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PREFACE

Computation is an essential part of the cell biologist’s toolbox. The value of
computation in analyzing systems involving numerous, interconnected mechanisms
has long been appreciated. Computational models provide a framework not only to
formally represent and simulate the mechanisms, but also predict the response of an
integrated system to new perturbations and thereby lead to testable hypotheses. In
this way, computational modeling and analysis can suggest new experiments that
challenge and help revise our mechanistic understanding of the cell system.

Prediction and hypothesis-generation, however, tells only part of the story. The
need for computation is now far more pervasive in cell biology. Cell biological data
is increasingly gathered with high bandwidth, often exploiting heterotypic measure-
ment modalities. This flood of data includes changes in gene expression, post-
translational modifications, and the subcellular location of key regulatory events.
The ‘-omic’ scale in vivo imaging of spatiotemporal patterns in gene expression
during the development of model organisms is a compelling example. Extracting
meaningful data from such images is a key challenge and involves reliable segmen-
tation, annotation, storage and data management, bioinformatics, and data mining.

Having acquired the data, one seeks to infer salient mechanistic relationships and
models. Deriving a model of how a system works based on experimental data is, of
course, not new. The challenge now is that the volume, the spatiotemporal resolution,
and the heterotypic nature of the data make such inferences difficult to execute by
intuition alone. Computational algorithms to sift through the data and extract models
consistent with the data are essential. Furthermore, model schematics, whether
derived by computation or intuition, are conceptual until they are used to generate
concrete, testable predictions. Making such predictions, however, is encumbered by
a dearth of information regarding parameter values and by the fact that cellular
mechanisms often operate over multiple time and spatial scales, in many cases
combining biochemical and mechanical elements. Thus, inferring computable mod-
els that are amenable to simulation requires inference not only of the mechanistic
connections, but also the parameters that describe the strength of those connections
and interactions.

This remarkable breadth of applications of computation in cell biology impresses
the fact that computation is more than a module in a multi-step process that involves
iterative feedback between model and experiment. It is also increasingly integral to
how data is gathered and interpreted, how mechanistic models are inferred, and how
new mechanisms are hypothesized and uncovered. This volume captures this broad
integration of computation in experimental cell biology. The volume covers the role
of computation in the extraction of quantitative information from raw data; inference
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Preface

of mechanistic computable (i.e., parameterized) models from large, heterotypic
datasets; and prediction and hypothesis-generation to drive new experiments.

The contributors to this volume were presented with a difficult challenge: to tailor
each chapter in a way that provides both high-level and in-depth tutorials of key
computational methods, while also communicating the biological question that
inspired the computational approach and the biological insights that were uncovered.
The contributors have, in our opinion, succeeded admirably in tackling this chal-
lenge. The chapters are organized into three parts that focus on (1) molecular
regulatory networks, (2) spatial and biophysical aspects of cell regulation, and
finally (3) multicellular systems. Each part of the volume contains chapters that
deal with the different applications of computation in cell biology: measurements
and data extraction, model development and inference, and prediction and hypoth-
esis generation.

With acknowledgment and deepest gratitude to the tremendous efforts of the
contributors and to the many anonymous peer reviewers, we are pleased to present
this volume and trust that it will provide inspiration and instructive tutorial in your
search for the right computational tool for your cell biology quest.

Anand R. Asthagiri

Department of Chemical Engineering,
Northeastern University, Boston,
Massachusetts, USA

Adam P. Arkin

Department of Bioengineering,
University of California, Berkeley,
California, USA

September 30, 2011
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Abstract

Living cells continuously probe their environment and respond to a multitude of
external cues. The information about the environment is carried by signaling cas-
cades that act as “internal transducing and computing modules,” coupled into
complex and interconnected networks. A comprehensive understanding of how cells
make decisions therefore necessitates a sound theoretical framework, which can be
achieved through mathematical modeling of the signaling networks. In this chapter,
we conceptually describe the typical workflow involved in building mathematical
models that are motivated by and are developed in a tight integration with experi-
mental analysis. In particular, we delineate the steps involved in a generic, iterative
experimentation-driven model-building process, both through informal discussion
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and using a recently published study as an example. Experiments guide the initial
development of mathematical models, including choice of appropriate template
model and parameter revision. The model can then be used to generate and test
hypotheses quickly and inexpensively, aiding in judicious design of future experi-
ments. These experiments, in turn, are used to update the model. The model devel-
oped at the end of this exercise not only predicts functional behavior of the system
under study but also provides insight into the biophysical underpinnings of signaling
networks.

I. Introduction

Models represent useful abstractions of reality, and are clearly a part of how
we learn about and understand various aspects of the world around us. These
models we all seem to have are frequently conceptual, but they can also be
quite quantitative, for instance in developing intuitive predictive abilities in
applying just enough force in lifting a full glass of water, in applying brakes
while driving on a busy road, or in catching a ball during a windy afternoon
game. Many initial models, formed in the early childhood, turn out to be wrong
or overly simplistic when faced with increasingly complex realities of testing
them in a real world. Arguably following a very similar tendency, we try to
build models while engaged in scientific research. These models also frequently
start out as simplistic and largely incorrect during the infancy of a scientific
discipline, being gradually refined and honed as they face the reality checks
provided by experimental analysis. As experiments become more precise, they
provide more stringent tests of related models, enabling model development in
more quantitative, mathematical fashion. This gradual refinement of our under-
standing of a particular phenomenon through iteration of modeling and exper-
iment is at the heart of the scientific method itself, and as models are never
complete, nor are they meant to be, they provide us with the best hope for
making continuous progress in furthering our understanding of complex
processes.

Computational models of biological phenomena, particularly at the level of
description of subcellular, molecular processes, are still very much in their
infancy. And it is still very much unclear what metaphors and what mathematical
and computational concepts and tools would provide a useful platform for devel-
oping these models. Arguably, the ultimate test here is again provided through a
tight linkage between the model and experiment. If a model, whatever its math-
ematical embodiment or degree of sophistication, is able to provide a hitherto
unavailable insight, useful generalization or abstraction, or make unanticipated
prediction, its value becomes increasingly high, a kind of justification of its use a
posteriori. In this regard, many models, based on and using the concepts and
mathematics for applications in engineering and physics, turn out to be still quite
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predictive and thus justified in their use, when applied to biological processes. In
this chapter, we provide some examples of such models.

Recently, the “classical” approaches to model development described above
have gradually become challenged due to the exceedingly rapid progress in how
many biological variables can be measured, and how fast it can be done. In many
ways, there is now a requirement for building models that need to be multidimen-
sional from the start, dealing with hundreds or even thousands of simultaneously
measured entities, accompanying complex biological events. In some ways, this
rapid technological development heralded the “age of Kepler” in biology, the age
of finding statistical relations that can capture many aspects of the biological
processes, while also being predictive of the ultimate outcomes. However, the
understanding of the primary causes of relations between the underlying ultimate
controlling processes may still be awaiting the “age of Newton,” the age of
important conceptual breakthroughs. Arguably, these breakthroughs in under-
standing the processes described from the large-scale, multivariable, “bottom
up” perspective can and will emerge from a more of a classical, iterative “top-
down” description, aimed at accounting for processes, however ostensibly com-
plex, using the simplest models possible.

II. Signaling Systems and Mathematical Models

An area of biological research that has been extremely amenable to and hence
benefited from mathematical modeling is the study of signaling systems, largely
facilitated by the fact that signaling cascades are, in their basest form, nothing but
elementary chemical reactions. What started as an attempt to quantitatively describe
the action of a single enzyme by Leonor Michaelis, Maud Menten, and others has
now blossomed into a full-fledged undertaking to model the workings of large
signaling cascades involving not one but scores of enzymes, their substrates, and
myriad other biomolecules. The fact that steps in a signaling cascade can be con-
strued as chemical reactions lends itself easily to the development of mathematical
models comprising simple Ordinary Differential Equations (ODEs), each of which
describes a particular reaction. The real power of these models, however, arises from
the fact that signaling systems are built not unlike many man-made control systems,
replete with nonlinear connections between different components. The presence of
such nonlinear connections, which give rise to interesting dynamics, makes it
difficult to intuitively predict the response of a system under different conditions.
Mathematical models are immensely useful in not only helping us quantitatively
predict system responses but also allowing us to generate additional hypotheses for
experimental testing. More and more frequently, models of signaling networks
provide insights into the abstract principles that have guided Nature in the evolu-
tionary “design” of signaling networks, facilitating efforts in understanding of the
existing and (re-)designing of novel networks of desired properties (Lim, 2010;
Antunes et al., 2009; Toettcher et al., 2010).
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ITII. Experimentation-aided Model Development

Nonlinear connections in signaling cascades inherently give rise to dynamically
interesting behavior such as oscillations. Over the course of evolution, life forms
seem to have exploited such temporal dynamics to their advantage. Crucial infor-
mation about external stimuli can be embedded in the parameters of oscillations such
as frequency and amplitude (Cheong and Levchenko, 2010). Oscillations are exhib-
ited by multiple signaling systems and are thought to underlie the rhythmic beating
of the heart, insulin secretion, and memory formation. Central to many such oscil-
lating systems is the ubiquitous second messenger, calcium. This, combined with a
long history of observations of intracellular calcium dynamics, has led to many
mathematical models describing putative mechanisms of how calcium oscillations
can arise in diverse settings (see reviews: (Schuster et al., 2002; Dupont et al., 2011).
However, experimental validation of such models is frequently not undertaken.
More recently, we and many other groups have used experimental monitoring of
calcium oscillations in conjunction with computational models to address basic
questions of signaling. In this chapter, we will illustrate the experimentation-
aided development, refinement, and implementation of computational models in
general, using the specific example of a recent modeling—experimental analysis
project (Ni et al., 2011), which we believe captures many archetypal features of
an integrative effort relying on both modeling and experimental research in equal
measure. The principles involved in such a model-building process can be gen-
eralized as follows:

1. Template identification: Mathematical models have already been built for many
signaling cascades. A good starting point therefore in the development of a
computational model may therefore be to identify an existing model that is
suitable for the system of choice.

2. Module development: No models are ever complete. Experimental results could
identify new components or links in a signaling pathway, which need to be
incorporated in the model. Newly identified components and links often occur
as subsystems, which could be modeled semi-independently as individual
modules.

3. Architectural revision: Although the modules within a complex model could
be relatively independent of each other, the modules have to be integrated in
a seamless manner in the final model to reproduce the experimental results.
In many cases, all the links between different components may not be known,
in which the most likely configuration of a signaling network has to be
selected.

4. Model simulations: The complete model is then simulated to replicate experi-
mental results and to generate additional hypotheses, which are subsequently
verified by experiments.

Although, these principles have been enumerated as a defined list, it is not
uncommon to employ them in a combined and iterative fashion.
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A. Template Identification

As the efforts to employ modeling in the analysis of biological processes
accelerate, it is becoming more and more common to initiate the analysis, with
existing prior art in the form of published models capturing a certain aspect of
the biological process of interest. Models for calcium oscillations, for instance,
abound in literature (Schuster et al., 2002; Dupont et al., 2011). Choosing
the right template to start with depends mainly on the system under study and
the purpose of the intended final model. For example, stochastic models are
immensely helpful in addressing questions of dynamics pertaining to single
molecules, such as ion channels (Dupont et al., 2008; Cannon et al., 2010), or
in the exploration of how noise affects transcriptional control and signaling
dynamics (Roberts et al., 2011; Ko et al., 2010). Multiscale models may be
necessary to explain tissue-level functionalities using molecular mechanisms
(See reviews: (Greenstein and Winslow, 2011; Du et al., 2010). In most cases,
however, simple deterministic models can serve the purpose of explaining how
signaling cascades regulate cellular functions. When setting out to address
potential mechanisms of cross-talk between calcium, cyclic adenosine monopho-
sphate (cAMP), and protein kinase A (PKA) signaling, our choice of the template
model was based on our initial experimental results and the particular set of
questions we sought to address. The fact that intracellular levels of calcium
oscillate in pancreatic B-cells upon membrane depolarization has been well
documented for more than two decades (Bertram et al., 2010; Grapengiesser
et al., 1988; Corkey et al., 1988). Using genetically encoded biosensors based on
Forster Resonance Energy Transfer (FRET) (Zhang et al., 2001; DiPilato et al.,
2004), we observed that cAMP and the associated kinase, PKA, also exhibited
temporal oscillatory dynamics, matching the calcium oscillations in a calcium-
dependent manner. Further, our experiments indicated that calcium oscillations
could be regulated by PKA through a putative feedback loop. These experiments
presented us with the need and the opportunity to expand current models describ-
ing the generation and regulation of calcium oscillations. The main purpose of
our modeling analysis was then to develop a minimal yet sufficiently detailed
model accounting for and constrained by the experimented observations.

We chose the original Chay—Keizer model (Chay and Keizer, 1983) and its
later version detailed by Sherman, Li, and Keizer (Sherman et al., 2002) as our
initial modeling templates and thus built a “voltage module” to describe the
membrane potential dynamics and its connection to calcium concentration
dynamics. When the parameters present in the original model were used, we
observed that the frequency of oscillations was much lower than the frequency of
oscillations experimentally observed. Hence, some of the parameter values
needed to be refined in order to corroborate the experimental data. Certain
parameters are likely cell-type specific and hence are most likely to vary when
distinct experimental systems are analyzed. The net conductance of a type of
channels in a cell, for instance, is a function of the number of available channels,
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and so conductance values vary among different cell types. In our model, the
conductance of voltage-dependent calcium channels (VDCCs) was altered, as has
been similarly done in a model published by Fridlyand et al. (Fridlyand et al.,
2007). To match the change in VDCC activity owing to this reduced conductance
and to match the experimentally observed frequency of oscillations, the conduc-
tance of the delayed rectifier K channels also was reduced. The value of another
parameter that reflects the fraction of free calcium in a cell was chosen by Chay
and Keizer on the basis of the time scale of the oscillations in their model, in the
absence of any concrete experimental measurements. Because the frequency of
oscillations experimentally observed in our system was much lower than that in
the study by Chay and Keizer, this parameter was also reduced accordingly.
Apart from these frequency-related parameters, the reversal potential for
VDCCs, Ec,, was modified to 100 mV, as previous reports have consistently
used this value (Chay and Keizer, 1983; Bertram et al., 2000). Following these
modifications, the calcium module (see “B. Module Development™) was devel-
oped to simulate the calcium dynamics. Simulations of the modified template
model with the new parameter values matched the experimental results quite well
(Fig. 1).

EXPERIMENT

1.81

1.41

F/F, (340/380)

1.01

0 600 1200 1800

SIMULATION

0.8
0.6
0.4
0.2

Norm. Concentration

0 500 1000 1500

Fig. 1 (A) Experimental measurements of intracellular calcium in a single MIN6 pancreatic B-cell.
MING cells were loaded with Fura2-AM (2 wM), and the ratio of excitation at 340 nm to that at 380 nm
was recorded. (B) Simulations of the modified template model with new parameters. F, fluorescence
intensity at 340 nm; Fo, fluorescence intensity at 380 nm.
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B. Module Development

Regulatory biochemical networks and the corresponding mathematical and
computational models can be frequently decomposed into constituent “modules,”
subsets of reactions that always occur in particular combination, whenever they are
encountered. Modules can have variable “linkages,” or cross-activation reactions,
which may be cell- or tissue-specific, or display other types of specificity. One can
therefore first attempt to model each of the modules in detail, and then attempt to
understand how they may be “linked” in a particular system of interest. Below we
describe examples of modules modeled within the context of the pancreatic B-cell
signaling.

1. Calcium Module

Apart from calcium influx across the plasma membrane, calcium release from the
internal stores is also assumed to play a major role in many processes that involve
calcium oscillations, as evidenced by the glucose-regulated expression of IP3 recep-
tors (IP3Rs) in rat pancreatic islets (Bezprozvanny et al., 1991). Hence, we derived
equations to describe the net calcium release from and uptake by internal stores
mediated by IP3;Rs and Smooth Endoplasmic Reticulum Calcium ATPases
(SERCAs), respectively. As in the case of the voltage module, we made initial use
of the models by Gorbunova and Spitzer (Gorbunova and Spitzer, 2002) and Tang
and Othmer (Tang and Othmer, 1995) as templates for modeling calcium release
from internal stores. Although the equations of the voltage module employ para-
meters that are specifically suited for the pancreatic 3-cell system, the equations for
flux across the internal stores employed by Gorbunova and Spitzer and by Tang and
Othmer were developed in the context of aplysia neurons and cardiac myocytes,
respectively. Hence, using the equations with the values derived from these models
could lead to oscillations with frequencies different from that observed in our experi-
ments. The parameters defining IP;R density, for instance, or others governing the
flux through internal stores would be expected to differ when used in the pancreatic
B-cell system. In the absence of any published values for the number or density of
IP5Rs in these or other cell types, we again resorted to matching of experimental
results and model simulations. Similarly, the parameters pertaining to SERCA activity
were also refined so as to ensure robust oscillations of frequencies matching those in
the initial experimental results shown in Fig. 1. This process is an integral part of
model “training.” The trained model was then used to make further predictions.

2. cAMP and PKA Modules

We used kinetic parameters published earlier (see Supplementary material of the
study by Bhalla and Iyengar (Bhalla and Iyengar, 1999) to develop the cAMP and
PKA modules. Certain parameters pertaining to kinetics of adenylyl cyclases (ACs,
enzymes that synthesize cAMP) were also derived from other studies with appro-
priate assumptions (see Supplementary methods of (Ni ez al., 2011) for complete
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Fig. 2 Simulation of PKA activity (PKA*) in the presence of oscillatory cAMP, showing different
activity patterns depending on the characteristics of the oscillations and parameters of PKA activation and
deactivation. The parameter, k1, reflecting the binding of cAMP to PKA homodimer was varied in this
simulation. The parameter «; is the ratio of the new value to the nominal value of ;. cAMP, cyclic
adenosine monophosphate; PKA, protein kinase A. (For color version of this figure, the reader is referred
to the web version of this book.)

derivation of the equations). The advantage of developing such semi-independent
modules is that they could be used to test certain hypotheses even at the early
stages of model development. These results may further guide the development of
appropriate experiments and in refining of the model itself. For instance, in the
calcium—cAMP-PKA system that we were investigating, we had experimentally
observed that cAMP could oscillate in tandem with calcium oscillations. Given
that cAMP oscillates, we wondered if it automatically translates into PKA oscilla-
tions. In order to test this hypothesis, we used the PKA module independently and
simulated PKA dynamics in response to a sinusoidal cAMP input signal. In theory,
as the model results suggested, cAMP input can lead to diverse PKA dynamics
(Fig. 2) depending on the value of a parameter that reflects the binding constant of
cAMP to the PKA homodimer. Based on these modeling results, we were able to
conclude that cAMP oscillations do not always necessarily translate into PKA
oscillations. Based on these modeling results, we decided to monitor PKA activity
dynamics concurrently with calcium dynamics. Using a FRET-based biosensor,
the A Kinase Activity Reporter (AKAR), to monitor changes in PKA activity in live
cells, we observed that PKA activity does in fact oscillate in tandem with calcium
oscillations — an observation that formed the central basis of our whole study.

C. Architectural Revision

Modules constituting complex regulatory systems may be linked in a variety of
ways, displaying cell, tissue, and condition specificity. The number of such linkages
in fact can be combinatorially large for an increasing number of modules. Thus, if



1. Principles of Model Building 9

one was to include all possible regulatory interactions and feedbacks regulating
individual modules, the resulting model can be too complex to be of predictive
value, and more importantly, potentially irrelevant to the particular cell type and
regulatory situation considered in the model. If, therefore, there is a way to restrict
the type and number of putative regulatory links in the modeled system, the resulting
model can be more powerful, relevant, and predictive. Again, contrasting model
predictions with experimental observations can be of considerable help. An example
of such a process is described below.

Several possible simplified versions of how the calcium and cAMP modules in
the signaling network of pancreatic 3-cells might interlink were initially consid-
ered for consistency with the experimental data (Fig. 3). In particular, we focused
on the need by the model to account for the experimental observation that
calcium and cAMP oscillations are out of phase. This could be explained by
the activation of calcium-inhibited ACs (enzymes that synthesize cAMP) and/or
calcium-activated phosphodiesterases (PDEs, enzymes that degrade cAMP). We
therefore explored different possible combinations in which the components of
the signaling circuit could be connected as shown in Fig. 3. Furthermore, the
experiments suggested that calcium rise phase and cAMP decay phase in each
peak are coincident and very sharp, suggesting another criterion for the model
“pruning.”

ACs can be activated by calcium-calmodulin (CaM.Cay) or inhibited by calcium.
There are therefore two ways to represent the calcium-AC link in the model in terms
of kinetic parameters (which are equivalent to exponents in S-system models (Voit,
2000): inactivation by calcium is denoted by — 1, whereas no dependence on calcium

RPN o L D a—
CaM/Ca
P4 i i 101 PKA

.
" Naag
wsel %

[-1,0]

: v R
tweeAC  PDE

"

cAMP

Fig. 3 Possible topologies for the circuit with the components shown. Solid lines indicate fixed
connections. Dotted lines indicate variable connections. The numbers —1, 0, and 1 indicate if the link
is inhibitory, absent, or activating, respectively. AC, adenylyl cyclase; cAMP, cyclic adenosine monopho-
sphate; CaM, calmodulin; PDE, phosphodiesterases; PKA, protein kinase A. (For color version of this
figure, the reader is referred to the web version of this book.)
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is denoted by 0. Similarly, the effect of CaM.Ca, on AC can be represented in two
ways: activation by CaM.Ca, is denoted by 1, whereas no dependence on CaM.Cay is
denoted by 0. PDEs likewise can be activated or inactivated by CaM.Ca4 or can be
independent of CaM.Ca, activity. Following the same logic, the parameter for this
link can be represented as 1, 1, or 0, respectively. Accordingly, we have
2 x 2 x 3 =12 possible circuits.

As the experimental criteria used in the analysis are essentially dynamic, we
developed a “Time Delay Metric,” whose value quantifies the phase delay between
the calcium and cAMP oscillations, using a circular cross-correlation function as a
function of time of oscillations. To quantify the “sharpness” of the calcium rise and
cAMP decay phases, we determined the time taken to reach half maximum or
minimum (t;,,) by these species. Finally, a metric to quantify the coincidence of
sharp rises in calcium and decays in cAMP was also evaluated. The model was a
simplified version of the full ODE model, primarily designed to capture the overall
positive or negative effect of one variable on another, without accounting for precise
temporal kinetics.

We also defined four sensitivity parameters, which were varied one-by-one to
describe different possible circuits. In particular, three different values for the
parameter under investigation were chosen: “—1,” to represent a “low” value;
“0,” to represent a nominal value; or “1,” to represent a “high” value, respec-
tively. An instance of one such simulation is presented in Fig. 4. The ordered set
of numbers in the plots should be read as: [sensitivity parameter value, Calcium-
AC link, calmodulin (CaM)-AC link, CaM-PDE link]. The sensitivity parameter
value changes across the rows. Therefore, each row corresponds to the full set of
12 circuits at a fixed sensitivity parameter value. Conversely, each column
corresponds to a particular circuit with the sensitivity parameter value spanning
the complete range. In the plots, the “warmer” (red being the warmest) colors
indicate a higher value for the corresponding metric and “cooler” (blue being the
coolest) colors correspond to lower values. White patches indicate that the
corresponding circuits did not produce oscillations or produced complex oscilla-
tions with varying amplitude, a feature that we do not observe in our experimen-
tal results. As mentioned above, we looked for circuits that satisfied certain key
criteria in accordance with our experimental results. So, we identified circuits
that could produce antiphasic oscillations (which correspond to warmer patches
in the Time Delay Metric plots) and had a simultaneously fast calcium rise phase
and cAMP decay phase (which correspond to cooler patches in the Rise—Decay
Metric plots).

The results in Fig. 4 correspond to variation in the parameter that relates to the
PKA feedback to calcium. Analyzing all such plots, we identified the five following
circuits that repeatedly satisfied the required criteria:

(-1, 1,1),(-1,0,0), (1,0, 1), (0, 1, 1), and (0, 0, 1).

Of these, the three following circuits appeared to be relatively robust to parameter
variation in each case:

(-1,1,1),(—1,0, 1), and (0, O, 1).
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Fig. 4 Changes in (A) the time delay between Ca”" and cAMP oscillations and (B) the coincidence of
rapid Ca®" rise phase and a rapid cAMP decay phase due to change in one of the sensitivity parameters,
KPKAvar. KPK Avar takes one of the values (—1, 0, 1) to represent a “low,” “nominal,” or “high” value,
respectively. cAMP, cyclic adenosine monophosphate. (See color plate)

In all of the three circuits above, we found a common feature, namely that the third
number in the set was always 1. In other words, PDE activation by CaM is sufficient to
produce calcium and cAMP oscillations out of phase with each other, with calcium
having a sharp rise and cAMP having a sharp decay phase. We used this result in
formulating our model for the calcium—cAMP—PKA circuit as detailed below.
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D. Model Simulations

The results obtained during the architectural revision process can be used to
guide the model development in finalizing the signaling network architecture. At
this juncture, a few simple equations or additional parameters may need to be
incorporated to describe the actual links between the different modules. This
complete model may still need to have a few parameter revisions so as to match
the experimental results. In our study of the signaling network in pancreatic
B-cells, we were led to assume that cAMP dynamics in the final model is regulated
by CaM.Cay-dependent PDE and PKA feeds back to calcium. The model simula-
tions were able to capture most of the salient features in the experimental results
(Figs. 5 and 6). This complete model was then used to generate hypotheses and test
them experimentally. This process has led to a variety of interesting predictions
confirmed experimentally, increasing the level of confidence in the model

precision.
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Fig.5 Coordinated oscillatory changes, observed upon membrane depolarization, in (A) [Ca®']; (Fura-
2 traces, in black) and PKA (monitored by PKA-specific biosensor, AKAR-GR, in red). (B) [Ca®'];
(monitored by Fura-2, in black) and cAMP (monitored by cAMP biosensor, ICUE, in red). (C) cAMP
(black) and PKA (red), monitored simultaneously using the dual-specificity FRET-based biosensor
ICUEPID. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this book.)

g —Ca?* —PKA 1 —Ca=—cAMP 1 — cAMP — PKA
2 los 0.8 0.8
3 los 06 0.6
: 0.4 0.4
E [55 02 02
2| 0 L
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Time (sec)

Fig. 6 Simulations of mathematical model showing oscillatory changes in (A) Ca®" and PKA, (B) Ca*"
and cAMP, and (C) cAMP and PKA. cAMP, cyclic adenosine monophosphate; PKA, protein kinase A. (For
color version of this figure, the reader is referred to the web version of this book.)
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One important aspect of having a working model is that it can be used to address
certain questions that would require infeasible experiments. Thus, in addition to
generation of experimentally testable hypotheses, a model can be used to theoreti-
cally test the importance of certain responses. For instance, although the experimen-
tal results showed that PKA oscillated in tandem with calcium and that PKA
feedback is necessary for the calcium oscillations, it was not clear if oscillations
of elevated PKA were essential for oscillations of calcium and cAMP. In other words,
it was of interest to examine whether a constant elevated level of PKA activity would
be sufficient to trigger and sustain calcium oscillations. As experimental “pegging”
of the PKA activity to a constant level is not easily achievable, we explored this
question by model simulation. The results (Fig. 7) revealed that calcium and cAMP
entered into an oscillatory regime even when a constant level of PKA activity was
maintained. We modeled this by eliminating the ODEs in the PKA module and
fixing the concentration of active PKA as a parameter in the model. This modeling
result indicated that PKA activity oscillations might not be required for Ca®" oscil-
lation per se, but rather have other regulatory roles. Indeed, based on other results,
we noted that PKA activity oscillations can help make this molecule a frequency
modulator, and that this frequency modulation can enable PKA to switch from acting
locally (restricted to a certain intracellular domain) to acting globally (controlling
gene expression).

Among particularly useful model analyses that can lead to experimental validation
are the tests of perturbation of signaling and other networks through the use of
genetic and pharmacological inhibitors of molecular function. One can investigate
whether such perturbations can lead to considerable disruption of particular signal-
ing functions or specific other network components. In the calcium oscillatory
circuit, one can explore, for instance, the role of PKA feedback to calcium. If the
feedback is “abolished” computationally by setting the concentration of active PKA
to 0 in simulations, one observes complete termination of the calcium oscillations

—Ca2+ — cAMP

Norm. conc.

0 200 400 600 800 1000

Time (s)

Fig. 7 A hypothetical circuit with a constant normalized PKA activity of 0.4 produces oscilla-
tions at a much higher frequency than when PKA is in feedback. The concentration of each species
was normalized with respect to its maximal level during the course of the oscillations. The
concentration of active PKA was normalized with respect to the maximal level of [PKA*] achieved
when the PKA is in feedback in the nominal system. cAMP, cyclic adenosine monophosphate; PKA,
protein kinase A. (For color version of this figure, the reader is referred to the web version of this book.)
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Fig. 8 (A) Simulation of the model in the presence or absence of PKA (shaded region). (B) The effect
of inhibiting PKA by H89 (10 wM) on calcium oscillations. PKA, protein kinase A. (For color version of
this figure, the reader is referred to the web version of this book.)

(Fig. 8). This computationally generated hypothesis was then validated using the
PKA inhibitor H89, which indeed completely abolished calcium oscillations.

The ultimate test and benefit of a model lies not just in testing interactions but in
providing novel insights into the workings of the system — explaining why a system
behaves the way it does. Again, taking the example of the calcium-PKA cross-talk,
the model helped us address a long-standing paradox of localization and control of
PKA activation. The molecular mechanisms of PKA activation indicate that increas-
ing input signal to PKA would result in continued diffusion of its catalytic subunits
away from the regulatory subunits, ultimately losing its ability to reset itself and
allowing all the catalytic subunits to translocate to the nucleus, in response to the
naturally present nuclear localization signal. Oscillatory PKA activity might help
address this potential problem. At low frequency of oscillations, the number of the
catalytic subunits escaping a local signaling domain (proportional to the time-
average of the PKA activity) would be relatively low, allowing the local PKA
activation to transiently exceed a threshold needed for spatially localized substrate
activation, while avoiding escape into the cytosol and the nucleus. An increase in
PKA activation can, however, change the oscillation frequency, increasing the aver-
age PKA activity and thus the escape of the catalytic subunits from the local
signaling domain, allowing them to have global cellular activity, including activation
of nuclear targets and regulation of gene expression (Fig. 9).
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Fig. 9 Simulations of the model indicate that at low-frequency conditions (left panel), catalytic
subunits of PKA would be periodically released and captured for “local” target phosphorylation.
However, at high-frequency conditions (right panel), the mean PKA activity (red line) may cross a
threshold (black dotted line) leading to continued release of catalytic subunits resulting in phosphoryla-
tion of “global” targets. PKA, protein kinase A. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this book.)

The oscillation frequency can, therefore, control the switch between the local PKA
activity controlled by anchor proteins and global PKA activity in pancreatic 3-cells
and, potentially, many other cell types. We tested this hypothesis by monitoring the
nuclear activity of PKA using AKAR-NLS (a nucleus-targeted version of the PKA
activity biosensor). At a “low dose” of cAMP input, which was expected to corre-
spond to low-frequency oscillations, we noticed that the nuclear activity was low.
However, a “high dose” of cAMP input, expected to correspond to high-frequency
oscillations, resulted in a dramatic increase in nuclear PKA activity (Fig. 10).

—
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Fig. 10 Representative time courses of nuclear localized AKAR (NLS-AKAR) showing the absence
and presence of nuclear PKA activity upon stimulation with low (1-3 wM) and high (10-20 wM) doses of
a PKA-specific cAMP analogue, respectively (n = 7 and 4, respectively). cAMP, cyclic adenosine mono-
phosphate; PKA, protein kinase A. (For color version of this figure, the reader is referred to the web
version of this book.)
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IV. Conclusion

Modeling can be a very powerful tool in defining the framework for the analysis
and understanding of a variety of biological systems, including the biomolecular
systems responsible for signal transduction. Modeling can be used both to generate
progressively sophisticated testable hypotheses about the workings of the systems
under investigation and to gain a better understanding of the systems’ design and
properties. Whatever its use, modeling analysis can be at its most effective if tightly
coupled to experimental validation. Only through this coupling, it can be more
evident whether model assumptions are fit for a specific system, from the standpoint
of both specific molecular interactions and the parameter values defining them.
Only through a very tight coupling between model and experiment can one hope to
see instances of model invalidations, usually reflective of unanticipated, novel con-
nections between the constituent components or suggestive of the presence of novel
mechanistic details. These are the most exciting points of scientific discovery, which
will depend more and more on our ability to recognize the necessity for making a
breakthrough due to an essential conceptual missing link, as expressed in a model.
As systems biology is providing a rapidly increasing and detailed information about
the complexity of a variety of regulatory processes, experimental and computational
biology will have to be intimately interlinked, as it has happened in many other areas
of human knowledge and endeavor. Some lessons discussed here will be hopefully
useful in guiding this process and making it more effective and enjoyable.
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Abstract

Regulatory and signaling networks coordinate the enormously complex interac-
tions and processes that control cellular processes (such as metabolism and cell
division), coordinate response to the environment, and carry out multiple cell deci-
sions (such as development and quorum sensing). Regulatory network inference is the
process of inferring these networks, traditionally from microarray data but increas-
ingly incorporating other measurement types such as proteomics, ChIP-seq, metabo-
lomics, and mass cytometry. We discuss existing techniques for network inference.
We review in detail our pipeline, which consists of an initial biclustering step,
designed to estimate co-regulated groups; a network inference step, designed to select
and parameterize likely regulatory models for the control of the co-regulated groups
from the biclustering step; and a visualization and analysis step, designed to find and
communicate key features of the network. Learning biological networks from even
the most complete data sets is challenging; we argue that integrating new data types
into the inference pipeline produces networks of increased accuracy, validity, and
biological relevance.

I. Introduction

Regulatory networks (RNs) can provide global models of complex biological
phenomena, such as cell differentiation or disease progression. Knowledge of the
underlying RNs has been key to understanding the functioning of diseases such as
certain cancers (Carro ef al., 2010; Suzuki et al., 2009), the creation of biofuels, and
understanding the functioning of newly sequenced organisms (Bonneau et al., 2007).
Although some cancers can be traced to a single causative mutation, many cancers
are much more functionally complex, requiring simultaneous mutations in multiple
genes that result in aberrations in the functions of multiple signaling pathways.
Elucidation of the global RN allows for the study of disease-associated mutations
in their global context. Biological regulation is a process that inherently occurs on
multiple levels, such as transcription, translation, phosphorylation, and metabolism
that span varying temporal and physical scales. Effective methods for RN inference
must likewise integrate multiple types and scales of data — transcriptomic, proteo-
mic, metabolomic — in order to most accurately recapitulate the complex underlying
RNs. Our work, as described in this chapter, focuses on methods that can integrate
multi-level data to elucidate an RN-scale view of complex biological processes.

