Learn the programming language behind iPhone, i
iPad, and Mac apps development

Objective-C for
Absolute Beginners

iPhone, iPad, and Mac Programming Made Easy
SECOND EDITION
Gary Bennett | Mitch Fisher | Brad Lees

e

TRAINING WEBINARS

Apress:

Objective-C for Absolute
Beginners

IPhone, iPad, and Mac Programming
Made Easy
Second Editon

Gary Bennett
Mitch Fisher
Brad Lees

Apress-

Objective-C for Absolute Beginners: iPhone, iPad, and Mac Programming Made Easy,
Second Edition

Copyright © 2011 by Gary Bennett, Mitch Fisher, Brad Lees

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3653-5
ISBN-13 (electronic): 978-1-4302-3654-2

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning

Lead Editors: Michelle Lowman and Matthew Moodie

Technical Reviewer: James Bucanek

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,
Morgan Engel, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson,
Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing,
Matt Wade, Tom Welsh

Coordinating Editor: Kelly Moritz

Copy Editor: Scribendi, Inc.

Compositor: MacPS, LLC

Indexer: BIM Indexing & Proofreading Services

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit waw.springeronline.com.

For information on translations, please e-mail rights@apress.com or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales—-eBook Licensing web page at
www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

Any source code or other supplementary materials referenced by the author in this text is
available to readers at www.apress.com. For detailed information about how to locate your book’s
source code, go to http://www.apress.com/source-code/.

I'd like to dedicate this book to the two people who had the biggest impact on my career:
my dad, Don W. Bennett, and Steve Jobs. Both passed away this year. Thanks for
inspiring me to work in the field where I can have fun, make a difference, be creative, and
live the American Dream.

—Gary Bennett

T'would like to thank my family and friends who have always supported my endeavors. I
would especially like to thank Heather, Matthew, and my two children Eric and Jade for
patiently living without me for the many nights and forever-busy weekends. I would also
like to thank my friends Gary and Brad for all the help they provided. It’s been great
working with them again.

—Mitch Fisher

T'would like to thank my wife Natalie and my kids for the support and time they have
given me to work on this book. I am also grateful for good friends who persuade me to
take on crazy endeavors.

—Brad Lees

Contents at a Glance

CoNtents........ccusemmnmmmsnmmsanmssnmssnmssansssas s v
About the AUtROIS........cccmnmmmmmmmmnssns s ————— X
About the Technical REVIEWETcccusemsssesssnsssansssnsssansssassssnsssasssssssssnsssassssanssns Xi
Acknowledgmentsccccurnissnnnmmssssnnnmsssssssnesssssnsnssssssnssssssssnnssssssnnnnessssnnnnssssnnns Xii
111 T LT (1 Xiii
Chapter 1: Becoming a Great i0S or Mac Programmercccusseessmssssssssssssnnns 1
Chapter 2: Programming BasSiCScccuusseenmmsssssnnssssssssssssssssssssssssssssssssssnnssssns 13
Chapter 3: It’s All About the Data..........ccccirnnnnmmmmnnnsennnmmsssnn———— 39
Chapter 4: Making Decisions About...and Planning Program Flow 63
Chapter 5: Object Oriented Programming with Objective-C.........ccccvssueennrnans 87
Chapter 6: Learning Objective-C and Xcode.......ccuusueerrnssssnnnssssssnssssssssnsssssss 103
Chapter 7: Objective-C Classes, Objects, and Methods............cccenrnssnnnnnsinns 129
Chapter 8: Programming Basics in Objective-Cc.ccuusemrrnsssnnnsssssssnssnnns 163
Chapter 9: Comparing Datacccemnmmmmnmmmssssnnmmmsssssnmmmsssssmsssssssesssssssenns 199
Chapter 10: Creating User Interfacesccouemmmmmsssnsnmnssssssnssssssnssssssssssssnns 215
Chapter 11: Storing Information...........ccccininnmmnnnnnsennnnnssnnmmssss——————". 237
Chapter 12: Protocols and Delegatescccuuemrmmssssnnnmmssssnnnssssssnssssssssnsssnsss 261
Chapter 13: Memory, Addresses, and Pointers........cccccuseemnmnsssnnnnssssssnnssans 267
Chapter 14: Introducing the Xcode Debuggercccinmsmmnnnmsssannssssssssssssns 291
1T - 309

iv

Contents

Contents at a GIaNCe..........uvmmemmrrmninmmmsssss s —————————————— 1V
About the Authors........c s —————————————————————————————————————— K
About the Technical REVIEWETrcccceesrsrmmssnnes Xi
Acknowledgmentsccccrnissemnmmmnsssnsnmmssssssnmsssssssnsssssssnsssssssnnsssssssnnssssssnnnnsssssnns Xil
INtroductioncccceeernninnnnisssssssn s ———————————————————s X

Chapter 1: Becoming a Great i0S or Mac Programmercccusseessessssssnsssssnns 1
TRINKING lIKE @ DEVEIOPETceereeeeeeserereste s s saeras s s e sas e s e ssesassae e s e s aesae e s s saese e e saesaesae e saesaesaesesaesaeseesenaesannnns
Completing the Development Cycle....
Introducing Object Oriented Programming ...
Working with the AlICe INTEITACE........ccvererrere e s sa e s ae e s e e e saesae e nas
1T 111 T OO
] (o1 PSR

Taking a Tour with Alice
Navigation Menu................
World WindOW.......ccoueeerninennesensesessssssesssssesssssssssnneas
Classes, Objects, and INStANCES iN AlICE.........cucvrerrrrererrseirrresr e ss s sr e as e sa s sa s e nn s
(0L T= T 1 T SO
L T (0] - TSRS
DELAIIS AFBQ.....c.cevieeeeeieseeesestses st s e e r e r e e e b e e A e e R e R R e e e R e R R e R R e R Re R R e R Re e nnRn s
Lo L] 1L A SO

Creating an Alice App—To the Moon Alice....

Your First Objective-C Program

Launching and Using Xcode 4.2.

Vi

CONTENTS

Unicode
Data Types

BOOIEAN LOGICveeeeereereerererereerereres e sse st s e s e sas e s e saesasses e ssesaese s e saesa e e saesaesa e s ssesaesae e ssesaeseesesaeseeaenessesassasnessessens
Truth Tables.......ccccceevvierernienereniennns
(0] T o E LT I 0] 0T (0] O

DESIGNING ADPS c.verereruereererererseresressesesseses e s e sae st e e esesas e s e ssesaesesaesaesae e s aesRe s e e s e se s R e eae e e sesaenee e eaesae e enee e sananresansanes
LT o [0 0 [OOSR
DeSigN REQUIFBIMENTS......cccceririecerere st serer s e s e sae e s s e as e e e s s s e e e s sae s e e e e s s R s aena e e e aeeae e esesaesaennaesansanen
Flowcharting.........ccoeevenennnesesnsensssesesssesesseens
Designing and Flowcharting an Example App
The App’s DESIigNcoceevernrenrreesnsresesessesessseens
Using Loops to Repeat Program Statements

Coding the Example App in AliCEcccvvvererrnsnrnnas

Coding the Example App iN ODJECTHIVE-C.......ccoeiieriiriririiii e ss s sn e s nnn s
Nested If Statements and Else-If Statements
RemoVving EXIra CRAACTELScccccveierieriresirierie s sese e ses e s e ssesas e s e s saesae e s saesas e s e saesaesaesesaesaesassessesasnnnas
Improving the Code Through REfactoringccccevererrnenennninsiiese e s sn s
Running the App ..o

Moving Forward Without Alice....

1 L0 = R 88
WRAL IS @ ClASS?....c.ceuiueeerrieierseisese st st s s s s s e s s a s s e g Re R R e s e s e e se e s R e e ennan e nnnnnnnnnns 89
Planning ClASSES......ceueruerereriirerrerersessesessesesseses e ssesassessessessessssesssssessssessessessessssessessesessesaessssessesaesssnessessssasessssnens
Planning Properties
Planning Methods...................
Implementing the Classes
g TCT 1 2 14 [OOSR RTRN

[E0S BVEIYWREIE ...ttt e b e e e e e e s e g nnn e n s
Eliminate Redundant Code
Ease of Debugging.................
Ease of Replacement
Advanced Topics
Interface..............

Chapter 6: Learning Objective-C and Xcodeccuuseensrssssnnnssssssssnssssssnnnnnss 103
A Brief History of ODJECHIVE-Ccccvveiririrncrners e s 103

Understanding the Language SYMDOIS ..o ssssssssenees
Putting the “Objective” into Objective-C....

Creating an ODJECHIVE-C ClASSceccvrerrerererrererresirsere s s sese s e sasses e saessesseses e ssessesesaesresaeses e saessesassessssasnnssesaenen 129
Declaring Interfaces and InStance Variablesccoevirrvrirenicserce e see e se e snenes 131
Sending Messages (Methods).........ccccevererrneserennane

Working with the Implementation File
Coding Your Methods..........ccccvvreeernnnne .
USING YOUF NBW ClASScueeuerreirereririerisessesessesessesas e ssesaesassessessessessssessesaessssessesesssssessessessssesaessssessessesasnsssssnenns
Creating YOoUr PrOJECT.......ccooviieiiie s s e s ea s n e a e se e nnnsenn s
AQAING ODJECTS.....veieeiriieiiiine et r s e e R e e n b e Re e R e Re e R e e e s R e e enennnnnans
Writing the Implementation File..........coieeierniecsc e s s snne
Creating the User Interface
Hooking Up the Code
Running the Program..........cccecevivrennrnnnens
Taking Class Methods to the Next Level...
Accessing the Xcode Documentation
T 111 1T SRRSO
] (o1 OSSPSR

Using NSSet........
Using NSArray
] 0T (0] 1 T PSR SOST RS
Determining Class Type in @ COBCLIONcccovcererineiniisisisese e sr s snssennes 167
USINgG the MULADIE ClASSES.......cccererrererererteneriesiesessssesessesassessessessesessessesaesassessessesassessessessssessessesessessesassnssesaens
NSMULADIESELeeeeereccetre et e e e g b e eeRe e sae e e nnasenn s
NSMULADIBAITAY ... cueeeirireerisese s e s e s e s e e s s e s b e g e e e e b e ee e be e e s Re e ee b e e eenRe e ee e e g nnnsnnnan
NSMULADIEDICTIONATYveeivireeiiice s e sr e sa s e e easRe e e s e e nnnsnnan
Creating the BookStore Application...
Introducing Instance Variables
Accessing Instance Variables
Using Getter and Setter MEthods..........ccvevevririinesr e sae e s sae e s saesa e ne
INTrOTUCING PrOPEILIES . .uevveiveeecre et e s se s s et e s e e s ae e sa e e e s ae e e e sae e e e seeaesae e e e eanrns
LT T0 I (0] T=T =R
Understanding the Importance of CONVENTIONS..........covceverereriererere e snenes 182
Finishing the MyBOOKSTOre PrOgram..........cccuieieriiseinesssesssssesssssssssssssessssssssssssssssssssnssssssssssssssssensssssssssssssnnns
Creating the VIBW........cicoeeere st se s sa e e b e e s e e e s s ae e e s saena e e s e saesaesas e ennrne
Adding Instance Variables
Adding a Description..............
Creating a Simple Data Model Class
Modifying the MasterViewController
Modifying the DetailVieWCONTIOHIEN..........ccvciiiieicc e s sna s

CONTENTS

vii

CONTENTS

viii

ReViSiting BOOIEAN LOGIC..........cvvereririerirerissersesesseses e sessesas e s e saesae e s e ssesaeses e saesaesassessesaesassesaessssessessesassnssesnens 199
Using Relational OPEratorsccoeveierierieninierie s ses s seses e s sae s sa s e s e sae e s saesae e e e s aesaesae e e saesasnnssesnenns 200
COMPANING NUMDEES ...t e s s r s n e r b e b ee e e Re e e s e e ennnnn 200
Creating an EXample XCOUE APP ..ucorererrerererreriereriesessessessessssessessessssssssssessessessssessessessssessesasssssessessesssssssssseas 202

Using Boolean Expressions
Comparing Strings

Comparing Dates

ComMDBINING COMPANISONS ...c.veueeerrireerersesersssesessssessssessssssessssssssssssssssssassssssassssssasssnssassasssansssssessesssassesssessenssasens 211
Using the SWitch StatEMENTcoi o s e s sa e ae e 212
T 111 1T SRRSO 213
] (o1 LSRR 214
Chapter 10: Creating User Interfacesccousmmmmmsssesmsmssssssnsssssssssssssssssnnnns 219
Understanding INterface BUIlAETcccvveeerniieiiiirsesesesesss s sn s sns e sns s s snssssssssssssssssenees
The Model-View-Controller.............

Human Interface Guidelines (HIGs) .

Creating an Example iPhone App with Interface BUIlErccoererriicnncsnscsers e 220
USING INTEITACE BUIIAEKcoveeeerere ettt sae s s ae e e saesn e e s sae e e e saesne e
THE DOCK ...cvieeeeieierseeee et e e e e e e R e R e R e Re e e A e Re e e R e ReE e Re e R s R e e nnnRe e nn e
THE LIDFAIY c...ecececcccrseseess et r s n s n s en s e s s e s e e e R e e e e s R e Re e e b e e nn s e e enennnnnans

Inspector Pane and Selector Bar
Creating the View....
Using Outlets.......cccceveevcevererienenns
Connecting Actions and Objects
IMPIEMENTALION FilEcoeeeeireeeree e e e s s a e e s s a e e a e e e e s sae e e e s aeeanrne

(02 T Lo 00T Y10 T L0 237
Preferences
Writing Preferences
REAUING PrefErENCES.cceiririerriie st s sr e a s e a e r e ee e e nn s e n s
DALADASESvvceeeieierr et E R e E R e e R Re e s
Storing Information in @ DAtADASEc.ccoviriirerrrre e e e a e e eae s
Getting Started With Core DAtccocevevririrerr e s a e e s sa e ae e
TRE MOGEI ...t e e e s ae e Re e Re e e e e e Re e seaRe R e Re e s sRe e nnsansnnnnnn
Managed ODJECT CONTEXL........cccviireiriiisriisr et se s sn e en e ensae e nnnnnnnes
Setting Up the Interface
Summary
Exercises

MUIEIPIE INNEHTANCEeeeeer ettt e re e e e e s b e sae e s s a e e e e s aesae e e e saesaenae e eanrns

UNderstanding ProtOCOIS........cccuuiceriineiiiseiesssssess s sss e s sesssss e s s s sssssnssssssnssesssnssesssnssensssssensessseneen
Protocol Syntax........cceeeeernnen

Understanding Delegates

CONTENTS

112 S (=T 1R 265
1T 111 1T SRRSO 265
Chapter 13: Memory, Addresses, and Pointers.........cccvnssneensmssssnsnssssssnnnnnns 267
UNAerstanding MEMOIY........cceieeereiesinriesesssesssssesssse s sse e s e s ss s s s s b s e s s s sessa e s s e s snsse s snssensssssansssanenean

BitS, BYLES, @NU BASESccovrierririeiesiisissesesssesessssess s sessssssess s s s s s s s s snssssssnsssssssssessssssansssssansssssansenssensen

Converting Base-10 (Decimal) 10 BaS€-2 (BINAIY)cccvrrererrmserssssessesssssesssssessssssesssssssssssssssssssssssassssssenees

Using Base-16 (Hexadecimal) NUMDEIINGccovuiieiririieniniesesessssssssns s ssssssssssssssssessssssssssnssessssssenees
Understanding Memory AdAreSS BaASICSccvvrerrrnrerrmesessssisesssssssssssssessssssesssnnes
AlOCATING MEIMOIY ...t sese s r e sr s g b e R e e R e s R e seeRe e sbnRe e s eaRe e sea e nsnnnnnnnns

Working with Automatic Variables and Pointers......

Deallocating Memory...............

Using Special Pointers
Managing Memory in Objective-C With ARCccocceeiienisscnnsnnse e sss s snssenens
Managing Memory in Objective-C Without ARC..........cccoierrniennssessesnsssss e ss s ssssssseness

Using the Retain/Release MOGEL...........ccocveevercerinnierrere s e e s e sse e s sae e s saesae e s e s e saesassnssessenns

Working with Implied Retain Messages and Autorelease

Sending the dealloc Message
If Things Go Wrong...
A Note About ARC

Chapter 14: Introducing the Xcode Debuggercccrmmmsssmnnnrsssssnnsssssssnnnens 291

Getting Started with DEDUGGING.......ccucerurriieiriiisriie e snsnanens 292
Setting BreakPOintscuiciiiieiiieisesssees e s p e n s
Using the Breakpoint Navigator

Debugging BasiCsc.cceverrvveserrnsinnnns

Working with the Debugger Controls....

USINgG the STEP CONTIOISc.civeieecireierir sttt ra s s e s e s ae e s e s s ae e e se e sae e e e e e saesne e saeennnns
Looking at the Thread Window and Call STACKccccervverriinmnriinernesis s snssenees 300
Debugging VariablIesc.cueeeineneienineieisssesessse e s sr s e e a s s a e ne e nn e s 300

Dealing with Code Errors and Warningsc.ccceueeennesmmnsesssessssssessessssssssssssssnsen 302
L T3 304

T 111 1T SRR 306

- .. 1 | | |

ix

About the Authors

Gary Bennett is president of xcelMe.com. xcelMe.com provides iPhone/iPad
programming courses online. Gary has taught thousands of students how to
develop iPhone/iPad apps, and has several very popular apps in the iTunes
App Store. Gary’s students have some of the best-selling apps in the iTunes
App Store. Gary also worked for 25 years in the technology and defense
industries. He served 10 years in the US Navy as a nuclear engineer aboard two
nuclear submarines. After leaving the Navy, Gary worked for several companies
as a software developer, CIO, and president. As CIO, he helped take VistaCare
public in 2002. Gary also coauthored iPhone Cool Projects for Apress. He lives in
Scottsdale, Arizona, with his wife Stefanie and their four children.

Mitch Fisher is a software developer in the Phoenix, Arizona, area. He was
introduced to PCs back in the 1980s when 640 KB was considered more
memory than anyone could ever use. Over the last 25 years, Mitch has worked
for several large and medium-sized companies as a software engineer, software
architect, and software manager, and has led teams of developers on
multimillion-dollar projects. Mitch now divides his time between writing iOS
applications, creating server-side UNIX technologies, and teaching iOS
development at xcelMe.com.

Brad Lees has more than 14 years of experience in application development
and server management. He has specialized in creating and initiating software
programs in real estate development systems and financial institutions.
Highlights of his professional career include his positions as information
systems manager at The Lyle Anderson Company, product development
manager for Smarsh, vice president of application development for iNation,
and information technology manager at The Orcutt/Winslow Partnship, the
largest architectural firm in Arizona. A graduate of Arizona State University,
Brad resides in Phoenix with his wife Natalie and their five children.

About the Technical Reviewer

James Bucanek has spent the past 30 years programming and developing
microcomputer systems. He has experience with a broad range of
technologies, from embedded consumer products to industrial robotics. James
currently focuses on Macintosh and iPhone software development. When not
programming, James indulges in his love of the arts. He earned an associate
degree in classical ballet from the Royal Academy of Dance, and occasionally
teaches at Adams Ballet Academy.

xii

Acknowledgments

We would like to thank Apress for all their help in making this book possible. Specifically, we
would like to thank Kelly Moritz, our coordinating editor, for helping us stay focused and
overcoming many obstacles. Without Kelly, this book would not have been possible.

Special thanks to Matthew Moodie, our development editor, for all his suggestions during
the editorial review process to help make this a great book. Thanks to Chandra Clarke and
Scribendi, Inc., the copy editors who made the book look great.

We would also like to thank the Alice Community and Carnegie Mellon University for
developing Alice and making learning object-oriented programming fun and easy!

Introduction

Over the last three years, we’ve heard the following countless times:

“I've never programmed before, but I have a great idea for an iPhone/iPad app.”
“CanIreally learn to program the iPhone or iPad?”

We always answer, “Yes, but you have to believe you can.” Only you are going to tell yourself
you can’t do it.

For the Newbie

This book assumes you may have never programmed before. The book is also written for
someone who may have never programmed before using object-oriented programming (OOP)
languages. There are many Objective-C books out there, but all of these books assume you have
programmed before and know OOP and computer logic. We wanted to write a book that takes
readers from knowing little or nothing about computer programming and logic to being able to
program in Objective-C. After all, Objective-C is the native programming language for the iPhone,
iPad, and Mac.

Over the last three years, we have taught well over a thousand students at xcelMe.com to be
iPhone/iPad (i0S) developers. Many of our students have developed some of the most successful
iOS apps in their category in the iTunes App Store. We have incorporated what we have learned
in our first two courses, Introduction to Object-oriented Programming and Logic and Objective-C
for iPhone/iPad Developers, into this book.

For the More Experienced

Many developers who programmed years ago or programmed in a non-OOP language need a
background in OOP and Logic before they dive into Objective-C. This book is for you. We gently
walk you through OOP and how it is used in iOS development to help make you a successful i0OS
developer.

Why Alice: An Innovative 3D Programming Environment

Over the years, universities have struggled with several issues with their computer science
departments:

High male-to-female ratios
High drop-out rates

Xiii

INTRODUCTION

Xiv

Longer than average time to graduation

One of the biggest challenges to learning OOP languages like Java, C++, or Objective-C is the steep learning
curve from the very beginning. In the past, students had to learn the following topics all at once:

Object-oriented principles

A complex Integrated Development Environment (IDE), i.e., Xcode, Eclipse, Visual
Studio

The syntax of the programming language

Programming logic and principles

As aresult, Carnegie Mellon University received a grant from the US government and
developed Alice. Alice, an innovative 3D programming environment, makes it easy for new
developers to create rich graphical applications. Alice is a teaching tool for students learning to
program in an OOP environment. The software uses 3D graphics and a drag-and-drop interface
to facilitate a more engaging, less frustrating first programming experience.

Alice enables students to focus on learning the principles of OOP without having to focus on
learning a complex IDE and Objective-C principles all at once. You get to focus on each topic
individually. This helps students feel a real sense of accomplishment as they progress.

As drag-and-drop programming, Alice removes all the complexity of learning an IDE and
programming language syntax. You'll see programming is actually fun, and you can develop very
cool and sophisticated apps in Alice.

After we introduce the OOP topic and readers feel comfortable with the material, we then
move into Xcode, where you get to use your new OOP knowledge in writing Objective-C
applications. This way, you can focus on the Objective-C syntax and language without having to
learn OOP at the same time.

Learning Objective-C Without Alice

More than a thousand xcelMe. com students have used this book to become successful i0OS
developers. At the end of each course, we ask our students if the Alice sections in the first four
sections were useful. More than half of the students thought using Alice at the beginning of the
first four chapters to introduce the chapter was critical to their success. However, some of the
students didn’t feel they needed the Alice examples at the beginning of the first four chapters.
We have laid out the first four chapters of this book with the first part of each chapter
introducing the OOP topic with Alice; the remaining part of the chapter introduces the topic
using Objective-C. Thus, you can skip the Alice material if you feel comfortable with the topic.

How This Book Is Organized

You'll notice that we are all about successes in this book. We introduce the OOP and Logic
concepts in Alice and then move those concepts to Xcode and Objective-C. Many students are
visual or learn by doing. We use both techniques. We’ll walk you through topics and concepts
with visual examples and then take you through step-by-step examples reinforcing the concepts.

We often repeat topics in different chapters to reinforce what you have learned and apply
these skills in new ways. This enables new programmers to reapply development skills and feel a
sense of accomplishment as they progress. Don’t worry if you feel you haven’t mastered a topic.
Keep moving forward!

INTRODUCTION

The Formula for Success

Learning to program is an interactive process between your program and you. Just like learning to play an
instrument, you have to practice. You must work through the examples and exercises in this book.
Understanding the concept doesn’t mean you know how to apply it and use it.

You will learn a lot from this book. You will learn a lot from working through the exercises in
this book. However, you will really learn when you debug your programs. Spending time walking
through your code and trying to find out why it is not working the way you want is an
unparalleled learning process. The downside of debugging is a new developer can find it
especially frustrating. If you have never wanted to throw your computer out the window, you will.
You will question why you are doing this, and whether you are smart enough to solve the
problem. Programming is very humbling, even for the most experienced developer.

Like a musician, the more you practice the better you get. By practicing, we mean
programming! You can do some amazing things as a programmer. The world is your oyster.
Seeing your app in the iTunes App Store is one of the most satisfying accomplishments. However,
there is a price, and that price is time spent coding and learning.

Having taught more than a thousand students to become iOS developers, we have put
together a formula for what makes students successful. Here is our formula for success:

Believe you can do it. You'll be the only one who says you can’t do this. So don’t tell
yourself that.

Work through all the examples and exercises in this book.

Code, code, and keeping coding. The more you code, the better you'll get.

Be patient with yourself. If you were fortunate enough to have been a 4.0 student who
can memorize material just by reading it, this will not happen with Objective-C
coding. You are going to have to spend time coding.

You learn by reading this book. You really learn by debugging your code.

Use the free xcelMe.com webinars and YouTube videos explained at the end of this
chapter.

Don’t give up!

The Development Technology Stack

We will walk you through the process of understanding the development process for your iOS apps and what
technology you need. However, briefly looking at all the pieces together is helpful. For a sample iPhone app in
a Table View, see Figure 1.

Xv

INTRODUCTION

Il ATET = & (=

iTunes Connect

iTunes App Store

App Telemetry

Localization

iPhone SDK 3.2 and iPhone SDK i0S 4

Cocoa/Cocoa Touch

Objective-C

Object Oriented Programming and Logic

Xcode Integrated Development Environment

Mac OS X 10.5 or 10.6 (Intel Based)

Figure 1. The iPhone/iPad technology stack

Required Software, Materials, and Equipment
One of the great things about Alice is it available on the three main operating systems used today:

Windows
Mac
Linux

The other great thing about Alice is it is free! You can download Alice at www.Alice.org.

Operating System and IDE

Although you can use Alice on many platforms, the Integrated Development Environment (IDE)
that developers use to develop iOS apps is Xcode. You have to use an Intel-based Mac to use Xcode
and submit apps! Xcode is free and is available in the Mac App Store.

INTRODUCTION

Software Development Kits

You will need to register as an iOS developer. You can do this at
http://developer.apple.com/iphone.

When you are ready to upload your app to the iTunes App Store, you will need to pay
$99/year.

Dual Monitors

We recommend developers have a second monitor connected to their computer. It is great to
step through your code and watch your output window and iPad simulator at the same time on
dual independent monitors. Apple hardware makes this easy. Just plug your second monitor into
the display port of any Intel-based Mac, with the correct Mini DisplayPort adapter of course, and
you have two monitors working independently of one another. See Figure 2. Note that dual
monitors are not required. You will just have to organize your open windows to fit on your screen
if youdon’t.

- Show All Q

Display = Arrangement Color _'

To rearrange the displays, drag them to the desired position.
To relocate the menu bar, drag it to a different display.

__ Mirror Displays

v Show displays in menu bar (' Gather Windows) (Detect Displays) /‘:“\

Figure 2. Dual monitors

Free Live Webinars, Q&A, and YouTube Videos

Nearly every Wednesday night at 7:30 p.m. Pacific daylight time, we have live webinars and
discuss a topic from the book or a timely item of interest. These webinars are free, and you can
register for them at www.xcelme.com/free-webinars.php.

At the end of the webinars, we do a Q&A. You can ask a question on the topic discussed or
any topic in the book.

INTRODUCTION

Additionally, all these webinars are recorded and available on YouTube.
Make sure you subscribe to the YouTube channel so you are notified when new recordings
are uploaded.

FREE IPHONE, IPAD AND MAC DEVELOPMENT WEBINARS

Every Wednesday night at 530 PM Pacific Time xcelMe.com is providing FREE webinars

Each night, Gary Bennef! discusses xCode, inieraca Bullder, Objective-C, IPhone and iPad SOK (i0S) and Mac 05 X
programming topics, and answers your programming questions. Webinars are recorded and available on his
YouTube channel Make sure you subscribe 1o his channel 1o be notified when new videos ase uploaded

To register for he FREE webinar, click HERE. Once registered you will receive an email confirming registrason with
Information you need to join the Webinar

Past Free Webinars

Understanding NSMutableArray with Objective-C

Understanging NSArmay with Oblective-C
L 12 S e Str jective You Tuhe
Undersianding N g with

Making a Class in Objective-C and Xcoda

Understanding OOP Classes, Objects, Methods and Properties
105 Gamae and Physics Engines

Tracking down bugs with Xcode's Analyzer

Hunting gown 05 Crashes with NSZombie

ctive-C Mamory Fointers

% new with Xcode 4.0 - Part 4

What's new with Xcode 4.0 - Pan 3

What's new with Xcode 4 0 2

Part 2

eginners-The Bogk

Beginners

Figure 3. Free Objective-C webinars and YouTube videos

Free Book Forum

We have developed an online forum for this book at http://forum.xcelme.com, where you can ask
questions while you are learning Objective-C and get answers from the authors. You will also find
answers to the exercises and additional exercises to help you learn. See Figure 3.

You can also access answers to exercises and discover helpful links to help you become a
successful iPhone/iPad developers and create great apps. See Figure 4. So let’s get started!

[INTRODUCTION

TOPICS REPLIES

Registration is now required to pest
by gary.bennett = Tue Sep 21, 2010 12:33 pm 1 178
A-Book Information

e by gary.bennett » Mon Aug 16, 2010 9:49 pm 3 457
B-Introduction %

e by gary.bennett = Sat Aug 14, 2010 3:14 pm 361
Chapter 1 : Becoming a Great iPhone/iPad or Mac Programmer 3

@ by gary.bennett = Sat Aug 14, 2010 3:17 pm :] 107,
Chapter 2 : Programming Basics

@ 0 by gary.bennett » Sat Aug 14, 2010 3:21 pm 4 459
Chapter 3 : It's All About the Data 2 4

e @ by gary.bennett = Sat Aug 14, 2010 3:29 pm 1 41
Chapter 4 : Making Decisions About..and Planning Program Flow
@ by gary.bennett » Sat Aug 14, 2010 3:31 pm 1 36 2061
Chapter 5 : Object Oriented Programming with Objective-C

@ by gary.bennett = Sat Aug 14, 2010 3:32 pm 7 538
Chapter & : Introducing Objective-C and Xcode

e by gary.bennett = Sat Aug 14, 2010 3:33 pm 8 622
Chapter 7 : Objective-C Classes, Objects, and Methods
@ by gary.bennett = Sat Aug 14, 2010 3:34 pm 19 817
Chapter B : Prog g Basics in £

@ @ by gary.bennett » Sat Aug 14, 2010 3:38 B i 32 1050
Chapter 9 : Comparing Data

@ by gary.bennett = Sat Aug 14, 2010 3:38 pm 4 234
Chapter-10: Creating User Interfaces with Interface Builder

@ by gary.bennett » Sat Aug 14, 2010 3:43 pm 9 306
Chapter-11: Memory, Addresses, and Pointers 52

@ by gary.bennett = Sat Aug 14, 2010 3:45 pm 3 1
Chapter-12: Debugging Programs with Xcode

e by gary.bennett = Sat Aug 14, 2010 3:45 pm 1 106
Chapter-13: Storing Information T

@ W by gary.bennett » Sat Aug 14, 2010 3:47 pm 2 8
Chapter-14: Protocels and Delegates

a by gary.bennett = Sat Aug 14, 2010 3:48 pm 1 132

@ Free Weekly QRA Webinars every Weds i oid

by gary.bennett = Sun Sep 26, 2010 10:28 pm

Figure 4. Reader Forum for accessing answers to exercise and posting questions for authors

XiX

Chapter

Becoming a Great i0S or
Mac Programmer

Now that you’re ready to become a software developer and have read the Introduction
of this book, you need to become familiar with several key concepts. Your computer
program will do exactly what you tell it to do—no more and no less. It will follow the
programming rules that were defined by the operating system and programming
language. Your program doesn’t care if you are having a bad day or how many times
you ask it to perform something. Often, what you think you’ve told your program to do
and what it actually does are two different things.

KEY TO SUCCESS: If you haven't already, take a few minutes to read the Introduction of this
book. The Introduction shows you where to go to access the free webinars, forums, and YouTube
videos that go with each chapter. Also, you’ll better understand why we are using the Alice
programming environment and how to be successful in developing your i0S and Mac apps.

Depending on your background, working with something absolutely black and white
may be frustrating. Many times, programming students have lamented, “That’s not what
| wanted it to do!” As you begin to gain experience and confidence programming, you’ll
begin to think like a programmer. You will understand software design and logic, and
you will experience having your programs perform exactly as you want and the
satisfaction associated with this.

Thinking like a Developer

Software development involves writing a computer program and then having a computer
execute that program. A computer program is the set of instructions that we want the
computer to perform. Before beginning to write a computer program, it is helpful to list
the steps that we want our program to perform, in the order we want them
accomplished. This step-by-step process is called an algorithm.

CHAPTER 1: Becoming a Great i0S or Mac Programmer

If we want to write a computer program to toast a piece of bread, we would first write an
algorithm. This algorithm might look something like this:

1. Take the bread out of the bag.

2. Place the bread in the toaster.

3. Press the toast button.

4, Wait for the toast to pop up.

5. Remove the toast from the toaster.

At first glance, this algorithm seems to solve our problem. However, our algorithm leaves
out many details and makes many assumptions. For example,

1. What kind of toast does the user want? Does the user want white bread,
wheat, or some other kind of bread?

2. How does the user want the bread toasted? Light or dark?

3. What does the user want on the bread after it is toasted: butter,
margarine, honey, or strawberry jam?

4. Does this algorithm work for all users in their cultures and languages?
Some cultures may have another word for toast or not know what toast is.

Now, you might be thinking we are getting too detailed for just making a simple toast
program. Over the years, software development has gained a reputation of taking too
long, costing too much, and not being what the user wants. This reputation came to be
because computer programmers often start writing their programs before they have
really thought through their algorithms.

The key ingredients to making successful applications are design requirements. Design
requirements can be very formal and detailed or as simple as a list on a piece of paper.
Design requirements are important because they help the developer flush out what the
application should do and not do when complete. Design requirements should not be
completed in a programmer’s vacuum, but should be produced as the result of
collaboration between developers, users, and customers.

CHAPTER 1: Becoming a Great i0S or Mac Programmer

NOTE: If you take anything away from this chapter, take away the importance of considering
design requirements and user interface design before starting software development. This is the
most effective (and least expensive) use of time in the software development cycle. Using a
pencil and eraser is a lot easier and faster than making changes to code because you didn’t have
others look at the designs before starting to program.

Another key ingredient to your successful app is the user interface (Ul) design. Apple
recommends that you spend over 50% of the entire development process focusing on
the Ul design. The design can be simple pencil-and-paper layouts created using the
iPhone Application Sketch Book or the iPad Application Sketch Book by Dean Kaplan
(Apress, 2009) or on-screen layout created with the Omni Group’s OmniGraffle
(www.omnigroup.com) software application with the Ultimate iPhone Stencil plug-in
(www.graffletopia.com). Many software developers start with the Ul design, and after
laying out all the screen elements and having many users look at paper mock-ups, they
then write out the design requirements from their screen layouts.

After you have done your best to flush out all the design requirements, laid out all the
user interface screens, and had the client(s) or potential customers look at your design
and give you feedback, coding can begin. Once coding begins, design requirements
and user interface screens can change, but the changes are typically minor and easily
accommodated by the development process. See Figures 1-1 and 1-2.

Figure 1—-1 shows a mock-up of a mobile banking app screen prior to development
using OmniGraffle. Developing mock-up screens along with design requirements forces
developers to think through many of the applications usability issues before coding
begins. This enables the application development time to be shortened and makes for a
better user experience and better reviews on the iTunes App Store. Figure 1-2 shows
how the view for the mobile banking app actually appears when completed.

CHAPTER 1: Becoming a Great i0S or Mac Programmer

Balances Transfer Money Pay Bills
avings (xx1772)
Business Accounts fvailable Balance $1234.21
Present Balance $2123.22
Business Checking (xx4327)
Available Balance $2100.22
Present Balance $4201.35 IRA (xx177)
Available Balance $1234.21
Business Savings (xx1234) Present Balance $2123.22
Available Balance $1234.21
2 Car Loan (xx172)
Presant Belarice $1es.2 Qutstanding Principle $1234.21
/ Next Payment Amount $2123.22
Personal Accounts Due Date 08/17/2009
- Last Pay Amount $452.99
Checking (xx3423) Last Pay Date 07/17/2009
Available Balance
Present Balance

Home Locations Contact Us FAQ Log Out

Home Equity Loan (xx7672)

Qutstanding Principle $12,34.21
Next Payment Amount $2123.22
Due Date 08/17/2009
Last Pay Amount $452.09
Last Pay Date 07/17/2009

Figure 1-1. This is a User Interface (Ul) mock-up of the Account Balance screen for an iPhone mobile banking app
before development begins. This Ul design mock-up was completed using OmniGraffle.

CHAPTER 1: Becoming a Great i0S or Mac Programmer

il AT&T 3G 12:46 PM [
Accounts Log Off
Checking
Checking (****7045)
Current Balance: $554.50 7
Available Balance: $539.33

Savings (****3428)

Current Balance: $500.00 7
Avallable Balance: $505.40

Line Of Credit

LOC CCR (****3163)

Current Balance: $922.91 7
Available Balance: (3920.81)
Loan

Figure 1-2. This screenshot shows a completed iPhone mobile banking application as it appeared on the iTunes
App Store. This app is called Woodforest Mobile Banking.

Completing the Development Cycle

Now that we have our design requirements and user interface designs and have written
our program, what’s next? After programming, we need to make sure our program
matches the design requirements and user interface design and ensure that there are no
errors. In programming vernacular, errors are called bugs. Bugs are undesired results of
our programming and must be fixed before the app is released to the App Store. The
process of finding bugs in programs and making sure the program meets the design
requirements is called testing. Typically, someone who is experienced in software
testing methodology and who didn’t write the app performs this testing. Software testing
is commonly referred to as Quality Assurance (QA).

NOTE: When an application is ready to be submitted to the iTunes App Store, Xcode gives the file
an . app extension, for example, appName . app. That is why iPhone, iPad, and Mac applications
are called apps. We will use “program,” “application,” and “app” to mean the same thing
throughout this book.

During the testing phase, the developer will need to work with QA staff to determine why
the application is not working as designed. The process is called debugging. It requires

CHAPTER 1: Becoming a Great i0S or Mac Programmer

the developer to step through the program to find out why the application is not working
as designed. Figure 1-3 shows the complete software development cycle.

.

Figure 1-3. The typical software development cycle

Frequently during testing and debugging, changes to the requirements (design) must
occur to make the application more usable for the customer. After the design
requirements and user interface changes are made, the process begins over again.

At some point, the application that everyone has been working so hard on must be
shipped to the iTunes App Store. Many considerations are taken into account when this
happens:

Cost of development
Budget

Stability of the application
Return on investment

There is always the give-and-take between developers and management. Developers
want the app perfect and management wants to start realizing revenue from the
investment as soon as possible. If the release date were left up to the developers, the
app would likely never ship to the App Store. Developers would continue to tweak the
app forever, making it faster, more efficient, and more usable. At some point, however,
the code needs to be pried from the developers’ hands and uploaded to the App Store
so it can do what it was meant to do.

Introducing Object Oriented Programming

As discussed in detail in the Introduction, Alice enables us to focus on object oriented
programming (OOP) without having to cover all the Objective-C programming syntax
and complex Xcode development environment in one big step. Instead, we can focus on
learning the basic principles of OOP and using those principles quickly to write our first
programs.

For decades, developers have been trying to figure out a better way to develop code
that is reusable, manageable, and easily maintained over the life of a project. OOP was
designed to help achieve code reuse and maintainability while reducing the cost of
software development.

CHAPTER 1: Becoming a Great i0S or Mac Programmer

OOP can be viewed as a collection of objects in a program. Actions are performed on
these objects to accomplish the design requirements.

An object is anything that can be acted on. For example, an airplane, person, or
screen/view on the iPad can all be objects. We may want to act on the plane by making
the plane bank. We may want the person to walk or to change the color of the screen of
an app on the iPad. Actions are all being applied to these objects; see Figure 1-4.

File Edit Project Run Window Help

' Starting Camera View ¥

moonsurface

y - -V
Y Ay

W

Figure 1-4. These are two objects in an Alice application, a Dropship and Fighter. Both objects can have actions
applied—takeoff and landing, turn right and turn left..

Alice will run a program, such as the one shown in Figure 1-4, for you if you click the
play button. When we run our Alice applications, the user can apply actions to the
objects in our application. Similarly, Xcode is an Integrated Development Environment
(IDE) that enables us to run our application from within our programming environment.
We can test our applications on our computers first before running them on our iOS
devices by running the apps in Xcode’s simulator, as shown in Figure 1-5.

CHAPTER 1: Becoming a Great i0S or Mac Programmer

LT e

Carrier = 10:00 PM =

| xcelMe Home

Objective-C Course

Cocoa Touch/Xcode Course

iPhone SDK Course 1

iPhone SDK Course 2

Game Programming Course

y
1] o —

Figure 1-5. This sample iPhone app contains a table object to organize a list of courses. Actions such as “rotate
left” or “user did select row 3” can be applied to this object.

Actions that are performed on objects are called methods. Methods manipulate objects
to accomplish what we want our app to do. For example, for our jet object in Figure 1-4,
we might have the following methods:

goup

goDown

bankLeft
turnOnAfterBurners
lowerlLandingGear

Our table object in Figure 1-5 is actually called UITableView when we use it in a
program, and it could have the following methods:

loadView
shouldAutorotateToInterfaceOrientation
numberOfSectionsInTableView
cellForRowAtIndexPath
didSelectRowAtIndexPath

CHAPTER 1: Becoming a Great i0S or Mac Programmer

All objects have data that describes those objects. This data is defined as properties.
Each property describes the associated object in a specific way. For example, the jet
object’s properties might be as follows:

altitude = 10,000 feet
heading = North

speed = 500 knots

pitch = 10 degrees

yaw = 20 degrees
latitude = 33.575776
longitude = -111.875766

For our UITableView object in Figure 1-5, the following might be our properties:

backGroundColor = Red
selectedRow = 3
animateView = No

An object’s properties can be changed at any time when our program is running, when
the user interacts with the app, or when the programmer designs the app to accomplish
the design requirements. The values stored in the properties of an object at a specific
time are collectively called the state of an object.

State is an important concept in computer programming. When teaching students about
state, we ask them to go over to a window and find an airplane in the sky. We then ask
them to snap their fingers and make up some of the values that the plane’s properties
might have at that specific time. Those values might be

altitude = 10,000 feet

latitude = 33.575776
longitude = -111.875766

Those values represent the state of the object at the specific time that they snapped
their fingers.

After waiting a couple minutes, we ask the students to find that same plane, snap their
fingers again, and record the plane’s possible state at that specific point in time.

The values of the properties might then be something like

altitude = 10,500 feet
latitude = 33.575665
longitude = -111.875777

Notice how the state of the object changes over time.

Working with the Alice Interface

Alice offers a great approach in using the concepts that we have just discussed without
all the complexity of learning Xcode and the Objective-C language at the same time. It
takes only a few minutes to familiarize oneself with the Alice interface and begin writing
a program.

The Introduction of this book describes how to download Alice. After it’s downloaded
and installed, you need to open Alice. It will look like Figure 1-6.

CHAPTER 1: Becoming a Great i0S or Mac Programmer

DirtProject.aip Grassy raip ject.aip

SandyProject.adp SeaProject.aip SnowyProject.aip

Cancel
Figure 1-6. Alice IDE running

Technically speaking, Alice is not a true IDE like Xcode, but it is pretty close and much
easier to learn than Xcode. A true IDE combines code development, user interface
layout, debugging tools, documentation, and simulator/console launching for a single
application; see Figure 1-7. However, Alice offers a similar look, feel, and features to
Xcode. This will serve you well later when we start writing Objective-C code.

CHAPTER 1: Becoming a Great i0S or Mac Programmer

»| (M) | TableExample - Phone 5.0 Simulasor

o R . Tabielxample

a [TubeEaaenple | | Classes | Contraders FroneSOK] Course | m PRoSSDRLClasaesm | fon Sebenien
kClass8,
kTotalRowCount

k

@implementation iPhoneSDK1Classes

- (void}loadView

NSLocalized!
m wtemporag
ttonltem. Caerier = 7:02 PM

Objective-C Course

uttonIte m alloc] init];
raryBarBu I"");

dtem;
inScreen] applicationFrame]];

eWidth | UIViewAutoresizingFlexibleHeight);
green:@.93@ blue:@.958 alpha:1.8];

Cocoa Touch/Xeode Course

iPhone SOK Course 1

iPhone SDK Course 2

Game Programming Course style:UITableViewStyleGrouped];

leSingleLine;
8 green:9.93@ blue:9.959 alpha:1.9];

lewWidth | UIViewAutoresizingFlexibleHeight);

f// Dverride to allow orientations other tha

i, 1t portrait
- (B00L}shouldAutorotateToInterfaceOrientati

faceOrienta

HI{1}1 terfaceOrientation {

Figure 1-7. The Xcode integrated development environment (IDE) with the iPhone Simulator

In the next chapter, you will go through the Alice interface and write your first program.

Summary

Congratulations, you have finished the first chapter of this book. It is important that you
have an understanding of the following terms because they will be reinforced throughout

this book:

® Computer program

Bug

Algorithm
Design requirements

User interface

Quality assurance (QA)
Debugging
Object oriented programming (OOP)

1

12 CHAPTER 1: Becoming a Great i0S or Mac Programmer

Object

Property

Method

State of an object

Integrated development environment (IDE)

Exercises

Answer the following questions:
Why is it so important to spend time on your user requirements?

What is the difference between design requirements and an
algorithm?

What is the difference between a method and a property?
What is a bug?
What is state?

Write an algorithm for how a soda machine works from the time a coin
is inserted until a soda is dispensed. Assume the price of a soda is 80
cents.

Write the design requirements for an app that will run the soda
machine.

Chapter

Programming Basics

This chapter will focus on the building blocks that are necessary to become a great
Objective-C programmer. This chapter is going to go over how to use the Alice user
interface, how to write our first Alice program, how to write our first Objective-C
program, and explore some new OOP terms.

NOTE: We want to introduce new concepts in Alice and later, in this chapter, enable you to use
these concepts in Objective-C. We have used this approach for the last 3 years and know, from
personal experience, that this approach helps you learn the concepts quickly, without
discouragement, and gives you a great foundation to build upon.

Taking a Tour with Alice

Alice’s 3D programming environment makes it easy to write your first program, as it
applies some of the principles that you have learned in Chapter 1. First, you need to
learn a little more about Alice’s user interface. When we first launch Alice, we are
presented with a screen that looks like Figure 2—1.

You can start with the default blue sky and green grass template or pick another
template with a different background. Feel free to explore and have fun. This is where
we will spend most of our time and write our first Alice application.

The Alice user interface is set up to help us efficiently write our applications. The user
interface is very similar in form and function to the Xcode IDE. We will now explore the
major sections of Alice.

13

14

CHAPTER 2: Programming Basics

File Edit Project Run Window Help

edit sc(‘nv_gl

DinProject.aip MoonProject.aip

GrassyProject.aip

| ——

" with the default

andyProject.aip SeaProject.aip SnowyProject.aip
a

Cancel

Figure 2-1. Opening screen in Alice

Navigation Menu

The Navigation menu, shown in Figure 2-2, enables us to open and close files, set our
application preferences, and view world statistics, text output, and the error console. We
can also access example worlds and Alice Help from the Navigation menu.

NOTE: It is important that you save your program frequently when using Alice. If Alice crashes
and you haven’t saved your work, you will lose all your code or changes since you last saved.
Additionally, we recommend that you close Alice completely and reopen it when you want to
open a new Alice program.

CHAPTER 2: Programming Basics 15

Object Tree

J Code Hel perl

World
Window

‘this garysAsironaut

\J initialize | Boolean, TheepPaying | <75 Ttrue
- initialize | leteger ZrancomMumber <= S0
ualit zrana initialize | Integer ZuserCoess 58 0
! adit sreps Details Area
initialize | Boolean TcontmueCuessing T irue

Procedures
MyAstronast
Astronaut
Model |

while keepPaying ' is true

CrandomNumber e

e _continueCuessing i te
TunerCuess| 5= 13

=) thes garysAstrorust | say [weatl’ mom
thisgaryAstronaut addeyListener keyl i
" = i | Srandomiumber | EQUALS SuserCuess | s true
| this garysAstronast say o) J o = T Cﬂdlﬂ'
this garysAstrosast say ("Correct Number | duratignd 110 moee Editor

| thes garysAutronaut think text i

- FcoonmseCossriog 46 11
s garyiditronaut resize amount: I Aconin 7 AT

| thes garysAstronass, resizeWidth amount e
AT e | If T fuserCoess) B CrandomMumber | is true then
P T e — | This, garysAssronaet” say ["You're guess is too high™' more

Figure 2-2. This shows the Alice’s user interface’s main sections Take some time to explore the user interface.
You will see in this chapter how it compares with Xcode and how it will help us learn Objective-C.

World Window

The World window shows what our virtual world will look like when it runs. This window
is similar to the iPhone/iPad simulator that we will use later to run our apps. The World
window enables us to take advantage of Alice’s 3D user interface to model our
application.

In the World window, we can move the camera around and place it where we want for
the viewing prospective we desire. Moving the three arrow tools in Figure 2-3 enables
incredible flexibility for bringing our applications to life.

It is important to learn how to move the camera around your world in order to get the
view you want the users to see.

CHAPTER 2: Programming Basics

File Edit Project Run Wm_dow_ _Heip

this (a.k.a. scene)

this.moonSurface
this.camera

this.garysAstronaut

Figure 2-3. Camera manipulation arrows to control the camera in World window.

One of the most important Alice controls is the Edit Scene control. See Figure 2—4.
When we click the Edit Scene button in the bottom-right corner of the World window, we
launch Alice’s Scene Editor.

File Edit Project Run Window Help

Figure 2-4. The Edit Scene button in the World window is outlined with a box and is one of the most important
controls. This button will launch Alice’s Scene Editor and enable us to add objects to our Alice World.

CHAPTER 2: Programming Basics

Take a minute to familiarize yourself with the Scene Editor shown in Figure 2-5. The
Scene Editor enables us to:

Add objects to our world from the gallery.
Add objects to our world from the Internet.
Position the objects in our world.

Adjust the camera for viewing our world.

We will spend a lot of time adding objects and setting the camera in our worlds by using
the Scene Editor.

-]
| Layout Tools |

&
Wk Starting Camera View = N indo
i
Handie stvle: 5, & T 7
garysAstronaut UseSmap [Seap detads "

7 Object Properties
Selected: moonSurface | Rename moonSu
Class = MyMoonSurface

7 More properties *

Color = v
Opacity = 10 ¥
Position = (x Y
. Vehicle = —
' W
Size = Meighe o
Leave Scene] Depth
Editor
[objects |
|
T Gallery | . JL
Navigation ‘ ‘ ‘ \/
Bar o .
i Q v AN ,’F v Coyel . .
\/\ | Markers
BN !
gasery (W C Alce Models | W - My Classe
EaRAREARRLY L h d
HHHHH .
L ih*' = !
1 @ oIF
T ’
ARNERNRRENANANE package i s A
Create Person, .II"\US'NH!I"DIP‘ animals beach buildings oty Create Bilboasd .
Ly T = -
B2 -

Figure 2-5. Alice’s Scene Editor

18

CHAPTER 2: Programming Basics

Classes, Objects, and Instances in Alice

A group of objects with the same properties and same methods (actions) are called a
class. For example, we could have a class called Airplane. In this class, we could have
five objects:

boeing747
lockheedSR71
boeing737
citation10
f18Fighter

These objects are nearly identical. They are from the same Airplane class. They all have
the same following methods:

land()

takeOff()

lowerLandingGear ()

raiselLandingGear()

bankRight()

bankLeft()

The only thing that differentiates the objects is the values of their properties. Some of
the properties of the values might be:
winglength = 20ft

maxThrust = 200,0001bs
numberOfEngines = 2

In your world, you may have two objects that are exactly the same. You may want two
Boeing 737s in your view. Each copy of a class is called an instance. Adding an
instance of a class to our program is called instantiation.

Object Tree

The Object Tree (see Figure 2-6) enables us to view all of the objects in our Alice world.
Additionally, if the object has subparts, you can view these subparts by clicking the plus
sign, or collapse the subparts by clicking the minus sign.

CHAPTER 2: Programming Basics

File Edit Project Run Window Help

> L

= Object Tree
-— /
y = Eclit Sceuijl

instance:[§ garysAstronautj part:

Procedures |(__) scene (this)

| MyAstrona

sunLight

’ Astronaut moonSurface

Figure 2-6. The Object Tree

Many of the Alice worlds come with several built-in objects that we will need for our
apps. The world in Figure 2-6 comes with the Camera, Light, and Ground objects.

Editor Area

The Editor Area, the largest area of the Alice interface, is where we write our code. With
Alice, we don’t have to actually type code; we can drag and drop our code to
manipulate our objects and properties.

NOTE: Don’t forget the top of the Editor Area. The top contains a row of control and logic tiles for
looping, branching, and other logical structures that we can use to control the behavior of our
objects.

19

20

CHAPTER 2: Programming Basics

Details Area

The Details Area of the Alice interface contains the tabs for properties, procedures, and
functions that make up the object that is selected in the Object Tree.

Properties contain the specific information of our selected object
(e.g., weight, length, and height).

Procedures (Methods) perform actions upon the object (e.g., take off
and land).

Functions and methods are similar. In Alice, the difference between
the two is that a method does not return a value. A function will return
a value.

Events Area

The Events Area of the Alice interface contains a listing of all the existing events used by
our app, and provides us with the opportunity to create new events. Events are
conditions that trigger our methods. Methods (or procedures) that react to these events
are called event handlers. When a specific event occurs, it triggers a signal that the
event handler receives and handles.

Some examples would be the user touching a button on an iPhone. The touching or
swiping triggers events and the methods that handle these events act on objects in our
app. See Figure 2-7.

CHAPTER 2: Programming Basics

iPhone Simulator

N
N
Interactive Books

Read to me

Figure 2-7. Phonics Easy Reader 1, by Rock ’n’ Learn, is running on the iPad Simulator in the left landscape
orientation. Tapping the “Read to me” or “Let me try” button triggers events that methods receive and act on—in
this example, reading to the child or having the child read the words of a sentence.

Creating an Alice App—To the Moon Alice

We have covered some new terms and concepts, and now, it is time to do what
programmers do—write code. It is customary for new developers to write a Hello World
app as their first program. We will do something similar, but Alice makes it more
interesting. We will then follow up our first Alice app with our first Objective-C app.

This Alice app will have three objects on the screen, the lunar lander object and two
astronauts. One astronaut will say, “The Eagle has landed.” The other astronaut will say,
“That’s one small step for man, one giant leap for mankind.”

Alice really makes apps like this easy and fun to do. Make sure you follow these steps:
1. Click File and then New.
2. Click the Template tab.

3. Choose the MoonProject.a3p Template, and click the Open button. See
Figure 2-8.

21

22

CHAPTER 2: Programming Basics

Fie_Edit_Project_Run_W

SandyProject.adp SeaProject.aip SnowyProject.aip

Figure 2-8. Select the Space Template.

4, Now, we need to add our objects. Click Edit Scene. It was the
important button in the World window shown in Figure 2-4.

5. Inthe Object Gallery, select the Space Class from the Generic Alice
Models.

6. Right-click the Lunar Lander to view some of the information about the

object. See Figure 2-9. We can click “OK” to add our objects to our
world, or we can drag and drop them from the gallery to the world.

NOTE: You can see in this example why an instance is a copy of an object. We are making a
copy of the object and putting it in our world. Instantiation is a big word for the process of
making a copy of and initializing our object.

CHAPTER 2: Programming Basics 23

B, Starting Camera View |7

er / lunarlander new Instance of | Mylunariarder

which extends | Lunarlander

Ok Cancel
25 9
e B]E':Ii'. Gejels
v (W] G Alice Models | W) b
S < s .
P \g % @
UL LLEEERL] = / ! = :
AT =
RERRENARAARAREE class class. clas; class. class.
Create Person.., Ast 1 L fand [1

Figure 2-9. Viewing and adding objects to our world from Step 6.

7. Click the Astronaut class twice to add our two astronauts to our world.

8. Use the Camera Adjustment and Objects Adjustment tools, outlined
in boxes in Figure 2-10, to achieve the look and perspective you desire.

TIP: Sometimes when you add two objects, Alice places one object over the other. Drag the top
astronaut to the side of the other astronaut if this occurs. Your world should look like Figure 2—10.

24

CHAPTER 2: Programming Basics

Selected: as!
Class = My,

T - N \
Lo ¥ @ 8 @ &

LT LT

Figure 2-10. Use the Camera Adjust tool to control the user perspective of the world. Use the Object Adjustment
tools to shape and orientate your objects in your world.

9. At the top right corner are the Object Adjustment tools. Hover the
mouse over each tile to discover what each tile tool will do to the object.
Notice the Object Tree in Figure 2-10. The ground, lunarlLander,
astronaut, and astronaut2 objects are in the Object Tree.

10. Click the Edit Code button at the bottom right of the screen. This will
return us to the editor view.

11. Click the left astronaut in the World window. Make sure the Procedures
tab is selected in the Details Area.

12. We are now going to make our astronauts say something. Remember
actions to objects require methods. Drag the Astronaut2|turn tile from
the Details Area to our Editor. Select turn left, 0.25 rotation from the
parameter list. See Figure 2-11. When we run our app, the left astronaut
will turn to their left one-quarter of a rotation and face the other
astronaut.

CHAPTER 2: Programming Basics

File Edit Project Run Window Help
m do in order || count | while | for each in _
b 4 class: | MyScene /W | () run
declare procedure [on class | MyScene
LJ - do in order

ﬂ w this.astronaut turn CLEFT] , 50.25
N .

{if .|| do together | ‘each in

more

this.astronaut say [The Eagle has landed’ maore

v Eclit Scanz |

instance: § astronaut v| part:
MyAstronaut &
~

Astronaut
- Cthis.astronaut straightenUp

this.astronaut placeRelativeTo 77
this.astronaut addMouseButtonListener mow

this.astronaut addKeyListener keyListener
this.astronaut say text S #7]

this.astronaut think text. 7777

this.astronaut resize amount: = 777

Figure 2-11. The left Astronaut’s methods and parameters.

13. Let's do the same thing for the other astronaut. Click the right astronaut.
Drag the Astronaut|turn tile from the Details Area to our Editor. Select

turn right, 0.25 rotation from the parameter list.

14. A parameter is the information a method needs to act upon the object.
A method may need one or more parameters for a method. Click the
right astronaut, drag the Astronaut2|say tile to the editor, select other,

and then type The Eagle has landed. See Figure 2-12.

25

26

CHAPTER 2: Programming Basics

File Edit Project Run Window Help

m do in order || count | while | for eachin if do together | each in _together | [do in thread
class: {Myscene)Y | () run

declare procedure LI on class | MyScene

L] - do in order
w ﬁ this.astronaut turn CLEFT" | =0.25 maore
3 % this.astronaut = say J{The Eagle has landed’ more
- | this.astronautZ] turn CRIGHT) , =0.25 more
e
/ Eelit Scana JI this.astronautz] say J{That's one small step for man...One giant leap for mankind.’ more

instance: § astronaut2 ¥ part

MyAstronaut 4

Astronaut
this.astronautZ| straightenUp
this.astronautZ| placeRelativeTo < 77

Cthis.ash 12| addM Listener mq

‘this.astronaut?| addKeyListener keylistener
this.astronautZ| say text Ji 707

this.astronaut?) think texr: J777

S e P S

Figure 2-12. Your Editor should have these methods within the listed parameters.

15. Click the right astronaut. Drag the astronaut|say tile to the editor,
select other, and type, That’s one small step for man. . . One giant
leap for mankind. Your app should look like Figure 2-12.

16. Let's run our first program by clicking Play. If you have completed
everything correctly, your app should look like Figure 2-13 when it runs.
If not, you have some debugging to do.

17. Save the app as toTheMoonAlice.a3p. We will be using this app later.
Click File » Save World, or File » Save World As.

Incal... |

CHAPTER 2: Programming Basics

resume restart

That's one small step for man...One giant leap for mankind.

Figure 2-13. From the top portion of the World Running window, we can rerun our program, pause, resume,
restart, stop, and take a picture of our app. We can also speed up or slow down our app, depending on how slow
or fast our application is running.

Your First Objective-C Program

Now that you have learned a little about OOP, and have your first Alice program
completed, it’s time to write your first Objective-C program and begin to understand the
Objective-C language, Xcode, and syntax. First, we have to install Xcode. Xcode is the IDE
that we use when developing Objective-C apps. It is equivalent to Alice’s interface.

Launching and Using Xcode 4.2

Xcode 4.2 is available for download from the Mac App Store for free. See Figure 2-14,
and from the iOS Dev Center, see Figure 2-15 and Figure 2-16.

27

28

CHAPTER 2: Programming Basics

xcode
Featured Top Chants Categories Purchases Updates

Xcode

Xcode provides everything developers need to create great applications for Mac, iPhone, and
iPad. Xcode 4 has been streamlined to help you write better apps. It has unified user
interface design, coding, testing, and debugging all within a single window. The Xcode IDE
analyzes the detalls of your project to identify mistakes in both syntax and logic, It can ev..

What's New in Version 4.2
- Includes SDKs for Mac OS5 X 10.7 Lion and i05 5 le Support
- Storyboards let you design multiple i05 screens, and define the segues among them

Information

Category: Developer Tools

1.68 GB
Language: English
Seller: Apple Inc
© 2011 Apple Inc.

Rated 4+
Requiremen

Mac 05 X 10.7 or later
More by Apple
s’ 05 X Lion

m j?hom
iﬂ n_.. it

W
% Pages
o Aperture

Figure 2-14. Xcode 4.2 is available for download from the Mac App Store for free.

