part A
and Part B) in series. Assume that the failure of Part A causes a catastrophic failure,
whereas that of Part B causes a minor failure. The failure rate of the device is
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rðtÞ ¼ r1ðtÞ þ r2ðtÞ

and the probability of Type II failure pðtÞ is given by

pðtÞ ¼ rðtÞ
r1ðtÞ þ r2ðtÞ

where r1ðtÞ and r2ðtÞ are the failure rate functions of Parts A and B, respectively
(see [7] for a detailed discussion and several examples when rðtÞ and pðtÞ have
various shapes).

7.3 Accelerated Burn-in and Maintenance Policy

Burn-in is generally considered to be expensive and its duration is typically lim-
ited. Stochastic models for accelerated burn-in were introduced in the previous
chapter. In this section, we will discuss reliability models that jointly deal with
accelerated burn-in and maintenance policies. In [8], the burn-in and replacement
models 1, 2, and 3 of Sect. 7.1 were extended to the case when burn-in is per-
formed in an accelerated environment assuming the failure rate model described in
Sect. 6.4 of the previous chapter.

7.3.1 Model 1

We consider burn-in and replacement Model 1: the component is burned-in in
accordance with the burn-in procedure A under the accelerated environment. The
component that had survived burn-in is put into field operation. In field operation,
an age replacement policy is applied. We will use the notation of Sects. 6.4 and 7.1.

The corresponding long-run average cost rate is given by (see Sects.6.4 and 7.1)

cðb; TÞ ¼ 1R T
0

�FbðtÞdt
c0

R b
0

�FAðtÞdt
�FAðbÞ

þ cs
FAðbÞ
�FAðbÞ

" #
þ cf FbðTÞ þ ca �FbðTÞ

 !
;

where

FbðtÞ � exp �
Z t

0

rðaðbÞ þ uÞdu

0
@

1
A ¼ FðaðbÞ þ tÞ

FðaðbÞÞ
;

and FAðtÞ ¼ FðqðtÞÞ; 8t � 0:
Let b� be the optimal accelerated burn-in time and T� be the optimal

replacement policy which satisfy
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cðb�; T�Þ ¼ min
b � 0; T [ 0

cðb; TÞ:

Then the properties regarding the optimal accelerated burn-in time b� and the
optimal replacement policy T� are given by the following theorem [8], which is
similar in formulation to Theorem 7.1.

Theorem 7.6 Suppose that the failure rate function rðtÞ is bathtub-shaped and
differentiable. Let the set B1 be

B1 � b� 0 : rð1Þ
Z1

aðbÞ

exp � K tð Þ � K aðbÞð Þ½ �f gdt

8><
>: � 1

[
1

cf � ca

"
ca þ cs exp K qðbÞð Þf g � 1½

#

þc0

Zb

0

exp �
"
K qðtÞð Þ � K qðbÞð Þ

#( )
dt

3
5
9=
;;

and B2 � 0; 1½ ÞnB1. Furthermore, let a�1ðt1Þ � 0 be the unique solution of the
equation aðtÞ ¼ t1. Then the properties of the optimal accelerated burn-in time b�

and replacement policy T� can be stated in detail as follows:

Case 1. B1 ¼ 0;1½ Þ; B2 ¼ /. Let T�ðbÞ be the unique solution of the equation

r aðbÞ þ Tð Þ
ZaðbÞþ T

aðbÞ

exp � K tð Þ � K aðbÞð Þ½ �f gdt þ exp � K aðbÞ þ Tð Þ � K aðbÞð Þ½ �f g � 1

¼ 1
cf � ca

"
ca þ cs exp K qðbÞð Þf g � 1½ � þ c0

Zb

0

exp � K qðtÞð Þ � K qðbÞð Þ½ �f gdt

#
:

ð7:26Þ

Then the optimal ðb�; T�Þ ¼ ðb�; T�ðb�ÞÞ, where 0 � b� � a�1ðt1Þ, is the value
which satisfies aðb�Þ þ T�ðb�Þ ¼ min

0 � b � a�1ðt1Þ
aðbÞ þ T�ðbÞð Þ.

Case 2. B1 ¼ /; B2 ¼ 0; 1½ Þ. In this case, the optimal ðb�; T�Þ ¼ ðb�; 1Þ,
where 0 � b� � a�1ðt1Þ is the value which satisfies

1
lðaðb�ÞÞ cf þ cs exp K qðb�Þð Þf g � 1½ � þ c0

Zb�

0

exp � K qðtÞð Þ � K qðb�Þð Þ½ �f gdt

2
4

3
5

¼ min
0 � b � a�1ðt1Þ

1
l aðbÞð Þ

"
cf þ cs exp K qðbÞð Þf g � 1½ � þ c0

Zb

0

exp � K qðtÞð Þ � K qðbÞð Þ½ �f gdt

3
5;

where l aðbÞð Þ is given by
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l aðbÞð Þ �
Z1

aðbÞ

exp � K tð Þ � K aðbÞð Þ½ �f gdt: ð7:27Þ

Case 3. B1 6¼ /; B2 6¼ / For b 2 B1, let T�ðbÞ be the unique solution of the Eq.
(7.26) and let l aðbÞð Þ be given by Eq. (7.27). Furthermore, let b�1 2
½0; a�1ðt1Þ� \ B1 satisfy

aðb�1Þ þ T�ðb�1Þ ¼ min
b � a�1ðt1Þ; b2B1

ðaðbÞ þ T�ðbÞÞ;

and

b�2 2 ½0; a�1ðt1Þ� \ B2

satisfy

1
lðaðb�2ÞÞ

cf þ cs exp K qðb�2Þ
� �� 

� 1
� �

þ c0

Zb�2

0

exp � K qðtÞð Þ � K qðb�2Þ
� �� �� 

dt

2
64

3
75

¼ min
b � a�1ðt1Þ; b2B2

1
l aðbÞð Þ

"
cf þ cs exp K qðbÞð Þf g � 1½ � þ c0

Zb

0

exp � K qðtÞð Þ � K qðbÞð Þ½ �f gdt

3
5:

If

ðcf � caÞr aðb�1Þ þ T�ðb�1Þ
� �

� 1

l aðb�2Þ
� �

"
cf þ cs exp K qðb�2Þ

� �� 
� 1

� �

þ c0

Zb�2

0

exp � K qðtÞð Þ � K qðb�2Þ
� �� �� 

dt

3
75;

then the optimal ðb�; T�Þ is ðb�1; T�ðb�1ÞÞ. Otherwise, the optimal ðb�; T�Þ is
ðb�2; 1Þ.

7.3.2 Model 2

We consider burn-in and replacement model 2: the component is burned-in by the
burn-in procedure C and the block replacement with minimal repair at failure is
applied to the component in field use.

In this case, the long-run average cost rate is given by

cðb; TÞ ¼ 1
T

c0

R b
0

�FAðtÞdt
�FAðbÞ

þ cs
FAðbÞ
�FAðbÞ

" # 
þ cm K aðbÞ þ Tð Þ � K aðbÞð Þ½ � þ cr

!
:

ð7:28Þ
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Then properties of the optimal b� and T� minimizing cðb; TÞ in Eq. (7.28) are
given by the following theorem [8]

Theorem 7.7 Suppose that the failure rate function rðtÞ is bathtub-shaped and
differentiable. Let the set B1 be

B1 � b� 0 :

Z1

aðbÞ

rð1Þ � rðtÞ½ �dt

8><
>:

[
1

cm
cr þ cs exp K qðbÞð Þf g � 1½ �½ þc0

Zb

0

exp � K qðtÞð Þ � K qðbÞð Þ½ �f gdt

3
5
9=
;;

B2 � 0; 1½ ÞnB1 and a�1ðt1Þ � 0 be the unique solution of the equation
aðtÞ ¼ t1. Then the properties of the optimal burn-in time b� and the replacement
policy T� can be stated in detail as follows:

Case 1. B1 ¼ 0; 1½ Þ; B2 ¼ /. Let T�ðbÞ be the unique solution of the equation

Tr aðbÞ þ Tð Þ �
ZaðbÞþT

aðbÞ

rðtÞdt

¼ 1
cm

cr þ cs exp K qðbÞð Þf g � 1½ � þ c0

Zb

0

exp � K qðtÞð Þ � K qðbÞð Þ½ �f gdt

3
5

2
4 :

ð7:29Þ

Then the optimal ðb�; T�Þ ¼ ðb�; T�ðb�ÞÞ, where 0 � b� � a�1ðt1Þ, is the value
which satisfies aðb�Þ þ T�ðb�Þ ¼ min

0 � b � a�1ðt1Þ
aðbÞ þ T�ðbÞð Þ.

Case 2. B1 ¼ /; B2 ¼ 0; 1½ Þ. The optimal ðb�; T�Þ ¼ ðb�; 1Þ, where b� can
be any value in 0; 1½ Þ.

Case 3. B1 6¼ /; B2 6¼ /. For b 2 B1, let T�ðbÞ be the unique solution of the
Eq. (7.29). Then the optimal ðb�; T�Þ ¼ ðb�; T�ðb�ÞÞ, where b� is the value
which satisfies

aðb�Þ þ T�ðb�Þ ¼ min
b � a�1ðt1Þ; b2B1

ðaðbÞ þ T�ðbÞÞ:
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7.3.3 Model 3

We consider burn-in and replacement Model 3: the component is burned-in by the
burn-in procedure B and the block replacement with minimal repair at failure is
applied to the component in field use. Then, obviously, the long-run average cost
rate is given by

cðb; TÞ ¼ 1
T

 
c0b þ csmK qðbÞð Þ½ � þ cm K aðbÞ þ Tð Þ � K aðbÞð Þ½ � þ cr

!
;

ð7:30Þ

The properties of the optimal b� and T� minimizing cðb; TÞ in Eq. (7.30) are
given by the following theorem.

Theorem 7.8 Suppose that the failure rate function rðtÞis bathtub-shaped and
differentiable. Let

B1 � b � 0 :

Z1

b

rð1Þ � rðtÞ½ �dt [
1

cm
cr þ c0b þ csmKðbÞ½ �

8<
:

9=
;;

B2 � 0; 1½ ÞnB1 and a�1ðt1Þ � 0 be the unique solution of the equation
aðtÞ ¼ t1. Then the properties of the optimal burn-in time b� and the replacement
policy T� can be stated in detail as follows:

Case 1. B1 ¼ 0; 1½ Þ; B2 ¼ /. Let T�ðbÞ be the unique solution of the equation

Tr aðbÞ þ Tð Þ �
ZaðbÞþ T

aðbÞ

rðtÞdt ¼ 1
cm

cr þ c0b þ csmK qðbÞð Þ½ �: ð7:31Þ

Then the optimal ðb�; T�Þ ¼ ðb�; T�ðb�ÞÞ, where 0 � b� � a�1ðt1Þ, is the value
which satisfies

aðb�Þ þ T�ðb�Þ ¼ min
0 � b � a�1ðt1Þ

aðbÞ þ T�ðbÞð Þ:

Case 2. B1 ¼ /; B2 ¼ 0; 1½ Þ. The optimal ðb�; T�Þ ¼ ðb�; 1Þ, where b� can
be any value in 0;1½ Þ.

Case 3. B1 6¼ /; B2 6¼ /. For b 2 B1, let T�ðbÞ be the unique solution of the Eq.
(7.31). Then the optimal ðb�; T�Þ ¼ ðb�; T�ðb�ÞÞ, where b� is the value which
satisfies

aðb�Þ þ T�ðb�Þ ¼ min
b � a�1ðt1Þ; b2B1

ðaðbÞ þ T�ðbÞÞ:
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Chapter 8
Burn-in for Heterogeneous Populations

In the previous chapters, we discussed the burn-in procedures for homogeneous
populations. When the failure rate of a population is decreasing or bathtub-shaped
(BT), burn-in can be usually justified. Note that, as mentioned and illustrated
earlier, the heterogeneity of populations is often a reason for the decrease in the
resulting failure rate, at least, in some time intervals (see [4], for the corresponding
discussion and [18], for some general considerations). In this chapter, the optimal
burn-in procedures are investigated without assuming that the population failure
rate is BT. We consider the mixed population composed of two ordered subpop-
ulations—the subpopulation of strong items (items with ‘normal’ lifetimes) and
that of weak items (items with shorter lifetimes). In practice, weak items may be
produced along with strong items due to, for example, defective resources and
components, human errors, unstable production environment, etc. In the later part
of this section, we will also consider the continuous mixtures model.

The shape of the mixture failure rate (and the shapes of subpopulation failure
rates for the heterogeneous case) will play a crucial role in optimal burn-in
problems discussed in this chapter. The mixture failure rate for two ordered
subpopulations was intensively studied in the literature. For instance, as was
mentioned in Sect. 5.1, Gupta and Warren [19] show that the mixture of two
gamma distributions with increasing failure rates (IFRs) (with the same scale
parameter) can result either in the increasing mixture failure rate or in the modified
bathtub (MBT) mixture failure rate (it increases initially and then behaves like a
bathtub failure rate). Similar shapes occur for mixtures of two Weibull distribu-
tions with IFRs [22]. Navarro and Hernandez [31] state that the mixture failure rate
of two truncated normal distributions, depending on the parameters involved, can
also be increasing, BT-shaped or MBT-shaped. Block et al. [5] give explicit
conditions describing the possible shapes of the mixture failure rate for two
increasing linear failure rates, which are: IFR, BT, and MBT (for the noncrossing
linear failure rates).

The shape of the mixture failure rate defines the shape of the mean remaining
lifetime (MRL) function, which is also very important for various burn-in problems.
If, e.g., it increases (decreases), then the MRL decreases (increases). Another useful

M. Finkelstein and J. H. Cha, Stochastic Modeling for Reliability,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-5028-2_8,
� Springer-Verlag London 2013
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result states (see, e.g., [17]) that, if the failure rate is UBT (upside down BT) and the
derivative of the MRL function at t ¼ 0 is positive (negative), then the corre-
sponding MRL is increasing (decreasing). The ‘symmetrical’ statement also holds
for the BT shape of the failure rate (see also Chap. 2 and the following section for
the corresponding discussion).

Our goal of this chapter is to consider optimization of various characteristics of
the performance quality of items after burn-in. This will be done for the case
when the component’s lifetime distribution function is a mixture of two distri-
butions. The case of continuous mixtures will also be considered. It is well known
that when the failure rate of a component is increasing, there is no need to perform
the burn-in procedure and only when it is decreasing or nonmonotonic (e.g., BT)
there is a possibility for burn-in. This reasoning is usually valid only for homo-
geneous populations. However, when we deal with heterogeneous populations and
the subpopulations are described not only by their failure rates but also by different
quality of performance, the situation can be dramatically different. For example,
burn-in can be justified even for IFRs! Note that, the precise probabilistic analysis
of these problems is usually very complex and, therefore, in this chapter, we
mainly concentrate on the qualitative analysis with the corresponding examples.

Furthermore, when we are dealing with heterogeneous populations, there exist
the risks of selecting the items with poor reliability characteristics (i.e., with large
failure rates), and this cannot be described in the framework of the average quality.
In this regard, we will also consider the burn-in procedures aiming at the mini-
mization of these risks in this chapter. For dealing with this problem, we introduce
the new measures of quality that govern the corresponding optimal burn-in pro-
cedures. While presenting the contents of this chapter, we will mostly follow our
recent publications: Cha and Finkelstein [10–14].

8.1 Discrete Mixtures

8.1.1 Ordered Subpopulations and the Effect of Burn-in

Denote the lifetime of a component from the strong subpopulation by XS and its
absolutely continuous cumulative distribution function (Cdf), probability density
function (pdf), and the failure rate function by F1ðtÞ; f1ðtÞ and k1ðtÞ, respectively.
Similarly, the lifetime, Cdf, pdf, and the failure rate function of a weak component
are XW ; F2ðtÞ; f2ðtÞ and k2ðtÞ, accordingly. Let the lifetimes in these subpopula-
tions be ordered in the sense of the usual stochastic ordering (Shaked and
Shantikhumar 2006):

�F1ðtÞ � �F2ðtÞ; for all; t � 0: ð8:1Þ

where �FiðtÞ ¼ 1� FiðtÞ; i ¼ 1; 2; or in the sense of the failure rate ordering
(Sect. 2.8):
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k1ðtÞ � k2ðtÞ; t � 0: ð8:2Þ

The composition of our mixed (infinite) population is as follows: the proportion of
strong items is p, whereas the proportion of weak items is 1� p. Then the mixture
(population) survival function, in accordance with (5.1–5.3), is

�FmðtÞ ¼ p�F1ðtÞ þ ð1� pÞ�F2ðtÞ; ð8:3Þ

and the mixture failure rate is

kmðtÞ ¼
pf1ðtÞ þ ð1� pÞf2ðtÞ

p�F1ðtÞ þ ð1� pÞ�F2ðtÞ
:

In ‘field use’, a component that is picked up at random (at time 0) from the
population and that has survived the burn-in time b has the following survival
function:

�FmðtjbÞ ¼ pðbÞ�F1ðtjbÞ þ ð1� pðbÞÞ�F2ðtjbÞ; ð8:4Þ

where �FiðtjbÞ ¼
�FiðbþtÞ
�FiðbÞ ; i ¼ 1; 2, is the corresponding remaining lifetime distri-

bution whereas the proportions of strong and weak components in the survived
population are given by [17]

pðbÞ ¼ p�F1ðbÞ
p�F1ðbÞ þ ð1� pÞ�F2ðbÞ

; 1� pðbÞ ¼ ð1� pÞ�F2ðbÞ
p�F1ðbÞ þ ð1� pÞ�F2ðbÞ

: ð8:5Þ

The mixture failure rate that corresponds to (8.4) is

kmðtjbÞ ¼ pðtjbÞk1ðbþ tÞ þ ð1� pðtjbÞÞk2ðbþ tÞ;

where pðtjbÞ and 1� pðtjbÞ are the posterior proportions, which are given by

pðtjbÞ ¼ pðbþ tÞ; 1� pðtjbÞ ¼ 1� pðbþ tÞ:

Therefore,

kmðtjbÞ ¼ kmðt þ bÞ;

which is, in fact, intuitively obvious.
It is clear that due to (8.1), for all b � 0 that

pðbÞ ¼ p�F1ðbÞ
p�F1ðbÞ þ ð1� pÞ�F2ðbÞ

¼ p
pþ ð1� pÞ�F2ðbÞ=�F1ðbÞ

� p; and; 1� pðbÞ � 1� p: ð8:6Þ

This inequality means that the quality of the sample has improved as more weak
items than strong ones have failed in ½0; bÞ. It is clear that when ordering (8.2)
holds �F2ðbÞ=�F1ðbÞ in (8.6) is decreasing in b and pðbÞ is increasing in b. (Note
that, ordering (8.1) is not sufficient for the latter statement.) Therefore, burn-in can
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be justified as an operation improving the quality of the population, as it increases
the proportion of strong items. However, the question arises, at what cost? We will
address this question later in this section.

It is well known that, if kiðtÞ is nonincreasing in t; i ¼ 1; 2, then kmðtjbÞ ¼
kmðt þ bÞ is a decreasing function of its argument and therefore, decreases in b for
all fixed t � 0 as well (the mixture failure rate of distributions with decreasing
failure rates is also decreasing). Thus, burn-in decreases the failure rate (increases
the MRL). The simplest example of this property is given by the following
example.

Example 8.1 Let k1ðtÞ ¼ k1; t � 0; and; k2ðtÞ ¼ k2; t � 0; k2 [ k1. Then

kmðtÞ ¼ pðtÞk1ðtÞ þ ð1� pðtÞÞk2ðtÞ

¼ pe�k1t

pe�k1t þ ð1� pÞe�k2t
k1 þ

ð1� pÞe�k2t

pe�k1t þ ð1� pÞe�k2t
k2;

which is a decreasing function and therefore kmðt þ bÞ is decreasing in b for all
fixed t � 0.

Example 8.1 shows that burn-in of items from mixed populations (with non-
IFRs of subpopulations) not only increases the proportion of strong items, but also
decreases the mixture failure rate and therefore, it is obviously justified. However,
in the next subsection, we will see that burn-in can be justified even when the
failure rates of subpopulations are increasing.

8.1.2 Optimal Burn-in Time for Performance
Quality Measures

In this subsection, using general settings and simple illustrative examples, we will
briefly describe the burn-in procedures, which maximize several performance
quality characteristics of items. However, our main interest will be focused on
optimal burn-in that minimizes average costs taking into account possible gains
during a mission time. This case is considered in more detail in the last part.

8.1.2.1 Maximization of the Success Probability of a Mission

Let the time required for performing a mission by a component (system) from our
heterogeneous population (that had survived burn-in during time b) be a constant
and denote it by s. Then the probability of performing this mission, which is
understood as the mixture survival function, is �FmðsjbÞ and �Fmð�jbÞ is given by
(8.4). It is obvious that this probability is strictly decreases in b, if the mixture
failure rate function kmðtÞ strictly increases.
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Assume now that it takes a random time Y1 ðY2Þ for a strong (weak) component
to complete a mission, where Yi is a random variable with the cdf GiðyÞ and the pdf
giðyÞ; i ¼ 1; 2. It is also natural to assume that it takes more time for a weak
component to perform a mission than for a strong component due to the difference
in the performance quality for two subpopulations. This, e.g., can be expressed as
the corresponding stochastic ordering:

Y1� st Y2
�G1ðyÞ � �G2ðyÞ; y � 0ð Þ:

Then the probability of performing a mission is defined by

PðbÞ � pðbÞ
Z1

0

�F1ðyjbÞg1ðyÞdyþ ð1� pðbÞÞ
Z1

0

�F2ðyjbÞg2ðyÞdy: ð8:7Þ

It is practically impossible to describe monotonicity properties of PðbÞ analytically
in this general form. However, some useful qualitative considerations can be
helpful. As it was previously stated, the proportion of strong items pðbÞ increases
in b. However, it does not guarantee that PðbÞ also increases, because the survival
functions �FiðyjbÞ; i ¼ 1; 2 can decrease in b (as, e.g., when both failure rates
kiðbþ tÞ are increasing). In this case (i.e., when both �FiðyjbÞ; i ¼ 1; 2, decrease in
b) there still can be a finite b�[ 0 that maximizes the probability PðbÞ (see
Example 8.2). On the contrary, it is obvious from the above considerations that
formally b� ¼ 1 when both failure rates are decreasing (and therefore, the mix-
ture failure rate as well, as in Example 8.1).

Example 8.2 Suppose that k1ðtÞ ¼ t1=2 þ 1:0; t � 0; k2ðtÞ ¼ t1=2 þ 2:6; t � 0, and
p ¼ 1� p ¼ 0:5. Let giðyÞ ¼ mi expf�miyg; y � 0; i ¼ 1; 2, where m1 ¼ 1:0;
m2 ¼ 0:1. In this case, the mixture failure rate function kmðtÞ is given in Fig. 8.1.
As illustrated by this graph (and can be proved analytically), the mixture failure
rate function is strictly increasing. Therefore, the burn-in procedure is not needed,
if we consider only ‘ordinary’ reliability measures for a homogeneous population
described by the same failure rate (e.g., the mean time to failure in field operation

Fig. 8.1 Mixture failure rate
function kmðtÞ (Example 8.2)
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or success probability of a mission). However, as illustrated by Fig. 8.2, the
probability of performing a mission in (8.7) for our heterogeneous population with
different quality of performance functions first increases and then monotonically
decreases with a maximum at some point. For the considered values of parameters,
the optimal burn-in time is b� ¼ 1:59 and the corresponding maximum probability
is Pðb�Þ ¼ 0:277.

Note that, the mixture failure rate in this example is contained between the
failure rates of subpopulations. Ordering (8.2) holds and Fig. 8.1 also illustrates
the well-known fact that the mixture failure rate tends to the failure rate of the
strongest subpopulation as the weakest items are ‘dying out first’ with time [18].

Observe that PðbÞ in (8.7) can be written in a more explicit way as

PðbÞ � pðbÞ
Z1

0

exp �
Zbþy

b

k1ðuÞdu

8<
:

9=
;g1ðyÞdyþ ð1

� pðbÞÞ
Z1

0

exp �
Zbþy

b

k2ðuÞdu

8<
:

9=
;g2ðyÞdy:

By differentiating,

P0ðbÞ ¼ p0ðbÞ
Z1

0

exp �
Zbþy

b

k1ðuÞdu

8<
:

9=
;g1ðyÞdy� p0ðbÞ

Z1

0

exp �
Zbþy

b

k2ðuÞdu

8<
:

9=
;g2ðyÞdy

� pðbÞ
Z1

0

ðk1ðbþ yÞ � k1ðbÞÞ exp �
Zbþy

b

k1ðuÞdu

8<
:

9=
;g1ðyÞdy

� ð1� pðbÞÞ
Z1

0

ðk2ðbþ yÞ � k2ðbÞÞ exp �
Zbþy

b

k2ðuÞdu

8<
:

9=
;g2ðyÞdy:

ð8:8Þ

Fig. 8.2 The probability of
performing given mission
PðbÞ (Example 8.2)
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It follows from (8.8) that when

p0ð0Þ[
p
R1

0 ðk1ðyÞ � k1ð0ÞÞ�F1ðyÞg1ðyÞdyþ ð1� pÞ
R1

0 ðk2ðyÞ � k2ð0ÞÞ�F2ðyÞg2ðyÞdyR1
0

�F1ðyÞg1ðyÞdy�
R1

0
�F2ðyÞg2ðyÞdy

;

ð8:9Þ

PðbÞ increases initially, which means that this is a sufficient condition for the
existence of the finite ðb�\1Þ or the nonfinite (b� ¼ 1) burn-in time. [Note also
that the denominator in (8.9) is positive.] Denote the right-hand side of inequality
(8.9) by B. Numerical computation shows that this sufficient condition holds for
the setting of Example 8.2, that is,

p0ð0Þ ¼ 0:4 [ B ¼ 0:31:

The derivative p0ð0Þ is discussed in more detail in the last part of this subsection.

8.1.2.2 Minimization of the Expected Number of Minimal Repairs
During the Mission Time

Assume now that the components are minimally repairable and the corresponding
quality of performance after burn-in is measured by the expected number of
minimal repairs in the fixed interval (mission time) ½0; s�. This setting (including,
obviously, the relevant costs) can be of practical interest for manufacturers while
assigning the corresponding warranties to their products.

The expected number of minimal repairs during the mission time is given by

pðbÞ
Zs

0

k1ðbþ tÞdt þ ð1� pðbÞÞ
Zs

0

k2ðbþ tÞdt:

As in the previous case, let Y1 and Y2 be random mission times for strong and weak
components, respectively. The assumptions and notation for Y1 and Y2 are the
same as in the previous case. Let MðbÞ be the total number of minimal repairs
during the mission time. Then its expectation is given by

EðMðbÞÞ � pðbÞ
Z1

0

Zy

0

k1ðbþ tÞdtg1ðyÞdyþ ð1� pðbÞÞ
Z1

0

Zy

0

k2ðbþ tÞdtg2ðyÞdy:

Given the parameters, the corresponding optimal burn-in time b� that minimizes
EðMðbÞÞ can be obtained using numerical procedures. It is clear that our general
qualitative considerations of the previous case are also valid and the finite b� can
exist even for populations with IFRs, which was not possible for the homogeneous
case.
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Example 8.3 Consider the same setting as in Example 8.2. Then the graphs for the
corresponding failure rates are the same as those in Fig. 8.1 and the graph for
EðMðbÞÞ is given in Fig. 8.3. In this case, the optimal burn-in time is b� ¼ 3:73
and the minimum expected number of minimal repairs is EðMðb�ÞÞ ¼ 3:31.

8.1.2.3 Maximization of Expected Total Number of Consecutive Jobs
Completed During the Field Operation

Let the components in field operation consecutively perform ‘jobs’ of the same
nature. Assume that the times for completing each job is given by s1 (constant) for
a strong component and s2 (constant) for a weak component, respectively
ðs1 \ s2Þ. Therefore, the different quality of performance of our components is
described in this way.

Let XSb be the lifetime of a strong component which has survived burn-in in
½0; bÞ and XWb be that of a weak component, respectively. Furthermore, let NSb be
the random number of jobs completed by a strong component in field operation.
Then

PðNSb ¼ kÞ ¼ Pðks1 \ XSb � ðk þ 1Þs1Þ ¼ �F1ðks1jbÞ � �F1ððk þ 1Þs1jbÞ; k � 0

and the mean of NSb is given by

EðNSbÞ ¼
X1
k¼0

kPðNSb ¼ kÞ ¼
X1
k¼1

�F1ðks1jbÞ:

Similarly, the mean number of jobs completed by a weak component in field
operation, NWb is given by

EðNWbÞ ¼
X1
k¼0

kPðNWb ¼ kÞ ¼
X1
k¼1

�F2ðks2jbÞ:

Fig. 8.3 The expected
number of minimal repairs
EðMðbÞÞ (Example 8.3)
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Let the number of jobs completed during field operation be NðbÞ. Then its
expectation is

EðNðbÞÞ ¼ pðbÞ
X1
k¼1

�F1ðks1jbÞ þ ð1� pðbÞÞ
X1
k¼1

�F2ðks2jbÞ:

The optimal burn-in time, which maximizes EðNðbÞÞ can be obtained numerically
and again, unlike the homogeneous case, the finite optimal b� can exist even when
k1ðtÞ; k2ðtÞ and the mixture failure rate kmðtÞ are increasing.

Example 8.4 Consider again the same setting as in Example 8.2 with s1 ¼ 0:05
and s2 ¼ 0:5. In this case, the graph for EðNðbÞÞ is given in Fig. 8.4. It can be seen
that the optimal burn-in time is b� ¼ 1:32, and the maximum expected number of
jobs is EðNðb�ÞÞ ¼ 7:31.

8.1.2.4 Gain Proportional to the Mean Time to Failure

We will describe now a model that already takes into consideration the costs and
gains involved. This cost structure (expected costs) accounts for the performance
quality after burn-in and defines gains proportional to the MRL. At first, as in the
homogeneous case, we do not ‘disclose’ the composition of our population and
deal with the observed mixture distribution function. In accordance with this
model, the expected cost function cðbÞ, which accounts for average costs during
and after burn-in is:

cðbÞ ¼ c0ðbÞ � K

R1
b

�FmðuÞdu
�FmðbÞ

; ð8:10Þ

where �Fmð�Þ is given by (8.3), b is the burn-in duration, K is the gain for the unit of
time during the mission time and c0ðbÞ is the average (expected) cost to obtain a

Fig. 8.4 The Average
Number of Jobs EðNðbÞÞ.
(Example 8.4)
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component that has passed burn-in. If the first component fails, then the second
one is tested, etc., until a component passes burn-in.

Denote the cost of a single item by C and if, for simplicity, we assume that the
expected cost of burn-in is just the cost of the failed components then it is easy to
show that

c0ðbÞ ¼ C
1

�FmðbÞ
� 1

� �
¼ CFmðbÞ

�FmðbÞ
;

where 1=�FmðbÞ corresponds to the expected ‘total number of trials’ until the first
success.

Remark 8.1 As it was mentioned, Eq. (8.10), in fact, formulates the problem
exactly like in a homogeneous case, just using the mixture distribution as a gov-
erning one. If, e.g., the MRL,

R1
b

�FmðuÞdu=�FmðbÞ is increasing or initially
increasing and is described, e.g., by the UBT-shape, then the problem of obtaining
the optimal b� that minimizes cðbÞ can be properly formulated. For instance, if the
MRL is UBT with the maximum at some ~b, then the optimal duration of the burn-
in is obviously smaller ðfor c0ðbÞ[ 0Þ : 0 � b�\ ~b. On the other hand, as in the
previous cases, if we use the structure of the population described by the time-
dependent proportion pðbÞ, some other more advanced settings can be considered,
e.g., dealing with the quality of performance (gain), which characterizes each
subpopulation and not the overall population.

Assume that a component from the strong subpopulation is characterized by the
quality (the gain for the unit of time during the mission time) QS, whereas the one
from the weak subpopulation is characterized by QW and QW \ QS. Then the
expected cost in (8.10) is obviously modified to

cðbÞ ¼ c0ðbÞ � QSpðbÞ
R1

b
�F1ðuÞdu
�F1ðbÞ

þ QWð1� pðbÞÞ
R1

b
�F2ðuÞdu
�F2ðbÞ

� �
: ð8:11Þ

When QS ¼ QW ¼ K, as follows from (8.3) and (8.5), Eq. (8.11) reduces to (8.10).
Thus, minimization of cðbÞ can be considered to be a generalization of standard
burn-in approaches.

If, for example, distributions of XS and XW are exponential with parameters
k1 � k2, then it is easy to see that, because QW \ QS, gains increase with b, as
pðbÞ increases with b, whereas c0ðbÞ also increases. Therefore, under suitable
assumptions for parameters there should be a minimum for some b. Similar to the
previous cases, the problem becomes much more interesting when both failure
rates are increasing (see later).

Example 8.5 Let k1 ¼ 0:1; k2 ¼ 1:0; p ¼ 1� p ¼ 0:5;C ¼ 0:1;QS ¼ 10:0 and
QW ¼ 1:0. The corresponding mixture failure rate is given in Example 8.1 and the
expected cost function cðbÞ is plotted in Fig. 8.5. The optimal burn-in time is
b� ¼ 3:16, and the minimum expected cost is cðb�Þ ¼ �0:70.
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Remark 8.2 There can be other problem formulations, e.g., for missions with high
importance (for instance, military). These missions usually need a high level of
quality, whereas the costs are not the issue. Assume, e.g., that the corresponding
requirement for the unit quality is QRðQW \ QR \ QSÞ. Then we must ‘obtain the
proportion’ that satisfies this requirement via the burn-in procedure, i.e.,

pðbÞQS þ ð1� pðbÞÞQW ¼ QR: ð8:12Þ

This equation can be solved with respect to b and the corresponding solution will
define the minimal burn-in time that ‘achieves’ QR.