The current explosion in the quantity, quality, and availability of high-throughput,
genome-scale measurements provides powerful new tools to understand complex
processes. Such measurements are now becoming available at different biological
levels (e.g., transcriptomics and proteomics) for the same cell types or disease
processes. At present, the most readily available genome-wide data type is micro-
array data, capturing the “transcriptomic state” of the cell. We first discuss this data
type in the context on network inference, then discuss other equally relevant data
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types. Microarray data provide genome-wide measurements of the abundance of
mRNA for every transcript for which there is a probe on the microarray (typically
thousands). Online compendia such as the Gene Expression Omnibus (Edgar et al.,
2002) and Microbes online (http://www.microbesonline.org/) contain many thou-
sands of such microarrays spanning many species and diseases, making this the most
complete data available for the purpose of RN inference. Since these data are
collected on the transcript level, they allow for the interrogation of only transcrip-
tional effects. The mediators of these effects are transcription factors (TFs), which
are proteins that bind the DNA and modulate the transcript abundance of their
downstream targets, and environmental factors (EFs), which are environmental cues
that modify the transcriptional program.

Inferring accurate, global RNs from such data remains a challenge for a multitude
of reasons. The error (or variance in replicate measurements) in the measurement of
transcript abundance is proportional to the expression level that is being measured
(more expression means more error in the measurement) and many statistical meth-
ods do not properly account for this heteroskedasticity. Additionally, many of the
data compendia used contain experiments from different laboratories and can thus
contain batch effects (changes in expression that are mostly due to variations in
experimental procedure from different labs). Even if a data compendium were to be
normalized for batch effects and the other types of noise, the best data set would
contain many more variables (genes) than data points that can be used for inferring
regulatory interactions (conditions), leading to a computationally underdetermined
problem. Finally, as transcriptomics data only capture one level of regulatory inter-
actions, it provides an inherently biased and incomplete view of the underlying RN.
Despite these caveats, it has been shown by us and others that novel biological
interactions can be elucidated from these data.

A. Experimental Design

No technique or technology can provide a “one size fits all” solution to
network inference that is optimal with respect to the completeness or accuracy
of the learned network topology or the ability of the model to describe system
behavior. Further, careful experimental design is needed to balance the biological
goals of any given systems biology effort (what cell processes are of interest to
the effort as a whole, what biology is interesting to the graduate person doing the
work). In general, microarray experimental designs fall into two broad catego-
ries: (1) steady-state experiments, and (2) time-series experiments. Balancing
steady-state measurements following perturbations (both genetic and environ-
mental) with time-series experiments that provide measurements of the system in
action (capturing key changes post-perturbation and providing a means of char-
acterizing system dynamics) is key to the success of efforts to elucidate biolog-
ical networks. In steady-state experiments, a perturbation (i.e., drug or genetic
perturbation such as knock-down of a gene by RNAI) is introduced for a period of
time, presumably until the system has reached a steady state, at which point the
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state of the system is assayed via microarray. We refer to these experiments as
“steady state” even though the system may not have achieved a true steady state
when measured. In a time-series experiment, a perturbation is introduced, and the
response of the system is measured at multiple time points. Although these time-
series experiments are more costly, this type of information can aid in resolving
causality, and inferring not only topological structure but also the degree of
regulation (i.e., kinetic parameters).

However, these types of data cover only the transcriptional level of regulation,
and even state-of-the-art methods (Greenfield et al., 2010; Huynh-Thu et al.,
2010; Pinna et al., 2010; Prill et al., 2010) still make a significant number of false
predictions. The accuracy of these predictions can be improved with the addition
of other data types. Recently, chromatin immunoprecipitation followed by
sequencing (ChIP-seq) has become a widely used method for collecting direct
TF-DNA binding data. These data can be used to help infer direct binding events.
Note that these data typically contain many false positives as many binding
events are non-functional. Another approach involves using single nucleotide
polymorphism (SNP) data in conjunction with mRNA expression data to learn
the extent to which each mutation can have a functional effect (Lee et al., 2009).
Such an approach can be used to uncover the TFs that are more likely to have a
phenotypically important effect. Current approaches to learning RNs combine
(1) binding data (from ChIP-seq and scans using well-characterized binding
sites), (2) priors on network structure from known/validated regulatory interac-
tions, (3) perturbation/genetic data, and (4) expression/proteomics data to trian-
gulate regulatory interactions. We discuss our pipeline in the context of expres-
sion data (to describe our core model and prior work) and then develop a method
that can integrate these four sources of information (Chen et al., 2008; Christley
et al.,2009; De Smet and Marchal, 2010; Friedman and Nachman, 1999; Geier et al.,
2007; Gevaert et al., 2007; Husmeier and Werhli, 2007; Huynh-Thu et al., 2010;
Ideker et al., 2001; Lee et al., 2009).

B. Estimating Co-regulated Genes Prior to Network Inference

If only mRNA expression data are available, as is the case in many processes/
diseases of interest, other steps can be taken to improve the quality of the final output
network. One means of dealing with the ambiguities of direct inference from micro-
array data is to reduce the complexity of the problem by estimating co-regulated
groups via clustering or biclustering, which we discuss here specifically in the
context of RN inference. Automatic learning of genetic RNs from microarray data
presents a severely under-constrained problem: even in the most complete data set,
the number of genes is greater than the number of experimental conditions. This is
traditionally addressed by applying dimensionality reduction techniques to reduce
the number of genes, for example, eliminating genes based on signal-to-noise ratio,
or clustering genes based on similarity of expression.
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Clustering methods, when applied correctly, can reflect the known biological
property that many gene products work together in functional modules under iden-
tical regulatory control, forming components of tightly conserved pathways or
molecular machines. Thus, applying a clustering method prior to network inference
serves not only as a dimensionality reduction technique, but also as an additional
method to capture the relevant underlying biology. Standard clustering groups
together genes that show common expression across all experimental conditions
(referred to as co-expression). However, co-expression may not extend across all
conditions, particularly as the number of conditions in a data set increases. A subset
of genes may be co-expressed over only a subset of conditions; or a gene may
participate in multiple processes, and therefore be co-expressed with several differ-
ent subsets of genes across different subsets of conditions.

Biclustering (Cheng and Church, 2000) refers to simultaneous clustering of both
genes and conditions, and can account for these more complex patterns of co-
expression (Cheng and Church, 2000; Lazzeroni and Owen, 1999). Both genes and
conditions can belong to multiple biclusters, and each bicluster’s subset of genes and
conditions represents a putative functional module reflecting the organization of
known biological networks into modules (Singh et al., 2008). Early works (Morgan
and Sonquist, 1963) introduced the idea of biclustering as “direct clustering”
(Hartigan, 1972), node deletion problems on graphs (Yannakakis, 1981), and biclus-
tering (Mirkin, 1996). More recently, biclustering has been used in several studies to
address the biologically relevant condition dependence of co-expression patterns
(Ben-Dor et al., 2003; Bergmann et al., 2003; Cheng and Church, 2000; DiMaggio
et al.,2008; Gan et al., 2008; Kluger et al., 2003; Lu et al., 2009; Supper et al., 2007;
Tanay et al., 2004). Biclustering also provides another advantage relating to increasing
the signal (relative to the noise) of microarray data. These data are noisy due to both
random noise (e.g., fluctuations in the scanner’s laser) and systematic effects (e.g.,
sequence-specific differences in performance of probes or PCR amplification), as well
as inherent biological noise, all of which occur per-gene. When genes are combined
into modules, the average expression of the module is used, and thus the per-gene noise
is averaged out, and the expression of the signal (relative to the noise) is increased.

Traditional biclustering is based solely on microarray data. Additional genome-
wide data (such as association networks and TF binding sites) greatly improves the
performance of these approaches (Elemento and Tavazoie, 2005; Huttenhower ez al.,
2009; Reiss et al., 2006; Tanay et al., 2004). Examples include the most recent
version of SAMBA, which incorporates experimentally validated protein—protein
and protein—DNA associations into a Bayesian framework (Tanay et al., 2004), and
cMonkey (Reiss et al., 2006), an algorithm we recently introduced. Bicluster infer-
ence has also been extended to detect conservation of modules across multiple
species (Waltman et al., 2010). These integrative biclustering methods provide more
accurate and biologically relevant biclusters, and provide a template for the use of
integrative methods in network inference.

Biclusters are of particular interest for network inference: inference on these
putative functional modules is both more tractable and more easily interpreted than
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inference on individual genes. The regulation of biclusters (or individual genes) by
the relevant TFs and EFs in the system can be learned in a variety of ways. Common
difficulties for any network inference method include determining the direction of a
regulatory relationship (does gene a regulate gene b or does gene b regulate gene a),
and separating direct from indirect regulatory relationships (does gene a regulate
gene b directly, or does gene a regulate gene ¢ which then regulates gene b)
(Marbach et al., 2010). The ability to resolve the directionality of a regulatory
relationship can be improved by using microarray data collected from time-series
or genetic-knockout experiments, as such data allow for causal inferences to be made
(Chaitankar et al., 2010; Madar et al., 2010; Marbach et al., 2009b; Pinna et al.,
2010; Schmitt ef al., 2004; Yip et al., 2010). However, it is still difficult to distin-
guish direct interactions from indirect: again, data such as ChIP-seq and ChIP-chip
help resolve this ambiguity, and would ideally be available for the construction of an
accurate, global RN. Even in cases where multiple, putatively complementary data
types are available (i.e., microarray and ChIP-seq), validation of the output RN and
comparison of RNs generated by different methods is a challenging task. For exam-
ple, many top-performing methods are likely to involve data-integration methods
that may integrate data with complex relationships and co-dependencies. Also, as the
full integrated data set used for network inference becomes more complex, gener-
ating leave-out test sets that are completely separate from the integrated inference
data becomes a research problem of its own.

C. Validation of Network Inference Methods is Key to Progress

The plethora of different methodologies available for RN inference makes the
comparison of the RNs produced by different algorithms a challenging problem.
Until recently, a group developing an RN inference algorithm would generate a long
list of hypothesis, experimentally validate their first few predictions, and consider
their method successful. This tradition of validating top predictions makes good
sense when one considers that biologists may only have the capacity to follow up ona
limited number of top predictions. This focus on top predictions, however, is insuf-
ficient for comparing network inference methods and assessing their relative
strengths and weaknesses, as a typical RN inference method generates thousands
of predictions. For such comparisons, a gold-standard RN inference data set is
needed in which the topology of the underlying network is unambiguously
and completely determined (Marbach et al., 2009c, 2010; Prill et al., 2010;
Stolovitzky et al., 2007). Databases for model organisms that collate thousands of
validated regulatory interactions (such as Transfac, RedFly, and RegulonDB) are
also critical to developing and validating RNs. A fully complete RN gold standard,
however, cannot currently be obtained from real biological experiments, as known
biological networks, even in the simplest organisms, are both extremely complex and
considered to be incomplete.

In an effort to standardize the comparison and assessment of algorithms for RN
inference, the Dialogue in Reverse Engineering Assessments and Methods
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(DREAM) has posed a set of challenges to the network inference community in a
double-blind fashion (Marbach et al., 2009¢c, 2010; Prill et al., 2010; Stolovitzky
et al., 2007). Participating groups only see the microarray data (either synthetically
generated, or from real data compendia) and not the underlying topology. Likewise
the evaluators only see the predictions from each group (in the form of ranked lists of
regulatory interactions), and not the method that was used to generate them. When
such gold standards exist, metrics such as area under the precision recall curve
(AUPR) and area under the receiver operator curve (AUROC) (Davis and
Goadrich, 2006) can be used to assess an algorithm’s performance. However, when
applying RN inference techniques to mammalian data, relatively little of the true
underlying topology is known, and AUPR and AUROC are not nearly as informative
as for simpler systems.

D. Visualization

Analysis of inferred RNs for such systems presents a difficult set of problems.
RNs have an intuitive visual representation as graphs consisting of nodes connected
by directed or undirected edges, and programs such as Cytoscape (Shannon et al.,
2003) provide a straightforward means of rendering these graphs and annotating
them with manifold types of associated information. This visual representation can
be used by a researcher with domain knowledge of the underlying biological problem
to extract the most meaningful and interesting parts of the network. Unfortunately,
for networks larger than tens of nodes connected by at most hundreds of edges, this
straightforward visualization becomes too dense to comprehend as a whole, pre-
senting visually as the familiar network “hairball.” While this dense representation
contains much valuable information that can be interpreted by a researcher who has
spent days or weeks investigating it, to the uninitiated it is essentially meaningless.
Dimensionality reduction (e.g., via biclustering) can reduce visual complexity, but
imposes other issues: a gene name is unambiguous, but how best to label a collection
of genes and conditions? Whether inference is performed directly on all genes orona
reduced set of TFs and biclusters, the challenges are the same: to tease out the
meaningful information contained in the network, and to convey this information
effectively to other researchers not intimately familiar with the overall network.
Thus, a set of visualization and analysis tools is necessary to query the network in an
intuitive, meaningful, and easily accessible manner. Below, we describe one coor-
dinated visualization system that allows users to explore biclusters, networks, and
annotations.

II. Overview of Model/Algorithm

Our pipeline for network inference (Fig. 1) consists of three main steps: (1)
inference of co-regulated modules using cMonkey, (2) RN inference using the
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Fig. 1 Overall inference pipeline. Our inference pipeline is composed of three main steps: (1) inference
of biclusters, which are putative functionally related, co-regulated modules of genes, by Multi-species
cMonkey (MScM); (2) inference of the regulation of these biclusters by transcription factors (TFs)
via our Inferelator inference pipeline; and (3) analysis and visualization using a collection of Gaggle-
connected tools. The input to cMonkey consists of mRNA expression data, known as interactions
(some of which come from ChIP-seq), and upstream sequence information from two or more species.
The output of MScM is biclusters that are conserved between multiple species. These biclusters can
be used for hypothesis generation, and also serve as the input to the Inferelator network inference
pipeline. Along with biclusters, the Inferelator also uses mRNA expression data, known interactions
between relevant TFs and their targets, proteomics data, and ChIP-seq data. The output of the
Inferelator inference pipeline is a set of regulatory interactions between the biclusters and TFs.
This putative regulatory network can be visualized and analyzed by the Gaggle-connected set of
tools shown in Fig. 2. (For color version of this figure, the reader is referred to the web version of this
book.)

Inferelator (Inf) pipeline, and (3) network analysis and visualization using software
tools connected by the Gaggle (Fig. 2). Here, we present an overview of biclustering
methods, RN inference methods, and a detailed overview of each step of our
pipeline.
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A. Biclustering
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Fig. 2 Gaggle visualization and analysis framework. The Gaggle Boss, shown in the center, coordi-
nates communication among the various member tools (geese), removing the need for file import/export
and format translation. Also shown is a subset of geese, including two — Cytoscape and Sungear — that are
used as part of the analysis discussed in Biological Insights section and Methods section. Each of the geese
can both send to and receive from the Boss, which permits an iterative workflow: for example, a small set
of genes from Sungear can be sent to Cytoscape, analyzed to find its 1-hop network, then sent back to
Sungear for further analysis. In addition, several geese provide extensible means to connect to a larger set
of tools: Cytoscape and Sungear via plug-in frameworks, FireGoose via its connections to other websites,
and R via its downloadable packages. (For color version of this figure, the reader is referred to the web
version of this book.)

Biclustering methods can be broken into three categories, which we will refer to as
co-expression, co-regulation, and conserved co-regulation. Some methods, such
as that of Cheng and Church (2000), rely solely on gene expression data to find
groups of genes that are co-expressed. More recently, algorithms such as cMonkey
(Reiss et al., 2006; Waltman et al., 2010), COALESCE (Huttenhower et al., 2009),
and the most recent version of SAMBA (Tanay et al., 2004) consider additional types
of data such as common binding motifs, protein—-DNA binding, and protein—protein
interaction networks. These integrative techniques infer modules that are co-
regulated rather than simply co-expressed. This distinction is of particular impor-
tance for RN inference, as genes in co-regulated biclusters are more likely to exhibit
shared transcriptional control. Finally, several techniques (Bergmann et al., 2003;
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Waltman et al., 2010) extend the integrative approach by searching for conserved
biclusters across different species.

The biclustering method cMonkey was designed to produce putatively co-regulated
biclusters that are optimal for network inference. In addition to microarray expression
data, cMonkey also incorporates upstream sequences and interaction networks into
the biclustering process. Upstream sequences are used to find putative common
binding motifs among genes in a bicluster, providing additional evidence for possible
co-regulation. Co-regulated genes are also more likely to share other functional
couplings, which will be reflected as an above-average number of connections
between genes within a bicluster according to databases of known interactions such
as BIND (Bader ef al., 2003) and DIP (Salwinski ef al., 2004) — in other words, these
genes form small, highly connected sub-networks within these larger networks.
Compared to other methods, cMonkey generates biclusters that are “tighter” (have
lower variance across bicluster gene expression values) yet include more experimental
conditions.

Multi-species cMonkey (MScM) (Waltman et al., 2010) is an extension of the
cMonkey method to allow discovery of modules conserved across multi-species
datasets. Recent work (Ihmels et al., 2005; Tirosh and Barkai, 2007) shows signif-
icant conservation of co-regulated modules across species. Therefore, biclusters that
are highly conserved between organisms are most likely to be biologically relevant.
In addition, by pairing a well-studied model organism such as yeast or mouse with a
closely related but less well-studied organism, MScM is more likely to find mean-
ingful biclusters in the other organism. Even pairing well-studied organisms may be
beneficial as different processes may be better elaborated in each organism. The
regulation of these putative conserved functional modules of genes can be inferred
using the Inf-based inference pipeline.

B. Regulatory Network Inference

The key question that RN inference aims to answer is which EFs and TFs regulate
which genes? In other words, given a set of observations (e.g., expression data), what
is the underlying network responsible for observed data? Furthermore, can predic-
tions be made from the output network? In order for quantitative predictions to be
made about the response of the system to new perturbations, the dynamics of the
system must be learned from time-series data. A multitude of inference methods
exist, using varying underlying assumptions and modeling principles. We limit our-
selves to the discussion of the following broad groups of methods: (1) Bayesian
methods, (2) mutual information (MI)-based methods, and (3) ordinary differential-
equation (ODE)-based methods. We briefly describe each grouping, and then proceed
with a description of our network inference method. Here, we focus on methods that
scale to systems with thousands of interactions.

A Bayesian network is defined as a graphical model that represents a set of random
variables and their conditional dependencies. Such a framework naturally applies to
RN inference, as RNs can intuitively be though of as directed graphs. The observed
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data are used to compute the model whose probability of describing the data is the
highest, and such methods have resulted in several notable works (Friedman et al.,
2000; Friedman and Nachman, 1999; Husmeier and Werhli, 2007; Sachs et al., 2002;
Sachs et al., 2005; Segal et al., 2003). Bayesian methods also allow for the incor-
poration of priors such as sparsity constraints and structured priors (Geier et al.,
2007; Gevaert et al., 2007; Mukherjee and Speed, 2008). However, Bayesian
methods have difficulty in explicitly handling time-series data. Additionally,
many Bayesian methods suffer from the identifiability problem: multiple network
topologies produce equally high probabilities. In this situation, it is unclear which
topology is best.

Differential-equation-based methods for RN inference attempt to learn not only
the topology of the network but also the dynamical parameters of each regulatory
interaction. RN models resulting from these methods can be used to predict the
system-wide response to previously unseen conditions, future time points, and the
effects of removing system components. A drawback of these methods is that they
generally require time-series data and more complete datasets than many alternative
methods. Typically these methods are based on ordinary differential equations
(ODEs) due to several assumptions that improve the computational cost for param-
eterizing these models. ODE-based methods model the rate of change in the expres-
sion of a gene as a function of TFs (and other relevant effectors) in the system.
Differential-equation-based methods differ in their underlying functional forms,
how the system of equations is solved or parameterized (coupled or uncoupled
solution, optimization procedures, etc.), and how structured priors and sparsity
constraints are imposed on the overall inference procedure. For example, several
methods have been proposed that use complex functional forms (Mazur et al., 2009)
and solve a coupled system (Madar et al., 2009; Mazur et al., 2009), while other
methods solve a simplified linear system of ODEs (Bansal et al., 2006; Bonneau
et al.,2007; Bonneau et al., 2006; di Bernardo et al., 2006; di Bernardo et al., 2005).
Several methods have been developed that are able to incorporate structured priors
into network inference (Christley et al., 2009; Yong-a-poi ef al., 2008).

A number of methods for detecting significant regulatory associations are based
on similarity metrics derived from information theory, such as MI (Shannon, 1948).
The MI between two signals (in this case the expression of a TF and its target) is
calculated by subtracting the joint entropy of each signal from the sum of their
entropies. It is similar to correlation (higher values connote stronger relationships),
but is more generally applicable as it assumes neither a linear relationship between
two signals nor continuity of signal. At their core, methods that rely on MI generally
infer undirected interactions, as the MI between two variables is a symmetric
quantity (Butte and Kohane, 2000; Faith et al., 2007; Margolin et al., 2006); how-
ever, modifications can be made that allow for the inference of direction (Chaitankar
et al., 2010; Liang and Wang, 2008; Madar et al., 2010).

Each RN inference method has its own simplifying assumptions, biases, and data
requirements. Recently, there has been much interest and progress in combining
methods that use multiple different data types and modeling algorithms into RN
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inference pipelines. For example, it has been demonstrated by us and others
(Greenfield et al., 2010; Pinna et al., 2010; Prill ez al., 2010; Yip et al., 2010) that
the response of a system to a genetic knockout is a very powerful data type for
uncovering the topology of the underlying RN. Methods that take this into account
performed very well in the DREAM3 and DREAM4 network inference challenges
(Greenfield et al., 2010; Pinna et al., 2010; Yip et al., 2010).

It has also been shown that when multiple network inference methods, or ensem-
bles of networks generated by the same method, are combined, the overall perfor-
mance is better than that of any individual method (Greenfield et al., 2010; Marbach
et al., in press, 2009a; Prill ef al., 2010). This improvement in performance due to
combining multiple methods is an important technique that can be applied to
complex biological problems where complete knockout data are not available. In
such cases it is also important to supplement microarray data with other available
data types. The Encyclopedia of DNA Elements Consortium (ENCODE) has been
compiling a vast database of high-sequence data such RNA-seq, ChIP-seq, and
genome-wide distribution of histone modifications. These data can be used in many
ways to influence the confidence that a network inference algorithm assigns to a
regulatory interaction. We have incorporated these ideas into our network recon-
struction methods in two forms: (1) topology dominated, where evidence from
different data types is combined to rank interactions by converting all regulatory
hypothesis derived from each data type into p-values or ranks, then combining them
to form an overall p-value or rank for all regulatory interactions (Greenfield et al.,
2010; Marbach et al., in press), and (2) model dominated, where information from
different data types is used as structure priors during the network inference step
(described below).

Our inference pipeline is built on three core principles: (1) combining multiple
methods and data types in a mutually reinforcing manner, (2) using time-series
information to infer putative causal, directed relationships (as opposed to undirected
associations), and (3) inferring sparse models of regulation using model selection.
The input to our method is a microarray dataset consisting of multiple types of
experiments. All data sets include steady-state data (in response to perturbation),
time-series data is often available; and in the best-case scenario, genetic-knockout
steady-state data are available as well. The core of our inference pipeline comprises
two methods that work in tandem: time-lagged context likelihood of relatedness
(tICLR) and the Inferelator 1.0. tICLR computes a prediction of the RN that is further
refined and optimized by the Inferelator 1.0. The output of tICLR is the input to Inf,
and we refer to the combined method as tICLR-Inf. tICLR-Inf uses all available
microarray data and treats all steady-state data the same (making no distinction
between knockout perturbations and any other perturbations). tICLR-Inf takes
advantage of the time-series data to learn putatively causal, directed edges, and
assign dynamical parameters (see Methods).

tICLR (Greenfield et al., 2010; Madar ef al., 2010) is based on the well-known
RN inference algorithm context likelihood of relatedness (CLR) (Faith et al.,
2007). CLR uses MI followed by background correction to calculate the
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confidence in the existence of any regulatory interaction. tICLR uses the same
CLR strategy of MI followed by background correction, but takes advantage of the
time-series data to learn the direction of the regulatory interaction. This method is
described in detail in the Methods section. The output of this method is a set of
predicted regulators for each target, and is used by the Inf to remove the least
likely regulatory interactions and improve accuracy and computational efficiency.

The Inf models the network as a system of linear ODEs. The rate of change for
each gene is modeled as a function of the known regulators in the system. This
function can take many different functional forms, and can be easily modified to
capture biologically relevant behaviors. For example, it is common in biological
systems that two TFs must act in tandem in order to affect their target. The core Inf
model allows for these non-linear combinatorial interaction terms. Additionally, it is
known that the activation of a target by its regulator follows a hill-type curve
(multiple functions with a roughly sigmoidal shape can be used to model biologically
relevant activation thresholds, cooperation, and saturation of TF-target response).
This can be incorporated into the core Inf model by approximating this behavior via
sigmoidal functions compatible with efficient learning methods, such as constrained
logistic regression. Once a functional form is chosen, the parameters for each
regulatory interaction are calculated using least angle regression (LARS)
(Efron et al., 2004) which is a constrained linear-regression approach that imposes
an /; constraint on the model parameters. This constraint ensures that sparse models
are learned (in concordance with the known properties of TF RNs). Importantly, we
have modified this core model selection algorithm, LARS, such that we can influ-
ence the degree to which a predictor is incorporated into or removed from a model.
Using this modification, we can incorporate structured priors (derived from vali-
dated interactions, literature search algorithms, or alternate data types) into our
network inference approach. We have shown that using a simple linear model with
(and also without) interaction terms performs well in recovering the topology of the
network.

C. Network Visualization and Analysis

RN often consist of hundreds or thousands of nodes connected by thousands or
more of regulatory edges. Analysis methods for networks of this scale generally fall
into two categories that we will refer to as “network-centric” and “gene-centric,”
with some techniques bridging the two. Network-centric (or “holistic”) techniques
accumulate statistics about the network as a whole that can provide a sense of the
validity of the overall network (e.g., by comparing statistics with those of validated
biological networks) or guide further exploration (e.g., by pointing out the existence
of highly connected nodes or densely inter-connected sub-networks). The simplest
of these network-centric techniques is simply to count each node’s in- and out-
degrees, that is, its incoming and outgoing regulatory edges, respectively.
Analysis of node out-degree will highlight network “hubs”: those TFs that regulate
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many more genes than average. Examination of the distribution of node in- and out-
degree also provides valuable information. Biological networks, such as metabolic
networks (Jeong et al., 2000), as well as many other types of complex networks, tend
to be “scale free” networks: the probability of a node having & in or out edges is
described by P(k) =~ k7. This is considerably different from random networks
generated according to the classical Erdos-Rényi model, where any two nodes in a
graph have an equal probability of being connected: such graphs are characterized by
a Poisson distribution that peaks strongly at the average number of connections
(Jeong et al., 2000). Average shortest-path length (the “small world” property),
average clustering coefficient distribution (Ravasz et al., 2002), and many other have
metrics have been shown or theorized to have biological relevance. Zhou et al.
(2010) provide an example of using general network statistics to characterize and
differentiate between ecological networks under different conditions. Cytoscape
plug-ins such as NetworkAnalyzer (http://med.bioinf.mpi-inf.mpg.de/netanalyzer/
index.php), the R packages sna (Butts, 2008), and igraph (http://cneurocvs.rmki.
kfki.hu/igraph/) are designed to perform these and many other types of network
analysis.

In general, and particularly with inferred networks, these network-centric metrics
act as a guide to suggest areas of further exploration — such as network hubs — rather
than an explicit measure of network plausibility. Gene-centric (or “constructive”)
analysis techniques tend to follow a “find and connect” approach. They start with a
small set of nodes — such as a set of genes of interest, a small sub-network of
known function, a bicluster with significant functional annotations, or a set of
network hubs identified through network-centric analysis — then gradually add
connected nodes to grow the size of the network. The most basic approach is to
start with a single gene, then examine its “1-hop” sub-network within the full
network: the genes directly connected to it, that is, its direct targets and regula-
tors. One can also make a 1-hop network for multiple genes that is simply the
union of the 1-hop networks of the individual genes. These sub-networks can be
expanded to an arbitrary number of “hops,” with each additional step adding all
nodes directly connected to those already in the sub-network. Typically, the hope
is that the small 1- or 2-hop networks will include some known regulatory edges
(as a “sanity check” of the inference process) as well as some plausible novel
edges that bear further investigation.

Another gene-centric approach is to find, for some set of genes or biclusters, the
smallest sub-network that includes all these genes or biclusters of interest (the phrase
“gene-centric” is used generically to refer to network consisting of genes or biclus-
ters). This sub-network may resemble a known functional module (another “sanity
check™); it may connect known genes or biclusters in a novel way; and it may include
unknown or unexpected genes in an otherwise well-described functional module.
While no Cytoscape plug-in provides this functionality directly, the Subgraph
Creator (http://metnet.vrac.iastate.edu/MetNet fcmodeler.htm) plug-in can be used
to find the sub-network with a given number of directed hops for a set of starting
genes, and so iteratively find a sub-network containing all the desired genes.
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1. Gaggle Tools

We supplement the network viewer-based approaches above by providing a col-
lection of tools that provide analysis of different types of information at varying
scales. The Gaggle (Shannon et al., 2006) connects together many independent tools
into a cohesive framework where the component tools (geese) can exchange infor-
mation such as lists of genes directly without the need for intermediate files or
format conversion. A key aspect of this type of approach is that it enables iterative
exploration across multiple tools, where results are repeatedly sent from one tool to
the next and further refined with each step in this process. Gaggle-enabled tools
include

e Network viewers Cytoscape (Shannon et al., 2003) and nBrowse (http://www.
gnetbrowse.org)

» Firegoose (Bare ef al., 2007), a Firefox plug-in that provides data exchange with
external web resources such as STRING (Snel et al., 2000; Szklarczyk et al., 2011)

e The Comparative Microbial Module Resource (CMMR) (Kacmarczyk et al.,
2011), a comprehensive bicluster visualization and analysis tool

e The Data Matrix Viewer (DMV) (http://gaggle.systemsbiology.net/docs/geese/
dmv.php), a data matrix exploration tool

* MultiExperiment Viewer (MeV) (Saeed et al., 2003), a sophisticated analysis tool
for microarray data

e Sungear (Poultney et al., 2007), a set analysis and exploration tool

* The Integrative Genomics Viewer (IGV) (Robinson ef al., 2011), a browser for
associating annotations and other data with chromosomal locations

* The statistical programming language R (http://www.R-project.org).

III. Biological Insights

In this section, we will focus mainly on ways of extracting potential insights or
points for further investigation. The networks discussed here were chosen to show a
range of inference and analysis techniques across different network scales. For
details of the methods used to create these networks, see the Computational
Methods section.

Fig. 3 shows a subset of a larger network inferred on biclusters derived from the
Immunological Genome Project IMMGEN) (Painter ef al., 2011) mouse immune
cell data set and human immune cell experimental data from GEO (see Methods for
details). This sub-network has been chosen to show the subset of biclusters from the
full network that are most strongly linked to various hallmarks of cancer (Hanahan
and Weinberg, 2000, 2011). An immediately striking feature of this network is that
different hallmarks separate naturally into sub-regions of the network, joined by the
TF MTAZ2. This is not a deliberate design feature of this sub-network, but rather an
intriguing consequence of choosing the set of biclusters with high-confidence con-
nections (via significant GO terms) to hallmarks of cancer. The top region, whose
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Fig. 3 Hallmarks of cancer shown overlaid on a sub-network of biclusters and transcriptions factors
(TFs). Biclusters are shown as squares, with shading indicating the bicluster residual (variance in gene
expression values). Surrounding icons indicate the putative hallmarks of cancer. A small K or G to the
bicluster left indicates particularly significant enrichment for one or more KEGG or GO terms, respec-
tively. TFs are shown as triangles, with regulatory edges to biclusters and other TFs. Green edges indicate
upregulation, and red edges downregulation. Four of the six original hallmarks are represented in the
network: biclusters associated with self-sufficiency in growth signals and insensitivity to anti-growth
signals are clustered together, as are those associated with limitless replicative potential; biclusters
inferred to be involved in evading apoptosis are spread through the network. (See color plate)

regulators include FOXM1 and MYC, includes all biclusters annotated with the
hallmark “limitless replicative potential” (blue icon). The bottom region includes all
biclusters annotated with the hallmark “self-sufficiency in growth signals” and
all but one bicluster annotated with the hallmark “insensitivity to anti-growth signals.”
The few biclusters annotated with “evading apoptosis” are spread evenly between the
network clusters.
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Figs. 4-6 illustrate a comparative analysis of two different cell lines: normal
human breast epithelial tissue (MCF-10) and invasive, metastatic breast cancer
(MDA-MB-231) (see Methods for details). In all three figures, a blue-to-yellow
continuum is used to indicate relative specificity of a gene, gene product, or regu-
latory edge to MDA-MB-231 (blue) or MCF-10A (yellow), with the intermediate
gray denoting neutrality. Fig. 4 illustrates a typical network “hairball”: with 1866

Awanscript'm factor
() gene
© gene prasent in proteomics
© gene up-regulated in MDA-MEB-231
(D gene up-regulated in MCF-104

edge spacificity
rral

MCF-108

Fig. 4 Breast cancer network with the top 4822 edges ranked by combined confidence from the two cell
line inference runs. Edge color denotes differential inferred regulation on a yellow-to-blue gradient from
MCEF-10A (yellow) to MDA-MB-231 (blue). Nodes are rendered semi-transparent so that the distribution of
cell-line-specific regulatory edges can be clearly seen. Proteomics data from MCF-10A/MDA-MB-231
comparison are also shown using node colors: differential expression in MCF-10A is shown in yellow,
and MDA-MB-231 in blue. Genes present but not differentially expressed are shown in darker gray. (See
color plate)
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Fig. 5 Largest connected sub-network of transcription factors (TFs) from the overall cell line comparison network. A
“summary” of the entire network is provided by (a) hiding all targets of the shown TFs that are not themselves TFs, and
(b) setting the size and color of each remaining TF node to reflect its number and proportion of cell-line-specific edges. Node
size shows the number of edges in the master network that were above a cutoff for specificity to either cell line. Larger nodes
have more cell-line-specific edges; the largest, IKZF1, has 67 edges above the threshold. Node color is determined by the ratio
of above-cutoff edges specific to MCF-10A versus MDA-MB-231, with yellow denoting more MCF-10A edges and blue more
MDA-MB-231 edges. Nodes with many edges specific to one cell line or the other are therefore large and brightly colored, such
as IKZF1 or COPS2. Edges are colored on a yellow-to-blue gradient based on the inferred confidence of the edge in the
MCEF-10A cell line (yellow) or MDA-MB-231 cell line (blue). (See color plate)

nodes and 4822 regulatory edges, it is useful mostly for giving a general sense of the
proportion of edges more active in MDA-MB-231 (blue) and MCF-10 (yellow), as
well as the abundance of proteomics data (nodes colored yellow, blue, or dark gray).