NOTE: This package has everything we need to write Objective-C and Mac apps. To develop
iPhone apps, you will need to apply for the iPhone Developer Program, pay $99 (when ready to
test on your i0S device), and download the iPhone SDK from Apple at
http://developer.apple.com/iphone.

CHAPTER 2: Programming Basics

05 Dev Center - Apple Developer

hutps://developer.apple.com/devcenter/ios/index.action#

i0S Dev Center

Hi, Gary Bennett My Profile Log out

EELTEERN (05 SOK beta] i0S Developer Program
08 Pravisioning Portal
Developing for iOS 5 beta

Resources for iOS 5 beta Featured Content

iTunes Connect

Apple Developer Forums
J.)cmn!nad.s W What's New in i05 §

Developer Support Center

& iCloud for Developers
ii 05 Devalopar Library & i05 5 beta 7 Release Notes

& DS 5 bata AP1 Diffs

w Sample Code a

L\,\j App Store Resource Center

m Prepare for App Submission

th Accessory Design Guidelines

0 App Store Approval Process

@fy Aeple Dev

#% Managing Apps on the App Store

Downloads ol Marketing Resources

Read Me Before Downloading Hid

ﬂ g Network

« [0S 5 beta 7 can be installed using over the alr soln
Instalied. Over the air software update can be inl

are update from devices that have 105 5 beta § or later
d by choouing General > Software Update in Settings

Be sure to backup your devices using Tunes 10.5 beta 7 or through Cloud backup prior to installing
105 5 beta 7. After installing |05 § beta 7, you can restore your device using either Tunes 10.5 beta 7 or
threugh your iCloud backup,

(53 News & Announcements

= When updating iPhone IG5 or IPod touch
first follow the instructions in the Re

using Tunes, you must

generation) from Beta 6 to Beta 7

= This version of i05 s nded only for installation on development devices registered with Apple's
Developer Program. Attempting to install this version of [0S in an unauthorized manner could put your
device in an unusable state, which could necessitate an out of warranty regair

Devices updated to #0S § beta can not be restored to earfer versions of i0S. Devices will be able 10 upgrade
to future beta refeases and the final 108 § software

Xeode 4.2 Developer Preview cannot be used 1o submit 2p0ps to the |05 or Mac App Store. Continue to use
the publicly released version of Xcode to compile and sub 2pps to the App Stores.

A pre-release version of Apple TV Software is being provided in order wo test AirPlay functionality with your
05 5 apps.

Xeode 4.2 Developer Preview, i05 5 beta, (Tunes
are pre-release software and are consigered

Wark for 108 beta, and Apple TV Sofwware bea
al Infos d are subject to the terms of

5

pie Confide
your i0S Developer Program License Agreement. Unauthorized d ution or disclosure of Apple
Confidential Information is prohibited D

a

ad I05 5 and i0)

As part of this pre-release 105 beta software. Apple will be collecting, using. storing and analyzing
diagnostic and usage bogs from your device in order to imgron e product, untess you opt-out. The data
that may be coflected from the device includes. but is not limited to, general diagnostic and usage data;
various device identifiers thar may be unigue to your device; and the location of your device. Learn mare »

Xcode 4.2 Developer Preview 7 Posted: August 31, 2011
This is a pre-release version of the
complete Xeode developer toolset

Mac, iPRane, iPod touch,
Please review the Release Notes and

R g Mol Sk

7b (Lion)

Snow Leopard)

o 505 SDK: 108 5 bera 7
ed Mac SDK: Mac 0S5 10.7

w Guidelines

Figure 2-15. If you paid $99 and joined the iOS Developer Program, beta versions, like the example above, of
Xcode and the i0S SDK, are available to download.

Now that we have installed Xcode, we need to begin writing Objective-C applications;
so let’s get started. After launching Xcode, follow these steps:

1. Click Create a new Xcode Project. See Figure 2-16.

29

30 CHAPTER 2: Programming Basics

Start your first
Objective-C project

Create a new Xcode project
Start building a new Mac, iPhone or iPad
application from one of the included templates

______________ 1

“Connect to a repository
Use Xcode's integrated source control features to
work with your existing projects

Learn about using Xcode
Explore the Xcode development environment with
the Xcode 4 User Guide

Go to Apple's developer portal
Visit the Mac and i0S Dev Center websites at
developer.apple.com

Open Other... ¥ Show this window when Xcode launches

Figure 2-16. Creating our first Objective-C project.

the Command Line Tool.

Recents

Cancel Open

IMPORTANT: This is where many beginners get stuck, depending on their version of Xcode, and
if they have the iPhone SDK installed. In Figure 2—17, you can see that we have the i0S SDK

installed. We also have the Lion version of Xcode installed. If you don’t have these installed, that
is OK. Just navigate in the left pane of your template options, click on Applications, and look for

2. Select Applications on the left-side pane, select the Command Line
Tool template, and then press Next. See Figure 2-17.

CHAPTER 2: Programming Basics

Choose a template for your new project:

A ios

Application
Framework & Library
Other

& Mac 05X

Framework & Library
Application Plug-in
System Plug-in
Other

_ Cancel

A\

Cocoa Application

Cocoa-AppleScript Command Line Tool

Application

c,
N

Click on Application
under the Mac 0S X

Next

Figure 2-17. Select the Command Line Tool. You may have to navigate to an equivalent screen with other
versions of Xcode. The bottom line is to navigate to the Command Line Tool.

3. Let's name our app HelloWorld and select Foundation as the
application type, as shown in Figure 2-18. Then press Next, and save
your app in the directory of your choice.

31

32

CHAPTER 2: Programming Basics

Choose options for your new project:

Product Name | HelloWorld
Company Identifier com.xcelme
Bundle Identifier
. Type | Foundation

4 v Use Automatic Reference Counting

Cancel Previous Next

Figure 2-18. Name your app HelloWorld, and select the Foundation as the App Type.

4, In the Project Navigator, click on the main.m file. See Figure 2-19

Xcode does a lot of work for us and creates a directory with files and code ready for us
to use. That is what Xcode templates do—they save us a lot of time.

We need to become familiar with the Xcode IDE. Let's look at two of the most often
used features (see Figure 2-19):

The Navigator area.
The Editor area.

These sections should look similar to what we used in Alice. The Navigator area
contains files needed to build our apps. It will contain our classes, methods, and
resources.

The Editor area is the business end of the Xcode IDE; where our dreams are turned into
reality. The editor section is where we write our code. You will notice that as you write
your code it will change color. Sometimes, Xcode will even try to auto-complete words
for you. The colors have meanings that will become apparent as we use the IDE. The
Editor area will also be the place where we debug our apps.

NOTE: Even if we’'ve mentioned it already, it is worth saying again: you will learn Objective-C
programming by reading this book, but you will really learn Objective-C by debugging your apps.
Debugging is where developers learn and become great developers.

CHAPTER 2: Programming Basics

The Run button turns our code from plain text to an .app that our Macs, iPhones, or
iPads know how to execute. With our Alice interface, we used the play button to run our
Alice app.

Toolbar

Navigator selector bar
Jump bar

> I HelloWorld - My Mac 64-bit

int main (int argc, const char = argv(])

Navigator Area {

Editor Area

Filter Bar

Figure 2-19. You can run the app right after creating the project by clicking the Run button and seeing, Hello
World! printed out in the console.

To run our first program, simply click the Run button. Xcode checks our code syntax,
compiles our app, and if no errors are found, makes an .app file and runs it. This
application runs in a console (also known as a terminal).

When the app runs, it prints out Hello World in the console. Also, in the console
window, we can see if the application terminated and why it terminated. In this case, it
terminated normally. We can see this with the message, Program ended with exit
code: 0, which means our app didn’t crash. See Figure 2-20.

33

34

CHAPTER 2: Programming Basics

>) HelloWorld + My Mac 64-bit E i Haich ookl : Haow
] ® 4 = = B — " HelloWorld HelloWorid | m main.m No Selecton
Helloworld Iy
2 1 targes, Mac 08 X SDE 10.7 H Compiler Results
L HelleWaorld
m //
HelloWorid. 1 /!
> Supporting Files I’ 5/18/11.
> Frameworks - 11 =4 te recaryed
rodiict I All rights reserved.
s
#import <Foundation/Foundation.h>
!
|
int main (int argc, const char * argv[]) |
{ |
1
]
@autoreleasepool { !
/ insert code here... |
NSLog(@"Hello, World!"); View Selector
. [
[n oo i £ | Mo Selection |
Local All Output § Clear I NN (1))
we lcome to change 1t and/or distribute copies of it
Debugger Controls under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type “show
warranty" for details. x
This GDB was configured as "xB86_64-apple
darwin".tty /dev/ttys@ee Debug Area
[Switching to process 91722 thread @x@|
2011-10-16 22:19:14.121 HelloWorld[917zzr7e7] Hetlo,
World!
+ OEF®

App Termination Results

Figure 2-20. Our app executing in the Debugger Console.

Let’s modify our application to do what we did with our astronauts:

4,

Navigate to the main.m file.
Change lines 17 and 18 to be shown as in Figure 2-21.

We are going to intentionally misplace a semicolon at the end of line 8.
This will cause a compiler error.

Click the Run button.

You can see that something will go wrong when we try to compile and run our app. We
have a compiler error, a red pointer, and the notices in the Xcode IDE denote this. See
Figure 2-21.

When we write Objective-C code, everything is important—even semicolons,
capitalization, and parentheses. The collection of rules that enable our compiler to
compile our code to an executable app is called syntax.

NSLog is a function that will print out the contents of its parameters in the console.

CHAPTER 2: Programming Basics 35

() (M HelloWerd « My Mac 64-bit FerTTE—— Today =t 10:20 MM

- 0 = v il o - - ™ a9
#imp <Foundation/Fo ation.h
int main (int argc, const char #= argv(])
{
Change code fo look
ool { like this
de here...
agle has landed.");
Compiler Emor —— © NSLogl{@"That's one small step for man, one giant leap for mankind") D Expected ;' after expression
}
} return & Missing semicolon
causing compiler
arror
o
Local 3 A Outgsn T a0 I (R

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you
are

welcome to change it and/or distribute copies of it under certain
conditions.

Type "show copying” to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty” for
details.

This GDB was configured as “xBE_B4-apple-darwin".tty /dev/ttys@ee
[Switching to process 91817 thread @x@]

2011-10-16 22:28:08.154 HelloWorld[91817:7071 The Eacle has landed.

3 B -

Figure 2-21. Our app with a syntax error caught by our Objective-C compiler.

Now, let’s fix our app by adding the semicolon at the end of line 18. Building and
running the app will enable us to see the output to the debug console. See Figure 2-22.

Feel free to play around and change the text that is printed out. Have fun!

36 CHAPTER 2: Programming Basics

HalloWorid My Mac 64-bit

-

Semicoion added

HelloWorld.app
output

ot Cwar | 1IN
welcome to change it and/or distribute copies of it under certain
conditions.
Type “show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "“show warranty" for
details.
This GDB was configured as “xB6_64-apple-darwin".tty /dev/ttys0ee
[Switching to process 91886 thread @x8]
2011-18-16 22:33:43.061 HelloWorld[91886:787] The Eagle has landed.
2011-18-16 22:33:43.064 HelloWorld[91886:787] That's one small step for
man, one giant leap for mankind
Program ended with exit code: @

n

Figure 2-22. Our app compiled with no compiler errors, and completion executed successfully with the output
we wanted.

Summary

In this chapter, we have built our first Alice app. We also installed Xcode and compiled,

debugged, and ran our first Objective-C app together. We also covered new OOP terms
that are key to our understanding of Objective-C.

KEY TO SUCGCESS: As mentioned in the Introduction, visit www.xcelme.com and click on the
Free Videos tab to view related videos on this chapter. Also visit http://forum.xcelme.com
to ask questions on these chapters, and see answers to common mistakes.

The terms that you should understand are as follows:

Classes
Objects
Methods
Parameters
Instances
Instantiation

CHAPTER 2: Programming Basics

Exercises

Extend your toTheMoonAlice.a3p Alice app. Place another object of
your choosing in the world and have the object say something to the
two astronauts, when they have finished speaking.

Extend your Objective-C HelloWorld.app by adding a third line of code
that prints any text of your choosing to the console.

37

Chapter

It’s All About the Data

As you probably know, data is stored as zeros and ones in your computer’s memory.
However, zeros and ones are not very useful to developers or app users, so we need to
know how our program uses data and how data is stored on our computer.

In this chapter, we will look at how data is stored on computers and how we can
manipulate that data. Then we’ll write a fun Alice app illustrating data storage and then
write the same Alice app in Objective-C. So let’s get started!

Numbering Systems Used in Programming

Computers work with information differently than do humans. This section covers the
various ways information is stored, tallied, and manipulated by devices such as your
Mac, iPhone, and iPad.

Bits

A bit is defined as the basic unit of information used by computers to store and
manipulate data. A bit has a value of either 0 or 1. When computers were first
introduced, transistors and microprocessors didn’t exist. Data was manipulated and
stored by vacuum tubes being turned on or off. If the vacuum tube was on, the value of
the bit was 1 and if the vacuum tube was off, the value was 0. The amount of data a
computer was able to store and manipulate was directly related to how many vacuum
tubes the computer had.

The first recognized computer was called the Electronic Numerical Integrator And
Computer (ENIAC). It took up more than 136 square meters and had 18,000 vacuum
tubes. It was about as powerful as your handheld calculator.

Today, computers use transistors to store and manipulate data. The power of a
computer processor depends on how many transistors are placed on its chip or CPU.
Like the vacuum tube, transistors have an off or on state. When the transistor is off, its
value is 0. If the transistor is on, its value is 1. At the time of this writing, the A5
processor that comes in the iPhone 5 and iPad 2 has a dual core ARM processor with

39

40 CHAPTER 3: It’s All About the Data

over 200 million transistors, up from 149 million transistors on the A4 processor that was
in iPhone 4 and the first iPad. See Figure 3-1.

Figure 3-1. Apple’s proprietary A5 processor

Moore’s Law

The number of transistors on your iPhone’s or iPad’s processor is directly related to your
device’s processing speed, memory capacity, and the sensors (accelerometer, gyroscope)
available in the device. The more transistors, the more powerful your device is.

In 1965, the cofounder of Intel, Gordon E. Moore, described the trend of transistors in a
processor. He observed that the number of transistors in a processor doubled every 18
months from 1958 to 1965 and would likely continue “for at least 18 months.” The
observation became famously known as “Moore’s Law” and has proven accurate for
more than 55 years. See Figure 3-2.

CHAPTER 3: It’s All About the Data

2,000,000,000 —
1,000,000,000 —

100,000,000 —
=5

S 10,000,000 —
o
(]
B
2
(2]

R7) 1,000,000 —
o
g
=t

100,000 —

10,000 —

2,300 —

CPU Transistor Counts 1971-2008 & Moore’s Law

Dual-Core ltanium 2 ¢ @ Quad-Core Itanium Tukwila

POWERS. o @ RV770
Itanium 2 with 9MB cache @ /. o'ki0
Core 2 Quad” _¢

’ ,-§Core 2 Duo
ltanium 2@ -“ ®Cell
_%K8
Phe’” eBarton g aiom
-ok7
)
<7 TKe-lIl
Curve shows ‘Moore’s Law’:
transistor count doubling Lo gfg epil
every two years 7 eK5
,~®Pentium
4860,
3B6e”
2868 ,°
#8088
68080
4004 ¢..'8008
1971 1980 1990 2000 2008

Date of introduction

Figure 3-2. Moore’s Law

NOTE: There is

a downside to Moore’s Law and you have probably felt it in your pocket book.

The problem with rapidly increasing processing capability is that it renders technology obsolete
quickly. So when your iPhone’s two-year cell phone contract is up, the new iPhones on the
market will be twice as powerful as the iPhone you had when you signed up. How convenient for

everyone!

Bytes

A byte is another unit used to describe information storage on computers. A byte is
composed of 8 bits and is a convenient power of 2. Whereas a bit can represent up to
two different values, a byte can represent up to 28 or 256 different values. A byte can
contain values from 0-255.

41

42

CHAPTER 3: It’s All About the Data

NOTE: In Chapter 13, we discuss Base-2, Base-10, and Base-16 number systems in more detail.
However, it is necessary to have an introduction to these systems in this chapter in order to
understand data types.

The binary number system represents numerical symbols 0 and 1. To illustrate how the
number 71 would be represented in binary, we will use a simple table of 8 bits (1 byte),
with each bit represented as a power of 2. To convert the byte value 01000111 to
decimal, simply add the on bits. See Table 3-1.

Table 3-1. The number 71 represented as a byte

Power to 2 o7 26 2% o4 28 22 2! 20
Value for “on” bit 128 64 32 16 8 4 2 1
Actual bit 0 1 0 0 0 1 1 1

To represent the number 22 in binary, turn on the bits that add up to 22 or 00010110.
See Table 3-2.

Table 3-2. The number 22 represented as a byte

Power to 2 o7 26 2% o4 28 22 2! 20
Value for “on” bit 128 64 32 16 8 4 2 1
Actual bit 0 0 0 1 0 1 1 0

To represent the number 255 in binary, turn on the bits that add up to 255 or 11111111,
See Table 3-3.

Table 3-3. The number 255 represented as a byte

Power to 2 o7 26 2% o4 28 22 2! 20
Value for “on” bit 128 64 32 16 8 4 2 1
Actual bit 1 1 1 1 1 1 1 1

To represent the number 0 in binary, turn on the bits that add up to 0 or 00000000. See
Table 3-4.

Table 3-4. The number 0 represented as a byte

Power to 2 o7 26 2% o4 28 22 2! 20
Value for “on” bit 128 64 32 16 8 4 2 1
Actual bit 0 0 0 0 0 0 0 0

CHAPTER 3: It’s All About the Data

Hexadecimal

Often, it will be necessary to represent characters in another format that is recognized
by computers, namely a hexadecimal format. You will encounter hexadecimal numbers
when you are debugging your apps. The Hexadecimal system is a base-16 number
system. It uses 16 distinct symbols, 0-9, to represent values zero to nine and A, B, C, D,
E, and F to represent values 10 to 15. For example, the hexadecimal number 2AF3 is
equal in decimal to (2 x 16%) + (10 x 16?) + (15 x 16") + (3 x 169, or 10,995. Figure 3-3
shows the ASCII table of characters. Because 1 byte can represent 256 characters, this
works well for Western characters. For example, hexadecimal 20 represents a space.
Hexadecimal 7D represents a “}”.

Dec HxOct Char Dec Hi Oct Himl Chr |Dec Hx Oct Himl Chr| Dec Hx Oct Himl Chr
0 0 000 NUL (null) 32 20 040 : Space| 64 40 100 «#64: € | 96 60 140 +#96;
1 1 001 50H (start of heading) 33 21 041 ! ! 65 41 101 A: 97 61 141 a =
2 2 002 5TX (start of text) 34 22 042 «#34; " 66 42 102 «#66; B | 98 62 142 «§98; b
3 3 003 ETX (end of texrt) 35 23 043 # F 67 43 103 «#67: C | 99 63 143
4 4 004 EOT (end of transmission) 36 24 044 § 65 44 104 D: D |100 64 144
5 § 005 ENQ {encuiry) 37 25 045 69 45 105 «#69; E |101 65 145
6 & 006 ACK (acknowledge) 38 26 048 70 46 106 F: F |102 66 146
7 7 007 BEL (bell) 39 27 047 71 47 107 «#71; G |103 &7 147
8 8 010 BS (backspace) 40 28 050 72 48 110 «#7Z; H |104 68 150
9 9 011 TAB (horizontal tab) 41 29 051 73 49 111 I I |105 69 151
10 A 012 LF (NL line feed, new line)| 42 2A 052 74 4h 112 «F74: 7 |106 6A 152
11 B 013 VT (wertical tab) 43 2B 053 75 4B 113 «#75; K (107 6B 153
12 C 014 FF (NP form feed, new page)| 44 2C 054 &3 TG 4C 114 L L |108 6C 154
13 D D15 CR (carriage return) 45 2D 055 77 4D 115 «#77; 1 |109 6D 155
14 E D16 30 (shift out) 46 2E 056 78 4E 116 N: N |110 6E 156
15 F 017 51 (shift in) 47 2F 057 79 4F 117 &«#79; 0 |111 6F 157
16 10 020 DLE (data link escape) 48 30 060 B0 50 120 «#80; P |11z 70 160
17 11 021 DC1 (device control 1) 43 31 061 81 51 121 Q: 0 |113 71 161
18 12 022 DC2 (device control 2) 50 32 062 82 52 122 «#B8Z; R |114 72 162
19 13 023 DC3 (device control 3) 51 33 063 83 53 123 «#83; 5 |115 73 163 «Fl15; =
20 14 024 DC4 (device control 4) 52 34 084 84 54 124 «#84; T |116 74 164 s#116; T
21 15 025 NAK (negative acknowledge) 53 35 065 85 55 125 «#85; U |117 75 165 «#117; u
22 16 026 5YN {synchronous idle) 54 36 066 86 56 126 &«#86; V |118 76 166 l16; v
23 17 027 ETB (end of trans. block) 55 37 087 87 57 127 «#87; W |119 77 167 «#ll9; w
24 18 030 CAN (cancel) 56 38 070 38 58 130 «#08: X |l20 73 170 «#120; =
25 18 031 EM (end of medium) 57 39 071 89 53 131 Y: ¥ |121 79 171 «§121; ¥
26 1A 032 SUB (substitute) S8 34 072 90 SA 132 «#50; Z 122 7A 172 «#L2EZ; =
27 1B 033 ESC (escape) 59 3B 073 91 5B 133 «#91: [|123 7B 173 { {
28 1C 034 F5 (file separator) 60 3C 074 &4 92 5C 134 «#92; % |124 7C 174 «§124; |
29 1D 035 G5 (group separator) 61 3D 078 93 5D 135 «#93:] |125 7D 175 } }
30 1E 036 R3 ({record separator) &2 3E 076 94 BE 136 «#94; * (126 7E 176 &FLl26; ~
31 1F 037 U5 (unit separator) 63 3F 077 95 5F 137 _ _ |127 7F 177 DEL

Source: www.LeokupTables.com

122 ¢ 14 E 16 i 193 L 29 =+ 25 5 241 =
120 i 145 = 162 & 194 + 20 § 226 I 242 >
130 ¢ 146 E 163 w 179 | 195 } 21 L 237 g M43 <
131 & 147 &6 164 H 180 { 19 — 212 Lk 222 §x 244 |
132 & 148 & 165 H 131 {4 199 4 213 p 220 5 245
133 & 149 3 166 * 182 | 198 F 24 p 230 p M -
13 § 150 8 167 ° 183 .00 sl) 1 ¢ 24P &
1353 ¢ 151 & 168 ; 184 3 200 k 26 + 232 & 248 °
13 & 152 _ 19 _ 185 f W 217 J 3 @ 24

137 & 153 0 170 o 0% . 22 & 28 ¢ 2 g 20
122 ¢ 154 U 111 0w 137 3 203 5 200 W 235 5 Bl o
13 & A5 b Wivz Jma e84 G 4 f 20 g BE e 2T
Mo 3.\ 157 % gy 189 08 @5 = I | B ¢ B3 2
14 i 158 _ 174 « 190 4 206 $ 222 | 238 : 254 m
2 A AW o3 175 » 91 4 AT £ 23 M 7\ 5 255

143 & 160 & 176 G 192 L 208 L 224 o 240 =

Source: www.LookupTables.com

Figure 3-3. ASCII Characters

44

CHAPTER 3: It’s All About the Data

Unicode

Representing characters with a byte worked well for computers until about the 1990s,
when the personal computer became widely adopted in non-Western countries where
languages have more than 256 characters. Instead of a 1-byte character set, Unicode
can have up to a 4-byte character set.

In order to facilitate faster adoption, the first 256 code points are indicial to the ASCII
character table. Unicode can have different character encodings. The most common
encoding used for Western text is called UTF-8. As an iPhone developer, you will
probably use this character encoding the most.

Data Types

Now that we’ve discussed how computers manipulate data, we need to cover a very
important concept called data types. Humans can generally just look at data and the
context in which it is being used to determine what type of data it is and how it will be
used. Computers need to be told how to do this. The programmer needs to tell the
computer the type of data it is being given. For example,

2+2=4.

The computer needs to know you want to add two numbers together. In this example,
they are integers. You might first believe that adding these numbers is obvious to even
the most casual observer, let alone a sophisticated computer. However, it is common for
users of iPhone apps to store data as a series of characters, not a calculation. For
example, a text message might read

"Everyone knows that 2 + 2 = 4".

In this case, we are using our previous example in a series of characters called a string.
A data type is simply the declaration to our program that defines the data we want to
store. A variable is used to store our data and is declared with an associated data type.
All data is stored in a variable and the variable has to have a variable type. For example,
in Objective-C, the following are variable declarations with their associated data types.

int x = 10;
inty = 2;
int z = 0;

char prefix = 'c';
NSString *submarineName = @"USS Nevada SSBN-733";

Data types cannot be mixed with one another. You cannot do the following.
Z = X + submarineName;

Mixing data types will cause either compiler warnings or compiler errors and your app
will not run.

Most data you will use in your programs can be classified into three different types—
Booleans, numbers, and objects. We will discuss how to work with numbers and object

CHAPTER 3: It’s All About the Data 45

data types in the remainder of this chapter. In Chapter 4, we will talk more about
Boolean data types when we write apps with decision-making.

NOTE: Localizing your app is the process of writing your app so users can buy and use it in their
native language. This process is too advanced for this book, but it is a simple one to complete
when you plan from the beginning. Localizing your app greatly expands the total number of
potential customers and revenue for your app without your having to rewrite it for each language.
Be sure to localize your app. It is not hard to do and can easily double or triple the number of
people who buy it.

Using Variable and Data Types with Alice

Now that we have learned about data types, let’s write an Alice app that adds two
numbers and displays the sum using an object and methods.

1. Open Alice and select File » New World.

2. Select the Grass template and click Open. See Figure 3-4.

File Edit Project Run Window Help

o arger |¥ - count Fowhite | for each in i do ogether | each in . together |F - doin theeatt 1 docal. - camanent

[class: W |

‘%‘Edi: Scerﬂl

s CRERMBHRRTR,

DirtProject.a3p MaoonProject.aip
SandyProjecraip SeaProject.aip SnowyProject.aip
|

OK | | Cancel

Figure 3-4. Choosing the Grass template

Next, we need to make our variables and select the data types.

46 CHAPTER 3: It’s All About the Data

3. Click and drag the local tile on the top right of your editor

4, Name your first variable “firstNumber” and define the variable, as
shown Figure 3-5.

5. The variable’s data type is an integer. It is initialized with the value of 2.

do In order count while for each in " do together | each in _together do in the local
| class: { MyScene 'V J run

declare procedure IR on class MyScene

do in order

Object i L4 i z
<":‘ Drag Local tile to the
editor

Prevew integer firstNumber

value type Irageger Is array

name: | firstNumber

inializer

| | Cancel

Figure 3-5. Creating a new local variable

It is always good programming practice to initialize our variables when they are
declared.

6. Create another local variable called “secondNumber”, as shown in
Figure 3-6 and as done in step 5. The variable’s data type is an integer
and is initialized with the value of 3.

CHAPTER 3: It’s All About the Data

|‘doin order | |- count | while | for eachin_|[:if || dotogether| eachin_together || do in thread local... | firstNumber~_| | //comment

(class: { MyScene ;W I (ﬁ\I run

declare procedure LI on class | MyScene

do In order
Integer = firstNumber 2
O.huz:t "?‘7 o= '{77

preview: Integer /= secondNumber £}

value type Integer is array

name: | secondNumber

initializer 3

| \OK.| | Cancel

Figure 3-6. Creating a second local variable

7. Create another local variable called “totalSum”, as shown in Figure 3-7
and as done in step 5. The variable’s data type is an integer and is
initialized with the value of 0. This local variable will eventually hold the
sum of firstNumber and secondNumber.

47

48 CHAPTER 3: It’s All About the Data

do in order || count | while _| for each in if do together | each in _ together | | do in thread | | local... | firstNumber=_| secondNumbers

class: | MyScene | W :- run

declare procedure PN on class | MyScene

do in order
Integer /= firstNumber) 2)
Integer = secondNumber 3
Objact 777 m

preview: Integer = totalSum 0

value type Integer Is array

name: | totalSum

Inivializer;: =0

| OK Cancel

Figure 3-7. Creating the variable totalSum

8. Add your two variables together. Drag the totalSum tile to the last row.
Right now, 0 is assigned to the local variable totalSum. Click on the 0
and assign firstNumber to totalSum. See Figure 3-8.

["doin order T count | while | for each in [@0 together | each in _together || do in thread || local festNumber—_| secondhumber—_] totafum-
class: | MyScene | W | | run

declare procedwe FLIM o class | MyScene

do in order
Integer | festhumber
nteger | secondNumber 3
Integer 1 totatum
totalSum firstNumber

Figure 3-8. Creating the variable totalSum

9. Now that firstNumber is assigned to totalSum, click on the firstNumber
tile.

10. Select secondNumber to add to firstNumber. See figure 3-9.

CHAPTER 3: It's All About the Data

declare procedure FLIN) on class

do

in order

| (imeger)= firswvumber) &= 2 |

11. totalNumber is now assigned to the total of firstNumber and secondNumber. See

cirstNumber, (current value)
0
&3

Random >

Real To Integer [

SsecondNumber:
SfirstNumber|

Custom Integer... .

StotalSum)

Efir ber|

¥y ¥ ¥ Yy vy v vl

Figure 3-9. Setting the value to math expressions

Figure 3-10.

49

50 CHAPTER 3: It’s All About the Data

do in order | | count | while | for eachin_|| if || do together | eachin _ together

class: { MyScene ' ¥

declare procedure [||] on class MyScene

|do in order .
: 'Inte_g_er' /= firstNumber] =Y
Integer /= secondNumber 3
{ Integer /= totalSum 0)
: = totalsum 1 firstNumber ' 4 =SsecondNumber|

Figure 3-10. Selecting totalSum

| [dointhread | | local... | firstN

Now we need to add a character to our world to display our total.

12. Click on Edit Scene and then add any object of your choosing from the
Object Gallery at the bottom of the screen. We have selected a bunny.

See Figure 3-11.

CHAPTER 3: It's All About the Data

file Edit Project Run Wirdow Help

B Starting Camera View

Mybunmy2 | bunny < (ew instance o MySuomy2 |
{ MyBunen2 | whsich extends | Bunmyd |
| bunny

v (e instance of | MyBunnyz [}

L;I)_l_j Carcal |

| 1 patery |l 7 Generic Alke Models | animas |]

ok, - ckage: class class. class clags: class: class:
Create reran.. ‘ bups | dinesaas | Bt | wneaby | sue | Bewr Sz | cem

Hin
ALY
il

Figure 3-11. Adding a bunny to our world

We need to declare a variable of type String. The variable will hold the string, “The sum
of 2 + 3is:5”.

13. Click “Edit Code” in the bottom right of the scene to go back to our
Editor.

14. Select the Bunny instance. From the Procedures Tab, drag the this.bunny say
text:??? procedure tile to the editor. See Figure 3-12.

51

52 CHAPTER 3: It's All About the Data

File Edit Project Run Window Help

| doinorder| count _| while [for each in_|E'?][do together | each in _ togethe
[fir '-_I s8¢ "_}- 15 _|_[“"-':iCUI'!|menl‘]

On

declare procedure FUIN M:Iass MyScene)
do 1n order

§
i

stNumber, <& 2|

i {Integer = secondNumber <= =3

| {Integer = toalSum <= =0

I
instance: bunny

: SfirstNumber 4 SsecondNumber " | |
'j\ part: nor i
o
i i
{ Bunny2 | Thelio?

this.bunny straightenUp]
this.bunny placeRelativeTo Hiﬁ |

Custom TextString...

E;:; Cthis.bunny addM B

. this.bunny addKeyListener keyListener: [777
this.bunny| say text: 777] |

this.bunny: think texe: 5777 _

Figure 3-12. Adding the procedure (method) say to the editor

15. Click on Custom TextString and enter the string “The sum of 2 + 3 is
as the parameter value. See Figure 3-13.

L dnlnerﬂnr|L con

e

Senbises b oGRITECR /fcommant
declare procedure LN on class | MyScene |
(do In u_&_ier

eger < firsthumber) <= £7) |

| Uinteger = secondNumber -1: a7 |

firsth mber + Esecondhumber |

preview. The sum o2 + 3)

value: | The sumof2 + 3 1s:

oK Cancel |

Figure 3-13. Entering the string parameter

CHAPTER 3: It’s All About the Data

16. Click OK and then click on the first parameter for the say procedure.
Append the totalSum to our first parameter String. See Figure 3-14.

F:do in order [count _ [=while _ |- for each in _Jiif .| do together [~ each in _ together [F*'do in thread |- local... [firstNumber+—_}sect

l class: inScene.';-T I O run

declare procedure LI on class | MyScene

|doin order
: Integer = firstNumberl <= =2,
Integer = secondNumber, <= 3
‘ | {Integer = totalsum 0
i totalSum| <& & SfirstNumberi” 4 SsecondNumber
this.bunnyl " say JT] ¥ more’ |
(The sumof 2 + 3 is:| (current value)

Thello)

Custom TextString...

fThe sumof 2 + 3 is:] + _ Custom TextString...

=TT + C7 p | Custom Real Number...
== | Custom Integer...

this

‘ this.sunLight
Zthis.grassyGround|
this.cameral
‘this.bunny| >
secondNumber

firstNumber

Figure 3-14. Adding the totalNumber to our customized string to display to the user

Alice did something very nice for us in the last step. It automatically converted the data
type totalSum from an integer to a string when it appended its value to the “The sum of
2 + 3 is:”. We will learn how to do this using Objective-C.

You can run the program now and will notice the customized string doesn’t display for
very long.

To increase the display time of our customized string, click on the option for a second
parameter of the say procedure and change the duration to 2 seconds or any other
value you like. See Figure 3-15.

53

54

CHAPTER 3: It's All About the Data

“doin order | count _| while .| foreachin_| ! if_] | dotogether | eachin_together || dointhread || local...| firstNumt

! {Integer = secondNumberi <= =53] |

© (Integer = totalsum <& =0 |

EEIE__tntalgiiﬁ‘-'::J 2 cir b + SsecondNumber " | |

[Cthis.bunny say i J{The sumof2 + 3 is:) + Stotalsum) J . duration: 52.0 more

Figure 3-15. The editor section

17. Press the play button and if you’ve done everything correctly, your app
should look like Figure 3—16 when it runs.
Run
pause |speed: Lx(_J restart

The sum of 2 + 3 is:5

Figure 3-16. The app has run successfully!

Data Types and Objective-C

Now that we have covered the principles of data types and have written an Alice app to
help show how these principles apply, let’s write an Objective-C app that accomplishes
what we just did in Alice.

In Objective-C, we have similar data types as we did in Alice. Some of the most
frequently used data types for storing numbers are integers, doubles, floats, and longs.

CHAPTER 3: It’s All About the Data

Table 3-5 lists many of the basic data types. Many of these will be covered in later

chapters.

Table 3-5. Objective-C basic data types

Type Examples Specifiers
char ‘a’, ‘0’,’\n’ %c

int 42, -42, 550 0xCCEQ, 099 %i, %d,
unsigned int 20u, 101U, OxFEu %u, %X, %0
long int 13, -2010, OxfefeL %ld,

unsigned long int
long long int
unsigned long long int
float

double

long double

id

12UL, 100ul, OxffeeUL
0Oxeb5e5e5LL, 501l

11ull, OxffeeULL

12.30f, 3.2e-5f, 0x2.2p09
3.1415,

3.1e-5l

Nil

%lu, %Ix, %lo

%lld

%llu, %lIx, %llo

%f, %e, %g, %a

%f, %e, %g, %a
%Lf, %le, %Lg, %lLa

%@

Our Objective-C app will add two integers and display their sum to the console. The app
will also display the text “The program has successfully terminated.” This will be fun and

easy, so let’s get started.

1. AsiOS developers, Xcode is where we make our living, so open up
Xcode and create a new project. To do this, select File » New project and
select the options shown in Figure 3-17. Click on Next.

55

56 CHAPTER 3: It’s All About the Data

Choose a template for your new project:

W ios e
A & i

Framework & Library

Other
Cocoa Application Cocoa-AppleScript Command Line Tool

& Mac OS5 X Application

Framework % Library
Application Plug-in
System Plug-in
Other

,i Command Line Tool

This template builds a command-line tool.

Cancel v Next

Figure 3-17. Opening a new project

NOTE: One of the most common issues new students have when creating a command line app is
finding the project in their version of Xcode. Figure 3—18 shows Xcode Version 4.2 on the Lion
(10.7) operating system. Your version of Xcode may be newer or older and menus and selection
options may be different. So, look around in the File » New project settings for the equivalent
options. If you have difficulty finding these options, visit our forum for this book at
forum.xcelme.com and go to this chapter. We will be happy to answer your questions.

2. Save the Product Name as Chapter 3 (see Figure 3-18). Then select the
directory to save your project and click on Next.

CHAPTER 3: It's All About the Data

Choose options for your new project:

N\

Product Name

Company Identifier

Bundle Identifier

Type

Chapter3
com.xcelme
com.xcelme.Chapter3

Foundation H

V| Use Automatic Reference Counting

| Cancel |

Figure 3-18. Project settings.

Previous | | Next

57

58

CHAPTER 3: It’s All About the Data

Xcode e —

(») Chapter3 * My Mac 64-bit

Bn ®@ 4 == B | o 1 Chaprer3 Chapter3 m main.m & No Selection
+ [Chapter3 o 17

= 1 target, Mac O5 X 50K 10.7

v Chapter3 L main.m

[m} // Chapter3
Chapter3.1)_,' /
[- Supporting Files ,.f)-’ Created D)l' GEII"}" Bennett on ‘3;"?;’11.
» ramework :
’ W;L: ’ j? Copyright (c) 2011 _ MyCompanyName__. ALl rights reserved.

#import <Foundation/Foundation.h>

int main (int argc, const char % argv([])

{
@autoreleasepool {
// insert code here...
NSLog(@"Hello, World!™);
}
return 9;
}

Figure 3-19. When created, and selecting the main.m file, your Xcode project should look this

3. After you create the project, you need to open your source code file in
your editor. Open the main.m source file. (see Figure 3-19)

If you haven’t seen “//” used in computer programming before, it enables the
programmer to comment about his or her code. Comments are not compiled by our
applications and are used as notes for the programmer or, more importantly, for
programmers who follow the original developer. Comments help both the original
developer and follow-up developers understand how the app was developed.

Sometimes, it is necessary for comments to span several lines or just part of a line. This
can be accomplished with the /* and the */. All the text between the /* and the */ are
treated as comments and are not compiled.

In our example, we first need to declare and initialize our variables firstNumber and
secondNumber. It is good practice to always initialize variables when they are declared or
soon afterwards.

We'll then increment the variables firstNumber and secondNumber by 1. We'll print the
sum of firstNumber and secondNumber.

Finally, we will print to the console, “The program has terminated successfully.” See
Figure 3-20

CHAPTER 3: It’s All About the Data 59

Finished running Chapter3 : Chapter3

\ [3) | Chapter3 ' My Mac 64-bit
n @ A = » B b %1 Chapter3)] Chapter3) m main.m) [main0
. Chapter3 |
¥ & 1 varger, Mac 05 ¥ SDK 10.7 /"llr <
v (5 Chapter3 // main.m
) // Chapter3
Chapter3.1 i
[3 Supporting Files
> Framewaorks
/7

L Products

#import <Foundation/Foundation.h=

int main (int argc, const char % argv(])

{
@autoreleasepool {

// insert code here...

int firstNumber = 2;

int secondNumber = 3;

int totalSum = @;

firstNumber = firstNumber + 1;
secondNumber = secondNumber + 1;
totalSum = firstNumber + secondNumber;
NSLog(@"%d", totalSum);

NSLog(@"The program has terminated successfully.");

}

return @;

Figure 3-20. Code for printing to the console

NSLog is a function that can take one or more parameters. The first parameter is
generally the string that is to be printed to the console. The @ symbol in front of the
string tells the compiler this is an Objective-C type string and not a C++ string. The @
symbol is typically used in front of all your strings for iPhone apps. If you don’t use

the @ symbol, you will probably get a compiler error. NSLog is a very helpful function used
by developers to test the execution of their code.

%d tells the compiler an integer will be printed and to substitute the value of the integer
for the %d. See Table 3-5 for other NSLog formatting specifiers. Finally, our second
parameter is the integer to be printed.

Figure 3-21 shows the completed executed output of our application.

To compile and run your application, click on the “Run” button on your toolbar. We can
see that we printed out the NSLog string along with the notice at the end by the debugger
saying the app's execution completed successfully.

CHAPTER 3: It’s All About the Data

NOTE: If your editor doesn’t have the same menus or gutter (the left-hand column that contains
the line numbers of the program) you saw in the previous screenshots, you can turn these
settings on in the Xcode preferences. You can open the Xcode Preferences by clicking on the
Xcode menu in the menu bar and then selecting Preferences.

™ Chapterd | [Chapterd | mi main.m) {7 maing

#import <Foundation/Foundation.h=

int main (int argc, const char = argv[])

@autoreleasepool {

/f insert code here...

int firstNumber = 2;

int secondNumber = 3;

int totalSum = @;

firstNumber = firstNumber + 1;
secondNumber = secondNumber + 1;
totalSum = firstNumber + secondNumber;
NSLog(@"%d", totalSum);

NSLog(@"The program has terminated successfully.");

}

return @;

" > 3 L | Ko Selection

Local 3 Al Qutput <
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "xB6_64-apple-darwin".tty /dev/ttys@ee
[Switching to process 7234 thread @x@]
2011-09-88 23:57:02.162 Chapter3[7234:707] 7
2011-09-88 23:57:02.163 Chapter3[7234:707] The program has terminated successfully.

Figure 3-21. Console log displaying the results of our Objective-C app

Identifying Problems

Believe it or not, your program may not run the way you thought you told it to. The
process of hunting down problems with your app is called debugging. In order to track
down bugs in our apps, we can set breakpoints and inspect our variables to see the
contents. To do this, simply click in the gutter where you want to set a breakpoint (see
Figure 3-22). A breakpoint will stop our application from executing at that line and
enable us to inspect our variables.

CHAPTER 3: It’s All About the Data

[B) (M) Chapter3) My Mac 64-bit

Finished running Chapier3 : Chapter3

i ® A == P HH L ™4 Chapter3 Chapter3 © |m! main.m main(

«, Chapter3
i, target, Mac 05 X SDK 10.7 /"

v Chapter3

J/ main.m

i // Chapter3
Chapter3.1 /.f"
[2 Supporting Files
» Frameworks
L Products /!

#import <Foundation/Foundation.h>

int main (int argc, const char % argv[])

@autoreleasepool {

// insert code here...

int firstNumber = 2;

int secondNumber = 3;

int totalSum = @;

firstNumber = firstNumber + 1;
secondNumber = secondNumber + 1;
totalSum = firstNumber + secondNumber;

= NSLog(@"%d", totalSum);
NSLog(@"The program has terminated successfully.");
}
return @;
}

Figure 3-22. Setting debugging “breakpoints”

A blue pointer in the gutter of your editor denotes a breakpoint. When you run your
application and your app hits a line of code that contains a breakpoint, your app will halt
and display a blue line across the line of code with a breakpoint (see Figure 3-23).
Additionally, you can inspect each variable by hovering over it with your mouse.

61

62

CHAPTER 3: It’s All About the Data

B) (M) Chaptersd : My Mac 64-bit

BT @& Al=S= 8 =i 7 Chaptesd Chapter? |+ mi main.m maini}

yy Theead 1

#import <Foundation/Foundation.h=

int main (int argc, const char * argv(l)

Rautoreleasepool {
/4 ert code here...
int firstNumber = 2;
int secondNumber = 3;
int totalSum = @;
firstNumber = firstNumber + 1;
secondNumber = secondNumber + 1;
totalSum = firstNumber + secondNumber;
= NSLog(@"%d", totalSum); Thread 1: Stopped at breakpeint 1
NSLog(@"The program has terminated successfully.");
}

return @;

}

Figure 3-23. Breakpoint hit

We will talk more about debugging your apps in Chapter 14.

Summary

In this chapter, you learned about how data is used by our apps. You saw how to
initialize variables and how to assign data to them. We explained that when variables are
declared, they have a data type associated with them and that only data of the same
type can be assigned to variables.

Finally, we showed you how to use variables in your first Alice app and finished by using
variables with an Objective-C app.

Exercises

Write an Objective-C console app (Command-Line Tool) that multiples
two integers together and displays the result to the console.

Write an Objective-C console app that squares a float. Display the
resulting float in the console.

Write an Objective-C console app that subtracts two floats, with the
result being stored as an integer. Note that rounding does not occur.

Chapter

Making Decisions
About...and Planning
Program Flow

One of the cool things about being an iPhone/iPad/Mac developer is we get to tell our
devices exactly what we want them to do and it will be done—our devices will do tasks
over and over again without getting tired. That’s because iPhones/iPads/Macs don’t
care how hard they worked yesterday, and they don’t let feelings get in the way. These
devices don’t need hugs.

There is a downside to being developers: we have to think of all possible outcomes
when it comes to our apps. Many students love having this kind of control. They enjoy
focusing on the many details of their apps; however, it can be frustrating having to
handle so many details. As we mentioned in the introduction to this book, there is a
price to pay for developing apps . . . and that price is time. The more time you spend
developing and debugging, the better you will get with all the details, and the better your
apps will run. You have to pay this price to become a successful developer.

Computers are black and white; there are no shades of gray. Our devices produce
results, many of which are based on true and false conditions.

In this chapter, you will learn about computer logic and controlling the flow of your apps.
Processing information and arriving at results is at the heart of all apps. Your apps need
to process data based on values and conditions. In order to do this, you need to
understand how computers perform logical operations and execute code based on the
information your apps have acquired.

Boolean Logic

Boolean logic is a system for logical operations. Boolean logic uses binary operators
like AND, OR, and the unary operator NOT to determine if your conditions have been met.

63

64

CHAPTER 4: Making Decisions About...and Planning Program Flow

Binary operators take two operands. Unary operators take one operand; AND and OR are
binary operators, and NOT is a unary operator.

We just introduced a couple of new terms that can sound confusing; however, you
probably use Boolean logic every day. Let’s look a couple of examples of Boolean logic
with the binary operators AND and OR in a conversation parents sometimes have with
their teenage children.

"You can go to the movies tonight if your room is clean AND the dishes are put away."
"You can go to the movies tonight if your room is clean OR the dishes are put away."

Boolean operators’ results are either TRUE or FALSE. In Chapter 3, we briefly introduced
the Boolean data type. A variable that is defined as Boolean can only contain the values
TRUE and FALSE.

BOOL seeMovies = FALSE;

In the preceding example, the AND operator takes two operands: one to the left and one
to the right of AND. Each operand can be evaluated independently with a TRUE or FALSE.

For an AND operation to yield a TRUE result, both sides of the AND have to be TRUE. In our
first example, the teenager has to clean his or her room AND have the dishes done. If
either one of the conditions is FALSE, the result is FALSE—no movies for the teenager.

For an OR operation to yield a TRUE result, only one operand has to be TRUE, or both
conditions can be TRUE to yield a TRUE result. In our second example, just a clean
bedroom would result in the ability to go to the movies.

NOTE: Behind the scenes, your iPhone/iPad/Mac defines a FALSE asa 0 and a TRUE as a 1. To
be technically correct, a TRUE is defined as any non-zero value; so, values of 0.1, 1, and 2 would
be evaluated as a TRUE when evaluated in a Boolean expression.

A NOT statement is a unary operator. It takes just one operand to yield a Boolean result.
For example:

"You can NOT go to the movies."

This example takes one operand. The NOT operator turns a TRUE operand to a FALSE and
a FALSE operand to a TRUE. Here, the result is a FALSE.

NOTE: Performing a NOT operation is commonly referred to as flipping-the-bit, or negating. A
TRUE is defined as a 1, a FALSE is defined as a 0, and zeros and ones are referred to as bits. A
NOT operation turns a TRUE to a FALSE and a FALSE to a TRUE, hence flipping-the-bit or
negating the result.

AND, OR, and NOT are three very common Boolean operators. Occasionally, you need to
use more complex operators. XOR, NAND, and NOR are common operations for
iPhone/iPad/Mac developers.

CHAPTER 4: Making Decisions About...and Planning Program Flow

The Boolean operator XOR means exclusive-or. An easy way to remember how the XOR
operator works is the XOR operator will return a TRUE result if only one argument is
TRUE, not both.

Objective-C does not have these operators built in, but consider that NAND and NOR mean
NOT AND and NOT OR. After evaluating the AND or the OR arguments and results, simply
negate the results.

Truth Tables

Let’s use a tool to help you evaluate all the Boolean Operators. A truth table is
mathematical table used in logic to evaluate Boolean operators. They are helpful when
trying to determine all the possibilities of a Boolean operator. Let’s look at some
common truth tables for AND, OR, NOT, XOR, NAND, and NOR.

In an AND truth table, there are four possible combinations of TRUE and FALSE.
TRUE AND TRUE = TRUE
TRUE AND FALSE = FALSE
FALSE AND TRUE = FALSE
FALSE AND FALSE = FALSE

Placing these combinations in a truth table results in Table 4-1.
Table 4-1. An AND Truth Table

A B AAND B
TRUE TRUE TRUE
TRUE FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE FALSE

An AND truth table only produces a TRUE result if both of its operands are TRUE.

Table 4-2 illustrates an OR truth table and all possible operands.

65

CHAPTER 4: Making Decisions About...and Planning Program Flow

Table 4-2. An OR Truth Table

A B AORB
TRUE TRUE TRUE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

An OR truth table produces a TRUE result if one or both of its operands are TRUE.

Table 4-3 illustrates a NOT truth table and all possible operands.
Table 4-3. A NOT Truth Table

NOT RESULT
TRUE FALSE
FALSE TRUE

A NOT flips-the-bit or negates the original operand’s Boolean value.

Table 4-4 illustrates an XOR (or exclusive-or) truth table and all possible operands.
Table 4-4. An XOR Truth Table

A B AXOR B
TRUE TRUE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

The operator XOR vyields a TRUE result if only one of the operands is TRUE.
Table 4-5 illustrates a NAND truth table and all possible operands.

Table 4-5. A NAND Truth Table

CHAPTER 4: Making Decisions About...and Planning Program Flow

A B A NAND B
TRUE TRUE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE TRUE
Table 4-6 illustrates a NOR truth table and all possible operands.
Table 4-6. A NOR Truth Table
A B ANORB
TRUE TRUE FALSE
TRUE FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE TRUE

The easiest way to look at the NAND and NOR operators is to simply negate the results
from the AND and OR truth tables, respectively.

Comparison Operators

In software development, the comparison of different data items is accomplished with
comparison operators. These operators produce a logical TRUE or FALSE result.
Table 4-7 shows the list of comparison operators.

Table 4-7. Comparison Operators

> greater than

< less than

>= greater than or equal to
<= less than or equal to

== exactly equal to

I= not equal to

67

CHAPTER 4: Making Decisions About...and Planning Program Flow

NOTE: If you're constantly forgetting which way the greater than and less than signs go, use a
crutch I learned in grade school: If the greater than and less than signs represent the mouth of an
alligator, the alligator always eats the bigger value. It may sound silly, but it works.

Designing Apps

Now that we’ve introduced Boolean logic and comparison operators, you can start
designing your apps. Sometimes, it’s important to express all or parts of your apps to
others without having to write the actual code.

Writing out code helps a developer think out loud and brainstorm with other developers
regarding sections of code that are of concern—this helps to analyze problems and
possible solutions before coding begins.

Pseudo-Code

Pseudo-code refers to writing out code that is a high-level description of an algorithm
you are trying to solve. Pseudo-code does not contain the necessary programming
syntax for coding; however, it does express the algorithm that is necessary to solve the
problem at hand.

Pseudo-code can be written by hand on paper (or a whiteboard) or typed on a
computer.

Using pseudo-code, you can apply what you know about Boolean data types, truth
tables, and comparison operators. Refer to Listing 4-1 for pseudo-code examples.

Listing 4-1. Pseudo-Code Examples Using Conditional Operators in If-Then-Else Code

int x = 5;

int y = 6;
isComplete = TRUE;
%f(xw)

//in this example, x is less than 6
do stuff;

else

do other stuff;
}

if (isComplete == TRUE)

//in this example, isComplete is equal to TRUE
do stuff;

}

else

{

CHAPTER 4: Making Decisions About...and Planning Program Flow

do other stuff;

//another way to check isComplete == TRUE
if (isComplete)
{

//in this example, isComplete is TRUE
do stuff;

}

//two ways to check if a value is false
if (isComplete == FALSE)

do stuff;
else
//in this example, isComplete is TRUE so the else block will be executed

//another way to check isComplete == FALSE
if (lisComplete)

do stuff;
}

else

//in this example, 1isComplete is TRUE so the else block will be executed

Note that the ! switches the value of the Boolean it's applied to; so, using ! makes a TRUE
value into a FALSE, and a FALSE value into a TRUE.

Often, it is necessary to combine your comparison tests. A compound relationship test
is one or more simple relationship tests joined by either the && or the || (two pipe
characters).

&& and || are verbalized as logical-and and logical-or, respectively. Pseudo-code in
Listing 4-2 illustrates logical-and and logical-or operators.

Listing 4-2. Using && and Il Logical Operators

int x = 5;

int y = 6;

isComplete = TRUE;

//using the logical and

if (x <y &% isComplete == TRUE)

//in this example, x is less than 6 and isComplete == TRUE
do stuff;

}
if (x <y || isComplete == FALSE)

//in this example, x is less than 6.

//0nly one operand has to be TRUE for an OR to result in a TRUE.
//See Table 4-2 A OR Truth Table

do stuff;

//another way to test for TRUE
if (x <y &% isComplete)

70

CHAPTER 4: Making Decisions About...and Planning Program Flow

//in this example, x is less than 6 and isComplete == TRUE
do stuff;

//another way to test for FALSE
if (x <y &% !isComplete)

do stuff;

}

else
// isComplete == TRUE
do stuff;

}

Design Requirements

As discussed in Chapter 1, the most expensive process in the software development life
cycle is writing code. The least expensive process in the software development life cycle
is gathering the requirements for your application; yet, this latter process is the most
overlooked and least used in software development.

Design requirements usually begin by asking clients, customers, and/or stakeholders
how the application should work and what problems it should solve.

With respect to apps, requirements can include long or short narrative descriptions,
screen mockups, and formulas. It is far easier to open your word processor and change
the requirements and screen mockups before coding begins than it is to modify an
iPhone/iPad/Mac app. The following is the design requirement for one view of an iPhone
mobile banking app:

View: Accounts View

Description: Displays the list of accounts the user has. The list of
accounts will be in the following sections: Business Accounts,
Personal Accounts and Car Loans, IRA, and Home Equity Loans.

Cells: Each cell will contain the account name, the last four digits of
the account, available balance, and present balance.

A picture is worth a thousand words. Screen mockups are helpful to developers and
users because they can visualize how the views will look when they are completed.
There are many tools that can quickly design mockups; one of these tools is
OmniGraffle. See Figure 4-1 for an example of a screen mockup used for design
requirements generated by OmniGraffle.

CHAPTER 4: Making Decisions About...and Planning Program Flow

|
|

Canvases List

Canvases

» FAQ

» Log On

il

» Logon uuid

» Cert activition ¢

» Call or Text

Account Page

Balsnces Transfer Money Pay Bills

Business Accounts

Business Checking (xx4327)
Avalabie Balance $2100.22
Present Balance $4201.25

Business Savings (xx1234)

Avalabio Dalance
Prosont Balanco

Personal Accounts
Checking (xx3423)
Ay

Home Locations Contact Us FAQ Log Out

Natve

Canvas selected

Sn.wnqa (xx1772)

Avalatio Balae Szt
Presort Batance sann
IRA (xx177)

Avaiabi¢ Baane
Presont Baanco

Car Loan (xx172)

2812R0Ng Pracle

et ATOunt

Home Equity Loan (xx7672)
¢ g Prnciple S123421

100% 3

b

Figure 4-1. Screen mockup for a mobile banking app using OmniGraffle and the Ultimate iPhone Stencil Plug-in

Many developers believe that design requirements take too long and are unnecessary.
There is a lot of information presented on the Accounts screen in Figure 4-1. Many
business rules can determine how information is displayed to the user, along with all of
the error handling when things go bad. When designing your app, working with all the
business stakeholders at the beginning of the development process is critical to getting

it right the first time.

Figure 4-2 is an example of all stakeholders being involved in your app’s development.
Having all stakeholders involved in every view from the beginning will eliminate multiple
rewrites and application bugs.

71

CHAPTER 4: Making Decisions About...and Planning Program Flow

Woodforest Mobile Banking
Description

ile Bariking ication Brings you th i and ease of sccessing bank information for Weadlorest Nasanal Bank and Woodlones: Bank, fight from your iPhol
iPod Touch! I's tast! I's easy! And it's FREE!...

Woaodforest Financial Group Web Site » Woodforest Mobile Banking Support >

Fres App v What's New in Version 2.2.1

Minor Bug Fixes

Catogory: Firance

Updatod: Ape 07, 2010

Gurreen Version: 2.2.1

221 IPhone Screenshots
18M8

Languagos: Englsh, Spanish il ATET 3G
Sefor: WoodFores! National Bank —

8:01 PM £ &= il ATET 30 12:46 PM 2 il ATRT T 10:04 AM =

© Woadiorest Financial Group Home Accounts Transfer Lag Off
2010
T QT Checking Schedule Account Transfer
i, 4{ wWooD FOR],Sﬂ!B‘_I.
~ Checking (****7045) From: >
Foausomenta: Conpasbl uih € Accounts > Gurren! Balance $554.50 >
Poquires (05 3.1 of labee, Available Balance: $539.33 To: »
-
< Translers >
Savings (****3428) Transfer Amount:
B g i 3 Current Balance: $500.00 2
Available Balance: $505.40 Transter By: »
& Locations » Line Of Credit Frequency: »
€. contactus > LOC CCR (****3163)
Current Balance sa22.91 7 Cancel m
@ Frequenty Asked Questions > Avallable Balance: (A1)
&) About Us > Loan

Customer Ratings

* Avarage rating for the current varsion: 4 @0 Rasngns Rate this application: ¢ e o e

Figure 4-2. Woodforest Mobile Banking app as it appears on the iTunes Connect app store; Compare with the app
requirements Accounts screen in Figure 4-1.

Additionally, Apple recommends that developers spend at least 50% of their
development time on the user interface’s design and development.

Apress’s iPhone and iPad Sketch Books are also great tools for laying out your iOS
app’s look and feel on paper. See Figure 4-3.

irhane Srencil | —

Figure 4-3. Apress’s iPhone Sketch Book Stencil and Apress’s iPad Sketch Book Stencil

CHAPTER 4: Making Decisions About...and Planning Program Flow

Flowcharting

After design requirements are finalized, you can pseudo-code sections of your app to

solve complex development issues. Flowcharting is a common method of diagramming
an algorithm. An algorithm is represented as different types of boxes connected by lines
and arrows. Developers often use flowcharting to express code visually. See Figure 4-4.

Process ﬁ Irgﬁ) T:t ﬁ-

Process Disk F——— >

Process

Figure 4-4. Sample flowchart showing common figures and their associated names

Flowcharts should always have a start and a stop. Branches should never come to an
end without a stop. This helps developers make sure all of the branches in their code are
accounted for and that they cleanly stop execution.

73

74

CHAPTER 4: Making Decisions About...and Planning Program Flow

Designing and Flowcharting an Example App

We have covered a lot of information about decision making and program flow. It’s time
to do what programmers do best: write apps!

The app you have been assigned to write generates a random number between 0 and
100 inclusive, and asks the user to guess the number. The user has to do this until the
number is guessed. You can use any object from the Alice gallery to ask the user for his
or her guess, and you can also choose any world for your object to be in. The object will
provide a visual queue for each high, low, and correct guess. The number that the user
guesses will be displayed on the console. When the user guesses the correct answer, he
or she will be asked if he or she wants to play again. See Figure 4-5.

Guess a number from 0 up to and including 100?

Figure 4-5. An astronaut object asking the user to guess a number between 0 and 100

CHAPTER 4: Making Decisions About...and Planning Program Flow 75

The App’s Design

Using your design requirements, you can make a flowchart for your app. See Figure 4-6.

—

getRandomNumber
roundRandomNumber
printRandomNumber

}

Ask user to guess

number between <
0-100 [X

;

Guess correct?

Yes

Guess too high?

Display guess 'l:
to high

@ Yes No

Ask user it they want Display guess i >
to continue playing to low N

Figure 4-6. Flowchart for guessing a random number app

Reviewing Figure 4-6, you’ll notice that as you approach the end of a block of logic in
your flowchart, there are arrows that go back to a previous section and repeat that

76

CHAPTER 4: Making Decisions About...and Planning Program Flow

section until some condition is met. This is called looping. It enables you to repeat
sections of programming logic— without having to rewrite those sections of code over—
until a condition is met.

Using Loops to Repeat Program Statements

A loop is a sequence of program statements that is specified once, but can be repeated
several times in succession. A loop can repeat a specified number of times (count-
controlled) or until some condition (condition-controlled) occurs.

In this section, you’ll learn about count-controlled loops and condition-controlled loops.
You will also learn how to control your loops with Boolean logic.

Count-Controlled Loops

A count-controlled loop is a loop that repeats a specified number of times. In Objective-
C and Alice, this is a for loop. A for loop has a counter variable. This variable enables
the developer to specify the number of times the loop will be executed. See Listing 4-3.

Listing 4-3. A Count-Controlled Loop
int i;
for (i = 0; 1 < 10; i++)
//repeat all code in braces 10 times

....continue

The loop in Listing 4-3 will loop 10 times. The variable i starts at zero and increments at
the end of the } by one. The incrementing is done by the i++ in the for statement; i++,
which is equivalentto i = i +1. i, is then incremented by 1 to 10 and then checked to
see if it is less than 10. This for loop will exit when i = 9 and the } is reached.

