

Migrating to
Windows Phone

Jesse Liberty
Jeff Blankenburg

Migrating to Windows Phone

Copyright © 2012 by Jesse Liberty and Jeff Blankenburg

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3816-4

ISBN-13 (electronic): 978-1-4302-3817-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Ewan Buckingham
Technical Reviewer: Damien Foggon and Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Jessica Belanger
Copy Editor: Kimberly Burton
Compositor: Apress Production (Christine Ricketts)
Indexer: SPI Global
Artist: SPI Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, NY, 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
http://www.apress.com/source-code/.

This book is dedicated to my daughters, Robin and Rachel.

 —Jesse Liberty

This book is dedicated to my wife, Sara, and my children Riley and Miles.

Without your support and understanding, nothing would be possible.

—Jeff Blankenburg

iv

Contents at a Glance

Contents at a Glance .. iv

Contents ... v

About the Authors ... xii

About the Technical Reviewer ... xiii

Acknowledgments ... xiv

Foreword .. xv

Introduction .. xvii

Chapter 1: Get to Work: Your First Windows Phone Program .. 1

Chapter 2: Get Control: Exploring Windows Phone Controls .. 21

Chapter 3: Get the Data ... 53

Chapter 4: Get a Life ... 75

Chapter 5: Get Moving: Adding Animation to Your Apps .. 105

Chapter 6: Get Moving: Adding Animation to Your Apps .. 105

Chapter 7: Get a Job: Interacting with User Data ... 125

Chapter 8: Get Pushy: Using Push Notifications to Keep Your Users Up-to-Date 169

Chapter 9: Get Oriented: Interacting with the Phone, Camera, GPS, and More 191

Chapter 10: Get Money: Profiting from Your Applications .. 217

Index ... 241

v

Contents

Contents at a Glance .. iv

Contents ... v

About the Authors ... xii

About the Technical Reviewer ... xiii

Acknowledgments ... xiv

Foreword .. xv

Introduction .. xvii

Chapter 1: Get to Work: Your First Windows Phone Program .. 1

Creating a New Application with Visual Studio .. 2

Building the User Interface with Expression Blend .. 4

Setting the Application Title ... 6

Adding the Calculator Buttons ... 7

Programming the Calculator .. 13

Examining the Button Xaml ... 14

Planning Button Actions... 15

Connecting Button Results to the Display .. 16

Handling the Number Buttons ... 17

Handling Other Buttons .. 18

Summary .. 19

Chapter 2: Get Control: Exploring Windows Phone Controls .. 21

Introducing Layout Controls ... 21

■ CONTENTS

vi

The Grid Control ... 22

The Canvas Control .. 24

The StackPanel Control.. 25

Recap ... 25

Building a Real User Interface .. 26

Getting Started ... 26

Adding Missing Controls to Your Toolbox .. 27

Using the Panorama Control .. 30

Adjusting Background and Accent Colors .. 33

Adding Images to a Page ... 35

Navigating Between Pages .. 38

Dealing with the Back Stack .. 42

Using TextBoxes .. 43

Using the ApplicationBar ... 45

Summary .. 52

Chapter 3: Get the Data ... 53

Binding Data to Controls ... 53

Creating the Data ... 54

Creating Controls ... 55

Adding DataContext ... 56

ListBoxes and DataTemplates ... 56

Binding Data with the DataBound Template ... 57

Storing Data in Isolated Storage ... 61

Storing Data in a Local Database ... 63

Building the UI ... 64

Accessing Local Storage ... 65

■ CONTENTS

vii

Adding Relationships ... 69

Querying the Local Database ... 71

Database Performance Optimization ... 72

Summary .. 73

Chapter 4: Get a Life ... 75

Understanding the Application Lifecycle .. 75

Fast Application Switching ... 77

Managing State... 78

Page State ... 78

Debugging with Tombstoning .. 82

Using Background Agents .. 82

Summary .. 90

Chapter 5: Get Moving: Adding Animation to Your Apps .. 105

Understanding the Lexicon of Animation .. 105

Creating a Simple Animation .. 106

Using Expression Blend to Create a Storyboard .. 107

Calling Our Storyboard from Code ... 114

Reusing a Storyboard .. 116

Creating Custom (and Distracting) Page Transitions ... 118

Creating the Page Turn Animation ... 118

Adding the Animation to Your Page Events ... 120

Summary .. 123

Chapter 6: Get Moving: Adding Animation to Your Apps .. 105

Understanding the Lexicon of Animation .. 105

Creating a Simple Animation .. 106

Using Expression Blend to Create a Storyboard .. 107

■ CONTENTS

viii

Calling Our Storyboard from Code ... 114

Reusing a Storyboard .. 116

Creating Custom (and Distracting) Page Transitions ... 118

Creating the Page Turn Animation ... 118

Adding the Animation to Your Page Events ... 120

Summary .. 123

Chapter 7: Get a Job: Interacting with User Data ... 125

Distinguishing Launchers and Choosers .. 125

Setting up a Launcher .. 127

Setting up a Chooser ... 128

Bing Tasks .. 129

BingMapsDirectionsTask ... 129

BingMapsTask ... 130

SearchTask .. 132

Camera Tasks ... 133

CameraCaptureTask .. 133

PhotoChooserTask ... 136

Communication Tasks .. 138

EmailComposeTask ... 139

PhoneCallTask ... 141

ShareLinkTask ... 142

ShareStatusTask .. 144

SmsComposeTask ... 145

Contacts Tasks ... 147

AddressChooserTask ... 147

EmailAddressChooserTask .. 149

■ CONTENTS

ix

PhoneNumberChooserTask ... 150

SaveEmailAddressTask ... 151

SavePhoneNumberTask ... 151

SaveContactTask ... 153

Marketplace Tasks ... 154

MarketplaceDetailTask .. 154

MarketplaceHubTask ... 156

MarketplaceReviewTask .. 156

MarketplaceSearchTask .. 157

Miscellaneous Tasks .. 158

ConnectionSettingsTask .. 158

MediaPlayerLauncher .. 159

SaveRingtoneTask ... 160

WebBrowserTask ... 163

Using the Microsoft.Phone.UserData Namespace .. 164

Contacts ... 164

Appointments ... 166

Summary .. 167

Chapter 8: Get Pushy: Using Push Notifications to Keep Your Users Up-to-Date 169

Understanding Push Notifications (and the US Postal Service) 169

Creating a Notification App ... 170

Creating a Toast Notification .. 173

Creating a Raw Notification .. 179

Creating a Tile Notification ... 183

Live Tile Updates... 186

Summary .. 188

■ CONTENTS

x

Chapter 9: Get Oriented: Interacting with the Phone, Camera, GPS, and More 191

Tracking the Position of Your Device ... 191

Using Location Services... 191

Using the Compass .. 196

Using the Accelerometer ... 199

Using the Gyroscope .. 203

Using the Motion API.. 207

Accessing Raw Camera Data .. 213

Summary .. 216

Chapter 10: Get Money: Profiting from Your Applications .. 217

Submitting Your App to the Windows Phone Marketplace 217

Using the Marketplace Test Kit (Recommended) ... 217

Uploading Your App ... 218

Describing Your Application ... 222

Pricing Your Application... 228

Testing Your Application .. 229

Dealing with Rejection. .. 231

Monetizing Your Application .. 232

Trial Mode .. 232

Paid Trial .. 233

Advertising Supported ... 233

Promoting Your Application ... 236

Make the Most of Week One .. 236

Use a Marketplace Link in Your Communications ... 236

Create a Web Portal for Your Apps .. 238

Create a Walk-through Video for Your App .. 238

■ CONTENTS

xi

Encourage Reviews of Your Applications .. 238

Cross-Sell Your Applications ... 239

Summary .. 239

Index ... 241

xii

About the Authors

■ Jesse Liberty is a senior developer-community evangelist on the Microsoft
Windows Phone team. He hosts the popular “Yet Another Podcast” on his
popular blog at http://JesseLiberty.com. Liberty is the author of numerous
top-selling books, including the forthcoming Programming Windows 8 (Apress,
2012) and Programming C# 4.0 (O’Reilly Media, 2010). Prior to Microsoft, he
was a Distinguished Software Engineer at AT&T, a software architect for PBS,
and vice president of information technology at Citibank. He can be followed
on Twitter @JesseLiberty.

■ Jeff Blankenburg. Ultra passionate. That’s how Jeff describes his
relationship with technology. Over the past ten years, Jeff has enthusiastically
applied his technical expertise to build industry-changing web sites and
marketing efforts for mega brands, including Victoria’s Secret, Abercrombie &
Fitch, Ford Motor Company, Sony, and several pharmaceutical companies.
He’s especially proficient in user interface design, web standards, and mobile
application development. In addition to his senior developer evangelist role
for Microsoft, Jeff contributed to Windows Developer Power Tools (O’Reilly
Media, 2006) by James Avery and Jim Holmes, on the subject of code
validation services; and he has more than ten applications available in the
Windows Phone marketplace. He also serves as an organizer for the

CodeMash, Stir Trek, and M3 conferences. Jeff holds a bachelor of science degree in psychology from
Ohio’s Bowling Green State University.

xiii

About the Technical Reviewer

■ Damien Foggon is a developer, writer, and technical reviewer in cutting-edge technologies and has
contributed to more than 50 books on .NET, C#, Visual Basic, and ASP.NET. He is the co-founder of the
Newcastle–based user-group NEBytes (www.nebytes.net) and is a multiple MCPD in .NET 2.0, 3.5, and
4.0. His blog, Notes from a Small Mind, is at http://blog.fasm.co.uk.

■ Fabio Claudio Ferracchiati is a prolific writer and technical reviewer on cutting-edge technologies.
He has contributed to many books on .NET, C#, Visual Basic, SQL Server, Silverlight, and ASP.NET. He is
a .NET Microsoft Certified Solution Developer (MCSD) and lives in Rome, Italy. He is employed by Brain
Force.

xiv

Acknowledgments

Thank you to Jeff Blankenburg whose genius was the sine qua non of this entire project. Special thanks
to John Osborn, Jessica Belanger, Damien Foggon, Fabio Claudio Ferracchiati, Ewan Buckingham,
Kimberly Burton, and all the folks at Apress for bringing this book to life and making it a far better book
than the one we originally wrote. And thank you, dear reader—without you, this book would be a
paperweight.

—Jesse Liberty

There are many people who helped me get this book to its final state, and without any of them, I’m not
sure this would have been possible. Jesse Liberty gave me my first real authoring opportunity and his
wisdom shaped my words on paper. Jessica Belanger provided laser focus on getting this book
completed, despite delays and interruptions. John Osborne provided his editing wizardry; this book
would have been much worse without his guidance. Martin Schray and Bob Laskey gave me the
freedom and flexibility to pursue my passion. Dave Bost, Chris Koenig, and Jared Bienz were an
incredible team of technologists to work with and learn from. Jeffery Bright and Angelo Lamatrice
literally helped me learn to walk again during this book writing process.

Finally, I thank everyone who has sat through my presentations and articles over the years. You
helped make this content what it is.

—Jeff Blankenburg

xv

Foreword

You’re riding the train to work in the morning. You’re onboard an airplane that’s taxiing to the gate
following the flight attendant’s announcement that cell phones and other electronic devices can be
turned back on. You’re sitting in a coffee shop enjoying a morning brew. And what are people all around
you doing? They’re checking their e-mail, surfing the web, reading the news, and checking the latest
weather report—all on their iPhones, Android phones, Blackberrys, Windows phones, and other devices
that just a few short years ago wouldn’t have fit in a suitcase, much less a purse or pants pocket.

The smartphone phenomenon is no less a revolution in the way we live, work, and play than the
personal-computer revolution was in the early 1980s. And it represents no less of an opportunity to
developers, to whom it falls to write the applications that drive these devices. In coming years,
companies will be built and millionaires will be made by savvy developers who successfully anticipate
the needs of the market and possess the technical chops to meet those needs. Developers everywhere
realize that mobile is where the action is. Moreover, the excitement around mobile devices in the
development community is as palpable today as it was around personal computers in the heyday of the
IBM PC.

The latest contestant to enter the mobile arena and scrap for market share is the new Windows
Phone, powered by Windows Phone 7.1, also known as “Mango.” No one refutes that Microsoft was late
to the party. But so was Google with its Android operating system, and Android sales now outstrip
iPhone sales by a comfortable margin. The market is huge, and there’s plenty of room under the tent.
Microsoft has put a stake in the ground with Mango and has big plans for the Windows Phone for 2014
and beyond.

What is it that makes Mango a compelling platform for developers? For starters, if you’re already a
C# programmer, you’ll feel right at home with Mango, using a familiar language, familiar tools, and even
a familiar API. If you’re a Silverlight developer, you’re way ahead of the game because you already know
XAML, and learning to write Windows Phone apps is largely a matter of learning about phone-specific
APIs such as the location API and sensor API. But even if you’re not already versed in XAML and the .NET
framework, you’ll find Windows Phone Mango as easy a platform to learn as any you’ve ever picked up.
It’s managed code all the way, supported by an elegant set of APIs that were designed from the ground
up to enable types of applications, which just a few years ago we could only dream about.

Mango improves on Windows Phone 7.0 in numerous ways. For example, in 7.0, applications that
weren’t in the foreground were almost always terminated, causing app developers to have to save state
prior to deactivation and restore it again following reactivation. Mango turns that model upside-down,
ensuring that in most cases, suspended apps are just that— suspended—and therefore can be resumed
very quickly. This is mostly transparent to the developer, but there are implications to this architecture
that affect the design of your apps. You still need to preserve state in case you’re terminated, but upon
activation, you can detect whether you were terminated and avoid the potentially costly process of
restoring that state when it doesn’t need restoring.

Mango also introduces a new set of APIs for accessing compasses, gyroscopes, and other sensors. It
provides low-level access to the phone’s built-in camera and adds support for front-facing cameras as
well. It introduces a brand-new API for background processing, and it features a local database based on
SQL CE that’s perfect for storing relational data in flash memory on the phone, as well as an encryption
API that enables data to be stored securely. It also adds HTML5 support to the platform, making Mango

■ FOREWORD

xvi

an equally viable target for cross-platform mobile development as iPhones, Android phones, and
Blackberry devices. The list of new features could go on and on, but suffice it to say that I know
developers on the Windows Phone team at Microsoft who told me even before 7.0 came out “just wait
until you see Mango. It’s awesome.” They were right. And there’s no better time than the present to see
for yourself by downloading the SDK and checking out the new and improved Windows Phone.

I can’t think of anyone better to guide you on the path to Windows Phone enlightenment than Jesse
Liberty and Jeff Blankenburg. Both work for Microsoft and have “ins” to the phone team that the rest of
us can only dream about. Both have been involved with the Windows Phone operating system since the
beginning. And both have a passion for this platform that comes through in their blog posts, their
speaking engagements, and, of course, in their books.

They’ve put together a step-by-step guide to building Windows Phone applications not only for
developers already at home with the Microsoft technology stack, but for iPhone and Android developers
as well. You’ll learn about the application lifecycle and what it means for your code. You’ll learn how to
use push notifications to deliver timely informational updates and convert static tiles into live tiles.
You’ll learn about launchers and choosers and the role they play in building great mobile applications.
In short, you’ll get a working introduction to the core features and services that Mango has to offer, as
well as to the tools that you use to leverage them—all in an edgy and humorous style that’s in keeping
with the hipness of the mobile market. Angry Birds, after all, wasn’t written by a bunch of guys wearing
coats and ties.

PCs are out. Mobile is in. You can either ride on top of the wave or get crushed by it. Let the
revolution begin.

— Jeff Prosise

Cofounder, Wintellect

xvii

Introduction

Windows Phone was introduced to the public in North America on November 8, 2010. It entered a highly
competitive market, with very popular alternatives, and yet it was immediately seen as something new,
different, innovative, and potentially game changing.

Even at its release, the developers were saying “you ain’t seen nothing yet,” and just ten months
later, Microsoft released the Windows Phone 7.5 code name, Mango.

It has been estimated that Mango has more than 1,000 new APIs for the Windows Phone SDK,
implementing some very exciting features, which you’ll read about in this book. Mango not only
revolutionizes Windows Phone, but arguably revolutionizes the industry itself.

This book represents a snapshot in the life of Windows Phone, but has been written with an eye
toward staying current, even as Windows Phone evolves.

Windows Phone is innovative and different, not for the sake of being different, but for the sake of
making a phone that integrates into the user’s lifestyle without becoming a lifestyle in itself.

One of the most noticeable aspects of Windows Phone is the Metro design style, modeled after
state-of-the-art signage to be clear, immediately apprehended, and beautiful.

We won't waste your time trying to convince you that it makes sense to program for Windows
Phone; we will make the assumption that you are reading this book because you've already made that
decision.

Migrating
The goal of this book isn’t to demonstrate how to port existing applications to Windows Phone, but to
help you migrate your existing skills to those of a professional Windows Phone programmer.

Migrating from Other Phones
Many of you picking up this book have experience in iPhone, Android, and other development
environments. We’ll try to make the path to Windows Phone programming clear, and we’re convinced
you’ll find it simpler and more enjoyable.

Migrating from Silverlight or WPF
Those of you migrating your skills from Silverlight or WPS will find the transition to be straightforward,
although there are some tricky places that we will point out as we go along.

C H A P T E R 1

 ■ ■ ■

1

Get to Work: Your First Windows
Phone Program

We believe the best way to get started with Windows Phone programming is to dive into the deep end.
In this chapter, we’re going to build a non-trivial application from start to finish. While there will be

many topics introduced, the skills demonstrated here will be explained and expanded upon in later
chapters. We believe that by seeing a real application built you’ll quickly learn many of the fundamentals
of Windows Phone Programming.

Along the way you’ll learn how to use some of the controls that Microsoft provides for building
phone applications, including layout controls that you’ll use as containers for other controls. You’ll also
learn how to set control properties and how to databind a control to a value. Finally, you’ll learn how to
code and wire up the event handlers that bring a control to life.

The project we’re going to build is a calculator, as shown in Figure 1-1.

Figure 1-1. The calculator

CHAPTER 1 � GET TO WORK: YOUR FIRST WINDOWS PHONE PROGRAM

2

We will build this application using both Visual Studio and Expression Blend 4. We’ll write the code
in Visual Studio and we’ll do nearly all the layout and design using Expression Blend.

Creating a New Application with Visual Studio
Let's begin by creating the application in Visual Studio.

1. Open Visual Studio, and select File New Project on the main menu. When the
New Project dialogue appears, create a new application by selecting the
Windows Phone Application template from the list of Silverlight for Windows
Phone Installed Templates, as shown in Figure 1-2. Give the new project a
name, a location, and a solution folder name.

Figure 1-2. Creating a Windows Phone application

2. When you’ve completed the New Project dialog, click OK and you will next be
presented with a dialog box in which you will pick the version of Windows
Phone you will target. Be sure to set this to Windows Phone OS 7.1.

CHAPTER 1 � GET TO WORK: YOUR FIRST WINDOWS PHONE PROGRAM

3

■ Note The latest edition of Visual Studio and Expression Blend will build for version 7.0 or 7.1. Version 7.1
(commonly known as Mango) is the correct version for use with phones with operating system version 7.5, and
generally speaking, is the version you want to use. All of the applications in this book will use SDK version 7.1.

3. After you’ve selected a target phone OS, click OK. Once Visual Studio settles
down, you should see the Visual Studio editor as the main window, with the
Solution Explorer and Properties panel on the right side, and possibly the
Toolbox and other windows on the left.

Notice that the main window can be split, as shown, with the design view on the left and the Xaml
view on the right. Your arrangement may vary depending on which version of Visual Studio you are
using and how you’ve configured it. You may want to open windows (using the View and Window
menus) and close windows so that your view matches that shown in Figure 1-3.

Figure 1-3. Visual Studio

Now you’re ready to build the user interface for your application.

CHAPTER 1 � GET TO WORK: YOUR FIRST WINDOWS PHONE PROGRAM

4

Building the User Interface with Expression Blend
Many experienced Windows Phone developers create the UI of their applications using Expression
Blend. This works out quite well as Expression Blend works on exactly the same solution files as does
Visual Studio. Thus there is no translation needed between the two programs, and you can move freely
back and forth without breaking or losing anything in the transition. We’ll use Blend to create the face of
our calculator application.

1. To switch to Blend, right-click on the project in the Solution Explorer and click
on Open in Expression Blend, as shown in Figure 1-4.

Figure 1-4. Open in Expression Blend

2. When Blend opens you may, once again, want to open (or close) windows until
the layout in your Expression Blend window matches the image shown in
Figure 1-5.

CHAPTER 1 � GET TO WORK: YOUR FIRST WINDOWS PHONE PROGRAM

5

Figure 1-5. The Expression Blend work area

Every Windows Phone application consists of Xaml markup and code (C#). Though the two are
theoretically interchangeable, Xaml is used mostly for UI and C# for application logic.

■ Note In this book we’ll do all our coding in C#.

There are many ways to edit the Xaml. You can edit Xaml directly in the editing window of either
Visual Studio or Expression Blend, or you can do so in the Properties window of either application.
When you edit properties with either Blend or Visual Studio, the Xaml is modified; and when you modify
the Xaml code in the editor, the Properties panels of both applications are updated.

To see this explicitly, we’ll begin by making the same edits both in the Xaml editor and in the
Properties panels in Blend. After we’ve demonstrated that this really works, however, we’ll make
(nearly) all of our future edits in the Blend Properties panel, as this is usually much easier than editing
the Xaml directly (though you are always free to do either).

CHAPTER 1 � GET TO WORK: YOUR FIRST WINDOWS PHONE PROGRAM

6

Setting the Application Title
Let’s begin by using Blend to give the application a title.

1. In designer view, click on MY APPLICATION, the application title and notice
that the Properties panel on the right-hand side, which is context sensitive,
switches to show you the properties of this TextBlock.

At the top of the Properties panel you’ll see that its name is “ApplicationTitle” and that it is of type
TextBlock. TextBlocks and all other controls will be described in detail in the next chapter; for now you
need to know that TextBlocks are used to show read-only text.

Run your eyes over the various properties shown in the Properties panel until you come to the
Common Properties panel, shown in Figure 1-6.

Figure 1-6. The Common Properties panel

The Text property in the Common Properties panel is currently set to MY APPLICATION. We’re
going to modify that; but before we do, let’s split the editor so that it shows the page visually and also
shows the associated Xaml. To do so, first locate the three small buttons located between the artboard
(the panel showing the page) and the Properties dialog to its right, as shown in Figure 1-7.

Figure 1-7. View buttons

Those three View buttons show the design, Xaml, or split display options that Blend provides, from
top to bottom.

2. Click on each of these to see what they do and then click on the Split button to
leave the artboard split between design view and Xaml view.

3. In the design view, click on the TextBlock that displays the application name
and notice that the Xaml view scrolls to the markup for that TextBlock.

You don’t need to understand all this Xaml at the moment, but do note that the Text property
matches the text shown in the design view and also matches the text shown in the Properties panel.

CHAPTER 1 � GET TO WORK: YOUR FIRST WINDOWS PHONE PROGRAM

7

4. Change this text directly in the Xaml to “YOUR APPLICATION” and note that
when you do, the design view and the Properties panel are updated, as shown
in Figure 1-8.

Figure 1-8. Updating the Application Title

5. Switch back to design view and update the Application Title in the Properties
panel by entering the word “CALCULATOR.” This should be in all-caps to
follow the Metro look and feel. Metro is the design standard for Windows
Phone.

6. Click on the TextBlock holding the PageName and hit the Delete key. Hey!
Presto! The page name is gone.

We are now ready to add the calculator’s buttons.

Adding the Calculator Buttons
Turn your attention to the Objects and Timeline panel (typically in the lower left of Expression Blend).
You should see that the Page consists of an ApplicationBar and something called LayoutRoot.

1. Click on LayoutRoot and look at the Properties panel; you’ll see that LayoutRoot
is a grid.

2. Click the triangle next to LayoutRoot in the Objects and Timeline panel to
expand it. Indented underneath it you’ll find two other panels: the TitlePanel
and the ContentPanel. The former contained the TextBlocks for the
Application and the Page. The latter is currently empty, but it is here, in the
ContentPanel that we’ll place the buttons for the calculator.

CHAPTER 1 � GET TO WORK: YOUR FIRST WINDOWS PHONE PROGRAM

8

You’ll learn about grids and other layout containers (panels) in coming chapters. For now, the
following is a summary of the three most important types:

• Grids have rows and columns

• StackPanels stack objects one above or one next to the other

• Canvas allows exact positioning of objects based on x/y coordinates

Now we’re ready to create a surface for the calculator keypad.

Create a Surface for the Keypad
In the objects and timeline panel, notice that the layout root consists of a title panel and a content panel.
The title panel holds the application title and the page title, and the content panel typically holds the rest
of the contents of the page.

1. Click on the ContentPanel in the Objects and Timeline and notice in the
Properties panel that the ContentPanel is of type Grid. We’d like this to be a
StackPanel.

2. Right-click on the ContentPanel and select Change Layout Type StackPanel.
Hey! Presto, the change is done.

Add the Display Panel
We need next to create the display panel for the calculator. To do this we’ll use a TextBlock (a text field
for read-only text). But TextBlocks can’t have their background color set, so we’ll solve this by wrapping
the TextBlock in a Border control. As you’ll see the background color for the border control will act as a
background to the Text.

Controls are found in the Toolbox (the thin panel that runs top to bottom on the extreme left of
Blend).

1. Click on the ContentPanel to make it the active container, and double-click on
the TextBlock control in the Toolbox, as shown in Figure 1-9.

Figure 1-9. The TextBlock control in the Toolbox

2. A TextBlock is added to the ContentPanel. Set its Width and Height to Auto and
its Horizontal and VerticalAlignment to stretch so that it fills the width of the
Panel. Set all its margins to zero. Set the font size to 36 pt.

CHAPTER 1 � GET TO WORK: YOUR FIRST WINDOWS PHONE PROGRAM

9

3. We’d like the TextBlock to live inside a Border control. The Border control in
this case will provide a background color for the TextBlock. To do this, right-
click on the TextBlock in Objects and Timeline and choose GroupInto Border.
This places a Border control around the TextBlock.

4. Click on the Border control in Objects and Timeline and then click on the
Background brush in the Properties panel. Next, click on the solid color brush
button and set the colors to 255, 255, 255 (white), as shown in Figure 1-10.

Figure 1-10. Setting the background to solid brush, white

5. Next, click on the TextBlock in the Objects and Timeline and set the
foreground brush to solid and 0, 0, 0 (black). Set the alignment of the
TextBlock to right. This will serve as the display for the values entered and the
totals.

Now we’re ready to go to work on the calculator buttons.

Design a Button
Before we add more buttons, we need to create a style for them. We will then be able to apply that style
to all the buttons we create. The style we’ll create will change the color of the button when it is pressed.
The default style makes the button look white when pressed; we’ll change it so that when the button is
pressed it takes on the accent color (the color picked by the user for the tiles).

CHAPTER 1 � GET TO WORK: YOUR FIRST WINDOWS PHONE PROGRAM

10

1. Locate the Button control, as shown in Figure 1-11. While you are there notice
the small white triangle to the lower right of the button. This indicates that
there is more “under” this button. To see the related controls, click and hold
the button—the related controls will appear allowing you to pick various kinds
of buttons, such as RadioButtons or CheckBoxes, as shown in Figure 1-12.

Figure 1-11. The Button in the Toolbox

Figure 1-12. Expanding the Button

2. Release the button so that it is no longer expanded. We now want to create a
button on the artboard, under the ContentPanel. To do so, first click on the
ContentPanel to make it the active container, then double-click on the button.
A button appears in the design view and under ContentPanel in the Objects
and Timeline.

3. With that Button still highlighted, let’s set its width in the Properties panel to
100 and its height to 100. Set the contents to lowercase c.

We are going to create quite a few buttons, but rather than put them into a Grid or any of the other
three standard controls, we’ll use a wrap panel so that they lay themselves out nicely.

CHAPTER 1 � GET TO WORK: YOUR FIRST WINDOWS PHONE PROGRAM

11

Buttons Layout
The WrapPanel does not ship with Windows Phone, but it is available in the Windows Phone Toolkit
(http://silverlight.codeplex.com/releases/view/71550)

1. Download the latest version of the Toolkit and install it.

The WrapPanel control is not on the Toolbox, but the last symbol on the toolbar is a chevron (>>),
which we’ll use to find one.

2. Click on the chevron to expand the complete set of controls. Notice that at the
top of this window is a search box. Type “wrap” into that search box and the
wrap panel will be made visible.

3. Click on the WrapPanel and its icon will appear in the Toolbox.

You are now ready to add the WrapPanel to the ContentPanel.

4. Click and drag the WrapPanel into the designer. Check the Objects and
Timeline to make sure the WrapPanel is inside the content panel. Click the
Button object in the Object and Timeline and drag it onto the WrapPanel, which
will cause the button to be placed within the WrapPanel.

You now have a WrapPanel with one Button in it; your Objects and Timeline should look like Figure
1-13.

Figure 1-13. Button in WrapPanel

5. In the Objects and Timeline panel, click on the WrapPanel, and in the
properties panel set all the margins to zero and the Horizontal and Vertical
Alignments to Stretch, as shown in Figure 1-14.

CHAPTER 1 � GET TO WORK: YOUR FIRST WINDOWS PHONE PROGRAM

12

Figure 1-14. WrapPanel layout

6. Click on the Button and set its font size to 36 point and set the font to Segoe WP
Semibold.

7. Copy and paste the Button 16 times, filling the WrapPanel with a total of 16
buttons. Notice that they wrap as they are laid into the WrapPanel (hence the
name!).

8. Change the button content for the second button to “1” and change its name
to Button01. Change the button content for the third button to “2” and change
its name to Button02. Do the same for buttons 3 through 9.

9. Go back and change the name for the Clear button (the first button) to Clear.

10. Click on the Zero button and make its width 200. Do the same with the last
button, but set its content to the equal sign “=” and its name to ButtonEquals.
At this point, all your buttons should have names and your artboard should
look like Figure 1-15.

CHAPTER 1 � GET TO WORK: YOUR FIRST WINDOWS PHONE PROGRAM

13

Figure 1-15. Calculator buttons

11. In the Objects and Timeline, click on the first button in the WrapPanel and then
shift-click on the last, highlighting all the buttons. Set the right margin to 10 to
give the buttons a bit more padding and to fill the width of the page.
Remember to go back to the two double-wide buttons and set their width to
210 to compensate for the margins.

Before you leave the page, you may want to fuss with the margins of the Border control to improve
the alignment with the buttons.

Programming the Calculator
When the user clicks a button, an event is raised. We’ll talk quite a lot about events later in the book, but
in short, you can register a method to “handle” that event; that is, you can set up your program so that
when the user clicks your button, a specific method is invoked.

There are a number of ways to register a method to an event. One of the easiest ways to do this is to
click on the Button in the Designer and then to click on the event that interests you in the Properties
panel. To see the events, you need to click the Events button in the upper-right hand corner, as shown in
Figure 1-16.

Figure 1-16. Events button

CHAPTER 1 � GET TO WORK: YOUR FIRST WINDOWS PHONE PROGRAM

14

The events window lists all the events that might be associated with your Button.

1. Click on the Clear button and then double-click in the Click event handler box.
Blend creates a new Event for you named by appending the event (Click) to the
Buttton’s name with an underscore (Clear_Click). Blend also creates the stub
for the event handler code, and moves you to the code file (MainPage.xaml.cs).

2. Switch back to MainPage.xaml and click on the 1 button. This time rather than
double-clicking in the event handler for the Click button, type in the name
“NumberButton_Click”. Do this for all ten-number buttons; they will all share
the same event handler. Use the default name for all the other buttons.

3. Click the menu choice File Save All. Right-click on the solution file and
choose Edit in Visual Studio, as shown in Figure 1-17.

Figure 1-17. Edit in Visual Studio

Examining the Button Xaml
Before we go on to examine writing the code associated with this application, let’s open MainPage.xaml.
Visual Studio defaults to a split view, with the design view on the left and the Xaml view on the right.
Notice that what you see in the Visual Studio design view is identical to what you saw in Expression
Blend.

Let’s focus on the Xaml for a moment. Every property that you set interactively in Blend is now
shown in the Xaml. For example, notice that the first entry in the StackPanel is a Border that contains a
TextBlock, which is just what we hoped.

<StackPanel x:Name="ContentPanel" Margin="16,0,8,0" Grid.Row="1" >
 <Border Margin="15,0,30,0" Background="White">
 <TextBlock TextWrapping="Wrap" Text="0" FontSize="48" Foreground="Black"
HorizontalAlignment="Right" Margin="0"/>
 </Border>

Take a look at the WrapPanel and double-check that all the Buttons have been assigned the right
names and the correct Click event handlers, as shown in Listing 1-1.

CHAPTER 1 � GET TO WORK: YOUR FIRST WINDOWS PHONE PROGRAM

15

Listing 1-1. The Wrap Panel in Xaml

<toolkit:WrapPanel Margin="0">
 <Button x:Name="Clear" Content="c" Width="100" Height="100"
 FontSize="48" Margin="0,0,10,0" Click="Clear_Click"/>
 <Button x:Name="Button01" Content="1" Width="100" Height="100"
 FontSize="48" Margin="0,0,10,0" Click="NumberButton_Click"/>
 <Button x:Name="Button02" Content="2" Width="100" Height="100"
 FontSize="48" Margin="0,0,10,0" Click="NumberButton_Click"/>
 <Button x:Name="Button03" Content="3" Width="100" Height="100"
 FontSize="48" Margin="0,0,10,0" Click="NumberButton_Click"/>
 <Button x:Name="Button04" Content="4" Width="100" Height="100"
 FontSize="48" Margin="0,0,10,0" Click="NumberButton_Click"/>
 <Button x:Name="Button05" Content="5" Width="100" Height="100"
 FontSize="48" Margin="0,0,10,0" Click="NumberButton_Click"/>
 <Button x:Name="Button06" Content="6" Width="100" Height="100"
 FontSize="48" Margin="0,0,10,0" Click="NumberButton_Click"/>
 <Button x:Name="Button07" Content="7" Width="100" Height="100"
 FontSize="48" Margin="0,0,10,0" Click="NumberButton_Click"/>
 <Button x:Name="Button08" Content="8" Width="100" Height="100"
 FontSize="48" Margin="0,0,10,0" Click="NumberButton_Click"/>
 <Button x:Name="Button09" Content="9" Width="100" Height="100"
 FontSize="48" Margin="0,0,10,0" Click="NumberButton_Click"/>
 <Button x:Name="Button0" Content="0" Width="210" Height="100"
 FontSize="48" Margin="0,0,10,0" Click="NumberButton_Click"/>
 <Button x:Name="Add" Content="+" Width="100" Height="100"
 FontSize="48" Margin="0,0,10,0" Click="Add_Click"/>
 <Button x:Name="Subtract" Content="-" Width="100" Height="100"
 FontSize="48" Margin="0,0,10,0" Click="Subtract_Click"/>
 <Button x:Name="Multiply" Content="X" Width="100" Height="100"
 FontSize="48" Margin="0,0,10,0" Click="Multiply_Click"/>
 <Button x:Name="Divide" Content="/" Width="100" Height="100"
 FontSize="48" Margin="0,0,10,0" Click="Divide_Click"/>
 <Button x:Name="Equals" Content="=" Width="210" Height="100"
 FontSize="48" Margin="0,0,10,0" Click="Equals_Click"/>
</toolkit:WrapPanel>

Planning Button Actions
With the layout and UI design complete, it is time to write the logic of the calculator. Turn to
MainPage.xaml.cs and notice that it includes event handlers that were created and “stubbed-out” by
Blend, for example.

private void Clear_Click(
 object sender,
 System.Windows.RoutedEventArgs e)
{
 // TODO: Add event handler implementation here.
}

CHAPTER 1 � GET TO WORK: YOUR FIRST WINDOWS PHONE PROGRAM

16

Your job, no surprise, is to fill in the event handler implementations. Before we dive into the specific
event handlers, we need a few class members. We’ll begin by defining an enumeration named
OperatorTypes.

 public enum OperatorTypes
 {
 None,
 Addition,
 Subtraction,
 Multiplication,
 Division
 }

 We’ll create a private member variable of type OperatorTypes and initialize its value to None.

OperatorTypes operatorType = OperatorTypes.None;

We also need a flag to tell us if we’re dealing with a new value and a field to keep track of the number
previous to the current value.

Connecting Button Results to the Display
Now we’re going to do a bit of hand waving because we want to bind the value shown in the TextBlock to
the value of a property named DisplayNumber. For now, just this once, we’re going to ask you to type in
the code in Listing 1-2 as is, without fully explaining it.

Listing 1-2. Creating a Property and a Dependency Property

 public double DisplayNumber
 {
 get { return (double)GetValue(DisplayNumberProperty); }
 set { SetValue(DisplayNumberProperty, value); }
 }

 public static readonly DependencyProperty DisplayNumberProperty =
 DependencyProperty.Register("DisplayNumber", typeof(double), typeof(MainPage),
null);

There is some complexity here involved in the creation of what are known as Dependency
Properties, and we really don’t want to get into this just yet, even though we do want to make the
binding work. We will come back to this in depth in Chapter 3. The net effect, however, is that
DisplayNumber is now a property to which you can Bind.

The second step in this binding process is to return to the Xaml and to add the Binding to the
TextBlock. Open MainPage.xaml and locate the TextBlock at the top of the form.

<TextBlock TextWrapping="Wrap" Text="0" FontSize="48"
 Foreground="Black" HorizontalAlignment="Right" Margin="0"/>

CHAPTER 1 � GET TO WORK: YOUR FIRST WINDOWS PHONE PROGRAM

17

Replace Text="0" with the following:

Text="{Binding DisplayNumber}"

At this point the entire TextBlock should look as follows:

<TextBlock
 TextWrapping="Wrap"

 Text="{Binding DisplayNumber}"

 Height="58"
 FontSize="48"
 TextAlignment="Right"
 Foreground="{StaticResource PhoneTextBoxForegroundBrush}"
 FontFamily="Segoe WP Semibold" />

Notice that we say in the Text property that the Binding is to the DisplayNumber. What is the
DisplayNumber? It is a property, but of what object? This is answered by setting the DataContext (much
more about this, again, in Chapter 3).

Every time you navigate to the page (in this case, by starting the application), a known method,
OnNavigatedTo(), is called. We’ll override this method to set the DataContext for the page to the Page
object itself (since we’ve created the DisplayNumber property on the page itself). To do so, add the
following code below the event handlers:

protected override void OnNavigatedTo(
 System.Windows.Navigation.NavigationEventArgs e)
 {
 DataContext = this;
 DisplayNumber = 0;
 }

You can now press F5 to test the databinding. You should see that the TextBlock comes up
displaying the number 0.

Handling the Number Buttons
We now need a helper method we can call each time a new number is entered to compute the new
display value, as shown in Listing 1-3.

Listing 1-3. Helper Method to Compute the Display Value

private void AddToDisplayNumber(double digit)
 {
 if (isNewNumber)
 {
 isNewNumber = false;
 previousNumber = DisplayNumber;
 DisplayNumber = digit;
 }
 else if (DisplayNumber == 0)
 {
 DisplayNumber = digit;

CHAPTER 1 � GET TO WORK: YOUR FIRST WINDOWS PHONE PROGRAM

18

 }
 else
 {
 DisplayNumber = DisplayNumber * 10 + digit;
 }
 }

We will call this method every time a number is pressed. To make that happen, we need to get the
number that was pressed and pass it to this method, which we do in the event handler we created for all
the numbers.

private void NumberButton_Click(
 object sender,
 System.Windows.RoutedEventArgs e)
 {
 AddToDisplayNumber(
 double.Parse(((Button) sender)
 .Content.ToString()));
 }

This code takes the sender (passed in as a parameter of type object) and casts it to a Button (we
know it is a Button because only a Button can call this event handler). It then extracts the Content
property of the Button and calls ToString() on that Content. Finally the string returned from the Button
(e.g., “3”) is parsed into a Double and it is that Double that is passed to our helper method.

Press F5 to run the program, you should now be able to enter multi-digit values.

Handling Other Buttons
The Clear button’s event handler is one of the simplest; we just set the DisplayNumber back to zero.

private void Clear_Click(
 object sender,
 System.Windows.RoutedEventArgs e)
{
 DisplayNumber = 0;
}

The EventHandler for the Add button sets the isNewNumber flag to true so that the
AddToDisplayNumber method will do the right thing and it sets the operatorType to addition so that the
Equals button handler will do the right operation. Subtraction, multiplication, and division all work in
the same way, as shown in Listing 1-4.

Listing 1-4 Addition, Subtraction, Multiplication, Division, and the Equals Button

private void Add_Click(object sender, System.Windows.RoutedEventArgs e)
 {
 operatorType = OperatorTypes.Addition;
 isNewNumber = true;
 }

 private void Subtract_Click(object sender, System.Windows.RoutedEventArgs e)
 {

CHAPTER 1 � GET TO WORK: YOUR FIRST WINDOWS PHONE PROGRAM

19

 operatorType = OperatorTypes.Subtraction;
 isNewNumber = true;
 }

 private void Multiply_Click(object sender, System.Windows.RoutedEventArgs e)
 {
 operatorType = OperatorTypes.Multiplication;
 isNewNumber = true;
 }

 private void Divide_Click(object sender, System.Windows.RoutedEventArgs e)
 {
 operatorType = OperatorTypes.Division;
 isNewNumber = true;
 }

 private void Equals_Click(object sender, System.Windows.RoutedEventArgs e)
 {
 switch (operatorType)
 {
 case OperatorTypes.Addition:
 DisplayNumber = previousNumber + DisplayNumber;
 break;
 case OperatorTypes.Subtraction:
 DisplayNumber = previousNumber - DisplayNumber;
 break;
 case OperatorTypes.Multiplication:
 DisplayNumber = previousNumber * DisplayNumber;
 break;
 case OperatorTypes.Division:
 DisplayNumber = previousNumber / DisplayNumber;
 break;
 default:
 break;
 }
 isNewNumber = true;
 }

■ Note Notice that this calculator can handle the operation 73 * 59 but not 2 + 3 + 4. If you were to enter 2 and
press the plus sign (+) and then enter 3, followed by another plus sign, and followed by 4 and the equals sign (=),
the answer it would show would be 7, the sum of the last two numbers. It is left as an exercise for the reader to
correct this problem.

CHAPTER 1 � GET TO WORK: YOUR FIRST WINDOWS PHONE PROGRAM

20

Summary
In this chapter you learned how to use Visual Studio and Expression Blend to build a simple app for
Windows Phone 7. You saw how to use various layout controls to contain other controls and build a
simple user interface. You learned how to set a control’s properties and how to databind it to a value.
You also learned how to wire-up event handlers and how to implement event handlers to add behavior
to your UI.

All of this was treated at a somewhat superficial level because we wanted to take you on a whirlwind
tour of the tools and techniques you’ll use to write Windows Phone applications. We’ll deal these in
more detail in coming chapters, beginning with Chapter 2, where we’ll take a closer look at Windows
Phone controls.

C H A P T E R 2

 ■ ■ ■

21

Get Control: Exploring Windows
Phone Controls

The thought of design and particularly layout makes many developers cringe. We have spent our careers
boldly looking past our user interfaces in search of pure code. For us, functionality always takes
precedence over form. That is, until we show our application to an actual user. It’s at that point we
realize our weakness. Yes, our application works. Yes, it meets all of the business requirements. But no,
it doesn’t make any sense to our users, and in many cases, they can’t even figure out how to do simple
tasks.

When building mobile applications, your user interface may have more impact on your app’s
success than the underlying code. Potential users will look through the marketplace, and screenshots are
an easy way to determine if an application is great or mediocre. A stellar interface will always give you an
advantage over your competitors.

In this chapter, you’re going to learn about how Windows Phone provides the tools, called controls,
to take the guesswork out of user interface construction Each control has a look and feel that is native to
the entire Windows Phone operating system, which makes it easy for us, as developers, to create
beautiful (and familiar) applications for our users. This will include controls for layout, like the Grid and
Canvas, tools for navigation, like the Panorama and the NavigationService, as well as controls for making
your application more beautiful, like the Image control. We’ll also focus on the power of the TextBox, and
show you how you can customize the on-screen keyboard it uses for input.

This chapter will introduce the Application Bar, a powerful OS-level feature that you can use to
promote the most important features of your pages.

If you apply a few rules for layout to the use of these controls, you’ll have a functional application
that your users can understand too. To show how it’s done, we’ll build an interface for a home inventory
application that uses all of the controls introduced in this chapter to create a compelling user
experience.

Introducing Layout Controls
Before we get started building the application, there are a few things you should know about placing
controls on Windows Phone 7 pages. Microsoft provides three primary Panel controls, and each
possesses its own strengths and weaknesses. These controls are the Grid, the Canvas, and the
StackPanel. Each of these controls serves a specific purpose. The grid panel provides rows and columns,
the stack panel allows you to align items one on top of or next to each other, and the grid allows for

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

22

absolute positioning. As you build your first applications, you’ll start to see how these panels can be used
separately and together.

The Grid Control
The Grid control is often compared to table-based layout in HTML, but this can be misleading. While it
is true that the use of HTML tables is often discouraged, the Grid does not suffer the limitations or bloat
of the table, and is an essential layout control for the Phone, one whose use is encouraged.

 The Grid is the default container for every new Windows Phone project, and for good reason. It
provides a specific layout structure for each page, and is flexible enough to stretch and grow as your
content changes. Listing 2-1 shows a simple example of a Grid control in Xaml.