Fig. 5 is designed to present a summary of Fig. 4 that allows much more intuitive
identification of features of interest. It represents the largest connected sub-network
of TFs (142 of 220 total TFs in the original network). The number of regulatory
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targets of each TF is represented by the size of the node, while the node color denotes the
ratio of regulatory edges strongly active in one cell type or another on a gradient from
blue (MDA-MB-231) to yellow (MCF-10A). This “summary” representation of targets
and regulatory edges allows the removal of all non-TF targets and their corresponding
regulatory edges so that hubs such as CSDA, COPS2, IKZF1, and FBNI1 are easily
spotted: they are large and brightly colored. This constitutes a powerful use of simple
network-centric techniques to simplify network visualization and analysis.

Fig. 6 shows a putative sub-network involved in cell motility. Our data set includes
differential proteomics data for two conditions, shown in this network using node
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Fig. 6 A sub-network extracted from the cell line comparison network illustrating all interactions with
ITGB4 along with overlays of experimental proteomics (SILAC) data. Shown is the 1-hop network from
gene ITGB4 along with differential expression in two experimental conditions, referred to as treatment A
and treatment B. ITGB4 was identified a priori as a gene of interest, and is inferred to regulate gene of
interest EGFR and several Laminins. Differential expression in treatment A is shown using node center,
and in treatment B using node border, as follows: bright yellow denotes upregulation in MCF-10A, bronze
denotes downregulation in MCF-10A, and blue denotes downregulation in MDA-MB-231. Gray denotes
proteins that were present in either cell line but that did not meet the differential expression cutoff.
Therefore, KRT17 (bottom right) is downregulated in MCF-10A with treatment A but upregulated in
MCF-10A with treatment B, while EGFR is downregulated in MDA-MB-231 with treatment B. Edge
colors are as in Fig. 5. (See color plate)
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center and border colors. An analysis of sub-networks containing all differen-
tially expressed proteins in both conditions found a sub-network centered on
ITGB4 — identified a priori as a protein of interest involved in cell matrix,
cell—cell adhesion, and motility — that contained an unusual number of differen-
tially expressed proteins given the relatively small number of differentially
expressed proteins in the network (o =5 x 10~ via hypergeometric distribution).
Among the genes inferred to be regulated by ITGB4 are two members of the
laminin family also thought to be involved in motility, providing a degree of
“sanity check” as mentioned earlier. The presence of JUP in this sub-network is
particularly interesting because of (a) its differential expression in one of the
proteomics conditions, and (b) its known participation in ¢-MET and EGFR
signaling cascades (Guo et al., 2008).

IV. Open Challenges

Combining multiple data types in the inference of RNs is still in its beginning
stages, and many questions remain to be answered. Among these are the integration
of additional data types into both the biclustering and inference processes, integrat-
ing across multiple temporal and physical scales, validation of inferred networks,
using multiple-species datasets, and visualization of networks that are multi-scale
and change across time and conditions.

A. Integrating New Data Types

New types of experimental data are becoming available that will be informative to
the network inference process. Metabolomic data can provide detailed measurements
of changes in hundreds of metabolite levels in response to changing cell state or
environment. Techniques such as surface plasmon resonance imaging (SPRi) (Smith
and Corn, 2003) can provide additional high-throughput data on protein-binding
constants via measurements of association and dissociation rates, potentially provid-
ing small but high-accuracy interaction networks. Mass cytometry can provide single-
cell measurements of phosphorylation on a very fine time scale (Bendall ef al., 2011).
New data types can be added to cMonkey fairly easily since its basic model is already
integrative (see Methods). The network inference pipeline can accommodate some of
these data, such as SPRi-derived interaction networks, by using them to influence the
likelihood that a regulatory interaction is incorporated into the model. However, other
data types — particularly those that are on different time scales, like mass cytometry —
pose a more difficult challenge for network inference. Even integrating proteomics
data — which may superficially resemble microarray data — into the inference pipeline,
rather than simply overlaying it on inferred microarray-derived networks, poses new
challenges. Proteomics measurements still produce sparser data sets than microarrays,
and techniques such as SILAC (Ong et al., 2002) will be systematically biased against
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B. Validation

certain proteins. A more serious issue is that TFs tend to have low expression values,
and proteomics techniques do a poor job of capturing proteins expressed at low levels.

Validation of inferred networks of biclusters and genes is a key issue that we
address explicitly in Methods. It should be emphasized, however, that new data types
as discussed above will not only improve the quality of the inferred biclusters and
networks, but will aid validation as well. Bicluster enrichment analysis already
provides an example of using independent data types (KEGG and GO pathways)
for validation as the annotations used for enrichment analysis are independent from
those used in bicluster inference: because of this independence, significant enrich-
ment provides one indicator of bicluster quality. After such enrichment analysis, it is
crucial for experts with domain knowledge to highlight their most interesting genes
and pathways. With the thousands of predictions that are made in a single run of our
pipeline and the lack of a true gold-standard data set, such biological expertise is
crucial to fully realize the hypothesis-generating potential of our methods.

C. Visualization

One issue that needs to be addressed with current visualization tools concerns
displaying per-gene measurements, like the proteomics overlays in Fig. 6, in net-
works consisting mostly of biclusters like the hallmarks network in Fig. 3 — in other
words, what is the best way to indicate differential expression of a small subset of
genes contained in one or more biclusters? This may only be relevant until overlays
of data from other sources are replaced by integration of these data into the inference
pipeline, but for now the issue of overlaying single-gene data on biclustered net-
works remains open.

A larger issue is that network visualizations such as those produced by Cytoscape
show a single view of a network as it might exist at one point in time. This network
view may also represent a superset of the RNs that produced the data: any regulatory
interaction with enough support across the various conditions is reproduced in the
final network. But networks change over time, as is shown in many cancers; and
different parts of any network will be active under different conditions. In other
words, what is currently shown might be called a union or average of many poten-
tially valid inferred networks. As inference tools and data availability improve, what
is really desired is a tool (or set of tools) that can be used to explore this multiplicity
of possible networks. This will probably require tools that can display changes in
networks, in real time and in interpretable fashion, extending the “network-centric/
gene-centric” metaphor introduced earlier: network-centric techniques would sum-
marize the possible network changes over time and/or condition with the goal of
steering the user to interesting features of the data, gene-centric techniques would
create network sets from one or more networks of interest, and hybrid techniques
might answer questions posed by the user about specific alterations in the network.
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V. Computational Methods

A. cMonkey Integrative Biclustering

The steps below describe the cMonkey algorithm. Examples of data sources used
are those for Escherichia coli in a multi-species biclustering by Kacmarczyk et al.
(2011). For further details on cMonkey and MScM see Reiss ef al. (2006) and
Waltman et al. (2010).

1. Data Preparation

cMonkey uses three main data types: microarray expression, upstream sequences,
and networks of associations or interactions. Data preparation and translation into a
format that cMonkey can use is a key and non-trivial part of running cMonkey.
Specifics of this process will be addressed in the section for each data type. The
overall data preparation process involves (a) finding appropriate expression data,
(b) determining upstream sequence information for the relevant organism(s), (c) down-
loading the association and interaction network data to be used, and (d) processing
network data as necessary to reduce it to a list of interacting pairs of genes. A crucial
issue across all these steps is determining a single-gene naming convention across all
input data types and converting as necessary. cMonkey uses the Global Translator
goose for this (http://err.bio.nyu.edu/cytoscape/bionetbuilder/translator.php).

2. Expression Data

Expression data for cMonkey is given in matrix form, where rows represent genes
and columns represent experimental conditions. Expression data are row-normalized
to have mean =0, SD = 1. E. coli expression data for the multi-species biclustering by
Kacmarczyk et al. were comprised of 507 conditions covering 16 projects from the
Many Microbe Microarrays Database (M3D) (Faith et al., 2008).

We denote the expression levels of the genes by x = (xl, e ,xNg)T. We store the
C observations of these N, genes in an N, X C matrix, X, where the columns
correspond to the experimental observations. For a given bicluster £, if p(x;) is
defined as the normally distributed likelihood of the expression value x; within
bicluster £, then the co-expression p-value r;;, for gene i relative to bicluster kis ry =

Z}_GJ p(x,-,-) where J; indexes the conditions in bicluster k. The co-expression p-
g k )

value ry, for condition j is defined similarly.

3. Sequence Data

Methods for obtaining and processing upstream sequence data depend on the
organism. Generally the regulatory sequence analysis tools (RSAT) (van Helden,
2003) are used to extract upstream cis-regulatory sequences: sequence length
depends on whether the organisms are archaea, bacteria, or eukaryotes, and
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additional processing may be required to account for the presence of operons (see
Reiss et al., 2006, for details). E. coli data for the Kacmarczyk et al. biclustering
were obtained using RSAT as above and adding network edges between genes known
to share operons to the network data (see below).

For a given bicluster &, MEME (Bailey and Elkan, 1994) is used to determine a
set of motifs common to some or all of the upstream sequences of the genes in
that cluster. MAST (Bailey and Gribskov, 1998) is then used to calculate a motif
value s;; for each gene i relative to bicluster k£ (motif values for conditions are set
to zero).

4. Network Data

Network data are the most varied, generally comprising multiple network types for
a given biclustering analysis. These data break down into two types: association and
metabolic networks, such as Prolinks (Bowers et al., 2004) and Predictome
(Mellor et al., 2002); and interaction networks, such as DIP (Salwinski et al.,
2004) and BIND (Bader et al., 2003). While data sources such as DIP provide pairs
of interacting proteins directly, others must be processed to generate these lists of
interacting pairs. For example, KEGG (Kanehisa and Goto, 2000) metabolic path-
ways are examined for pairs of genes that participate in a reaction sharing one or
more ligands (excluding water and ATP). Network data are also the most species-
dependent as different network data types are available for different organisms. This
is reflected in the number and diversity of network data types in the Kacmarczyk
et al. E. coli biclustering: operon edges between genes known to lie on the same
operon; metabolic edges from KEGG as described above; gene neighbor, phyloge-
netic profile, and gene cluster edges from Prolinks; and COG-code edges from COG
(Tatusov et al., 2000).

For a given bicluster k, gene i, and network N, the network association p-value g’}
is computed using a hypergeometric distribution based on the number of connections
between gene i and bicluster &, connections between gene i and genes not in bicluster
k, and connections within and between genes in £ and not in k. This metric assigns
better p-values to densely connected sub-networks of genes that are likely to partic-
ipate in common functional modules.

5. cMonkey Bicluster Model

cMonkey determines biclusters by iteratively (a) updating the conditional proba-
bility of each bicluster based on its previous state, and (b) further optimizing the
bicluster by adding or dropping genes and/or conditions. This constitutes a Markov
chain process where the probabilities in the optimization step depend only on the
previous state of the bicluster. Additions and deletions are made by sampling from the
conditional probability distribution using a Monte Carlo procedure. The component
contributions to the conditional probability come from the expression, sequence, and
network p-values described above, which are combined into a regression model.
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Denoting an arbitrary gene or condition by 7, we define the vector g;; as the projection
into one dimension of the space defined by 7, s, and g, as follows:

gix = rolog(Fx) + solog(3a) + Y _ qp log(d)) (1)
N

The use of 7 instead of 7;; denotes that the log(#;,) values have been normalized, for
each bicluster, to have mean = 0, SD = 1; the same applies for 5;; and (}%, placing all
three on the same scale for each bicluster. The likelihood of any gene or condition i
belonging to bicluster k is then

i < exp(By + Bigux) (2)

The parameters S, B, determine the conditional probability of membership of gene
or condition i in bicluster k£. The importance of each evidence type can be adjusted
using the “mixing parameters™ ro, so, g5 -

A cMonkey run starts with “seeding” of initial biclusters, with each bicluster
randomly seeded according to one of several algorithms. After seeding, each itera-
tion (a) updates the bicluster motifs, (b) recalculates the probabilities 7;; described
above for each gene or condition #, and (c) preferentially adds or drops genes or
conditions according to their probability of membership using a simulated annealing
protocol. Unlikely moves (additions or deletions) are permitted according to an
annealing temperature 7 that is decreased over time. Mixing parameters r, so, g
are also varied according to a set schedule: sq starts small early in the process, when
biclusters are unlikely to have coherent motifs, and is gradually ramped up until its
influence is equivalent to that of 7. Values of ¢j follow a schedule that depends on
the networks involved.

6. Multi-Species cMonkey

MScM is similar to single-species cMonkey as described above, with a few addi-
tional steps. The overall MScM process, assuming a two-species run, is to (1) find
orthologous genes between the two species; (2) perform the cMonkey Markov Chain
Monte Carlo procedure, using orthologous gene pairs identified in step 1 instead of
individual genes, to produce biclusters of “orthologous core” genes; (3) for each
organism, elaborate these orthologous core biclusters by adding and dropping individ-
ual genes (instead of orthologous gene pairs) using the normal single-species cMonkey
process, with the restriction that no orthologous core genes are dropped; and optionally
(4) perform separate single-species cMonkey runs on the remaining genes for each
species. Orthologous genes are identified using existing tools, such as the Mouse
Genomics Informatics database (Bult et al., 2008) or the InParanoid algorithm
(Remm et al., 2001). Determination of biclusters in step 2 begins by calculating values
for each species U and ¥, g¥/ and g/, as in Eq. (1). These are combined to produce a
likelihood of an orthologous pair i belonging to cluster & similarly to Eq. (2)

i oc exp(B + By (g + &h)) (3)
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7. Enrichment Analysis

Analysis and validation of biclusters is a key component of the cMonkey design.
As a post-biclustering step, biclusters are analyzed for significant enrichment
according to standard annotations such as GO (Ashburner et al., 2000), KEGG,
and COG (Tatusov et al., 2000). These annotations provide a standard way to assign
putative functions to biclusters, somewhat resolving the issue of giving meaningful
names to biclusters in inferred networks. With the exception of the shared-ligand
network derived from KEGG, these annotations are separate from the data used to
infer the biclusters, so enrichment analysis also provides a means of assessing
bicluster quality (see the Validation section below).

8. Integrating New Data Types

Integration of new data types into cMonkey is relatively straightforward.
Additional network types are easily added as additional ¢/} terms. New data, such
as relative expression levels from proteomics experiments, could be incorporated as
a fourth major data type (in addition to microarray expression, sequence, and net-
works) and added to the calculation of g;. In both cases, an appropriate annealing
schedule for the weight given to the new network or data type would have to be
determined.

B. Inferelator Pipeline

We have applied our network inference pipeline to a variety of different data sets
(synthetic, prokaryotic, yeast, human white blood cells). We have developed several
closely related variants of the core pipeline, which is composed of two core methods:
(1) tICLR, and (2) the Inferelator 1.0. A coarse prediction of the topology is made
using tICLR, which is further refined by the Inf. This pipeline of tICLR followed by
Inf is repeated for multiple permutations of the data set (resampling), resulting in an
ensemble of predicted RNs, which is then combined into one final network. Here we
present a brief description of tICLR (for a more detailed description we refer to the
reader to Greenfield et al., 2010 and Madar et al., 2010). Additionally, we present a
modification to the core Inf method that allows for the incorporation of a priori
known regulatory edges.

1. Problem Setup

As in the description of cMonkey, we denote the expression levels of the genes by
x = (x1,...,xy,)T. We store the C observations of these N, genes in an N, x C
matrix, where the columns correspond to the experimental observations. These obser-
vations can be of two types: time-series data (X**), and steady-state data (X*%). Since we
make explicit use of the time-series data in the description of our inference procedure,
we denote time-series conditions by ¢y, &, . . ., &, (i.e., x(t1),x(t2), ..., x(t) are the k
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time-series observations that constitute the columns of X**). Our inference pro-
cedure produces a network in the form of a ranked list of regulatory interactions,
ranked according to confidence. We refer to the final list of confidences as an
Nfg X N, matrix Znal where N, denotes the possible predictors. Element i,/ of
7'l represents our confidence in the existence of a regulatory interaction
between x; and x;.

2. Core Method 1: Time-Lagged Context Likelithood of Relatedness

tICLR (Greenfield et al., 2010; Madar et al., 2010) is a MI-based method that
extends the original CLR algorithm (Faith et al., 2008) to take advantage of time-
series data. MI (Shannon, 1948) is an information theory metric of mutual depen-
dence between any two random variables. The original formulation of CLR was
unable to learn directionality of regulatory edges as MI is a symmetric measure. In
the tICLR algorithm, we make explicit use of the time-series data to learn directed
regulatory edges. We describe, in brief, three main steps: (1) model the temporal
changes in expression as an ODE, (2) calculate the MI between every pair of
genes, and (3) apply a background correction (filtering) step to remove least likely
interactions. We refer the reader to Greenfield et al. (2010) and Madar et al.
(2010) for a thorough description of this method.

We assume that the temporal changes in expression of each gene can be approx-
imated by the linear ODE:

dx,'(l‘)
dt

N
= —axi+ Y _Bm(t), i=1....N (4)
=1

where «; is the first-order degradation rate of x; and the B; s are a set of
dynamical parameters to be estimated. Note that the functional form presented
above treats the rate of change of the response (x;) as linear function of the
predictors (x;s). Here, we describe only this linear form for simplicity, but in
several applications we employ more complex functional forms. The value of 8,
describes the extent and sign of the regulation of target gene x; by regulator x;. We
store the dynamical parameters in a N X P matrix 8, where N is the number of
genes, and P is the number of possible regulators. Note that g is typically sparse,
that is, most entries are 0 (reflecting the sparsity of transcriptional RNs). Later,
we describe how to calculate the values f; by a constrained linear-regression
scheme. First, we briefly describe how to use the time-series data in the context
of improving the calculation of MI values between a gene x; and its potential
regulator x;.

We first apply a finite approximation to the left-hand side of Eq. (4), for each x;,
i=1, ..., N, and rewrite it as a response vector y;, which captures the rate of
change of expression in x;. We pair the response y; with a corresponding explan-
atory variable x;, j=1... N, Note each x; is time-lagged with respect to the
response y;, that is, x,(#;) is used to predict y;(#1). For more details of this
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transformation, we refer the reader to Greenfield ez al. (2010). As a measure of
confidence for a directed regulatory interaction between a pair of genes (x; — x;),
we use MI, I(x;, x;), where a pair that shows a high MI score (relative to other
pairs) is more likely to represent a true regulatory interaction. Note that
1(y;, x;) # 1(y;, x;), making one regulatory direction more likely than the other.
We refer to the MI calculated from I(y;, x;) as dynamic MI, as it takes advantage of
the temporal information available from time-series data (distinguishing time-
series data from steady-state data). As described above, we calculate /(x;, x;) and /
(vi» x;) for every pair of genes and store the values in the form of two Ny X N,
matrices M*® and M%", respectively. Note that M is symmetric, while M%" is
not. We now briefly describe how tICLR integrates both static and dynamic MI to
produce a final confidence score for each regulatory interaction. For a more
detailed explanation, we refer the reader to Greenfield et al. (2010) and
Madar et al. (2010).

For each regulatory interaction x; — x;, we compute two positive Z-scores (by setting
all negative Z-scores to zero): one for the regulation of x; by x; based on dynamic-MI

. Z/, wldm)
M = i

iy

i.e., based on M®), Z; (x;,x;) = max | 0,—2——— | where o is the stan-
s N )

O

dard deviation of the entries in row i of M®™; and one for the regulation of x; by X;

§ M{stm)
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{dyn} L
M _%
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based on both static and dynamic MI, Z; (x;,x;) = max | 0,—%——>—— | where

o, is the standard deviation of the entries in column j of M**. We combine the two

scores into a final tICLR score, Z{"™® = /(Z} 4 Z3). Note that some entries in

Z'IR are zero, that is, Z'“™® is somewhat sparse. The output of tICLR, Z'“™R s
used as the input to Inf, as only the highest ranked predictors from row i of Z'“'® are
considered as possible predictors for gene i

3. Core Method 2: Inferelator 1.0

We use Inf to learn a sparse dynamical model of regulation for each gene x;. As
potential regulators of x;, we consider only the P highest confidence (non-zero)
regulators (i.e., the P’ most-highly ranked regulators from row i of Z''F).
Accordingly, for each gene, x;, we denote this subset of potential regulators as x'.
We then learn a sparse dynamical model of regulation for each x; as a function of the
potential regulators x’ using Inf. We assume that the time evolution in the x;s is

governed by dﬁgt) = —ox; + Z;D: 1,3,» (1), i=1,...,N which is exactly Eq. (4)

with our constraint on the number of regulators. LARS (Efron ef al., 2004) is used to
efficiently implement /; constrained regression to determine a sparse set of the
parameters B. This is done by minimizing the following objective function,




46

Christopher S. Poultney et al.

amounting to a least-square estimate based on the ODE in Eq. (4) under an /;-norm
penalty on regression coefficients,

P P
Z |.31j| < Siz ‘,B?Jls (5)
J=1 J=1
where g° are the values of B determined by ordinary least squares regression (ols),
and s;, the shrinkage parameter. This parameter is in the range [0,1], and controls the
sparsity of the model, with s; = 0 amounting to a null model, and s; = 1 amounting the
full ols model. We select the optimal values of s; by 10-fold cross validation. After
applying this /, regression, we have B, an Ny X N, matrix of dynamic parameters 8;
for each regulatory interaction x; — x;. We use the percentage of explained variance
of each parameter B;; as confidences in these regulatory interactions, as described in
Greenfield et al. (2010). We store these confidences in Z™. We combine these
confidences in a rank-based way such that each method is weighted equally, as
described in Greenfield et al. (2010), to generate Z'““®~"7 \which represents our
confidence in each regulatory interaction after running our pipeline one time. We
now describe how we resample our network inference pipeline to generate an ensem-

ble of predicted networks (i.e., lists of confidences for each regulatory interaction).

4. Using Resampling to Improve Network Inference

To further improve the quality of our ranked list, we apply a resampling approach
to the pipeline described above to generate an ensemble of putative RNs. We denote
the matrix of response variablesy;, i =1, ..., Ny by Y. Similarly we denote the matrix
of predictor variables x;, j = 1, ..., N, by X. We sample with replacement from the
indices of the columns of Y, generating a permutation of the indices, c*. We use this
permutation ¢* to permute the columns of Yand X, generating Y* and X*, respec-
tively. Note that (1) c¢* is typically picked to be the number of conditions in the
dataset (i.c., we sample from all experimental conditions), and (2) the columns of ¥
match the columns of X in the sense that the time-lagged relationship between the
response and the predictors is preserved. We generated ZUCLR 70t and ZH1CTR-Inf 55
described before, with the only difference being that we use the response and
explanatory vectors from Y* and X* instead of Yand X. We repeat this procedure
B times. This generates an ensemble of B predicted RNs. The final weight we
assign to each regulatory interaction is the median weight assigned to that
interaction from each of the B networks. Thus, the final weight can be considered
an “ensemble vote” of the confidence the ensemble of networks has in that edge:
Ziml — median(Z{FHR(1), ZIFERI(2), L ZICERAIN (),

5. Incorporating Prior Information Directly into Network Inference

Our tICLR-Inf pipeline is capable of inferring not only topology but also dynam-
ical parameters, which can be used to predict the response of the system to new
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perturbations (Greenfield et al., 2010). Our predictions, like those of any network
inference method, contain false-positive interactions. One way to improve the per-
formance of network inference is to constrain the model selection procedure to
incorporate regulatory interactions that are known a priori, as many databases of
known regulatory interactions exist (Aranda et al., 2010; Bader et al., 2003; Ceol et
al., 2010; Chautard et al., 2011; Croft et al., 2011; Goll et al., 2008; Knox et al.,
2011; Lynn et al., 2008; Michaut et al., 2008; Prieto and Rivas, 2006; Razick et al.,
2008; Stark et al., 2011). However, if one is studying a particular process (e.g.,
lymphoma) not all of the known interactions will be relevant in lymphoma. Thus, a
method is needed that incorporates a known edge only if it is supported by the given
data. We do so by solving Eq. (4) subject to the following constraint:

pi pi
Z 9ij|131,/| < Z |,3?Js (6)
=1 =

which is exactly Eq. (5) with the parameter ;; (Yong-a-poi et al., 2008; Zou, 2006).
This parameter is referred to as the adaptive weight, and regulates the degree to
which g;; is shrunk out of the model. If it is known from an external data type (e.g.,
literature mining, ChIP-seq, etc.) that x; regulates x;, then this knowledge can be
incorporated by setting 6;; < 1, which will make it less likely that g;; will be shrunk
(removed from the model) by LARS. If there exists negative prior knowledge (i.e.,
knowledge that x; does not regulate x;), this can be incorporated by setting 6;; > 1.
The exact values of 6; that are needed to incorporate an a priori known interaction
vary from dataset to dataset and must be chosen heuristically. This behavior is
similar to that of many other methods for incorporating priors, including Bayesian
methods, which require a heuristically chosen hyper-parameter to determine the
shape of the prior (Mukherjee and Speed, 2008). In our method, once an informed
choice of 6;; is made, an edge is incorporated only if it is supported by the data. Even if
0;; is set to a very low value (approaching zero, reflecting strong belief in the existence
of this edge), the corresponding parameter, B;, will be non-zero only if there is
support from the data set. This is exactly the desired behavior when we are given a
priori knowledge that may or may not be completely relevant for our data sets.

C. Analysis and Visualization

Given the wide range of network properties, features of interest, and intended
audiences, there is no “silver bullet” approach to visualizing biological networks.
The most effective visualizations come from detailed analysis of the network,
followed by a careful linking of important network properties to visual features such
that interesting properties are immediately and intuitively obvious. The steps below
show how Figs. 3—6 were created, and are intended to provide an arsenal of examples
and tools to arrive at an effective combination of analysis and representation.

Fig. 3 uses publicly available mouse and human microarray data from GEO. The
mouse data consisted of 508 conditions from the IMMGEN (Painter et al.,2011) data
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set of experiments on characterized mouse immune cell lineages (GEO accession
number: GSE15907). Human microarray data were gathered from 23 different
experiment sets measuring the response of human immune cells to different stimuli.
In an attempt to mirror the conditions of the IMMGEN data set, only the control
conditions from the different experiment sets were used, yielding a total of 140 con-
ditions. The network was generated from a full run of the MScM and Inf pipelines on
the data described above as follows:

1. Run MScM to generate a collection of 176 mouse and human biclusters.

2. Perform enrichment analysis over all biclusters using generic GO slim, GO, and
KEGG.

3. Run the Inf pipeline using the mouse biclusters and known TFs for mouse alone
to produce a preliminary mouse-specific network. Although the human biclusters
are not used directly, their presence in the MScM run should improve the bio-
logical relevance of the mouse biclusters as discussed above.

4. Remove low-confidence edges (Inf z-score < 3.5, or || < 0.1) to produce a
refined preliminary network.

5. Find biclusters with significantly enriched GO slim terms and label them with
hallmarks of cancer associated with these terms. This results in 17 biclusters with
hallmark annotations.

6. Reduce the network to the smallest possible network containing all 17 biclusters
identified above along with their regulators, giving the final Fig. 3 network.

Further analysis of this network would begin with further investigation of the biclus-
ters to obtain a better sense of the function represented by each bicluster. The
Annotation Viewer (http://gaggle.systemsbiology.net/docs/geese/anno.php) is a
Gaggled tool that allows browsing of arbitrary gene or bicluster annotations — in
this case, bicluster GO and KEGG annotations. The CMMR provides more detailed
examination of all facets of the biclusters: genes, conditions, residuals, etc. When
bicluster functions are better understood, one can then ask whether the inferred
regulatory interactions make sense, and investigate the significance of the observed
separation of cancer hallmarks into two different clusters.

The next three examples (Figs. 4-6) use breast cell lines from normal breast
epithelial tissue (MCF-10A) (Soule et al., 1990) and invasive, metastatic breast
cancer tumor tissue (MDA-MB-231) (Cailleau et al., 1978). Data for each cell line
were gathered from a total of eight GEO data sets, giving a total of 103 MCF-10A
conditions and 121 MDA-MB-231 conditions covering roughly 12,000 genes.
Proteomics data consisting of genes up- and downregulated in each cell line under
two treatments were also provided. Here, we infer regulation of individual genes
directly, instead of regulation of biclusters, so that we can overlay the proteomics
data on the corresponding genes in the resulting network. As a result, we are unable
to take advantage of the dimensionality reduction and noise reduction provided by
cMonkey, and used the following heuristic approach instead. From the initial 12,000
genes, we selected those genes whose standard deviation across experiments was at
the 75th percentile or better, then added the 2000 genes with the most differential
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expression according to significance analysis of microarrays (SAM) (Tusher et al.,
2001). The final input set for inference on each cell line consisted of 4619 genes, 289
of which were TFs. Network inference proceeded as follows:

1. Perform separate Inf pipeline runs on each cell line to produce a ranked list of
putative regulatory edges for each cell line.

2. Combine separate network edges from the individual runs into a single “differ-
ential network” where edge color shows the likelihood of each regulatory edge
being active in one cell type or another. The rank of each edge in this differential
network is determined by using Stouffer’s method to combine the Inf scores from
the individual networks. Specificity to one cell line or the other is calculated as
the log ratio of individual edge ranks.

3. Retain the top-ranked 5000 edges of the differential network; remove those with
|B] < 0.05 for a final total of 4822 edges and 1866 nodes. Overlay proteomics
data from two experimental conditions to produce the network are shown in Fig. 4.

4. Starting with the network in Fig. 4, find the largest connected sub-network of TFs
using the Subgraph Creator Cytoscape plug-in. Map node out-degree to node
size. Map node color to fraction of edges specific to one cell line or the other,
counting only those edges with absolute value rank ratio above 4. This provides
the network “summary” shown in Fig. 5.

5. Given lists of genes up- and downregulated in each cell line in the two proteomics
experiments, load these lists into Sungear. Send each gene list to Cytoscape using
the Gaggle and annotate genes according to cell line, experimental condition, and
up- or downregulation.

6. Find the smallest sub-network for each condition that includes all differentially
expressed genes. This identifies ITGB4 as a likely key gene involved in motility
as discussed in Biological Insights.

7. Find the 1-hop network around ITGB4. Distinguish up- and downregulated genes
for each treatment using the annotations assigned earlier to the Sungear-derived
gene lists, producing Fig. 6.

Further analysis of the network in Fig. 6 might proceed as follows: send the set of
differentially regulated genes back to Sungear to look for interesting intersections,
such as over-representation within a particular intersection of conditions; or broad-
cast ITGB4 and some of its targets to the Firegoose, then from there to EMBL
STRING to look for additional evidence for the inferred edges or grow the network
further.

D. Validation

Validation of inferred networks of genes or biclusters (i.e., of predicted regulatory
topology and kinetic models) is a critical challenge that has not been well resolved.
In all cases, the best validation is of course follow-up experimentation to verify the
computational results, but this approach is inherently limited by available time and
resources.
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Bicluster validation is currently a more tractable problem than network validation.
Several metrics used to compare biclustering methods (Waltman et al., 2010) can
also be used to assess the quality of individual biclusters and biclustering runs. Each
bicluster has a residual score that shows the variance in expression data within the
bicluster; lower residuals mean higher coherence in expression values. Significant
bicluster enrichment implies that a cluster contains co-functional genes. High cov-
erage of the input expression matrix, in terms of fraction of overall genes and
conditions included in the overall set of biclusters, is favorable, as is a low degree
of overlap between biclusters. For multi-species biclustering, the degree of conser-
vation between species in a bicluster is also important.

Inferred networks present a more significant challenge, especially when no gold
standard is available. A simple approach is to calculate some of the network statistics
mentioned earlier: for example, compare the distribution of node in- and out-degrees
to the expected power-law curves. However, the inference technique itself, as well as
any means used to filter results or select sub-networks of interest, may skew these
distributions: for example, the Inf limits the in-degree of any gene to a user-defined
threshold. Another means of network validation is to determine the degree to which
the inferred network recapitulates known network edges. However, this can become
circular when known edges are used to provide priors for inference. Recent work by
the DREAM consortium incorporated the prediction of multiple methods by differ-
ent research groups into one “community” prediction, and experimentally validated
the top-ranked predictions. Ideally, such integrative methods will continue to be
developed and shed light on previously unknown biology. Although the notion of
“community predictions” is novel and exciting, such vast resources not always exist.
Even in such cases, methods that are integrative in terms both the algorithms and
data types used show great promise in building global, predictive RNs of complex
biological phenomena.
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Abstract

Signaling and transcription are tightly integrated processes that underlie many
cellular responses to the environment. A network of signaling events, often mediated
by post-translational modification on proteins, can lead to long-term changes in
cellular behavior by altering the activity of specific transcriptional regulators and
consequently the expression level of their downstream targets. As many high-
throughput, ‘“‘-omics”” methods are now available that can simultaneously measure
changes in hundreds of proteins and thousands of transcripts, it should be possible to
systematically reconstruct cellular responses to perturbations in order to discover
previously unrecognized signaling pathways.

This chapter describes a computational method for discovering such pathways that
aims to compensate for the varying levels of noise present in these diverse data
sources. Based on the concept of constraint optimization on networks, the method
seeks to achieve two conflicting aims: (1) to link together many of the signaling
proteins and differentially expressed transcripts identified in the experiments
“constraints’ using previously reported protein—protein and protein—-DNA interac-
tions, while (2) keeping the resulting network small and ensuring it is composed of
the highest confidence interactions “optimization’. A further distinctive feature of
this approach is the use of transcriptional data as evidence of upstream signaling
events that drive changes in gene expression, rather than as proxies for downstream
changes in the levels of the encoded proteins.

We recently demonstrated that by applying this method to phosphoproteomic and
transcriptional data from the pheromone response in yeast, we were able to recover
functionally coherent pathways and to reveal many components of the cellular
response that are not readily apparent in the original data. Here, we provide a more
detailed description of the method, explore the robustness of the solution to the noise
level of input data and discuss the effect of parameter values.

I. Introduction

One of the central challenges for systems biology is the reconstruction of cellular
processes from high-throughput experimental data. Much of the early work in this
area was driven by the development of microarray technologies that allowed rela-
tively comprehensive measurement of changes in mRNA expression. Using these
data as proxies for changes at the protein level has generated many insights into the
regulatory networks of the cell (Spellman e al., 1998; Segal et al., 2005; Ozsolak
and Milos, 2011). However, the actual correlation between the transcriptome and the
proteome is unclear (Schwanhausser et al., 2011; Maier et al., 2009; de Sousa Abreu
et al.,2009), and more direct proteomic data are likely to provide a more reliable and
thorough view of cellular processes.