NOTE: It is common for developers to confuse the number of times they think their loops will
repeat. If the loop started at 1 in Listing 4-3, the loop would repeat nine times instead of 10.

In Objective-C, for loops can have their counter variables declared in the for loop
declaration itself. See Listing 4-4.

Listing 4-4. Counter Variable is Initialized in For Loop Declaration
for (int i = 0; 1 < 10; i++)

//repeat all code in braces 10 times
....continue

Occasionally, you will need to repeat just one line of code in a for loop. This can be
accomplished by not using any {}. The first line of code encountered after the for loop
declaration is repeated, as specified in the for loop declaration. See Listing 4-5.

CHAPTER 4: Making Decisions About...and Planning Program Flow 77

Listing 4-5. Counter Variable is Initialized in the For Loop Declaration

for (int i = 0; 1 < 10; i++)
do this line of code 10 times;
....continue

Condition-Controlled Loops

Objective-C and Alice have the ability to repeat a loop until some condition changes.
You may want to repeat a section of your code until a false condition is reached with
one of your variables. This type of loop is called a while loop. A while loop is a control
flow statement that repeats based on a given Boolean condition. A while-loop can be
thought of as a repeating if statement. See Listing 4-6.

Listing 4-6. An Objective-C While Loop Repeating

BOOL isTrue = TRUE;
while (isTrue)

//do something;
isTrue = FALSE; // a condition occurs that sometimes sets isTrue to FALSE
b

....continue

The while loop in Listing 4-6 first checks if the variable isTrue is TRUE—which it is—so
the {loop body} is entered where the code is executed. Eventually, some condition is
reached that causes isTrue to become FALSE. After completing all the code in the loop
body, the condition (isTrue) is checked once more, and the loop is repeated again. This
process is repeated until the variable isTrue is set to FALSE.

Infinite Loops

An infinite loop repeats endlessly, either due to the loop not having a condition that
causes termination or having a terminating condition that can never be met.

Generally, infinite loops can cause apps to become unresponsive. They are the result of
a side effect of a bug in either the code or the logic.

Listing 4-7. An Example of an Infinite Loop

X = 0;
while (x !=5)

do something;
X =X + 2;
b

....continue
Listing 4-7 is an example of an infinite loop caused by a terminating condition that can
never be met. The variable x will be checked with each iteration through the while loop,
but will never be equal to 5. The variable x will always be an even number because it
was initialized to zero and incremented by 2 in the loop. This will cause the loop to
repeat endlessly. See Listing 4-8.

78

CHAPTER 4: Making Decisions About...and Planning Program Flow

Listing 4-8. An Example of an Infinite Loop Caused by a Terminating Condition That Can Never Be Met
while (TRUE)

do something;
b

...continue

Coding the Example App in Alice

Now that you have your design requirements and flowchart completed, and understand
looping, you’re ready to write your Alice application. See Figure 4-7.

File Edit ndow. Help

doinorder || count | while | for eachin if || do together | “eachin _together || dointhread |1 local... | keepPlayings-_| randomNumbers_|

class: | MyScene (W {1{ run

declare procedure [on class | MyScene

. do in order
M2
Boolean T keepPlaying true
Bl

while TkeepPlaying” Is true

e Integer 1 randomNumberi R P

Y Edit Seens

;J this.printiobof - say |, The secret number is: | + SrandomNuember” |, duration 52,00 more

Boolean /i continueGuessing true

instance: . @ printRobot 7| part:

while | continueGuessing Is true

Integer 1 userGuess this.astronaut | gettegerFrombiser "Guess a number from 0 up to and including 1007
MyHvperionRobot F
P
if | cuserGuess| == CSrandomNumber || is wue then

HyperionRobot
i continue GLeessing false

this. printotof straightenUp

- this astronaut © say "Correct Guess' ', duration: 5200 more
this printRobof placeRelativeTe < 7TF
elie

this.| tRobot ad istener mc if userGuess | > SrandomNumber 5 true then

ihis.printhotrof addKeyListener keytistener this_asironaut - say /Your guess was oo high ' | duration: 520 mare

this printRotiof say texr: S this.printRobol - say (| The user quessed: | + SuserGuess more

this printRobos think text ek

this. printR size amount =T This_astronau * say "The ser guess was to low.] , duration 52.0 more

this printiobos resizeWidth amount: =717

= this_printRobot | say | /(The user quessed: | + SuserGuess mare
this. printRobof resizeHelght a i
this,printilobed resizeDepth fich
loop
this.printRobot move direction: I, amoun
keepPlayin this.astronaut | getBookeanFrombiser J(Flay again? 1
1his.printRetot moveToward amount: =T | 9 &
[
this printhonos moveAwayFrom amoune = 17 o

this. printRobot turn. direcrion: 1T

this.printRobot rell direction. 8T

Figure 4-7. Random number generator app

It is not possible to list the source code for this Alice program in one screenshot.
However, if you print out the source code in HTML, you can view all the code.
See Figure 4-8.

CHAPTER 4: Making Decisions About...and Planning Program Flow

declare procedure ||| on class | MyScene
doin order
Boolean keepPlaying True

while TkeepPlaying s true

Integer &= randomNumber nextRandomintegerFromAUpToAndIncludingB =0/ , =100
this.printRobot” say (.{The secret number is: 7' + SrandomNumber ., duration: 52.0 more
Boolean continueGuessing true

| while continueGuessing is true

‘ Integer ;= userGuess this.astronaut getintegerFromUser J"Guess a number from 0 up to and including 1007
: if suserGuess| == ErandomNumber is true then
".mntinuec.uessmg falsel
| Cthis.astronaut say J{Correct Guess!l' , duration:=2.0) more
else
if | SuserGuess’ > ZrandomNumber is true then

this.astronaut

this.printRobot = say |

ielse

“this.astronaut

“this.printRobot = say |

Idop

say ."Your guess was too high.l ' , duration: =2.0| mare

_The user guessed: |° + SuserGuess more

say . The user guess was to low.” , duration: =2.0 more

f The user guessed: 1' + SuserGuess more

i keepPlaying < (this.astronaut getBooleanfromUser .7 Play again? %

loop

Figure 4-8. Random number generator; complete program listing

Figure 4-8 shows the entire program listing for your random number generator code.

NOTE: You can download the complete random number generator app at forum.xcelme.com.

The code will be under the Chapter 4 topic. There is also a video showing how to drag and drop
all the tiles within the While and If code blocks in Alice.

Coding the Ex

ample App in Objective-C

Using your requirements and what you learned with your Alice app, try writing your
random number generator in Objective-C.

Your Objective-C app will run from the command line, as it asks the user to guess a

random number.

1. Open Xcode and start a New Project. Choose the Command Line Tool.

See Figure 4-9.

79

80 CHAPTER 4: Making Decisions About...and Planning Program Flow

Choose a template for your new project:

A ios
Application \ v ‘ i

Framework & Library
Other

Cocoa Application Cocoa-AppleScript Command Line Tool
B Mac 05 X Application

Framework & Library
Application Plug-in
System Plug-in
Other

,i Command Line Tool

This template builds a command-line tool.

Cancel Next

Figure 4-9. Start a new Command Line Tool project.

2. Call your project RandomNumber (see Figure 4-10). Select Foundation
and make sure Use Automatic Reference Counting is checked. Save
the project anywhere you prefer on your hard drive.

CHAPTER 4: Making Decisions About...and Planning Program Flow

Choose options for your new project:

Product Name RandomNumber
Company ldentifier | com.xcelme
Bundle Identifier
Type | Foundation

v Use Automatic Reference Counting

Cancel Previous Next

Figure 4-10. Project options for RandomNumber

Now, you need to open the implementation file in the Source group. This is where you
will write your Objective-C code.

3. Open the main.m file. Delete the following line of code:
NSLog(@"Hello, World!");

4, You are ready to write your app. Start writing the code under
// insert code here..

See Figure 4-11.

#import <Foundation/Foundation.h>

int main (int argc, const char * argv(])

{
@autoreleasepool {

// insert code here...
NSLog(@"Hello, World!");

}

return 9;

Figure 4-11. The editor is now ready for you to write your code.

Following your Alice code, you will write your random number generator app. You will
notice that most of the code is very similar to your Alice app. See Listing 4-9.

81

82

CHAPTER 4: Making Decisions About...and Planning Program Flow

Listing 4-9. Source Code for Your Random Number Generator App

11 int main (int argc, const char * argv[])

12 {
13

14 @autoreleasepool {

15

16 // insert code here...

17 int randomNumber = 1;

18 int userGuess = 1;

19 BOOL continueGuessing = TRUE;
20 BOOL keepPlaying = TRUE;

21 char yesNo = ' ';

22

23 while (keepPlaying)

24 |

25 randomNumber = (arc4random() % 101);

26 NSLog(@"The random number to guess is: %d",randomNumber);
27 while (continueGuessing)

28 {

29 NSLog (@"Pick a number between 0 and 100. ");
30 scanf ("%i", 8userGuess);

31 fgetc(stdin);//remove CR/LF i.e extra character
32 if (userGuess == randomNumber)

33 {

34 continueGuessing = FALSE;

35 NSLog(@"Correct number!");

36

37 //nested if statement

38 else if (userGuess > randomNumber)

39

40 //user guessed too high

41 NSLog(@"Your guess is too high");

42

43 else

44 {

45 // no reason to check if userGuess < randomNumber. It has to be.
46 NSLog(@"Your guess is too low");

47

48 //refactored from our Alice app. This way we only have to code once.
49 NSLog(@"The user guessed %d",userGuess);

50 }

51 NSLog (@"Play Again? Y or N");

52

53 yesNo = fgetc(stdin);

54

55 if (yesNo == 'N' || yesNo == 'n")

56

57 keepPlaying = FALSE;

58

59 continueGuessing = TRUE;

60

61 }

62 return 0;

63 }

In Listing 4-9, there is new code that we haven’t discussed before. The first new line of
code (line 25) is

CHAPTER 4: Making Decisions About...and Planning Program Flow 83

randomNumber = (arc4random() % 101);

This line will produce a random number between 0 and 100; arc4random() is a function
that returns a random number. Although this will not generate a truly random number, it
will work for this example.

The modulus operator is called %. This operator returns the remainder of its two
operands; in this case, it’s the remainder of arc4random() divided by 101.

The next line of new code is
scanf ("%i", &userGuess);

The function scanf reads a value from the keyboard and stores it in userGuess.

NOTE: The source code for this Objective-C project is available for download at
forum.xcelme.com. Additionally, there is a short video explaining the source code and the
project.

Nested If Statements and Else-If Statements

Sometimes, it is necessary to nest if statements. This means that you need to have if
statements nested inside an existing if statement. Additionally, it is sometimes
necessary to have a comparison as the first step in the else section of the if statement.
This is called an else-if statement (recall line 38 in Listing 4-9.

else if (userGuess > randomNumber)

Removing Extra Characters

Line 31 is another new line of code.

fgetc(stdin); //remove CR/LF i.e extra character

The function scanf can be difficult to work with. In this case, scanf leaves a remnant in
your input buffer that needs to be flushed, so you can read a 'Y or N from the keyboard
to determine if the user wants to play again.

Improving the Code Through Refactoring

Often, after you get your code to work, you examine the code and find more efficient
ways to write it. The process of rewriting your code to make it more efficient,
maintainable, and readable is called code refactoring.

As you were reviewing your code in Objective-C, you noticed that you could eliminate
some unnecessary code. Your code had the following line repeated in the if-else
statement:

CHAPTER 4: Making Decisions About...and Planning Program Flow

//refactored from our Alice app. This way we only have to code once.
NSLog(@"The user guessed %d",userGuess);

NOTE: As developers, we have found that the best line of code you can write is the line that you
don’t write—Iless code means less to debug and maintain.

Running the App
Press the Play button in your Objective-C project and run your app. See Figure 4-12.

ac 64-bit

int randonNumber = 1;

int userGuess = 1;

BOOL continueGuessing TRLUE;
BOOL keepPlaying = TRUE;

char yesNo = ' ';

while (keepPlaying}
{
randomNumber = (arcdrandom{) % 181);
NSLog(@"The randem number to guess is: %d”,randomMumber);
while {continueGuessing)
{

er between @ and 189, “);

fgetc{stdin);//remove CR/LF i.2 extra c
if (userGuess == randomMumber)

{

continueGuessing = FALSE;
NSLog(@"Correct number!™);

xd if statement
(userGuess = randosNumber)

A ot &

IYPE TSNoW COpylnge To See tne condltions.

There is absolutely no warranty for GDB. Type “show warranty" for details.

This GDB was configured as “xB6_G64-apple-darwin".tty Sfdev/ttys@eé

[Switching to process 25286 thread @x8]

2011-89-29 11:39:49.452 RandomMumber[25206:787] The random number to guess is: 33
2011-89-29 11:39:49.454 RandomNumber[25206:787] Pick a number between @ and 189.

iz

2011-89-29 11:49:24.814 RandomNumber[252086:787] Your guess is too Llow
2011-89-29 11:40:24.827 RandomNumber[25286:787] The user guessed 32

2011-089-29 11:49:24.831 RandomNusber[25206:707] Pick a nusber between @ and 108,
24

20811-89-29 11:40:27.810 RandomNumber[25206:707] Your guess is too low
2011-89-29 11:40:27.811 RandomNumber[25206:7287] The user guessed 24

2011-89-29 11:40:27.812 RandosNumber[25206:707] Pick a nusber between @ and 188.
33

2011-89-29 11:48:30.888 RandomNumber[252086:787] Correct number!

2011-09-29 11:40:30.898 RandomNumber[25206:707] The user guessed 33

2011-99-29 11:40:39,900 RandomMumber[25206:707] Play Again? Y or N

n

Figure 4-12. The console output of the Objective-C random number generator app

NOTE: If you’re not seeing the output console when you run your app, make sure you have
selected (grayed) the same options at the top-right and bottom-right of the editor (see
Figure 4-12).

Moving Forward Without Alice

You’ve used Alice to learn object-oriented programming. It has enabled you to focus on
OOP concepts without having to deal with syntax and a compiler; however, it is

CHAPTER 4: Making Decisions About...and Planning Program Flow

necessary to become more familiar with the specifics of the Objective-C language. Alice
has served you well and you can now focus on using Objective-C and Xcode for the
remainder of the book.

Summary

In this chapter, you’ve covered a lot of important information on how to control your
applications; program flow and decision-making are essential to every iPhone/iPad/Mac
App. Make sure you have completed the Objective-C example in this chapter. You might
review these examples and think you understand everything without having to write this
app. This will be a fatal mistake that will prevent you from becoming a successful
iPhone/iPad/Mac developer. You must spend time coding this example.

The terms in this chapter are very important. You should be able to describe the
following:

AND

OR

XOR

NAND

NOR

NOT

Truth tables

Negation

All comparison operators
Application requirement
Logical AND (&&)

Logical OR (||)

Flowchart

Loop

Controlled loops

For Loop
Condition-controlled loops
Infinite loops

While loops

Nested if statements

Code refactoring

85

86 CHAPTER 4: Making Decisions About...and Planning Program Flow

Exercises

Extend the random number generator app to print to the console how
many times the user guessed before he or she guessed the correct
random number. Do this in both Alice and Objective-C.

Extend the random number generator app to print to the console how
many times the user played the app. Print this value when the user
quits the app. Do this in both Alice and Objective-C.

Chapter

Object Oriented
Programming with
Objective-C

Over the past 15 years, the programming world focused on the development paradigm
of object oriented programming (OOP). Most modern development environments and
languages implement OOP. Put simply, OOP forms the basis of everything you develop
today.

You may be asking yourself why we waited until Chapter 5 to present OOP using
Objective-C if it is the primary development style of today. The simple answer is that it is
not an easy concept for new developers. We will spend this chapter going into detail
about the different aspects of OOP and how this will affect your development.

Implementing OOP into your applications correctly will take some front-end planning but
you will save yourself a lot of time throughout the life of your projects. OOP has changed
the way development is done. In this chapter, we will look at what OOP is. OOP was
initially discussed in the first chapter of this book, but we will go into more detail here.
We will revisit what objects are and how they relate to physical objects we find in our
world. We will also look into what classes are and how they relate to objects. We will
also discuss steps you will need to take when planning your classes and some visual
tools you can use to accomplish this. When you have read this chapter and have worked
through the exercises, you will have a better understanding of what OOP is and why it is
necessary for you as a developer.

At first, objects and object-oriented programming may seem difficult to understand, but
the hope is that as we progress through this chapter, it will begin to make sense.

87

CHAPTER 5: Object Oriented Programming with Objective-C

The Object

As was discussed in Chapter 1, OOP is based on objects. Some of our discussion about
objects will be a review, but we will also go into more depth. An object is anything that
can be acted upon. In order to better explain what a programming object is, we will first
look at some items in the physical world around us. A physical object can be anything
around you that you can touch or feel. Take, for example, a television. Some
characteristics of a television include type (plasma, LCD, or CRT), size (40 inches), brand
(Sony, Vizio), weight, and cost. Televisions also have functions. They can be turned on
or off. You can change the channel, adjust the volume, and change brightness.

Some of these characteristics and functions are unique to televisions and some are not.
For example, a couch in your house would probably not have the same characteristics
as a television. You would want different information about a couch, such as material
type, seating capability, and color. A couch might have only a few functions, such as
converting to a bed.

Now let’s talk specifically about objects as they relate to programming. An object is a
specific item. It can describe something physical like a book, or it could be something
such as a window for your application. Objects have properties and methods. Properties
describe certain things about an object such as location, color, or name. Conversely,
methods describe actions the object can perform such as close or recalculate. In our
example, a TV object would have type, size, and brand properties, while a Couch object
would have properties such as color, material, and comfort level. In programming terms,
a property is a variable that is part of an object. For example, a TV would use a string
variable to store the brand and an integer to store the height.

Objects also have commands the programmer can use to control them. The commands
are called methods. Methods are the way that other objects interact with a certain
object. For example, with the television, a method would be any of the buttons on the
remote control. Each of those buttons represents a way you can interact with your
television. Methods can and often are used to change the values of properties, but
methods do not store any values themselves.

As we described in Chapter 1, objects have a state, which is basically a snapshot of an
object at any given point in time. A state would be the values of all of the properties at a
specific time.

In previous chapters, we have used the example of the bookstore. A bookstore contains
many different objects. It contains book objects that have properties such as title,
author, page count, and publisher. It also contains magazines with properties such as
title, issue, genre, and publisher. A bookstore also has some non-tangible objects such
as a sale. A sale object would contain information about the books purchased, the
customer, the amount paid, and the payment type. A sale object might also have some
methods that calculate tax, print the receipt, or void the sale. A sale object does not
represent a tangible object, but it is still an object and is necessary for creating an
effective bookstore.

GHAPTER 5: Object Oriented Programming with Objective-C

Because the object is the basis of OOP, it is important to understand objects and how to
interact with them. We will spend the rest of the chapter describing objects and some of
their characteristics.

What Is a Class?

We cannot discuss OOP without discussing what a class is. A class defines which
properties and methods an object will have. A class is basically a cookie cutter that can
be used to create objects that have similar characteristics. All objects of a certain class
will have the same properties and the same methods. The values of those properties will
change from object to object.

A class is similar to a species in the animal world. A species is not an individual animal,
but it does describe many similar characteristics of the animal. In order to understand
classes more, let’s look at an example of classes in nature. The Dog class has many
properties that all dogs have in common. For example, a dog may have a name, an age,
an owner, and a favorite activity. An object that is of a certain class is called an instance
of that class. If we look at Figure 5-1, you can see the difference between the class and
the actual objects that are instances of the class. For example, Lassie is an instance of
the dog class. In the diagram below, you can see we have a Dog class that has four
properties (Breed, Age, Owner, Favorite Activity). In real life, a dog will have many more
properties, but we decided to use four for this demonstration.

Class Objects

Lassie

Breed: Collie
Age:5

Owner: Jeff

Favorite Activi&: Helpi ng People

Dog i Spot
Breed Breed: Dalmation
Age = g------ = Age: 2
Owner Owner: Fire Department

Favorite Aclivi:z s Favorite Activity: Riding in a Fire Truck
Scooby Doo

Breed: Great Dane

Age: 10

Owner: Shaggy

Favorite Activity: Eating Scooby Snacks

Figure 5-1. An example of a class and individual objects

89

CHAPTER 5: Object Oriented Programming with Objective-C

Planning Classes

Planning your classes is one of the most important steps in your development process.
While it is possible to go back and add properties and methods after the fact (and you
will definitely need to do this), it is important that you know which classes are going to
be used in your application and which basic properties and methods they will have.
Spending time planning your different classes is very important at the beginning of the
process.

Planning Properties

Let’s look at the bookstore example and some of the classes we need to create. First, it
is important to create a Bookstore class. A Bookstore class contains the blueprint of the
information each Bookstore object stores, such as the bookstore name, address, phone
number, and logo (see Figure 5-2). Placing this information in a class rather than hard
coding it in your application will allow you to easily make changes to this information in
the future. We will discuss the reasons for using OOP methodologies later in this
chapter. Also, if your bookstore becomes a huge success and you decide to open up
another one, you will be prepared because you can create another object of class
Bookstore.

Bookstore
Name
Address1
Address2
City
State
Zip
Phone Number
Logo

Figure 5-2. The bookstore class

Let's also plan out a Customer class (see Figure 5-3). Notice how the name has been
broken into First Name and Last Name. This is very important to do. There will be times in
your project when you may want to use only the first name of a customer, and it would
be hard to separate the first name from the last if you didn’t plan ahead. Let’s say you
want to send a letter to a customer letting them know about an upcoming sale. You do
not want your greeting to say, "Dear John Doe." It would look much more personal to
say, "Dear John."

GHAPTER 5: Object Oriented Programming with Objective-C

Customer
First Name
Last Name
Address Line 1
Address Line 2
City
State
Zip
Phone Number
Email Address
Favorite Book Genre

Figure 5-3. The customer class

You will also notice how we have broken out the address into its different parts instead
of grouping it all together. We separated the Address Line 1, Address Line 2, City,
State, and ZIP. This is very important and will be used in your application. Let’s go back
to the letter you want to send informing your customers of a sale in your store. You
might not want to send it to all of the customers that live in different states. By
separating the address, you can easily filter out those customers you do not want to
include in your mailings.

We have also added the attribute of Favorite Book Genre to the Customer class. We
added this to show you how you can keep many different types of information in each
class. This field may come in handy if you have a new mystery title coming out and you
want to send an e-mail alerting customers who are especially interested in mysteries. By
storing this type of information, you will be able to specifically target different portions of
your customer base.

A Book class is also necessary in order to create our bookstore (see Figure 5-3). We will
store information about the book such as author, publisher, genre, page count, and
edition number (in case there are multiple editions). The Book class will also have the
price for the book.

Book
Author
Publisher
Genre
Year Published
Number of Pages
Edition
Price

Figure 5-4. The book class

We also added another class called the Sale class (see Figure 5-5). This class is more
abstract than the other classes we have discussed because it does not describe a
tangible object. You will notice how we have added a reference to a customer and a
book to the Sale class. Because the Sale class will track sales of books, we will need to
know which book was sold and to which customer.

91

CHAPTER 5: Object Oriented Programming with Objective-C

Sale
Customer
Book
Date
Time
Amount
Payment Type

Figure 5-5. The sale class

Now that we have planned out the properties of the classes, we will need to look at
some methods that each of the classes will have.

Planning Methods

We will not add all of the methods now, but the more planning you can do at the
beginning, the easier it will be for you down the line. Not all of your classes will have
many methods. Some may not have any methods at all.

NOTE: When planning your methods, remember to have them focus on a specific task. The more
specific the method, the more likely it is that it can be reused.

For the time being, we will not add any methods to the Book class or the Bookstore
class. We will focus on our other two classes.

For the Customer class, we will add methods to list the purchase history of that client.
There may be other methods that you will need to add in the future but we will add just
that one for now. Your completed Customer class diagram should look like Figure 5-6.
You will notice the line near the bottom separates the properties from the methods.

Customer
First Name
Last Name
Address Line 1
Address Line 2
City
State
Zip
Phone Number
Email Address
Favorite Book Genre
List Purchase History

Figure 5-6. The completed customer class

For the Sales class, we have added three methods. We added Charge Credit Card,

Print Invoice, and Checkout (see Figure 5-7). For the time being, you do not need to
know how to implement these methods, but you need to know that you are planning on
adding them to your class.

GHAPTER 5: Object Oriented Programming with Objective-C

Sale
Customer
Book
Date
Time
Amount
Payment Type
Charge Credit Card
Print Invoice
Checkout

Figure 5-7. The completed sale class

Now that you have finished mapping out the classes and the methods you are going to
add to them, you have the beginnings of a unified modeling language (UML) diagram.
Basically, this is a diagram used by developers to plan out their classes, properties, and
methods. Starting your development process by creating such a diagram will help you
significantly in the long run. An in-depth discussion of UML diagrams is beyond the
scope of this book. If you would like more information about this subject,
smartdraw.com has a great in-depth overview of them.

http://www.smartdraw.com/resources/tutorials/uml-diagrams/

Figure 5-8 shows the complete diagram.

Bookstore Sale
Name Customer
Address1 Book
Address2 Date
City Time
State Amount
Zip Payment Type
Phone Number Charge Credit Card
Logo Print Invoice

Checkout
Book Customer
Author First Name
Publisher Last Name
Genre Address Line 1
Year Published Address Line 2
Number of Pages City
Edition State
Price Zip
e Phone Number
Email Address
Favorite Book Genre
List Purchase History

Figure 5-8. The completed UML diagram for the bookstore

93

94

CHAPTER 5: Object Oriented Programming with Objective-C

Implementing the Classes

Now that we understand the objects we are going to be creating, we need to create our
first object. In order to do so, we will start with a new project.

1. Please launch Xcode. Click on File » New » New Project.

2. Select i0S on the left-hand side. On the right-hand side, select Master-
Detail Application. For what we are doing in this chapter, we could have
selected any of the application types (see Figure 5-9). Click Next.

Choose a template for your new project:

[ios

2
“Application £ 8 i
Framework & Library ®
Other 3 :
Master-Detail OpenCL Game Page-Based Single View
B Mac0s X Application Application Application
Application | : z
POEEEE
Framework & Library \" H H
Application Plug-in e+ | e R
System Plug-in
Other Tabbed Application Utility Application Empty Application
JESSS—
Master-Detail Application
This template provides a starting point for a master-detail application. It provides a user
interface configured with a navigation controller to display a list of items and also a split view
on iPad.
Cancel | Previous | [Next |

Figure 5-9. Creating a new project

3. You will have to enter a company name. Leave the checkboxes on this
screen as they appear by default. We will not be worrying about these
items right now. Select a location to save your project and then save
your project. You can use the name bookstore or any other project
name you want.

4, Select the BookStore folder on the left-hand side of the screen (see Figure
5-10). This is where the majority of your code will reside.

5. Select File » New > New File.

CHAPTER 5: Object Oriented Programming with Objective-C

[BookStore.xeodepra) Fa
(M] | BookStore | iPad 5.0 Simulator J e EBElod @FHoE (=
=« » [ucoksiore | DB
PROJECT | summary | wfo Build Sentings Build Phases Build Rutes ¥ Duick Help —
5 mookstore | 108 Application Target
L identifier [MyComgany Booksiare No Quick Help
" MenkStone o gt
L Y Version |10 &uild [10
1 T
B beaaiadia BookStoreTests
sterviewCantrolier.h OSSR Uohvacell .|
m MasterViewCantroller.m Deployment Target 5.0 >
h] DesailViewContraler.h
B et it s | ¥ iPhase | (Pod Deployment infa
 Sovgasting Ples | FlPhoom)t tPod Deplwmest tafe. S — —
* (] BookstoreTests Malns Storybastd | MainStoryboard_Phone Ts
» [Framewaris 2 1 D {lle =
» [Products Main benerface 3 [l object Library =
Push Button - iszercepts mouse-down |
Supported Device Orbentations | events and sends an action message 10 3|
arget object when it's clicked or...
[H Gradient Button - Intercepts mowse-
dowe events and seads an azion
message 1o 4 target object when 1'%
Partralt Upside Landscape Landscape
Down Left Right Rounded Reet Button - latescepts
mszve-dawn events and seads 4n
Aaction mestage bo 3 tanget object
Rounded Textured Button -
Intaccants mouin.-roun meety snd
+ @ . Add Target Valldate Senings -

Figure 5-10. Selecting the bookStore folder

6. From the pop-up window, select Cocoa Touch under the iOS header and
then click on Objective-C class on the right-hand side (see Figure 5-11).

Then click Next.

Choose a template for your new file:

e

s

Cand C++
User Interface
Core Data
Resource
Code Signing
Y
Other B

une

Objective-C class UlviewController

subclass

& Mac 0S X 4T

Cocoa Objective-C test
4 Cand C++ case class

1| Userinterface
Core Data

— Resource
Other

4 h
b€ Proto
Objective-C Objective-C protocol
category

Objective-C class
- Obj. 5

Cancel

An Objective-C class, with a header that includes the <Foundation/Foundation.h> header.

)

Previous

Figure 5-11. Creating a new Objective-C class

95

CHAPTER 5: Object Oriented Programming with Objective-C

7. On the next screen, you will need to select the superclass for your
object. This is what determines what properties and methods your
object will have by default. We will select NSObject for now (see Figure
5-12). Click Next.

NOTE: NSObject is the base class in Objective C. It contains properties and methods required
for most objects used.

Choose options for your new file:

—

Class

Subclass of | NSObject v

: Cancel Previous . Next
Figure 5-12. Select the superclass

8. You will now be given the opportunity to name your class. For this
exercise, we will create the Customer class. For now, name the class
Customer. Now click Save.

NOTE: For ease of use and for understanding your code, remember that class names should
always be capitalized in Objective-C. Object names should always start lowercase. For example,
Book would be an appropriate name for a class, and book would be a great name for an object
based on the Book class. For a two word object, such as the book author, an appropriate name
would be bookAuthor. This type of capitalization is called lower camelcase.

CHAPTER 5: Object Oriented Programming with Objective-C 97

9. Now look in your main project folder; you should have two new files.
One is called Customer.h and the other is called Customer.m. The .h file
is the header file that will contain information about your class. The
header file will list all of the properties and methods in your class, but it
will not actually contain the code related to them. The .m file is the
implementation file, which is where you write the code for your methods.

10. Double-click on the Customer.h file and you will see the window shown
in Figure 5-12. You will notice it does not contain a lot of information
currently. The first part, with the double slashes (//), is all comments
and is not considered part of the code. Comments allow you to tell
those who might read your code what each portion of code is meant to
accomplish. We will not go into more detail now about the other
portions of the header file, except to say that all of the properties of a
class need to be inside the braces ({}) of the @interface portion.

[BookStore.xcodeproj — [hi Customer.h
= ; — o o
BookStore © iPad 5.0 Simulater = S | & =] El gE (=

h| AppDelegate.h
=] AppDelegate.m
“| MalnStaryboard_iPhome.staryboard
=| MainStoryboard_iPad, storybassd
h| MasterviewContraller.h
m MasterViewController.m
h| DetailviewController.h
m| DetailViewController.m - S B S
* [Supperting Files oD ille = {
BoakStareTests il Object Library £ | |32 45
Framewark |
. h:‘:::", Push Button - istercepts mouse-down
SRS ANG SERLE I8 3CN0N MERSIQE 10 4
rarget objeet when it clicked or.

Gradient Button - Intercepts mosse
dows evens and seads an action
MesLage 10 4 Larget obect when 'y

Rounded Textured Button
it ey iy

+ | @mE @

Figure 5-13. Your empty customer class

Now let’s transfer the properties from our UML diagram to our actual class.

TIP: Properties should always start with a lowercase letter. There can be no spaces in an
attribute name.

For the first property, First Name, we will add this line to our file.
NSString* firstName;

This creates a string object in our class called firstName. Because all of the properties
for the Customer class are strings also, we will just need to repeat the same procedure
for the other ones. When that is complete, your @interface portion should look like
Figure 5-13.

98 CHAPTER 5: Object Oriented Programming with Objective-C

e 0o ™ BookStore.xcodeproj — [h| Customer.h
g ey
f \ i " Xcode
@ (m) [B...iPad 5.0 Simulator | [m]
Run Stop Scheme Breakpoints
@2 @ 4 = = B ’ 4 > | BBOOI(Smre : h Customer.h : [=] @interface Customer
= 3 BookStore r
= 2 targets, i0S SDK 5.0 /f Customer.h
S | // BookStore
5 Customer.h | 17
|m| Customer.m // Created by Brad Lees on 18/19/11.
¥ || BookStore /f Copyright (c) 2811 _ MyCompanyName__. All rights reserved.

| AppDelegate.h "

#import <Foundation/Foundation.h>
| MainStoryboard_iPhone.storyboard
| MainStoryboard_iPad.storyboard

E

@interface Customer : NSObject {

|h] MasterViewController.h NSString firstName;
i@ MasterViewController.m NSString* lastName;
'-h! DetailViewController.h NSString* addressLinel;

T R NSString* addressLine2;
|m| DetailViewController.m NSString* city;

» || Supporting Files NSString* state;

» || BookStoreTests NSString+ zip;

> Bl Framewarks NSString* phoneNumber;
! NSString* emailAddress;

» | _|Products MNSString+ favoriteGenre;

@end

Figure 5-14. The customer class interface with properties

Now that the @interface portion is complete, we will need to add our method. Methods
need to go outside of the @interface portion but still inside of the @interface portion of
the header file. We will add a new method that returns an NSArray. This code will look
as follows:

-(NSArray *) listPurchaseHistory;

NOTE: NSString is a class that holds and performs actions on a string. A string is a set of
characters. NSString can hold letters, numbers, and punctuation.

That is all that needs to be done in the header file to create our class. Figure 5-15 shows
the final header file. In the next chapter, we will go into more detail about the
implementation file.

GHAPTER 5: Object Oriented Programming with Objective-C

e 00 ™ BookStore.xcodeproj — |h| Customer.h
A= : : === Xcode
@ M) [B.. iPad 5.0 Simulator | [=| ‘
Run SE-'J.: Scheme Breakpoints !
@ @ A = » B8 l wt | < p | [7)BookStore » [h| Customer.h) No Selection
=+, BookStore 7/
= 2 rargets, iO5 SDK 5.0 /! Customer.h
3 // BookStore
11 Customer.h 77
|m| Customer.m // Created by Brad Lees on 18/19/11.
¥ | |BookStore ff pyright (c) 2011 _ MyCompanyName__. All rights reserved.
\h] AppDelegate.h /"
m AppDelegate.m #import <Foundation/Foundation.h>

|5 MainStoryboard_iPhone.storyboard

%) MainStoryboard_iPad.storyboard
=l st e Ak @interface Customer : NSObject {

h MasterViewController.h NSString* firstName;
'm| MasterViewController.m NSString# lastMame;
h! DetailViewController.h NSString* addressLinel;
5 S NSString+ addressLine2;
m! DetailViewController.m NSStringk city:
» |_]Supporting Files NSString* state;
» [|BookStoreTests NSString zip;

» Eam " NSString* phoneNumber;
Ll Framewaorks NSString emailAddress;
b || Products NSString* favoriteGenre;

}
—(NSArray =) listPurchaseHistory;

@end

Figure 5-15. The finished customer class header file

Inheritance

Another major quality of OOP is inheritance. Inheritance in programming is similar to
genetic inheritance. You might have inherited your eye color from your mother or hair
color from your father, or vice versa. Classes can, in a similar way, inherit properties and
methods from their parent classes. In OOP, a parent class is called a superclass and a
child class is called a subclass.

In Objective-C, all classes created by a programmer have a superclass that is similar to
a parent class. The class will inherit characteristics from that parent class. So, just as in
all other OOP languages, the class is called a subclass of the parent class. In this
chapter, all of our classes are subclasses of the NSObject. In Objective-C, most of the
time, your classes will be subclasses of NSObject. In our previous example, the Customer
class was a subclass of NSObject.

We could, for example, create a class of printed materials and use subclasses for books,
magazines, and newspapers. Printed materials can have many things in common, so we
could assign variables to the superclass of printed materials and not have to
redundantly assign them to each individual class. By doing this, we further reduce the
amount of redundant code that is necessary for you to write and debug.

In Figure 5-16, you will see a layout for the properties of a Printed Material superclass
and how that will affect the subclasses of Book, Magazine, and Newspaper. The properties
of the Printed Material class will be inherited by the subclasses so there is no need to
define them explicitly in the class. You will notice that the Book class now has

100

CHAPTER 5: Object Oriented Programming with Objective-C

significantly fewer properties. By using a superclass, you will significantly reduce the
amount of redundant code in your programs.

Book
Author
Genre
Edition
Printed Material
Title _
Publish Date R lssuM:gazme
Page Count » =
ji enre
Price
Publisher
Newspaper
Date

Figure 5-16. Properties of the super- and subclasses

Why Use 00P?

Throughout this chapter, we have discussed what OOP is and we have even discussed
how to create classes and objects. However, | think it is important to discuss why you
want to use OOP principles in your development.

If you take a look at the popular programming languages of the day, all of them use the
OOP principles to a certain extent. Objective-C, C++, Visual Basic, C#, and Java all
require the programmer to understand classes and objects to successfully develop in
those languages. In order to become a developer in today’s world, you will need to
understand OOP. But why use it?

It is everywhere

Just about any development you chose to do today will require you to understand
object-oriented principles. On Mac OS X and in iOS, everything you interact with will be
an object. For example, simple windows, buttons, and text boxes are all objects and
have properties and methods. If you want to be successful as a programmer, you will
need to understand OOP.

Eliminate Redundant Code

By using objects, you can reduce the amount of code you have to retype. If you write code
to print a receipt when a customer checks out, you will want that same code available
when you need to reprint a receipt. If you placed your code to print the receipt in the Sales
class, you will not have to rewrite this code again. This not only saves you time, but often
will help you eliminate mistakes. If you do not use OOP and there is a change to the
invoice (even something as simple as a graphic change), you have to make sure you make
the change in your desktop application and the mobile application. If you miss one of
them, you run the risk of having the two interfaces behave differently.

GHAPTER 5: Object Oriented Programming with Objective-C

Ease of Debugging

By having all of the code relating to a book in one class, you know where to look when
there is a problem with the book. This may not sound like such a big deal for a little
application, but when your application gets to hundreds of thousands or even millions of
lines of code, it will save you a lot of time.

Ease of Replacement

If you place all of your code in a class, then as things change in your application, you
can change out classes and give your new class completely different functionality.
However, it can interact with the rest of the application in the same way as your current
class. This is similar to car parts. If you want to replace a muffler on a car, you do not
need to get a new car. If you have code related to your invoice scattered all over the
place, it makes it much more difficult to change items about a class.

Advanced Topics

We have discussed the basics of OOP throughout this chapter, but there are some other
topics that are very important to your understanding.

Interface

As we have discussed in this chapter, the way the other objects interact through each
other is with methods. We discussed the header files created when you create a class.
This is often called the interface because it tells other objects how they can interact with
your objects. Implementing a standard interface throughout your application will allow
your code to interact with different objects in similar ways. This will significantly reduce
the amount of object specific code you need to write.

Polymorphism

Polymorphism is the ability of an object of one class to appear and be used as an object
of another class. This is usually done by creating methods and properties that are similar
to those of another class. A great example of polymorphism that we have been using is
the bookstore. In the bookstore, we have three similar classes: Book, Magazine, and
Newspaper. If we wanted to have a big sale for our entire inventory, we could go through all
of the books and mark them down. Then we could go through all of the magazines and
mark them down, and then go through all of the newspapers and mark them down. That
would be more work than we would need to do. It would be better to make sure all of the
classes have a markdown method. Then we could call that on all of the objects without
needing to know which class they were as long as they were subclasses of a class that
contained the methods needed. This would save a bunch of time and coding.

101

102 CHAPTER 5: Object Oriented Programming with Objective-C

As you are planning out your classes, look for similarities and methods that might apply
to more than one type of class. This will save you time and speed up your application in
the long run.

Summary

We've finally reached the end of the chapter! Here is a summary of the things that were
covered.

Object-oriented programming (OOP)

We discussed the importance of OOP and the reasons why all
modern code should use this methodology.

Object

You learned about objects and how they correspond to real-
world objects. We learned that many programming objects relate
directly to real-world objects. You also learned about abstract
objects that do not correspond to real world objects.

Class

You learned that a class determines the types of data
(properties) and the methods that each object will have. Every
object needs to have a class. It is the blueprint for the object.

Creating a class

You learned how to map out the properties and methods of our
classes.

We used Xcode to create a class file.

We edited the class header file to add our properties and
methods.

Exercises

Try creating the class files for the rest of the classes we mapped out.

Map out an Author class. Choose the kind of information you would
need to store about an author.

For the daring and advanced:

Try creating a superclass called PrintedMaterials. Map out the
properties that a class might have.

Create classes for the other types of printed materials a store might
carry.

Chapter

Learning Objective-C and
Xcode

For the most part, all computer languages perform the typical tasks any computer needs
to do—store information, compare information, make decisions about that information,
and perform some action based on those decisions. Objective-C is a language that
makes these tasks easier to understand and accomplish. The real trick with Objective-C
(actually, the trick with any C language) is to understand the symbols and keywords
used to accomplish those tasks. This chapter continues our examination of Objective-C
and Xcode so you can become even more familiar with them.

A Brief History of Objective-C

Objective-C is really a combination of two languages, C language and a lesser-known
language called Smalltalk. Back in the 1970s, several very bright engineers from Bell
Labs created a language named C that made it easy to port their pet project, the Unix
operating system, from one machine to another. Prior to C, people had to write
programs in assembly languages. The problem with assembly languages is that each is
specific to its machine, so moving software from one machine to another was nearly
impossible. The C language, created by Brian Kernighan and Dennis Ritchie, solved this
problem by providing a language that wrote out the assembly language for whatever
machine it supported, a kind of Rosetta Stone for early computer languages. Because of
its portability, C quickly became the de facto language for many types of computers,
especially early PCs.

Fast forward to the early 1980s and the C language is on its way to becoming one of the
most popular languages of the decade. Around this time, an engineer from a company
called Stepstone was mixing the C language with another up-and-coming language
called Smalltalk. The C Language is typically referred to as a procedural language, that
is, a language that uses procedures to divide up processing steps. Smalltalk, on the
other hand, was something entirely different. It was an object-oriented programming
language. Instead of processing things procedurally, it used programming objects to get

103

104

CHAPTER 6: Learning Objective-C and Xcode

its work done. This new superset of the C language became known as “C with Objects”
or more commonly, Objective-C.

In 1985, Brad Cox sold the Objective-C language and trademark to NeXT Computer, Inc.
NeXT was the brainchild of Steve Jobs, who had been fired from his own company,
Apple Computer, that very same year. NeXT used the Objective-C language to build the
NeXTSTEP operating system and its suite of development tools. In fact, the Objective-C
language gave NeXT a competitive advantage with all of its software. Programmers
using NeXTSTEP and Objective-C could write programs faster than those writing in the
traditional C language. While the hardware part of NeXT computers never really took off,
the operating system and tools did. Quite interestingly, NeXT was purchased by Apple
Computer in late 1996 with the intention of replacing its aging operating system, which
had been in existence since the first Macintosh was developed in 1984. Four years after
the acquisition, what had been NeXTSTEP reemerged as Mac OS X—with Objective-C
still at the heart of the system.

Understanding the Language Symbols

Even though Objective-C integrates a great deal of object-oriented language, at the
heart of Objective-C is C. Here are some of the symbols and language constructs used
in Objective-C, some of which are part of the C language and most of which we've
already encountered in one way or another. It’s not important to know which are pure C
and which are not; just know that the old and the newer symbols/constructs together
make the Objective-C language.

{ This is the begin brace. It’s used to begin what’s commonly referred
to as a block of code. Blocks are used to define and surround a
section of code and define its scope.

} This is the end brace. It’s used to end a block of code. Wherever
there is a begin ({), there must always be an accompanying end (}).

- (void)methodName This is how an Objective-C method is defined.
The word methodName of course can represent any name. The word
(void) can also change. It represents what type of information the
method represents. In this example, (void) indicates there is no data
type associated with this method (data types were introduced in
Chapter 3 and will be covered in more depth in later chapters). (void)
could be replaced with something like (NSString*). This will be
discussed further later on.

* The asterisk (referred to as ‘star’ or ‘splat’) is used to represent what
is called a pointer (see Chapter 13). All that’s really important to know
for now is that when you see something like NSString*, consider it part
of the name. NSString and NSString* are completely different.

CHAPTER 6: Learning Objective-C and Xcode

5 The semicolon character is used to end a line of code. The thing to
remember about a semicolon is that they aren’t used at the end of
statements that control the flow of the program, that is, if, for, while,
etc. You’ll eventually understand the rules of where they go and don’t
go.

[]- These are called brackets and are used when sending a
message to an Objective-C object. Chapter 7 covers more on this
topic.

@ While many people associate this with an e-mail address, the at sign
is used in Objective-C to identify an Objective-C directive. A directive

is a special Objective-C command, such as @interface,
@implementation or @property.

The pound sign (or octathorpe if you like trivia) is similar to the @ sign
and is used to identify a C language directive, such as #import or
#define, While originally part of the C language, the use of # is still
found in nearly all Objective-C programs.

So, let’s see an example of Objective-C code:

- (void)logMessage

NSString *hello = @"Hello World!";
NSLog(hello);

wvihs w N

Line #1 represents an Objective-C method. The (void) indicates this method is not
associated with a data type and, if invoked, would not send a value back to the caller.

Lines #2 and #5 are the braces that define a block of code. This block is what defines
the method. Every method has at least one block.

Line #3 defines an NSString* object and assigns it the value of @"Hello World".
Remember, the at sign (@) is an Objective-C directive and is a quick way of defining a
constant string object (recall that we first saw strings in Chapter 3).

Line #4 is a call to the NSLog method; it’s not an object, so we can't send it a message.
Instead, we’re passing the method the object to print the hello NSString* object.

While it does look a little cryptic to someone who is just learning Objective-C, the simple
and terse syntax doesn’t take too much time to learn.

Putting the “Objective” into Objective-C

The majority of what makes Objective-C, well, objective, is its basis in Smalltalk.
Smalltalk is a 100 percent object-oriented language and Objective-C borrows heavily
from Smalltalk concepts and syntax. Here are a few of the high-level concepts borrowed

105

106 CHAPTER 6: Learning Objective-C and Xcode

from Smalltalk. Don’t worry if some of these terms seem unfamiliar; they will be
discussed in later chapters (Chapters 7 and 8 cover the basics).

Pretty much everything is an object.

Objects receive messages. In this context, the object is sometimes
known as the receiver since it is receiving the message.

Objects contain instance variables.
Objects and instance variables have a defined scope.

Classes hide an object’s implementation.

NOTE: As we saw in Chapter 5, the term class is used to represent, generically, the definition or
type of an object. An object is what is created from the class. For example, an SUV is a class of
vehicle. A class is a blueprint of sorts. A factory builds SUVs. The results are SUV objects that
people drive. You can’t drive a class, but you can drive an object built from a class.

So how do these concepts translate to Objective-C? Well, for starters, an object in
Objective-C is defined using two different sections, @interface and @implementation.
The @interface section defines what messages the object can respond to and any
instance variables the object will be using. The @implementation section contains the
actual code of the various messages from the @interface section.

Why is there a split between the interface and implementation? Well, an Objective-C
object is defined only once within a program. However, it might be used in many
different areas of that program. Where the object is used, the program simply reads in,
or imports, the interface; it would be inefficient if the code for that object needed to be
replicated every time it was used.

NOTE: It is a common convention to have an object’s interface stored in an . h file and the
implementation stored in an .m file. Both files are named after the object. So, if a Library
object is to be defined, its interface would be in Library.h and its implementation would be in
Library.m (remember that names are case-sensitive).

Let’s look at a simple example of the complete definition of an Objective-C object called
HelloWorld. Following is the interface file (HelloWorld.h).

CHAPTER 6: Learning Objective-C and Xcode

1 #import <Foundation/Foundation.h>
2

3 @interface HelloWorld : NSObject
4 {

5)

6

7 - (void)printGreeting;

8

9 @end

And this is the implementation file (HelloWorld.m):

10 #import "HelloWold.h"
11
12 @implementation HelloWorld

13

14 - (void)printGreeting

15 |

16 NSLog(@"Hello World!");
17 }

18

19 @end

In the preceding example, an object, HelloWorld, is being defined. This object only has
one message defined—printGreeting. What do all these strange symbols mean? Using
the line numbers as a reference, we can review this code line by line.

Line 1 contains a compiler directive, #import <Foundation/Foundation.h>. In order for
this little program to know about certain other objects (for example, the NSObject on
line 3), we need to have the compiler read other interface files. In this case, the
Foundation.h file defines the objects and interfaces to the Foundation framework. This
framework contains the definition of most non-user-interface base classes of the i0OS
and Mac OS X systems. What is important here is that we have a definition to the
NSObject object. The actual start of our object is on line 3, as follows.

@interface HelloWorld : NSObject
HelloWorld is the object, but what does : NSObject mean? Well, the colon (:) after our

object’s name indicates we plan to derive additional functionality from another class. In
this case, NSObject is that class. HelloWorld is now a subclass of NSObject.

NOTE: Why the name NSObject and not just Object? Well, do you recall that Mac 0S X
actually started out as a port from the NeXTSTEP system? “NS” is an abbreviation for NeXTSTEP
and is used in many of the base objects in Mac 0S X and i0S— NSObject, NSString,
NSDictionary, etc.

Lines 4 and 5 simply contain the { and } characters. This block is used to define
instance variables used by the object, but the HelloWorld class is simple enough that

107

108

CHAPTER 6: Learning Objective-C and Xcode

instance variables are not necessary. Later, in Chapter 9, there will be examples where
instance variables are defined and used.

Line 7 contains a message definition for this object, as follows.
- (void)printGreeting;

When you’re defining a message, that line must start with either a + or - character. In the
case of the HelloWorld object, we are using - to indicate this message can be used after
the object is created. A + character is used for messages that can be used before the
object is created. The remainder of the message, (void) printGreeting, represents the
return value of the message. In this case, the value (void) is followed by the actual
message name, printGreeting.

In line 9, @end indicates the definition of the object’s interface is complete.

That’s the complete description of the interface of the HelloWorld object; there’s not a
whole lot here. More complicated objects simply just have more messages and more
instance variables.

For the implementation, the source code is stored in a different file, HelloWord.m. For
starters, line 10 starts with the statement #import "HelloWorld.h". This simply allows
our object to know its own interface. While the separation of the interface and
implementation files might seem a little odd at first, this convention is very consistent in
Objective-C programming. Whenever an object is to be used, simply include its
interface. Also, the import indicates "HelloWorld.h" in quotation marks, not
<HelloWorld.h> alone. What's the difference? Quite simply, doing an import of a file in
quotation marks (for example, "HelloWorld.h") indicates the compiler is to look in the
local project to find the file, whereas the import of <Foundation/Foundation.h> indicates
to the compiler the file is located in some global area for all projects. The easy way to
remember is that if you created the file, use the double quotation marks. If not, use the
angle brackets (< and »).

Line 12 is the start of the implementation of the object, as follows.

@implementation HelloWorld

Line 14 is the definition of the object’s message, printGreeting. It looks identical to the
message definition in the interface file. The only difference here is that code is being
defined that implements the printGreeting message.

Lines 15-17 form the block of code that implements the message printGreeting. For
this simple message, the function NSLog is called. This base-level function simply takes
in a formatted NSString object and outputs the result to the console. The NSString class
is an Objective-C class that implements the behavior of a string of characters. Why have
a class for this? For one thing, it gives the framework a consistent object for
representing a string. Plus, there is a lot of functionality in NSString that can be used to
manipulate, compare, and convert the actual data.

The NSString object is specified here in a shorthand method. The @"Hello World!" is a
way of quickly declaring an NSString object. The at sign (@) is the symbol used to
indicate the string specified is an NSString object.

CHAPTER 6: Learning Objective-C and Xcode

Line 19 indicates to the compiler the definition of the implementation section is finished.

But wait, there is more. Now that we have a new Objective-C class defined, how is it
used? Following is another piece of code that uses the newly created class, the main
program (myprogram.m).

20 #import "HelloWold.h"

21

22 int main(void)

23

24 HelloWorld* myObject = [[HelloWorld alloc] init];
25 [myObject printGreeting];

26

27 [myObject release];

28 return 0;

29}

In this new file, the program first starts by including the HelloWorld.h file, which allows
this piece of the application access to the HelloWorld object.

In line 22, we have our main function. Remember, every Objective-C program must have
a main function.

Line 24 is a complicated one. It defines and instantiates the HelloWorld class. You first
see the text HelloWorld* myObject. This defines a variable named myObject of the type
HelloWorld, which is our new class. The asterisk (*) is used to represent a pointer to the
object. This notation basically means we don’t want the object here; we just want a way
to get to it or a pointer to where it is. Think of this like a person who gives you a
business card. You have the card, not the actual person. But the business card is a way
of getting in touch with the person.

NOTE: Instantiation makes a class a real object in the computer’s memory. A class by itself is not really
usable until there is an instance of it. Using the SUV example, an SUV means nothing until a factory builds
one (instantiates the class). Only then can the SUV be used.

The next part of the line is [[HelloWorld alloc] init]. This is a nested call. The
innermost bracketed instructions are executed first, so [HelloWorld alloc] is the first
message sent. Wait a second; we never defined the message alloc, so how is this going
to work? Well, when HelloWorld was defined, it was defined as a subclass of NSObject.
Another way to explain this relationship is to say that NSObject is the parent class of
HelloWorld. When we send the alloc message to the HelloWorld object, the system
knows that HelloWorld doesn’t know that particular message, so it automatically passes
the message to the parent class; in our case, this is the NSObject class.

Once [HelloWorld alloc] is called, the return value is a pointer to the newly allocated
HelloWorld object (allocation means we use part of the computer’s memory to store
something). But we’re not done yet. The remaining part of the nested statement, the

109

110

CHAPTER 6: Learning Objective-C and Xcode

init message, gets executed next: [[HelloWorld alloc] init]. So now the init
message is sent to the new HelloWorld object created by [HelloWorld alloc]. Now,
init simply does some base-level initialization of the object. The final return from all this
is a pointer to the new object, which is the HelloWorld object.

NOTE: In Objective-C, whenever objects are sent messages, the code must be within square
brackets, [and].

Now that we’ve created a new object, it can be used. Line 25, [myObject
printGreeting], puts our object to use. In this piece of code, we use our newly
instantiated object by sending it a message, printGreeting. The program will output the
text HelloWorld!

Line 27 sends another message to our object, the release message. This message tells
the system this program is finished using the object and to release any system
resources associated with it.

Line 28 returns the value 0 to the caller of our main function. This indicates a successful
execution.

Line 29 ends the code block and the program.

NOTE: Messages can also accept multiple arguments. Consider, for example, [myCarObject
switchRadioBandTo:FM andTuneToFrequncy:104.7];. The message here would be
switchRadioBandTo:andTuneToFrequency:. After each colon, the argument values are
placed when a message is actually sent. You might also notice these messages are named in
such a way as to make interpreting what they actually do easy to understand. Using helpful
message names is an ideal convention to follow when developing classes because it makes
using the classes much more intuitive. Being consistent in naming messages is also critical.

CHAPTER 6: Learning Objective-C and Xcode 111

Writing Another Program in Xcode

When you first open Xcode, you’ll see the screen shown in Figure 6-1.

(2]

Recents

~ MyBookstore
.../2nd Edition/Ch08_Fisher_ProgrammingBasics

[CollabToDo

"% Challenge

Welcome to Xcode — B,

Version 4.2 (4D177b) Ry XcelmeServicesTest:
Create a new Xcode project

Start building a new Mac, iPhone or iPad
application from one of the included templates

[# CoreAnimationClass

"% XcelmeWebServices
Connect to a repository Documents [Xcelme
Use Xcode's integrated source control features to ey
work with your existing projects & Cha.llen.ge.Ap_p s A [
Learn about using Xcode
Explore the Xcode development environment with
the Xcode 4 User Guide

|¥% SimpleNetworkStreams

"% SimpleGestureRecognizers
Go to Apple's developer portal wnloads
Visit the Mac and iO5 Dev Center websites at -
developer.apple.com Last opened Today 2:32 PM

| Open Other... | [V] Show this window when Xcode launches | Cancel || Open

Figure 6-1. Xcode opening screen

Figure 6-1 shows a great screen to always keep visible at the launch of Xcode. Until you
are more comfortable with Xcode, keep the Show this window when Xcode launches
check box checked. This window allows you to select the most recently created
projects, access the developer documentation (that’s the Getting started with Xcode
icon), and quickly link to Apple’s developer web site. Regardless of which document set
is chosen, all have a wealth of information for both beginning and advanced users.

Creating the Project

We are going to start a new project, so click the Create a new Xcode project icon.
Whenever you want to start a new iOS or Mac OS X application, library, or anything else,
use this icon. Once a project has been started and saved, the project will appear in the
Recents list on the right-hand portion of the display.

For this Xcode project, we’re going to choose something very simple. Make sure iOS
Application is chosen. Then select Single View Application, as shown in Figure 6-2.
Then simply click on the Next button.

112 CHAPTER 6: Learning Objective-C and Xcode

Choose a template for your new project:

[ios

Eram ework& Library 1

Other
cocos2d

& Mac OS5 X

Application
Framework & Library
Application Plug-in
System Plug-in
Other

| Cancel |

- 27
£ D -
Document-Based Master-Detail OpenGL Game Page-Based
Application Application Application
i ‘,' i
5] X

Single View Tabbed Application Utility Application Empty Application
Application

m Single View Application

This template provides a starting point for an application that uses a single view. It provides a
view controller to manage the view, and a storybeard or nib file that contains the view.

Previous [Next]

Figure 6-2. Choosing a new project from a list of templates

There are several different types of templates. These templates make it easier to start a
project from scratch in that they provide a starting point by automatically creating simple

source files.

Once the template has been chosen and the Next button pressed, Xcode presents us
with a dialog box asking for the project’s name and some other information, as shown in
Figure 6-3. Type the Product Name of MyFirstApp. The Company Identifier needs to
have some value, so just enter MyCompany. Also make sure the Device Family
selection is set to iPhone.

CHAPTER 6: Learning Objective-C and Xcode 113

Choose options for your new project:

_

Product Name | MyFirstApp
Company Identifier MyCompany
Bundle Identifier MyCompany MyFirstApp
Class Prefix | XYZ
Device Family I.@E
|| Use Storyboard

@] Use Automatic Reference Counting
|| Include Unit Tests

I_fj_elncél_l |- Previous | [Next]

Figure 6-3. Setting up the product name, company, and type

The Include Unit Tests checkbox can be left as default. In our example, we don’t have
it checked. For this example, it doesn’t matter if it’s checked or not. Once all the
information has been supplied, click on the Next button. Xcode will ask you where to
save the project. You can save it any place, but the desktop is a good choice because
it’s always visible. Also, by default, the Use Automated Reference Counting is
checked, which is preferable.’

! Chapter 13 covers more about Automated Reference Counting or ARC.

114

CHAPTER 6: Learning Objective-C and Xcode

ano 4 MyFirstApp.xcodeproj »

@ (M) (M. iPhone 5.0 Simulator | [| donde Eloz FEcOo =
T e Scheme Breakpaints Editor View Organizer
i MyFirstApp.xcodeproj [=
B2 & 4 = » B | me | 4 | [FiMyFirstApp
Rl Summary Info Build Settings Build Phases Build Rules
= App i05 Application Target

MyFirstApp
h| AppDelegate.h TARGETS
m| AppDelegate.m =
h| ViewCantroller.h § 1 Version | 1.0 Build 1.0
m; ViewController.m

ViewController.xib Devices:{ irhane

Supporting Files
* || Frameworks

Identifier MyCompany. MyFirstipp

Deployment Target

» [Products ¥ ifhone | iPod Deployment Info
Main Staryboard -
Main Interface v
Supported Device Orientations
Partrait Upside Landscape Landscape
Dowm Left Right
App lcons
Retina Display
+ | mEF (- Add Target Validate Settings

Figure 6-4. The Xcode 4.0 main screen

Once the project save location is chosen, the main Xcode screen will be shown. On the
leftmost pane is the list of source files. The right-hand two thirds of the screen is
dedicated to the context-sensitive editor. Click on a source file and the editor will show
the source code. Clicking on a .xib (pronounced zib) will show the screen-interface
editor.

NOTE: Xcode 4 introduces a completely new environment in a single screen called the
Workspace Window. For example, In Xcode 3 and earlier, Interface Builder—the system to build
an interface—was a stand-alone program. Now, with Xcode 4, simply clicking on an interface
file will show the interface within Xcode 4.

Our very first app is going to be very simple. This iPhone app will simply contain a
pushbutton. When the button is pushed, your name will appear on the screen. So, let’s
start by first looking more closely at some of the stub source code that Xcode built for
us. The nice thing with Xcode is that it will create a stub application that will execute
without any modification. Before we start adding some code, let’s look at the main
toolbar of Xcode, as shown in Figure 6-5.

CHAPTER 6: Learning Objective-C and Xcode 115

anNnm [MyFirstApp - MyFirstApp.xcodeproj —

(») (m) [myirsthopli. :] [m] Xcode ‘ = [S1=] =
Run Stop Scheme Breakpoints Editor Wiew Organizer
T O A= w» B | <4 > [Fmyfistaoe |

Figure 6-5. The Xcode 4 toolbar

At first glance, there are three distinct areas of the toolbar. The left area is used to
run/debug the application. The middle window displays status as a summary of compiler
errors and/or warnings. The far right area contains a series of buttons that customize the
editing view.

eNnm
@v .\q/. [MyFirstAppI s .] E]
Run Stop Scheme Breakpoints

Figure 6-6. Close-up of the left portion of the Xcode toolbar

As shown in Figure 6-6, the left portion of the toolbar contains a Play button (similar to
iTunes) that will compile and run the application. If the application is running, the Stop
button will not be grayed out. Since it’s grayed out, we know the application is not
running. The Scheme and Breakpoints can be left alone for now. They will be discussed
in more detail in Chapter 14.