As in the previous cases, the quality (gains) can change conventional approa-
ches to burn-in problems. To illustrate this, consider the case of increasing,
ordered failure rates: k1ðtÞ � k2ðtÞ; such that the mixture failure rate is also
increasing (or MBT-shaped) and therefore, the conventional burn-in (without
considering different gains for subpopulations) is not needed. However, in our
study, when e.g., QS is sufficiently larger than QW , burn-in can be justified. This is
because, in accordance with (8.11), it can decrease the expected cost due to
improvement in the population proportion quality that can compensate the effect of
the decreasing (in b) remaining lifetime.

First, we present a rather general example with linear failure rates for sub-
populations, where the mixture failure rate can be obtained analytically.

Example 8.6 Block et al. [5]:
Let

k1ðtÞ ¼ ct þ d1; k2ðtÞ ¼ ct þ d2; c [ 0; d2 [ d1

The explicit equation for the mixture failure rate is

kmðtÞ ¼ ct þ d1 þ
ð1� pÞa

p expfatg þ ð1� pÞ ;

where a ¼ d2 � d1. The direct analysis of this function shows that kmðtÞ is
increasing when 0 \ a=

ffiffiffi
c
p
� 2 and it tends to infinity as t increases approaching

ct þ d1, the failure rate of the strongest population.

Fig. 8.5 The expected cost
cðbÞ (Example 8.5)
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Example 8.7 Consider now the specific case of Example 8.6 with c ¼ 1:0;
d1 ¼ 1:0 and d2 ¼ 3:0. Let p ¼ 1� p ¼ 0:5;C ¼ 0:1;QS ¼ 10:0 and QW ¼ 1:0.
The graph of the corresponding mixture failure rate function is given in Fig. 8.6
and of the mixture MRL function, in Fig. 8.7. The expected cost function cðbÞ is
given in Fig. 8.8. The optimal burn-in time is b� ¼ 0:41, and the minimum
expected cost is cðb�Þ ¼ �3:68. As we can see from the graph (and can be shown
analytically as a=

ffiffiffi
c
p
¼ 2), the mixture failure rate is not decreasing in ½0;1Þ and

eventually is converging to the failure rate of the strongest population. In accor-
dance with that, the MRL function is decreasing and therefore, the conventional
burn-in is not relevant, whereas in the case under consideration, the optimal burn-
in time exists.

The general form of gains in (8.11) can be analyzed further. Taking into
account (8.3) and (8.5),

qðbÞ ¼ QS
p
R1

b
�F1ðuÞdu

�FmðbÞ
þ QW

ð1� pÞ
R1

b
�F2ðuÞdu

�FmðbÞ

Fig. 8.6 Mixture failure rate
function kmðtÞ (Example 8.7)

Fig. 8.7 Mean residual
lifetime function (Example
8.7)
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¼
QSp

R1
b

�F1ðuÞduþ QWð1� pÞ
R1

b
�F2ðuÞdu

�FmðbÞ
:

Therefore, the sign of the derivative q0ðbÞ is defined by the sign of

dðbÞ � � �FmðbÞðQSp�F1ðbÞ þ QWð1� pÞ�F2ðbÞÞ

þ fmðbÞ QSp
Z1

b

�F1ðuÞduþ QWð1� pÞ
Z1

b

�F2ðuÞdu

0
@

1
A;

where fmðtÞ ¼ F0mðtÞ. It is difficult to analyze dðbÞ for all values of b � 0, whereas
the specific case b ¼ 0 can be very helpful for our qualitative analysis:

dð0Þ ¼ �ðQSpþ QWð1� pÞÞ þ fmð0Þ QSpE½XS� þ QWð1� pÞE½XW �ð Þ: ð8:13Þ

As fmð0Þ ¼ kmð0Þ, (8.13) can be written as

dð0Þ ¼ QSpðkmð0ÞE½XS� � 1Þ þ QWð1� pÞðkmð0ÞE½XW � � 1Þ: ð8:14Þ

When dð0Þ[ 0, the gains increase (at least, initially), which is an important
distinction from the homogeneous case (8.10), where they decrease, as the MRL is
decreasing for distributions with IFR kmðtÞ. This inequality can hold due to the
following reasoning: first note that, when both failure rates of subpopulations are
ordered, as in (8.2), the mixture failure rate is contained between them. Therefore,
obviously, as the failure rates k1ðtÞ and k2ðtÞ are increasing, inequality
kmð0ÞE½XW � � 1 \ 0 holds, because kmð0Þ\ k2ðtÞ; t � 0, whereas inequality
kmð0ÞE½XS� � 1 [ 0 can still hold (e.g., when kmð0Þ � k1ð0Þ is sufficiently large).
Then, if QS � QW is also sufficiently large, (8.14) is positive and the gains initially
increase. This property can constitute the possibility for the optimal burn-in time
ðb�[ 0Þ.

Fig. 8.8 The expected cost
cðbÞ (Example 8.7)
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Coming back now to Eq. (8.11), consider obtaining a sufficient condition for
the positive optimal burn-in time ðb�[ 0Þ, which minimizes the expected cost
function cðbÞ.

Taking into account that �FiðtÞ ¼ exp �
R t

0 kiðxÞdx
� �

;

c0ðbÞ ¼ c00ðbÞ � QSp
0ðbÞ

Z1

0

exp �
Zbþu

b

k1ðyÞdy

8<
:

9=
;duþ QWp0ðbÞ

Z1

0

exp �
Zbþu

b

k2ðyÞdy

8<
:

9=
;du

þ QSpðbÞ
Z1

0

ðk1ðbþ uÞ � k1ðbÞÞ exp �
Zbþu

b

k1ðyÞdy

8<
:

9=
;du

þ QWð1� pðbÞÞ
Z1

0

ðk2ðbþ uÞ � k2ðbÞÞ exp �
Zbþu

b

k2ðyÞdy

8<
:

9=
;du

Therefore, if

p0ð0Þ[ c00ð0Þ þ QSpð1� k1ð0ÞE½XS�Þ þ QWð1� pÞð1� k2ð0ÞE½XW �Þ
QSE½XS� � QWE½XW �

; ð8:15Þ

then c0ð0Þ\ 0, which implies that cðbÞ is initially decreasing and therefore, the
finite or non-finite b�[ 0 exists.

Moreover, in accordance with (8.5), the derivative p0ð0Þ can be explicitly
written as

p0ð0Þ ¼ pð1� pÞðk2ð0Þ � k1ð0ÞÞ:

This means that increasing k2ð0Þ � k1ð0Þ and QS � QW (for the latter, see the
corresponding discussion of Eq. (8.12)) can eventually lead to the desired
inequality (8.15). It is also clear that pð1� pÞ achieves its maximum at p ¼ 0:5.
Note that, the difference k2ð0Þ � k1ð0Þ is important for defining the initial shape of
the corresponding mixture failure rate [18]. Note also that the sufficient condition
(8.15) is satisfied for Example 8.7 (which should be the case, as the expected cost
function is decreasing in the neighborhood of 0 in Fig. 8.8):

p0ð0Þ ¼ 0:5 [ ~B ¼ 0:31; ð8:16Þ

where ~B denotes the right-hand side of inequality (8.15).

As it was mentioned before, mixtures of IFR functions can also result in the
modified bathtub-shaped (MTB) failure rate function. Even in this case, as illus-
trated by the following example, the MRL function can be strictly decreasing and
therefore, the conventional burn-in should not be performed. However, burn-in in
our setting can be justified even in this case.

Example 8.8 Let k1ðtÞ ¼ 0:2t þ 0:5; t � 0; k2ðtÞ ¼ t þ 1:0; t � 0 and C ¼ 0:1;
QS ¼ 20:0;QW ¼ 1:0. The graph of the mixture failure rate function is given in
Fig. 8.9 and the corresponding MRL and expected cost functions are given in
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Figs. 8.10 and 8.11, respectively. The optimal burn-in time is b� ¼ 1:73 and the
minimal expected cost is cðb�Þ ¼ �16:99.

As in (8.16), the sufficient condition (8.15) can also be easily verified:

p0ð0Þ ¼ 0:125 [ ~B ¼ 0:1242:

The mixture failure rate in this example has the MBT shape (Fig. 8.9), whereas
the MRL function is strictly decreasing (Fig. 8.10), which can be also verified
numerically. Thus, this example shows empirically that the MBT shape of the
failure rate can correspond to the decreasing MRL function. As this fact was not
theoretically studied before, we present here some initial findings.

We start with the well-known result for the BT failure rate that was already
mentioned in the Introduction (see, e.g., [17]):

Let kðtÞ be a differentiable BT failure rate in ð0;1Þ and mðtÞ denote the
corresponding MRL function. If

m0ð0Þ ¼ kð0Þmð0Þ � 1 � 0;

then mðtÞ is decreasing (non-increasing).

Fig. 8.9 Mixture failure rate
function kmðtÞ (Example 8.8)

Fig. 8.10 Mean residual
lifetime function (Example
8.8)
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Coming back to the MBT shape of the failure rate, denote the local maximum
by tm (in Fig. 8.9, it is about 1). Assume that kðtmÞmðtmÞ � 1, which means, in
accordance with the foregoing result, that mðtÞ is decreasing for t � tm, (it obvi-
ously holds for Fig. 8.9). Let us modify the initial failure rate to a constant in
0 � t \ tm and do not change it in tm � t\1. This means that the resulting
failure rate is still the BT and, as kðtmÞ ¼ kð0Þ, we can use the condition
kðtmÞ~mð0Þ � 1 (where ~mð0Þ denotes the corresponding MRL function) as the
characterization of the decreasing property of ~mðtÞ in ð0;1Þ. If this condition
holds for the defined BT shape of the failure rate, the MRL function is decreasing
in ð0;1Þ for any MBT-shaped failure rate that is equal to the given modified
failure rate in t � tm. Indeed, the initial, increasing in 0 � t \ tm segment of the
failure rate obviously ‘additionally contributes to the ‘decreasing property’, as
compared with the flat one. This means that the condition kðtmÞ~mð0Þ � 1 can be
considered as a sufficient one, thus expanding the admissible class of failure rates
to the class of MBT-shaped failure rates ‘constructed’ in the described way. On the
other hand, this condition is rather crude and the real admissible class of the MBT-
shaped failure rates is wider.

8.2 Continuous Mixtures

8.2.1 The Effect of Burn-in

It is well known that continuous mixtures of distributions constitute a useful tool
for describing the heterogeneity of population due to random effect. Consider a
general ‘continuous’ mixing model for a heterogeneous population, i.e.,

FmðtÞ ¼
Z1

0

Fðt; zÞpðzÞdz; fmðtÞ ¼
Z1

0

f ðt; zÞpðzÞdz; ð8:17Þ

Fig. 8.11 The expected cost
cðbÞ (Example 8.8)
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where Fðt; zÞ; f ðt; zÞ are the Cdf and the pdf of subpopulations indexed by the
frailty parameter Z and pðzÞ is the pdf of Z with support in ð0;1Þ. The general
support ½a; bÞ; 0 � a \ b � 1 can be considered as well. Then the mixture (the
observed or the population) failure rate kmðtÞ, in accordance with (5.11, 5.12), is
defined as

kmðtÞ ¼
R1

0 f ðt; zÞpðzÞdzR1
0

�Fðt; zÞpðzÞdz
¼
Z1

0

kðt; zÞpðzjtÞdz; ð8:18Þ

where the conditional density (on condition that the item did not fail in ½0; tÞ) is

pðzjtÞ � pðzÞ
�Fðt; zÞR1

0
�Fðt; zÞpðzÞdz

:

In the next subsection we will need the following lemma, which defines an
expression for the derivative of this density.

Lemma 8.1 The derivative of the conditional density pðzjtÞ with respect to t is

p0ðzjtÞ ¼ pðzjtÞðkmðtÞ � kðt; zÞÞ:

The proof is straightforward as:

p0ðzjtÞ ¼ � f ðt; zÞpðzÞR1
0

�Fðt; zÞpðzÞdz
þ

�Fðt; zÞpðzÞkmðtÞR1
0

�Fðt; zÞpðzÞdz

¼ kmðtÞpðzjtÞ �
f ðt; zÞpðzÞR1

0
�Fðt; zÞpðzÞdz

¼ kmðtÞpðzjtÞ �
kðt; zÞ�Fðt; zÞpðzÞR1

0
�Fðt; zÞpðzÞdz

¼ pðzjtÞðkmðtÞ � kðt; zÞÞ:

h

Denote the Cdfs of pðzÞ and pðzjtÞ by PðzÞ and PðzjtÞ, respectively, and by Zjt
the conditional frailty (on condition that the item did not fail in ½0; tÞ). The fol-
lowing theorem describes monotonicity of PðzjtÞ as a function of t.

Theorem 8.1 Let our subpopulations be ordered in the sense of the failure rate
ordering

kðt; z1Þ � kðt; z2Þ; z1 \ z2; 8z1; z2 2 ½0;1�; t � 0: ð8:19Þ

Then PðzjtÞ is increasing in t for each z [ 0.

Proof As,
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PðzjtÞ ¼
R z

0
�Fðt; uÞpðuÞduR1

0
�Fðt; uÞpðuÞdu

;

it is easy to see that the derivative of this function is positive if
R z

0 F
0ðt; uÞpðuÞduR z

0
�Fðt; uÞpðuÞdu

[

R1
0 F

0ðt; uÞpðuÞduR1
0

�Fðt; uÞpðuÞdu
:

Taking into account that �F0ðt; zÞ ¼ �kðt; zÞ�Fðt; zÞ, it is sufficient to show that
R z

0 kðt; zÞ�Fðt; zÞpðuÞduR z
0

�Fðt; uÞpðuÞdu

is increasing in z, or equivalently, that

kðt; zÞ
Zz

0

�Fðt; uÞpðuÞdu [
Zz

0

kðt; uÞ�Fðt; uÞpðuÞdu;

which immediately follows from (8.19). h

A useful and practically relevant model of ordering (8.19) is the multiplicative
(proportional hazards):

kðt; zÞ ¼ zkðtÞ:

This theorem indicates that the ‘proportion’ of stronger subpopulations (with
smaller failure rates, which corresponds to the smaller values of the frailty
parameter Z) increases as time increases. This property can be very important for
justification of the burn-in procedure, as the ‘quality of population’ in the
described sense (i.e., the proportion of stronger items increases) improves after
burn-in of any duration. But along with this effect, the failure rates of subpopu-
lations can decrease, increase or have a nonmonotonic shape (e.g., bathtub) and
this should be also taken into account for defining and justifying the corresponding
burn-in procedure.

Consider now the burn-in time b. The above relationships should be slightly
adjusted. As follows from (8.17), after burn-in during time b, the component that
is picked up at random from the population that has survived burn-in has the
following survival function in ‘field use’:

�FmðtjbÞ ¼
Z1

0

�Fðt; zjbÞpðzjbÞdz;

where Fðt; zjbÞ ¼ Fðbþt;zÞ
�Fðb;zÞ is the corresponding remaining lifetime distribution. The

mixture failure rate function after burn-in is then expressed as
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kmðtjbÞ ¼ kmðt þ bÞ;

which is, in fact, intuitively obvious.
It is well known that if kðt; zÞ is nonincreasing in t; i ¼ 1; 2, then kmðtjbÞ ¼

kmðt þ bÞ is a decreasing function of its argument and therefore decreases in b for
all fixed t � 0 as well (the mixture failure rate of distributions with decreasing
failure rates is also decreasing). Thus, in this specific case, burn-in is decreasing
the failure rate in field use (increasing the MRL). The simplest example of this
property is:

Example 8.9 Suppose that kðt; zÞ ¼ zk; t � 0, where k is a constant and Z is
exponentially distributed with parameter h. Then by direct integration in (8.18):

kmðtÞ ¼
R1

0 zk expf�zktgh expf�hzgdzR1
0 expf�zktgh expf�hzgdz

¼ k
hþ k t

;

which is a decreasing function. Thus, substituting t þ b instead of t obviously
means that kmðt þ bÞ is decreasing in b for all fixed t � 0.

Thus, as is shown in Example 8.9, burn-in in the case of mixture of subpop-
ulations with non-IFRs not only increases the proportion of the strong subpopu-
lations, but also decreases the mixture failure rate and thus it is obviously justified.
However, in the next subsection, we will see that burn-in may be justified even
when the failure rates of subpopulations and the mixture failure rate are
increasing.

8.2.2 Optimal Burn-in Time for Performance
Quality Measures

Now, we will describe a model that already takes into consideration the costs and
gains involved. This cost structure (expected costs) accounts for the performance
quality after burn-in and defines gains (negative costs) proportional to the MRL.
Other types of cost structures considered in the literature (e.g., [25, 27]) can be
also discussed in a similar way. At first, as in the homogeneous case, we do not
‘reveal’ the composition of our population and deal with the observed mixture
distribution function. Thus, in accordance with this model:

cðbÞ ¼ c0ðbÞ � KmmðbÞ; ð8:20Þ

where

• b the burn-in duration.
• K the gain for the unit of time during the mission time, which has a negative

sign as the equation is formulated in terms of costs.
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• c0ðbÞ the cost to obtain a component that has passed burn-in. If the first com-
ponent fails, then the second one is tested, etc., until a component passes burn-in.

• mmðbÞ ¼
R1

b
�FmðuÞdu

�FmðbÞ is the corresponding mixture MRL after burn-in during the

time b.

Denote the cost of a single item by C, and if, for simplicity, we assume that the
expected cost of burn-in is just the cost of the failed components, then it is easy to
show that

c0ðbÞ ¼ C
1

�FmðbÞ
� 1

� �
¼ CFmðbÞ

�FmðbÞ
; ð8:21Þ

where 1=�FmðbÞ corresponds to the expected ‘total number of trials’ until the first
success. Equation (8.21) can be easily adjusted to the case when there are addi-
tional costs proportional to the duration b (see, e.g., [26, 6]). Obviously, c0ðbÞ is
increasing with b.

Remark 8.3 As it was mentioned, Eq. (8.20), in fact, formulates the problem
exactly like in a homogeneous case, just using the mixture distribution as a gov-
erning one. If, e.g., the MRL, mmðbÞ is increasing or initially increasing in b and is
described, e.g., by the UBT-shape, then the problem of obtaining the optimal b� that
minimizes cðbÞ can be properly formulated. On the other hand, if we use the
structure of the population described by the time-dependent pðzjbÞ, some other more
advanced settings can be considered, e.g., dealing with the quality of performance
(gain), which characterizes each subpopulation and not the overall population.

Assume now that a component from the strong subpopulation is characterized
by the quality (the gain for the unit of time during the mission time), QðzÞ also
indexed by the frailty parameter Z. Assume also that this function is decreasing:
the larger values of Z (weaker items) correspond to the smaller values of gains,
which is a realistic assumption at many instances. Then (8.20) is modified:

cðbÞ ¼ c0ðbÞ �
Z1

0

QðzÞ
R1

b
�Fðu; zÞdu
�Fðb; zÞ pðzjbÞdz

¼ c0ðbÞ �
R1

0 QðzÞ
R1

b
�Fðu; zÞdupðzÞdzR1

0
�Fðb; zÞpðzÞdz

: ð8:22Þ

whereas the time-dependent case Qðz; tÞ corresponds to:

cðbÞ ¼ c0ðbÞ �
Z1

0

R1
0

R u
0 Qðz; bþ tÞdt f ðbþ u; zÞdu

�Fðb; zÞ pðzjbÞdz

¼ c0ðbÞ �
R1

0

R1
b

R bþu
b Qðz; tÞdt f ðu; zÞdupðzÞdzR1

0
�Fðb; zÞpðzÞdz

:
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When QðzÞ ¼ K, as follows from (8.19), Eq. (8.22) reduces to (8.20). Thus
minimization of cðbÞ can be considered to be a generalization of standard burn-in
approaches. For simplicity, we will proceed further with a not ‘time-constant case’
(8.22).

If the quality lower than some level Q0 due to some reasons is not acceptable
and therefore corresponding realizations should not contribute to the expected
quality, then we must set:

~QðzÞ ¼
QðzÞ; z � z0

0; z [ z0

(
ð8:23Þ

where z0 is obtained from the equation QðzÞ ¼ Q0, which has a unique solution as
QðzÞ is strictly decreasing in z.

If, e.g., Fðt; zÞ is an exponential family of distributions: kðt; zÞ ¼ zk; t � 0,
then it is easy to see that gains increase with b as QðzÞ is decreasing and the
proportion of subpopulations with small values of frailties is increasing with b.
Therefore, under suitable assumptions for parameters there should be a minimum
for some b for the expected costs function cðbÞ:

b� ¼ arg inf
b2½0;1�

cðbÞ:

Obviously, monotonicity properties of cðbÞ are defined by its derivative. As the
costs c0ðbÞ are increasing, its derivative is positive.

Theorem 8.2 The derivative of expected costs (8.22) is given by the following
relationship:

c0ðbÞ ¼ c00ðbÞ �
Z1

0

QðzÞ½mðb; zÞkmðtÞ � 1�pðzjbÞdz; ð8:24Þ

where mðt; zÞ ¼
R1

b
�Fðt; zÞdu=�Fðb; zÞ is the MRL for the subpopulation with frailty

z.

Proof Using this notation the first line in (8.22) can be written as

cðbÞ ¼ c0ðbÞ �
Z1

0

QðzÞmðb; zÞpðzjbÞdz: ð8:25Þ

Using Lemma 8.1:

c0ðbÞ ¼ c00ðbÞ �
Z1

0

QðzÞ½m0ðb; zÞpðzjbÞ þ mðb; zÞpðzjbÞðkmðbÞ � kðb; zÞÞ�dz

and the well-known equality m0ðtÞ ¼ kðtÞmðtÞ � 1 describing the link between
the MRL and the failure rate, we obtain (8.24):
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c0ðbÞ ¼ c00ðbÞ �
Z1

0

QðzÞ½kðb; zÞmðb; zÞ � 1þ mðb; zÞðkmðbÞ � kðb; zÞÞ�pðzjbÞdz

¼ c00ðbÞ �
Z1

0

QðzÞ½mðb; zÞkmðbÞ � 1�pðzjbÞdz:

h

Using this theorem, we can further analyze the derivative of expected gains.
First, note that when QðzÞ � K, as it should be, we arrive at the derivative of gains
(heterogeneous case) that corresponds to the setting defined by Eq. (8.20) for the
homogeneous case:

dðbÞ �
Z1

0

QðzÞ½mðb; zÞkmðbÞ � 1�pðzjbÞdz

¼ KðkmðbÞmmðbÞ � 1Þ ¼ Km0mðbÞ;

where

mmðtÞ ¼
Z1

0

mðt; zÞpðzjtÞdz;

which, similar to (8.18), defines the mixture (population) MRL. If we assume that
the mixture failure rate is increasing, then m0mðtÞ � 0 (expected gains are decreasing
with time) and the burn-in obviously should not be performed in this case.

What happens now when QðzÞ is a decreasing function? In this case, QðzÞ can be
considered as a kind of weight that gives higher values of performance measure to
stronger subpopulations with smaller values of z and therefore, to smaller values of
kðt; zÞ (larger values of mðt; zÞ). Thus, depending on parameters, the inequality
dðbÞ[ 0 can hold even for the case of increasing mixture failure rates. To illustrate
this statement, assume that the mixture failure rate and the subpopulations failure
rates are increasing in time and that kmð0Þ 6¼ 0. Therefore, mmðtÞkmðtÞ � 1\0. Let,
e.g., b ¼ 0. Let QðzÞ in (8.23) be a step function: QðzÞ ¼ K for 0\z � z0, and z0

can be chosen ‘as small as we wish’. In fact, we must show that

dð0Þ ¼ K

Zz0

0

½mð0; zÞkmð0Þ � 1�pðzÞdz

¼ K kmð0Þ
Zz0

0

mð0; zÞpðzÞdz� PðZ � z0Þ

2
4

3
5 [ 0:

Note that, as populations are ordered, mð0; zÞ is decreasing in z and therefore,
mmð0Þ\ mð0; 0Þ. The inequality dð0Þ [ 0 holds for the sufficiently small z0, for
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which inequality kmð0Þmð0; z0Þ � 1 [ 0 (the corresponding lower bound
approximation) is satisfied. The sufficient condition for that is kmð0Þmð0; 0Þ �
1 [ 0 (although m0ðtÞ ¼ mmðtÞkmðtÞ � 1 \ 0!). It is easy to see that this condition
is satisfied for the important and widely used proportional hazards model
kðt; zÞ ¼ zkðtÞ; t � 0, as mð0; z0Þ ! 1 for z0 ! 0 (see Example 8.10 of the
next subsection).

Remark 8.4 If the lower bound of the support of pðzÞ is not 0, but a [ 0, the
above reasoning is valid, as for sufficiently small z0, the function mð0; aþ z0Þ can
be as close to mð0; aÞ as we wish, and, kmðtÞ [ kðt; aÞ ) mmð0Þ\ mð0; aÞ; t � 0.
Therefore, similar to the case a ¼ 0:

dð0Þ ¼ K

Zaþz0

a

½mð0; zÞkmð0Þ � 1�pðzÞdz [ 0

and the sufficient condition for this inequality to hold is kmð0Þmð0; aÞ � 1 [ 0

Remark 8.5 It is clear that similar results should hold for the exponentially
decreasing quality function QðzÞ ¼ expf�a zg as well (for the sufficiently large a).

The foregoing reasoning can be applied (under stated conditions) to the case
b [ 0. The sufficiently small z0 (or large a) will result in dðbÞ[ 0, but, obviously,
this procedure is not uniform, as the larger values of b require the smaller (larger)
values of z0ðaÞ.

An obvious sufficient condition for the existence of the finite (or nonfinite)
optimal burn-in time is

c00ð0Þ\
Z1

0

QðzÞ½mð0; zÞkmð0Þ � 1�pðzÞdz

¼ kmð0Þ
Z1

0

QðzÞmð0; zÞpðzÞdz�
Z1

0

QðzÞpðzÞdz: ð8:26Þ

Clearly, this condition is rather strong and, e.g., does not hold for the first example
in the next subsection, although the optimal burn-in time exists.

8.2.3 Examples

It is tempting to use the setting of Example 8.9 for the simplest illustration, but the
mixture MRL in this case is nonfinite. Indeed, the mixture failure rate, as follows
from Example 8.9, (when t!1) tends to the failure rate of the Pareto distri-
bution of the form 1� t�1, which does not have the finite first moment. Other cost
structures (defined, e.g., by gains during the fixed interval of mission time) can be
considered in this case.
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We will describe, first, a meaningful example when the subpopulations failure
rates and the mixture failure rate are increasing and therefore, the conventional
burn-in should not be performed, whereas considering the quality of performance
function changes the situation and justifies the necessity of burn-in.

Example 8.10 Consider the truncated extreme value distribution (Gompertz)
defined in a following way:

�Fðt; zÞ ¼ expf�z kðexpftg � 1Þg; t � 0;

kðt; zÞ ¼ zk expftg;

where k [ 0 is a constant. As in Example 8.9, let Z be exponentially distributed
with parameter h (proportional hazards model discussed in the previous section)
Direct integration [17] gives

Z1

0

f ðt; zÞpðzÞdz ¼
Z1

0

z k expftg expf�z kðexpftg � 1Þgh expf�h zgdz

¼ h k expftg
x2

; x ¼ k expftg � k þ h;

Z1

0

�Fðt; zÞpðzÞdz ¼ h
Z1

0

expf�xzgdz ¼ h
x
:

Eventually, using definition (8.18):

kmðtÞ ¼
k expftg

x
¼ 1þ k � h

k expftg � k þ h
:

Let k \ h. Then kmðtÞ is monotonically increasing asymptotically converging to
1. Thus, the baseline failure rate k expftg and the mixture failure rate kmðtÞ are
increasing, whereas mmðtÞ is decreasing. However, the gains in (8.25):

Z1

0

QðzÞmðb; zÞpðzjbÞdz ¼
R1

0 QðzÞ
R1

b
�Fðu; zÞdupðzÞdzR1

0
�Fðb; zÞpðzÞdz

;

as was discussed in the previous section, for the sufficiently rapidly decreasing QðzÞ
can increase (at least initially) which constitutes the possibility of the optimal burn-
in time b�. This is illustrated by the following specific case: QðzÞ ¼ 10 exp

f�10zg; z � 0;C ¼ 0:1; k ¼ 0:1 and h ¼ 1:0. Observe that c00ð0Þ ¼ C � fmð0Þ, and

c0ð0Þ ¼ c00ð0Þ � kmð0Þ
Z1

0

QðzÞmð0; zÞpðzÞdzþ
Z1

0

QðzÞpðzÞdz ¼ 0:49 [ 0:
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Thus, the condition (8.26) is not satisfied. However, as is shown in Fig. 8.12,
there is a positive optimal burn-in time.

By numerical search, the optimal burn-in time and minimum cost is b� ¼ 4:95
and cð4:95Þ ¼ �6:48.

Example 8.11 Assume now that we have time constraints on the duration of burn-
in: b � bc. Consider the case of the UBT shape of the corresponding mixture
failure rate in conventional Model (8.20). It is well known (see, e.g., [17]), that if

m0mð0Þ ¼ kmð0Þmmð0Þ � 1 � 0

then the MRL has a bathtub shape and the corresponding gains initially decrease.
Therefore, if the interval, where the gains decrease (although they can increase
afterward), is larger than bc then burn-in is not usually performed, as the overall
cost function cðbÞ (monotonic or nonmonotonic in ½0; bcÞ) is initially increasing
and has a minimum at b ¼ 0. However, considering Model (8.22) with the rapidly
decreasing QðzÞ can change this decision as a minimum can be achieved at b ¼ bc

(burn-in is justified).
For illustration of the foregoing reasoning, consider the mixture of the Weibull

distributions with linearly IFRs: kðt; zÞ ¼ 2z t, then, again assuming that the frailty
Z is exponentially distributed with parameter h, it is easy to show that

kmðtÞ ¼
2t

hþ t2
:

This function is equal to zero at t ¼ 0 and tends to zero as t!1 with a single

maximum at t ¼
ffiffiffi
h
p

(BT shaped, as m0mð0Þ ¼ �1 � 0).
Let QðzÞ ¼ expf�10zg; z � 0;C ¼ 0:1, and h ¼ 1:0; bc ¼ 1. Figure 8.13

shows that cðbÞ is initially slightly increasing and then decreasing in interval
ð0; bcÞ, with a minimum at bc, and therefore, burn-in is justified: b� ¼ bc.

On the other hand, Fig. 8.14 shows cðbÞ for the conventional case
(QðzÞ ¼ K ¼ 1 and all other parameters are the same), with a minimum in ð0; bcÞ

Fig. 8.12 Cost function cðbÞ
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at b ¼ 0. Therefore, burn-in is not justified. Note that, as it should be expected, the
function QðzÞ has also changed the initial shape of cðbÞ from ‘rapidly increasing’
to ‘slightly increasing’.

8.3 Burn-in for Minimizing Risks

8.3.1 Burn-in for Avoiding Large Risks: Discrete Mixture

In this subsection, we consider burn-in for avoiding large risks (or losses) that can
occur during important missions. Most of the references on burn-in consider items
from homogeneous populations. Although a few studies on optimal burn for
heterogeneous population have been performed (e.g., [2, 3, 10–12, 15]), all of
them were considering the mixture failure rate as a characteristic of population
quality. However, the mixture (population) failure rate (at each time instant) is the
expectation of the failure rates of subpopulations (see later). Therefore, as usual in

Fig. 8.13 Cost function cðbÞ

Fig. 8.14 Cost function cðbÞ
for K ¼ 1
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statistical analysis, dealing with expectations only is not the best approach,
especially when substantial risks and losses are involved. In this section, we depart
from the conventional reasoning and model the burn-in procedures that minimize
the risks that occur due to choosing items with large individual failure rates. As our
population is heterogeneous (before and after burn-in), these risks always exist.

Consider the case of n ¼ 2 subpopulations (that can be generalized to the
arbitrary finite n). Denote the lifetime of a component from the ‘strong subpop-
ulation’ by TS and its absolutely continuous Cdf, pdf, and the failure rate function
by F1ðtÞ; f1ðtÞ and k1ðtÞ, respectively. Similarly, the lifetime, the Cdf, pdf, and the
failure rate function of the ‘weak’ component are TW ;F2ðtÞ; f2ðtÞ and k2ðtÞ,
accordingly. Definitions of the strong and weak subpopulations will be given after
introducing the corresponding notation. The initial ðt ¼ 0Þ composition of our
mixed population is as follows: the proportion of the strong items is p, whereas the
proportion of the weak items is 1� p, which means that the distribution of the
discrete frailty Z with realizations z1 and z2 in this case is

pðzÞ ¼
p; z ¼ z1

1� p; z ¼ z2

(
;

where the values z1; z2ðz1\z2Þ, correspond to the strong and the weak subpopu-
lations, respectively. As previously [see Eq. (8.3)], the mixture (population) sur-
vival function is

�FmðtÞ ¼ p�F1ðtÞ þ ð1� pÞ�F2ðtÞ;

whereas the mixture failure rate is defined as

kmðtÞ ¼
pf1ðtÞ þ ð1� pÞf2ðtÞ

p�F1ðtÞ þ ð1� pÞ�F2ðtÞ
¼ p1ðtÞk1ðtÞ þ p2ðtÞk2ðtÞ;

where the time-dependent probabilities are

p1ðtÞ ¼
p�F1ðtÞ

p�F1ðtÞ þ ð1� pÞ�F2ðtÞ
; p2ðtÞ ¼

ð1� pÞ�F2ðtÞ
p�F1ðtÞ þ ð1� pÞ�F2ðtÞ

:

Assume further that our populations are ordered (and therefore, the weak and the
strong subpopulations are defined accordingly) in the sense of the failure rate
ordering:

k2ðtÞ � k1ðtÞ; t � 0:

It can be shown [10] that, in this case, the proportion of strong items p1ðtÞ is
increasing in t, which is important for our further reasoning.