Recently, technological advances have made it possible to directly measure prote-
omic changes at the global level. Mass spectrometry (MS) techniques can quantify
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the relative levels of hundreds of peptides across multiple biological conditions
(Choudhary and Mann, 2010; White, 2008) and focused data collection on phos-
phoproteins was able to reveal the regulatory dynamics of cellular signaling net-
works at the level of the proteome (Grimsrud et al., 2010; Macek et al., 2009; Yi
Zhang et al., 2007).

With new data come new challenges. Even in the best-characterized responses
there is poor overlap between hits identified by phosphoproteomics technologies and
known pathway components. For example, in a study of phosphorylation changes
that occur in response to mating pheromone in yeast (Gruhler et al., 2005), 112
proteins contain differentially phosphorylated sites; of these, only 11 are known
components of the expected mitogen-activated protein kinase (MAPK) cascade that
responds to pheromone, and 76 were not present in any of the yeast pathways
annotated in the KEGG PATHWAY database (Kanehisa et a/., 2010). Finding new
ways to interpret these data could reveal previously unrecognized cellular pathways.

A second important challenge is to integrate transcriptional and proteomic data in
order to observe the interplay between different layers of cellular signaling. For
example, it may be possible to detect proteomic changes in signal transduction
cascades that drive expression and also to reveal the resulting feedback of transcrip-
tion on the proteome. But integrating these data will require novel computational
approaches. Because regulation is mediated by diverse mechanisms, even the most
comprehensive proteomics technologies cannot capture all these events. For exam-
ple, MS-based methods focusing on protein phosphorylation will fail to detect
changes in other post-translational modifications such as acetylation, ubiquitination,
and sumoylation. Computational techniques are needed to discover proteins that
participate in the signaling networks but are undetected in the experiments and also
to provide insight into their functional roles. One successful approach has been to
map these proteins onto known metabolic and regulatory pathways such as those
curated in the KEGG PATHWAY (Kanehisa et al., 2010) and Reactome (Matthews
et al., 2009) databases. This approach can reveal functional coherence and relevant
biological processes from the data. However, as mentioned above, a large fraction of
the phosphoproteomic data does not map to known pathway models, so we must turn
to other approaches.

The interactome provides an alternative to using well-studied pathways. Advances
in high-throughput experimental mapping of protein—protein interactions as well as
efforts to extract known interactions from the literature have produced a number of
large databases of protein interactions (selected examples are listed in Table I).
Despite being incomplete, especially for higher organisms, the quantity of interac-
tion data in these databases is still very large. Thus, it may be possible to discover
unknown pathways among these interactions. While utilizing these large interac-
tome datasets improves our ability to find connections among a set of proteins of
interest, it also presents several challenges. First, the size of the potential network
explodes exponentially and quickly becomes non-interpretable, as pointed out by
previous data integration efforts (Hwang ef al., 2005). Second, interaction records in
databases come from hundreds of laboratories and many experimental techniques of



60

Table I

Shao-shan Carol Huang and Ernest Fraenkel

A selection of publicly available protein—protein interaction databases.

Type of interactions

Data sources Database and references

Direct/physical

Curation of primary literature Biological General Repository for Interaction Datasets

(BioGRID) (Stark ef al., 2011)

Human Protein Reference Database (HPRD)
(Keshava Prasad et al., 2009)

Molecular Interaction database (MINT)
(Chatr-aryamontri et al., 2007)

IntAct molecular interaction database
(Kerrien et al., 2007)

Mammalian Protein-Protein Interaction Database
(MIPS) (Pagel et al., 2005)

Database of Interacting Proteins (DIP) (Salwinski
et al., 2004)

Biomolecular Interaction Network Database (BIND)
(Bader et al., 2001)

Collection of multiple primary Interaction Reference Index (iRefIndex)
databases (Razick et al., 2008)

Agile Protein Interaction DataAnalyzer (APID)
(Prieto et al., 2006)

Michigan Molecular Interactions database (MiMI)
(Tarcea et al., 2009)

Unified Human Interactome database (UniHI)
(Chaurasia et al., 2007)

Direct/physical + indirect/ Collection of multiple primary STRING (von Mering et al., 2005)

functional

databases and computational
predictions

Note: For further details see recent summary and reviews in Turinsky ef a/. (2011), De Las Rivas et al. (2010), Klingstrom and Plewczynski (2010).
Many databases in this table have adopted the Proteomic Standards Initiative Molecular Interaction (PSI-MI) data formats and implemented the
PSI Common Query Interface (PSICQUIC) (Aranda et al., 2011) that allows easy, programmatic access and integration of these data.

varying degrees of reliability (von Mering et al., 2002), so overall the data quality is
heterogeneous and should not be treated indiscriminately. Lastly, pooling these
interactions together risks losing the specific context under which they were
detected. It is with these issues in mind that we propose a constraint optimization
approach for finding regulatory networks that are interpretable, reliable, and bio-
logically relevant.

Our method starts with a collection of protein—protein and protein—-DNA interac-
tions, which represent known or experimentally determined signaling and regulatory
connections. It considers the observed phosphorylation events and differential gene
expression as connectivity constraints that the reconstructed network must satisfy.
Additionally, we take into account the different confidence levels among the inter-
action data sources by preferentially selecting the more reliable interactions. We show
that these objectives can be formulated as a constraint network optimization problem,
in particular, as a prize-collecting Steiner tree (PCST) problem on the interactome
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graph. Since the interactions are not limited to known pathways and the phosphory-
lation events and differential expressed genes are not limited to known players in these
pathways, there is great potential for novel discoveries. On the other hand, all the
interactions were experimentally determined and therefore have mechanistic basis
that might become relevant in the current context. These two features of the method
strike a balance between finding novel connections and revealing the relevance of
known connections. We hypothesize that since each of our input data sources provides
a different view of the molecular regulatory network, by putting them together we can
generate high-confidence hypotheses that have biological relevance and can be tested
experimentally. This framework serves to organize these heterogeneous datasets and
enhance our understanding of the cell at the systems level.

II. Computational Methods

Network optimization is an area of computer science that has recently become
very useful for analyzing biological problems, and a variety of algorithms are
available to solve specific optimizations. The problem we have posed consists of
finding a set of edges of minimum weight in order to connect a defined set of nodes
(known as termini) in a weighted network. This problem is called the Steiner tree
problem. An important generalization that allows some terminal nodes to be
excluded is known as the PCST problem. For our purpose, we will use a network
in which edge weights reflect our confidence in the interactions and where terminal
nodes represent hits from the experiments, that is, phosphorylated proteins and
differentially expressed transcripts. In this setting, the solution to the PCST optimi-
zation is a set of most confident interactions that link together the hits while possibly
leaving some unconnected (Fig. 1(A)).

Although the concept of Steiner tree has been previously applied to biological
networks (Dittrich et al., 2008; Scott et al., 2005), we note that our approach is
distinctive in multiple aspects. First, instead of mRNA transcript abundance we
use protein-level measurements on nodes in the interactome, which provides a
much more accurate representation of the underlying biological processes.
Second, we explicitly model the confidence of individual edges in the interactome
to account for the uncertainties in the interaction data. Third, we do not require all
nodes in the solution to be detected in the experiments, allowing our approach to
compensate for multiple sources of noise. This last feature is absent in an appli-
cation of a Steiner tree like algorithm to build a high-confidence network with
genetic screening hits as terminal nodes (Yosef et al., 2009). A minimum-cost
flow optimization approach connects genetic hits to differentially expressed genes
(Lan et al., 2011; Yeger-Lotem et al., 2009) but the result is less compact than the
PCST (Huang and Fraenkel, 2009). We now describe the process of constructing
the optimization problem, solving it, and analyzing the results. We also offer some
advice on practical matters such as tuning the parameter values and visualizing the
network.
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Experimentally detected protein
Protein not detected
Transcription factor

Target mRNA

Known, irrelevant interaction
Known, relevant interaction

* Unknown, relevant interaction

Weighted mRNA
interactome changes

Fig. 1 (A) Finding relevant interactions as a constraint optimization problem. We seek a set of high-
confidence edges present in the interactome that directly or indirectly link the proteins and genes
identified in the experimental assays. Because some of the input data may be false positives (arrowhead)
or may not be explained by currently known interactome (arrow), our approach does not require that all the
input data be connected, but rather uses these data as constraints. Note that the protein product and mRNA
transcript of the same gene are represented as separate nodes. Image reproduced with permission from
Huang and Fraenkel (2009). (B) Work-flow diagram for defining the optimization objective function from
input datasets. Interaction weights go into the edge cost summation term (Step 1) and the changes in
tyrosine phosphorylation from MS data go into the node penalty summation term (Step 3). The transcrip-
tion factors to mRNA target relationships are added to the edges to form the total interactome (Step 2), and
the mRNA nodes are assigned penalty values (Step 3). (For color version of this figure, the reader is
referred to the web version of this book.)

A. Setting Up the Prize-Collecting Steiner Tree

We treat the interactome as an undirected graph G = (¥, E) where nodes are
proteins or genes and edges represent the known interactions. Each node v € V' is
associated with a penalty 7, > 0. Protein nodes to which experimental data are
mapped receive positive penalty values and therefore are termini for the PCST.
All other nodes receive zero penalties. As the magnitude of the penalty value
increases, the more confident we are that the protein/gene was experimentally
detected as relevant in the signaling response. The algorithm is forced to pay a
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Fig. 2 The protein components of the pheromone response network constructed by the PCST approach. Note that the
canonical pheromone response pathway (enclosed by dashed lines) is but a small component of the broad cellular changes
revealed by applying the algorithm to the mass spectrometry and expression data. For clarity, the differentially transcribed genes
included in the network are not presented. Functional groups based on GO annotation are outlined with red boxes. PKC, protein
kinase C; TF with phos. site, transcription factor with at least one differentially phosphorylated sites; TF with no phos. site,
transcription factor with no differentially phosphorylated sites; non-TF protein with phos. site, a protein that is not a transcription
factor and with at least one differentially phosphorylated sites; non-TF with no phos. site, a protein that is not a transcription
factor and with no differentially phosphorylated sites. Image reproduced with permission from Huang and Fraenkel (2009). (See

color plate)

penalty each time it leaves a terminal out of its final network. This constraint causes
the network to include as many high-confidence nodes as possible. However, this
constraint alone would lead to very large networks that might contain many unreli-
able edges. So we also assign to each edge e € E a cost ¢, > 0 that is inversely related
to our confidence in each interaction.

We aim to find a subtree F' = (VEF) of G that minimizes the objective function
> eckpCe D ygy, v Because we incur penalties for excluding nodes while
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paying costs for including edges, the algorithm will be forced to favor connecting
high-confidence data with high-confidence interactions. We further introduce a
scaling parameter 8 to balance the penalties and the edge costs:

Zce+ Z B,.

e€ER vV

We may solve this optimization problem exactly by using the branch-and-cut
approach (Ljubié et al., 2005) implemented in the dhea-code software pro-
gram that calls the ILOG CPLEX mathematical programming solver. As an
alternative to solving it as an integer linear program, an approach from statistical
physics (Bayati et al., 2008) has resulted in new heuristic algorithms based on
message-passing techniques (Bailly-Bechet et al., 2011). We now describe how
the experimental data are transformed into input for the algorithm. An overview
of the work-flow is in Fig. 1(B).

B. A Probabilistic Interactome

This is Step 1 in Fig. 1(B). The set of edges E of the input graph G consists of
direct (physical) protein—protein interactions found in databases of molecular
interactions such as those listed in Table 1. To assign confidence values for these
interactions, a few methods have been previously published (Razick et al., 2008;
Orchard et al., 2007; Jansen et al., 2003). Here we use a naive Bayes probabilistic
model (Jansen et al., 2003). Interaction between two proteins is modeled as
random variable i € {0, 1} with i =1 when two proteins interact and i = 0 other-
wise, and each kind of experimental evidence is modeled as a random variable
J; €10, 1} where f; =1 indicates f; is observed and f; = 0 otherwise. From pub-
lished gold standard sets of positive (Yu et al., 2008) and negative interactions
(Jansen et al., 2003), we can compute the conditional probability table for each
kind of evidence, P(fj|i). Then, for each interaction e supported by a set of
experimental evidence F,= {f.;[j =1, ..., n}, assuming independence between
the evidence we have

P(F€|l) = Hp(fej|i)a

and a straightforward application of Bayes rule gives the probability that this
interaction is real:
P(F.li=1)Pi=1)

P(i=1|F,) = -
Zi’e{O,I}P(Fe|l)

The cost ¢, on edge e that is input into the PCST objective function is
c.=—logP(i=1|F,), Ve € E.
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C. Determining Transcription Factor Targets

Transcription factor to mRNA target relationships are added to the protein—pro-
tein interactome to form the total interactome (Step 2 in Fig. 1(B)). A variety of
experimental, computational techniques and combinations of both are possible. For
yeast, there are published genome-wide binding sites for almost all the transcrip-
tional regulators under multiple conditions measured by chromatin immunoprecip-
itation (ChIP) experiments (Harbison ez al., 2004; Maclsaac et al., 2006). The human
and mouse ENCODE projects (Birney et al., 2007) represent systematic efforts to
generate ChIP profiles for multiple transcription factors in a variety of human cell
lines and mouse tissues. Computationally, transcription factors often have sequence
specificities that allow binding sites to be predicted to some extent (Box 1).
Commonly used quantitative representations of such binding patterns, also known
as sequence motifs, include position weight matrices (PWM)/position-specific scor-
ing matrices (PSSM) (D’haeseleer, 2006; Stormo, 2000) with an information theo-
retic perspective, and position-specific affinity matrices (PSAM) with a statistical
mechanics perspective (Foat et al., 2006, 2005; Manke et al., 2008; Roider et al.,
2007). Motifs from the TRANSFAC (Wingender, 2008; Matys et al., 2006) and
JASPAR (Sandelin et al., 2004; Bryne et al., 2008) databases, which collect pub-
lished transcription factor binding motifs from the literature, can be used for pre-
dicting regulatory elements. Once a genomic region is determined to be bound by a
transcription factor based on experimental and/or computational evidence, nearby
genes can be associated with this factor as its potential downstream targets, and we
add to the interactome edges going from the transcription factor (a protein node) to
these target mRNA nodes.

D. Node Penalties

This is Step 3 in Fig. 1(B). We define two kinds of penalties for proteins in the
interactome: one at the protein level derived from the phosphoproteomics MS data,
and the other at the mRNA level derived from mRNA expression data.

Although published phosphoproteomic MS datasets often provide the identities of
the proteins that contain the peptide sequences inferred from the MS spectra, it is still
advisable to map the peptides to a database of protein sequences from which the
interactome dataset is derived in order to avoid issues such as inconsistencies in
mapping gene identifiers and in treating protein isoforms. This can be achieved by
finding protein sequences in a database that contains matches to the peptide
sequences, for example, by the sequence alignment search tool BLAST (Altschul
et al., 1990) with parameter settings optimized for matching short peptide
sequences. In an analysis comparing two conditions, proteins that contain perfect
alignment to a peptide sequence receive a positive penalty value that is proportional
to the absolute value of log-fold change in phosphorylation between the conditions
of interest. If one peptide sequence is aligned to multiple proteins in the interaction
graph, all these proteins receive the same penalty value. If multiple phosphorylated
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Box 1
Aligned binding sites Position fraquency matrix {(PFM)
CGTGCATTCCCL 1 2 3 4 5 6 7 8
GCEGCATTTCCacy: A 0 0 1 5 8 5 1 2
- 3 Count base frequenc 6
1C6GGGTTTCCA q be,‘ ¢ 5 1 0 1 5 1 0 o
GGETTTTTC =
G 8 15 15 k] 3 1 (1] 1]
TGGGAATTTCCC
T 4 1 1 2 3 10 18 15

agcgtGCGGTATTCC

1t tgaTGGTCTTTCCa
5 s BAERRTTER Pseudo-count correction
33t CTARARAACCCaa P(b,f):Ls(b)
]
aattgtGGGEETTTCC N+ Z s(b’)
b'e{d,C.G.T}
tgGGGTTTTTC e
GGEGAACTTTCEY 9 6 05 A 5 8 904
eeeAluTACAAgac A 005 0.05 010 029 033 029 010 0.14
HeRSGETITR LD Ragr € 029 010 005 040 020 010 005 005
9cCcTGGAGTTTCC
G 043 076 076 048 019 010 005 005
JLLtaTGGGCTTTCCg
T 024 €10 010 0.14 019 052 081 0.78
tgacgtgTGGGCATTCC
W. —log, 212:1) w. = p(8.i)
5, 108, b= T3
pib) max  p(b',i)
b'€[4,C.G, T}
Paosition specific scoring matrix (PSSM) Approximate position specific affinity matrix (PSAM)
1 2 3 4 5 & T 8 9 10 1 2 3 4 5 & 7 8
A -2.39 -2.39 -1.39 0.16 042 0.19 -1.39 -0.81 -2.38 -1.39 A 011 0.08 013 060 1.00 055 012 0.19
C 0.19 -1.39 239 -1.39 0.9 -1.39 239 239 161 170 C 067 013 006 020 0.86 018 0.06 0.6

G 078 1.60 160 093 -0.39 -1.39 -2.38
T -0.07 -1.36 -1.36 081 038 1.07 1.70

Candidate sequence

-2.39 -2.39 -2.38 G 1c0 1.00 100 100 057 018 006 0.06

1.61 081 -2.39 T 05 013 013 030 057 100 100 1.00

|agtigna

aat cgtggaattt cctctgac

T G A A T T
-0.07 1.60 1.60 0.19 042 1.07 170

§=11.43

S=11W,,

i=1
T c c T 6 G A A T T T
161 181 1.70

§=0.33

0.05
0.76
0.05
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0.06
1.00
0.08

0.18
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10
0.10

0.81
0.05
0.05

10
0.11

1.00
0.08

0.06

c

056 1.00 1.00 060 1.00 1.00 1.00 1.00 1.00 1.00

[, ;=counts of basc bat positioni; N =number of sites ; p(b, i) =corrected probability of basc 4 at positioni;

s{b =pseudo-count function for base b, p (b] =background probability of base b ;
W, ,=PSSM or PSAM score for base bat position i, {,=the nucleotide at position { in candidate sequence ;
§=PSSM or PSAM score of the current window ; w=width of the PSSM or PSAM
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Computational representation and discovery of transcription-factor-binding sites,
with an example of the human REL protein-binding profile (JASPAR MAO0101.1,
curated from Kunsch ef al. (1992)) and NF«B binding site in the human IL8
promoter (TRANSFAC binding site HS$IL8 21). in vitro techniques such as
SELEX (systematic evolution of ligands by exponential enrichment)
(Stoltenburg et al., 2007) can generate a set of sequences that bind to a specific
transcription factor with high affinity. From an alignment of these sequences, a
PFM is created to represent the base preference of this factor at each position of
the binding site. After pseudo-count correction, the PSSM approach takes the
base preference at each position, adjusts for background (usually genome-wide)
frequency of that base, and computes a numerical value for the bases at each
position that can be used to score a DNA sequence (D’haeseleer, 2006; Stormo,
2000). Alternatively, an approximate PSAM for scoring can be created from a
pseudo-count corrected PFM by calculating the preference of a base relative to
the most frequent base at each position (Foat et al., 2006, 2005; Manke ef al.,
2008; Roider et al., 2007). See Maclsaac and Fraenkel (2006) for a more detailed
treatment of the topic.

peptide sequences are perfectly aligned to one protein, the maximum fold change in
phosphorylation of these peptides is used to calculate the penalty value for this
protein. Other methods of assigning penalties are also possible and are discussed
below.

For penalty values on mRNA nodes, some modifications to the interactome are
required to make the resulting network more biologically realistic. If we simply put
penalty values on the mRNA nodes, the tree structure of the solution network means
that any one mRNA node is connected to at most one upstream transcription factor.
Such a network cannot capture one gene being targeted by multiple transcription
factors, which is a common feature of transcriptional regulation. Instead, we represent
multiple transcription factors bound to the same gene with separate nodes. Let M be
the set of differentially expressed transcripts, and fc(m) be the fold change in mRNA
abundance of each gene m € M. For each m, we searched the interactome for the set of
upstream transcription factors F that target m, remove m from the interactome, and
add one node mfor each transcription factor f'€ F'and one edge between fand .. The
fold change of m is transferred to all the m,to compute the penalty values on m,. Each
new terminal node m,may be interpreted as a binding site of fon m.

E. Sensitivity Analysis

Applying an optimization approach to inherently noisy biological data makes it
necessary to explore the alternative or suboptimal solution space surrounding the
reported optimal solution. This is to ensure that the nodes and edges selected by the
algorithm, from which significant efforts will be invested to extract biological
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Fig.3 Alternative or suboptimal solutions to the yeast pheromone response dataset. Because we use an
optimization approach to analyze inherently noisy data, we asked whether the network we obtained was
stable — are there very different networks that explain the data almost as well? For this, we compared the
optimal solution network to a set of alternative solution networks obtained by finding networks that are
different from the optimal one by at least a specific percentage of nodes. (A) No alternative solutions in
the neighborhood of the optimal solution achieve the same objective function value. (B) Of the nodes that
appear at least once in the 54 suboptimal solutions, at least 80% also appear in the optimal solution. Image
reproduced with permission from Huang and Fraenkel (2009). (For color version of this figure, the reader
is referred to the web version of this book.)

meaning, are relatively stable to possible sources of noise. Fig. 3 presents two ways to
quantify this stability at the global level. First, starting from the optimal solution
reported by the algorithm, we can re-formulate the optimization problem to find a
number of suboptimal solutions — networks that are optimal under the additional
constraint that they must differ from the original optimal solution by a predefined
percentage of nodes. We can then compare these suboptimal solutions to the optimal
one in terms of the objective function value (Fig. 3(A)) and the frequency at which
the nodes in the original optimal solution are preserved in the suboptimal solutions
(Fig. 3(B)) in order to decide whether the solution is robust to noise.

F. Practical Advice

Parameters: Tuning the value of parameter g essentially controls the size of the
PCST solution output. With larger 8 values it becomes more expensive to exclude
each terminal node (i.e., making the objective function larger), so the optimization
algorithm will include more edges in the PCST solution. Although a larger network
may include more hits from the experimental data, it is more difficult to interpret and
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also more likely to include false-positive hits that may connect to the real underlying
network via tenuous interactions. To find a suitable value of this parameter, it
is advisable to run the algorithm with a range of values and choose a solution that
(1) includes any expected pathways based on prior biological knowledge, (2) is
stable for the neighborhood of g values, and (3) contains as many of the hits as
possible. One can also start with a small value of § to build a core network and
gradually increase B to explore how more hits are connected to the core network.

It may be possible to use cross-validation to objectively choose B. In such an
approach, one would randomly partition the terminal nodes into two complementary
subsets, build a PCST using one subset (training set), and compute the recovery of
the second subset (validation set) in that PCST. To reduce the effect of random
variations, for each value of 8, multiple rounds of such cross-validation can be
performed and one average performance value is reported. Based on this perfor-
mance measure, a 8 value can be selected.

While this approach has a certain appeal, we urge caution since the assumptions
and requirements of cross-validation may not be satisfied by the biological datasets.
First, in order for the recovery of the validation set by a PCST to be a good indicator
of its performance, the training set and the validation set must be drawn from the
same distribution. This criterion requires the terminal sets to be sufficiently large
that each random sample contains termini from all the underlying biological pro-
cesses. Since the current datasets are subject to many limitations such as the sensi-
tivity of the MS instrument depending on protein abundance and the coverage of the
interactome, we do not know a priori whether this assumption is appropriate.
Second, it is unclear which of the conventionally used measures of predictor per-
formance is suitable in this setting. We aim to recover intermediate nodes that are
undetected in experiments, so we cannot count such nodes included in the PCST as
false positives. In the absence of a false-positive definition, counting the recovery
of the terminal nodes makes little sense since the optimal value of 8 will be the
one that produces a PCST that include the most terminal nodes (weighted by
penalty values).

Implementation: There are various approximation algorithms to solve the
PCST problem. These have recently been reviewed (Archer et al., 2011). The
dhea-code program (Ljubié et al., 2005), which can be downloaded from Dr.
Ljubic’s website (Ljubié, 2008), uses a branch-and-cut approach to obtain exact,
optimal solutions. This program requires the ILOG CPLEX (IBM) optimization
library that is available at no-charge for teaching and non-commercial research as
part of the IBM Academic Initiative (IBM, 2010). In the supplement of this
article, we provide a simple Python script for creating the input file for dhea-
code from tab delimited text files of the weighted interactome and terminal
nodes. The output files of dhea-code include the PCST solution in a DOT file
(a plain text format for specifying graphs; Graphviz, 2011b). From there the
solution can be rendered and viewed by the tools in Graphviz (2011a), or further
manipulated and analyzed by the Python library NetworkX (Hagberg et al., 2008).
One standard operation is to convert the DOT file to one of the file formats
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supported by Cytoscape (Smoot et al., 2011; Cline et al., 2007) in order to utilize
Cytoscape’s many visualization capabilities for biological networks.

A recently published message-passing algorithm, although taking a heuristic
approach, is able to find solutions with objective values comparable to dhea-code
under much less computing time and memory (Bailly-Bechet et al., 2011). It
requires a depth parameter to be specified a priori to control the length of paths
in the solution network. This appears to have the consequence of eliminating long
braches in the solution. The effect of this difference on the identities and functional
relevance of the recovered nodes remains to be investigated.

ITI. Biological Insights

The PCST solution connects together the phosphorylation events and transcrip-
tional changes using a compact set of interactions. Since the method puts the
phosphorylation events in the context of protein—protein interactions, the connec-
tions participated by these events or groups of events are suggestive of their cellular
functions. The transcription factors included in the network and the connections
among them point to the functional consequence of the upstream signals. These are
certainly of great interest for elucidating the role of individual hits. Also interesting
are the properties that emerge from the network at the systems level, and we will
describe a few computational techniques for such analyses using the yeast phero-
mone response PCST solution as an example (Fig. 2).

A. Properties of the Full Network

The PCST solution in Fig. 2 was constructed from published phosphoproteomic
(Gruhler et al., 2005) and transcription profiling (Roberts ez al., 2000) datasets of the
yeast Saccharomyces cerevisiae in response to the mating pheromone «-factor. This
network was first reported in Huang and Fraenkel (2009). The network connects 56
of'the 112 proteins with a-factor-responsive phosphorylation sites and 100 of the 201
differentially expressed genes through 94 intermediate proteins.

The solution network shows a few notable features at the global level. First, the
MAPK cascade known to be induced by pheromone (labeled “pheromone core” in
Fig. 2) is recovered by the algorithm. In particular, it correctly identifies the proteins
GPA1, STE11, and BEM1, where no phosphorylation sites were detected, as well as
their connections to other proteins in the pheromone signaling pathway. In addition,
only proteins that are present in the pheromone response pathway are included.
Second, beyond the MAPK cascade, the solution network partitions into highly
coherent subnetworks with biological functions relevant to mating. At the transcrip-
tion level, phosphorylated proteins seem highly informative in selecting interacting
transcription factors. Examples include DIG1/DIG2/STE12 complex in the phero-
mone signaling pathway, SWI4/SWI6 and SWI6/MBP1 in the PKC pathway, and
FKH2/NDD1 complex regulated by CDC28. These observations suggest the
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constraints imposed by the phosphorylated proteins and differentially expressed genes
are sufficient to guide the selection of important players that contribute to the
response.

To assess the functional significance of the intermediate nodes from the PCST
solution in mating response, we examined two independent whole-genome deletion
screen datasets that screen for genes whose deletion result in mating defects. One
screen measures a molecular phenotype in the form of activation of FUSI-lacZ
reporter (Chasse et al., 2006) and the other screen measures a morphological phe-
notype in the form of cell cycle arrest and shmoo formation (Narayanaswamy et al.,
2006). For each screen, we counted the number of hits that overlap with the inter-
mediate nodes in the PCST solution, and using all the screening genes as background
we computed a hypergeometric p-value for which such overlap would appear by
chance. As seen in Fig. 4, compared to networks constructed from shortest paths and
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Fig. 4 The PCST pheromone response network is compact, and when compared to networks
predicted by other methods, it contains higher fraction of genes that are implicated in mating response,
measured by defects in activating a FUS1-lacZ reporter gene (Chasse et al., 2006) and defects in cell
cycle arrest and shmoo formation (Narayanaswamy et al., 2006). The Flow network was constructed
from the phosphorylated proteins and differential expressed genes by a previously published algorithm
based on network flows (Yeger-Lotem et al., 2009). The Shortest path network consists of pairwise
shortest paths between the terminal nodes and the First neighbor network consists of nodes in the
interactome that directly interact with the phosphorylated proteins. Enrichment p-values were com-
puted by hypergeometric tests using all the genes tested in the respective genetic screen as back-
ground. The number above each bar denotes the number of nodes in the network. Image reproduced
with permission from Huang and Fraenkel (2009). (For color version of this figure, the reader is
referred to the web version of this book.)
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first neighbors of the terminal nodes, the PCST solution is more compact while
achieving higher enrichment of genes implicated in mating defects.

B. Biological Functions of Subnetwork/Modules

To objectively quantify the empirical observation that the PCST solution is parti-
tioned into functional coherent subnetworks, we applied the Girvan—Newman algo-
rithm (Dunn et al., 2005; Girvan and Newman, 2002) to cluster the solution. This
algorithm is used for detecting clusters in an interaction network that contain dense
connections between nodes in the same cluster but less dense connections to nodes in
other clusters. Gene Onfology enrichment analysis of the resulting clusters reveals
that all the clusters have high degree of functional coherence (Table II). It is
interesting to note that many of the clusters are not coordinately expressed at the
mRNA level, as quantified by the significance of expression coherence score (Pilpel
et al., 2001) or by the significance of expression activity score (Ideker et al., 2002).
Notably, the clusters that show significant coordinated expression are involved in
cell cycle processes.

Being able to recover functionally coherent clusters that are not coherent at the
transcript level is a significant result. Transcriptional data, which are more readily
available than proteomics data, are the focus of many computational methods for
regulatory network construction. Our results suggest that methods that rely solely on
expression data, including a prior Steiner tree approach (Dittrich ez al., 2008), will be
unable to recover the full extent of a biological response.

C. Quantifying the Relevance of the Transcription Factors

In addition to the transcription factors mentioned above that are known to be
induced by pheromone or function in related biological processes, the PCST solution
network features many other transcriptional regulators not previously implicated in
pheromone response. We use expression coherence score as a metric to quantify the
significance of these transcription factors at the global level. For each transcription
factor with targets in the interactome, we obtained the expression values of those
targets across a set of conditions that stimulate pheromone signaling, and computed
the significance p-value of the expression coherence score. Then we set a threshold
on the significant p-value, and compared the percentage of transcription factors
included and excluded in the PCST that pass this threshold. As shown in Fig. 5, the
transcription factors included in the network are more likely to have a set of targets
that are coherently expressed than the factors excluded from the network. To check if
these transcription factors are condition specific, we did a similar calculation for the
expression values from a set of conditions that are unrelated to pheromone: when
yeast undergoes the metabolic shift from fermentation to respiration (diauxic shift).
We found that coherence is specific to the conditions related to pheromone signaling
but not to diauxic shift.



Table II

Biological functions and measures of coordinated mRINA expression of the clusters in the pheromone response PCST network generated from

edge-betweenness clustering.

Cluster Top three enriched GO biological process terms Corrected p-value of p-value of EA
p-value EC score score

1 GO:0046907 Intracellular transport 1.23E-09 0.711 1
G0:0051649 Establishment of cellular localization 1.23E-09
G0:0051641 Cellular localization 1.71E-09

2 GO0:0006457 Protein folding 1.41E-04 0.251 0.735
GO:0042026 Protein refolding 1.41E-04
GO:0000069 Kinetochore assembly 8.35E-04

3 GO0:0016193 Endocytosis 1.73E-06 0.128 1
GO:0007114 Cell budding 1.26E-05
GO:0051301 Cell division 1.26E-05

4 GO:0000074 Regulation of progression through cell cycle 2.68E-06 0.421 0.453
GO:0051726 Regulation of cell cycle 2.68E-06
GO:0006270 DNA replication initiation 3.44E-06

5 GO0:0006350 Transcription 8.00E-14 0.863 1
G0:0045449 Regulation of transcription 1.94E-12
GO0:0019219 Regulation of nucleobase, nucleoside, nucleotide, 7.15E-12

and nucleic acid metabolism

6 GO:0007096 Regulation of exit from mitosis 3.52E-07 0.063 1
GO:0007088 Regulation of mitosis 4.45E-07
GO:0000074 Regulation of progression through cell cycle 1.05E-05

7 GO0:0048856 Anatomical structure development 3.19E-14 0.35 0
GO:0007148 Cell morphogenesis 3.19E-14
GO:0019236 Response to pheromone 1.26E-11

8 GO:0006350 Transcription 1.89E-09 0.504 0.35
G0:0006351 Transcription, DNA-dependent 7.90E-09
G0:0032774 RNA biosynthesis 7.90E-09

9 G0:0000082 G1/S transition of mitotic cell cycle 2.15E-04 0.272 0.008
GO:0051325 Interphase 1.07E-03
GO0:0051329 Interphase of mitotic cell cycle 1.07E-03

Full network GO:0006350 Transcription 2.67E-23 0.729 1
G0:0019222 Regulation of metabolism 2.73E-21
GO:0050791 Regulation of physiological process 1.16E-20

Note: EC, expression coherence (Pilpel et al., 2001); EA, expression activity (Ideker et al., 2002). Reproduced with permission from Huang and Fraenkel (2009).
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Fig. 5 Percentage of transcription factors (TF) with targets that show significant expression coherence
(EC) scores computed from 50 nM a-factor time course (Roberts ef al., 2000) and diauxic shift conditions
(DeRisi et al., 1997), for transcription factors included in and excluded from the PCST solution network.
The p-values indicate thresholds on the significance of the expression coherence score of the target genes.
Image reproduced with permission from Huang and Fraenkel (2009).

IV. Open Challenges

A. Improving the Input Data

The central premise behind our constraint optimization framework is that the
experimental measurements at the signaling and transcription level are sufficient
for guiding selection of relevant interactions from the interactome. It is important to
note, however, that many of these interactions may only occur under specific con-
ditions that are not relevant to the problem being studied. It is not yet practical to
collect condition-specific interaction data on a large scale. Nevertheless, there are a
few strategies to ensure the selected interactions are indeed relevant. First, as a pre-
processing step, the input interaction network can be filtered to remove nodes that
are not believed to be expressed under the condition of interest, based on transcript or
protein assays. With the improved sensitivity of RNA-seq to detect low-abundance
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transcripts compared to microarrays, this step may now be done with higher confi-
dence. However, expression data are still noisy, and removing nodes completely risks
missing important components of a network. Alternatively, we can add to the PCST
formulation capacities on the nodes that represent the expression level. There are
well-established procedures that transform node capacitated network flow problems
to ones without the node capacities (Ahuja et al., 1995).