Blala @a(a) (&)
Editor View Organizer |

Figure 6-7. Close-up of the left portion of the Xcode toolbar

The right side of the Xcode toolbar contains buttons that change the editor. The three
buttons represent the Standard Editor (selected), the Assistant Editor, and the Version
Editor. For now, just choose the Standard Editor, as shown in Figure 6-7.

Next to the Editor choices are a set of View buttons. These buttons can be toggled on
and off. For example, the one chosen in Figure 6-7 represents the current view as
shown in Figure 6-4 —a list of the program files on the left third of the screen and the
main editor on the remaining two thirds. Any combination, or none, can be chosen to
help customize the main workspace window. The last button is used to bring up the
Organizer window. We’'ll discuss this button more in Chapter 14. For now, let’s get back
to our first iPhone app.

116 CHAPTER 6: Learning Objective-C and Xcode

ano ™ MyFirstApp.xcodeproj — [h] ViewController.h
@l ‘W) (M. iPhone 5.0 Simulator | (=] | eode : Bla=s @oO (=
Run Stop Scheme Breakpaints, Editor View Organizer
1 ViewController.h +
|Em |2 & A = =» B |MyFirstApp ¢ |h) ViewController.h + No Selection
v % MyFirstApp
= 1 target, ¥05 5DK 5.0
v [MyFirstapp
h| AppDelegate.h

m AppDelegate.m
[ViewController.

v

» [Frameworks

m ViewCentrofler.m
ViewController.xib

<UIKit/UIKit.h>
Supporting Files ce ViewContretler : UIViewController

Products

Figure 6-8. Looking at the source code in the Xcode editor

Click once on the ViewController.h file, as shown in Figure 6-8. The editor shows some
Objective-C code called an Interface file. You can tell it’s an interface file because of the
@interface Objective-C directive on line #11. We'll discuss the importance of the
interface file in the next chapter.

NOTE: For now, we’re simply going to add a few lines of code and see what they do. It’s not

expected that you understand what this code means right now. What’s important is simply going
through the motions to become more familiar with Xcode. Chapter 7 goes into more depth about
what makes up an Objective-C program and Chapter 10 goes into more depth about building an

iPhone interface.

Next, we’re going to add two lines of code into this file, as shown in Figure 6-9. Line #12
defines an iPhone label on the screen where we can put some text. Line #15 tells the
compiler this Object can be sent a message called showName:. We’ll be calling this
method in order to populate the iPhone label. A label is nothing more than an area on

the

screen where we can put some text information.

CAUTION: Type the code EXACTLY as shown in the example. For instance, UILabel can’t be
uilabel or UILABEL. Objective-C is a case-sensitive language, so UILabel is completely

different from uilabel.

CHAPTER 6: Learning Objective-C and Xcode

£

// ViewController.h

/f MyFirstApp

/7

// Created by Strider on 9/5/11.

// Copyright (c) 2011 www.committed-code.com. All rights reserved.
i

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController {
IBOutlet UILabel =namelLabel;
}

lo || - (IBAction)showName: (id)sender;

@end
Figure 6-9. Code added to the ViewController.h interface file

Next, we’re going to add the code to make the message showName: do something. First,
click once on the ViewController.m file on the left. This file is an implementation file. You
can tell it’s an implementation file because of the @implementation Objective-C directive
on line #11, as shown in Figure 6-10.

/f

// ViewController.m

// MyFirstApp

i

// Created by Strider on 9/5/11.

// Copyright (c) 2811 www.committed-code.com. All rights reserved.
17

#import "ViewController.h"
@implementation ViewController . Incomplete implementation

- (void)didReceiveMemoryWarning
{
1 [super didReceiveMemoryWarningl;
16 // Release any cached data, images, etc that aren't in use.

}

Figure 6-10. The ViewController.m implementation file

Notice there is a warning symbol on line #11. Clicking on the warning will show the
warning, Incomplete Implementation, which basically means we’ve mentioned a new
message in the interface file, but it’s not to be added to the implementation file.
Figure 6-11 is the updated implementation file.

117

118

CHAPTER 6: Learning Objective-C and Xcode

'y

/! ViewController.m

// MyFirstApp

Iy

// Created by Strider on 9/5/11

// Copyright (c) 2011 www.committed-code.com. All rights reserved.
44
#import “ViewController.h"
@implementation ViewController
- (void)didReceiveMemoryWarning
[super didReceiveMemoryWarningl;
// Release any cached data, images, etc that aren't in use.
}
- {(IBAction)showName:(id}sender

[nameLabel setText:@"My name is Mitch!"];

Figure 6-11. Code added to the ViewController.m implementation file

Once lines #19-22, as shown in Figure 6-11, have been added, the warning message
will disappear. The nice thing with Xcode 4 is that it will report any warnings or errors
with the code typed in without first having to try to compile and run the program. This
immediate feedback can sometimes be a pain, but it does save time.

We now have the necessary code in place, but we don’t yet have an interface on the
iPhone. Next, we’re going to edit the interface and add two interface objects to our app.

In order to edit the iPhone’s interface, we need to click once on the ViewController.xib
file. The .xib file contains all the information about a single window or view. Apps that
have multiple views will have multiple .xib files. We will use Xcode’s interface editor to
connect a Ul object, such as a label, to the code we just created. Connecting is as easy
as clicking and dragging.

We’re not going to modify the MainWindow.xib file. In our example, the MainWindow.xib
file simply holds our view, the ViewController.xib file.

CHAPTER 6: Learning Objective-C and Xcode

ene) MyFirstApp.xcodeproj — ViewController.xib e
») (m) (M iPhones.0simu. | [=] code | = W=l O =] 0 =]
Rurt Stog Scheme Breakgoints. Editor Miew: Organizer

i ViewContrallerxib S
|z @ A = » 8 |:::- 4+ | [MyFirstApp | IM.. 0 < Vi 0 o ViewController.xib (English) 1 | \ﬁ(w| D B B ® |0

« [MyFirstapp ¥ Referencing Outlets
== 1 target, 05 SDK 5.0 ew {= Fbes Owner @
¥ | MyFirstApp = New Referencing Outles O

hi AppDelegate.h ¥ Referencing Outler Collections
m| AppDelegate.m New Referencing Outles Collection =]
h| ViewCentroller.h
m ViewController.m
(R T T SRRV O T———
® | Supporting Files
> Frameworks
* || Products
o
D {}|& =
_Lu Objects +| B8 _EI
Label - A variably sized amount of
Labeq Static text.
Round Rect Button - Intercepts touch
events and sends an action message to a
target object when it's tapped.
Segmented Control - Displays
1 | 2 | multiple segments, each of which
> ks funrtiong as a diccrata hutton
+ | O@EH® L -

Figure 6-12. The iPhone interface that we’re going to modify

Note that we’ve clicked on the last view button in the upper right part of the screen, as
shown in Figure 6-12. This opens up the utilities view for the interface. Among other
things, this utilities view shows us the various interface objects we can use in our App.
We’re only going to be concerned with the first two: Round Rect Button and Label.

The first step is to click once on the Round Rect Button from the utilities window. Next,
drag the object and drop it on the iPhone view, as shown in Figure 6-13. Don’t worry;
dragging the object doesn’t remove it from the list of objects in the utilities view.
Dragging it out will create a new copy of that object on our iPhone interface.

119

120

CHAPTER 6: Learning Objective-C and Xcode

Oec

Orientation [Portrait 4]
Status Ba.r[Gray w
Top Bar | None [
Bottom Bar[None iﬂ
¥ View
Mode | Scale To Fill [
Alpha | 1.00 3
Background |]
Tag] o3
Drawing ¥ Opaque [] Hidden
] Clears Graphics Context
() Clip Subviews

™ Autoresize Subviews

Stretching | uool@ m'[é]

oa,;w,s . 3 - i

Label - A variably sized amount of i
Label gaiic text.

Round Rect Button - Intercepts.
touch events and sends an action
message to a target object when...

FEEY

o]

Segmented Control - Displays
‘[2 multiple segments, each of which
@)

Next, double-click on the Round Rect Button
that was just added to the iPhone interface. This
allows the title of the button to be changed from
nothing to “Name”, as shown in Figure 6-14.
Many different interface objects work just like
this. Simply double-click and the title of the
object can be changed. This can also be done in
the actual code, but it’s much simpler doing it in
the interface editor.

L

Figure 6-13. Moving a button object onto the iPhone view

Once the title has been changed, drag and drop
a Label object and place it right below the
button, as shown in Figure 6-15.

Figure 6-14. Modifying the button’s title

CHAPTER 6: Learning Objective-C and Xcode

Label m
Text Label N
'I‘ Baseline | Align Centers -?‘ :
Line Breaks | Truncate Tail _ﬂ |
Alignmenti'? = ==l :
Name Lines [)) lﬁ' !
|
Font Helvetica 17.0 r)| |
: . o W
s Min Font 5ize 101,
La ™ Adjust to Fit
Text Color | NN I Default _:]
Highlighted | mmmm | Default ==
Shadow | =] I Default _:]
Shadow Offset | o) [J.K_1

Horizontal Vertical

Behavior ¥ Enabled

D {}] & =

il ovjects

| Label - A variably sized amount of m
static text.

@

Round Rect Button - Intercepts
touch events and sends an action
message to a target object when...

Segmented Control - Displays "
1 2 | multiple segments, each of which

functinne ac 3 dicerata huttan

Figure 6-15. Adding a Label object to our iPhone interface

For now, we can leave the label’s text as “Label” since it makes it easy to find on the
interface. If we clear the label’s text, the object will still be there, but there is nothing

visible to click on in order to select the label. Expand the size of the label by dragging
the center blue ball to the right, as shown in Figure 6-16.

Name

Figure 6-16. Expanding the label’s size

Now that we have both the button and the label, we can actually connect these visual

objects to our program. We start by right-mouse clicking on the button control. This
brings up a connection menu, as shown in Figure 6-17.

121

122

CHAPTER 6: Learning Objective-C and Xcode

L% Button - Name
\ ¥ Sent Events

Did End On Exit

Editing Changed

Editing Did Begin

Editing Did End

Touch Cancel

Touch Down

Touch Down Repeat

Touch Drag Enter

Touch Drag Exit

Touch Drag Inside

Touch Drag Outside

Touch Up Inside

Touch Up Outside

Value Changed

Referencing Outlets

New Referencing Outlet

Referencing Outlet Collections

New Referencing Outlet Collection

O
O
O
O
®)
O
O
O
O
®)
O
@)
O
O
O
®)

Figure 6-17. Connection menu for the button object

Next, we click and drag from the Touch Up Inside connection circle to the File’s Owner icon,
as shown in Figure 6-18. Touch Up Inside means the user clicked on the inside of the
button. Dragging the connection to the file’s owner (which is the ViewController object)
connects the Touch Up Inside event to the ViewController object. What this does is
cause our object to be notified whenever the button is pressed.

CHAPTER 6: Learning Objective-C and Xcode

¥ Sent Events

Button - Name

Did End On Exit
Editing Changed
Editing Did Begin
Editing Did End
Touch Cancel
Touch Down

Touch Down Repeat
Touch Drag Enter

Touch Drag Outside
Touch Up Inside

Touch Up Outside
Value Changed
Referencing Outlets
New Referencing Outlet

Referencing Outlet Collections
New Referencing Outlet Collection

Figure 6-18. Connecting the Touch Up Inside event to our object

O O 00@00000O00O00O0

Once the connection is dropped, a list of methods that can be used in our connection is
displayed, as shown in Figure 6-19. In our example, there is only one method and that is
the showName: method. Selecting the showName: method connects the Touch Up Inside

event to our object.

123

124 CHAPTER 6: Learning Objective-C and Xcode

Button - Name
¥ Sent Events

Did End On Exit

Editing Changed

Editing Did Begin

Editing Did End

Touch Cancel

Touch Down

| | Touch Down Repeat
@ . Touch Drag Enter
i | Touch Drag Exit

Touch Drag Inside
Touch Drag Outside
Touch Up Inside
Touch Up Outside
Value Changed
Referencing Outlets
New Referencing Outlet
Referencing Outlet Collections
New Referencing Outlet Collection

O O 0000000000000

Figure 6-19. Selecting the method to handle the Touch Up Inside event

Once the connection has been made, the details are shown on the button’s connection
menu, as shown in Figure 6-20.

CHAPTER 6: Learning Objective-C and Xcode

: O Button - Name

¥ Sent Events
Did End On Exit
Editing Changed
Editing Did Begin
Editing Did End
Touch Cancel
Touch Down
Touch Down Repeat
Touch Drag Enter
Touch Drag Exit
Touch Drag Inside
Touch Drag Outside
Touch Up Inside % File's Owner

showName:

Touch Up Outside
Value Changed

¥ Referencing Outlets
New Referencing Outlet

¥ Referencing Outlet Collections o

®)
®)
O
O
®)
®)
O
O
O
®)
O
®
O
O
O

Figure 6-20. The connection is now complete

Next, we create a connection for the label object. In this case, we don’t care about the
label events; instead, we want to connect our ViewController’s namelLabel outlet to the
object on the iPhone interface. This connection basically tells our object that the label
we want to set text on is on the iPhone interface.

Start by right-clicking on the label object on the iPhone interface. This brings up the
connection menu for the label, as shown in Figure 6-21. There are not as many options
for a label object as there were for the button object.

Label - Label
¥ Referencing Outlets
New Referencing Outlet

¥ Referencing Outlet Collections
New Referencing Outlet Collection

Figure 6-21. Connection menu for the label object

As mentioned above, we are not here to connect an event. Instead, we connect what's
referred to as a Referencing Outlet. This connection connects a screen object to a

variable in our ViewController object. Just like the button, drag and drop the connection

to the File’s Owner icon, as shown in Figure 6-22.

125

126 CHAPTER 6: Learning Objective-C and Xcode

Name

Label - Label
encing Outlets
New Referencing Outlet

¥ Referencing Outlet Collections
New Referencing Outlet Collection

Figure 6-22. Connecting the Referencing Outlet to our object

Once the connection is dropped on the file’s owner, a list of outlets in our
ViewController object will be displayed, as shown in Figure 6-23. Of the two choices,
we want to choose namelLabel. This is the name of our variable in our ViewController
object we are using.

namelLabel
view

W

Figure 6-23. Selecting our object’s variable to complete the connection

Once namelabel is chosen, we’re ready to run our program. Click on the Run button at
the top left corner of the Xcode window (see Figure 6-6). This will automatically save
your files and start the application in the iPhone emulator, as shown in Figure 6-24. By

CHAPTER 6: Learning Objective-C and Xcode 127

Carrier = 10:54 AM

Carrier = 10:54 AM

My Name is Mitch!

—

Figure 6-24. Our app running, before and after the button is pressed

clicking on the Name button, the label’s text will change from its default value of “Label”
to “My Name is Mitch!” or whatever value you put in. If you want to, go back into the
interface and clear the default label text.

Summary

The examples in this chapter were very simple, but hopefully they’ve whetted your
appetite for more complex applications using Objective-C and Xcode. In later chapters,
you can expect to learn more about object-oriented programming and more about what
Objective-C can do. Pat yourself on the back because you’ve learned a lot already. Here
is a summary of the topics discussed in this chapter:

the origins and brief history of the Objective-C language,
some common language symbols used in Objective-C,

an Objective-C class example,

128

CHAPTER 6: Learning Objective-C and Xcode

the @interface and @implementation sections of a program,

using Xcode a bit more, including entering and compiling the
HelloWorld.m source file, and

connecting visual interface objects with methods and variables in our
application object.

Exercises

Clear the default text of “Label” in our program and re-run the
example.

Change the size of the label object on the interface to be smaller in
width. How does that affect our text message?

Delete the Referencing Outlet connection of the label and re-run the
project. What happens?

If you feel you have the hang of this, add a new button and label both
to the ViewController object and to the interface. Change it from
displaying your name to displaying something else.

Chapter

Objective-C Classes,
Objects, and Methods

If you haven’t already read Chapter 6, please do so before reading this one, because it
provides a great introduction to some of the basics of Objective-C. This chapter builds
on that foundation a bit more. By the end of this chapter, you can expect to have a
greater understanding of the Objective-C language and how to use the basics to write
simple programs. For Mitch personally, the best way to learn is to take small programs
and write (or rewrite) them in Objective-C just to see how the language works.

This chapter will cover what composes an Objective-C class and how to interact with
Objective-C objects via methods. We will use a simple radio station class as an example
of how an Objective-C class is written. This will hopefully impart an understanding of
how an Objective-C class can be used. This chapter will teach you how to formulate a
design for objects that are needed to solve a problem. We’ll touch on how to create
custom objects, as well as how to use existing objects provided in the Foundation
classes.

If you’re coming from a C-like language, you’ll find that Objective-C shares several
similarities. As described in Chapter 6, Objective-C’s roots are firmly planted in the C
language. This chapter will expand on Chapter 6’s topics and incorporate some of the
concepts described in Chapter 8.

Creating an Objective-C Class

Chapter 6 introduced some of the common elements of the Objective-C language, so
let’s quickly review them.

An Objective-C class is divided into two parts: a class interface and
class Implementation.

@interface: This keyword is used to define an interface to a new
Objective-C class. This is written in an .h or header file.

129

130 CHAPTER 7: Objective-C Classes, Objects, and Methods

Methods: These are the blocks of code defined in the @interface
section of a class and implemented in the @implementation section in
an .m file.

@implementation: This keyword is used to define the actual code that
implements the methods defined in the interface. This is written in an
.m, or Objective-C class file.

As explained in Chapter 6, an Objective-C class consists of an interface and a
corresponding implementation. For now, let’s concentrate on the interface. At the most
basic level, the interface of a class tells you the name of the class, what class it’s
derived from, and what messages the class understands. Notice that the word
message is used here. To communicate with an Objective-C object, a program will send
the object messages. These messages translate directly to code in the implementation
file—this implementation code is referred to as a method.

Here is a sample of the first line from a class’s interface:
@interface RadioStation : NSObject

Here, the class name is RadioStation. The colon (:) after the class name indicates that
the class is derived from another class; that is, the RadioStation object inherits
functionality from the NSObject class. Put another way, in our example shown in
Listing 7-1, the RadioStation class is derived from the NSObject class.

TIP: If your object is not inheriting from any other foundation class, always inherit from
NSObject; without it, your class will be worthless. NSObject provides the base functions that
make new objects behave correctly. NSObject is the base class for all foundation classes. So,
inheriting from any foundation class is also fine.

Once the class name is defined, the rest of the interface file contains the main
components of the class (see Listing 7-1).

CHAPTER 7: Objective-C Classes, Objects, and Methods

Listing 7-1. An Interface File: RadioStation.h

#import <Foundation/Foundation.h>
@interface RadioStation : NSObject
{

NSString *name; Interface Declaration,
double frequency; Instance Variables
NSUInteger band;

-

OCOoONDOEWN =

double)minAMFrequency;
double)maxAMFrequency;
double)minFMFrequency;

12 double)maxFMFrequency;
13 <_ ,':: Class Methods

_.
=
+ 4 + |+

15 | - (id)initWithName:(NSString *)newName

16 atFrequency:(double)newFrequency;

17 | - (NSString *)name;

18 | - (void)setName:(NSString *)newName; Instance
19 | - (double)frequency; Methods
20 | - (void)setFrequency:(double)newFrequency;

21

22 | @end

Declaring Interfaces and Instance Variables

An Objective-C class is defined by its interface. Since objects, for the most part, are
communicated with using messages, the interface of an object defines what messages
the object will respond to. Line #1 imports the Foundation class definitions (more
on that in a bit). Lines 2-7 start the definition of the class’s interface by defining its
name (sometimes called the type) and the inherited class. Next, there is a block,
defined within the braces ({ }). This block is used to define variables that are used by
the instance of this class. These are called instance variables.

Whenever the RadioStation class is instantiated, the resulting RadioStation object has
access to these variables, which are only for specific instances. If there are ten
RadioStation objects, each object has its own variables independent of the other
objects. This is also referred to as scope, in that the object’s variables are within the
scope of each object.

Sending Messages (Methods)

Every object has methods. In Objective-C, the common concept to interact with an
object is sending an object a message:

[myStation frequency];

The preceding line will send a message to an instance of the RadioStation class named
myStation. In our example, myStation is referred to as the receiver, since it receives the
message. The message (frequency in our preceding example) is used to select which
method will be called within the object. These method names that appear in a message,
like the preceding one, are called selectors. Since a message selects the method

131

132

CHAPTER 7: Objective-C Classes, Objects, and Methods

based on the name, for all practical purposes, a message and a method name are
synonymous.

If a class does not understand a message, that message is passed to the parent object;
in this case, NSObject. If that parent object doesn’t understand the message, the
message is passed to its parent, and so on, until the message is either found or not.
This behavior is called dynamic binding, which means the method is found at runtime
instead of compile time. Dynamic binding allows an Objective-C program to react to
changes while the program is running—this is one of the huge advantages Objective-C
has over other languages.

Messages can also have parameters passed along with them. Why pass parameters?
Parameters are passed for several reasons. First (and most common), the range of
possibilities is too large to write as separate methods. Second, the data you need to
store in your object is variable—like a radio station’s name. In the following example,
you will see that it won’t be practical to write a method for each and every possible radio
frequency; so instead, the frequency is passed as a parameter. The same applies to the
station name.

[myStation setFrequency: 104.7];

The message is setFrequency:. The colon indicates that the message needs a
parameter. Messages can have several parameters, as the following example illustrates:

myStation = [[RationStation alloc] initWithName:@"KZZP" atFrequency: 104.7];

The message we’re interested in is

initWithName:atFrequency:

It’s important to understand the message and how it's structured, especially once you
actually implement the code. In your code, you’ll need to make sure you implement the
initWithName:atFrequency: method; otherwise, the program won’t work.

In the preceding example, the message consists of two parameters: the station name
and its frequency. What’s interesting about Objective-C relative to other languages is
that the methods are essentially named parameters. If this were a C++ or Java program,
the call would be

myObject = New RadioStation("KZzP", 104.7);

While a RadioStation object’s parameters might seem obvious, having named
parameters can be a bonus, because they more or less state what the parameters are
used for or what they do. Here are some examples:

[NSDictionary dictionaryWithContentsOfFile: filename];

[myString characterAtIndex: 1];
[myViewController willRotateToInterfaceOrientation: portrait duration: 60];

Using Class Methods

A class doesn’t have to be instantiated to be used. In some cases, classes have
methods that can actually perform some simple operations and return values. These

CHAPTER 7: Objective-C Classes, Objects, and Methods 133

methods are called class methods. In Listing 7-1, the method names that start with a
plus sign (+) are class methods—all class methods must start with a + sign.

Class methods have limitations. One of their biggest limitations is that none of the
instance variables can be used. Well, technically, Xcode allows instance variables to be
coded in a class method. The code will compile with a warning, but accessing or using
the instance variable does nothing—just don’t do it. Being unable to use instance
variables makes sense since we haven’t instantiated anything. A class method can have
its own local variables within the method itself, but can’t use any of the variables defined
as instance variables.

A call to a class method would look like this:

[RadioStation minAMFrequency];

Notice that the call is very similar to how a message is passed to an instantiated object.
The big difference is that instead of an instance variable, the class name itself is used.
Class methods are used quite extensively in the Mac OS X and iOS frameworks. They
are used mostly for returning some fixed or well-known type of value, or to return a new
instance of an object. These types of class methods are sometimes referred to as
factory methods, since, like factories, they create something new; in this case, a new
instance of a class. Here’s a factory method example:

1. [NSDate timeIntervalSinceReferenceDate]; // Returns a number

2. [NSString stringWithFormat:@"%d", 1000]; // Returns a new NSString object

3. [NSDictionary alloc]; // Returns a new uninitialized NSDictionary
object.

All of the preceding messages are class methods being called.

Line 1 simply returns a value that represents the number of seconds since January 1,
2001, which is the reference date.

Line 2 returns a new NSString object that has been formatted and has a value of 1000.

Line 3 is a form that is very commonly used because it actually allocates a new object.
Typically, the line is not used by itself, but in a line, like this:

myDict = [[NSDictionary alloc] init];

The preceding call is a compound call. The [NSDictionary alloc] class method
returns a new NSDictionary object. The init message is then sent to the NSDictionary
Object, which is used within a class to initialize itself (e.g., setting up instance variables).
The init function then returns the new object back to the caller.

So when would you use a class method? As a general rule, if the method returns
information that is NOT specific to any particular instance of the class, make the method
a class method. For example, the minAMFrequency in the preceding example would be
the same for ALL instances of any RadioStation object—this is a great candidate for a
class method. However, the station’s name or its assigned frequency would be different
for each instance of the class. These should not (and indeed could not) be class
methods. The reason for this is that class methods cannot use any of the instance
variables defined by the class.

134

CHAPTER 7: Objective-C Classes, Objects, and Methods

Using Instance Methods

Instance methods (lines 15-20 in Listing 7-1) are methods that are only available once a
class has been instantiated; for example:

1 RadioStation *myStation; // This declares a variable to hold the RadioStation Object.
2 myStation = [[RadioStation alloc] init]; // This creates a new object and puts it in my variable.
3 [myStation setFrequency: 104.7]; // This sets the frequency of the myStation object.
4 double f = [myStation frequency] // This instance method returns the current frequency.

Lines 3 and 4 send a message to the RadioStation object; line 3 calls the method to set
the frequency and line 4 retrieves it. The frequency is stored with the object in the
frequency instance variable. Furthermore, instance methods have access to the
instance variables defined in the interface declaration section of the class. All instance
methods must start with a hyphen (-); this easily distinguishes them from class methods,
which use a plus (+) sign.

Working with the Implementation File

Now that you’ve seen what an interface file looks like, let’s take a look at the
implementation file. First, the interface file had an .h extension; RadioStation.h, for
example. The implementation file has an .m extension—like RadioStation.m—as shown
in Listing 7-2.

Another important thing to note is that the interface and implementation files have the
same name (excluding the extension). This convention is used universally: while there is
nothing preventing an interface and an implementation file from having different names,
having different names can cause much confusion, and tools like Xcode won’t work as
well. For example, the Xcode key sequence Control + Command + up-arrow (" + 36 +
A) moves between implementation and interface files, and it will not work if the two file
names are not the same.

CHAPTER 7: Objective-C Classes, Objects, and Methods

Listing 7-2. Part of Your Implementation File

CONOOAs WN =

©

10
11
12
13
14
15
16
17
18
19

#import “RadioStaion.n” ! Import of interface files
<|I:‘ and header files

@imp'eme“taﬁon<::< Start of implementation

+ (double)minAMFrequency {
return 520.0;
}
+ (double)maxAMFrequency {
return 1610.0;

}

+ (double)minFMFrequency {
return 88.3;

}

+ (double)maxFMFrequency {
return 107.9;

}

@end

<::: Methods

When Xcode creates a class, it creates a very rudimentary stub of an implementation
file. Listing 7-2 starts with the #import statement to your interface file. The #import
statement reads in your interface file for the class. As the compiler goes through your
implementation (.m) file, it needs to know what class it’s implementing, and the interface
file provides all the information that it needs.

An #import statement tells the compiler to read in the specified file, because the
compiler needs to know about certain predefined things. For example, in your interface
file, the RadioStation class is a subclass of NSObject. The NSObject class needs to be
defined for the program to compile successfully. All of these objects are part of the iOS
Framework and are included via line #1 in the interface file from Listing 7-1.

#import <Foundation/Foundation.h>

135

136

CHAPTER 7: Objective-C Classes, Objects, and Methods

NOTE: Look at the #import statements: one uses angle brackets (< >) and the other uses plain
double quotation marks (*). The difference is that a file in the angle brackets indicates a
system-level file, which is located using a predefined path that Xcode automatically sets up for
your project. Any file that has double quotation marks is searched for in the current project. In
our example, the RadioStation.h interface file is part of our project, so we use double quotation
marks, whereas the Cocoa.h file is a system file and uses the angle brackets.

Coding Your Methods

Listing 7-2 is a very simple example, but it demonstrates what many methods look like
in a class. First of all, if you look at the implementation and interface files for one of the
class methods, you can see the similarities. The following line is from the interface file:

+ (double)minAMFrequency;

As you can see, it’s a class method because it starts with a (+). The next item (double)
is the type of value the method will return; in this case, a double. The next part in the
interface file is simply the name of the method, minAMFrequency.

The following line is from the implementation file:

+ (double)minAMFrequency {
return 520.0;
}

This line represents an implementation of the method defined in the interface. The word
“implementation” indicates that the function is coded here. It looks almost identical to
the interface file, but now contains a block with some code, rather than simply ending
with a semicolon.

In the preceding example, the implementation of the minAMFrequency class method
simply performs a return of a numeric value (a double) of 520.0.

Generally, a class has a definition of a method in an interface file and the actual code of
the method in an implementation file.

Now, we will look at the implementation of an instance method (see Listing 7-3). There
are some significant differences between an instance and a class method; for one,
instance methods have the option to use the instance variables defined in the interface
file. Also, instance methods are only available once the class has been instantiated.

CHAPTER 7: Objective-C Classes, Objects, and Methods 137

Listing 7-3. The Implementation of an Instance Method

- (id)initWithName: (NSString *)newName atFrequency:(double)newFrequency {
self = [super init];
if (self != nil) {
name = newName;
frequency = newFrequency;

return self;

Woo~NOUVTE WN

Listing 7-3 illustrates the implementation of one of the instance methods of your radio
station class. An initialization method accepts a new station name and frequency. Many
OS X and iOS classes have similar initialization instance methods. Instead of simply
initializing the class and then individually setting various values, many class initialization
methods allow special initialization methods, or, in this case, multiple values to be
passed on initialization.

In the preceding example, line 1 is the interface of your method, and it contains two
parameters: newName and newFrequency. To use this method, the caller would simply do
the following:

RadioStation myStation = [[RadioStation alloc] initWithName:@"WOW FM"
atFrequency: 102.5];

This method is also defined to return an id value. An id is a generic object, and all
Objective-C objects are of the type ‘id’, just like the class RadioStation is an object.
Now, let’s look at the rest of the implementation.

Line 2 references two special variables that you don’t have to define anywhere. The
keyword self is used to mean “this instance of this class,” so line 2 is assigning “this
instance of this class” —the value returned from the use of the second special variable:
super init. The keyword super is short for “superclass,” which can be thought of as
“the parent of this class.” Any initialization type of method will typically start with
something that looks similar to line 2.

Why is line 2 even necessary? Well, if you have an object that is derived from another
object (remember, the class is expressed as RadioStation : NSObject), you must tell
the parent object to initialize itself. The parent will do the same by telling its parent to
initialize itself, and so on, until the topmost object is reached. If another class used
yours as a parent, your code would also have to eventually get an init call so
RadioStation could be initialized. This is standard issue in the real world of Objective-C.
A class needs to tell its parent to initialize when the class is created, and it needs to tell
its parent to de-allocate itself whenever the class is going away.

Line 3 checks to see whether the [super init] call worked. If it worked, the value of
self would be something other than nil, which is a value that effectively means “not
initialized.”

138 CHAPTER 7: Objective-C Classes, Objects, and Methods

Lines 4 and 5 set up the instance variables of this class to the values passed into this
method.

Line 8 returns self to the caller. Just like the call to [super init], your initialization
function needs to return the new object back to the caller.

Using Your New Class

You’ve created a simple RadioStation class, but by itself, it doesn’t accomplish a whole
lot. In this section, you will create the Radio class and have it maintain a list of
RadioStation classes.

Creating Your Project

Let’s start up Xcode (see Figure 7-1) and create a new project named RadioStations.

Fals
Recents
L RegexExample
"%, MyBookstore
M MyFirstApp
Welcome to Xcode B e
Version 4.2 (4C177) o) ChallengeApp
Create a new Xcode project n T
Start building a new Mac, iPhone or iPad ? xcelmese""'cesTQSK
application from one of the included templates Docurments /My Projects /Ur
Connect to a repository L‘ c?r?_‘q?lmal}unc._lafs S
Use Xcode's integrated source control features to : S)
work with your existing projects % XcelmeWebServices
Learn about using Xcode o o
"_‘_5 Explore the Xcode development environment with % ChallengeApp)
il the Xcode 4 User Guide . ~FReveIopTEnt/ sancaox; 1est U
Go to Apple's developer portal o] .Sll:rjplit.afv.«l.t.et“\t\rorkStreams s
Visit the Mac and iO5 Dev Center websites at — b
developer.apple.com Last opened Today 7:55 AM
I Open Other... (¥ Show this window when Xcode launches Cancel I | Open }

Figure 7-1. Open Xcode so you can create a new project.

1. Make sure you choose an iOS application and select the Single View
Application template, as shown in Figure 7-2.

2. Once you’ve selected the template, click the Next button.

CHAPTER 7: Objective-C Classes, Objects, and Methods

Choose a template for your new project:

[ios

SEITIEES TR |
Framework & Library
Other

cocos2d

& Mac OS X

Application |
Framework & Library |
Application Plug-in
System Plug-in

Other

Document-Based
Application

Single View
Application

Master-Detail
Application

Tabbed Application

m Single View Application

27
9 -
OpenGL Game Page-Based
Application
LN, e
Utility Application Empty Application

| This template provides a starting point for an application that uses a single view. It provides a

¢ E—
Cancel)

view controller to manage the view, and a storyboard or nib file that contains the view.

Previous (Next)

P

Figure 7-2. Selecting a template in the new project window

Next, set the Product Name (Application name) to RadioStations.

Set the Company Identifier (a pretend company will do) and set the
Device Family to iPhone (as shown in Figure 7-3). Also, make sure that
“Use Automatic Reference Counting” is checked.

139

140 CHAPTER 7: Objective-C Classes, Objects, and Methods

Choose options for your new project:

|\

Product Name
| Company Identifier
Bundle Identifier

Class Prefix

Device Family

RadioStations

com.committed-code

com.committed-code.RadioStations

XYZ

["iPhane 5

] Use Storyboard
E Use Automatic Reference Counting

] Include Unit Tests

Figure 7-3. Naming the new iPhone application

5. Click the Next button and Xcode will ask you where you want to save

(Previous

your new project. You can save the project on your Desktop or
anywhere in your Home folder. | like the Desktop because it’s easy to
spot. Once you’ve made your choice, simply click the Create button.

6. Once the Create button has been clicked, the Xcode Workspace
Window should be visible, as shown in Figure 7-4.

CHAPTER 7: Objective-C Classes, Objects, and Methods 141

4 » | [[raciostations
PROJECT | | Summary | Info Build Settings Build Phases Build Rules
1™ RadioStations |05 Application Target

ot T
¥ target, 105 50K 5.0

v || RadioStations
%‘jﬂ::;:::; m“i“' T Identifier com.committed-code.RadicStations
IE:W“CWW:%" Version | L.O Build L0
| ViewController.m o
.T- ViewController.xib Devices [(Phone 3]
» (L] Supporting Files Deployment Target (5.0 =]
» [_] Frameworks
» [Products ¥ iPhone / iPod Info
Main Storyboard =]
Main Interface =]
Supported Device Orlentations
ol =
Upside Landscape Landscape
Down Left Right ¥
(] ()
+ | OEE ™ \ Add Target Validate Settings. v
Figure 7-4. The Workspace Window in Xcode
Adding Objects
Now, you can add your new objects.
1. First, create your RadioStation object. Right-click the RadioStations
group folder and select New File... (as shown in Figure 7-5).

8anon _ |1 RadioStations.xcodeproj =
e : S e T ————

| 4 » | [MRadiostations

PROJECT | Summary | Info Build Settings Bulld Phases Bulld Rules
B 105 Application Target .
Show in Finder
I
ﬁg;ﬁ Open with External Editor Identifier com.committed-code facioStatons
In viewe Open As Version | L0 Build 1.0
m| Vi (iphore 1)
4 W & Devices | iPhone
» [Suppt New Project... Deployment Target 5.0 a
> EFamed o Group
» [Products
- " New Group from Selection Y iFhons | fPod lofo
Sort by Name Main Storyboard 2]
Sort by Type Main Interface B
Add Files to “RadioStations”...
Supported Device Orientations
Delete ——
() 1
Source Control > D 0 @
Project Navigator Help » Portrait Upside Landscape Landscape
T Down Left Right 4
v
+ OEF ™ | Add Target Validate Settings 4

Figure 7-5. Adding a new file

142 CHAPTER 7: Objective-C Classes, Objects, and Methods

2. The next screen, shown in Figure 7-6, asks for the new file type. Simply
choose Objective-C class from the Cocoa Touch group, and then click
Next.

Choose a template for your new file:
W ios

| Cand C++
User Interface

UlViewController Objective-C Objective-C protocol
Core Data subclass category
Resource
Code Signing
Other T
& Mac O5 X
Cocoa Objective-C test
Cand C++ case class
User Interface
Core Data
Resource
Other
Objective-C class
An Objective-C class, with a header that includes the <Foundation/Foundation.h> header.
— r
(Cancel) Previous Next

Figure 7-6. Selecting the new file type

3. On the next screen, enter “RadioStation” as the class and select
NSObject as the “Subclass Of.” This means that your new class will be
a subclass of NSObject, as shown in Figure 7-7.

CHAPTER 7: Objective-C Classes, Objects, and Methods 143

Choose options for your new file:

Class | RadioStation

Subclass of :I_ISGBJECL_ .l]

4
Figure 7-7. Choosing your new object’s subclass

4, The next screen asks you where to create the files. Simply click the
Create button, since the location in which Xcode chooses to save the
files is within the current project, as shown in Figure 7-8.

[« »] (88 = hm) [(3RadioStations M @ p
v DEVICES | lh) AppDelegate.h

= Analytical-IV m AppDelegate.m

I ipisk] en.lproj

:; Macintosh HD m mzur!.m

RadioStat...Info.plist

¥ SHARED h| RadioStat...Prefix.pch

i Site A h| ViewController.h
¥ PLACES m| ViewController.m

4 Desktop

(N strider A

/A Applications v i

Group [[] RadioStations =g

Targets # oA RadioStations

[New Folder) { Cancel ;.\ (Create)

Figure 7-8. Choosing where to create your new files

#

144

CHAPTER 7: Objective-C Classes, Objects, and Methods

5. Your project window should now look like Figure 7-9. Click the
RadioStation.h file. Notice that the stub of your new RadioStation
class is already present. Now, fill in the empty class so it looks like
Listing 7-1, your RadioStation interface file.

amnm RadioStati. x(‘(i—'ﬁ:.“— ion.h (o)
Xcod)
O Q=m0 = 1]
E Editor View Organizer
R @ A = » B & 4 » [RadicSutions | | ' [h! RadioStation.h » No Selection
| . s RadioStations 1 I
| ¥ &2 1 rarget, i05 SDK 5.0 1l // RadioStation.h
| | 3 / RadioStations
| || RadioStations 4 i”, ACLPaRATAGG
{h| AppDelegate.h /¢ Created by Strider on 9/17/11.
|ml AppDelegate.m & // Copyright (c) 2011 www.committed-code.com. All rights reserved.
|h! ViewController.h ?
Im] ViewController.m 9| #import <Foundation/Foundation.hs
+ ViewController.xib 10
1 uppnmng Flles 11| @interface RadioStation : NSObject

@end

\m| RadioStation.m
Frameworks

|| Products

Figure 7-9. Your newly created file in the workspace window

Writing the Implementation File

The RadioStation.h file now defines the instance variables, class methods, and instance
methods of your new class. Let’s move on to the implementation file.

1. The implementation file you’ll use here has been simplified a bit from our
example several pages ago, but will work perfectly for our radio station
simulation. Click the RadioStation.m file, and put code to your class, as
shown in Listing 7-4.

CHAPTER 7: Objective-C Classes, Objects, and Methods

Listing 7-4. The RadioStation Implementation File

co~NOUVIT P WN PR

APPADPRPDRPWWWWWWWWWWENNNNNNNNNNRRPRPRRRPRPRRRPR
APUWNPOOVWONOUIAWNRPROOUOKNOUIRARWNRPROWOVWONOOUIAWNE OV

2,

#import "RadioStation.h"
@implementation RadioStation

+ (double)minAMFrequency {
return 520.0;

+ -

(double)maxAMFrequency {
return 1610.0;

+ -

(double)minFMFrequency {
return 88.3;

+ -

(double)maxFMFrequency {
return 107.9;

(id)initWithName: (NSString *)newName atFrequency:(double)newFrequency {
self = [super init];
if (self != nil) {
name = newName;
frequency = newFrequency;

return self;

(NSString *)name {
return name;

(void)setName: (NSString *)newName {
name = newName;

(double)frequency {
return frequency;

(void)setFrequency: (double)newFrequency {
frequency = newFrequency;

@end

We will come back to a few items in Listing 7-4 and explain them further
in a moment; however, with the RadioStation class defined, you can
now write the code that will actually use it.

First, click on the ViewController.h file. You’ll need to define a few
instance variables for this class to use, as shown in Listing 7-5.

145

146 CHAPTER 7: Objective-C Classes, Objects, and Methods

Listing 7-5. The Updated ViewController.h Interface File

#import <UIKit/UIKit.h>
@class RadioStation;

1
2
3
4
5 @interface ViewController : UIViewController
6
7
8

{
RadioStation *myStation;
IBOutlet UILabel* stationName;

9 IBOutlet UILabel* stationFrequency;
10 IBOutlet UILabel* stationBand;
1}

12
13 @end

On Line #3, you’ll add what’s called a forward declaration. This basically tells the
compiler that you’ll be using a class that you’ve not defined yet, called RadioStation.
You’ll be importing your header file eventually, but not here—that’s why you need this
forward declaration now.

Lines #6-8 define some new instance variables. Line #8 is your RadioStation object.
Lines #9-11 are going to be used by your iOS interface to show some values on the
screen (more on these later). Also, don’t forget to include the curly braces ({ ... }).
Since the original AppDelegate didn’t have any instance variables declared, there was
no need for the braces.

4, Next, from the main project window, click the ViewController.m file.
Listing 7-5 shows the top portion of the ViewController.m file. The
following method is called whenever the view is loaded into memory:

viewDidLoad

You'll start by putting some of your initialization code here.

CHAPTER 7: Objective-C Classes, Objects, and Methods 147

Listing 7-5. Allocating Your RadioStation Object

coO~NOUVT D WN -

o

10
11
12
13
14
15
16
17
18
19
20
21

#import "ViewController.h"
#import "RadioStation.h"

@implementation ViewController
- (void)didReceiveMemoryWarning

[super didReceiveMemoryWarning];
// Release any cached data, images, etc. that aren't in use.

}
#pragma mark - View lifecycle
- (void)viewDidLoad
[super viewDidlLoad];
// Do any additional setup after loading the view, typically from a nib.

myStation = [[RadioStation alloc] initWithName:@"STAR 94"
atFrequency:94.1];

}

Line #2 is the import statement that imports your RadioStation Object.

Lines #18 and 19 allocate a new RadioStation object and store it into your new instance
variable, myStation.

Creating the User Interface

Next, the main window has to be set up in order to display your station information.

To start off, click the ViewController.xib file, as shown in Figure 7-10.
This file is the main iPhone screen.

148

CHAPTER 7: Objective-C Classes, Objects, and Methods

Click Here to show this
Utilities Window.

o
Label | Xcode Specific Label
XBE ueee
Object ID 6
Lock { Inherited - (Nothing) %]

MNotes [‘With Selection

aiwi

Oec

- Round Rect Button - Intercepts
\ touch events and sends an action
message 1o a target object when...

~ Segmented Control - Displays

2 | multiple segments, each of which
. functions as a discrete button,

! Text Field - Displays editable text
Fle

G

& [T

+|0EF®) o

Figure 7-10. Adding a Label object to your iPhone screen

2. Drag and drop three Label objects onto the screen, as shown in Figure 7-11. The
labels can be aligned in any manner, or as shown in Figure 7-11.

3. You’re going to need space, however. Once the Label objects are on the
iPhone screen, double-click the Label object in order to change its text
so that the iPhone screen looks something like Figure 7-11.

CHAPTER 7: Objective-C Classes, Objects, and Methods

Station Name:
Frequency:

Band:

|Drag the "Label” object|
to the iPhone screen
| anddrop it here. |

rom\l"iewC;ntroHer
¥ Referencing Outlets

(window

— ® Radio Stations ...

New Referencing Outlet

¥ Referencing Outlet Collections

New Referencing Outlet Collection

O 0@ (O

0D {} | & =

\}_lj Objects E =)
o
|

Label - A variably sized amount of m
static text. |

| muTtlpIe segments, each of which
Eo :

Round Rect Button - Intercepts
touch events and sends an action
message to a target object when...

S d Control - Display

ar 3 hutton

Figure 7-11. All three labels on the iPhone screen

4, Next, add a Round Rect Button object to the screen, as show in Figure 7-12. This
button, when pressed, will cause the screen to be updated with your radio station

information.

149

150

CHAPTER 7: Objective-C Classes, Objects, and Methods

Did End On Exit
Editing Changed

Station Name:
Freguency:

Band:

Editing Did Begin
Editing Did End
Touch Cancel
Touch Down

Touch Down Repeat
Touch Drag Enter
Touch Drag Exit
Teuch Drag Inside
Touch Drag Qutside
Touch Up Inside
Touch Up Qutside
Value Changed

0000000000000

¥ Referencing Outlets

New Referencing Outlet

¥ Referencing Outlet Collections
New Referencing Outlet Collection

ol |ol

Drag and Drop a Round

Rect Button

D {} @ = '

T

‘_I_m Objects —=] R E-] |

|

b Label - A variably sized amount of m
\ Label static text. |
|

il == _R;u-;dﬂlie_c.t Eu‘l:n:—-i;t;ce_pts— T

touch events and sends an action

| —' message to a target object when...

i | |
Segmented Control - Displays) .

11 muitiple segments, each of which vl

P L functinne acadi hutren _.i
Q A

Figure 7-12. Adding a button to the screen

5. Just like the Label object, simply double-click the Round Rect Button
object in order change its Title to My Station.

6. Next, you need to add the Label fields that will hold the Radio Station
information. These fields are situated just after the existing labels, as
shown in Figure 7-13. Once the label is placed, it needs to be re-sized
so that it extends to the edge of the iPhone screen.

CHAPTER 7: Objective-C Classes, Objects, and Methods

L

Station Name: Labe! ':D

Frequency: | brag the middle right | Frequency:
dot on the Label to |
Band: Stretciii | Band:
My Station My Station

Figure 7-13. Adding another Label object

NOTE: Stretching the Label object allows the Label’s text to contain a reasonably long string. If
you didn’t have a sized label, the text would either be cut off (since it wouldn’t fit), or the font

size would get smaller'.

7. Repeat adding and sizing a Label object next to the existing Frequency
and Band Labels, as shown in Figure 7-15. It’'s OK to leave the default

Figure 7-14. Stretching the Label object

text of the Label set to “Label” for now.

! By using either code or the Interface Builder, you can customize how the Label object reacts to text that is

too large to fit. The behavior described is based upon typical defaults for the Label object.

151

152 CHAPTER 7: Objective-C Classes, Objects, and Methods

8 Text Label ""'
3 - =] | Baseline .Alig.n Centers ﬂ I
Line Breaks | Truncate Tail ¢]
Station Name: Label Alignment [Fe= = = ||
Frequency: Label _ Lines 1 '?_
[Font Helvetica 17.0 (1)
Band: Label Min Font Size 10 7] |
Adjust to Fit -V
Text Color | MR | Default D)
My Station el _E_!._De'au"__)
Shadow | =3 I Default ﬂ
Shadow Offset 0 f? =1 r?
Horizontal Vertical
Behavior ¥ Enabled
¥ View ; :
= _ e
0O {} & =
[[}l objects i (23]

Label - A variably sized amount of @
Label static text.

Round Rect Button - Intercepts
touch events and sends an action
______ message to a target object when. ..
Segmented Control - Displays "
1 2 | multiple segments, each of which

— Funrtinne ac 3 diccrata hutran

4
Figure 7-15. Adding another Label object

Hooking Up the Code

Now that all the user interface objects are in place, you can begin to hook up these
interface elements to the variables in your program. As you saw in Chapter 6, you do
this by connecting the user interface objects with the objects in your program.

1. Start by connecting the label by Station Name to your variable, as
shown in Figure 7-16. Right-click the Label object next to the “Station
Name:” label to bring up the Connection Window.

CHAPTER 7: Objective-C Classes, Objects, and Methods

w | 4 » | 5RadioStations R. V.. V.. View Label - Label | D B B8 % «£ ©
v Custom Class

Class | UlLabe Ol

¥ User Defined Runtime Attributes
Key Path Type Value

Station Name: Labef Label - Label
¥ Referencing Outlets

& 3 New Referencing Outlet
Frequency: Labes Referencing Outlet Collectiag

New Referencing G

Band: Labe

¥ Identity

Label | Xcode S
| L £ The's Owner *
- My Station Object ID 14
?\J;J Lock | Inherited - (Nothing) 3
Notes ! Show With Selection
2 Click and drag a D {}] & =
—— connection. [l ovjects BIEE
Label - A variably sized amount of 1
Label static text.

Figure 7-16. Creating a connection

2. When the connection is dropped on the “File’s Owner” icon, another
small menu will be shown. Click the instance variable name that you
want to display in this label—in this case, you want the stationName
instance variable, as shown in Figure 7-17.

153

154 CHAPTER 7: Objective-C Classes, Objects, and Methods

el 4) ;RaduoStatuons R. V.. V.. View Label - Label D B8 9 £ ©
Custom Class

Class

= =
User Defined Runtime Attributes

Key Path Type Value
Station Name: Labefy] Label - Label
¥ Referencing Outlets
New Referencing Outlet o
¥ Referencing Outlet Collections
New Referencing Outlet Collection O

Frequency: Lab

Band: Labe

Identity
Label | x

stationBand 5

stationFrequency 2
_stationFrequent e
" stationName My Station Object ID 1
e e Lock | Inherited - (Nothing) &
Notes [_| Show With Selection
Choose the ‘stationName’ D {} % =
instance variable. [l objects :) (88 =

Label - A variably sized amount of J
static text.

| Label

Figure 7-17. Connecting the interface Label to your stationName instance variable

3. Now, the interface Label object is connected to the stationName
instance variable. Whenever you set the instance variable’s value, the
screen will also be updated. Repeat the above connection steps for
the Frequency and Band labels.

Next, you need to connect the button to your code; but, before you can do that, you
need to add some code to handle the actual button-click, as shown in Listing 7-7. Add
this code to the bottom of the ViewController.m file.

Listing 7-7. Creating the buttonClick Function

1 - (IBAction)buttonClick:(id)sender {

2 [stationName setText:[myStation name]];

3 [stationFrequency setText:[NSString stringWithFormat:@"%.1f",

4 [myStation frequency]]];

5

6 if (([myStation frequency] >= [RadioStation minFMFrequency]) &&
7 ([myStation frequency] <= [RadioStation maxFMFrequency])) {
8 [stationBand setText:@"FM"];

9 } else {

10 [stationBand setText:@"AM"];

11 }

12}

Listing 7-7 is a method that you will set up to be called whenever the button on the
iPhone screen is pressed. First, on line #1, you’ll notice the IBAction type. This lets
Xcode know that this method can be called as a result of an action. So, when you go to
connect an action to your application, you will see this method.

CHAPTER 7: Objective-C Classes, Objects, and Methods

Line #2 and Line #3 both set the text fields to the values found in your RadioStation
class.

[stationName setText:[myStation name]]

The stationName variable is what you just connected to the user interface Label object,
and [myStation name] is used to return the name of the station.

Line #3 effectively does the same thing as line #2, but you have to first convert the
double value (the station’s frequency) to an NSString. The “@"%.1f” means that you
convert a floating point value and should only see one digit after the decimal point.

Lines #6-11 make use of both your instance variables and your class methods of the
RadioStation class. Here, you simply check to see if the frequency of the radio station is
between minFMFrequency and maxFMFrequency. If so, the station is an FM station;
otherwise, assume it’s the AM band. Lines #8 and #10 will show the band value on the
screen.

You also need to make sure that your interface file contains the new method that you
just coded. As shown in Listing 7-8, simply add the following line before the @end in the
ViewController.h file:

Listing 7-7.
; - (IBAction)buttonClick:(id)sender;
3 @end

Now you can connect your Button on the iPhone screen to the newly created method,
as shown in Figure 7-18.

1. Right-click the Button to bring up the connection window.

155

156 CHAPTER 7: Objective-C Classes, Objects, and Methods

¢ | |View)| |Button - My Station D B 8 % £ ©

¥ Custom Class

> T S 0 i Class | UlButton of] |
| [v User Defined Runtime Attributes
! 'Key Path TV;‘;IE Value
Station Name: Label @
Frequency: Label |
| 1=
Band: Label | =
| | A Identity
| | Label | Xcode Specific Label
i ' : My § Button - My Station tiD 13

¥ Sent Events

: ock | Inherited - (Nothing) -
| D'?_Em Sy 5 ji btes | Show With Selection
| Editing Changed)
Editing Did Begin :
Editing Did End QO g 1104
Touch Cancel 0 {} |
dtraly = =
ovWieRepe) h oo =
Touch Drag Enter !
Touch Drag Exit abel - A variably sized amount of j

Touch Drag Inside o atic text.
Touch Drag Outside
Hoertlabis o o pund Rect Button - Intercepts
Touch Up Outside (buch events and sends an action
Value Changed essage to a target object when...
Referencing Outlets

| Mew Referencing OQutiet @ egmented Control - Displays

L TSP eTTa JrorrYY Referencing Outlet Collections uIti_pIe segmer_\ts. each of which
New Referencing Outlet Collection nctions as a discrete button.

. ext Field - Displays editable text
U v Tovt | and conds an actinn maccans ta 3

Figure 7-18. Connecting an event to your new method

2. As you did for the Label objects, drag a connection from the Touch Up
Inside event and drop it on the Radio Station App Delegate. This will
bring up the IBAction method you just created in Listing 7-7.

3. Simply choose buttonClick: (as shown in Figure 7-19). This will connect
the Touch Up Inside event to your action, which will then set the Label
text values to your Radio Station.

TIP: The “Round Rect Button” sends the Touch Up Inside event whenever a user touches the
inside of the button and then releases—not until the user lifts his or her finger does the event
actually get sent.

CHAPTER 7: Objective-C Classes, Objects, and Methods

e ' . My Stafg Button - My Station
Ei I ¥ Sent Events
|ﬂl]'| Did End On Exit
Editing Changed
Choose the ‘buttonClick:’ Editing Did Begin
action. Editing Did End

Touch Cancel

Touch Down

Touch Down Repeat

Touch Drag Enter

Touch Drag Exit

Touch Drag Inside

Touch Drag Outside

Touch Up Inside

Touch Up OQutside

Value Changed

Referencing Outlets

New Referencing Outlet
Referencing Outlet Collections
New Referencing Outlet Collection

(ole]+lelelolelolololololole)

Figure 7-19. Choosing an action to connect to the Touch Up Inside event

Running the Program

Once the connection has been made, you’re ready to run and test your program! To
do this, simply click the Run button at the top-left of the Xcode window, as shown in
Figure 7-20.

8o
@‘fa“ [Rediostati 3] [m]
Roh Stop Scheme Breakpoints

Click the 'Run’ button to
start the program

Figure 7-20. Running your program

If there are no compile errors, the iPhone emulator should come up and you should see
your application. Simply click the “My Station” button and the radio station information
will be displayed, as shown in Figure 7-21.

157

158 CHAPTER 7: Objective-C Classes, Objects, and Methods

Carrier = [11:18 AM

Station Name: STAR 94

Frequency: 94.1

Band: FM

My Station

Figure 7-21. Showing your Radio Station information

If things don’t quite look or work right, retrace your steps and make sure all the code
and connections are in place as described above.

Taking Class Methods to the Next Level

In your program, you’ve not taken advantage of all the class methods for RadioStation,
but this chapter does describe what a class method is and how it is used. Use that
knowledge to try a few of the exercises mentioned at the end of this chapter. Just play
around with this simple working program by adding or changing class or instance
methods to get an idea of how they work.

CHAPTER 7: Objective-C Classes, Objects, and Methods 159

Accessing the Xcode Documentation

We cannot emphasize enough the wealth of information provided in the Xcode
Developer Documentation dialog. When Xcode is opened, the Help menu will appear
in the main menu (see Figure 7-10). This is where the Developer Documentation window
can be opened.

Help
searc]
Xcode Help
SScode UserCuide | | . . . o — —
Documentation and APl Reference N3 |
Release Notes~ . T T
Quick Help for Selected Item ~87

Search Documentation for Selected Text ~\ 3/

Figure 7-22. The Xcode help menu

Once opened, the search window can be used to look up any of the classes we’ve used
in this chapter, including the NSString class documentation, as shown in Figure 7-23.

(L HaNd) Organizer - Documentation
| 1 & " &
: o & m | uw | 4 | [gi0S 4.3 Library ; ﬁDaIa Managem... ﬁStrings. Text, & Fonts) || NSString Class Reference |
;_ Q= NSString ! Next O
| Y e e s NSString Class Reference

|=] NSString Class Reference
|L%| NSString Class Reference
| NSString Class Reference

I ts from NSObject
| Liass neferen |
55tring Class Reference Conforms to NSCoding
undatien Functions Refer, Nsc.ap\.-ing

IKit Function Reference NSMutableCopying
| UIKit Funetion Reference NSObject (NSObject)

|L=] UIKit Function Reference
— System Guides Framework /System/Library/Frameworks/Foundation.framework

Show 70 Mere Results
I3 Foundation F Ref e Availability Available in i05 2.0 and later.

{5l UIKit Framework Reference

= - : : Declared in NSPathUtilities.h

u 5"f“9 P“’gra'"'"!“g c”!de NSString.h

u String Programming Guide NSURL.h

U String Programming Guide

uj String Programming Guide Companion guides String Programming Guide

(&)l Property List Programming Guide Property List Programming Guide
L P

Figure 7-23. The developer documentation window

There are several different things to discover about the NSString class shown in
Figure 7-23. Go through the documentation and the various companion guides that
Apple provides. This will give you a more thorough understanding of the various classes
and the various methods supported by them.

160

CHAPTER 7: Objective-C Classes, Objects, and Methods

Summary

Here we are at the end of another chapter. Once again, congratulate yourself for being
able to single-handedly stuff your brain with a lot of information! Here is a summary of
what was covered in this chapter:

Objective-C classes review
Interface files
Instance variables
Class methods
Instance methods
Implementation files

Defining the method’s interface in the interface file and putting
code to that interface in the implementation file

Limitations of using class methods vs. instance methods

Initializing the class and making use of the instance variables
Making use of your new RadioStation object

Building an iPhone App that uses your new object

Connecting interface classes to instance variables

Connecting user interface events to methods in your class.

Exercises

Change the code that creates your RadioStation class and make the
station’s name much longer than what can appear on the screen.
What happens?

Modify the RadioStation class using the instance variable that will
indicate whether the station is AM or FM (hint: you’ll need to change
the initWithName:Frequency: method to accept a new parameter for
the radio band).

Change the current button and add a new button. Label the buttons
FM and AM. If the user clicks on the FM button, show an FM station.
If the user clicks on the AM button, display an AM station (hint: you’ll
need to add a second RadioStation object to the
RadioStationsAppDelegate.h interface file).

Clean up the interface a little by making sure that the user doesn’t see
the text “Label” when the iPhone application first starts.

CHAPTER 7: Objective-C Classes, Objects, and Methods

Fix the issue by using the interface tool.

How could you fix this by adding code to the application
instead?

Add more validation to the (IBAction)buttonClick:(id)sender
method. Right now, it validates FM ranges but not AM ranges. Fix the
code so that it also validates an AM range.

If the Radio Station frequency is out of bounds, use the existing
labels to display some type of error message.

161

Chapter

Programming Basics in
Objective-C

Objective-C is a very elegant language. It mixes the efficiency of the C language with the
object-oriented goodness of Smalltalk. This combination was introduced in the mid-
1980s and is still powering the fantastic applications behind the iPhone, iPad, and Mac
OS X. How does a language that is over 20 years old stay relevant and useful after all of
that time? Well, some of its success has to do with the fact that the two languages that
make up Objective-C are very well tested and very well designed. Another reason is less
obvious; the various frameworks available for the iPhone and Mac OS X make
developing full-featured applications much easier. These frameworks benefit from the
fact that they have been around awhile, which equates to stability and high functionality.
Lastly, Objective-C is highly dynamic. While we won’t be focusing on that particular
feature in this chapter, the dynamic nature of Objective-C provides a flexibility not found
in many compiled languages. With all of these great features, Objective-C and the
corresponding frameworks provide an excellent palette from which to create a
masterpiece!

This chapter will introduce some of the more common concepts of Objective-C, such as
properties and collection classes. This chapter will also show how properties and
instance variables are used from within Xcode when dealing with user-interface
elements. This sounds like a lot to accomplish, but Objective-C, the Foundation
framework, and the Xcode tool provide a wealth of objects and methods and a way to
build applications with ease.

Collections

Understanding collections is a fundamental part of learning Objective-C. In fact,
collection objects are fundamental constructs of nearly every modern object-oriented
language library—sometimes they are referred to as containers. Simply put, a collection
is a type of class that can hold and manage other objects. The whole purpose of a
collection is that it provides a common way to store and retrieve objects efficiently.

163

164

CHAPTER 8: Programming Basics in Objective-C

There are several different types of collections. While they all fulfill the same purpose of
being able to hold other objects, they differ mostly in the way objects are retrieved. Here
is a list of the most common collections used in Objective-C:

NSSet

NSArray
NSDictionary
NSMutableSet
NSMutableArray
NSMutableDictionary

Notice that, among the three collection classes listed, there is one that contains the
word Mutable. A mutable (vs. non-mutable) class is one that can have items added and
removed from it after the collection has been created. Mutable means that it can be
modified. Non-mutable collections must be initialized with all of their values when they
are first created and, thereafter, cannot be modified.