Listing 2-1. A Grid Control

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="100" />
 <ColumnDefinition Width="100" />
 <ColumnDefinition Width="100" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="100" />
 <RowDefinition Height="100" />
 </Grid.RowDefinitions>
 <Rectangle Fill="Red" Grid.Row="0" Grid.Column="0" />
 <Rectangle Fill="Orange" Grid.Row="0" Grid.Column="1" />
 <Rectangle Fill="Yellow" Grid.Row="0" Grid.Column="2" />
 <Rectangle Fill="Green" Grid.Row="1" Grid.Column="0" />
 <Rectangle Fill="Blue" Grid.Row="1" Grid.Column="1" />
 <Rectangle Fill="Purple" Grid.Row="1" Grid.Column="2" />
</Grid>

As you can see in Listing 2-1, within the Grid we define columns (with ColumnDefinition tags) and

rows (with RowDefinition tags). We assign the individual elements to the specific row and/or column
that is appropriate.
You’ll notice that the Xaml example doesn’t really look like the HTML table layout that you’ve seen in the
past. Instead, we’ve separated the content from the layout. We don’t have to wrap each element in a set
of table tags. We define a Grid, and then we simply assign each element to a cell of that Grid.

Please note that the Grid locations start in the top left corner with (0, 0), not (1, 1).

In the examples in this book, we provide a Xaml solution for the layout. Xaml is very descriptive and
very human readable, but it’s also very static. Many times you’re not going to know how many rows
your table needs, or even how many elements you’ll have to place in it. In those cases, you can recreate
any Xaml element via code in your code-behind file. Listing 2-2 shows the exact same grid would look

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

23

like created dynamically in C#. You should notice that it’s significantly more difficult to visualize what
the end result looks like.

Listing 2-2. A Grid Created By C#

Grid newGrid = new Grid();
newGrid.ColumnDefinitions.Add(new ColumnDefinition{ Width = new GridLength(100) });
newGrid.ColumnDefinitions.Add(new ColumnDefinition { Width = new GridLength(100) });
newGrid.ColumnDefinitions.Add(new ColumnDefinition { Width = new GridLength(100) });
newGrid.RowDefinitions.Add(new RowDefinition { Height = new GridLength(100) });
newGrid.RowDefinitions.Add(new RowDefinition { Height = new GridLength(100) });

Rectangle r1 = new Rectangle{ Fill = new SolidColorBrush(Colors.Red) };
Grid.SetColumn(r1, 0);
Grid.SetRow(r1, 0);
Rectangle r2 = new Rectangle { Fill = new SolidColorBrush(Colors.Orange) };
Grid.SetColumn(r2, 1);
Grid.SetRow(r2, 0);
Rectangle r3 = new Rectangle { Fill = new SolidColorBrush(Colors.Yellow) };
Grid.SetColumn(r3, 2);
Grid.SetRow(r3, 0);
Rectangle r4 = new Rectangle { Fill = new SolidColorBrush(Colors.Green) };
Grid.SetColumn(r4, 0);
Grid.SetRow(r4, 1);
Rectangle r5 = new Rectangle { Fill = new SolidColorBrush(Colors.Blue) };
Grid.SetColumn(r5, 1);
Grid.SetRow(r5, 1);
Rectangle r6 = new Rectangle { Fill = new SolidColorBrush(Colors.Purple) };
Grid.SetColumn(r6, 2);
Grid.SetRow(r6, 1);

newGrid.Children.Add(r1);
newGrid.Children.Add(r2);
newGrid.Children.Add(r3);
newGrid.Children.Add(r4);
newGrid.Children.Add(r5);
newGrid.Children.Add(r6);

LayoutRoot.Children.Add(newGrid);

 In Listing 2-2, you can see that there’s a bit more work required. For each element
(ColumnDefinition, RowDefinition, Rectangle), we have to create an instance of that element, and then
we have to add it to its parent container. So each Rectangle is added to the newGrid element, and then
the newGrid element is added to our LayoutRoot element. (LayoutRoot is the default Grid that is created
when you create your page. In both examples, you should end up with a layout of six colored boxes, in
two rows, as shown in Figure 2-1.

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

24

Figure 2-1. Layout of six colored boxes in grayscale

Ultimately, the Grid can be used in a variety of ways, especially when you need elements to be
aligned with each other. When you need something a little more free-form, however, you might want to
consider the Canvas as your primary panel control. Where the Grid takes many liberties with its contents
(resizing elements to fit the Grid cell, centering elements automatically), the Canvas is almost completely
hands-off.

The Canvas Control
Just as the Grid control is comparable to an HTML table, the Canvas control behaves like the absolute
positioning provided by HTML/CSS. When you use a Canvas, each element is given a specific location
on the page, and nothing but code can move them. This is also one of the limitations of the Canvas, but
for many applications, particularly animation-intensive applications, you’ll find it to be ideal.

When elements are absolutely positioned, they just don’t adjust. Elements will overlap, without
having any positioning-related effect on its neighbors. This is one of the fastest ways to get your
elements positioned on a page, and the taboos that came with absolute positioning in CSS are erased,
because we’re developing for a mobile operating system, not seventeen flavors of browser and platform
combinations.

So what exactly does a Canvas look like? Listing 2-3 shows the Xaml to re-create the same layout that
we used in the Grid example.

Listing 2-3. Using the Canvas Control

<Canvas>
 <Rectangle Fill="Red" Width="100" Height="100" Canvas.Top="100" Canvas.Left="100" />
 <Rectangle Fill="Orange" Width="100" Height="100" Canvas.Top="100" Canvas.Left="200" />
 <Rectangle Fill="Yellow" Width="100" Height="100" Canvas.Top="100" Canvas.Left="300" />
 <Rectangle Fill="Green" Width="100" Height="100" Canvas.Top="200" Canvas.Left="100" />
 <Rectangle Fill="Blue" Width="100" Height="100" Canvas.Top="200" Canvas.Left="200" />
 <Rectangle Fill="Purple" Width="100" Height="100" Canvas.Top="200" Canvas.Left="300" />
</Canvas>

For each element in your Canvas, you will need to specify the Canvas.Top and Canvas.Left
properties. Omitting these values will result in your elements being positioned in the top left corner of
the Canvas, at position 0, 0. As with any Xaml element, you can embed these controls inside each other,
giving you the ability to segment and separate your content into different panels.

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

25

Another important difference to notice in the Canvas example is that we have to be explicit about
sizes of our elements. In the Grid example, we didn’t have to size our Rectangles because they will
automatically fill the size of the Grid cell they occupy. In a Canvas, everything needs to be explicit, or the
element will either not show up (because it has a height and width of zero), or will render at its default
size (if it has one.)

In Chapter 5, we’re going to cover animation, and show how adding movement to an application
can enhance your user’s experience. In most cases, the Canvas is the ideal surface for creating
animations, because there aren’t any other “rules” as to how or where its contents should be displayed.
Creating animations with elements that live in a Grid control, for example, can be more difficult,
because you’ll find yourself wanting to move elements from cell to cell, which can create some
unwanted behaviors.

The StackPanel Control
The last of the big three panel controls is the StackPanel. This control might seem a little more

familiar to the CSS fans who love flow-based layouts. As the name might suggest, the StackPanel stacks
the elements it contains. By default, StackPanels stack their contents vertically, but you can also set a
property to “stack” the objects horizontally instead.

In Listing 2-4, we are going to recreate the same output we created with the Grid and Canvas, using
StackPanels. Since we have six Rectangles that we want to arrange in a 3 × 2 block, we should start with
an outer StackPanel that, by default, will stack our elements vertically. However, we want to have two
rows of three Rectangles each, so we are going to nest two more StackPanels inside. Each of these child
StackPanels will need their Orientation property set to Horizontal to create the rows. Again, Listing 2-4
renders the exact same layout as the Grid and Canvas examples from earlier.

Listing 2-4 Using the StackPanel Control

<StackPanel>
 <StackPanel Orientation="Horizontal">
 <Rectangle Fill="Red" Width="100" Height="100" />
 <Rectangle Fill="Orange" Width="100" Height="100" />
 <Rectangle Fill="Yellow" Width="100" Height="100" />
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <Rectangle Fill="Green" Width="100" Height="100" />
 <Rectangle Fill="Blue" Width="100" Height="100" />
 <Rectangle Fill="Purple" Width="100" Height="100" />
 </StackPanel>
</StackPanel>

Recap
As we’ve shown in the previous three examples, each panel control treats your content differently, and
recognizing those differences will allow you to select the right control for the right situation. Each of
these controls has its strengths and weaknesses, so the important lesson here is that if your content
looks and behaves the way you expect it to, you’ve made a good choice.

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

26

In the next section of this chapter, we’re going to build a real application, using real controls and
layout practices. We’ll point out some easy stumbling blocks to avoid, while giving you the insight to
make your application more useable for your users along the way.

Building a Real User Interface
For the remainder of this chapter, we are going to build a user interface that lets us explore many of the
controls that are available to us by default for Windows Phone. We’ll focus on several controls in the
Visual Studio Toolbox, and show how best to use them.

We’re going to build something simple, but useful: a home inventory application. If you’re not
familiar with the idea of a home inventory, imagine something terrible happened to your home last
week. How would you prove to your insurance company that you had fifteen computers, nine Xbox
360s, and a bag full of diamonds? By taking a home inventory, you’ll have descriptions, serial numbers,
locations, and photos of all of the valuable items you own (using the camera is covered in Chapter 9).

In our application, we’re going to create several different pages. The home page will provide links
for navigation and expose some of our data using a Panorama control. We’ll also include pages for adding
new items, new categories, and new locations.

Getting Started
We’ll begin by opening a new application and deleting some default code created by Visual Studio that
we won’t need.

1. Open Visual Studio 2010, and choose File New Project Windows Phone
Application, a shown in Figure 2-2. Complete the dialog and click OK.

Figure 2-2. Shows how to open a new project with Open Visual Studio 2010

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

27

One of the first things you may want to do when starting a new Windows Phone project is to delete
the default code in your MainPage.xaml file. The default code is great for your first “Hello World!”
application, but is a little simplistic for what we are trying to accomplish in this chapter. We’re not
deleting everything, but we are deleting the code responsible for the default user interface.

2. Go to MainPage.xaml. You can delete all of the code shown in Listing 2-5.

Listing 2-5. The Xaml You Can Remove from the Default Page Template

<!--LayoutRoot is the root grid where all page content is placed-->
<Grid x:Name="LayoutRoot" Background="Transparent">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>

 <!--TitlePanel contains the name of the application and page title-->
 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">
 <TextBlock x:Name="ApplicationTitle" Text="MY APPLICATION" Style="{StaticResource
PhoneTextNormalStyle}"/>
 <TextBlock x:Name="PageTitle" Text="page name" Margin="9,-7,0,0"
Style="{StaticResource PhoneTextTitle1Style}"/>
 </StackPanel>

 <!--ContentPanel - place additional content here-->
 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"></Grid>
</Grid>

<!--Sample code showing usage of ApplicationBar-->
<!--<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="True">
 <shell:ApplicationBarIconButton IconUri="/Images/appbar_button1.png" Text="Button 1"/>
 <shell:ApplicationBarIconButton IconUri="/Images/appbar_button2.png" Text="Button 2"/>
 <shell:ApplicationBar.MenuItems>
 <shell:ApplicationBarMenuItem Text="MenuItem 1"/>
 <shell:ApplicationBarMenuItem Text="MenuItem 2"/>
 </shell:ApplicationBar.MenuItems>
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>-->

Most of the time, we prefer the first page of an application to be a rich, robust experience that gives
our user access to as much data and navigation as we can. Many applications pack tons of buttons on
the first screen, but there’s a better way to provide lots of options to your users: the Panorama control. If
you look in your default Visual Studio Toolbox, you’ll probably notice that the Panorama isn’t listed. Let’s
fix that first.

Adding Missing Controls to Your Toolbox
Figure 2-3 is a quick look at the default contents of your Visual Studio Toolbox. There are many other
controls available to you, but they’re hidden because they’re not part of the default namespaces that are
included in your project.

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

28

Figure 2-3 The Visual Studio Toolbox for Windows Phone applications

In order to get the hidden controls into your Toolbox, you’ll need to add them.

1. To do this, right-click on your Toolbox and select “Choose Items…” (as shown
in Figure 2-4).

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

29

Figure 2-4 Adding additional controls to your Toolbox

2. The “Choose Toolbox Items” dialog box that appears (shown in Figure 2-5)
allows you to choose the specific controls you want in your Toolbox. There are
dozens of additional controls to use, and almost all of them will require an
additional reference in your application. Feel free to add any of the controls
that sound interesting, but for our application, we’re only going to need the
Panorama control. Also notice that the Toolbox doesn’t alphabetize the
controls for you, so if you want to move Panorama up between the MediaElement
and the PasswordBox, just drag it up there once you’ve added it. (You can also
right-click again, and choose “Sort Items Alphabetically.”)

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

30

Figure 2-5 The Choose Toolbox Items dialog box

Using the Panorama Control
You’re almost ready to add this Panorama to the application home page.

3. If you drag the Panorama control from your Toolbox to the place in your Xaml
where you deleted all of that code earlier, you’ll notice that it adds a tag that
looks like Listing 2-6.

Listing 2-6 The Base Panorama Xaml Tag

<controls:Panorama />

The controls: portion of that tag refers to the new namespace that has been added to your page. If
you look at the very top of your page, there should now be a line that looks like the following:

xmlns:controls="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone.Controls"

When you dragged the Panorama into your code, Visual Studio added this tag for you automatically,

as well as reference to the Microsoft.Phone.Controls assembly. This assembly is where the Panorama
control lives, and without the assembly included in your project, you can’t use the Panorama control. You
could have typed both of those lines, but sometimes drag-and-drop can save you some time. (If you
dragged the Panorama from the Toolbox to your design surface, you got a little more Xaml than Listing 2-6
showed. To continue following this example, just trim back your Xaml to look like Listing 2-7.)

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

31

4. Because we actually want to put content inside our Panorama, we’re going to
need to expand the self-closing tag that was placed there for us. You should
also add a title to your Panorama control, because this is the huge text that
appears at the top of the control. This is shown in Listing 2-7.

Listing 2-7. Expanding the Panorama Control Tag

<controls:Panorama Title="home inventory">

</controls:Panorama>

After you add this content to your page, your design surface should look like Figure 2-6.

Figure 2-6. An empty Panorama with a title property

Everything else that put on this page will be contained within this all-important tag. This is because
every Xaml page can only have one root container. In this case, we’ve chosen a Panorama, but on most
pages (and the rest of this application) will use one of the layout controls that we discussed earlier in this
chapter.

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

32

5. Let’s continue by adding some sections to our Panorama. We do this with
PanoramaItem controls. Listing 2-8 shows the four sections we’ll have in our
application.

Listing 2-8. Adding PanoramaItems to a Panorama Control

<controls:Panorama Title="home inventory">
 <controls:PanoramaItem Header="your stuff">

 </controls:PanoramaItem>
 <controls:PanoramaItem Header="categories">

 </controls:PanoramaItem>
 <controls:PanoramaItem Header="rooms">

 </controls:PanoramaItem>
 <controls:PanoramaItem Header="photos">

 </controls:PanoramaItem>
</controls:Panorama>

At this point, stop and press F5 to run your application. The emulator should spin up, and you
should see an application with a black background, and some large white text. You should be able to
click-and-drag the screen in either direction, and see that native Panorama behavior, where the screen
slides from section to section, and the Panorama title moves at a slower pace.

6. The last step we’ll take in our Panorama control is to add a background image.
We add this right alongside the PanoramaItem controls that we added before, by
defining the Background property of the Panorama, and then adding Xaml inside
it to specify the actual background image. Listing 2-9 shows what the Xaml
will look like.

Listing 2-9 . Adding a Background Image to a Panorama Control

<controls:Panorama.Background>
 <ImageBrush ImageSource="images/warehouse.jpg" Opacity=".4" />
</controls:Panorama.Background>

We have specified two properties on an ImageBrush control, ImageSource and Opacity. The
ImageSource points to an image that added to the project, and the Opacity is used because the raw image
is just a little too bright to contrast with the white text on the screen.

7. To add an image to your project, right-click on your project’s name, and
choose “Add New Folder…” and name it “images.” Now, right-click on that
new folder, and choose “Add Existing Item…” Select an image file from your
computer that you’d like to use as your backgroundct.

You always want to use an image that is 800 pixels tall, or your image will be stretched to fill the
space. The width, however, is entirely up to how many PanoramaItems you intend to use. Our
recommendation is to use an image with a minimum width of 1024 pixels, but if you’re using more than
five PanoramaItems, add approximately 200 more pixels per additional PanoramaItem. You’ll see this in
the next section.

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

33

Adjusting Background and Accent Colors
By default, your application and your emulator are both set to use the Dark background on the phone,
and a Red accent color. The Dark background includes dark backgrounds with light text. The Light
background uses white backgrounds with dark text. If you’re not familiar with the ways a user can
customize their phone, you’re going to want to become intimately close with these concepts. This is the
number-one reason why applications fail marketplace validation, and with a little attention to detail,
they can easily be avoided.

8. Open up your emulator, and press the Home button (the Windows icon) that is
on the bottom center of the device.

9. Press the circled arrow, and choose Settings from the list of applications that
appears.

10. Inside Settings, look for the “theme” option. Choose that, and you’ll discover
that you can change both background and accent color on the emulator, as
shown in Figure 2-7.

Figure 2-7. Changing the theme of the Windows Phone emulator

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

34

These are system-wide settings that apply to every default color in every application on the phone.
So far in our application, we have only used default colors, so we should be incredibly conscious of what
our application looks like under each theme. Figure 2-8 gives you a quick look.

Figure 2-8. Our home inventory application using the different themes

.As we progress further into our application, this is going to become more and more important to
pay attention to. This is because black text on black backgrounds isn’t visible, just as white text on white
backgrounds vanishes. If we stick with all default values, we should generally be safe, but the moment
we start explicitly naming colors of our controls is when we venture into more dangerous territory.

Thankfully, Expression Blend makes this easy for us to test. Open the Devices tab in Expression
Blend and you’ll find the ability to switch themes and accent colors very easily, as shown in Figure 2-9..

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

35

Figure 2-9 The Device tab in Expression Blend

Another recommendation we give to developers with actual Windows Phone devices is to set your
device to the Light Theme, because your emulator will always default to Dark. This way, as you’re testing
your applications, you’ll be certain to see the interface in both themes.

Adding Images to a Page
One of the most common controls you will use in your applications will be the Image control. You will
use it to show photos and other images to your user. In the “photos” section of our Panorama, we want to
show the user all of the photos they have added to their collection. To do this, we’ll lay the images out in
a Grid control.

11. First, we will need some images in our application. The Image element can use
PNG, JPG, and BMP files. GIF format is not supported. (In a fully-functional
application, these images would be created and saved as the user added new
items to the app. In our example, we’re going to use static images, but the user
interface will be identical.)

Inside the “photos” PanoramaItem of our MainPage.xaml file, we need to add a Grid, its Column and Row
definitions, as well as the images we just selected.

12. Listing 2-10 shows the Xaml you need, including the PanoramaItem for
reference. Add it now.

Listing 2-10. Adding a Grid and Images to a PanoramaItem

<controls:PanoramaItem Header="photos">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="110" />
 <ColumnDefinition Width="110" />
 <ColumnDefinition Width="110" />
 <ColumnDefinition Width="110" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="110" />
 <RowDefinition Height="110" />
 <RowDefinition Height="110" />
 <RowDefinition Height="110" />
 </Grid.RowDefinitions>

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

36

 <Image Source="images/laptop.jpg" Width="100" Height="100" />
 <Image Source="images/nook.jpg" Width="100" Height="100" Grid.Column="1" Grid.Row="0"
/>
 <Image Source="images/clicker.jpg" Width="100" Height="100" Grid.Column="2"
Grid.Row="0"/>
 <Image Source="images/headphones.jpg" Width="100" Height="100" Grid.Column="3"
Grid.Row="0"/>
 <Image Source="images/bag.jpg" Width="100" Height="100" Grid.Column="0" Grid.Row="1"/>
 <Image Source="images/mifi.png" Width="100" Height="100" Grid.Column="1"
Grid.Row="1"/>
 </Grid>
</controls:PanoramaItem>

As we show in Listing 2-10, we have a primary element, the Grid, as the only element inside our
PanoramaItem. We defined four columns and rows that are each 110 pixels wide and tall, respectively.
We then added six Image elements, and assigned them to individual cells of the Grid control, just as we
discussed earlier in this chapter. If you run your project, you should now have a nice layout of images
for your user, as shown in Figure 2-10.

Figure 2-10.. Our PanoramaItem populated with six images in a Grid

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

37

This simple interface makes it very easy for your user to look through their images, but we’re
somewhat restricted by the size of the screen. We would be able to show a maximum of 20 images. This
gives us an opportunity to introduce one more incredibly valuable control: the ScrollViewer. By
wrapping our Grid in a ScrollViewer control, we immediately get the ability to scroll down to a much
longer list of images. Listing 2-11 shows a larger example of our previous Grid and Image controls, using
a ScrollViewer.

Listing 2-11. Using a ScrollViewer for a Large Set of Images

<controls:PanoramaItem Header="photos">
 <ScrollViewer>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="110" />
 <ColumnDefinition Width="110" />
 <ColumnDefinition Width="110" />
 <ColumnDefinition Width="110" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="110" />
 <RowDefinition Height="110" />
 <RowDefinition Height="110" />
 <RowDefinition Height="110" />
 <RowDefinition Height="110" />
 <RowDefinition Height="110" />
 <RowDefinition Height="110" />
 <RowDefinition Height="110" />
 </Grid.RowDefinitions>
 <Image Source="images/laptop.jpg" Width="100" Grid.Column="0" Grid.Row="0" />
 <Image Source="images/nook.jpg" Width="100" Grid.Column="1" Grid.Row="0" />
 <Image Source="images/clicker.jpg" Width="100" Grid.Column="2" Grid.Row="0"/>
 <Image Source="images/headphones.jpg" Width="100" Grid.Column="3"
Grid.Row="0"/>
 <Image Source="images/mifi.png" Width="100" Grid.Column="0" Grid.Row="1"/>
 <Image Source="images/laptop.jpg" Width="100" Grid.Column="1" Grid.Row="1" />
 <Image Source="images/nook.jpg" Width="100" Grid.Column="2" Grid.Row="1" />
 <Image Source="images/clicker.jpg" Width="100" Grid.Column="3" Grid.Row="1"/>
 <Image Source="images/headphones.jpg" Width="100" Grid.Column="0"
Grid.Row="2"/>
 <Image Source="images/bag.jpg" Width="100" Grid.Column="1" Grid.Row="2"/>
 <Image Source="images/mifi.png" Width="100" Grid.Column="2" Grid.Row="2"/>
 <Image Source="images/laptop.jpg" Width="100" Grid.Column="3" Grid.Row="2" />
 <Image Source="images/nook.jpg" Width="100" Grid.Column="0" Grid.Row="3" />
 <Image Source="images/clicker.jpg" Width="100" Grid.Column="1" Grid.Row="3"/>
 <Image Source="images/headphones.jpg" Width="100" Grid.Column="2"
Grid.Row="3"/>
 <Image Source="images/bag.jpg" Width="100" Grid.Column="3" Grid.Row="3"/>
 <Image Source="images/mifi.png" Width="100" Grid.Column="0" Grid.Row="4"/>
 <Image Source="images/laptop.jpg" Width="100" Grid.Column="1" Grid.Row="4" />
 <Image Source="images/nook.jpg" Width="100" Grid.Column="2" Grid.Row="4" />
 <Image Source="images/clicker.jpg" Width="100" Grid.Column="3" Grid.Row="4"/>

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

38

 <Image Source="images/headphones.jpg" Width="100" Grid.Column="0"
Grid.Row="5"/>
 <Image Source="images/bag.jpg" Width="100" Grid.Column="1" Grid.Row="5"/>
 <Image Source="images/mifi.png" Width="100" Grid.Column="2" Grid.Row="5"/>
 <Image Source="images/laptop.jpg" Width="100" Grid.Column="3" Grid.Row="5" />
 </Grid>
 </ScrollViewer>
 </controls:PanoramaItem>

As we have shown, there’s nothing significant about the ScrollViewer’s implementation, but it gives
us the power to scroll content, both horizontally and vertically, when we need it. You will find that this
tool comes in very handy with large sets of data. In the next chapter, we’ll discuss the best ways to work
with your user’s data on a Windows Phone.

Navigating Between Pages
In its simplest form, navigating between pages in Windows Phone is as simple as navigating between
pages in a web site. We create a UI element (e.g., a Button), and on its click-event, we call a navigation
method that directs the user to the next page.

Let’s start by adding the following new pages to your application:

• Categories.xaml

• Rooms.xaml

• Items.xaml

13. To do this, right-click on your project in Visual Studio, and choose “Add New
Item…” or you can press Ctrl+Shift+A on your keyboard, as shown in
Figure 2-11.

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

39

Figure 2-11. Adding a new item to your project

14. Once you’ve done this, you’ll be presented with an Add New Item dialog box
for adding just about anything to your project, but fortunately a new Windows
Phone Portrait Page is the default option. Give it the appropriate name, in this
case Categories.xaml, and then add the other two pages the same way (shown
in Figure 2-12).

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

40

Figure 2-12. Adding a new page to our project

15. Now let’s go back to MainPage.xaml and add a Button to our page so that we
can navigate to one of these new Xaml files we created. Inside the
PanoramaItem that has the Header “categories,” let’s add a Grid and a Button
control, as shown in Listing 2-12 and Figure 2-13.

Listing 2-12. Adding a Grid and Button to Our PanoramaItem

<controls:PanoramaItem Header="categories">
 <Grid>
 <Button x:Name="CategoriesButton" Width="200" Height="100" Content="Add New" />

</Grid>

</controls:PanoramaItem>

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

41

Figure 2-13. The appearance of our new Grid and Button

By adding a Click event handler to this button, we can then execute any code we want. The
following are three ways to add a Click event handler:

a. Double-click on the button

b. Type in the event handler in the Xaml

c. Add the event handler in the code-behind (discussed later in this chapter)

16. If you double-click on the Button, Visual Studio will create the event handler
for you, naming it with the name of the button, followed by an underscore,
followed by the name of the event (as shown in Listing 2-13).

Listing 2-13 An Empty Click Event Handler Method

private void CategoriesButton_Click(object sender, RoutedEventArgs e)
{

}

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

42

17. This is where we will add our navigation code. To navigate to our
Categories.xaml page, it requires one line of code (shown in Listing 2-14).

Listing 2-14. Using the NavigationService to Move Between Pages

private void CategoriesButton_Click(object sender, RoutedEventArgs e)
{
 NavigationService.Navigate(new Uri("/Categories.xaml", UriKind.Relative));
}

You should also find that the Click event handler code was added to your Xaml Button as well, as shown
in Listing 2-15.

Listing 2-15. The Click Event Handler Added to Our Button Tag

<Button x:Name="CategoriesButton" Width="200" Height="100" Content="Add New"
Click="CategoriesButton_Click" />

18. Go ahead and run the project again (press F5). If you slide your Panorama to the
left, revealing the Categories section, you should be able to click on your
button, and navigate to the new, empty Categories page. Pressing the Back
button on the emulator should return you to your Panorama, on the same panel
that we left it. This is how the NavigationService works. We programmatically
move the user forward, and the Back button allows them to move backwards.

■ Note We can also programmatically move backwards through the “back stack” using the
NavigationService.Back() method, but with a dedicated hardware button, that will usually be unnecessary, and
most often will violate the design guidelines for the phone.

Dealing with the Back Stack
One of the bigger navigation challenges in Silverlight applications for Windows Phone is the concept of
the back stack, and how it can quickly build a maze for your user. Think of the back stack as an ever-
growing list of pages you have visited. Not only within your application, but the entire Windows Phone
operating system. When your application provides links to other pages, the back stack quickly grows
larger and larger. This is especially true when you provide any type of mechanism to get back “home.”
The following is an example navigation path in our current application.

Home Categories Add Category Categories

In that example, we navigated to our Categories page, went to another page that allows us to add a

category, and then when we finished that task, we returned the user to the Categories page so that they
could see the new item in the list. Each of these moves used code similar to that in Listing 2-14, which
means that when the user uses the Back button to navigate to the first page of our application, it’s

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

43

actually going to take three confusing clicks to get there. In short, the back stack on the phone doesn’t
match the back stack in your user’s head. Now imagine that your user decides to start entering dozens
of categories at once. They could require more than 20 Back button presses to get back home. Before
that happens, they’re going to exit your application, never to return.

Thankfully, there’s a better solution. In the Windows Phone 7.5 release, the NavigationService was
expanded to allow more flexibility in navigating through our applications.

To solve the problem presented, we can use the RemoveBackEntry method of the Navigation Service
on our Add Category page (shown in Listing 2-16). This removes the Add Category page from our page
stack, and when the user saves a value, we can use the NavigationService.Back() method to go back to
the main Categories page.

Listing 2-16. Using the RemoveBackEntry Method

if (NavigationService.CanGoBack)
 NavigationService.RemoveBackEntry();

You’ll notice that we wrapped the method call in a check to see if we can, in fact, go backwards in
the navigation stack. If there is not an available entry in the navigation stack, you will get an
InvalidOperationException and your application will crash. To remove multiple entries in the back
stack, you can call the method multiple times.

You’ll always be safer to make the CanGoBack check before calling the RemoveBackEntry method.

You should still be very cautious about modifying the default navigation behavior of your
application, because it is very easy to miss a step and get your user lost, or caught in a navigation loop,
and these are situations that will cause your application to be denied from the Marketplace every time.
We will cover the Marketplace, and our tips and tricks for navigating it in Chapter 10.

Using TextBoxes
On each of our individual category pages, we need a way to capture our user’s input. There are many
ways to capture input from a user (shake, touch, microphone, camera), but text input will
overwhelmingly be the way that we get information into our apps. Thankfully, we have some robust
power available inside the standard TextBox control, and we’re going to cover two of them: InputScope
and the Software Input Panel (SIP) or keyboard.

When users tap on a TextBox, they expect to be able to type text or numbers. This means that the
keyboard pops up every time this happens. What’s nice about this is that we can choose which keyboard
gets shown to the user by setting its InputScope property, and there’s dozens. An InputScope is simply a
definition of which type of keyboard you want to present to your user. To add a standard TextBox to our
page is pretty straightforward, as shown in the following:

<TextBox Width="400" Height="75" />

Adding an InputScope is just as simple, as follows:

<TextBox Width="400" Height="75" InputScope="EmailNameOrAddress" />

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

44

For those of you following along in Visual Studio as you read, you probably just noticed that Visual
Studio doesn’t seem to provide IntelliSense for the different InputScope values. Unfortunately, this
format doesn’t accommodate that. (You’ll find that you generally only use three or four different
InputScopes, but to explore the list, you can use this slightly more verbose format).

<TextBox Width="400" Height="75">
 <TextBox.InputScope>
 <InputScope>
 <InputScopeName NameValue="EmailNameOrAddress" />
 </InputScope>
 </TextBox.InputScope>
</TextBox>

Figures 2-14, 2-15, 2-16, and 2-17 show a few of the most common InputScope keyboards.

Figure 2-14. Default Windows Phone keyboard

Figure 2-15. EmailNameOrAddress InputScope keyboard

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

45

Figure 2-16. Number InputScope keyboard

Figure 2-17. TelephoneNumber InputScope keyboard

It’s important to remember that InputScope does not equal validation. Using the TelephoneNumber
scope, for example, will not validate that the user is actually entering a properly formatted phone
number. InputScope only defines the type of keyboard that will be presented to the user. Nonetheless,
InputScope is a great way to make data entry easier on your user, and should be applied at every
appropriate opportunity.

Using the ApplicationBar
The ApplicationBar is an important part of the Windows Phone operating system. It provides additional
screen real estate, and is distinctively a Windows Phone feature. You may have noticed the small circled
icons at the bottom of many of the applications in the Windows Phone Marketplace, and these icons are
just one part of the ApplicationBar. The icons are meant to provide easy access to the most common
functions a user would perform on the specific page. The other part of the ApplicationBar, the
ApplicationBarMenuItems, provide a way to bury other functionality that would otherwise take up your
valuable screen real estate.

It’s important to remember that the ApplicationBar runs at the operating system’s shell level, not at
your application level. This distinction is important because as you become more familiar with the
ApplicationBar, you’ll notice that it doesn’t have the same types of robust flexibility that standard
Silverlight controls offer us. It’s a bit more primitive than some of the other controls you’ve worked with
to this point, but it also has some features that are huge timesavers.

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

46

19. Let’s start by adding a simple ApplicationBar to a page. Open one of the new
pages we created for our home inventory application. Here we’re using the
Categories.xaml page, primarily because we’ve already provided a way to
navigate there in our app. At the bottom of that page, there’s a large section of
Xaml commented out. It looks like Listing 2-17.

Listing 2-17. The Default Commented-out Application Bar

<!--Sample code showing usage of ApplicationBar-->
<!--<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="True">
 <shell:AApplicationBarIconButton IconUri="/Images/appbar_button1.png" Text="Button
1"/>
 <shell:AApplicationBarIconButton IconUri="/Images/appbar_button2.png" Text="Button
2"/>
 <shell:ApplicationBar.MenuItems>
 <shell:AApplicationBarMenuItem Text="MenuItem 1"/>
 <shell:AApplicationBarMenuItem Text="MenuItem 2"/>
 </shell:ApplicationBar.MenuItems>
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>-->

20. Uncommenting this code will automatically enable the ApplicationBar,
including adjusting the d:DesignHeight property of your page. Give it a try.
The default DesignHeight value is 768, which removed 32 pixels to
accommodate the SystemTray that shows the clock, battery level, etc. When
you add the ApplicationBar, the DesignHeight drops to 696 pixels. This is
because the ApplicationBar takes up 72 pixels. There are ways to reclaim
those pixels, and we’ll show you how to do that a little later in this section.

If we look closely at the elements of the ApplicationBar in Listing 2-17, there are two specific pieces
that should stand out: an ApplicationBarIconButton and an ApplicationBarMenuItem.

The ApplicationBarIconButton
Each of the ApplicationBarIconButton elements are the icons you see at the bottom of the application If
you look at the code for the ApplicationBar, you’ve likely noticed that it’s pointing to two images that are
not currently part of your project. If you run your app, you’ll notice that it shows an X icon for each of the
ApplicationBarIconButtons (shown in Figure 2-18).

Figure 2-18. ApplicationBarIconButtons with “broken” images

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

47

We could very easily go create some images for these buttons, add them to our project, and then
reference them on those lines of code, but there is a much easier way; and it is found in Expression
Blend.

21. Open your app in Expression Blend, and navigate the “Objects and Timeline”
tree until you find those ApplicationBarIconButton objects, as shown in Figure
2-19.

Figure 2-19. The Objects and Timeline panel in Expression Blend

22. When you click on one of the ApplicationBarIconButtons, check the Properties
tab. You’ll see a simple way to set the icon and text for each one. Figure 2-20
shows what it looks like.

Figure 2-20. The ApplicationBarIconButton properties tab

If you drop down the IconUri select box, you’ll see a wealth of standard icons that you can use in
your applications. Unless you have a custom icon that you absolutely can’t live without, these icons
should serve most of your needs (you can always create your own icon and add it manually). And by
selecting one, it automatically adds the white version of that icon to your project. All of your icons
should only be white. You don’t need multiple versions because the OS can manipulate the colors of the
ApplicationBar automatically. We’ll cover this in detail later in this chapter. If you’re not following along
in Blend, here’s the list of standard icons.

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

48

Figure 2-21. List of default icons available in Expression Blend

Expression blend automatically adds a folder named “icons” to your project. If you are creating your
icon manually, we recommend that you also create an icons folder in your project.

You can right-click to add this folder, and then right-click on the folder to Add Existing Item. You
can also use Shift+Alt+A on your keyboard. You can select the icon you wish to use from your computer,
and it will add it your project. Change the path of the image in one of the IconButtons to the path of your
image, and it will now be sitting inside a white circle in the ApplicationBar.

Each of these IconButtons has an available Click event handler, and it is how you allow your user to
take an action when they tap the button. To add the Click event, you can either edit the Xaml, as shown
in Listing 2-18, or you can use the Events portion of the Properties tab in Expression Blend.

23. To access this, click the icon with the lightning bolt in the top right region of
the Properties tab, as shown in Figure 2-22.

Figure 2-22 . The Events tab in Expression Blend

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

49

 Type the name of the event handler you would like to create in the box labeled Click to add an
event handler to your ApplicationBarIconButton, as shown in Listing 2-18.

Listing 2-18. Completed ApplicationBarIconButton elements in Xaml

<shell:ApplicationBarIconButton x:Name="AddButton" IconUri="/icons/appbar.add.rest.png"
Text="add" Click="AddButton_Click"/>
<shell:ApplicationBarIconButton x:Name="DeleteButton" IconUri="/icons/appbar.delete.rest.png"
Text="delete" Click="DeleteButton_Click"/>

Note that we included a Text value for each of the two ApplicationBarIconButtons. This text value is
used below each icon, as shown in Figure 2-24. Figure 2-23 shows what this ApplicationBar will look like
on the screen by default.

Figure 2-23. The Application Bar with icons

Note the ellipses in the top right corner of Figure 2-23. Tapping that, or any unused space in the
Application Bar, will raise it slightly, showing the text values of the button, as shown in Figure 2-24. This
is also how you access the ApplicationBarMenuItems that we cover next in this chapter.

Figure 2-24. Showing the text values of the ApplicationBarIconButtons

Instead of showing another simple event handler example, we’ll use our event handler method to
change the icon of the ApplicationBarIconButton. Listing 2-19 shows what the event handler looks like.

Listing 2-19. Using an Event Handler with an ApplicationBarIconButton

private void AddButton_Click(object sender, EventArgs e)
{
 ApplicationBarIconButton button = sender as ApplicationBarIconButton;
 button.IconUri = new Uri("icons/appbar.delete.rest.png", UriKind.Relative);
}

You’ll notice that even though we gave our ApplicationBarIconButton a name in our Xaml file, we
didn’t use that name in the code-behind method. Because our IconButton is part of the ApplicationBar,
and not a Framework object, we can’t make direct references to them by name. We can, however, catch
a reference to the sender in our event handler, and assign a new IconUri. This icon swap makes sense in
many situations, but try not to overuse this. For example, perhaps you have a state your user can toggle,
like auto-save is on or off. Tapping the icon would allow them to switch the states. The buttons on the
ApplicationBar should be consistent and predictable to your users, and swapping them can cause
confusion if they’re not used appropriately.

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

50

Another important lesson for these controls is that you can have a maximum of four
ApplicationBarIconButtons. Any more than four, and the compiler will actually tell you that you have
too many items in the list. Make sure that you are focused on exposing the four (or fewer) bits of
functionality that a user will most want to perform on that page.

The ApplicationBarMenuItem
If the ApplicationBarIconButton is meant for the most common functions you’ll perform on a page,

then the ApplicationMenuBarItem is meant to give the user access to every other possible action on that
page. We commonly recommend using them for tasks like the following:

• Contact Us

• About This Software

• Check for Updates

• Reset This Application

• Log Out

• Report a Bug

These are generally features that you want to offer to your users, but filling the screen with them can
take a costly amount of space. By placing them in the ApplicationBar, you make those features readily
available, but not so prominent that they’re taking away from the main purpose of the page.

Like the IconButtons, these elements have a Click event handler that we can leverage to take the
action the MenuItem suggests. Unlike the IconButtons, we don’t get any images or icons to use. The
ApplicationBarMenuItem is specifically text only (shown in Listing 2-20).

Listing 2-20. Creating ApplicationBarMenuItems in Xaml

<shell:ApplicationBar.MenuItems>
 <shell:ApplicationBarMenuItem Text="about home inventory" Click="About_Click"/>
 <shell:ApplicationBarMenuItem Text="contact customer support" Click="Support_Click"/>
</shell:ApplicationBar.MenuItems>

You can add an unlimited number of ApplicationBarMenuItems to the list, but we highly recommend
no more than six. Anything greater than six will require the user to scroll to see the items in the list, and
there’s no visual indication that the list can scroll. If you’re putting more than six items in the
ApplicationBarMenuItems list, you’re likely trying to use this menu for something it wasn’t designed for.

Customizing the Appearance of the ApplicationBar
You may have noticed earlier that we recommended only using white versions of your icons. For some
developers, perhaps white doesn’t go with the rest of your application. Maybe you’ve got a need for the
application bar to have brown icons, or an orange background.

The ApplicationBar has a ForegroundColor and BackgroundColor property that we can use to make it
look however we choose. Listing 2-21 shows our ApplicationBar from earlier, but now rendered with
brown icons and an orange background.

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

51

Listing 2-21. ApplicationBar with Foreground and Background Colors

<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="True" ForegroundColor="#FF3F2503"
BackgroundColor="Orange">
 <shell:ApplicationBarIconButton x:Name="AddButton"
IconUri="/icons/appbar.add.rest.png" Text="add" Click="AddButton_Click"/>
 <shell:ApplicationBarIconButton x:Name="DeleteButton"
IconUri="/icons/appbar.delete.rest.png" Text="delete" Click="DeleteButton_Click"/>
 <shell:ApplicationBar.MenuItems>
 <shell:ApplicationBarMenuItem Text="about home inventory" Click="About_Click"/>
 <shell:ApplicationBarMenuItem Text="contact customer support"
Click="Support_Click"/>
 </shell:ApplicationBar.MenuItems>
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

Remember that we are still only using white icons. The ApplicationBar will automatically make the
icons and the surrounding circle the color you specify.

Next, there is an Opacity property to the ApplicationBar as well. Using this property is really only
recommended for situations where you are not using ApplicationBarMenuItems, as it becomes difficult to
read the text of the buttons when overlaid on the contents of the page. When you only have
ApplicationBarIconButtons, however, these buttons can appear to simply hover over our background
image, giving both a nice appearance, as well as the removal of that thick, chunky, dark bar at the
bottom of the page. Figure 2-25 shows an example of what this could look like.

Figure 2-25. An ApplicationBar with an opacity of zero

CHAPTER 2 � GET CONTROL: EXPLORING WINDOWS PHONE CONTROLS

52

To do this, all we need to do is specify an Opacity value for our ApplicationBar. Listing 2-22 shows
what the ApplicationBar in Figure 2-25 would look like in Xaml.

Listing 2-22. ApplicationBar with an Opacity of Zero

<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="True" Opacity="0">
 <shell:ApplicationBarIconButton x:Name="AddButton"
IconUri="/icons/appbar.add.rest.png" Text="add" Click="AddButton_Click"/>
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

We feel that this use of Opacity in your ApplicationBar gives you the opportunity to mix the
Windows Phone look-and-feel with your own application branding, which results in a nice blend of both
appearances. Give this approach serious consideration in the times that you choose to use an
ApplicationBar in your app.

Finally, you can disable ApplicationBarIconButtons when appropriate. If you have a Save button in
your ApplicationBar, disabling this button when there isn’t any new content to save might make sense
in your app. You can set this in the Xaml, using the IsEnabled = "false" property, but its more likely
you’ll want to disable the button via code. To disable an ApplicationBarIconButton with code, we need
to reference it via its position in the Buttons array of the ApplicationBar (shown in Listing 2-23).

Listing 2-23. Setting an ApplicationBarIconButton to Disabled

ApplicationBarIconButton abib = (ApplicationBarIconButton)ApplicationBar.Buttons[0];
abib.IsEnabled = false;

Disabling one of the ApplicationBar’s buttons is also very effective for actions that require some sort
of latency, like reaching out to your web services. Again, like swapping icons, this should be used
sparingly. Disabling a button can be perceived by your user as losing control of the app. Make sure that
they understand why you have disabled their buttons.

Summary
In this chapter, we showed how to use a variety of controls to build the beginnings of a home inventory
app. By using controls like the Panorama and the ApplicationBar, your users will be instantly aware of
how to navigate through your application, as they are found throughout the Windows Phone UI. Grid,
Canvas, and StackPanel controls made it easy to get our elements in the right place on the screen. We
focused primarily on creating the user interface of the application in this chapter, and in the chapters
following this one, we’ll focus on how we can make use of real data, not only from our code, but from the
camera, our user’s interactions, and a variety of sensors on the device.

C H A P T E R 3

 ■ ■ ■

53

Get the Data

Virtually every meaningful Windows Phone application deals with data from some source, and often it is
very convenient (if not downright necessary) to bind that data to one or more controls, store it away for
later use, or even stash it in a relational database.

In this chapter, you will learn about the following three most important ways we manipulate data in
Windows Phone:

• Binding data to controls

• Storing data in isolated storage

• Storing data in a local database

There are myriad sources of data. Some are local to your application, such as recording your daily
workout, and might be stored in a database or in isolated storage (both of which are covered later in this
chapter). Other data is retrieved from outside sources such as Web Services (e.g., nutritional information
retrieved from a centralized service).

Our goal in this chapter is to explore databinding and local data storage. Towards that end, we will
create an in-memory data source, a Customer object to which we will bind controls. The essentials of
databinding are the same whether you are binding to in-memory local objects or to objects obtained
over the internet.

We will also explore using isolated storage to persist data between usages of the application and
then we’ll go on to look at creating and using local databases to store data in a relational format.

Binding Data to Controls
You can put data into your controls programmatically, but that is very code-intensive and prone to
errors. Programmatically manipulated data is difficult to maintain and can cause massive changes to
your code when the data types change.

Far better is to bind data to your controls so that updates are made automatically, and you need to
write much less code.

CHAPTER 3 � GET THE DATA

54

Databinding a control to data creates a relationship so that when the data changes the control is
updated. This is known as one-way binding. Two-way binding occurs when the control which the data
is bound to itself changes (e.g., when the data is changed by a different user).

There are two key aspects to data binding: 1) the binding must be created in the control (typically in
the Xaml), and 2) the DataContext must be set. A control can be bound to any public property of an
object.

While we name the property we want the control to bind, and we do not identify the object that
contains it. We use a DataContext to specify the object with the property we want to bind to. The
DataContext is usually set at runtime while the binding is typically set at compile-time. This provides
enormous flexibility and power because any object that has the appropriate properties can be used as
the data context, and the data context can be determined at runtime.