Our current analysis defines node penalties on the phosphorylated proteins in a
practical but ad hoc manner: the penalty values are proportional to the absolute value
of log-fold changes of phosphorylation; if there are multiple phosphorylation sites
on one protein, the maximum value is used. This reflects the assumption that larger
changes in phosphorylation carry higher importance and thus should be given higher
priority to be included. There are other, probably more principled, ways of quanti-
fying the significance of the phosphorylation changes. We distinguish two kinds of
significance: statistical significance and biological significance. The former
requires the development of robust error models (Yi Zhang et al., 2010) while the
latter would benefit from knowledge about the context of the phosphorylation sites,
such as the structural domain or binding sequence motif where the sites are located
(see examples in Naegle et al. (2010)). But these two need not to be exclusive: once
statistical significance is established, penalty values can be defined by analyzing for
potential biological significance.

As phosphorylation sites are the starting point from which the PCST network
solution is built, it is critical to have a good coverage of interactions involving these
proteins in the interactome graph. Phosphorylation sites participate in interactions
with other proteins in two ways: as substrates of kinase and phosphatases, and as
binding partners of proteins that recognize the phosphorylated residues. Many of
these interactions are transient and context specific and thus difficult to capture in
some interaction assays. In particular, among the various high-throughput interac-
tome mapping techniques, a modified affinity capture MS method is the most
informative in identifying kinase targets, with yeast two-hybrid being second
(Sharifpoor et al., 2011). Many in vivo methods are available to link kinases to
phosphorylation substrates (reviewed in Sopko and Andrews (2008)) but only for
specific kinases. Taking these efforts to the global level, and using other information
such as sequence motifs integrated within a computational framework such as
NetworKIN (Linding et al., 2007), will produce interaction datasets that greatly
enhance the ability of our algorithm to connect the phosphorylated proteins.

Beyond the focused mapping of interactions involving phosphorylated proteins,
the ability to discover novel signaling pathways also depends on the coverage of
other parts of the interactome. Even with the combination of large experimental
efforts and curated databases we are still far from a complete mapping of all possible
protein—protein interactions, especially in less well-studied organisms. Therefore,
many computational methods have been developed to predict possible interactions.
These methods make use of features such as gene neighborhood (M. Huynen et al.,
2000), gene fusion (Marcotte et al., 1999), sequence co-evolution (Goh et al., 2000),
and may incorporate several such features in a Bayesian framework (Jansen et al.,



76 Shao-shan Carol Huang and Ernest Fraenkel

2003). The probabilistic nature of edge weights in our PCST formulation provides a
natural way to include these computational predictions.

B. Other Applications and Potentials

The PCST approach can be used to analyze jointly a wide variety of types of data.
Cellular functions are operated by networks of molecular interactions, which include
a lot more than phosphorylation-mediated signaling and transcription factor binding
to target genes. But regardless of the data type, there are many situations in which we
see to find a parsimonious, high-confidence interaction network satisfying a defined
set of constraints. Therefore, this approach can be applied to many other levels of
regulation, depending on the source of the constraints and the molecular interactions.
For example, we may model the global effect of a microRNA by using the microRNA
targets as constraints and including microRNA to target relationships in the inter-
actome. Metabolomics data are another area of great interest and may become an
entry point to link together protein signaling networks with metabolic networks. The
detected metabolites can be used as constraints in a network of metabolic reactions
catalyzed by enzymes that are also part of the protein interaction network. For all
these datasets, taking a network approach such as the PCST will yield more insight
than simply following up on the top hits.

One disadvantage of the PCST method is the tree structure of the resulting
network: all the included terminal nodes must be connected to each other.
However, it is possible that the terminal nodes belong to multiple, separate signaling
pathways that are not connected to each other, either because there is no cross-talk
biologically or the cross-talk interactions are not in the known interactome.
Adopting a forest formulation, where multiple trees may be used to connect the
terminal nodes, may remedy this drawback.

Finally, it is useful to consider this approach in the context of other types of
network modeling. The strengths of our method lie in the ability to identify previ-
ously unrecognized components of a cellular response and to discover functionally
coherent subsets of proteins. However, this approach is not designed to capture the
dynamics of a system, including feedback regulation. A natural way to describe such
feedback mathematically is by differential equations, which can be simulated
numerically or analyzed. Differential-equation-based models have been applied
genome-wide in a comprehensive transcriptional and translational network for
Escherichia coli (Thiele et al., 2009) and have been applied extensively to relatively
small networks of mammalian proteins (Eungdamrong and Iyengar, 2004; Aldridge
et al., 2006; Tyson et al., 2003). However, such approaches are not suitable for very
large networks where there are not enough data to sufficiently constrain the neces-
sary parameters of the models.

We believe that these two approaches may ultimately be used together to develop
dynamic models of previously uncharacterized biological systems. In a first phase,
proteomic, transcriptional or other ‘““-omics” datasets would be analyzed using
constraint optimization to identify a set of proteins that seem most relevant to the
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biological process. With the size of the problem now reduced to a more manageable
level, more focused experiments together with differential equation-based modeling
could reveal the dynamics of the system.
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Abstract

In cell signaling systems, the abundances of signaling molecules are generally
thought to determine the response to stimulation. However, the kinetics of molecular
processes, for example receptor trafficking and protein turnover, may also play an
important role. Few studies have systematically examined this relationship between
the resting state and stimulus-responsiveness. Fewer still have investigated the
relative contribution of steady-state concentrations and reaction kinetics. Here we
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describe a mathematical framework for modeling the resting state of signaling
systems. Among other things, this framework allows steady-state concentration
measurements to be used in parameterizing kinetic models, and enables compre-
hensive characterization of the relationship between the resting state and the cellular
response to stimulation.

I. Introduction

Cell systems respond to external stimuli through a coordinated network of bio-
chemical reactions mediated by any number of molecular species. Although it is
customary to think of these systems as being “at rest” prior to stimulation, a growing
number of studies have demonstrated that the resting state of a cell prior to stimu-
lation can be a powerful determinant of the response. For example, with regards to
stimulation by the death-inducing TNF superfamily member TRAIL, studies have
shown that cells may be sensitized via up-regulation of the TRAIL receptor DRS
(Dolloff et al., 2011) or caspase 8 (Fulda ef al., 2001), down-regulation of TRADD
(Kim et al., 2011) or c-FILP (Li et al., 2011), or alternatively desensitized by up-
regulation of Bcl-XL (Hinz et al., 2000) or Bcl-2 (Fulda et al., 2002) (reviewed in
Zhang and Fang, 2005).

By contrast, in other systems it has been shown that the kinetics of species
turnover — not their outright abundance — determine the response to stimulation.
For example, high turnover of the Epo receptor is required to maintain a linear, non-
refractory response over a broad range of Epo concentrations (Becker et al., 2010),
while high turnover of the inhibitor of NF«B is required to distinguish acute
inflammatory stimuli from metabolic stress conditions (O’Dea ef al., 2008).
Studies like these highlight an important dichotomy in the resting state of a cell.
In one hand are the concentrations of molecules prior to stimulation, and in the
other are the rates of the biochemical processes in which they participate. How do
each of these facets of the resting state affect the cellular response to stimulation?

Because systematic changes in the resting states of living cells are difficult to
engineer, investigating this relationship cannot be addressed by laboratory science
alone. For example, short interfering (si) RNA can be used to reduce the concentra-
tion of a specific gene product, but this reduction is effected by interfering with the
translation of the product (Fire ez al., 1998; 1zant and Weintraub, 1984). Changes in
stimulus-responsiveness due to siRNA knockdown may, therefore, be caused by a
reduction in the concentration of the target species, reduction in the kinetics of its
turnover, or both. Furthermore, RNA dilution in rapidly dividing cells (Bartlett and
Davis, 2006) or secondary induction of the mammalian interferon response
(Reynolds et al., 2006) may further cloud interpretation of the results.

Using a mathematical model, the behavior of a system can be studied rapidly and
in isolation, providing a sort of sufficiency test for proposed mechanisms of cellular
responsiveness (Faller ef al., 2003; Kearns and Hoffmann, 2009; and Kitano, 2002).
The steady-state of a model, discussed in further detail below, is furthermore a good
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approximation for the resting state of the system. A complication that arises in
models when trying to characterize the relationship between steady-state and stim-
ulus-responsiveness, however, is that models of cell systems are typically nonlinear.
As such, the steady-state must often be found numerically, and this compromises the
modeler’s ability to investigate its role in stimulus-responsiveness.

To that end, in this chapter we describe a method for deriving an analytical
expression for the steady-state of a common class of models, called mass action
models. From this analytical expression, we go on to give precise steps for intro-
ducing systematic changes to the steady-state concentrations of molecular species
and the rates of biochemical processes in which they participate. In doing so, we
demonstrate how specific hypotheses can be generated about the resting state of a
system and its impact on stimulus-responsiveness. Examples include:

* Are my measurements of steady-state concentrations and kinetic rate constants
consistent with the proposed model?

* Is a change in the steady-state concentration or activity of a particular species
sufficient to explain the changes I observed in the system’s response to
stimulation?

e Can I expect a system at a particular resting state to exhibit a certain response to
stimulation?

The remainder of this text is divided into the following sections: “Overview of
Algorithm,” in which we provide a verbal description of the steps required to model a
system and derive a solution to its steady-state; “Biological Insights,” in which we
demonstrate how a model at steady-state can help generate hypotheses about the
relationship between the resting state of a system and its response to stimulation;
“Open Challenges,” in which we describe limitations of the method and potential
avenues for refinement; “Computational Methods,” in which we provide step-by-step
instructions for modeling a system and manipulating its steady-state; and finally
“Further Reading,” where we offer some references for further reading on the subject
of modeling, steady-state, and parameterization, and dynamic response analysis.

II. Overview of Algorithm

For the purposes of this manuscript we assume that the system to be studied can be
described by a biochemical reaction network (BRN). A BRN consists a set of a set of
molecular species and a set of biochemical reactions. The set of species must contain
every species consumed or produced by the reactions. Neither every species nor
every reaction need be elementary — a species may refer to a complex biomolecule
like a ribosome, for example, and a reaction to a multistep process like protein
synthesis.

A simple BRN to illustrate the steps used in the forthcoming algorithm is the
activation of the tumor suppressor p53. This network consists of two species, p53 and
Mdm?2, and four reactions. These reactions describe the process by which p53 and
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Mdm?2 self-regulate through coordinated synthesis and degradation. Specifically,
p53 is constitutively synthesized but degraded in an Mdm2-dependent manner.
Mdm?2 is synthesized in a p53-dependent manner but constitutively degraded. An
illustration of this network is given in Fig. 1, as are all steps used in the forthcoming
algorithm.

A. Model the System of Interest Using Mass Action Kinetics

We further assume that the BRN used to describe our system can be modeled
using mass action kinetics. Mass action assumes that the velocity of a chemical
reaction — or the rate at which it converts reactants into products — is proportional
to the product of each reactant raised to some power. This power is often equal to
the stoichiometry of the reactant and is, therefore, simply one. Note too that when
we refer to a species of a mass action model, we nearly always mean the abundance
of that species. The resultant mathematical expression for the velocity of the
reaction is often called a rate equation.

There are four reactions in the p53 model, which cumulatively describe the
synthesis and degradation of pS3 and Mdm?2. Under mass action, the velocity of,
say, p53 degradation is proportional to the product of p53 and Mdm2. Equivalently,
we can say that the velocity of p53 degradation is equal to the product of p53, Mdm2,
and a proportionality constant. This proportionality constant is commonly called a
rate constant.

Once rate equations have been written for each chemical reaction, we apply the
principle of mass balance to arrive at a set of governing equations that describes how
every species behaves over time. This principle holds that the rate at which a species
changes over time is equal to the sum of reaction velocities for which that species is
produced, minus the sum of reaction velocities for which it is consumed. For
example, p53 is produced by a zero-order synthesis reaction and consumed by a
second-order degradation reaction. Consequently, we can write that the first deriv-
ative of p53 with respect to time is equal to the velocity of synthesis minus the
velocity of degradation. In this way, application of mass action kinetics to any BRN
yields a system of ordinary differential equations that describes the instantaneous
rate of change for every species as a function of the reaction velocities.

Mass action may not always be appropriate to model the behavior of a BRN. A key
assumption of the rate equation is that of spatial homogeneity. That is, there are no
gradients in the concentration of any species and the local concentration at any point
in space is equal to the global concentration (Grima and Schnell, 2008). This
condition is violated when there are differences in the diffusivity of the species,
due to either complex formation, tethering to subcellular structures, or compartmen-
talization (Kholodenko, 2009). Such systems are more appropriately modeled using
reaction diffusion equations, reviewed in Slepchenko ef al., 2002. A second assump-
tion of the rate equation is that the concentration of each participating species is
sufficiently “large” (Sreenath et al., 2008). If this is not the case, then random
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fluctuations can no longer be ignored and the reaction velocity must be modeled by a
propensity function, called the chemical master equation (Gillespie, 1992).
Extending the method presented here to systems where the assumptions of mass
action fail is the subject of future research, and is discussed in Open Challenges.

B. Derive an Expression for the Steady-state of the Mass Action Model

For any mass action model there exists at least one set of reaction velocities where
every species is being produced as quickly as it is being consumed. When this is the
case, the model is said to be at steady-state. In this chapter, we equate steady-state with
the resting state, but remark that a more sophisticated relationship between the two
could be the subject of future work.

Every mass action model will have one or more trivial steady-states. These are
steady-states in which all reaction velocities are zero. Closed systems, or systems
that don’t consider synthesis and degradation, always have a trivial steady-state in
which every species’ abundance is zero. Open systems also require that one or more
synthesis rate be zero. An example of a trivial steady-state in the p53 model is one
where there is neither pS3 nor synthesis thereof. Since trivial steady-states are of little
physiological interest, how might we identify nontrivial steady-states. More pointedly,
in order to examine the relationship between steady-state and the dynamic response,
how might all nontrivial steady-states be identified?

Mathematically, finding steady-states is equivalent to solving the system of equa-
tions that results when we set the rate of change of every species equal to zero. If the
system happens to be linear in the variables of interest, then a solution can often be
found quite easily. The key then is simply to find a subset of species and rate
constants that may be treated as variables such that the resulting system of equations
is linear. Ideally, the complement of that subset will be species and rate constants for
which accurate measurements are available, since these are elements for which
numerical values will need to be given prior to simulation. A detailed description
of this process, which we call py-substitution, is given below.

1. Develop and Apply a py-substitution Strategy

From the set of all rate constants and species abundances, identify a substitution
strategy by which elements with known values are replaced by a p and elements with
unknown values are replaced by a y. We refer to these quantities as parameters and
variables, respectively. Every substitution strategy must also satisfy the following
conditions: (1) the resultant system of equations is linear in y, and (2) there are at
least as many variables as there are linearly independent equations. The latter of
these ensures that the py-substituted system of equations is not overdetermined.

Zero-order reaction velocities and velocities with exponents not equal to unity
introduce a further complication: the former cannot be substituted by parameters nor
the latter by variables. To do so violates the linearity constraint. If this constraint is



4. A Framework for Modeling the Relationship Between Cellular Steady-state and Stimulus-responsiveness 87

undesirable, a work-around is to introduce a pseudospecies. For example, the velocity
of p53 synthesis in our p53 model is independent of any species abundance. That is,
the rate of synthesis is constant and equal to a single rate constant. If a reliable
measurement exists for that rate constant, we may wish to substitute it with a
parameter rather than a variable. But because doing so would violate the linearity
requirement, we let the velocity be equal to the product of a first order rate constant
and a pseudospecies. The latter of these we substitute normally with a variable and,
once the system of steady-state equations has been solved, go back and make sure its
value is unity.

A similar tactic can be used for reaction velocities that are superlinear in one of
their reactants. If no reliable estimate exists for the abundance of the reactant, we
may wish to substitute it with a variable rather than a parameter. Since doing so
results in a superlinearity in y, we replace the reactant with a pseudospecies whose
exponent is unity. The pseudospecies can then be substituted normally with a
variable. After solving the system of steady-state equations, we go back and ensure
that the steady-state expressions for the pseudospecies and the superlinear reactant
are equal.

2. Solve the Linear System

After developing a py-substitution strategy, the system of steady-state equations is
rendered linear in the variables. This allows us to rewrite the system using matrix
notation. Specifically, we can write that the product formed by a matrix of para-
meters C with a column vector of variables y equals a column vector of zeros. We call
this matrix of parameters the coefficient matrix:

Cy=20 (1)

The solution to this equation is precisely the null space of the coefficient matrix.
Most modern mathematics software can derive a symbolic basis for the null space, so
long as the matrix is not too large. If it is large (say, over 100 rows and columns,
approximately equivalent to a system containing 100 species and reactions), then so
too is the number of row operations needed to derive a basis. Since the elements in
the matrix are symbolic, they can seldom can be reduced after each row operation. As
aresult, certain elements will grow geometrically in complexity and consume all the
available RAM on the host device, causing a de facto arrest of the computation. Not
all software packages handle this explosion equally well. In our experience, Maple
outperforms both Mathematica and Matlab.

What is the benefit of a symbolic solution to the steady-state equation over a
numerical one? With the latter, every independent parameter is a numeric value,
which by the coefficient matrix is mapped efficiently to a value for each variable
such that the system is at steady-state. The downside of this approach is that the
contribution of each parameter to the variables is lost during the calculation. If the
values of the independent parameters change, as is often required during the analysis
of a mass action model, the values for the dependent variables must be calculated
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anew. With a symbolic solution, the contribution from each parameter to the steady-
state expression of each variable is preserved. This has several advantages. (1) The
relationship between a variable and an independent parameter can sometimes be
identified directly from its steady-state expression. For example, the expression may
reveal that a certain concentration scales linearly or nonlinearly with another species’
concentration, or that the concentration does not depend at all on certain reaction rates.
(2) More generally, the sensitivity of each dependent variable to each independent
parameter can be calculated, so that, for example, changes in parameter values can be
identified that only affect a certain subset of variables. This is precisely the approach
we use below to selectively alter the steady-state turnover of p53 and Mdm?2.

3. Derive a General Expression for the Vector of Variables

A basis for the null space of the coefficient matrix spans the solution to the steady-
state equation. If we let the vector of variables be any linear combination of null
space basis vectors, then the system will be at steady-state no matter what values we
assign to the parameters. By any linear combination, we mean that the coefficient of
each basis vector can be any real-valued number. If the basis vectors are arranged as
columns in a matrix, this is equivalent to postmultiplying that matrix by a column
vector of real-valued coefficients.

4. Resolve Any Constraints Imposed by Pseudospecies

Once a general expression is derived for the vector of variables, we must resolve any
additional constraints imposed by the pseudospecies. Typically these will have the form
Va=»" in the case of a superlinearity, or y, = 1 in the case of a sublinearity. The solution
to these equations is not always straightforward, especially the former. Whichever
mathematics software was employed to derive the null space for the coefficient matrix,
however, can be used again here to solve the pseudospecies constraints.

Another complication that may arise during this step is that a superlinear con-
straint will yield two or more possible solutions. In theory, this presents a very
interesting scenario where two or more values for the same species result in an
otherwise identical steady-state. In other words, this may represent a bi- or multi-
stability. In practice, our experience has been that when two solutions are possible,
one of them is always negative and, therefore, physiologically infeasible.
Furthermore, bistabilities reported in the literature typically manifest themselves
in all of the species, not just one. Therefore, a practical resolution to this complica-
tion has been to keep both symbolic solutions but discard the infeasible one after
numerical values are given to the parameters.

5. Reverse the py-substitution

Once the steady-state equation is solved and an expression derived for the vector
of variables, one may wish to revert the substitution so that the relationships between
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variables and parameters are expressed in terms of species and rate constants. For
simple systems, this can yield insight into how steady-state is achieved. For larger
systems, these relationships can become intractable. Furthermore, for subsequent steps
in this algorithm, the parametric description of steady-state can be the more useful of
the two. For these reasons, reverting the py-substitution is an optional step.

If reversion is desired, note that a technical complication was introduced by the
linear combination of null space basis vectors. Specifically, the forward py-substi-
tution results in a linear system that is solvable but underdetermined. If this was not
the case then the coefficient matrix would not have a null space. By taking a linear
combination of the basis vectors, we effectively identify dimensions of the null space
that are independent and thus need to be given a numerical value. In other words, the
original py-substitution contained too many variables. A number of these variables
equal to the dimension of the null space must become parameters. Fortunately, by
scaling the basis vectors such that they are normalized with respect to the desired
variable, we have a fair amount of freedom in specifying which variables are to
become parameters.

Once this is done, we are left with an equation where the left hand side is the
original vector of variables, and the right hand side is the product of the matrix of null
space basis vectors and the vector of coefficients. Letting these elements be repre-
sented by y, IV, and ¢, respectively, the equation looks like the following.

y=DNq (2)

It is precisely this equation that preserves the steady-state in our mass action
model. The left hand side is within the domain of the inverse of the original py-
substitution and can be reverted quite easily. The right hand side is a function of
parameters and basis vector coefficients. The latter of these is not within the domain
of the inverse py-substitution, so we must first convert these to variables. Fortunately,
this conversion can be easily identified from the equation itself. By the derivation of
the null space basis via row reduction of the coefficient matrix, there will exist at
least one row in /N for which only one column contains a nonzero entry. If the vector
is scaled to this entry, then the row defines a one-to-one mapping between basis
vector coefficients and variables. This mapping restores the right hand side to the
domain of the inverse py-substitution, thus making the full reversion possible.

C. Identify the Isostatic Subspace of the Mass Action Model

Once we have derived an expression for the steady-state of our mass action model,
we may wish to characterize the relationship between the dynamics of the system and
its rate constants and steady-state abundances. The former of these is not straight-
forward, however, because changes in kinetic rate constants often result in changes
to the abundances. To isolate the effects of changes in rate constants on system
dynamics, we must derive an expression for the isostatic subspace of the model, that
being the set of all parameter perturbations that do not in turn alter the steady-state
species abundances.
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1. Calculate the Jacobian Matrix of Partial Sensitivities in Abundances
With Respect to Parameters

The first step in deriving the isostatic subspace is to define precisely what we
mean by a perturbation in parameters that in turn does not alter the steady-state
abundances. From our derivation of the steady-state above, we have that every
species abundance is equal to some function of parameters and null space basis
vector coefficients. It is convenient at this point to simply consider the latter of these
as parameters as well. Some species equate one-to-one with a single parameter; other
species are equal to complex expressions in the parameters. Either way, we are
interested in a change in parameters Ap that, when added to the original set of
parameters p, results in a change in species Ax equal to zero. This is expressed
succinctly by the following equation.

Ap e {Ap #£0: Ax=x(p) —x(p+ Ap) =0} (3)

A valid change in parameters is thus any that satisfies

x(p) = x(p + Ap) (4)

The right hand side of this equation can be approximated by a truncated Taylor
series, as follows,

Ax(p + Ap) = x(p) +J.Ap (5)

where J, is the Jacobian matrix whose elements are the partial derivatives of each
species with respect to each parameter. The first step in deriving the isostatic
subspace is, therefore, to calculate this matrix, which can be done efficiently using
our choice of mathematics software.

2. Derive a Basis for the Null Space of the Jacobian Matrix

We are now confronted with the same situation as we were when deriving an
expression for the steady-state. Since we want our new vector of species abundances
to equal the old one, we require that

J.Ap=0 (6)

In other words, the change in parameters must reside within the null space of the
Jacobian matrix. Equivalently, we call this particular null space the isostatic sub-
space, since it contains every perturbation in the parameters that does not affect the
steady-state species abundances. A basis for this subspace can be derived as before.

3. Derive a General Isostatic Perturbation Vector

Every dimension in the isostatic subspace is a degree of freedom through which we
can introduce an isostatic perturbation. A general expression for an isostatic pertur-
bation then is simply the product of a matrix whose columns are the basis vectors of
the isostatic subspace and a vector of basis vector coefficients. Notice how closely this
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step mirrors the derivation for an expression for the vector of variables, above. Once
this multiplication is done, we are left with a general isostatic perturbation vector.

4. Derive a Specific Isostatic Perturbation Vector

Each degree of freedom in the general isostatic perturbation vector may introduce
a perturbation that, in isolation, is of no physiological interest. For example, in the
p53 model, we may be interested in introducing a perturbation that alters the rate of
synthesis and degradation of p53. There is no guarantee that this perturbation exists
as a single vector in our basis for the isostatic subspace. Therefore, the final step is to
identify a specific combination of basis vectors to achieve the desired perturbation.
In Section V, below, all of these steps are illustrated in detail as they are applied to our
simple model of p53 activation.

ITI. Biological Insights

In this section, we illustrate some of the insights and hypotheses that can be
generated from the steady-state and isostatic subspace of a mass action model. First,
we show that statics and kinetics must cooperate to achieve steady-state. If an expres-
sion for the steady-state is known, then static parameters can be used to calculate the
values for some, but not all, kinetic parameters. The fact that not all kinetic parameters
can be calculated is related to the fact that the dynamic response to perturbation cannot
be uniquely determined from static information alone. Using our simple model for the
activation of the tumor suppressor p53, we show that the kinetics of homeostatic protein
turnover determine the dynamic response of p53 to DNA damage.

A. Explicit Derivation of Kinetic Rate Constants From Static Measurements

A key motivation for the development of py-substitution was to calculate kinetic
rate constants directly from static measurements (Fig. 2). For example, in the p53
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Fig. 2 A comparison of py-substitution versus a traditional parameterization strategy. A traditional
strategy requires numeric values for all four rate constants. Using py-substitution, the steady-state
abundances of p53 and Mdm?2 can be given explicitly. In conjunction with the rates of synthesis of p53
and Mdm?2, the degradation rate constants can be calculated such that steady-state is preserved. (For color
version of this figure, the reader is referred to the web version of this book.)
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model, values can be given for the steady-state abundances of p53 and Mdm?2. Just
the degradation rates of p53 and Mdm?2 are then required to fully parameterize the
model. The rates of synthesis can be calculated explicitly using these four para-
meters and the steady-state expression derived by py-substitution.

By comparison, a traditional parameterization strategy would require that all four
kinetic rate constants be specified. The steady-state abundances of p53 and Mdm?2
could then be derived numerically by integrating the model to steady-state, but this
process is comparatively less efficient. Furthermore, the steady-state behavior of
p53 and Mdm?2 over a range of synthesis and degradation rates is unknowable except
through simulation. If estimates for the steady-state abundances of p53 and Mdm?2
exist, then a parameter fitting procedure must be used to infer the optimal values for
the kinetic rate constants. This is an example of a “backward problem,” in that the
“forward problem” — calculating the steady-state abundances of p53 and Mdm?2
given a set of four kinetic rate constants — must be iteratively solved until an optimal
set of rate constants is identified. If, however, an expression for the steady-state is
known, this backward problem is turned into a forward problem: given the steady-
state abundances for p53 and Mdm2 and their rates of degradation, a simple calcu-
lation gives the rates of synthesis required to support that steady-state.

The significance of this difference is that making kinetic measurements can be a
considerable technical challenge. Typically kinetic parameters must be determined
with purified proteins using in vitro assays (Nutiu et al., 2011; Tanious ef al., 2008)
or must be derived from biochemical assays requiring millions of cells
(Schwanhausser et al., 2011). By contrast, static measurements are often more
sensitive and can be performed using fixed cells (Itzkovitz and van Oudenaarden,
2011; Jain et al., 2011). As a result, measuring static variables is easier and more
accurate than measuring kinetic ones, and py-substitution allows kinetic rate con-
stants to be derived explicitly from simpler, static measurements.

B. Static Control of the Dynamic Response

Another benefit of py-substitution is that we can systematically evaluate the
relationship between dynamic responsiveness and steady-state abundances. This is
made possible by the fact that py-substitution allows steady-state abundances to be
treated as independent parameters. For example, the dynamic response of p53 to
DNA damage is affected by the steady-state abundance of Mdm?2. Because we have
modeled this abundance as an input parameter, it is straightforward to vary it over a
range of values and simulate the p53 response at each value.

In Fig. 3, we let Mdm2 vary from 0.1 to 10 times its nominal wildtype value. As
Mdm?2 increases, p53 exhibits a faster and stronger dynamic response. As it
decreases, p53 becomes slower and weaker. This is because the rate of p53 degra-
dation scales with the steady-state abundance of Mdm?2. As the latter increases, so
does the former. Since we have not varied the steady-state abundance of p53 but
rather kept it fixed, the rate of p53 synthesis must also scale with the abundance of
Mdm?2. In other words, a higher steady-state abundance of Mdm?2 results in a higher
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Fig. 3 The effect of the steady-state abundance of Mdm?2 on the dynamic response of p53 to stimulation. At top, the steady-
state abundance of Mdm?2 is varied from 0.1 (light gray) to 10 (dark gray). The result of this variation on the time and amplitude
of the p53 response are shown as bar graphs on the right. At bottom, Mdm?2 is again varied from 0.1 to 10. Each of the five panels
represents a distinct but constant abundance of Mdm?2. The abundance of p53 is always 1. The rates of p53 and Mdm?2 synthesis
and degradation are then allowed to take a random value from a uniform distribution over 0.1 to 10 times their nominal wildtype
values. The p53 response to perturbation is simulated for 1000 samples in each panel and the median dynamics plotted. (For
color version of this figure, the reader is referred to the web version of this book.)

steady-state turnover of p53. The velocity of this turnover partially dictates the
dynamics of the p53 response. Homeostatic turnover will be examined in more
detail in the next subsection.

Interestingly, even though steady-state abundances affect the dynamic response,
they do not uniquely determine it. Put another way, the dynamic response to pertur-
bation is underdetermined with respect to the steady-state abundances. This is
illustrated in Fig. 3, bottom. Here, each panel depicts the median behavior of
1000 simulations of the p53 model. For a given panel, every simulation has the same
steady-state abundance of Mdm2 and p53. The rates of homeostatic turnover of
Mdm?2 and p53, however, are allowed to take a uniform random value between 0.1
and 10 times their nominal wildtype value. We say that these simulations are isostatic
but anisokinetic — their steady-state abundances are identical but their kinetic rate
constants are not. This variability in the kinetics causes variability in the dynamics,
but is entirely opaque with respect to the steady-state abundances.

C. Kinetic Control of the Dynamic Response

As Fig. 3 shows, isostatic systems can exhibit significant variability in their
response to perturbation. This is a consequence of the fact that the steady-state of
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a mass action model is degenerate with respect to its kinetics; an infinite number of
kinetic rate constants can support the same set of steady-state abundances. We call a
change in kinetic rate constants that does not affect any steady-state abundances an
isostatic perturbation to the parameters, or an isostatic perturbation for short.

Special cases of isostatic perturbations are those that simultaneously alter the
homeostatic rates of synthesis and degradation — or flux — of a particular species.
Above we saw that changing the steady-state abundance of Mdm? altered the flux of
p53 and thereby its dynamic responsiveness. However, we can alter the flux of p53
without altering the steady-state abundance of Mdm?2 as well. This is shown in Fig. 4.
Similar to the subsection above, increasing the flux of p53 results in a faster, stronger
response. Decreasing the p53 flux results in a slower, weaker response, and to a
greater degree than observed when changing Mdm?2 alone.

In addition to p53, we can alter the homeostatic flux of the negative regulator,
Mdm?2. This is shown in Fig. 4, bottom. In contrast to p53, increasing the flux of
Mdm?2 results in a faster but weaker p53 response. This result highlights the fact that
while the homeostatic flux of a species within a biochemical reaction or gene
regulatory network can affect the dynamic response to perturbation, the precise
nature of the effect depends on the function of that species within the network.

D. Precise Control of the Dynamic Response by Homeostatic Flux

The distinct effects of homeostatic p53 versus Mdm2 flux on the dynamic
response of p53 raise the possibility that these fluxes can be used to precisely control
the shape of the p53 trajectory. Using the time and amplitude of the peak of the p53
trajectory as descriptors of the shape, we can look for isostatic perturbations that
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Fig. 4 The effect of p53 and Mdm?2 flux on the dynamic response of p53 to stimulation. At top, the flux of p53 is varied from
0.1 (light gray) to 10 (dark gray) times its nominal wildtype value. At bottom, the flux of Mdm?2 is varied from 0.1 (light gray) to
10 (dark gray) times its wildtype vale. The effects of each on the time and amplitude of the p53 response are shown as bar graphs
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to the web version of this book.)

affect the flux of both p53 and Mdm?2 such that the peak time is altered independently
of the amplitude, or the amplitude independently of the time.

In Fig. 5, we see that this is indeed possible. In fact, in Fig. 4 we can see that the p53
and Mdm2 fluxes have an equal but opposite effect on the peak amplitude. This
suggests that an isostatic perturbation that pairs an increase in one flux with an equal
but opposite decrease in the other will preserve the amplitude of pS3. This is shown to
be the case in Fig. 5 top. Since this same phenomenon is not manifested in the p53 peak
time, it is less straightforward to derive the desired isostatic perturbation. However,
given a particular change in Mdm?2 flux, we can indeed find a change in p53 flux such
that the p53 peak time is preserved (Fig. 5, bottom). Together, these results demon-
strate that the dynamic response of p53 can be precisely controlled by homeostatic
flux, independently of the steady-state abundances of either p53 or Mdm2.

IV. Open Challenges

Because the assumptions of spatial homogeneity and high concentrations remain
prevalent in the systems biology and modeling literature, we believe there is ample
opportunity to use py-substitution to generate novel hypotheses about the impact of
steady-state on stimulus responsiveness. Nevertheless, even within a mass action
framework there are limitations to the method as described here. Chief among these
is that of model size. Deriving symbolic bases for the solution space to the steady-
state equation and isostatic subspace of a large model can yield elements with
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hundreds and sometimes thousands of terms. An attractive solution to this problem
would be a priori identification of network modules (Bowsher, 2011; Hartwell ez al.,
1999). In the ideal case, this would result in block diagonal coefficient and Jacobian
matrices. Since each block can be treated independently, the algebraic complexity of
the resultant basis vectors would be much more manageable. Identifying modules
would also offer the benefit of allowing some species to be in disequilibrium, as the
case might be when a signaling network experiencing ambient, tonic signaling is
coupled to a periodic oscillator such as the cell cycle.

For systems in which the assumptions for mass action are not supported, some work
will have to be done to extend the py-substitution framework. For spatially heteroge-
neous systems, the mass balance equations include a diffusion term in addition to the
standard mass action rate equations. It remains to be shown whether such a system of
equations can be linearized in the same manner as described here. If indeed it can, this
could lead to new insights regarding the interplay between reaction kinetics and
diffusivity in establishing spatial gradients and responding to spatially heterogeneous
signals. When the assumption of high concentrations is violated and a system loses its
deterministic behavior, the inference of kinetic parameters from steady-state concen-
trations or dynamic response measurements becomes a probabilistic one. Additional
work will be done to extend py-substitution to these stochastic systems.