Using NSSet

The NSSet class is used to store an unordered list of objects. Unordered means exactly
that—the objects are stored in the set without regard to order. The advantage of the
NSSet is performance—it’s the fastest collection class available. Use NSSet when it is
necessary to store a collection of objects and the order in which they are stored or
retrieved is not crucial.

Here is a typical NSSet initialization method:
NSSet *mySet = [NSSet setWithObjects:@"String 1", @"String 2", @"Whatever", nil];

As you can see, the set is initialized with a list of objects, in this case a list of strings. The
last object must be nil to indicate the end of the list of objects. Also, the example uses
strings, but an NSSet can be comprised of any object or even different types of objects,
including objects from other collections!

TIP: All collection classes have the ability to store and manage any type of object at once.
However, in typical cases, most programmers tend to store a single type of object in any one
particular collection class to make the code less complicated.

In order to go after data in the NSSet, a few typical methods of accessing the elements
within an NSSet are used.One method, as shown in Listing 8-1, is to use what is referred
to as a fast enumerator and retrieve each object one by one. Note that the fast
enumeration below (lines #3-5) works on all collection classes.

CHAPTER 8: Programming Basics in Objective-C

Listing 8-1. /terating through an NSSet via an enumerator.
NSSet *mySet = [NSSet setWithObjects:@"One", @"Two", @"Three", nil];

for (id value in mySet) {
NSLog(@"%@", value);

UuhWwWNPRE

NOTE: On line #3, the class of the value is id. Recall that an id is a generic type that represents
any Objective-C class. The reason that id is used is that the value that we store in the NSSet can
be of any type. For example, if the NSSet were to contain a class called Animal and another
class called Zoo, the code would fail because we don’t have a class that is both a Zoo and an
Animal type. On the other hand, if the NSSet always had the same class, we could substitute
that class for the id on line 3.

Another common method of accessing an NSSet, especially when programming for an
iOS device capturing touches, is to use the following:

Listing 8-2. Selecting any of the objects in the NSSet collection.

1 NSSet *mySet = [NSSet setWithObjects:@"One", @"Two", @"Three", nil];
2
3 NSString *value = [mySet anyObject];

Line #3 calls the method anyObject. This does exactly as it says; it returns any object
from the set. The object returned is determined at the set’s convenience so there can be
no guarantee that the first item will be returned. Of course, using the anyObject method
assumes that any object will do. As previously mentioned, when dealing with touches on
an iOS device, sometimes all that’s necessary is to know that at least one finger has
touched the screen. Each touch to the screen is stored as an entry in the NSSet, one for
each finger. Using anyObject will return any one of the touches.

There are many other ways to actually get objects from an NSSet —far too many to cover
in this chapter.! However, there is one particular method that involves the next
collection—the NSArray class.

Using NSArray

The NSArray class is like any other collection, in that it allows the programmer to manage
a group of objects. The NSArray differs from the NSSet in that the NSArray allows an
object to be retrieved by its index into the array. An index is the numeric position that an
object would occupy in the NSArray. For example, if there are three elements in the

1http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/CIasses/NSSet_CIass/
Reference/Reference.html

165

166

CHAPTER 8: Programming Basics in Objective-C

NSArray, the objects can be referenced by an index from 0 to 2. As with most things in
the C and Objective-C languages, an index starts at 0.

Listing 8-3. Accessing objects within an NSArray.

NSArray *myArray = [NSArray arrayWithObjects: @"One", @"Two", @"Three", nil];

NSLog (@"%@", [myArray objectAtIndex:0]);
NSLog (@"%@", [myArray objectAtIndex:1]);
NSLog (@"%@", [myArray objectAtIndex:2]);

Uuh WwWN PR

As can be seen, objects within the NSArray can be retrieved via the index. The index
starts at 0 and can’t exceed the size of the array—1. The size of the array can be easily
calculated by sending a count message to the NSArray object:

int entries = [myArray count];

In fact, every collection type, NSSet, NSArray, NSDictionary (and their mutable
counterparts) all respond to the count message.

NOTE: You may have noticed that the NSLog command passes a string like :@"%@". The %@ is a
format that can be used with any Objective-C object. It simply tells the object to describe itself. In
the case of NSString, the description is the string itself. Different types of objects have different
descriptions. In Listing 8-3 the [myArray objectAtIndex:0] returns an NSString object. If
the argument is NOT an Objective-C class, your program will crash!

As mentioned earlier, there is a method to get at an NSSet using an NSArray.
Listing 8-4. Creating an NSArray from an existing NSSet.

1 NSSet *mySet = [NSSet setWithObjects:@"One", @"Two", @"Three", nil];
2 NSArray *myArray = [NSSet allObjects];

3

4 NSLog(@"%@", [myArray objectAtIndex:1);

Aside from fast enumeration, using the allObjects method will create an NSArray from
the NSSet. Generally, one wouldn’t create a set and then copy it into an array— why not
just create the array in the first place? Well, sometimes a list of objects is given only in
an NSSet (touchesBegan: withEvent: method when dealing with touches on an iOS
device is a perfect example).

NSDictionary

The NSDictionary class is also a very useful type of collection class. It allows the
storage of objects, just like the NSSet and NSArray, but the NSDictionary is different in
that it allows a key to be associated with the entry. For example, an NSDictionary could
be created that stores a list of Animal objects. Instead of accessing the Animal objects
by an index like an NSArray, the NSDictionary could use an NSString like “monkey”.

CHAPTER 8: Programming Basics in Objective-C

However, all keys must be unique—that is, “monkey” cannot exist more than once.
Depending on your program, finding unique names is normally not a problem.

Using the “monkey” example above—if there are 5 different monkeys, the NSDictionary
would contain one entry for “monkey”. However, that entry could be in another
NSDictionary that contains five unique monkey names:

"monkey" -> NSDictionary object

The NSDictionary object contains:

"Spider" -> Animal Object
"Capuchin" -> Animal Object
"Tamarin" -> Animal Object
"Mandril" -> Animal Object
"Orangutan" -> Animal Object

Of course, an NSDictionary could be organized in many different ways, depending on
how the keys are defined. In most cases, there aren’t NSDictionary entries of
NSDictionaries —the above example was just provided to show how flexible the
NSDictionary, or collections in general, can be.

Let’s see how the above example would look in code. For example, assume that a list of
Animal objects already exists and we’re just assigning it to the dictionary:

Listing 8-5. Creating an NSDictionary with another NSDictionary.

1 NSDictionary *zoo = [NSDictionary dictionaryWithObjectsAndKeys:
@"elephant", myElephantObject,
@"giraffe", myGiraffeObject,
@"monkey", [NSDictionary dictionaryWithObjectsAndKeys:
@"Spider", mySpiderMonkey,
@"Capuchin", myCapuchinMonkey,
@"Tamarin", myTamarinMonkey,
@"Mandril", myMandrilMonkey,
@"Orangutan", myOrangutanMonkey, nil]
@"zebra", myZebraObject, nil];

cwoo~NOoOUVITD WN

[y

Now that the main NSDictionary is set up, how do we know when we get an Animal
object and when we get an NSDictionary object? (Hint: read the next section title.)

Determining Class Type in a Collection

When iterating through a collection, we generally use the id class type to indicate that
we don’t know what class is in the collection. Each Objective-C object has two nifty
methods to help us out. Let’s take a look at them now.

Using the code in Listing 8-3 as an example, consider the following code fragment:
Listing 8-6. Handling different classes within a collection.

11 for (id element in [zoo allValues]) {
12 if ([element isKindOfClass:[Animal class]]) {
13 NSLog(@"%@", id);

167

168

CHAPTER 8: Programming Basics in Objective-C

14 }

15 if ([element isKindOfClass:[NSDictionary class]]) {
16 ... // Process the monkey dictionary above.

17

18 }

In Listing 8-6, we use fast enumeration to go through our zoo NSDictionary. Since there
are only two possibilities: an Animal class or an NSDictionary of animals, the code
needs to check for two different class types. As previously mentioned, each Objective-C
object has two handy methods.

The first is the isKind0fClass: method. This method returns a Boolean
value if the current class, our element variable, is a type of class.

The second handy method is the class method. This method simply
returns the class of the object; line #12 is the Animal class. Line #15 is
the NSDictionary class.

Using a combination of the isKindOfClass: and the class methods makes it fairly simple
to process different types of classes within a collection.

Using the Mutable Classes

Up to this point, we’ve only discussed collection objects that are initialized once and can
never change. While there are definitely places this is useful, what’s even more useful is
a collection class that can be modified. Each of the collection classes has a mutable
version—we’ve only talked about the non-mutable classes. The classes are
fundamentally the same except that elements can be added and removed from the
mutable versions.

NSMutableSet

This can be initialized the same as the NSSet or can be initialized without any values and
then values added. Consider the code in Listing 8-7:

Listing 8-7. Adding objects to an NSMutableSet.

1 NSMutableSet *mySet = [[NSMutableSet alloc] init];
2

3 [mySet addObject:@"One"];

4 [mySet addObject:@"Two"];

5 [mySet addObject:@"Three"];

6

7 for (id val in mySet) {

8 NSLog(@"%@", val);

9

The nice thing about any of the mutable classes is that elements can be added and
removed programmatically instead of having to declare the class with all the values at
once. All objects in a set can be removed with the following line:

[mySet removeAllObjects];

CHAPTER 8: Programming Basics in Objective-C

A specific object can also be removed as long as we have a reference to that object:
Listing 8-8. Removing a specific object in an NSMutableSet.

10 NSString *testString = @"Zero";
11

12 [mySet addObject: testString];
13 [mySet addObject: testString]; // Just a test
14

15 for (id val in mySet) {

16 NSLog(@"%@", val);

17}

18

19 [mySet removeObject:testString];
20

21 for (id val in mySet) {

22 NSLog(@"%@", val);

23}

In Listing 8-8, line #19 will remove the string “Zero”. We can only do this because we
have a reference to the object already in the testString variable. This brings up another
good point: the NSSet and NSMutableSet will only store unique objects. Two objects that
are exactly the same (i.e., identical) cannot be added more than once. For example, line
#13 effectively replaces the first testString added on line #12.

HINT: Adding the exact same object means that the pointer to that object is the same. There is
no comparison to see if the value of the object being added is identical to what's already in the
set—it’s the pointers that are checked. Pointers are discussed in depth in Chapter 11.

NSMutableArray

As with the NSMutableSet, the NSMutableArray is similar to its parent, the NSArray. In
fact, an object can be added to the NSMutableArray object exactly as it’s done in the
NSMutableSet and that is by using the addObject: method. However, unlike the
NSMutableSet, the NSMutableArray can also insert elements into the array—the
NSMutableSet can only add objects to the set. Take a look at Listing 8-9.

Listing 8-9. Adding and inserting values into an NSMutableArray.

1 NSMutableArray *myArray = [[NSMutableArray alloc] init];
2

3 [myArray addObject:@"One"];

4 [myArray addObject:@"Two"];

5 [myArray addObject:@"Three"];

6

7 for (id val in myArray) {

8 NSLog(@"%@", val);

11 [myArray insertObject:@"One and a Half" atIndex:1];

13 for (id val in myArray) {

169

170

CHAPTER 8: Programming Basics in Objective-C

14 NSLog(@"%@", val);
15 }

In Listing 8-9 a new array is created similarly to the NSMutableSet. However, on line #11
a new element is being inserted into the array at position 1. Remember, position 0 is the
first element of the array. The contents of the array after the insert would look like:

Index Value

0 One

1 One and a Half
2 Two

3 Three

Line #11 inserted a new element—the remaining elements were moved up in the array to
make room. This is critical to know, especially if there is a code assumption that a
particular index into an array will have a specific value.

With the NSMutableArray, there are several ways to remove an object. Following are a
few of the more commonly used methods:

removeAllObjects — This method does exactly as advertised. It removes
all objects from a given NSMutableArray.

removelastObject — This method removes the last object at the end of
the array. The array size is reduced by one.

removeObjectAtIndex: (NSUInteger index) — This methods removes an
object at a given index. The value is from 0 to the length of the array—1.

NSMutableDictionary

By this point, it must be pretty obvious to you how the mutable versions of the collection
classes work—the NSMutableDictionary is no different. The NSMutableDictionary
provides all the capabilities of NSDictionary but, of course, elements can be added and
removed, as shown in Listing 8-10:

Listing 8-10. Adding objects to an NSMutableDictionary.

NSMutableDictionary *myDict = [[NSMutableDictionary alloc] init];

2

3

4 [myDict setObject:@"Number One" forKey:@”1”];
5 [myDict setObject:@"Number Two" forKey:@”2”];
6 [myDict setObject:@"Number Three" forKey:@”3”];
7
8
9

for (id val in myDict) {
NSLog(@"%@", val);

CHAPTER 8: Programming Basics in Objective-C

10 }

11

12 [myDict setObject:@"One and a Half" forKey:@”1.5”];
13

14 for (id val in myArray) {
15 NSLog(@"%@", val);
}

In the example above, the object @"One and a Half" is being added to the dictionary.
It’s different than an array since an object can’t be inserted into the dictionary at a
specific position, as can be done with an NSMutableArray.

Creating the BookStore Application

First things first. Let’s start by creating the base application project. We start by opening
Xcode and creating a new Master-Detail Application project. In this project, we will
create a few simple objects for what is to become our bookstore application: a Book
object and the Bookstore object itself. We’'ll visit instance variables again and see how to
get and set the value of one during this project. Lastly, we’ll put our bookstore objects to
use, and you’ll learn how to make use of objects once we’ve created them.

Fire up Xcode, and start by creating a new project, as shown in Figure 8-1.

Choose a template for your new project:

[\ ios

75 []
Framework & Library 9
Other — = " .
2d Master-Detail OpenGL Game Page-Based Single View
ocds: | Application Application Application
B Mac 05 X
Application \" :,.....E
Framework & Library (e - | ke T
Application Plug-in
System Plug-in Tabbed Application Utility Application Empty Application
Other
[—
Master-Detail Application
This template provides a starting point for a master-detail application. It provides a user
interface configured with a navigation controller to display a list of items and also a split view
on iPad.
Cancel | Previous | [Next |

Figure 8-1. Creating the initial project as a Master-Detail application.

171

172 CHAPTER 8: Programming Basics in Objective-C

1. Click the Next button, and name the project MyBookstore, as shown in
Figure 8-2. The company name is required—any company name, real or
otherwise, can be used. The example uses “com.mycompany” which is
perfectly fine. Make sure the device family is iPhone and that the option
“Use Automatic Reference Counting” is checked.

Choose options for your new project:

—

Product Mame MyBookstore
Company Identifier mycompany.com

Bundle Identifier mycompany.com. MyBookstore
Class Prefix | XYZ

Device Family | iPhone

|_| Use Storyboard
|_| Use Core Data
Lg Use Automatic Reference Counting

|_| Include Unit Tests

I_f_.'__e_l_n_cg_l_l |- Previous | [Next]

Figure 8-2. Selecting the product (application) name and options.

2. Once everything is filled out, press the Next button. Xcode will prompt
you to specify a place to save the project. Anywhere you can remember
is fine—the Desktop is a good place too.

3. Once you decide on a location, click on the Create button to create the
new project. This will create the boilerplate Bookstore project, as shown
in Figure 8-3.

CHAPTER 8: Programming Basics in Objective-C

Add To Project

©

+ | HE R (- Add Target

[Nala) ™ MyBookstore.xcodepro] — [MyBookstore.xcodeproj o
—~ ’ q -
(») (m) (M. iPhone 5.0 Simuiator] [m e | = [EN=I O =)
Run Stop Scheme Breakpoints Editor View Organizer |
N MyBoolstore xcodeproj I) +
B ® A = = @ [m|« > [FmBookstore
™ i g PROJECT Summary Info Build Sertings Bulld Phases Build Rules
B i Target
¥ || MyBookstore — 23 Lt
h) AppDelegate.h TARGETS -
m| AppDelegate.m A Identifier mycompany.com.MyBookstore
h| MasterViewController.h [Version 1.0 Build 1.0
m| MasterViewController.m i B
h| DetailViewController.h Devices | IPhone
m| DetailViewController.m Deployment Target
MasterViewController.xib
DenifViewController.xib ¥ iPhone | iPad Deplayment Info
» [} Supporting Files
> Frameworks Main Storyboard v
[Products
Main Interface v
Supported Device Orientations
Portrait : Upside : Landscape Landscape
Down Left Right
App lcons

Batina Miesla

©

Validate Settings

Figure 8-3. The source listing of the boilerplate project.

4, Click on the plus (+) sign at the lower left of the screen in the Navigation
Area to add a new object to the project. Choose Cocoa Touch under
the iOS section on the left and then choose the Objective-C Class on
the right, as shown in Figure 8-4. It’s also possible to right-click over the
navigation area and then select the “New File...” menu option. There is
no difference between this approach and clicking on the plus sign—do

whatever feels more natural.

173

174 CHAPTER 8: Programming Basics in Objective-C

Choose a template for your new file:

User Interface
Core Data
Resource
Other

UlViewController Objective-C Objective-C protecol
subclass category

& Mac 0S X

Cocoa

Cand C++ Objective-C test
User Interface case class
Core Data

Resource

Other

Objective-C class

An Objective-C class, with implementation and header files.

@
c

Cancel | MNext |

Figure 8-4. Creating a new Objective-C class.

5. We’'re choosing a plain Objective-C class, which will create a new empty
Objective-C object that we’re going to use for our Book class. After
selecting this, click on the Next button.

Choose options for your new file:

—

Class |Bo ok.l
Subclass of | NSObject b
Cancel Previous | | Next |

Figure 8-5. Giving our new class a name and parent class.

CHAPTER 8: Programming Basics in Objective-C

6. Xcode will now prompt for the object name and which main object we’re
going to be a subclass of. Choose the name “Book” and make book a
subclass of NSObject, as shown in Figure 8-5, and then click the Next
button.

7. Finally, Xcode will ask to which folder it should save the new class files.
To keep things simple, choose the “MyBookstore” folder in our project,
as shown in Figure 8-6. This is where all the other class files for our
project are stored.

yo)

m = _IIﬂm IIl‘-I-, == v-.- Ll h_"lyaookstnre

FAVORITES
— All My Files
[] Desktop

% Applications e
{51 Strider [MyBookstore § MyBookstore.xcodep
[} Documents roj
& Pictures
|__| My Projects
SHARED
= Site A
=) brweOcb3...

Croup _:‘;_MyBookstore
Targets &;‘ % MyBookstore

~ New Folder [Cancel Create |

Figure 8-6. Choosing the place to save our new class files.

Double-click on the “MyBookstore” folder and then click on the Create button. You’'ll see the main
edit window for Xcode and our new class files, Book.m and Book.h, in the Navigation window, as
shown in Figure 8-7.

8. Repeat the above steps and create a second object called Bookstore.
This will create a Bookstore.m and a Bookstore.h file. We’ll be using this
class later in this chapter. For now, we’ll concentrate on the Book object.

175

176 CHAPTER 8: Programming Basics in Objective-C

eno ™ MyBookstore.xcodeproj — |h! Book.h ",
@ ™ rETEEETTEE = Finished running MyBookstere on iPhone 5.0 Simula | D EI Q ol (@
- : il | =i L =
Run Stop Scheme Breakpolnts e Editor View Organizer
i Bookh [¥
Bn ®@ 4 = = B8 |m|< > [myBookstore : [h]Bookh [E @interface Book
+ [MyBookstore rrs
=2 1 targer, i05 SDK 5.0 7/ Book.h
h| Bookstore.h // MyBookstore
m| Bookstore.m /I
" [{ Book.h // Created by Strider on B/28/11
m| Book.m // Copyright (c) 2011 www.committed-code.com. ALl rights reserved
v [MyBookstore ¥

h| AppDelegate.h

m| AppDelegate.m

h| MasterViewCantroller.h

m| MasterViewController.m

h| DetailviewController.h

m| DetailViewCentroller.m
MasterViewControllerxib
DetaliViewController.xib

__|Supporting Files

» | Frameworks

¥ || Products

#import <Foundation/Foundation. b=
@interface Book : NSObject

@end

v

Figure 8-7. Viewing our new class.

9. Click on the Book.h file and let’s start defining our new class!

Introducing Instance Variables

Our object is simply called Book and is a subclass of NSObject. True, we have an object,
but it doesn’t store anything at this point. In order for this class to be useful, it needs to
be able to hold some information, which is done with instance variables. When an object
is used, it has to be instantiated. Once the object is instantiated, it has access to its
instance variables. These variables are available to the object as long as the object stays
in scope. As we know from Chapter 7, scope defines the context in which an object
exists. In some cases, an object’s scope may be the life of the program. In other cases,
the scope might be just a function or method. It all depends on where the object is
declared and how it’s used. Scope will be discussed more later. For now, let’s add some
instance variables to our Book class to make it more useful.

Listing 8-11. Adding instance variables to the Book.h file.

1 //
// Book.h
// MyBookstore

// Created by Mitch Fisher on 8/28/11.
// Copyright 2011 www.committed-code.com. All rights reserved.

~NouviphwnN
~
~

CHAPTER 8: Programming Basics in Objective-C

8

9 #import <Foundation/Foundation.h>
10

11 @interface Book : NSObject {

12 NSString *title;

13 NSString *author;

14 NSString *description;

15

16

17 @end

This is the same Book object from before, but now, there are three new instance
variables placed inside the brackets, lines 12-14. These are all NSString objects, which
means that they can hold text information for our Book object. So, the Book object now
has a place to store title, author, and description information.

Accessing Instance Variables

Now that we have some instance variables, how can we use them? How are they
accessed? As you learned in previous chapters, Objective-C objects respond to
messages. Unfortunately, simply declaring an instance variable doesn’t necessarily give
us access to it. There are two ways to access these variables.

One way is, of course, within our Book object.

The second way is from outside of the object—that is, another part of
the program that uses the Book object.

If we are writing the code for a method within our Book object, accessing an instance
variable is quite simple. For example, you could simply write the following:

title = @"Test Title";

The preceding line is written within the Book class. Outside of the object, the title
instance variable is not visible at all. Of course, outside objects need to be able to
access these instance variables as well. To accomplish this, you need to create two
types of methods: a getter and a setter.

A getter is a method that returns the value of something in the object,
typically an instance variable like the author variable from the Book
object.

A setter is a method that updates or sets that instance variable.

Let’s take a look at the traditional getter and setter methods that were common before
the introduction of Objective-C 2.0 back in 2007.

TIP: Sometimes instance variables are referred to as ivars. Ivar is just the short form of instance
variable.

177

178 CHAPTER 8: Programming Basics in Objective-C

Using Getter and Setter Methods

Here is the Book object’s header (.h) file, which contains the Book’s interface definition.
Listing 8-12. Defining a getter and setter for the Book object.

1 #import <Foundation/Foundation.h>

@interface Book : NSObject {
NSString *title;
NSString *author;
NSString *description;

}

9 - (NSString *)title;

10 - (void)setTitle:(NSString *)newString;
11

12 @end

co~NOUVT D WN

The two methods declared on lines 9 and 10 are the getter and setter methods,
respectively. Conventionally, the getter method is named the same as the instance
variable. In our example, we are fetching the title of a book object so our getter method
is simply title. It is defined to return an NSString object to the caller.

The setter object is named by convention to setInstanceVariableName. So for our
example, the setter method is named setTitle. Notice that the instance variable name’s
first character uses an uppercase letter; this is also part of the standard convention.

NOTE: A naming convention called camel case (or CamelCase) uses an uppercase letter to
distinguish different words in a method, variable, or class name. The text is suggestive of a
camel, since the uppercase letters tend to form humps. It makes the label easier to read. For
example, stringWithContentsOfURL is much easier to read than
stringwithcontentsofurl.

Now, the word “convention” has been mentioned several times. Objective-C does not
require that a method be named anything specific. However, since most applications
follow the guidelines we discussed, the convention becomes the de facto standard.
Knowing this becomes very important when the topic of properties is discussed later.
For now, however, we are going to manually write a getter and a setter method so that
they can be better understood.

First, the getter—this is the simplest of the methods to implement:
- (NSString *)title
{

return title;

}

In the preceding example, the method title simply returns the local instance variable
called title. To access the method, the syntax [object title] is used.

CHAPTER 8: Programming Basics in Objective-C

It might seem that the instance variable and the method name might somehow get
confused. Because an instance variable is accessed completely differently from a
method name, the Objective-C runtime environment doesn’t have a problem with
instance variable and method names that are the same.

Now, here is the setter:
- (void)setTitle:(NSString *)newTitle

if ([newTitle length] > 0) {
title = newTitle;
}

}

This example is a little more complicated than our getter method, although it doesn’t
have to be. In our setter example, there is a check to see if the newTitle has a length
greater than 0 before assigning the string (The NSString class’ length method returns
the number of characters in the string). Clearly, our setter code doesn’t want the current
title to be blank.

Using the getter/setter methods above, they would be used as shown in the following
shippet of code:

1 Book *myBook = [Book alloc] init];

2
3 [myBook setTitle:@”My Great Book”]; // Call the setter

4

5 NSString *title = [myBook title]; // Call the getter and put it into the ‘title’
NSString object.

The benefit of a setter method is that the object can perform some validation logic on
the parameters before accepting the value. If the object were to allow direct access to
the instance variable, either this type of validation would have to be everywhere or there
would be no validation at all and the object’s title could potentially be set to something
invalid (like a blank title).

Now, it is not necessary to always create a getter and/or a setter for every instance
variable. A good example of this might simply be an object that represents today’s date.
There is no need to set it, just retrieve it, so there would only be a getter method.

The needs of the object and variables will dictate how the getter and setter methods are
built. If a getter gets the value and the setter sets the value, it’s going to take a lot of
coding to simply write all the getters and setters in an object, especially if there are
many instance variables. Fortunately, Objective-C 2.0 introduced a way to reduce this
burden with minimal effort on the programmer’s part. These features in Objective-C 2.0
are called properties.

NOTE: Objective-C 2.0 was introduced in 2006 with Xcode 3.4 and is included in Xcode 4 and
later.

179

180

CHAPTER 8: Programming Basics in Objective-C

Introducing Properties

When we created instance variables for the Book object, we manually created the
methods that could be used to access these variables. Now that you know how to do
this manually, let’s look at how to take advantage of something called properties. A
property is a short way of having the compiler create functions to get and/or set the
value of an instance variable. As you learned earlier, instance variables are generally not
accessible from outside of the object itself, so having methods to get and set these
variables becomes essential.

The following is the interface (header) file to the Book object that we created earlier.
Let’s see what it takes to have the Objective-C compiler create our getters and setters
for us.

Listing 8-13. Adding properties to the Book object.

1 //

2 // Book.h

3 // MyBookstore

4 //

5 // Created by M.R. Fisher on 8/28/11.
6 // Copyright (c) 2011 www.committed-code.com. All rights reserved.
17 //

8

9 #import <Foundation/Foundation.h>

10

11 @interface Book : NSObject {

12 }

13

14 @property(nonatomic,strong) NSString *title;

15 @property(nonatomic,strong) NSString *author;

16 @property(nonatomic,strong) NSString *description;
17

18 @end

Lines 14-16 show the property declarations for the instance variables. Properties are not
required for all instance variables, just the ones we want to expose to the world. In the
example, however, we are creating properties for all of our instance variables. Notice
that the actual instance variable declarations that used to be between the { ... } brackets
are now gone. When using properties with Xcode 4 and over, it is no longer necessary to
declare the instance variables and the properties. The compiler is now smart enough to
do this for you.

A property starts with a @property directive. This tells the Objective-C compiler to build
us the automatic getter and/or setter. Whether it is a getter and/or setter is included in
the declaration. Let’s dissect this code:

@property® (nonatomic,strong)® NSString* title?;

CHAPTER 8: Programming Basics in Objective-C

This is the property directive.

The parentheses and the comma-separated keywords contained therein
are sometimes optional. In our particular case, we are specifying
nonatomic and strong. The nonatomic keyword tells the compiler not to
generate special code for use in threading—we’re not using threads, so
using nonatomic is fine. The second, strong, is used to indicate that this
is a strongly typed variable —this will be discussed further in Chapter 13
when we discuss memory management. Many other options can be
included here; one is readonly, which tells the compiler to only create a
getter, not a setter, and thereby prevents the ability for the instance
variable from being set external to the object.

Last, NSString* title, is the instance variable declaration. It must
include the type and, of course, the instance variable name.

This defines half of the property. What’s that you say, “Only half? What else is missing?”
Well, the second half of the @property is declared in the implementation (.m) file.

Listing 8-14. Defining a getter and setter for the Book object.

1

coNOUVT D WN

9
10
11
12
13
14

// Book.m
// MyBookstore

// Created by M.R. Fisher on 8/28/11.
// Copyright (c) 2011 www.committed-code.com. All rights reserved.
#import "Book.h"

@implementation Book
@synthesize title, author, description;

@end

This is the implementation file to the Book object. Line 12 is significant, because it is the
second half of what is required to complete our property. This part is much simpler than
the interface file. All that is necessary is to use the @synthesize keyword and provide a
list of one or more property names. There can be many property names specified on a
@synthesis statement, and there can be many @synthesize lines, too. It’s all a matter of
personal preference.

Now that we’ve created three different properties, how are the properties used?

181

182

CHAPTER 8: Programming Basics in Objective-C

Using Properties

Once a property has been specified in both the interface and implementation files, using
the properties is very straightforward and simple. First, the syntax changes a bit. Let’s
look at a traditional setter:

[myBookObject setTitle:newTitle]; // Traditional setter

Here is an example of sending a set message to set the title to our book object—Ilike we
said, pretty straightforward. However, when using properties, things change:

myBookObject.title = newTitle; // Setter example

Some things are very important to note. For starters, the object access is not within
brackets ([..]). Second, we use the property called title, not the setTitle method.
Internally, there is still a setTitle method; it’s just hidden. Why is this important? Well, if
we create our own explicit setTitle method, our new method will be called rather than
the compiler-created one. This may or may not be the behavior we specifically want.

For the getter, things look remarkably familiar:
NSString* title = myBookObject.title; // Getter example

The property that gets the information is also called title. The significance here is that
how the object’s property is accessed determines whether the getter or setter is called.
If we are trying to set the variable, the setter is called. If we are trying to get the value of
the variable, the getter is called

One last big difference is that the syntax to access a property now uses a period (.)
between the object and the method. This is necessary because the brackets are gone,
so the period distinguishes between using a property and sending a message to an
object.

Understanding the Importance of Conventions

As mentioned earlier, there is a convention to naming a getter and a setter. While these
naming guidelines are not strictly enforced, the value of understanding the convention
comes in handy when using properties. Here is our previous example:

- (void)setTitle:(NSString *) newTitle

if ([newTitle length] > 0) {
title = newTitle;

}

If we create a property like @property title and pair that with the @synthesize keyword,
the compiler will generate two methods—one named title as the getter and one called
setTitle as the setter. However, if we provide our own setter and name it according to
the convention (like the preceding code), the compiler won’t generate its own.

myBookObject.title = newTitle; // Call the custom setter

CHAPTER 8: Programming Basics in Objective-C

The preceding code will call our own custom setter instead of the standard one. The
same would be true had we written our own getter method. Now, let’s continue with the

Bookstore application.

Finishing the MyBookstore Program

With the understanding of instance variables and properties, we are going to now
venture forth to create the actual bookstore program. The idea is simple enough—create
a class called Bookstore that will be stocked with a few Book objects.

Creating the View

Let’s start by first getting our view ready. If you need a refresher on how to build an
interface in Xcode, please refer to Chapter 6.

1. Click on the DetailViewController.xib file in the Navigation Window. This
will display Xcode’s interface builder, as shown in Figure 8-8.
eno : MyBookstore.xcodeproj — DetailViewController.xib ",
@ 5 M iPhone 5.0 Simu... | - Build Succeeded | Today at 10:28 AM | B Eu EI =NE]l =)
Run S(oi- Scheme Breakpolnts Editor Miew Organizer
i DetailviewControllerxib [+
B n @ A = = ||« » = e __View ' | |Label - Detail view content goes here
« [MyBookstore
== 1 target, i05.SOK 5.0
h Book.h =
m| Book.m
h| Bookstore.h
'm| Bookstore.m
¥ | MyBookstore

h| AppDelegate.h
m| AppDelegate.m
h| MasterViewController.h
m| MasterViewController.m
h| DetailViewController.h
m| DetaliViewController.m

— & MasterViewControllerxib
il ~antr rxity

|

+

La”

»

» [Supporting Fifes™
Frameworks
Products

Q@ E®

W

L4

Delete This Control

A7
\/
Detail view content goes here

Figure 8-8. Preparing the MyBookstore detail view.

183

184 CHAPTER 8: Programming Basics in Objective-C

2. Simply delete the existing control that is just a placeholder for the detail
view. We’re going to add some new fields to display some details about
a selected book. Since we deleted this control, we also need to remove
the code that references it.
a. Inthe DetailViewController.h file, remove the following line:

@property (strong, nonatomic) IBOutlet UILabel *detailDescriptionLabel;

b. In the DetailViewController.m file, remove the following line
near the top of the file:

@synthesize detailDescriptionlLabel = _detailDescriptionlabel;

c. In the DetailViewController.m file, in the method named
configureView, remove the following line:

self.detailDescriptionLabel.text = [self.detailltem description];

3. Next, click on the Utilities icon for the view, as shown in Figure 8-9. This
will bring up the view of controls that we can place onto the view.

eano ™ MyBookstore.xcodeproj — ~ DetailViewController.xib "
R e s = = = 1 =W o |
\ - = [Finish MyBook Ph: I 1]
® (m) (M. Phone 5.05mu] [m) | inished running MyBookstore on iPhone 5.0 Simula Ela = = ;ﬁml (=]
Run Stop Scheme Breakpolnts: o e Editor View Organizer
L DetailviewContrallerxib r e
|z @ 4 = =» B]::-1 = | [MyBookstore > [_|My... + [De.. Dc...-__,view-_uw-ﬂm:| 0D B B|% < o
v [MyBookstore = ¥ Label
= 1 target, i05 50K 5.0 g = r F
|hi Book.h Text | Multiple Values
m| Book.m Lines 1)
[h] Bookstare.h Behavior ¥ Enabled
m| Bookstore.m Title: I 3
¥ | MyBookstore % Baseline | Align Centers
h| AppDelegate.h Label Line Breaks | Truncate Tail
\m| N!Dﬂeh!.gate.m Alignment [== = r—
h| MasterViewController.h e
m| MasterViewController.m Author: Font System 17.0 i3] B
+ i | ' -
h: Dﬂcf V!cwContmllcrh Label Minimum Size 10 ;| ™ Autoshrink
m| DetailViewController.m L
< MasterViewController.xib Text Color | NENEE | Default
et e | @ Highlighted | NN | Default
¥ | Supporting Files =
b [Frameworks L= | Defadlt, i
» || Products Shadow Offset 0 -11:]
Harizontal Vertical
¥ View
LRy D {}]|e| =
il oBjects 3
I{ - Label - Avariably sized amauntof |
| Label e e :
Round Rect Button - Intercepts touch
events and sends an action message to a
target object when it's tapped.
= Segmented Control - Displays
O 1 | 2 | multiple segments, each of which
L7 funcrinne ac 3 diccrata hartan
+ | O EF (S (=)

Figure 8-9. Selecting the Utilities Window and adding some Labels.

CHAPTER 8: Programming Basics in Objective-C

4, Drag and drop some Label objects from the Object Library onto the
detail view, as shown in Figure 8-9. Make sure that the bottom Label
controls are set to the width of the view. This is so that they can hold a
fairly long amount of text. The two Label objects with the text “Label” in
them are the ones we’re going to hook up to hold two of the values from
our Book object: the Title and Author(s).

Adding Instance Variables

Next, we’re going to add some instance variables to the DetailViewController class.
These instance variables will correspond to the detail view’s labels.

1. First, open up the DetailViewController.h file and delete the
detailDescriptionlLabel property—we’ve deleted it from the interface
and we don’t need it anymore.

2. Next, we'll add two fields that will represent the labels on the detail view
that we want to store our book data into, as shown in Listing 8-14

Listing 8-14. Modifying the DetailViewController.h file to include the new Labels.

1 #import <UIKit/UIKit.h>

; @interface DetailViewController : UIViewController

g @property (strong, nonatomic) id detailltem;

g @property (strong, nonatomic) IBOutlet UILabel *titlelabel;
8 @property (strong, nonatomic) IBOutlet UILabel *authorlLabel;
13 @end

3. If you recall from Chapter 7, the IBOutlet identifiers included in the
properties let Xcode know that these instance variables (titlelLabel and
authorlabel) are controls that appear in a view. Next, right-click on the
label right below the “Title” and drag a New Referencing Outlet to the
topmost object called the “File’s Owner”, as shown in Figure 8-10.

185

186 CHAPTER 8: Programming Basics in Objective-C

£ MyBookstore xcodeproj DetailViewController.xib
=T = = = — —
.'/p ' (@) [M_ iPhone 5.0 Simu.. = [Finished running MyBookstore on iPhone 5.0 Simula I i
D Project @1
R Scheme = Wi nize;
DetailViewControlle -
En @ 4 = 2| 4+ | [y myBookstore M D} AD View) | |Label - Label | < @ > | DB B % |
" MyBookstore = ¥ Referencing Outlets
= 1target, i0S5DK 5.0 5 New Referencing Outlet [«]
h| Bookstore.h f ¥ Referencing Outlet Collections
m| Bookstore.m New Referencing Outlet Colection @)
h| Book.h
Book.m .
= Title:
| MyBookstore
h| AppDelegate.h 1) Label - Label
m| AppDelegate.m ¥ Referencing Outlets
h| MasterViewController.h Mew Referencing Outher
m| MasterViewController.m L v Referencing.o L
h| DetzilViewCentroller.h — [IE]s]: Mew Referencing Outter Collection
) DetailViewController.m b m
« MasterViewController.xib @
[supperting Files 7
| Frameworks
Products
- D | =
{4l objects +] (88}
Label - A variably sized amount of
Label e text.
Round Rect Button - Intercepts touch
events and sends an action message 1o 3
target object when it's tapped.
Segmented Control - Displays
U 1 | 2 | multiple segments, each of which
| Lineticne ae 3 dlisevita b
+ o8 d® (=)

Figure 8-10. Defining a new referencing outlet for a Label object.

4, When dropped on the File’s Owner, a secondary menu will pop up
asking which variable the new outlet should be connected to. We will
connect this Label to the titlelLabel outlet, as shown in Figure 8-11
and Figure 8-12.

L o Label - Label
¥ Referencing Outlets
titleLabel % File's Owner

authorLabel

titleLabel

New Referencing Outlet
¥ Referencing Outlet Collections

Figure 8-11. Selecting the titleLabel outlet. Figure 8-12. Connection is complete.

5. Repeat this step for the Label object under the “Author:” Label, except
connect the Label to the authorlLabel outlet.

Adding a Description

Now, we need to add the description to the view. The description is a little different in
that it can span multiple lines. For this, we’re going to use the Text View object.

1. Start by adding a “Description:” label to the view, as shown in Figure 8-13.

CHAPTER 8: Programming Basics in Objective-C 187

Title:
Label

Author:
Label

Description:

Figure 8-13. Adding a new Label object for the Description.

2. Next, add the Text View object to the detail view, as shown in Figure 8-14.
The advantage the text view has is that it’s easy to display multiple lines of
text. While the Label can display multiple lines, it’s not as clean as the Text
View object.

NOTE: By default, the Text View control is filled with all kinds of seemingly random text. This text
is called Lorem Ipsum text. If you ever need to load up a page with text, you can find any number
of Lorem Ipsum generators on the web. As for our Text View, the text can stay as it is since we’ll
remove it during runtime. Plus, if it’s cleared, it becomes a little more difficult spotting exactly
where the Text View is on the screen—it’s white on white!

188 CHAPTER 8: Programming Basics in Objective-C

& MyBookstore.xcodeproj — # DetailViewController.xib =

(")
Finished running MyBookstore on iPhone 5.0 Simula @ El
| ! 1

e Ol | Edior __ View _ Organizer |
mi | <4 > | [MyBookstore) (M) JD..) BD..)| |[View) TextView 4@ p> 0 B ¥ ||
| | ¥ Outlets
! = | delegate Q
| | ¥ Referencing Outlets
[New Referencing Outlet (@)
[| ¥ Referencing Outlet Collections
Title: 57| New Referencing Outler Collection @]
Label | | ¥ Received Actions
[copy: @]
I cut: O
| paste: (@)
[Author: || i o
| Label | selectAll 0
< |
@Iié Description:
== Lorem ipsum dolor sit er elit lamet, :
I | consectetaur cillium adipisicing
B ; pecu, sed do eiusmod tempor
| | | [" incididunt ut labore et dolore magna [-Hl
= aliqua. Ut enim ad minim veniam, [D Ulel =
quis nostrud exercitation ullameo [| 4 1) =
IShAHS RIS b AR By as _ [[[il objects :] (2l

| Image View - Displays a single image,
or an animation described by an array of

Text View - Displays multiple lines of
editable text and sends an action
message to a target object when...

| Web View - Displays embedded web
content and enables content navigation.

Figure 8-14. Adding a Text View to the detail view.

3. Inorder for the program to take advantage of the Text View, we’ll need to create
an outlet for it, just as we did for the title and description. Simply add a new
property to the DetailViewController.h file, as shown on line #9 in Listing 8-15.

Listing 8-15. Adding an outlet for the Text View to hold a description.

1 #import <UIKit/UIKit.h>

2

3 @interface DetailViewController : UIViewController

4

5 @property (strong, nonatomic) id detailltem;

6

7 @property (strong, nonatomic) IBOutlet UILabel *titlelabel;

8 @property (strong, nonatomic) IBOutlet UILabel *authorlLabel;

9 @property (strong, nonatomic) IBOutlet UITextView *descriptionTextView;
10

@end

CHAPTER 8: Programming Basics in Objective-C

4,

Notice that the type is UITextView instead of UILabel —this is very
important. Also, don’t forget to add the descriptionTextView to the
@synthesize statement in the DetailViewController.m file, as shown
below:

@synthesize titlelabel, authorlLabel, descriptionTextView;

5.

Next, right-click on the Text View of the DetailViewController.xib and
connect it to the descriptionTextView outlet. The process is the same
as shown in Figure 8-10, 8-11, and 8-12, except that we’re connected
to the descriptionTextView outlet.

CAUTION: As mentioned above, it's important to make the descriptionTextView property a
UITextView type. If, for example, it was accidentally made a UlLabel object, when trying to
connect the Text View from the screen to the outlet, Xcode won’t be able to find the
descriptionTextView outlet. Why? Because Xcode knows that the control is a UITextView
and is looking for an outlet that is of type UITextView.

Creating a Simple Data Model Class

In order for our application to work, it needs to have some data to display. To do this,
we’re going to use the Bookstore object we created earlier as our data model class.
There’s nothing different about a data model class except that its whole purpose is to
allow an application to access data via an object.

Modify the Bookstore.h file to look like Listing 8-16.
Listing 8-16. Modifying the Bookstore.h class to include an NSMutableArray.

co~NOYUVT D WN

11
12
13
14
15
16
17
18
19

// Bookstore.h
// MyBookstore

// Created by M.R. Fisher on 8/28/11.

// Copyright (c) 2011 www.committed-code.com. All rights reserved.
#import <Foundation/Foundation.h>

#import "Book.h"

@interface Bookstore : NSObject

@property(strong, nonatomic) NSMutableArray *theBookStore;

- (NSUInteger)count;
- (Book *)bookAtIndex:(NSUInteger)index;

@end

189

190

CHAPTER 8: Programming Basics in Objective-C

In Listing 8-16, we add an #import "Book.h" on line #10. This lets our Bookstore object
know about the Book object. Next, on line #14, we add a property that will hold our list of
books; the property is simply named theBookStore. Note that theBookStore is an
NSMUtableArray, which will allow us to add a series of objects—in this case, a set of Book
objects. Lastly, we add two new methods to our class on lines #16 and #17. The first
method, count, will simply return how many books are in our bookstore. The second
method, bookAtIndex, will return a Book object, given a specific index into theBookStore
array.

Next, let’s add the code to the implementation file, Bookstore.m.

Listing 8-17. Implementing the Bookstore data object.

// Bookstore.m
// MyBookstore

// Created by M.R. Fisher on 8/28/11.
// Copyright (c) 2011 www.committed-code.com. All rights reserved.

#import "Bookstore.h"

@implementation Bookstore
@synthesize theBookStore;

- (id)init

self = [super init];
if (self) {

self.theBookStore = [[NSMutableArray alloc] init];
Book *newBook = [[Book alloc] init];

newBook.title = @"Objective-C for Absolute Beginners";
newBook.author = @"Bennett, Fisher and Lees";
newBook.description = @"i0S Programming made easy.";
[self.theBookStore addObject:newBook];

newBook = [[Book alloc] init];

newBook.title = @"A Farewell To Arms";

newBook.author = @"Exrnest Hemingway";

newBook.description = @"The story of an affair between an English "
"nurse and an American soldier "
"on the Italian front "
"during World War I.";

[self.theBookStore addObject:newBook];

}
return self;
}
- (NSUInteger)count
) return theBookStore.count;

- (Book *)bookAtIndex:(NSUInteger)index

CHAPTER 8: Programming Basics in Objective-C

44 return [theBookStore objectAtIndex:index];
45 '}
46 @end

In Listing 8-7, lines #13-35 define the init method of the object, which is called
whenever the object is first initialized. In this method, we initialize the two books we plan
to add to our bookstore. Line #17 initializes our theBookStore array—this is the
NSMutableArray object where the books will be stored. Line #18 is where the first Book
object is allocated and initialized. Lines #19-21 add a title, author, and description to our
first book. Finally, line #22 adds the new Book object to our theBookStore array. The
important thing to note here is that once the object is added to the array, our code can
forget about it; the array now owns that object. Because of this, line #24 is not a
problem.

Line #24 allocates a new Book object overwriting the old value. This tells the compiler
that we’re no longer interested in using the old value—plus, as mentioned above, the
NSMutableArray object, theBookStore, now owns the old Book object anyhow.

Lines #25-31 simply add the second book to the array.

Lines #37-40 define a method called count. This method simply returns the number of
elements in our bookstore array. The method to get the number of elements in an array
is also called count.

Lines #42-45 define a method called bookAtIndex:. Notice that it returns a Book object
and takes in an NSUInteger value. This method simply calls the NSMutableArray method,
objectAtIndex:, and returns the object at that specific index. We’ll use this method to
get at the Book objects in our Bookstore.

That’s it! That’s all we need to define a simple data model class. Next, we need to allow
main program access to this class so that it can start displaying some data.

Modifying the MasterViewController

Our simple application has two view controllers, the main view controller, which is called
the MasterViewController, and a secondary one called the DetailViewController. View
controllers are objects that simply control the behavior of a view. In order for our
application to start displaying data from our data model, we need to first modify the
MasterViewController —this is where the navigation of our application begins. The
following code is already in place in the template that Xcode has provided. We’re just
going to modify it to add in our data model.

First, we’ll need to modify the MasterViewController.h file. We need to add in an
instance variable to hold the Bookstore object. Listing 8-18 shows that the instance
variable is added in as a property on line #17. Also note that there is what’s called a
forward reference on line #12. This doesn’t define the Bookstore class, it just tells the
compiler that there will be a Bookstore object defined at some point. This prevents line
#17 from generating an error because the compiler doesn’t know about the Bookstore
object.

191

192

CHAPTER 8: Programming Basics in Objective-C

Listing 8-18. Adding in our Bookstore object.

1

co~NOUVT D WN

9
10
11
12
13
14
15
16
17
18
19

// MasterViewController.h
// MyBookstore

// Created by M.R. Fisher on 8/28/11.
// Copyright (c) 2011 www.committed-code.com. All rights reserved.
#import <UIKit/UIKit.h>

@class DetailViewController;
@class Bookstore;

@interface MasterViewController : UITableViewController

@property (strong, nonatomic) DetailViewController *detailViewController;
@property (strong, nonatomic) Bookstore *myBookStore;

@end

Next, we need to modify the MasterViewController.m implementation file to actually
make use of the object. First, we need to let the MasterViewController know about
our Bookstore class. We do this by importing the header file on line #13, as shown in
Listing 8-19.

Line #18 is the @synthesize of our myBookStore property we declared earlier. Line #25

allocates a new Bookstore object and assigns it to our property. The best place to put

one-time initializations like our books store is in the initWithNibName:bundle: method.
This method is only called once when this class is loaded.

Listing 8-19. Allocating our Bookstore object.

1

co~NOUVT D WN

9
10
11
12
13
14
15
16
17
18
19
20
21
22

// MasterViewController.m
// MyBookstore

// Created by M.R. Fisher on 8/28/11.

// Copyright (c) 2011 www.committed-code.com. All rights reserved.
#import "MasterViewController.h"

#import "DetailViewController.h"

#import "Book.h"

#import "Bookstore.h"

@implementation MasterViewController

@synthesize detailViewController = _detailViewController;
@synthesize myBookStore;

- (id)initWithNibName: (NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil

self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil];

CHAPTER 8: Programming Basics in Objective-C

23 if (self) {

24 self.title = NSLocalizedString(@"Master", @"Master");
25 self.myBookStore = [[Bookstore alloc] init];

26

27 return self;

28}

OK, now that our Bookstore object is initialized, we need to tell the
MasterViewController how to display our list of books—not the detail, just the book
titles. To do this, we’ll need to modify a few methods. Fortunately, Xcode has provided a
nice template so our modifications are small.

Our MasterViewController is a subclass of what’s called a UITableViewController. This
class controls the displaying of rows of data to the screen. In our case, these are rows of
book titles (well, just two for our simple program, but a list nonetheless).

There are three main methods that control what and how data is displayed in a
UITableViewController.

The first is numberOfSectionsInTableView:. Since our application only
has one list, or section, this method returns 1.

The second is tableView:numberOfRowsInSection:. In our program, we
return the number of books in our bookstore array. Since this is the
only section, the code is very straightforward.

The third method is tableView:cellForRowAtIndexPath:. This method
is called for each row that is to be displayed on the screen, and it’s
called one row at a time.

Listing 8-20 details the changes we need to make in order to get our list of books
displaying on the view. The changes start at line 83 in the source file.

Listing 8-20. Setting up the view to display our books.

83 - (NSInteger)tableView:(UITableView *)tableView

84 numberOfRowsInSection:(NSInteger)section

85

86 return self.myBookStore.count;

87 }

88

89 // Customize the appearance of table view cells.

90 - (UITableViewCell *)tableView:(UITableView *)tableView

91 cellForRowAtIndexPath: (NSIndexPath *)indexPath

92

93 static NSString *Cellldentifier = @"Cell";

94

95 UITableViewCell *cell =

96 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

97 if (cell == nil) {

98 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
99 reuseldentifier:Cellldentifier];
100 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
101 }

102

193

194

CHAPTER 8: Programming Basics in Objective-C

103 // Configure the cell.

104 cell.textLabel.text = [self.myBookStore bookAtIndex:indexPath.row].title;
105 return cell;

106 }

Out of all of this code, we only need to modify two lines. Everything else can stay the
way it is. This is one of the advantages of using the Xcode templates. Line #86 used to
simply return 1; we need to change it so that it now returns the count of items in our
Bookstore class.

Line #104 looks a little more complicated. Basically, each line of the UITableView is what
is called a cell (a UITableViewCell to be specific). Line #104 sets the text of the cell to
the title of a book. Let’s look at that code a little more specifically:

[self.myBookStore bookAtIndex:indexPath.row].title;

First, self.myBookStore is our Bookstore object, which is pretty clear. We’re calling one
of its methods called bookAtIndex:. The value indexPath.row specifies which row we’re
interested in—the indexPath.row will always be one less than the total count (returned
on Line #86). So, calling [self.myBookStore bookAtIndex:indexPath.row] returns a Book
object. The last part, .title, accesses the title property from the returned Book object.
The code below is equivalent to what we just did in one line:

1 Book *book;

2 book = [self.myBookStore bookAtIndex:indexPath.row];
3 cell,textLabel.text = book.title;

Now, you should be able to build and run the application and see the two books we
created in our data model, as shown in Figure 8-15.

But, we’re not done yet. We need to make the application display our book when we
click on one of them. In order to make this happen, we need to make one last
modification to the MasterViewController.

The method tableView:didSelectRowAtIndexPath: is called whenever a row is touched
on the screen. The method is already there as part of our template, but it doesn’t do
anything with our book. Listing 8-21 shows what small changes we need to make in
order to hook up the detail view with our book data.

CHAPTER 8: Programming Basics in Objective-C 195

Objective-C for Absolute...

A Farewell To Arms

—~ ~
Figure 8-15. Running the application for the first time.

Listing 8-21. Selecting the book when touched.

146 - (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath *)indexPath
147 |

148 Book *selectedBook = [self.myBookStore bookAtIndex:indexPath.row];

149

150 if (!self.detailViewController) {

151 self.detailViewController = [[DetailViewController alloc]

152 initWithNibName:@"DetailViewController"
153 bundle:nil];

154 }

155 self.detailViewController.detailItem = selectedBook;

156 [self.navigationController pushViewController:self.detailViewController
157 animated:YES];

158 }

If Line #148 looks very similar to Line #104 in Listing 8-20 that’s because it’s basically
the same thing. Based upon the indexPath.row, we select the specific book from our
Bookstore object and we save it in a variable called selectedBook.

196

CHAPTER 8: Programming Basics in Objective-C

On Line #155, we take the selectedBook and store it into a property called detailItem
that is already part of the existing DetailViewController class. That’s all we need to do
in the MasterViewController. We’ve basically passed off the book to the
DetailViewController. We're almost done. Now we need to make a few small
modifications to the DetailViewController so that it displays the Book object properly.

Modifying the DetailViewController

Earlier in this chapter, we modified the DetailViewController so that it would display
some detail information about a book. In the code we just finished, we modified the
MasterViewController so that it passes the selected book to the DetailViewController.
Now all that remains is to simply move the information from the Book object in the
DetailViewController to the appropriate fields on the screen. All of this is done in one
method —configureView.

Listing 8-22. Moving the Book object data to our detail view.

33 - (void)configureView

34

35 // Update the user interface for the detail item.
36

37 if (self.detailltem) {

38 Book *theBook = (Book *)self.detailltem;

39 self.titleLabel.text = theBook.title;

40 self.authorLabel.text = theBook.author;

41 self.descriptionTextView.text = theBook.description;
42 }

43 '}

The configureView method is one of many convenience methods included in the Xcode
template and is called whenever the DetailViewController is being initialized. This is
where we will move our selected Book object’s information to the fields in the view.

Lines #38-41 in the DetailViewController.m file is where we move the information from
the Book object to the view. If you recall, Line #155 in Listing 8-21 set the selected book
into a property on the DetailViewController called detailltem. Line #38 pulls that item
out into a Book object called theBook.

Lines #39-41 simply move each of the Book object’s properties to the view controls we
built earlier in the chapter. That’s all we need to in this class. If you build and run the
project and click on one of the books, you should see something like Figure 8-16.

Don’t forget to add an import of the “Book.h” file, as shown in Listing 8-23, line #10.
Listing 8-23. Importing the Book.h header file.

//

// DetailViewController.m

// MyBookstore

//

// Created by M.R. Fisher on 8/28/11.

// Copyright (c) 2011 www.committed-code.com. All rights reserved.
//

~NouvThAWN e

CHAPTER 8: Programming Basics in Objective-C 197

8
9 #import “DetailViewController.h”
10 #import “Book.h”

Title:
Objective-C for Absolute Beginners

Author:
Bennett, Fisher and Lees

Description:

08 Programming made easy.

Figure 8-16. Viewing our book details for the first time.

Summary

We’ve finally reached the end of this chapter! Here is a summary of the things that we
covered.

Understanding Collection classes: Collection classes are a very
powerful set of classes that come with the Foundation and allow us to
store and retrieve information efficiently.

198

CHAPTER 8: Programming Basics in Objective-C

Using instance variables: Instance variables are variables that are
defined in the interface file of the class and are accessible once the
class has been instantiated.

Working with properties: Properties are short ways of creating getters
and/or setters. Getters and setters get or set the values of an instance
variable.

Looping with for...1in: This feature offers a new way to iterate
through an enumerated list of items.

Building a Master-Detail application: We used Xcode and the Master-
Detail template to build a simple Bookstore program to display books
and the detail of an individual book.

A simple Data Model: Using the Collection classes we learned about,

we used an NSMutableArray to construct a Bookstore Object and use
it as a data source in our Bookstore program.

Connect data to the View: We connected our Book object’s data to the
interface fields using Xcode.

Exercises

Add more books to the bookstore using the original program as a guide.

Enhance the Book class so it can store another attribute—a price or
ISBN number, for example.

Modify the DetailViewController so that the new fields are displayed.
Remember to connect an interface control to an instance variable.

Change the Bookstore object so that a separate method is called to
initialize the list of Book objects (instead of putting it all in the init
method).

There is another attribute to a UITableViewCell called the
detailTextLabel. Try to make use of this by setting its text property to
something.

Using Xcode to modify the interface, play with changing the
background color of the DetailViewController.xib file.

For a tougher challenge:

Sort the books in the Bookstore object so they appear in ascending
order on the MasterDetailView.

Chapter

Comparing Data

In this chapter, we will discuss one of the most basic and frequent operations you will
perform as you program: comparing data. In our bookstore example, you may need to
compare book titles if your clients are looking for a specific book. You may also need to
compare authors if your clients are interested in purchasing books by a specific author.
Comparing data is a common tasks performed by developers. Many of the loops you
learned about in the previous chapter will require you to compare data so that you know
when your code should stop looping.

Comparing data in programming is like using a scale. You have one value on one side
and another value on the other side. In the middle, you have an operator. The operator
determines what kind of comparison is being done. Examples of operators are “greater
than,” “less than,” or “equal to.”

The values on either side of the scale are usually variables. We learned about the
different types of variables in Chapter 3. In general, the comparison functions for
different variables will be slightly different. It is imperative that you become very familiar
with the functions and syntax to compare data, as this will form a basis for your
development.

For the purpose of this chapter, we will use an example of a bookstore application. This
application will allow users to log in to the application, search for books, and purchase
them. We will try to relate the different ways of comparing data to show how they would
be used in this type of application.

Revisiting Boolean Logic

In a previous chapter in this book, we introduced Boolean logic. Due to its prevalence in
programming, we will revisit this subject in this chapter and go into more detail.

The most common comparison that you will program your application to perform is
Boolean logic. Boolean logic usually comes in the form of if then statements. Boolean
logic can have only one of two answers: yes or no. The following are some good
examples of Boolean questions that you will use in your applications:

199

200

CHAPTER 1: App Cubby

Is 5 larger than 3?
Does “now” have more than 5 letters?
Is 6/1/2010 later than today?

Notice that there are only 2 possible correct answers to these questions: yes and no. If
you are asking a question that could have more than 2 answers, that question will need
to be worded differently for programming.

Each of these questions will be represented by an if then statement (for example, if 5 is
greater than 3, then print a message to the user). Each if statement is required to have
some sort of relational operator. A relational operator can be something like "is greater
than" or "is equal to".

In order to start using these types of questions in your programs, you will first need to
become familiar with the different relational operators available to you in the C and
Obijective-C languages. We will cover those first. After that, we will look into how
different variables can behave with these operators.

Using Relational Operators

Objective-C uses 6 standard relational operators. These are the standard algebraic
operators with only one real change: in the Objective-C language, as in most other
programming languages, the equal to operator is made by two equal signs (==). In
chapter 4, Table 4-7, we describe the different operators available to you as a
developer.

NOTE: A single equal sign (=) is used to assign a value to a variable. Two equal signs (==) are
needed to compare two values. For example, if(x=9) will assign the value of 9 to the variable x
and return "yes" if 9 is successfully assigned to x, which will be in most, if not all, of the cases.
if(x==9) will actually do a comparison to see if x equals 9.

Comparing Numbers

One of the difficulties developers have had in the past was dealing with different data
types in comparisons. Earlier in this book, we discussed the different types of variables.
You may remember that 1 is an integer. If you wanted to compare an integer with a float
such as 1.2, this could cause some issues. Thankfully, Objective-C helps us out with
this. In Objective-C, you can compare any two numeric data types without having to
typecast (typecasting is still sometimes needed when dealing with other data types, and
we cover this later in the chapter). This allows you to write code without worrying about
the data types that need to be compared.

CHAPTER 1: App Cubby

NOTE: Typecasting is the conversion of a number from one type to another.

In our application, we will need to compare numbers in many ways. For example, let’s
say that our bookstore offers a discount for people who spend over $30 in a single
transaction. We will need to add the total amount the person is spending and then
compare this to $30. If the amount spent is larger than $30, we will need to calculate the
discount. See the following example.

float totalSpent;
int discountThreshhold;
int discountPercent;

discountThreshold=30;
discountPercent=0;
totalSpent=calculateTotalSpent();

if(totalSpent>discountThreshold) {
discountPercent=10;
}

Let’s walk through the code. First, we declare our variables (totalSpent,
discountThreshhold, and discountPercent). As we discussed in Chapter 3, if the number
can contain decimals, we should declare it as a float rather than as an int. We know that
the discountThreshold and the discountPercent will not contain decimals, so we can
declare these as ints. In this example, we assume that we have a function called
calculateTotalSpent, which will calculate the total spent in this current order. We then
simply check to see if the total spent is larger than the discount threshold; if it is, we set
the discount percent. Also notice that it was not necessary to tell the code to convert the
data when comparing the different numeric data types. As we mentioned earlier, this is
all handled by Objective-C.

Another action that requires the comparison of numbers is looping. As discussed in
Chapter 4, looping is a core action in development and many loop types require some
sort of comparison to determine when to stop. Let’s take a look at a for loop.

int numberOfBooks;
number0fBooks=50;

for (int y = 1; y <= numberOfBooks; y++) {
doSomething();
}

In this example, we iterate, or loop, through the total number of books that we have in
the bookstore. The for statement is where the interesting stuff starts to happen. Let’s
break it down.

int y=1;

This portion of the code is declaring y as an int and then assigning it a starting value of
1.

y <= numberOfBooks;

201

202 CHAPTER 1: App Cubby

This portion is telling the computer to check to see if our counting variable y is less than
or equal to the total number of books we have in our store. If y becomes larger than the
number of books, the loop will no longer run.

y++

This portion of code increases y by 1 every time the loop is run.