Let’s set up an example by creating a new Windows Phone Application called Data Binding.

Creating the Data
We’ll begin by creating a new Windows Phone project.

1. Open Visual Studio and use the standard Windows Phone Application
template to open a new project.

In order to have some data to work with, let’s create a Books.cs class in which we’ll define a Book
object and create static properties to retrieve a single book or a list of books.

2. To do this, right-click on the project, choose Add Class, and name the new
class Books.cs.

3. Add four public properties to the top of the class, as follows:

public string Title { get; set; }
 public string Authors { get; set; }
 public string Publisher { get; set; }
 public string ISBN { get; set; }

4. Add a static property to return a single book with pre-filled data, as follows:

public static Book ABook
 {
 get
 {
 return new Book()
 {
 Title = "Programming Windows Phone",
 Authors = "Jesse Liberty and Jeff Blankenburg",
 ISBN = "143023816X",
 Publisher = "Apress"
 };
 }
 }

5. Finally, add a property to return a list of Book object so that we can populate a
list box, as follows:

CHAPTER 3 � GET THE DATA

55

public static List<Book> Books
{
 get
 {
 return new List<Book>()
 {
 new Book()
 {
 Title = "Programming Windows Phone",
 Authors = "Jesse Liberty and Jeff Blankenburg",
 ISBN="143023816X",
 Publisher = "Apress"
 },
 new Book()
 {
 Title = "Programming Reactive Extensions and LINQ",
 Authors = "Jesse Liberty and Paul Betts",
 ISBN = "1430237473",
 Publisher = "Apress"
 },
 new Book()
 {
 Title = "Programming Windows 8",
 Authors = "Jesse Liberty",
 ISBN = "TBD",
 Publisher = "Apress"
 },
 };
 }
}

Now we’re ready to create a couple TextBox controls which we’ll bind two properties of a book to.

Creating Controls
Since we want to layout the controls, let’s switch over to Expression Blend, being sure to save all the files
we’ve created so far.

1. Open Expression Blend.

2. Set the title to DATABINDING and the page name to binding.

3. Click in the left margin and create two small rows to hold the two controls we’ll
be binding to. Drag a TextBlock onto the first row, name it “Title” and center
it. Copy and paste the TextBlock and drag the copy into row 2, making sure
that its margins are all zero and it is set to be centered both vertically and
horizontally. Set its name to ISBN. Save the file and switch back to Visual
Studio.

You’ll be prompted to update Visual Studio with the changes that were made in Expression Blend;
click “Yes to All.”

CHAPTER 3 � GET THE DATA

56

Switch to MainPage.xaml and click on the first TextBlock. Notice that the associated TextBlock in
the Xaml is highlighted. This is where we want to add the databinding code. Find the Text property and
modify it so that it looks like the following:

<TextBlock
 x:Name="Title"
 HorizontalAlignment="Center"
 Margin="0"
 TextWrapping="Wrap"
 d:LayoutOverrides="Height"
 VerticalAlignment="Center"
 Text="{Binding Title}" />

The keyword Binding indicates that the Text in the TextBox will come from the property of some

object (to be named at a later time), and the word Title names that property. Notice that nowhere do
we indicate which object will have that property to bind to. This will be handled by the DataContext, as
you’ll see in just a moment.

Modify the second TextBlock so that it binds to the ISBN property of the yet-to-be-named object.

Adding DataContext
Now that you’ve specified which properties are to be bound to our TextBox, you must provide the object
that has these properties. This you can do at compile time (by writing it in the Xaml) or, more
commonly, at runtime in the code-behind. Open MainPage.xaml.cs and in the constructor add the
following line:

DataContext = Book.ABook;

This sets the DataContext for the current page to what is returned from the static property ABook. If
you run the application, you’ll find that the TextBlocks have been populated with the Title and ISBN
respectively.

To review, briefly, the Binding syntax says, “There is a property of this name that has your data. I’ll
let you know which object that has this property to use later,” and the DataContext says, “Remember I
gave you properties to bind to? This is the object with those properties.”

The bound data will be displayed in a list box. Let’s add that to the page now.

ListBoxes and DataTemplates
The list box provides a convenient way to display data from more than one object at a time. In this case,
we’ll use it to show the name and ISBN of the books in our collection.

4. Add a ListBox to the third (much larger) row on your page

5. Set its horizontal and vertical alignments to stretch

6. Set its margins to zero

7. Set its width and height to auto (it will take up all the room in the third row)

8. Set its name to BooksList

CHAPTER 3 � GET THE DATA

57

You can indicate to the ListBox that it is to draw its contents from the static property Books from the
Book class by assigning the list to the ListBox’s ItemsSource property. To do so, all you need do is add
the following line in the constructor:

BooksList.ItemsSource = Book.Books;

The problem is that while the list box knows it is to get its data from the list of Book objects, it has no
way to know which of the three properties to display, and so it just displays the type of each object. To
fix this, you’ll need to create a DataTemplate—a template that teaches the list box how to layout the sub-
controls that will display the contents of the list.

<ListBox
 Grid.Row="2"
 HorizontalAlignment="Stretch"
 Margin="0"
 Name="BooksList"
 VerticalAlignment="Stretch"
 Width="Auto"
 Height="Auto"">

 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel
 Margin="0,0,0,17"
 Width="Auto"
 Height="78">
 <TextBlock
 Text="{Binding Title}"
 TextWrapping="Wrap"
 />
 <TextBlock
 Text="{Binding ISBN}"
 TextWrapping="Wrap"
 Margin="12,-6,12,0"
 />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>

Notice that the ListBox opening and closing tags enclose the DataTemplate. Within the
DataTemplate can be exactly one control; in this case the StackPanel. Fortunately, StackPanel can have
multiple controls and acts in this case as the container for two TextBlocks. The TextBlocks bind to the
data in exactly the same way we saw earlier. The difference is that the DataContext iterates through each
book in the list, providing the Title and ISBN for each in turn.

Binding Data with the DataBound Template
Both Visual Studio and Expression Blend offer a special template to get you started with DataBound
applications, as shown in Figure 3-1.

CHAPTER 3 � GET THE DATA

58

Figure 3-1. Template for DataBound application

This template does so much of the primary work of databinding that it is well worth exploring what
you get right out of the box.

The first thing to notice is that there is data available at design time (while you are creating the form)
rather than only being available at runtime. We’ll take a look at how this is done in just a moment.

The out-of-the-box application consists of two pages: the list (MainPage.xaml) and the details page
(DetailsPage.xaml).

Let’s start with MainPage.xaml and find a few things to point out.
The design-time DataContext is set in the heading.

d:DataContext="{d:DesignData SampleData/MainViewModelSampleData.xaml}"

• The DataTemplate TextBlocks use styles to make the individual entries stand out.

<TextBlock

 Text="{Binding LineOne}"

 TextWrapping="Wrap"
 Style="{StaticResource PhoneTextExtraLargeStyle}" />

• The ItemsSource is bound in the ListBox Xaml declaration rather than in code, and while

they’re at it, the SelectionChanged event handler is registered.

CHAPTER 3 � GET THE DATA

59

<ListBox
 x:Name="MainListBox"
 Margin="0,0,-12,0"

 ItemsSource="{Binding Items}"
 SelectionChanged="MainListBox_SelectionChanged">

The key thing to note on the MainPage.xaml.cs code-behind page is that when the selection

changes, the application navigates to a new page (the details page) passing in the selected index.

NavigationService.Navigate(new Uri("/DetailsPage.xaml?selectedItem=" +
MainListBox.SelectedIndex, UriKind.Relative));

The selected index is passed in as an argument to the Uri for the details page.

new Uri("/DetailsPage.xaml?selectedItem=" + MainListBox.SelectedIndex,
UriKind.Relative));

This causes navigation to the DetailsPage. Take a look at OnNavigatedTo in DetailsPage.xaml.cs to
see how the value that was passed in is fished out of the QueryString property.

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 string selectedIndex = "";
 if (NavigationContext.QueryString.TryGetValue("selectedItem",
 out selectedIndex))
 {
 int index = int.Parse(selectedIndex);
 DataContext = App.ViewModel.Items[index];
 }
}

Once we have the selectedIndex, we use that as an index into the Items collection, allowing us to
retrieve the complete associated record, and then to bind various fields to its properties.

Before we leave the topic of databinding, we should mention that it is also possible to bind one
control to the value of another (see sidebar on Binding to an Element).

■ Note Not only is it okay, it is recommended to start with and modify the code in this template for your own
purposes.

CHAPTER 3 � GET THE DATA

60

BINDING TO AN ELEMENT

In addition to binding to data, you can bind one control to another. There are a number of common ways
of doing this, but let’s examine how we might bind a slider to the opacity of a control on the page. To do
this, open Expression Blend and create a new application named ElementBinding, using the standard
Phone template.

1. Delete the PageName and set the application name to ElementBinding.

2. Click the rectangle in the toolbar, and drag the rectangle onto the Design surface.
Right-click on the rectangle in the Objects and Timeline, and select group into
border. Set the border to 3 pixels, and set the border color to white
(255,255,255).

3. Open the chevron and search for the slider. Make sure the ContentPanel is the
selected panel and double-click the slider onto the grid. Use the Selection tool to
move the slider next to the rectangle and size it so that it is as tall as the
rectangle.

4. Name the rectangle MyRect and name the slider MySlider. Set the border on the
slider to white and set the orientation to vertical.

5. We want the slider to run from 0 to 1, so set the maximum to 1, the large change
to 0.1 and the small change to 0.01.

6. Now it is time to tie the opacity of the rectangle to the slider. Click on the
advanced properties tab next to opacity on the rectangle and select Element
Property Binding. The cursor will change, as shown in Figure 3-2.

Figure 3-2. Dropping the Element Binding on the slider

7. Hover over the slider and click, tying the Opacity property of the rectangle to the
slider. A dialog box will pop up and ask which property of the slider you want to
bind to (notice that it defaults to the property we want, Value. Click to accept
and—Presto! The elements are bound. Hit F5 to test. Move the slider up and
down and note the opacity of the rectangle as it changes with the slider.

CHAPTER 3 � GET THE DATA

61

Storing Data in Isolated Storage
An essential ingredient in sstoring the state and other data of your application, especially when your
application may be tombstoned (see Chapter 4) or, even more extreme, closed, is the ability to create
persistent storage—that is to write to the disk so that you can retrieve your data when the application
resumes or is restarted.

This is the purpose of isolated storage. The term is nearly self-explanatory; it is persistent sstorage
that is iisolated from the storage used by all other applications.

There are a number of ways to store data to isolated storage, but it boils down to kkey/value pairs.
You can store these pairs in the ApplicationSettings collection of the IsolatedStorageSettings object.

This is, essentially, a ddictionary that is unique to your application and that is stored on the device
securely isolated from all other similar storage.

To see this at work, create a new application with two TextBlocks as prompts, two TextBoxes (Key
and Value), a Button (Save) and a ListBox (KeysAndValues), as shown in Figure 3-3.

Figure 3-3. Keys and Values

To begin, you’ll need a member variable to represent isolated storage, as follows:

private IsolatedStorageSettings _isoSettings;

CHAPTER 3 � GET THE DATA

62

IsolatedStorageSettings will not be recognized. Click Control-dot (that is, control-period) to bring
up the IntelliSense assistant and accept the following new using statement:

using System.IO.IsolatedStorage;

Initialize the _isoSettings private member variable in the constructor, as follows:

_isoSettings = IsolatedStorageSettings.ApplicationSettings;

There are two events that you want to capture:

• The click of the Save button

• The SelectionChanged event on the list box

The SSave button saves new key/value pairs or updates existing key/value pairs.
Clicking an entry in the list raises SSelectionChanged, which makes the selected key current and

populates the Key and Value TextBoxes
Let’s start with the Save_Click event handler. The tasks here are as follows:

9. Make sure we have both a key and a value to add

10. See if the key exists, if so update it

11. If the key does not exist, add it

The following is the code for the event handler:
private void Save_Click(object sender, RoutedEventArgs e)

 {
 if (
 String.IsNullOrEmpty(Key.Text) ||
 String.IsNullOrEmpty(Value.Text))
 {
 return;
 }

 if (_isoSettings.Contains(Key.Text))
 {
 _isoSettings[Key.Text] = Value.Text;
 }
 else
 {
 _isoSettings.Add(Key.Text, Value.Text);
 }

 RebindListBox();
 }

Adding to or updating the isolated storage itself is as simple as managing a dictionary; the actual
business of writing to disk is handled for you by the IsolatedStorageSettings object.

Notice that the method ends with a call to RebindListBox—the job of that method is just to rebuild
the list box based on the keys and values in isolated storage.

CHAPTER 3 � GET THE DATA

63

private void RebindListBox()
 {
 Value.Text = Key.Text = String.Empty;
 KeysAndValues.Items.Clear();
 foreach (string key in _isoSettings.Keys)
 {
 ListBoxItem lbi = new ListBoxItem();
 string newKey = key + ": " + _isoSettings[key];
 KeysAndValues.Items.Add(newKey);
 }
 }

 I’ve chosen to list both the key and its value. This makes the workings of the project a bit easier to
understand but it does complicate, slightly, the handler for clicking on an entry in the list box.

private void KeysAndValues_SelectionChanged(
 object sender,
 SelectionChangedEventArgs e)
{
 if (e.AddedItems.Count < 1)
 return;
 string selected = e.AddedItems[0].ToString();
 string key = selected.Substring(
 0, selected.IndexOf(":"));
 Key.Text = key;
 Value.Text = _isoSettings[key].ToString();
}

 The small amount of extra work is to isolate the key from the colon and the value; with this in hand,
we can proceed to populate the Key TextBox as well as the Value TextBox.

■ Note After you add a key/value pair, you can change applications or stop debugging altogether and then restart
to find the values have been saved (persisted) and are restored just as you left them.

Storing Data in a Local Database
Windows Phone supports a full SQL CE database that you interact with using LINQ to SQL, a SQL-like
query syntax with objects. This is a fairly straightforward syntax for manipulating data in the database
(for more on LINQ to SQL we recommend Programming with Reactive Extensions and LINQ (Apress,
2011) by Jesse Liberty and Paul Betts.)

To get started, let’s build a dead-simple example that hardwires two objects and places them into
the database, and then extracts them and shows their values in a list box.

The program will store information about Books, including the Author(s) and the Publisher, and
then display that information on demand.

CHAPTER 3 � GET THE DATA

64

Building the UI
The initial UI consists of a button that will create two books, a button that will retrieve the two books and
a list box that will display the two books, as follows:

<Grid
 x:Name="ContentPanel"
 Grid.Row="1"
 Margin="12,0,12,0">
 <Grid.RowDefinitions>
 <RowDefinition
 Height="1*" />
 <RowDefinition
 Height="1*" />
 <RowDefinition
 Height="4*" />
 </Grid.RowDefinitions>
 <Button
 Name="CreateBook"
 Content="Create Books"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"
 Margin="0" />
 <Button
 Name="ShowData"
 Content="Show Books"
 Grid.Row="1"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"
 Margin="0" />
 <ListBox
 Name="BooksLB"
 Grid.Row="2"
 VerticalAlignment="Stretch"
 HorizontalAlignment="Stretch"
 Margin="20">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <!-- Details elided -->
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
</Grid>

■ Note For now, we’ve left out the details of the DataTemplate; we’ll return to that shortly.

CHAPTER 3 � GET THE DATA

65

Accessing Local Storage
We begin the work of managing the data by creating a DataContext.
Add a reference to System.Data.Linq and add these three using statements to the top of every

related file.

using System.Data.Linq;
using System.Data.Linq.Mapping;
using Microsoft.Phone.Data.Linq.Mapping;

With these in place we can create the BooksDataContext, which will consist of three Tables and a
constructor that passes its connection string to the base class:

public class BooksDataContext : DataContext
{
 public Table<Book> Books;
 public Table<Author> Authors;
 public Table<Publisher> Publishers;
 public BooksDataContext(string connection)
 : base(connection) { }
}

As written, the program will not compile because we have not yet defined the Book, Author, and
Publisher classes. Let’s do so now, and we’ll do so with an understanding of relational data and
normalization; that is, we’ll have the Book class keep an ID for each author and for each publisher,
rather than duplicating that information in each instance of Book.

This approach is informed by relational database theory, but is good class design in any case.

■ Note We make the simplifying assumption that every book has but a single author.

The following code appears in Books.cs:

[Table]
public class Book
{
 [Column(IsPrimaryKey = true)]
 public string BookID { get; set; }

 [Column]
 public string Title { get; set; }

 [Column]
 public string Author { get; set; }

 [Column]
 public string Publisher { get; set; }

 [Column]
 public DateTime PublicationDate { get; set; }
}

CHAPTER 3 � GET THE DATA

66

Table and Column are LINQ to SQL mapping attributes that tell LINQ to SQL how to map properties
in your class to Columns in the tables. The following are the contents of Author.cs and Publisher.cs:

[Table]
public class Author
{
 [Column(IsPrimaryKey = true)]
 public string AuthorID { get; set; }

 [Column]
 public string FirstName { get; set; }

 [Column]
 public string LastName { get; set; }

}

 [Table]
 public class Publisher
 {
 [Column(IsPrimaryKey = true)]
 public string PublisherID { get; set; }

 [Column]
 public string Name { get; set; }

 [Column]
 public string City { get; set; }

 [Column]
 public string Url { get; set; }
 }

We create an instance of the database in MainPage.xaml.cs, in the constructor, where we also wire-
up event handlers for the two buttons.

■ Note Event handlers can be wired up in the Xaml or in the constructor. It is a matter of personal taste.

public MainPage()
{
 InitializeComponent();
 DataContext db =
 new BooksDataContext("isostore:/bookDB.sdf");
 if (!db.DatabaseExists())
 db.CreateDatabase();

 CreateBook.Click +=
 new RoutedEventHandler(CreateBook_Click);
 ShowData.Click +=
 new RoutedEventHandler(ShowData_Click);

}

CHAPTER 3 � GET THE DATA

67

Notice the syntax for storing our database file (bookDB.sdf) inside of isolated storage. With the
DataContext that we get back, we create the new database.

When CreateBook is clicked the event handler is called, and at this time we want to create two
books. Since our books have a publisher and different authors, we must create those objects first (or
we’ll refer to a publisher or author ID that doesn’t exist). Let’s start with the creation of the publisher.

BooksDataContext db =
 new BooksDataContext("isostore:/bookDB.sdf");

Publisher pub = new Publisher()
{
 PublisherID = "1",
 Name = "Apress",
 City = "Acton",
 Url = "http://Apress.com"
};

db.Publishers.InsertOnSubmit(pub);

This code gets a new reference to the database, and then instantiates a Publisher object, initializing
all the Publisher fields. The last line instructs the database context to insert this record when the Submit
command is called. Before calling the Submit command, however, we’ll create a few author records.

Author auth = new Author()
{
 AuthorID = "1",
 FirstName = "Jesse",
 LastName = "Liberty"
};

db.Authors.InsertOnSubmit(auth);

auth = new Author()
{
 AuthorID = "2",
 FirstName = "Paul",
 LastName = "Betts"
};

db.Authors.InsertOnSubmit(auth);

auth = new Author()
{
 AuthorID = "3",
 FirstName = "Jeff",
 LastName = "Blankenburg"
};

db.Authors.InsertOnSubmit(auth);

With these four records ready to be submitted, we call SubmitChanges on the databaseContext.

db.SubmitChanges();

CHAPTER 3 � GET THE DATA

68

We’re now ready to create the two book objects. Once again we instantiate the C# object and
initialize its fields, and once again we mark each instance to be inserted on submission.

db = new BooksDataContext("isostore:/bookDB.sdf");

Book theBook = new Book()
{
 BookID = "1",
 Author = "2",
 Publisher = "1",
 PublicationDate = DateTime.Now,
 Title = "Programming Reactive Extensions"
};
db.Books.InsertOnSubmit(theBook);

theBook = new Book()
{
 BookID = "2",
 Author = "3",
 Publisher = "1",
 PublicationDate = DateTime.Now,
 Title = "Migrating to Windows Phone"
};
db.Books.InsertOnSubmit(theBook);

db.SubmitChanges();

The two books are now in the database, and we can prove that to ourselves by implementing the
event handler for the ShowData button.

private void ShowData_Click(object sender, RoutedEventArgs e)
{
 BooksDataContext db =
 new BooksDataContext("isostore:/bookDB.sdf");
 var q = from book in db.Books
 orderby book.Title
 select book;
 BooksLB.ItemsSource = q;
}

Once again we create a new DataContext, but pointing to the same local database. We now execute
a LINQ Query against the database, obtaining every record in the Books table, ordered by Title. We set
the resulting IEnumerable (q) as the ItemsSource property for the BooksListBox. This then becomes the
DataContext for the databinding in the DataTemplate of the list box.

<ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel>
 <TextBlock
 Text="{Binding Title}" />
 <StackPanel
 Orientation="Horizontal">

CHAPTER 3 � GET THE DATA

69

 <TextBlock
 Text="Author ID: " />
 <TextBlock
 Text="{Binding Author}" />
 </StackPanel>
 <StackPanel
 Orientation="Horizontal">
 <TextBlock
 Text="Published: " />
 <TextBlock
 Text="{Binding PublicationDate}" />
 </StackPanel>
 <TextBlock
 Text="------------------" />
 </StackPanel>
 </DataTemplate>
</ListBox.ItemTemplate>

Adding Relationships
It turns out that any given book can have only one publisher, but a publisher, of course, can have many
books. We can model this by modifying the Book class.

[Table]
 public class Book
 {
 [Column(IsPrimaryKey = true)]
 public string BookID { get; set; }

 [Column]
 public string Title { get; set; }

 [Column]
 public string PublisherID { get; set; }

 private EntityRef<Publisher> _publisher;

 [Association(
 OtherKey = "PublisherID",
 ThisKey = "PublisherID",
 Storage = "_publisher")]
 public Publisher BookPublisher
 {
 get
 {
 return _publisher.Entity;
 }
 set
 {
 _publisher.Entity = value;

CHAPTER 3 � GET THE DATA

70

 PublisherID = value.PublisherID;
 }
 }

 [Column]
 public DateTime PublicationDate { get; set; }

 }

We have a public PublisherID that allows us to link this Book’s publisher to the ID of a publisher in
the database. In addition, we have a private Entity Reference back to the instance of the Publisher
class. Finally, we add the public property BookPublisher, adorning it with the Association attribute.
In this case we’ve added the following three properties to the attribute:

• OtherKey: The key as it is represented in the publisher class

• ThisKey: The foreign key in the Book class

• Storage: The backing variable for the property

Since we are only going to follow the association from the Book to the Publisher, that’s all we have to
do to the class.

We are ready to instantiate a couple publishers.

BooksDataContext db = new BooksDataContext("isostore:/bookDB.sdf");
Publisher pub = new Publisher()
{
 PublisherID = "1",
 Name = "Apress",
 City = "Acton",
 Url = "http://Apress.com"
};
db.Publishers.InsertOnSubmit(pub);

Publisher pub2 = new Publisher()
{
 PublisherID = "2",
 Name = "O'Reilly",
 City = "Cambridge",
 Url = "http://Oreilly.com"
};
db.Publishers.InsertOnSubmit(pub2);

With these we can instantiate a Book object. Notice that we handle the relationship from an object
perspective, making an instance of the publisher a member of the Book object (tying this back to the
EntityRef).

Book theBook = new Book()
{
 BookID = "1",
 BookPublisher = pub,
 PublicationDate = DateTime.Now,
 Title = "Programming Reactive Extensions"

CHAPTER 3 � GET THE DATA

71

};
db.Books.InsertOnSubmit(theBook);

We can make as many Book instances as needed, assigning either pub or pub2 (or other publishers
we created) to each Book.

theBook = new Book()
{
 BookID = "2",

 BookPublisher = pub,

 PublicationDate = DateTime.Now,
 Title="Migrating to Windows Phone"
};
db.Books.InsertOnSubmit(theBook);

theBook = new Book()
{
 BookID = "3",

 BookPublisher = pub2,

 PublicationDate = DateTime.Now,
 Title = "Programming C#"
};
db.Books.InsertOnSubmit(theBook);

Querying the Local Database
When we are ready to display the Books, wwe will execute a query obtaining the Books, ordered by
Title. We can then assign the results to the ItemsSource property of the ListBox.

var q = from b in db.Books
 orderby b.Title
 select b;

BooksLB.ItemsSource = q;

Rather than retrieving all the books, it is more efficient to create a temporary class with just the
fields we need.

var q = from b in db.Books
 orderby b.Title
 select new
 {
 b.Title,
 b.PublicationDate,
 b.BookPublisher
 };

BooksLB.ItemsSource = q;

CHAPTER 3 � GET THE DATA

72

Anonymous Types are internal and by default Windows Phone does not allow reflection into
internal types. To allow this anonymous type to provide data via binding you need to add the following
line to AssemblyInfo.cs:

[assembly: InternalsVisibleTo("System.Windows")]

We need to modify the Xaml to bind to the publisher as a reference within the Book object (we do
this with the Path property). The following is the relevant excerpt:

<ListBox
 Name="BooksLB"
 Grid.Row="2"
 VerticalAlignment="Stretch"
 HorizontalAlignment="Stretch"
 Margin="20">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel>
 <TextBlock
 Text="{Binding Title}" />
 <StackPanel
 Orientation="Horizontal">
 <TextBlock
 Text="Published: " />
 <TextBlock
 Text="{Binding PublicationDate}" />
 </StackPanel>
 <TextBlock
 Text="{Binding Path=BookPublisher.Name}" />
 <TextBlock
 Text="------------------" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

Performance is always an issue with databases, and the Windows Phone DB is no exception. Let’s
take a look at some simple steps you can take to enhance the performance of your application.

Database Performance Optimization
Perhaps the easiest performance optimization available in Windows Phone programming is to add a
version control column to your class. The following is all you have to do:

[Table]
public class Book
{
 [Column(IsPrimaryKey = true)]
 public string BookID { get; set; }

 [Column]
 public string Title { get; set; }

CHAPTER 3 � GET THE DATA

73

 [Column]
 public string Publisher { get; set; }

 [Column]
 public DateTime PublicationDate { get; set; }

 [Association(OtherKey = "AuthorID")]
 public EntitySet<Author> BookAuthors { get; set; }

 [Column(IsVersion=true)]
 private Binary _version;

}

By adding the Binary _version column, you can improve performance on your DataBase application
by up to 700 percent. Here’s why: LINQ to SQL is based on optimistic concurrency, which means that
possible inconsistencies caused by concurrent users updating the database is checked for only when you
submit the transaction (there is no prophylactic record locking). By default, LINQ to SQL submits your
changes to the database query processor, which does the consistency check.

The performance enhancement comes by ignoring the query processor and working directly with
the tables. But this means that there has to be another way to determine if the record has changed since
the previous query. Enter the version column; if this has not changed, then the entire transaction is safe.
If it has changed, of course, then LINQ to SQL will throw a ChangeConflictException, but it would have
done that anyway.

In short, by adding a version column, only one column needs to be tested, and performance gets a
big boost.

Summary
In this chapter you saw how to bind data to controls and how to bind one control to another. You also
saw how to store data in isolated storage, which excels at storing key/value pairs. Finally, you saw how to
use LINQ to SQL to create and modify a local database.

In the next chapter, we’ll take a look at the application lifecycle and you’ll see isolated storage put to
work.

C H A P T E R 4

 ■ ■ ■

75

Get a Life

If your application were the only one available on a phone, your life as a developer would be much
easier. Not so much for the user, however. Users want to equip their phones with a variety of apps. They
want to be able to start yours, switch to another, come back to yours, switch away again, and then shut
down the phone, treating the application lifecycle with happy abandon.

To make sure your applications behave appropriately in this environment, you must be able to deal
with any change that might occur in its state. In this chapter, you will learn what the stages are in the
lifecycle of a Windows Phone application and how you can enhance the experience of your users as your
applications moves through them. You will also see what you have to do so that your application
supports Fast Application Switching (FAS) and background processes, and generally is seen as
responsive.

Understanding the Application Lifecycle
Your application moves through discreet stages from the time it is launched until the time it is closed. It
begins with being activated, moves into the Run state, and from there may become dormant,
“tombstoned” or may be closed.

Figure 4-1 shows the key stages of the application lifecycle.

CHAPTER 4 � GET A LIFE

76

Figure 4-1. The application lifecycle

The following are the principle stages of a Windows Phone 7 application:

Application Launching: The application is starting up. This is your opportunity
to do any application-wide setup.

Running: Your application is the foreground application, running in its normal
state.

Dormant: Your application has been moved into the background; state is
maintained but the application is no longer active and resources have been
deal located.

Tombstoned: The phone needed your applications memory and so the
application’s state is no longer preserved (unless you have saved that state to,
e.g., isolated storage).

Closing: The application has been shut down by the user (or by the system).
This is your opportunity to do any application-wide clean up.

CHAPTER 4 � GET A LIFE

77

When the user starts your application, and before it is running, two events are fired: Application
Launching and Page On Navigated To. You are free to hook into either event and take whatever action
you wish to, to set up your application or your page, respectively. When the application is running, all is
normal and good and right with the world.

 The user can leave your application in a number of ways, but the key ways are either to close your
application (by hitting the back key from your first page) or by launching another application (e.g., from
the start menu).

To be explicit; if the user hits the back key from the first page of your application, your application
will close. If, however, the user hits the start key and then launches another application, your
application will move to the Dormant state.

In the first case, in which the user closes your application, you receive the PageOnNavigatedFrom
event to signal that you are leaving the page, and the Application Closing event to signal that the
application is going away.

In the second case, in which the user launches a new application, you will still receive the
PageOnNavigatedFrom event, but instead of Application Closing, you’ll receive Application Deactivated.
At this point you want to save anything you might need if the application is either tombstoned or made
dormant. We’ll cover tombstoning in just a moment.

When you are first deactivated, you will very likely be put in the Dormant state. In this condition, all
your memory values are intact, nothing has been lost; and if the user switches back to your application,
you will be resumed nearly instantly (assuming you’ve written the program correctly, which this chapter
will explain).

If you are dormant for too long, or if too many applications are made dormant, then your
application may be tombstoned. At this point all the memory variables are destroyed, and if the user
returns to the application, there will be a noticeable delay (the screen will say “resuming….”) while your
application retrieves the memory variables from Page State and from Isolated Storage.

It is also possible that your user will not return to your application for a long time, in which case at
some point you will go from tombstoned to deactivated. The next time the user comes to your
application it will be as if the application started afresh, there will be (and should be) no illusion that the
user is restoring a session.

■ Note The diagram does not show the direct return from tombstoned to closed… consider that an implicit arrow.

Fast Application Switching
When you are restored from the Dormant state you do not want to take the time to restore state—it is not
necessary because state is preserved in the Dormant state. When you are restored from tombstoning,
however, you must restore state as state is not preserved when you are tombstoned. Testing for how
you are restored, and not restoring state when you don’t need to is referred to as Fast Application
Switching because it allows the application to resume immediately.

You can test for how you are restored in the Application_Activated event handler (in App.xaml.cs).

CHAPTER 4 � GET A LIFE

78

private void Application_Activated(
 object sender, ActivatedEventArgs e)
{
 if (e.IsApplicationInstancePreserved)
 {
 // do not restore application state
 }
 else
 {
 // restore application state
 }
}

If you are returning from Dormant state, the IsApplicationInstancePreserved flag will be true, and
you do not have to and do not want to restore state; your state is intact. Not restoring state under these
conditions will make your application much more responsive when the user switches away and then
switches back.

Managing State
It can be confusing and difficult to manage all of this state until you become comfortable with the
various dictionaries available to you. The following are three key dictionaries that you can use to
manage the state of the application:

Application State: A key/value dictionary used for storing application-wide
state.

Page State: A key/value dictionary used for storing page state. Both Application
and Page State dictionaries are held in memory and released if the application
is closed.

Isolated Storage: This is “disk”–based; the values stored in Isolated Storage are
preserved even if the application is closed.

Typically, you’ll use Application State to allow for the restoration of application state after being
tombstoned. Similarly, you’ll use Page State to allow for the restoration of the state of the current page
after being tombstoned. Isolated Storage is used to restore any values that should be available not only
after being tombstoned, but after the application is closed and then reopened.

Page State
You will want to manage Page State not only when the user navigates away from your application, but
when the user navigates away from the page. After all, if the user fills in some fields, navigates to a
second page, and then hits the back button to return to the first page, he has every reason to expect that
the fields will still be filled in properly. Let’s take a look at how that would work in a simple example.

Create a new Windows Phone application and on MainPage.xaml change ContentPanel to be a
StackPanel and add a Button, a TextBlock, and a TextBox, as shown in Listing 4-1.

CHAPTER 4 � GET A LIFE

79

Listing 4-1. Changes to MainPage.xaml

<StackPanel
 x:Name="ContentPanel"
 Grid.Row="1"
 Margin="12,0,12,0">
 <Button
 Name="GoToPage2"
 Content="Go to page 2"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 <TextBlock
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Text="Page Data:" />
 <TextBox
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Width="350"
 Name="PageData"
 Text="" />
</StackPanel>

 The GoToPage2 button is used to navigate to a second page. Add the event handler for the button
to MainPage.xaml.cs, which is shown in Listing 4-2.

Listing 4-2. •

••• •••••

•

••• •••••

•

••• •••••

•

••• •••••

•

••• •••••

•

••• •••••

•

••• •••••

•

••• •••••

•

•• •••••

•

• •••••

•

•••••

•

••••

•

•••

•

••

•

•

•E•••••H••••• •••• ••• •• ••

Private void GoToPage2_Click(object sender, RoutedEventArgs e)
{
 NavigationService.Navigate(
 new Uri("/Page2.xaml", UriKind.Relative));
}

When you navigate away from MainPage.xaml, the OnNavigatedFrom method is called. If the
navigation is backwards, the page will be disposed of, and there is no need to store the state. Otherwise,
we’ll store the state in the Page State object, which is a dictionary that will persist through being dormant
and being tombstoned, but not through the application being terminated, as shown in Listing 4-3.

CHAPTER 4 � GET A LIFE

80

Listing 4-3. ••••• ••• •••• ••• ••• ••• •• ••• •••• ••• •• ••••••••••

protected override void OnNavigatedFrom(
 System.Windows.Navigation.NavigationEventArgs e)
{
 base.OnNavigatedFrom(e);

 if ((e.NavigationMode !=
 System.Windows.Navigation.NavigationMode.Back))
 {

 State["PageData"] = PageData.Text;

 }
}

The important line in Listing 4-3 is shown in bold; it is when we save the text from PageData into the
State dictionary under the key “PageData.”

When we navigate to the page, we need to differentiate between a new page and one that is being
restored after having been dormant. Earlier you saw Fast Application Switching supported by using the
IsApplicationInstancePreserved flag. An alternative is to create a Boolean flag _newPage, which we’ll
initialize to false and set to true in the constructor.

The key fact is that the flag, _newPage will be the following:

a. True when we first navigate to the page

b. True when we return to the page by pressing the back key from Page2

c. True when we come back to the page after being tombstoned

d. False when we come back to the page after being dormant

This is exactly what we want. We want to restore state in the first three conditions, but not when we
return from being dormant, because when Dormant state was not lost.

1. You can test this by creating the second page (just create a new page named
Page2.xaml) and then by running the application.

2. Put a break point on the test of the flag, as follows:

If (_newPage)

3. Then drag the flag to the debugger watch window so you can easily see its
value.

4. Run the application and navigate to Page2, and then use the back key to
return. You should observe that the flag is true.

5. Next, click on the Windows button (to launch a new application) and then the
back key (to resume your application).

6. Because your application was dormant, the value is false, and there is no need
to restore state.

7. Finally, run your application and hit the back key to back out of and exit the
application. Then restart and note that the flag is true again.

CHAPTER 4 � GET A LIFE

81

If you want to test the result with tombstoning, see the upcoming Debugging with Tombstoning
section.

Listing 4-4 is the complete source code for Page1.xaml.cs.

Listing 4-4. Page1.xaml.cs

using System;
using System.Windows;
using Microsoft.Phone.Controls;

namespace PageState
{
 public partial class MainPage : PhoneApplicationPage
 {
 private bool _newPage;

 public MainPage()
 {
 InitializeComponent();
 _newPage = true;
 GoToPage2.Click += new RoutedEventHandler(GoToPage2_Click);
 }

 void GoToPage2_Click(object sender, RoutedEventArgs e)
 {
 NavigationService.Navigate(
 new Uri("/Page2.xaml", UriKind.Relative));
 }

 protected override void OnNavigatedFrom(
 System.Windows.Navigation.NavigationEventArgs e)
 {
 base.OnNavigatedFrom(e);

 if ((e.NavigationMode !=
 System.Windows.Navigation.NavigationMode.Back))
 {
 State["PageData"] = PageData.Text;
 }

 }

 protected override void OnNavigatedTo(
 System.Windows.Navigation.NavigationEventArgs e)
 {
 base.OnNavigatedTo(e);

 if (_newPage)
 {
 if (String.IsNullOrEmpty(PageData.Text))
 {

CHAPTER 4 � GET A LIFE

82

 if (State.Count > 0)
 PageData.Text = State["PageData"].ToString();
 }
 }
 _newPage = false;
 }
 }
}

Support for Fast Application Switching takes little code and is painless, but the results are a

dramatic improvement in the time it takes to switch back to your application. Including code for FAS
should be considered “required” for every application.

Debugging with Tombstoning
Because it is important to be able to test what happens when your application returns from the
Tombstoned state, and because the normal state transition is from Running to Dormant, the debugger
has a special provision to ensure that your application goes into the Tombstoned state when you
suspend it.

To force this, right-click on the project and choose properties. Click on the Debug tab and click the
check box that says “Tombstone upon deactivation while debugging,” as shown in Figure 4-2.

Figure 4-2. Ensure that your application is tombstoned

Once you click this checkbox, if you run the application and then click the Windows button (to
launch a new app), and then click the back button to return to the application, the flag will be true
because you’ll be returning from tombstoned.

Using Background Agents
When your application is dormant, tombstoned, or closed, it stops executing. There are times, however,
when you need code to continue to be executed, even if your application is not in the foreground.

Background Agents and Scheduled Tasks allow an application to execute in the background, even
when the application is not running. Background agents are collectively known as Scheduled Tasks and

CHAPTER 4 � GET A LIFE

83

they come in two flavors: Periodic Tasks and Resource-Intensive Tasks. The two are designed for
different types of background processing scenarios and thus have different constraints.

An application may have only one background agent. The agent can be registered either as a
PeriodicTask or as a ResourceIntensiveTask or both. Only one instance of an agent will run at a time and
how frequently it runs is determined by what type it is and upon other constraints, such as whether the
user has placed the phone in battery saving mode. See Figure 4-3 for the duration for Periodic Tasks and
Figure 4-4 for the duration for Resource-Intensive Tasks.

Figure 4-3 Frequency of running Periodic Tasks

Figure 4-4. Resource-Intensive Tasks

The code for either kind of agent is implemented in a class that inherits from BackgroundAgent.
When the agent is launched, the operating system calls OnInvoke(ScheduledTask). In this method, the
application can determine which type of ScheduledTask it is being run as, and perform the appropriate
actions. When the agent has completed its task, it should call NotifyComplete() or Abort() to let the
operating system know that it has completed.

NotifyComplete() should be used if the task was successful. If the agent is unable to perform its task
—such as not being able to reach a required server—the agent should call Abort(), which will cause the
IsScheduled property to be set to false. The foreground application can check this property when it is
running to determine whether Abort() was called.

To see this at work, let’s create an application.

1. Begin by creating a standard Windows Phone Application. Name it Scheduled
Tasks.

2. Add a new project of type Windows Phone Scheduled Task Agent. Your
solution will now have two projects.

CHAPTER 4 � GET A LIFE

84

3. Add a reference to the new project on the original project by clicking on the
project menu and selecting Add Reference… and navigating to the Projects
tab. Select the agent project, and click OK.

4. In SolutionExplorer, double-click TaskScheduler.cs (under the agent project)
to open the file. This file contains the definition for TaskScheduler, which
inherits from ScheduledTaskAgent.

5. Add the two using directives shown in the following snippet:

using Microsoft.Phone.Shell
using System

Let’s focus on the key method of the class, OnInvoke(ScheduledTask)(). This method is called by the
operating system when the Scheduled Task is launched. This is where you should place the code you
want to execute when your background agent is run.

Each application can have only one ScheduledTaskAgent registered at a time, but you can schedule
this agent as both a resource-intensive agent and a periodic agent. If your application uses both a
ResourceIntensiveTask and a PeriodicTask, you can check the type of the ScheduledTask object that is
passed into the OnInvoke method to determine which task the agent is being invoked for, and branch
your code execution as necessary.

If you use only one type of agent, you do not need to check the ScheduledTask object type. In this
example, the agent launches a ShellToast object from OnInvoke(), indicating the type of scheduled task
for which the agent is being called. This toast will let you see when the agent is running. However, it will
not be displayed while your foreground application is running.

When your Scheduled Task code has completed, you should call NotifyComplete() to let the
operating system know that you no longer need to execute. This allows the operating system to attempt
to schedule other agents.

Listing 4-5 contains the code you need to implement OnInvoke(). Add it to the project.

Listing 4-5. OnInvoke(ScheduledTask) Method

protected override void OnInvoke(ScheduledTask task)
{
 string toastMessage = "";

 // If your application uses both PeriodicTask and ResourceIntensiveTask
 // you can branch your application code here. Otherwise, you don't need to.
 if (task is PeriodicTask)
 {
 // Execute periodic task actions here.
 toastMessage = "Periodic task running.";
 }
 else
 {
 // Execute resource-intensive task actions here.
 toastMessage = "Resource-intensive task running.";
 }

 // Launch a toast to show that the agent is running.
 // The toast will not be shown if the foreground application is running.
 ShellToast toast = new ShellToast();

CHAPTER 4 � GET A LIFE

85

 toast.Title = "Background Agent Sample";
 toast.Content = toastMessage;
 toast.Show();

 // If debugging is enabled, launch the agent again in one minute.
#if DEBUG_AGENT
 ScheduledActionService.LaunchForTest(task.Name, TimeSpan.FromSeconds(60));
#endif

 // Call NotifyComplete to let the system know the agent is done working.
 NotifyComplete();
}

The LaunchForTest(String, TimeSpan) method is provided so that you can run your agent on a
more frequent schedule than it will run on an actual device. This method is only for application
development and will not function except for in applications that are deployed using the development
tools.

In this example, the method is called to launch the agent after one minute. The call is placed in an
#if block to enable you to easily switch between debugging and production functionality.

To enable the call, put the following line at the top of the TaskScheduler.cs file:

#define DEBUG_AGENT

Let’s return to the main project and set up its UI. Listing 4-6 contains the Xaml for the
MainPage.xaml file.

Add the code in Listing 4-6 to MainPage.xaml.

Listing 4-6. Xaml for PeriodicStackPanel

<StackPanel>
 <StackPanel Orientation="Vertical" Name="PeriodicStackPanel" Margin="0,0,0,40">
 <TextBlock Text="Periodic Agent" Style="{StaticResource PhoneTextTitle2Style}"/>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="name: " Style="{StaticResource PhoneTextAccentStyle}"/>
 <TextBlock Text="{Binding Name}" />
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="is enabled" VerticalAlignment="Center" Style="{StaticResource
PhoneTextAccentStyle}"/>
 <CheckBox Name="PeriodicCheckBox" IsChecked="{Binding IsEnabled}"
Checked="PeriodicCheckBox_Checked" Unchecked="PeriodicCheckBox_Unchecked"/>
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="is scheduled: " Style="{StaticResource PhoneTextAccentStyle}"/>
 <TextBlock Text="{Binding IsScheduled}" />
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="last scheduled time: " Style="{StaticResource PhoneTextAccentStyle}"/>
 <TextBlock Text="{Binding LastScheduledTime}" />
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="expiration time: " Style="{StaticResource PhoneTextAccentStyle}"/>

CHAPTER 4 � GET A LIFE

86

 <TextBlock Text="{Binding ExpirationTime}" />
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="last exit reason: " Style="{StaticResource PhoneTextAccentStyle}"/>
 <TextBlock Text="{Binding LastExitReason}" />
 </StackPanel>
 </StackPanel>
 <StackPanel Orientation="Vertical" Name="ResourceIntensiveStackPanel" Margin="0,0,0,40">
 <TextBlock Text="Resource-intensive Agent" Style="{StaticResource PhoneTextTitle2Style}"/>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="name: " Style="{StaticResource PhoneTextAccentStyle}"/>
 <TextBlock Text="{Binding Name}" />
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="is enabled" VerticalAlignment="Center" Style="{StaticResource
PhoneTextAccentStyle}"/>
 <CheckBox Name="ResourceIntensiveCheckBox" IsChecked="{Binding IsEnabled}"
Checked="ResourceIntensiveCheckBox_Checked" Unchecked="ResourceIntensiveCheckBox_Unchecked"/>
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="is scheduled: " Style="{StaticResource PhoneTextAccentStyle}"/>
 <TextBlock Text="{Binding IsScheduled}" />
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="last scheduled time: " Style="{StaticResource PhoneTextAccentStyle}"/>
 <TextBlock Text="{Binding LastScheduledTime}" />
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="expiration time: " Style="{StaticResource PhoneTextAccentStyle}"/>
 <TextBlock Text="{Binding ExpirationTime}" />
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="last exit reason: " Style="{StaticResource PhoneTextAccentStyle}"/>
 <TextBlock Text="{Binding LastExitReason}" />
 </StackPanel>
 </StackPanel>
</StackPanel>

This Xaml adds two sets of controls, one for each of the agent types. Most of the controls are text
blocks that will be bound to the ScheduledTask objects that represent the background agents, allowing
you to view the properties of these objects.

Now we need to create two class variables to represent each of the agent types. These are the objects
that will be bound to the UI. The Scheduled Action Service uniquely identifies scheduled tasks by their
Name property. Create two variables containing the names that will be used for the agents.