For illustration and motivation of our further reasoning, consider now the
mixture of two distributions with decreasing and IFRs given in Fig. 8.15.

In Fig. 8.15, the proportion of items from the strong subpopulation is 0:80 and
that from the weak subpopulation is 0:20 (see also Example 8.12). The mixture
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failure rate in this case strictly increases and therefore, there is no need for burn-in
from the conventional perspective. However, the situation is more complex when
we consider the corresponding risks. Suppose that, at time t ¼ 0 (without applying
burn-in), we choose an item from the above mixed population for a field usage.
If we select a weak item, then its failure rate is k2ðtÞ, which is substantially larger
than k1ðtÞ. Therefore, it can result in the unsatisfactory reliability performance. For
instance, for the mission time s, the probability PðTW [ sÞ can be substantially
smaller than PðTS [ sÞ (see Example 8.12) and this may cause large risk during
usage especially for missions of high importance. We can reduce this risk, if the
proportion of items from the weak subpopulation is substantially decreased. It can
be achieved via the corresponding burn-in, as p2ðtÞ is decreasing in t. As follows
from Fig. 8.15, the population (mixture) failure rate is increasing and therefore, the
quality of the population described by this characteristic is decreasing, whereas at
the same time the risk of selection of the weak item is decreasing. The joint
consideration of the corresponding gains and losses can help to answer to the
question: to perform or not to perform burn-in.

Let us formalize now the corresponding measure based on the above reasoning.
Suppose that the item is operable at time t [ 0 (during field operation). For an item
from the weak population, the risk of instantaneous failure is obviously larger than
that from the strong one. Therefore, a larger penalty (loss) should be imposed to
the item with a larger risk. This allows us to define the following ‘‘point loss’’ at
time t for the subpopulation i:

LiðtÞ ¼ gðkiðtÞÞ; i ¼ 1; 2;

where gð�Þ is a strictly increasing function of its argument. Let s be the usage
(mission) time for our components. As the above point loss varies during the
mission time, it should be averaged, i.e.,

R s
0 LiðtÞdt

s
¼
R s

0 gðkiðtÞÞdt

s
; i ¼ 1; 2:

Fig. 8.15 The mixture
failure rate for two
subpopulations
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As the selection of a component from a heterogeneous population is made at time
t ¼ 0 and the corresponding proportions are given by pið0Þ; i ¼ 1; 2, the mean loss
for our mixture population (without burn-in) is

X2

i¼1

R s
0 gðkiðtÞÞdt

s
� pið0Þ;where p1ð0Þ ¼ p and p2ð0Þ ¼ 1� p: ð8:27Þ

If the burn-in procedure of duration b is performed, kiðtÞ and pið0Þ in (8.27) should
be replaced by kiðbþ tÞ and piðbÞ, respectively, and the mean loss after burn-in is

WðbÞ �
X2

i¼1

R s
0 gðkiðbþ tÞÞdt

s
� piðbÞ: ð8:28Þ

The gains that are already taken into account by this formula are due to the
increase of the proportion of strong items.

Based on the measure defined above, we consider the following criterion for
obtaining the optimal burn-in time:

Criterion 1 Find b� which minimizes WðbÞ.

Example 8.12 We describe now in more detail the example that corresponds to
Fig. 8.15. Let k1ðtÞ ¼ 1:2� expf�1:2tg þ 0:01t; k2ðtÞ ¼ 1:4 expf�0:08tg þ 1:2þ 0:01t,
with p ¼ p1ð0Þ ¼ 0:80. Suppose that s ¼ 3:0 and gðxÞ ¼ x2. Then WðbÞ is given
by Fig. 8.16.

Therefore, in this case, the optimal burn-in time is b� 	 1:10. The proportion of
strong items after burn-in is now p1ð1:10Þ ¼ 0:97 and therefore, about 85 % (!) of
weak items have been eliminated. This effect increases our gain. On the other
hand, what is the undesirable but inevitable consequence of this operation?
Obviously, it is the increase in the failure rate of the strong items after burn-in. By
sacrificing the ‘quality of the strong subpopulation’, the risk that can be caused by
the weak subpopulation has been substantially reduced.

Fig. 8.16 WðbÞ
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Let MiðbÞ; i ¼ 1; 2, be the mean residual life time of the items in subpopulation
i after the burn-in time b:

MiðbÞ ¼
Z1

0

exp �
Z t

0

kiðbþ uÞdu

8<
:

9=
;dt; i ¼ 1; 2:

Then, similar to (8.28), define the following mean loss after burn-in:

UðbÞ ¼
X2

i¼1

gð1=MiðbÞÞpiðbÞ:

Criterion 2 Find b� which minimizes UðbÞ.

Example 8.12 (Continued) For the setting described above, the corresponding loss
function UðbÞ is given in Fig. 8.17.

Therefore, the optimal burn-in time also exists: b� 	 0:8.
It is interesting also to see how this risk-based criterion works in the cases when

the conventional burn-in approach is applicable (i.e., the mixture failure rate is
initially decreasing). We consider an example, where the mixture failure rate has a
BT failure rate and therefore, the burn-in is justified and the optimal burn-in time
can exist.

Example 8.13 Suppose that k1ðtÞ ¼ 1; 0 � t � 5:0; k1ðtÞ ¼ 0:2ðt � 5Þ þ 1; t [ 5:0,
and k2ðtÞ ¼ k1ðtÞ þ 2; t � 0, with p ¼ p1ð0Þ ¼ 0:7 and 1� p ¼ 0:3. Then the
mixture failure rate kmðtÞ is given in Fig. 8.18.

The failure rate strictly decreases for 0 � t � 5:0 and then it is strictly
increasing. Thus it is BT with one change point, t1 ¼ 5:0. Note that, in conven-
tional burn-in, the optimal burn-in time b�, which optimizes the corresponding
criteria (e.g., MRL, the probability of the successful completion of mission, the

Fig. 8.17 UðbÞ
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expected cost, etc.) for this case is positive and b�\ t1 (See [7, 8] and [25–28]).
Let s ¼ 3:0 and gðxÞ ¼ x2. Then WðbÞ is given by Fig. 8.19.

In this case, the optimal burn-in time is b� 	 2:58.
As was already mentioned, a ‘sort of sacrifice’ takes place for this conventional

setting [without implementing average loss (8.28)] as well. Indeed, as the failure
rates of both subpopulations are initially constant, burn-in shortens these parts and
therefore, makes them ‘worse’ in terms of the failure rate ordering. On the positive
side, the proportion of strong items is increasing and overall the quality of our
population is improving with a maximum achieved at b�.

Remark 8.6 As mentioned before, the mixture setting described in this subsection is
often realized in practice, as items belonging to the ‘weak distribution’ can be
produced along with the items of the ‘strong (main)’ distribution due to the variation
in the quality of resources and components, human errors, unstable production
environment caused by uncontrolled significant quality factors, etc. The experts’
opinions and other prior knowledge can often also be used for identifying the mixture
setting: �FmðtÞ ¼ p�F1ðtÞ þ ð1� pÞ�F2ðtÞ. In many practical situations, this identifi-
cation can be performed using the corresponding density curves (e.g., bimodal) and
percentage failures graphs. The next step is the estimation of p and the corresponding

Fig. 8.18 The mixture
failure rate for two
subpopulations

Fig. 8.19 WðbÞ
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parameters for �F1ðtÞ and �F2ðtÞ from the failure data using various statistical methods.
Plenty of examples and detailed procedures for model setup and parameter esti-
mation in relevant settings can be found in Jensen and Petersen [21], Kececioglu and
Sun [23] and Klugman et al. [24]. For a specific example, the interested reader could
refer to Example 4.2 of Jensen and Petersen [21].

8.3.2 Burn-in for Avoiding Large Risks: Continuous Mixture

Consider now the case of the ‘continuous’ mixture model for a heterogeneous
population, i.e.,

FmðtÞ ¼
Z1

0

Fðt; zÞpðzÞdz; fmðtÞ ¼
Z1

0

f ðt; zÞpðzÞdz;

where Fðt; zÞ � FðtjzÞ; f ðt; zÞ � f ðtjzÞ are the Cdf and the pdf of subpopulations
indexed (conditioned) by the frailty parameter Z and pðzÞ is the pdf of Z with
support in ½0;1Þ. Then the mixture failure rate kmðtÞ, as previously [see Eqs. (5.10
–5.12)], is defined as

kmðtÞ ¼
R1

0 f ðt; zÞpðzÞdzR1
0

�Fðt; zÞpðzÞdz
¼
Z1

0

kðt; zÞpðzjtÞdz;

where the conditional density (on condition that the item did not fail in ½0; tÞ) is

pðzjtÞ � pðzÞ
�Fðt; zÞR1

0
�Fðt; zÞpðzÞdz

: ð8:29Þ

As in the discrete case, let our subpopulations be ordered in the sense of the failure
rate ordering:

kðt; z1Þ � kðt; z2Þ; z1 \ z2; 8z1; z2 2 ½0;1Þ; t � 0:

Continuous mixtures is an effective tool for modeling population heterogeneity
due to randomly changing production environment and other causes of ‘random
effects’ (see also [1]).

For the continuous mixture case, the criteria defined in the discrete case can
obviously be generalized as follows:

Criterion 1C Find b� which minimizes

WðbÞ ¼
Z1

0

R s
0 gðkðbþ t; zÞÞdt

s
� pðzjbÞdz:
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Criterion 2C Find b� which minimizes

UðbÞ ¼
Z1

0

gð1=Mðb; zÞÞpðzjbÞdz;

where Mðb; zÞ is the mean residual life time (for the fixed frailty parameter z) after
the burn-in time b:

Mðb; zÞ ¼
Z1

0

exp �
Z t

0

kðbþ u; zÞdu

8<
:

9=
;dt; z � 0:

Example 8.14 Suppose that kðt; zÞ ¼ 0:1z expf0:1tg þ 0:02t þ 1, and let Z be
exponentially distributed with parameter h. In this case, the mixture failure rate
strictly increases as shown in Fig. 8.20 for the case when h ¼ 0:5. Let s ¼ 3:0 and
gðxÞ ¼ x2. Then WðbÞ is given in Fig. 8.21. It can be seen that the optimal burn-in
time is b� 	 1:11. The frailty distributions before and after burn-in, which are
useful for analysis, are given in Fig. 8.22. From the graphs in Fig. 8.22, the fol-
lowing can be obtained:

Pð1j0Þ 	 0:61;Pð1jb�Þ 	 0:6

Pð2j0Þ 	 0:37; Pð2jb�Þ 	 0:29

Pð3j0Þ 	 0:22;Pð3jb�Þ 	 0:16

Pð4j0Þ 	 0:14; Pð4jb�Þ 	 0:08

Pð5j0Þ 	 0:08; Pð5jb�Þ 	 0:05

Fig. 8.20 kmðtÞ and kðt; zÞ
for z ¼ 0:5; 0:7; 1; 2; 3; 4
and 5
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where PðzjtÞ is the conditional survival function, which corresponds to pðzjtÞ. We
can see that the corresponding frailty distributions are stochastically ordered and
thus the risks of selecting the ‘poor items’ have been decreased.

Applying Criterion 2C, we can obtain the average loss given in Fig. 8.23. As
shown in this figure, there exists the optimal burn-in time b� 	 0:74.

8.3.3 Optimal Burn-in Based on Conservative Measures

Failures of items may often result in the catastrophic or disastrous events. For
example, failures in jet engines of aircrafts or those in gas safety valves may cause
fatal consequences. Similarly, failures during important missions can cause huge
economic loss. In these cases, rather than the ‘average quality’ of the heteroge-
neous population, which (as in the previous sections) we understand as kmðtÞ, it is
reasonable to define the ‘marginal’ quality in the population that refers in some
sense to the ‘‘worst scenario’’. That is, if this marginal quality is still acceptable,
then the quality of our population as a whole should also be considered as satis-
factory. This reasoning can create an alternative approach to the one discussed in

Fig. 8.21 WðbÞ

Fig. 8.22 The CDF’s of the
frailty distribution before and
after burn-in
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the previous subsections. The marginal quality can be used as a conservative
measure (or bound) for the population quality. In this subsection, we consider the
optimal burn-in procedures that optimize the conservative measures for continuous
mixture models.

After burn-in during time b, the components in the population will have the
failure rate kðt þ b; zÞ in accordance with the conditional frailty distribution pðzjbÞ
defined in Sect. 8.3.2. Thus, we can define the following ‘ath worst’ realization of
the ‘residual’ failure rate in the population:

kaðtjbÞ ¼ kðbþ t; zðajbÞÞ; t � 0; ð8:30Þ

where zðajbÞ � inffz :
Q
ðzjbÞ � ag and a is usually close to 1 (e.g., 0.9 or 0.95)

and, as previously, PðzjbÞ is the conditional distribution function, which corre-
sponds to the conditional pdf pðzjbÞ. Accordingly, kaðtjbÞ is the failure rate of an
item that has survived burn-in during time b, which corresponds to the ath per-
centile zðajbÞ of the conditional distribution of frailty

Q
ðzjbÞ. When a is close to 1,

this can be interpreted as the ath worst scenario. Based on the above setting, we
can define the ath worst MRL of the population after the burn-in time b:

MaðbÞ �
Z1

0

exp �
Z t

0

kaðujbÞdu

8<
:

9=
;dt:

Therefore, the following criterion can be applied:

Criterion 3 Determine the optimal burn-in time b� as the minimal burn-in time b,
such that MaðbÞ � mr, where mr is the MRL that corresponds to the ath worst
scenario.

Example 8.15 Consider the continuous mixture of exponentials. Let the condi-
tional failure rate and the mixing distribution be kðt; zÞ ¼ z and pðzÞ ¼ h
expf�hzg, respectively. Then

Fig. 8.23 UðbÞ
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kmðtÞ ¼ E½Zjt� ¼ 1=ðhþ tÞ;

where Zjt � ZjT [ t. Observe that the conditional mixing pdf and Cdf for this case
are

pðzjtÞ ¼ ðhþ tÞ expf�ðhþ tÞzg;

PðzjtÞ ¼ 1� expf�ðhþ tÞzg;

respectively. Therefore,

zðajbÞ ¼ � lnð1� aÞ=ðhþ bÞ; ð8:31Þ

and

kaðtjbÞ ¼ kðbþ t; zðajbÞÞ ¼ � lnð1� aÞ=ðhþ bÞ; t � 0:

For obtaining the optimal burn-in time, we will use Criterion 3 defined above.
Let, for our example, a ¼ 0:9 and mr ¼ 1:25. As kðt; zÞ ¼ z, the corresponding
MRL as a function of the burn-in time b is

MaðbÞ ¼ 1=zðajbÞ ¼ �ðhþ bÞ= lnð1� aÞ; where a ¼ 0:9:

This linear function is given by Fig. 8.24 (h ¼ 1:0).
It follows from this graph that the corresponding optimal burn-in time is

b� 	 1:88.

The conservative measure (8.30) can be modified (generalized) to account for
the average of the lower ð1� aÞ % quality of items among those that have sur-
vived burn-in during time b. Thus, instead of one realization, as previously, we
now define the marginal quality as some average for the corresponding ‘tail’.

The initial conditional frailty distribution after burn-in during time b, [which
corresponds to pðzÞ in (8.29)] for the items with the quality lower than ð1� aÞ % is

Fig. 8.24 MaðbÞ for
a ¼ 0:9; h ¼ 1:0
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pðzjbÞ
1� a

; zðajbÞ � z � 1;

where, as previously, zðajbÞ � inffz :
Q
ðzjbÞ � ag. Accordingly, the conditional

frailty distribution at time t, which corresponds to pðzjtÞ in (8.29), is

paðzjt; bÞ � pðzjbÞ
1� a

�Fðbþ t; zÞ=�Fðb; zÞR1
zðajbÞ

�Fðbþ t; zÞ=�Fðb; zÞ pðzjbÞ
1�a dz

; zðajbÞ � z � 1:

Therefore, after burn-in during time b, the mixture failure rate at time t for the
items in the survived population with the quality lower than ð1� aÞ % is

kmðtjb; aÞ ¼
Z1

zðajbÞ

kðbþ t; zÞpaðzjt; bÞdz:

Example 8.15. (Continued) In this case, Eq. (8.31) holds and

Z1

zðajbÞ

�Fðbþ t; zÞ=�Fðb; zÞ pðzjbÞ
1� a

dz ¼ 1
ð1� aÞ �

hþ b

hþ bþ t
� ð1� aÞ

hþbþt
hþb :

Thus

paðzjt; bÞ � pðzjbÞ
1� a

�Fðbþ t; zÞ=�Fðb; zÞR1
zðajbÞ

�Fðbþ t; zÞ=�Fðb; zÞ pðzjbÞ
1�a dz

¼ ðhþ bþ tÞ � ð1� aÞ�
hþbþt
hþb � expf�ðhþ bþ tÞzg;

and

kmðtjb; aÞ ¼
Z1

zðajbÞ

kðbþ t; zÞpaðzjt; bÞdz ¼ � lnð1� aÞ
hþ b

þ 1
hþ bþ t

; t � 0:

The criterion for burn-in is practically the same as Criterion 3 with a slight
difference that the MRL is calculated not for one realization but for the corre-
sponding ‘‘partial’’ mixture population of items with low quality.

As previously, let a ¼ 0:9 and mr ¼ 1:25. Then we have to obtain the MRL of
the items with the quality lower than ð1� aÞ % at each b, which is given by

Z1

0

exp �
Z t

0

kmðujb; aÞdu

8<
:

9=
;dt ¼

Z1

0

ð1� aÞt=ðhþbÞ � hþ b

hþ bþ t
dt;
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where a ¼ 0:9 and h ¼ 1:0 This approximately linear function is given in
Fig. 8.25.

It follows from this graph that the corresponding optimal burn-in time is
b� 	 2:47 in this case.

8.4 Burn-in for Repairable Items

8.4.1 Basic Setup

In this section, a new burn-in approach for repairable items is proposed and
optimal burn-in procedure is investigated. We consider the mixed population
composed of two ordered subpopulations—the subpopulation of strong items
(items with ‘normal’ lifetimes) and that of weak items (items with shorter life-
times). Based on the information obtained during the burn-in procedure, items are
classified into two groups: one class of items, which is considered to belong to the
strong subpopulation and the other class of items that is believed to belong to the
weak subpopulation. Then the items belonging to the second class are eliminated
(discarded) and only the remaining items are considered to be suitable for the field
operation.

In the first part, we consider two types of risks—(i) the risk that a strong
component will be eliminated during burn-in and (ii) the risk that a weak com-
ponent will pass the burn-in procedure. Optimal burn-in, which minimizes the
weighted average of these risks, is investigated. The second part deals with optimal
burn-in which minimizes the mean number of failures during the given mission
time. It should be emphasized that the obtained optimal burn-in procedure (which
minimizes the mean number of repairs during field usage) is suggested mainly for

Fig. 8.25 The ‘average’
MRL as a function of b for
a ¼ 0:9; h ¼ 1:0

298 8 Burn-in for Heterogeneous Populations



the case when the field mission is very important and the failures (even minimally
repaired) during this mission are very undesirable (e.g., military missions). The
costs incurred during burn-in are usually not so important in this case.

Let the lifetime of a component from the strong subpopulation be denoted by XS

and its absolutely continuous Cdf be FSðtÞ. Similarly, the lifetime and the Cdf of a
weak component is denoted by XW and FWðtÞ, respectively. It is reasonable to
assume that these lifetimes are ordered as:

XW � st XS; ð8:32Þ

which means that (see Sect. 2.8)

FSðtÞ � FWðtÞ; t � 0: ð8:33Þ

These inequalities define a general stochastic ordering between two random
variables. Note that, since the Cdf of an absolutely continuous random variable is a
continuous function that increases from 0 to 1, the relationship defined in (8.33) is
equivalent to the following equation:

FWðtÞ ¼ FSðqðtÞÞ; 8t � 0; ð8:34Þ

where qðtÞ is nondecreasing, qðtÞ � t; 8t � 0, and qð0Þ ¼ 0: Throughout this
section, we assume the stochastic ordering (8.33–8.34). Let rSðtÞ be the failure rate
which corresponds to XS. Then, the failure rate rWðtÞ for XW , as follows from
(8.34), is given by

rWðtÞ ¼ q0ðtÞrSðqðtÞÞ: ð8:35Þ

Another important ordering in reliability applications is the failure (hazard) rate
ordering, which is defined as (see Sect. 2.8)

rSðtÞ � rWðtÞ; t � 0: ð8:36Þ

It can be easily seen that Ordering (8.36) implies (8.32), and therefore, Eq. (8.34)
also holds. A practical specific case of (8.36) is the proportional hazards model that
can be defined in our case as

rWðtÞ ¼ q rSðtÞ; t � 0; ð8:37Þ

where q [ 1. From a practical point of view, (8.37) constitutes a reasonable model
for defining subpopulations of interest. For practical applications, when expo-
nential distribution is assumed, (8.37) turns to:

rW ¼ q rS:

We assume that the proportion of items from the strong subpopulation in the total
population is p. Then the Cdf of the total population is given by the following
mixture:

GðtÞ ¼ pFSðtÞ þ ð1� pÞFSðqðtÞÞ;
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whereas the proportional hazards model (8.37) results in

GðtÞ ¼ pFSðtÞ þ ð1� pÞð1� ð�FSðtÞÞqÞ;

where �F � 1� F.
Furthermore, assume that items are repairable and undergo minimal repair upon

failure (See also [6, 9]).

8.4.2 Optimal Burn-in for Minimizing Weighted Risks

In this subsection, we adopt the following burn-in procedure.

Burn-in Procedure
The item is burned-in during ð0; b� and if the number of minimally repaired
failures during burn-in process NðbÞ satisfies NðbÞ � n, then the item is consid-
ered as one from the strong subpopulation and put into field operation; otherwise,
the item is considered as one from the weak subpopulation and is discarded.

At t ¼ 0 an item from a mixed population is chosen and put into test operation
via burn-in. Upon failure at t ¼ a it is minimally repaired, etc. An item that does
not meet our burn-in criterion is discarded. Therefore, the main goal is to classify
the mixed populations into the weak and strong populations. We assume that the
corresponding minimal repair is, in fact, a physical minimal repair [16] in
the sense that a ‘physical operation’ of repair (not a replacement) brings an item in
the state which is ‘statistically identical’ to the state it had just prior the failure.
Note that, obviously, we do not know whether an item is ‘strong’ or ‘weak’. On the
other hand, the described operation in some sense ‘keeps a memory of that’: if it is,
e.g., ‘strong’, the time to the next failure is distributed as
ðFSðt þ aÞ � FSðaÞÞ=ð1� FSðaÞÞ, etc. An example of this ‘physical operation’ is
when a small realized defect (fault) is corrected upon failure, whereas the number
of the possible inherent defects in the item is large. In practice, physical minimal
repair of the described type can be usually performed and, therefore, our
assumption is quite realistic.

By various practical reasons, the total burn-in time is generally limited.
Therefore, in this section, we assume that the burn-in time is fixed as b. Then the
above burn-in procedure can be defined in terms of n and we find an optimal burn-
in procedure n� which minimizes the appropriately defined risk.

For description of related risks, define the following four events:

• Event F1: the item passes the burn-in process;
• Event F2: the item is eliminated by the burn-in process;
• Event S: the item is from the strong subpopulation;
• Event W: the item is from the weak subpopulation.
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Then

PðF2jSÞ ¼ 1� PðF1jSÞ and PðF1jWÞ ¼ 1� PðF2jWÞ:

Note that PðF2jSÞ is, the so-called, the risk of the first order (the probability that
the strong component is eliminated) and PðF1jWÞ is the risk of the second order
(the probability that the weak component had passed the burn-in). Therefore, our
goal is to minimize these risks. Basically, we have three options:

First, we minimize the first risk PðF2jSÞ not taking into account the second risk.
Then this problem is equivalent to maximizing PðF1jSÞ. In accordance with the
well-known property, the process of minimal repairs is the corresponding non-
homogeneous Poisson process (NHPP). Therefore, taking into consideration our
reasoning with respect to minimal repair:

PðF1jSÞ ¼
Xn

i¼0

ðKSðbÞÞie�KSðbÞ

i!
;

where KSðtÞ �
R t

0 rSðuÞdu is the corresponding cumulative failure rate. Obviously,
the maximum is achieved when n ¼ 1. This is an intuitively clear trivial solution,
as we are not concerned about the other risk and ‘are free’ to minimize PðF2jSÞ.
Therefore, this value can be as close to 0 as we wish. In practice, sometimes this
setting can occur but then the optimal n� should be defined via the corresponding
restrictions on the allocated burn-in resources, burn-in costs, etc.

Second, we minimize PðF1jWÞ without taking the first risk into account. Then
this problem is equivalent to maximizing PðF2jWÞ. In this case,

PðF2jWÞ ¼ 1�
Xn

i¼0

ðKSðqðbÞÞÞie�KSðqðbÞÞ

i!
;

where, as follows from (8.35),

KWðtÞ �
Z t

0

rWðuÞdu ¼
ZqðtÞ

0

rSðuÞdu ¼ KSðqðtÞÞ: ð8:38Þ

The maximum is achieved when n ¼ 0. The corresponding value is

Pn¼0ðF2jWÞ ¼ 1� e�KSðqðbÞÞ;

which means that the second order risk in this case is equal to the probability that
an item from the weaker population will survive the burn-in process without any
failures, which makes a perfect sense.

The previous two options were illustrative, as they are usually nonrealistic in
practice. The appropriate approach should take into account both types of risk.
Therefore, it is reasonable to consider minimization of the weighted risks:
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WðnÞ � w1PðF2jSÞ þ w2PðF1jWÞ
¼ 1� ½w1PðF1jSÞ þ w2PðF2jWÞ�;

where w1 and w2 are the weights satisfying w1 þ w2 ¼ 1. When w1 ¼ 1; w2 ¼ 0,
we arrive at the first considered option, whereas the case w1 ¼ 0; w2 ¼ 1 corre-
sponds to the second one. Furthermore, if w1 ¼ w2 ¼ 1=2, then we should mini-
mize the sum of two risks ½PðF2jSÞ þ PðF1jWÞ� or, equivalently, maximize the
sum of the probabilities of correct decisions ½PðF1jSÞ þ PðF2jWÞ�.

Let n� be the optimal burn-in procedure that satisfies

Wðn�Þ ¼ min
n � 0

WðnÞ: ð8:39Þ

This value is given by the following theorem:

Theorem 8.3 Let 0\wi \ 1; i ¼ 1; 2; and n� be the nonnegative integer which
satisfies (8.39). If

ðKSðqðbÞÞ � KSðbÞÞ þ ðln w1 � ln w2Þ
ln

KSðqðbÞÞ
KSðbÞ

� � \ 1;

then the optimal n� is given by n� ¼ 0, otherwise n�is the largest integer which is
less than or equal to

ðKSðqðbÞÞ � KSðbÞÞ þ ðln w1 � ln w2Þ
ln

KSðqðbÞÞ
KSðbÞ

� � :

Proof Note that the problem is equivalent to the problem of maximizing

UðnÞ � w1PðF1jSÞ þ w2PðF2jWÞ:

Substitution gives:

UðnÞ � w1PðF1jSÞ þ w2PðF2jWÞ
¼ w1PðNðbÞ� njSÞ þ w2PðNðbÞ[ njWÞ

¼ w1

Xn

i¼0

ðKSðbÞÞie�KSðbÞ

i!
þ w2 1�

Xn

i¼0

ðKSðqðbÞÞÞie�KSðqðbÞÞ

i!

 !
:

Observe that, for n � 1,
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UðnÞ � Uðn� 1Þ ¼ w1
ðKSðbÞÞne�KSðbÞ

n!
� w2

ðKSðqðbÞÞÞne�KSðqðbÞÞ

n!
� 0

, eKSðqðbÞÞ�KSðbÞ � w2

w1

KSðqðbÞÞ
KSðbÞ

� �n

, n � ðKSðqðbÞÞ � KSðbÞÞ þ ðln w1 � ln w2Þ
ln

KSðqðbÞÞ
KSðbÞ

� � :

Case 1. Let

ðKSðqðbÞÞ � KSðbÞÞ þ ðln w1 � ln w2Þ
ln

KSðqðbÞÞ
KSðbÞ

� � \1:

Then, there is no positive integer which satisfies

n � ðKSðqðbÞÞ � KSðbÞÞ þ ðln w1 � ln w2Þ
ln

KSðqðbÞÞ
KSðbÞ

� � :

This implies that

UðnÞ � Uðn� 1Þ\ 0; 8n � 1;

and thus we have n� ¼ 0.

Case 2. Let

ðKSðqðbÞÞ � KSðbÞÞ þ ðln w1 � ln w2Þ
ln

KSðqðbÞÞ
KSðbÞ

� � � 1:

Then n� is the largest integer which is less than or equal to

ðKSðqðbÞÞ � KSðbÞÞ þ ðln w1 � ln w2Þ
ln

KSðqðbÞÞ
KSðbÞ

� � :

h

Corollary 8.1 When the specific proportional hazard model (8.37) holds, the
cumulative failure rate in (8.38) can be expressed in a more explicit way:

KWðtÞ ¼
Z t

0

rWðuÞdu ¼ q
Z t

0

rSðuÞdu ¼ qKSðtÞ:
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In this case, if

ðq� 1ÞKSðbÞ þ ðln w1 � ln w2Þ
ln q

\1;

then the optimal n� is given by n� ¼ 0, otherwise n�is the largest integer which is
less than or equal to

ðq� 1ÞKSðbÞ þ ðln w1 � ln w2Þ
ln q

:

Example 8.16 Suppose that the failure rate of the strong subpopulation is given by

rSðtÞ ¼ 2t; t � 0; Weibull Distributionð Þ

and qðtÞ in (8.34) is given by qðtÞ ¼ 3t; t � 0. From (8.35), the corresponding
failure rate of the weak subpopulation is then given by

rWðtÞ ¼ q0ðtÞrSðqðtÞÞ ¼ 18t; t � 0; Weibull Distributionð Þ

and, therefore, the proportional hazards model in (8.37) holds with q ¼ 9. Suppose
further that the burn-in time for this mixed population is given by b ¼ 1:0 and
w1 ¼ 0:8; w2 ¼ 0:2. Then, by Corollary 8.1,

ðq� 1ÞKSðbÞ þ ðln w1 � ln w2Þ
ln q

	 4:27:

Finally, the optimal burn-in procedure is determined by n� ¼ 4.

8.4.3 Optimal Burn-in for Minimizing Expected Number
of Repairs

In this subsection, we discuss optimal burn-in that minimizes the mean number of
minimal repairs during the mission time s. We consider the same burn-in proce-
dure as in Sect. 8.4.2, but now it is characterized by both b and n (i.e., b and n are
the burn-in parameters).

Observe that
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PðF1Þ ¼ PðF1jSÞ 
 PðSÞ þ PðF1jWÞ 
 PðWÞ

¼
Xn

i¼0

ðKSðbÞÞie�KSðbÞ

i!

 !

 pþ

Xn

i¼0

ðKSðqðbÞÞÞie�KSðqðbÞÞ

i!

 !

 ð1� pÞ:

PðSjF1Þ ¼
PðS \ F1Þ

PðF1Þ
¼ PðF1jSÞ 
 PðSÞ=PðF1Þ

¼
Pn

i¼0
ðKSðbÞÞie�KSðbÞ

i!

� �

 p

Pn
i¼0
ðKSðbÞÞie�KSðbÞ

i!

� �

 pþ

Pn
i¼0
ðKSðqðbÞÞÞie�KSðqðbÞÞ

i!

� �

 ð1� pÞ

:

PðW jF1Þ ¼
Pn

i¼0
ðKSðqðbÞÞÞie�KSðqðbÞÞ

i!

� �

 ð1� pÞ

Pn
i¼0
ðKSðbÞÞie�KSðbÞ

i!

� �

 pþ

Pn
i¼0
ðKSðqðbÞÞÞie�KSðqðbÞÞ

i!

� �

 ð1� pÞ

:

Let Wðb; nÞ be the mean number of minimal repairs during the mission time s in
field operation given that the duration of burn-in is equal to b and that the rejection
number is n. Then, in accordance with the above formulas and noting once again
that the mean number of minimal repairs is equal to the cumulative intensity
function of the corresponding NHPP,

Wðb; nÞ ¼ KS bþ sð Þ � KS bð Þð Þ



Pn

i¼0
ðKSðbÞÞie�KSðbÞ

i!

� �

 p

Pn
i¼0
ðKSðbÞÞie�KSðbÞ

i!

� �

 pþ

Pn
i¼0
ðKSðqðbÞÞÞie�KSðqðbÞÞ

i!

� �

 ð1� pÞ

þ KS q bþ sð Þð Þ � KS q bð Þð Þð Þ



Pn

i¼0
KS q bð Þð Þð Þie�KS q bð Þð Þ

i!

� �

 ð1� pÞ

Pn
i¼0
ðKSðbÞÞie�KSðbÞ

i!