Creating an Example Xcode App

Now let’s create an Xcode application so that we can start comparing numeric data.

1. Launch Xcode. From your hard drive, go to Developer » Applications
folder. Drag it to the Dock, as we will be using it throughout the rest of
this book. See Figure 9-1.

_ (1 Applications % About Xcode 1 Audio
. | |] Developer > |%| About ...SDK.pdf I Dashcode
B iDisk | Library 5 Applications (3 _| Graphics Tools
OmniCraffle i il System .| Documentation & Instruments
g = User Guide formarinn .| Fxamples 4 Interfare Ruilder
SHARED 2] Users | Extras || Performance Tools
|| Mac Pro 2 || Headers [# Quartz Composer
=i I_home .| Library] Utilities
e | Makefiles # Xcode
PLACES latf
Platforms
E Desktop —
N .| SDKs
it bradwlees
\ .| Tools
7% Applications i usr
T Documents
| 2] Dropbox

Figure 9-1. Launching Xcode

2. Click on Create a New Xcode Project to open a new window. On the
left-hand side of that window, under iOS, select Application. Then select
Single View Application on the right hand side. Click on Next.

NOTE: The Window-Based Application is the most generic and basic of the iOS application types.

CHAPTER 1: App Cubby 203

Choose a template for your new project:

e — =

Application £ .@ J
Framewaork & Library
Other 2 =
Master-Detail OpenGL Game Page-Based Single View

‘,_ Mac 05 X Application Application Application
Application = =
Framewaork & Library \9 E,.....E ii"-
Application Plug-in 5 | N pooid ;E
System Plug-in
Other Tabbed Application Utility Application Empty Application Cocoa Touch Static

Library

m Single View Application

This template provides a starting point for an application that uses a single view. It provides a
view controller to manage the view, and a storyboard or nib file that contains the view.

| Cancel | Previous

Figure 9-2. Creating a new project

3. On the next page, enter the name of your application. We used
Comparison as the name, but you can choose any name you like. This is
also the window where you will select which device you would like to
target. We will leave it as universal for the time being. See Figure 9-3.

204 CHAPTER 1: App Cubby

Choose options for your new project:

—

Product Name

| Company Identifier
Bundle Identifier
Class Prefix

Device Family

Comparison

Innovativeware

vativeware.Comparisor
XYZ

(Universal

@] Use Storyboard

@j Use Automatic Reference Counting
Include Unit Tests

Figure 9-3. Selecting the Project Type and Name

| Previous | [MNext |

NOTE: Xcode projects, by default, are saved in the Documents Folder in your user home.

4, Once the new project is created, you will see the standard Xcode
Window. Select the expand arrow next to the Comparison folder to
expand it. You will see two files, ComparisonsAppDelegate.m and
ComparisonsAppDelegate.h. The .h file is a header file and we will not
be changing anything in that file at this moment. The actual names will
change depending on the name you used when creating the project. For
the purpose of these examples, we are only going to be focusing on the
ComparisonsAppDelegate.m file.

5. Double-click on the main.c file and you will see the following code:

#import "ComparisonsAppDelegate.h"
@implementation TestingComparisonsAppDelegate

@synthesize window=_window;

- (BOOL)application: (UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

// Override point for customization after application launch.
[self.window makeKeyAndVisible];

CHAPTER 1: App Cubby

6. At this point, our applications will just launch and display a window. We
are going to add a little “Hello World” to our application. After the line
[self.window makeKeyAndVisible], we need to add the following code:

NSLog(@"Hello World");

This line creates a new NSString with the contents "Hello World" and passes it to the
NSLog function that is used for debugging.

Let’s run our application to see how it works.
1. Click on the Run button in the default toolbar.

2. The iOS simulator will launch. This will just display a window. Back in
Xcode, a debug window will appear at the bottom of the screen, as
shown in Figure 9-4. You can always toggle this window by selecting
View » Show Debug Area.

All Output » Clear) (I 'HEF (W

GNU gdb 6.3.50-20050815 (Apple version gdb-1708) (Mon Aug 8
20:32:45 UTC 2011)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public
License, and you are

welcome to change it and/or distribute copies of it under
certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type “show
warranty" for details.

This GDB was configured as "xB6_64-apple-darwin".Attaching to
process 31958.

2011-10-10 07:01:22.460 Comparison[31950:f883) Hello World

Figure 9-4. Debugger Window

Most of the information in this window will mean very little to you. The most important
line is the bold section that actually shows the output of your application. The first part
of the line shows the date, time, and name of the application. The “Hello World” part
was generated by the NSLog line that we added before.

1. Go back to the application and open the ComparisonsAppDelegate.m
file.

2. Go to the beginning of the line that begins with NSLog. This is the line
that is responsible for printing the “Hello World” section. We are going
to comment out this line by placing two backslashes (//) in front of the
line of code. Commenting out code tells Xcode to ignore it when it
builds and runs the application. Code that is commented out will not
run.

3. Once you comment out the line of code, you will no longer see the line
in bold if you run the program, because the application is no longer
outputting any line.

205

206 CHAPTER 1: App Cubby

4, In order for the application to output the results of our comparisons, we
will have to add one line.

NSLog(@"The result is %@", (6>5 ? @"True" : @"False"));

NOTE: The above code (6>5 ? @"True" : @"False"); is called a Ternary operation. It is
essentially just a simplified way of writing an If/Then statement.

5. Place this line into your code. This line is telling your application to print
out “The result is.” Then it will print “True” if 6 is greater than 5, or
“False” if 5 is greater than 6.

Because 6 is greater than 5, it will print out True.

You can change this line to test any of the examples we have put together thus far in
this chapter, or any of the examples we will do further on.

Let’s try another example.

int i=5;

int y=6;

NSLog(@"The result is %@", (y>i ? @"True" : @"False"));

In this example, we created an integer and assigned its value to 5. We then created
another variable and assigned the value to 6. We then changed the NSLog example to
compare the variables 1 and y instead of using actual numbers. When you run this
example, you will get the following result:

[Switching to process 24637]
Running..
2010-085-31 14:44:17.979 Comparison[24637:a0f] The result is True

Debugger stopped.
Program exited with status value:®.

Figure 9-4. NSLog output

We will now explore other kinds of comparisons, and then we will come back to our
application and test some of them.

Using Boolean Expressions

A Boolean expression is the easiest of all comparisons. Boolean expressions are used to
determine if a value is true or false. False is defined as 0 and true as non-zero. For
example:

int j;
3=5;
if(3) {
}

some_code();

CHAPTER 1: App Cubby

The If statement will always evaluate to true because our variable j is not equal to zero
or null. Because of that, our program will run the some_code() method.

int j;

J=0;
1£(3) {
y some_code();

If we change the value of j, the statement will evaluate to false, because j is now 0.
This can be used with BOOL and number variables.

int j;

J=0;
1f(13) {
y some_code();

Placing an exclamation point in front of a Boolean expression will change it to the
opposite value (a false becomes a true and a true becomes a false). This line now
asks “if not j,” which, in this case, is true because j is equal to 0. This is an example of
using an integer to act as a Boolean variable, As we discussed earlier, Objective C also
has variables called BOOL that have only two possible values: YES or NO.

NOTE: Many programming languages use the terms TRUE and FALSE instead of YES and NO
used by Objective C. When Objective C was developed, the C language did not have true Boolean
variables.

Let’s look at an example related to the bookstore. We have a frequent buyer’s club that
entitles all members to a 15% discount on all books that they purchase. This is easy to
check. We simply set the variable clubMember to YES if they are a member and NO if they
are not. The following code will apply the discount only to club members:

int discountPercent;
BOOL clubMember;

clubMember=FALSE;
discountPercent=0;
if(clubMember) {

discountPercent=15;
}

Comparing Strings

Strings are a very difficult data type for most C languages. In ANSI C (or standard C), a
string is just an array of characters. Objective-C has taken the development of the string
even further and made it an object called the NSString. Many more properties and
methods are available to us when working with an object. Fortunately for us, NSString
has many methods for comparing data, which makes our job much easier.

207

208

CHAPTER 1: App Cubby

While developing for the Mac and the iPhone, you will be able to use both NSStrings
and standard C strings. For the purposes of this book, we will be focusing on comparing
the NSString objects. If you have C type strings in your application, they will need to be
converted to NSStrings in order to use to code included in this book. Fortunately for us,
this conversion is very simple.

char *myCString;
NSString *myNsstring;

myCString = "testing a string";

myNsstring = [NSString stringWithUTF8String: myCString];

The first two lines are code you have seen before. They are your variable declarations.
You are declaring a standard C string called myCString and a NSString called
myNsstring. The third line is just a simple initiation of your standard C string. We are
assigning a value to it.

The last line is where everything happens. You are assigning your NSString object to be
equal to creating a new NSString object, with the value coming from a UTF8string and
passing it to the standard C string that we created. Once you have all of your standard C
strings as NSStrings, we can take advantage of the powerful comparison features
provided to us by the class.

Let’s look at another example. Here, we will compare passwords to see if we should
allow a user to log in.

NSString *enteredPassword, *myPassword;

myPassword=@"duck" ;
enteredPassword=@"Duck";
bool continuelogin=NO;

if([enteredPassword isEqualToString:myPassword]) {
continuelogin=YES;
}

The first line just declares two NSStrings. The next two lines initialize the strings.
Remember, before you use any objects, they need to be initialized. In your actual code,
you will need to get the enteredPassword string from the user. These lines use a
shortcut. Notice the @ symbol before the C style string. The @ symbol creates a new
NSString from the C style string that follows it.

The next line is the part of the code that actually does the work. We are sending a
message to the enteredPassword object asking it if it is equal to the myPassword string.
The method always needs to have an NSString passed to it. The example code will
always be false, because of the capital on the enteredPassword versus the lowercase
on the myPassword.

NOTE: If you need to compare two NSStrings, regardless of case, you would simply use the
caseInsensitiveCompare method instead of the isEqualToString.

CHAPTER 1: App Cubby

There are many other different comparisons you might have to perform on strings. For
example, you may want to check the length of a certain string. This is easily done.
NSString *enteredPassword;

NSString *myPassword;

myPassword=@"duck" ;

enteredPassword=@"Duck";
bool continuelogin=NO;

if([enteredPassword length] > 5) {
continuelogin=YES;
}

This code checks to see if the entered password is longer than 5 characters.

There will be other times when you will have to search within a string for some data.
Fortunately, Objective-C makes this very easy to do. NSString provides us with a
function called range0fString, which allows you to search within a string for another
string. The function range0fString only takes one argument, which is the string for
which you are searching.

NSString *searchTitle, *bookTitle;

searchTitle=@"Sea";
bookTitle=@"2000 Leagues Under the Sea";

if([bookTitle rangeOfString:searchTitle].location !=NSNotFound) {
addToResults();

This code is very similar to other examples we have examined. This example takes a
search term and checks to see if the book title has that same search term in it. If it does,
it adds the book to the results. This can be adapted to allow users to search for specific
terms in book titles, authors, or even descriptions.

NOTE: All string searches are case sensitive by default. If you want to search inside of a string,
regardless of the case, you can change the preceding call from:

[bookTitle rangeOfString: searchTitle]

to:

[bookTitle rangeOfString: searchTitle options:NSCaseInsensitiveSearch]
For a complete listing of the methods supported by NSString, see the Apple

documentation at http://developer.apple.com/mac/library/documentation/cocoa/
reference/Foundation/Classes/NSString Class/Reference/NSString.html.

Comparing Dates

Dates are a fairly complicated variable type in any language and, unfortunately,
depending on the type of application you are writing, they are very common. Objective-

209

210

CHAPTER 1: App Cubby

C previously used the NSCalendarDate class, but recently it has been replaced with a
more up-to-date NSDate. The new NSDate has a lot of nice methods that make
comparing dates easy. We will focus on the compare function. The compare function
returns an NSComparisonResult, which has three possible values: NSOrderedSame,
NSOrderedDescending, NSOrderedAscending.

NSDate *today = [NSDate date];

//Sale Date as of 12/4/2011
NSDate *saleDate = [NSDate dateWithString:@"2011-12-04 04:00:00 -0700"];

NSComparisonResult result;
bool saleStarted;

result=[today compare:saleDate];

if(result==NSOrderedAscending) {

//Sale Date is in the future
saleStarted=NO;

} else if(result==NSOrderedDescending) {
//Sale Date is in the past
saleStarted=YES;

} else {

//Sale Date and Today are the same
saleStarted=YES;

}

This may seem like a lot of work just to compare some dates. Let’s walk through the
code and see if we can make sense of it.

NSDate *today = [NSDate date];
NSDate *saleDate = [NSDate dateWithString:@"2011-09-04 04:00:00 -0700"];

Here, we declare two different NSDate objects. The first one, named today, is initialized
with the system date or your computer or iPad date. The second one, named saleDate,
is initialized with a date some time in the future. We will use this date to see if this sale
has begun. We will not go into detail about the initialization of NSDates, but they can be
initialized using the dateWithString function similar to what we showed previously.

NOTE: In most programming languages, dates are dealt with in a very specific pattern. They
usually start out with the 4 digit year followed by a hyphen, then a two digit month followed by a
hyphen, then a 2 digit day. If you are using a data format with a time, these data are usually
presented in a similar manner. Times are usually presented with the hour, minute, and second,
each separated by a colon. Objective C also has time zone support. The “-0700” tells Objective C
that the time is 7 hours less than Greenwich Mean time or Mountain Standard Time.

NSComparisonResult result;

The results of using the compare function of an NSDate object is an NSComparisonResult.
We have to declare an NSComparisonResult to capture the output from the compare
function.

CHAPTER 1: App Cubby

result=[today compare:saleDate];

This simple line runs the comparison of the two dates. It places the resulting
NSComparisonResult into the variable called result.

if(result==NSOrderedAscending) {

//Sale Date is in the future
saleStarted=NO;

} else if(result=NSOrderedDescending) {

//Sale Date is in the past
saleStarted=YES;

} else {

//Sale Date and Today are the same
saleStarted=YES;

}

Now we need to find out what value is in the variable result. In order to accomplish this,
we perform an if statement that compares the result to the three different options for
the NSComparisonResult. The first line finds out if the sale date is greater than today’s
date. This means that the sale date is in the future, and thus the sale has not started. We
then set the variable saleStarted to No. The next line finds out whether the sale date is
less than today. If it is, then the sale has started and we set the saleStarted variable to
Yes. The next line just says else. This captures all other options. We know, though, that
the only other option is NSOrderedSame. This means that the two dates are exactly the
same, and thus the sale is just beginning.

There are other methods that you can use to compare NSDate objects. Each of these
methods will be more efficient at certain tasks. We have chosen the compare method
because it will handle most of your basic date comparison needs.

NOTE: Remember that an NSDate holds both a date and a time. This can affect your
comparisons with dates as it not only compares the date but the time.

Combining Comparisons

As we discussed in Chapter 4, sometimes something more complex than a single
comparison is needed. This is where logical operators come in. Logical operators enable
you to check for more than one different requirement. For example, if we have a special
discount for people who are members of our book club and who spend over $30, we
can write one statement to check this.

float totalSpent;

int discountThreshhold;
int discountPercent;
BOOL clubMember = TRUE;

discountThreshhold=30;
discountPercent=0;
totalSpent=calculateTotalSpent();

if(totalSpent > discountThreshhold 88 clubMember) {

211

212

CHAPTER 1: App Cubby

discountPercent=15;

}

We have combined two of the examples from above. The new comparison line reads as
follows: If totalSpent is greater than discountThreshold AND clubMember is true, then we set
the discountPercent to 15. In order for this to return True, both items need to be true. || can
be used instead of && to signify “or.” We can change the line above to this:

if(totalSpent> discountThreshhold|| clubMember) {
discountPercent=15;
}

Now this reads: If totalSpent is greater than discountThreshold OR clubMember is true,
then set the discount percent. This will return True if either of the options is true.

You can continue to use the logical operations to string as many comparisons together
as you need. In some cases, you may need to group comparisons together using
parentheses. This can be more complicated and is beyond the scope of this book.

Using the Switch Statement

Up to this point, we’ve had several example of comparing data by simply using the if
statement and/or the if/else statements.

if (some_value == SOME_CONSTANT) {

} el;é.if (some_value == SOME_OTHER_CONSTANT) {

} el;é.if (some_value == YET_SOME_OTHER_CONSTANT) {
\ .

If you need to compare a specific ordinal type to several constant values, you can use a
different method that can simplify the comparison code: the switch statement.

NOTE: An ordinal type is a built-in C data type that can be ordered. Examples are int, long, char,
BOOL.

The switch statement allows the comparison of one or more constant values against the
ordinal data type. This is important to understand. The switch statement does not allow
the comparison of the ordinal type to a variable. Here is an example of a proper switch
statement:

char value;
value = 'd';

switch (value) { // The switch statement followed by a begin brace
case 'a': // Equivalent to if (value == 'a")
// Call functions and put any other statements here after the

case.

CHAPTER 1: App Cubby

break; // This indicates that this is the end of the “case 'a':"
statement.

case 'b':

break;

case 'c': // If there is a case without a break, the program continues to execute.
case 'd': // So, in this case, if value is a 'c' or a 'd', this code will

be executed.

break;
default: // Default is optional and is only used if there is no case
statement

eee // for 'value'. So, if value was equal to 'x', the default part of
the switch

eee // statement will be executed since there is no “case 'x':" present.
break;

} // End of the switch statement.

The switch statement is very powerful, and it simplifies and streamlines comparisons of
an ordinal type to several possible constants. That said, this is also the limiting factor of
the switch statement. It is not possible, for example, to use the switch statement to
compare an NSString variable to a series of string constants. This is because an
NSString value is not an ordinal type. The switch statement also must compare an
ordinal type to a constant. Therefore, it is not possible to write:

switch (value) {
case variable: //case must be a constant, not a variable.

breék;
While it does seem that these are severe limitations to the switch statement, the switch

statement is still a very powerful statement that can be used to simplify certain if/else
statements.

Summary

We've reached the end of the chapter! Here is a summary of the things that were
covered.

Comparisons
Comparing data is an integral part of any application.
Relational operators

You learned about the six standard relational operators and how
each is used.

Integers

Integers are the easiest pieces of information to compare. You
learned how comparison of integers will be used in your
programs and how to implement it.

213

214 CHAPTER 1: App Cubby

Example

You created a sample application where you could test your
comparisons and make sure that you are correct in your logic.

You learned how to change the application to add different types
of comparisons.

Boolean
You learned how to check Boolean values.
Strings

You learned how strings behave differently from other pieces of
information you have tested. You learned some of the pitfalls of
comparing strings.

Objects

You learned how difficult it can be to compare objects and that
care must be taken to make sure you are getting the response
you desire.

Exercises

Modify the example application to compare some string information.
This can either be in the form of a variable or a literal.

Create a loop in your application to display a number using the
methods you learned in the Boolean portion of the chapter.

Write an Objective-C app that determines if the following years are
leap years: 1800, 1801, 1899, 1900, 2000, 2001, 2003, and 2010.
Output should be written to the console in the following format: "The
year 2000 is a leap year," or "The year 2001 is not a leap year."

Chapter

Creating User Interfaces

Interface Builder is an application that enables iPhone/iPad and Mac developers to
easily create their user interfaces using a powerful graphical user interface. It provides
the ability to build user interfaces by simply dragging objects from Interface Builder’s
library to your app’s user interface.

Interface Builder stores your user interface design in one or more resource files, called
XIBs. These resource files are set to interface objects and their relationships. Changes
that you make with your user interface are automatically synchronized with Xcode.

To build a user interface, simply drag objects from Interface Builder’s Library Pane onto
your view. Actions and Outlets are two key components of Interface Builder that help us
streamline the development processes.

Actions that our objects trigged in our views are connected to our methods in the app’s
code. Outlets (pointers) declared in our object’s interface file are connected to specific
instance variables. See Figure 10-1.

NOTE: Interface Builder was once a stand-alone application that developers used to design their
user interfaces. Starting with Xcode 4.0, Apple integrated Interface Builder within Xcode.

215

216 CHAPTER 10: Creating User Interfaces

(») (m) [R. iPhone 5.0 Simulator

T ™) RandomNumber ; [jClasses ; [|Controlier mi ViewControlier.xib 1 || View L 2 DB B |®| £ ©

= | ¥ Simulated Metrics
Il Placeholders
Size | None
File's Owner
Wl First Responder Orientation | Portrait
Status Bar | Gray

% Objects
Top Bar | None

=
== Bottom Bar | None
¥ View
Mode | Scale To Fill
Tag (16
imeraction | User Interaction Enabled
Multiple Touch
Seed Random Number Generator Alpha s

Background | C—1 | ¢
I

D (e =

Generate Random Number Ji Objects 2 [EE

Label 12 Text

Label

Figure 10-1. Interface Builder

Understanding Interface Builder

The operating system is responsible for the memory management of the objects it
creates for iPhone and iPad apps. This relieves the developer of having to allocate
memory if the developer used Interface Builder to create the object.

Interface Builder saves the user interface file as a bundle that contains the interface
objects and relationships used in the application. These bundles had the file extension
“.NIB”. With version 3.0 of Interface Builder, a new XML file format was used and the file
extension changed to “.XIB”. However, developers still call these files “NIB” files when
saying or referring to the file name.

Unlike most other graphical user interface applications, NIBs are often referred to as
freeze-dried because they contain the archived objects themselves and are ready to run.

CHAPTER 10: Creating User Interfaces

The XML file format is used to facilitate storage with source control systems like
Subversion and Git.

In the next section, we’ll discuss an app design pattern called Model-View-Controller.
This design pattern enables developers to more easily maintain code and reuse objects
over the life of an app.

The Model-View-Gontroller

Model-View-Controller (MVC) is the most prevalent design pattern used in iPhone/iPad
development, and learning about it will make your life as a developer much easier. MVC
is used in software development and is considered an architectural pattern.

Architectural patterns describe solutions to software design problems that developers
can use in their code. The MVC pattern is not unique to Apple OOP developers; it is
being adopted by many makers of IDEs, including those running on Windows and Linux
platforms.

Software development is considered an expensive and risky venture for businesses.
Frequently, apps take longer than expected to write, come in over budget, and don’t
work as promised. OOP produced a lot of hype and gave the impression that companies
would realize savings if they adopted its methodology, primarily because of the
reusability of objects and easier maintainability of the code. Initially, this didn’t happen.

As engineers looked at why OOP wasn’t living up to these expectations, they discovered
a key shortcoming with how developers were designing their objects: developers were
frequently mixing objects together in such a way that the code became difficult to
maintain as the application matured, moved to different platforms, or hardware displays
changed.

Objects were often designed so that, if any of the following changed, it was difficult to
isolate the objects that were impacted:

Business rules
User interfaced
Client-server or Internet-based

Objects can be broken down into three task-related categories. It is the responsibility of
the developer to ensure that each of these categories keeps their objects from drifting
across other categories. They are:

1. Models: Business objects
2. Views: User interface objects
3. Controllers: Objects that communicate with both the Models and the Views

As objects are categorized in these groups, apps can be developed and maintained
more easily over time. The following are examples of objects and their associated MVC
category for an iPhone banking application:

217

218

CHAPTER 10: Creating User Interfaces

Model
Account balances
User encryption
Account transfers

Account login

View
Account balances table cell
Account login spinner control
Controller

Account balance view controller
Account transfer view controller
Logon view controller

The easiest way to remember and classify your objects in the MVC paradigm is the
following:

Model: Unique business or application rules or code that represent the real world
View: Unique user interface code
Controller: Anything that controls or communicates with the Model or View objects

Figure 10-2 represents the MVC paradigm.

@ »

Figure 10-2. MVC paradigm

Neither Xcode nor Interface Builder force developers to use the MVC design pattern. It is
up to the developer to organize their objects in such a way to use this design pattern.

It is worth mentioning that Apple strongly embraces the MVC design pattern and all of
the frameworks are designed to work in an MVC world. This means that if you also
embrace the MVC design pattern, working with Apple’s classes will be much easier. If
you don’t, you’ll be swimming upstream.

CHAPTER 10: Creating User Interfaces

Human Interface Guidelines (HIGs)

Before you get too excited and begin designing dynamic user interfaces for your app,
you need to learn some of the ground rules. Apple has developed one of the most
advanced operating systems in the world with iOS 5. Additionally, Apple’s products are
known for being intuitive and user-friendly. Apple wants users to have the same
experience from one app to the next.

In order to insure a consistent user experience, Apple provides developers guidelines on
how their apps should look and feel. These guidelines, called the human interface
guidelines (HIGs), are available for the Mac, iPhone, and iPad. You can download these
docs at http://developer.apple.com. See Figure 10-3.

Introduction

i G i et Sttt L

About the Guidelines for Creating Great Mac 05 X Apps

St e o 1 et

Figure 10-3. Apple’s human interface guidelines (HIGs) for iOS devices and Macs

NOTE: Apple’s HIGs are more than recommendations or suggestions. Apple takes them very
seriously. While the HIGs don’t describe how to implement your user interface designs in code,
they are great for understanding the proper way to implement your views and controls.

The following are the top reasons apps are rejected in Apple’s iTunes App store:
1. The app crashes
2. Violation of the HIGs
3. Uses Apple Private APIs
4, Doesn’t function as advertised on iTunes App Store

You can read, learn, and follow the HIGs before you develop your app, or you can read,
learn, and follow the HIG after your app gets rejected by Apple and you have to rewrite

219

220

CHAPTER 10: Creating User Interfaces

part or all of it. Either way, all iOS developers will end up becoming familiar with the
HIGs.

Many new iOS developers find this out the hard way, but if you the follow the HIGs from
day one, your iOS development will be a far more pleasurable experience.

Creating an Example iPhone App with Interface
Builder

Let’s get started by building an iPhone app that generates and displays a random number.
See Figure 10-4. This app will be similar to the app we created in Chapter 4, but we’ll see
how much more interesting the app becomes with an iOS user interface (Ul).

/ \

il Carrier &

Seed Random Number Generator

Generate Random Number

/

Figure 10-4. Completed iOS random number generator app

b

1. Open up Xcode and select Create a New Project. Make sure you select a Single
View Application for the iPhone. See Figure 10-5.

CHAPTER 10: Creating User Interfaces 221

Choose a template for your new project:

W ios 2
: . £ & - |I|
Framework & Library ®
Other ¥ . %
Master-Detail OpenCL Game Page-Based Single View
ﬁ Mac 05 X Application Application Application
Application . -
PEEEE
Framework & Library \" H H
Application Plug-in =3 AN Lo
System Plug-in
Other Tabbed Application Utility Application Empty Application
m Single View Application
This template provides a starting point for an application that uses a single view. It provides a
view centroller to manage the view, and a storybeard or nib file that contains the view.
Cancel

Next

Figure 10-5. Create an iPhone Single View Application

2. Name your project “RandomNumber” and save the project. See Figure 10-6.

Choose options for your new project:

Product Name |RandomNumber
Company Identifier com.xcelme

Bundle Identifier co

Class Prefix | XYZ
Device Family | iPhong
Use Storyboard
Use Core Data

_f Use Automatic Reference Counting

Include Unit Tests

Cancel | Previous Next

Figure 10-6. Naming our iPhone project

3. Your project files and settings are created and displayed. See Figure 10-7.

222

CHAPTER 10: Creating User Interfaces

" = n RandomNumbaer | iPhone 5.0 Simulator
Bn®4A=m>8 |= I Randomumber
1 Info Budd Seings Build Phases.
S % Randombumber
BangomNumer .
h ApoDeiegate.h A
i
Belld
Deployment Target
P | iFod Daploymant nfe
P
e e
Sepported Davice Orientations.
Pomran Upsade Landscaot Landicape
Dy Left Raght

Rating Diapisy

Launch Images

Reting Dagiay

(] ©
=) Add Target Validate Settings

Al0@BE S

Figure 10-7. Source files

Build Rules

Crapres 10 sew

¥ Test Semings.

e Ging | Spaces |
W al: < |

o irap beer

masse-doam et
...... o+ action mestage 10

Roundied Textured Button
Iatadanas, menstbm smsant A

Although we only have one controller in this project, it’s good programming practice to
make your MVC groups at the beginning of your development. This helps remind
developers to keep the MVC paradigm and not put all of their code unnecessarily in their

controller.

4, Right-click the RandomNumber Project, and then select New Group. See

Figure 10-8.

CHAPTER 10: Creating User Interfaces

e
m M | | RandomNumber * iPhone 5.0 Simulator S
Run Stop Scheme Breakpoints
L S et
|@|Z & 4 = » B il | RandomNumber
=, RandomNumber PROIE
¥ L1 1 targer, i0S SDK 5.0 o
— 4 RandomMNumber i0S Application Targe!
i AN LITH =
h! AppDelega’
. I ifi
m! AppDelegal W X é dentifier
h| ViewContre Open As > ! Version
m| ViewContre =
o ViewContre INew File... Devices
» | |Supporting New Project... Deplayment Target
|| Frameworks _

» | | Products
New Group from Selection

Sort by Name
Sort by Type

Add Files to "RandomNumber”...

Delete

Source Control »

Project Navigator Help »
-

Figure 10-8. Creating new groups

¥ iPhone [iPod Depli

Main Storyboard

Main Interface

Supported Device O

App lcons

5. Create a Models Group, Views Group, and Controllers Group.

6. Drag the ViewController.m and .h file the Controllers Group. Having these groups
reminds you to follow the MVC design pattern as you develop your code and
prevents you from placing all of your code in the controllers. See Figure 10-9.

Developers have found it helpful to keep their XIB files with their controllers as their
projects grow. It is not uncommon to have dozens of controllers and XIB files in your
project. Keeping them together helps keep everything organized.

223

224 CHAPTER 10: Creating User Interfaces

Ra... ' iPhone 5.0 Simulator

M @ A = =» B [«

RandomNumber /7
—= 1 target, 105 SUK 5.0
v RandomNumber //
v Controllers !/
h! ViewCentroller.h //
m ViewController.m //
ViewController.xib
v Views //
v Models
h| AppDelegate.h I/
m| AppDelegate.m
b Supporting Files #im
Frameworks
b Products
@in
@en

Figure 10-9. MVC groups with Controller and XIB files organized

7. Click the ViewController.xib to open Interface Builder.

CHAPTER 10: Creating User Interfaces 225

Using Interface Builder

The most common way to launch Interface Builder and begin working on our view is
to click the XIB file related to the view. See Figure 10-10.

Inspector
selector bar
o™) Sketch
> 5. % = vttt Elzs|oicE,,
L] Srent Beeabpmonty Lttt View
= - - " Tay Tast Foahg Call D e o li.-- (4] G 2 |_
A
Interface . (|
Builder L) Caghas - e |
objects { b
e o 1 — Inspecior pane
Line Width {
g , |
Dock 2 € : .
A\ i & Library
(" |
’ ESbeesd Ecitor S A o becaen | | | selector bar
| area |) _LE_
LI
R s Hiwight T il
we Utility — Library pane
darea
Canvas |

Figure 10-10. Interface Builder in the workspace window

When Interface Builder opens, we can see our view displayed in the canvas. We are now
able to design our user interface. First we need to understand some of the sub-windows
within Interface Builder.

The Dock

The Document window shows all the objects that our view contains. Some examples of
these objects are:

B Buttons
Labels
Text fields
Web views
Map views
iAd

Picker views

Table views

226 CHAPTER 10: Creating User Interfaces

NOTE: You can expand the width of the dock to see a detailed list of all your objects. See
Figure 10-11. To get more real estate for the canvas, you can shrink or remove your file list

= Xeod 3|
e ... ! IPhone 5.0 e
D ® 4 = = 8 oo ™ Randomburmber Rardam, Cantrallers ViewCon, ViewCentrofer xib (Enaglish) View D B 2 |% = ©
o [RandomNumber = v Simulated Metrics
Y SDKS 0 7 Placeholders
2 None
v File’s Owrier
:; Flrst Responder i Portrait
= = s Gray
i Objects =
p Bar | none
v (Gl Views L | Bottom Bar | None
v [Models ¥, View
A legate.h
h} AppDeleg; Mode | Scale To Fill
m AppDelegate.m
Supporting Files Tag [18
* [| Frameworks Interaction [User Interaction Enabled
» Products Multiple Touch

ing ¥ Opague Hidden
Clears Graphics Context
Clip Subviews

 Aurcresize Subviews

Stretching [18 of:
0]l & =
il Objects. i
Label 12 Text
™
- ﬂ) —
B
.-
R G

+ I BEE ™ - -

Figure 10-11. The Doc’s width is expanded to show a detailed view of all the objects in our XIB.

The Library

The Library is where you can exploit your creativity. It’s a smorgasbord of objects that
you can drag and drop into the view window.

The library window can grow and shrink by moving the window
splitter. See Figure 10-12.

CHAPTER 10

: Creating User Interfaces

RS

Stretching [0l . o
X ; Y :
Li: L)
a0 U]o| =
(Ll Ovjects) [l E)
12 o
@ =

Figure 10-12. Expand the Library Pane to see more controls. Slide the spitter to resize the window with the
mouse.

For Cocoa Touch objects, the Library pane is divided into the following five sections:

Controls

Data Views

Gesture Recognizers
Objects & Controllers
Window & Bars

Interaction @ User Interaction Enabled
| Multinie Touch

| D () | m

v 1 Objects) (88!

] Cocoa Touch
ﬁ! Controls
(1] pata views
(L)l Gesture Recognizers
ﬂ:]i Objects & Controllers
Ej Windows & Bars

] Custom Objects

L J

|1ii

Text |

—_

T
iy

i

bl

Figure 10-13. Various Cocoa Touch Objects in the Library Pane

227

228 CHAPTER 10: Creating User Interfaces

Inspector Pane and Selector Bar

The Inspector pane enables you to change the properties of the controls to make your objects
follow your command. The Inspector pane has six tabs across the top. See Figure 10-14.

B File Inspector

Quick Help Inspector
Identity Inspector
Attributes Inspector

Size Inspector

Connections Inspector

| B B9 © ©
¥ Custom Class

Class | UlView 15 4

¥ User Defined Runtime Attributes
Key Path Type Value

PP —
¥ Identity
Label | Xcode Specific Label
X
Object ID 6
Lock | Inherited - (Nothing) :
Notes Show With Selection

¥ Accessibility
Accessibility Enabled
Label

Hint

Figure 10-14. The Identity Inspector and Selector Bar

CHAPTER 10: Creating User Interfaces

Creating the View

Our random number generator will have three objects in the view: one label and two
buttons. One button will generate the seed, another button will generate the random
number, and the label shows the random number generated by the app.

1.

2
3.
4

Drag a Label from the Library Pane Controls section to the View window.

Drag two rounded rect buttons from the Library window to the View Window.

Click the top button and label the button Seed Random Number Generator.

Click the bottom button and label it Generate Random Number. See Figure 10-15.

Seed Random Nl:meer Generator

Generate Ranfdom Number

LaEP

5

=

Figure 10-15. Placing objects in the view

¥ User Defined Runtime Attributes
Key Path Type Value

+] -
¥ Identity
Label | Xcode Specif
x
ObjectiD 6
Lock | Inherited - (Nothing)
Notes || Show With Selection

¥ Accessibility
Accessibility || Enabled
Label

Hint | = S

D leim

|| Objects s | |88 =

Label 1,2 Text

229

230 CHAPTER 10: Creating User Interfaces

Now we get to use a new feature with Xcode 4.2 and iOS 5. We now have the ability to
quickly and easy connect our Outlets and Actions to our code. Xcode 4.2 actually goes
one step further; it will create some of the code for us. All we have to do is drag and

drop.

5. Click the Assistant Editor icon at the top right of the screen. This will display the .h
file for the XIB file we are working on. See Figure 10-16.

D Bl=® 0

<UIKit/UTKit.h> e

ce ViewController : UIViewController

Label 1..:_:“-.‘/:-.-“4

Figure 10-16. Using the Assistant Editor to display the .h and .XIB files together

Using Outlets
Now we can connect our label to our code by creating an outlet.

1. Insert curly brackets for your instance variables. Control-Drag from the label in the
view to inside the curly brackets in the .h file and drop. See Figure 10-17.

CHAPTER 10: Creating User Interfaces

il f/ ViewController.h
| 3| // RandomNumber

¢ // Created by Gary Bennett on 18/6/11.
|+ // Copyright (c) 2011 xcelME. All rights rese
o #import <UIKit/UIKit.h>

1| @interface ViewController : UIViewController

Figure 10-17. Control-Drag and drop to create the code for randNumber outlet

A popup window will appear. This enables us to name and specify the type of Outlet.

2. Complete the popup as in Figure 10-18 and press the Connect button.

hd

10

Connection (Outlet 3
Object File's Owner E
Name !randomNumber |
Type |UlLabel [v]

Storage [Strong &)

(Cancel)

(Connect)

Figure 10-18. Pop-up for randomNumber Outlet

#import <UI

@interface

The code is now created for the outlet and the outlet is now connected to the Label
object in our .XIB file. The shaded circle next to line number 14 indicates the outlet is
connected to an object in the XIB file. See Figure 10-19.

231

232

CHAPTER 10: Creating User Interfaces

// ViewController.h

// RandomNumber

/Y

// Created by Gary Bennett on 108/6/11.

// Copyright (c) 2011 xcelME. All rights reserved.
¥

#import <UIKit/UIKit.h=

Seed Random Number Generator : : T
@interface ViewController : UIViewController

{

IBOutlet UILabel xrandomNumber;
Generate Random Number

@end

Label

Figure 10-19. Outlet instance variable code generated and connected to the Label Object.

As a reminder, outlets (pointers) are declared in our object’s interface file and connected
to specific instance variables.

There is also a declaration that may be new to you called an IBOutlet, commonly
referred to simply as an outlet. Outlets signal your controller that this instance variable is
a pointer to another object that is set up in Interface Builder. IBOutlet will enable
Interface Builder to see the outlet and enable you to connect the variable to the object in
Interface Builder.

Using the analogy of an electrical wall outlet, these instance variable outlets are
connected to objects. Using Interface Builder, we can connect these instance variables
to the appropriate object.

Connecting Actions and Objects

User interface object events, also known as Actions, trigger methods.
Now we need to connect the object actions to the buttons.

1. Control-Drag from the “Seed Random Number Generator” button to below the
last curly bracket and drop. Complete the pop-up as indicated in Figure 10-20
and press the connect button. Make sure you change the connection as an
Action and not an Outlet.

CHAPTER 10: Creating User Interfaces 233

#import <UIKit/UIKit.h>

Number G t : ; : i
s s S @interface ViewController : UIViewControl

Connection | Action {
Dbject File's Owner
1 P b IBOutlet UILabel *xrandomNumber;
e Randoi }
Type |id v
Event | Touch Up Inside @E‘n d
Arguments | Sender
Cancel Connect
Label we— e

Figure 10-20. Complete the pop-up for the Seed method.

2. Repeat Step 8 for the Generate Random Number button.
iy

// ViewController.h

// RandomNumber

I

// Created by Gary Bennett on 18/6/11.

// Copyright (c) 2011 xcelME. All rights reserved.
/7

#import <UIKit/UIKit.h=

Seed Random Number Generator . g —
@interface ViewController : UIViewController

{

IBOutlet UILabel xrandomNumber;
Generate Random Number
— (IBAction)seed: (id)sender;
- (IBAction)generate:(id)sender;

Label @end

Figure 10-21. Generate and Seed actions connected to their Button Objects

Implementation File

All that is left is to complete the code for our outlet and actions in the implementation file
for the controller.

Open ViewController.m file and complete the seed: and generate: methods. See
Figure 10-22.

234 CHAPTER 10: Creating User Interfaces

- (IBAction)seed: (id)sender {
srandom(time(NULL));
[randomNumber setText: @"Generator seeded"];

}

- (IBAction)generate: (id)sender {
// Generate a number between @ and 188 inclusive
int generated;
generated = (random() % 101);
[randomNumber setText: [NSString stringWithFormat:@"%i",generated]];

}
Figure 10-22. The seed: and generate: methods completed.

There is some code we should examine a bit further: [randNumber setText:. The
method setText: sets the UlLabel value in your view. The connections you established
in Interface Builder from your outlet to the Label object do all the work for you.

That's it!

To run your iPhone app in the iPhone simulator, click the Play button and your app
should launch in the simulator. See Figure 10-23.

Carrier =

Seed Random Number Generator

Generate Random Number

Figure 10-23. The completed random number generator app running in the iPhone Simulator

CHAPTER 10: Creating User Interfaces

To seed the random function, tap Seed Random Number Generator. To generate the
random number, tap Generate Random Number Generator.

Summary

Great job! Interface Builder saves you a lot of time when creating User Interfaces. You
have a powerful set of objects to use in your application and are responsible for a
minimal amount of coding. Interface Builder handles many of the details you would
normally have to deal with.

You should be familiar with the following terms:
XIB files
Model-View-Controller (MVC)
Architectural pattern
Human interface guidelines (HIGs)
Outlets

Actions

Exercises

Extend the random number generator app to show a date and time in
a Label when the app starts.

Adjust the Date and Time message for “Generator Seeded” to fit nicely
in the label.

After showing a date and time label, add a button to update the data
and time label with the new time.

235

Chapter

Storing Information

As a developer, there will be many different situations in which you will need to store
data. Users will expect your application (app) to remember preferences and other
information each time they launch it. In previous chapters, we discussed the Book Store
app. With this app, users will expect your application to remember all of the books in the
bookstore and have it default to a database location. Your application will need a way to
store this information, retrieve it, and possibly search and sort this data. Working with
data can sometimes be difficult. Fortunately, Apple has provided methods and
frameworks to make this process easier.

In this chapter, we discuss two different formats in which data will need to be stored.
We will start by discussing saving preferences for the Mac and the iPhone, and then
move on to using a SQLite database in our application that stores and retrieves data.

Storage Considerations

There are some major storage differences between the Mac and the iPhone, and these
differences will affect how you work with data. Let's start by first discussing the Mac
and how you will need to develop for it.

On the Mac, by default, applications are stored in the Applications folder. Each user has
their own home folder where preferences and information related to that user are stored.
Not all of the users will have access to write to the Applications folder or to the
application bundle itself.

On the iPhone and iPad, developers do not need to deal with different users. Every
person who uses the iPhone has the same permissions and the same folders. There are
some other factors to consider with the iPhone, though. Every application on the iPhone
is in its own "sand box." This means that files written by an application can only be seen
and used by that individual application. This makes for a more secure environment for
the iPhone, but it also presents some changes in the way we work with data storage.

237

238

CHAPTER 11: Storing Information

Preferences

There are some things to consider when deciding where to store certain kinds of
information. The easiest way to store information is within the preferences file, but this
method has some downsides.

All of the data is both read and written at the same time. If you are
going to be writing often or writing large amounts of data, this could
take time and slow down your application. As a general rule, your
preference file should never be larger than 100K. If your preference file
starts to become larger than 100k, consider using Core Data as a way
to store your information.

The Preference file does not provide many options when it comes to
searching and ordering information.

The preference file is really nothing more than a standardized file with accompanying
classes and methods to store application specific information. A preference would be,
for example, the sorting column and direction (ascending/descending) of a list. Anything
that is generally customizable within an app should be stored in a preference file.

Writing Preferences

Apple has provided developers with the NSUserDefaults class; this class makes it very
easy to read and write preferences for the iPhone and Mac OS X.. The great thing is

that, in this case, you can use the exact same code for the iPhone and Mac OS X. The
only difference between the two implementations is the location of the preference file.

NOTE: For Mac 0S X, the preference file is named
com.yourcompany.applicationname.plist and is located in the
/Users/username/Library/Preferences folder. On the iPhone, the preference file is located in your
application bundle in the Library/Preferences folder.

All you need to do to write preferences is to create an NSUserDefaults object. This is
done with the following line:

NSUserDefaults *prefs = [NSUserDefaults standardUserDefaults];

This instantiates the object’s prefs and you can now use it to set preference values.
Next, you need to set the preference keys for the values that you would like to save. The
previous Book Store app example will be used to demonstrate specific instructions
throughout the rest of this chapter. As a bookstore, you might want to save a username
or password in the preferences. You also might want to save things such as a default
book category or recent searches. The preference file is a great place to store this type
of information because this is the kind of information that only needs to be read when
the application is launched.

CHAPTER 11: Storing Information

Also, on the iPhone, it is often necessary to save your current state. If a person is using
your application and then gets a phone call, you want to be able to bring them back to
the exact place they were on your application when they are done their phone call. This
is less necessary now with iOS 4 and 5 and the implementation of multitasking, but your
users will still appreciate it if your application remembers what they were doing the next
time it is launched.

Once you have instantiated the object, you can just call setObjectforKey to set an
object. If we wanted to save the username of sherlock.holmes, we would just call the
following line of code:

[prefs setObject:@"sherlock.holmes" forKey:@"username"];

You can use setInteger, setDouble, setBool, setFloat, and setURL instead of
setObject, depending on the type of information you are storing in the preference file.
Let's say you store the number of books a user wants to see in the list. Here is an
example of using setInteger to store this preference:

[prefs setInteger:10 forKey:@"booksInList"];

After a certain period of time your app will automatically write the preference file. You
can force your app to save the preferences by calling the synchronize function but this
is not necessary in most cases. To call the synchronize function you would write the
following line:

[prefs synchronize];

With just three lines of code, we are able to create a preference object, set two
preference values, and write the preference file. It is a very easy and clean process. Here
is all of the code together:

NSUserDefaults *prefs = [NSUserDefaults standardUserDefaults];

[prefs setObject:@"sherlock.holmes” forKey:@"username"];
[prefs setInteger:10 forKey:@"booksInList"];

Reading Preferences

Reading preferences is very similar to writing preferences, and is just as easy. Just like
writing, the first step is to obtain the NSUserDefaults object. This is done in exactly the
same way as it was done in the writing process:

NSUserDefaults *prefs = [NSUserDefaults standardUserDefaults];

Now that we have the object, we are able to access the preference values that are set.
For writing, we use the setObject syntax; for reading, we use the stringForKey function.
In the writing example, we set preferences for the username and for the number of
books in the list to display. We can read those preferences out by using the following
simple lines of code:

NSString *username = [prefs stringForKey:@"username"];
NSInteger booksInList = [prefs integerForKey:@"booksInList”];

239

240

CHAPTER 11: Storing Information

Pay close attention to what is done in each of these lines. We start out by declaring the
variable username, which is an NSString. This variable will be used to store the
preference value of the username we stored in the preferences. Then, we just assign it
to the value of the preference username. You will notice that in the read example we do
not use the synchronize function. This is because we have not changed the values of
the preferences; therefore, we do not need to make sure it is written to a disk.

Databases

We have discussed how to store some small pieces of information and retrieve them at
a later point. What if you have more information that needs to be stored? What if you
need to conduct a search within this information or put it in some sort of order? These
kinds of situations call for a database.

Let's start by discussing what a database is. A database is a tool for storing a significant
amount of information in a way that it can be easily searched for or retrieved. When
using a database, usually small chunks of the data are retrieved at a time rather than the
entire file. Many applications you use in your daily life are based on databases of some
sort. Your online banking application retrieves your account activity from a database.
Your supermarket uses a database to retrieve prices for different items. A simple
example of a database is a spreadsheet. You may have many columns and many rows
in your spreadsheet. The columns in your spreadsheet represent different pieces of
information you want to store. In a database, these are considered attributes. The rows
in your spreadsheet would be considered different records in your database.

Storing Information in a Database

Databases are usually an intimidating subject for a developer; most developers
associate databases with enterprise database servers such as Microsoft SQL Server or
Oracle. These applications can take time to set up and require constant management.
For most developers, a database system like Oracle would be too much to handle.
Luckily, Apple has included a small compact database engine called SQLite in the Mac,
iPhone, and iPad. This allows you to gain many of the features of the complex database
servers without the overhead.

SQLite will provide you with a lot of flexibility in storing information for your application.
It stores the entire database in a single file. It is fast, reliable, and easy to implement in
your application. The best thing about the SQLite database is that there is no need to
perform any installation of software; Apple has taken care of that for you.

However, SQLitedoes have some limitations that, as a developer, you should be aware of:

SQLite was designed to be used as a single user database. You will
not want to use SQLite in an environment where more than one person
will be accessing the same database. This could lead to data loss or
corruption.

CHAPTER 11: Storing Information

In the business world, databases can grow to become very large. It is
not surprising for a database manager to handle databases as large as
500GB, and in some cases databases can become much larger than
that. SQLite should be able to handle smaller databases without any
issues, but you will begin to see performance issues if your database
starts to get too large.

SQLite lacks some of the backup and data restore features of the
enterprise database solutions.

For the purposes of this chapter, we will focus on using SQLite as our database engine.
If any of the mentioned limitations are present in the application you are developing, you
may need to look into an enterprise database solution, which is beyond the scope of this
book.

NOTE: SQLite gets its name from structured query language or SQL. SQL is the language used to
enter, search, and retrieve data from a database.

Apple has worked hard to iron out a lot of the challenges of database development. As a
developer, you will not need to become familiar with SQL, as Apple has taken care of
the direct database interaction for you. Apple has created a framework called Core Data
that makes interacting with the database much easier. Core Data has been adapted by
Apple from a NeXT product called Enterprise Object Framework and it will handle all of
the database interaction for you. Working with Core Data is a lot easier than interfacing
directly with the SQLite database. Directly accessing a database via SQL is beyond the
scope of this book.

Getting Started with Core Data

Let's start by creating a new Core Data project.

1. Open Xcode and select File » New Project. To create a Mac OS X Core
Data project, select Application from the left-hand menu. It is located
underneath the Mac OS X header. See Figure 11-1.

241

242 CHAPTER 11: Storing Information

Choose a template for your new project:

i ios
' -
Application
Framework & Library v I—
Other " .
Cocoa Application Cocoa-AppleScript Command Line Tool
& MacO5X Application

R - -
Framework & Library
Application Plug-in
System Plug-in
Other

7 ;"\ Cocoa Application

¥ %

This template builds a Cocoa-based application written in Objective-C,

e — -
(Cancel) Previous Next
A —

Figure 11-1. Creating a new project.

2. Click on the Next button when done. The next screen will allow you to
decide where to save your project and the name you want to use. For
the purposes of this chapter, we will use the name BookStoreCoreData.

Near the bottom, you will see three checkboxes. The first check box is
labeled Use Core Data. Make sure this is checked and then click on Next.

CHAPTER 11: Storing Information 243

Choose options for your new project:
Your company's bundle identifier prefix.

—

Product Name ! BookStoreCoreData

Company ldentifier [MyCompany

Bundle Identifier MyCompany.BookStoreCoreData

Class Prefix |XYZ

App Store Category | None :.!

|| Create Document-Based Application
Document Extension mydoc

[21 Use Core Data

[21 Use Automatic Reference Counting

[g Include Unit Tests
| Include Spotlight Importer

| Cancel | | Previous | | Next

Figure 11-2. Using Core Data.

Once you are done with that, your new project will open. It will look similar to a standard
application, except, now you will have a BookStoreCoreData.xcdatamodel. This file is
called a data model and will contain the information about the data that you will be
storing in Core Data.

244

CHAPTER 11: Storing Information

The Model

If you click on the triangle next to the folder, you will see a file called
BookStoreCoreData.xcdatamodel. This file will contain information about the data you
want stored in the database. Click on the model file and it will open. You will see a
window similar to to the one shown in Figure 11-3.

MMNO " BookStoreCoreData - BookStoreCoreData.xcdatamodel |
a4 @ | ﬁsookSr.oreCoreData + | |BookStoreCareData _ BookStoreCoreData. xedatamodeld E_'-QBnokSr.oreCoreDa:a.xr_datamodei » No Selection
ENTITES v Attributes

FETCH REQUESTS _At.trlbube & |Type

CONFIGURATIONS

T A—

¥ Relationships
Relaticnship & | Destination Inverse

i

¥ Fetched Properties
| Fetched Property & | Predicate

= O © Ei=

-
Qutline Style Add Entity Add Attribute Editor Style
)

Figure 11-3. The blank model.

The window is divided into four sections. On the left you have your entities. In more
common terms, these are the objects or items that you want to store in the database.

The right top window contains the attributes. Attributes are pieces of information about
the entities. For example, a book would be an entity and the title of the book would be
an attribute of that entity.

CHAPTER 11: Storing Information

NOTE: In database terms, entities are your tables and the attributes of the entities are called
columns. The objects created from those entities are referred to as rows.

The right middle window will show you all the relationships of an entity. A relationship
connects one entity to another. For example, we will create a Book and an Author entity.
We will then relate them so that every book can have an author. The right bottom portion
deals with fetched properties. Fetched properties are beyond the scope of this book, but
they allow you to create filters for your data.

Let's create an entity.

1. Click on the plus sign in the bottom left corner of the window, or select
Editor » Add Entity from the menu. See Figure 11-4

Ao || BookStoreCoreData - BookStoreCoreData.xcdatamodel —
4 > | ﬁaookSr.oreCoreData o |__|BookStoreCoreData » | BookStareCoreData.xcdatamodeld) BBnokSr.areCoreDa:a.x:datamodei » |3 Entity

_ENTITIES || ¥ Attributes
WG] Entity | B & Type

FETCH REQUESTS

CONFIGURATIONS

(@ Default FE—
¥ Relationships
Relationship & | Destination Inverse
e
¥ Fetched Properties
Fetched Property & | Predicate
T
5 @ © m-
£ v -
Qutline Style Add Entity Add Attribute Editor Style

Figure 11-4. Adding a new entity.

2. On the left hand side, you will now have the option to name the entity.
We will use the name Book for this entity.

245

246 CHAPTER 11: Storing Information

NOTE It is generally considered good practice to capitalize your entities' names.

3. Now let's add some attributes. Attributes would be considered as the
details of a book, so we will store the title, author, price, and year the
book was published. Obviously in your own applications, you may want to
store more information, such as the publisher, page count, and genre, but
we want to start out simple. Click on the plus sign at the bottom right of
the window, or select Editor » Add Attribute, as shown in Figure 11-5. If you
do not see the option to add an attribute, make sure that you have
selected the Book entity on the left-hand side.

a.N.O [BookStoreCoreData - BookStoreCoreData.xcdatamodel —)
ut | 4 » | [MBookStoreCoreData i | |BookStoreCoreData » || BookStoreCoreData.xcdatam... » [BookStoreCareData.xcdatamodel » [3 Book | < @ »

LEN I.'_l 1 L_"' ¥ Attributes
Book

| Attribute A | Type
FETCH REQUESTS | artribute Undefined ¢
CONFIGURATIONS
(@ Default P

¥ Relationships

_Ihla(ionshlp & | Destination Inverse
T
v Fetched Properties
| Fetched Property A | Predicate
o
5 O (+)
¢

o
Outline Style Add Entity Add Attribute Editor Style >
4

Figure 11-5. Adding a new attribute.

4, You will only be given two options for your attribute, the name and the
data type. Let's call this attribute title.. Unlike entities, attribute names
should be lowercased.

CHAPTER 11: Storing Information

Now, we will need to select a data type. Selecting the correct data type
is very important. It will affect how your data is stored and retrieved from
the database. The list has 12 items in it and can be very daunting. We
will discuss the most common options and, as you become more
familiar with Core Data, you can experiment with the other options. The
most common options are String, Integer 32, Float, and Date. For the
title of the book, select String.

String: This is the type of attribute used to store text. This should be
used to store any kind of information that is not a number or a date. In
this example, the book title and author will be strings.

Integer 32: There are actually three different integer values possible for
the attribute. Each of the integer types only differ in the minimum and
maximum values possible. Integer 32 should cover most of your needs
when storing an integer. An integer is a number without a decimal. If you
try to save a decimal in an integer attribute, the decimal portion will be
truncated. In this example, the year published will be an integer.

Float: A float is a type of attribute that can store numbers with decimals.
A float is similar to a double attribute, but they differ in their minimum
and maximum values. A float should be able to handle any values. In
this example, we will use a float to store the price of the book.

Date: A date attribute is exactly what it sounds like. It allows you to
store a date and time, and then performs searches and lookups based
on these values. We will not use this type in this example.

Let's create the rest of the attributes for the book. Now, add price. It
should be a float. Add the year the book was published. For two-word
attributes, it is standard to make the first word lowercase and the
second word initial capped. For example, an ideal name for the year the
book was published attribute would be something like, yearPublished.
Select integer 32 as the attribute type. Once you have added all of your
attributes, your screen should look like Figure 11-6.

NOTE: Attributes’ names cannot contain spaces.

248 CHAPTER 11: Storing Information

8006

|
s

[BookStoreCoreData - BookStoreCoreData.xcdatamodel

)
< » | [MBookStoreCoreData) | |BookStoreCareData » || BookStoreCoreData.xcdatam...) [BookStoreCoreData.xcdatam... [Book » [price
ENTITIES |

| ¥ Attributes
.‘;_Eu:x |I Atteib e ETvne
FETCH REQUESTS isee— gt — — -]
| title String &
CONFIGURATIONS m yearPublished Integer 16
® Defaut L = = aboa bl
| ¥ Relationships
. Relationship A | Destination Inverse
+ -
| v Fetched Properties
éFe‘ch!ed Property A Predicate
T
5 O o
- -
Qutline Style Add Entity

Add Attribute Editor Style

4
Figure 11-6. The finished book entity.

NOTE: If you are used to working with databases, you will notice that we did not add a primary
key. A primary key is a field (usually a number) that is used to uniquely identify each record in a

database. In Core Data databases, there is no need to create primary keys. The framework will
manage all of that for you.

Now that we have finished the Book entity, let's add an Author entity.
1. Add a new entity and call it Author.

2. To this entity, add lastName and firstName, both of which are
considered strings.

Once this is done, you should have two entities in your relationship window. Now we
need to add the relationships.

CHAPTER 11: Storing Information 249

1. Click on the Book entity, then click and hold on the plus sign that is
located on the bottom right of the screen. Select Add Relationship, as
seen in Figure 11-7.

A Nne [BookStoreCoreData - BookStoreCoreData.xcdatamodel —)
oA »| EBnokSr.oreCoreData o |__|BookStoreCoreData ;| BookStoreCoreData.x... | Bmkﬁ:oratorer)ata.x... I3 Book [E) relationship | < @ >

ENTITIES ¥ Attributes

3 Author | | Attribute A | Type
| £//Book | [price Float 3
: : |ED title String +
FETCH REQUESTS |
2 | yearpublished Integer 16 3
CONFICURATIONS + =
(® Default
¥ Relationships
| Relationship & | Destination Inverse
relationship No Destination & No Inverse 3
+ -
¥ Fetched Properties
éFmI!ed Property A | Predicate
T
== O ©
. 3
Qutline Style Add Entity Add Attribute Editor Style 4

Figure 11-7. Adding a new relationship.

2. You will now be given the opportunity to name your relationship. We
usually give a relationship the same name as the entity to which it
derived from. Type in "author" as the name, or select Author from the
drop-down menu.

3. Now, we have created one half of our relationship. To create the other
half, click on the Author entity. Now, click the plus sign located at the
bottom of the screen and select Add Relationship. We will use the entity
name that we are connecting to as the name of this relationship, so we
will call it books. We will add an "s" to the entity name because an
author can have many books. Under Destination, select Book, and under
Inverse, select the relationship you made in the previous step. Your
model should now look like Figure 11-8.

250 CHAPTER 11: Storing Information

NOTE: Sometimes in Xcode, when working with models, it is necessary to hit the tab key for the
names of entities, attributes, and relationships to update. This little quirk can be traced all the
way back to WebObjects tools.

8 00 [™1 BookStoreCoreData.xcodeproj — [BookStoreCoreData.xcdatamodel "
| qa | Emkmmtomom »|__|BookStoreCoreData » :_';'_:_fsookStorecoreData.x:da:amudeld ; .BmkSthareData.x:datamudel) & Author

i FﬂTtTIEG v

tributes

{ e s = |
utho Att & Type |
I3 Book | firsthame String v
& lastName String 3
FETCH REQUESTS a S
CONFIGURATIONS]
Default
@ Defau ¥ Relationships
Rélaﬂoﬂkﬁip 4 Destination Inverse
books Book + author ¥

" Hj—

.v Fetched Properties

Fetched Property & Predicate

-
== o 0 Iz
Qutline Style Add Entity Add Attribute Editor Style

Figure 11-8. The final relationship.

Now we need to tell our code about our new entity. To do this, select the Book entity and
the Author entity and then select Editor » Create NSManagedObject Subclass. Your screen
should look like Figure 11-9.

CHAPTER 11: Storing Information

[« » (58 =,m)| |{JBookStoreCoreData :J Q
DEVICES BookStor...-Info.plist
=} Macintosh HD h| BookStor...Prefix.pch
IEL Lees 17 MBP BookStor...tamodeld
B iDisk h| BookStor...elegate.h
e m, BookStor...elegate.m
SH».'\RED L._. en'{proj
|| Pro = m| main.m
PLACES 5
{*] moneymailer B I
Group: | [|BookStoreCoreData &]

Add to targets: (¥ ;A BookStoreCoreData
| 71 BookStoreCoreDataTests

i e
(New Folder (Cancel) (Create)

4

Figure 11-9. Adding the managed objects to your project.

Select the storage location and add it to your project. You should not need to change
any of the defaults on this page. Then click Create. You will notice that four files have
been added to your project. Book.h and Author.h contain the header information about
your book, and Book.m and Author.m contain the actual implementation. These files are
fairly simple, as Core Data will do most of the work with them. You should also notice
that, if you go back to your model and click on Book, it will have a new class. Instead of
an NSManagedObject, it will have a Book class.

Let's look at the contents of some of Author.h:

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@class Book;

@interface Author : NSManagedObject {
@private

@property (nonatomic, retain) NSString * lastName;
@property (nonatomic, retain) NSString * firstName;
@property (nonatomic, retain) Book * book;

@end

251

252

CHAPTER 11: Storing Information

You will see that the file starts out including the Core Data framework. This allows Core
Data to manage your information. Further down, you will see the three attributes you
created.