More generally, the class of models that can be addressed using py-substitution
remains to be determined. Are their structural motifs within a BRN that are partic-
ularly challenging to linearize? Can more exotic reaction rate equations be enter-
tained, notably Michaelis—Menten kinetics and Hill functions? Precisely defining
the domain of py-substitution will not only guide its further development, but
perhaps also dissuade the use of exotic reaction kinetics to achieve a certain dynam-
ical behavior, at the expense of a knowable steady-state.

V. Computational Methods

In this section, we give step-by-step instructions for identifying the steady-state of
the p53 model. Although the size of this model makes it unnecessary to employ the
rigorous treatment described here, that the results can be reproduced by hand makes
the steps tractable and easy to follow. For information on how the method scales to
larger models, see Loriaux et al., 2012. Once we identify a solution to the steady-
state of the p53 model, we show how to derive a basis for its isostatic subspace.
Finally, from the isostatic subspace we show how to derive specific isostatic pertur-
bation vectors for modifying the homeostatic flux of p53 and Mdm?2.

All of the steps below are performed using Matlab. As noted earlier, Matlab is not
the best choice of software for symbolic calculations, but because it enjoys the most
familiarity, we use it here for clarity. In the passages that follow, commands are
identified by a double arrow prompt while output from the Matlab terminal is
identified by a boldface font. Finally, it should be noted that the following code is
in no way optimal; a more efficient implementation would make use of matrices, but
again this efficiency comes at the expense of clarity.
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A. Identifying an Expression for the Steady-state of a Mass Action Model

The p53 model consists of two species and four reactions. These must all be
declared as symbolic variables using the syms keyword. Following convention, we
use x to denote species, v for reaction velocities, and k for reaction rate constants.
The real keyword identifies these variables as being real-valued. The semi-colon
suppresses Matlab output.

syms x1 x2 real;
syms k1l k2 k3 k4 real;

syms v1 v2 v3 v4 real;
By mass balance, we let the rate of change of each species be equal to the sum of
reaction velocities in which that species is produced minus the sum of reaction
velocities in which it is consumed. This yields the following.

dxl = vl - v3;

dxz = v2 - vé4;

Assuming mass action, we let the velocity of each reaction be equal to the product of
its reactants and the corresponding rate constant.

vl = kl;

v2 = k2 * x1;

v3 = k3 * xl * x2;
v4 = k4 * x2;

Substituting in the reaction velocities yields a system of mass balance equations
expressed in terms of species and rate constants.

>»> dxl = subs (dxl)
dxl =

kl - k3*x1*x2

>» dx2 = subs(dx2)
dx2 =

k2*x1 - k4*x2
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‘We must now linearize the system by imposing a py-substitution strategy. Even for
a model of this size, several strategies exist. Here we’ll implement a strategy that
assumes we have accurate measurements for the abundances of p53 and Mdm?2 and
the rate of p53 synthesis. The degradation rate constants and rate of Mdm?2 synthesis
will be left variable. Note that substituting for the rate of p53 synthesis requires the
use of a pseudospecies, x3, which we introduce now.

>>» syms X3 real;

>> dxl1 = subs(dxl, kl, kl*x3)

kl*x3 - k3*xl*x2

As before, we must declare all symbolic parameters and variables prior to substitu-
tion. Once a strategy is defined, we can use the same subs command to generate the
py-substituted mass balance equations.

>> syms pl p2 p3 pé4d real;
»>> syms vyl  v2 vy3 vyé4 real;
>

>» kx = [kl,k2,k3,kd,x1,x2,x3];

>>  py [P3:¥2,¥3,v4,pl,p2,¥1];

>> dxl subs({ dxl, kx, py )
dxl =

p3*yl - pl*p2*y3

>» dxZ2 = subs( dx2, kx, py )

dx2 =

pl*y2 - p2*y4d

As expected, py-substitution results in a linear system of mass balance equations. As
such, we can express it as the product between a coefficient matrix of parameters and a
vector of variables. To derive the coefficient matrix, we use the Jacobian command.
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»>»> dx = [dxl,dx2];

>>y = [yl,v2,y3,v4]);

>> C Jacobian( dx, vy )
C =

[ p3. 0, -pl*p2, 0]

[ 0, pL, 0, -p2]
Now we’d like to find all vectors that, when left-multiplied by the coefficient matrix,
equal zero. In other words, the vector must be in the null space of the coefficient
matrix. To ensure this is true, we need to find a basis for the null space. This can be
done using the null command. We’ll store the results of this operation in a second

matrix, N.
>> N = nulli{C)
N =
[ (pl*p2)/P3, o]
[ 0, p2/pl]
[ 1, 0]
[ 0, 1]

We now let the vector of variables equal any linear combination of column vectors
in N. Because N has two columns, we’ll need two additional parameters, g1 and g2.
These will be the coefficients of the null space basis vectors.

>> syms gl g2 real;

>y = N*¥[gl;qgq?]

Y
(pl*p2*ql) /p3
(p2*q2) /pl

ql

q2
Next, we must resolve the pseudospecies such that its value is one. Since y1 is the
variable that corresponds to the pseudospecies x 3, this means we must find a value
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for g1 such that y1=1. Also note that the coefficient g2 maps to y4. This indicates
that the rate constant k4 must in fact be a parameter. Here we will assume that this is
not desirable, and that we would prefer to let the rate of Mdm2 synthesis be a
parameter instead. To do this, we scale the second null space vector N (:,2) by a

factor a2 such that N (2, :)*[ gl;a2* g2] =g2.

>> eqZ strcat( char(N(2,:)*[gl;az2*g2]),

>»> [a2,gl] = solve( egl, eq2, 'gl,az2' )

p3/ (pl*p2)

The final expression for the vector of variables is as follows.
>> v = gimplify(subs (N*[gl;a2*q2]))
y =
1
q2
p3/ (pl*p2)

(pl*g2) /p2

strecat ( char (N(1,:)*[gl;a2*qg2]),

To be prudent, we verify that this vector is in the null space of the coefficient matrix.

>> simplify (C*y)
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Finally, we may wish to revert the substitution so that our steady-state expression is in
terms of species and rate constants. Notice that the linear combination [ gl ; g2]
effectively identifies variables that, because the coefficient matrix was underdetermined,
turn out to be parameters. These variables map one-to-one with null space basis vector
coefficients. Thus in our steady-state expression for vy, to the left hand side we simply
reverse the substitution from py back to kx. To the right hand side we first perform the
one-to-one substitution from g to y, then the reverse substitution from py to kx.

>> lhs = subs ([yl;v2;v3;:v4],pv,kx);
>> rhs = subs (subs(y,q2,v2),py,kx);
»>> [ lhe rhs |

ans =
[ x3, 1]
[ k2, k2]

[ k3, k1/(x1*x2)]

[ k4, (k2*xl)/x2]

The result of the inverse substitution is a relationship between dependent and
independent species and rate constants that, if satisfied, guarantees steady-state.
Note that this relationship is particular to our choice of py-substitution strategies
and null space basis vector coefficients. As illustrated above, by scaling the appropri-
ate basis vector, we were able to choose which variables remain dependent. Finally, it is
worth verifying that our solution for y does indeed guarantee steady-state.

H

>> subs( subs(dx',pvy,kx), lhs, rhs )

B. Identifying the Isostatic Subspace of a Mass Action Model

Asillustratedin Figs. 2—4, there are many advantages to having an analytical expression
forthe steady-state ofamassactionmodel: (a) static measurements of species abundances
can be used to calculate kinetic rate constants, (b) the total number of parameters required
is often reduced (Loriaux et al., 2012), and perhaps most importantly, (c) we can char-
acterize the relationship between dynamic responsiveness and the abundances of species
at steady-state. However, as seen in Fig. 3, steady-state abundances do not uniquely
determine the dynamic response; the kinetics of the system are also important.
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To study the effects of kinetics on dynamic responsiveness in isolation, we would
like to identify any and all changes that can be made to the kinetic rate constants that
do not alter the steady-state species abundances. The set of all such changes is called
the isostatic subspace. To identify this subspace, it is first easier to return to the
parametric description of the steady-state. At this point, we’ll also replace the null
space basis vector coefficient g2 with the parameter, p4.

>>»> kxp = [x1,x2,kl,k2];

>> p = [pl,p2,p3,p4];

= kxss subs ( subs(kx',lhs,rhs), kxp, p );

»>> kss = kxss(1l:4)

Pp3
p4

p3/ (pl*p2)

(pl*pd) /p2
>» xss = kxss(5:6)
Xss =

pl

P2

As expected, every element in our model is a function of the four parameters
used in the py-substitution strategy. Now recall that a Taylor expansion can be
used to approximate how these elements change in response to changes in
parameters. The first order term of this expansion requires a matrix of partial
derivatives of each element with respect to each parameter. This matrix is also
called the Jacobian matrix, and can be calculated in Matlab using the jaco-
bian command.

>»> Jx = Jjacobkian( xss, p )

Jx =



4. A Framework for Modeling the Relationship Between Cellular Steady-state and Stimulus-responsiveness 103

In the Jacobian Jx, the rows correspond to steady-state species abundances
and the columns to parameters. Element Jx (1, 1) =1 indicates that a change in
parameter pl results in an equal change in species x1. This of course is not
surprising since our py-substitution strategy had that x1=p1l. It is also not
surprising that Jx (1, 2)=Jx (1, 3)=Jx (1, 4) =0; the species x1 doesn’t depend
on any other parameter. The second row of Jx has a similar structure; the species x2
depends only on the parameter p2. This Jacobian matrix is extraordinarily simple
because both steady species abundances were modeled as independent parameters. In
general, there will be species whose steady-state abundances are variable expressions
of the parameters, and this significantly complicates the Jacobian.

It now remains to identify the set of all vectors that, when left multiplied by Jx,
result in zero. By our Taylor expansion, any such vector identifies a change in
parameters that results in no changes to the species abundances. By the same
argument as above, any such vector must be in the null space of the Jacobian, and
as before, a basis for this null space is found using the null command.

>> Jx = Jjacobian( xss, p )

>> Nx = null{ Jx )

[ 0, 0]
[ 1, 0]

[ 0, 1]

In this matrix, each row corresponds to a parameter and every column to a degree of
freedom in the null space. That the first two rows are comprised entirely of zeros indicates
that we can alter neither p1 nor p2 without altering at least one steady-state abundance.
Again, this is not surprising since x 1=p1 and x2=p2. The bottom two rows indicate that
we canalter either p 3 or p4 independently of one another. This too is not surprising; neither
p3 nor p4 appear in the steady-state expressions for x1 and x2. As with the Jacobian
matrix, the null space basis will typically have a more complicated expression.

To derive a general expression for the isostatic subspace of our p53 model, we take
a linear combination of the null space basis vectors. The null space is two-dimen-
sional so two coefficients are required, g1 and g2. And because we already used
these variables in the previous subsection, we’ll clear them prior to using them again.
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>> clear gl qgZ;

>> 3yms ql g2 real;

>> isox = Nx*[ql;g2]

isox
0
0
ql

q2

The vector i sox states simply that we may make any change to the parameters p3
and p4 without altering the steady-state abundances x1 and x2. To verify that this is
true, we map the parameter perturbation i sox into a species abundance perturbation
delx using the Jacobian, Jx. As expected, the parameter perturbation resides in the
null space of the Jacobian, indicating that the perturbation causes no change in
species abundances.

>> delx = Jx*isox
delx =
0
0

How does the general isostatic perturbation isox affect the rate constants of our
model? And how do we identify a specific perturbation such that only certain rate
constants are altered? To calculate the effect of the general perturbation i sox on the
set of rate constants we use the same procedure as above, but using the Jacobian
matrix of rate constants with respect to the parameters instead of species
abundances.

>»> Jk = jacobian( kss, p )

o, 0, 1, 0]
0, 0, o, 1]
[ -p3/(plr2*p2), -p3/(pl*p2+2), 1/ (pl*p2), 0]

p4/p2, -(pl*pd)/p2+2, 0, pl/p2]
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As we saw with Jx, the first two rows indicate that changes to p3 and p4 result in
equivalent changes to k1 and k2, respectively. This simply reflects the fact that
k1=p3 and k2=p4, and that our py-substitution strategy was designed to make the
rates of synthesis of p53 and Mdm2 independent parameters. The degradation rate
constants k3 and k4 are variable and constrained by steady-state, and are thus each
sensitive to changes in three out of four parameters. The product of Jx and isox
maps this perturbation into a change in rate constants.

»> delk = Jk*isox
delk =
ql
q2

ql/ (pl*p2)

(pl*q2) /p2

As we observed in the Jacobian, a change gl in parameter p3 results in an
equivalent change in the rate constant k1. A change g2 in parameter p4 results
in an equivalent change in k2. The resultant changes in the degradation rate con-
stants, however, are scaled by the species abundances p1 and p2. We can calculate the
vector of rate constants that results from the perturbation i sox by executing the first
sum in the Taylor expansion.

>> kprime = kss + delk
kprime =
pP3 + ql1
P + g2

p3/ (pl*p2) + gl/(pl*p2)

(pl*pd) /P2 + (pl*q2)/p2

Finally, what if we are interested in not just any isostatic perturbation but a specific
one? In Fig. 5, we saw that the homeostatic flux of p53 and Mdm2 can precisely
control the dynamic response of p53 to DNA damage. Altering the homeostatic flux
is just a special case of the general perturbation isox. We need only find values for
gl and g2 such that the rate constants k1 and k3 and k2 and k4 take on values
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thetal and theta? times their nominal wildtype values, respectively. To do this,
we first declare the symbolic variables thetal and theta2. We then express our
desired outcome as a system of equations. Specifically, letting klprime and
k2prime be the altered values of k1 and k2, the ratio of the k1 prime to k1 should
be thetal, and the ratio of k2 prime to k2 should be theta2. Once expressed as
such, we can solve for the requisite values of g1 and g2.

>> syms thetal theta2 real;

>> egl = strecat( char(kprime(1l)/kss(1l)), '=thetal' );

>> eg? = strcat( char(kprime(2)/kss(2)), '=theta2' );
>> [glsub,gZsub] solve( egl, eqZ, 'qgl,qg2' )
qlsub =
p3* (thetal - 1)
g2sub =
p4* (theta2 - 1)
Substituting these values into the general isostatic perturbation i sox results in the

desired, specific isostatic perturbation that scales the homeostatic flux of p53 and
Mdm?2.

\

>>» ipv = subs( isox, [gl,qg2], [glsub,g2sub] )

"E-
<
Il

0
p3* (thetal - 1)

pd* (theta2 - 1)

Finally, it remains to verify that this perturbation results in the desired change.
Again this is done by executing the first sum in the Taylor expansion.
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>> kprime = simplify{ kss + Jk*ipv )

kprime
p3*thetal
pd*theta2
(p3*thetal) / (pl*p2)
(pl*pd*theta2) /p2
>> simplify( kprime./kss )
ans =
thetal
theta2
thetal

theta2

In summary, from the parametric expression for the steady-state of our model, we
have identified a specific isostatic perturbation that alters the homeostatic flux of
either or both p53 and Mdm2 to the user-specified parameters thetal and
theta?2, respectively.

VI. Further Reading

Another method for deriving expressions for the steady-states of mass action
models was introduced by King and Altman in 1956 (King and Altman, 1956). This
graphical method was greatly improved upon in Volkenstein and Goldstein (1966)
and again in Thomson and Gunawardena (2009), and enjoys a robust and sophisti-
cated implementation in Matlab (Qi et al., 2009).

The application of linear algebra to dynamical networks has a similarly rich
history, especially as it pertains to flux balance analysis (Gianchandani et al.,
2010) and systems biology (Palsson, 2006). For a deeper understanding of the
relevant concepts in linear algebra, see Poole (2010) and Cooperstein (2010).

Evaluating the effects of perturbations on network dynamics and steady-state has
long been the subject of metabolic control analysis, or MCA (Heinrich and
Rapoport, 1974; Fell, 2005). Succinctly, MCA can be used to quantify the steady-
state change in a reaction velocity or species concentration due to a change in an
independent parameter. Recently this framework was extended to dynamical states
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Abstract

Noise and stochasticity are fundamental to biology because they derive from the
nature of biochemical reactions. Thermal motions of molecules translate into random-
ness in the sequence and timing of reactions, which leads to cell—cell variability
(“noise”) in mRNA and protein levels even in clonal populations of genetically
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identical cells. This is a quantitative phenotype that has important functional repercus-
sions, including persistence in bacterial subpopulations challenged with antibiotics,
and variability in the response of cancer cells to drugs. In this chapter, we present the
modeling of such stochastic cellular behaviors using the formalism of jump Markov
processes, whose probability distributions evolve according to the chemical master
equation (CME). We also discuss the techniques used to solve the CME. These include
kinetic Monte Carlo simulations techniques such as the stochastic simulation algorithm
(SSA) and method closure techniques such as the linear noise approximation (LNA).

I. Introduction

Cells are microscopic reactors where multitudes of chemical reactions occur.
Biochemical reactions are probabilistic collisions between randomly moving mole-
cules, with each event resulting in the increment or decrement of molecular species by
integer amounts (Hasty and Collins, 2002; McAdams and Arkin, 1999; Rao et al.,
2002; Raser and O’Shea, 2005). As many crucial biological species including RNA and
DNA are present in small quantities (ones or tens) per cell, these stochastic events can
have measurable effects. The amplified effect of fluctuations in a molecular reactant, or
the compounded of fluctuations across many molecular reactants, referred to as
“molecular noise,” often can accumulate as an observable phenotype, endowing the
cell with individuality and generating nongenetic cell-to-cell variability in a population.

Observations of such nongenetic variation date back to the 1940s when it was
determined that bacterial cultures were not completely killed by antibiotic treat-
ment—a small fraction of cells “persist” (Bigger, 1944). The insensitivity to anti-
biotics exhibited by these persister cells was nonheritable (Moyed and Broderick,
1986), and persister cells spontaneously switched back to the nonpersistent state,
regaining sensitivity to antibiotics. The advent of optical measurement methods,
which monitor fluorescent reporter expression in single cells using flow cytometry
or fluorescence microscopy, further illustrated that isogenic populations of cells can
show great variability or “noise” in their gene expression (Cai et al., 2006; Thattai
and van Oudenaarden, 2001). By measuring the fluorescence intensity of single
cells, probability distributions representing variability in a process across a popula-
tion of cells can be constructed (Fig. 1). A broad distribution indicates a large
dispersion of expression levels across the population. Recently, genome scale assays
of variability in gene expression revealed that specific types of genes—those
involved in energy metabolism and stress response—showed heightened variability
(Bar-Even et al., 2006; Newman et al., 2006b). These data were used to lend support
to the hypothesis that variability in protein content among cells might be a regulated
trait that confers a selective advantage through a “bet-hedging” strategy with respect
to future environmental shifts (Avery et al., 2007; Blake et al., 2006). Such
stochastic fate specification has also been postulated in other contexts. For exam-
ple, each cell in the mouse olfactory bulb must select only one olfactory receptor
to express, and is thought to implement this decision by stocastically selecting to
express a gene which then mediates global repression of the other ~1300
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Fig. 1 Biochemical noise. (a) Distribution of a cellular component A for large cell—cell variability
(blue, noisy) and small cell-to-cell variability (red). (b) Fluctuations of A as a function of time in one cell.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this book.)

receptors (Serizawa et al., 2003). A similar model exists in two precursor cells in
Caenorhabditis elegans, called Z1.ppp and Z4.aaa. In 50% of embryos, Z1.ppp
differentiates into the AC cell, whereas Z4.aaa adopts the VU cell fate. In the other
50% of embryos, the opposite occurs. Through a random process, one cell adopts
the VU cell fate, and then inhibits that choice in the other through a Notch
signaling mechanism (Karp and Greenwald, 2003).

Variability, however, is not always beneficial. In the cell cycle for example,
numerous feedback loops exist to ensure a tightly regulated and orderly transition
through DNA replication and cell division (Tsai et al., 2008). Similarly, in the
Drosophila embryos, variability in the pattern of the bicoid protein results in
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undesirable developmental alterations, and studies suggest that the system is poised
at the fundamental limit of the precision it can achieve (Gregor et al., 2007a, b). In all
these cases, understanding the roots and consequences of variability in the cell
through careful measurements and quantitative modeling was of paramount impor-
tance for understanding the functioning of the underlying biological networks.

II. The Need for a Stochastic Modeling Framework

Most often than not, mathematical models represent the dynamic operation of
cellular networks as deterministic processes with continuous variables. This contin-
uous and deterministic approach may be warranted when large numbers of mole-
cules justify a continuous valued concentration description. This is, for example, the
case in metabolic networks where the concentration of reactants is in the millimolar
range. There, chemical reactions can be modeled as reaction diffusion processes, and
their dynamics described by partial differential equations (PDEs). When the reacting
chemical solutions are well-mixed, these PDEs can then be well approximated with
ordinary differential equations (ODEs).

There are many situations where this continuous deterministic modeling fails and
stochastic models are necessary to capture biologically relevant properties of the
systems under study. One such scenario is one where continuous models fail to describe
quantitatively the behavior of a system because key regulatory molecules are found in
very small integer populations. For example, the Lac operon in Escherichia coli is
regulated by lactose binding to the repressor Lacl, which needs to be inactivated to allow
for transcription of the operon. In this system, the key regulatory event in sensing lactose
is the stochastic expression of a very small number of copies of the lactose permease
lacY. As a result, the switching rate of E. coli to a lactose metabolizing state is governed
by small number fluctuations of lacY (Choi et al., 2008), necessitating a discrete
stochastic model of the chemical species involved in this regulation.

A second situation where stochastic models are needed arises when fluctuations
induce dynamical behaviors, which cannot be captured even qualitatively using
deterministic models. For example, stochastic fluctuations in excitable systems
cause them to undergo large excursions away from their equilibrium point. Such
excitable behavior occurs in the prokaryote Bacillus subtilis when it transitions
between low- and high-“competence” states that have differential abilities to absorb
DNA from their environments. Periods of high competence occur stochastically
when the master regulators comK and comS exceed a certain concentration. After
an individual cell has passed the threshold, strong positive feedback loops drive the
cell toward competence, followed by a slower negative feedback loop, which
switches the system off after a defined period (Suel et al., 2006, 2009). These
dynamics occur nonsynchonously in a small population of cells, and therefore
cannot be recapitulated using a deterministic mode, which, in this instance, can only
settle into its only stable equilibrium. In contrast, accounting quantitatively for
stochastic variation in protein concentrations is needed to reproduce this behavior.
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ITII. Overview of Computational Approach

A quantitative modeling framework that takes into account the inherent stochas-
ticity of biochemical interactions occurring inside a cell should handle discrete
systems, should be adaptable to many different problems, and should be computa-
tionally tractable. A widely used such approach that we review in this chapter is one
developed to address the chemical kinetics of well-mixed homogeneous systems. In
this approach the cell is treated as a well-mixed bag of chemical species (Gillespie,
1977; Mcquarri, 1967). A model then probabilistically describes the chemical inter-
actions of a subset of these species as a Markov (memoryless) jump process. After
such a model is initiated from a defined state (in terms of the number of molecules of
different species), reactions are allowed to occur between the chemical species.
These reactions are represented by state transitions in a Markov chain, and transi-
tions occur in discrete steps after a random time period, with the change and the time
both depending only on the previous state. In this way, the transitions model the
change in the number of each type of biological molecule in accordance with the
stoichiometry of the chemical reaction (Fig. 2).

Fig. 2 Markov chain model for chemical kinetics. The states of the Markov chain are defined by the
numbers of biological molecules of each chemical species, labeled X, X5,. . ., Xy. Transitions between
these states model the individual chemical reactions which may occur in the system. The transition
corresponding to the chemical reaction of type & is labeled by Ry. (For color version of this figure, the
reader is referred to the web version of this book.)
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The chemical master equation (CME) is a differential equation that governs the
time evolution of the probability for observing the Markov chain in a given state at a
given time. The CME is generally derived using the Markov property, by writing the
Chapman—Kolmogorov equation, an identity that must be obeyed by the transition
probability of any Markov process (Gillespie, 1992; Mcquarri, 1967). Although the
CME is straightforward to write, it cannot be analytically solved for any but the
simplest problems. Therefore, numerical simulations on a computer are the key tool
used for understanding the behavior of a system described by a CME. Monte Carlo
simulation techniques are routinely used. Specifically, in this context, an algorithm
known as the stochastic simulation algorithm (SSA, but more commonly known as
the Gillespie algorithm) is used to generate exact realizations (or “runs”) of the
Markov jump process (Gillespie, 1977). The algorithm generates time course tra-
jectories of the system states over a given time window, starting from a given initial
system state. Each such run is “exact” in the sense that it is an independent
realization from the true underlying process. However, each realization is also
stochastic and is therefore different for each simulation run. A construction of the
probability distributions of the underlying stochastic processes can then be done by
executing and compiling a sufficient number of such runs.

IV. Biological Insights from Computational Approaches

Cell-to-cell variability (molecular noise) is ubiquitous in the cellular world where
typical transcription factors can exist in as a few as 10 copies per cell and bind to
promoters of individual genes, which produce bursts of a few mRNAs. Although the
functional repercussions of this variability were observed in bacterial persistence as
early as 1944 (Bigger, 1944), it is only recently that this aspect of cellular physiology
has captured the imagination of both theorists and biologists. As a result, the last few
decades have witnessed many discoveries about how cells and organisms attenuate
or exploit their molecular fluctuations, and what implications these bear on cellular
phenotypes. Computational methods based on the formalism presented in this chap-
ter continue to play a central role in these investigations.

Cellular decision making has been one area where stochastic models have
made a crucial contribution. One of the earlier landmark works to apply the
Gillespie algorithm (Gillespie, 1977) for modeling a natural gene network
included a comprehensive model of the Lambda switch (McAdams et al.,
1998). This seminal work described how the Lamba phage balanced lytic and
lysogenic outcomes of bacterial infection and illustrated how stochastic molec-
ular events, originating from the random movement of molecules, can trigger
decisions on a much larger scale leading to divergent cellular fates. A flurry
of subsequent work used the same approach to investigate stochastic cellular
switching and decision making in a number of biological contexts. For example,
theoretical work illustrated that a population of cells capable of random phenotypic
switching can have an advantage in a fluctuating environment (Kussell ef al., 2005;
Thattai and van Oudenaarden, 2001; Wolf et al., 2005). Some of these predictions
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have subsequently been confirmed, showing that noise can aid survival in severe stress
(Blake et al., 2006) and can optimize the efficiency of resource uptake during
starvation (Suel et al, 2009) and survival in fluctuating environments
(van Oudenaarden et al., 2008).

In addition to their role in unraveling the functional repercussions of molecular
noise, computational methods that capture biological fluctuations have been instru-
mental in pinpointing their origins and the cellular mechanisms that modulate them.
Stochasticity in gene expression received special attention. There, the synergy
between quantitative measurements at the single cell or single molecule level and
appropriate quantitative models deepened our understanding of the processes involved
in transcription and translation and yielded some unexpected observations (Cai et al.,
2006; Chubb et al., 2006; Cluzel et al., 2005; Golding et al., 2005; Raj et al., 2006; Yu
et al., 2006). For example, it was demonstrated that transcription of genes in E. coli is
not as simple as RNA polymerases transcribing with a constant flux. Instead, the
process is highly variable and proceeds in bursts rather than continuously. The origin
of this behavior is still unknown, although possible candidates include global fluctua-
tions of chromosome supercoiling states and RNA polymerase availability. A discrete
stochastic framework accounting for all possible promoter states was also necessary to
interpret experimental measurements of stochastic expression from eukaryotic pro-
moters (Murphy ef al., 2007). Quantitative computational approaches of the type we
discuss in this chapter and high-resolution measurement technologies are poised to
further reveal the workings of these fundamental cellular processes.

Synthetic biology is a nascent branch of biological investigation where accurate
predictive modeling is of crucial importance. The aim of synthetic biology is to bring
together ideas from biology and engineering to design and build biological networks
that can achieve novel functions inside cells. It is now appreciated that the robust
operation of synthetic cellular networks requires an understanding of molecular
fluctuations, and that this understanding stems from rigorous probing of their sto-
chastic dynamics. Analysis of stochastic models of the type we will tackle in this
chapter has, for example, enabled the design and construction of synthetic oscillators
that are robust to expected cellular variability (Tigges et al., 2009).

V. Computational Methods

A. A Simple Example

In a simple model of transcription, a gene is transcribed to generate a mRNA at a
constant rate k, and each mRNA molecule is independently degraded at a rate y. The
mRNA copy number is then a random variable M(¥), which can assume positive integer
values m. These interactions can be written using chemical reaction notation as:

oXm

M2
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From a deterministic perspective, the mean mRNA copy number per cell across a
population can be described with the differential equation:
dM
—=k—yM
dt Y
At steady state, dM/dt =0 and hence the mean mRNA copy number is then
given by:

MSS — k /y

This result gives the mean mRNA per cell as a ratio of synthesis and decay
rates. Note that this mean value does not necessarily represent the number of
mRNA in any given cell. It is just the average expected value of mRNA at steady
state across the population.

In a stochastic context, we are concerned with finding the distribution of mRNA
numbers across a population of cells. That is, we want to document the number
of mRNA molecules in individual cells, and use this information to determine how
many cells in a population are expected to contain a given number of mRNA
molecules. To do this, we begin by writing an equation governing the time evolution
of p(m, t), the probability that M(¢) = m. We can start with p(m, ¢ + dr), the probability
that the system achieves m mRNA molecules at time ¢+ dt. This probability is
intuitively computed by enumerating the number of scenarios through which this
outcome could be achieved. For example, the system could achieve m molecules at
time ¢ + dt if it had m — 1 molecules at time ¢, and then one molecule is transcribed
during time interval dt. This probability is simply given by P(m — 1, ¢)kdt. Similarly,
the probability that the system has m + 1 molecules and loses one by degradation in
time dt is given by P(m + 1, £) (m + 1)ydt, whereas the probability of the system to
have exactly m mRNA molecules at time ¢ and not lose or gain any additional
molecules in the time interval dt is given by P(m, t)(I —kdt)(1—mydt). As a result,
P(m, t+ dt) can be written as:

P(m,t+dt) = P(m — 1,t)kdt + P(m + 1,¢)(m + 1)ydt + P(m, )
(1 — kdt)(1 — mydt) (1)
Multiplying out and rearranging terms in Eq. (1), we get:
P(m,t+dt) — P(m,t) = P(m — 1,0)kdt + P(m + 1,¢)(m + 1)ydt
—P(m, 1)(K + my)dt + ¢(d*) (2)
Dividing Eq. (2) by df and taking the limit as dt — 0, we get:
%P(m, t) =kP(m—1,t) + (m+ 1)yP(m + 1,t)dt — (K + my)P(m,t)dt ~ (3)

Eq. (3) is known as the CME. Although the derivation of the CME was illustrated
for this specific example, similar derivations can be done for any biomolecular
network described by a system of chemical reactions. Below, we provide a general
formulation of the CME.
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B. The General Formulation for Building Discrete Stochastic Models for
Biomolecular Networks Using the Chemical Master Equation

In this section we describe the discrete state, continuous time Markov process
model for well-stirred chemical reaction systems. First, we consider a system of
chemical reactions with N molecular species (S, Sy, .., Sy) occurring in a volume
V. We make two key assumptions. The first is that the system is well-mixed, that
is the probability of finding any molecule in the volume V is given by dV/V. In
many biological systems this is a reasonable assumption. For example, the length
of a bacterial cell is around 1 pm and the diffusion coefficient of a protein in vivo
has been measured to be on the order of 10 wm/s. Therefore, complete mixing of
the bacterial cytosolic protein pool can possibly occur on the milisecond to
second time scale (Konopka et al., 2006). However, the diffusion constant of
many proteins moving in 2D on membranes may be much less than the area over
which reactions occur, causing local depletion or enrichment of chemical species
that renders the well-mixed assumption invalid (Vrljic et al., 2002). The second
assumption we make is that the system is at thermal equilibrium. As a result, the
velocity v of a molecule moving due to thermal energy is given by the Boltzman
distribution:

m 2
_ —(m/2kgT)v
S =\ 2kt

where T'is the constant system temperature. We use the state X (r) € Z%/ to denote
the vector whose elements X;(¢) are the number of molecules of the ith species at
time ¢. If there are M elementary chemical reactions that can occur among these N
species, then we associate with each reaction r; (j=1,...M) a nonnegative
propensity function a; defined such that a;(X(7)) + o(7?) is the probability that
reaction 7; will happen in the next small time interval (¢, t+ 1) as v — 0. The
polynomial form of the propensities a;(x) may be derived from fundamental
physical principles under certain assumptions (Gillespie, 1977). If r; is the
unimolecular reaction S; — product, then a quantum mechanical argument dic-
tates the existence of some constant ¢; such that c¢;dt gives the probability that any
particular S| molecule will transform into product in the next infinitesimal time
dt. If there are currently n; such S; molecules in the system, then the probability
that one of them will undergo the reaction in the next dt is n,c;dt. Therefore, the
propensity function of this unimolecular reaction is a; = n;c;. By contrast, if 7; is
a bimolecular reaction of the form S; +S, — product, then kinetic arguments
can be used to assert the presence of a constant c; such that c;dt is the probability
that a randomly chosen pair of molecules S; and S, will react in the next
infinitesimal time interval d¢. Therefore, if n; molecules of S; and n, molecules
of S, exist in volume ¥, then a reaction r; will occur in the next dt with a
probability a;dt = nn,c;dt (a; is again called the propensity function of this
reaction). Propensity functions for different types of reactions are summarized
in Table 1.
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Table I

Stochastic Reaction Propensities

Reaction Propensity a;(x)
0% product C;

S; % product ci;

S; + ;% product cinn;

S; +8; % product ¢ ni(ni—1)

The occurrence of a reaction r; leads to a stoichiometric change of ¢, for the state X
of the reactants involved. ¥¥; is therefore a stoichiometric vector that reflects the
integer change in reactant species due to a reaction r;.

It is useful to define these quantities:

Probability that reaction r; fires one in [¢, ¢ + dt] = a/(x)dt + o(dr)

Prs\)/[bablhty that no reactlon in the system fires in [t ¢+ dt] =

1 — 3" a;(x)dt + O(dt*)
=1

P;Obability that more than one reaction fires in [¢, ¢ + df] = O(dt*)

As in the simple example above, the CME for this system can be written by
inspection using these quantities. Specifically, the probability of achieving state
X =x at time ¢ + dt, p(x, t + df), is the sum of the following terms:

plx,t+dt) = p(x,1) I—Za, )dt + O(dr?) —l—Z[p Ya;(x — 0;)dt

- +0(d?)] + O(dt*) (4)

The first term in Eq. (4) is simply the probability that the system was already in
state x in terms of the number of its molecules for different species, and remained in
that state with no reactions occurring during d¢. The second term is the probability
that the system was a vJ; step away from state x, and then was brought into that state by
the occurrence of a reaction. Obviously, one has to account for all the reactions that
can drive the system into that state, hence the summation.