To implement these additions, add the code in Listing 4-7 inside the class definition.

CHAPTER 4 � GET A LIFE

87

Listing 4-7. Adding the code inside the class definition

public partial class MainPage : PhoneApplicationPage
{
 PeriodicTask periodicTask;
 ResourceIntensiveTask resourceIntensiveTask;

 string periodicTaskName = "PeriodicAgent";
 string resourceIntensiveTaskName = "ResourceIntensiveAgent";

Next we need to implement a helper method named StartPeriodicAgent. This method uses the
Find(String) method to obtain a reference to the PeriodicTask with the specified name. If the scheduled
task object is not null and its IsEnabled property is false, the user has disabled background agents for
this application in the device’s Settings. In this case, you should alert the user and exit the method.

You cannot update agents directly. You must remove and then add. If the scheduled task object is
not equal to null, and IsEnabled is true, then you should call Remove(String) to unregister the agent
with the system, and then immediately create a new PeriodicTask object and assign its name in the
constructor.

1. Set the Description property, which is required for Periodic agents and is used
to describe the agent to the user in the background tasks Settings page on the
device.

2. Call Add to register the Periodic agent with the system. Set the data context of
the associated UI element to update the databinding and display the objects
properties to the user.

3. To implement these changes, place the code for StartPeriodicAgent (shown in
Listing 4-8) into the MainPage class definition (not the constructor).

Listing 4-8. StartPeriodicAgent

private void StartPeriodicAgent()
{
 periodicTask = ScheduledActionService.Find(periodicTaskName) as PeriodicTask;

 if (periodicTask != null && !periodicTask.IsEnabled)
 {
 MessageBox.Show("Background agents for this application have been disabled by the user.");
 return;
 }

 if (periodicTask != null && periodicTask.IsEnabled)
 {
 RemoveAgent(periodicTaskName);
 }

 periodicTask = new PeriodicTask(periodicTaskName);

 periodicTask.Description = "This demonstrates a periodic task.";
 ScheduledActionService.Add(periodicTask);

CHAPTER 4 � GET A LIFE

88

 PeriodicStackPanel.DataContext = periodicTask;

 // If debugging is enabled, use LaunchForTest to launch the agent in one minute.
#if(DEBUG_AGENT)
 ScheduledActionService.LaunchForTest(periodicTaskName, TimeSpan.FromSeconds(60));
#endif
}

You now need a start helper method for the resource-intensive task. This method is identical to the
method for the periodic task, except it uses the ResourceIntensiveTask class to schedule the agent, and a
different name is used. Note that there is an opportunity for refactoring here.

4. Add the code in Listing 4-9.

Listing 4-9. StartResourceIntensiveAgent method

private void StartResourceIntensiveAgent()
{
 resourceIntensiveTask = ScheduledActionService.Find(resourceIntensiveTaskName) as
ResourceIntensiveTask;

 if (resourceIntensiveTask != null && !resourceIntensiveTask.IsEnabled)
 {
 MessageBox.Show("Background agents for this application have been disabled by the user.");
 return;
 }

 if (resourceIntensiveTask != null && resourceIntensiveTask.IsEnabled)
 {
 RemoveAgent(resourceIntensiveTaskName);
 }

 resourceIntensiveTask = new ResourceIntensiveTask(resourceIntensiveTaskName);

 resourceIntensiveTask.Description = "This demonstrates a resource-intensive task.";
 ScheduledActionService.Add(resourceIntensiveTask);

 ResourceIntensiveStackPanel.DataContext = resourceIntensiveTask;

 // If debugging is enabled, use LaunchForTest to launch the agent in one minute.
#if(DEBUG_AGENT)
 ScheduledActionService.LaunchForTest(resourceIntensiveTaskName, TimeSpan.FromSeconds(60));
#endif
}

5. Add a Boolean class variable, ignoreCheckBoxEvents. This variable will be used
to switch off the CheckBox events when initializing the page. Add event
handlers for the Checked and Unchecked events for CheckBox controls. These
handlers call the start and stop helper methods created in the previous steps. If
ignoreCheckBoxEvents is true, the handlers return without doing anything.

6. Add the code in Listing 4-10.

CHAPTER 4 � GET A LIFE

89

Listing 4-10. ignoreCheckBoxEvents

bool ignoreCheckBoxEvents = false;

private void PeriodicCheckBox_Checked(object sender, RoutedEventArgs e)
{
 if (ignoreCheckBoxEvents)
 return;
 StartPeriodicAgent();
}
private void PeriodicCheckBox_Unchecked(object sender, RoutedEventArgs e)
{
 if (ignoreCheckBoxEvents)
 return;
 RemoveAgent(periodicTaskName);
}
private void ResourceIntensiveCheckBox_Checked(object sender, RoutedEventArgs e)
{
 if (ignoreCheckBoxEvents)
 return;
 StartResourceIntensiveAgent();
}
private void ResourceIntensiveCheckBox_Unchecked(object sender, RoutedEventArgs e)
{
 if (ignoreCheckBoxEvents)
 return;
 RemoveAgent(resourceIntensiveTaskName);
}

You need the RemoveAgent helper method to call Remove(string) in a try block (so that an
exception will not cause the app to exit).

7. Add the code in Listing 4-11.

Listing 4-11. RemoveAgent method

private void RemoveAgent(string name)
{
 try
 {
 ScheduledActionService.Remove(name);
 }
 catch (Exception)
 {
 }
}

8. Finally, you need to override OnNavigatedTo() by adding the code in Listing
4-12.

CHAPTER 4 � GET A LIFE

90

Listing 4-12. OnNavigatedTo method

protected override void OnNavigatedTo(System.Windows.Navigation.NavigationEventArgs e)
{
 ignoreCheckBoxEvents = true;

 periodicTask = ScheduledActionService.Find(periodicTaskName) as PeriodicTask;

 if (periodicTask != null)
 {
 PeriodicStackPanel.DataContext = periodicTask;
 }

 resourceIntensiveTask = ScheduledActionService.Find(resourceIntensiveTaskName) as
ResourceIntensiveTask;
 if (resourceIntensiveTask != null)
 {
 ResourceIntensiveStackPanel.DataContext = resourceIntensiveTask;
 }

 ignoreCheckBoxEvents = false;

}

Summary
In this chapter, you learned how the lifecycle of a Windows Phone application works, and more
important, you learned how to manage return from both the Dormant state (Fast Application Switching)
and from the Tombstoned state (making use of Isolated Storage and Page State).

You also saw how to use background agents to run either periodic tasks or to run resource-intensive
tasks in the background.

C H A P T E R 5

■ ■ ■

91

Get Blended

In the dark and early days of computing, when programs were nasty, brutish and short, we used different
tools for writing the code (the editor), for compiling the code (the compiler), for linking the code (the
linker), and for debugging the code (the debugger). The advent of the Integrated Development
Environment (IDE) had a tremendous positive impact on programmer productivity.

Thus, you may be surprised to hear that we advocate using two development tools: Visual Studio for
C# code, and Expression Blend for layout, data binding, animation, and more. In fact, we each fought
this two-tool solution until first we became convinced, and then overwhelmingly convinced, that the
advantages far outweigh the inconvenience of working with a pair of tools rather than a single IDE.

This change in work flow was made more palatable by the fact that Visual Studio and Expression
Blend work on the same files, projects, and solutions; there’s no importing and exporting, and moving
back and forth between them is virtually seamless.

This chapter will focus on a number of areas where Blend simply makes life enormously easier.
Keep in mind, however, that everything we do in Blend can, of course, be done in Visual Studio (though
not necessarily as easily) and everything we do in the design mode of Blend can also be done by hand-
writing the Xaml (again, though, not as easily).

Using Styles & Templates
Every control in Windows Phone programming is lookless. That is, there is no official, let alone
permanent appearance for any given control type. Every control has a default appearance, without
which it would be very hard to get anything done, but you are free to modify that appearance, or even
create a new one from scratch.

CHAPTER 5 ■ GET BLENDED

92

Creating a Style
To see how to create a new style with Blend, let’s modify the style of a button.

1. Create a new Windows Phone application in Blend and call it ButtonStyler.
When Blend opens, take note of its various pallets and areas. There is quite a
lot to learn to become an expert in Blend and we recommend that it is more
than worthwhile to pick up a book on Blend itself or to spend some serious
time playing with Blend and getting to know its capabilities.

2. Click on the button control in the toolbar and then drag a button out onto the
artboard, so that your application looks like the one shown Figure 5-1.

Figure 5-1. Button on the artboard

3. Type the letter “V” to change the cursor to the Selection Tool and then right-
click on the Button.

4. Select Edit Template… Edit A Copy. A dialog box appears with two sets of
choices. First, you can name this new style or you can check the box to
indicate that the new style should be applied all buttons. In this case, name
we’ll name the style and call it AccentButtonStyle.

Second, you can define the style in your application (in which case it can be
used throughout your application) or you can define it just for this one
“document,” that is, this one page of the phone application.

CHAPTER 5 ■ GET BLENDED

93

5. Select Application and click OK.

The artboard immediately transforms; you are now in the style editor.

Modifying Visual State
Before we go any further, you need to know a bit about visual state. Windows Phone supports the
concept of Visual State and a Visual State Manager. Visual state allows you to dictate how a control looks
(and to some degree, how it behaves!) based on the state of that control—where state is defined by the
designer or programmer. For example, the Button control that we copied comes complete with the
following two sets of visual states:

• Focused states, which can be either focused or unfocused; and

• Common states, as they are called: the normal state, the state of the mouse
hovering over the button, the state of the button being pressed, and the state of
the button being disabled.

By tying the appearance of a control to its state, you can accomplish a great deal without any
programming—the button “knows” to change its appearance as it moves from one visual state to
another.

Since we have made a copy of the button style, we can start off in our new style with all the “parts”
of the button and all of its visual states.

1. You can see this by clicking on the States tab, as shown in Figure 5-2.

Figure 5-2. Button States

CHAPTER 5 ■ GET BLENDED

94

If you click on each of the CommonStates listed on the tab, you’ll see how the standard button looks in
each of them. Note particularly that when the button is Pressed, its background is white. We’re going to
change that.

2. Click on Pressed and note that a red square surrounds the artboard. You are
now recording your changes.

3. Move down to the Objects and Timeline and expand the parts of the Button so
that you can access the background, as shown in Figure 5-3.

Figure 5-3. Edit the background in the Pressed state

4. With the background selected, go to the Properties window and click on the
Advanced button next to the Value property for the background, as shown in
Figure 5-4.

Figure 5-4. Advanced Options

5. When the menu opens, select System Resources Phone Accent Brush. This
will set the background brush to the accent color the user has selected.

6. You’re done editing this style, so pop back up to editing the page by clicking on
the Return Scope button in the Objects and Timeline, as shown in Figure 5-5.

CHAPTER 5 ■ GET BLENDED

95

Figure 5-5. Return to the scope of the page

7. Run the application and when you click on the button, you’ll see that the
background color is now the selected accent color.

Applying a Style
If you drag a second button onto the artboard it will not have your modified style, it will have the default
style. Rather than restyling it by repeating all the steps we just took, however, you can apply the style
you created to the new button by right-clicking on it and selecting Edit Template Apply Resource
AccentButtonStyle. Nice.

Using Behaviors
Behaviors are a gift. They were developed as a way to allow non-programmers to “make things happen”
in Blend, but they are a terrific way to write declarative (arguably, functional) programming using Xaml.
Behaviors let you drag a predetermined set of functionality onto an object and execute that functionality
without writing any C#.

Let’s see this at work by creating a new application with two buttons. Our goal is that when the user
starts the application, the background will be black; but when the user clicks the first button, a penguin
image will fill the background; and when the user clicks the second button, a desert image will replace it.

1. Create a new Windows Phone application in Blend and name it
BackgroundImages.

2. Create a new folder in your application named Images. This also creates a
physical folder on your disk, under your project folder.

3. Next, in the operating system, find the sample pictures that come with
Windows and copy the Penguins and the Desert images into the folder you just
created. Finally, back in Blend, right-click on the Images folder and click Add
Existing and select those two images to add them to your project.

Our background images will need to live inside a container. We’ll use a grid; in fact, we’ll use a
separate grid for each image.

4. Add a new Grid to the Content Panel and name it Penguins Grid. Set its
Horizontal and Vertical alignments to stretch and its margin to 0 all around.
Set its width and height to Auto and the Grid will fill the entire Content Panel.

CHAPTER 5 ■ GET BLENDED

96

5. Click on the background and then click on the Image brush. In the Image
Source, pick the Penguin.jpg file and when it appears, set the visibility to
collapsed.

6. To hold the Desert, repeat these steps with a second grid. Name the second
grid DesertGrid.

7. Finally, add two buttons to the Content Panel. Label one Penguins and the
other Desert and set their content properties accordingly.

Defining Visual States
You certainly could write code to hook up the Click event handler of each button and display its image,
but instead we’re going to use the Visual State manager.

1. To do so, we need two new states, so click on the States tab and then click on
the Add State Group button, as shown in Figure 5-6.

Figure 5-6. Adding a state group

2. Name the new State Group BackgroundStates and then add two new states to
the Group: Penguin State and Desert State.

3. When the application enters Penguin State, we want the Penguin background
to become visible. Click on that state and then while recording is on, click on
the Penguin State grid in the Objects and Timeline and then click on Visible in
the properties window. To stop recording, click the red button in the upper-
left corner.

4. Repeat for the Desert state.

5. Make sure your states are working by clicking on Base, PenguinState and
DesertState and observe that the background changes appropriately.

Look Ma, No Code
Here again, you certainly could write code so that when the Desert button is clicked, the Visual State
manager switches to the Desert state, thus displaying the Desert image. We can do better than that,
however, by using behaviors.

CHAPTER 5 ■ GET BLENDED

97

1. Switch to the Assets panel Behaviors and find the GoToStateAction behavior.
Drag this to the Desert button. In the properties panel, use the dropdown to
pick the state we want (DesertState). Repeat this for the Penguins button.
Run the application and notice that when you click the button, the state
changes and the image is displayed as the background, as shown in Figure 5-7.

Figure 5-7. Clicking the buttons to change state

All of this was accomplished without writing any C#. Be sure to take the time to examine the Xaml
that Blend produces; you’ll find that Xaml is not only machine-readable, it is very human-readable as
well.

Creating Sample Data
Expression Blend has terrific facilities for creating sample data. The two primary ways to do so are to let
Expression Blend generate the data and then to modify that data to your needs, or to have Expression
Blend create the data from an existing class. We’ll examine both techniques.

Sample Data Generated by Expression Blend
 The simplest way to create sample data is to use Blend to do the work.

1. To create some sample data with Blend, start by clicking on the Data tab in the
Blend main window (see the “Create sample data” icon shown in Figure 5-8).

The Data tab provides three choices, but in this case select Create Sample Data.
In turn, this brings up a dialog box.

2. Name your sample data SampleInventory and leave the remaining choices as
they are.

CHAPTER 5 ■ GET BLENDED

98

Figure 5-8. Create sample data

Sample data is created; specifically a collection with two properties per item. The first is a string
named Property1 and the second is a Boolean named Property2.

3. To find (and change) the type of a property, click on the Property button to the
right of its name.

Let’s make the following changes:

a. Click on the collection and change its name to Contacts

b. Click on Property1 and change its name to Name and use the property
dropdown to change its Format to Name

c. Click on Property2 and change its name to Address and its type to string and
its format to Address

d. Add a third property, name it Email and set the type to string and the format
to e-mail address

e. Add a final property, set its name to Geek and set its type to Boolean

Click on Edit Sample Values (as shown in Figure 5-9)…

Figure 5-9. Edit Sample Values Button

CHAPTER 5 ■ GET BLENDED

99

…and you will be brought to a dialog box that allows you to both review and edit the number and
specifics of the generated sample data, as shown in Figure 5-10.

Figure 5-10. Edit Sample Values dialog

Sample Data Generated from a Class
An alternative to the process just described is to generate your sample data based on the public
properties of an existing class.

1. To see this at work, create a new Windows Phone program called
GeneratingSampleDataFromAClass.

2. Right-click on the project and select Edit in Visual Studio. When VS opens,
right-click on the project and select Add Class and name the new class
GolfCourses. Define the class as shown in Listing 5-1.

Listing 5-1. GolfCourses Class

 public class GolfCourses
 {
 public string Name { get; set; }
 public string Address { get; set; }
 public DateTime? LastPlayed { get; set; }
 public int Rating { get; set; }
 }

CHAPTER 5 ■ GET BLENDED

100

3. Return to Blend and again choose the Create Sample Data button, but this
time choose CreateSampleDataFromClass. You’ll find that sample data has been
generated based on the public types of your class.

Binding Data
We touched on databinding in the previous chapter, but Expression Blend makes databinding simpler,
faster and generally easier.

1. To see this, create a new Windows Phone program called
DataBindingToSampleCode.

In Expression Blend, create new sample code and change the type and format as shown in Table 5-
1.

Table 5.1. Expression Blend

Name Type Format

Name String Name

CompanyName String Company Name

Phone String Phone Number

Picture Image

Rating Number 1 digit

2. Click on the Edit Sample Values button and change all the Ratings to a value of
0 through 5. We’ll use the ratings to display images of 0 through 5 stars.

3. Create a new folder named Images and copy in the files rating0.jpg through
rating5.jpg (which you can download from the Apress web site).

DataItem Template
1. Click on the Customers collection in the data window and drag it onto the

Content Panel. Notice that the cursor now has a tooltip that says “Create a
[ListBox] and bind its ItemsSource property to Customers” (as shown in Figure
5-11).

CHAPTER 5 ■ GET BLENDED

101

Figure 5-11. Binding in Blend

When you let go, Blend does the following:

• It binds the collection to the ItemsSource property

• It creates a DataItem template to accommodate all the various types of data

Unfortunately, the DataItem template it creates is blindingly ugly. But that’s not a problem, as you
can easily adjust the template in the template editor.

2. Turn your attention to the Objects and Timeline and open the structure all the
way to the ListBox within the Content Panel. Right-click on the list box and
select Edit Additional Templates Edit Generated Items (ItemTemplate) Edit
Current. This puts you in the template editor, editing the template that was
created for you when you bound the data.

3. Change the StackPanel that currently houses all the data to a data grid. Set the
grid’s width to Auto and its height to 150.

4. Next, we’ll align and modify the TextBlocks. Set the font on the first TextBlock
to 24 and set its left margin to 85, aligned top and left.

5. Set the font on the second TextBlock (Name) and the third TextBlock (phone
number) to 18, and set their left margin to 85, and their top margins to 33 and
65 respectively.

6. Set the image control’s margin to 8 and its top margin to 15 so that the
(generated) image sits in the left column of the display.

7. Finally, add a new image control to hold the stars. Set it to align top and left,
and set the width of the image to 100, its height to 24, its left margin to 275 and
its top margin to 65.

We’d like to bind the rating to the stars, but the rating is an integer, and we need to convert that to
the source URL for the image; to do that, we need a converter.

Data Converter
Switch over to Visual Studio and create a folder named Converters. In that folder, create a new class
named RatingToImageConverter, which will derive from IValueConverter. The IValueConverter interface
requires two methods: Convert() and ConvertBack().

CHAPTER 5 ■ GET BLENDED

102

As we’ll not be doing two-way databinding, we’ll have ConvertBack() throw a not-implemented
exception—it is an exception for it to be called at all in this program.

 Convert’s job will be to take an integer as a parameter, and return the URL (as a string) to the image
we want to display. Its logic is fairly straightforward, as shown in Listing 5-2.

Listing 5-2. Rating to Image Converter Method

 public class RatingToImageConverter : IValueConverter
 {
 public object Convert(
 object value,
 Type targetType,
 object parameter,
 System.Globalization.CultureInfo culture)
 {
 string imageUrl = "/Images/rating0.jpg";
 int rating = 0;

 if(value != null && int.TryParse(value.ToString(), out rating))
 {
 imageUrl = string.Format("/Images/rating{0}.jpg", rating);
 }

 return imageUrl;
 }

 public object ConvertBack(
 object value,
 Type targetType,
 object parameter,
 System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 }

Click on the new image in the Objects and Timeline panel and then in the properties window click
on the Advanced Options button next to Source. Choose DataBinding. When the dialog opens, you will
not see Rating because Expression Blend does not recognize it as a type that can be bound to the image
source property. Click the dropdown to change from Matching Types to All Properties and Rating will
appear. Make sure it is highlighted and then click on the Show Advanced Properties arrow towards the
bottom of the dialog, as shown in Figure 5-12.

Figure 5-12. Show Advanced Properties button

CHAPTER 5 ■ GET BLENDED

103

The Advanced Properties panel opens within the dialog box. Towards the bottom, you’ll find a list of
Value Converters. Your value converter is not yet listed. Click the ellipses (…) button and Blend will find
all implementations of IValueConverter. Click on RatingToImageConverter, then OK and then OK again
to close the dialog. You’ve now bound the Rating to the image by way of the value converter, and you
should see stars representing the appropriate ratings for each entry!

As you come to program more with Windows phone, you'll find yourself using data binding more
and more. At first this seems like a simple convenience, saving you from hand-binding the data to a
given control; but over time data binding becomes a central technique in decoupling your data from its
representation.

Summary
We’ve seen that Expression Blend can make design and layout far easier, and it can make databinding a
very simple process. Blend has become an important tool for all serious Windows Phone developers and
it is well worth the time and effort to achieve comfort, if not expertise, with Expression Blend.

C H A P T E R 6

■ ■ ■

105

Get Moving: Adding Animation to
Your Apps

Animation is at the heart of nearly everything that happens on a Windows Phone. The most engaging
Live Tiles are those that can animate, move around, and change their data dynamically. To move
around the operating system, we slide from screen to screen, both vertically and horizontally. Finally,
when we open an application, we get a nice page-turning animation that leads us directly into the app.
Each of these animations has a purpose, and this chapter will focus on how to use this subtle, but
effective, tool.

When we talk about animation, we’re not talking about spinning buttons, or shapes streaking across
the screen. Those types of actions are certainly possible, but fall squarely in the category of gratuitous
animation. While you might use something like this for creating a game in Silverlight, this chapter is
going to focus on what we call purposeful animation within the context of business applications.

Purposeful animation is done with a specific goal in mind. Perhaps we need to elegantly swap out
some data from the screen. Or we need to compensate for a long page-load time. Maybe we just want to
provide an immersive user experience. Animations make all of this possible. In this chapter, we’re going
to focus specifically on how to create animations, and how we can use those animations to buy ourselves
some time when loading our pages.

Understanding the Lexicon of Animation
There are many words that will be used when you talk with other developers about using animations in
your apps: animation, storyboard, keyframe, and tweening are the most common.

Animation is probably the most overused word of the group, and it’s essentially meaningless. It
doesn’t refer to a specific code structure at all; instead it refers to the concept of moving some object on
the screen. Anything that involves motion on an applications’ screen will often be referred to as
animation.

Storyboard is a bit more specific, and you’ll see this in the next section. A storyboard is a specific
code structure that holds all of the instructions for a specific set of movements or changes in our UI.

A keyframe is a code structure within a storyboard. Each time we want to move or change
something on the screen, we need to determine what the beginning and ending states are. These
beginning and ending states are keyframes; we will use these extensively in our animations.

Finally, you may hear the word tweening used from time to time. Tweening refers to the magic that
happens between keyframes. Remember, with keyframes, we only define the starting and ending point

CHAPTER 6 ■ GET MOVING: ADDING ANIMATION TO YOUR APPS

106

of an animation. The best way to think about tweening is to imagine when you were younger, and you
drew a small animated cartoon in the corner of one of your notebooks. On the next page, you drew the
same picture, but changed by just a little. You continued through a dozen or more pages. By flipping
each page of the notebook, you could piece together a simple animated scene, but you had to draw every
single frame of that animation. In Silverlight animation, you basically get to draw the first and last frame
of that notebook animation, and the runtime takes care of creating everything in the middle.

Creating a Simple Animation
Before we start our example, let’s take a look at what defines an Animation in our Windows Phone
applications. The specific Xaml structure is called a Storyboard, and all of the interactions can be
completely defined in the Xaml markup and the code-behind. The Storyboard can contain multiple
animation elements, which you can just think of as sets of instructions executed over time. Listing 6-1 is
a simple Storyboard that fades the Opacity of the TargetName element to 0, which would make it invisible.

Listing 6-1. Simple FadeOut Storyboard

<Storyboard x:Name="FadeOut">
 <DoubleAnimationUsingKeyFrames Storyboard.TargetProperty="(UIElement.Opacity)"
Storyboard.TargetName="TextRotator">
 <EasingDoubleKeyFrame KeyTime="0" Value="1"/>
 <EasingDoubleKeyFrame KeyTime="0:0:1" Value="0"/>
 </DoubleAnimationUsingKeyFrames>
</Storyboard>

As you can see in Listing 6-1, we start with a Storyboard element. In order to call the Storyboard
from code (as with all other Xaml elements), it needs to be named. In this case, we’ve called it
“FadeOut.”

Inside that element, we have an element of type DoubleAnimationUsingKeyFrames. All this really
means is that we are going to manipulate a Double value over a set of KeyFrames. We’ve also specified
the TargetProperty of this animation, (the property we’re manipulating), as well as the TargetName(the
object whose property we’re manipulating). In our example, we’re changing the Opacity of the TextBlock
named TextRotator.

 We have defined two KeyFrames in our animation. They represent the starting and ending points
we desire, and Silverlight takes care of the rest of it for us. The first KeyFrame states that at the 0th second
of our animation (in other words, the beginning), the Opacity value should be 1, or fully opaque. At one
second, however, the Opacity should have changed to 0, or fully transparent. The animation itself will
take care of rendering the rest of the animation for us by tweening, or interpolating all the interim
positions between fully visible and fully opaque, so that the text appears to fade from view over the
duration of a second.

There’s much to know about creating animations, all of the different animation and keyframe types,
and their specific syntaxes. It would be nearly impossible to keep all of it straight in your head. Instead
of typing all of this in Xaml, we recommend using Expression Blend, which can do 100 percent of the
work for you using a convenient user interface.

For a simple example of an animation, let’s start with a Text Rotator. Suppose we have several
messages that we want to present to our user, much like a news web site (or the ticker at the bottom of
the ESPN television channels.) We can manipulate the Opacity property of a TextBlock to fade the
current text from the user’s view, replace it with the next message, and fade it back onto the screen. We’ll

CHAPTER 6 ■ GET MOVING: ADDING ANIMATION TO YOUR APPS

107

implement our text rotator in two steps. First, we’ll create a storyboard for the animation, then we’ll
write the code we need to invoke it.

Using Expression Blend to Create a Storyboard
To begin work on our text rotator, we’ll use Expression Blend to quickly build its storyboard. As you’ll
see as you work through this example, Blend simplifies the animation process, and lets you focus on the
animation visually, rather than having to play a guessing game with XML values in Visual Studio.

1. In Expression Blend, create a new Windows Phone project, or just revisit one
of the other projects you’ve created so far in this book. All we need is a page
with a TextBlock on it. In the following example, we’re going to use the
PageTitle element that is on each page by default:

<TextBlock x:Name="PageTitle" Text="page name" Margin="9,-7,0,0" Style="{StaticResource
PhoneTextTitle1Style}"/>

2. In Blend, click on the TextBlock element in your design surface or Object list,
as shown in
Figure 6-1.

Figure 6-1. Selecting a TextBlock element

In the Objects and Timeline panel, you find a series of icons that represent our interactions with
Storyboards. You can take a closer look at them in Figure 6-2, but the only button currently enabled is
the + button, which we’ll use to create a new Storyboard.

CHAPTER 6 ■ GET MOVING: ADDING ANIMATION TO YOUR APPS

108

Figure 6-2.. Creating a new Storyboard in Blend

3. Click the New Storyboard button, which will bring up a Create Storyboard
Resource dialog box, shown in Figure 6-3, for you to name this Storyboard.
Name it FadeOut and click OK.

Figure 6-3.. Naming a Storyboard

You should notice a few changes to the Blend environment at this point, as shown in Figure 6-4.
First, the design surface is now wrapped in a red outline, and there is text that reads “FadeOut timeline
recording is on.”

CHAPTER 6 ■ GET MOVING: ADDING ANIMATION TO YOUR APPS

109

Figure 6-4. Timeline recording in Expression Blend

You should also notice, as shown in Figure 6-5, that your Objects and Timeline panel has become
much more crowded. This is because we’re now working directly on a Storyboard, and the timeline and
playback controls are displayed.

Figure 6-5.. The Objects and Timeline Panel

CHAPTER 6 ■ GET MOVING: ADDING ANIMATION TO YOUR APPS

110

4. To give yourself more room, you can press F6 to change your workspace from
Design to Animation. It just moves the Objects and Timeline panel to the
bottom of Blend, so that you can see the entire timeline easily (as shown in
Figure 6-6). You can also do this by choosing the menu options Window ➤
Workspaces ➤ Animation.

Figure 6-6. The Animation workspace in Expression Blend

Now we are going to use this new timeline tool to manipulate the Opacity of our TextBlock over
time. In Figure 6-7, there are several important features we’ll be using.

CHAPTER 6 ■ GET MOVING: ADDING ANIMATION TO YOUR APPS

111

Figure 6-7. The Storyboard timeline

The first thing you should see is the yellow arrow stripe that is sitting on the zero in the timeline.
This indicates the current time that you are working on in the animation. Zero means the beginning.
There is a small icon above the zero that looks like an egg with a plus sign next to it. This is the New
Keyframe button.

As we discussed earlier, key frames are those specific moments in your animation where you’re
being explicit about the position of an object, or its opacity, or whatever property you’re manipulating.
In the Xaml we showed you in Listing 6-1, there were two key frames defined: one at zero seconds, and
one at one second. Let’s do the same thing here.

5. Make sure that you’ve selected the PageTitle element from the list of objects
on the left (like Figure 6-7), and then press the New Keyframe button. This will
record that the PageTitle had opacity of 100 percent at zero seconds (as shown
in Figure 6-8). Next, move that yellow line from zero seconds to one second.

Figure 6-8. Setting keyframes in a Storyboard

CHAPTER 6 ■ GET MOVING: ADDING ANIMATION TO YOUR APPS

112

Now, instead of creating another keyframe, you can just change the Opacity of the element, and
Blend will automatically create the second keyframe for you.

6. Look over to your Properties panel, and find the Opacity property (as shown in
Figure 6-9). We need to change this value to zero.

Figure 6-9. Changing the Opacity property of a TextBlock

At this point, our FadeOut storyboard is complete. Looking back at your Objects and Timeline
panel, it should now look like Figure 6-10.

CHAPTER 6 ■ GET MOVING: ADDING ANIMATION TO YOUR APPS

113

Figure 6-10. A simple, completed Storyboard in Expression Blend

7. Above the New Keyframe button, there are playback controls. If you press the
Play button, you should now see your PageTitle text fade away to invisible.

 In most cases, you’re probably going to want to have a second animation that brings that text back
to visible. While it might seem obvious to just follow these steps in Blend again, we recommend
optimizing for programmer speed.

If you look at the Xaml that Blend has created for you, it should look nearly identical to Listing 6-1
from earlier. In Listing 6-2, we’ve simply copied and pasted that new Xaml, and changed a few values.
Blend makes it very easy to create animations, but it is in your best interest to stay close to the Xaml that
it generates, so you can make changes inline when necessary. If you would like, you can copy the Xaml
in Listing 6-2, replacing your existing storyboard with these two.

Listing 6-2 FadeOut and FadeIn Storyboards in Xaml

<Storyboard x:Name="FadeOut">
 <DoubleAnimationUsingKeyFrames Storyboard.TargetProperty="(UIElement.Opacity)"
Storyboard.TargetName="PageTitle">
 <EasingDoubleKeyFrame KeyTime="0" Value="1"/>
 <EasingDoubleKeyFrame KeyTime="0:0:1" Value="0"/>
 </DoubleAnimationUsingKeyFrames>
</Storyboard>
<Storyboard x:Name="FadeIn">
 <DoubleAnimationUsingKeyFrames Storyboard.TargetProperty="(UIElement.Opacity)"
Storyboard.TargetName="PageTitle">
 <EasingDoubleKeyFrame KeyTime="0" Value="0"/>
 <EasingDoubleKeyFrame KeyTime="0:0:1" Value="1"/>
 </DoubleAnimationUsingKeyFrames>
</Storyboard>

You can see that all that was changed in the new FadeIn storyboard was its name, as well as the
order of the Value properties of the two KeyFrames. Otherwise, the Xaml is identical. If you run your
project (F5) in the emulator, you will notice that none of our animations actually take place. This is
because we never called them from our code. Let’s look at that next.

CHAPTER 6 ■ GET MOVING: ADDING ANIMATION TO YOUR APPS

114

Calling Our Storyboard from Code
To kick off our Storyboard, we need to call its Begin() method from our code-behind file. In nearly
every case, we’re going to be triggering our Storyboards in response to some user interaction. Perhaps
they chose to navigate to another page, or maybe they were just clicking a button. In any case, starting
an animation couldn’t be more straightforward.

1. To do this, open the code-behind file for your project, and add the line from
Listing 6-3: FadeOut.Begin();. You can do this in Expression Blend or Visual
Studio, so use whichever tool you are more comfortable using.

Listing 6-3. Calling a Storyboard from Code

namespace GetMoving
{
 public partial class SimpleAnimation : PhoneApplicationPage
 {
 public SimpleAnimation()
 {
 InitializeComponent();
 FadeOut.Begin();
 }
 }
}

In our example, we created two opposite storyboards. One to FadeOut, and one to FadeIn. In this
example, we want to chain them together, so that the FadeIn animation starts as soon as the FadeOut
animation ends. Thankfully, each storyboard also has a couple of events that we can leverage. We’ll be
using the Completed event to determine when each animation finishes. (This is also a simple way to
create a delay timer. Create a storyboard that doesn’t actually do anything over a specific period of time,
and when it completes, you know your application has waited the appropriate amount of time.)

2. In Listing 6-4, we’ve created event handlers for both of our Storyboards, and
they just bounce between each other. Add Listing 6-4 to the code-behind for
the project.

Listing 6-4. Using the Completed Events of a Storyboard

public partial class SimpleAnimation : PhoneApplicationPage
{
 public SimpleAnimation()
 {
 InitializeComponent();
 FadeOut.Completed += new EventHandler(FadeOut_Completed);
 FadeIn.Completed += new EventHandler(FadeIn_Completed);
 FadeOut.Begin();
 }

 void FadeIn_Completed(object sender, EventArgs e)
 {
 FadeOut.Begin();

CHAPTER 6 ■ GET MOVING: ADDING ANIMATION TO YOUR APPS

115

 }

 void FadeOut_Completed(object sender, EventArgs e)
 {
 FadeIn.Begin();
 }
}

As you can see, the Completed event handlers simply call the Begin method for the opposite
Storyboard, causing our PageTitle element to fade and return from the background repeatedly. In our
next step, we’re going to swap the text values in PageTitle from an array of strings we have in our code-
behind.

3. Add Listing 6-5 to the code-behind for the project.

Listing 6-5.. Adding Text Swapping to Our Animations

public partial class SimpleAnimation : PhoneApplicationPage
{
 string[] textCollection=new string[5] {"number one!","two seconds","threeve","use the
fourth","a fifth is 20%"};
 int textCounter = 0;

 public SimpleAnimation()
 {
 InitializeComponent();
 FadeOut.Completed += new EventHandler(FadeOut_Completed);
 FadeIn.Completed += new EventHandler(FadeIn_Completed);
 FadeOut.Begin();
 }

 void FadeIn_Completed(object sender, EventArgs e)
 {
 FadeOut.Begin();
 }

 void FadeOut_Completed(object sender, EventArgs e)
 {
 FadeIn.Begin();
 PageTitle.Text = textCollection[textCounter];
 textCounter++;
 if (textCounter == 5) textCounter = 0;
 }
}

Because we’ve already identified the place where our text is invisible (The FadeOut Completed
event handler), we can use this opportunity to swap the text in our PageTitle element while the user
can’t see it.

In Listing 6-5, we added an array of strings at the top of the page, and iterated through that list each
time the text is invisible. We’ve now created a completely functional text rotator. You could use this for
updating the interface with news stories, sports scores, or other relevant information that updates on a
regular basis.

CHAPTER 6 ■ GET MOVING: ADDING ANIMATION TO YOUR APPS

116

One of the major limitations with Storyboards that most developers find is that the name of the
target element is explicitly called out in the Xaml. This means that you can’t do clever tricks like the
following:

FadeOut.Begin(SomeOtherTextBlock);

However, as we mentioned earlier in this book, everything that is written in Xaml can be
manipulated by code. Let’s take a look at how we could use the same Storyboards we just created to
manipulate the other default TextBlock on the page, ApplicationTitle.

Reusing a Storyboard
To change the target of a Storyboard in code, we just need to access the Storyboard.SetTarget
method. In our earlier example, Listing 6-5, we rotated our string values on only the PageTitle text
block. In Listing 6-6, each time we reach the end of our string array, we switch the target of our
Storyboards, resulting in our string values rotating on PageTitle, and then switching and rotating
through ApplicationTitle.

Listing 6-6. Changing the Target of a Storyboard

 public partial class SimpleAnimation : PhoneApplicationPage
{
 string[] textCollection=new string[5]{ "number one!","two seconds","threeve","use the
fourth","a fifth is 20%"};
 int textCounter = 0;
 TextBlock currentTextBlock;

 public SimpleAnimation()
 {
 InitializeComponent();
 currentTextBlock = PageTitle;
 FadeOut.Completed += new EventHandler(FadeOut_Completed);
 FadeIn.Completed += new EventHandler(FadeIn_Completed);
 FadeOut.Begin();
 }

 void FadeIn_Completed(object sender, EventArgs e)
 {
 FadeOut.Begin();
 }

 void FadeOut_Completed(object sender, EventArgs e)
 {
 FadeOut.Stop();
 FadeIn.Stop();
 currentTextBlock.Text = textCollection[textCounter];
 textCounter++;
 if (textCounter == 5)
 {
 textCounter = 0;

CHAPTER 6 ■ GET MOVING: ADDING ANIMATION TO YOUR APPS

117

 if (currentTextBlock == PageTitle) currentTextBlock = ApplicationTitle;
 else currentTextBlock = PageTitle;

 Storyboard.SetTarget(FadeIn, currentTextBlock);
 Storyboard.SetTarget(FadeOut, currentTextBlock);
 }

 FadeIn.Begin();
 }
}

If you use the code in Listing 6-6, you should see both of the TextBlocks change their values in the
animation over time. It will eventually look like Figure 6-11.

Figure 6-11. Changing the target of a Storyboard

So, at this point in the chapter, we’ve shown how to make a simple animation, and use it in several
ways. The rest of this chapter is going to be dedicated to a noble goal: stalling your user.

CHAPTER 6 ■ GET MOVING: ADDING ANIMATION TO YOUR APPS

118

Creating Custom (and Distracting) Page Transitions
There are many reasons to use animation in your applications, but none are as devious and
psychological as what we’re going to discuss in this section. If you’ve ever bought anything from a web
site, you’ve likely seen the spinning icons and status bars that get displayed. These distractions give zero
indication about how much waiting you’re going to be doing, but you’re content to wait because the
application seems to be indicating that it’s working.

We’re not making spinning icons in this chapter. We can do one better. We’re going to focus on
creating custom page transitions that allow us to stall the user a bit. If your page loads with a transition,
this means that you are giving yourself the amount of time the animation takes to load other content.

In our example for this section, we’re going to create a page-turning animation that we use when a
page is loaded or unloaded. The current page will fly away, and the new page will fly in. The entire
transition will take under two seconds to complete, but the distraction it provides will buy you
significant time to populate a ListBox, or bring data in from a web service. Plus, it looks very cool.

Creating the Page Turn Animation
To build this example, let’s keep it very simple.

1. Add two new pages to your project. One named PageOne.xaml, and one
named PageTwo.xaml. We will jump between these two pages for our entire
example. On both pages, we need to start with creating an animation that
rotates the entire screen like a door, both opening and closing.

In each case, we will be manipulating the LayoutRoot Grid element that is the root element on our
pages. The earlier parts of this chapter illustrated how to create an animation using Expression Blend, so
this case will focus on the Xaml that is generated, and why it is there.

2. Copy the contents of Listing 6-7 into PageOne.xaml, replacing the default
contents of the page.

Listing 6-7.. The Xaml Contents of PageOne.xaml

<phone:PhoneApplicationPage
 x:Class="GetMoving.PageOne"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"
 xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 FontFamily="{StaticResource PhoneFontFamilyNormal}"
 FontSize="{StaticResource PhoneFontSizeNormal}"
 Foreground="{StaticResource PhoneForegroundBrush}"
 SupportedOrientations="Portrait" Orientation="Portrait"
 mc:Ignorable="d" d:DesignHeight="768" d:DesignWidth="480"
 shell:SystemTray.IsVisible="True">

 <phone:PhoneApplicationPage.Resources>
 <Storyboard x:Name="FlipIn">

CHAPTER 6 ■ GET MOVING: ADDING ANIMATION TO YOUR APPS

119

 <DoubleAnimationUsingKeyFrames
Storyboard.TargetProperty="(UIElement.Projection).(PlaneProjection.RotationY)"
Storyboard.TargetName="LayoutRoot">
 <EasingDoubleKeyFrame KeyTime="0" Value="-120"/>
 <EasingDoubleKeyFrame KeyTime="0:0:0.8" Value="0"/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 <Storyboard x:Name="FlipOut">
 <DoubleAnimationUsingKeyFrames
Storyboard.TargetProperty="(UIElement.Projection).(PlaneProjection.RotationY)"
Storyboard.TargetName="LayoutRoot">
 <EasingDoubleKeyFrame KeyTime="0" Value="0"/>
 <EasingDoubleKeyFrame KeyTime="0:0:0.5" Value="90"/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </phone:PhoneApplicationPage.Resources>

 <Grid x:Name="LayoutRoot" Background="Transparent" RenderTransformOrigin="0,0">
 <Grid.Projection>
 <PlaneProjection CenterOfRotationX="0" RotationY="-120"/>
 </Grid.Projection>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">
 <TextBlock x:Name="ApplicationTitle" Text="MY APPLICATION" Style="{StaticResource
PhoneTextNormalStyle}"/>
 <TextBlock x:Name="PageTitle" Text="page one" Margin="9,-7,0,0"
Style="{StaticResource PhoneTextTitle1Style}"/>
 </StackPanel>
 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <Button Content="Button" Height="72" HorizontalAlignment="Left"
Margin="137,153,0,0" Name="button1" VerticalAlignment="Top" Width="160" Click="button1_Click"
/>
 </Grid>
 </Grid>
</phone:PhoneApplicationPage>

As you can see, we’ve created two separate Storyboards, FlipIn and FlipOut. They rotate the
entire page of our application like a door swinging inwards and outwards. We can do this by
manipulating the RotationY property of its PlaneProjection. Another important change to note is the
RenderTransformOrigin on the LayoutRoot Grid element. It is set to “0,0”—which means that all of
our calculations on the x and y-axis will happen from their respective zero values, not from the middle of
the element, which is the default. Finally, you should see that we have rotated our LayoutRoot element
by the amount of -120 degrees on its Y axis. This is the starting position that all of our pages will contain,
because in order to rotate it in, it can’t already be displayed on screen. Much like our previous example,
however, we need to call these storyboards from code. Let’s take a look at that in the next section.

CHAPTER 6 ■ GET MOVING: ADDING ANIMATION TO YOUR APPS

120

Adding the Animation to Your Page Events
Initially, it might seem to make sense to attach our animations to the page lifecycle events:
OnNavigatedTo and OnNavigatedFrom. What you’ll find, however, is that both OnNavigatedFrom and
OnNavigatingFrom will terminate your page before the animation completes. This means that we’ve
got to handle the animation and page navigation ourselves, using a combination of event handlers and
the OnNavigatedTo event.

1. Copy the code from Listing 6-8 into your PageOne.xaml.cs file, replacing the
default code.

Listing 6-8.. Code Contents of PageOne.xaml.cs

using System;
using System.Windows;
using Microsoft.Phone.Controls;

namespace GetMoving
{
 public partial class PageOne : PhoneApplicationPage
 {
 public PageOne()
 {
 InitializeComponent();
 }

 protected override void
OnNavigatedTo(System.Windows.Navigation.NavigationEventArgs e)
 {
 base.OnNavigatedTo(e);
 FlipOut.Completed += new EventHandler(FlipOut_Completed);
 FlipIn.Begin();
 }

 void FlipOut_Completed(object sender, EventArgs e)
 {
 NavigationService.Navigate(new Uri("/PageTwo.xaml",
UriKind.Relative));
 }

 private void button1_Click(object sender, RoutedEventArgs e)
 {
 FlipOut.Begin();
 }
 }
}

In Listing 6-8, we have three methods that we are using to manage both the FlipIn and FlipOut
animations. The first, and most important, is the OnNavigatedTo method. This is fired each time that
your page is navigated to (vs. the Loaded method, which is only called when the page is actually loaded),
so kicking off the FlipIn storyboard makes perfect sense here. We also want to define a Completed event

CHAPTER 6 ■ GET MOVING: ADDING ANIMATION TO YOUR APPS

121

handler for the FlipOut storyboard, because we’ll need to know when it’s done in order to navigate to the
appropriate page.

In our button1_Click event, we are handling for when the user clicks the button in our interface.
Since the button is designed for navigation to another page, we call the FlipOut storyboard, to show the
final animation for our page.

When FlipOut completes, we can run the code that is in the FlipOut_Completed event handler. In
our simple example, we’ve hard-coded the navigation method here, which navigates to PageTwo.xaml.

The code for PageTwo.xaml (Listing 6-9) and PageTwo.xaml.cs is in Listing 6-10. You’ll notice that
they’re nearly identical to PageOne’s files in every way, except where the pages refer to themselves or
each other.