Managed Object Context

We have created a managed object called Book. The nice thing with Xcode is that it will
generate the necessary code to manage these new data objects. In Core Data, every
managed object should exist within a managed object context. The context is
responsible for tracking changes to objects, carrying out undo operations, and writing
the data to the database. In this example, we will not have to write code to create or
manage the object context, but as you explore using Core Data in your own projects,
you will need to be aware of it. For now, the base functionality of what is provided for
the generated classes will work fine.

Setting Up the Interface
The following steps will assist you in setting up your interface:

1. In the Resources folder in your project, you should have a
MainMenu.xib. Double-click on this file and Interface Builder should
open in a new window. On the left-hand side of the window, you should
have a list of current objects. If you do not have this window, click on
the little arrow at the bottom left-hand side of the window. Click on the
Window object. Your window will be shown on the right-hand side of the
screen. See Figure 11-10.

CHAPTER 11: Storing Information

eno

|| BookStoreCoreData ~ MainMenu.xib =7

m | 4 » | [BookStoreCoreData) [

oreData ©

xib > A

xib ish) » == Window - BookStoreCoreData

(7} Placeholders.
File's Owner
@) First Responder
oM Application
i Objects
- Main Menu
R e S

") BookStoreCoreData File Edit Format View Window Help

ﬁ Book Store Core Data App Delegate
¥ Font Manager

E)q

i Tale

BookStoreCoreData

Figure 11-10. Creating the interface.

2. There should be a blank window. In order to add some functionality to our
window, we are going to need to add some objects from the Object
Library. To view the Object Library, select View » Utilities » Object Library.
This Object Library will show you all of the objects you can add to your
window. We are going to start by adding an Array Controller. In the Object
Library, scroll down until you find the Array Controller. Drag it to your
Objects pane on the left-hand side of the window. See Figure 11-11.

253

254 CHAPTER 11: Storing Information

o Wi W e | BookStoreCoreData - MainMenu.xib =
W | 4+ | BookstoreCoreData) [| i) R Mai xib | {2 Array Controller | D B B8 % «£ ©|86|=2
) BookStoreCoreData File Edit Format View Winc Availability
[T} Placeholders.
Editable
Hle's Owrier Controller Content
@) First Responder b Content Array
J_ Application b Content Array For Multiple Selection
." Objects ¥ Content Object
b Content Set
Main Menu - Yale Controller Content P; el
= ntr r ntent Fam {¢
= Window - BookStoreCoreData 4 . BookStoreCoreData .o e . ent Parameters
ﬁ Book Store Core Data App Delegate cbliadinle
» Selection Indexes
» Sort Descriptors
Parametiers
» Managed Object Context
0D {} | & =
[llj Object Library =)
"™ properties of the content object of... |~ |
| "4 Array Controller - A Cocoa
W bindings compatible class that
| S manages a collection of objects. Q
;(.’ i) Dictionary Controller - A Cocoa
o | bindings compatible class that
N manages display and editing of the... iy
. A 5\ Tree Controller - A Cocoa bindings 7 |
I HCY (&] <+ a 4

Figure 11-11. New Array Controller.

3. Double click on the Array Controller and type in the name, BookArray.
Now select the Array Controller and look at the bindings for the object.

NOTE: To view the bindings of any object, select View » Utilities » Show Bindings Inspector, or

if you already have the utility window open, click on the circular symbol.

4, Under Parameters, if the managed object context portion is not

expanded, click the arrow next to it. Now check the box next to Bind
and select, Book Store Core Data App Delegate from the drop down

menu.

5. Inthe Model Key Path, type managedObjectContext. This will bind our

Array Controller to the default managedObjectContext of our

application. This will allow us to add, modify, and save our books. See

Figure 11-12.

CHAPTER 11: Storing Information

(DB 8% 05 =
| Availability

| » Editable

Controller Content

» Content Array
» Content Array For Multiple Selection
» Content Object
» Content Set
; Controller Content Parameters
| 4 Fl!ter P-r;dicate - Slis
p Selection Indexes
p Sort Descriptors
| Parameters

| ¥ Managed Object Context (Book Store Core Da...

EI Bind to: ' Book Store Core Data App... ?]

Controller Key

Model Key Path
managedQObjectContext

Value Transformer

@ Raises For Not Applicable Keys

Figure 11-12. The Array Bindings Inspector.

6. Click on the icon that looks like a slider control (it is also referred to as a
shield). Under the Object Controller heading, change the mode from

Class to Entity Name. Type Book as the Entity Name.

255

256 CHAPTER 11: Storing Information

B B %« © & =

¥ Array Controller

Options Eﬂ Avoid Empty Selection
[ﬂ Preserve Selection
@ Select Inserted Objects
E Clear Filter Predicate On |...
(] Auto Rearrange Content
() Always Use Multi Value M...

| v Object Controller

Mode | Entity Name 4+

Entity Name Book
("] Prepares Content
™

__ Uses Lazy Fetching
M Editable

Fetch Predicate

Figure 11-13. Assigning the Entity Name.

7. We need to set up our interface. In the Object Library, find a Table View
object and drag it to your window. You can move it around and size it
easily to fit your desired look.

8. Find two push buttons and drag them to your window. Change the text
of one of the buttons to Add and the text of the other to Delete.

NOTE: To change the text of a button and many other graphical objects, just double click on the
object and you can type the replacement text.

CHAPTER 11: Storing Information

Change the text of each of the two columns in the Table View. Double click on the column header
and type Title in the first column and Price in the second column. Your window should now look
something like Figure 11-14.

e NO BookStoreCoreData
Title | Price
Text Cell Text Cell
C Add) (Delete)

Ne— S —

Figure 11-14. The window layout.

We now have a nice looking window, but none of the controls can do anything yet. In
order to make the objects have a purpose, we will need to bind them to something.

NOTE: Cocoa Bindings is a way to keep your views synchronized with your controller. They help
to reduce the amount of code required for you to write.

To connect an object to a controller, you simple have to control click on an item and
then drag to the item you will connect it to. Once you drag it to the item, you will be
given a menu of the possible outlets available.

1. To start, control-click on your Array Controller and drag it to the table
view. A little pop over window will appear with only one outlet selected.
Select content. You are telling the table view that it will display the
contents of the array controller. See Figure 11-15.

257

258 CHAPTER 11: Storing Information

8.0 BookStoreCoreData
Title Price
Text Cell Text Cell

Outlets
content

‘ > N
Add | Delete

Figure 11-15. Setting the bindings.

2. Now control-drag from the Add button to the array controller and select
Add. Control-drag from the Delete button to the array controller and
select remove.

NOTE: When an object is successfully connected it will blink twice to alert the programmer.

3. Most of our interface should be good now. We just have to tell each
column in our Table View what to show. Double click on the first cell
where the words Text Cell are located. This should select the column.

4, In the Bindings window, under Parameters, expand the Value title.
Check the box next to Bind to and the Book Array should already be
selected. Under Model Key Path, type the title (See Figure 11-16).
Select the second column, and check Bind to, but type price in the
Model Key Path.

CHAPTER 11: Storing Information

» Bima..) BMa..) S-Wi..) B2 View) B2 Scr..) " Table View ; B8 Table Column - Title | <

D B 8B ® s ©|6|=

BookStoreCoreData File

Format View Window Help

| Value

[Title
| Text Cell

! Price

Text Cell

Figure 11-16. Binding the columns.

¥ Value .{.E;J:}ic.céntréii;ar.arrangedd::jéct.s...t.i.t.ié) i
Bind to: | BookContraller ﬂ

| Controller Key

arrangedObjects

Model Key Path
| | title

Value Transformer
™
E Allows Editing Multiple Values Selection
|] Always Presents Application Modal Alerts
E Conditicnally Sets Editable
] Conditionally Sets Enabled
[Continuously Updates Value
| M Creates Sort Descriptor
M Raises For Not Applicable Keys
] validates Immediately

| Multiple Values Placeholder

No 5election Placeholder

You should be done. Click on Run and you should be able to see your new application
window. Click on Add and it should add a row to the Table View. Click in the Column
cell and you can edit the Title and the Price. You will also notice that when you quit and
relaunch your application, it will remember the values you stored in there before.

This is a very cursory introduction to Core Data for Mac OS X and IOS. Core Data is a
very powerful APl and can take a lot of time to master.

Summary

We've finally reached the end of the chapter. Here is a summary of the things that we

covered.

® Preferences

B You learned to use NSUserDefaults to save and read preferences
from a file, both on the iPhone and a Mac OS X computer.

® Database

B You learned what a database is and why using one can be
preferable to saving information in a preferences file.

B You learned about the database engine that Apple has integrated
into the Mac and iPhone, and the advantages and limitations of
this database engine.

259

260 CHAPTER 11: Storing Information

Core Data

Apple provided a framework for interfacing with the SQLite
database. This framework makes the interface much easier to
use.

Book Store Application
You created a simple Core Data application.

You used Xcode to create a data model for your Book Store
application. You learned how to create a relationship between
two different Entities.

You used Xcode to create a simple interface for your Core Data
model.

Exercises

Add more fields to the Book entity. Try adding the publisher, pages,
and an ISBN number.

Change the layout of the Book tab. Reorder the columns.

Add a default value to the author's first and last names.

Chapter

Protocols and Delegates

Congratulations! You are acquiring the skills to become an iOS developer! However,
there are two additional topics that iOS developers need to understand to be successful:
protocols and delegates. It is not uncommon for new developers to get overwhelmed by
these topics, so we thought it best to introduce the foundation topics of the Objective-C
language first.

Multiple Inheritance

We discussed object inheritance in Chapter 1. In a nutshell, object inheritance means
that a child can inherit all the characteristics of its parent. See Figure 12-1.

ObjectA

Object B

Figure 12-1. Typical Objective-C inheritance

261

262

CHAPTER 12: Protocols and Delegates

C++, Perl, and Python each have a feature called multiple inheritance. Multiple
inheritance enables a class to inherit behaviors and features from more than one
parent. See Figure 12-2.

However, problems can arise with multiple inheritance because it allows for ambiguities
to occur. Due to this, Objective-C does not implement multiple inheritances. Instead, it
implements something called a protocol.

Object A

Object B Object D

Figure 12-2. Multiple inheritance

Understanding Protocols

Apple defines a protocol simply as a list of methods declarations, unattached to a class
definition. A protocol is very similar to a class interface with the exception that it is not
defining a particular class. You must implement the methods listed for protocols. For
example, the methods that report user actions for the mouse could be placed into a
protocol. See the following example:

- (void)mouseDown: (NSEvent *)theEvent;

- (void)mouseDragged: (NSEvent *)theEvent;
- (void)mouseUp: (NSEvent *)theEvent;

Any class that wants to respond to mouse events could adopt the protocol and
implement its methods. Protocols are very easy to use since they are not related to class
hierarchy and any class can implement them.

Throughout the book, we have used the example of a bookstore. Previously, we
discussed the fact that our bookstore may sell different types of media and have
discussed how inheritance would help out in that situation. For the purpose of explaining
protocols, let’s say that our bookstore also sells gum and candy. We would want to
create a class for those items. Call it EdibleItem. It would not make sense to have gum

CHAPTER 12: Protocols and Delegates

inherit the same methods as a book or magazine, but all of the items would need to be
sold and the inventory would need to be tracked. In this case, it would make sense to
add the methods to a protocol that could be shared by each of the items.

NOTE: A protocol is much different than inheritance. When a class inherits from another class, it
not only receives the method declarations, but it also receives the methods themselves. When
using a protocol, the declarations are brought over, but the methods themselves need to be
written.

Protocol Syntax

The interface example for a protocol is
@protocol InventoryItem

- (void)removeFromInventory;
- (void)addToInventory;

@end
The implementation file for this protocol example would be

@interface MyClass : SomeSuperClass < InventoryItem>
@end

Any object that wants to implement the InventoryItem protocol would include
< InventoryItem> after the object definition.

For example, we could create the interface for the edible objects we sell.

@interface Edible : NSObject <InventoryItem>
{

}

It is not uncommon for iOS developers to have multiple protocols for their objects. This
adds real power to your objects when needed. Additional protocols are placed after the
first followed by a comma.

@interface EditbleItem : UITableViewController <InventoryItem,SaleItem >
{

}

This example illustrates the power of delegates. EditableItem now has all of the method
declarations from InventoryItem and SaleItem.

Methods that are defined for the object’s delegate are called delegates methods.

263

264

CHAPTER 12: Protocols and Delegates

Understanding Delegates

Delegates are helper objects. They enable us to control the behavior of our objects. The
methods listed in the protocol become helpers to our MyClass.

NOTE: The key to understanding delegates is to know that a delegate is a separate object
consulted in order to augment the behavior of a host object. Thus, you can create an application
delegate object that can affect the behavior of the i0S NSApplication object without subclassing
or changing the NSApplication class. The object you create is the delegate object, and the
messages that NSApplication will send your object are called delegate methods. These are
typically defined in a protocol (<UIApplicationDelegate>) which your class must adopt. To work, a
delegate object must be set as the delegate property of the host.

We can now use these methods in our object. For example, including the
<CLLocationManagerDelegate> protocol in our MyClass interface definition enables our
object to be notified by the iPhone’s GPS of our new location. The following example
shows the method that we will include and define inside our object’s implementation file:

- (void)locationManager:(CLLocationManager *)manager didUpdateTolLocation:(CLLocation
*InewLocation fromLocation:(CLLocation *)oldLocation

The locationManager delegate method automatically gets called as our GPS location
changes, allowing your code to process the new and old coordinates. Listing 12-1 is an
example of how to implement didUpdateTolLocation and didFailWithError delegate
methods from CLLocationManagerDelegate in our class MyCorelocationController.

Listing 12-1. Core location delegate example

@implementation MyCorelocationController //our own controller
@synthesize locationManager;

- (id) init {
self = [super init];
if (self != nil) {
self.locationManager = [[CLLocationManager alloc] init];
self.locationManager.delegate = self; // send location updates updates to myself

return self;

}
- (void)locationManager:(CLLocationManager *)manager
didUpdateTolocation:(CLLocation *)newLocation
fromLocation:(CLLocation *)oldLocation

NSLog(@"Location: %@", [newLocation description]);

CHAPTER 12: Protocols and Delegates

- (void)locationManager:(CLLocationManager *)manager
didFailWithError: (NSError *)error

NSLog(@"Error: %@", [error description]); //print error description

- (void)dealloc {
[self.locationManager release];
[super dealloc];

@end

Next Steps

You now have a great Objective-C foundation. After going through the last two chapters,
"Memory, Addresses, and Pointer" along with "Debugging Programs with Xcode," you
should be able to dive right into becoming a great iOS developer. Two great books that
we recommend to students as they progress to becoming iOS developers are Learn
Objective-C on the Mac by Mark Dalrymple and Scott Knaster, and Beginning iOS 5
Development by Dave Mark and Jeff LaMarche, both published by Apress.

You will be well prepared to read these books and begin writing your own iOS apps.
Don't take time off —keep moving forward! Get started with these books and begin
writing your apps. The faster you start using what you have learned, the better you will
get. Whatever you do, don’t stop now!

Summary

In this chapter we covered why multiple inheritance is not used in Objective-C and how
protocols and delegates work.

There is still a lot to learn and know on your iOS journey. Keep it up and help others
along their way.

You should be familiar with the following terms:
Multiple Inheritance
Protocol

Delegate

265

Chapter

Memory, Addresses, and
Pointers

Computers, just like you and me, need a place to work and store things. Think of
computer memory like space on a desk, for example. Someone who needs to work on
many projects at once needs to have enough desk space for all their papers and
documents so they can be quickly and easily accessed. If the desk space is too small
for the number of projects being juggled, some projects may have to be filed back into
drawers so they can be quickly pulled back once there is more space on the desk.
Making sure the desk space is used efficiently is also very important.

Dealing with a computer’s memory is one of the more complicated areas of
programming. Why is this the case? Surely these problems have been solved by now,
right? Well, yes and no. Some languages have taken the approach to remove the need
for programmers to manage memory at all. Some internal magic (and a little something
called garbage collection) handles all the management of how memory is used and
released when it is no longer being used. The negative side to this approach is that
garbage collection does not give the programmer the ultimate say-so on how the
memory should be used in all cases. Why is this important? Generally speaking, the
issue is performance. With full control of memory management, the programmer also
has full control over the performance (or lack thereof) of the program.

This chapter will introduce the ideas of working with the memory of a Mac, iPhone, or
iPad. Working with memory on any device has its challenges. For example, the iPhone
and iPad, being smaller devices, have less memory to work with, which means that it is
important that their memory is used efficiently. Fortunately, Objective-C provides
mechanisms that keep managing memory from being a chore. You will learn about how
to allocate memory as well as about the new Automatic Reference Counting (ARC)
feature of Xcode 4, which makes managing allocated memory much simpler than earlier
releases of Xcode.

267

268

CHAPTER 13: Memory, Addresses, and Pointers

Understanding Memory

While many people may have associated computer memory with that of the human
brain, | prefer to compare computer memory to physical space that you, as a person,
have to work. You are like the computer’s CPU, the part that actually processes
information and does something with it. The more space you have to work, the easier it
is to organize things and the quicker you can actually accomplish your tasks. Of course,
we all reach that place where, no matter how much more space we get, we aren’t able
to work any faster.

To a computer, memory is the workspace where certain programs (or parts of programs)
and data are stored. On the Mac, iPhone, and iPad, the most basic unit of memory is a
byte. If you think of memory as nothing more than a grid of boxes, a byte would simply
be a single box, as demonstrated in Figure 13-1.

e

Figure 13-1. Bytes are like a row of boxes.

Of course, there are generally billions of these boxes, or bytes, of memory in a typical
modern computer. While it does seem like a vast, almost limitless amount, memory is
the most important resource that a computer has at its disposal. Only programs that
reside in memory can be executed and only data loaded from disk can be inspected or
acted on. Also, on the iPhone or iPad, there is much less memory than on a typical PC
or Mac computer. A certain degree of memory conservation is always a good practice.

Okay, so memory is like a grid of boxes that each holds a byte of information. What
good is it at this point? How does the computer put each byte in its place and how does
it pull it back out? Certainly, if my garage was full of unlabeled boxes, | would have a
very difficult time figuring out where, for example, all of my old video games were stored.
A computer has exactly the same problem, so it goes about solving that problem in a
very organized way. Before we go into how the computer solves this problem, you need
to understand the basics of units of memory and addresses.

Bits, Bytes, and Bases

In Figure 13—1, each box represents one byte, or memory space. Each byte can hold a
total of 8 bits. A bit is simply a number that can be either a zero or a one—off or on. It is
this sequence of zeros and ones that give the byte its value. These zeros and ones
represent a binary numeral system; that is, each digit can have a maximum of two
values, zero or one. This is sometimes referred to as base-2 numbering system (versus
the base-10 or decimal numbering system that we all use in our everyday lives). Before
we get into more specifics of memory, it’s very important that you understand the
numbering systems that are typically used on modern computer hardware.

CHAPTER 13: Memory, Addresses, and Pointers

NOTE: Modern computers use 8 bits per byte. In the early days of computing, different
manufacturers of computers sometimes had different byte sizes. For example, Control Data
Corporation’s CDC-6000 often used 12-bit bytes for display codes, and the DEC PDP-10 operated
on bit fields, so a “byte” could be anything from 1 bit to 36 bits. IBM, with its popular
System/360, set the standard on the 8-bit byte, as did the microprocessors of the 1970s.

Generally speaking, people use base-10 numbering for pretty much everything; from
money to measurements, base-10 is the standard. However, in the realm of the modern
computer, the base-10 system is rarely used. Instead, the computer typically uses base-
2 (binary) or base-16 (hexadecimal).

NOTE: Base-8, commonly referred to as octal, is also used but is not as common as
hexadecimal.

Converting Base-10 (Decimal) to Base-2 (Binary)

A typical, everyday number may look like this: 1101. Now, most people would consider
this number to be “one-thousand, one-hundred, and one.” However in base-2
numbering, this number would represent the decimal number 13. Let’s look at how this
can be.

As shown in Figure 13-2, in base-10 numbering, each digit represents a power of 10;
that is, each column increases by a power of 10 (10, 100, 1000, etc.), right-to-left. We
add the 1000s column (10%), 100s column, and the 1s column to get 1,101, (the
subscript means “base-107).

10° 102 10’ 10°
1 1 0 1

Figure 13-2. Base-10 numbering system.

Now, let’s look at the same number in base 2, as shown in Figure 13-3.

Figure 13-3. Base-2 numbering system.

In base-2 numbering (shown in Figure 13-3), the columns all increase by a power of 2
(2, 4, 8, 16, 32, etc.), right-to-left. We add 8, 4, and 1 to reach a value of 13,, (in base-2
that is). Also note that a series of 4 bits, which represents half of a byte, is typically
referred to as a nibble.

269

270 CHAPTER 13: Memory, Addresses, and Pointers

Of course, it was mentioned earlier that 8 bits (numbered 0 to 7) make up a byte. Figure
13-4 shows an example of an entire byte consisting of 8 bits. To get the value, add up
all the columns as follows:

128 +16 +8+4 +1 =157,

Bit 7 soc Bit 0
128 64 32 16 8 4 2 1

1 0 0 1 1 1 0 1

Figure 13-4. An entire byte showing base-2 and base-10 values.

Using Base-16 (Hexadecimal) Numbering

The last base that is worthy of mentioning, used quite ubiquitously in Hex Dec
modern computers, is the base-16, or the hexadecimal, numbering 0 0
system. In base-2, each digit can have one of two values, 0 and 1. In 1 1
base-10, each digit can have one of ten values, 0-9. In base-16, 2 2
each digit can have one of 16 values, 0-F. Yes, you read that 3 3
correctly; the last value is F. To represent 16 values in a single 4 4
column, it became necessary use letters to represent values. In the 5 5
case of base-16, the numbering goes from 0 through 9 and 6 6
A through F. It takes two hexadecimal (hex for short) digits to 7 7
represent a single byte; each hex digit represents 4 bits, as shown 8 8
in Figure 13-5. 9 9
Upper Nibble Lower Nibble A 10

Bit 7 Bit 0 B n
c 12

128 64 32 16 8 4 2 1 D 13

1 0 0 1 1 1 0 1 E 14

F 15

9 D

Figure 13-5. On the left, two nibbles make a byte. A simple hex to decimal conversion chart appears on the right.

So the hex number 9D is equal to the binary number 10011101, which is equal to the
decimal number 157. As shown in Figure 13-5, a byte can be any value between 0000
0000 and 1111 1111 (base-2), which is OxFF in hex.

NOTE: In “OxFF,” the “0x” that precedes the “FF” is used in programming to indicate that the
number is a hex number. While FF seems obvious, because there are only letters, a number like
“10” is less clear, is it 10 or 16? Well, 0x10 makes it clear.

CHAPTER 13: Memory, Addresses, and Pointers 271

Hexadecimal takes some getting used to, but learning it is time well spent. This is
because when dealing with memory, pretty much everything is expressed in
hexadecimal. Just like in base-10, each numeric column is an exponentially larger than
the previous, as shown in Figure 13-6.

0010 0001 1010 0010
16° 16° 16’ 16°
2 1 A 2

Figure 13-6. A 16-bit hexadecimal number.

In base-10, each column is 1, 10, 100, 1000, and so on. In hexadecimal, the columns are
base-16, so you have 1, 16, 256, 1024, and so on—each column is a multiple of 16.
However, once you understand hexadecimal, you may want to express the number in
decimal as well. Figure 13-7 is an example of how a 16-bit hexadecimal number is
converted to a decimal one.

2 1 A 2
2x16° 1x16° 10 x 16° 2
2 X 4096 1 X 256 10x 16 2

8,192 256 160 2

Figure 13-7. Converting a 16-bit hex number to decimal.

If we add all our columns together, we will have our answer:

8,192 + 256 + 160 + 2 = 8,610
So 0x21A2 equals 8,610.

Figure 13-7 represents a 16-bit number. Calculating 32- and 64-bit numbers means
simply increasing the columns to the left.

TIP: If you find yourself calculating 32- and 64-bit values a lot, just use the calculator on the Mac
(in the Programmer view), or a small investment will allow you to buy a scientific calculator that
can work in hex.

272

CHAPTER 13: Memory, Addresses, and Pointers

We hope you haven’t been scared off. Understanding computer memory at its lowest
level is actually not that bad, and it’s something that won’t be necessary all the time.
The important thing to remember is that when dealing with memory, it may be necessary
to understand binary (Base-2), decimal (Base-10), and hexadecimal (base-16) values.
This will become clearer when debugging an application, as discussed in Chapter 14.

Understanding Memory Address Basics

Like buildings on a street, memory has addresses, except that in some ways, memory
addressing is much simpler. Earlier in this chapter, we mentioned that a computer could
solve the problem of keeping track of boxes of old video games in a garage — virtually, of
course. The first part of this process is to be able to keep track of certain locations in
memory, called addresses. From a program’s perspective, these addresses are stored
into variables for later reference.

Memory in a computer is a linear set of bytes (or boxes) that store information. If you
were to simply start labeling these boxes as 1, 2, 3, 4, and so on, you would have a set
of boxes starting at 1 and ending with some very large number. These numbers are
referred to as a memory address.

Figure 13-8 provides a simple example of addressing memory.
1 2 3 6 7

oxtooo [A]l JL L JEIEICC]
octoos [[L I JL L L]
odoto[[L L JEIE L]
odote[_J[z][L L L L]
A I
S I
odoso [[L LI IC]

Figure 13-8. A simple example of addressing.

If each block is one byte, the first byte starts at address 0x1000 and ends at 0x1037.
Remember that the “0x” that precedes the number indicates that the number, in this
case, the address, is expressed in hexadecimal. So address 0x1000, for example, is
really 4096 and not 1000. The number 0x1000 represents the start of our memory
example. At this location is the letter “A.” Also in the example is the letter “Z.” The value
of “Z” is located at the memory address of 0x1019. The address 0x1000 is an example
of a simple 16-bit address. A 32-bit iPhone address would look like 0x03C06D80.

A 64-bit address would be double the 32-bit size.

CHAPTER 13: Memory, Addresses, and Pointers

NOTE: If our program were given access to the memory in Figure 13-8, it would store the
starting point of the memory, 0x1000, into a variable. This variable is commonly referred to as a
pointer, since the value of the variable (the address 0x1000, which is just a number) points to
the data we are interested in, like an arrow on a map.

Another way to think of this grid of memory is to consider it as an array. In this example,
a variable has been declared as an array. The array size is 56 characters in length, the
exact same size as our example in Figure 13-8. Whenever a variable is declared as an
array, like myArray, the variable resolves to an address, or pointer. For argument’s sake,
let’s assume that myArray has an address of 0x1000, just like our grid in Figure 13-8. If
you were to look at the variable myArray, it would have a value of 0x1000. Remember, an
array resolves to an address. So how do we access the memory in the array?

char myArray[56];

NOTE: In C and Objective-C, all arrays are zero-based. This means that the first element in the
array is at element zero, not one. An array of 30 elements would start at element 0 and end at
element 29. Element 30 is outside of the bounds of the array

Since C and Objective-C use zero-based arrays, if the program needs to access the first
element in the array, it would be done as follows:

char letterA = myArray[o0];

In this case, letter A would be set to the first element in the array, which would be the
letter “A” (using Figure 13-8 as the array). What’s really happening under the hood is that
the computer is simply using the array index and adding it to the address. Again, if the
address is 0x1000, adding 0 result in a new address of 0x1000, which is where the letter
“A” resides.

char letterZ = myArray[25]; // or myArray[ox19] if you are
// getting into this hex thing!

In the preceding example, letter Z would be set to the value at element 25, which is
the letter “Z.” The computer adds 25 (0x19) to the base address of 0x1000, resulting in a
value of 0x1019. This is where the letter “Z” is. Remember, arrays are zero-based, so
“Z” is at element 25 because “A” started at element 0; “Z” is still the 26th element (using
natural numbers, or counting numbers, that start at one).

Using the brackets ([]) after a pointer makes it very simple to access elements within
that array of memory. There is a different way to do this that will yield the same result.
This example will hopefully help the understanding of pointers and addresses even
more.

273

274 CHAPTER 13: Memory, Addresses, and Pointers

Listing 13-1. Using Pointers.

1 int main(void)

2

3 char myArray[] = “ABCDEFGHIJKLMNOPQRSTUVWXYZ”;
4 char *aPointer;

5 char letter;

6

7 aPointer = myArray;

8 letter = myArray[25]; // letter == ‘7’
9 letter = *(aPointer+2); // letter == ‘C’
10 letter = aPointer[3]; // letter == ‘D’

1}

In Listing 13-1, line 3 declares a new array. The brackets ([..]) are empty because
we’re assigning the array a value of the alphabet. In this case, since we provide the
values, the compiler knows what size the array is going to be. So, our new array is just
like Figure 13-8: the first value at element 0 is the letter “A,” and the last value at element
25 (0x19) is the letter “Z.” myArray is equivalent to a pointer in that it can be assigned
directly to a pointer variable, as shown in line 7. It points to memory that has the
alphabet in it.

Line 4 declares a variable that is a pointer. aPointer is a pointer to a char data type, if line
4 were int *aPointer, then aPointer would be a pointer to data of type int. In our case,
we’ll keep it as char. Remember, a pointer is just an address, and an address is just a
number.

On line 5, the program is declaring a character variable. We’ll be using this variable to
store data from the array.

Line 7 looks a little strange, but what it’s doing is assigning the aPointer variable, the
value of myArray. As mentioned previously, a variable that is an array always resolves to a
pointer. So, myArray is equivalent to a pointer, which is an address, which is just a
number. That number is assigned to aPointer. The program does not copy the array to
aPointer; it just sets the value of aPointer to what myArray is. At this point in the program,
myArray and aPointer have the same value in that they both reference, or point to, the
same area of memory.

Line 8 adds 25 to the address of myArray and returns the value that is 25 bytes into the
array, which results in the letter “Z.”

Line 9 adds 2 to the value of aPointer. Remember, aPointer is equal to myArray. aPointer
+ 2 now points to the letter “C.” If this seems a little off mathematically, remember zero-
based arrays:

aPointer+0 points to “A”
aPointer+1 points to “B”

aPointer+2 points to “C”

CHAPTER 13: Memory, Addresses, and Pointers 275

Hopefully, you are getting used to zero-based arrays. Line 9 also makes use of the
dereference operator, the asterisk (*); there is more about this in the next section.

Line 10 is equivalent to line 8. Both myArray and aPointer effectively point to the same
memory, so the array operator works.

Using the Dereference Operator

Line 9 looked a little different from the other lines, so let’s examine it a little closer:
letter = *(aPointer + 2);

First, let’s consider what’s inside the parentheses:

aPointer + 2

This should be pretty straightforward: we are adding 2 to the pointer aPointer. If
aPointer is 0x1000, the resulting value would be 0x1002. The pointer now points to the
letter “C.” Using a pointer this way is very different from using the brackets in lines 8 or
10. We’re manually adjusting the pointer so that it results in a new value. Next, we need
to ask the computer, “What does the pointer point to?” With the array operator on lines
8 and 10 of Listing 13-1, that question is implied, and the program responds. But when
we simply change an address by adding, subtracting, and so on, the program needs to
explicitly ask this question. This is where the asterisk (*) comes into play.

Using an asterisk in front of a pointer dereferences the address and returns what value
the pointer is pointing to. So, if our pointer is 0x1000 and the letter “A” is stored at
0x1000, we can get to the letter “A” by dereferencing the pointer. *(0x1000) would
return the letter “A” if our example was pointing to real memory (don’t actually do this
because 0x1000 is not a real address, just an example is used to simplify the problem).
Remember, a pointer is an address and an address is just a number. The asterisk asks
the computer to return what's stored at the address rather than to return the address
itself.

NOTE: In most common programming, the programmer rarely gets to tell the system, for
example, at location 0x1000 is our data. The reason for this is that memory is virtualized.
Virtualized memory can allow more memory to be used than is physically present on the machine
(virtual memory is out of scope of this book). Because of this, the operating system manages
where the data is stored. As a result, the computer tells the program where its memory is, rather
than the program telling the computer. Regardless, the concept is the same.

When developing software at the hardware or device driver level, using hard-coded addresses is
much more common. Typical programs in Mac 0S X or i0S will never use hard-coded addresses.

276

CHAPTER 13: Memory, Addresses, and Pointers

Allocating Memory

In modern operating systems, the program allocates memory, and the operating system
complies by returning a pointer to the requested memory. In C and Objective-C, a
pointer is declared by preceding the variable name with an asterisk (*), as shown in the
following example:

char *theData;
NSString *theString;

Don’t confused the asterisk here with the dereference operator. Only when declaring a
variable does the asterisk identify the variable as a pointer.

Here are some more examples of requesting memory:

1. char datai[100];

2. char *data2 = malloc(100);

3. NSString *myString = [[NSString alloc] init];
In example 1, memory is allocated in the form of an array declaration. The program now
has an array (data1) that points to 100 bytes of memory. In C, it’s easier to just
remember that any variable that is declared as an array is referenced as a pointer even
though it’s not declared as one.

Example 2 is a little more complex. data2 is declared as a pointer to a char data type. A
pointer is declared using an asterisk preceding the file. The next part of the line is
malloc(100), which is a standard C library function call. This function allocates the
requested amount memory and returns a pointer to it. In our example, malloc is passed
the value 100. This requests that 100 bytes be allocated. When the function returns,
data2 contains a pointer to the 100 bytes of memory.

Example 3 is a more traditional Objective-C type memory allocation. First, the program
declares a pointer to an NSString class named myString. Next, the following code is
executed: [[NSString alloc] init]. This will allocate the necessary memory for the
object and return a pointer to it.

In all these examples, memory is requested from the operating system and returned to
the program via a pointer, even in example 1—except example 1 is just a little different
from the rest.

Working with Automatic Variables and Pointers

Any variable created within a function or block is considered an automatic variable, or
auto-variable. In our previous examples, example 1 allocates 100 characters as an
array. It does so automatically since, as you learned, all variables are auto-variables by
default. Because we define all the space up front via an array declaration, all this
memory is managed automatically for us. Examples 2 and 3 are also auto-variables, but
they allocate just enough space to hold a pointer to memory—that’s all. Recall that a
pointer is just a variable that holds an address to memory; it’s not the memory itself. So,

CHAPTER 13: Memory, Addresses, and Pointers

char* data2 and NSString *myString are really just variables that hold a number, which
represents an address to memory.

TIP: Think of pointers this way: a pointeris like a ticket to a concert and the allocated memory is
like the seat. The ticket has the information on how to get to the seat. If the ticket is discarded
(or lost), the ability to find the seat is also lost. However, the seat (allocated memory) still
remains.

Examples 2 and 3 are auto-variables that hold the “ticket” to the memory, not the
memory itself (see Figure 13-9). This means that, when the function exits and the
variables go out of scope, the pointers to the memory will be lost; the “ticket” is lost. The
problem with this is that the program needs to also release, or deallocate, the memory
that the pointer points to before it is lost. The manually allocated memory does not go
out of scope with the pointer; allocated memory is global to the program and doesn’t
get released until the program exits.

Pointer Memory

0x1000 0x1000

Figure 13-9. A pointer is not the memory itself.

What’s very important to remember is that memory that is manually allocated must be
deallocated at some point, depending on how the memory is used. Some memory might
be allocated at the start of the program and doesn’t have to be released until the
program exits. However, the most common memory allocations happen many, many
times throughout the life program, thus it is critical that the associated memory be
deallocated as soon as the object is no longer being used. Memory that is allocated
manually must be deallocated manually. Memory that is allocated automatically (i.e.,
char array[100];) is automatically deallocated.

Deallocating Memory

When a program allocates memory, it needs to ensure that it’s released, or deallocated,
once the program is finished using the memory. Using the examples again, example 2
allocates memory with the malloc command. When the program is finished with that
memory, it needs to be deallocated. Failing to deallocate memory is a common
programming mistake and goes by the descriptive name of memory leak.

To prevent memory leaks (which eventually lead to program crashes), allocated memory
must be managed with care. Listing 13-2 shows how the code should look when
properly deallocating memory for examples 2 and 3.

277

278

CHAPTER 13: Memory, Addresses, and Pointers

Listing 13-2. Memory Allocation and Deallocation.

1 int main(void)

2

3 char *data2 = malloc(100);
4 NSString *myString = [[NSString alloc] init];

5 // standard “doing-stuff” ellipse

6

7 free(data2); // Deallocate the 100 bytes
8 data2 = NULL;
9 [myString release];
10 myString = nil;
1}

In Listing 13-2, data2 is allocated on line 3. This type of allocation is plain old standard
C and is not typical in an Objective-C program, but it's still very important to know and
understand.

Line 4 declares and allocates an Objective-C object, NSString.
Line 7 deallocates the block of memory allocated from line 3.

Line 8 sets the pointer to NULL. This is a good practice and will be explained in the next
section.

Line 9 releases the object that was allocated on line 4. The release message is a
request to deallocate the object. The reason that release message is a request to
deallocate memory has to do with the mechanism of how memory is managed for
Objective-C objects. This mechanism is referred to as the retain/release model, or
sometimes as reference counting.

NOTE: Prior to Xcode 4, the retain/release model was the only model to use for iOS development.
Xcode 4.2 introduced an option called Automatic Reference Counting (ARC). ARC causes the
compiler to automatically include the retain and release methods on your behalf. While ARC is
optional, it defaults to being on for any new project started in Xcode 4.2. Opening older projects
created before Xcode 4.2 will still compile fine and ARC will be disabled.

While ARC is a nice feature, it’s still very important to understand what is still happening under
the covers. ARC doesn’t remove calls to the retain and release methods, it just hides the
implementation much like Objective-C properties hide getter and setter methods.

Reference counting makes using memory a little more efficient because it allows the
objects to know when memory should be deallocated. It’s a slightly better mechanism
than completely managing memory manually.

Line 10 is equivalent to line 8. Objective-C pointers can be set to NULL but it's much
better to set the pointer to nil. A nil object in Objective-C has a special meaning and
can actually respond to a message. NULL does not have that same property.

Let’s also look at how this listing would change if we were to be using ARC:

CHAPTER 13: Memory, Addresses, and Pointers

Listing 13-3. Memory Allocation with ARC.

1 int main(void)

2
3 char *data2 = malloc(100);
4 NSString *myString = [[NSString alloc] init];
5 // standard “doing-stuff” ellipse
6
7 free(data2); // Deallocate the 100 bytes
8 data2 = NULL;
9 myString = nil;
10 }

The major difference between Listing 13-2 and Listing 13-3 is the omission of
[myString release]. Since ARC is being used, it handles the releasing of the memory.

Using Special Pointers

As you’ve learned, a pointer is just a number that represents an address to memory.
There are two special pointers that are worth mentioning. They really aren’t pointers per
se, but they represent an empty pointer—a pointer that doesn’t point to anything. These
two pointers are NULL and nil. NULL is nothing more than zero, zilch, nada. Since
pointers are just numbers that represent an address, an address of 0, or NULL,
represents a pointer that logically points to nothing.

Using an address of zero is a convention that modern computers use; computers do not
allow any program to store something at the address 0, which makes using NULL to
represent an empty or unused piece of memory much more meaningful. This is
important to know because if memory allocation fails, the resulting pointer returned is
NULL. NULL is also useful to indicate that the pointer is no longer valid or is simply empty.
This is true for all of standard C. Here’s how NULL can be used to initialize a pointer:

char *data = NULL;

It should also be used in comparisons like the code fragment in Listing 13-4.
Listing 13-4. Using NULL to Verify and Clear a Pointer.

1 char *data = malloc(100);
if (data !'= NULL) {
// Do something with the memory. It’s valid.
free (data); // Deallocate the memory, we’re done with it.
data = NULL; // Set the pointer to NULL indicating that it’s empty.

aauviphs WN

In Listing 13-4, line 2 checks to make sure that the malloc function worked by checking
the pointer with NULL. If the pointer is not NULL, the allocation worked and the program
can use the returned value. The memory is then deallocated on line 4 and set to NULL on
line 5 to indicate that the pointer is no longer pointing to anything.

When we are dealing with Objective-C objects, the equivalent of NULL in Objective-C is
nil. Like NULL, nil is a special pointer to nothing. However, in the case of Objective-C,
nil is actually an empty object. Since Objective-C is heavy on sending messages to an
object, an empty pointer should respond to message sent to it, even if that pointer is

279

280

CHAPTER 13: Memory, Addresses, and Pointers

empty—the nil empty object fulfills this purpose. Listing 13-5 is a sample code
fragment that is similar to the standard C version.

Listing 13-5. Using a Property on a Possibly Nil Object.

1

uvhs WwWN

NSArray *booklList = [bookstore booksOnSale];
for (NSUinteger i=0 i<bookList.count; ++i) {
// If bookList is non-nil, this part of the for loop will run.
// If booklList is nil, then this part of the loop will be skipped.

}

TIP: When using the ticket metaphor for deallocated memory, here is something to watch out for:
If a ticket is a pointer to a seat in a theater, what happens when the show is over? Well, the
ticket still points to that same seat, but it isn’t valid anymore; the show is over. The same is true
with memory. If the memory that a pointer points to is deallocated, that memory is now free to be
used by another memory allocation. However, the pointer still points to that old memory. It’s
important to clear the pointer so it isn’t mistakenly used. This is what is referred to as a dangling
pointer. The practice of checking to see if the pointer is not NULL before using it paired with the
practice of setting a pointer to NULL or nil when the object is deallocated is a “best practice”
that should be strictly followed.

Managing Memory in Objective-C with ARC

As mentioned earlier, ARC is the new feature that Xcode 4.2 introduced that hides the
need for the retain/release model. By default, ARC is enabled for any new project
started in Xcode 4.2. Older projects have ARC disabled. To enable or disable ARC,
simply look for automatic reference counting in the build settings of an Xcode 4.2
project, as shown in Figure 13-10.

CHAPTER 13: Memory, Addresses, and Pointers

Summary Info | Build Settings | Build Phases Build Rules
Basic () | Combined Q- automatic|
| Setting o Resolved o MyBookstore] MyBookstore i0S Default
| wLinking
L.iznk. Wi.th Standard Libraries
Mach-0 Type
vApp'Ie LLVM compiler 3.0 - Language

| Compile SourcesAs According to File... » -~ \ According to Fil
: ¥ Apple LLVM compiler 3.0 - Warnings -

Objective-C++ Automatic Reference Counti... No - No &
Uninitialized Automatic Variables No + No +

Figure 13-10. Enabling or disabling ARC in an Xcode 4.2 project.
We’re going to examine how we can now manage memory in Objective-C, taking
advantage of the new ARC feature.

First, retain/release and autorelease (discussed later) are no longer valid methods.
Under ARC, these methods are deprecated. This also includes the release keyword in a
property. Prior to Xcode 4.2, it was common to write a property like this

@property (nonatomic, retain) NSString *name;
Now with Xcode 4.2, this changes a little bit. The property is written as
@property (nonatomic, strong) NSString *name;

The strong keyword replaces retain; strong is used to tell the compiler that this object
needs to be retained when assigned. Conversely, the compiler will know to also release
this object when it’s no longer being used or is re-assigned.

Here’s another code example of how an implied strong variable is used:
Listing 13-6. Using Automatic Reference Counting.

- (id)init

{

N =

self = [super init];

if (self) {
self.theBookStore = [[NSMutableArray alloc] init];
Book *newBook = [[Book alloc] init];
newBook.title = @"Objective-C for Absolute Beginners";
newBook.author = @"Bennett, Fisher and Lees";
newBook.description = @"i0S Programming made easy.";
[self.theBookStore addObject:newBook];

P OWVWOoO~NOUVI AW

[N

282

CHAPTER 13: Memory, Addresses, and Pointers

12 newBook = [[Book alloc] init];

13 newBook.title = @"A Farwell To Arms";

14 newBook.author = @"Exrnest Hemingway";

15 newBook.description = @"The story of an affair between an English "
16 "nurse and an American soldier "
17 "on the Italian front "

18 "during World War I.";

19 [self.theBookStore addObject:newBook];

20 newBook = nil;

21 }

22

23 return self;

24

If we look at Listing 13-6, we can clearly see that a new Book object is being allocated
on line 6. However, where ARC comes in play is line 12. Here, we reassign the pointer
by allocating a new Book object. Under the old rules of memory management, we would
have had to release the old value first, otherwise there would be a memory leak. Under
ARC, the compiler knows to perform a release on the pointer before it is reassigned.
This is also the case with line 20. Line 20 is actually not needed since when the variable
goes out of scope, ARC would have also auto-released it. Assigning it to nil is just a
more direct way of doing the same thing.

Further inspection of this source file (Bookstore.m from the example in Chapter 8)
reveals that there is no dealloc method. So, the self.theBookStore variable without
ARC would have caused a memory leak. With ARC, the programmer doesn’t have to
worry about releasing the self.theBookStore variable because ARC does it
automatically whenever the Bookstore class is no longer being used.

Managing Memory in Objective-C Without ARC

While it is recommended to use ARC when starting new projects, sometimes there is a
need to manage an old project that is either earlier than iOS 4 or was built with the
retain/release model in place. For these projects, Xcode 4 will not automatically convert
them over to ARC. This section describes how to handle a program without ARC.

As mentioned earlier, Objective-C handles allocated memory in a slightly different way
than most applications written in standard C. Recall that the Objective-C system uses
something called the retain/release model. With this model, memory that has been
allocated by an object gets counted every time the application that is interested in the
memory sends a retain message to the object. At various stages of the application,
the program indicates that it’s finished using the memory and sends a release
message. When the number of releases equal the number of retains, the memory
associated with the object is finally deallocated. Let’s see how this model looks like in
practice. Listing 13-7 is a very basic example.

CHAPTER 13: Memory, Addresses, and Pointers

Listing 13-7. Allocating an Objective-C Object.
1 int main(void)

NSString* myString = [[NSString alloc] initWithUTF8String:“Hello World!”];
// Code to do something with the string.

[myString release];

myString = nil;

~NouviphwnN

In this example, line 3 allocates a new string object using alloc. This line is actually
very important in this situation; the reason will be explained in a bit. So line 3 created
the new string. As it's created, the Objective-C system automatically sends a retain
message to the object. At this point, the myString variable points to an object that has
one retain so far.

Line 5 issues a release to the myString object. The release subtracts one from the
current retain count (which is 1). As mentioned before, once the retain count reaches
zero, the object is deallocated. So, once line 5 has finished, the myString variable points
to deallocated memory.

Line 6 sets our original variable to nil to indicate that the pointer is empty.

Using the Retain/Release Model

The process of retaining and releasing memory is something that Objective-C uses
extensively to manage memory. The alternate name of this process, reference counting,
is a little more descriptive because the process of retaining and releasing memory is a
way of counting how many times the memory has been retained rather than released.
Note the term “memory” is used here generically. Memory management in Objective-C
allocates memory for objects instead of just blocks of memory. The Objective-C base
class NSObject, which most Objective-C objects are derived from, keeps track of the
retain count.

NOTE: If you are looking for exactness, the NSObject protocol group actually defines the
reference counting messages. NSObject implements that protocol.

So far, things sound fairly simple: for every retain, there needs to eventually be a
release. This doesn’t sound too tricky, right? Well, it's not always straightforward to
know when an object is retained. Consider the example in Listing 13-8.

283

284

CHAPTER 13: Memory, Addresses, and Pointers

Listing 13-8. A Retain Count.

1 NSMutableDictionary *dict = [[NSMutableDictionary alloc] init]; dict retainCount = 1
2 NSDate *today = [[NSDate alloc] init]; today retainCount = 1
3

4 [dict setObject: today forKey: @”TODAY”]; today retainCount = 2
5 [today release]; today retainCount = 1
6 today = nil;

7 [dict removeObjectForKey: @”TODAY”]; today deallocated

g [dict release]; dict deallocated

Looking at Listing 13-8, the retain counts of the dict and today objects are shown. The
dict object looks pretty normal: it has a retain count of 1 whenever the object is created.
The same is true for the today object on line 2.

In line 4, things look a little odd. For some reason, the today retain count is now 2. What
happened? Well, if we look closely at the NSMutableDictionary documentation for the
setObject: forKey: method, we see, in the documentation for the setObject:, part of
the message that “the object receives a retain message before being added to the
receiver.”

According to the documentation, before an object is added to the dictionary, the object
is sent a retain message. This is why today had a retain count of 2.

Why does the dictionary do this? Well, the answer is quite simple. If we add an object to
the dictionary, the dictionary should then be responsible for it; we basically hand it over
to that class. We can release any local variables to objects we add to the dictionary. The
dictionary then becomes the owner of the objects. To ensure this, the
NSMutableDictionary class sends all the data it stores a retain message so that the
system knows that someone is using that object.

Since dict is managing the object, line 5 is used to release our object. The dictionary
still has the same memory that the today object has; we’ve just told the system that
we’re finished with it. Had the dictionary object not sent a retain message, line 5 would
have actually deallocated the message. The rule is pretty simple: Once the retain count
of an object reaches zero by way of a release, the object is sent a dealloc message,
and the memory to that object is actually deallocated.

Line 6 is a simple convention to indicate we’re finished with the pointer.

Line 7 removes the object by way of the key TODAY. When an object is removed from a
dictionary, the object is automatically sent a release message. At this point, the object
that today used to point to is sent a release message. Since this now makes the retain
count of the object zero, the object is also sent a dealloc message to deallocate its
memory.

Line 8 simply sends a release message to the dict object. This will deallocate the
memory of the object, since nowhere else is the object retained.

CHAPTER 13: Memory, Addresses, and Pointers

Working with Implied Retain Messages and Autorelease

How do we know which objects need to be released and which don’t? The answer
basically falls under the rule of object ownership. If an object is created that has alloc,
copy, or new in the message name, you own the object, and it, therefore, needs to be
released once the program is finished using it. There are other examples, but no hard
and fast rules unfortunately. Properly deallocating memory takes an understanding of
the objects and what messages result in an explicit retain.

While an object can be sent an explicit retain message, in the examples so far, there
isn’t one retain because there are automatic or implied retain messages. For example,
whenever the message setObject: forKey: is sent to the dictionary object, the object
we add is automatically sent a retain message. As mentioned previously, whenever we
are allocating an object a retain is implied:

NSMutableDictionary *dict = [[NSMutableDictionary alloc] init];

Other calls are not so obvious, as seen in the following example:
NSDate* today = [NSDate date];

In the case above, the object was allocated but has in implied release—called
autorelease. As mentioned above, anything with an alloc, copy, new requires that the
program manually releases the object. For anything else, the object is released
automatically.

The key is that the return value is a new date object. Because it’s a new object, it
receives a sort of implied retain message. But more importantly, it will automatically be
released since the object wasn’t created with an alloc/copy/new method. The
program could just have also been written as follows:

NSDate* today = [[[NSDate alloc] init] autorelease];

This code would yield the exact same results. The difference is that, in the second
example, we are explicitly allocating the memory but marking it as autorelease. The
Objective-C run-time system will automatically release the memory. While using
autorelease seems like the best way to handle releasing memory, it may not necessarily
be what is needed. Variables that are marked as autoreleased don’t stick around very
long. All iOS and some Mac applications have something called a run-loop. Basically,
an application for the most part just waits around for input. If you touch the screen, for
example, the application will perform some function and then eventually go back to
waiting for more input. Whenever the application goes back to wait for more input, all
autorelease variables are released; this could easily be as short as 1/60" of a second.
So, autorelease should be used with caution and only in an area where the need for a
variable is within the span of the current run-loop. If the program needs to have an
autorelease variable stick around for a while, then either don’t use autorelease (use the
standard alloc and init) or simply send a retain message to the object.

285

286

CHAPTER 13: Memory, Addresses, and Pointers

Listing 13-9. Keeping an Autorelease Variable Available.

1 - (NSDate *)getDate

2

3 return [NSDate date];

4}

5

6 - (void)captureDate

7

8 // Capture the current date and store it in the class’s iVar
9 currentDate = [[self getDate] retain];
10 }
11
12 - (void)dealloc
13 |
14 // Release the memory for the current_date.
15 [currentDate release];
16

Notice on line 9 that the getDate method is called and then we immediately send a
retain message to the object. This is because getDate is set as autorelease. If the
program didn’t do this, the memory to current_date would have been autoreleased.

NOTE: In any iOS application developed before Xcode 4.2, there is a line in the main.m file that
looks as follows:
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

This is the mechanism the program uses to autorelease memory that has been sent an
autorelease message when it was allocated, like our example above. The [NSDate date]
returns memory that is automatically added to this autorelease pool and then automatically
deallocated at the next run-loop.

Sending the dealloc Message

Under normal circumstances, your program should never send a dealloc message to
another object. There are some exceptions. One of these is when handling the dealloc
message itself. You will be dealing with the dealloc message only for objects you
create. Listing 13-10 is a snippet of code that shows how a typical dealloc message is
coded. Every object that you create should implement a dealloc message except when
using ARC, garbage collection, or if there’s nothing to release.

Listing 13-10. A Typical dealloc Implementation.

1 - (void)dealloc

2

3 self.iVarl = nil; // If we had iivars, make sure they are deallocated.

4 // This instance variable was a property (Chapter 10)
5 [iVar2 release]; // Another example. We release an instance variable

6 // that we were using - it wasn’t a property.

7 [super dealloc]; // We finally tell our parent to deallocate itself.

8 // This is one of the few times dealloc will be called

CHAPTER 13: Memory, Addresses, and Pointers 287

9 // explicitly.
10 }

Listing 13-10 is strictly an example, and the instance variable names are completely
fabricated.

Line 3 sets an instance variable to nil. Not only is this common practice, but also, in our
example, the instance variable is a property. If the property was created with the retain
keyword like the code below setting the property to nil automatically sends a release
message to whatever object iVar1 was pointing to first.

@property(retain) NSDate* iVari
It’s a very clean way to release an object.

Line 5 shows how a nonproperty instance variable would be released. We've used this
method in many of our examples so far.

Line 7 is the only case in which you would send a dealloc message to an object. In this
case, the program is telling its parent (the superclass) to deallocate itself. The parent
would end up doing the same, sending a dealloc to its parent and so on until the base
object is finally deallocated. Also note that [super dealloc] is the last thing the method
does—it’s not a good idea to deallocate the parent class and then continue to do more
things.

Dealing with the retain/release model will take some time to get used to but overall is a
fairly straightforward system of managing memory. Here’s a word of caution though:
even though our examples talked about the retainCount method of an object, do not
rely on this value. Since you have no idea what parts of the framework have an interest
in your objects, the retain count could be higher than you expect. However, knowing
about the retainCount is beneficial in troubleshooting a potential memory leak. Continue
to practice working with the retain/release model, and make sure that you read the
developer documentation when sending or receiving objects so that you know how the
object in question is being handled.

If Things Go Wrong

Allocating memory either through the standard C mechanisms or the Objective-C object
allocation methods works most of the time. However, the programmer cannot assume
that allocating an object or allocating memory works all the time. When memory
allocation fails, it’s generally a sign that bigger problems are at hand, and the program
may not be around too much longer (it will crash because of memory issues). However,
even though the program may be getting into a bad state because it can’t allocate
memory, the program should not ignore the memory allocation failure signs. Here are
some conventions that are used to test if memory allocation has failed:

288

CHAPTER 13: Memory, Addresses, and Pointers

int main(void)

char *data2 = malloc(100);
if (data2 == NULL) {// Malloc returns NULL (0x00000000) if allocation fails.
// Application has detected a major failure.

~NouvhswN R,

In this standard C example, if the malloc function fails, a NULL pointer is returned. Recall
that NULL pointer is nothing more than a pointer that points to location 0x00000000.
Memory never starts at this location, so NULL can be used to indicate a bad memory
allocation.

In Objective-C, there are two main areas that we need to perform validity checks. Here’s
the first:

int main(void)

1

2

3 MyObject* obj = [[MyObject alloc] init];

4 if (obj == nil) { // If the object is valid..
5 // Application has detected a major failure.
6

In this example, we try to create an object, but we check to see if the pointer returned is
nil or not. Recall that a nil object is basically a default empty object used as a
placeholder to mean “empty,” or “nothing.” Don’t confuse this with an empty MyObject,
because that it is not.

The second validity check only applies to objects we’ve created. This check is done in
the init method of the class:

1 - init

2 |

3 self = [super init];

4 if (self != nil) {

5 // Do object initialization here on a valid self object.
6

7 return self;

8 }

In this example, in the object’s init method, the program explicitly tests to see if self
returns a value that is not nil. If self is not nil, things are OK, and the method can
continue initializing the object. The method then returns self, which can be either nil or
not. The important thing to note here is that we are testing to ensure that the call to
[super init] works before proceeding to work on self.

CHAPTER 13: Memory, Addresses, and Pointers

A Note About ARC

While we covered a lot of the manual ways of handling memory if ARC isn’t used, it is
advisable to use ARC on any new project you create. What you learned here is that,
while ARC hides how memory is retained and released, it is important to understand
what’s really happening under the covers.

Summary

We’ve covered quite a bit in this chapter. Hopefully, you now have a clearer
understanding of how memory, addresses, and pointers work. In this chapter, we
covered the following:

Defining memory

Using base-2, base-10, and base-16
Defining and using memory addresses
Defining and using pointers

Defining and using the dereference operator
Allocating memory

Using auto-variables and watching out for pitfalls so as not to cause a
memory leak

Deallocating memory and preventing memory leaks, including using
the dealloc method

Using the special pointers NULL and nil

Understanding memory management using ARC

Managing memory using Objective-C and its retain/release model
Detecting when things go wrong with memory allocation.

This chapter definitely covered a lot of ground, so congratulate yourself on making it
through. Understanding how memory works on a Mac, iPhone, iPad, or any computing
device is very important.

Exercises

In the following memory space, how large is the memory block? What
is the address of the very last byte in this block of memory?

289

290 CHAPTER 13: Memory, Addresses, and Pointers

B Using the code from Listing 12-1, try to determine what these
statements will do and why:

B *(aPointer + 2) = ‘1°;
m (aPointer + 2) = ‘1’;

B Look at the Apple developer documentation for the method addObject
in the NSMutableArray class.

B What differences are there between the addObject: method of
the NSMutableArray class and the NSMutableDictionary class’s
setObject:forKey: method?

B How would using an NSMutableArray change, if at all, the code in
Listing 13-1?

Chapter

Introducing the Xcode
Debugger

Xcode is fantastic! Not only is this tool provided free of charge on Apple’s developer
site, but it is actually really, really good! Aside from being able to create the next great
Mac OS X, iPhone, or iPad app, Xcode has a fantastic debugger built right into the tool.

So, what exactly is a debugger? First of all, let’s get something straight—programs do
exactly what they are written to do. Sometimes, what is written isn’t exactly what the
program is really meant to do. Sometimes, this means the program crashes or just
doesn’t do something that is expected. Whatever the case, when a program doesn’t
work as planned, the program is said to have bugs. The process of going through the
code and fixing these problems is called debugging.

There is still some debate as to the real origin of the term “bug,” but one well-
documented case from 1947 involved the late Rear Admiral Grace Hopper, a Naval
reservist and programmer at the time. Hopper and her team were trying to solve a
problem with the Harvard Mark Il computer. One team member found a moth in the
circuitry that was causing the problem with one of the relays. Hooper was later quoted
as saying, "From then on, when anything went wrong with a computer, we said it had
bugs in it.""

Regardless of the origin, the term stuck and programmers all over the world use
debuggers, such as Xcode, to help find bugs in programs. People are the real
debuggers; debugging tools merely help programmers locate problems. No debugger,
whatever the name might imply, fixes problems all on its own.

This chapter will highlight some of the more important features of the Xcode debugger
and will explain how to use them. Once you are finished this chapter, you should have a
good enough understanding of the Xcode debugger and of the debugging process in
general to allow you to search for and fix the majority of programming issues.

" Michael Moritz, Alexander L. Taylor Ill, and Peter Stoler, “The Wizard Inside the Machine,” Time, Vol.123,
no. 16: pp. 56-63

291

292

CHAPTER 14: Introducing the Xcode Debugg

Getting Started with Debugging

If you’ve ever watched a movie in slow motion just so you can catch a detail you can’t
see when the movie is played at full speed, you’ve used a tool to do something a little
like debugging. The idea that playing the movie frame by frame will reveal the detail you
are looking for is the same sort of idea we apply when debugging a program. With a
program, sometimes it becomes necessary to slow things down a bit to see what’s
happening. The debugger allows us to do this using two main features: setting a
breakpoint and stepping through the program line by line—more on these two features
in a bit. Let’s first look at how to get to the debugger and what it looks like.

First, we need to load an existing program. Our examples in this chapter use the
MyBookstore project from Chapter 8, so open Xcode and load the MyBookstore project.

Second, make sure the Debug configuration is chosen on the Run Scheme, as shown in
Figure 14-1. To edit the current scheme, choose Product>»Edit Scheme from the main
menu. Debug is the default selection, so you probably won’t have to change this. This
step is important because if the configuration is Release, debugging will not work at all!

MyBookstore B iPhone 5.0 Simulator : | - |
Scheme Destination Breakpoints
> & Build | Info | Arguments Options Diagnostics

1 target

L= q

['l;;_;’_J . | Build Configuration | Debug

Test
> Debug Executable | oM MyBookstore.app
> (@ Profile MyBookst...
Release Debugger | GDB
Analyze .]
> IS Debug Launch (2) Automatically
Archive | ' Wait for MyBookstore.app to launch
> B pajaase Use this option if you will manually launch your application.
Duplicate Scheme Manage Schemes... | OK |

Figure 14-1. Selecting the Debug Configuration.

While we won’t discuss Xcode Schemes in this book, just know that by default, Xcode
provides both a Release and a Debug configuration option for any Mac OS X or iOS
project you create. The main difference as it pertains to this chapter is that a release
configuration doesn’t add in any program information that is necessary for debugging an
application, whereas the debug configuration does.

CHAPTER 14: Introducing the Xcode Debugg

Setting Breakpoints

To see what’s going on in a program, we need to make the program pause at certain
points that we as programmers are interested in. A breakpoint allows us to do this. In
Figure 14-2, we've set a breakpoint on line 25 of the program. To do this, simply place
the cursor over the line number (not the program text, but the number 25 to the left of
the program text) and click once.