� �

 pþ

Pn
i¼0
ðKSðqðbÞÞÞie�KSðqðbÞÞ

i!

� �

 ð1� pÞ

:

ð8:40Þ

The objective is to find optimal ðb�; n�Þ which satisfies

Wðb�; n�Þ ¼ min
b � 0;n � 0

Wðb; nÞ: ð8:41Þ

In order to find the joint optimal solution defined by (8.41), we follow the pro-
cedure similar to that given in Mi [26] and Cha [6], where the two-dimensional
optimization problems of finding the optimal burn-in time b� and the age-
replacement policy T� that minimize the long-run average cost rate cðb; TÞ are
considered. At the first stage, we fix the burn-in time b and find optimal n�ðbÞ that
satisfies

Wðb; n�ðbÞÞ ¼ min
n � 0

Wðb; nÞ: ð8:42Þ
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At the second stage, we search for b� that satisfies

Wðb�; n�ðb�ÞÞ ¼ min
b � 0

Wðb; n�ðbÞÞ:

Then the joint optimal solution is given by ðb�; n�ðb�ÞÞ, since the above procedure
implies that

Wðb�; n�ðb�ÞÞ � Wðb; n�ðbÞÞ; for all b � 0

� Wðb; nÞ; for all b � 0; n � 0:

As in Mi [26] and Cha [6], in this case, if an uniform upper bound (with respect to
n) could be found, then the optimization procedure would be much simpler.

Following the procedure described above, first find optimal n�ðbÞ satisfying
(8.42) for each fixed b. For this purpose, we need to state the following lemma
which will be used for obtaining the optimal n�ðbÞ:

Lemma 8.2 [29] Suppose that ai � 0; i � 1; and bi [ 0; i � 1: Then

min
1 � i � n

ai

bi
�
Pn

i¼1 aiPn
i¼1 bi

� max
1 � i � n

ai

bi
;

where the equality holds if and only if all the ai=bi; i � 1, are equal.

The optimal value n�ðbÞ is defined by the following theorem.

Theorem 8.4 For a given fixed b � 0, let the following inequality:

KSðbþ sÞ � KSðbÞð Þ � KSðqðbþ sÞÞ � KSðqðbÞð Þ

hold. Then the optimal n�ðbÞ is given by n�ðbÞ ¼ 0, whereas n�ðbÞ ¼ 1 corre-
sponds to the opposite sign of the inequality.

Proof For the fixed b � 0, we consider the following two cases:

Case 1. Let

KSðbþ sÞ � KSðbÞð Þ � KSðqðbþ sÞÞ � KSðqðbÞð Þ:

As the sum of quotients in Eq. (8.40) is 1 in this case, it can be easily seen that
minimizing Wðb; nÞ is equivalent to maximizing
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PðSjF1Þ ¼
Pn

i¼0
ðKSðbÞÞie�KSðbÞ

i!

� �

 p

Pn
i¼0
ðKSðbÞÞie�KSðbÞ

i!

� �

 pþ

Pn
i¼0
ðKSðqðbÞÞÞie�KSðqðbÞÞ

i!

� �

 ð1� pÞ

:

, Minimize

pþ ð1� pÞ 

Pn

i¼0

ðKSðqðbÞÞÞie�KSðqðbÞÞ
i!Pn

i¼0

ðKSðbÞÞie�KSðbÞ
i!

p

, Minimize

Pn
i¼0
ðKSðqðbÞÞÞie�KSðqðbÞÞ

i!Pn
i¼0
ðKSðbÞÞie�KSðbÞ

i!

� gðb; nÞ

We compare Wðb; nÞ with Wðb; nþ 1Þ; n ¼ 0; 1; 2; . . .. Observe that gðb; nÞ\
gðb; nþ 1Þ if and only if Wðb; nÞ\ Wðb; nþ 1Þ. Note that

ðKSðqðbÞÞÞie�KSðqðbÞÞ

i!
ðKSðbÞÞie�KSðbÞ

i!

is strictly increasing in i � 0. This can be easily seen by comparing the values of
this function for i and iþ 1, i � 0. Thus

ðKSðqðbÞÞÞie�KSðqðbÞÞ

i!
ðKSðbÞÞie�KSðbÞ

i!

\
ðKSðqðbÞÞÞnþ1e�KSðqðbÞÞ

ðnþ1Þ!
ðKSðbÞÞnþ1e�KSðbÞ

ðnþ1Þ!

; 0 � i � n:

Then using Lemma 8.2:

Pn
i¼0
ðKSðqðbÞÞÞie�KSðqðbÞÞ

i!Pn
i¼0
ðKSðbÞÞie�KSðbÞ

i!

\ max
1 � i � n

ðKSðqðbÞÞÞie�KSðqðbÞÞ

i!
ðKSðbÞÞie�KSðbÞ

i!

\
ðKSðqðbÞÞÞnþ1e�KSðqðbÞÞ

ðnþ1Þ!
ðKSðbÞÞnþ1e�KSðbÞ

ðnþ1Þ!

:

Accordingly, using Lemma 8.2 again:

gðb; nÞ ¼min

Pn
i¼0
ðKSðqðbÞÞÞie�KSðqðbÞÞ

i!Pn
i¼0
ðKSðbÞÞie�KSðbÞ

i!

;

ðKSðqðbÞÞÞnþ1e�KSðqðbÞÞ

ðnþ1Þ!
ðKSðbÞÞnþ1e�KSðbÞ

ðnþ1Þ!

8<
:

9=
;

\

Pnþ1

i¼0

ðKSðqðbÞÞÞie�KSðqðbÞÞ

i!

Pnþ1

i¼0

ðKSðbÞÞie�KSðbÞ

i!

¼ gðb; nþ 1Þ;

implying that Wðb; nÞ\Wðb; nþ 1Þ; n ¼ 0; 1; 2; . . ., Finally, we arrive at
n�ðbÞ ¼ 0.

This obviously means that for each fixed duration of the burn-in time b, the
failed item is discarded and those that did not fail are put into a field operation.
Therefore, the obtained rule is simple and easy for implementation.
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Case 2. Let

KSðbþ sÞ � KSðbÞð Þ[ KSðqðbþ sÞÞ � KSðqðbÞð Þ:

In this case, minimization of Wðb; nÞ is equivalent to minimization of

Pn
i¼0
ðKSðbÞÞie�KSðbÞ

i!

� �

 p

Pn
i¼0
ðKSðbÞÞie�KðbÞ

i!

� �

 pþ

Pn
i¼0
ðKSðqðbÞÞÞie�KSðqðbÞÞ

i!

� �

 ð1� pÞ

;

or, to maximization of gðb; nÞ. Therefore n�ðbÞ ¼ 1. h

Remark 8.7 When the failure rate ordering (8.36) holds, the first inequality in
Theorem 8.4 corresponds to

KSðbþ sÞ � KSðbÞð Þ � KWðbþ sÞ � KWðbÞð Þ;

which is always obviously satisfied. For the specific case (8.37), it leads to

Zbþs

b

rSðuÞdu ¼ KSðbþ sÞ � KSðbÞð Þ � KWðbþ sÞ � KWðbÞð Þ ¼ q
Zbþs

b

rSðuÞdu:

Remark 8.8 The result n�ðbÞ ¼ 1 (Theorem 8.4, Case 2) implies that after the
burn-in time b with minimal repair every item is put into field operation regardless
of the number of failures during burn-in. This burn-in procedure is the same as that
proposed in Cha [6]. Case 2 can obviously occur when the cumulative failure rate
in ½0; bÞ for the strong subpopulation is smaller than that for the weak subpopu-
lation, whereas the reverse ordering holds for the interval ½b; bþ sÞ (e.g., when
rSðtÞ has a decreasing part). In this case, the ‘quality’ of items after burn-in in the
weak subpopulation is better than that in the strong subpopulation. Therefore, the
burn-in procedure should leave all weak items in the population, which results in
n�ðbÞ ¼ 1.

Consider now obtaining an uniform upper bound (with respect to n), i.e., we
will find an upper bound for b� denoted by s�, such that,

min
0 � b � s�

Wðb; nÞ\ min
b [ s�

Wðb; nÞ;

for all fixed n � 0.
The following result gives an uniform upper bound for the optimal burn-in time

b�, but first we need to define the notion of the eventually (ultimately) increasing
function [20, 30].

Recall that for the eventually IFR rðxÞ, the first and the second wear-out points
t� and t�� are defined as
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t� ¼ infft � 0 : rðxÞ is nondecreasing in x � tg ;
t�� ¼ infft � 0 : rðxÞ strictly increases in x � tg :

Observe that the eventually IFR can be constant in parts of the interval ðt�; t��Þ,
whereas t� ¼ t�� is obviously a specific case.

Theorem 8.5 Suppose that

i. rSðtÞ is eventually increasing with the first wear-out point t�, the second wear-
out point t�� and limt!1 rSðtÞ ¼ 1;

ii. qðtÞ is a weak (i.e., not necessarily strictly) convex function.

Then s� 2 ½t�;1Þ, defined as

s� ¼ inf b0 [ t�j
Zqðt�þsÞ

qðt�Þ

rSðuÞdu\
Zbþs

b

rSðuÞdu; 8b [ b0

8><
>:

9>=
>;; ð8:43Þ

is the uniform upper bound for the optimal burn-in time b�.

Proof Observe that Wðb; nÞ is of the form of weighted average of
KSðbþ sÞ � KSðbÞð Þ and KSðqðbþ sÞÞ � KSðqðbÞð Þ, i.e.,

Wðb; nÞ ¼ KS bþ sð Þ � KS bð Þð Þ 
 pðbÞ þ KS q bþ sð Þð Þ � KS q bð Þð Þð Þ 
 ð1� pðbÞÞ;

where

pðbÞ ¼
Pn

i¼0
ðKSðbÞÞie�KðbÞ

i!

� �

 p

Pn
i¼0
ðKSðbÞÞie�KðbÞ

i!

� �

 pþ

Pn
i¼0
ðKSðqðbÞÞÞie�KðqðbÞÞ

i!

� �

 ð1� pÞ

:

Also we see that

KSðbþ sÞ � KSðbÞ ¼
Zbþs

b

rSðuÞdu and KSðqðbþ sÞÞ � KSðqðbÞÞ ¼
ZqðbþsÞ

qðbÞ

rSðuÞdu:

Define s� 2 ½t�;1Þ as

s� ¼ inf b0 [ t�j
Zqðt�þsÞ

qðt�Þ

rSðuÞdu\
Zbþs

b

rSðuÞdu; 8b [ b0

8><
>:

9>=
>;:
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It clear that such s� exists as
R bþs

b rSðuÞdu is nondecreasing for b 2 ½t�;1Þ and is
strictly increasing after some point t0 2 ½t�; t���. Observe that qðbþ sÞ � qðbÞ is
nondecreasing in b and

KSðqðbþ sÞÞ � KSðqðbÞÞ � KS bþ sð Þ � KS bð Þ

for b � t�. Then

KSðt� þ sÞ � KSðt�Þ � KSðqðt� þ sÞÞ � KSðqðt�ÞÞ\KSðbþ sÞ � KSðbÞ
� KSðqðbþ sÞÞ � KSðqðbÞÞ; 8b [ s�:

The weighted average of elements in the first group is smaller than that of
elements in the second group for any arbitrarily chosen weights in two groups if
the maximum element in the first group is smaller than the minimum element in
the second group. This fact implies:

Wðt�; nÞ\ Wðb; nÞ; 8b [ s�:

Then we can conclude that, at least, the optimal burn-in time b� 62 ðs�;1Þ, i.e.,
b� � s�. This result holds regardless of the value of n. Therefore, s� is the uniform
(with respect to n) upper bound for b�. h

Example 8.17 As in the previous example, let the failure rate of the strong sub-
population be given by

rSðtÞ ¼ 2t; t � 0: Weibull Distributionð Þ

Then t� ¼ t�� ¼ 0. Assume that qðtÞ ¼ 3t; t � 0; s ¼ 2:0. ThenR qðt�þsÞ
qðt�Þ rSðuÞdu ¼ 36:0 and it is easy to see that s� ¼ 8:0.

It follows from Theorem 8.4 that, for each b, either n�ðbÞ ¼ 0 or n�ðbÞ ¼ 1.
Moreover, with the uniform upper bound s� defined by Theorem 8.5, we can
search for b� which minimizes Wðb; n�ðbÞÞ in the reduced interval ½0; s��. Then
Theorems 8.4 and 8.5 imply that the joint optimal solution is given by ðb�; n�ðb�ÞÞ.
Based on these facts, the optimization procedure can be summarized as follows:

< Optimization Procedure (Algorithm)>

(Stage1)

Fix 0 � b � s�. If KSðbþ sÞ � KSðbÞ � KSðqðbþ sÞÞ � KSðqðbÞÞ then
n�ðbÞ ¼ 0; otherwise n�ðbÞ ¼ 1.

• (Stage2)

Find b� which satisfies

Wðb�; n�ðb�ÞÞ ¼ min
0 � b � s�

Wðb; n�ðbÞÞ:

(Joint Optimal Solution)
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Then the two-dimensional optimal solution is given by ðb�; n�ðb�ÞÞ:

Example 8.18 Consider the setting of Example 8.17 and suppose that the pro-
portion of strong subpopulation is p ¼ 0:9. Then, as given in Example 8.17, the
uniform upper bound s� is given by s� ¼ 8:0. Thus, in order to find the joint
optimal solution ðb�; n�Þ, we follow the optimization procedure described above.
However, in this case, since qðtÞ is a convex function and rSðtÞ is a nondecreasing
function, the inequality

KSðbþ sÞ � KSðbÞ � KSðqðbþ sÞÞ � KSðqðbÞÞ; 8b � 0 ð8:44Þ

always holds. Thus n�ðbÞ ¼ 0, for all b � 0. Then the optimal solution ðb�; n�ðb�ÞÞ
is ðb�; 0Þ, where b� is the value which satisfies

Wðb�; 0Þ ¼ min
0 � b � 8:0

Wðb; 0Þ:

By a numerical search, it has been obtained that b� ¼ 0:546 and the minimum
value of Wðb; nÞ at the optimal point ðb�; n�Þ ¼ ð0:546; 0Þ is Wð0:546; 0Þ ¼
6:6851112. Note that, by Theorem 8.4, the minimum value of Wðb; nÞ for each
fixed b is Wðb; 0Þ or Wðb;1Þ. In this specific example, due to Inequality (8.44),
Wðb; 0Þ � Wðb;1Þ.

The discussion based on the specific setting of Example 8.18 (qðtÞ is a convex
function and rSðtÞ is a nondecreasing function) can be summarized by the fol-
lowing corollary:

Corollary 8.2. Suppose that

i. rSðtÞ is eventually increasing with the first wear-out point t� ¼ 0, the second
wear-out point t�� and limt!1 rSðtÞ ¼ 1;

ii. qðtÞ is a weak convex function.

Then the joint optimal solution satisfying Eq. (8.41) is ðb�; 0Þ, where b� is the
value which satisfies

Wðb�; 0Þ ¼ min
0 � b � s�

Wðb; 0Þ;

and s�is the uniform upper bound given in (8.43).

References

1. Badía FG, Berrade MD, Clemente AC (2002) Aging properties of the additive and
proportional hazard mixing models. Reliab Eng Syst Saf 78:165–172

2. Block HW, Mi J, Savits TH (1993) Burn-in and mixed populations. J Appl Probab
30:692–702

3. Block HW, Mi J, Savits TH (1994) Some results in burn-in. Statistica Sinica 4:525–534

8.4 Burn-in for Repairable Items 311



4. Block HW, Savits TH (1997) Burn-in. Stat Sci 12:1–19
5. Block HW, Savits TH, Wondmagegnehu ET (2003) Mixtures of distributions with increasing

linear failure rates. J Appl Probab 40:485–504
6. Cha JH (2000) On a better burn-in procedure. J Appl Probab 37:1099–1103
7. Cha JH (2001) Burn-in procedures for a generalized model. J Appl Probab 38:542–553
8. Cha JH (2005) On optimal burn-in procedures—a generalized model. IEEE Trans Reliab

54:198–206
9. Cha JH (2006) An extended model for optimal burn-in procedures. IEEE Trans Reliab

55:189–198
10. Cha JH, Finkelstein M (2010) Burn-in by environmental shocks for two ordered

subpopulations. Eur J Oper Res 206:111–117
11. Cha JH, Finkelstein M (2010) Stochastically ordered subpopulations and optimal burn-in

procedure. IEEE Trans Reliab 59:635–643
12. Cha JH, Finkelstein M (2011) Burn-in and the performance quality measures in

heterogeneous populations. Eur J Oper Res 210:273–280
13. Cha JH, Finkelstein M (2012) Burn-in and the performance quality measures in continuous

heterogeenous populations. J Risk Reliab 226:417–425
14. Cha JH, Finkelstein M (2013) Burn-in for heterogeneous populations: how to avoid large

risks. Commun Stat—Theory Methods
15. Clarotti CA, Spizzichino F (1990) Bayes burn-in and decision procedures. Probab Eng Inf Sci

4:437–445
16. Finkelstein M (1992) Some notes on two types of minimal repair. Adv Appl Probab

24:226–228
17. Finkelstein M (2008) Failure rate modelling for reliability and risk. Springer, London
18. Finkelstein M (2009) Understanding the shape of the mixture failure rate (with engineering

and demographic applications). Appl Stoch Models Bus Ind 25:643–663
19. Gupta RC, Warren R (2001) Determination of change points of nonmonotonic failure rates.

Commun Stat—Theory Methods 30:1903–1920
20. Gurland J, Sethuraman J (1995) How pooling failure data may reverse increasing failure rate.

J Am Stat Assoc 90:1416–1423
21. Jensen F, Petersen NE (1982) Burn-in. Wiley, New York
22. Jiang R, Murthy DNP (1998) Mixture of weibull distributions—parametric characterization

of failure rate function. Appl Stoch Models Data Anal 14:47–65
23. Kececioglu D, Sun F (2003) Burn-in testing: its quantification and optimization. DEStech

Publications, Lancaster
24. Klugman SA, Panjer HH, Willmot GE (2004) Loss models: from data to decisions. Wiley,

Hoboken
25. Mi J (1991) Optimal burn-in. PhD thesis, Department of Statistics, University of Pittsburgh,

Pittsburgh
26. Mi J (1994) Burn-in and maintenance policies. Adv Appl Probab 26:207–221
27. Mi J (1996) Minimizing some cost functions related to both burn-in and field use. Oper Res

44:497–500
28. Mi J (1997) Warranty policies and burn-in. Naval Res Logist 44:199–200
29. Mi J (2002) Age-replacement policy and optimal work size. J Appl Probab 39:296–311
30. Mi J (2003) Optimal burn-in time and eventually IFR. J Chin Inst Ind Eng 20:533–542
31. Navarro J, Hernandez PJ (2004) How to obtain bathtub-shaped failure rate models from

normal mixtures. Probab Eng Inf Sci 18:511–531

312 8 Burn-in for Heterogeneous Populations



Chapter 9
Shocks as Burn-in

As described in the previous chapters, in conventional burn-in, the main parameter
of the burn-in procedure is its duration. However, in order to shorten the length of
this procedure, burn-in is most often performed in an accelerated environment.
This indicates that high environmental stress can be more effective in eliminating
weak items from a population. In this case, obviously, the larger values of stress
should correspond to the shorter duration of burn-in. By letting the stress to
increase, we can end up (as some limit) with very short (negligible) durations, in
other words, shocks. In practice, the most common types of shocks as a method of
burn-in are ‘‘thermal shock’’ and ‘‘physical drop’’. In these cases, the item is
subjected to a very rapid cold-to-hot, or hot-to-cold, instantaneous thermal change
or the item is dropped by a ‘‘drop tester’’ which is specifically designed to drop it
without any rotational motion, to ensure the most rigorous impact. In this case, the
stress level (to be called shock’s severity) can be a controllable parameter for the
corresponding optimization, which in a loose sense is an analogue of the burn-in
duration in accelerated burn-in (see e.g., [1, 9].

This general reasoning suggests that ‘electrical’ (e.g., the increased voltage for
a short period of time for some electronic items), thermal and mechanical shocks
can be used for burn-in in heterogeneous populations of items. If the initial pop-
ulation is not ‘sufficiently reliable’, then the items that have survived a shock
might be more suitable for field usage, as their predicted reliability characteristics
could be better. Therefore, in this chapter, we consider shocks as a method of burn-
in and develop the corresponding optimization model. It should be noted that
several approaches (such as Environmental Stress Screening to be considered in
the next chapter) that exhibit a similar initial reasoning were already implemented
in industry as a practical tool (see, for example, [13, 16, 17].

As in the previous chapters, we will also assume that the population is the
mixture of stochastically ordered subpopulations. As before, we will consider both
discrete and continuous mixture models. Under this and some other natural
assumptions, we consider the problem of determining the optimal severity level of
a stress. Furthermore, we develop approaches that minimize the risks of selecting
items with large levels of individual failure rates for missions of high importance,

M. Finkelstein and J. H. Cha, Stochastic Modeling for Reliability,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-5028-2_9,
� Springer-Verlag London 2013
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where failures can result, e.g., in substantial economic losses. We consider some
new measures for describing the corresponding optimal burn-in, which boils up in
obtaining the optimal severity of shocks. For instance, the losses that are mono-
tonically increasing with the value of the failure rate of items after burn-in are
introduced. Furthermore, focusing on the quality of relatively poor (with large
failure rates) items in the mixed population, some conservative measures for the
population quality are defined and the corresponding optimal burn-in with respect
to these measures is also investigated.

We will also consider burn-in for items that will operate (after burn-in) in the
environment with shocks. We assume that there are two competing risk causes of
failure—the ‘usual’ one (in accordance with aging processes in a system) and
environmental shocks. A new type of burn-in via the controlled (laboratory) test
shocks is considered and the problem of obtaining the optimal level (severity) of
these shocks is investigated.

9.1 Discrete Mixtures

9.1.1 General Setting

We assume in this section that a population is a mixture of two ordered
subpopulations—the strong subpopulation and the weak subpopulation. Let the
lifetime of a component from the strong subpopulation be denoted by XS and its
absolutely continuous cumulative distribution function (Cdf), probability density
function (pdf) and the failure rate function be F1ðtÞ; f1ðtÞ and k1ðtÞ; respectively.
Similarly, the lifetime, the Cdf, pdf, and the failure rate function of a weak com-
ponent are denoted by XW ; F2ðtÞ; f2ðtÞ and k2ðtÞ; respectively. Let the lifetimes in
these subpopulations be ordered either in the sense of the failure rate ordering:

k1ðtÞ� k2ðtÞ; for all t� 0

or in the sense of the usual stochastic ordering

F1ðtÞ�F2ðtÞ; for all t� 0;

where FiðtÞ ¼ 1� FiðtÞ; i ¼ 1; 2: Assume that the mixing proportion (distribu-
tion) is given by

pðzÞ ¼ p; z ¼ z1

1� p; z ¼ z2
;

�

where z1 and z2; z1\z2; are variables that represent the strong and the weak
subpopulations, respectively. Therefore, Z ¼ ðz1; z2Þ can be considered as the
discrete frailty in this case. Then the corresponding mixture distribution and the
density functions are defined as in the previous chapters:
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FmðtÞ ¼ pF1ðtÞ þ ð1� pÞF2ðtÞ;
fmðtÞ ¼ pf1ðtÞ þ ð1� pÞf2ðtÞ;

respectively, and the mixture failure rate is

kmðtÞ ¼
pf1ðtÞ þ ð1� pÞf2ðtÞ

p�F1ðtÞ þ ð1� pÞ�F2ðtÞ
¼ pðz1jtÞk1ðtÞ þ pðz2jtÞk2ðtÞ;

where the time-dependent probabilities are

pðz1jtÞ ¼
p�F1ðtÞ

p�F1ðtÞ þ ð1� pÞ�F2ðtÞ
;

pðz2jtÞ ¼ 1� pðz1jtÞ ¼
ð1� pÞ�F2ðtÞ

p�F1ðtÞ þ ð1� pÞ�F2ðtÞ
:

Assume that at time t ¼ 0 an instantaneous shock has occurred and with
complementary probabilities it either ‘kills’ an item (i.e., a failure occurs), or
‘leaves it unchanged’. The following is the basic assumption in our reasoning:

Basic Assumption
The more frail (e.g., with the larger failure rate) the items are, the more susceptible
they are to be ‘killed’ by a shock.

Let psðzÞ denote the frailty distribution after a shock and let Ts and kmsðtÞ be the
corresponding lifetime and the mixture (observed) failure rate, respectively.
Denote the probabilities of failures caused by each shock for two subpopulations
as:

pðzÞ ¼ p1; z ¼ z1;
p2; z ¼ z2:

�
ð9:1Þ

Here, in accordance with our Basic Assumption, p1� p2: It is easy to show that

psðzÞ ¼
ð1�p1Þp

ð1�p1Þpþð1�p2Þð1�pÞ � ps; z ¼ z1;
ð1�p2Þð1�pÞ

ð1�p1Þpþð1�p2Þð1�pÞ � 1� ps; z ¼ z2:

(

and

kmsðtÞ ¼
psf1ðtÞ þ ð1� psÞf2ðtÞ

ps �F1ðtÞ þ ð1� psÞ�F2ðtÞ
¼ psðz1jtÞk1ðtÞ þ psðz2jtÞk2ðtÞ; ð9:2Þ

where

psðz1jtÞ ¼
ps �F1ðtÞ

ps �F1ðtÞ þ ð1� psÞ�F2ðtÞ
;

psðz2jtÞ ¼ 1� psðz1jtÞ ¼
ð1� psÞ�F2ðtÞ

ps �F1ðtÞ þ ð1� psÞ�F2ðtÞ
:
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The corresponding survival function is given by

FmsðtÞ ¼ psF1ðtÞ þ ð1� psÞF2ðtÞ:

The following initial result justifies the fact that a shock can be considered as the
burn-in procedure.

Theorem 9.1 Let p1� p2.

(i) If k1ðtÞ� k2ðtÞ; for all t� 0; then kmsðtÞ� kmðtÞ; 8t 2 ½0;1Þ.
(ii) If F1ðtÞ�F2ðtÞ; for all t� 0; then FmsðtÞ�FmðtÞ; 8t 2 ½0;1Þ.

Proof Observe that kmðtÞ and kmsðtÞ are weighted averages of k1ðtÞ and k2ðtÞ:
Then it is sufficient to show that psðz1jtÞ� pðz1jtÞ: Note that

pðz1jtÞ ¼
p�F1ðtÞ

p�F1ðtÞ þ ð1� pÞ�F2ðtÞ
¼

�F1ðtÞ
�F1ðtÞ þ ð1=p� 1Þ�F2ðtÞ

is increasing in p; and

ps � p ¼ ð1� p1Þp
ð1� p1Þpþ ð1� p2Þð1� pÞ � p ¼ pð1� pÞðp2 � p1Þ

ð1� p1Þpþ ð1� p2Þð1� pÞ � 0:

Therefore, psðz1jtÞ� pðz1jtÞ and we can conclude that kmsðtÞ� kmðtÞ; 8t 2 ½0;1Þ.
On the other hand, FmðtÞ and FmsðtÞ are also weighted averages of F1ðtÞ and

F2ðtÞ: Then the second result is obvious from the fact that ps� p. h

Remark 9.1 The above result implies that reliability characteristics of a population
of items that have survived a shock have improved. This justifies the described
burn-in procedure as a measure of improving the ‘quality’ of a heterogeneous
population. Depending on assumptions, Theorem 9.1 states that the population
lifetime random variable after a shock is larger than that before the shock either in
the sense of the failure rate ordering, or in the sense of the usual stochastic
ordering. Note that individual characteristics of an item that has survived a shock,
due to our assumption, are same as before.

9.1.2 Optimal Severity for Population Quality Measures

The optimal burn-in time is the main characteristic of interest in conventional
burn-in procedures. In our model, the ‘severity’ of a shock in a way corresponds to
this burn-in time. Therefore, we will suggest now an approach for determining an
optimal magnitude of a shock that maximizes the ‘quality’ of our population after
burn-in.
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Denote the magnitude of a shock by s 2 ½0;1�: Assume that the ‘strength’ of
the component in a strong subpopulation is a continuous random variable, which is
denoted by U: By ‘strength’ we understand here the corresponding measure of
resistance to a single shock, i.e., if s [ U; then the failure occurs. Let the Cdf, the
survival function, and the failure rate function of U are denoted by GðsÞ; GðsÞ; and
rðsÞ; respectively. Similarly, let the strength of the component in a weak sub-
population be denoted by Uw: Then, in accordance with our Basic Assumption, let

U� stUw:

It is easy to see that this inequality is equivalent to

GwðsÞ ¼ GðqðsÞÞ; for all s� 0; ð9:3Þ

where GwðsÞ is the Cdf of Uw; qðsÞ is an increasing function, qðsÞ� s for all s� 0;
and qð0Þ ¼ 0: It follows from (9.1) that the probabilities of failure for this case are
given by

pðz; sÞ ¼ p1 ¼ GðsÞ; z ¼ z1;
p2 ¼ GðqðsÞÞ; z ¼ z2:

�
ð9:4Þ

Then p1� p2 holds for all s 2 ½0;1Þ: Under the above setting, kmsðtÞ is also a
function of s and therefore will be denoted as kmsðt; sÞ:

kmsðt; sÞ ¼ ps �F1ðtÞ
ps �F1ðtÞ þ ð1� psÞ�F2ðtÞ

� k1ðtÞ þ
ð1� psÞ�F2ðtÞ

ps �F1ðtÞ þ ð1� psÞ�F2ðtÞ
� k2ðtÞ;

where

ps ¼
ð1� GðsÞÞp

ð1� GðsÞÞpþ ð1� GðqðsÞÞÞð1� pÞ ;

1� ps ¼
ð1� GðqðsÞÞÞð1� pÞ

ð1� GðsÞÞpþ ð1� GðqðsÞÞÞð1� pÞ :

Denote the expected lifetime (as a function of s) of an item that has survived a
shock by mðsÞ and, by Pðs; sÞ; the probability of success (survival probability) for
a mission time s: We are interested in ‘pure’ maximization of these functions
without considering any costs or gains. Thus we want to maximize (with respect to
s) the following functions:

mðsÞ ¼
Z1

0

exp �
Z t

0

kmsðu; sÞdu

8<
:

9=
;dt; ð9:5Þ

Pðs; sÞ ¼ exp �
Zs

0

kmsðu; sÞdu

8<
:

9=
;: ð9:6Þ
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Intuitively, the first guess would be: the larger is the level of severity s; the larger
are the functions of interest, which means that formally s� ¼ 1 and we understand
this notation here and in the rest of the chapter only in the described sense.
However, as the strength of the item is given by distributions in (9.3), there can be
the other non-intuitively evident possibility.

In order to investigate the maximizations of (9.5) and (9.6), consider a more
general problem—the uniform minimization of kmsðt; sÞ; for all fixed t� 0; with
respect to s 2 ½0;1�: That is, find s� which satisfies

s� ¼ arg inf
s2 ½0;1�

kmsðt; sÞ; for all fixed t� 0:

Denote by RðsÞ �
R s

0 rðuÞdu the cumulative failure rate that corresponds to the Cdf
GðsÞ: Then the following result describes the optimal severity s�.

Theorem 9.2 Let k1ðtÞ� k2ðtÞ; for all t� 0: Then the optimal s� is the value
which maximizes RðqðsÞÞ � RðsÞ: In particular,

(i) If rðsÞ is increasing and q0ðsÞ[ 1; then s� ¼ 1.

(ii) If q0ðsÞrðqðsÞÞ
rðsÞ [ 1; for s\s0; and q0ðsÞrðqðsÞÞ

rðsÞ \1; for s [ s0; then s� ¼ s0.

Proof Note again that in accordance with (9.2), kmsðt; sÞ is the weighted average
of k1ðtÞ and k2ðtÞ with the corresponding weights psðz1jtÞ and psðz2jtÞ ¼
1� psðz1jtÞ; respectively, and

psðz1jtÞ ¼
ps �F1ðtÞ

ps �F1ðtÞ þ ð1� psÞ�F2ðtÞ
¼

�F1ðtÞ
�F1ðtÞ þ ð1=ps � 1Þ�F2ðtÞ

is increasing in ps: Thus, for each fixed t� 0; as k1ðtÞ� k2ðtÞ; the minimum of
kmsðt; sÞ is obtained by maximizing

ps ¼
ð1� GðsÞÞp

ð1� GðsÞÞpþ ð1� GðqðsÞÞÞð1� pÞ : ð9:7Þ

This problem is equivalent to minimizing

1� GðqðsÞÞ
1� GðsÞ ¼ expf�½RðqðsÞÞ � RðsÞ�g:

Therefore, the minimum can now be attained by maximizing RðqðsÞÞ � RðsÞ:

(i) Denote /ðsÞ � RðqðsÞÞ � RðsÞ: Then /0ðsÞ � q0ðsÞrðqðsÞÞ � rðsÞ: As q0ðsÞ[ 1
and rðxÞ is increasing,

/0ðsÞ ¼ q0ðsÞrðqðsÞÞ � rðsÞ[ rðqðsÞÞ � rðsÞ� 0;

where assumption qðsÞ� s is used. Thus, in this case, s� ¼ 1:
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(ii) Assume now that q0ðsÞrðqðsÞÞ
rðsÞ [ 1; for s\s0; and q0ðsÞrðqðsÞÞ

rðsÞ \1; for s [ s0: Then

/0ðsÞ[ 0; for s\s0; and /0ðsÞ\0; for s [ s0; which implies s� ¼ s0.

h

Example 9.1 Let rðsÞ ¼ e�s þ 1; s� 0; and qðsÞ ¼ ffiffi
s
p
; 0� s� 1=2; qðsÞ ¼ sþ

1=
ffiffiffi
2
p
� 1=2;

� �
s� 1=2: The graph for gðsÞ � q0ðsÞrðqðsÞÞ=rðsÞ is given in

Fig. 9.1. Then it can be seen that there exists some 0\s0\1 which satisfies

q0ðsÞrðqðsÞÞ
rðsÞ [ 1; for s\s0 and

q0ðsÞrðqðsÞÞ
rðsÞ \1; for s [ s0:

Thus, obtaining this value numerically: s� ¼ s0 ¼ 0:204.