2. Copy the contents of Listing 6-9 and Listing 6-10 to their appropriate pages in
your project.

Listing 6-9. Code Contents of PageTwo.xaml

<phone:PhoneApplicationPage
 x:Class="GetMoving.PageTwo"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"
 xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 FontFamily="{StaticResource PhoneFontFamilyNormal}"
 FontSize="{StaticResource PhoneFontSizeNormal}"
 Foreground="{StaticResource PhoneForegroundBrush}"
 SupportedOrientations="Portrait" Orientation="Portrait"
 mc:Ignorable="d" d:DesignHeight="768" d:DesignWidth="480"
 shell:SystemTray.IsVisible="True">

 <phone:PhoneApplicationPage.Resources>
 <Storyboard x:Name="FlipIn">
 <DoubleAnimationUsingKeyFrames
Storyboard.TargetProperty="(UIElement.Projection).(PlaneProjection.RotationY)"
Storyboard.TargetName="LayoutRoot">
 <EasingDoubleKeyFrame KeyTime="0" Value="-120"/>
 <EasingDoubleKeyFrame KeyTime="0:0:0.8" Value="0"/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 <Storyboard x:Name="FlipOut">
 <DoubleAnimationUsingKeyFrames
Storyboard.TargetProperty="(UIElement.Projection).(PlaneProjection.RotationY)"
Storyboard.TargetName="LayoutRoot">
 <EasingDoubleKeyFrame KeyTime="0" Value="0"/>
 <EasingDoubleKeyFrame KeyTime="0:0:0.5" Value="90"/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </phone:PhoneApplicationPage.Resources>
 <Grid x:Name="LayoutRoot" Background="Transparent" RenderTransformOrigin="0,0">
 <Grid.Projection>

CHAPTER 6 ■ GET MOVING: ADDING ANIMATION TO YOUR APPS

122

 <PlaneProjection CenterOfRotationX="0" RotationY="-120"/>
 </Grid.Projection>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">
 <TextBlock x:Name="ApplicationTitle" Text="MY APPLICATION" Style="{StaticResource
PhoneTextNormalStyle}"/>
 <TextBlock x:Name="PageTitle" Text="page two" Margin="9,-7,0,0"
Style="{StaticResource PhoneTextTitle1Style}"/>
 </StackPanel>
 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <Button Content="Button" Height="72" HorizontalAlignment="Left"
Margin="145,153,0,0" Name="button1" VerticalAlignment="Top" Width="160" Click="button1_Click"
/>
 </Grid>
 </Grid>
</phone:PhoneApplicationPage>

Listing 6-10.. Code Contents of PageTwo.xaml.cs

using System;
using System.Windows;
using Microsoft.Phone.Controls;

namespace GetMoving
{
 public partial class PageTwo : PhoneApplicationPage
 {
 public PageTwo()
 {
 InitializeComponent();
 }

 protected override void
OnNavigatedTo(System.Windows.Navigation.NavigationEventArgs e)
 {
 base.OnNavigatedTo(e);
 FlipOut.Completed += new EventHandler(FlipOut_Completed);
 FlipIn.Begin();
 }

 void FlipOut_Completed(object sender, EventArgs e)
 {
 NavigationService.Navigate(new Uri("/PageOne.xaml",
UriKind.Relative));
 }

 private void button1_Click(object sender, RoutedEventArgs e)
 {

CHAPTER 6 ■ GET MOVING: ADDING ANIMATION TO YOUR APPS

123

 FlipOut.Begin();
 }
 }
}

In each case, you can see that the pages have practically the same contents. This straightforward
approach to page navigation with animation will ultimately save you from the perceived load times that
each of your pages take.

Run your project. You should see that when you click on the buttons of the pages, they neatly
transition to each other. The time that elapses during that transition is free time that you have to load
data, or get other processing out of the way. You’ve probably already noticed that you wait until the
page transition completes before you attempt to the click the button again.

Regarding page transitions, there’s another great set of tools and code that you can use that includes
several different page transitions and controls that are not included with the default Windows Phone
tools. You can use these additional page transitions and controls instead of trying to build them yourself
from scratch. There is a free download from Microsoft on CodePlex (http://codeplex.com), an open
source software repository. It is called the Silverlight Toolkit for Windows Phone, and we will be
covering it in more depth in Chapter 11 of this book. To get the code and find out more about this
collection of controls, you can download it at http://silverlight.codeplex.com.

Summary
Every time you add an animation to your app, it should be done with purpose. This chapter showed you
how we can use animations both for swapping content from the screen in an elegant way, as well as a
way to create page transitions (also known as distractions) that buy you time to load the contents of a
page. In either case, they were done with a goal in mind, and not just for the gratuitous sake of moving
elements on the screen. Animations are also a great way to create simple Silverlight games, and the
event model that we used makes game development a fun way to interact with our users.

In the next chapter, we are going to walk through an extensive set of tools that make it easy for us, as
developers, to interact with many of the default apps and user data that live on the phone. You’ll learn
how to make the phone dial a phone number, send a text message, and even how to retrieve a user’s
contact list. These mechanisms, called Tasks, will make your app much more interesting with only a few
lines of code.

C H A P T E R 7

125

Get a Job: Interacting with User
Data

In nearly every application that you build, you’re going to have that moment when you wish you had
access to the users’ data. Maybe it’s contacts or phone numbers, or maybe you want to save a ringtone
to their devices. In any case, Windows Phone makes it easy to interact with all sorts of user data, both
retrieving and saving back to the phone.

This chapter will cover the Microsoft.Phone.Tasks namespace, which provides the APIs that you will
use to access user data. We’ll discuss the importance of each available task, and how and when you
should use it. We’ll also provide sample code to get you started. At the end of this chapter, we’ll
introduce the Microsoft.Phone.UserData namespace, which is new with Windows phone 7.5. The APIs in
this namespace require more work, but they provide more robust access to your user’s most valuable
data.

Distinguishing Launchers and Choosers
Windows Phone provides two types of task APIs for interacting with user data: launchers and choosers.
Both are tasks, but differ in the type of work they perform. Launchers start a task but do not return data
to your application, while choosers start a task and allow the user to choose data that is returned to your
application.

For example, the PhoneCallTask, a launcher, allows you to prompt the user to dial a specific number.
After they confirm the choice, the launcher will start the phone application and your application will
end. You are “launching” the phone from your app.

In contrast, the EmailAddressChooserTask, a chooser, as the name implies, allows you to take the
user to his list of contacts on the phone, choose one from the list, and the selected contact’s e-mail
address will be returned to your application as data that you can use. Tables 7-1 and 7-2 list all of the
tasks available to us in the Windows Phone 7.1 SDK. We will spend the majority of this chapter walking
through each one.

This chapter is not meant to be a reference. There are plenty of online resources for that, including
the Microsoft Launchers and Choosers Overview (http://msdn.microsoft.com/en-
us/library/ff769542(v=VS.92).aspx). The web will be far more recently updated (that is, until we can
figure out how to push updates to this paper book you’re holding). Instead, this chapter is an
examination of how and when to use each of the Tasks that were available when this book was
published, and includes all through the Windows Phone 7.1 SDK.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

126

Table 7-1. Launchers

Name Use SDK Version

BingMapsDirectionsTask Launches the Maps application and immediately
provides directions from a start to an end point.

7.1

BingMapsTask Launches the Maps application, centering the map on
the location specified.

7.0, 7.1

ConnectionSettingsTask Allows you to launch the user into different parts of the
Settings on the device.

7.1

EmailComposeTask Launches the Mail client on the device, allowing you to
populate a message before a user sends it.

7.0, 7.1

MarketplaceDetailTask Launches the Marketplace app, directing the user to an
app that you specify.

7.0, 7.1

MarketplaceHubTask Launches the Marketplace app. 7.0, 7.1

MarketplaceReviewTask Launches the Marketplace app, directing the user to
review your application.

7.0, 7.1

MarketplaceSearchTask Launches a Marketplace search based on the criteria
you provide.

7.0, 7.1

MediaPlayerLauncher Launches an audio or video file in the default media
player on the device.

7.0, 7.1

PhoneCallTask Prompts the user to make a phone call to a number you
specify.

7.0, 7.1

SaveContactTask Allows you to save an entire contact record to the user’s
device.

7.1

SaveEmailAddressTask Allows you to save an e-mail address to a contact on the
user’s device.

7.1

SavePhoneNumberTask Allows you to save a phone number to a contact on the
user’s device.

7.1

SaveRingtoneTask Allows you to save a ringtone to the user’s device. 7.1

SearchTask Launches a Bing search based on your search criteria. 7.0, 7.1

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

127

Table 7-2. Choosers

A complete code project that incorporates all of the Launchers and Choosers (as well as the

UserData namespace as discussed later in this chapter) is provided at the end of the chapter, and
referenced throughout.

Setting up a Launcher
Launchers, as mentioned earlier, are what we call a “fire and forget” mechanism. We launch a browser,
or a text message, but we don’t get any data back to our app. In fact, we might not even get our user
back to our app! We are sending them away to perform a task, and it will be up to the user to return to
our application. As an example of this, let’s look briefly at the PhoneCallTask in Listing 7-1.

Table 7-1 cont.

ShareLinkTask Allows a user to post a link to his social networks. 7.1

ShareStatusTask Allows a user to post a status to her social networks. 7.1

SmsComposeTask Prompts the user to send a text message based on your
specific data.

7.0, 7.1

WebBrowserTask Launches Internet Explorer and navigates to a page that
you specify.

7.0, 7.1

Name Use SDK Version

AddressChooserTask Prompts the user to select a contact from his device and
returns the physical address of that contact to your
application.

7.1

CameraCaptureTask Prompts the user to take a picture with her device and
returns the photo to your app.

7.0, 7.1

EmailAddressChooserTas
k

Prompts the user to select a contact from his device and
returns the e-mail address of that contact to your app.

7.1

PhoneNumberChooserTask Prompts the user to select a contact from her device
and returns the phone number of that contact to your
app.

7.1

PhotoChooserTask Prompts the user to select a photo from his device and
returns that image to your app.

7.0, 7.1

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

128

Listing 7-1. Setting up a Launcher

PhoneCallTask pct = new PhoneCallTask();
pct.DisplayName = "Rick Astley";
pct.PhoneNumber = "(772) 257-4501";
pct.Show();

As the code in Listing 7-1 shows, using a launcher consists of creating a new task object, adding
some properties (like DisplayName and PhoneNumber), and finally calling a Show() method that launches
the task. Figure 7-1 shows the user interface that your user will see when this task is used:

Figure 7-1 An example of the PhoneCallTask user interface

Setting up a Chooser
Choosers, unlike Launchers, are designed to return data to your application. Photos, e-mail addresses,
phone numbers—these are all valuable pieces of data that you will want to get from your users. This
means that Choosers require a bit more code to be effective, because we need a setup code (like the
Launchers), but we also need an event handler that grabs the data when it is returned. Listing 7-2 shows
the code necessary to use the AddressChooserTask. You’ll see that we initialize the task in our MainPage()
constructor method, and then get the AddressResult in our event handler.

Listing 7-2. Setting up a Chooser

public MainPage()
{
 InitializeComponent();

 act = new AddressChooserTask();
 act.Completed += new EventHandler<AddressResult>(act_Completed);
 act.Show();
}

void act_Completed(object sender, AddressResult e)
{
 if (e.TaskResult == TaskResult.OK)
 {
 string address = e.Address;
 string name = e.DisplayName;
 }
}

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

129

 As we show in the event handler, you can make sure that the user completed the task by checking
the TaskResult object. Once we know we have received a result, we can grab the Properties of the
AddressResult object, Address and DisplayName.

As we move through the tasks in this chapter, you will find that the tasks follow the model of the
Launcher or the Chooser. We have categorized them by the way they are used, Bing Tasks, Camera
Tasks, Communication Tasks, Contact Tasks, Marketplace Tasks, and a Miscellaneous Tasks category for
those few that don’t fit in another group.

Bing Tasks
Each of the tasks in this category uses either Bing Search or Bing Maps to provide its functionality. There
is also an entire suite of Bing APIs available on the web at www.bing.com/toolbox/bingdeveloper, but for
the purposes of this chapter, we will focus on three tasks: BingMapsDirectionsTask, BingMapsTask, and
SearchTask.

BingMapsDirectionsTask
The BingMapsDirectionsTask is a new task in the Windows Phone 7.1 SDK release, and allows you pass a
start and end point to the Maps application on the phone, and it will generate directions for the user.

In Listing 7-3, we show the code you need to make this task performs its action.

Listing 7-3. Using the BingMapsDirectionsTask

using System.Device.Location;

BingMapsDirectionsTask bmdt = new BingMapsDirectionsTask();
bmdt.Start = new LabeledMapLocation("8800 Lyra Ave, Columbus, OH 43240", new
GeoCoordinate());
bmdt.End = new LabeledMapLocation("Thurman's Cafe, Columbus, OH", new GeoCoordinate());
bmdt.Show();

A great feature about this Task, however, is that almost none of the data is required. In fact, if you
don’t include a Start location, it will assume you want the user’s current location. If you haven’t used a
GeoCoordinate object before, think a latitude/longitude position. In order to use these objects, we need
to make sure that you add a reference to the System.Device assembly to your project. If you don’t
include actual GeoCoordinate values, it will use the Label attribute as a search term. (Note that we
provided empty GeoCoordinate values in our start and end points.) This means you don’t have to do any
geocoding to an address to get the converted latitude and longitude values, because if you type an
address into the Label property, it will use that instead. Figure 7-2 shows the user interface your user will
see when the BingMapsDirectionsTask is launched.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

130

Figure 7-2 .The BingMapsDirectionsTask user interface

You will definitely want to test the addresses you are using before publishing your app. If you
provide a partial address to the task, it will do its best to determine what you are talking about. This is
because it’s not using the raw values you provide, but using those values to perform a search for the best
result. If you want your users to be able to find their way to your offices, you’re going to want to be
certain that the task understands your commands.

BingMapsTask
This launcher has been around since the beginning, but the first release of Windows Phone required
geocoordinates in order to function properly. In the Windows Phone 7.1 SDK, you can now specify a
SearchTerm property that allows you to use a location, address, or even a company’s name as your
criteria. If you are using the SearchTerm property, we recommend that you be very specific. Vague
searches might end up giving you a different location than you expected. Listing 7-4 shows how we use
the BingMapsTask.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

131

Listing 7-4. Using the BingMapsTask

BingMapsTask bmt = new BingMapsTask();
bmt.SearchTerm = "Progressive Field, Cleveland, OH";
bmt.Show();

If you’re already prepared to generate the latitude and longitude for addresses, you can still use
those for the best accuracy. Just use the Center property (as shown in Listing 7-5) and pass the
coordinates in as a GeoCoordinate object. The challenge with using Center is that you are truly only
centering the map on that location. No labels will appear on the map, so unless you’re trying to show
your user a general area, we’d recommend using the search term with an address every time. Even with
the highest ZoomLevel of 20, you’re still likely to be looking at a larger area than you intended. Listing 7-5
shows what the Center and ZoomLevel properties look like (you can use this instead of the SearchTerm).

Listing 7-5. Using GeoCoordinates with the BingMapsTask

BingMapsTask bmt = new BingMapsTask();
bmt.Center = new GeoCoordinate(41.42322600, -81.920683);
bmt.ZoomLevel = 20;
bmt.Show();

If you’re absolutely determined to use lat/long values (and don’t already have a way to determine
them), there’s an outstanding geocoding service that will convert addresses to lat/long, and will even
convert lat/long to potential addresses if you’re feeling adventurous; it’s found at
http://msdn.microsoft.com/en-us/library/cc966793.aspx. Our recommendation is to rely on the
SearchTerm property with a specific address or location. This should be a can’t-miss option every time,
and you should end up with a result that looks like Figure 7-3.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

132

Figure 7-3. The BingMapsTask user interface, using the SearchTerm property

SearchTask
There are plenty of APIs out there to retrieve search engine results from, but for a simpler and easier
solution to doing a web search in your application, you should use the SearchTask. As with all
Launchers, please remember that this is not something that happens within your app, but is instead
handled by the Windows Phone operating system. You’re not going to have access to the results of this
SearchTask, but if you need to let your user search the web, there’s no easier way to do it on Windows
Phone. Listing 7-6 shows how to use the SearchTask.

Listing 7-6

SearchTask st = new SearchTask();
st.SearchQuery = "Migrating To Windows Phone";
st.Show();

This will take the user to the default search application on the phone, which now contains tabs for
web, local, and images. Figure 7-4 shows the user interface for the Search application this task uses.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

133

Figure 7-4. The user interface for the SearchTask

Camera Tasks
There are only two tasks in this category, but they serve the two purposes we have for the camera: taking
a photo and selecting a previously selected photo. These are the CameraCaptureTask and the
PhotoChooserTask.

CameraCaptureTask
There are many similarities between the CameraCaptureTask and the PhotoChooserTask, specifically that
both tasks return a PhotoResult object, which we will look at shortly. With the CameraCaptureTask, the
expectation is that the user is going to be taking a new photo. With the PhotoChooserTask, the user is
taken to the photo library on her phone and she is expected to select an existing photo.

In the CameraCaptureTask, the user will immediately be taken to the camera application. Once she
has taken a picture, she will be prompted to “Accept” the image before it is returned to your application.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

134

Working with images is obviously a little trickier than working with text, and we’ll need another
namespace, System.Windows.Media.Imaging. In Listing 7-7, we create a new CameraCaptureTask, as well
as a new event handler for the result. In order to capture the result as a BitmapImage, you will need this
namespace.

Listing 7-7

CameraCaptureTask cct;

public MainPage()
{
 InitializeComponent();
 cct = new CameraCaptureTask();
 cct.Completed += new EventHandler<PhotoResult>(cct_Completed);
 cct.Show();
}

void cct_Completed(object sender, PhotoResult e)
{
 if (e.TaskResult == TaskResult.OK)
 {
 string imagename = e.OriginalFileName;
 BitmapImage image = new BitmapImage();
 }
}

When you try to use this Chooser in the Windows Phone emulator, you’ll find that it doesn’t actually
have access to a camera. Instead, you’ll see a screen similar to the one shown in Figure 7-5.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

135

Figure 7-5. The user interface for the CameraCaptureTask in the emulator

Notice that although there’s not an image shown, there’s a Capture button in the top-right corner.
You will only see this button in the emulator, as Windows Phones all have a dedicated camera shutter
button as part of the hardware specification. When you click the button, you’ll end up with a screen that
looks something like Figure 7-6.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

136

Figure 7-6. The “fake” images you see in the Windows Phone emulator

The primary difference between yours and the one in Figure 7-6 will be the location of the small
black box in the white field. It rotates clockwise around the outside of the white field, so each picture
you “take” on the emulator should result in the box being in a different location. When you get the final
image returned to you, the emulator adds a hint of flashy color to the image, making the white box red
and the black box green. On an actual device, you’d use the camera just as you normally do, and the
image would be the image you took.

PhotoChooserTask
Similar to the CameraCaptureTask, this Chooser allows your user to select an image from their photo
library. Unlike the CameraCaptureTask, you can allow your user to select an image or take a new one with
the camera. You can enable this feature, as well as a cropping feature, before you launch this task.
Ultimately, you will treat the data you receive from the PhotoChooserTask the same way that you did with
the CameraCaptureTask.

You’ll need the System.Windows.Media.Imaging namespace, and you’ll be receiving the image, as
well as its location, on the device in the Completed event handler’s return data, as shown in Listing 7-8.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

137

Listing 7-8. Using the PhotoChooserTask

PhotoChooserTask pct;

public MainPage()
{
 InitializeComponent();

 pct = new PhotoChooserTask();
 pct.Completed += new EventHandler<PhotoResult>(pct_Completed);
 pct.ShowCamera = true;
 pct.PixelWidth = 100;
 pct.PixelHeight = 100;
 pct.Show();
}

void pct_Completed(object sender, PhotoResult e)
{
 if (e.TaskResult == TaskResult.OK)
 {
 string imagename = e.OriginalFileName;
 BitmapImage image = new BitmapImage();
 }
}

You’ll notice that we define a PixelWidth and PixelHeight property before we launch the Chooser.
This is actually defining the aspect ratio of the cropping box that your user will be presented. This box
allows you, as the developer, to get an image that is the appropriate shape for your purposes. The user
gets to decide which part of the image they would like to select, and then the image is returned to you at
the dimensions you specified, as shown in Figure 7-7.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

138

Figure 7-7 .The optional cropping box from the PhotoChooserTask

This makes selecting images for headshots, where you need a consistent size for every user,
incredibly simple to manage. You don’t have to worry about sizing down the images to save file space or
that the user is uploading an image that is 5 MB in file size. You get exactly what you want, and nothing
more.

You also get to specify whether the user can take a new photo with the ShowCamera property. We
can’t think of a good reason to ever exclude this, but if you only want your user to be able to select from
an existing photo, it’s certainly an option. This was enabled by the pct.ShowCamera = true; code in
Listing 7-8.

In most cases where you need your user to provide an image, we would recommend using this
Chooser rather than the CameraCaptureTask, which requires a new photo to be taken.

Communication Tasks
The tasks covered in this section relate to communicating with someone else via a Windows Phone. This
covers sending e-mail and text messages, but also making phone calls and posting information to social
networks.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

139

EmailComposeTask
Every single Windows Phone application should be using this Launcher. To clarify, every single
Windows Phone application should have a way to contact the developer that created it. There are
thousands of applications in the marketplace that don’t do this, and they’re missing an opportunity to
improve their applications and engage with their customers. Figure 7-8 demonstrates how this could be
used in an application.

Figure 7-8. Showing a contact e-mail address in your application

When your users tap on the e-mail address shown in Figure 7-8, you can completely fill in the e-mail
details for them, so that in many cases, all they need to do is write their message and press the Send
button. None of the fields are required, but you can specify Subject, Body, To, Cc, and Bcc. Listing 7-9
shows the syntax for using the ComposeEmailTask.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

140

Listing 7-9. Using the EmailComposeTask

EmailComposeTask ect = new EmailComposeTask();
ect.Subject = "This is a test message";
ect.Body = "I am sending you a message from the Launchers and Choosers app.";
ect.To = "windowsphone@jeffblankenburg.com";
ect.Cc = "windowsphone@jesseliberty.com";
ect.Bcc = "blindcopy@jeffblankenburg.com";
ect.Show();

You can see that all of the values are strings. This means that you still need to validate that the
values you use are appropriate. Because we are launching a separate application to handle sending an
e-mail, any issues or errors in your values will only be visible to the user. For example, if you accidentally
have an e-mail address with an invalid character, the user won’t even notice until they try to click the
Send button (shown in Figure 7-9). It’s incredibly important to make sure you have valid values for these
properties because all of the issues will have to be handled by your users. You’ll also notice that you
can’t attach files to this message. This is one of the current limitations of the EmailComposeTask, but the
interface does allow the user to attach a file, so they still have that ability if they need it.

Figure 7-9. The e-mail interface for the EmailComposeTask

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

141

Another important note to remember about this Launcher is that the Windows Phone emulator
does not have the ability to set up e-mail accounts, and because of this, when you launch the
EmailComposeTask in the emulator, you’ll get an error that looks like the message shown in Figure 7-10.

Figure 7-10. An expected error message from the Windows Phone emulator

If you get this error in the emulator, you’re doing it right. When you try it on an actual phone,
however, you should be taken to a screen that allows you to send the e-mail message. It is very
important that you test your entire application on a real phone before pushing it to the Windows Phone
Marketplace. You don’t want little issues like this to sneak through, because the Marketplace Test Team
will definitely find them.

PhoneCallTask
The PhoneCallTask is another great tool for allowing your users to contact you, however, we wouldn’t
recommend it. If your application gets really popular (as you hope it does), you’re not going to want
those millions of users to have your direct number. Instead, the PhoneCallTask is an essential tool for
letting your user call other people. For example, in combination with the PhoneNumberChooserTask, you
can provide a simple mechanism for someone to pick one of their existing contacts and call them from
your application. Again, they’ll be using the built-in phone dialer on their phone, so your application
will be in the background while they make their call.

You do have the ability to provide two pieces of data to the dialer: the PhoneNumber and a
DisplayName to show along with the number (shown in Listing 7-10). We recommend providing both
values every time, because without the context of a display name, dialing a random phone number
might be unsettling to your user. Figures 7-11 and 7-12 show the difference in what they’ll see.

Figure 7-11. Without display name

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

142

Figure 7-12. With display name

Another recommendation we suggest is to format the PhoneNumber property. You’ll notice in Figures
7-11 and 7-12 that it’s just a random string of ten digits. By formatting the PhoneNumber, it will look more
familiar to your user, and give them the confidence to press the Call button. Make sure that you are
providing a number that is relevant to your user. For example, inside the United States, we don’t need to
use the +1 international code. But if your user is in Ireland, or Bulgaria, or China, they’re absolutely
going to need that calling code. You can either choose to include it always, or detect the region of the
device and add it when necessary. Figure 7-13 shows the prompt you’ll see when you format the
number.

Figure 7-13. The fully-formatted PhoneCallTask user interface

Finally, Listing 7-10 show the actual code you need to make it happen. Nothing surprising here; just
a string for PhoneNumber and a string for DisplayName.

Listing 7-10

PhoneCallTask pct = new PhoneCallTask();
pct.DisplayName = "Rick Astley";
pct.PhoneNumber = "(772) 257-4501";
pct.Show();

Ultimately, as with all of our tasks, the user has to press the “call” button. All we can do with these
tasks is prompt the user to make the choice, but if they don’t want to make the call, they will always have
the option to decline.

ShareLinkTask
In short, the ShareLinkTask allows you to help your user share links with their social networks. For
example, let’s say you that you have created a news app, and when a user finds an article that they want

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

143

to share with their friends, you would use the ShareLinkTask to do it. Listing 7-11 shows how to use the
ShareLinkTask.

Listing 7-11. Using the ShareLinkTask

ShareLinkTask slt = new ShareLinkTask();
slt.LinkUri = new Uri("http://jeffblankenburg.com");
slt.Message = "This is an awesome website.";
slt.Title = "The Blankenblog";

slt.Show();�

In this example, we get to specify a LinkURI (this is the actual link we’re sharing), as well as a
message and a title. These values become a little more apparent when we look at the user interface, as
shown in Figure 7-14.

Figure 7-14. The ShareLinkTask user interface

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

144

Depending on which social networks the user selects, the link will be used in different ways. Figures
7-15, 7-16, and 7-17 show examples of how the data is used on Twitter, Facebook, and Windows Live,
respectively.

Figure 7-15. Twitter using the data from the ShareLinkTask

Figure 7-16. Facebook using the data from the ShareLinkTask

Figure 7-17. Windows Live using the data from the ShareLinkTask

As we show in the Figures 7-15, 7-16, and 7-17, each social network will use the data differently; but
the idea is the same: share a link with a community of people. The next task, ShareStatusTask, performs
a similar job, but with status messages instead of links.

ShareStatusTask
Similar to the ShareLinkTask that we just discussed, the ShareStatusTask allows you to prompt a user to
post a status message to their social networks. This is incredibly handy when you’re running a
promotion that you want your users to mention. Perhaps you’ve seen something on Twitter like “RT this
message to win a $100 gift card!” The ShareStatusTask would be a way to encourage your users to post
those messages (not that we encourage that kind of spammy behavior, mind you).

To use the ShareStatusTask, take a look at the code in Listing 7-12.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

145

Listing 7-12. Using the ShareStatusTask

ShareStatusTask sst = new ShareStatusTask();
sst.Status = "This is my status message.";
sst.Show();

In this example, we only get the Status property (a string) to use, but most social networks will
automatically link URLs that you place in the text automatically, so feel free to include them in your text.
The interface the user will see is shown in Figure 7-18.

Figure 7-18. The user interface for the ShareStatusTask

SmsComposeTask
At its core, this task makes it simple for your users to send a text message. We’ve often referred to this
Launcher as the “poor man’s Twitter API.” For those of you unfamiliar with Twitter, you can execute
most of their functionality via text messages (http://support.twitter.com/groups/34-apps-sms-and-
mobile/topics/153-twitter-via-sms/articles/14020-twitter-sms-commands). In most cases, however,
this will be used as an application promotion tool: “For 500 Mooby points, text your friends to tell them
about this application!”

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

146

It’s also a great tool for fundraising. You may have seen the commercials that say “Send a text to
90999 to donate $10!” If your application can bring up the text message, fully filled out, users are much
more likely to press Send. The SmsComposeTask is how you do it, and you can see that in Listing 7-13.

Listing 7-13. Using the SmsComposeTask

SmsComposeTask sct = new SmsComposeTask();
sct.To = "40404";
sct.Body = "Sign me up for Twitter!";
sct.Show();

We get two properties in the SmsComposeTask: To and Body. Much like the EmailComposeTask we used
earlier, it is up to you to make sure that the To value is valid; otherwise your user will be stuck trying to
determine what is wrong. Figure 7-19 shows the interface your user will see.

Figure 7-19. The user interface for the SmsComposeTask

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

147

SMS messages are sent the same way a user normally does it, through their Messaging application.
The SmsComposeTask does not have access to any responses or any future messages that are part of the
conversation, but it’s a great way to get a user to send that initial text message that so many services are
hungry for.

Contacts Tasks
Each of the tasks covered in this section relate to contact data. Getting e-mail addresses, phone
numbers, and physical addresses in and out of a user’s contact records is what we can accomplish using
these six tasks: AddressChooserTask, EmailAddressChooserTask, PhoneNumberChooserTask,
SaveContactTask, SaveEmailAddressTask, and SavePhoneNumberTask.

AddressChooserTask
As straightforward as it sounds, the AddressChooserTask allows your user to select the address of one of
the contacts on his phone. The downside is that you’re on your own to parse the result. You’ll get an
AddressResult object, which does not separate the individual elements of an address into child
properties. Your address data will look like this:

789, 1st Ave\r\nNew York, NY 96001

On the plus side, you’ll also be given the contact’s name with the DisplayName property. This allows
you to use both pieces of information when you leverage this data. For example, you could use the
BingMapsDirectionTask that we covered in the Launchers section, passing in these two values as the
Label and Location. In Listing 7-14, we build a new AddressChooserTask with a Completed event handler.

Listing 7-14

private AddressChooserTask act;

public MainPage()
{
 InitializeComponent();

 act = new AddressChooserTask();
 act.Completed += new EventHandler<AddressResult>(act_Completed);
 act.Show();
}

void act_Completed(object sender, AddressResult e)
{
 if (e.TaskResult == TaskResult.OK)
 {
 string address = e.Address;
 string name = e.DisplayName;
 }
}

�

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

148

As you can see, we have a Completed event handler that handles the result of that Task. Each of the
Choosers will operate this way, with an event handler method receiving the results of the task. An
AddressChooserTask returns two values to us, the Address and the DisplayName.

The user will be shown a very familiar contact list on their screen, and selecting a contact will be
how the data is triggered to return to us. Figure 7-20 shows the interface that the Windows Phone
emulator will show.

Figure 7-20. The Choose A Contact dialog that the AddressChooserTask uses

A very important thing to note about this task (as well as the EmailAddressChooserTask and
PhoneNumberChooserTask) is that the contact list that is shown (like Figure 7-20) is a filtered list. What this
means is that it will only display the contacts that actually have the data you’ve indicated. In this
example, only three of the seven contacts on the Windows Phone emulator have any address data.

We feel that this is a major shortcoming of these tasks because it will likely confuse your users. If I
have 100 contacts on my phone, and you launch this task, and my contact list only has three records (I
don’t usually keep physical addresses in this example), I’m going to freak out. My concern is no longer
about selecting a contact to use in this application; it has shifted to “Why isn’t my mom in my contacts
anymore?”

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

149

This is why we generally recommend taking one of two approaches with these tasks, as follows:

1. Alert the user that the list will only contain the contacts that have a physical
address in their record.

2. Use the Contacts API that we will cover at the end of this chapter.

Ultimately, using an AddressChooserTask is going to be much easier to use, but it does present the
opportunity to confuse your users.

EmailAddressChooserTask
There are many situations in which you, as the application developer, will want your users to contact
their friends. Perhaps you are writing a social networking application. Maybe you want them to share
some data with another contact. In any case, e-mail is often the medium of choice.

By combining the EmailAddressChooserTask with the EmailComposeTask we discussed earlier, you can
make sending an e-mail a trivial task for the user.

The EmailAddressChooserTask is very similar to the AddressChooserTask, except that we’ll be
retrieving an EmailResult object this time. Listing 7-15 shows a new EmailAddressChooserTask and the
necessary event handler to gather the data it returns.

Listing 7-15

EmailAddressChooserTask eact;

public MainPage()
{
 InitializeComponent();

 eact = new EmailAddressChooserTask();
 eact.Completed += new EventHandler<EmailResult>(eact_Completed);
 eact.Show();
}

void eact_Completed(object sender, EmailResult e)
{
 if (e.TaskResult == TaskResult.OK)
 {
 string emailaddress = e.Email;
 string displayname = e.DisplayName;
 }
}

As with the AddressChooserTask, we have the new DisplayName property. Before this was introduced
in Windows Phone 7.5, we only received the e-mail address and nothing else. When collecting contacts
in your application, having the contact’s name is a big bonus.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

150

PhoneNumberChooserTask
At this point, you’ve probably noticed that there are several choosers that do practically the same thing
(EmailAddressChooserTask, AddressChooserTask), but differ in the type of contact data they expose. This
is done to limit the overhead of the request. If you only need a phone number, there’s no reason to get
the entire contact record. At the end of this chapter, we’ll cover UserData, and how you can retrieve the
entire contact record, as well as calendar information.

With the PhoneNumberChooserTask we’re able to access a contact’s phone number, which, in
combination with the SmsComposeTask, would allow you to compose a text message for the user’s contact.
This becomes more important for applications that have invitations or a social aspect, like Foursquare.
Creating a text message that users can send to their contacts makes it easy for them to spread the word
about your application or the user’s accomplishments. Listing 7-16 shows how you grab the phone
number of a contact.

Listing 7-16. Using the PhoneNumberChooserTask

PhoneNumberChooserTask pnct;

// Constructor
public MainPage()
{
 InitializeComponent();
 pnct = new PhoneNumberChooserTask();
 pnct.Completed += new EventHandler<PhoneNumberResult>(pnct_Completed);
 pnct.Show();
}

void pnct_Completed(object sender, PhoneNumberResult e)
{
 if (e.TaskResult == TaskResult.OK)
 {
 string phonenumber = e.PhoneNumber;
 string displayname = e.DisplayName;
 }
 else if (e.TaskResult == TaskResult.Cancel)
 {
 //USER CANCELLED THE TASK.
 }
}

As with any of the tasks in this category (and also including the PhotoChooserTask and the
CameraCaptureTask), you need to make sure that you are validating that you received a TaskResult of OK
before you proceed. Without that check, you may not be receiving the values you expect because the
user cancelled the action. If you would like to also detect the cancellation, you can add an else if
statement to your event handler, like the one in Listing 7-16.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

151

SaveEmailAddressTask
The SaveEmailAddressTask allows you to prompt your user to save an e-mail address to their contacts.
They will be given the option to add it to an existing contact or to create a new contact. Because they are
editing a contact profile, they’ll actually be able to edit the entire contact record.

This task (and the ones that follow it in this section) doesn’t have the feel of the other tasks,
primarily because there is an event handler, but there isn’t any data returned to you.

In Listing 7-17, you’ll also notice that we must specify the e-mail address (as a String) before we call
the Show() method. Without it, this Chooser will only prompt the user to add a new e-mail address to
their selected contact.

Listing 7-17. Using SaveEmailAddressTask

SaveEmailAddressTask seat;

public MainPage()
{
 InitializeComponent();

 seat = new SaveEmailAddressTask();
 seat.Completed += new EventHandler<TaskEventArgs>(seat_Completed);
 seat.Email = "windowsphone@jeffblankenburg.com";
 seat.Show();
}

void seat_Completed(object sender, TaskEventArgs e)
{
 if (e.TaskResult == TaskResult.OK)
 {
 //Save was successful!
 }
 else (e.TaskResult == TaskResult.Cancel)
 {
 //Save was cancelled!
 }
}

As you can see, when saving data to a contact record, you’ll have the confidence of knowing that the
user completed the action, or that they cancelled it.

SavePhoneNumberTask
The SavePhoneNumberTask gives our users the ability to save a specific phone number to their contact list,
much like the previous task, the SaveEmailAddressTask. It is up to them where they save it, or if they save
it at all, but this tool certainly makes it easy and is particularly convenient when you have a phone
number likely to be called in the future (like customer service or technical support).

Figure 7-21 shows the interface your user will see when the SavePhoneNumberTask is launched and
after he has selected a specific contact.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

152

Figure 7-21. The user interface for the SaveEmailAddressTask

To make this task work, take a look at the code sample in Listing 7-18.

Listing 7-18. Using the SavePhoneNumberTask

SavePhoneNumberTask spnt;

public MainPage()
{
 InitializeComponent();

 spnt = new SavePhoneNumberTask();
 spnt.Completed += new EventHandler<TaskEventArgs>(spnt_Completed);
 spnt.PhoneNumber = "(772) 257-4501";
 spnt.Show();

}

void spnt_Completed(object sender, TaskEventArgs e)
{

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

153

 if (e.TaskResult == TaskResult.OK)
 {
 //Save was successful!
 }
}

As with the SaveEmailAddressTask, the PhoneNumber property is required or the task will simply
prompt the user to add a new phone number to his selected contact record.

SaveContactTask
The SaveContactTask is certainly the most robust of the tasks in this category, and perhaps this entire
chapter. It allows you to create and save an entire Contact record on the user’s device. This is obviously
incredibly beneficial for businesses, salesmen, or anyone else that wants to provide an easy way to be
contacted. To do this, we’ll follow the same patterns we introduced in the previous two tasks, but you’ll
see in Listing 7-19 that there are significantly more properties that we can provide.

Listing 7-19. Using the SaveContactTask

SaveContactTask spnt;

public MainPage()
{
 InitializeComponent();

 sct = new SaveContactTask();
 sct.Completed += new EventHandler<SaveContactResult>(sct_Completed);
 sct.FirstName = "Jeff"
 sct.LastName = "Blankenburg";
 sct.Company = "Microsoft";
 sct.WorkAddressStreet = "8800 Lyra Ave. #400";
 sct.WorkAddressCity = "Columbus";
 sct.WorkAddressState = "OH";
 sct.WorkAddressZipCode = "43240";
 sct.WorkEmail = "jeblank@microsoft.com";
 sct.WorkPhone = "(614) 719-5900";
 sct.PersonalEmail = "windowsphone@jeffblankenburg.com";
 sct.Website = "http://jeffblankenburg.com";
 sct.Show();
}

void sct_Completed(object sender, SaveContactResult e)

{
 if (e.TaskResult == TaskResult.OK)
 {
 //Save was successful!
 }
}

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

154

There are numerous properties available in SaveContactTask, above and beyond what is shown in
Listing 7-19, including JobTitle and MiddleName if you need those values. As before, we have an event
handler to determine whether or not your user completed the save.

Marketplace Tasks
Each of the tasks in this section relate specifically to the Windows Phone Marketplace. You’ll see how to
get your app reviewed, as well as a simple mechanism to show a user your other applications (think
cross-selling!). This section will cover the MarketplaceDetailTask, MarketplaceHubTask,
MarketplaceReviewTask, and the MarketplaceSearchTask.

MarketplaceDetailTask
The MarketplaceDetailTask allows you to send users to the Marketplace for a specific application. Left to
its default values, it will automatically take them to the details of the application they’re using. In many
cases, however, you have more than one application, and you’d like to let your users know about them.
We recommend making this a part of all your applications. It’s an incredibly easy way to direct your fans
to your other great apps. To do this, you’ll need a very specific piece of information about that app: the
application ID. You may also see this listed as Product ID in your AppHub account. If you don’t already
have an application in the Windows Phone Marketplace, you might not be familiar with this ID value.
Every application that successfully gets accepted to the Marketplace is assigned a unique GUID value.
This is the ID number that we are looking for. Figure 7-22 is an example from one of Jeff’s apps.

Figure 7-22. The product ID and deep link for your application in the marketplace.

So, to use this Launcher, all we need to do is create a new MarketplaceDetailTask, and specify this
Product ID as the content identifier, as shown in Listing 7-20.

Listing 7-20. Using the MarketplaceDetailTask

MarketplaceDetailTask mdt = new MarketplaceDetailTask();
mdt.ContentIdentifier = "f08521cd-1cff-df11-9264-00237de2db9e";
mdt.Show();

Again, this is another case where you really need to verify that the value you use for
ContentIdentifier is an appropriate value, because you will get an error from the Marketplace
otherwise. If you are using the MarketplaceDetailTask to take the user to the details for the current app
he’s using, you do not need to use the ContentIdentifier property. It will use the current app’s value by
default. Figure 7-23 shows an example of the Marketplace Detail screen and Figure 7-24 shows the error
screen you’ll see if you’re testing an unpublished app.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

155

Figure 7-23. The user interface for the MarketplaceDetailTask

Figure 7-24. An expected error from an unpublished application that you are testing

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

156

You will primarily use this task to recommend other applications to your user, but it’s also a great
way to convert a trial user to a full purchase. (We cover Trial Mode in Chapter 10, but in short, Trial
Mode enables you to provide your app for free with limited functionality, with the option for the user to
buy the full version at a future time.)

MarketplaceHubTask
This might be the simplest of the current Launchers, as all you can do is send the user to the Marketplace
app. No search terms, so specific apps, just the Marketplace Hub. We’re not exactly clear on why you
would want to do this (as opposed to using the next few Launchers), but we suppose it’s always good to
know that you can. You do have the ability to specify Applications or Music, but that’s it. When you
search for Applications, you’re actually searching for apps and games, so be aware of that as you use this.
Listing 7-21 shows how to implement this task.

Listing 7-21. Using the MarketplaceHubTask

MarketplaceHubTask mht = new MarketplaceHubTask();
mht.ContentType = MarketplaceContentType.Applications;
mht.Show();

There’s nothing especially fancy about this task, but if you need to direct the user to the
Marketplace, there isn’t another way to do it.

MarketplaceReviewTask
Of all the marketplace Launchers, this is certainly one you’re going to want to use frequently. Once a
user has installed your application, it’s up to you to drive them to review the app. They won’t be
prompted to review the app otherwise. By providing a reminder to your users to review your
application, you’ll get far more reviews, which should translate to more users. Unlike the
MarketplaceDetailTask, you can’t send your users to any other app but the one they are currently using,
so there’s no way to specify an Application ID in this Launcher. This takes them directly to the review
page for your application.

MarketplaceReviewTask mrt = new MarketplaceReviewTask();
mrt.Show();

While you’re building your application, this is another one of the Launchers that doesn’t work in the
emulator. In fact, it won’t work if you deploy it to a phone either. That’s because it’s looking for an
application that doesn’t yet exist in the Marketplace. If you’re doing it properly, you should see an error
that looks like the one displayed in Figure 7-24. The page that the user will see is shown in Figure 7-25.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

157

Figure 7-25. The Rate and Review screen the MarketplaceReviewTask uses

MarketplaceSearchTask
Another marketplace Launcher, this allows you to perform a search of the marketplace, and you can
even specify applications or music again, like you did with the MarketplaceHubTask. In Listing 7-22,
we’re searching for the song “Code Monkey” by Jonathan Coulton. You’ll also notice in Listing 7-22 that
we can just pack all of the search terms into one string, and the Marketplace does an astonishing job of
finding what we’re looking for.

Listing 7-22. Using the MarketplaceSearchTask

MarketplaceSearchTask mst = new MarketplaceSearchTask();
mst.ContentType = MarketplaceContentType.Music;
mst.SearchTerms = "Code Monkey Coulton";
mst.Show();

�

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

158

There’s not significantly more to say about this task, but this is another great way to show a user to
your other applications. By searching the name of the app (or in Jeff’s case, his name is unique enough),
you can present the user with a list of content he might be interested in buying.

Miscellaneous Tasks
As with any collection of things, there’s always a few that just don’t fit into a specific category. The next
four tasks that we’ll cover definitely fit that classification. The ConnectionSettings task gives us links to
specific parts of the user’s phone settings. The MediaPlayerLauncher, aside from being the only task
without the word “task” in its name, launches the default media player on the phone. The
SaveRingtoneTask allows you to save audio files to the user’s ringtone collection. The WebBrowserTask
launches Internet Explorer, loading a page you specify.

ConnectionSettingsTask
This task was a late addition to the Windows Phone 7.1 SDK, as it wasn’t even available until the final
release of the tools. The ConnectionSettingsTask allows you to direct the user to four different sections
of her phone’s settings: AirplaneMode, Bluetooth, Cellular, and Wi-Fi. To do this, we can use the simple
code example shown in Listing 7-23.

Listing 7-23. Using the ConnectionSettingsTask

ConnectionSettingsTask cst = new ConnectionSettingsTask();
cst.ConnectionSettingsType = ConnectionSettingsType.AirplaneMode;
cst.Show();

�
Using the example in Listing 7-23, the user would automatically be redirected to the Airplane Mode

settings screen on her phone, as shown in Figure 7-26.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

159

Figure 7-26. The user interface for the ConnectionSettingsTask using AirplaneMode.

You can use the ConnectionSettingsTask inside of your application, but we see this as a significant
way to provide Home Screen functionality to your user. By creating secondary tiles for your application
(we cover this in Chapter 8), you can provide the ability for the user to access her settings directly from
her Home Screen.

MediaPlayerLauncher
This is not like the MediaElement you may have become familiar with. A MediaElement allows you to
embed a video on your page in your application. The MediaPlayerLauncher does just what its title
describes: it launches the Media Player on the phone and leaves your application. Having said that, this
is a simple way to launch a video or song from your application, but it’s not an effective way to play that
music while the user continues to use your application or game.