If line numbers are not being displayed, simply choose Xcode » Preference from the
main menu and then click on the “Text Editing” Tab and check the “Line Numbers”
checkbox.

1 MyBookstore.xcodeproj m MasterViewController.m

1 Build MyBookstore: Canceled | Today at 1:23 PM

Mo lssues

MasterViewController.
-l & A = = B : wi | 4 » | [MyBookstore) [|MyBookstore) m| MasterViewController.m) [{] ~tableView:cellf ath:
-, MyBookstore MWz =
£ 1 rarget, 105 50K 5.1 2 4

o, 03 508 20 // Created by Strider on 8/28/11.

[l Bockstore.h // Copyright (c) 2811 www.committed-code.com. All rights reserved.
m| Bookstore.m 17
h) Book.h
m) Book.m ?| #import "MasterViewController.h"
¥ (L] MyBookstore 1
h! AppDelegate.h 1| #import "DetailViewController.h"
m! AppDelegate.m 12
|h| MasterviewController.h 13| #import "Bookstore.h"
h| DetailViewController.h 15 @implementation MasterViewController

m! DetailViewController.m
MasterViewController.xib
© DetailViewController.xib

@synthesize detailViewController = _detailViewController;
@synthesize myBookStore;

¥ |l Supporting Files 20— (id)initWithNibName: (NSString *)nibNameOrNil bundle: (NSBundle *)nibBundleOrNil

» || Frameworks Ml {
> [Products 2 self = [super initWithNibMame:nibNameOrNil bundle:nibBundleOrNill;

if (self) {

2 self.title = NSLocalizedString(@"Master", @'Master");
BB self.myBookStore = [[Bookstore alloc] init];
return self;
+ | ®E & © ___"_.1 .(voidJdifiaeceivenemomarning

Figure 14-2. Our first breakpoint

We can also remove the breakpoint by simply dragging the breakpoint to the left or right
of the line number column and then dropping it. In Figure 14-3, the breakpoint has been
dragged to the left of the column. During the drag-and-drop process, the breakpoint will
turn into a puff of smoke.

293

294

CHAPTER 14: Introducing the Xcode Debugg

|h DetailViewController.h 15/ @implementation MasterViewController

Im| DetailViewController.m s . n=na m——_

“ MasterViewController.xib 17| @synthesize detailViewController = _detailViewController;
DetailViewController.xib 1 @synthesize myBookStore;

» [_| Supporting Files
¥ || Frameworks

Z (id)initWithNibName: (NSString *)nibNameOrNil bundle: (NSBundle *)nibBundleOrNil
» || Products

self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNill;
if (self) {
self.title = NSLocalizedString(@'Master”, @'Master");
self.myBookStore = [[Bookstore alloc] init];

return self;

4 B
Figure 14-3. The breakpoint disappears in a puff of smoke.

Setting and deleting breakpoints are pretty straightforward tasks. There are other ways
to delete breakpoints, but this way is the most entertaining!

Using the Breakpoint Navigator

With small projects, knowing where all the breakpoints are isn’'t necessarily hard.
However, once a project gets larger than, say, our small MyBookstore application,
managing all the breakpoints could be a little more difficult. Fortunately, Xcode 4
provides a simple method to list all the breakpoints in an application called the
Breakpoint Navigator. This can be found by clicking on the Breakpoint Navigator icon in
the navigation selection bar, as shown in Figure 14-4.

_‘hf-\vﬂonkstore.xcodepmj — m| MasterViewController.m "
... iPhone 5.0 simulator | [e s Blos [Eoo (=)
Scheme. Breakpoints] L Editor Miew Organizer
1 Mesevienconuglierm | i = = 2
BnOL iR [moe > il ontroller.m) (= jon MasterViewCantraller
T = ” }

i :
¥ m| DetaliViewCentroller.m
[-configureView |1 B
¥ m| MasterViewContraller.m
[-tableVie...dexPath: B

th: (NSIndexPath =) fromIndexPath tolndexPath:(NSIndexPath =)

ing of the table vi
canMoveRowAt T

£/ Return NO if you do not want the item te be re-orderable.
1 return YES;
il 3

= lvoid)tableView: {UITableView =)tableView didSelectRowAtIndexPath: {NSIndexPath «)indexPath

B Book wselectedBook = [self akStore bookAtIndex: indexPath. row];

Contraller alloc]
WithNibNane:@“DetailViewController*
bundle:nill;

.detailltem = selectedBook;
ler pushViewController:self.detailViewController
animated:YES);

@end

e ()

Figure 14-4. Accessing the Breakpoint Navigator in Xcode 4

CHAPTER 14: Introducing the Xcode Debugg

Once clicked, it will list all the breakpoints currently defined in the application. From
here, clicking on a breakpoint will take you to the source file with the breakpoint. You
can also easily delete and disable breakpoints from here.

To disable/enable a breakpoint, simply click on the blue breakpoint icon in the list (or
wherever it appears). Don’t click on the line; it has to be the little blue icon, as shown in

Figure 14-5.
800 ™ MyBookstore.xcodepraj — m) MasterViewController.m 5
.@ [} h M_... iPhgn_e 5.0 Simulator g Finished running MyBookstore on iPhone 5.0 Simula [] E- E 3 [E |
Run Stop Scheme Ereakpaoints o S Editar View Orgarizer
MasterViewController.m [_ E3
BnOL == [msi<> B) [m ontralier.m i ion Master ontraller
|_‘] v

* 2 Breakpoints p—
¥ m| DetailViewControfler.m# " | !
[-configureview |1/ @B \
¥ m MasterViewContraller.n 131
[-tablevie dcxPath'\ﬁ;
L

YES;

= tvoid)tableView: {UITableView =)tableView didSelectRowAtIndexPath: (NSIndexPath «)indexPath
£

»selectedBook = [se re bookAtIndex: indexPath. rowl;

electedBook;
er:celf,detaily

animated:YES]:

+ — B

Figure 14-5. Using the breakpoint navigator to enable/disable a breakpoint

It is sometimes handy to disable a breakpoint instead of deleting it, especially if you plan
to put the breakpoint back in the same place again. Disabling a breakpoint is actually
quite simple. Just click the existing breakpoint and it will turn from a dark blue color to a
very faded blue. The debugger will not stop on these faded breakpoints, but they remain
in place so they can be conveniently enabled and act as a marker to an important area
in the code.

It’s also possible to delete breakpoints from the Breakpoint Navigator. Simply select one
or more breakpoints and press the delete key. Make sure you select the correct
breakpoints to delete since there is no undo feature.

It’s also possible to select the file associated with the breakpoints. In this case, if you
delete the file listed in the Breakpoint Navigator and press delete, all breakpoints in that
file will be deleted.

295

296

CHAPTER 14: Introducing the Xcode Debugg

800 4 MyBookstore.xcodeproj — [m) DetailViewController.m "

) Phone .0 Simiaor]| [[s e st n ene v EBloc @Eoa) (@)

Ho tssues

Bun Stap Scheme Breakpoints = Editar Niew Organizer

1 oeiviewcontalierm = . . - ! i
EDO®LA==R] m | 4 b | ["iMyBookstore | [|MyBookstore | m) DetailViewControlier.m) [T] -confiqureview
— T EPragna maTR - Managing the CETSil ICER

= (void)setDetailltem: [id)newDetaillten
£

¥ m| DetallViewController.m Y
[-configureView |9 BB 5 i i

!= newDetailltes) {
v B Mt Vienconolierm s newbetaillten;
[Z] -tabieVie...dexPath ' 2 ! ate the view.
[-tabievie. d“p‘.h‘ B! [sclr can‘;gurehc-]
] -tablevie...dexpath, @ ! i !

-

= {void)configureView
{

50| — (void)didReceiveMenoryWarning
{

[super didReceiveMemoryWarning];
w4 [/ Release any cached data, images, etc that aren‘t in use.
ol 1
1| #progea mark - View lifecycle
3 = (void)viewDidLoad

[super viewDidlLead];

+ = | D™ .: ; Dc: -)-‘l:'J;LA..I.IU"..I‘.".L'.UL' after loading the view, typically from a nib.

Figure 14-6. A file with several breakpoints

Please note that breakpoints are the lines with the small breakpoint icon, as shown in
Figure 14-5. The file is outdented from the breakpoint; in Figure 14-5, the files are
DetailViewController.m and MasterViewController.m. Figure 14-6 shows an example of
what a file looks like with more than a single breakpoint.

Debugging Basics

Set a breakpoint on the statement shown in Figure 14-2. Next, as shown in Figure 14-7,
click the Run button to compile the project and start running it within the Xcode
debugger.

enno [MyBookstore.xcodeproj — [m| MasterViewController.m e
@ -m n [Build MyBookstore: Canceled | Today at 1:39 PM | ma—cll | =]
Stcl:: heme Breakpoints HNalaves ! Edllua' ' Drganlzer

Figure 14-7. The Build and Debug button in the Xcode toolbar

Once the project builds, the debugger will start; the screen will show the debugging
windows and the program will stop execution on the line statement, as shown in
Figure 14-8.

CHAPTER 14: Introducing the Xcode Debugg

ann ™ MyBookstore.xcodeproj — im! MasterViewController.m "
¥ T = Running MyBookstore on iPhone 5.0 Simulator el (=
(>) (@) (M.iPrones0sm..] (3 | 2 | EBog @EEO ©
Run Step Schime Breakpoints | Ho l1sdes Editor View Organizer
'1 MasterViewController.m J +
E2dA==0 |::: 4 | 7 MyBookstore - | |MyBookstore | m| MasterViewController.m + [} -tableView:cellForRowAtindexPath:
Thi) By Queue #import "Bookstore.h"
MyBookstore -
Paused @implementation MasterViewController
X -"-_:'_'_h"‘“‘d] @synthesize detailViewController = _detailViewController;
AT roller ... | @synthesize myBookStore;
olicatie. .. 3
initi = (id)initwithNibName: (NSString *)nibNameOrNil bundle: (NSBundle *)}nibBundleOrNil
{
self = [super initWithMibName:nibNameOrNil bundle:nibBundleOrNill;
if (self) {
HHT ‘@0 2| self.title = NSLocalizedString(@'Master", @'Master");
» S, "boa =y ; self.myBookStore = [[Bookstore alloc] init]; Thread 1: Stopped at breakpoint 1
\!
» Thread ¥ WebThread _ Treturn self;
T T -~ ey
"'_‘\I'_"] T R T MyBookstore ; ¥i Thread 1 ; ['H 0 ~[MasterViewController initwithNibName:bundle:]
e Q, All Qutput 3 Cear) (I I (1
[self = (MasterViewController *) Ox6a8c260 LlflE"“‘r and you are ¢
- = T welcome to. <t i F 51 it copies of it
,D ".Md E s i y under cert 3 \‘\
¥ B nibNamerN v t <G8 MasterVie... | pyoe nopy i bo :
> B nibBundleOrNi & There is t 'ype “show
o\e warranty g Q,\.\o
RN This GDE figurega
\\fb‘ darwin. i A
Attaching \}'\,Q
Pending b F 0 t M tler.n": 25"
resolved
= Current language: auto; currently cbjective-c
=) = (gdb)

Figure 14-8. The Debugger view with execution stopped on line 25

The debugger view adds some additional windows. Let’s go over the different parts of
the debugger shown in Figure 14-8.

1. Debugger controls: (circled in red) The debugging controls can pause, continue,
step over, step into, and step out of statements in the program. The stepping
controls are used most often. The first button on the left is used to show or hide
the Debug area. In Figure 14-8, the Debug area is shown.

2. Variables: The variables window displays the variables currently in scope.
Clicking on the little triangle just to the left of a variable name will expand it.

3. Output Window: The output window will show very useful information in the
event of a crash or exception. Also, any NSLog output goes here.

4, Stack Trace: The stack shows the object stack as well as all the threads currently
active in the program. The stack is a hierarchical view of what methods are being
called. For example, main calls UlApplication and UlApplication calls the
AppDelegate class. These method calls “stack” up until they finally return, hence
the name.

Working with the Debugger Controls

As mentioned previously, once the debugger starts, the view changes. What appears are
the debugging controls (item B in Figure 14-8). The controls are fairly straightforward
and are explained in Table 14-1.

297

298

CHAPTER 14: Introducing the Xcode Debugg

Table 14-1. Xcode debugging controls

Control

Description

() @

Run Stop

>

I+

Clicking the Stop button will stop the execution of the program. If the
iPhone or iPad emulator is running the application, it will also stop as if
the user clicked the Home button on the device. Clicking the Run button
starts debugging. If the application is currently in debug mode, clicking
the Run button again will restart debugging the application from the
beginning; it’s like stopping and then starting again.

Clicking this causes the program to Pause or Continue execution. The
program will continue running until it ends, the Stop button is clicked, or
the program runs into another breakpoint.

When the debugger stops on a breakpoint, clicking the Step Over
button will cause the debugger to execute the current line of code and
stop at the next line of code. If the debugger encounters a breakpoint
while stepping over code, the debugger will go to the breakpoint instead
of skipping over it. In Figure 14-5, clicking this icon will cause the
debugger to go to the next line.

Clicking the Step Into button will cause the debugger to go into the
specified function or method. If we clicked this control, the debugger
would go into the init method shown in Figure 14-5. This is very
important if there is a need to follow code into specific methods or
functions. Only methods for which the project has source code can be
stepped into.

The Step Out button will cause the current method to finish executing
and the debugger will go back to the caller. Using Figure 14-5 as an
example, if we were to step into line 25 and then immediately click Step
Out, the init method would finish executing, and the debugger would
then go back to line 25, effectively finishing the current method (init)
and stepping back out.

Using the Step Controls

To practice using the step controls, let’s step into a function. As the name implies, the
Step Into button follows program execution into the method that is highlighted. Make
sure there is a breakpoint set on the line statement shown in Figure 14-8 (Line 25 of the
example; yours may be different) of the MasterViewController.m file and click the Run
button. Your screen should look similar to Figure 14-9.

CHAPTER 14: Introducing the Xcode Debugg

By Quewe

= ~ MyBookstore
Paused

¥ ¥ Thread 1

[T 1 -[appDelegate applicatio...
[2 -uiapptication _call :
[14 UlApplicationMain
Y 15 main

> ¥t Thread 2

» ¥ Thread 3

» ¥ Thread 4 WebThread

& MyBookstore.xcodeproj — Eg MasterViewController.m w
Running MyBookstore on iPhone 5.0 Simulator

b LN
#import "Bookstore.h"

15| @implementation MasterViewController

17| @synthesize detailViewController = _detailViewController;
1| @synthesize myBookStore;

- (id)initWithNibName: (NSString *)nibNameOrNil bundle: (NSBundle =)nibBundleOrNil

self = [?uger initWithNibName:nibNameOrNil bundle:nibBundleOrNill;

if (self
self.title = NSLocalizedString(@Master", @'Master"); N
self.myBookStore = [[Bookstore alloc] init]; {___Thread 1: Stopped at breakpoint 1|
return self;

W @ & % |4 | MyBookstore » § Thread 1) 110 -[MasterviewController initWithNibName:bundle:]

Local & (Q || Al Dutput (Crear) (] NI (M)
| License, and you are

H Se——{pr——a=

| welcome to change it andfor distribute copies of it
under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type “show
warranty" for details,

| This GDB was configured as “xB6_64-apple-

| darwin®.sharedlibrary apply-load-rules all

| Attaching to process 3200.

£l _cmd = (SEL) i 1l
» £ nit = (_NSCFCy *) Ox6ack MasterVie...
¥ [nibBundieOrNil = (NSBundle *) 0x0 <nil>

Pending breakpoint 1 - "“MasterViewController.m":25"
resolved

Current language: auto; currently cbjective-c

tgdb)

Figure 14-9. The debugger stopped on line 25.

Click the Step Into button : ; this will cause the debugger to go into the init method of
the Bookstore object. The screen should look like Figure 14-10.

¥ ¥ Thread 1

[0 -{Bookstore init)
s
1 2 -[AppDelegate applicatio...
[3 -uiapplication _calllniti...
3 15 ulapslicationMaln

16 main

> B Thread 2

» ¥ Thread 3

» ¥ Thread 4 WebThread

& MyB: 1 A,

j — [mj Bookstore.m o

Running MyBookstore on iPhone 5.0 Simulator

1| @implementation Bookstore

12
13| @synthesize theBookStore;

1 - (id)init

1l {

17 self = [super init]; _ Thread 1: Stopped after step
15 if (self)

1 self.theBookStore = [[NSMutableArray allocl initl;

!o Book #newBook = [[Book alloc] init];

n newBook, title = @"0Objective-C for Absolute Beginners";

n newBook.author = @'Bennett, Fisher and Lees";

1 newBook.description = @'i0S Programming made easy.';

t [self.theBookStore addObject:newBook];

E 1> @ & 2|4 | MyBookstore) §f Thread 1 [0 -[Bookstore init]

Local 5 (Q)| AllQutput 4

B &2 cc——{_)———2=8

(clear) (D) JHNE (W)
1]

Aug t3d: 1

| Copyright 2084 Free Software Foundation, Inc.

|GDB is free software, covered by the GNU General Public
| License, and you are

| welcome to change it and/for distribute copies of it
|under certain conditions.

| Type “show copying® to see the conditions.

There is absolutely no warranty for GDB. Type “show
|warranty" for details.

This GDB was configured as “x86_gd-apple—

| darwin".sharedlibrary apply-load-rules all

| Attaching to process 4964.

b [self = (Bookstore *) 0x6857860
[_emd = (SEL) 0x140e1d2 init
niwBook = (Baok *) 0x6724408

Figure 14-10. Stepping into the ini t method of the Bookstore object

299

300

CHAPTER 14: Introducing the Xcode Debugg

It’s important to note that not only is the debugger in the Bookstore object, but the
debugger has also moved to the Bookstore.m file (it used to be in the
MasterViewController.m file).

The control, Step Over, = continues execution of the program, but doesn’t go into a

method. It simply executes the method and continues to the next line. Step Out, ¥ isa
little like the opposite of Step Into. If the Step Out button is clicked, the current method
continues execution until it finishes. The debugger then returns back to the line before
Step Into was clicked. For example, if the Step Into button is clicked on the line shown
in Figure 14-9 and then the Step Out button is clicked, the debugger will return to the
MasterViewController.m file on the statement shown in Figure 14-9 (line 25 in the
example), the line where the Step Into was made.

Looking at the Thread Window and Call Stack

As mentioned earlier, the thread window displays the current thread (there is only one in
our program). However, it also displays the call stack. If we look at the difference
between Figures 14-9 and 14-10 as far as the thread window goes, we can see that
Figure 14-10 now has the [Bookstore init] method listed because
[MasterViewController initWithNibName:bundle:] calls the [Bookstore init] method.

Now, the call stack is not simply a list of functions that have been called; rather, it’s a list
of functions that are currently being called. That’s a very important distinction. Once the
init method is finished and returns (line 17), [Bookstore init] will no longer appear in
the call stack. You can think of a call stack almost like a breadcrumb trail. The trail
shows us how to get back to where we started.

Debugging Variables

It is possible to view some information about a variable (other than its memory address)
by hovering over the variable. In our current example of the Bookstore, all the variables
are synthesized properties. The problem is that they are not visible through the
debugger. So, in order for the debugger to actually show these variables, we’ll have to
explicitly declare them. To do this, simply navigate to the Book.h header file and add an
instance variable called title, as shown in Figure 14-11.

CHAPTER 14: Introducing the Xcode Debugg

80e 3 MyBookstore.xcodeproj — |&| Book.i; |
n Finished running MyBookstore on iPhone 5.0 Simula = [L—_l
| E |] i
F o Issues i o i ?

a2 8 4 =
MyBookstore TR
¥ B 1 argen, i05 50K 5.0 | 2 77 sook.n
h| Bookstore.h j ;i yBookstore

5 f/ Created by Strider on 8/28/11.

& f/ Copyright (c) 2011 www.committed-code.com. All rights reserved.
Zll
= 8|
¥ [MyBookstore 9| #import <Foundation/Foundation.hs
h| AppDelegate.h 10
%MDDEIENR.M 11 @inta;;:cr__‘ Buuk_:LNSDbjcct {
: 12 tring =title;
|—L| MasterViewController.h 13 4
|m| MasterviewController.m 14
@Detail\fiwﬂonvuller,h :'; Surnpcrt‘;y:nanaréom_xc,s:rong; :ggtrl_.ng *u::e;
2 15/ @property(nonatemic,strong ring #=author;
Im] DetailViewController.m 17 @property(nonatomic,strong) NSString sdescription;
#7 MasterViewController.xib 18
+ DetailViewController.xib 19 @end
= 0}

» || Supporting Files
» | Frameworks
»] Products

Figure 14-11. Adding an explicit instance variable called title

(If you are currently running the application, click on the STOP icon in the upper left
corner before modifying the Book.h file). Next, run the application. The debugger should
stop at the breakpoint we placed in Figure 14-9. Step into the statement; this will take
the debugger to the Bookstore.m file. Next, step through the code using the step over
command until the debugger is pointing to the “newBook.author = ..” line.

Position the cursor over any place the newBook variable appears and open the Book
object. You should see what is displayed in Figure 14-12.

eo0o F MyBookstore.xcodeproj — [m! Bookstore.m -

() ® B el Elo &) =)

No lssues

m T e A |= 8 || < » | [MBookstore m|Bookstorem) [T] -init
By Queue 50— (id)init
{

Bookstore
b msld self = [super init];
&7 (self) {
¥ ¥ Thread 1 self.theBookStore = [[NSMutableArray alloc] initl;

ok, = [[Book allec] init];

Book » ok,
le = @"Objective-C for Absclute Beginners";

1 1 ~[MasterviewController initWith.

n h hor = @"Bennett, Fisher and Lees"; Thread 1: Stopped after step
2 -{appDelegate application:didFi inewBookilkscription = @105 Programming made easy.”;
; i Tselfiv Book* newBook 0x6d0d170)
ms —|uu\pp|.ca:.|(.>n _:..!Illmlualma i ._| b NSObject NSObject it
[15 UnpplicationMain 1 NSCFC = title Oxbb28 Objective-C for Absolute Beginners

- K TITTE = A TOTEWETT TO-ATWE
[7118 main author = @"Ernest Hemingway";
» ¥ Thread 2 description = @'The story of an affair between an English "

3 |) "nurse and an American soldier "
“an_the Ttalian frant "

& > o & % | | MyBookstore) ¥i Thread 1) [0 ~[Bookstore init)
Local (Q @& oo
» [self = (Bookstore *) Ox6d0cd30
£} _emd = (SEL) 0x14191d2 init
¥ [0 newBook « (Book *) 0x6d0d170

» §1 Thread 4 WebThread

SEe———

Figure 14-12. Hovering over the newBook variable reveals some information

Hovering over the newBook variable reveals its information. This variable is a local
variable declared in this method. It can also be seen in the lower left Variable window. In

301

302 CHAPTER 14: Introducing the Xcode Debugg

Figure 14-12, you can see the newBook variable expanded; it shows the same
information we can see by hovering.

The pertinent information in the newBook variable is the NSCFConstantString variable. To
simplify things, just know that NSCFConstantString (Core Foundation String) is still the
NSString class we used in building the Book class. The “Core Foundation” is simply the
base library of classes Apple provides programmers. The information to the far right
(gray colored text in the debugger) is the actual value of the class’ strings. When a
variable’s contents change, the debugger highlights the variable’s new contents in blue
italics, as you can see in the Variable window in Figure 14-13. Since these are new
values to the newBook class, the values are blue and in italics. For values that are
unchanged, the debugger leaves them colored gray and not italicized.

C 1 MyBookstore.xcodeproj — |m| Bookstore.m _'
8aoe ™ MyBook d j m| Book

s T Running MyBookstore on iPhone 5.0 Simulator _= = =

() (m) (m_ipnone..] 3 : Eoo EED

Run. Stop Scheme. Breakpoints Mo tssues Editor View Organizer
.1 Bookstore.m Bookstare.m I E

&> | 1 MyBookstore ; m| Bookstore.m) No Selection

B e A== 8
By By Queue

MyBookstore
Paused

plementation Bookstore

hesize theBookStore;
¥ ¥ Thread 1

- (id)init
I 0 -[Bookstore init] 1
i self = [super init];
T O I if (self) {
112 -[AppDelegate application:didfi... self.theBookStore = [[NSMutableArray alloc] init];
3 ~[UlApplication _callinitializatio 2 Book snewBook = [alloc] init];
i A 1§ newBook. titl jective-C f Absolute Beginners";
15 UlApplicationMain ¥ newBoo ennett Theead 1: Stopped after step
4 16 main newBoo = @"i05 Prog ming
[self. dd0bject: newBook] ;
¥ ¥ Thread 2 .
newBook = [[Book allec] init];
¥ Thread 4 WebThread Ty |
= o> > 2 % | 4 MyBookstore » B Thread 1) [1 10 -|Bookstore init)
Local ¢ Q @ m o

» [self = (Bookstore *) Ox6865660
[_emd = (SEL) Ox14191d2 init
¥ [H newBook = (Book *) Ox686¢7D0
NSObject = (N5Object) {...}
¥ title = {__NSCFConstantString) Ox6b28 Objective-C for Absolute Beginners

B =- o F n =

Figure 14-13. Value changes are highlighted in blue italics in the variable window.

Dealing with Code Errors and Warnings

While coding errors and warnings aren’t really part of the Xcode 4 debugger, fixing them
is part of the entire debugging process. Before a program can be run (with or without the
debugger), all errors must be fixed. Warnings won’t stop a program from building, but
they could cause issues during program execution. It’s best not to have warnings at all.

Let’s take a look at a couple of different types of errors. To start, let’s add an error to our
code. On line #25 of the MasterViewController.m file, change

[[BookStore alloc] init]
to

[[BookStore alloc] initialize].

CHAPTER 14: Introducing the Xcode Debugg

Save the changes and then build the project by pressing 36 +B to build the program.

There will be an error, as shown in Figure 14-14, that may show up immediately or after
the build.

AaNno |1 MyBookstore.xcodeproj — |m MasterViewContraller.m =)
Vo T an as o FET— | Build MyBookstore: Failed | Today at 10:02 AM |
\ g :)
(») (®) (. roneso.. | 3 & G O i)
Run Stop Scheme Breakpaints Petiect. 1 Editor Organizer
i | MasterViewController.m [Bookstore.m T +
L= B |::.': 4+ | [MyBookstore MyBookstore | m| MasterViewController.m [T] -initWithNibName:bundle: 40>
1, MyBookstore ¥ . . . §
== 1 target, 05 SDK 5.0 #import "DetailViewController.h
h| Bookstore.h 2i ore.k
m| Bookstore.m
h! Book.h fon MasterViewController
i BOck-m ze detailViewController = _deta
| MyBookstore ze myBookStore;
h! AppDelegate.h
m AppDelegate.m - [id)initWithNibNazme: (NS5tring *)nibNameOrNil bundle: (N58undle *)nibBundleOrNil
e {
|h| MasterViewController.h self - initWithNibMNare:nibNameOrNil bundle:nibBundleOrNil];
h! DetaiiViewController.h le = NSLocalizedString{@"

myBooPStnre = [[Bookstore allnc}hj.m.tla

m. DetailViewController.m 2 } i R o R A B T T T
MasterViewController.xib 2 return self;
DetaiiViewController.xib }
Supporting Files - {void)didReceivedemoryWarning
Frameworks
Products [super didl iveMemoryWarnin
f/ Release any cached data, i etc that aren't in use
}
#pragma mark - View lifecycle
= {void)viewDidLoad
1 "
. [super viewDidload]; v
+ | 0EE®

Figure 14-14. Viewing the error in Xcode

Next, let’s move over to the Issue Navigator window, as shown in Figure 14-15, by
clicking on the triangle with the exclamation point. This view shows all the errors and
warnings currently in the program—not just the current file, MainViewController.m, but
all files. Errors are displayed as a white exclamation point inside a red octagon. In our
case, we simply have one error. Also, if the error doesn’t fit on the screen or is hard to

read, simply hover over the error on the Issue Navigation window and the full error will
be displayed.

303

304 CHAPTER 14: Introducing the Xcode Debugg

806 |1 MyBookstore.xcodeproj — m| MasterViewController.m —
O | Build MyBookstore: Failed | Today at 10:02 AM | T T =
(») M. iPhone5.0... | [Lidyicokstrne; Eaad) | Torkiy s = [EEN O [=ENE)
e Project @1 e
Run Stop Scheme Breakpoints et Editor View Organizer
| MasterViewController.m f Bookstore.m [*
Bn QA= © | 4 » [“iMyBookstore) | |MyBookstore + m| MasterViewController.m » [-initwi bundle <0r
@EIED By Type g
MyBookstore
o 1issue] #import "8

gy MasterViewCentroller.m P
) Automatic Reference Counting Issue
{Receiver type 'Bookstore’ for instan d with selector ‘initialize’|

myBookStore;

- {id)initWithNibMName: (NS5tring *)nibNameOrNil bundle: (NSBun *1nibBundlelrNil
{

ibName:nibMameOrNil bundle:nibBundleOrNill;
itle = NSLocalizedString{@"Master", @"Master

.myBookStore = [|[[Bookstore alloc] initialize]

}) Receiver type 'Backstore’ for instance message does not declare 2 method with seleetar initialize

= {void)didReceiveMemoryWarning

- {veid)viewDidLoad

[super viewDidLoad]; 1

[CROR-

Figure 14-15. Viewing the Issue Navigation window

Generally, the error points to the real problem. In the case above, the BookStore object
doesn’t know about a method called ‘initialize’.

TIP: Encountering this error when building a project generally means the method name is
misspelled or perhaps the proper header file hasn’t been included to let the compiler know about
this method. If you know the method exists, then check to see if the header is included.
Otherwise, it might just be a typo.

OK, let’s fix the error by changing the word ‘initialize’ to ‘init’.

Warnings

Warnings indicate potential problems with the program. As mentioned above, warnings
won’t stop a program from building, but may cause issues during program execution.
It’s outside the scope of this book to cover those warnings that may or may not cause
problems during program execution; however, it’s good practice to eliminate all
warnings from a program.

Comment out line with @synthesize MasterViewController (line 14 in the figure below;
your line may be different) of the MasterViewContoller.m file by putting two slashes in
front of the ‘@sythesize myBookStore’, as is shown in Figure 14-16. Build the project by
pressing ¢ +B to build the program.

CHAPTER 14: Introducing the Xcode Debugg

ano [MyBookstore.xcodeproj — m MasterViewController.m =
i [v 1 Build Succeeded | Today at 10:37 AM (== | YT =

roject 152

»
/f MasterViewController.m
/7 MyBookstore
’n

Cdi® By Type |
MyBookstore
i 5’5"2 LS

/f Created by Strider on B/28/11.
Copyright (c) 2011 www.committed-code.com. ALl rights reserved.

v [MasterViewController.h
* L. Semantic Issue
Property "myBookStore'r...
» . Semantic Issue
Property

" myBOCKSTOre' I.., #import "MasterViewController.b"

Bowmuecnrwmea
~
-

11| #import "DetailViewController.b"
12| #impert "Bookstore.h"
15 @implementation MasterViewController

17| @synthesize detailViewController = _detailViewController;
18| f/@synthesize myBookStere;

| = (id)initWithNibMame:{NSString #)nib 1l bundle:d Le #)nibBundlefrNil

af+{

n self = [super initWithMibName:nibNameOrNil bundle:nibBundleOrNill;

-] | if (self) {

M self.title = NSLocalizedString(@"Master", @"Master");

5 self.myBookStore = [[Beokstore alloc] init];

el i

n return self;

sl }

3
@ = AvnidldidReceiveMemnryWarning r
np £ b |

[CNORE) | 2

I

Figure 14-16. Viewing the warnings in the Issue Navigator

Unfortunately, the warning doesn’t show in the MasterViewController.m file. Clicking on
the first warning in the Issue Navigator will bring us to the first problem, as shown in
Figure 14-17.

800 _EI MyBookstore.xcodeproj — (i Master\ﬁuﬁontm]leph- (=)

Build Succeeded | Today at 10:37 AM

Project 152

o[

5 2 MasterViewController.h
MyBookstore . 3 MyBookstore
issues y

hi // Created by Strider on B/28/11.
' mw"' /¢ Copyright (c) 2011 www.committed-code.com. All rights reserved.
1

Property ‘myBookStore' r...

= . Semantic Issue P : .
o " o #import <UIKit/UIKit.h=>
Property "'myBookStore' r... 7

11| @class DetailViewController;
12| @class Bookstore;

1| @interface MasterViewController : UITableViewController

16| @property (strong, nonatomic) DetailViewController #detailViewController;

|& 17| @property (strong, nonatomic) Bookstore smyBookStore;
18 . Praperty 'myBookStore’ requires method "myBookStore’ to be defined - use @synthesize, Sdynamic or provide a method implementation
19| @end

o0® ' 7

Figure 14-17. Viewing our first warning

305

306

CHAPTER 14: Introducing the Xcode Debugg

In the main window, we can see the warning. In fact, this warning gives us some clue as
to the problem with the code. The warning states:

“Property ‘myBookStore’ requires method ‘myBookStore’ to be defined — use
@synthesize, @dynamic or provide a method implementation.”

Our code has a @property, but because we commented it out, it doesn’t have a
@synthesize. The compiler considers this a warning because the method could be
provided dynamically during runtime. In our case, however, we aren’t doing this; we just
didn’t include the @synthesize keyword in the implementation file.

To fix this problem, simply navigate back to the MasterViewController.m file and remove
the comments we just added on line 14. To navigate back to the file list, click on the
folder icon, as shown Figure 14-18 (or simply click on the back button located at the top
of the edit window).

8nm] MyBookstore.xcodeproj — |m| MasterViewController.m —
@ -, M;.:iPhone:5.0ic n | Build Succeedef:l Today at 10:59 AM | . DI Ei | |§|
Run Stop Scheme Breakpoints sERLL Editcr View Organizer
‘L - MasterViewController.m | Bookstore.m I =
! '-\).1 D A= 8 | W oa | MyBookstore MyBookstore) [m| MasterViewController.m) [} myBookStare
+. MyBookstore

= 1 target, 05 SDK 5.0

h| Bookstore.h

m| Bookstore.m

h| Book.h

m| Book.m
MyBookstare
h! AppDelegate.h
m AppDelegate.m
h! MasterViewController.h
\m|

. All rights reserved,

h DetailViewContreller.h

m| DetailViewContreller.m
MasterViewController.xib
DetailViewContreller.xib

ion MasterViewController

detailViewController =
=yBookStore;

Supporting Files y (id) initWithNibNa) *#)nibNameOrNil bundle: (NSE InibBundleCfrNil
Frameworks elf = [supe thNibName: nibNameOrNil bundle:nibBundledrNil]l;
Products f (self) {
self le = NSLocalizedSt a"H a H
e = [[E tl;
}
¥
- {void}didReceiveMemoryWarning x
v
+ |06 6

Figure 14-18. Navigating back to the file list and fixing our warning problem

Summary

In this chapter, we covered the high-level features of the free Apple Xcode debugger.
Regardless of price, Xcode is an excellent debugger. Specifically, in this chapter, you
learned the following:

The origins of the term “bug” and what a debugger is;
The high-level features of the Xcode debugger:
Breakpoints

Stepping through a program;

CHAPTER 14: Introducing the Xcode Debugg

How to use the debugging controls:
Tasks (stop sign),
Restart and continue (pause),
Step over,
Step into,
Step out;

Working with the various debugger views:

Threads (call stack),
Variables,
Text editor, and
Output;
Looking at program variables; and

Dealing with errors and warnings.

307

Index

Special Characters
and Numerics

3D user interface, 15

A

actions, connecting with objects,
232-233
addresses, memory, 272-275
addToResults() method, 209
Airplane class, 18
algorithm, 1-2, 12
Alice apps, To the Moon Alice, 21-26
Alice interface, 9-11, 13-20
Alice app, To the Moon Alice, 21-26
classes, objects, and instances in,
18
Details Area, 20
Editor Area, 19
Events Area, 20
example app in, 78-79
Navigation menu, 14
Object Tree, 18-19
World window, 15-17
allocating memory
automatic variables and pointers,
276-277
failure of, 287-288
AND operator, 63-65, 67, 85
Animal class, 167-168
Animal object, 166-167
Animal type, 165
AppDelegate class, 297
application delegate, 264

applications
Interface Builder, 220-235
connecting actions and objects,
232-233
Dock, 225
implementation file, 233-235
Inspector pane and selector bar,
228
Library pane, 226227
outlets, 230-232
view, 229-230
To the Moon Alice, 21-26
overview, 216-217
Xcode, 202-206
ARC (Automatic Reference Counting)
feature
managing memory with, 280-282
managing memory without, 282-287
implied retain messages and
autorelease, 285-286
retain/release model, 283-284
sending dealloc message,
286-287
ASCII characters, 43
ASClII table, 43
Astronaut class, 23
Author class, 102
authorLabel variable, 185-186,
188-189, 196
Automatic Reference Counting feature.
See ARC
automatic variables, and pointers,
276-277
autoreleases, and implied retain
messages, 285-286

309

310

Index

bankLeft() method, 18
bankRight() method, 18
base-10 numbering, 269-270
base-16 numbering, 270-272
base-2 numbering, 269-270
bases, bits, bytes and, 268-269
benefits, of OOP, 100-101
debugging is easier, 101
eliminating redundant code, 100
replacement is easier, 101
widely used, 100
binary number system, 42
binary numbering, converting decimal
numbering to, 269-270
bits, 39-40
bytes, bases and, 268-269
and Moore's law, 40
Book class, 91-92, 96, 99, 174,
176-177, 198, 251, 302
Book object, 171, 175, 177-178, 181,
183, 190, 194, 198, 301
bookAtIndex method, 189-191,
193-195
Book.h file, 176, 301
Bookstore class, 90, 92, 191-192, 194,
282
Bookstore init method, 300
Bookstore object, 90, 171, 189, 191,
193-194, 198, 299-300, 304
Bookstore.h class, 189
Bookstore.h file, 175, 189
Bookstore.m file, 300-301
Boolean data type, 45, 64, 68
Boolean expressions, comparisons
with, 206-212
combining, 211-212
of dates, 209-211
of strings, 207-209
boolean logic, 63-67, 199-200
comparison operators for, 67
truth tables, 65-67
Boolean variables, 207
Breakpoint Navigator method, 294-296
breakpoints, 293-294
bugs, 5

Button object, 150
bytes, 41-42, 268-269

C

call stack, thread window and, 300
CamelCase, 178
Camera Adjustment tool, 23
caselnsensitiveCompare method, 208
cellForRowAtIndexPath, 193
class methods, 132-133, 158
class types, determining in collections,
167-168
classes, 90-98, 129-161
in Alice Interface, 18
declaring interfaces and instance
variables, 131
defined, 89
implementation file, 134-135
implementing, 94-98
methods, 131-134
class, 132-133, 158
coding, 136-138
instance, 134
methods for, 92-93
properties for, 90-92
RadioStations project, 138-140
hooking up code, 152-156
implementation file, 144-146
objects, 141-144
running program, 157-158
Ul, 147-151
Xcode 4.2 toolset, accessing
documentation, 159
CLLocationManagerDelegate, 264
clubMember variable, 207, 211-212
Cocoa.h file, 136
code errors, and warnings, 302-306
code refactoring, 83
collections, 163-168
determining class type in, 167-168
NSArray class, 165-166
NSDictionary class, 166-167
NSSet class, 164-165
Command Line Tool template, 30
comparing data, 199-214

Index

Boolean expressions, 206-212
combining comparisons,
211-212
comparing dates, 209-211
comparing strings, 207-209
Boolean logic, 199-200
relational operators, 200-206
comparing numbers, 200-202
example Xcode application,
202-206
switch statements, 212-213
comparison operators, for boolean
logic, 67
ComparisonsAppDelegate.m file,
204-205
compound call, 133
computer program, 1-2
condition-controlled loops, 77
conventions, 182-183
Core Data framework, 241-243
Couch object, 88
count-controlled loops, 76
counter variable, 76-77
Create a new Xcode Project option, 29
Create button, 140, 143
Custom TextString, 52
Customer class, 90-92, 96-97, 99
Customer.h file, 97

Dalrymple, Mark, 265
data, 39-62, 199-214
Boolean expressions, 206-212
combining comparisons,
211-212
comparing dates, 209-211
comparing strings, 207-209
Boolean logic, 199-200
numbering systems for, 39-45
bits, 39-40
bytes, 41-42
hexadecimal, 43
unicode, 44
relational operators, 200-206
comparing numbers, 200-202

example Xcode application,
202-206
switch statements, 212-213
types of
and Obijective-C, 54-59
overview, 44-45
using with Alice, 45-54
data model, 244-259
classes, for MyBookstore program,
189-191
interface for, 252-259
managed object context, 252
databases
Core Data framework for, 241-243
overview, 240-241
dates, comparing, 209-211
dateWithString function, 210
dealloc messages, sending, 286-287
deallocating, memory, 277-280
Debug configuration, 292
debugger controls, 297
debugging, 5-6, 10, 60-62
benefits of OOP, 101
with Xcode debugger, 292-302
Breakpoint Navigator method,
294-296
breakpoints, 293-294
controls for, 297-300
thread window and call stack,
300
variables for, 300-302
decimal numbering, converting to
binary numbering, 269-270
delegate methods, 264
delegates, 264
delete key, 295
dereference operator, 275
descriptions, for MyBookstore program,
186-189
descriptionTextView, 188-189, 196
design requirements, 2-3, 5-7, 9, 12
Details Area, 20
DetailViewController class, 185, 196
DetailViewController controller, for
MyBookstore program, 196

311

312

Index

DetailViewController.h file, 184-185,
188

DetailViewController.m file, 184, 189,
196, 296

DetailViewController.xib file, 183, 198

development cycle, 5-6

didFailWithError, 264-265

didSelectRowAtIindexPath, 195

didUpdateTolLocation, 264

Dock, for Interface Builder application,
225

Document window, for Interface Builder
application, 225

Dog class, 89

doSomething() method, 201

dynamic binding, 132

Edibleltem, 262
Edit Code button, 24
Edit Scene button, 16
Editableltem, 263
Editor Area, 19, 32
Electronic Numerical Integrator And
Computer (ENIAC), 39
else-if statements, nested, 83
ENIAC (Electronic Numerical Integrator
And Computer), 39
enteredPassword, 208-209
errors, codes and warnings, 302-306
event handlers, 20
Events Area, 20
expressions, Boolean, 206-212
combining, 211-212
of dates, 209-211
of strings, 207-209
extra characters, removing, 83

F

factory methods, 133
FALSE operator, 64-67, 69-70, 77, 82
fast enumerator, 164
files
implementation, 134-135

for Interface Builder application,
233-235
for RadioStations project,
144-146
preference, 238-240
reading from, 239-240
writing from, 238-239
firstNumber variable, 46-49, 58
flips-the-bit, 66
flowcharting, 73
for loop, 76
forum.xcelme.com, 79, 83
forward declaration, 146
Foundation class, 129, 131
Foundation.h file, 107
functions, 20

G

getter method, 177-183
Grass template, 45

Hello World app, 21

HelloWorld class, 107, 109

HelloWorld object, 108-109

HelloWorld.h file, 109

helpers, 264

hexadecimal, 43, 270-272

HIGs (Human Interface Guidelines),
219-220

history, of Objective-C, 103-104

Human Interface Guidelines (HIGs),
219-220

|, J
IBAction method, 154, 156
IDE (Integrated Development
Environment), 7
If statement, 83, 207
If-Then-Else code, 68
If/Then statement, 206

Index

implementation files, 134-135
for Interface Builder application,
233-235
for RadioStations project, 144-146
implied retain messages, and
autorelease, 285-286
infinite loops, 77
information, storing, 237-260
considerations for, 237
data model for, 244-259
interface for, 252-259
managed object context, 252
in databases
Core Data framework for,
241-243
overview, 240-241
in preference file, 238-240
reading from, 239-240
writing to, 238-239
inheritance
multiple, 261-262
in OOP, 99-100
init method, 298-300
initWithName:atFrequency: method,
132
Inspector pane, and Inspector selector
bar, 228
instance methods, 134, 136
instance variables, 176-179
accessing, 177
getter and setter methods, 178-179
interfaces and, declaring, 131
for MyBookstore program, 185-186
instances, in Alice Interface, 18
instantiation, 22
Integrated Development Environment
(IDE), 7
interface
for data model, 252-259
of OOP, 101
Interface Builder application
example iPhone app, 220-235
connecting actions and objects,
232-233
Dock, 225
implementation file, 233-235

Inspector pane and selector bar,
228
Library pane, 226-227
outlets, 230-232
view, 229-230
overview, 216-217
interface declaration, 134
Interface file, 116
interfaces, and instance variables,
declaring, 131
Inventoryltem protocol, 263
iPad Simulator, 21
iPhone, example app for, 220-235
isEqualToString, 208
isKindOfClass method, 167-168

K

Kaplan, Dean, 3
Knaster, Scott, 265

L

Label object, 120-121, 150-151,
154-155, 185-186, 231, 234
LaMarche, Jeff, 265
land() method, 18
language symbols, of Objective-C,
104-105
Library object, 106
Library pane, for Interface Builder
application, 226-227
locationManager method, 264-265
looping, 76, 78
loops, 76-77
condition-controlled, 77
count-controlled, 76
infinite loops, 77
lowerLandingGear() method, 18
Lunar Lander, 22

main.c file, 204
main.m file, 81
MainWindow.xib file, 118

313

314

Index

managed object context, data model,
252
Mark, Dave, 265
MasterViewController controller, for
MyBookstore program,
191-196
MasterViewController.h file, 191
MasterViewController.m, 296, 298, 300,
302, 305-306
Material class, 99
maxFMFrequency, 145, 154-155
memory, 267-290
addresses, 272-275
allocating, 276-277
automatic variables and pointers,
276-277
failure of, 287-288
ARC feature
managing memory with, 280-282
managing memory without,
282-287
bits, bytes, and bases, 268-269
deallocating, 277-280
numbering
base-16, 270-272
converting base-10 to base-2,
269-270
messages
dealloc, sending, 286-287
implied retain, and autorelease,
285-286
methods, 8, 131-134
class, 92-93, 132-133, 158
coding, 136-138
instance, 134
minFMFrequency, 145, 154-155
Mobile Banking app, 72
Model-View-Controller (MVC) pattern,
217-218
monkey example, 166-167
MoonProject.a3p Template, 21
Moore, Gordon E., 40
Moore's law, 40
multiple inheritance, 261-262
mutable classes, 168-171
NSMutableArray, 169-170

NSMutableDictionary, 170-171
NSMutableSet, 168-169
MVC (Model-View-Controller) pattern,
217-218
MyBookstore program, 171-176,
183-196
data model class, 189-191
description, 186-189
DetailViewController controller, 196
instance variables, 185-186
MasterViewController controller,
191-196
view, 183-185
MyClass interface, 264
MyCorelLocation, 264

NAND truth table, 66

Navigation menu, 14

Navigator area, 32

nested statements, if and else-if
statements, 83

New Xcode Project, 202

newBook variable, 301-302

newTitle, 179, 182

non-mutable classes, 168

nonatomic keyword, 181

NOR truth table, 67

NOT truth table, 66

NSApplication class, 264

NSArray class collection, 165-166

NSArray object, 166

NSCalendarDate class, 210

NSCFConstantString variable, 302

NSComparisonResult, 210-211

NSDate object, 210-211

NSDictionary class, 166-168

NSDictionary object, 133, 167

NSLog command, 166

NSLog function, 34, 105, 205-206

NSMutableArray class, 169-170, 190,
290

NSMutableArray method, 191

NSMutableArray object, 169, 191

Index

NSMutableDictionary class, 170-171,
284, 290
NSMutableSet class, 168-169
NSObiject class, 109, 130, 132, 135,
137, 142
NSObiject object, 107
NSOrderedAscending, 210-211
NSOrderedDescending, 210-211
NSOrderedSame, 210-211
NSSet class collection, 164-165
NSString class, 108, 159, 179, 205,
207-209, 213, 276, 302
NSString object, 108, 133, 166,
177-179, 208
NSUserDefaults class, 238
NSUserDefaults object, 238-239
numbering
base-16, 270-272
converting base-10 to base-2,
269-270
systems, 39-45
bits, 39-40
bytes, 41-42
hexadecimal, 43
unicode, 44
numberOfRowsInSection, 193
numberOfSectionsinTableView, 193
numbers, comparing, 200-202

0

object oriented programming. See OOP
Object Tree, 18-19
Objective-C, 79-84
and data types, 54-59
history of, 103-104
language symbols in, 104-105
nested if and else-if statements, 83
refactoring, 83
removing extra characters, 83
Smalltalk concepts in, 105-110
Objective-C class, 95, 108-109, 127,
129-130, 160, 165-166, 174
Objective-C command, 105
Objective-C method, 104-105

Objective-C object, 105-106, 130, 137,
166, 168, 177, 278, 283, 287
Objective-C programs, Xcode 4.2
toolset, 27-35
Objective-C type, 59, 276
objects
in Alice Interface, 18
connecting actions with, 232-233
defined, 88-89
for RadioStations project, 141-144
Objects Adjustment tool, 23
OmniGraffle, 3-4, 70-71
OOP (object oriented programming),
6-9, 87-102
benefits of, 100-101
debugging is easier, 101
eliminating redundant code, 100
replacement is easier, 101
widely used, 100
classes, 90-98
defined, 89
implementing, 94-98
methods for, 92-93
properties for, 90-92
inheritance in, 99-100
interface of, 101
objects, defined, 88-89
and polymorphism, 101-102
operators, comparison, 67
outlets, for Interface Builder application,
230-232
output window, 297

P

parameters, 25
planning program flow, 63-86
boolean logic, 63-67
comparison operators for, 67
truth tables, 65-67
design requirements, 70-72
example of, 74
flowcharting, 73
in Objective-C, 79-84
nested if and else-if statements,
83

315

316

Index

refactoring, 83
removing extra characters, 83
pseudo-code, 68-69
using loops, 76-77
condition-controlled, 77
count-controlled, 76
infinite loops, 77
pointers, automatic variables and,
276-277
polymorphism, 101-102
preference file, 238-240
reading from, 239-240
writing to, 238-239
procedures (methods), 20
Procedures tab, 24
program flow, planning, 63-86
boolean logic, 63-67
comparison operators for, 67
truth tables, 65-67
design requirements, 70-72
example of, 74
flowcharting, 73
in Objective-C, 79-84
nested if and else-if statements,
83
refactoring, 83
removing extra characters, 83
pseudo-code, 68-69
using loops, 76-77
condition-controlled, 77
count-controlled, 76
infinite loops, 77
programming
Alice interface, 9-20
Alice app, 21-26
classes, objects, and instances
in, 18
Details Area, 20
Editor Area, 19
Events Area, 20
Navigation menu, 14
Object Tree, 18-19
World window, 15-17
collections, 163-168
determining class type in,
167-168

NSArray class, 165-166
NSDictionary class, 166-167
NSSet class, 164-165
development cycle, 5-6
instance variables, 176-179
accessing, 177
getter and setter methods,
178-179
mutable classes, 168-171
NSMutableArray, 169-170
NSMutableDictionary, 170-171
NSMutableSet, 168-169
MyBookstore program, 171-176,
183-196
data model class, 189-191
description, 186-189
DetailViewController controller,
196
instance variables, 185-186
MasterViewController controller,
191-196
view, 183-185
Objective-C program, Xcode 4.2
toolset, 27-35
OOP, 6-9
process of, 1-3
properties, 180-183
projects, in Xcode, 111-127
properties, 9, 20, 180-183
for classes, 90-92
conventions, 182-183
protocols, 261-265
delegates, 264
multiple inheritance, 261-262
syntax for, 263
pseudo-code, 68-69

Q

QA (Quality Assurance), 5

Radio class, 138
RadioStation class, 130, 132, 134, 136,
138, 142, 145, 147, 155, 160

Index

RadioStation interface, 144
RadioStation object, 130-134, 141,
146-147, 160
RadioStation.h file, 144
RadioStation.h interface, 136
RadioStation.m file, 144
RadioStations project, 138-140
hooking up code, 152-156
implementation file, 144-146
objects, 141-144
running program, 157-158
Ul, 147-151
RadioStationsAppDelegate.h interface,
160
raiseLandingGear() method, 18
rangeOfString function, 209
reading, from preference file, 239-240
receivers, 131
redundant code, eliminating, 100
refactoring, 83
relational operators, 200-206
comparing numbers, 200-202
example Xcode application, 202-206
Release configuration, 292
releases
autoreleasing, and implied retain
messages, 285-286
retain/release model, 283-284
removeAllObjects method, 168, 170
removelastObject method, 170
removeObjectAtindex method, 170
retain messages, implied, 285-286
retain/release model, 283-284
Round Rect Button object, 149
Run button, 33
running app, 84

S

Sale class, 91

Saleltem, 263

Sales class, 92, 100
saleStarted variable, 210-211
SArray class, 165

scanf function, 82-83

Scene Editor, 16-17

SDictionary class, 166
secondNumber variable, 46-49, 58
Seed method, 233
selectors, 131
sender method, 161
setinstanceVariableName, 178
setter method, 177-183
setTitle method, 178-179, 182
Smalltalk concepts, in Objective-C,
105-110
some_code() method, 206-207
SQLite database, 237, 240-241, 260
stack trace, 297
state of an object, 9
step controls, for debugging, 298-300
Step Into button, 298-300
storing information, 237-260
considerations for, 237
data model for, 244-259
interface for, 252-259
managed object context, 252
in databases
Core Data framework for,
241-243
overview, 240-241
in preference file, 238-240
reading from, 239-240
writing to, 238-239
string parameter, 52
strings, 44, 207-209
stringWithContentsOfURL, 178
subclassing, 264
switch statements, 212-213
syntax, 34, 263

T

tableView:cellForRowAtIindexPath, 193

tableView:didSelectRowAtindexPath,
194

tableView:numberOfRowsInSection,
193

takeOff() method, 18

Template tab, 21

testing, 5-6

testString variable, 169

317

318

Index

theBookStore array, 189-191
thread window, and call stack, 300
title variable, 167, 177-178, 180-181,
188, 190, 192-193, 196
titleLabel variable, 185-186, 188-189,
196
To the Moon Alice app, 21-26
totalNumber variable, 49, 53
totalSpent=calculateTotalSpent()
method, 201, 211
totalSum variable, 47-48, 50, 53
Touch Up Inside event, 156-157
triggers, 20
TRUE operator, 64-70, 77-78, 82
truth tables, 65-67
types, of data, 44-45
and Obijective-C, 54-59
using with Alice, 45-54

Ul (user interface), 3, 5-6, 10-11, 118,
215-235
HIGs, 219-220
Interface Builder application
example iPhone app, 220-235
overview, 216-217
MVC pattern, 217-218
for RadioStations project, 147-151
UlLabel object, 184-185, 188-189
UlTableView object, 8-9
UlTextView, 188-189
Ultimate iPhone Stencil plug-in, 3
unicode, 44
unique objects, 169
unordered, 164
Use Automatic Reference Counting
option, 80
user interface. See Ul
userGuess, 82-84
UTF8string, 208

'}

variables, 44, 276-277, 297

View control, 187, 191
View object, 186-187, 218
ViewController object, 122, 125-126,
128
ViewController.h file, 116, 145, 155
ViewController.h interface, 117
ViewController.m file, 117, 146, 154
ViewController.xib file, 118, 147
views
for Interface Builder application,
229-230
for MyBookstore program, 183-185

W

warnings, code errors and, 302-306
while loop, 77

Window-Based Application, 202
Window object, 252

Woodforest Mobile Banking app, 72
World window, 15-17

writing, to preference file, 238-239

X,VY,Z
Xcode
creating projects in, 111-127
example for comparing numbers,
202-206
Xcode 4.2 toolset, 27-35, 159
Xcode debugger
code errors and warnings, 302-306
debugging with, 292-302
Breakpoint Navigator method,
294-296
breakpoints, 293-294
controls for, 297-300
thread window and call stack,
300
variables for, 300-302
overview, 291
XIB file, 223-225, 230-231, 235
XML file, 216-217
XOR operator, 64-66, 85

	Title Page

	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	For the Newbie
	For the More Experienced
	Why Alice: An Innovative 3D Programming Environment
	Learning Objective-C Without Alice
	How This Book Is Organized
	The Formula for Success
	The Development Technology Stack
	Required Software, Materials, and Equipment
	Operating System and IDE
	Software Development Kits
	Dual Monitors
	Free Live Webinars, Q&A, and YouTube Videos
	Free Book Forum

	Chapter 1 Becoming a Great iOS or Mac Programmer
	Thinking like a Developer
	Completing the Development Cycle
	Introducing Object Oriented Programming
	Working with the Alice Interface
	Summary
	Exercises

	Chapter 2 Programming Basics
	Taking a Tour with Alice
	Navigation Menu
	World Window
	Classes, Objects, and Instances in Alice
	Object Tree
	Editor Area
	Details Area
	Events Area

	Creating an Alice App—To the Moon Alice
	Your First Objective-C Program
	Launching and Using Xcode 4.2

	Summary
	Exercises

	Chapter 3 It’s All About the Data
	Numbering Systems Used in Programming
	Bits
	Moore’s Law

	Bytes
	Hexadecimal
	Unicode

	Data Types
	Using Variable and Data Types with Alice
	Data Types and Objective-C
	Identifying Problems
	Summary
	Exercises

	Chapter 4 Making Decisions About…and Planning Program Flow
	Boolean Logic
	Truth Tables
	Comparison Operators

	Designing Apps
	Pseudo-Code
	Design Requirements
	Flowcharting
	Designing and Flowcharting an Example App
	The App’s Design
	Using Loops to Repeat Program Statements
	Count-Controlled Loops
	Condition-Controlled Loops
	Infinite Loops

	Coding the Example App in Alice
	Coding the Example App in Objective-C
	Nested If Statements and Else-If Statements
	Removing Extra Characters
	Improving the Code Through Refactoring
	Running the App

	Moving Forward Without Alice
	Summary
	Exercises

	Chapter 5 Object Oriented Programming with Objective-C
	The Object
	What Is a Class?
	Planning Classes
	Planning Properties
	Planning Methods
	Implementing the Classes

	Inheritance
	Why Use OOP?
	It is everywhere
	Eliminate Redundant Code
	Ease of Debugging
	Ease of Replacement

	Advanced Topics
	Interface
	Polymorphism

	Summary
	Exercises

	Chapter 6 Learning Objective-C and Xcode
	A Brief History of Objective-C
	Understanding the Language Symbols
	Putting the “Objective” into Objective-C
	Writing Another Program in Xcode
	Creating the Project

	Summary
	Exercises

	Chapter 7 Objective-C Classes, Objects, and Methods
	Creating an Objective-C Class
	Declaring Interfaces and Instance Variables
	Sending Messages (Methods)
	Using Class Methods
	Using Instance Methods

	Working with the Implementation File
	Coding Your Methods

	Using Your New Class
	Creating Your Project
	Adding Objects
	Writing the Implementation File
	Creating the User Interface
	Hooking Up the Code
	Running the Program
	Taking Class Methods to the Next Level

	Accessing the Xcode Documentation
	Summary
	Exercises

	Chapter 8 Programming Basics in Objective-C
	Collections
	Using NSSet
	Using NSArray
	NSDictionary
	Determining Class Type in a Collection

	Using the Mutable Classes
	NSMutableSet
	NSMutableArray
	NSMutableDictionary

	Creating the BookStore Application
	Introducing Instance Variables
	Accessing Instance Variables
	Using Getter and Setter Methods

	Introducing Properties
	Using Properties
	Understanding the Importance of Conventions

	Finishing the MyBookstore Program
	Creating the View
	Adding Instance Variables
	Adding a Description
	Creating a Simple Data Model Class
	Modifying the MasterViewController
	Modifying the DetailViewController

	Summary
	Exercises

	Chapter 9 Comparing Data
	Revisiting Boolean Logic
	Using Relational Operators
	Comparing Numbers
	Creating an Example Xcode App

	Using Boolean Expressions
	Comparing Strings
	Comparing Dates
	Combining Comparisons

	Using the Switch Statement
	Summary
	Exercises

	Chapter 10 Creating User Interfaces
	Understanding Interface Builder
	The Model-View-Controller
	Human Interface Guidelines (HIGs)
	Creating an Example iPhone App with Interface Builder
	Using Interface Builder
	The Dock
	The Library
	Inspector Pane and Selector Bar
	Creating the View
	Using Outlets
	Connecting Actions and Objects
	Implementation File

	Summary
	Exercises

	Chapter 11 Storing Information
	Storage Considerations
	Preferences
	Writing Preferences
	Reading Preferences

	Databases
	Storing Information in a Database
	Getting Started with Core Data
	The Model
	Managed Object Context
	Setting Up the Interface

	Summary
	Exercises

	Chapter 12 Protocols and Delegates
	Multiple Inheritance
	Understanding Protocols
	Protocol Syntax

	Understanding Delegates
	Next Steps
	Summary

	Chapter 13 Memory, Addresses, and Pointers
	Understanding Memory
	Bits, Bytes, and Bases
	Converting Base-10 (Decimal) to Base-2 (Binary)
	Using Base-16 (Hexadecimal) Numbering

	Understanding Memory Address Basics
	Using the Dereference Operator

	Allocating Memory
	Working with Automatic Variables and Pointers

	Deallocating Memory
	Using Special Pointers

	Managing Memory in Objective-C with ARC
	Managing Memory in Objective-C Without ARC
	Using the Retain/Release Model
	Working with Implied Retain Messages and Autorelease
	Sending the dealloc Message

	If Things Go Wrong
	A Note About ARC
	Summary
	Exercises

	Chapter 14 Introducing the Xcode Debugger
	Getting Started with Debugging
	Setting Breakpoints
	Using the Breakpoint Navigator
	Debugging Basics
	Working with the Debugger Controls
	Using the Step Controls
	Looking at the Thread Window and Call Stack
	Debugging Variables

	Dealing with Code Errors and Warnings
	Warnings
	Summary

	Index