Remark 9.2 In practice, obviously, there exists a maximum level of stress sa\1
that can be applied to items without destroying the whole population or without the
non-negligible damage in the survived items. In this case, the first part of Theorem
9.2 is modified to s� ¼ sa; whereas, for the second part of Theorem 9.2, if s0� sa

then s� ¼ s0; otherwise s� ¼ sa.

Let s� be the optimal severity level which satisfies

s� ¼ arg sup
s2 ½0;1�

Fmsðt; sÞ; for all fixed t� 0:

Corollary 9.1 Suppose that F1ðtÞ�F2ðtÞ; for all t� 0: Then the optimal s� is the
same as the value which minimizes kmsðt; sÞ; for all fixed t� 0.

Proof Observe that Fmsðt; sÞ is the weighted average of F1ðtÞ and F2ðtÞ:

Fmsðt; sÞ ¼ psF1ðtÞ þ ð1� psÞF2ðtÞ:

Fig. 9.1 Graph for gðsÞ
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As F1ðtÞ�F2ðtÞ and s�; in accordance with Theorem 9.2, maximizes ps; the result
follows immediately. h

Note that maximizations of mðsÞ and Pðs; sÞ; which can be expressed as [see
Eqs. (9.5) and (9.6)]

mðsÞ ¼
Z1

0

Fmsðt; sÞdt;

Pðs; sÞ ¼ Fmsðs; sÞ;

is equivalent to uniform maximization of Fmsðt; sÞ: Therefore, optimal s� is the
same as given in Corollary 9.1.

In the framework of our burn-in model, consider now the corresponding gains
and penalties defined for four mutually exclusive events. Denote:

• g1: gain due to the survival of a strong component
• c1: penalty incurred by the elimination of a strong component
• g2: gain due to the elimination of a weak component
• c2: penalty incurred by the survival of a weak component.

In accordance with this notation and relationship (9.4), the expected gain
resulting from the burn-in procedure performed by a shock is given by the fol-
lowing function of severity s:

uðsÞ ¼ g1pGðsÞ þ g2ð1� pÞGðqðsÞÞ � c1pGðsÞ � c2ð1� pÞGðqðsÞÞ
¼ �ðpg1 þ pc1ÞGðsÞ þ ðð1� pÞg2 þ ð1� pÞc2ÞGðqðsÞÞ þ g1p� c2ð1� pÞ:

ð9:8Þ

It is clear that maximization of uðsÞ is equivalent to minimization of

pðg1 þ c1ÞGðsÞ þ ð1� pÞðg2 þ c2Þð1� GðqðsÞÞÞ

or to minimization of

wðsÞ � w1GðsÞ þ w2ð1� GðqðsÞÞÞ; ð9:9Þ

where the weights w1 and w2 are

w1 ¼
pðg1 þ c1Þ

pðg1 þ c1Þ þ ð1� pÞðg2 þ c2Þ
; w2 ¼ 1� w1:

Note that the probability of failure of a strong component GðsÞ can be interpreted
as the risk that the strong component will be eliminated by a shock. On the other
hand, ð1� GðqðsÞÞ can be regarded as the risk that a weak component will survive
a shock. Expressions (9.8) and (9.9) imply that maximization of expected gain is
equivalent to minimization of the weighted risk. Observe that when s ¼ 0; wð0Þ ¼
w2 and when s!1; wð1Þ ¼ w1:
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The optimal severity s� should be obtained numerically, however, we can define
an upper bound for s� under some additional conditions.

Theorem 9.3 Let w1 [ w2; q0ðsÞ\w1=w2; for all s [ s0; and rðsÞ is decreasing
for s [ s1: Then the upper bound for optimal severity level s� is given by
maxfs0; s1g; that is, s� �maxfs0; s1g.

Proof Observe that

w0ðsÞ � w1rðsÞ expf�RðsÞg � w2q
0ðsÞrðqðsÞÞ expf�RðqðsÞÞg;

where RðsÞ �
R s

0 rðuÞdu: If q0ðsÞ\w1=w2; for all s [ s0; and rðsÞ is decreasing for
s [ s1; then w0ðsÞ[ 0; for all s [ maxfs0; s1g: This implies that wðsÞ is strictly
increasing for s [ maxfs0; s1g: Thus the upper bound for s� is given by
maxfs0; s1g. h

Example 9.2 Suppose that w1 ¼ 0:6;w2 ¼ 0:4; rðsÞ ¼ 1; 0� s\2; rðsÞ ¼
es�2; s� 2; and qðsÞ ¼ 5s; 0� s\1; qðsÞ ¼ sþ 4; s� 1: Then, in this case, s0 ¼
1:0 and s1 ¼ 2:0: Therefore, s� �maxfs0; s1g ¼ 2:0: The graph for wðsÞ is given in
Fig. 9.2.

It can be obtained numerically that s� ¼ 0:302.

9.1.3 Optimal Severity for Minimizing Expected Costs

In this section, we consider two models of determining the optimal severity
minimizing the expected cost function, which takes into account burn-in and field
operation.

Fig. 9.2 Graph for wðsÞ
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9.1.3.1 Model 1: Minimization Without Replacement During
Field Operation

An item is chosen at random from our heterogeneous population and is exposed to
a shock. If it survives, then it is considered to be ready for usage, otherwise the
failed item is discarded and the new one is chosen from the population, etc. This
procedure is repeated until the first survived item is obtained.

Let csr be the shop replacement cost and cs be the cost for conducting a single
shock. Let c1ðsÞ; as a function of s; be the expected cost for eventually obtaining a
component which has survived a shock. Conditioning on the event that the com-
ponent survives (or fails) a shock, the following equation can be obtained:

c1ðsÞ ¼ ð1� PÞcs þ ððcs þ csrÞ þ c1ðsÞÞP; ð9:10Þ

where P ¼ GðsÞpþ GðqðsÞÞð1� pÞ is the probability that an item from the mix-
ture population does not survive the shock. Then, from Eq. (9.10):

c1ðsÞ ¼
cs þ csrP

1� P
¼ �csr þ

cs þ csr

1� P
: ð9:11Þ

Let:

The cost cm is incurred by the event fTs� sg (Failure of the Mission);
The gain gm results from the event fTs [ sg (Success of the Mission).

Then the expected costs during field operation, c2ðsÞ; is given by

c2ðsÞ ¼ �gm psF1ðsÞ þ ð1� psÞF2ðsÞ
� �

þ cm psF1ðsÞ þ ð1� psÞF2ðsÞð Þ;

where ps is defined by Eq. (9.7). Then the total expected cost cðsÞ is

cðsÞ ¼ c1ðsÞ þ c2ðsÞ ¼ �csr þ
cs þ csr

GðsÞpþ GðqðsÞÞð1� pÞ

� ðgm þ cmÞ
GðsÞp

GðsÞpþ GðqðsÞÞð1� pÞ
F1ðsÞ þ

GðqðsÞÞð1� pÞ
GðsÞpþ GðqðsÞÞð1� pÞ

F2ðsÞ
� �

þ cm:

Let s� be the optimal severity level that satisfies

s� ¼ arg inf
s2½0;1�

cðsÞ:

The following theorem defines properties of optimal s�:

Theorem 9.4 Let F1ðtÞ�F2ðtÞ; for all t� 0: If RðqðsÞÞ � RðsÞ strictly decreases
for s [ s0; then s� � s0: In particular,

(i) If q0ðsÞ[ 1 and rðxÞ is increasing, then s�\1.

(ii) If q0ðsÞrðqðsÞÞ
rðsÞ \1; for s [ s0; then s� � s0:
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Proof Note that c1ðsÞ strictly increases from c1ð0Þ ¼ cs to c1ð1Þ ¼ 1: Also
observe that c2ðsÞ ¼ �ðgm þ cmÞFmsðs; sÞ þ cm; where Fmsðt; sÞ is the weighted
average of F1ðtÞ and F2ðtÞ with the corresponding weights ps and 1� ps;
respectively. If RðqðsÞÞ � RðsÞ strictly decreases for s [ s0; then, by similar
arguments as those described in the proof of Theorem 9.2, c2ðsÞ strictly increases
for s [ s0: This imply that cðsÞ strictly increases for s [ s0 and thus we can
conclude that optimal s� � s0:

(i) From the proof of Theorem 9.2, it can be seen that if q0ðsÞ[ 1 and rðxÞ is
increasing, then c2ðsÞ strictly decreases for s [ 0: But cð1Þ ¼ 1 and thus
s�\1.

(ii) If q0ðsÞrðqðsÞÞ=rðsÞ\1; for s [ s0 then, from the proof of Theorem 9.2, it is
easy to see that c2ðsÞ strictly increases for s [ s0; and thus s� � s0. h

Assume now that the expected gain during field operation is proportional to the
mean lifetime. Then the expected cost (i.e., the negative gain) during field oper-
ation is

c2ðsÞ ¼ �k ps

Z1

0

F1ðtÞdt þ ð1� psÞ
Z1

0

F2ðtÞdt

0
@

1
A;

and the total expected cost is given by

cðsÞ ¼ � csr þ
cs þ csr

GðsÞpþ GðqðsÞÞð1� pÞ

� k
GðsÞp

GðsÞpþ GðqðsÞÞð1� pÞ

Z1

0

F1ðtÞdt þ GðqðsÞÞð1� pÞ
GðsÞpþ GðqðsÞÞð1� pÞ

Z1

0

F2ðtÞdt

0
@

1
A;

ð9:12Þ

where k is a constant of proportionality. Then the following corollary holds:

Corollary 9.2 Let F1ðtÞ�F2ðtÞ; for all t� 0: Then the properties of optimal s�

for the total expected cost function (9.12) are the same as those described in
Theorem 9.4.

The proof is similar to that of Theorem 9.4. h

9.1.3.2 Model 2: Minimization with Replacement During
Field Operation

Assume that if an item fails during field operation, it is replaced by another item
which has survived a shock at a cost cf [ csr: The time intervals between two
consecutive replacements constitute a renewal process. Therefore, in accordance
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with FmsðtÞ ¼ psF1ðtÞ þ ð1� psÞF2ðtÞ and Eq. (9.7), the mean time between two
consecutive replacements is equal to

GðsÞp
GðsÞpþ GðqðsÞÞð1� pÞ

Z1

0

F1ðtÞdt þ GðqðsÞÞð1� pÞ
GðsÞpþ GðqðsÞÞð1� pÞ

Z1

0

F2ðtÞdt:

ð9:13Þ

Then, by the renewal reward theory argument, the expected cost rate ~cðsÞ is given
by

~cðsÞ ¼ 1

GðsÞp
GðsÞpþGðqðsÞÞð1�pÞ

R1
0

F1ðtÞdt þ GðqðsÞÞð1�pÞ
GðsÞpþGðqðsÞÞð1�pÞ

R1
0

F2ðtÞdt

	 cs þ csr

GðsÞpþ GðqðsÞÞð1� pÞ
þ ðcf � csrÞ

� �
;

ð9:14Þ

where the denominator is just an expected duration of a renewal cycle given by
Eq. (9.13) and the numerator defines the expected cost incurred during this cycle
(taking into account that the expected cost during burn-in is given by (9.11) and
the replacement cost during field operation is given by cf ).

Let s� denote the optimal severity which satisfies

s� ¼ arg inf
s2½0;1�

~cðsÞ:

Then, similar to Theorem 9.4, the following result is also true:

Theorem 9.5 Let F1ðtÞ�F2ðtÞ; for all t� 0: If RðqðsÞÞ � RðsÞ strictly decreases
for s [ s0; then optimal s� � s0: In particular,

(i) If q0ðsÞ[ 1 and rðsÞ is increasing, then s�\1.

(ii) If q0ðsÞrðqðsÞÞ
rðsÞ \1; for s [ s0; then the optimal s� � s0:

Proof Rearranging terms in (9.14):

~cðsÞ ¼ cs þ csr

GðsÞp
R1

0 F1ðtÞdt þ GðqðsÞÞð1� pÞ
R1

0 F2ðtÞdt

þ cf � csr

GðsÞp
GðsÞpþGðqðsÞÞð1�pÞ

R1
0 F1ðtÞdt þ GðqðsÞÞð1�pÞ

GðsÞpþGðqðsÞÞð1�pÞ

R1
0 F2ðtÞdt

:

The first term in the right-hand side strictly increases for s [ 0: Note that the
denominator of the second term is the weighted average of

R1
0 F1ðtÞdt andR1

0 F2ðtÞdt
R1

0 F1ðtÞdt�
R1

0 F2ðtÞdt
� �

with the corresponding weights ps and
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1� ps; respectively. Then, following the procedures described in the proof of
Theorem 9.4, we can obtain the desired result. h

Remark 9.3 In ‘ordinary’ burn-in, as discussed in the previous chapters, when the
lifetimes of items are described by the distributions with the bathtub-shaped failure
rate, the following property holds: the optimal burn-in time should be smaller than
the first change point (see, e.g., [5, 12]). In our reasoning, optimal stress levels, in
accordance with Theorems 9.2, 9.4, and 9.5, in a similar way also depend on the
properties of the distribution of strength.

Remark 9.4 In practice, the cost parameters cs; csr; cf ; cm; gm

� �
might not be

estimated precisely, which could make the optimization procedure difficult. In this
case, the Receiver Operating Characteristic (ROC) analysis can be adopted and
effectively used to determine the optimal burn-in time which minimizes the cor-
responding cost functions. A reference for this approach can be found in Wu and
Xie [15], where the application of ROC analysis is used to remove the weak
subpopulation in burn-in problems.

9.2 Continuous Mixtures

9.2.1 The Impact of Shocks on Mixed Populations

Consider a population of identically distributed items with lifetimes
Ti; i ¼ 1; 2; . . .. Each item ‘is affected’ by a non-observable univariate frailty
parameter Zi and the lifetimes Ti are conditionally independent given the values of
parameters Zi ¼ zi: Assume that these parameters are i.i.d with a common pdf pðzÞ
and with support in ½0;1Þ: (The general support a½ ; bÞ; 0� a\b�1 can be
considered as well.) Then, obviously Ti; i ¼ 1; 2; . . . are also i.i.d. For conve-
nience, the sub index ‘‘i’’ will be omitted and, therefore, the lifetimes and frailties
for all items will be denoted by T and Z; respectively. Thus, obviously, T is
described by the mixture Cdf and pdf

FmðtÞ ¼
Z1

0

Fðt; zÞpðzÞdz;

fmðtÞ ¼
Z1

0

f ðt; zÞpðzÞdz;

respectively, where Fðt; zÞ � FðtjzÞ ¼ Pr½T � tjZ ¼ z�; f ðt; zÞ ¼ F0ðt; zÞ are the
corresponding conditional characteristics for realization Z ¼ z.
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Then the mixture (observed) failure rate kmðtÞ; similar to (5.11, 5.12) is

kmðtÞ ¼
fmðtÞ
FmðtÞ

¼

R1
0

f ðt; zÞpðzÞdz

R1
0

�Fðt; zÞpðzÞdz
¼
Z1

0

kðt; zÞpðzjtÞdz;

ð9:15Þ

where

pðzjtÞ � pðzÞ
�Fðt; zÞR1

0
�Fðt; zÞpðzÞdz

: ð9:16Þ

In the framework of the model described above, we will consider mixed popula-
tions of stochastically ordered subpopulations.

Remark 9.5 The foregoing definitions and properties describe a standard statistical
mixture (or frailty) model for an item and for the collection of items (population)
as well. However, the following interpretation can be also useful, as frailty models
were initially developed in demographic and actuarial studies as a method of
describing heterogeneity in large populations (see, e.g., [3, 11, 14]; and references
therein). Thus, we assume that heterogeneity, described by the unobserved frailty,
is a property of an infinite population. It usually means that, due to different
environments, conditions, different manufacturers, etc., the population consists of
subpopulations of items with different statistical properties. Pooling at random
items from this population results in the described mixture model.

Assume that an item is put into operation for the mission time s with the
required survival probability PrðsÞ: If

exp �
Zs

0

kmðuÞdu

8<
:

9=
;�PrðsÞ; ð9:17Þ

then everything is fine and we do not need to improve the performance of our
items. On the contrary, if this inequality does not hold, the burn-in procedure can
be performed. There are different types of these procedures and we will consider
here the burn-in that is performed via shocks that can eliminate the weak items.

Throughout this section, the impact of a shock is described by the following
general assumption:

Assumption An instantaneous shock either ‘kills’ an item with a given proba-
bility or does not change its stochastic properties with the complementary prob-
ability. The more ‘frail’ (e.g., with larger failure rate or with smaller survival
function) an item is, the larger is the probability that a shock will ‘kill’ it.
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The following burn-in procedure is employed:

• Burn-in procedure by means of shocks. An item is exposed to a shock. If it
survives, it is considered to be ready for usage, otherwise the failed item is
discarded and a new one is exposed to a shock, etc.

This setting can be defined probabilistically in the following way: Let psðzÞ
denote the pdf of the frailty Zs (with support in 0½ ;1Þ) after a shock and let kmsðtÞ
be the corresponding mixture failure rate. In accordance with (9.15):

kmsðtÞ ¼
Z1

0

kðt; zÞpsðzjtÞdz;

where, similar to (9.16), psðzjtÞ is defined by the right-hand side of (9.16) with pðzÞ
substituted by psðzÞ.

First, assume formally that population frailties before and after a shock are
ordered in the sense of the likelihood ratio (see Sect. 2.8):

Z� LR Zs; ð9:18Þ

which in our terms is defined as

psðzÞ ¼
gðzÞpðzÞR1

0 gðzÞpðzÞdz
; ð9:19Þ

where gðzÞ is a decreasing function and therefore psðzÞ=pðzÞ is decreasing. As it
will be discussed in the next subsection, the function gðzÞ can be interpreted as the
survival probability of an item with frailty z after the shock. Therefore, the
assumption that gðzÞ is a decreasing function of z corresponds to our general
‘‘Assumption’’. Note that the ‘likelihood ratio ordering’ for mixing (frailty) dis-
tributions was used by Block et al. [4] for ordering optimal burn-in times in
‘ordinary’ burn-in settings (without shocks): the larger frailty corresponds to the
larger optimal burn-in time for some specified cost functions. It seems that this
ordering is natural for stochastic modeling in heterogeneous populations. The
following important theorem shows that depending on assumptions, the likelihood
ratio ordering of frailties leads either to the failure rate or to the usual stochastic
ordering of population lifetimes.

Theorem 9.6 Let relationship (9.19), defining the mixing density after a shock,
where gðzÞ is a decreasing function, hold.

(i) Assume that

kðt; z1Þ� kðt; z2Þ; z1\z2; 8z1; z2 2 ½0;1�; t� 0: ð9:20Þ

Then

kmsðtÞ� kmðtÞ; 8t� 0: ð9:21Þ
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(ii) Assume that

Fðt; z1Þ�Fðt; z2Þ; z1\z2; 8z1; z2 2 ½0;1�; t� 0: ð9:22Þ

Then

FmsðtÞ�FmðtÞ; 8t� 0; ð9:23Þ

where kmsðtÞ; �FmsðtÞ are the population (mixture) failure rate and the survival
function after a shock, respectively.

Proof Note that, inequalities (9.20) and (9.22) define two types of stochastic
orderings for subpopulations, i.e., the failure rate ordering and the usual stochastic
ordering, respectively.

(i) It can be shown [10: p. 164] that:

sign½kmsðtÞ�kmðtÞ�

¼ sign

Z1

0
u[s

Z1

0

�Fðt;uÞ�Fðt;sÞðkðt;uÞ�kðt;sÞÞðpsðuÞpðsÞ�psðsÞpðuÞÞduds; ð9:24Þ

which is negative due to definition (9.19) and assumptions of this theorem.
(ii) As gðzÞ is a decreasing function, and the survival function �Fðt; zÞ is also

decreasing in z; it can be easily shown using the mean value theorem that

FmsðtÞ � FmðtÞ ¼
R1

0 Fðt; zÞgðzÞpðzÞdzR1
0 gðzÞpðzÞdu

�
Z1

0

Fðt; zÞpðzÞdz� 0: ð9:25Þ

Indeed

Z1

0

gðzÞpðzÞdz ¼ gðz�Þ

and

Z1

0

Fðt; zÞgðzÞpðzÞdz ¼ gðz��Þ
Z1

0

Fðt; zÞpðzÞdz;

where gðz�Þ and gðz��Þ are the corresponding mean values. As �Fðt; zÞ is decreasing
in z; z�� � z�: Therefore, taking into account that gðzÞ is a decreasing function,
(9.25) follows. Note that the usage of the mean value theorem relies on the
continuity of gðzÞ: Alternatively, the general case (without this assumption) can be
proved similar to the proof in (i) (see also Theorem 9.7). h
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Remark 9.6 Inequality (9.20) is a natural ordering in the family of failure rates
kðt; zÞ; z 2 0½ ;1Þ and trivially holds, e.g., for the specific multiplicative model:

kðt; zÞ ¼ zkðtÞ: ð9:26Þ

Remark 9.7 Theorem 9.6 means that the population quality (in terms of the failure
rate or the survival function) has improved after a shock. Thus, in accordance with
our statistical ‘frequentistic’ interpretation (see Remark 9.5) when ‘the whole
population’ is exposed to a shock, the items that have passed this test form a new
population with better stochastic characteristics. On the other hand, following our
formal initial setting, it turns out that the benefit of a non-destructive shock is of
‘informational’ type, i.e., surviving a shock has the ‘Bayesian’ effect of modifying
the posterior distribution of Z; which is Zs in our notation.

Remark 9.8 In accordance with (9.21) and (9.23), inequality (9.17) can be already
achieved after one shock, otherwise new shocks should be applied or the
‘‘severity’’ of a single shock (see later) should be increased. It is also worth noting
that the replacement of condition (9.18) by the usual stochastic ordering: Z� st Zs

will not guarantee orderings (9.21) and (9.23) for all t.

9.2.2 The Impact of Shocks on an Item

Now we must consider a more specific mechanism of a shock’s impact on an item.
Let each item fail with probability pðzÞ and survive (as good as new) with prob-
ability qðzÞ ¼ 1� pðzÞ: Here, the condition that corresponds to the general
‘‘Assumption’’ in Sect. 9.2.1 is that pðzÞ is an increasing function of
z 0� pðzÞ� 1ð Þ: This assumption makes sense as, in accordance with (9.20), larger
values of frailty correspond to larger values of the failure rate. Therefore, items
with larger values of frailty are more susceptible to failures. Equation (9.19) reads
now

psðzÞ ¼
qðzÞpðzÞR1

0 qðzÞpðzÞdz
; ð9:27Þ

where psðzÞ is the pdf of Zs (predictive, or posterior pdf, as it has been called in
Bayesian terminology). As qðzÞ is decreasing with z; it follows from Theorem 9.6
that the failure rate ordering (9.21) and the usual stochastic ordering (9.23) hold.

If we are not concerned about the costs (e.g., when the mission is very
important) and inequality

exp �
Zs

0

kmsðuÞdu

8<
:

9=
;�PrðsÞ ð9:28Þ
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holds, then the burn-in is over and the item that has survived a shock can be put
into field operation. Otherwise, a shock with the higher level of severity or several
shocks should be performed for each item in order to achieve this inequality.

On the other hand, in most practical situations the costs are involved. In order to
consider the corresponding optimization, we must define the costs and probabili-
ties of interest. A convenient and useful model for pðzÞ (although oversimplified
for practical usage) is the step function:

pðzÞ ¼ 0; 0� z� zb

1; z [ zb

�
: ð9:29Þ

It means that all ‘weak’ items with z [ zb will be eliminated and only ‘strong’
items will remain in the population. In accordance with (9.29), the probability of
not surviving the shock in this case is

Pzb � �PðzbÞ ¼
Z1

zb

pðzÞdz; ð9:30Þ

where PðzÞ is the Cdf that corresponds to the pdf pðzÞ: Obviously, for a general
form of pðzÞ; this probability is defined by the following mixture

P ¼
Z1

0

pðzÞpðzÞdz: ð9:31Þ

9.2.3 Shock’s Severity

It is clear that the parameter zb in the specific model (9.29) can be considered as a
parameter of severity: the larger values of zb correspond to a smaller severity. Now
we can deal with the issue of severity in a more general context, that is, when pðzÞ
is not a simple step function but a continuous function of z.

For this discussion, define the functions pðzÞ and qðzÞ as functions of the frailty
variable z and the severity parameter s 2 ½0;1Þ; pðz; sÞ and qðz; sÞ: Assume that
qðz; sÞ is decreasing in z for each fixed s and is decreasing in s for each z. The
assumption that qðz; sÞ is decreasing in z for each fixed s is just what was assumed
in our general ‘‘Assumption’’ in Sect. 9.2.1. The assumption that qðz; sÞ is
decreasing in s for each fixed z is also quite natural and implies that items char-
acterized by the same value of frailty have larger failure probabilities under larger
severity levels.

Denote the corresponding failure rate and the survival function by kmsðt; sÞ and
Fmsðt; sÞ; respectively. Similar to (9.19) and (9.16):

330 9 Shocks as Burn-in



psðz; sÞ ¼
qðz; sÞpðzÞR1

0 qðu; sÞpðuÞdu
; psðz; sjtÞ � psðz; sÞ

�Fðt; zÞR1
0

�Fðt; uÞpsðu; sÞdu
:

In order to compare two severity levels, we need the following definition.

Definition 9.1
(i) The severity (stress) level s is said to be dominated under the failure rate

criterion if there exists another level s0 such that

kmsðt; sÞ� kmsðt; s0Þ; for all t� 0:

(ii) The severity (stress) level s is said to be dominated under the survival prob-
ability criterion if there exists another level s0 such that

Fmsðt; s0Þ �Fmsðt; sÞ; for all t� 0:

Otherwise, the severity (stress) level s is called non-dominated.

Theorem 9.7 Assume that qðz; sÞ is decreasing in z for each fixed s and is
decreasing in s for each z: Consider two stress levels s and s0: Let

qðu; s0Þqðv; sÞ � qðv; s0Þqðu; sÞ� 0; for all u [ v; ð9:32Þ

which means that qðz; s0Þ=qðz; sÞ is decreasing in z:

(i) If kðt; z1Þ� kðt; z2Þ; z1\z2; 8z1; z2 2 ½0;1�; t� 0;
then the severity level s is dominated under the failure rate criterion.

(ii) If Fðt; z1Þ�Fðt; z2Þ; z1\z2; 8z1; z2 2 ½0;1�; t� 0;
then the severity level s is dominated under the survival probability criterion.

Proof
(i) Similar to (9.24):

sign½kmsðt; s0Þ � kmsðt; sÞ�

¼ sign

Z1

0
u [ v

Z1

0

�Fðt; uÞ�Fðt; vÞðkðt; uÞ � kðt; vÞÞðpsðu; s0Þpsðv; sÞ � psðv; s0Þpsðu; sÞÞdudv:

Thus, if (9.32) holds, then

psðu; s0Þpsðv; sÞ � psðv; s0Þpsðu; sÞ� 0;

which implies the result in (i).
(ii)

Fmsðt; s0Þ � Fmsðt; sÞ ¼
R1

0 Fðt; zÞqðz; s0ÞpðzÞdzR1
0 qðu; s0ÞpðuÞdu

�
R1

0 Fðt; zÞqðz; sÞpðzÞdzR1
0 qðu; sÞpðuÞdu

;
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and the corresponding numerator can be transformed to

Z1

0
u[v

Z1

0

pðuÞpðvÞðFðt; uÞ � Fðt; vÞÞðqðu; s0Þqðv; sÞ � qðv; s0Þqðu; sÞÞdudv:

Therefore, if (9.32) holds, then

Fmsðt; s0Þ � Fmsðt; sÞ� 0; for all t� 0:

h

Remark 9.9 Note that although the assumption that qðz; sÞ is decreasing in z for
each fixed s and is decreasing in s for each z is not used formally in the foregoing
proof, it represents some basic ‘physical properties’ of the model and should be
checked in applications.

Remark 9.10 In accordance with Remark 9.7, Theorem 9.7 means that the pop-
ulation quality (in terms of the failure rate or the survival function) is better after
the shock with severity s0 than after the shock with severity s.

Example 9.3 Consider the following illustrative discrete example. Suppose that
there are only three stress levels: s1; s2; and s3 s1\s2\s3ð Þ: Let qðz; s1Þ ¼
0:2e�z þ 0:6; qðz; s2Þ ¼ 0:6e�z þ 0:2; and qðz; s3Þ ¼ 0:2e�z þ 0:2: Then qðz; siÞ is
decreasing in z; for each i ¼ 1; 2; 3: Furthermore, for each fixed z;
qðz; s1Þ� qðz; s2Þ� qðz; s3Þ and in this way the condition for ordering the stress
levels s1\s2\s3ð Þ is justified. Observe that

qðz; s2Þ
qðz; s1Þ

and
qðz; s2Þ
qðz; s3Þ

strictly decrease in z: Therefore, as follows from Theorem 9.7, the stress levels s1

and s3 are dominated and, in this case, the stress level s2 minimizes the failure rate
and maximizes the survival function after a shock. Thus s2 is the optimal level.

Remark 9.11 Intuitively, it can be believed that a higher level of severity results in
a ‘better population’ but it is not always true as shown in this example. A similar
observation is true for the conventional burn-in in homogeneous populations when
the larger time of burn-in does not necessarily lead to a ‘better population’. In this
case, the shape of the failure rate (e.g., bathtub) plays a crucial role in the cor-
responding analysis.

Consider again the specific case (9.29). For convenience, and in accordance
with our reasoning, let us change the notation in the following way:

qðz; sÞ ¼ 1; 0� z� zs

0; z [ zs

�
; ð9:33Þ
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where zs [ zs0 if s0[ s; s; s0 2 ½0;1Þ: Then we have the following corollary.

Corollary 9.3 Let the model (9.33) hold and fix s0[ 0.

(i) If kðt; z1Þ� kðt; z2Þ; z1\z2; 8z1; z2 2 ½0;1�; t� 0; then the severity level s
for 8s� s0 is dominated under the failure rate criterion. That is,

kmsðt; sÞ� kmsðt; s0Þ; for all t� 0; for all s� s0:

(ii) If Fðt; z1Þ�Fðt; z2Þ; z1\z2; 8z1; z2 2 ½0;1�; t� 0; then the severity level s
for 8s� s0 is dominated under the survival probability criterion. That is,

Fmsðt; s0Þ �Fmsðt; sÞ; for all t� 0; for all s� s0:

Proof It is easy to check that condition

qðu; s0Þqðv; sÞ � qðv; s0Þqðu; sÞ� 0; for all u [ v;

is always satisfied for qðz; sÞ given by Relationship (9.33) for all s0[ s. h

It follows from this corollary that the better population quality (see Remark 9.7)
can be obtained by increasing s (formally, s!1; but the level of severity is
always bounded in practice).

Remark 9.12 In Theorem 9.7, considering general form of qðz; sÞ; it was assumed
that qðz; s0Þ=qðz; sÞ decreases in z for some fixed s0 and s: If we now assume that this
quotient decreases in z for all s0[ s; then, similar to the specific case of Corollary
9.3, the better population quality can be obtained by increasing s s!1ð Þ.

Remark 9.13 It should be noted that there is a certain analogy between describing
the usual burn-in for heterogeneous populations during a given time period and the
burn-in via shocks. It was shown in Finkelstein [10] that, if two different frailty
distributions are ordered in the sense of the likelihood ratio and inequality (9.20)
holds, then the smaller frailty implies the smaller mixture failure rate (the better
population quality after burn-in). In the case under consideration, Inequality (9.32)
can be also interpreted as the corresponding likelihood ordering of frailties after
the shocks with two stress levels s and s0; respectively.

9.2.4 The Cost of Burn-in and Optimal Problem

In field operation, items are frequently required to survive a pre-specified time
period, which is called the mission time, s: In this subsection, optimal severity of a
shock, which minimizes the average cost incurred during the burn-in and the
operation phase will be considered.
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As previously, a new component randomly selected from the heterogeneous
population is burned-in by means of a shock. If the first one did not survive then
we take another one from infinite heterogeneous population and burn-in again.
This procedure is repeated until we obtain the first component which survives
burn-in. Then this component is put into the field operation. Assume, first, for
simplicity, that the cost of conducting a single shock cs ¼ 0: Denote by c1 the
expected cost of the burn-in until obtaining the first item that has survived shocks.
It is clear that

c1 ¼ 0	 ð1� PÞ þ csrPð1� PÞ þ 2csrP
2ð1� PÞ þ 3csrP

3ð1� PÞ þ � � �

¼ csrPð1� PÞð1þ 2Pþ 3P2 þ � � �Þ ¼ csrP

1� P
;

ð9:34Þ

where csr is the shop replacement cost. Similarly, when cs 6¼ 0

c1 ¼
csrPþ cs

1� P
: ð9:35Þ

Obviously, this function increases when P increases in 0½ ; 1Þ: Note that P is now a
function of the stress level s; that is, PðsÞ [see definition (9.31), where pðzÞ should
be substituted by pðz; sÞ] and thus, in the following, c1 in (9.34) and (9.35) should
be also understood as a function of s; c1ðsÞ.