Rearranging Eq. (4) we obtain:

M
px,t+dt) — p(x,t 1) a(x)dt + Z[p Ya;(x — 0;)d1]

J=1
+0(dP) (5)
Dividing Eq. (5) by dt and taking the limit as dt — 0 gives the differential form

D) N e 9P — B — 4
_Zaj(x 9))P(x — 9;) — a;(x)P(x, ) (6)
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Eq. (6) is the CME for a general set of chemically reacting species in a constant,
well-stirred volume.

C. Stationary Solutions of the CME

The stationary (steady state) distribution of the CME is solved for by setting
dP(x, t)/dt = 0. For the simple model of transcription described by the CME in
Eq. (3), this translates to: kp(m — 1) + (m + )yp(m + 1) = (K + my)p(m)

Solution of this balance equation can be done by induction. We observe that:

kp(1) =2yp(2)

kp(m — 1) = myp(m)
As a result, p(m) can be expressed as a function of p(0) as:

K\ 1
pin = (£) 2p00) )

We can solve for p(0) from Eq. (7) using the fact that »,,p(m) = 1. Therefore,
1=, (k)" -Lp(0) = p(0). As a result, p(0)=e“" and p(n) = e~*(@"/m")
with =2 k/'y. This corresponds to a Poisson distribution with equal mean and variance
nw=o"=a.

This model has recently been validated using RNA fluorescence in sifu hybrid-
ization (FISH) for ~100 well-expressed bacterial genes. These measurements con-
formed reasonably well to the predicted Poisson distribution, showing a relationship
w=1.607 (in contrast, protein expression in Saccharomyces cerevisiae scales as
w=12000? (Bar-Even et al., 2006)). However, the subtle quantitative deviation
from the Poisson relationship also suggested that other processes beyond simple
production/degradation model might be at play to account for all the variability
occurring in bacterial gene expression (Taniguchi et al., 2010).

In general for a typical biological problem with several species and parameters
neither the time evolution nor the stationary distribution described by the CME are
analytically solvable. Therefore, one has to resort to numerical techniques to deter-
mine these quantities through sample path computations.

1. The Stochastic Simulation Algorithm: Generating Sample Paths

The approach here is to run a simulation describing the fluctuating behavior of a
set of interacting chemical reactions in a single cell over time, and then to repeat this
procedure multiple times to build an ensemble of behaviors across a population of
cells.
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To each of the chemical reactions r,(j =1, ..., M) occurring among species
(81, S8, ...,SN) in a well-stirred volume, we attribute a random variable 7;
defined as the time to the firing of the next reaction 7;. Based on this formula-
tion, 7; is exponentially distributed with parameter a;(x) (a; is the propensity
function of this reaction). It can be shown that the time to the next reaction,
defined as 5}41e random variable T =min {7;} , is exponentially distributed with

parameter »_ a;(x). The random variable representing the index of the next
. =1 . . -
reaction to’occur p = argmin {z;} can also be shown to be uniformly distributed

M
with (u =j) = a;(x)/ > a;(x). Using these quantities, one can then simulate the
=1

. J=

system with the four simple steps:

Initialize time ¢, and state x,

Draw a sample 7 from P(7), the distribution of t

Draw a sample & from P(u), the distribution of u

Update time ¢ ¢ + 7 and state xx + [ and repeat if final time is not reached.

This method is known as the SSA, and belongs to a wider class of numerical
techniques known as Kinetic Monte Carlo algorithms. Every run of the algorithm
above will generate a sample path of the stochastic process described by the CME
(see for example Fig. 1(b)). To generate the probability distributions, one can run a
large number of such sample paths.

D. Moment Computations

The CME is an equation for the probability distribution and can therefore be used
in a straightforward manner to derive an expression for the evolution of the mean and
higher order moments of these distributions. Simply put, for the first-order moment,
E(X;), we can multiply the CME by x; and then sum over all values of x. That is, E[X;]
= Xx;p(x, £), and (d Xx;p(x, t)/dt) = (dE[X;])/df). Similarly, for the second moment £
[X:X;], we can multiply the CME by x;x; and sum over values of x. If we define
AX) =[a;(X), a(X), ....au(X)]" as the vector of propensity functions, and
S=[thv,.... 0] as the stoichiometry matrix, then we can derive (using some
straightforward algebraic manipulations that we will omit here) the following equa-
tions for the mean and second-order moments:

dE[X]
dt

= SE[A(X)] (8)

dEXXT)
dt
1. Moment Equations for a System With Affine Propensities

= SE[AX)XT) + E[XAT(X)]ST + S diag(E[A(X)])ST 9)

An especially tractable form of the moment equations derived above arises when
the propensity functions are affine, that is 4(X) = WX+w,, where Wis an N x N
matrix and wp is an N x 1 vector. In this case, E[4(X)] = W E[X] 4+ w, and
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E[AX)XT] = W E[XXT] + w,E[XT]. Replacing these expressions in Egs. (8) and
(9) above gives the moments equations:

dE[X
% = SWE[X] + Sw, (10)
EXxxT
% = SWEXX") + EXXT\W'ST + S diag(WE[X] + w,)ST

+SwoEXT] + E[X]w,” ST (11)

Eq. (11) is for the uncentered second moment. The covariance matrix (containing
the centered second-order moments) is defined as C = E[(X — E[X])(X — E[X])"].
Therefore, an expression for its time evolution can be derived by manipulation of
Egs. (11) and (12) to give:

dc ToT : T
2= SWC+ CWw*'S" + Sdiag(WEX] +w,)S

The steady state means and covariances can be obtained by solving the linear
algebraic equations corresponding to setting (dE[X]/dr) = 0 and (dC/dr) = 0. LetX =
lim;_ E[X (¢)] and C = lim,_, C(t). Then,

SWX = —Sw, (12)
SW C+ CW'ST + Sdiag(WX +w,)ST =0 (13)

Now, if we define M =SW, B = S\/diag(W)_(—i-wo), and D = BB’ then the
steady state covariance given by Eq. (13) becomes

MC+CM"+D=0
This is the well-known Lyapunov equation, which characterizes the steady state
covariance of the output of the linear dynamical system

dy
— =MY + Bw
dt

where w is the unit intensity white Gaussian noise.

E. An Example Where Calculations of Means and Covariances
Generated Rich Biological Insight

Consider as extension of our initial model of transcription to include translation of
a protein product from an mRNA (Figure 3). mRNA and protein can also decay with
first-order kinetics. The simplest representation of this module contains four bio-
chemical reactions:

R : 0 mRNA
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Protein (n,)
QU = ¢

kp

MRNA (n4) .
/\/ —
/\/

[

DNA

Fig. 3 Simple transcription and translation module. (For color version of this figure, the reader is
referred to the web version of this book.)

R, : mRNA LN
k
R; : mRNA —p>pr0tein + mRNA

Y,
R4 : protein L0

If we denote the number of molecules of mRNA by X;(¢) and that of the protein by
X, (1), then X(¢) = [X,())X2(£)]". Also, the stoichiometry matrix is given by:

1 -1 0 0
S‘[o 0 1—1}

Although the propensity vector is given by:

ks 0 0 k]
X |y 01X, 0|
AX)=1x | = [k o [X2]+ o | = WX +w
VpX2 0 7 0

Therefore, M = SW = [_k)’r (11/ } and Swy = [k’ . As a result, the steady
P P

0
k,
state as given by Eq. (12) is: X =—-M'Swy = J];rk .
phr

YpVr
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The steady-covariance matrix can also be computed using Eq. (13). Specifically,

2%, 0
o 2ok

Vr

BBT = S diag(WX + w,)ST =

As a result, the steady state covariance matrix C is given by:
k. kyk,

v v (Ve +7,)
Kok kke |k

ey +v,) Vp¥e Yr + 9,

(14)

)

Notice that for the mRNA in Eq. (14), we have exactly recapitulated the result
derived based on the exact solution of the CME above, namely that its stationary
distribution has an equal mean and variance given by £,/y,. The mean of the protein is
givenby: X, = (kyk,/v,y,), while its variance is Coy = (kpk,/v,v,)(1 + (kp/ (v, +
¥»)))- Therefore, the coefficient of variation for the protein (a unitless quantity to be
intuitively thought of as a normalized standard deviation) is given by:

— 1/2
Cpn 1 ky
CV=—"odm7m=—"=xo1[1+ 15

X2 \/Xz ( yr+yp ( )

This equation confirms our intuition that as the number of molecules increases,
the CV (“noise”) of the system would decrease. Most importantly, it assigns a very
specific pattern for this decrease in that it should follow an inverse square-root
function of the mean with a scaling constant dependant on the translation rate of
the mRNA and decay rates of the protein and mRNA. Experimental investigations of
noise in gene expression of a large set of genes in the yeast S. cerevisae and
bacterium E. coli subsequently confirmed this prediction (Newman et al., 2006a).
However, does a large X, necessarily imply a small CV?

Notice that:

1 k 1 k 1 k
2 _ P _ P P
2 Yr yp o, Yr yp Yy Yr yp
prr 245

_ YY1
k” yr + yp

(16)

Therefore, for some values of y,, y,,, and y,, C V2 in Eq. (16) can be arbitrarily large.
Simultaneously, through choice of k,, X = (k,k,/y,y,) can be set independently of
CV? to be arbitrarily large. Therefore, large mean does NOT necessarily imply small
fluctuations. This model of gene expression predicts that decreased translation rates
should decrease noise in gene expression, a result that was confirmed experimentally
(Ozbudak et al., 2002). More generally this framework suggests cellular contexts
where noise might be expected to be particularly problematic. For example, this
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model predicts that when proteins are rapidly degraded and expressed at low copy
number, such as the cyclins in the cell cycle, high variability would ensue. Given this
insight, many recent investigations of the cell cycle focused precisely on what
control strategies implemented through interlinked positive and negative feedback
loops can compensate for this effect to provide robust noise free oscillations
(Tsai et al., 2008).

Exceptions aside, Eq. (15) and some of its variations have guided many investiga-
tions that delineated fundamental properties of noise in gene expression. Researchers
have used this equation to infer promoter, mRNA and protein dynamics based on
snapshots of protein distributions (see Paulsson (2005) for a review). Furthermore,
these analyses proved particularly useful in describing the effect of chromatin features
on gene expression. In one recent such study, a viral vector was used to integrate a
green fluorescent protein (GFP) reporter construct randomly in a mammalian cell line
and the CV of each integrant was measured. Fitting the data to a two-state gene
expression model similar to Eq. (16), with the addition that a promoter can transition
between OFF and ON states, suggested that the chromatin state of the integration site
affects the stability and productivity of the ON state, but not the frequency of
activation (Skupsky et al., 2010). It is worth noting here that these static snapshots
of noise in gene expression are not always sufficient to resolve all the parameters
involved in the process. For example, in the study mentioned above, these distribu-
tions were sufficient to determine the promoter activation frequency but not its active
duration. Dynamic measurements might be necessary to resolve such parameters.

F. Linearization of Macroscopic Dynamics and the Linear Noise Approximation:
Computing Approximate Moments for Nonlinear Propensity Functions

Although computation of first and second moments at steady state could be done
using an algebraic equation when the propensity functions that appear in the CME
are affine, no such calculation is possible when these propensity functions are
nonlinear as is the case for many biological reactions. The reason is rather simple;
close inspection of Egs. (10) and (11) reveals that in this case, every moment depends
on higher order moments, resulting in an infinite hierarchy of ODEs to solve. The
Linear Noise Approximation (LNA) is a procedure to truncate this hierarchy. Before
we present the LNA, we review selected parts of the standard treatment of linearized
dynamics around a steady state (Strogatz, 1994). First, we remind the reader that the
system of reaction rate equations describing the macroscopic behavior of the con-
centration of N biochemical species interacting through a set of M biochemical
reactions is given by the coupled ODEs (Cornish-Bowden, 1979):

dx
dt
where x(7) = [x,())x2(?) . . . xp(#)]” is the vector of macroscopic concentrations, and

Sis the N x M stoichiometry matrix. If a steady state X exists for the macroscopic
dynamics, it follows from solving the algebraic system of equations:

SA4(x) (17)
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0 = SA(x)

Linearization of Eq. (17) around the steady state vector ¥ = [X|Xz . . . .f,,]T leads
to a matrix equation for the deviations dx = [dx,0x, . .. dxy]” from ¥ given by:

d
E8x = Méx

M is the Jacobian matrix, with the elements:

[Si(x)]
bxk

Therefore, in compact notation M = § b’iix) | —s-

Going back to the stochastic representation, we assume that the distribution of
the chemical species is tightly distributed around its mean. We also assume that
x(1) = (X(®)/V) (where X(¢) is the mean of the distribution) is identical to the
solution ¢(¢) of the reaction rate equations (Eq. (17)) that describe the macro-
scopic concentrations of molecular species in the system. Notice that ¢(7) is a
vector of concentrations, while X(¢) is a vector containing the number of mole-
cules, hence the need for a volume scaling factor V.

More formally, let X() = Ve(f) + &(¢), where &() is the zero mean random variable
denoting the deviation from the deterministic term V() (Tomioka et al., 2004).
Expanding in Taylor series around ¢(#) in Eq. (10), we get

i =

|X:X

QA (Vx)

dE[X]_dV<p+dE[s] |
- dVx ¢

dt dt dt E(e) +0(%)  (18)

= VSA(p) + S

The assumptions on the distributions imply that O(¢%) can be neglected in Eq.
(18) above. Therefore, recovering the equation: ‘Z,—‘f = SA(¢). Furthermore, we
obtain:

dE[e] SbA(Vx)|
dt = d/x ¢

Rewriting Eq. (11) similarly in terms of Taylor series expansion and truncating
the O(¢?) terms generates the following equation for the time evolution of the
noise covariance matrix C, = E[e¢’] — E[¢]E[¢]:

dC, dAD(Vx) |
dt Wx ¢

In Eq. (19), we defined M = S(A(Vx)/dVx)|—, as the Jacobian matrix and
D =S diag[A(V)]S”. Now, we have the closed simultaneous questions for the
time evolution of mean and covariance of the random fluctuations around the
macroscopic solution. We assume that the macroscopic solution is stable around
@(t). That is, the eigenvalues of the Jacobian matrix M are negative for all ¢. This
assumption is necessary to justify the linearization.

Ele]

= M()C, + C:M" (¢) + D(Vo) + Elg] (19)
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We also assume that the macroscopic rate equations converge to a stable steady
state @. Under these assumptions, there exists a distribution around @ with mean
E[e] =0 and covariance matrix C, that satisfies the following equation:

M(@)C +CM" (@) +D(Vg) =0 (20)

Notice again that Eq. (20) is a Lyapunov equation, with M (g) being the Jacobian
matrix obtained by linearizing the system around its macroscopic steady state.

In summary, one can obtain the covariance matrix of this distribution around a
macroscopic steady state by taking the following simple procedure:

Find the stoichiometry matrix S and the propensity vector A(X)

Find a stable equilibrium of the reaction rate equations of the system

Calculate two matrices M (¢) and D(V @)

Solve Lyapunov equation (Eq. (20))

Above, we have presented a multivariable and compact derivation of the LNA.
Multiple forms of this derivation exist under alternative names such as the system
size expansion (Elf and Ehrenberg, 2003; Kampen, 1992).

Due to its minimal computation costs, the LNA makes rapid analytical investiga-
tion of noise features for different models and parameter sets possible. For example,
LNA analysis of all possible three node networks over a wide range of parameter sets
has recently been used to show that both positive and negative feedback motifs can
buffer noise from an upstream node, but that only positive feedback loops can do so
while maintaining network responsiveness. This insight was confirmed by a detailed
analysis of nitrogen metabolism in yeast, which suggested that coupled positive
and negative feedback in this system may indeed act to buffer noise (Hornung and
Barkai, 2008).

G. Other Closure Techniques for the Moment Equations

As discussed above, the solution to the CME can be expanded in a Taylor series
about the macroscopic deterministic trajectory. The first-order terms correspond to
the macroscopic rate equations, and the second-order terms approximate the system
noise. Variations on this procedure exist. For example, mass fluctuations kinetics
(MFK) calculations take a similar approach to the LNA except that the computation
of'the mean is coupled with that of the variances (Gomez-Uribe and Verghese, 2007).
Therefore, the MFK approach allows one to capture situations where the mean of the
stochastic distributions may deviate from the solution of the macroscopic rate
equations. This is particularly important for systems that exhibit emergent stochastic
phenomena such as, for example, excitability (Suel ez al., 2006, 2007) and stochastic
resonance or focusing (Paulsson ef al., 2000).

Other moment closure techniques proceed by assuming specific probability dis-
tributions for the underlying stochastic processes, and then using this assumption to
express higher order moments as a function of the lower order ones to effectively
truncate the dynamics. This has been done for well-known classes of distributions,
such as normal (Whittle, 1957), lognormal (Keeling, 2000), Poisson binomial
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(Nasell, 2003). Moment closure techniques that do not make explicit assumptions
about the shape of the distribution also exist. One such moment closure approxima-
tion known as separable derivative matching (Singh and Hespanha, 2007) approx-
imates the (N + 1)th moment as a polynomial function of the first N moments. This
approach matches time derivatives between the approximate closed system and the
exact nonclosed system at the initial time #, and the given initial conditions. This
allows the exponents (which remain constant over the simulation) in the polynomial
function to be uniquely determined, and the solution turns out to be consistent with
the underlying distribution probability distribution being lognormal. It is worth
noting here that the derivation of the moment equations implicitly assumes the
presence of a single macroscopic steady state. Hence, the distributions are unimodal
and the process is well characterized by the first few moments. However, problems
that exhibit multimodal distributions will require many higher order moments, and
the applicability of these methods may quickly degrade. Usually, the choice between
accurate numerical approaches and approximation analytical approaches (such as
the LNA and moment closure techniques) is done on a case-by-case basis to balance
computational cost versus accuracy.

VI. Open Challenges

Stochastic modeling of biological dynamics, especially at the cellular level, is
increasingly making its way to the mainstream of quantitative biology investigation.
The CME and its accompanying SSA have proven to be invaluable computational
tools for such studies. There are, however, many challenges that need to be addressed
in order to make stochastic modeling a widely applicable tool for realistic biological
problems. Below, we discuss some of these challenges and recent developments in
the literatures to address them.

A. Efficient Stochastic Simulation and Analysis for Systems Evolving
at Disparate Temporal and Spatial Scales

For many cellular networks of biological importance, the chemical reactions occur
at significantly different rates. As a motivating example, consider gene regulation in
the bacterium Escherichia coli. There, a typical time scale for mRNA transcription is
on the order of minutes, whereas the time scale for protein degradation/dilution is on
the order of an hour (Alon, 2007). This suggests that the protein concentrations do
not depend strongly on the instantaneous number of mRNAs but rather on their
average over time. Even more drastically, posttranslational modifications of the
protein (e.g., phosphorylation) often occur on the time scale of seconds. These
disparate time scales in the chemical reactions pose great challenges for efficient
numerical simulation of these processes. These challenges arise from having to
resolve the stochastic dynamics on the fastest characteristic time scales of the
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system. Take for example a model in which a kinase activates a transcription factor
by phosphorylating it, while a phosphotase removes the phosphate. We are interested
in understanding the fluctuations in the expression of the gene that is regulated by the
transcription factor. It is often the case that the competing phosphorylation and
dephosphorylation reactions occur rapidly (fast reactions), whereas gene expression
is relatively slow. In this situation a stochastic simulation of the system will spend
most of its computational time fruitlessly adding and removing phosphates from the
transcription factor and relatively little time on reactions that result in gene expres-
sion, our actual interest.

Multiple approaches have emerged to address this problem. On the analytical side,
the strategy is often to derive reduced models by explicitly representing the chemical
species having dynamics with relatively slow characteristic time scales while elim-
inating representations of the chemical species having dynamics with relatively fast
characteristic time scales (Atzberger et al., 2011; Cao et al., 2005; Haseltine and
Rawlings, 2002; Rao and Arkin, 2003). Roughly speaking, these methods parallel
quasi-steady state approximations for deterministic chemical kinetics where a subset
of species is assumed to be asymptotically at steady state on the time scale of
interest. One commonly used example is the Hill function (a[ TF/(TF + Kd)]), which
describes the expression of a gene for a given concentration of a transcription factor
(TF), affinity of the transcription factor for the promoter (K,), and maximal activa-
tion (a). This expression is derived using the assumption that transcription factor
binding and unbinding events are rapid relative to the rate of gene expression, and so
one can approximate them as an average occupancy rather than explicitly model
every individual event (Nemenman et al., 2009).

On the numerical side, several approximate methods have been developed to
speed up simulations while sacrificing some of the exactness of the SSA. The basic
idea behind these approximate methods is that instead of simulating a single reaction
per step, a number of reactions can occur in each simulation step. These approximate
methods are known as leap methods including the 7-leap method (Gillespie, 2001;
Gillespie and Petzold, 2003), the binomial t-leap method (Chatterjee et al., 2005;
Rathinam and El Samad, 2007), and the K-leap method (Cai and Xu, 2007).

Despite such productive work on the subject, the efficient analysis and simulation
of stochastic cellular dynamics for realistic problems is still very difficult. For
example, there is little theory that can provide reassurance about the accuracy of
the approximate SSAs in challenging scenarios. Furthermore, quasi-steady state
approximations of stochastic fast scales are done based on intuition and assumptions
derived from deterministic chemical kinetics. For these methods to be broadly
applicable, they need to be placed on more solid theoretical footing in terms of
the assumptions that can and cannot be made in a stochastic context and rigorous
proofs need to be generated for their accuracy in different realistic contexts.

The holistic understanding of biological systems often involves the probing of
cellular biochemical networks in the context of the cell, of cells in the context of a
tissue, and of a tissue in the context of the organism. How to account for and move
between these spatial scales remains an open problem for stochastic modeling. This
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“multiscale” problem is of poignant relevance to pharmacological studies, which
need to integrate effects of small molecules therapies at the single cell level with
global metabolic processes within the body such as prodrug activation, degradation
of the active molecules, and off-target toxicities (Eissing et al., 2011).

B. Efficient Spatiotemporal Simulations

Previous sections cover the stochastic algorithms for modeling biological path-
ways with no spatial information. However, biological networks in practice
consist of components that interact in a three-dimensional space and are not
necessarily distributed homogeneously as they diffuse between different cellular
compartments. For example, even within E. coli (the prototypical cell-as-a-bag
modeling system) membrane invaginations can dramatically alter the diffusive
properties of molecules (Weisshaar et al., 2006). In eukaryotic neuronal cells,
axons can be meters long raising immense barriers to diffusive mixing. Thus, the
basic assumption of spatial homogeneity and large concentration diffusion may
be challenged in some biological systems. In this context, stochastic spatiotem-
poral representations are required.

Roughly speaking, discrete spatial stochastic simulations can be separated into
lattice and off-lattice particle based methods. In off-lattice methods, the Brownian
movements of the individual molecules are accounted for and all particles in the
system have explicit spatial coordinates (Bartol, 2002). At each time step, molecules
with nonzero diffusion coefficients are able to move, in a random walk fashion, to
new positions. In this case, the motion and direction of the molecules are determined
by using random numbers during the simulation. Similarly, collisions with potential
binding sites and surfaces are detected and handled by using only random numbers
with a computed binding probability. Particle methods can provide very detailed
simulations of highly complex systems at the cost of exceedingly large amounts of
computational effort.

For lattice methods, the two- or three-dimensional volume used to represent a
cellular compartment (organelles or membranes) is covered by a computational
mesh (Morton-Firth and Bray, 1998; Schnell et al., 2004). The lattice is then “pop-
ulated” with particles of the different molecular species that comprise the system.
Particles with nonzero diffusion coefficient are able to diffuse by jumping to an
empty neighboring domain. If the domain is assumed to accommodate only one
molecule, chemical reactions can take place with a certain probability among
molecules in adjacent domains. Another scenario is one in which subvolumes can
host many molecules, with well-mixedness assumed in each subvolume. In both
cases, diffusion steps are treated as treated first-order reactions, with a reaction rate
constant proportional to the diffusion coefficient (Ander et al., 2004; Baras and
Mansour, 1996; Elf et al., 2010; Stundzia and Lumsden, 1996). As a result, diffusion
can be treated as an additional chemical reaction, and one is back to the SSA
formalism.
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Many caveats of these methods exist. For example, the artificial nature of the
lattice may introduce lattice anisotropy (Ridgway et al., 2009). Furthermore, in
many physiologically relevant situations, molecular crowding can prevent reacting
molecules from reaching regions of the domain due to the high concentration
of macromolecules impeding their passage (Ridgway et al., 2009). A particularly
striking example of this is diffusive motion in the context of the eukaryotic nucleus
where densely packed nucleoli and hetrochromatin structures greatly reduce diffu-
sive rates, suggesting one mechanism whereby heterchormatin prevents active tran-
scription (Bancaud et al., 2009). Therefore, despite their conceptual appeal, these
spatiotemporal algorithms need to be updated to capture the full scope of biological
reality. Furthermore, even in their current approximate forms, these algorithms
require substantial and sometimes prohibitive computational power and have only
been successfully applied to small systems with finite number of molecular species.
As a result, many computational innovations are still needed to enable the quanti-
tative probing of the spatial stochastic dynamics of biological systems.

C. Parametrization and Sensitivity Analysis of Stochastic Models

Stochastic models of biological systems typically depend on a set of kinetic
parameters whose values are often unknown or fluctuate due to an uncertain envi-
ronment. These parameters determine the dynamic behavior of the model, and
changes in them may alter the system’s output in nonintuitive ways. Typically, many
of the parameters in a biological system have not been measured or are unmeasur-
able. For example, a typical assay for measuring the affinity of a transcription factor
for its promoter by gel shift will describe this interaction in terms of a disassociation
constant (K,;), which gives the ratio of binding and unbinding rates. A stochastic
model, however, requires explicit ON and OFF rates that are rarely available. In this
case, one strategy would be to estimate the ON and OFF rates under the assumption
that binding of two molecules is “diffusion limited.” However, a more commonly
encountered situation is one in which no direct measurement exists from which to
base a choice of parameters. In this case, it becomes imperative to establish that
specific choices for the value of these parameters do not substantially change the
model behavior of interest.

Assessing the change in a system output pursuant to perturbations in its kinetic
parameters is carried out using sensitivity analysis. Traditionally, the concept of
sensitivity analysis has been applied largely to continuous deterministic systems, for
example, systems described by differential (or differential-algebraic) equations.
Much of these analyses have focused on the effects of infinitesimal perturbations
of certain parameters. In deterministic chemical kinetics, the infinitesimal sensitiv-
ities are represented using the first-order sensitivity coefficients, given by
(Varma et al., 2005):

dux; (¢
50 = 250 a1
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where x; denotes that /™ output of the system at time ¢ (e.g., the concentration of
chemical species as given by Eq. (17)) and 6; is the jth parameter. This equation
assumes implicitly that the output x; is continuous with respect to the parameter 6;.
Using the definition in Eq. (21), dynamic evolution equations can be derived for
S;/(¢) and solved along with the original system equation. In the context of biological
systems modeling, sensitivity analysis has been indispensable to deduce important
system properties, such as robustness in an uncertain environment (Stelling et al.,
2004). In large networks, sensitivity analysis can pinpoint critical or rate limiting
pathways and aid in reduced order modeling. Despite their usefulness, these sensi-
tivities report on changes of model behavior changes as parameters change locally,
but do not address the outcome of large changes to parameters or simultaneous
perturbations to multiple parameters. Assessing the effect of large perturbations is
typically carried out numerically by recomputing the reaction rate equations for the
perturbed parameter values and comparing these to the nominal parameter values.
The most common approach for sensitivity analysis in stochastic systems resembles
the simulation-based strategy. Monte Carlo (SSA) simulations are run for various
values of the parameter whose sensitivity is of interest, and the variation in the
outcome of these simulations for a variable of interest, such as mean, quantified.
The sensitivity at time 7 to a finite perturbation 4 of a parameter 6 about its nominal
value 6 = 0, can be computed via a finite difference of the expected value, such as

EX(T, 60 + h)] — EIX(T, 60)]
h

Basically, one uses SSA to compute these expected values by generating many
samples of X(7, 6, + h) and X(7, 6y), usually using two independent streams of random
numbers to generate samples of X(7, 6y + /) and X(7, 6,). This is called the indepen-
dent random number (IRN) approach and has been recently used in combination with
the Fisher information matrix to generate several different sensitivity measures
(Gunawan et al., 2005). Evidently, Monte Carlo simulations need to be carried out
for the nominal and perturbed parameter value making this approach often compu-
tationally expensive. Furthermore, the use of IRNs usually results in a statistical
estimator with large variance, thereby increasing the computational effort as large
samples may be required. Recent work has shown that using the same stream of
common random numbers (CRNs) to generate samples of X(7, 6y + /) and X(7, 6,) can
typically result in an estimator with low variance and thus requires far fewer samples
(Rathinam et al., 2010). Approaches based on the Girasnov measure have also been
proposed to smooth the sensitivity estimates and reduce their bias (Plyasunov and
Arkin, 2006). Finally, more tractable but approximate approaches to computing
sensitivities of stochastic models have also been formulated based on the LNA
(Hornung and Barkai, 2008).

The application of sensitivity analysis, nonetheless, is still prohibitive for most
realistic models of stochastic cellular networks. This problem is further compounded
by the aforementioned challenge posed by large numbers of unknown model para-
meters, which need to be identified from data. Many parameter identifiability

S =
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analyses use the concept of sensitivity to determine a priori whether certain para-
meters can be estimated from experimental data and to search for these parameters
using iterative algorithms. Efficient computation of parameter sensitivities is there-
fore a topic of great interest and bearing on the applicability of stochastic methods,
and one where many challenges still lie ahead.

VII. Conclusions

Stochastic modeling methods are generating many important insights into the
operation and organizational principles of cellular networks. Challenges remain
before the full power of these methods can be unleashed in the study of many complex
biological dynamics. This is an area of great promise, and one where progress will
greatly deepen our understanding of the stochastic underpinnings of life.
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Abstract

Contractile force generation plays a critical role in cell adhesion, migration, and
extracellular matrix reorganization in both 2D and 3D environments. Characterization
of cellular forces has led to a greater understanding of cell migration, cellular
mechanosensing, tissue formation, and disease progression. Methods to characterize
cellular traction stresses now date back over 30 years, and they have matured from
qualitative comparisons of cell-mediated substrate movements to high-resolution,
highly quantitative measures of cellular force. Here, we will provide an overview of
common methods used to measure forces in both 2D and 3D microenvironments.
Specific focus will be placed on traction force microscopy, which measures the force
exerted by cells on 2D planar substrates, and the use of confocal reflectance micros-
copy, which can be used to quantify collagen fibril compaction as a metric for 3D
traction forces. In addition to providing experimental methods to analyze cellular
forces, we discuss the application of these techniques to a large range of biomedical
problems and some of the significant challenges that still remain in this field.

I. Introduction

Cellular traction forces have been shown to drive cell adhesion (Reinhart-King
et al., 2003), spreading (Reinhart-King et al., 2005), migration (Dembo and
Wang, 1999; Pelham and Wang, 1997), and extracellular matrix (ECM) deposi-
tion and remodeling (Lemmon et al., 2009). To migrate, a cell must undergo
changes in cellular force production to modify both its shape and its internal
tension to interact with the surrounding ECM, which provides both a substrate for
the cell to adhere to as it moves forward, but also a barrier through which the cell
must advance (Ehrbar et al., 2011). In most adherent cells, forward movement is
initiated by actin polymerization, causing a pseudopod to extend from the leading
edge of the cell. Cell extensions interact with the surrounding ECM and initiate
binding through transmembrane integrin receptors, forming focal complexes and
focal adhesions (Hynes, 2002). Contractile force caused by actomyosin contrac-
tion generates both intracellular tension and extracellular tension transmitted to
the substrate, ultimately causing the cell’s posterior focal adhesions to release and
allowing the cell to move forward (Lauffenburger and Horwitz, 1996). During
migration, changes in the cytoskeleton alter cell-matrix dynamics and cellular
force generation. These processes can also be altered in disease states. For
example, during malignant transformation, cellular forces have been shown to
increase (Paszek et al., 2005; Rosel et al., 2008). Because migration is funda-
mental to many essential biological processes including development, immune
response, inflammation and wound healing, and cells must exert force to migrate,
many groups have described methods to characterize force generation of adherent
cells (Dembo and Wang, 1999; du Roure ef al., 2005; Galbraith and Sheetz, 1997;
Harris et al., 1980; Tan et al., 2003).
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The earliest technique used to describe the traction forces exerted by cells was
developed by Harris and colleagues in the 1980s. In this landmark article, cells were
seeded on top of an elastomeric silicone rubber substrate (Harris et al., 1980). As the
cells adhered and migrated, they generated wrinkles within the substrate during
contraction. Although both the cells and the wrinkles they produced were easily
visualized, it was difficult to extract out quantitative information regarding the
cellular forces as the wrinkles were typically nonlinear and irregularly shaped.
Therefore, although informative as a probe of cellular forces, this technique yielded
only semiquantitative data in the form of number and length of wrinkles (Harris
et al., 1981). In later work using wrinkling substrates, cellular force data were
extracted by using flexible microneedles to exert a known force onto the substrate,
reversing the wrinkle caused by the cell (Burton and Taylor, 1997).

Building upon the work pioneered by Harris et al. in the early 1990s, the idea of
observing and measuring bead displacement in an elastic substratum, rather than
wrinkles, was introduced. A thin layer of latex beads was airbrushed over a non-
wrinkling elastic film created by cross-linking silicone oil to the sides of a rigid
vessel. This created a tightly stretched film upon which cellular forces transmitted to
the surface could be more directly detected through bead displacements (Lee et al.,
1994; Oliver et al., 1995). This technique had the advantage of being more sensitive
than the silicone wrinkling technique, in that relatively small forces (~20 nN) could
be detected based on bead movements. Additionally, the silicone oil could be cross-
linked to varying degrees to produce a range of substrate moduli. However, this
approach did suffer from some limitations. For instance, more compliant silicone
substrates were unable to completely recover from cellular deformation (Lee et al.,
1994). Moreover, these substrates were nonporous and poorly adhesive, and their
mechanical properties could not be sufficiently tuned to match the strength of the
majority of mammalian cell types (Dembo and Wang, 1999).