You also get the ability to specify the controls that are used on the MediaPlayer using the Controls
property, as shown in Listing 7-24. Maybe you only want to offer the ability to pause or stop. You can do
that by specifying each control separately by using the MediaPlaybackControls enumeration, as shown in
Listing 7-25. The available controls are Pause, Stop, FastForward, Rewind, and Skip. All uses all of the
controls and None uses none of them.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

160

Listing 7-24. Using the MediaPlayerLauncher with All Controls Enabled

MediaPlayerLauncher mpl = new MediaPlayerLauncher();
mpl.Controls = MediaPlaybackControls.All;
mpl.Location = MediaLocationType.Install;
mpl.Media = new Uri("video/DramaticChipmunk.mp4", UriKind.Relative);
mpl.Show();

Listing 7-25. Specifying the Controls the MediaPlayerLauncher Will Use

MediaPlayerLauncher mpl = new MediaPlayerLauncher();
mpl.Controls = MediaPlaybackControls.Pause | MediaPlaybackControls.Stop;
mpl.Location = MediaLocationType.Install;
mpl.Media = new Uri("video/DramaticChipmunk.mp4", UriKind.Relative);
mpl.Show();

Notice the Location property in Listing 7-25. This is required to tell the control where the media file
resides. If you’ve included the media file in your XAP, you want to choose the
MediaLocationType.Install. If your application stored the media file in IsolatedStorage, you’ll want to
choose the MediaLocationType.Data.

The MediaPlayer is capable of playing several different formats of media, including WAV, MP3,
WMA, MP4, AAC, M4A, and WMV. For a complete and up-to-date listing of available formats, please
check out http://msdn.microsoft.com/en-us/library/ff462087(v=VS.92).aspx.

SaveRingtoneTask
The SaveRingtoneTask, as you’ll see, is the most code-intensive example in this chapter, but this is for a
specific reason: in order to save a ringtone to a user’s phone, you must first save it to IsolatedStorage.
So, in this section, our code sample will not only show you how to use the SaveRingtoneTask, but also
how to save an MP3 file to IsolatedStorage, so that you can use it with this task. Listing 7-26 shows the
code that is specific to using the SaveRingtoneTask.

Listing 7-26. Using the SaveRingtoneTask

SaveRingtoneTask srt;

// Constructor
public MainPage()
{
 InitializeComponent();
 srt = new SaveRingtoneTask();
 srt.Completed += new EventHandler<TaskEventArgs>(srt_Completed);
 srt.DisplayName = "Scotch";
 srt.IsShareable = true;
 srt.Source = new Uri("isostore:/Scotch.mp3");
 srt.Show();
}

void srt_Completed(object sender, TaskEventArgs e)
{

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

161

 if (e.TaskResult == TaskResult.OK)
 {
 //RINGTONE SAVED SUCCESSFULLY!
 }
 else if (e.TaskResult == TaskResult.Cancel)
 {
 //USER CANCELLED THE SAVE.
 }
}

At this point in the chapter, most of this code should look really familiar. We create a new
SaveRingtoneTask and a Completed event handler. The DisplayName property is what the user will see
when the ringtone is installed on the user’s device, as shown in Figure 7-27. IsShareable indicates
whether other applications can use your ringtone file, which you’d want to prevent with DRM’d audio
files.

Figure 7-27. The ringtone selection screen with our custom ringtone listed

Finally, if you refer back to Listing 7-26, we have the Source property. This uses a Uri format that
may look unfamiliar; this is because it is referring to a file that was previously saved in IsolatedStorage.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

162

We covered IsolatedStorage in Chapter 3, but Listing 7-27 shows a simple example of saving an MP3 file
from our application into IsolatedStorage. We referred to the saved location of this file in Listing 7-26.

Listing 7-27. Saving an MP3 File to IsolatedStorage

var s = Application.GetResourceStream(new Uri("audio/Scotch.mp3", UriKind.Relative));
{
 using (var f = IsolatedStorageFile.GetUserStoreForApplication().CreateFile("Scotch.mp3"))
 {
 var buffer = new byte[2048];
 int bytesRead = 0;

 do
 {
 bytesRead = s.Stream.Read(buffer, 0, 1024);
 f.Write(buffer, 0, bytesRead);
 }
 while (bytesRead > 0);

 f.Close();
 }
}

This example in Listing 7-27 will save your file to IsolatedStorage, allowing you to then use the code
in Listing 7-26 to save the ringtone to your user’s device. When the task executes, the user will see the
screen shown in Figure 7-28.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

163

Figure 7-28. The Save Ringtone dialog that the SaveRingtoneTask uses

If the user checks the “Make this my ringtone” box, it will also assign this ringtone to be his default
ringtone for the entire device.

WebBrowserTask
The WebBrowserTask is often confused with the WebBrowserControl. The WebBrowserControl is used

inside an application, where the WebBrowserTask launches the Internet Explorer application on the user’s
phone. The primary distinction we like to make is this: if you have a mobile web site that could
supplement as part of your application (think the current ESPN application), then you should be using
the WebBrowserControl. However, if you are just providing a link to a web site as a reference (or maybe
just to your home page), we would recommend using the WebBrowserTask.

The WebBrowserTask gives you some additional pieces of functionality that you would have no access
to (like Favorites), or would have to build yourself (like the address bar). You should also pay attention
to the fact that in the Windows Phone 7.5 release, the URL property was exchanged for the more
common Uri property. It is still there is in the code, but you should definitely avoid using it. Listing 7-28
shows how to use the WebBrowserTask.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

164

Listing 7-28

WebBrowserTask wbt = new WebBrowserTask();
wbt.Uri = new Uri("http://JesseLiberty.com");
wbt.Show();

Much like the EmailComposeTask that we showed earlier in this chapter, if you have a web site that
relates to your applications, you should provide a way for your users to check it out from your
applications; allowing them to click a link that launches the WebBrowserTask is the perfect way to
accomplish this.

Using the Microsoft.Phone.UserData Namespace
There’s a new namespace in Windows Phone 7.5 that provides programmatic access to more of the user
data on the phone than we have had previously. We can access all Contacts and Appointments, as well
as specific details in each.

Contacts
At first, this API appears to give you the ability to search through the contacts and appointments on the
user’s device. In reality, you have full access to this data. In the contacts example, we start by creating a
new reference to the user’s contacts, and then setting up an asynchronous search. We’ve also set up an
event handler to get the data when the search is completed, as shown in Listing 7-29.

Listing 7-29. Setting up an Asynchronous Search of Contacts

Contacts c = new Contacts();
c.SearchCompleted += new EventHandler<ContactsSearchEventArgs>(c_SearchCompleted);
c.SearchAsync("Jeff", FilterKind.DisplayName, null);

In Listing 7-29, you can see that we’re searching for any contact that matches the term “Jeff” in the
DisplayName property of the Contact record. This will bring you back an IEnumerable list of Contact
objects, with the entire contact’s record included. This means you have access to multiple e-mail
addresses, phone numbers, street addresses, birthdates, companies, and all of the other data available in
the People Hub.

However, if you change some of your search criteria, you can get a complete list of the user’s entire
contact list. This is especially handy when you want to compare their contacts to the members you have
on your service (think Twitter, Facebook, Google+, etc.). To do this, just exchange the last line of the
Listing 7-29 for the one in Listing 7-30.

Listing 7-30. Using an Empty Search String to Retrieve All Contacts

c.SearchAsync(string.Empty, FilterKind.None, null);

Peter Parker’s Uncle Ben reminded him, “with great power comes great responsibility” (a reference
from the 2002 film Spider-Man). Just because you have access to a user’s contact list does not mean you
should exploit that privilege. Getting your app installed on a user’s phone requires a high level of trust. If
you violate that trust by spamming all of his friends and contacts with e-mail and other junk, not only

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

165

will you be uninstalled, but your user’s frustration will also be reflected in negative reviews in the
marketplace.

In our example, we’re going to show how to use the EmailAddressChooserTask in combination with
this new namespace to allow our user to select an entire contact record without much effort on our part.
Since we’ve done part of this earlier in this chapter, the AddressChooserTask code is in Listing 7-31.

Listing 7-31. Using the EmailAddressChooserTask to Provide a Contact List

EmailAddressChooserTask emailAddressChooserTask = new EmailAddressChooserTask();
emailAddressChooserTask.Completed += new
EventHandler<EmailResult>(emailAddressChooserTask_Completed);
emailAddressChooserTask.Show();

In our Completed event handler, we’re going to perform a search on that contact similar to Listing
7-31, except that we’re going to use the DisplayName property that was returned to us from our Chooser
(shown in Listing 7-32).

Listing 7-32. Using the EmailAddressChooserTask

private void emailAddressChooserTask_Completed(object sender, EmailResult e)
{
 if (e.TaskResult == TaskResult.OK)
 {
 Contacts c = new Contacts();
 c.SearchCompleted += new EventHandler<ContactsSearchEventArgs>(c_SearchCompleted);
 c.SearchAsync(e.DisplayName, FilterKind.DisplayName, null);
 }
}

When the search completes, we are returned a list of matching contacts. Because it’s possible we
will get more than one record when matching on any of the search criteria, you should always be certain
that you’re only selecting one record. This applies both to the contact record itself, as well as the data
contained inside. You can have multiple phone numbers, e-mail addresses, even birthdates! We will use
the FirstOrDefault() option when selecting all of these items, but you should be cautious of two things
when working with this data:

1. Don’t assume that every contact has every piece of data. You will get a
NullReferenceException if data is missing. This means that you should check
before just assigning values to your code. While it’s frustrating to have to
check each value for actual data, it’s the only way to prevent your application
from crashing with missing data. The only exception to this rule is the
DisplayName property, for which there will always be a value.

2. There are actually ContactPhoneNumber, ContactEmailAddress, ContactAddress
and several other specific classes that contain the data you want, and some
additional metadata like “(Mobile)” for a phone number. These are important
pieces of additional data that are buried within the Contact class.

Listing 7-33 is an example of how to gather the DisplayName, e-mail address, and phone number of
the contact we just retrieved and assign them variables, with an eye on the two lessons we just covered.

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

166

Listing 7-33. Working with a Contact List

private void c_SearchCompleted(object sender, ContactsSearchEventArgs e)
{
 Contact c = e.Results.FirstOrDefault();
 if (c.DisplayName != null)
 {
 contactName.Text = c.DisplayName;
 }

 if (c.EmailAddresses != null)
 {
 string contactEmail = c.EmailAddresses.FirstOrDefault().EmailAddress;
 }

 if (c.PhoneNumbers != null)
 {
 string contactPhone = c.PhoneNumbers.FirstOrDefault().PhoneNumber;
 }

 if (c.Addresses != null)
 {
 string contactAddress = c.Addresses.FirstOrDefault().PhysicalAddress.AddressLine1 +
"\n" + c.Addresses.FirstOrDefault().PhysicalAddress.City + ", " +
c.Addresses.FirstOrDefault().PhysicalAddress.StateProvince + " " +
c.Addresses.FirstOrDefault().PhysicalAddress.PostalCode;
 }
}

As you can see, we combined the street address into one value, but you can retrieve each of these
values separately. It would be very interesting, for example, to gather up the zip codes of all of the user’s
contacts, and place each of them on a map. We will cover something similar to this in Chapter 9 when
we discuss the Map control.

Appointments
In many ways, working with the Appointments API is very similar to the Contacts API. We’re going to
search for a range of appointments (by time), and a collection of Appointment objects will be returned to
us. We search for events by time, as shown in Listing 7-34.

Listing 7-34 Searching for Appointments

private void getAppointments()
{
 Appointments a = new Appointments();
 a.SearchCompleted += new EventHandler<AppointmentsSearchEventArgs>(a_SearchCompleted);
 a.SearchAsync(DateTime.Now, DateTime.Now.AddDays(7), null);
}

CHAPTER 7 ■ GET A JOB: INTERACTING WITH USER DATA

167

In our Completed event handler (shown in Listing 7-35), we can start gathering up all of this rich
data.

Listing 7-35. SearchCompleted Event Handler

private void a_SearchCompleted(object sender, AppointmentsSearchEventArgs e)
{
 Appointment a = e.Results.Skip(10).FirstOrDefault();
 string startDate = a.StartTime.ToLongDateString();
 string startTime = a.StartTime.ToShortTimeString();
 string subject = a.Subject;
 string details = a.Details;
}

One of the key ways we can see this being used (aside from something simple and obvious like a
calendaring application) is calendar replication. As an example, I have all of my work appointments in
my corporate Exchange/Outlook account. I don’t have an effective way to share those appointments
with my wife, however (at least not without breaking the rules and giving her my credentials). So, with
two children that have an array of summer activities, we’ve found a burning need to replicate parts of my
work calendar to a Windows Live Calendar that we can share. Right now, it’s a manual process. By using
this API, we could easily grab my calendar events from my Outlook calendar, and using the Windows
Live API, duplicate all of those events to a more public calendar.

Summary
There are many ways to access rich, useful data from your user’s device. From calendar data, to contacts
and photos, we can make our applications feel customized to the user. The Windows Phone tasks
described in this chapter give you an opportunity to provide immersive phone experiences without
having to write all of the code yourself. We can make phone calls, take photos, recommend a user review
our application, or even provide turn-by-turn directions.

It’s also important to note that Section 5.6 of the Windows Phone Technical Certification
Requirements states: “An application must include the application name, version information, and
technical support contact information that are easily discoverable.”

This means that in nearly every application, there’s an opportunity to use the EmailComposeTask (so
that the user can send you a support message), the MarketplaceReviewTask (so the user can leave public
feedback about your app), the PhoneCallTask (so that the user can call your customer service number),
and the WebBrowserTask (so that the user can visit your web site). Your application has a web site, right?

In the next chapter, we’re going to discuss how we can make our applications receive updates, even
when the app isn’t currently running. We’ll do this through using push notifications, toast messages,
and Live Tile updates. These technologies facilitate a level of interaction with your user that is not
possible in any other way.

C H A P T E R 8

■ ■ ■

169

Get Pushy: Using Push
Notifications to Keep Your Users
Up-to-Date

This chapter will focus on keeping your users up-to-date. Push Notifications are certainly one way to do
that, but we’re also going to focus on Live Tile updates from your application.

For those of you that aren’t familiar with Push Notifications, how they work, or the purpose they
serve, we have a story for you about the US Postal Service.

Understanding Push Notifications (and the US Postal Service)
Let’s pretend that Microsoft’s Push Notification Service is the Post Office. Everyone has gotten mail in
the past, and this seems to work as a great analogy. The Microsoft Push Notification Service is central to
how notifications are handled in Windows Phone apps, much like the US Post Office is central to how
mail is delivered in the United States.

Tomorrow, you are going to finish building a brand-new home for you and your family. One of the
first things this house is going to need is a street address. So, you call the post office, and register your
home with them, and they give you back a street address that people can use to send housewarming gifts
and credit card offers.

The home, in this analogy, is your application installed on a user’s phone. The first time a user runs
your application, it must call the Push Notification Service and request an address. This address is a URI
that your web service can use to send messages (think housewarming gifts) to the app.

As the person living in the house, knowing your address is valuable, but not exactly the point. You
want your friends, family, and the companies that you interact with to know the address, so that they
can send you things via the postal service. Once we have an address we call our friends and give it to
them so the next time they need to send us something, they know where to send it.

Your friends, in this story, are your own personal web services. Perhaps they’re running in Windows
Azure, or maybe they’re a smaller set of services on your own shared hosting plan. In any case, these
web services are going to be the “friends” that are sending you “packages.”

Your birthday rolls around, and your friends want to send you a card with an Applebee’s gift card
inside. Rarely will they drive across town (or across the country) to hand it to you in person. Instead,
they take it to their local post office. That local post office takes the card and drives/flies/warps it to the
post office that is nearest to your address. Your local post office then takes that card to your house.

CHAPTER 8 ■ GET PUSHY: USING PUSH NOTIFICATIONS TO KEEP YOUR USERS UP-TO-DATE

170

When an event happens on your web service, like a new message, or photo, or a weather update,
you want to notify your users. Your web service will create a package of data, and send it to the address
that you received at the beginning of this story. The Push Notification Service takes that package,
identifies the users that need to receive it, and delivers it to the phones on your behalf. This package of
data can take one of three forms: a tile update, a toast notification,or a raw notification. We will cover
how to create each of these packages in this chapter, and how they interact with your user’s device.
Figure 8-1 illustrates the relationship between the phone, your web service, and the push notification
service.

Figure 8-1. A representation of the relationships in a Push Notification

Using the Push Notification Service does not require any registration, and its use is free. If, however,
you’re app is sending more than 500 notifications per phone per day (which is about one message every
3 minutes, 24 hours a day), Microsoft will require you to send your messages using an authenticated web
service. Much more on this topic can be found at http://msdn.microsoft.com/en-
us/library/ff941099.aspx.

Creating a Notification App
Enabling a Windows Phone application to receive Push Notifications is actually the easy part of this
process. As in our analogy, our application needs to call to the Push Notification service and get an
address. Once we have this address, we can use it to push all of the different types of notifications to that
device. An example will make this clear.

1. To get started, create a new Windows Phone application, and complete the
New Project dialogue in similar fashion to what’s shown in Figure 8-2.

CHAPTER 8 ■ GET PUSHY: USING PUSH NOTIFICATIONS TO KEEP YOUR USERS UP-TO-DATE

171

Figure 8-2. Creating a new Windows Phone application

In the MainPage.xaml.cs file, we need to create that call to the Push Notification service. To start, we
need to add a new namespace: Microsoft.Phone.Notification. This allows us to use objects like the
HttpNotificationChannel. This does all of the work for us behind the scenes, so that we don’t have to
manage the call and connection on our own.

2. Add the code in Listing 8-1 to MainPage.xaml.cs . This is the minimum code
you’ll need in order to make the call to the Notification Service in your
application.

Listing 8-1. The Windows Phone Code to Register with the Push Notification Service

using System;
using Microsoft.Phone.Controls;
using Microsoft.Phone.Notification;

namespace NotificationApp
{
 public partial class MainPage : PhoneApplicationPage
 {

CHAPTER 8 ■ GET PUSHY: USING PUSH NOTIFICATIONS TO KEEP YOUR USERS UP-TO-DATE

172

 // Constructor
 public MainPage()
 {
 InitializeComponent();

HttpNotificationChannel pushChannel;
 string channelName = "myPushChannel";

 pushChannel = HttpNotificationChannel.Find(channelName);

 if (pushChannel == null)
 {
 pushChannel = new HttpNotificationChannel(channelName);
 pushChannel.ChannelUriUpdated += new
EventHandler<NotificationChannelUriEventArgs>(pushChannel_ChannelUriUpdated);
 pushChannel.Open();
 pushChannel.BindToShellToast();
 pushChannel.BindToShellTile();
 }
 else
 {
 pushChannel.ChannelUriUpdated += new
EventHandler<NotificationChannelUriEventArgs>(pushChannel_ChannelUriUpdated);
 }
 }

 void pushChannel_ChannelUriUpdated(object sender,
NotificationChannelUriEventArgs e)
 {
 Dispatcher.BeginInvoke(() =>
 {
 System.Diagnostics.Debug.WriteLine(e.ChannelUri.ToString());
 });
 }
 }
}

As you can see in Listing 8-1, we start by naming a new HttpNotificationChannel. We also create a
string that we will use to name our notification channel when it is opened. Before anything else, we
need to check to make sure that our application hasn’t already created a notification channel. If we
have, we just register an event handler for notifications.

In the case of a first time call, we create the new HttpNotificationChannel, using the channelName
string that we created earlier. We also want to create an event handler so that we receive notification for
when we have a new channel URI. Finally, we open the new push channel, and bind it to the operating
system for both toast and tile notifications.

It is these BindToShellToast and BindToShellTile method calls that allow us to alert the system with
notifications from our web services or other applications. If you don’t need Toast or Tile updates for
your application, you can skip the ones you don’t want to use.

Notice that in our pushChannel_ChannelUriUpdated event handler, we spin up a separate thread and
write the new ChannelUri value to our Output window in Visual Studio. This will make it simple to copy

CHAPTER 8 ■ GET PUSHY: USING PUSH NOTIFICATIONS TO KEEP YOUR USERS UP-TO-DATE

173

and paste the channel address that the Push Notification service assigns to our application on our test
device, be it an actual Windows Phone or the emulator.

3. Run your project. In the Output window, copy the ChannelURI once it has
been retrieved. It should appear similar to Figure 8-3.

Figure 8-3. The Output panel of our Windows Phone application

This ChannelURI is retrieved from the Push Notification Service, and returned asynchronously to our
application. When it arrives, our pushChannel_ChannelUriUpdated event handler fires, which allows us to
capture the value and write it to the screen. In a more realistic example, we would take this ChannelURI
value and pass it to our web service to be stored until we need to use it.

Creating a Toast Notification
In our first example of Push Notifications, we are going to send a toast message to our Windows Phone
application. This can be done a variety of ways, using a web service, creating a client application, or
even from a simple Web Form. For the following examples, we are going to use the web form approach
because it illustrates concepts without adding the complexity that web services can create.

For our Toast notification example, you will need to create a new ASP.NET Empty Web Application
project.

If you are using the version of Visual Studio 2010 that came with the Windows Phone Tools, you will need to get
Visual Web Developer 2010 Express, which can be downloaded for free, or a full, paid version of Visual Studio
2010. Visual Web Developer 2010 Express can be downloaded at www.microsoft.com/visualstudio/en-
us/products/2010-editions/visual-web-developer-express.

 You will need to run these applications side-by-side, one for building your phone app, and one for
building the web site we’ll use to send our notifications. If you have a full license of Visual Studio 2010,
you can use the same tool for both projects.

Figure 8-4 shows what the New Project dialog will look like.

CHAPTER 8 ■ GET PUSHY: USING PUSH NOTIFICATIONS TO KEEP YOUR USERS UP-TO-DATE

174

Figure 8-4.. Creating a new ASP.NET Empty Web Application Project

1. Create a new ASP.NET Empty Web Application Project.

2. Next, create a new Web Form, as shown in Figure 8-5.

CHAPTER 8 ■ GET PUSHY: USING PUSH NOTIFICATIONS TO KEEP YOUR USERS UP-TO-DATE

175

Figure 8-5. Adding a new Web Form to our project

Our Web Form requires almost no user interface, except for a button. We are going to use that
button to send the toast notifications.

3. Add the button to the Default.aspx file that you created, and title it “Toast,”
using the code in Listing 8-2.

Listing 8-2. Adding Three Buttons to Our HTML Web Interface

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"
Inherits="NotificationWebApp.Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

CHAPTER 8 ■ GET PUSHY: USING PUSH NOTIFICATIONS TO KEEP YOUR USERS UP-TO-DATE

176

 <asp:Button ID="ToastButton" runat="server" Text="Toast"
OnClick="ToastButton_Click" />
 </div>
 </form>
</body>
</html>

As you can see in Listing 8-2, we are using an asp:Button control because we will be calling a method
in our code-behind file. Before you try to run this project, we also need to create that event handler
method, as shown in Listing 8-3.

4. Add the code in Listing 8-3 to your Default.aspx.cs file.

Listing 8-3. Adding the Button Event Handlers to the Code-Behind File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace NotificationWebApp
{
 public partial class Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }

 protected void ToastButton_Click(object sender, EventArgs e)
 {

 }
 }
}

In each of these event handlers, we will be creating a package of data to be sent to the phone client.
In order for this simple example to work, we will need that ChannelURI that was created when we ran and
deployed our NotificationApp to the Windows Phone emulator.

Using that URI, we will need to create a string value that we can use in our web application. Listing
8-4 shows how we will store that value.

ListiNg 8-4. Storing the Channel URI in Our Web Application

string channelURI = "http://sn1.notify.live.net/throttledthirdparty/01.00/AAFk-
oO0rdbpTarmw1lAQeciAgAAAAADAgAAAAQUZm52OjIzOEQ2NDJDRkI5MEVFMEQ";

CHAPTER 8 ■ GET PUSHY: USING PUSH NOTIFICATIONS TO KEEP YOUR USERS UP-TO-DATE

177

5. Add the code from Listing 8-4 directly above our Page_Load method,
remembering to use your own channelURI value, not the one shown in Listing
8-4.

Finally, we need to create the Toast package that we will send to our application. To do this, we will
be creating a HTTP POST request to the Push Notification service. (This is actually the only type of
request allowed.) We are going to POST an XML message to the service, with a very specific format.
Listing 8-5 shows the entire ToastButton_Click method code.

6. Use the code from Listing 8-5 as your ToastButton_Click event handler code.

Listing 8-5. Sending a Toast Notification

protected void ToastButton_Click(object sender, EventArgs e)
{

 HttpWebRequest notification = (HttpWebRequest)WebRequest.Create(channelURI);
 notification.Method = "POST";

 string toast = "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +
 "<wp:Notification xmlns:wp=\"WPNotification\">" +
 "<wp:Toast>" +
 "<wp:Text1>Houston...</wp:Text1>" +
 "<wp:Text2>The eagle has landed.</wp:Text2>" +
 "</wp:Toast> " +
 "</wp:Notification>";

 byte[] notificationMessage = Encoding.Default.GetBytes(toast);

 notification.ContentLength = notificationMessage.Length;
 notification.ContentType = "text/xml";
 notification.Headers.Add("X-WindowsPhone-Target", "toast");
 notification.Headers.Add("X-NotificationClass", "2");
 notification.Headers.Add("X-MessageID", "b1711c5a-a6c1-4998-b160-c24ffd79ddc1");

 using (Stream requestStream = notification.GetRequestStream())
 {
 requestStream.Write(notificationMessage, 0, notificationMessage.Length);
 }

 HttpWebResponse response = (HttpWebResponse)notification.GetResponse();
 string notificationStatus = response.Headers["X-NotificationStatus"];
 string subscriptionStatus = response.Headers["X-SubscriptionStatus"];
 string deviceConnectionStatus = response.Headers["X-DeviceConnectionStatus"];
 string messageID = response.Headers["X-MessageID"];

 System.Diagnostics.Debug.WriteLine("NOTIFICATION STATUS:" + notificationStatus);
 System.Diagnostics.Debug.WriteLine("DEVICE CONNECTION STATUS:" +
deviceConnectionStatus);
 System.Diagnostics.Debug.WriteLine("SUBSCRIPTION STATUS:" + subscriptionStatus);
 System.Diagnostics.Debug.WriteLine("MESSAGE ID:" + messageID);
}

CHAPTER 8 ■ GET PUSHY: USING PUSH NOTIFICATIONS TO KEEP YOUR USERS UP-TO-DATE

178

As you can see in the code from Listing 8-5, sending a Toast notification is not a lengthy process, but
there are some very specific things that you need to do in order for it to work properly.

We create a new string, toast, that contains our XML message. The <wp:Text1> node is the title of
our message, and the <wp:Text2> node is our message. We then convert that XML string into a byte
array (notificationByteArray) before adding some message headers. Each message header has a
specific meaning, and as we look at the other notification types in this chapter, they will become more
obvious. The following is a quick look at each of those message headers, and their values:

X-WindowsPhone-Target: We specify a value of “toast” to indicate that this is
going to be a toast notification to the phone. This tells the target phone that the
message should be used as a toast notification.

X-NotificationClass: We use a value of 2 to specify a toast message, again. This
value is used by the Push Notification Service to batch messages so that you
don’t get 3 or 4 at exactly the same time.

X-MessageID: This is actually an optional value that you can use to identify your
messages in the response. You must specify a GUID value, and it will be
returned to you in the response, identifying the specific message. Without this,
you won’t be able to match your responses to your messages accurately.

Finally, we send the stream of data to the Push Notification service. The GetResponse() method that is
called on our HttpWebRequest object (notification) actually passes the data to the Push Notification
service, and the four string values that follow it are really for our own bookkeeping more than anything
else. They provide us with the following few valuable pieces of information about our message:

X-NotificationStatus: Was the message received?

X-SubscriptionStatus: Is the user’s phone accepting Toast notifications?

X-DeviceConnectionStatus: Is the user’s phone accepting data at all?

X-MessageID: The unique identifier we gave the message when we sent it.

Finally, we use System.Diagnostics.Debug.Writeline() to write those messages to our Output
window so that we can easily see what happened to our message. In your “real” application, you would
probably commit these header values to a database, or even use them to re-queue messages that weren’t
received at a future time.

7. Finally, run your web application and your phone application at the same
time, making sure you have an accurate channelURI. When you click the
“Toast” button, you should see the result in your emulator, which looks like
Figure 8-6.

CHAPTER 8 ■ GET PUSHY: USING PUSH NOTIFICATIONS TO KEEP YOUR USERS UP-TO-DATE

179

Figure 8-6. A Toast Notification on the Windows Phone emulator

The icon that you see in the toast message (in Figure 8-6) is actually the icon of your application. It
is used automatically, to make the user aware of which application sent them the message.

So that’s all it takes to send a Toast message to a Windows Phone. It was a long journey, but we’ve
actually laid most of the framework for the next two notification types. Let’s take a look at what we need
to do for Raw Notifications next.

Creating a Raw Notification
This section, as well as the Tile Notification section that follow it, assumes that you have gone through
the Toast notification section of this chapter already. There’s a significant amount of overlap between
these three processes, and it seemed incredibly redundant to repeat most of the work in each section.
For Raw Notifications, we will need to change the Windows Phone application slightly, so that we can
receive the data.

CHAPTER 8 ■ GET PUSHY: USING PUSH NOTIFICATIONS TO KEEP YOUR USERS UP-TO-DATE

180

8. Open the same Windows Phone application we’ve been working on, and add
one new event handler to our MainPage.xaml.cs file, as shown in Listing 8-6.
The entire contents of MainPage.xaml.cs are shown for reference, but we have
only added the new HttpNotificationReceived event handler, and its method,
shown in bold.

Listing 8-6. Adding the HttpNotificationReceived Event Handler

using System;
using System.Windows;
using Microsoft.Phone.Controls;
using Microsoft.Phone.Notification;
using System.Text;

namespace NotificationApp
{
 public partial class MainPage : PhoneApplicationPage
 {
 // Constructor
 public MainPage()
 {
 InitializeComponent();

HttpNotificationChannel pushChannel;
 string channelName = "myPushChannel";

 pushChannel =
HttpNotificationChannel.Find(channelName);

 if (pushChannel == null)
 {
 pushChannel = new HttpNotificationChannel(channelName);
 pushChannel.ChannelUriUpdated += new
EventHandler<NotificationChannelUriEventArgs>(pushChannel_ChannelUriUpdated);
 pushChannel.HttpNotificationReceived += new
EventHandler<HttpNotificationEventArgs>(pushChannel_HttpNotificationReceived);
 pushChannel.Open();
 pushChannel.BindToShellToast();
 pushChannel.BindToShellTile();
 }
 else
 {
 pushChannel.ChannelUriUpdated += new
EventHandler<NotificationChannelUriEventArgs>(pushChannel_ChannelUriUpdated);
 }
 }

 void pushChannel_HttpNotificationReceived(object sender,
HttpNotificationEventArgs e)
 {
 string rawData;

CHAPTER 8 ■ GET PUSHY: USING PUSH NOTIFICATIONS TO KEEP YOUR USERS UP-TO-DATE

181

 using (System.IO.StreamReader streamReader = new
System.IO.StreamReader(e.Notification.Body))
 {
 rawData = streamReader.ReadToEnd();
 }

 Dispatcher.BeginInvoke(() =>
 MessageBox.Show(String.Format("New XML Data {0}:\n{1}",
 DateTime.Now.ToShortTimeString(), rawData))
);

 }

 void pushChannel_ChannelUriUpdated(object sender,
NotificationChannelUriEventArgs e)
 {
 Dispatcher.BeginInvoke(() =>
 {
 System.Diagnostics.Debug.WriteLine(e.ChannelUri.ToString());
 });
 }
 }
}

An important thing to remember about Raw Notifications is that you are just sending raw data. If
you prefer XML, send XML. If you would rather use JSON, send yourself JSON. If you’re just sending
plain text, you can send that as well. The only real restriction is that your data is sent as text (XML and
JSON are just text all gussied up).

You’ll see that in our simple example in Listing 8-6, we use a StreamReader to grab the data when it
arrives, and then publish it to the phone’s screen in a MessageBox. Generally, you’re going to do
something more interesting with your data, but for the purposes of our illustration, this certainly
achieves the goal.

Now we need to modify our web application to send a Raw Notification message.

9. Update your code in Default.aspx to look like Listing 8-7. We have only added
a new Button to the page, but the entire code is shown as a reference.

Listing 8-7. Adding the Raw Button to the HTML Interface

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"
Inherits="NotificationWebApp.Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>

CHAPTER 8 ■ GET PUSHY: USING PUSH NOTIFICATIONS TO KEEP YOUR USERS UP-TO-DATE

182

 <form id="form1" runat="server">
 <div>

<asp:Button ID="ToastButton" runat="server" Text="Toast" OnClick="ToastButton_Click"
/>
 <asp:Button ID="RawButton" runat="server" Text="Raw" OnClick="RawButton_Click" />
 </div>
 </form>
</body>
</html>

In our code-behind, we will need another event handler method, RawButton_Click. There are really
only three differences between the RawButton_Click event handler and the ToastButton_Click event
handler that we looked at in Listing 8-5.

� Toast messages require a very specific XML format. Raw messages do not.

� We do not need the X-WindowsPhone-Target Header on our notification.

� We change the X-NotificationClass header value from 2 to 3.

Listing 8-8 shows the entire RawButton_Click event handler method, but the lines that differ from
those in a Toast message are bbolded.

10. Add the code from Listing 8-8 to your Default.aspx.cs file.

Listing 8-8. The Raw Notification Event Handler

protected void RawButton_Click(object sender, EventArgs e)
{
 HttpWebRequest notification = (HttpWebRequest)WebRequest.Create(channelURI);
 notification.Method = "POST";

 string rawMessage = "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +
 "<root>" +
 "<FirstName>Jeff</FirstName>" +
 "<LastName>Blankenburg</LastName>" +
 "</root>";

 byte[] notificationMessage = Encoding.Default.GetBytes(rawMessage);

 notification.ContentLength = notificationMessage.Length;
 notification.ContentType = "text/xml";
 notification.Headers.Add("X-NotificationClass", "3");
 notification.Headers.Add("X-MessageID", "b1711c5a-a6c1-4998-b160-c24ffd79ddc1");

 using (Stream requestStream = notification.GetRequestStream())
 {
 requestStream.Write(notificationMessage, 0, notificationMessage.Length);
 }

 HttpWebResponse response = (HttpWebResponse)notification.GetResponse();
 string notificationStatus = response.Headers["X-NotificationStatus"];

CHAPTER 8 ■ GET PUSHY: USING PUSH NOTIFICATIONS TO KEEP YOUR USERS UP-TO-DATE

183

 string subscriptionStatus = response.Headers["X-SubscriptionStatus"];
 string deviceConnectionStatus = response.Headers["X-DeviceConnectionStatus"];
 string messageID = response.Headers["X-MessageID"];

 System.Diagnostics.Debug.WriteLine("NOTIFICATION STATUS:" + notificationStatus);
 System.Diagnostics.Debug.WriteLine("DEVICE CONNECTION STATUS:" +
deviceConnectionStatus);
 System.Diagnostics.Debug.WriteLine("SUBSCRIPTION STATUS:" + subscriptionStatus);
 System.Diagnostics.Debug.WriteLine("MESSAGE ID:" + messageID);
}

As you can see from Listing 8-8, sending Toast and Raw Notifications are nearly identical. Our final
example using Push Notification services is a Tile Update, and you’ll find that in this example, we use
much of the same code again.

Creating a Tile Notification
Creating a tile notification is very similar to the previous two examples, Toast and Raw notifications. In
fact, our Windows Phone application doesn’t need any additional code to make this work. If you are
starting on this section of the chapter without having read the beginning of it, you’ll want to reference
Listing 8-1 to create your Windows Phone application.

To actually send a tile update, we need yet another button in our HTML interface, so let’s start there,
in Listing 8-9.

11. Add the code for the Button in Listing 8-9 to your Default.aspx file.

Listing 8-9 Adding a Tile Button to Our HTML Interface

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"
Inherits="NotificationWebApp.Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:Button ID="ToastButton" runat="server" Text="Toast" OnClick="ToastButton_Click"
/>
 <asp:Button ID="RawButton" runat="server" Text="Raw" OnClick="RawButton_Click" />

<asp:Button ID="TileButton" runat="server" Text="Tile" OnClick="TileButton_Click" />
 </div>
 </form>
</body>
</html>

CHAPTER 8 ■ GET PUSHY: USING PUSH NOTIFICATIONS TO KEEP YOUR USERS UP-TO-DATE

184

In our code-behind, we will create a third and final event handler method for the new button, and
again, most of the code will be redundant from our previous Toast and Raw examples. The unique
pieces of code for Tile notifications are shown in bold in Listing 8-10.

12. Add the TileButton_Click event handler from Listing 8-10 to your
Default.aspx.cs file.

Listing 8-10. The Tile Event Handler Code for Our Web Code-Behind
protected void TileButton_Click(object sender, EventArgs e)

{
 HttpWebRequest notification = (HttpWebRequest)WebRequest.Create(channelURI);
 notification.Method = "POST";

 string tile = "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +
 "<wp:Notification xmlns:wp=\"WPNotification\">" +
 "<wp:Tile>" +
 "<wp:BackgroundImage></wp:BackgroundImage>" +
 "<wp:Count>23</wp:Count>" +
 "<wp:Title>Notify!</wp:Title>" +
 "<wp:BackBackgroundImage></wp:BackBackgroundImage>" +
 "<wp:BackTitle>!Yfiton</wp:BackTitle>" +
 "<wp:BackContent>Back that tile up.</wp:BackContent>" +
 "</wp:Tile> " +
 "</wp:Notification>";

 byte[] notificationByteArray = Encoding.Default.GetBytes(tile);

 notification.ContentLength = notificationByteArray.Length;
 notification.ContentType = "text/xml";
 notification.Headers.Add("X-WindowsPhone-Target", "token");
 notification.Headers.Add("X-NotificationClass", "1");

 using (Stream requestStream = notification.GetRequestStream())
 {
 requestStream.Write(notificationByteArray, 0, notificationByteArray.Length);
 }

 HttpWebResponse response = (HttpWebResponse)notification.GetResponse();
 string notificationStatus = response.Headers["X-NotificationStatus"];
 string subscriptionStatus = response.Headers["X-SubscriptionStatus"];
 string deviceConnectionStatus = response.Headers["X-DeviceConnectionStatus"];
 string messageID = response.Headers["X-MessageID"];

 System.Diagnostics.Debug.WriteLine("NOTIFICATION STATUS:" + notificationStatus);
 System.Diagnostics.Debug.WriteLine("DEVICE CONNECTION STATUS:" +
deviceConnectionStatus);
 System.Diagnostics.Debug.WriteLine("SUBSCRIPTION STATUS:" + subscriptionStatus);
 System.Diagnostics.Debug.WriteLine("MESSAGE ID:" + messageID);
}

CHAPTER 8 ■ GET PUSHY: USING PUSH NOTIFICATIONS TO KEEP YOUR USERS UP-TO-DATE

185

You should notice that there are six pieces of information that we can dynamically change in our
application’s Live Tile. They are part of the new XML string that we’ve created named tile. Illustrations
of these values can be seen in Figure 8-7. The following describes the six pieces of information:

BackgroundImage: An image that is already part of your Windows Phone app
that can be used as a background for your tile. An example would be a weather
application. You might have a rainy tile, a sunny tile, and a snowy tile.

Count: The number that shows up in the small circle in the top right corner.
This can range from zero to 99. Any number greater than 99 will only show 99
as the value.

Title: The text shown on the bottom of the tile. You have no control over font
size, color, or family, and you get approximately 20 characters.

BackBackgroundImage: Exactly like the background image on the front side of
the tile, except we are specifying the one on the back of the tile, when it flips
over. Without an image specified, the back of the tile will always be red.

BackTitle: Text in the same position as the front title. Same restrictions.

BackContent: The large text on the back of the tile.

Figure 8-7. A Live Tile in default, updated, and flipped states

The other differences in the code for our TileButton_Click event handler method are semantics
more than anything else. We need to add the X-WindowsPhone-Target header back in (we used it for
the Tile messages), using “token” as our value. The X-NotificationClass header needs a “1” value to

CHAPTER 8 ■ GET PUSHY: USING PUSH NOTIFICATIONS TO KEEP YOUR USERS UP-TO-DATE

186

indicate that it is a Tile notification as well. Otherwise, all of your code should look identical to the
previous two examples.

Live Tile Updates
At this point, you might be wishing for a way to update your Live Tile from your application, rather than
from a web service (or our fancy web application). The good news is: you can. For this example, we’ll
continue working on our NotificationApp that we’ve been working on over this entire chapter.

13. Add two buttons to our MainPage.xaml page in our Windows Phone project, as
shown in Listing 8-11.

Listing 8-11. Adding Buttons to Our XAML Interface

<Button Content="Primary" Height="72" HorizontalAlignment="Left" Margin="130,152,0,0"
Name="PrimaryButton" VerticalAlignment="Top" Width="214" Click="PrimaryButton_Click" />
<Button Content="Secondary" Height="72" HorizontalAlignment="Left" Margin="130,299,0,0"
Name="SecondaryButton" VerticalAlignment="Top" Width="214" Click="SecondaryButton_Click" />

As you can see, we’ve created a Click event for each of these buttons, and we will be implementing
the code to change these tiles in those event handler methods.

SECONDARY LIVE TILES

You may have noticed that the second button is titled “Secondary.” This is because in the Windows Phone
7.5 release, you can now create additional tiles (in addition to your primary one) on your user’s home
screen. This becomes especially important when you want to expose specific functionality from your
application without forcing the user to launch it from the beginning and navigate to that action. Imagine
your specific flights being exposed by an airline app, or being able to launch into specific areas of a game,
right from your home screen. That’s what secondary tiles provide us as developers.

Now that we have added those buttons to our Xaml interface, we need to write some code in the

event handler methods in MainPage.xaml.cs. To update a primary tile, we need to dive into the
collection of ShellTiles that our application has, and grab the first one. This will always be our primary
tile.

14. Listing 8-12 shows our PrimaryButton_Click method and its contents. Add this
to your MainPage.xaml.cs file. Make sure that you also add a using statement
for System.Linq, or the example code won’t work for you.

CHAPTER 8 ■ GET PUSHY: USING PUSH NOTIFICATIONS TO KEEP YOUR USERS UP-TO-DATE

187

Listing 8-12. Updating a Primary Tile

private void PrimaryButton_Click(object sender, RoutedEventArgs e)
{
 ShellTile PrimaryTile = ShellTile.ActiveTiles.First();

 if (PrimaryTile != null)
 {
 StandardTileData TileUpdate = new StandardTileData
 {
 Title = "Yoda Tile",
 BackgroundImage = new Uri("", UriKind.Relative),
 Count = 1,
 BackTitle = "The Dark Side",
 BackBackgroundImage = new Uri("", UriKind.Relative),
 BackContent = "Beware, this side you should."
 };

 PrimaryTile.Update(TileUpdate);
 }
}

As we show you in Listing 8-12, we grab the first ShellTile object as the primary tile, and then we can
update the tile’s information using the StandardTileData class. The code in this example is also how you
will update Secondary Tiles after they have been created. The primary difference is in which tile in the
ActiveTiles collection you select.

In the next code example, Listing 8-13, we will create a new Secondary Tile. We’ll do this inside the
SecondaryButton_Click event handler method that we already created. An important thing to remember
about creating Secondary Tiles is that as soon as you create the tile, your user will be whisked away to
their Home screen to see the tile in its new location. This means that you will have to create each tile
individually, and there’s no real mechanism for creating several Secondary Tiles at a time.

15. Add the event handler in Listing 8-13 to your MainPage.xaml.cs file.

Listing 8-13. Creating a Secondary Tile

private void SecondaryButton_Click(object sender, RoutedEventArgs e)
{
 ShellTile SecondaryTile = ShellTile.ActiveTiles.FirstOrDefault(x =>
x.NavigationUri.ToString().Contains("Tile=2"));

 if (SecondaryTile == null)
 {
 StandardTileData NewTile = new StandardTileData
 {
 BackgroundImage = new Uri("", UriKind.Relative),
 Title = "Cautionary Tile",
 Count = 42,
 BackTitle = "Baby Got Back",
 BackContent = "L.A. Face with an open data feed.",
 BackBackgroundImage = new Uri("", UriKind.Relative)

CHAPTER 8 ■ GET PUSHY: USING PUSH NOTIFICATIONS TO KEEP YOUR USERS UP-TO-DATE

188

 };

 ShellTile.Create(new Uri("/AlternatePage.xaml?Tile=2", UriKind.Relative),
NewTile);
 }

Much of the code in Listing 8-13 should look similar to that of the Primary Tile update we did in
Listing 8-12. The specific difference is in how we determine which tile we’re working with. You can
search through the NavigationUri property of the ActiveTiles, so it is recommended that you add
unique query string variables to the end of your Navigation URI values. In our example, we used
“Tile=2” as our unique value, and we were searching to make sure that our Secondary Tile didn’t already
exist.

To update a Secondary Tile, we perform the same search, but we want to make sure that the value
isn’t null, and we call an Update() method on our existing tile instead of the .Create() method on the
ShellTile class.

16. Use the code in Listing 8-14 to create our third event handler in our
MainPage.xaml.cs file.

Listing 8-14. Updating a Secondary Tile

private void UpdateButton_Click(object sender, RoutedEventArgs e)
{
 ShellTile UpdateTile = ShellTile.ActiveTiles.FirstOrDefault(x =>
x.NavigationUri.ToString().Contains("Tile=2"));

 if (UpdateTile != null)
 {
 StandardTileData UpdateData = new StandardTileData
 {
 BackgroundImage = new Uri("", UriKind.Relative),
 Title = "Tile E. Coyote",
 Count = 8,
 BackTitle = "AC/DC",
 BackContent = "Back in Black",
 BackBackgroundImage = new Uri("", UriKind.Relative)
 };

 UpdateTile.Update(UpdateData);
 }
}

As described in Listing 8-14, the code structure is almost exactly the same, with the exception of the
null if statement and the Update call. This should make it very easy to create “tile factories” in your
code, reducing the redundancy in your application.