Let:

The cost cm is incurred by the event Ts� sf g (Failure of the Mission);
The gain gm results from the event Ts [ sf g (Success of the Mission).

Obviously, the expected cost during field operation is:

c2ðsÞ ¼ �gmFmsðs; sÞ þ cmð1� Fmsðs; sÞÞ
¼ �ðgm þ cmÞFmsðs; sÞ þ cm:

Therefore, the total expected cost function (as a function of the stress level s) for
the burn-in and the field operation phases is given by

cðsÞ ¼ c1ðsÞ þ c2ðsÞ; ð9:36Þ

where c1ðsÞ is defined in (9.35). The values csr; cs; gm; cm are assumed to be
known. Thus the corresponding optimization problem can be formalized as

s� ¼ arg min cðsÞ: ð9:37Þ

It is worth noting that condition (9.28) can also be imposed as an additional
requirement for obtaining minimum of the total costs function.

Theorem 9.8 Suppose that

Fðt; z1Þ�Fðt; z2Þ; z1\z2; 8z1; z2 2 ½0;1�; t� 0:
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(i) If, for any s2 [ s1; qðu; s2Þqðv; s1Þ � qðv; s2Þqðu; s1Þ� 0; for all u [ v; i.e.,
qðz; s2Þ=qðz; s1Þ decreases in z for all s2 [ s1; then there exists the finite
optimal level s�\1 for the optimization problem (9.37).

(ii) If there exists s0\1 such that for all levels s [ s0; the level s is dominated by
s0 under the survival probability criterion, then s�\s0.

Proof
(i) Observe that c1ðsÞ strictly increases in s with c1ð0Þ ¼ cs to c1ð1Þ ¼ 1 and

c2ðsÞ can be minimized by maximizing Fmsðs; sÞ: If qðz; s2Þ=qðz; s1Þ decreases
in z for all s2 [ s1; then c2ðsÞ strictly decreases for s [ 0 since Fmsðs; sÞ:
strictly increases for s [ 0 by Theorem 9.7. But cð1Þ ¼ 1 and thus, s�\1.

(ii) If there exists s0\1 such that for all stress levels s [ s0; the level s is
dominated by s0 then it is obvious that cðs0Þ� cðsÞ; for all s [ s0: Therefore,
s�\s0. h

Assume now that the expected gain during field operation is proportional to the
mean lifetime of an item, which is also a reasonable assumption that is often used
in practice. Then the expected cost during the field operation, c2ðsÞ; is given by

c2ðsÞ ¼ �k

Z1

0

Fmsðt; sÞdt ¼ �k

R1
0

R1
0 Fðt; zÞdt

� 	
qðz; sÞpðzÞdzR1

0 qðu; sÞpðuÞdu
;

where k is the proportionality constant. It is obvious that if

Fðt; z1Þ�Fðt; z2Þ; z1\z2; 8z1; z2 2 ½0;1�; t� 0;

then

Z1

0

Fðt; z1Þdt�
Z1

0

Fðt; z2Þdt; z1\z2; 8z1; z2 2 ½0;1�

and, as in Theorem 9.8, the same result for optimal severity level s� can be
obtained (See also the proof of Theorem 9.7-(ii)).

If our goal is only to achieve minimum of cðsÞ and a shock can be made as
severe as we wish, then no further shocks are needed. However, if the shock’s
severity beyond certain level (that is usually defined by the physical processes in
the item subject to a shock) results in a non-negligible damage in the ‘survived’
item, then we cannot go above this level of severity and should consider an option
of performing additional shocks. Note that additional shocks in the framework of
the specific model (9.29) do not improve the quality of a population. This can be
easily seen by deriving Pð2Þzb

- the probability of not surviving the second shock with
the same level of zb: Using (9.27) and (9.30),
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Pð2Þzb
¼
Z1

zb

psðzÞdz ¼
R1

zb
qðzÞpðzÞdzR1

0 qðzÞpðzÞdz
¼ 0:

On the other hand, the general model (9.31) gives a positive probability of not
surviving the second shock (with the same level of severity pðz; sÞ) after an item
had survived the first shock:

P 2ð ÞðsÞ ¼
Z1

0

pðz; sÞpsðzÞdz ¼
R1

0 pðz; sÞqðz; sÞpðzÞdzR1
0 qðz; sÞpðzÞdz

[ 0:

Therefore, when the high level of stress can negatively affect even those items that
had formally passed it (did not fail), we can perform a more ‘friendly’ burn-in with
a lower level of stress by increasing the number of shocks as opposed to the option
of one shock.

Denote the posterior density after the nth shock by pðnÞs ðzÞ; where pð1Þs ðzÞ ¼
psðzÞ: Then, (9.27) is generalized to:

pðnÞs ðzÞ ¼
qnðz; sÞpðzÞR1

0 qnðz; sÞpðzÞdz
; ð9:38Þ

meaning that for the given qðz; sÞ; this density tends (in the sense of generalized
functions) to the ‘one-sided’ d-function (in the positive neighborhood of 0).
Therefore, if we assume that there is no penalty (cost) for additional shocks, then
obviously, we can reach the desired level of severity (the same as with one
‘unfriendly’ shock) with a finite number of shocks. This ‘multi-shock reasoning’
can be generalized to an extended model considering the relevant costs and the
corresponding optimal problem. In essence, as all shocks are applied in a relatively
short period of time, we are treating the sequence of shocks as one ‘aggregated’
shock.

In this case, the number of shocks can be considered as a measure of severity.
Let si denote the level of severity with i shocks, i ¼ 1; 2; . . .; that is, for example,
at level s1 only one shock with severity level s is applied; at level s2 two con-
secutive shocks with severity level s are applied, and so on. Let
~qðz; siÞ ~qðz; s1Þ � qðz; sÞð Þ be the item’s survival probability for this ‘multi-shock
structure’. Obviously, from (9.38), we have ~qðz; siÞ ¼ qiðz; sÞ: As

~qðz; siþ1Þ
~qðz; siÞ

¼ qðz; sÞ

is decreasing in z; by Remark 9.12, we can conclude that the better quality of a
population can be obtained by monotonically increasing the number of shocks.
Using this property, similar results as in Theorem 9.8 can be obtained when the
corresponding cost structure is considered.
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Example 9.4 Consider the multiplicative model (9.26) with the constant baseline
failure rate kðt; zÞ ¼ zk: This is a real-life example as, e.g., many electronic
components have a constant failure rate which is varying from component
to component due to production instability, etc. Note that ‘traditional’ burn-in
(i.e., for the specified time) for these heterogeneous populations was usually
executed by the manufacturers especially when the items had to meet high reli-
ability requirements (e.g., for military field usage).

Assume for simplicity that Z is also exponentially distributed (it can easily be
generalized to the gamma distribution): PrðZ� zÞ ¼ 1� expf�a zg: It is well
known that the mixture failure rate in this case is

kmðtÞ ¼
R1

0 zk expf�zktgpðzÞdzR1
0 expf�zktgpðzÞdz

¼ k
kt þ a

: ð9:39Þ

Consider a single shock defined by the specific pðzÞ given by Eq. (9.29) [it is just
more convenient for this particular example to use this parameterization rather
than the equivalent parameterization (9.33)]. In accordance with (9.27):

psðzÞ ¼
qðzÞpðzÞR1

0 qðzÞpðzÞdz
¼ 1R zb

0 pðzÞdz

pðzÞ; 0� z� zb

0; z [ zb

�

¼ 1
PðzbÞ

pðzÞ; 0� zb

0; z [ zb

�
:

Therefore, simple integration results in

kmsðt; zbÞ ¼
R zb

0 zk expf�zktgpðzÞdzR zb

0 expf�zktgpðzÞdz

¼ k
kt þ a

1� zbðkt þ aÞ
expfzbðkt þ aÞg � 1

� �
:

ð9:40Þ

It can be easily seen that 1� zbðkt þ aÞ=ðexpfzbðkt þ aÞg � 1Þ is increasing in zb

from 0 at zb ¼ 0 to 1 at zb ¼ 1; for all fixed t [ 0: Note that the value at zb ¼ 0
should be considered only like a limit (which obviously does not belong to
admissible failure rates). Thus, when zb !1; (9.40) tends to the value defined by
Eq. (9.39). It is also clear that the general inequality (9.21) holds in this specific
case. It follows from (9.30) that the probability of not surviving a shock in this
specific case is:

PðzbÞ ¼
Z1

zb

pðzÞdz ¼ expf�a zbg:

In accordance with (9.36), the corresponding total expected cost function is

cðzbÞ ¼ c1ðzbÞ þ c2ðzbÞ;
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where

c1ðzbÞ ¼
csr expf�a zbg þ cs

1� expf�a zbg
;

and

c2ðzbÞ ¼ �ðgm þ cmÞ exp �
Zs

0

k
kuþ a

1� zbðkuþ aÞ
expfzbðkuþ aÞg � 1

� �
du

8<
:

9=
;þ cm:

It is obvious that c1ðzbÞ is decreasing in zb and its limits are1 and cs at zb ¼ 0 and
zb ¼ 1; respectively. On the other hand, as 1� zbðkt þ aÞ=ðexpfzbðkt þ aÞg � 1Þ
is increasing in zb from 0 at zb ¼ 0 to 1 at zb ¼ 1 (for all fixed t [ 0), c2ðzbÞ is
increasing in zb and its limits are �gm and �ðgm þ cmÞ exp �

R s
0 k=ðkuþ aÞdu

� 	
þ

cm; at zb ¼ 0 and zb ¼ 1; respectively.
Thus, in this case, cðzbÞ has its limit

cs � ðgm þ cmÞ exp �
Zs

0

k=ðkuþ aÞdu

8<
:

9=
;þ cm:

Consider the following illustrative numerical values: k ¼ 1:0; a ¼ 0:1; csr ¼
1:0; cs ¼ 1:0; gm ¼ 300; cm ¼ 200; and s ¼ 5:0: The corresponding graph is given
in Fig. 9.3.

It follows from Theorem 9.8 that there exists a finite optimal stress level
s�\1; which implies that in our example there exists a positive optimal zb

�[ 0:
For the chosen numerical values, we have: zb

� ¼ 0:165 and cðzb
�Þ 
 �19:63: This

result shows that for the given values of parameters the optimal stress level is
relatively large (zb

�is small).

9.3 Burn-in for Minimizing Risks

9.3.1 Discrete Mixtures

In the previous sections, it was shown that under reasonable assumptions, shocks
will eliminate weaker items with larger probabilities than strong items, and in this
way the burn-in can be performed. The optimal severity of shocks for some
population quality measures was also studied. In this section, we will apply this
methodology to the shock burn-in that minimizes the risks of selecting items (from
heterogeneous populations) with poor reliability characteristics for important
missions or missions, where failures can result, e.g., in a substantial economic loss.
This type of burn-in can be beneficial when the ‘ordinary’ time burn-in does not
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make sense (e.g., when the population failure rate is increasing), which will be
illustrated by relevant examples (see also [8]). In what follows, we implicitly
assume that shocks randomly occurring during ‘normal’ operation constitute one
of the main causes of failure. Therefore, a single shock of a larger magnitude under
the assumptions to be discussed can act as a method of burn-in.

Consider now the case of n ¼ 2 subpopulations. For convenience, we repeat the
initial setting of Sect. 9.1. First, we describe the composition of our population.
Denote the lifetime of a component from the ‘strong subpopulation’ by Ts and its
absolutely continuous Cdf, pdf, and the failure rate function by F1ðtÞ; f1ðtÞ and
k1ðtÞ; respectively. Similarly, the lifetime, the Cdf, pdf, and the failure rate
function of a ‘weak’ component are TW ;F2ðtÞ; f2ðtÞ and k2ðtÞ; accordingly. We
define strong and weak subpopulations in the sense of the following failure rate
ordering:

k2ðtÞ� k1ðtÞ; t� 0: ð9:41Þ

The initial t ¼ 0ð Þ composition of our mixed population is as follows: the pro-
portion of the strong items is p; whereas the proportion of the weak items is 1� p;
which means that the distribution of the discrete frailty Z with realizations z1 and
z2 in this case is

pðzÞ ¼ p; z ¼ z1

1� p; z ¼ z2

�

and z1; z2 z1\z2ð Þ; correspond to the strong and the weak subpopulations,
respectively. The mixture (population) survival function is

FmðtÞ ¼ pF1ðtÞ þ ð1� pÞF2ðtÞ:

Then the mixture (the observed or the population) failure rate is

kmðtÞ ¼
pf1ðtÞ þ ð1� pÞf2ðtÞ
p�F1ðtÞ þ ð1� pÞ�F2ðtÞ

¼ p1ðtÞk1ðtÞ þ p2ðtÞk2ðtÞ; ð9:42Þ

Fig. 9.3 The function cðzbÞ
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where the time-dependent probabilities are

p1ðtÞ ¼
p�F1ðtÞ

p�F1ðtÞ þ ð1� pÞ�F2ðtÞ
; p2ðtÞ ¼

ð1� pÞ�F2ðtÞ
p�F1ðtÞ þ ð1� pÞ�F2ðtÞ

: ð9:43Þ

We adopt the same assumption as in Sect. 9.1:

Basic Assumption 1 The more frail (e.g., with the larger failure rate during
‘normal’ operation) the items are, the more susceptible they are to be ‘killed’ by a
single shock of a larger magnitude (burn-in).

Burn-in is applied in the following way:

• Burn-in procedure by means of shocks. An item from our heterogeneous pop-
ulation is exposed to a shock. If it survives, it is considered to be ready for
usage, otherwise the failed item is discarded and a new one is exposed to a
shock, etc.

Let psðzÞ denote the frailty distribution after the (burn-in) shock and let kmsðtÞ
be the corresponding mixture (observed) failure rate. Denote the probabilities of
failures caused by each shock for two subpopulations as:

pðzÞ ¼ p1; z ¼ z1;
p2; z ¼ z2:

�
ð9:44Þ

Then psðzÞ; kmsðtÞ and FmsðtÞ are defined as in Sect. 9.1 [see, e.g., Eq. (9.2)].
Consider now a simple motivating example, where the shock burn-in can be

effective, whereas the ordinary time burn-in will only decrease reliability char-
acteristics of items.

Example 9.5 Let k1ðtÞ ¼ 0:3t þ 1; k2ðtÞ ¼ 0:6t þ 2 and p ¼ 0:60: Then, obvi-
ously, k2ðtÞ� k1ðtÞ; t� 0; and the mixture failure rate kmðtÞ given in Fig. 9.4 is
strictly increasing. Therefore, the time burn-in should not be applied for this
heterogeneous population.

Let p1 ¼ 0:1 and p2 ¼ 0:8 [see Eq. (9.44)]. Then the mixture failure rate
functions before and after (lower) the shock burn-in are given in Fig. 9.5.

Therefore, the shock burn-in improves the quality (reliability) characteristics of
this population.

In the following, we consider the problem of determining the optimal severity
of the shock burn-in for suitable measures of risk in operation. Denote the mag-
nitude of a shock by s 2 ½0;1�: Assume that the ‘strength’ of the component in a
strong subpopulation is a continuous random variable, which is denoted by U: By
‘strength’ we understand here the corresponding measure of resistance to a single
shock, i.e., if s [ U; then the failure occurs. Let the Cdf, the survival function, and
the failure rate function of U are denoted by GðsÞ;GðsÞ; and rðsÞ; respectively.
Similarly, let the strength of the component in a weak subpopulation be denoted by
UW : Then, in accordance with our Basic Assumption 1, let
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U� stUW : ð9:45Þ

Then Eqs. (9.3) and (9.4) and the corresponding reasoning employed while
deriving these equations hold.

Let an item from our population be operable at time t [ 0 (in field operation).
Then, if this is a weak item, the ‘risk of instantaneous failure’ is larger than that for
a strong one. Therefore, a larger penalty (loss) should be imposed to the item with
a larger risk. This allows us to define the following ‘‘point loss’’ at time t for the
subpopulation i:

LiðtÞ ¼ gððkiðtÞÞ; i ¼ 1; 2; ð9:46Þ

where gð�Þ is a strictly increasing function of its argument.

The following criterion of optimization of shock’s severity level stems from
definition (9.46):

Criterion 1 Find s� which minimizes

LðtjsÞ ¼
X2

i¼1

LðkiðtÞ; 0Þpsðzij0Þ ¼
X2

i¼1

gðkiðtÞÞpsðzij0Þ; for all t� 0: ð9:47Þ

Fig. 9.4 Mixture failure rate

Fig. 9.5 The mixture failure
rate functions before and after
Shock Burn-in
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Observe that LðtjsÞ in (9.47) corresponds to the mean loss at time t of an item
which has experienced the shock burn-in with the corresponding magnitude s:
Suppose that the subpopulations are ordered as in (9.41). Then, it is easy to see that
maximization of the proportion of the strong components, psðz1j0Þ � ps minimizes
(9.47) for all t� 0: Therefore, as follows from (9.45), the problem is the same as
maximizing

ps ¼
ð1� GðsÞÞp

ð1� GðsÞÞpþ ð1� GðqðsÞÞÞð1� pÞ ;

which is the same as finding s� that satisfies

s� ¼ arg inf
s2½0;1�

kmsðt; sÞ; for all fixed t� 0:

The corresponding result can be found in Cha and Finkelstein [6]:

Theorem 9.9 [6] Let k1ðtÞ� k2ðtÞ; for all t� 0: Then the optimal s� is the value
which maximizes RðqðsÞÞ � RðsÞ; where RðsÞ �

R s
0 rðuÞdu: In particular,

(i) If rðsÞ is increasing and q0ðsÞ[ 1; then s� ¼ 1.

(ii) If q0ðsÞrðqðsÞÞ
rðsÞ [ 1; for s\s0; and q0ðsÞrðqðsÞÞ

rðsÞ \1; for s [ s0; then s� ¼ s0.

Consider now the second criterion. Let s be the usage (mission) time for our
components. Then, as the point loss varies during mission time, it should be
averaged, i.e., it should be integrated for the mission interval (and then divided by
the length of the interval) to measure the ‘overall risk’ during the mission. Thus, the
average loss during the operational interval for subpopulation i can be defined as

R s
0 LiðtÞdt

s
¼
R s

0 gðkiðtÞÞdt

s
; i ¼ 1; 2:

As the selection of a component from a heterogeneous population is made just after
the shock burn-in and the corresponding proportions after the burn-in are given by
psðzij0Þ; i ¼ 1; 2; the mean loss for our mixture population (after burn-in) is

WðsÞ ¼
X2

i¼1

R s
0 LðkiðtÞ; 0Þdt

s
� psðzij0Þ ¼

X2

i¼1

R s
0 gðkiðtÞÞdt

s
� psðzij0Þ: ð9:48Þ

Criterion 2 Find s� which minimizes WðsÞ.

Similar to the optimization based on Criterion 1, as the subpopulations are
ordered in the sense of failure rate ordering, Theorem 9.9 could be also applied,
which is illustrated by the following example.

Example 9 Let k1ðtÞ ¼ 1:2� expf�1:2tg þ 0:01t; k2ðtÞ ¼ 1:4 expf�0:08tg þ
1:2þ 0:01t; with p ¼ p1ð0Þ ¼ 0:80: Then k2ðtÞ� k1ðtÞ; t� 0 and the
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corresponding strictly increasing mixture failure rate kmðtÞ is given in Fig. 9.6. Let
the failure rate of GðsÞ be rðsÞ ¼ expf�sg þ 1; qðsÞ ¼ ffiffi

s
p
; 0� s� 1=2; qðsÞ ¼

sþ ð1=
ffiffiffi
2
p
� 1=2Þ expð0:5� sÞ; s� 1=2: and s ¼ 3: Then for gðxÞ ¼ x2; WðsÞ is

given in Fig. 9.7. It can be numerically shown that there exists s0 such that
q0ðsÞrðqðsÞÞ

rðsÞ [ 1; for s\s0; and q0ðsÞrðqðsÞÞ
rðsÞ \1; for s [ s0; and, as illustrated by

Fig. 9.7, there exists the finite optimal severity level s� 
 0:20ð Þ: Note that, as the
failure rates are ordered, minimization of WðsÞ in (9.48) is equivalent to maxi-
mization of the proportion of the strong components, psðz1j0Þ � ps: Therefore, the
optimal severity in this case does not depend on the value of s and this is also the
optimal severity level for Criterion 1.

Note that the proportion of the strong subpopulation after the shock burn-in is
ps 
 0:86: (compare with 0.80 before burn-in). In addition, it can be shown
graphically that the mixture failure rate in this case has also been decreased for all
t� 0; as in Fig. 9.5.

Fig. 9.6 Mixture failure rate

Fig. 9.7 WðsÞ
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9.3.2 Continuous Mixtures

As in the previous parts of this chapter, consider now the case of the ‘continuous’
mixing model for a heterogeneous population, i.e.,

FmðtÞ ¼
Z1

0

Fðt; zÞpðzÞdz; fmðtÞ ¼
Z1

0

f ðt; zÞpðzÞdz; ð9:49Þ

where Fðt; zÞ � FðtjzÞ; f ðt; zÞ � f ðtjzÞ are the Cdf and the pdf of subpopulations
indexed (conditioned) by the frailty parameter Z and pðzÞ is the pdf of Z with
support in 0½ ;1Þ Then the mixture failure rate kmðtÞ is defined as in (9.15), (9.16).

As in the discrete case, let our subpopulations be ordered in the sense of the
failure (hazard) rate ordering:

kðt; z1Þ� kðt; z2Þ; z1\z2; 8z1; z2 2 ½0;1Þ; t� 0: ð9:50Þ

We choose an item from a heterogeneous population at random (or alterna-
tively, our item is described by the unobserved frailty parameter Z). Thus, the
mixture (population) failure rate of this item is kmðtÞ: Throughout this subsection,
similar to the Basic Assumption 1, the impact of a shock is described by the
following general assumption [6].

Basic Assumption 2 A shock either ‘kills’ an item with a given probability or
does not change its stochastic properties with the complementary probability. The
more ‘frail’ (e.g., with the larger failure rate during normal operation) an item is,
the larger is the probability that a single burn-in shock will ‘kill’ it.

As we implicitly assume that shocks during normal operation constitute one of
the main causes of failure, the above assumption can be justified. Note that,
clearly, the burn-in procedure is the same as in the discrete case. The described
setting can be defined probabilistically in the following way: Let psðzÞ denote the
pdf of the frailty Zs (with support in 0½ ;1Þ) after a shock and let kmsðtÞ be the
corresponding mixture failure rate. In accordance with (9.49):

kmsðtÞ ¼
Z1

0

kðt; zÞpsðzjtÞdz; ð9:51Þ

where, similar to (9.50), psðzjtÞ is defined by the right-hand side of (9.50) with pðzÞ
substituted by psðzÞ.

Let qðzÞ be ‘‘the survival probability’’ of an item with frailty z after the shock.
Then psðzÞ is [10]:

psðzÞ ¼
qðzÞpðzÞR1

0 qðzÞpðzÞdz
; ð9:52Þ
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where, in accordance with Basic Assumption 2, qðzÞ is a decreasing function of z
and therefore, psðzÞ=pðzÞ is decreasing [the denominator of (9.52) is just a nor-
malizing constant for the density]. That is, population frailties before pðzÞð Þ and
after psðzÞð Þ a shock are ordered in the sense of the likelihood ratio (Sect. 2.8)

Z� LRZs:

Define the functions pðzÞ and qðzÞ as functions of the frailty variable z and the
severity parameter s 2 ½0;1Þ; pðz; sÞ, and qðz; sÞ: Assume that qðz; sÞ is decreasing
in z for each fixed s and is decreasing in s for each z: Denote the corresponding
failure rate and survival functions by kmsðt; sÞ; and Fmsðt; sÞ; respectively. Similar
to (9.52) and (9.50):

psðz; sÞ ¼
qðz; sÞpðzÞR1

0 qðu; sÞpðuÞdu
; psðz; sjtÞ � psðz; sÞ

�Fðt; zÞR1
0

�Fðt; uÞpsðu; sÞdu
: ð9:53Þ

For this continuous mixture case, the criteria defined for the discrete case can
obviously be generalized as follows:

Criterion 1C Find s� which minimizes

LðtjsÞ ¼
Z1

0

gðkðt; zÞÞpsðz; sÞdz; for all t� 0:

Criterion 2C Find s� which minimizes

WðsÞ ¼
Z1

0

R s
0 gðkðt; zÞÞdt

s
� psðz; sÞdz:

The following example illustrates the application of Criterion 2C.

Example 9.7 Suppose that kðt; zÞ ¼ 0:1z expf0:1tg þ 0:02t þ 1; and let Z be
exponentially distributed with parameter h ¼ 0:5: For brevity, we omit the graph
showing that the mixture failure rate is strictly increasing in this case. Let
qðz; sÞ ¼ 0:95e�zs þ 0:05; s ¼ 3:0, and gðxÞ ¼ x2: Then WðsÞ is given in Fig. 9.8.

Thus the optimal shock severity is s� 
 2:03: As in Example 9.6, the shock
burn-in in this case has decreased the mixture failure rate (we omit the corre-
sponding figure for brevity), which obviously cannot be attained by the ordinary
time burn-in, as the mixture failure rate of our population is increasing. The frailty
distributions before and after burn-in are given in Fig. 9.9.

It can be seen that the frailty density before the shock is much flatter allowing
larger proportions of items with higher failure rates (weaker).
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9.3.3 Optimal Shock Burn-in Based on Conservative
Measures

Sometimes, failures of items may result in catastrophic or disastrous events. For
example, failures in jet engines of aircrafts or those in gas safety valves may cause
fatal consequences. Similarly, failures during important missions can cause huge
economic loss. In these cases, we need to define some ‘marginal quality’ of the
population that describes in some sense the ‘‘worst scenario’’. That is, if this worst
scenario quality is still acceptable then the quality of our population as a whole is
considered to be satisfactory. Thus, the marginal quality can be used as a con-
servative (safe) measure (or bound) for the quality of a population in such cases.

In this subsection, we consider the optimal burn-in procedure which optimizes
the conservative measures and modify the approach that was developed in Cha and
Finkelstein [7] (see also Sect. 8.3) for the time burn-in with respect to the shock
burn-in. Obviously, this refers only to the continuous mixtures case.

Denote by Psðz; sÞ; the conditional distribution function which corresponds to
psðz; sÞ; defined in (9.53). Define the following measure:

Fig. 9.9 Frailty densities
before and after Burn-in

Fig. 9.8 WðsÞ
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kaðtjsÞ ¼ kðt; zðajsÞÞ; t� 0; ð9:54Þ

where zðajsÞ � inffz : Psðz; sÞ� ag and a is usually close to 1 (e.g., 0.9 or 0.95).
Thus, kaðtjsÞ is the (residual) failure rate of an item after a shock with magnitude s;
which corresponds to the ath percentile zðajsÞ of the conditional distribution of
frailty Psðz; sÞ. When a is close to 1, this operation describes the ath worst sce-
nario, which is the ‘ath worst subpopulation’ in the defined way. Based on the
above setting, we can define the ath worst mean remaining lifetime (MRL) of the
population after the shock burn-in with severity s:

MaðsÞ �
Z1

0

expf�
Z t

0

kaðujsÞdugdt:

Therefore, the following criterion can be applied:

Criterion 3 Determine the optimal severity s� as the minimal severity s such that
MaðsÞ�mr; where mr is the MRL that corresponds to the ath worst scenario.

Implementation of this approach can be clearly seen while considering the
following meaningful example.

Example 9.8 Let the conditional failure rate and the mixing distribution be
kðt; zÞ ¼ z and pðzÞ ¼ h expf�hzg; respectively. It is well known (see e.g., [2] that
the mixture failure rate strictly decreases in this case. Let qðz; sÞ ¼ e�zaðsÞ; where
aðsÞ is nonnegative strictly increasing function with að0Þ ¼ 0 and lims!1 aðsÞ ¼
1: In accordance with (9.53):

Psðz; sÞ ¼ 1� expf�ðhþ aðsÞÞzg:

Then

zðajsÞ ¼ � lnð1� aÞ
hþ aðsÞ ;

and [see (9.54)]:

kaðtjsÞ ¼ �
lnð1� aÞ
hþ aðsÞ ; t� 0:

The criterion for the shock burn-in is as follows: Find the minimum shock
severity such that, after burn-in, the mean (residual) lifetime of the lower ð1�
aÞ% quality of items is, at least, m. As the lifetimes are exponential (for the fixed
frailty), this MRL is, obviously,

MaðsÞ ¼ 1=zðajsÞ ¼ �ðhþ aðsÞÞ= lnð1� aÞ:
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Let a ¼ 9; h ¼ 1:0 and aðsÞ ¼ s: Then the corresponding linear function is given in
Fig. 9.10.

If, for instance, m ¼ 1:25; then the corresponding minimum shock severity:
s� 
 1:88.

The conservative measure (9.54) can be modified (generalized) to account for
the average of the lower ð1� aÞ% quality of items in the survived population after
the shock with severity s: Then, after the shock with severity s; the initial con-
ditional frailty distribution [which corresponds to pðzÞ in (9.50)] for the items
whose quality is lower than ð1� aÞ% is given by

psðz; sÞ
1� a

; zðajsÞ� z�1;

where, as previously, zðajsÞ � inffz :
Q

sðz; sÞ� ag: Thus the conditional density
after time t (in usage), which corresponds to pðzjtÞ in (9.51) is

paðz; sjtÞ �
psðz; sÞ
1� a

�Fðt; zÞR1
zðajsÞ

�Fðt; zÞ psðz;sÞ
1�a dz

; zðajsÞ� z�1:

Therefore, the mixture failure rate for the items in the survived population whose
quality is lower than ð1� aÞ% after the shock with severity s is obtained by

kmðtjs; aÞ ¼
Z1

zðajsÞ

kðt; zÞpaðz; sjtÞdz:

Example 9.9 (Example 9.8 Continued) As zðajsÞ ¼ � lnð1� aÞ=ðhþ aðsÞÞ and

Z1

zðajsÞ

�Fðt; zÞ psðz; sÞ
1� a

dz ¼ 1
ð1� aÞ �

hþ aðsÞ
hþ aðsÞ þ t

� ð1� aÞ
hþaðsÞþt
hþaðsÞ ;

Fig. 9.10 MaðsÞ for a ¼ 9;
h ¼ 1:0; aðsÞ ¼ s
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we have,

paðz; sjtÞ �
psðz; sÞ
1� a

�Fðt; zÞR1
zðajsÞ

�Fðt; zÞ psðz;sÞ
1�a dz

¼ ðhþ aðsÞ þ tÞ � ð1� aÞ�
hþaðsÞþt
hþaðsÞ � expf�ðhþ aðsÞ þ tÞzg:

Thus

kmðtjs; aÞ ¼
Z1

zðajsÞ

kðt; zÞpaðz; sjtÞdz ¼ � lnð1� aÞ
hþ aðsÞ þ

1
hþ aðsÞ þ t

; t� 0:

The criterion for the shock burn-in is as follows: Find the minimum shock
severity such that, after burn-in, the mean (residual) lifetime of the items whose
quality is lower than ð1� aÞ% is at least m: Then we have to obtain the MRL of
the items whose quality is lower than ð1� aÞ% after the shock burn-in at each
severity level s; which is given by

Z1

0

exp �
Zx

0

kmðtjs; aÞdt

8<
:

9=
;dx;

Let a ¼ 9; h ¼ 1:0 and aðsÞ ¼ s and m ¼ 1:25: Then it can be easily found
numerically that the optimal shock severity is s� 
 2:47.

9.4 Burn-in for Systems in Environment with Shocks

Burn-in procedures are usually applied to items with large initial failure rate which
operate under static operational environment. Similar to previous sections, we
consider shocks as a method of burn-in, but in this section we assume that there are
two competing risks causes of failure—the ‘usual’ one (in accordance with aging
processes in a system) and environmental shocks. We also suggest a new type of
burn-in via the controlled (laboratory) test shocks and consider the problem of
obtaining the optimal level (severity) of these shocks that minimizes the overall
expected cost (burn-in ? field use). Furthermore, also to minimize these costs, we
combine the conventional burn-in procedure with burn-in via shocks in one unified
model. We start with the general description of the basic stress-strength model. In
Sect. 4.7 and Sect. 4.10.3 we have already used some specific cases of this model
for discussing the operation of thinning of point processes and processes with
delay and cure.
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9.4.1 Strength–Stress Shock Model

In this subsection, we consider a rather general stress-strength shock model, which
will be used as an important supplementary result for considering burn-in prob-
lems of the subsequent subsections.

As in Chap. 4, consider a system subject to the nonhomogeneous Poisson
process (NHPP) of shocks NðtÞ; t� 0; with rate kðtÞ and arrival (waiting) times
Ti; i ¼ 1; 2; . . .. Let Si denote the magnitude (stress) of the ith shock. Assume that
Si; i ¼ 1; 2; . . . are i.i.d. random variables with the common Cdf Mf ðsÞ ¼
PrðSi� sÞ Mf ðsÞ � 1�Mf ðsÞ

� �
and the corresponding pdf mf ðsÞ: Let U be a

random strength of the system with the corresponding Cdf, Sf, pdf, and FR
GUðuÞ; GUðuÞ; gUðuÞ and rUðuÞ; respectively. For each i ¼ 1; 2; . . .; the operable
system survives if Si�U and fails if Si [ U; ‘independently of everything else’.

Let T be the lifetime of the system described above and rðtÞ be the corre-
sponding failure rate function, which will be derived in the rest of this subsection.
Then the following theorem presents the formal and a more detailed proof of
Eq. (4.50):

Theorem 9.10 The failure rate function of the system lifetime rðtÞ is given by

rðtÞ ¼ pðtÞkðtÞ; ð9:55Þ

where

pðtÞ �
R1

0

R v
0 exp �Mf ðrÞ

R t
0 kðxÞdx

� 	
� gUðrÞdr mf ðvÞdvR1

0 exp �Mf ðrÞ
R t

0 kðxÞdx
� 	

gUðrÞdr
:

Proof Observe that

PðT [ tjNðsÞ; 0� s� t; S1; S2; . . .; SNðtÞÞ
¼ PðU [ maxfS1; S2; . . .; SNðtÞgÞ

¼
Z1

0

Mf ðrÞ
� �NðtÞ

gUðrÞdr:

Thus,

PðT [ tÞ ¼
Z1

0

X1
n¼0

Mf ðrÞ
� �n KðtÞð Þn

n!
expf�KðtÞg

 !
gUðrÞdr

¼
Z1

0

expf�ð1�Mf ðrÞÞKðtÞggUðrÞdr

¼
Z1

0

expf�Mf ðrÞKðtÞggUðrÞdr;

350 9 Shocks as Burn-in

http://dx.doi.org/10.1007/978-1-4471-5028-2_4
http://dx.doi.org/10.1007/978-1-4471-5028-2_4
http://dx.doi.org/10.1007/978-1-4471-5028-2_4


where KðtÞ �
R t

0 kðuÞdu: The corresponding failure rate is

rðtÞ ¼ � d
dt

ln PðT [ tÞ

¼
R1

0 Mf ðrÞ exp �Mf ðrÞKðtÞ
� 	

gUðrÞdr � kðtÞR1
0 exp �Mf ðrÞKðtÞ

� 	
gUðrÞdr

¼
R1

0

R1
r mf ðvÞdv expf�Mf ðrÞKðtÞggUðrÞdr � kðtÞR1

0 exp �Mf ðrÞKðtÞ
� 	

gUðrÞdr

¼
R1

0

R v
0 exp �Mf ðrÞ

R t
0 kðxÞdx

� 	
� gUðrÞdr mf ðvÞdv

R1
0 exp �Mf ðrÞ

Rt
0

kðxÞdx

� 

gUðrÞdr

kðtÞ:

h

The expression for pðtÞ is formally rather cumbersome, but it has a simple and
meaningful probabilistic meaning, which is shown in the following remark.

Remark 9.14 Observe that

PðT [ tjNðtÞ ¼ n;U ¼ uÞ ¼ Pðu�maxfS1; S2; . . .; SngÞ ¼ ðMf ðuÞÞn:

Thus,

PðT [ t;U [ uÞ ¼
Z1

u

X1
n¼0

ðMf ðrÞÞn
R t

0 kðxÞdx
� �n

n!
exp �

Z t

0

kðxÞdx

8<
:

9=
; � gUðrÞdr

¼
Z1

u

exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
; � gUðrÞdr;

and

PðU [ ujT [ tÞ ¼
R1

u exp �Mf ðrÞ
R t

0 kðxÞdx
� 	

� gUðrÞdrR1
0 exp �Mf ðrÞ

R t
0 kðxÞdx

� 	
gUðrÞdr

:
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Therefore, it can be seen that

pðtÞ ¼
Z1

0

PðU\vjT [ tÞmf ðvÞdv: ð9:56Þ

As U is a random strength of our system and mf ðvÞ is the pdf of the magnitude
of any shock, pðtÞ can be interpreted as the probability of a failure under a shock
that had occurred at time t given that it did not occur before. The important feature
of (9.56) is conditioning on the event T [ t; which obviously has the Bayesian
interpretation via the updating of the distribution of the system’s strength. That is,
even though random strength does not actually change, its distribution (on the
condition that T [ t) is updated as t increases, which eventually yields a time-
dependent pðtÞ: This conditioning was overlooked in Cha and Finkelstein [7],
which resulted in p ¼

R1
0 PðU\vÞmf ðvÞdv: Relationship (9.56) will be very useful

for our further discussion.

9.4.2 Optimal Level of Shock’s Severity

We consider a system (a component, an item) that operates in an environment with
shocks. Assume that in the absence of shocks, it can fail in accordance with the
baseline distribution F0ðtÞ with the corresponding failure rate function r0ðtÞ: In
addition to this type of the ‘baseline’ failure, the environmental shocks can also
cause system’s failure. Assume that each shock, with probability pðtÞ results in
immediate system’s failure and with probability qðtÞ ¼ 1� pðtÞ it does not cause
any change in the system. We use the same notation, as in (9.56), because pðtÞ in
(9.56) as an ‘overall characteristic’ can be also obviously interpreted in this way. If
the shocks follow the NHPP with intensity kðtÞ; then it is well known that the
survival function of the system for this setting is given by

PðT [ tÞ ¼ exp �
Z t

0

r0ðuÞdu

0
@

1
A exp �

Z t

0

pðuÞkðuÞdu

0
@

1
A

¼ exp �
Z t

0

r0ðuÞ þ pðuÞkðuÞdu

0
@

1
A; t� 0;

and thus the resulting failure rate is

rðtÞ ¼ r0ðtÞ þ pðtÞkðtÞ: ð9:57Þ
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Coming back to the burn-in setting, as in Sect. 9.4.1, we now further assume
that the magnitude (stress) of the ith shock Si; i ¼ 1; 2; . . . are i.i.d. random vari-
ables with the common Cdf Mf ðsÞ ¼ PrðSi� sÞ Mf ðsÞ � 1�Mf ðsÞ

� �
and the

corresponding pdf mf ðsÞ: For each i ¼ 1; 2; . . .; the operable system survives if
Si�U and fails if Si [ U; independently of everything else, where U is the random
strength of the system. When we apply the shock of the controlled magnitude s
during burn-in, this means that the strength of the component that had passed it is
larger than s; and the distribution of the remaining strength Us (given that the
strength is larger than s) is

GUðujsÞ � Pr½U� ujU [ s� ¼ 1� GðuÞ=GðsÞ; u [ s:

Let Ts be the lifetime of the system that has survived the shock burn-in with the
controlled magnitude s: Then, in accordance with the discussion in Sect. 9.4.1 and
the result given by (9.55), the failure rate in (9.57) should now be modified to

rðt; sÞ ¼ r0ðtÞ þ pðs; tÞkðtÞ; ð9:58Þ

where

pðs; tÞ ¼
R1

0

R v
0 exp �Mf ðrÞ

R t
0 kðxÞdx

� 	
� gUðrjsÞdr mf ðvÞdvR1

0 exp �Mf ðrÞ
R t

0 kðxÞdx
� 	

gUðrjsÞdr

¼

R1
s

R v
s expf�Mf ðrÞ

Rt
0

kðxÞdxg � gUðrÞdr mf ðvÞdv

R1
s exp �Mf ðrÞ

R t
0 kðxÞdx

� 	
gUðrÞdr

;

ð9:59Þ

and gUðujsÞ is the corresponding pdf of GUðujsÞ; which is given by

gUðujsÞ ¼
0; if u� s

gUðuÞ
GUðsÞ

; if u [ s

(
:

Therefore, similar to (9.56), Eq. (9.59) can be written in a compact and a mean-
ingful way (via the corresponding mixture) as

pðs; tÞ ¼
Z1

0

Iðv 2 ½s;1ÞÞPðUs\vjT [ tÞmf ðvÞdv; ð9:60Þ

where

PðUs\vjT [ tÞ ¼
R v

s exp �Mf ðrÞ
R t

0 kðxÞdx
� 	

� gUðrÞdrR1
s exp �Mf ðrÞ

R t
0 kðxÞdx

� 	
gUðrÞdr

:

and the indicator Iðv 2 ½s;1ÞÞ accounts for the fact that after the shock burn-in
with magnitude s; the system’s strength with probability 1 is larger than s:
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In order to justify the shock burn-in, we must show that pðs; tÞ in (9.59) is
decreasing in s for each fixed t: Thus, by increasing the magnitude of the burn-in
shock, we decrease the corresponding failure rate in (9.58). This property, which is
important for our reasoning, is proved by the following simple theorem:

Theorem 9.11 The function pðs; tÞ is strictly decreasing in s for each fixed t.

Proof Observe that

o

os
PðUs\vjT [ tÞ ¼ 1R1

s exp �Mf ðrÞ
R t

0 kðxÞdx
� 	

gUðrÞdr
� �2

	 � exp �Mf ðsÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðsÞ �

2
4 Z1

s

exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr

þ exp �Mf ðsÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðsÞ �

Zv

s

exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr

3
5\0:

This implies that PðUs\vjT [ tÞ is strictly decreasing in s for all fixed v and t:
Observe that the indicator in (9.60) is also strictly decreasing in s for all fixed v:
Therefore, it can be concluded that pðs; tÞ is strictly decreasing in s for each fixed t.h

Based on the new results obtained above, we now reconsider some of the
previous burn-in models.

An item is chosen at random from our population and is exposed to a shock of
magnitude s. If it survives, it is considered to be ready for usage, otherwise the
failed item is discarded and the new one is chosen from the population, etc. This
procedure is repeated until the first survived item is obtained. Let csr be the shop
replacement cost and cs be the cost for conducting a single shock. Let c1ðsÞ; as a
function of s; be the expected cost for eventually obtaining a component which has
survived a shock. Then

c1ðsÞ ¼
cs þ csrGðsÞ

GðsÞ
¼ �csr þ

cs þ csr

GðsÞ
; ð9:61Þ

where 1=GðsÞ is the total number of trials until the first ‘success’.

Let K be the gain for the unit of time during the mission time. Then the
expected gain during field operation (until failure) is given by

c2ðsÞ ¼ �K

Z1

0

exp �
Z t

0

ðr0ðuÞ þ pðs; uÞkðuÞÞdu

8<
:

9=
;dt

0
@

1
A

and the total expected cost cðsÞ is
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cðsÞ ¼ c1ðsÞ þ c2ðsÞ

¼ �csr þ
cs þ csr

GðsÞ
� K

Z1

0

exp �
Z t

0

ðr0ðuÞ þ pðs; uÞkðuÞÞdu

8<
:

9=
;dt

0
@

1
A;
ð9:62Þ

where pðs; uÞ is given by (9.59). The function c1ðsÞ is strictly increasing to infinity
and c2ðsÞ is strictly decreasing (Theorem 9.11) to �Kl0; where l0 is the mean
time to failure, which corresponds to the distribution with the failure rate r0ðtÞ:
Therefore, there should be a finite optimal severity. Then, based on (9.62), the
optimal severity level s� that satisfies

s� ¼ arg min
s2 ½0;1�

cðsÞ

can be obtained.
In the following example, the strength of a system is described by the Weibull

distribution.

Example 9.10 Assume that GUðuÞ ¼ expf�u2g; u� 0;Mf ðsÞ ¼ expf�6sg;
s� 0; kðtÞ ¼ 1; t� 0; and r0ðtÞ ¼ 0:06t þ 0:2; t� 0: Let csr ¼ 0:1; cs ¼ 0:01; and
K ¼ 8:0:

Optimal severity in this case is given by s� ¼ 0:86 and the corresponding
minimum cost is cðs�Þ ¼ �23:46 (Fig. 9.11).

Similar reasoning holds when our gain is defined by the success of the mission
during the fixed interval of time s. Let:

• The cost cm is incurred by the event Ts� sf g (Failure of the Mission);
• The gain gm results from the event Ts [ sf g (Success of the Mission).

Then the burn-in costs are the same as in (9.61), whereas the expected cost
during field operation, c2ðsÞ; is given by

Fig. 9.11 Graph for cðsÞ
(Weibull GðsÞ)
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c2ðsÞ ¼ �gm exp �
Zs

0

ðr0ðuÞ þ pðs; uÞkðuÞÞdu

8<
:

9=
;

0
@

1
Aþ cm 1� exp �

Zs

0

ðr0ðuÞ þ pðs; uÞkðuÞÞdu

8<
:

9=
;

0
@

1
A

¼ �ðgm þ cmÞ exp �
Zs

0

ðr0ðuÞ þ pðs; uÞkðuÞÞdu

8<
:

9=
;

0
@

1
Aþ cm:

It is clear that c2ðsÞ is strictly decreasing to

�ðgm þ cmÞ exp �
Zs

0

r0ðuÞdu

8<
:

9=
;

0
@

1
Aþ cm;

and all further considerations are similar to those when the gain is proportional to
the mean time to failure.

9.4.3 Burn-in Procedure Combining Shock
and Conventional Burn-in

In this subsection, we will deal with the combined burn-in procedures considered
in Cha and Finkelstein [7] using the results of the previous subsections. We have
two possibilities: Bðb; sÞ; the strategy when the systems are burned-in for time b
(we will call it the ‘time burn-in’) and then the shock burn-in with severity s is
applied to the systems, which survived the burn-in time b; whereas the strategy
Bðs; bÞ applies shock first and then the survived systems are burned-in for time b.
Unless otherwise specified, we assume that, during the time burn-in, the system is
also subject to environmental shocks (as in field usage). In Cha and Finkelstein [7],
the simple case of the homogeneous Poisson process of environmental shocks with
intensity k was considered, whereas in the current setting we are able to deal with
the general NHPP case. In fact, the shock intensity during time burn-in and that
during the field operation can be different. Let kbðtÞ be the shock intensity at time t
from the starting point of the burn-in and kf tð Þ be the shock intensity at time t from
the starting point of the field operation. Then the overall intensity function is

kðtÞ ¼ kbðtÞ; if t� b
kf ðt � bÞ; if t [ b;

�

where b is the burn-in time.
Let the assumptions and notation for the burn-in strategies under consideration

be the same as before. As for the conventional burn-in procedure, assume addi-
tionally that the burn-in cost is proportional to the total burn-in time with pro-
portionality constant c0.
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Consider first, the strategy Bðs; bÞ: Let h1ðs; bÞ be the expected burn-in cost for
Bðs; bÞ and Ts be the lifetime of the system that has survived the shock burn-in. As
our shock is of the fixed magnitude s; the corresponding survival function after the
shock, in accordance with (9.58), is

FsðtÞ ¼ exp �
Z t

0

ðr0ðuÞ þ pðs; uÞkðuÞÞdu

0
@

1
A;

where pðs; tÞ is defined in (9.59). Then, by similar arguments as those described in
Cha and Finkelstein [7], we have:

h1ðs; bÞ ¼ c0

R b
0 FsðtÞdt

FsðbÞ
þ cs þ csr

FsðbÞGðsÞ
� csr: ð9:63Þ

On the other hand, when our system is not exposed to environmental shocks during
the time burn-in, (9.63) changes to

h1ðs; bÞ ¼ c0

R b
0 F0ðtÞdt

F0ðbÞ
þ cs þ csr

F0ðbÞGðsÞ
� csr;

where F0ðtÞ ¼ exp �
R t

0 r0ðuÞ du
� �

.
Consider a gain proportional to the mean time to failure in field usage, as in

(9.62). Then the total expected cost c1ðs; bÞ is

c1ðs; bÞ ¼ c0

R b
0 FsðtÞdt

FsðbÞ
þ cs þ csr

FsðbÞGðsÞ
� csr

� K

Z1

0

exp �
Z t

0

ðr0ðbþ uÞ þ pðs; bþ uÞkðbþ uÞÞdu

8<
:

9=
;dt

0
@

1
A;
ð9:64Þ

whereas the substitution of FsðtÞ by F0ðtÞ and assuming that kbðtÞ ¼ 0 corresponds
to the case when there are no environmental shocks during the time burn-in.

As Cha and Finkelstein [7] did not take into account the existing dependence of
the distribution of strength on time, the failure rate that corresponds to (9.58) was
erroneously obtained as rðt; sÞ ¼ r0ðtÞ þ pðsÞk for kðtÞ ¼ k: In accordance with
this equation it was stated that ‘‘the failures due to shocks during the time burn-in
do not contribute to improvement of reliability characteristics in field use, but
increase only the cost of burn-in’’ as time burn-in does not decrease the second
term ‘‘pðsÞk’’. However, the following theorem shows that shocks during time
burn-in do contribute to improvement of reliability characteristics in field use.
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Theorem 9.12 The function pðs; tÞ is strictly decreasing in t for each fixed s.

Proof Observe that

o

ot
PðUs\vjT [ tÞ ¼ 1

R1
s exp �Mf ðrÞ

Rt
0

kðxÞdx

� 

gUðrÞdr

� �2

	 �kðtÞ
Zv

s

Mf ðrÞ exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr �

2
4 Z1

s

exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr

þ kðtÞ
Z1

s

Mf ðrÞ exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr �

Zv

s

exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr

3
5:

The numerator of the above equation becomes

�kðtÞ
Zv

s

Mf ðrÞ exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr �

2
4 Z1

v

exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr

þ kðtÞ
Z1

v

Mf ðrÞ exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr �

Zv

s

exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr

3
5

\ �kðtÞ
Zv

s

Mf ðrÞ exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr �

2
4 Z1

v

exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr

þ kðtÞ
Z1

v

Mf ðvÞ exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr �

Zv

s

exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr

3
5

¼ �kðtÞ
Zv

s

Mf ðrÞ exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr �

2
4 Z1

v

exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr

þ kðtÞ
Z1

v

exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr �

Zv

s

Mf ðvÞ exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr

3
5

\ �kðtÞ
Zv

s

Mf ðrÞ exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr �

2
4 Z1

v

exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr

þ kðtÞ
Z1

v

exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr �

Zv

s

Mf ðrÞ exp �Mf ðrÞ
Z t

0

kðxÞdx

8<
:

9=
;gUðrÞdr

3
5 ¼ 0

as Mf ðrÞ is strictly decreasing in r: Therefore, PðUs\vjT [ tÞ is decreasing in
tand, due to the fact that

pðs; tÞ ¼
Z1

0

Iðv 2 ½s;1ÞÞPðUs\vjT [ tÞmf ðvÞdv;

pðs; tÞ is strictly decreasing in t for each fixed s. h
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Therefore, the second term of the failure rate in (9.58), pðs; tÞkðtÞ is decreasing
in t for each fixed s when kðtÞ is nonincreasing. Or, even if kðtÞ is increasing,
pðs; tÞkðtÞ can be decreasing in t (for each fixed s) in some cases. Therefore, in this
sense, shocks during time burn-in do contribute to improvement of reliability
characteristics in field use.

Similar considerations can be used for describing the strategy Bðb; sÞ: Let
h2ðs; bÞ be the expected burn-in cost. Then by similar arguments as those described
in Cha and Finkelstein [7]:

h2ðs; bÞ ¼
1

GðsÞ
ðc0

R b
0 FðtÞdt

FðbÞ
Þ þ cs

1

GðsÞ
þ csr

1

FðbÞGðsÞ
� csr; ð9:65Þ

where

FðtÞ ¼ exp �
Z t

0

ðr0ðuÞ þ pð0; uÞkðuÞÞdu

0
@

1
A:

Note that just after time burn-in (before performing the shock burn-in), as follows
from Remark 9.14, the initial distribution of U is

GUðu; bÞ ¼ PðU [ ujT [ bÞ ¼

R1
u exp �Mf ðrÞ

R b
0 kðxÞdx

n o
� gUðrÞdr

R1
0 exp �Mf ðrÞ

R b
0 kðxÞdx

n o
gUðrÞdr

;

and, if we further perform the shock burn-in with the magnitude s; then the
resulting pdf for U is

0; if u� s
gUðu;bÞ
GUðs;bÞ

; if u [ s

(
;

where gUðu; bÞ is the pdf which corresponds to GUðu; bÞ:

gUðu; bÞ ¼
exp �Mf ðuÞ

R b
0 kðxÞdx

n o
� gUðuÞR1

0 exp �Mf ðrÞ
R b

0 kðxÞdx
n o

gUðrÞdr

¼
exp �Mf ðuÞ

R b
0 kbðxÞdx

n o
� gUðuÞ

R1
0

exp �Mf ðrÞ
R b

0 kbðxÞdx
n o

gUðrÞdr
:

In accordance with (9.59), the failure probability at the ‘field use age’ t is
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pðb; s; tÞ ¼
R1

s

R v
s exp �Mf ðrÞ

R t
0 kf ðxÞdx

� 	
� gUðr; bÞdr mf ðvÞdvR1

s exp �Mf ðrÞ
R t

0 kf ðxÞdx
� 	

gUðr; bÞdr
: ð9:66Þ

Finally, from (9.65) and (9.66), the total expected cost c2ðs; bÞ is

c2ðs; bÞ ¼
1

GðsÞ
c0

R b
0 FðtÞdt

FðbÞ

 !
þ cs

1

GðsÞ
þ csr

1

FðbÞGðsÞ
� csr

� K

Z1

0

exp �
Z t

0

ðr0ðbþ uÞ þ pðb; s; uÞkðbþ uÞÞdu

8<
:

9=
;dt

0
@

1
A:

Note that, pðb; s; uÞ (not pðs; bþ uÞ) should be used in c2ðs; bÞ above. From
Theorems 9.11 and 9.12, it is clear that pðb; s; tÞ is strictly decreasing in both s and
t for each fixed b; respectively. By similar procedure as before (Theorem 9.12), it
can also be shown that the function pðb; s; tÞ is strictly decreasing in b for each
fixed s and t.

In Cha and Finkelstein [7], two stage optimization procedures for minimizing
the cost functions are discussed. Similar approach can be applied to the modified
results of the current paper. For example, for obtaining optimal ðs�1; b�1Þ which
minimizes, c1ðs; bÞ defined by equation (9.64), we can follow the following
procedure:

1. Fix b� 0; then find optimal s�ðbÞ which satisfies

c1ðs�ðbÞ; bÞ ¼ min
0� s\1

c1ðs; bÞ; for fixed b� 0:

Note that, as cðs; bÞ is eventually increasing in s to infinity for each fixed b; such
s�ðbÞ exists for all b.

2. Find optimal b� which satisfies

c1ðs�ðb�Þ; b�Þ ¼ min
0� b\1

c1ðs�ðbÞ; bÞ:

Then, finally, such ðs�ðb�Þ; b�Þ is the optimal solution of the problem. However,
in this modified model, even if we assume that r0ðtÞ is the bathtub-shaped failure
rate with two change points t1 and t2; t1 is not necessarily the uniform upper bound
for the optimal burn-in time. However, if we assume additionally that r0ðtÞ is
increasing to infinity after t2; there obviously should be the uniform upper bound
for the optimal burn-in time and the standard numerical procedures can be used for
obtaining optimal solutions in this case.
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Chapter 10
Stochastic Models for Environmental
Stress Screening

There are different ways of improving reliability characteristics of manufactured
items. The most common methodology adopted in industry is burn-in, which is a
method of ‘elimination’ of initial failures (infant mortality). As was mentioned
previously, the ‘sufficient condition’ for employing the traditional burn-in is the
initially decreasing failure rate. For example, when a population of items is het-
erogeneous, and therefore consists of subpopulations with ordered failure (hazard)
rates, it obviously contains weaker (with larger failure rates) subpopulations. As
the weakest populations are dying out first, the failure rate of this population is
often initially decreasing and burn-in can be effectively applied.

It should be noted that not all populations of engineering items that contain
‘weaker’ items to be eliminated exhibit this shape of the failure rate. For example,
the ‘weakness’ of some manufactured items can result from the latent defects that
can create additional failure modes. The failure rate in this case is not necessarily
decreasing (see Example 10.1), and therefore traditional burn-in should not be
applied. However, by applying the short-time excessive stress, the weaker items in
the population with increasing failure rate can be eliminated by the environmental
stress screening (ESS), and therefore the reliability characteristics of the popula-
tion of items that have successfully passed the ESS test can still improve. This is
the crucial distinction of this operation from burn-in. In fact, the formal difference
between the ESS and burn-in has not been clearly defined in the literature. In our
discussions, we understand the ESS as the method of elimination of items with
additional (nonconventional) failure modes, whereas burn-in targets elimination of
weaker items with conventional failure modes and it is effective only when the
population failure rate is initially decreasing. Another important distinction of the
proposed model from burn-in is that the ESS can also create new defects in items
that were previously defect-free.

Numerous stochastic models of burn-in have been intensively studied in the
literature during the last decades. Although some practical engineering approaches
to the ESS modeling were reported (e.g., [2, 4]), to the authors’ best knowledge,
there has been little research dealing with adequately advanced stochastic mod-
eling and analysis of the ESS.

M. Finkelstein and J. H. Cha, Stochastic Modeling for Reliability,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-5028-2_10,
� Springer-Verlag London 2013
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In this chapter, we develop a stochastic model for the ESS, analyze its effect on
the population characteristics of the screened items and describe related optimi-
zation problems. We assume that, due to substandard materials of faulty manu-
facturing process, some of the manufactured items are susceptible to additional
cause of failure (failure mode), i.e., shocks (such as electrical or mechanical
shocks). We define the ESS as a procedure of applying a shock of the controlled
magnitude, i.e., a short-time excessive stress. In practice, for example, a shock can
be understood as a short-time electric impulse. For the ESS to be effective, the
corresponding magnitude should be reasonably larger than the magnitude of
shocks that occur in field usage.

Our modeling is within the framework of the general shock models. We will
consider two different types of ESS models in this chapter. In the first model, the
failure of an item occurs when the magnitude of the stress (shock) exceeds its
strength. The larger magnitude of the ESS shock (within ‘physical limits’) implies
the better reliability characteristics of survived items in field usage but at the same
time, the larger cost of the ESS as more items with defects are discarded. An
important feature of our model is that we assume that the item during field usage is
exposed to the point process of environmental shocks of an ordinary, not excessive
magnitude. These shocks can obviously destroy only defective items that have
passed the ESS or were induced by the ESS. In the second model, an external shock
can either destroy an item with a given probability or increase the ‘size of the defect’
by a random amount. We also analyze the effect of the ESS on the population
characteristics of the screened items and discuss related optimization problems.
We will extensively use the general stress–strength model described in Sect. 9.4.1.

10.1 Stress–Strength Type ESS Model

10.1.1 Stochastic Model for ESS

The description and assumptions of our model are as follows. During the manu-
facturing process, the items with the failure rate rðtÞ and the corresponding life-
time TN (which is only due to ‘normal’ failure mode) and also the defective items
with the lifetime TD are produced. Let the proportion of the nondefective items be
p and that of the defective items be 1� p.

The defective items, in addition to the normal failure mode of the nondefective
items, are characterized by a new additional failure mode. In this chapter, we
assume that this additional failure mode describes susceptibility to external shocks.
For example, consider the case when the normal (nondefective) items, in accor-
dance with specifications, should not be susceptible to electrical or mechanical
shocks. However, due to substandard materials or a faulty manufacturing process,
some of the produced items are susceptible to these shocks [4]. For instance,
during the manufacturing process, the items can be exposed to a strong electric

364 10 Stochastic Models for Environmental Stress Screening

http://dx.doi.org/10.1007/978-1-4471-5028-2_9


shock and this shock may result in some defective items which are even sensitive
to electrical shocks of a ‘normal’ magnitude, whereas the nondefective items are
not sensitive to it [3]. Another example is when a small crack in a material of the
defective item is sensitive to mechanical impulses (e.g., vibration) in field use,
which eventually can result in its failure. Thus, we assume that shocks of a
‘normal’ magnitude also occur in field operation, and therefore the defective items
can fail due to this failure mode. On the other hand, the nondefective items do not
fail from external shocks of this type in field operation as they do not have the
corresponding failure mode.

In accordance with our description, the survival function of TN is

PðTN [ tÞ ¼ expf�
Z t

0

rðuÞdug:

Let the two failure modes of the defective items be independent. Then, the
corresponding survival function is given by the competing risks model (series
system):

PðTD [ tÞ ¼ expf�
Z t

0

rðuÞdug � PðTE [ tÞ; ð10:1Þ

where TE is the lifetime that accounts only for the external shock failure mode.
Suppose that during the field operation, the external shocks occur in accordance

with the NHPP fNðtÞ; t� 0g with rate kðtÞ. Denote by Si the magnitude (stress) of
the ith shock and assume that Si; i ¼ 1; 2; . . . are i.i.d. random variables with the
common Cdf MðsÞ ¼ PrðSi� sÞ �MðsÞ � 1�MðsÞð Þ and the corresponding pdf
mðsÞ. The defective item is characterized by its random strength U, i.e., the
resistance ability to external shocks. Here, the strength is understood as the
‘maximum stress level that the defective item can survive’. The corresponding Cdf,
Sf, pdf, and FR of U are denoted by GUðuÞ; �GUðuÞ; gUðuÞ and rUðuÞ; respec-
tively. For each i ¼ 1; 2; . . ., the operable system survives if Si� U and fails if
Si [ U, ‘independently of everything else’. Then, in accordance with Theorem
9.10, Eq. (10.1) reads now

PðTD [ tÞ ¼ expf�
Z t

0

rðuÞdug � expf�
Z t

0

pðuÞkðuÞdug; ð10:2Þ

where

pðtÞ �

R1
0

Rv
0

expf�MðrÞ
Rt
0

kðxÞdxg � gUðrÞdr mðvÞdv

R1
0

expf� �MðrÞ
Rt
0

kðxÞdxggUðrÞdr

: ð10:3Þ
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From (10.2), we see that the lifetimes of the nondefective and defective items
are obviously stochastically ordered: TD\frTN , where ‘‘\fr’’denotes, as usual, the
failure (hazard) rate ordering of two random variables.

Denote the population lifetime by T . As it consists of defective and nonde-
fective items with given proportions, the corresponding survival function is the
following mixture

�FðtÞ � PðT [ tÞ

¼ p expf�
Z t

0

rðuÞdug þ ð1� pÞ expf�
Z t

0

rðuÞdug � expf�
Z t

0

pðuÞkðuÞdug:

ð10:4Þ

Thus, (10.4) defines the survival function of an item in field usage that is chosen
at random from the population of manufactured items.

In what follows, we will describe the impact of the ESS on the population
structure and on the corresponding population lifetime distribution. Therefore, we
must define first the ESS that we consider in this chapter.

ESS Process
During the ESS, all items are exposed to a single shock with the fixed magnitude s.
If the strength of a defective item is larger than s then it survives; otherwise it fails.
Depending on the magnitude s, a proportion of nondefective items, qðsÞ;
0� qðsÞ\1, becomes defective, where qðsÞ is an increasing function of its
argument. The items failed during the ESS are discarded and only the survived
items are put into the field operation.

Thus the ESS, in principle, can induce defects. Furthermore, as those with
induced defects but not failed are not identifiable, they are also put into the field
operation.

Recall that shock’s magnitudes in field operation are i.i.d. random variables.
We assume that the corresponding mean is substantially smaller than the magni-
tude of stress allowed for the ESS (otherwise there is no reason to perform the
ESS). Therefore, the shocks in field operation can hardly ‘produce’ defective items
out of nondefective ones (or this effect is negligible). On the other hand, these
shocks can still destroy the defective item with a given strength.

Denote the population lifetime after the ESS with magnitude s by TESS.

Theorem 10.1 Under the given assumptions, the population distribution and the
corresponding failure rate (after the ESS) are
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�FEðt; sÞ ¼ PðTESS [ tÞ ¼ expf�
Z t

0

rðuÞdug � ð1� qðsÞÞp
ð1� qðsÞÞpþ qðsÞpþ �GUðsÞð1� pÞ

þ expf�
Z t

0

rðuÞdug � expf�
Z t

0

pðuÞkðuÞdug � qðsÞp
ð1� qðsÞÞpþ qðsÞpþ �GUðsÞð1� pÞ

þ expf�
Z t

0

rðuÞdug � expf�
Z t

0

pðs; uÞkðuÞdug �
�GUðsÞð1� pÞ

ð1� qðsÞÞpþ qðsÞpþ �GUðsÞð1� pÞ ;

ð10:5Þ

and

kEðt; sÞ ¼ rðtÞ � pð1Þ �F1ðtÞP3
i¼1

pðiÞ �FiðtÞ
þ ½rðtÞ þ pðtÞkðtÞ� � pð2Þ �F2ðtÞP3

i¼1
pðiÞ �FiðtÞ

þ ½rðtÞ þ pðs; tÞkðtÞ� � pð3Þ �F3ðtÞP3
i¼1

pðiÞ �FiðtÞ
;

ð10:6Þ

respectively.