CHAPTER 8 ■ GET PUSHY: USING PUSH NOTIFICATIONS TO KEEP YOUR USERS UP-TO-DATE

189

Summary
You can see that we have the ability to add and update any of our tiles directly from our application, or
from a web service using the Push Notification Service. This provides us with an incredible opportunity
to keep our users up to date, engaged, and interested in what our application is doing. Some of the best
applications, going forward, will be those that you potentially never even need to open. All of the
information and data you need is found directly on your home screen, with no need to spin up the actual
application. We look forward to seeing how you take advantage of these powerful tools.

C H A P T E R 9

■ ■ ■

191

Get Oriented: Interacting with the
Phone, Camera, GPS, and More

When you hold a modern mobile phone in your hands, you are a holding a sophisticated and complex
system of sensors, hardware, and software—all working in harmony. It’s easy to forget that just a few
short years ago, each of these “parts” had its own API, and that it was up to the developer to figure out
how to make it work.

With Windows Phone, the operating system provides a rich set of integrated APIs for you to use in
your application when you want to know the device’s location (GPS), orientation (compass,
accelerometer and gyroscope), or surroundings (the camera). In this chapter, we’ll cover how to use
these sensors in your applications, as well as the best situations in which to use each of them.

Prior to the release of the 7.1 SDK, some of these sensors were unavailable. The first is access to the
raw data feed from the camera. This enables key scenarios like image manipulation and augmented
reality applications. Newer phones may also contain a gyroscope, and there’s now an API for the
compass that has been in every Windows Phone 7 since the beginning.

Tracking the Position of Your Device
There is much to be learned about a user’s device from the data its sensors provide. Location is an
obvious one, and it’s important to know where the device is in order to give the user more information
about where they currently are. Orientation of the device can be equally, if not more important,
however. Using the compass, the accelerometer and the gyroscope, we can determine exactly which
direction the phone is facing, its physical orientation in space, and rate at which it is rotating.

What makes the orientation sensors exceptional, however, is the Microsoft also provides us with the
Motion class, which aggregates the data from all three of those sensors into one robust class that does a
bunch of really complicated math on our behalf. We will cover each of these sensors, as well as the
Motion class in this chapter.

Using Location Services
Windows Phone provides three ways to determine the location—the latitude and longitude—of a phone:
GPS, mobile phone triangulation, and Wi-Fi. The first and most obvious choice is GPS. Every Windows
Phone has a GPS chip, and for most purposes, it works incredibly well. That is, until you go inside a
building.

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

192

Second, there’s mobile phone triangulation. There are cell towers all over the place in metro areas,
and by measuring the signal latency from the surrounding towers (and knowing their locations), you can
make an educated estimation as to where the phone is, sometimes within as few as 50 feet.

Finally, there’s Wi-Fi lookups. By connecting to a Wi-Fi access point, you have an IP address, and
that IP address can be located with a reverse-IP lookup. This is not the most accurate process, but if
you’re trying to find the nearest McDonalds, it’s almost certainly sufficient.

Each of these methods has its advantages and disadvantages, as shown in Table 9-1. GPS doesn’t
work well inside a building, it’s relatively slow to get a signal, and it uses a lot of power, but it’s extremely
accurate. Triangulation is fast and low-power, but less accurate and really only works in populated
areas. (There are not many cell towers in Antarctica or North Dakota, for example.) Wi-Fi is probably
the least accurate, but again, it’s fast.

Table 9-1. Location Services Sensors, and Their Ratings (1 = Best, 3 = Worst)

 GPS Triangulation Wi-Fi

Accuracy 1
2 3

Power Use 3
1 2

Speed 3
1 2

Signal Limitation Indoors
Wilderness Wilderness

Thankfully, for Windows Phone, we don’t have to determine which service to use. In fact, we can’t.

Microsoft provides a single object for all of this data in Location Services. To show a device’s location,
you need a small bit of code in both your Xaml and C# files. Listing 9-1 shows the Xaml you’ll need. We
are adding three TextBlock values.

Listing 9-1. The Xaml Elements to Add to Your Location Services Project

<TextBlock Height="30" HorizontalAlignment="Left" Margin="12,101,0,0" Text="Latitude"
VerticalAlignment="Top" />
<TextBlock Height="30" HorizontalAlignment="Left" Margin="12,239,0,0" Text="Longitude"
VerticalAlignment="Top" />
<TextBlock Height="30" HorizontalAlignment="Left" Margin="12,376,0,0" Text="Status"
VerticalAlignment="Top" />
<TextBlock Height="101" HorizontalAlignment="Left" Margin="12,137,0,0" x:Name="Latitude"
Text="" VerticalAlignment="Top" Width="438" FontSize="72" />
<TextBlock Height="101" HorizontalAlignment="Left" Margin="12,275,0,0" x:Name="Longitude"
Text="" VerticalAlignment="Top" Width="438" FontSize="72" />
<TextBlock Height="101" HorizontalAlignment="Left" Margin="12,406,0,0" x:Name="Accuracy"
Text="" VerticalAlignment="Top" Width="438" FontSize="72" />
<TextBlock Height="30" HorizontalAlignment="Left" Margin="73,34,0,0" x:Name="Status"
Text="Stopped" VerticalAlignment="Top" Width="306" TextAlignment="Center" />

1. Create a new Windows Phone Application project named “LocationSample.”

2. In MainPage.xaml, use the code from Listing 9-1 inside the default Grid named
“ContentPanel.”

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

193

Now that we have a simple interface to work with, we can dive into the code to get our actual
Location data. Listing 9-2 assumes that you want to get a new location every time the device moves,
which is why we are using event handlers to get the data.

Listing 9-2. Detecting Location in Our Code-Behind File

using System;
using System.Device.Location;
using Microsoft.Phone.Controls;

namespace LocationSample
{
 public partial class MainPage : PhoneApplicationPage
 {
 GeoCoordinateWatcher gcw = new GeoCoordinateWatcher();

 public MainPage()
 {
 InitializeComponent();

 gcw.StatusChanged += new
EventHandler<GeoPositionStatusChangedEventArgs>(gcw_StatusChanged);
 gcw.PositionChanged += new
EventHandler<GeoPositionChangedEventArgs<GeoCoordinate>>(gcw_PositionChanged);
 gcw.Start();
 }

 void gcw_StatusChanged(object sender, GeoPositionStatusChangedEventArgs e)
 {
 Status.Text = e.Status.ToString();
 }

 void gcw_PositionChanged(object sender, GeoPositionChangedEventArgs<GeoCoordinate> e)
 {
 Latitude.Text = e.Position.Location.Latitude.ToString();
 Longitude.Text = e.Position.Location.Longitude.ToString();
 Accuracy.Text = e.Position.Location.HorizontalAccuracy.ToString();
 }

 }
}

In Listing 9-2, you can see that we instantiate a new GeoCoordinateWatcher object, and in our
constructor method, MainPage(), we add two event handlers to that GeoCoordinateWatcher before we
start it up. The GeoCoordinateWatcher class exposes the Location Services that we discussed earlier.
Follow the next steps to use this in your project:

1. Replace the code in your MainPage.xaml.cs file with the code in Listing 9-2.

2. Run the application (F5).

The first event handler in Listing 9-2, StatusChanged, is more for our purposes as a developer than
for the end user. It gives us information about what the GeoCoordinateWatcher is doing. This is

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

194

important because we need to know if it is looking for data, unable to find data, or actively returning
data. The values it will return are shown in Table 9-2.

Table 9-2. Possible StatusChanged Values from the GeoCoordinateWatcher

Value Meaning

Initializing
The GeoCoordinateWatcher is currently trying to acquire a location.

Ready
The GeoCoordinateWatcher has determined a location and is returning the data through the
PositionChanged event.

NoData
The GeoCoordinateWatcher was unable to determine a location; this typically occurs
because it could not receive a signal from all three data sources.

Disabled
The GeoCoordinateWatcher was unable to determine a location because the Location
Settings on the user’s phone have been disabled.

The second event handler, PositionChanged, is where the important data is kept. Each time that the

GeoCoordinateWatcher detects that the user’s position has changed, this event will fire again, returning a
GeoCoordinate object for us to manipulate. The two primary properties of the GeoCoordinate object are a
Timestamp object, so we know when we got the information from the device, and a Location object,
which contains all of the specifics about the location of the device.

In our example, we retrieved the three most common Location values you’ll use: Latitude,
Longitude, and HorizontalAccuracy. While Latitude and Longitude are measures with which we’re all
familiar, HorizontalAccuracy is less so. It measures the GeoCoordinateWatcher’s margin of error.
HorizontalAccuracy is returned to you in a length of meters, and is meant to specify the radius of a circle
that could be drawn around the lat/long point that was provided. This information should be conveyed
to the user so that they’re aware you’re not 100 percent confident in their location. You should never
expect a HorizontalAccuracy less than 4 to 5 meters, as commercial GPS devices are generally prevented
from greater accuracy than that.

�Note: An important point to remember about Location Services is that there are specific rules about when you
can and cannot use them in an application. This refers to Section 2.7 of the Application Certification Requirements
for Windows Phone (http://msdn.microsoft.com/library/hh184843.aspx). You should take the time and care to read
the entire document from start to finish.

It’s also important to remember that your user must always be confident that Location services are only being
used when they authorize them to be. This means that you need to provide a mechanism for them to turn Location
services off (if applicable), or at the very least, the ability to opt-in every time you’re going to gather that kind of
data. You will fail Marketplace registration without adhering to these rules, so it’s very important that you are
aware of them.

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

195

You will discover that the emulator always defaults to Seattle, Washington, no matter where your
computer is actually located. There is, however, a new tool in the emulator that makes it simple to
change where the emulator thinks it is. To access it, open your Windows Phone emulator and press the
chevron (>>) button that appears next to the emulator. Clicking the Location tab will take you to this
feature, as shown in Figure 9-1.

Figure 9-1. Windows Phone emulator location add-on

With this emulator add-on, you can use Bing Maps to specify your location, enter custom latitude
and longitude values, or even record a trip to emulate data as the user drives across town or the country.
To accomplish the trip emulation, you can click on the map in multiple places, and the individual
locations will be added to a list in the Current Location panel of the tool. Once you have a list of
locations, you click the Live button at the top of the map, which will enable the “Fire every 1 second”
button to its right. You may change the duration to any number of seconds, and pressing the Play
button will trigger the emulator to move through the list of locations you created, pausing for the
duration of time you specified.

3. Click on the map a few times to add some locations to your map.

4. Click the Live button at the top of the tool.

5. Press the Play icon to have the tool feed each of your locations into your app
on a one-second interval.

Now that you know how to determine the location of your device, the next piece of information we
can use is the direction the device is heading from that location. We can accomplish this with the
Compass sensor.

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

196

Using the Compass
The term compass is somewhat of a misnomer in mobile devices. There’s not a little magnetic needle
pointing north within your phone; instead we’re actually accessing a device called a magnetometer
(mag-neh-TOM-eh-ter). A magnetometer measures the strength and direction of a magnetic field, and it
is the sensor we will use to determine the direction a device is pointing.

There are two primary values that we are interested in when we use the Compass API,
MagneticHeading and TrueHeading. MagneticHeading contains the current heading of the device,
measured in clockwise degrees, from the Earth’s magnetic north. TrueHeading is measured in clockwise
degrees from the Earth’s geographic north (also referred to as True North). There are many publications
dedicated to more specifics on these two locations, but the short explanation is that the true North Pole
is a specific location where the Earth’s axis of rotation meets Earth’s surface. The magnetic north pole is
the point on Earth’s surface where Earth’s magnetic field points vertically downwards. For real compass
functionality, you’ll want to use the MagneticHeading property.

To get started, we need to create a Xaml interface that shows compass data effectively. Listing 9-3
shows the elements you’ll need to use.

Listing 9-3. The Xaml We Will Use to Show the Compass Data in an App

<TextBlock Height="30" HorizontalAlignment="Left" Margin="20,73,0,0" Text="MAGNETIC"
VerticalAlignment="Top" Foreground="White" FontSize="28" FontWeight="Bold"/>
<TextBlock Height="30" HorizontalAlignment="Right" Margin="0,74,47,0" Text="TRUE"
VerticalAlignment="Top" Foreground="Gray" FontSize="28" FontWeight="Bold"/>
<TextBlock Height="30" HorizontalAlignment="Left" Margin="20,100,0,0" Name="magneticValue"
Text="1.0" VerticalAlignment="Top" Foreground="White" FontSize="28" FontWeight="Bold"
Width="147" TextAlignment="Center" />
<TextBlock Height="30" HorizontalAlignment="Right" Margin="0,100,20,0" Name="trueValue"
Text="1.0" VerticalAlignment="Top" Foreground="Gray" FontSize="28" FontWeight="Bold"
Width="123" TextAlignment="Center" />
<TextBlock Height="30" HorizontalAlignment="Left" Margin="20,140,0,0" Name="xBlock" Text="X:
1.0" VerticalAlignment="Top" Foreground="Red" FontSize="28" FontWeight="Bold"/>
<TextBlock Height="30" HorizontalAlignment="Center" Margin="0,140,0,0" Name="yBlock" Text="Y:
1.0" VerticalAlignment="Top" Foreground="Green" FontSize="28" FontWeight="Bold"/>
<TextBlock Height="30" HorizontalAlignment="Right" Margin="0,140,20,0" Name="zBlock" Text="Z:
1.0" VerticalAlignment="Top" Foreground="Blue" FontSize="28" FontWeight="Bold"/>
<Line x:Name="magneticLine" X1="240" Y1="350" X2="240" Y2="270" Stroke="White"
StrokeThickness="4"></Line>

Figure 9-2 shows what this interface will look like. To add this code to your application, take the
following steps:

6. Create a new Windows Phone Application project named “CompassSample.”

7. Like our Location example earlier, add the contents of Listing 9-3 to the
ContentPanel Grid that Visual Studio created by default.

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

197

Figure 9-2 . The user interface for our compass application

To access MagneticHeading and TrueHeading values on a Windows Phone device, we need to create
and start a new Compass object, and then monitor an event handler for the values we need. Every
Windows Phone has a compass, but only those that have been upgraded to Windows Phone 7.5 actually
have the Compass API. Because of this, we’ll also need to check to make sure we have access to this
data. The code to do this is shown in Listing 9-4. Please note that we need a using statement for
Microsoft.Devices.Sensors to access this sensor.

Listing 9-4. The C# We Will Use in Our MainPage.xaml.cs File for the Compass

using System;
using Microsoft.Phone.Controls;
using Microsoft.Devices.Sensors;
using Microsoft.Xna.Framework;

namespace CompassSample
{
 public partial class MainPage : PhoneApplicationPage
 {
 Compass compass;

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

198

 public MainPage()
 {
 InitializeComponent();

 if (Compass.IsSupported)
 {
 compass = new Compass();
 compass.TimeBetweenUpdates = TimeSpan.FromMilliseconds(1);
 compass.CurrentValueChanged += new
EventHandler<SensorReadingEventArgs<CompassReading>>(compass_CurrentValueChanged);
 compass.Start();
 }
 }

 void compass_CurrentValueChanged(object sender, SensorReadingEventArgs<CompassReading>
e)
 {
 Dispatcher.BeginInvoke(() => UpdateUI(e.SensorReading));
 }

 private void UpdateUI(CompassReading compassReading)
 {
 magneticValue.Text = compassReading.MagneticHeading.ToString("0.00");
 trueValue.Text = compassReading.TrueHeading.ToString("0.00");

 magneticLine.X2 = magneticLine.X1 - (200 *
Math.Sin(MathHelper.ToRadians((float)compassReading.MagneticHeading)));
 magneticLine.Y2 = magneticLine.Y1 - (200 *
Math.Cos(MathHelper.ToRadians((float)compassReading.MagneticHeading)));

 xBlock.Text = "X: " + compassReading.MagnetometerReading.X.ToString("0.00");
 yBlock.Text = "Y: " + compassReading.MagnetometerReading.Y.ToString("0.00");
 zBlock.Text = "Z: " + compassReading.MagnetometerReading.Z.ToString("0.00");
 }
 }
}

Much like the Location example in Listing 9-2, you will need a new Compass object created at the
top of your code. In the initialization method this time, we need to check to make sure that the Compass
sensor is supported. We do this with the Compass.IsSupported boolean check. Windows Phones running
the original operating system do not have the ability to access the Compass sensor, and will result in an
error if we try. To get this code into your project, the following are the next steps:

8. Replace the code in your MainPage.xaml.cs file with the contents of Listing 9-4.

9. Run your project in the emulator (F5).

10. Be disappointed that the emulator doesn’t support the Compass.

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

199

Yes, step 5 is utter disappointment. The emulator does not support the compass sensor. It is our
hope that in the future, there will be a gyroscope and compass tool (like the Accelerometer and Location
tools we have now), but for now, you will need to test this application on a real device.

There is one event handler that we will use regularly with the Compass, CurrentValueChanged. As
with the other sensors we’ll cover in this chapter, you should notice that we actually pass our
CompassReading data to a separate thread so that we don’t freeze or interrupt the user interface thread.
This is done using the Dispatcher.BeginInvoke() method, which moves the processing of our data to a
separate thread.

In our CompassReading data, we get a great number of data points, but the most common ones are
used in our example. MagneticHeading and TrueHeading are covered earlier in this section, but you can
see that we also have access to an X, Y, and Z value. These are the raw Magnetometer readings,
measured in microteslas (mT), which are a measurement of magnetic field strength. As an example, a
common refrigerator magnet is around 5 mT, while a MRI (magnetic resonance imaging) generally
measures around 3,000 mT. The values you will get from the earth’s magnetic poles can vary greatly
depending on the device’s location, so make sure that you understand these variances as you use this
sensor. Wikipedia has an excellent article on this topic; you can find it at
http://en.wikipedia.org/wiki/Earth%27s_magnetic_field.

We have also created a Line as part of our user interface, and in the code in Listing 9-4, you can see
that we are using the MagneticHeading to give that line a direction to point.

As we mentioned earlier, make sure you are aware of the possibility that other magnetic fields can
and will interfere with the readings of the compass and its magnetometer, which shouldn’t be trusted as
100 percent accurate all of the time. If you are building a true compass application, it might be best to
verify your readings against a recent set of GPS locations, to verify that the user is actually traveling the
direction that your compass is suggesting. Otherwise, you are going to be getting your customers lost,
and that’s probably not a great user experience.

At this point, we’ve covered how to determine the location and heading of our user’s device. The
rest of this section will focus on the orientation and rotation of a Windows Phone, starting with the
accelerometer.

Using the Accelerometer
An accelerometer in Windows Phone is a sensor that measures the acceleration of the device on three
axes (X, Y, Z) relative to freefall perpendicular to the earth, as illustrated by Figure 9-3. .In addition to a
timestamp, the values are expressed in G-forces (1G = 9.81 m/s2 or as you may have learned in school, 32
feet per second per second). What this means is that if the phone is laying face-up on a perfectly flat
surface, the Z axis would read -1.0, and the other two axes would read zero. To help illustrate this
concept, take a look at Figure 9-3. If the phone is sitting still on a flat table, the force of Earth’s gravity is
pulling the accelerometer downwards on the Z axis, resulting in a -1.0 value. Turning the phone face
down would turn the Z axis reading to a positive value. The important lesson here is that the “positive”
directions for the phone are when it is being pulled forward, up, or right. Backward, left, and down will
all result in a negative value.

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

200

Figure 9-3. An illustration of the X, Y, and Z axes of the accelerometer

Thankfully, getting data from this sensor is very straightforward. The only real challenge we face
with this is that we want to keep the process thread-safe. This means passing our accelerometer actions
to a separate thread, so that we don’t impact the UI thread and lock it up while we acquire the data.

Listing 9-5 shows the Xaml we will need for this simple example. We have a few TextBlock elements
that will display the X, Y, and Z axis values from the accelerometer. Figure 9-4 shows what this interface
will look like.

Listing 9-5. A Simple Xaml Interface for Our Accelerometer Application

<TextBlock Text="X = " FontSize="60" Margin="0,0,0,0" />
<TextBlock Text="Y = " FontSize="60" Margin="0,100,0,0" />
<TextBlock Text="Z = " FontSize="60" Margin="0,200,0,0" />
<TextBlock x:Name="xValue" FontSize="60" Margin="110,0,0,0" />
<TextBlock x:Name="yValue" FontSize="60" Margin="110,100,0,0" />
<TextBlock x:Name="zValue" FontSize="60" Margin="110,200,0,0" />

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

201

Figure 9-4. Our simple accelerometer application interface

To build this application, start with the following:

11. Create a new Windows Phone Application called “AccelerometerSample.”

12. Add the Xaml found in Listing 9-5 to the ContentPanel Grid in your
MainPage.xaml file.

Listing 9-6 shows the entirety of our MainPage.xaml.cs file for this example. Also notice that we had
to add a new reference to Microsoft.Devices.Sensors to get access to the accelerometer.

Listing 9-6. Using C# to Access the Accelerometer

using System;
using Microsoft.Phone.Controls;
using Microsoft.Devices.Sensors;

namespace AccelerometerSample
{
 public partial class MainPage : PhoneApplicationPage
 {

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

202

 Accelerometer accelerometer;

 public MainPage()
 {
 InitializeComponent();

 accelerometer = new Accelerometer();
 accelerometer.CurrentValueChanged += new
EventHandler<SensorReadingEventArgs<AccelerometerReading>>(accelerometer_CurrentValueChanged);
 accelerometer.Start();
 }

 void accelerometer_CurrentValueChanged(object sender,
SensorReadingEventArgs<AccelerometerReading> e)
 {
 Dispatcher.BeginInvoke(() => UpdateUI(e));
 }

 void UpdateUI(SensorReadingEventArgs<AccelerometerReading> e)
 {
 xValue.Text = e.SensorReading.Acceleration.X.ToString("0.000");
 yValue.Text = e.SensorReading.Acceleration.Y.ToString("0.000");
 zValue.Text = e.SensorReading.Acceleration.Z.ToString("0.000");
 }
 }
}

In order to use this in your project, follow the remaining steps.

13. Replace the code in your MainPage.xaml.cs file with the C# in Listing 9-6.

14. Run your project in the emulator (F5).

When you try to run the code in Listing 9-6 in the emulator, you’ll notice that you get a value of -1.0
from the Y axis, and zeroes on the others. This is the default value for the emulator, and indicates that
the “device” is sitting perfectly vertical. To get actual values in the emulator, pick up your computer and
shake it. Okay, don’t actually do that.

You have the following options for getting real data while you’re debugging:

� Deploy your app to an actual Windows Phone device

� Use the new emulator add-on

� Use one of many third-party libraries that provide ways to simulate accelerometer
data

We’re going to cover the simplest of those solutions, the emulator add-on. To access it, you can
open the Additional Tools from the emulator again, and click the Accelerometer tab (it is selected by
default.) It costs nothing to get and is surprisingly fun to use. All you need to do is move the small circle
around inside the tool, and the phone emulator will appear to rotate in 3D space. It also provides the
ability to feed in random shake data, as well as reset the device to standard orientations like “Portrait
Standing” and “Landscape Flat,” as shown in Figure 9-5.

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

203

Figure 9-5. Using the Accelerometer tool in the Windows Phone emulator

The accelerometer gives us a great deal of information about the gravitational forces that are being
exerted on the device. In the next section, we’re going to look at its sister, the gyroscope, which gives us
information about rotational velocity of the device.

Using the Gyroscope
The gyroscope sensor is as easy to use as the accelerometer, but we don’t get the benefit of any the
additional tools in the emulator. A gyroscope measures rotational velocity of the device on the same
three axes as the accelerometer: X, Y, and Z. The data you receive measures this velocity in radians per
second.

This means that you can more accurately, and more smoothly measure the current orientation of
the device. This will become especially handy when you build applications that perform augmented
reality. In most cases, however, you’re probably not going to be accessing the gyroscope by itself. There
are a couple of reasons for this:

� Not all Windows Phones will have a gyroscope. In fact, only phones that come out
after the Mango release will be capable of having a gyroscope, and it is still an
optional piece of hardware.

� Microsoft has created a Motion API that combines the data from the
Accelerometer, the Compass, and the Gyroscope into one class that we can use
more effectively.

.However, in case you do need to use the gyroscope independent of the Motion API, you can use the
sample code in Listings 9-7 and 9-8.user interface

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

204

Listing 9-7. A Xaml Interface to View Our Gyroscope Data

<TextBlock Height="30" HorizontalAlignment="Left" Margin="20,100,0,0" Name="xTextBlock"
Text="X: 1.0" VerticalAlignment="Top" Foreground="Red" FontSize="28" FontWeight="Bold"/>
<TextBlock Height="30" HorizontalAlignment="Center" Margin="0,100,0,0" Name="yTextBlock"
Text="Y: 1.0" VerticalAlignment="Top" Foreground="Yellow" FontSize="28" FontWeight="Bold"/>
<TextBlock Height="30" HorizontalAlignment="Right" Margin="0,100,20,0" Name="zTextBlock"
Text="Z: 1.0" VerticalAlignment="Top" Foreground="Blue" FontSize="28" FontWeight="Bold"/>
<Line x:Name="xLine" X1="240" Y1="350" X2="340" Y2="350" Stroke="Red"
StrokeThickness="4"></Line>
<Line x:Name="yLine" X1="240" Y1="350" X2="240" Y2="270" Stroke="Yellow"
StrokeThickness="4"></Line>
<Line x:Name="zLine" X1="240" Y1="350" X2="190" Y2="400" Stroke="Blue"
StrokeThickness="4"></Line>
<TextBlock Height="30" HorizontalAlignment="Center" Margin="6,571,6,0" Name="statusTextBlock"
Text="TextBlock" VerticalAlignment="Top" Width="444" />

In order to use the code in Listing 9-7, follow these next steps.

15. Create a new Windows Phone Application project called “GyroscopeSample.”

16. Add the code in Listing 9-6 into the ContentPanel Grid in your MainPage.xaml
file.

The interface we are building will look like the image in Figure 9-6.

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

205

Figure 9-6. The user interface for our gyroscope application

In order to access the gyroscope directly, you should always wrap your code with a check to
determine that the device supports the gyroscope sensor. As we did with the Accelerometer, we set up
an event handler for when the values of the Gyroscope change, pass that data to a separate thread, and
then update the data in our user interface as shown in Listing 9-8.

Listing 9-8. Using C# to Access the Gyroscope Sensor

using System;
using Microsoft.Phone.Controls;
using Microsoft.Devices.Sensors;
using Microsoft.Xna.Framework;

namespace GyroscopeSample
{
 public partial class MainPage : PhoneApplicationPage
 {
 Gyroscope g;

 public MainPage()

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

206

 {
 InitializeComponent();

 if (Gyroscope.IsSupported)
 {
 g = new Gyroscope();
 g.TimeBetweenUpdates = TimeSpan.FromMilliseconds(20);
 g.CurrentValueChanged += new
EventHandler<SensorReadingEventArgs<GyroscopeReading>>(g_CurrentValueChanged);
 g.Start();
 }
 }

 void g_CurrentValueChanged(object sender, SensorReadingEventArgs<GyroscopeReading> e)
 {
 Dispatcher.BeginInvoke(() => UpdateUI(e.SensorReading));
 }

 private void UpdateUI(GyroscopeReading gyroscopeReading)
 {
 statusTextBlock.Text = "getting data";

 Vector3 rotationRate = gyroscopeReading.RotationRate;

 // Show the numeric values.
 xTextBlock.Text = "X: " + rotationRate.X.ToString("0.00");
 yTextBlock.Text = "Y: " + rotationRate.Y.ToString("0.00");
 zTextBlock.Text = "Z: " + rotationRate.Z.ToString("0.00");

 // Show the values graphically.
 xLine.X2 = xLine.X1 + rotationRate.X * 200;
 yLine.Y2 = yLine.Y1 - rotationRate.Y * 200;
 zLine.X2 = zLine.X1 - rotationRate.Z * 100;
 zLine.Y2 = zLine.Y1 + rotationRate.Z * 100;
 }
 }
}

 To use the code from Listing 9-8 in your sample application, take the following steps:

17. Replace the contents of your MainPage.xaml.cs file with the code in Listing 9-8.

18. Run your application (F5).

19. Realize that the gyroscope is also not supported by the emulator.

To explain Listing 9-8 clearly, we create a new Gyroscope object first. After checking to make sure
that the Gyroscope is supported with the Gyroscope.IsSupported boolean value, we create an event
handler for CurrentValueChanged. The Gyroscope, like the Compass, allows our event handler method to
fire every time the Gyroscope detects a new value, keeping the TimeBetweenUpdates value in
consideration. In our example, we will get updates no faster than every 20 milliseconds. We gather each
of the X, Y, and Z values from the Vector3 value RotationRate. We are just displaying the data values in

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

207

TextBlocks, but not doing anything useful with the data. To do something more interesting, we created
an interface that visually represents that data (shown in Figure 9-7).

Figure 9-7. A closer look at the data visualization of the Gyroscope

If you imagine each line segment to represent a different data point (the horizontal line is X, the
vertical line is Y, and the diagonal line is the Z axis. You could then manipulate the lengths of these lines
to represent the rotational velocity of the device. Each of these calculations will extend the length of
their respective lines, giving you a very illustrative example of what types of rotation your device is
experiencing. While this is handy, you’ll find that using the Motion API will give you this information as
well, in addition to several other calculations.

Using the Motion API
Bringing the Accelerometer, Gyroscope, and Compass together, the Motion class allows you to detect a
great number of motion values, like pitch, yaw, and roll. In flight dynamics, these are the three critical
parameters used to determine the orientation of an aircraft in relation to its center of gravity. Each term
refers to rotation about their respective axes. Figure 9-8 is a simple illustration, in relation to an
airplane.

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

208

Figure 9-8..An illustration of pitch, yaw, and roll in aviation.

Simplistically, roll will move a given wing up or down, pitch will move the nose up or down, and yaw
will move the nose right or left, as shown in Figure 9-8.

You can see that the arrows that extend from the center of the airplane are exactly the same lines
that we created when we were looking at the gyroscope, X, Y, and Z. In this case, however, we also have
the ability to measure the rotation around those axes, not just in relation to the center of the phone.

In our code example for the Motion class, you can use the code in Listing 9-9 to place a star in the
middle of our page, and have it rotate as the Motion object detects changes to the orientation of the
device. We will have it move in relation to the yaw value, which will make the star appear to remain
stationary as we rotate the device. By rotating it on a flat plane, you will be able to see the orientation of
the star remain static at all times. To build this interface, use the code in Listing 9-9. In previous
examples, we have only included the Xaml that you need to add to your ContentPanel Grid control. This
sample shows the contents of the MainPage.xaml file to show a new namespace we’re using to create the
star shape.

Listing 9-9 .The User Interface for Our Motion Class Application

<phone:PhoneApplicationPage
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"
 xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:es="clr-namespace:Microsoft.Expression.Shapes;assembly=Microsoft.Expression.Drawing"
 x:Class="MotionSample.MainPage"
 FontFamily="{StaticResource PhoneFontFamilyNormal}"
 FontSize="{StaticResource PhoneFontSizeNormal}"
 Foreground="{StaticResource PhoneForegroundBrush}"
 SupportedOrientations="Portrait" Orientation="Portrait"
 mc:Ignorable="d" d:DesignHeight="768" d:DesignWidth="480"
 shell:SystemTray.IsVisible="True">

Pitch

Roll

Yaw

Center of
mass

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

209

 <Grid x:Name="LayoutRoot" Background="Transparent">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>

 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">
 <TextBlock x:Name="ApplicationTitle" Text="MOTION SAMPLE" Style="{StaticResource
PhoneTextNormalStyle}"/>
 <TextBlock x:Name="PageTitle" Text="motion" Margin="9,-7,0,0"
Style="{StaticResource PhoneTextTitle1Style}"/>
 </StackPanel>

 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <es:RegularPolygon x:Name="Star" InnerRadius="0.47211"
Margin="100,175,100,175" PointCount="5" Stretch="Fill" Stroke="White"
UseLayoutRounding="False" StrokeThickness="6">
 <es:RegularPolygon.Fill>
 <SolidColorBrush Color="{StaticResource PhoneAccentColor}"/>
 </es:RegularPolygon.Fill>
 <es:RegularPolygon.RenderTransform>
 <RotateTransform CenterX="100" CenterY="128"></RotateTransform>
 </es:RegularPolygon.RenderTransform>
 </es:RegularPolygon>

 <TextBlock x:Name="yawValue" Text="YAW = 34.567" FontSize="40" Width="400"
Height="100" TextAlignment="Center" Margin="28,503,28,4" />
 </Grid>
 </Grid>
</phone:PhoneApplicationPage>

 Take the following steps to start building a sample application that uses the Motion class:

20. Create a new Windows Phone Application project named “MotionSample.”

21. Replace the code in MainPage.xaml with the code in Listing 9-9.

You may notice that to render our Star polygon shape, we utilized a namespace specific to
Expression Blend: Microsoft.Expression.Shapes. By using this namespace, you can create polygons
with many different shapes without having to do the complicated math that is generally required to
create something like a star (shown in Figure 9-9).

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

210

Figure 9-9. Our user interface for the Motion class applicationstar

The es:RegularPolygon element allows you to specify a PointCount for our shape. In the case of five
points, it looks like a traditional solid pentagram. Adding or removing points will result in a star shape
with any number of points from three to eighty. Anything more than about eighty continues to look the
same, while anything with three or fewer points looks like the center of the Mercedes-Benz logo. For you
Star Wars fans, it resembles the Empire’s Imperial Shuttle as well (shown in Figure 9-10.)

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

211

Figure 9-10 . A polygon shape with three or fewer points specified.

To make this Motion app work, we need to access the Motion class in our code-behind file. Listing
9-10 shows this code.

Listing 9-10. Using C# to Access the Motion Class

using System;
using System.Windows.Media;
using Microsoft.Phone.Controls;
using Microsoft.Devices.Sensors;
using Microsoft.Xna.Framework;

namespace MotionSample
{
 public partial class MainPage : PhoneApplicationPage
 {
 Motion motion;

 public MainPage()
 {
 InitializeComponent();

 if (Motion.IsSupported)
 {
 motion = new Motion();
 motion.TimeBetweenUpdates = TimeSpan.FromMilliseconds(20);
 motion.CurrentValueChanged += new
EventHandler<SensorReadingEventArgs<MotionReading>>(motion_CurrentValueChanged);
 motion.Start();
 }
 }

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

212

 void motion_CurrentValueChanged(object sender, SensorReadingEventArgs<MotionReading>
e)
 {
 Dispatcher.BeginInvoke(() => UpdateUI(e.SensorReading));
 }

 private void UpdateUI(MotionReading e)
 {
 ((RotateTransform)Star.RenderTransform).Angle =
MathHelper.ToDegrees(e.Attitude.Yaw);
 yawValue.Text = e.Attitude.Yaw.ToString();
 }
 }
}

 To use this code in your application, you need to do the following:

22. Replace the code in your MainPage.xaml.cs file with the code in Listing 9-10.

23. Run your application (F5).

24. Discover, for the third time in this chapter, that the emulator does not
currently support this sensor.

The Motion API works very similarly to the Accelerometer, Compass and Gyroscope objects. We
need to create a new instance of a Motion object, and then create a new CurrentValueChanged event
handler for it. Each time new data is received, this event receives a great deal of rich data. If you’re
investing in understanding the math that the Motion class is producing, you should further explore what
the MotionReading class has to offer. The following is a short list:

� Attitude: Pitch, roll, and yaw; measured in radians.

� DeviceAcceleration: Measures the device’s acceleration on the X, Y, and Z axes.

� DeviceRotation: Measures the device’s rotation on the X, Y, and Z axes.

� Gravity: Measures the gravity vector of the device.

In our example, we are changing the angle of rotation of our star, basing it on the yaw value of the
phone. Depending on the orientation of the phone, however, that value can vary significantly. For
example, when the phone is faceup, the star moves at a reasonable speed when you tilt the device.
However, if you hold the phone facedown and try similar movements, the star will appear to move twice
as fast. This is because the calculation for yaw now includes a positive number instead of a negative one.
Reference our discussion of the Accelerometer values for more information about how these positive
and negative values come to be.

In this section, we’ve covered several powerful sensors available in Windows Phone devices. Table
9-3 reviews each of the sensors, their outputs, and what you will generally use each of them for in your
applications.

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

213

Table 9-3. Comparing Windows Phone Location, Position, and Motion APIs

Class Output Best Use

Location
Longitude and latitude For determining where the device is

Compass
TrueNorth Heading,
MagneticNorth
Heading, magnetic
forces on X, Y, and Z
axes

For compass and direction specific
tasks

Accelerometer
Gravitational force on
X, Y, and Z axes

For determining the orientation of the
device

Gyroscope
Rotational velocity on
X, Y, and Z axes

For determining the rotation of the
device

Motion Pitch, yaw, roll
For determining complete orientation
of the device (combines Accelerometer,
Compass, and Gyroscope)

Accessing Raw Camera Data
Above and beyond the camera tasks (see Chapter 7), we have the ability to tap into the raw camera feed
from the device. This is handy for several reasons: we can grab both still images and video from this
feed, as well as add our own data to the display for augmented reality-type applications. Combining the
raw video feed with the Motion data we just learned to capture allows us to render objects, text, and
other information into the real-time view of the user’s camera. While a full Augmented Reality (AR)
example is well beyond the scope of this book, Microsoft offers an excellent tutorial on the MSDN web
site at http://msdn.microsoft.com/library/hh202984(v=VS.92).aspx.

In our example for this section, we will show you how to focus the camera and capture both photos
and video from the raw camera feed. First, we need to display the camera’s raw data on the screen of the
device, as shown in Figure 9-11. We can do this by setting a VideoBrush as the Fill property of a
rectangle, as shown in Listing 9-11.

Listing 9-11. Building the User Interface for a Camera Application

<Rectangle x:Name="ViewBox" Height="460" Margin="-22,-1,-131,148">
 <Rectangle.Fill>
 <VideoBrush x:Name="CameraSource" />
 </Rectangle.Fill>
 <Rectangle.RenderTransform>
 <RotateTransform Angle="90" CenterX="240" CenterY="240" />
 </Rectangle.RenderTransform>
</Rectangle>
<Button Foreground="Green" BorderBrush="Green" Content="Capture" Height="72"
HorizontalAlignment="Left" Margin="6,535,0,0" Name="CaptureButton" VerticalAlignment="Top"
Width="160" Click="CaptureButton_Click" />

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

214

To use the code in Listing 9-11, follow the next set of steps.

25. Create a new Windows Phone Application project named “CameraSample.”

26. Add the Xaml in Listing 9-11 to the ContentPanel Grid in your MainPage.xaml
file.

Figure 9-11. Our camera interface in the Windows Phone emulator

As you can see in the Xaml in Listing 9-11, we’ve added a Rectangle to the default page template,
and defined its Fill property to be a VideoBrush named “CameraSource.” You should also notice the
RenderTransform we applied to the Rectangle. By rotating it 90 degrees, we are actually accommodating
the fact that the cameras are mounted in the phone with a Landscape orientation. In our C# code-
behind, we need to assign our camera data to that VideoBrush. We do this by creating a PhotoCamera
object named “camera” and setting the source of our VideoBrush to be that PhotoCamera object (shown in
Listing 9-12).

Listing 9-12. Accessing the Raw Camera Feed in Our Code-Behind File

using System;
using System.Windows;
using Microsoft.Phone.Controls;

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

215

using Microsoft.Devices;
using Microsoft.Xna.Framework.Media;

namespace Day7_RawCamera
{
 public partial class MainPage : PhoneApplicationPage
 {
 PhotoCamera camera;
 MediaLibrary library = new MediaLibrary();

 // Constructor
 public MainPage()
 {
 InitializeComponent();
 if (PhotoCamera.IsCameraTypeSupported(CameraType.FrontFacing))
 camera = new PhotoCamera(CameraType.FrontFacing);
 else
 camera = new PhotoCamera(CameraType.Primary);
 camera.CaptureImageAvailable += new
System.EventHandler<ContentReadyEventArgs>(camera_CaptureImageAvailable);
 CameraSource.SetSource(camera);
 }

 private void CaptureButton_Click(object sender, System.Windows.RoutedEventArgs
e)
 {
 try { camera.CaptureImage(); }
 catch (Exception ex) { Dispatcher.BeginInvoke(() =>
MessageBox.Show(ex.Message)); }
 }

 void camera_CaptureImageAvailable(object sender, ContentReadyEventArgs e)
 {
 Dispatcher.BeginInvoke(() => ThreadSafeImageCapture(e));
 }

 void ThreadSafeImageCapture(ContentReadyEventArgs e)
 {
 library.SavePictureToCameraRoll(DateTime.Now.ToString() + ".jpg",
e.ImageStream);
 }
 }
}
 To finish this sample camera application, follow the remaining steps.

27. Replace the contents of your MainPage.xaml.cs file with the code in Listing 9-
11.

28. Run your application (F5).

29. On the emulator, you’ll see the familiar white box with the small black square.
On a real device, you’ll see whatever the camera sensor sees.

CHAPTER 9 ■ GET ORIENTED: INTERACTING WITH THE PHONE, CAMERA, GPS, AND MORE

216

Looking at Listing 9-12, we feed the raw data from the camera directly into the Rectangle without
any complicated code maneuvers. In the code-behind, we create a new PhotoCamera object, and set the
source (SetSource) of the VideoBrush equal to the new PhotoCamera object we created.

If you run our example code in the emulator, you’re going to find the same type of output that you
saw when you used the camera-related Launchers and Choosers (see Chapter 7). It will appear to be a
white box with a black box traveling clockwise around the outside (shown in Figure 9-11). On an actual
device, however, you will see the raw camera feed.

To grab a still image, we used the CaptureImage() method of the PhotoCamera class. For the simple
purposes of our application, we’re using the ApplicationBar to provide our buttons.

You will see that we are using the CaptureImageAvailable event handler on our PhotoCamera object.
There is also a CaptureThumbnailAvailable event that you can use to grab a thumbnail of the image for
gallery purposes. This is a nice additional feature, because it means you don’t have to load each
potentially giant image at a smaller size.

You should also notice that you must move the image capture to a separate thread. Leaving both
the raw feed and the CaptureImage() method on the same thread will always result in an
UnauthorizedAccessException, which means that you’re trying to access data across different threads.

As you can see, we can call the CaptureImage() method, which, when completed, will fire the
CaptureImageAvailable event handler. We pass the result of the event handlers to a separate thread, and
gather the photo results. It’s a very straightforward process that makes it easy to capture data from the
raw video feed. This becomes especially handy when you want more than one image to be taken. For
example, calling the CaptureImage() method once every second would provide an excellent way to
capture a child running across your backyard. Or perhaps that amazing touchdown. There are tons of
possibilities; it’s up to you to be creative with these tools and come up with that next amazing app.

Summary
After reading this chapter, your mind should have been flooded with dozens of ideas for how you can
improve your application idea. OOne recommendation we can offer you is that making an application
location-aware makes it better. No matter your app, adding location data can make it better. Making
a game? Play with other people that are nearby. Building a home-inventory app? Recommend nearby
homeowner’s insurance agents when they upload valuable property. Take the time as you’re building
your application to think about how you can incorporate a user’s location into making your application
richer.

As for the other sensors, if they don’t have a direct purpose in your app, use that information for
creating “Easter eggs” instead. The user turns the phone upside down? Give them a funny response that
lets them know you noticed.

By using the orientation sensors with the camera, we end up with the opportunity to build
augmented reality applications. Imagine holding your phone up in a crowded holiday parking lot, and
using it like a viewfinder. When you point your phone in the direction of your car, there’s a giant blue
arrow pointing down from the sky to the top of your car. All you would need to do at this point is walk
towards the arrow to find your vehicle. This is an example of augmented reality. There are an infinite
number of ways we could enhance a user’s view on the world around them by combining these
technologies.

One great use of the accelerometer that we’ve seen was in a cycling application. The primary focus
of the application was to track where a user was riding his bicycle. As a safety feature, you could enter an
emergency phone number. If the application recognized an uncomfortably fast stop, followed by very
little movement, it would automatically text the emergency phone number with the GPS coordinates of
the device. Following that, it would prompt the phone to dial 911. This is an amazing use of both
location and accelerometer data that will ultimately help to keep cyclists safer. Your app can use it too.

C H A P T E R 10

■ ■ ■

217

Get Money: Profiting from Your
Applications

Our hope is that as you’ve read this book, you’ve had a flurry of ideas for great applications that will
make your users more productive, keep them more entertained, or perhaps just add to their knowledge
of a subject. Now it’s time to get it in front of millions of potential customers.

This chapter will focus on submitting your application to the Windows Phone Marketplace, as well
as strategies for monetizing your applications. We’ll show you how to advertise your app and release it
to a select audience. We’ll also introduce you to a new feature to Windows Phone, search extensibility;
this addition to your app allows you to show up in your user’s relevant search results, making your
application both more visible and more useful to your users.

Submitting Your App to the Windows Phone Marketplace
Creating a great application is really only step number one in getting your software into the Windows
Phone Marketplace. You still need to invest some time in your icons, descriptions, screenshots,
keywords, and pricing. Microsoft has provided an amazing, step-by-step walk-through of the
Marketplace submission process (http://create.msdn.com/home/about/app_submission_walkthrough), so
this section will be dedicated to helping you navigate the pitfalls and curiosities you’ll encounter along
the way. We highly recommend that you read through the Microsoft walk-through before diving into
this chapter.

As Microsoft describes the process, there are five steps you must to complete to submit an app to
Microsoft Marketplace and gain approval, which are summarized by Figure 10-1.

Figure 10-1. Five steps to the Microsoft Marketplace

Before you upload your application, however, it’s important to be aware of the Marketplace Test Kit.
Using it will help you avoid many of the simple mistakes that get apps denied from the Marketplace.