Proof Observe that there are now three subpopulations after the ESS and we can
define the corresponding frailty variable Z:

(i) the subpopulation with nondefective items (Z ¼ 1); (ii) the subpopulation
with defective items which were originally nondefective (Z ¼ 2); (iii) the sub-
population with defective items which were originally defective but have survived
the ESS (Z ¼ 3). Then, in accordance with our notation, the distribution of Z is
given by

pð1Þ � PðZ ¼ 1Þ ¼ ð1� qðsÞÞp
ð1� qðsÞÞpþ qðsÞpþ �GUðsÞð1� pÞ ;

pð2Þ � PðZ ¼ 2Þ ¼ qðsÞp
ð1� qðsÞÞpþ qðsÞpþ �GUðsÞð1� pÞ ;

pð3Þ � PðZ ¼ 3Þ ¼
�GUðsÞð1� pÞ

ð1� qðsÞÞpþ qðsÞpþ �GUðsÞð1� pÞ :

Therefore,

�F1ðtÞ � PðTESS [ tjZ ¼ 1Þ ¼ expf�
Z t

0

rðuÞdug
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and

�F2ðtÞ � PðTESS [ tjZ ¼ 2Þ ¼ expf�
Z t

0

rðuÞdug � expf�
Z t

0

pðuÞkðuÞdug;

where pðtÞ is given by (10.3).
Derivation of PðTESS [ tjZ ¼ 3Þ is not so straightforward. Indeed, it should be

taken into account that when we apply a shock of the controlled magnitude s
during the ESS, this means that the strength of the defective item that had passed it
is larger than s and, therefore, the distribution of the remaining strength Us (given
that the strength is larger than s) is

GUðujsÞ � PðU� ujU [ sÞ ¼ 1� �GðuÞ=�GðsÞ; u [ s:

Thus, the function pðtÞ in (10.3) should be modified to

pðs; tÞ ¼

R1
0

Rv
0

expf� �MðrÞ
Rt
0

kðxÞdxg � gUðrjsÞdr mðvÞdv

R1
0

expf� �MðrÞ
Rt
0

kðxÞdxggUðrjsÞdr

¼

R1
s

Rv
s

expf� �MðrÞ
Rt
0

kðxÞdxg � gUðrÞdr mðvÞdv

R1
s

expf� �MðrÞ
Rt
0

kðxÞdxggUðrÞdr

;

ð10:7Þ

where, gUðujsÞ is the corresponding pdf of GUðujsÞ, which is given by

gUðujsÞ ¼
0; if u� s

gUðuÞ
�GUðsÞ ; if u [ s

(
:

Finally,

�F3ðtÞ � PðTESS [ tjZ ¼ 3Þ ¼ expf�
Z t

0

rðuÞdug � expf�
Z t

0

pðs; uÞkðuÞdug:

Therefore, Eqs. (10.5) and (10.6) hold.
h

We will now discuss the effect of the ESS on the quality of the population after
the screening by comparing �FEðt; sÞ with the survival function without screening,
FðtÞ defined by Eq. (10.4). As the ESS in our model can create defective items,
theoretically in some cases this operation may have a negative effect on the
population of items.
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Definition 10.1 The severity (stress) level s is said to be inadmissible under the
survival function criterion if

�FðtÞ� �FEðt; sÞ; for all t [ 0:

Otherwise, the severity (stress) level s is said to be admissible.

Obviously, the inadmissible severity levels should not be considered in the ESS
practice as reliability of items in field use is worse than that without the ESS in this
case. Note that the condition for the ‘admissibility’ in Definition 10.1 means that
�FðtÞ\�FEðt; sÞ for some t [ 0 and not for all t [ 0. However, for obvious practical
reasons, we are mostly interested in the latter case. The following definition
addresses this setting.

Definition 10.2 The severity (stress) level s is said to be positively admissible
under the survival function criterion if

�FðtÞ\�FEðt; sÞ; for all t [ 0:

Theorem 10.2 (i) If qðsÞ\ð1� pÞGUðsÞ, then this severity level s is positively
admissible under the survival function criterion.

(ii) If qðsÞp [ pð1� pÞ þ ð1� pÞ2 �GUðsÞ, then this severity level s is inad-
missible under the survival function criterion.

Proof Denote for convenience, k1ðtÞ � rðtÞ; k2ðtÞ � rðtÞ þ pðtÞkðtÞ; k3ðtÞ �
rðtÞ þ pðs; tÞkðtÞ: Note that Eq. (10.7) can be written in a compact and a mean-
ingful way as

pðs; tÞ ¼
Z1

0

Iðv 2 ½s;1ÞÞhðs; t; vÞmðvÞdv;

where

hðs; t; vÞ �

Rv
s

expf� �MðrÞ
Rt
0

kðxÞdxg � gUðrÞdr

R1
s

expf� �MðrÞ
Rt
0

kðxÞdxggUðrÞdr

:

and Ið�Þ is the corresponding indicator. Observe that, for all fixed t and v,
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o

os
hðs; t; vÞ ¼ 1

R1
s

expf� �MðrÞ
Rt
0

kðxÞdxggUðrÞdr

� �2

� � expf� �MðsÞ
Z t

0

kðxÞdxggUðsÞ�

2
4 Z1

s

expf� �MðrÞ
Z t

0

kðxÞdxggUðrÞdr

þ expf� �MðsÞ
Z t

0

kðxÞdxggUðsÞ �
Zv

s

expf� �MðrÞ
Z t

0

kðxÞdxggUðrÞdr

3
5\ 0;

for all s [ 0. Therefore, the function pðs; tÞ is strictly decreasing in s for each fixed
t. This implies that pðs; tÞ\pðtÞ, for all t [ 0 and s [ 0. Thus we have the fol-
lowing failure rate ordering:

k1ðtÞ\k3ðtÞ\k2ðtÞ; for all t [ 0; ð10:12Þ

and accordingly,

�F1ðtÞ[ �F3ðtÞ[ �F2ðtÞ; for all t [ 0;

where �FiðtÞ � expf�
R t

0 kiðuÞdug; i ¼ 1; 2; 3: Observe that, in accordance with
(10.4),

�FðtÞ ¼ p �F1ðtÞ þ ð1� pÞ�F2ðtÞ;

whereas in accordance with (10.5),

�FEðt; sÞ ¼ pð1Þ�F1ðtÞ þ pð2Þ�F2ðtÞ þ pð3Þ�F3ðtÞ:

Therefore, if pð2Þ þ pð3Þ\1� p, or equivalently, pð1Þ[ p, then

�FEðt; sÞ � �FðtÞ[ ðpð1Þ � pÞ�F1ðtÞ þ ½pð2Þ�F2ðtÞ þ pð3Þ�F2ðtÞ � ð1� pÞ�F2ðtÞ�
¼ ðpð1Þ � pÞ�F1ðtÞ � ðpð1Þ � pÞ�F2ðtÞ[ 0;

for all t [ 0. The condition pð2Þ þ pð3Þ\1� p is equivalent to
qðsÞ\ð1� pÞGUðsÞ. This completes the proof of (i).

By a similar reasoning, if pð2Þ[ 1� p, or equivalently,

qðsÞp[ pð1� pÞ þ ð1� pÞ2 �GUðsÞ, then the severity level s is inadmissible
under the survival function criterion.

h

Remark 10.1
(i) The conditions in Theorem 10.2 do not imply the admissibility/inadmissi-

bility of the corresponding severity level under the failure rate criterion. That is,
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the condition pð2Þ þ pð3Þ\1� p does not imply kTðtÞ[ kEðt; sÞ, for all t [ 0,
where kTðtÞ is the failure rate which corresponds to �FðtÞ defined in (10.4).

(ii) The failure rate ordering (10.8) will be important for our further reasoning.
This ordering implies that the quality of defective items improves after the ESS,
but they are still obviously ‘worse’ than the nondefective items.

Remark 10.2 The effect of applying two consecutive shocks with severity s during
the ESS can be also considered. After this type of the ESS, we also have three
subpopulations with failure rates k1ðtÞ ¼ rðtÞ; k2ðtÞ ¼ rðtÞ þ pðtÞkðtÞ and k3ðtÞ ¼
rðtÞ þ pðs; tÞkðtÞ and the corresponding proportions

pð2Þð1Þ ¼ ð1� qðsÞÞpð1Þ
ð1� qðsÞÞpð1Þ þ qðsÞpð1Þ þ ½pð3Þ þ �GUðsÞpð2Þ�

;

pð2Þð2Þ ¼ qðsÞpð1Þ
ð1� qðsÞÞpð1Þ þ qðsÞpð1Þ þ ½pð3Þ þ �GUðsÞpð2Þ�

;

pð2Þð3Þ ¼ pð3Þ þ �GUðsÞpð2Þ
ð1� qðsÞÞpð1Þ þ qðsÞpð1Þ þ ½pð3Þ þ �GUðsÞpð2Þ�

:

10.1.2 Optimal Severity

In this subsection, we will consider the problem of determining the optimal
severity level (magnitude) of the ESS. Let s be the mission time of an item in the
field operation. If it does not fail during this time, then the mission is considered to
be successful. Thus, the probability of the mission success needs to be maximized
and we should find the optimal severity level s	 that satisfies

�FEðs; s	Þ ¼ max
s [ 0

�FEðs; sÞ:

Alternatively, let MRLðsÞ be the mean time to failure of an item in the field
operation as a function of s, i.e., MRLðsÞ �

R1
0

�FEðt; sÞdt. Then, the optimal
severity level which maximizes the mean time to failure should be obtained as

MRLðs	Þ ¼ max
s [ 0

MRLðsÞ:

For defining the optimal severity, we should consider the admissible severity
class rather than the positively admissible class as we have to take into account all
admissible severity levels. It is often more convenient to describe the dual inad-
missible class. The following theorem provides the upper bound for the optimal
severity level that maximizes the mission success probability or mean time to
failure in field usage.
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Theorem 10.3 Suppose that qð1Þ � lims!1 qðsÞ[ ð1� pÞ and let

s0 � inf
s� 0
fs : qðsÞp [ pð1� pÞ þ ð1� pÞ2 �GUðsÞg:

Then the severity levels in ðs0;1Þ are inadmissible. Therefore, s0 is the upper
bound for the optimal severity level.

Proof From Theorem 10.2, the condition for inadmissibility is

qðsÞp [ pð1� pÞ þ ð1� pÞ2 �GUðsÞ:

Here, the function qðsÞp is increasing from 0 to qð1Þp, whereas the function

pð1� pÞ þ ð1� pÞ2 �GUðsÞ decreases from ð1� pÞ to pð1� pÞ. Thus, if
qð1Þp[ pð1� pÞ, or equivalently, qð1Þ[ ð1� pÞ, then there exists s0 2
ð0;1Þ such that the severity levels in ðs0;1Þ are inadmissible. Therefore, s0 is the
upper bound for the optimal severity.

h

Remark 10.3 It is reasonable to assume that in practice, lims!1 qðsÞ ¼ 1 and that
the proportion of the defective items ð1� pÞ is relatively small. Therefore, the
condition qð1Þ[ ð1� pÞ can be satisfied in almost all practical cases.

Example 10.1 Let rðtÞ ¼ 0:1t; t� 0; kðtÞ ¼ 1; t� 0; mðsÞ ¼ 3 expf�3sg;
s� 0; gUðuÞ ¼ 4u expf�2u2g; u� 0; p ¼ 0:7; s ¼ 4:0 and

qðsÞ ¼ 0; 0� s\1;
1� expf�0:05ðs� 1Þg; s� 1

�
:

Note that the failure rate of the population distribution before the ESS, which is
obtained based on (10.4), is given by Fig. 10.1.

Therefore, as kTðtÞ is increasing, the burn-in procedure should not be applied to
this population. On the other hand, as qðsÞ is strictly increasing for s� 1, there
exists a unique solution of the equation

Fig. 10.1 The graph of kT ðtÞ
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qðsÞp ¼ pð1� pÞ þ ð1� pÞ2 �GUðsÞ;

which is the upper bound for the optimal severity level. Therefore, the ESS as a
method of elimination of defective items is justified in this case. Solving this
equation numerically results in s0 
 8:13. Therefore, it is now sufficient to search
for the optimal severity level in the interval ½0; 8:13�. The graph of �FEðs; sÞ is
presented in Fig. 10.2. The optimal severity level in this case is s	 
 1:08 and the
maximum probability of the mission success is �FEðs; s	Þ 
 0:447.

Based on the foregoing results, we can consider now certain cost structures for
determining the cost-based optimal severity level. As previously, an item is chosen
at random from our initial population and is exposed to a shock of magnitude s
during the ESS. If it survives, it is put into the field operation, otherwise the failed
item is discarded and the new one is chosen from the population, etc. This pro-
cedure is repeated until the first survived item is obtained. Let csr be the shop
replacement cost (actually, it is the cost of a new item) and cs be the cost for
conducting the ESS. Let c1ðsÞ, as a function of s, be the expected cost for even-
tually obtaining a component which has survived the ESS. Then

c1ðsÞ ¼
cs þ csr½1� fpþ ð1� pÞ�GUðsÞg�

pþ ð1� pÞ�GUðsÞ
;

where 1=½pþ ð1� pÞ�GUðsÞ� is the total number of trials until the first ‘success’.

Assume that if a mission (of length s) is successful (in field operation), then the
gain K is ‘earned’; otherwise a penalty C is imposed, where K [ C [ 0. Then the
expected gain during the field operation is

c2ðsÞ ¼ �K �FEðs; sÞ þ CFEðs; sÞ ¼ �ðK þ CÞ�FEðs; sÞ þ C ð10:9Þ

and the total expected cost cðsÞ is

Fig. 10.2 The graph of
�FEðs; sÞ
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cðsÞ ¼ c1ðsÞ þ c2ðsÞ

¼ cs þ csr½1� fpþ ð1� pÞ�GUðsÞg�
pþ ð1� pÞ�GUðsÞ

� ðK þ CÞ�FEðs; sÞ þ C:

The objective is now to find the optimal severity level s	 that satisfies

s	 ¼ arg min
s2½0;1�

cðsÞ:

Similar to Theorem 10.3, if qð1Þ � lims!1 qðsÞ[ ; ð1� pÞ; then the optimal
severity level which minimizes c2ðsÞ [maximizes �FEðs; sÞ, as follows from (10.9)]
does not exists in the interval ðs0;1Þ, where s0 is also defined by Theorem 10.3.
Furthermore, as c1ðsÞ is strictly increasing to infinity, we can conclude that the
optimal severity level s	 should exist in the interval ½0; s0�.

Assume now that during field operation, the gain is proportional to the mean
time to failure. Therefore, the total average cost function in this case is

cðsÞ ¼ cs þ csr½1� ð1� pÞ�GUðsÞ�
ð1� pÞ�GUðsÞ

� K

Z1

0

�FEðt; sÞdt:

By the similar arguments, the optimal severity level s	 should exist in the
interval ½0; s0�:

10.2 ESS Model with Wear Increments

10.2.1 Stochastic Model

In this subsection, we develop a stochastic model for the shock and wear based
ESS. We assume that, during the manufacturing process due to substandard
materials or other faults some defective items with latent defects such as, e.g., a
microcrack may be produced. Such defective items are susceptible to failure from
mechanical or electrical shocks during field operation. Thus the defective items, in
addition to the normal failure mode of the nondefective items, are characterized by
a new additional failure mode. On the other hand, the nondefective items do not
fail from external shocks in field operation as they do not have the corresponding
failure mode.

Denote the lifetime of the nondefective items by TN with the corresponding
failure rate rðtÞ. In accordance with our description, obviously, the survival
function of TN is defined by
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PðTN [ tÞ ¼ expf�
Z t

0

rðuÞdug:

During the field operation, the items are subject to the nonhomogeneous
Poisson process (NHPP) of ‘ordinary’ environmental shocks fNðtÞ; t� 0g with
rate kðtÞ and arrival times Ti; i ¼ 1; 2; . . .. Let, on the ith shock, the defective item
fail with probability pðTiÞ (critical shock), whereas with probability qðTiÞ it
increases the ‘defect size’ by a random amount Wi (noncritical shock). In the
following, for convenience, we will loosely use the term ‘‘wear’’ (or degradation)
for the defect size as well. In accordance with this setting, the random accumulated
wear of a defective item at time t in the field use is given by

WðtÞ ¼
XNqðtÞ

i¼0

Wi þWM;

where NqðtÞ is the number of noncritical shocks in ½0; tÞ and WM [ 0 is the initial
wear (defect size of the latent defect). Let R be the random boundary of the item
which follows an exponential distribution with parameter h. The failure due to
wear occurs when the accumulated wear WðtÞ reaches R. Let TE be the lifetime in
the field use that accounts only for the external shock failure mode of defective
items (i.e., the lifetime without any other causes of failure). Then, as follows from
Eq. (4.4) and the reasoning in Sect. 4.1.2,

PðTE [ tÞ ¼ exp �
Z t

0

ð1�MWð�hÞqðxÞÞkðxÞdx

8<
:

9=
;; t� 0;

regardless of the distribution of WM . As there are two independent failure modes
for defective items—i.e., the normal failure mode described by rðtÞ and the
additional one due to external shocks, the survival function for the defective items
is given by the competing risks model (a series system):

PðTD [ tÞ ¼ expf�
Z t

0

rðuÞdug � PðTE [ tÞ

¼ expf�
Z t

0

rðuÞdug � exp �
Z t

0

ð1�MWð�hÞqðxÞÞkðxÞdx

8<
:

9=
;; t� 0:

Let the proportion of the nondefective items be p and that of the defective items
be 1� p, respectively. Denote the population lifetime by T . Given the structure of
our population, the corresponding survival function is the mixture of survival
functions for the defective and nondefective items:
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�FðtÞ � PðT [ tÞ ¼ p expf�
Z t

0

rðuÞdug

þ ð1� pÞ expf�
Z t

0

rðuÞdug � exp �
Z t

0

ð1�MWð�hÞqðxÞÞkðxÞdx

8<
:

9=
;; t� 0:

ð10:10Þ

Thus, (10.10) defines the survival function in field usage of the item that is
chosen at random from the population of manufactured items.

In what follows, we will describe the impact of the ESS on the population
distribution. Therefore, we must describe first the ESS that we consider in this
chapter.

ESS Process
During the ESS, a shock with the fixed magnitude s is applied to all items (e.g., the
mechanical shock). The defective items immediately fail with probability aðsÞ,
whereas with probability 1� aðsÞ an additional wear with magnitude Ws is
incurred, where aðsÞ is an increasing function and Ws is stochastically increasing
with s. Furthermore, depending on the magnitude s, a proportion of nondefective
items, qðsÞ; 0� qðsÞ\1, becomes defective, where qðsÞ is an increasing function
of its argument. The failed items are discarded and only the survived items are put
into field operation.

For example, the mechanical shock during the ESS can be executed by the
dropping of an item from some height (the ‘‘dropping shock’’), which can be
considered as the magnitude of the shock. Obviously, the assumptions for aðsÞ, Ws

and qðsÞ are justified in this case. For instance, the larger height corresponds to the
larger wear Ws.

We will now derive the population distribution in field use after the ESS.
Denote the corresponding lifetime by TESS. In the following theorem, the distri-
bution of TESS is obtained.

Theorem 10.4 The survival function of TESS is given by

PðTESS [ tÞ � �FEðt; sÞ

¼ expf�
Z t

0

rðuÞdug � ð1� qðsÞÞp
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ

þ expf�
Z t

0

rðuÞdug � exp �
Z t

0

ð1�MWð�hÞqðxÞÞkðxÞdx

8<
:

9=
;

� qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ sWsÞð1� pÞ ;
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and the corresponding failure rate is

kEðt; sÞ ¼ rðtÞ � wð1Þ �F1ðtÞP2
i¼1

wðiÞ �FiðtÞ
þ ½rðtÞ þ ð1�MWð�hÞqðtÞÞkðtÞ� � wð2Þ �F2ðtÞP2

i¼1
wðiÞ �FiðtÞ

;

where

wð1Þ � ð1� qðsÞÞp
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ ;

and

wð2Þ � qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ :

Proof Observe that there are formally three subpopulations after the ESS and we
can define the corresponding frailty variable Z: (i) the subpopulation with
nondefective items (Z ¼ 1); (ii) the subpopulation with defective items which
were originally nondefective (Z ¼ 2); (iii) the subpopulation with defective items
which have survived the ESS (Z ¼ 3). Then, in accordance with our notation, the
distribution of Z is given by

pð1Þ � PðZ ¼ 1Þ ¼ ð1� qðsÞÞp
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ ;

pð2Þ � PðZ ¼ 2Þ ¼ qðsÞp
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ ;

pð3Þ � PðZ ¼ 3Þ ¼ ð1� aðsÞÞPðR [ WsÞð1� pÞ
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ ;

On the other hand, in field use,

�F1ðtÞ � PðTESS [ tjZ ¼ 1Þ ¼ expf�
Z t

0

rðuÞdug;

�F2ðtÞ � PðTESS [ tjZ ¼ 2Þ ¼ expf�
Z t

0

rðuÞdug � exp �
Z t

0

ð1�MWð�hÞqðxÞÞkðxÞdx

8<
:

9=
;;

�F3ðtÞ � PðTESS [ tjZ ¼ 3Þ ¼ expf�
Z t

0

rðuÞdug � exp �
Z t

0

ð1�MWð�hÞqðxÞÞkðxÞdx

8<
:

9=
;:

10.2 ESS Model with Wear Increments 377



Therefore, although there formally exist three subpopulations after the ESS, due
to the exponentially distributed boundary, we actually have two subpopulations.
Based on the above results, the population survival function in field use after the
ESS with magnitude s is given by the following mixture

�FEðt; sÞ ¼ PðTESS [ tÞ ¼
X2

i¼1

wðiÞ�FiðtÞ

¼ expf�
Z t

0

rðuÞdug � ð1� qðsÞÞp
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ

þ expf�
Z t

0

rðuÞdug � exp �
Z t

0

ð1�MWð�hÞqðxÞÞkðxÞdx

8<
:

9=
;

� qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ ;

where

wð1Þ � ð1� qðsÞÞp
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ ;

and

wð2Þ � qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ :

Then the corresponding failure rate is

kEðt; sÞ

¼

P2
i¼1

wðiÞfiðtÞ

P2
i¼1

pðiÞ�FiðtÞ
¼ 1
P2
i¼1

pðiÞ�FiðtÞ
wð1Þ�F1ðtÞ �

f1ðtÞ
�F1ðtÞ

þ wð2Þ�F2ðtÞ �
f2ðtÞ
�F2ðtÞ

� �

¼ rðtÞ � wð1Þ �F1ðtÞP2
i¼1

wðiÞ �FiðtÞ
þ ½rðtÞ þ ð1�MWð�hÞqðtÞÞkðtÞ� � wð2Þ �F2ðtÞP2

i¼1
wðiÞ �FiðtÞ

:

h

Therefore, due to the exponential boundary, the ESS in this case does not
essentially change subpopulation distributions but only changes the subpopulation
proportions.

We will discuss now the effect of the ESS on the quality of the population after
the ESS by comparing kEðt; sÞ with the failure rate without the ESS, kTðtÞ, that can
be defined by Eq. (10.10). Note that as the ESS in our model can create defective
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items and theoretically this operation may have a negative effect on the population
of items in some cases. Similar to Definitions 10.1 and 10.2:

Definition 10.3 The severity (stress) level s is said to be inadmissible under the
failure rate function criterion if

kTðtÞ� kEðt; sÞ; for all t [ 0;

where kTðtÞ is the failure rate which corresponds to �FðtÞ. Otherwise, the severity
(stress) level s is said to be admissible.

Obviously, the inadmissible severity levels should not be considered in the
application of the ESS. Note that the condition for ‘admissible’ is that
kTðtÞ[ kEðt; sÞ, for ‘‘some t [ 0’’, not ‘‘for all t [ 0’’. However, for obvious
practical reasons we are mostly interested in the latter case. The following defi-
nition addresses this setting.

Definition 10.4 The severity (stress) level s is said to be positively admissible
under the failure rate function criterion if

kTðtÞ[ kEðt; sÞ; for all t [ 0:

Theorem 10.5 If

1� qðsÞ � p
ð1� pÞð1� aðsÞÞ [ PðR [ WsÞ; ð10:11Þ

then this severity level s is positively admissible under the failure rate function
criterion. Otherwise, this severity level s is inadmissible under the failure rate
function criterion.

Proof Denote for convenience, k1ðtÞ � rðtÞ; k2ðtÞ � rðtÞ þ ð1�
MWð�hÞqðtÞÞkðtÞ: Clearly, we have the following failure rate ordering:

k1ðtÞ\k2ðtÞ; for all t [ 0:

Observe that

kTðtÞ ¼ k1ðtÞ �
p �F1ðtÞ

p �F1ðtÞ þ ð1� pÞ �F2ðtÞ
þ k2ðtÞ �

ð1� pÞ �F2ðtÞ
p �F1ðtÞ þ ð1� pÞ �F2ðtÞ

;

and

kEðt; sÞ ¼ k1ðtÞ �
wð1Þ �F1ðtÞP2

i¼1
wðiÞ �FiðtÞ

þ k2ðtÞ �
wð2Þ �F2ðtÞP2

i¼1
wðiÞ �FiðtÞ

:
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From this, it can be seen that both kTðtÞ and kEðt; sÞ are the weighted averages
of k1ðtÞ and k2ðtÞ with corresponding weights, respectively. Thus, to compare
kTðtÞ and kEðt; sÞ, it is sufficient to compare the weights which corresponds to
k1ðtÞ, i.e., if the first weight is greater, then the second one is smaller, and vice
versa. Note that

p �F1ðtÞ
p �F1ðtÞ þ ð1� pÞ �F2ðtÞ

¼ 1

1þ ð1�pÞ
p

�F2ðtÞ
�F1ðtÞ

and

wð1Þ �F1ðtÞP2
i¼1

wðiÞ �FiðtÞ
¼ 1

1þ 1�wð1Þ
wð1Þ

�F2ðtÞ
�F1ðtÞ

:

Therefore, if wð1Þ[ p, i.e., if

ð1� qðsÞÞp
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ [ p; ð10:12Þ

then kTðtÞ[ kEðt; sÞ, for all t [ 0. It is easy to show that the condition in (10.12)
can be reduced to (10.11).

h

Remark 10.4 (i) In the ESS model considered in this section, a level s can only be
positively admissible or inadmissible.

(ii) The condition (10.11) implies the admissibility/inadmissibility of the cor-
responding severity level under the survival function criterion, i.e., �FðtÞ\�FEðt; sÞ,
for all t [ 0.

10.2.2 Optimal Severity

For further analysis, we need to describe a model for Ws as a ‘function’ of the
shock’s magnitude s. It is reasonable to assume first that if s1\s2 then Ws1 � stWs2 .
Let sb be some ‘baseline severity level’ (e.g., sb � 1), with the corresponding
‘baseline distribution’ of Wsb denoted by G0ðwÞ. Therefore,

PðWsb [ wÞ ¼ �G0ðwÞ; w� 0:

Then the assumption of the above stochastic ordering for Ws is equivalent to
assuming the following accelerated life-type model [1]:

PðWs [ wÞ ¼ �G0ð;ðw; sÞÞ; w [ 0; ð10:13Þ
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where /ðw; sÞ is a function with the following properties: it is decreasing in s for
each fixed w, it is increasing in w for each fixed s, /ðw; 0Þ � 1, for all w [ 0;
/ð0; sÞ � 0; /ð1; sÞ � 1; for all s [ 0. Furthermore, clearly, /ðw; sbÞ ¼ w,

w� 0. Therefore, (10.13) implies that if s1\s2 then PðWs1 [ wÞ� PðWs2 [ wÞ,
for all w� 0, which is, obviously, the usual stochastic ordering.

We will consider now the problem of determining the optimal severity level
(magnitude) of the ESS. Let s be the mission time of an item in field operation. If it
does not fail during this time, then the mission is considered to be successful.
Thus, the probability of the mission success needs to be maximized and we should
find the optimal severity level s	 that satisfies

�FEðs; s	Þ ¼ max
s [ 0

�FEðs; sÞ:

Alternatively, let MðsÞ be the mean time to failure of an item in field operation
as a function of s, i.e., MðsÞ �

R1
0

�FEðt; sÞdt. Then, the optimal severity level s	

which maximizes the mean time to failure should be obtained:

Mðs	Þ ¼ max
s [ 0

MðsÞ:

It is clear that, for defining s	, we can consider only the positively admissible
severity class, as the other severity levels are inadmissible. The following theorem
provides the upper bound for the optimal severity level that maximizes the mission
success probability or mean time to failure in field usage.

Theorem 10.6 Suppose that qð1Þ � lims!1 qðsÞ[ ð1� pÞ and let

s0 � inf
s� 0
fs : qðsÞ[ ð1� pÞg:

Then the severities in ðs0;1Þ are inadmissible. Therefore, s0 is the upper bound
for the optimal severity level.

Proof From Theorem 10.5, the condition for inadmissibility is

1� qðsÞ � p
ð1� pÞð1� aðsÞÞ � PðR [ WsÞ;

which can now be stated in detail as

qðsÞ � ð1� pÞaðsÞ
ð1� pÞð1� aðsÞÞ �

Z1

0

�G0ð/ðr; sÞÞh expf�hrgdr: ð10:14Þ

The inequality in (10.14) can be restated as
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Z1

0

qðsÞ � ð1� pÞaðsÞ
ð1� pÞð1� aðsÞÞ �

�G0ð/ðr; sÞÞ
� �

� h expf�hrgdr� 0:

Observe that for all r� 0 and for all fixed s,

qðsÞ � ð1� pÞaðsÞ
ð1� pÞð1� aðsÞÞ �

�G0ð/ðr; sÞÞ�
qðsÞ � ð1� pÞaðsÞ
ð1� pÞð1� aðsÞÞ � 1:

Therefore, for a fixed s, if

qðsÞ � ð1� pÞaðsÞ
ð1� pÞð1� aðsÞÞ � 1� 0;

or equivalently, if qðsÞ[ ð1� pÞ, then for this s the condition (10.14) is satisfied,
and accordingly this s is inadmissible. Note that qðsÞ is increasing and, by the
assumption in the theorem, qð1Þ � lims!1 qðsÞ[ ð1� pÞ. Hence, there exists
s0 2 ð0;1Þ such that s0 � infs� 0fs : qðsÞ[ ð1� pÞg and thus the severities in
ðs0;1Þ are inadmissible. Therefore, s0 is the upper bound for the optimal severity.

h

Remark 10.5 It would be practically reasonable to assume that lims!1 qðsÞ ¼ 1
and the proportion of the defective items ð1� pÞ is relatively small. Therefore, the
condition qð1Þ[ ð1� pÞ is practically satisfied in almost all cases.

Example 10.2 Suppose that rðtÞ ¼ 0:1t; t� 0; kðtÞ ¼ 1; t� 0; h ¼ 1; G0ðwÞ
¼ 1� expf�wg; w� 0; sb ¼ 1; /ðw; sÞ � w

s ; w; s [ 0; p ¼ 0:7; aðsÞ ¼ 1�
expf�sg; s� 0; s ¼ 4:0 and

qðsÞ ¼ 0; 0� s\1;
1� expf�0:05ðs� 1Þg; s� 1:

�

Furthermore, pðtÞ ¼ 0:1; t� 0; and the ‘failure rate’ for Wi’s is given by
kWðwÞ ¼ 3, w� 0. In this case, MWð�hÞ ¼ 3=4 and

PðR [ WsÞ ¼ 1�
Z1

0

expf� r

s
g � expf�rgdr ¼ 1

1þ s
:

As qðsÞ is strictly increasing, there exists a unique solution of the equation

qðsÞ ¼ ð1� pÞ;

and this solution is the upper bound, which is given by s0 ¼ �flnð0:9Þ=0:05g
þ1 
 3:11. Therefore, it is now sufficient to search for the optimal severity level in
the interval ½0; 3:11�., The graph of �FEðs; sÞ is given in Fig. 10.3.
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The optimal severity level in this case is obtained by s	 ¼ 1:52 and the max-
imum probability is �FEðs; s	Þ 
 0:43.

Based on the foregoing results, we can also consider now certain cost structures
for determining the optimal severity level. As previously, an item is chosen at
random from our initial population and during the ESS it is exposed to a shock of
magnitude s. If it survives, it is put into field operation, otherwise the failed item is
discarded and a new one is chosen from the population, etc. This procedure is
repeated until the first survived item is obtained. Let csr be the shop replacement
cost (actually, it is the cost of a new item) and cs be the cost for conducting the
ESS. Let c1ðsÞ, as a function of s, be the expected cost for eventually obtaining a
component which has survived the ESS. Then

c1ðsÞ ¼
cs þ csr½1� fpþ ð1� aðsÞÞPðR [ WsÞð1� pÞg�

pþ ð1� aðsÞÞPðR [ WsÞð1� pÞ ;

where 1=fpþ ð1� aðsÞÞPðR [ WsÞð1� pÞg is the total number of trials until the
first ‘success’.

In field operation, assume that if the mission (of length s) is successful, then a
gain K is given; otherwise a penalty C is imposed, where K [ C [ 0. Then the
expected gain during field operation (until failure) is given by

c2ðsÞ ¼ �K �FEðs; sÞ þ CFEðs; sÞ ¼ �ðK þ CÞ�FEðs; sÞ þ C ð10:15Þ

and the total expected cost cðsÞ is

cðsÞ ¼ c1ðsÞ þ c2ðsÞ

¼ cs þ csr½1� fpþ ð1� aðsÞÞPðR [ WsÞð1� pÞg�
pþ ð1� aðsÞÞPðR [ WsÞð1� pÞ � ðK þ CÞ�FEðs; sÞ þ C:

The objective is to find the optimal severity level s	 that satisfies

s	 ¼ arg min
s2½0;1�

cðsÞ:

Fig. 10.3 The graph of
�FEðs; sÞ
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Similar to Theorem 10.5, if qð1Þ � lims!1 qðsÞ[ ð1� pÞ then the optimal
severity level which minimizes c2ðsÞ (maximizes �FEðs; sÞ, as follows from (10.15))
does not exist in the interval ðs0;1Þ. Furthermore, c1ðsÞ is strictly increasing to
infinity. Therefore, we can conclude that the optimal severity level s	 should exist
in the interval ½0; s0�.

Assume now that during field operation, the gain is proportional to the mean
time to failure. Therefore, the total average cost function in this case is

cðsÞ ¼ cs þ csr½1� fpþ ð1� aðsÞÞPðR [ WsÞð1� pÞg�
pþ ð1� aðsÞÞPðR [ WsÞð1� pÞ � K

Z1

0

�FEðt; sÞdt:

By the similar arguments, the optimal severity level s	 should exist in the
interval ½0; s0�.
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