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

218

Using the Marketplace Test Kit (Recommended)
Another new tool available to us is the Marketplace Test Kit. Integrated right into Visual Studio 2010
when you installed the Windows Phone 7.1 SDK, it provides a set of tests that we can run against our
application to be certain that it will pass the Marketplace submission process on the first try. This tool is
very similar to the one used by the Marketplace validation team. It checks your application for
everything from its icons to its performance. To access this tool, click on your project in the Solution
Explorer window, and open the Project menu from the Visual Studio toolbar, as shown in Figure 10-2.

Figure 10-2. Opening the Marketplace Test Kit in Visual Studio 2010

Microsoft has provided an excellent walk-through of each of the individual tests in the Test Kit
(http://msdn.microsoft.com/library/hh394032.aspx). We recommend using this tool before you ever
start to submit your application to the Marketplace. It will help you avoid the common mistakes that
many developers make. Once you’ve successfully uploaded your application, the next step will be to
describe your application.

Now that you’re familiar with the Microsoft Test Kit, you’re ready to upload your app, the first step
for any submission to the Marketplace.

Uploading Your App
The first step is always the toughest, and this is no exception. If this is your first time uploading an app,
you’re likely to struggle here. Figure 10-3 shows the first screen you will encounter in the application

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

219

submission process. We will discuss each of the fields in Figure 10-3 in this section (an asterisk indicates
that a field is required).

Figure 10-3. The “upload” step of the Windows Phone App Submission process

*App name for App Hub
As you can see in Figure 10-3, we start by naming our application. This name is only seen by you in the
App Hub, but there is one thing you’ll want to remember when naming your application here: this is the
name that will be displayed in all of your reports for this application, forever. Make sure it is meaningful
enough to identify later because you won’t be able to change it without deleting your application and
starting over.

*Distribute to
This field allows you to decide how you want to distribute the application you’re uploading. Choosing
Public Marketplace will follow all of the expected rules: your app will be tested and certified, and upon
approval, will be available in the public marketplace.

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

220

Private beta testing is a new feature to the Windows Phone Marketplace and we consider it to be a
highly valuable free feature that you should use every time you create an application. It allows you to
make your application available to up to 100 users that you choose. They don’t need to be developers or
have any special status whatsoever. All your beta testers need is a Windows Phone with an associated
Windows Live ID. Your beta program runs for 90 days, at which point the beta version of your
application will stop working on your user’s phones.

The reason we find this process to be necessary to the development process is because you, as the
developer, aren’t always able to see past things like usability issues. As the person that created the
interface for the app, it probably makes perfect sense to you. Putting this interface in front of a bunch of
users that have never seen your application before, however, will be eye-opening. They will encounter
issues and confusion that you never anticipated.

By correcting the issues that your beta testers encounter, you’ll be able to prevent some of the
negative feedback that users would have otherwise left on your application’s review page. Better reviews
result in better sales, so beta testing is always recommended.

When choosing the Public Beta Test option, it is important to remember that you will want to avoid
using the App Hub name that you will use for your final, public application. All App Hub names have to
be unique within your account, so we recommend appending the word “BETA” to your App Hub name
when submitting a beta application. Also, a beta application does not go through the same rigorous
certification and validation that your final application will.

*Browse to upload a file
This is the step that requires you to upload your application. If you haven’t already noticed it, open up
your project folder on your PC, and look inside the Bin Release folder. You should find a XAP file there;
this is the file you want to upload. If there is not a file in this folder, you’ve likely not performed a
Release build of your application. To do this, change the dropdown in Visual Studio 2010 from Debug to
release, as shown in Figure 10-4. The reason to choose the Release build is for the optimizations (and
removal of debugging code) that it provides. A Debug build will work perfectly fine, and in most cases
will be unnoticeable, but using Release is still the best practice for releasing your software.

Figure 10-4. Changing Visual Studio from Debug to Release build

When you finish this first screen of the app submission process, there is an automated validator that
will run on your XAP file. The validator checks to make sure that you’re not forgetting some of the
simpler requirements for an application, like using the default icons for your app, or setting your
NeutralResourceLanguage. The tests performed here are the same ones that you checked your app with
using the Marketplace Test Kit at the beginning of this chapter. For example, you need to use custom
icons for your app every time, and those small star icons cannot be used (we’ll cover this in the
Describing Your Application section of this chapter.)

Another common omission, and probably the one most likely to catch you, is a value called the
NeutralResourceLanguage. This defines the default language that your application uses. To change this,

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

221

you need to open the properties page of your application. You can do this by right-clicking on your
project’s name in the Solution Explorer. You should see a dialog that looks like the one in Figure 10-5.

Figure 10-5. The Windows Phone properties page

Clicking on the Assembly Information… button will bring up a dialog box that allows you to visually
set all of the values that are stored in your project’s Properties/AssemblyInfo.cs file. You can select your
default language from the dialog, as shown in Figure 10-6.

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

222

Figure 10-6. Selecting your default language in the Assembly Information dialog

Or you can simply add one line of code to the end of your AssemblyInfo.cs file, like in Listing 10-1,
using the appropriate language code for your default language. This is what changing the value in Figure
10-6 does for you behind the scenes.

Listing 10-1. Adding NeutralResourceLanguage to AssemblyInfo.cs

[assembly: NeutralResourcesLanguageAttribute("en-US")]

*Version Number
We don’t have much specific guidance about version number, but a beta application should be less than
1.0. Many times, you will find beta applications will use 0.9 or 0.8 (anticipating a second beta release at
0.9), and when the final application is ready for a public submission, the 1.0 version number should be
used.

Minor future edits generally receive a bump of .1 in the version number, so fixing some small bugs
and typos in your application should change the version number of a new application to 1.1. Major
releases move up to the next largest integer, so when you have the next major release of your app, it
should be 2.0.

Having said all of that, it is entirely up to you what version number you give your application. There
are not any specific rules about version numbers, other than that future releases must have a higher
version number than the previous release.

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

223

Requires Technical Exception
Sometimes, we run into a situation where we need to break the rules. If you’re not familiar with the rules
for Windows Phone applications, make sure you check out the Application Certification Requirements
for Windows Phone (http://msdn.microsoft.com/library/hh184843.aspx). Maybe you’ve got a specific
reason that black text should be displayed on a black background. (This is generally not allowed for
readability purposes.)

We’ve also seen examples where the application needs an Exit button for a specific reason, and the
only way to accomplish that is to crash your application. You can apply for an exception to the
Application Requirements by filling out the Technical Exception Request form found on the App Hub
site, and uploading it with your application. You can find the Technical Exception Request form at
http://go.microsoft.com/fwlink/?LinkID=201159.

Describing Your Application
Your first inclination is going to be to hurry through this section. It asks for simple information like a
short and detailed description of your application, as well as all of the artwork that your application will
require in the Marketplace. Don’t hurry. In fact, spend a great deal of time on this. The descriptions
that you write for your application might be the only thing that potential users will see before deciding
whether or not to buy your application. You want the description and artwork to entice, excite, and
encourage your Marketplace visitors to download it. Figure 10-7 shows the top half of the form you will
be filling out.

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

224

Figure 10-7. The first half of the form you will use to describe your app

*Category
Aside from being a required field, the category determines where in the Marketplace your application
will be listed. This could be a difficult choice, but you can only have your application listed in one
category. Some categories have subcategories, in which case you will get to select one of those as well.
You can choose any category you want, but our recommendation is to choose the category that your
users would be most likely to be looking for your app.

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

225

*Details
Your short description should be very concise, but very descriptive. Think of this as an elevator speech.
You have 25 characters to describe the functionality of your application. What is the most important
thing about your application that your potential user needs to know?

The long description should be everything. You get 2,000 characters, so use them. It should start
very specific (much like your short description), and as you progress, it should expand on the points you
made in the beginning. Avoid generic filler terms and phrases like “this app,” or “when you download.”
Save your words for what your app does. We also recommend keeping an update history in your long
description as well. It not only demonstrates all of the additional features that have been added to the
application, but it also shows that this application is being supported going forward.

The following are examples of a short and a long description for the Home Inventory app we built in
Chapter 2:

Short Description

Save your stuff.

Long Description

Do you know the model number of your television? What about the appraised
value of your great-grandmother’s ring? Your insurance company certainly will
want that information. Store your info with My Stuff, and you won’t have to
worry if something terrible happens.

My Stuff allows you to quickly take pictures of all of your valuable possessions.
Tag them by room and category. Add descriptions, serial, and model numbers.
When you need it, e-mail the entire list, with photos, to yourself or your
insurance agent. Your data is encrypted on your phone, and is never shared
with anyone. You do have the option to store all of your data in the cloud, but
this is not required.

My Stuff is your final line of defense against disaster. Protect yourself and your
stuff. You won’t regret it.

To see My Stuff (and our other applications) in action, check out our YouTube
channel at http://youtube.com/jeffblankenburg.

Update Notes: December 12, 2010

Version 1.1

- Added the ability to take more than one photo of each item.

- Improved performance of scrolling in the items list.

- Added the ability to categorize an item in multiple categories.

Update Notes: January 17, 2011

Version 1.2

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

226

- Added email export functionality. You can now email one or all categories to
multiple email addresses.

- Added secure cloud storage for offsite backup of your data.

Update Notes: March 31, 2011

Version 1.3

- Added the ability to extract tears from unicorns.- Fixed a bug that prevented
users from lying about the size of their televisions.

The keywords field of this form is to help your search results. If there is a search term that should
lead a user to your app, you’ll want to include it here. As an example, the following is a list of keywords
we used for the home inventory application: home, stuff, insurance, fire, inventory, tornado, flood, gear,
serial number, model number, library, home inventory.

Finally, you have the option to provide a legal URL and an e-mail address for your users in case they
need that information. A legal URL is entirely up to you, but if you think that there could be legal
implications to someone using your app, that information should be made available to them. As for the
e-mail address, although it is not required, you should always provide one, even if you create a new
inbox just for this purpose. You want to give your users a way to reach you if they are having issues, and
an e-mail address is the perfect way to do this. Don’t miss out on making your customers happy.

Now we get to move on the images and icons for your application in the Marketplace. Figure 10-8
shows the second half of the form we are currently working on. To upload the images in this section,
click on the gray, plus sign (+) icon next to each heading.

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

227

Figure 10-8. The artwork portion of our “describe your app” form

Add Artwork
As developers, very few of us have any idea where to start regarding artwork for our application. If you’re
lucky, you’re working with a designer on your app, and they’ve been able to help you make your app
look significantly better than the mess of buttons and textboxes that it may have been before. There are
three pieces of artwork that are required by the Marketplace, but you can also add up to seven more app
screenshots. We recommend always providing as many screenshots as you can. The better the picture
you can draw for your potential user about what their experience will be with your application, the more
likely they are to give it a try.

The first three images—Large Mobile App Tile, Small Mobile App Tile, and Large PC App Tile—
could very easily be the same image in different sizes. Many developers will create one image, resize it to
the three appropriate sizes, and consider the task done. For you, however, it’s important to evaluate
each of these icon “opportunities” and leverage each for its appropriate use. For example, the Small

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

228

Mobile App Tile will only be used in the Marketplace’s app list. In that case, your icon should be
perfectly centered in the 99 × 99 pixels square. Figure 10-9 is an example of where it would be used.

Figure 10-9. The usage of the Small Mobile App Tile

For the Large Mobile App Tile, the story is a little different. This 173 × 173 pixels image will be used
when a user selects your application in the Marketplace. This image is much larger and can convey
much more information. For example, if you offer a trial mode, this might be the place to highlight that.
Figure 10-10 shows what the Marketplace looks like when your user dives in to look at your app in more
detail.

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

229

Figure 10-10. Using the Large Mobile App Tile

For the Large PC App Tile, this is only going to be displayed in the Zune software on a user’s
machine. It is shown when they see your application in the Zune Marketplace. This icon is huge at 200 ×
200 pixels, which means you can leverage text even more than you did on the other two icons. Make
sure that each of these images conveys the important information that you want the user to know, as
shown in Figure 10-11.

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

230

Figure 10-11. Using the Large PC App Tile

Notice in Figure 10-11 that in the background of the Marketplace, there’s a large background image
(it looks like lined paper), as well as eight screenshots listed at the bottom. You can add all of these to
your application, but only one of the screenshots is required. Again, in our opinion, if they give you an
opportunity to show off your application, you absolutely should. Next, let’s look at how we price our
application in the Marketplace.

Pricing Your Application
Pricing is a very tricky part of making an application successful. Price it too high and you’re unlikely to
sell many; price it too low, and you’re leaving money on the table. Prices can range from $0 all the way
up to $499 USD. Most applications in the Marketplace range from $0.99 to $2.99, depending on the
functionality, brand, and popularity of the application. The form you will see is shown in Figure 10-12.

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

231

Figure 10-12. Pricing your application and choosing distribution

It’s our opinion that you’re always better off starting a little higher with your price at $1.29 or $1.99
because it leaves you room to lower your price if you don’t feel you’re getting the traction that you were
hoping for. If you start out at $0.99, raising your price will be received negatively from those that saw it
at the lower price, which generally manifests itself as negative comments, the death knell of an
application in the marketplace.

Once you’ve decided on a price, the form shown in Figure 10-12 will allow you to choose where you
want your application to be distributed. Unless you have a very specific reason for excluding a country
or region of the world, we recommend selecting all of the available countries, which is currently at 35,
and will probably have grown since you purchased this book. The tool will automatically translate your
USD price to all of the other currencies. This means you won’t be able to charge higher prices in one
region and lower prices in another. You have to have a consistent global price for your application.

We will cover trial mode and free applications in “Monetizing Your Application” later in this
chapter, so let’s continue through to the next step of the submission process: testing.

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

232

Testing Your Application
Depending on the choice you made in the Uploading Your App step, this step will take one of two forms:
beta testing or certification.

Beta Testing
If you chose to upload your application for beta testing in the first step of the submission process, this
step will ask you to provide up to 100 e-mail addresses for distribution of your application. These e-mail
addresses must be the Live ID that is associated with a beta tester’s Windows Phone. It is highly
recommended that you only provide the addresses of friends and acquaintances that would be
expecting this type of message from you. The system will send an e-mail to your list of beta testers,
inviting them to download the application. Sending unsolicited beta invitations to complete strangers
will be received poorly, and will be unlikely to get you the feedback you’re looking for.

Certification
If you are uploading your application to be available in the public Windows Phone Marketplace, this step
is merely a form field for you to leave notes or instructions for the testers. This is very important if there
are passwords, tricks, or secrets in your application that would be time-consuming or impossible to
determine otherwise. You want to make it very easy for the testers to be able to navigate your
application, and verify that everything is working. A screenshot of this screen is shown in Figure 10-13.

Figure 10-13. The app testing and certification form

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

233

You are also presented with choices on your publication options. We recommend that you allow
your application to be published as soon as it is certified. This is because otherwise you’ll have to wait
for the certification e-mail and return to the App Submission portal to publish your application to the
Marketplace. Unless you have a very specific reason for waiting, there’s really no reason to wait. You’re
submitting this application to get it in the marketplace, so you may as well make it as easy as possible to
make that happen.

At the bottom of the Testing and Certification section, you’re presented with a Submit button
instead of the standard Next button you’ve seen thus far. Pressing this button will submit your
application for evaluation, so make sure you’re ready and that you’ve gotten everything uploaded,
written, and included before you press the button. Once you do, you’ll see a screen like the one shown
in Figure 10-14..

Figure 10-14. App submission congratulations screen

That’s it! Your app will go through the certification and evaluation process (the lifecycle of your app
is shown in Figure 10-15),. and if you were thorough in following the rules in the Windows Phone
Application Certification Requirements, and made a point of running the Marketplace Test Kit, you can
be confident that your application will make it into the Marketplace on your first try.

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

234

Figure 10-15. The application lifecycle page

Dealing with Rejection.
Sometimes an application gets denied from the Marketplace. There are thousands of reasons why this
might happen, but the good news is that they’re all based on objective criteria. When your application
fails certification, you will get an incredibly detailed report e-mailed to you by the tester.

The report will include the specific portion of the Application Certification Requirements that you
failed, and will also include a specific, repeatable set of instructions on how to re-create the issue. It will
be absolutely clear as to why your application failed, and it also describes what you need to do in order
to pass certification. There’s no guessing required whatsoever, and that makes it easier for you to fix the
issue and resubmit your application quickly. Don’t be discouraged. It’s much better for your
application to fail certification than it is to have users get frustrated with an issue in your application.
This is a very positive, rewarding learning experience.

The other reward of going through this entire submission process is the obvious one: monetary gain.
The next section of this chapter focuses on Trial Mode, free apps, and using the Advertising SDK to make
money from advertising in your applications.

Monetizing Your Application
In the first part of this chapter, we focused on how you get your application into the Windows Phone
Marketplace and how you can price your apps to make money. This is only one option when it comes to
making money selling Windows Phone apps. In this section, we’ll explore three others: Trial Mode, Paid
Trial, and Ad-Supported.

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

235

Trial Mode
Windows Phone also offers another unique feature called Trial Mode. This is a feature that you can
enable in your application to create one codebase that can function as both a limited trial, as well as the
full version of the app. On other platforms, you will often see a “Lite” or “Free” version of an app,
alongside the “Full” version, which costs money. In some cases, you may find this same experience in
the Windows Phone Marketplace.

The Windows Phone Trial Mode allows you to have one project, one codebase, and two versions of
your application. By implementing this feature, you can show ads when the user doesn’t pay for your
app, and remove them when they finally pay for it. You can also remove some of the core functionality
so that your user can try your app, but in order to get the full experience, they need to purchase the full
version. Listing 10-2 shows how you implement Trial Mode in your applications.

Listing 10-2. Implementing Trial Mode in Your Code-Behind File

using System;
using System.Windows;
using Microsoft.Phone.Controls;
using Microsoft.Phone.Marketplace;

namespace KBDB
{
 public partial class MainPage : PhoneApplicationPage
 {
 LicenseInformation li = new LicenseInformation();

 // Constructor
 public MainPage()
 {
 InitializeComponent();

 if (li.IsTrial())
 {
 //DO SOMETHING SPECIFIC TO TRIAL MODE, LIKE SHOWING
ADVERTISEMENTS
 }
 else
 {
 //DO SOMETHING THAT ONLY PAID USERS CAN DO.
 }
 }
 }
}

As you can see, Trial Mode was made to be easy to implement. We need a reference to
Microsoft.Phone.Marketplace, as well as a new LicenseInformation object. LicenseInformation exposes
an IsTrial method that checks to see if the user has paid for your application. This is a great
opportunity to show ads or display a Buy the Full Version button. (You can use the
MarketplaceDetailTask to accomplish this. We covered that in Chapter 6.)

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

236

Paid Trial
It’s important to remember that although you can offer a Trial version of your app, it might not always
be in your best interest. We think this is especially true for low-priced utility applications and games. If
you are intending to sell your app for 99 cents, you might want to reconsider utilizing Trial Mode.

Many users are very willing to participate in what we refer to as a “paid trial,” or an impulse buy.
Let’s look at the potential math problem this creates.

If 1,000 people are willing to try your application by paying the 99 cents, do you expect that more or
fewer people will pay 99 cents once they’ve tried the trial version of the app?

The answer, in almost all cases, is fewer. Twenty-five percent of all applications that a user installs
on their phones are used less than once. Think about your own mobile device right now. How many of
the applications you’ve installed actually get used on a regular basis? Our bet is less than ten. Is your
application good enough to make it into someone’s top ten? Even if you offer a trial version of your
application with advertising, if it only gets used once, you’re unlikely to see any real revenue from the
user. Instead, we suggest not offering a trial for low-priced, minimally-featured applications. Sell it for
99 cents instead. You’re bound to make more money that way.

The primary reason for this thinking is because Trial apps don’t get exposed in the Marketplace the
way that free applications do. A user that is looking for some new, free applications will be looking in the
Free category of the Marketplace. Trial mode applications are not listed there. Therefore, this means
that the users that will discover your application were already prepared to spend some money. Offering
one version for a small price is probably your best bet to make money with your app.

For those applications that you think will get a ton of your user’s screen time, we highly recommend
advertising.

Advertising Supported
The place you’re going to want to get started is the Microsoft Advertising pubCenter
(http://advertising.microsoft.com/mobile-apps). They will walk you through getting the SDK,
registering your application, and implementing the ads in your application. But, because this is a book
on development, we’re going to show you the implementation here as well. If you’ve downloaded the
latest version of the Windows Phone tools, you’ve already got the Advertising SDK installed.

Once you have added Microsoft.Advertising.Mobile.UI as a reference to your project, you can start
adding AdControls to your pages. Listing 10-3 shows the Xaml you need to put an ad in your app.

Listing 10-3. Adding an AdControl to Your Xaml Page

<phone:PhoneApplicationPage
 x:Class="KBDB.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"
 xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768"
 FontFamily="{StaticResource PhoneFontFamilyNormal}"
 FontSize="{StaticResource PhoneFontSizeNormal}"
 Foreground="{StaticResource PhoneForegroundBrush}"
 SupportedOrientations="Portrait" Orientation="Portrait"

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

237

 shell:SystemTray.IsVisible="True"
 xmlns:ad="clr-
namespace:Microsoft.Advertising.Mobile.UI;assembly=Microsoft.Advertising.Mobile.UI">

 <Grid x:Name="LayoutRoot" Background="Transparent">
 <ad:AdControl AdUnitId="Image480_80" ApplicationId="test_client" Height="80"
HorizontalAlignment="Left" Margin="-12,527,0,0" Name="adControl1" VerticalAlignment="Top"
Width="480" />
 </Grid>
</phone:PhoneApplicationPage>

It’s important to note that you need to include the XML namespace for the
Microsoft.Advertising.Mobile.UI in order to use the AdControl control. There are some important
things to know about the values in the AdControl, so let’s look at that next.

Using Test Values in Your AdControl
While we’re testing, we shouldn’t use our actual AdUnitId values, because that would be like illegally
clicking on our banner ads on a web page. The AdControl is smart enough to recognize when it’s running
in the emulator, and won’t show ads in that case. Instead, you should use the values in Table 10-1. There
are actually three different types of test values, depending on what size/shape of ads you want to show.
Table 10-1 summarizes the entire list.

Table 10-1 .The test values you should use when building and testing your app.

Ad Type Ad Model Size (W × H) Test ApplicationId Test AdUnitId

Text Ad Contextual 480 × 80 test_client TextAd

XXL Image
Banner

Contextual 480 × 80 test_client Image480_80

XL Image
Banner

Contextual 300 × 50 test_client Image300_50

For our purposes, as you see in Table 10-1, we are using the 480 × 80 XXL Image Banner. We have

positioned it to take up the bottom 80 pixels of our application’s screen, showing ads from the specific
ad unit.

What Is an Ad Unit?
Ad Units are specific “campaigns” that you might want to run. For example, Jeff has an application
called Toothbrush Timer. It’s meant to show kids how long to brush each region of their mouths.
Because he is expecting parents to put it on the counter, and watch it with their kids as they brush,
advertising seems like a perfect way to catch their eye.

The best part about the Ad Units is the ability to define categories of advertisements to be shown. In
the toothbrush example, Jeff wants to show ads that are relevant to parents and their children.

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

238

Thankfully, there are tons of different ad categories to choose from (there are 385, ranging from politics
to health and fitness), and you can even have multiple categories (up to three) in one Ad Unit.

So, once you’ve created some Ad Units in the pubCenter, grab those AdUnitId and ApplicationId
values, and plug them into your AdControl. Then your code, fully formatted, should look more like
Listing 10-4.

Listing 10-4. AdControl with Real AdUnit Values

<ad:AdControl x:Name="AdBox" AdUnitId="10018171" ApplicationId="350b8257-d92a-4978-a218-
f3650bd485df" Margin="-12,528,-12,0" Width="480" Height="80" />

And Figure 10-16 shows what the ad looks like in a sample application (note the sample ad used
inside the emulator).

Figure 10-16. A sample ad using the Advertising SDK

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

239

Finally, Profit.
Just by adding the AdControl to your application (assuming your application is actually downloaded by
users), you should start seeing activity in the pubCenter. It will show impressions, click-throughs, and
other reporting metrics. The most important number, revenue, shows as you enter the site. Now, let’s
look at the toughest of questions: How do we attract users?

Promoting Your Application
Getting users to find your application might seem like something that’s out of your hands, but you’re
wrong. There are plenty of things you can do to drive awareness of your application. This section
focuses on a few best practices that you should utilize for every application that you create.

Make the Most of Week One
Unless your app becomes a runaway sensation, it’s highly likely that your app’s first week in the
Marketplace will also see your highest number of daily downloads. Getting exposure in the New
category is a one-time opportunity, and you need to make sure that you leverage this in a way that will
make your app shine for much longer than a few days. Ultimately, your goal is to catapult from the New
category to the Top Apps category. The four to five days that you will wait for your application to be
approved should be spent executing a specific strategy for making the public aware of your application.

Use a Marketplace Link in Your Communications
When you first submit your application to the Marketplace, even before the app is approved, you are
assigned a deep link that you can use to direct people to your app using a standard web URL. An
example of the deep link to MathMaster, one of Jeff’s applications, can be found at

http://windowsphone.com/s?appid=f08521cd-1cff-df11-9264-00237de2db9e

This link takes you to a page for your app in the Marketplace. This link will not work until your

application is approved. We recommend using this link everywhere you can, especially on the custom
web site you created for your apps. You were planning on doing that, right? To find your deep link, look
on the Details tab of your application’s submission page in the App Hub, as shown in Figure 10-17.

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

240

Figure 10-17. The details page of your application in App Hub

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

241

Create a Web Portal for Your Apps
An important thing that you should have learned from the Marketplace walk-through earlier in this
chapter was that your ability to discuss your apps is pretty limited. A few screenshots, and
approximately 2,000 characters is all you have. By creating a web site for your applications, you create
several new opportunities for yourself.

1. You can create real connections with your users. The Windows Phone
Marketplace doesn’t give you any indication who your users are, only a total
number of app sales. A web site allows you to interact with your fans.

2. You can provide a rich amount of information about your app, including
videos and other promotional content that might make your app more
appealing.

3. You can cross-sell your applications. The Marketplace doesn’t always do a
great job at promoting your other applications to potential customers, so
leverage your web site to make that happen.

4. Your app is now discoverable by people that aren’t actively looking for it in the
Marketplace.

5. This web site doesn’t have to be a web site at all. There’s nothing wrong with
creating a page on Facebook or another social network that you can
customize. The ultimate goal of this process is to provide a destination for
your fans, so that they can spread the word about your awesome app.

Create a Walk-through Video for Your App
One of the important features your web site should include is a video walk-through of your app.
Screenshots in the Marketplace are good, but allowing a user to see the actual experience in a controlled
way will always provide them with more information. Our recommendation is to use a video-screen
capture tool like TechSmith’s Camtasia, which makes it easy to not only capture the video feed from the
emulator, but to edit the results, add background music, and introduce information before and after the
video. There are probably plenty of tools that will do this for you, but in our experience, Camtasia is the
perfect tool for the job. You can see an example of Jeff’s MathMaster video on YouTube at
http://youtu.be/uMlyUn3sgJU.

Have fun with it. Your video can add a level of excitement to your app that screenshots can never
provide. Now that we’ve focused on web sites and videos, let’s discuss the things you can do inside your
application to help promote it.

Encourage Reviews of Your Applications
We discussed reviews earlier in this chapter; they can be the deciding factor as to whether or not your
application gets the downloads that you’re looking for. Unfortunately, there’s not a built-in mechanism
for reminding users to review your app. You need to do this yourself. We recommend making it a fun
addition to your application rather than an annoyance to your user.

One idea we recommend is to make it an achievement within your app. Litter fun little surprises
throughout your application, and you’ll hook an otherwise passive user. Give points for reading the
credits of the app. Give more for using the app ten times. By adding achievements to any application,

CHAPTER 10 ■ GET MONEY: PROFITING FROM YOUR APPLICATIONS

242

you’ll find that your users will find themselves coming back again and again. You might also unlock a
specific piece of functionality that would otherwise be unavailable when they review your app.

A second idea is to count the number of times your user has launched your application, and prompt
them at the second, fifth, and tenth times to review your application. Ask gently. You don’t want to
annoy the user, but you do want their review. You can even use the MarketplaceReviewTask to take them
directly to the review page for your application.

Great reviews generate more traffic. Oftentimes, a star review can be just as valuable as a written
one. The average star rating (1–5) is displayed everywhere your application is, so a high rating often
generates more traffic. Encouraging your users to leave a review will have a positive effect on your
application’s download rates.

Cross-Sell Your Applications
Within your app, you should provide a place where the user can find information about your company,
support contacts, and other data, like version number. In this place, or certainly in a more prominent
location, you have an opportunity to promote the other applications you’ve created. Use your icons.
Use the deep links or the MarketplaceDetailTask launcher. Provide a simple way for your user to find
and download your other application offerings.

If you really want to get fancy, create an XML file on your web server that contains all of the
information about your apps, and consume this in your apps to create the list of your applications. This
way, when you add a new app to your catalog, you won’t have to update all of your apps just to do this
cross-promotion.

Summary
After you’ve finished your application, there are plenty of things you need to do in order to get your
application ready. Make sure that you’ve considered your promotion strategy before you push the final
Submit button on your app. Building a community around your application will only help to make your
audience grow, because enthusiastic users are also powerful evangelists of your efforts.

If you’ve taken the time to create an amazing new application for Windows Phone, you need to be
certain that it’s going to have the potential impact you’re hoping for. If you’ve built your big idea,
followed our carefully-crafted advice throughout this book, and successfully passed Marketplace
certification, you’re ready to start raking in the cash.

It was our distinct honor to share our knowledge about Windows Phone development with you in
this book, and we hope that as the money starts to pile up, you’ll remember your trusted guides in this
process, Jesse Liberty and Jeff Blankenburg. As it turns out, apps make far more money than writing
about them does.

A sincere thank you for buying and reading our book. We hope it was as enjoyable for you to use as
it was for us to write.

■ ■ ■

243

Index

A
Accelerometer

code, 201–202
emulator tool, 203
interface, 201
x, y, z axes, 199–201

AdControl, 234
Animation

gratuitous animation, 105
keyframes, 105, 106
Opacity, 106
page transitions (see Page transitions)
purposeful animation, 105
simple FadeOut storyboard, 106–107
storyboard, 105 (see also Storyboard)
Text Rotator, 106–107
tweening, 105–106

ApplicationBarIconButton
default icons, 48
Event Handler, 49
Events tab, 48
icons, 49
in Xaml, 49
Objects and Timeline panel, 47
Properties tab, 47
text values, 49

B
Beta testing, 230
Bing tasks

BingMapsDirectionsTask, 129–130
BingMapsTask, 130–132
SearchTask, 132–133

C
Calculator, 1, 13

Dependency Property, 16
Edit in Visual Studio, 14
EventHandler, 18
events window, 13
helper method, 17
OnNavigatedTo() method, 17
OperatorTypes, 15
TextBlock, 16
Xaml view, 14

WrapPanel, 15
Camera tasks

CameraCaptureTask, 133–136
PhotoChooserTask, 136–138

Canvas control, 24, 25
Communication tasks

EmailComposeTask, 139–141
PhoneCallTask, 141–142
ShareLinkTask, 142–144
ShareStatusTask, 144–145
SmsComposeTask, 145–147

Compass
code, 197–198
Dispatcher.BeginInvoke() method, 199
MagneticHeading, 196
magnetometer, 196
TrueHeading, 196
user interface, 197
Xaml elements, 196

ConnectionSettingsTask, 158–159
Contacts tasks

� INDEX

244

AddressChooserTask, 147–149
EmailAddressChooserTask, 149
PhoneNumberChooserTask, 150
SaveContactTask, 153–154
SaveEmailAddressTask, 151
SavePhoneNumberTask, 151–153

D
Data manipulation

data binding, 53
controls, 55
with DataBound applications, 57–59
DataContext, 54, 56
DataTemplates, 57
ListBoxes, 56
Windows Phone Project, 54

ElementBinding, 60
Storing data (see Storing data)

E
Expression Blend, UI, 4

Application Title, 6
calculator buttons

Canvas, 8
design, 9–10
display panel, 8–9
grids, 8
keypad, 8
LayoutRoot, 7
StackPanels, 8
WrapPanel, 11–13

Properties panel, 6
View buttons, 6
Xaml markup, 5

F
Fast Application Switching, 77–78

G, H, I, J
Grid control

creation, C#, 23
vs. HTML tables, 22
layout structure, 22
newGrid element addition, 23
Xaml element, 22

Gyroscope
data visualization, 207
event handler, 205–206
user interface, 204–205

K
Keyframe, 105

L
Large Mobile Application Tile, 227
Large PC Application Tile, 228
Layout controls

canvas control, 24–25
grid control (see Grid control)
StackPanel control, 25
user interface (see User interface, layout

controls)
Lifecycle of application

application launching, 76–77
background agents

Find(String) method, 87
ignoreCheckBoxEvents, 88
LaunchForTest method, 85
OnInvoke(ScheduledTask), 83–85
OnNavigatedTo() method, 89–90
PeriodicTask, 83
RemoveAgent helper method, 89
ResourceIntensiveTask, 83, 84, 88

Dormant state, 76, 77
Fast Application Switching, 77–78
managing state

application state, 78
page state, 78–82
Tombstoned state, 82

running application, 76–77
shut down, 76–77
tombstoned, 76–77

Live Tile updates
PrimaryButton_Click method, 186–187
SecondaryButton_Click event handler

method, 186–188
Update() method, 188
to XAML interface, 186

M, N, O
MagneticHeading, 196–197
Marketplace tasks

MarketplaceDetailTask, 154–156
MarketplaceHubTask, 156
MarketplaceReviewTask, 156–157
MarketplaceSearchTask, 157–158

MediaPlayerLauncher, 159–160
Microsoft.Phone.UserData namespace

appointments

 � INDEX

245

event search, 166
SearchCompleted Event Handler,

167
contacts

asynchronous search, 164
EmailAddressChooserTask, 165
Empty search, 164
FirstOrDefault() option, 165
working with, 166

Motion API
aircraft parameters, 208
comparison, 213
Motion class, 211–212
polygon shape, 211
star shape creation, 210
user interface, 208–209

P, Q
Page transitions

Code contents
PageOne.xaml, 120
PageTwo.xaml, 121–122
PageTwo.xaml.cs, 122–123

FlipIn and FlipOut storyboards, 119
Xaml contents, PageOne.xaml, 118–119

Private beta testing, 219
Push Notifications

Live Tile updates, 186–188
Raw Notification (see Raw Notification)
Tile Notification (see Tile Notification)
Toast Notification (see Toast Notification)
US Postal Service, 169–170
Windows Phone application, 170–173

R
Raw camera

CaptureImage() method, 216
interface, 214
PhotoCamera object, 214–215
VideoBrush, 213–214

Raw Notification
HTML interface, 181–182
HttpNotificationReceived Event Handler,

180–181
RawButton_Click event handler method,

182–183

S
SaveRingtoneTask, 160–163
Small Mobile Application Tile, 226

StackPanel control, 25
Storing data

in isolated storage
keys and values, 61
RebindListBox, 62
Save_Click event handler, 62
SelectionChanged event, 62

in local database
Author and Publisher class, 65–66
Book class, 65
BooksDataContext, 65
performance optimization, 72–73
querying, 71–72
relationships, 69–71
SubmitChanges, 67–68
user interface, 64
using statements, 65

Storyboard
code reuse

Storyboard.SetTarget method, 116–
117

Target change, 116–117
code-behind file

FadeIn.Completed event, 114
FadeOut.Begin(), 114
limitations, 116
Text Swapping, 115

using Expression Blend
Animation workspace, 110
completed storyboard, 113
creating new Storyboard, 108
FadeOut and FadeIn storyboards in

Xaml, 113
naming a storyboard, 108
Objects and Timeline Panel, 109
setting keyframes, 111
storyboard timeline, 111
TextBlock element, 107
TextBlock, Opacity property, 112
Timeline recording, 109

T
Tasks

Bing tasks
BingMapsDirectionsTask, 129–130
BingMapsTask, 130–132
SearchTask, 132–133

� INDEX

246

Camera tasks
CameraCaptureTask, 133–136
PhotoChooserTask, 136–138

choosers
AddressChooserTask, 128
EmailAddressChooserTask, 125
online resources, 127

Communication tasks
EmailComposeTask, 139–141
PhoneCallTask, 141–142
ShareLinkTask, 142–144
ShareStatusTask, 144–145
SmsComposeTask, 145–147

ConnectionSettingsTask, 158–159
Contacts tasks

AddressChooserTask, 147–149
EmailAddressChooserTask, 149
PhoneNumberChooserTask, 150
SaveContactTask, 153–154
SaveEmailAddressTask, 151
SavePhoneNumberTask, 151–153

launchers
online resources, 126
PhoneCallTask, 125–127

Marketplace tasks
MarketplaceDetailTask, 154–156
MarketplaceHubTask, 156
MarketplaceReviewTask, 156–157
MarketplaceSearchTask, 157–158

MediaPlayerLauncher, 159–160
Microsoft.Phone.UserData namespace

appointments, 166–167
contacts, 164–166

SaveRingtoneTask, 160–163
WebBrowserTask, 163–164

Tile Notification
BackBackgroundImage, 185
BackContent, 185
BackgroundImage, 185
BackTitle, 185
Count, 185
to HTML interface, 183
TileButton_Click event handler, 184
Title, 185

Toast Notification
adding buttons, HTML Web Interface, 175–

176

adding new Web Form, 175
ASP.NET Empty Web Application Project,

174
Button Event Handlers, 176
GetResponse() method, 178
storing the channel URI, 176–177
ToastButton_Click method code, 177
on Windows Phone emulator, 179
X-MessageID, 178
X-NotificationClass, 178
X-WindowsPhone-Target, 178

True North, 196
TrueHeading, 196
Tweening, 105

U, V
User interface, layout controls

ApplicationBar, 45
ApplicationBarIconButton, 46, 52
ApplicationBarMenuItem, 50
Commented-out Application Bar, 46
Foreground and Background Colors,

50
opacity value, 52

back stack, 42–43
background and accent colors

Devices tab in Expression Blend, 34
inventory application, 34
theme option, 34

image addition
image element, 35
Panorama item, 35–37
ScrollViewer, 37–38

MainPage.xaml, 27
Open Visual Studio 2010, 26
page navigation

Categories.xaml, 40
Click event handler, 41–42
new item addition, 38

Panorama control
background image, 32
design surface, 31
Panorama items addition, 32
Xaml Tag, 30–31

textboxes, 43
EmailNameOrAddress InputScope

keyboard, 44
Number InputScope keyboard, 45

 � INDEX

247

TelephoneNumber InputScope
keyboard, 45

width, 44
Windows Phone keyboard, 44

Visual Studio Toolbox
contents, 27
hidden controls addition, 28
Toolbox Items dialog box, 29

W, X, Y, Z
WebBrowserTask, 163–164
Windows Phone application submission

process
Ad Units, 234–235
advertising support, 233–234
beta testing, 230
certification

congratulation screen, 230
lifecycle page, 231
testing and form screen, 230

descriptions
artwork, 225–228
category, 223
first half form, 223
keywords, 225
second half form, 225
short and long, 224
URL, 225

Marketplace Test Kit, 217–218
methods, 217
paid trial, 233
price, 228–229
profit, 235
promoting

cross-sell, 239
make use of Week, 236
reviews, 238
use Marketplace link, 236–237
walk-through video, 238
web portal creation, 238

rejection, 231
test values, 234
trial mode, 232–233
upload step

browse, 220–222
distribution, 219
naming, 219
output display, 218

technical exception requirements,
222

version number, 222
Windows phone applications

calculator, 1
user interface, 4
using Expression Blend, UI (see Expression

Blend, UI)
with Visual Studio, 2–3

Windows Phone interaction
accelerometer

code, 201–202
emulator tool, 203
interface, 201
x, y, z axes, 199

compass
code, 197–198
Dispatcher.BeginInvoke() method,

199
MagneticHeading, 196
magnetometer, 196
TrueHeading, 196
user interface, 197
Xaml elements, 196

gyroscope
data visualization, 207
event handler, 205–206
user interface, 204–205

location services
advantages and disadvantages, 192
emulator add-on, 195
event handlers, 193–194
GeoCoordinateWatcher object, 193–

194
methods, 192
PositionChanged, 194
StatusChanged values, 194
Timestamp object, 194
Xaml elements, 192

Motion API
aircraft parameters, 208
comparison, 213
Motion class, 211–212
polygon shape, 211
star shape creation, 210
user interface, 208–209

� INDEX

248

raw camera
CaptureImage() method, 216
interface, 214

PhotoCamera object, 214–215
VideoBrush, 213

	Title Page

	Copyright Page

	Contents at a Glance
	Table of Contents

	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Foreword
	Introduction
	Migrating
	Migrating from Other Phones
	Migrating from Silverlight or WPF

	CHAPTER 1 Get to Work: Your First Windows Phone Program

	Creating a New Application with Visual Studio
	Building the User Interface with Expression Blend
	Setting the Application Title
	Adding the Calculator Buttons
	Create a Surface for the Keypad
	Add the Display Panel
	Design a Button
	Buttons Layout

	Programming the Calculator
	Examining the Button Xaml
	Planning Button Actions
	Connecting Button Results to the Display
	Handling the Number Buttons
	Handling Other Buttons

	Summary

	CHAPTER 2 Get Control: Exploring Windows Phone Controls

	Introducing Layout Controls
	The Grid Control
	The Canvas Control
	The StackPanel Control
	Recap

	Building a Real User Interface
	Getting Started
	Adding Missing Controls to Your Toolbox
	Using the Panorama Control
	Adjusting Background and Accent Colors
	Adding Images to a Page
	Navigating Between Pages
	Dealing with the Back Stack
	Using TextBoxes
	Using the ApplicationBar
	The ApplicationBarIconButton
	The ApplicationBarMenuItem
	Customizing the Appearance of the ApplicationBar

	Summary

	CHAPTER 3 Get the Data

	Binding Data to Controls
	Creating the Data
	Creating Controls
	Adding DataContext
	ListBoxes and DataTemplates

	Binding Data with the DataBound Template
	Storing Data in Isolated Storage
	Storing Data in a Local Database
	Building the UI
	Accessing Local Storage
	Adding Relationships
	Querying the Local Database
	Database Performance Optimization

	Summary

	CHAPTER 4 Get a Life

	Understanding the Application Lifecycle
	Fast Application Switching
	Managing State
	Page State
	Debugging with Tombstoning

	Using Background Agents
	Summary

	CHAPTER 5 Get Blended

	Using Styles & Templates
	Creating a Style
	Modifying Visual State
	Applying a Style

	Using Behaviors
	Defining Visual States
	Look Ma, No Code

	Creating Sample Data
	Sample Data Generated by Expression Blend
	Sample Data Generated from a Class

	Binding Data
	DataItem Template
	Data Converter

	Summary

	CHAPTER 6 Get Moving: Adding Animation to Your Apps

	Understanding the Lexicon of Animation
	Creating a Simple Animation
	Using Expression Blend to Create a Storyboard
	Calling Our Storyboard from Code
	Reusing a Storyboard

	Creating Custom (and Distracting) Page Transitions
	Creating the Page Turn Animation
	Adding the Animation to Your Page Events

	Summary

	CHAPTER 7 Get a Job: Interacting with User Data

	Distinguishing Launchers and Choosers
	Setting up a Launcher
	Setting up a Chooser

	Bing Tasks
	BingMapsDirectionsTask
	BingMapsTask
	SearchTask

	Camera Tasks
	CameraCaptureTask
	PhotoChooserTask

	Communication Tasks
	EmailComposeTask
	PhoneCallTask
	ShareLinkTask
	ShareStatusTask
	SmsComposeTask

	Contacts Tasks
	AddressChooserTask
	EmailAddressChooserTask
	PhoneNumberChooserTask
	SaveEmailAddressTask
	SavePhoneNumberTask
	SaveContactTask

	Marketplace Tasks
	MarketplaceDetailTask
	MarketplaceHubTask
	MarketplaceReviewTask
	MarketplaceSearchTask

	Miscellaneous Tasks
	ConnectionSettingsTask
	MediaPlayerLauncher
	SaveRingtoneTask
	WebBrowserTask

	Using the Microsoft.Phone.UserData Namespace
	Contacts
	Appointments

	Summary

	CHAPTER 8 Get Pushy: Using Push Notifications to Keep Your Users Up-to-Date

	Understanding Push Notifications (and the US Postal Service)
	Creating a Notification App
	Creating a Toast Notification
	Creating a Raw Notification
	Creating a Tile Notification
	Live Tile Updates
	Summary

	CHAPTER 9 Get Oriented: Interacting with the Phone, Camera, GPS, and More

	Tracking the Position of Your Device
	Using Location Services
	Using the Compass
	Using the Accelerometer
	Using the Gyroscope
	Using the Motion API

	Accessing Raw Camera Data
	Summary

	CHAPTER 10 Get Money: Profiting from Your Applications

	Submitting Your App to the Windows Phone Marketplace
	Using the Marketplace Test Kit (Recommended)
	Uploading Your App
	*App name for App Hub
	*Distribute to
	*Browse to upload a file
	*Version Number
	Requires Technical Exception

	Describing Your Application
	*Category
	*Details
	Add Artwork

	Pricing Your Application
	Testing Your Application
	Beta Testing
	Certification

	Dealing with Rejection.

	Monetizing Your Application
	Trial Mode
	Paid Trial
	Advertising Supported
	Using Test Values in Your AdControl
	What Is an Ad Unit?
	Finally, Profit.

	Promoting Your Application
	Make the Most of Week One
	Use a Marketplace Link in Your Communications
	Create a Web Portal for Your Apps
	Create a Walk-through Video for Your App
	Encourage Reviews of Your Applications
	Cross-Sell Your Applications

	Summary

	Index