These limitations were overcome in the late 1990s with the advent of polyacryl-
amide (PA) hydrogels as a substrate on which to plate cells (Brandley et al., 1987;
Wang and Pelham, 1998). The mechanical and chemical properties of PA gels are
ideal for the study of cellular forces. First, similar to the earlier generation of silicone
films, PA gels are optically transparent, allowing cells cultured on them to be easily
imaged, and they can also have fluorescent markers embedded into them, allowing
the user to measure deformations caused by cell migration using standard fluores-
cent microscopy. More importantly, PA gels are elastic and will deform in direct
proportion to a broad range of applied force. Once this force is removed, PA gels
immediately and reproducibly recover to an unstressed conformation. Moreover, the
stiffness and ECM protein ligand density presented on the surface of PA gels can be
independently tuned, allowing for precise control over experimental conditions. PA
gels are also nontoxic, and create a more physiological environment than glass or
silicone rubber for short-term culture of a wide variety of adherent mammalian cell
types (Wang and Pelham, 1998).

The PA system was rapidly adapted for use in quantifying the traction forces of
adherent cells by Dembo and co-workers, giving rise to the technique of traction
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force microscopy (TFM), which we currently use in our own lab and is the primary
focus of this chapter (Dembo and Wang, 1999). TFM can be used to calculate the
traction stresses of individual cells based on the displacement of fluorescent bead
markers embedded within PA gels to produce sensitive, quantitative data character-
izing intracellular force generation (Reinhart-King ef al., 2003). The goal of this
chapter is to describe the basic theory underlying TFM and to describe in detail this
technique for quantifying cellular forces during 2D migration. Additionally, we will
examine the current state of the field, and discuss the current transitions from 2D to
3D TFM methods. We will describe a technique used in our own lab to visualize force
generation of cells embedded within 3D collagen matrices: confocal reflectance
microscopy. In summary, in this chapter we will describe (1) the steps to fabricate
substrates for TFM, (2) a protocol for acquiring and analyzing TFM data, (3) a novel
method for qualitatively assessing force generation in 3D collagen gels, and (4)
applications of the techniques described herein.

II. Overview of Method

A. Polyacrylamide Gel Substrates

Table I
Components required to synthesize polyacrylamide gels of stiffness 0.2-300 kPa.

As previously described, TFM in its current form utilizes a well-characterized PA
gel substrate system (Wang and Pelham, 1998). The most unique and useful property
of PA gels is the ability to independently adjust their mechanical and chemical
properties. The Young’s modulus (E) of PA gels is tunable simply by altering the
ratio of acrylamide to bis-acrylamide (for ratios used in our lab, Table I).
Additionally, the density of protein ligand available to the cell on the surface of

E Percentage of ~ Acrylamide Percentage of Bis-acryl- 250 mM MilliQ water ~ TEMED
(kPa) Acrylamide (mL) Bis-acrylamide amide (mL) HEPES (mL) (mL) (rL)
0.2 3.0 1.50 0.040 0.40 2.60 13.99 10
0.5 3.0 1.50 0.050 0.50 2.60 13.89 10
1 3.0 1.50 0.100 1.00 2.60 13.39 10
2.5¢ 5.0 2.50 0.100 1.00 2.60 12.39 10
54 7.5 3.75 0.175 1.75 2.60 10.39 10
10° 7.5 3.75 0.350 3.50 2.60 8.64 10
15 12.0 6.00 0.130 1.30 2.60 8.59 10
20 12.0 6.00 0.190 1.90 2.60 7.99 10
30 12.0 6.00 0.280 2.80 2.60 7.09 10
300 15.0 7.50 1.200 12.00 0.65" 0.00 10

a

Indicates PA gel stiffness used successfully with TFM.
Substitute 1 M HEPES buffer.
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the gel is controlled by reacting varying concentrations of ligand with a bifunctional
linker, which is added to the polymer mix. The ligand can be any protein or amino
acid sequence desired, as the cross-linker within the gel is designed to form a stable
amide linkage to any molecule with a primary amine group (Pless et al., 1983).
Given the mechanical and chemical flexibility of PA gels, they are useful to recreate
various physiological conditions as well as disease states in vitro, which will be
discussed later in the chapter (Califano and Reinhart-King, 2010; Rosel et al., 2008;
Yeung et al., 2005).

B. Traction Force Microscopy
1. Rationale

TFM is a technique that allows for the precise quantification of traction stresses
generated by cells adherent to an underlying two-dimensional substrate, most often a
PA gel (Dembo et al., 1996). As cells adhere to and migrate over sufficiently
compliant substrates, traction forces generated by the cell create deformations.
These deformations are detected by the inclusion of fiduciary markers (usually
submicron diameter fluorescent beads) within the PA gel that relax back to their
original position when the cell is either released chemically from the substrate (e.g.,
with trypsin) (Fig. 1A and B) or when it migrates away from the field of view during
a time-course study:.

e

= 1950 kPa

2 11 43 99 173 240 658 2230

IT| (Pa)

Fig. 1 Traction force microscopy is used to quantify traction forces in 2D. MDA-MB-231 cells were
seeded onto a polyacrylamide substrate (A). To quantify traction forces, fluorescent images are acquired
of the bead field beneath the cell during force generation (B, red) and after the cell has been released with
trypsin (B, green). An overlay of these two images indicates the regions of greatest bead displacement
(inset, white arrow). To calculate the most likely traction field causing the observed bead displacement,
the cell is first discretized into a mesh (C). Individual tractions are then calculated for each node of the
mesh (D). From these tractions, a color contour plot can be generated indicating regions of highest and
lowest traction stresses (E). Scale bar = 50 wm. (See color plate.)
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Experimentally, calculation of the substrate strain field requires images of the
bead field in both its stressed state (with the cell present) and relaxed state (without
the cell). The image of the beads in their relaxed state is typically captured after the
cell is removed and the beads in the field of view have returned to their “unstressed”
position due to the elastic nature of the PA gel substrate. The displacements caused
by the cells are computed by comparing the stressed and relaxed images of the bead
field.

The calculation of traction stresses is regarded as an inverse problem, that is,
measurements of substrate deformation are used to statistically compute the most
likely traction stress field that can give rise to the observed deformations. The
traction field is thus derived from numerical integrals to determine the maximum
likelihood tractions based on the displacement field. These tractions are tied to
chi-square and Bayesian statistics that iterate until convergence. TFM thus
involves both methods that determine the substrate displacements caused by
adherent cells and algorithms that convert these displacements into a traction
stress field (Fig. 1C-E). Although the precise details of TFM theory are dis-
cussed at length elsewhere (Dembo et al., 1996; Dembo and Wang, 1999), we put
forth here a brief summary describing key equations leading to the determination
of the traction stress field.

The theory of TFM is founded on the isotropic and linearly elastic material
properties of the PA gel. First, a basic stress—strain relationship describing homo-
geneous deformation of the PA gel is established in Eq. (1),

Oif = liiu (Sik + ﬁﬁnfsik) (1)
where o are the components of the stress tensor, ¢, are the components of the strain
tensor, E is the Young’s Modulus, v is the Poisson’s ratio, and §;; is the Kronecker
delta (Dembo et al., 1996; Landau et al., 1986). Next, the assumption is made that
our system is a longitudinal plate that is sufficiently thin, such that the deformation is
regarded as uniform over its thickness and the strain tensor is dependent only on x
and y (with the x—y plane being that of the plate or PA gel) (Landau et al., 1986). The
boundary conditions on both surfaces of the plate are then o1, = 0, where ny is the
normal vector. Because the normal vector is parallel to the z axis in this case, ;. =0
(ie. 0y.=0,.=0..=0). It is also important to note that because o, =0 at the
surface, the quantities o, 0,., and o.. must be small throughout the thickness of
the plate, and we will approximate them as zero everywhere within the plate
(Landau et al., 1986). These boundary conditions can then be substituted into Eq.
(1) to get the nonzero components of stress, Eqgs. (2)—(4),

Oxx =

m (Sxx =+ Ugyy) (2)
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If the plate is considered as a 2D elastic plane of zero thickness, then a displace-
ment vector d can be considered as a two-dimensional vector with components d,
and d,. If T and T}, are the components of the external body force per unit area of the
plate, then the general equations of equilibrium are Eqs. (5) and (6),

do 0o
h xx xy Tx _ 5
( 0x * ay ) + (5)
00y, 00y,
— 4 —= 7,=0 6

where /4 is the thickness of the PA gel. Next, if the stress components from Egs. (2) to
(4) are substituted in, the results are the equations of equilibrium in the form of Egs.
(7) and (8) (Dembo et al., 1996),

1 9%d 1 &d 1 &d
Eh al al Y 7, =0 7
{1—1}2 ax? Jr2(1—!—1}) 8)/2+2(1—U)8xay}Jr ()

1 &d 1 d 1
Eh Y 4 al T,=0 8
{l—u2 9?2 +2(1+U) 3x2+2(1—v)8x8y}+ 7 ®)

Because the response of the PA gel substrate to deformation is linear, the displace-
ment of the pth bead marker can be related to the traction field via an integral
transform, Eq. (9),

I = | [ gputm, — 075061 9)

where gg.(m,, — r) represent the coefficients of a Green’s tensor that give the substrate
displacement in the « direction at location m induced by a force in the g direction
acting at location r (Dembo and Wang, 1999). As the thickness of our PA gel substrate
(~70 wm) can be considered infinite compared to the greatest bead displacement
(~1 wm), the coefficients of gg, can be approximated using the Boussinesq theory
for an elastic solid in the half-space beneath the cell, Egs. (10)—(18),

l+v {(2(1 —V)r —x3) n 2r(vr — x3) —|—x§)x%}

g1 (10)

o 27TE }"(V—X3) r3(r—x3)2
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The functions for the coefficients of the Green’s tensor incorporate both v and £ of
the PA substrate (Dembo and Wang, 1999), which can be determined experimentally
(Boudou et al., 2006; Li et al., 1993). One technique for measuring the parameter £ will
be described in a later section (Lo ef al., 2000). Additionally, it is important to note that
Boussinesq theory predicts negligible coupling of in-plane displacements to out-of-
plane tractions at or near the surface of an incompressible substrate (i.e., g;3 = g23 = 0).
In this manner, bead displacement in the direction normal to the PA substrate is ignored
(Dembo and Wang, 1999).

To produce a traction image from the displacement data, the projected area of the
cell must be imposed onto the traction field (Fig. 1A). The cell is outlined with a
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series of points that generate a list of pixel coordinates defining the cell boundary.
These points define a bounded region that corresponds to the projected cell area. In
the TFM theory described by Dembo and Wang, the assumption is made that all
tractions occur within this domain (Fig. 1B). The outline of the cell is divided into a
quadrilateral mesh utilizing a paving algorithm (Dembo and Wang, 1999) (Fig. 1C).
The x and y components of the traction located at each node of the mesh can then be
determined (Fig. 1D), and a representation of the continuum of forces that occurs
over the entire mesh interior can be constructed (Fig. 1E).

Within the bounded domain the in-plane traction components are first approxi-
mated using standard bilinear shape functions, Hy(r), as in Eq. (19),

Ty(r) = TrgH(r) (19)

where T4 are now the components of the nodal traction vectors (Dembo et al., 1996;
Dembo and Wang, 1999). Next, for this mesh, any choice of Ty4 corresponds to an
allowable traction image. By substituting Eq. (19) into Eq. (9), this traction image
can make a definite prediction about the calculated marker displacements, Eq. (20),

dpe = do(m,) = Tkﬁ”é’aﬂ(mp — r)Hy(r)dridry = Akgpa Tip (20)

where the index p runs over all of the bead markers (i.e.,p=1, 2, ..., N,) (Dembo
and Wang, 1999). It is important to note that here, A4, depends only on the imposed
mesh, the location of the bead markers, and the material properties of the PA gel.
Next, the ability of this traction image to explain the observed bead marker
displacements can be quantified by using the chi-square statistic, Eq. (21),

X = (apa - dpa)sz;f = (&lpa _AkﬁpaTkﬂ)ZU;(f (21)

where glpa is the experimental displacement of the pth marker particle along the
a-coordinate axis, 0, is the error of d,,, and summation over all repeated indices is

implied (Dembo and Wang, 1999). Additionally, Dembo ef al. quantify the intrinsic
“complexity” of a traction image using the scalar invariant shown in Eq. (22),

A= J(aaTﬁ + 35Ta) (8uT + 8pTo)dr1drs (22)
Q

Again, by substituting Eq. (19) into Eq. (22), the complexity of the traction image
can be written as a quadratic form in the nodal degrees of freedom, Eq. (23),

C'2 = C,’ajﬁTiaTjﬁ (23)

where Cj,p are constants dependent on the geometry of the mesh (Dembo and
Wang, 1999). Finally, by combining Eq. (21) and Eq. (23), the Bayesian likelihood
of the T4 is found to be represented by Eq. (24),

Ly(Tgldpa) = exp[—(x* + 2¢%)] (24)
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where 1 is a positive real number determined by obtaining the simplest traction
image consistent with the given data set (Dembo and Wang, 1999). 4 is progressively
increased, and new values of x*and ¢? are found by minimizing the linear combi-
nation x> + Ac?. These new values are substituted into Eq. (21) and Eq. (23), becom-
ing ¥*> and ¢®. As / is increased, ¥ increases and ¢* decreases. Finally, once
X* &~ N, + /N, that threshold image is the simplest distribution of traction forces
consistent with the experimental data (Dembo and Wang, 1999).

Once solved, the magnitude and direction of traction forces, and other parameters
including the bead displacement vector field and strain energy density field may be
examined. For many cells types, the magnitude of traction forces is on the order of
~0.05-2 N (Califano and Reinhart-King, 2010; Gaudet ef al., 2003; Paszek et al.,
2005; Reinhart-King et al., 2003). It is important to recognize that others have used a
similar experimental system (PA gels embedded with fluorescent beads), but have
solved the inverse problem using Fourier’s method to solve the general equations of
equilibrium relating displacements to tractions (Butler ef al., 2002).

3. Calculating Substrate Displacements: Correlation-based Optical Flow

All current methods to calculate cell-generated traction stresses first require
calculation of the underlying substrate deformations. In TFM, substrate deforma-
tions are calculated based on the movements of beads embedded within the PA gel
substrate. While it is possible, in theory, to map individual bead movements by hand,
this would be cumbersome. To automate this process, Marganski et al. developed an
algorithm based on correlation-based optical flow, which has been refined since its
original description (Marganski et al., 2003b). This algorithm takes two images (the
stressed and relaxed bead field images described above) as the input. Bead tracking
is done by systematically scanning all pixels in the relaxed image to find the pixel
coordinates of the fluorescent beads (identified as strict pixel intensity maxima after
image intensity normalization). For each bead that is tracked, a box of pixels
centered on the local maximum intensity pixel is defined and the relative pixel
intensities in that box serve as a “fingerprint” for the tracked bead. This search
box is used to determine the coordinates of the corresponding “fingerprint” in the
stressed image. This process is iterated for every pixel in the image and is able to
determine the bead displacements with submicron resolution.

An important parameter considered when comparing the pixel coordinates
between two images from the same region of interest is the registration error
introduced into the images by the misalignment of the relaxed and stressed images.
This error is usually inadvertently introduced as rectilinear motion by mechanical
vibrations of the microscope stage or imperfect stage return during multipoint
acquisition of multiple fields of view. Rectilinear motion introduces a constant
vector on the displacements between images that would normally be absent in a
perfect experiment. A histogram of the raw displacements of tracked beads provides
an elegant way to identify and remove the registration error (the most frequent
constant vector tracked by the optical flow algorithm). The current TFM algorithm
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in use accounts for the presence of a translational, but not a rotational, drift.
Rotational drift is rarely introduced as long as the cell sample sits firmly in the
microscope stage, and the PA gel is not disturbed during trypsinization. Problems
encountered with correlation-based optical flow include occasional bead mistrack-
ing between images, which will result in erroneous displacement vectors. In the
majority of cases these displacement vectors are easily identified by a single large
vector pointing in an unexpected direction, and can be discounted. Additionally,
some cell types may also phagocytose beads from the substrate, which causes similar
tracking errors. Decreasing incubation time prior to TFM imaging can reduce the
occurrence of phagocytosis.

It should be noted that in addition to the correlation-based optical flow algorithm
described here, a number of other algorithms have also been developed that can be
applied to bead tracking for TFM, including algorithms based on digital image
correlation (Qin et al., 2007; Sutton et al., 1983) and, more recently, a combination
of particle image velocimetry (PIV) and particle tracking velocimetry (PTV) (Sabass
etal.,2008; Tseng et al., 2011). Digital image correlation is a widely used method for
the detection of optical displacements, and has undergone numerous refinements in
the last 20 years (Huang et al., 2009; Schreier et al., 2000). In digital image correlation,
markers are tracked by searching the matching pixel-matrix of intensities in a pair of
fluorescent images in order to numerically correlate a selected subset of markers.
Digital image correlation has recently been adapted for quantifying 3D tractions
exerted by cells on a 2D substrate (Franck ez al., 2011). PIV is a technique that has
been widely utilized to track bulk particle movement through fluid flow, which does
not generally require individual particle tracking. Recently, Sabass et al. have paired
PIV with PTV in a technique termed correlation-based PTV. PIV is first used to
determine the deformation of a PA gel on a coarse scale before PTV is used to segment
individual bead displacement. In contrast to the correlation-based optical flow algo-
rithm described above, several variations of these algorithms are available through
open source or free software, or else through commercial sources.

4. Key Assumptions

The calculation of traction forces is based on the Boussinesq equations, which
describe the relationship between the deformation of a material due to forces applied
to its free surface. In this regard, the elastic PA gel substrate is assumed to be
uniform, isotropic, and linearly elastic, and it is assumed that the inclusion of marker
beads in the substrate does not perturb this elastic behavior. The external loads acting
on the substrate surface are assumed to be solely tangential with negligible displace-
ments in the z-direction.

Inherent to TFM is the ability of cells to deform the substrate. This assumption
ultimately limits the range of substrate stiffness that is testable using TFM or any
traction method that requires the substrate to deform a detectable amount. Although
there is considerable variation between the strength of different cell types, TFM may
have an upper limit of £ ~ 10-30 kPa. At the other end of the spectrum, compliant
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substrates (<1 kPa) may not adequately support the weight of adherent cells and will
allow significant bead displacement in the z direction, disrupting the in-plane bead
marker displacements quantified in the TFM calculations. It is important to note that
recent work (Franck et al., 2011) has demonstrated that cells are able to displace
beads in the z-direction even on stiff substrates. These displacements are not
accounted for using the protocols and algorithms described in this chapter, intro-
ducing a small degree of error into the final calculation.

C. Alternative Methods for Measuring 2D Cell Tractions

In addition to TFM, several other techniques have been developed to quantify
traction forces during cell migration. In the late 1990’s, Galbraith and Sheetz developed
a micromachined device consisting of an array of lithographically patterned silicon
cantilever pads coated with ECM protein (Galbraith and Sheetz, 1997). This method
allows for the quantification of isolated subcellular tractions, and as a result is quite
sensitive, measuring stresses on the order of single nN/wm?. However, an individual
cell can only depress a limited number of cantilevers at a time, limiting the spatial
resolution of forces. Additionally, because the cantilevers can move in only one
direction, they can only be used to quantify traction forces in that direction. For cells
that do not cross the cantilever beam at a 90° angle, forces are calculated based on the
assumption that traction stresses are directed along only the long axis of the cell, which
is not necessarily always valid (Califano and Reinhart-King, 2010; Dembo and Wang,
1999). Moreover, production of the device requires an elaborate fabrication procedure
that requires specialized technology that may not be readily accessible for many labs.

The most commonly used alternative to TFM is the use of microfabricated post-
array detection systems (mPADs) (du Roure et al., 2005; Tan ef al., 2003). In this
method, cylindrical microposts are fabricated out of polydimethylsiloxane (PDMS),
and ECM protein is adsorbed to the top of the posts to enable cell adhesion. Traction
forces are based on the extent of deflection of the posts from their original position.
Post deflection can then be linearly correlated to the local traction forces exerted by
the cell using classical beam bending theory. In this system, the height of the
micropost can be varied to adjust the rigidity of the posts, and thus to adjust the
stiffness of the substrate sensed by the cell. Each post acts as an individual vertical
cantilever, sensing force at a discrete location beneath the cell. Moreover, unlike the
silicon cantilevers described above, mPADs are able to detect forces generated in all
directions of the x—y plane. A more detailed description of the fabrication process
and supporting theory and computation can be found elsewhere (Fu et al., 2010;
Sniadecki and Chen, 2007; Yang et al., 2011).

Although elastomeric microposts offer several advantages over the original sili-
con cantilever system, there are several disadvantages that are important to note,
especially when comparing this technique to PA gel-based TFM. First, there is
considerable controversy over the appropriateness of culturing cells on a topograph-
ical landscape which is very distinct from the native environment of mammalian
cells. mPADs restrict adhesions to distinct circular patches, imposing arbitrary
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constrictions on the size, shape, and location of focal adhesions, thus controlling
where and how the cell transmits force (Yang et al., 2007). Although this system has
been used to elegantly determine the amount of force that individual focal adhesions
can exert (Fu et al., 2010), it remains unclear how these calculations relate to the
forces actually transmitted in the native physiological environment. Additionally,
while the elastomeric posts may be more easily fabricated than the silicon cantile-
vers, and protocols have been published describing this process in great detail
(Yang et al., 2011), an advanced microfabrication facility is still required to repro-
ducibly fabricate the posts. PA gels, on the other hand, are easily produced using
standard laboratory chemicals and equipment.

Another significant limitation of mPAD technology is the lower limit of £ that can
be produced. Posts have been successfully fabricated with a lower limit of £ ~ 1.5 kPa
(Fu et al., 2010), which is considerably higher than that of PA gels (£ ~ 0.1 kPa),
although it should be fairly noted that performing TFM on PA gels of £ < 1 kPa has its
own limitations. PA gels can also be used to examine the effect of mechanical
communication of multiple cells through the underlying substrate (Califano and
Reinhart-King, 2010; Reinhart-King ef al., 2008), a technique that could not be done
using microposts, which effectively isolate cells from one another. On the other hand,
the ability to mechanically isolate cells can be advantageous. For example, microposts
were recently used to determine specific point forces at cell—cell junctions (Liu et al.,
2010). In summary, elastomeric microposts and PA gels each have their own distinct
advantages and disadvantages, which must be considered when determining the
appropriate system to use for quantifying traction forces in a given experiment.

D. Quantifying Cell Force in 3D

Like cells on 2D substrates, cells within 3D microenvironments encounter bio-
chemical, biomechanical, and physical cues that affect basic cellular processes such
as adhesion, spreading, and migration. As in 2D, these 3D cell behaviors are closely
tied to cellular biomechanics and the generation of cell forces. However, because of
the spatial complexity and dimensionality of the three-dimensional microenviron-
ment, both the control and manifestation of cell forces are likely more complex in 3D
(Dikovsky et al., 2008; Fraley et al., 2010; Gunzer et al., 2000; Mierke et al., 2008).
For example, while the interactions among traction forces and regulators of cell
migration such as cell adhesion, the cytoskeleton, and ECM deposition are increas-
ingly well characterized in 2D, there are many additional factors, including ECM
steric hindrance and proteolytic path-making, that are unique to cells within 3D
microenvironments (Wolf ez al., 2003). Such factors critically impact cell migration
and are also intimately tied to traction forces (Zaman et al., 20006).

1. Overview of 3D Methods

Avariety of techniques have been developed to assess single-cell tractions in models
that recapitulate the 3D in vivo microenvironment, and the majority of these methods
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rely upon microscopic visualization and tracking of either embedded beads (Fraley
et al., 2010; Poincloux et al., 2011; Shih and Yamada, 2010; Tamariz and Grinnell,
2002) or the structural components of the microenvironment (Friedl et al., 1997,
Hartmann et al., 2006; Kim et al., 2006). Briefly, cells are embedded within collagen,
fibrin, Matrigel, or synthetic hydrogel matrices or allowed to invade into 3D matrices.
To probe 3D cell tractions, the displacements of randomly dispersed, micron-scale
beads or ECM components are tracked over time or compared between the stressed
and relaxed states (as in 2D TFM) with widefield, confocal, or multiphoton micros-
copy. These displacement fields can be used themselves as quantitative metrics of 3D
cell traction forces or can be used to compute strain energy and traction stress fields.

2. Bead Tracking

A common technique to assess 3D cell traction forces is to track the displacement of
fluorescent beads embedded within a 3D hydrogel scaffold. The resulting strain maps
can be used to describe 3D cell contractility and traction-mediated matrix reorgani-
zation (Fraley et al., 2010; Poincloux ef al., 2011; Shih and Yamada, 2010; Tamariz
and Grinnell, 2002). To compute the traction stresses that give rise to the observed 3D
displacements, current techniques require that the mechanics of the hydrogel matrix be
well characterized and isotropic. Using a PEG hydrogel and confocal microscopy,
Legant et al. showed that cells exerted traction stresses ranging from 0.1 to 5 kPa and
that the strongest forces were generated primarily at the tips of long, thin pseudopodia
(Legant et al., 2010). Additionally, Maskarinec et al. used confocal microscopy to
quantify traction stresses in the z direction in fibroblasts plated on 2D PA gel sub-
strates, indicating that 3D forces may also play a significant role in 2D cell migration
(Franck et al., 2011; Maskarinec et al., 2009). These findings, which are based upon
many of the same principles and assumptions as 2D TFM, represent the most quan-
titative description of fully 3D traction forces to date. However, although the mechan-
ically defined synthetic hydrogels required for computation of numerical traction
stresses can be engineered to be degraded, modified, and remodeled by cells, they
often lack the fibrillar structure and full bioactivity of native ECM. Notably, these are
the very factors that impart complex mechanical properties to 3D matrices and are
normally involved in the critical mechanical and biochemical feedback networks that
determine many cell behaviors both in vivo and in natural fibrillar extracellular
matrices in vitro (Wolf and Friedl, 2009). For these reasons, there is presently increas-
ing interest in quantifying the functional outcomes of 3D cell traction by monitoring
the dynamic microstructure in physiologically relevant microenvironments rather than
translating measured strains into numerical traction stresses.

3. Matrix Tracking

The use of natural biopolymer matrices for 3D in vitro cell culture presents unique
opportunities and challenges to mechanobiologists: on the one hand, these matrices
are analogous to the microenvironment in which cells reside in vivo, and on the other
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hand, they are heterogeneous and mechanically complex. Importantly, use of such
in vitro tissue models allows multiscale interactions between cells and the fibrillar
matrix and cell behaviors such as native ECM deposition, ECM remodeling, path-
making, and path-finding, all of which have been shown to occur in vivo (Wolf and
Friedl, 2009; Wolf et al., 2003). Furthermore, microscopy techniques such as differ-
ential interference contrast (DIC) and confocal reflectance microscopy can be used to
visualize the dynamic fibrillar structural elements of these matrices due to differences
in refractive index between the fibrils and the surrounding media. As it is a functional
outcome of 3D traction forces and provides direct visualization of how mechanical
loads are bidirectionally transferred between a cell and its microenvironment, our lab
and others have used ECM reorganization as a metric of cell force generation in 3D
environments (Kim et al., 2006; Kraning-Rush et al., 2011; Pang et al., 2009).
Qualitative work with confocal reflectance and DIC microscopy has enabled the
visualization of ECM fibers during cell migration and demonstrated how cell-matrix
adhesions dynamically associate with the ECM, enabling remodeling (Friedl ef al.,
1997; Gunzer et al., 2000; Hartmann et al., 2006; Petroll et al., 2004). Recently, more
rigorous techniques have been developed to assess local ECM remodeling at the
single-cell level. Quantitative analysis of ECM fiber alignment around cell pseudo-
podia using Fourier transforms provides insight into the spatiotemporal development
of 3D traction forces and matrix reorganization (Kim et al., 2006; Pang et al., 2009).
Similar orientation-based strategies are used to assess fiber alignment in gels sub-
jected to exogenous forces, which can help elucidate the interdependence of the ECM,
external factors such as interstitial flow and macroscale strain, and cell behaviors like
migration and remodeling (Ng and Swartz, 2006; Vader et al., 2009). As dynamic,
local matrix alignment and remodeling events ultimately lead to ECM compaction
around single cells, optical measurement of collagen density has emerged as another
metric of 3D cell traction (Kim et al., 2006; Ng and Swartz, 2006; Pang et al., 2009).
Our lab recently developed an image-processing technique based on local changes
in collagen compaction that allows us to quantitatively describe the extent of ECM
remodeling that a cell has induced through traction forces (Kraning-Rush et al.,
2011). This method is based on the principle that 3D cell tractions result in pericel-
lular matrix compaction, which manifests in a higher density of ECM fibers and
thus, increased confocal reflectance signal in proximity to the cell. Using either live
or fixed and stained samples, sparsely seeded cells in fibrillar 3D collagen gels are
simultaneously imaged with reflected light and either fluorescence or DIC. Using
Imagel, the cell area, which is determined from the fluorescence or DIC/phase
contrast image, is subtracted from the reflectance channel and a 40—50 pm selector
line is drawn from the cell’s centroid into the surrounding matrix. A custom-written
ImagelJ script rotates the selector line around the entire cell at 1-degree increments,
capturing an intensity profile at each step. Zero-intensity values are removed, which
defines the cell membrane as the origin and effectively normalizes the data for cell
shape. Reflectance intensities are averaged as a function of distance from the cell
membrane and the resulting collagen intensity profiles are normalized by subtract-
ing the baseline intensity measured far from the cell membrane. Collagen intensity
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profiles are fit to an exponential decay model and the half-length of the exponential
decay, 4, is extracted to describe how far from the cell the collagen has been
remodeled. This method has allowed us to assess the dynamics and evolution of
matrix remodeling (Fig. 2) as well as to indirectly assess 3D traction forces generated
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Fig.2 MDA-MB-231 metastatic breast cancer cell seeded in 1.5 mg/mL collagen gel for 24 h. (A) DIC
and (B) confocal reflectance images show coordinated changes in cell morphology and collagen matrix
reorganization, respectively, over time. Confocal reflectance image intensity increases with collagen
fibril compaction. (C) Quantification of collagen fibril compaction. Data points show normalized,
baseline-subtracted, average reflectance intensity as a function of distance from the cell membrane; solid
lines are best-fit exponential decays for 12 and 24 h. Consistent with no compaction, 0 h images show no
increase in reflectance intensity over baseline. (D) Collagen intensity decreases exponentially as a
function of distance from the cell membrane and can be modeled by the equation /=, - exp(—d/4),
where / is the average intensity, /; is the intensity at the cell membrane, d is the distance from the cell
membrane in microns, and £ is the half-length of the exponential decay, which describes how far from the
cell the collagen has been remodeled. Confocal reflectance images are 1 wm slices; scale bar = 50 wm.
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by cells treated with various cytoskeleton-perturbing agents (Kraning-Rush et al.,
2011). Our results show that increased traction forces in 2D and bulk collagen gel
contraction correlate with 3D ECM remodeling as quantified through the above
method. The matrix compaction metric that our lab uses is outlined in more detail in
the Computational Methods section.

III. Biological Insights from Traction Methods

PA gel substrates and TFM have been widely utilized to study cell forces and other
behaviors in a variety of contexts, in both physiologically normal and disease states.
These behaviors include morphology (Tang et al., 2010; Yeung et al., 2005), differ-
entiation (Engler et al., 20006), single-cell (Dembo and Wang, 1999) and collective
cell migration (Trepat ef al., 2009), cell-cell interactions (Califano and Reinhart-
King, 2010; Reinhart-King et al., 2008), cell-ECM interactions (Maskarinec et al.,
2009), and focal adhesion assembly (Balaban et al., 2001; Rape et al., 2011; Stricker
et al., 2011). In this section, we will briefly describe an overview of some of this
work. However, this is by no means considered to be all-inclusive, but rather is
designed to spark further interest in these topics. For excellent reviews on these and
other related topics, see the Further Reading section.

A. Using PA Gel Patterning to Study Force Generation

In addition to manipulating the stiffness of PA gels to assess the effects of
matrix mechanics on cell behavior, work has also been done using these gels to
generate cell adhesive “islands” where cell morphology is controlled by the
geometry of a patterned substrate. Several similar techniques have been devel-
oped to pattern protein ligands onto PA gels using microcontact printing (Li
et al., 2008a; Rape et al., 2011; Wang et al., 2002). Additionally, other substrates
have also been employed, including PDMS (Balaban ef al., 2001) and glass
(Chen et al., 1997), patterned with ECM proteins such as collagen and fibronec-
tin, although these substrates are limited in their mechanical stiffness range.
Using these methods, cell spreading is constricted to the patterned shape, and
the shape can be manipulated to induce a desired morphology. For example,
patterning elongated cell geometries has been shown to enhance the differenti-
ation and maturation of myotubes (Li et al., 2008a), and also to increase the
expression of type I collagen in human tendon fibroblasts (Li et al., 2008b).
Moreover, by embedding beads within the PA gel, contractile forces exerted by
patterned cells can be examined using TFM (Wang et al., 2002). Recently, a
study by Rape et al. has shown that the magnitude and spatial distribution of
traction forces are not necessarily dependent on cell size, but on the distance
from the cell centroid to the perimeter, such that when comparing cells of equal
area, the more elongated cell will generate stronger traction forces (Rape et al.,
2011). Legant et al. identified a similar pattern of traction force generation in 3D,
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with cells generating the strongest inward traction stresses at the tips of long,
matrix-probing pseudopodia (Legant et al., 2010).

Patterned PA and PDMS gels have also been used to elucidate the exact nature of
the relationship between focal adhesions and force generation. In a study by Balaban
et al., the size and elongated shape of mature focal adhesions correlated with the
magnitude and direction of traction forces exerted by a cell (Balaban ef al., 2001).
Building on this work, Rape et al. also manipulated the size of focal adhesions the
cell could form by patterning 4 and 200 wm? adhesive squares within a 2500 wm?>
square region. The cells that could only form small focal adhesions exerted signif-
icantly less force than those with larger focal adhesions, regardless of the fact that the
cells themselves were the same size (Rape et al., 2011). Interestingly, while Balaban
et al. report a linear relationship between force and focal adhesion size in uncon-
strained spread cells, Rape et al. note an increase in amount of force exerted per focal
adhesion as the distance from cell centroid to perimeter increases. Recent work by
Stricker et al. in unconstrained cells indicates that the correlation between focal
adhesion size and traction force generation may exist only in the early stages of focal
adhesion formation. Once mature, they find that this correlation is abolished, and
these adhesions can now generate a broad range of forces (Stricker et al., 2011).

Because cell adhesion and morphology differ between 2D and 3D environments
(Cukierman et al., 2001), there is also interest in exploring the relationship between
cell traction and cell-matrix adhesion in three-dimensional environments. Early
work by Friedl et al. linked 3D tumor cell migration with 3D matrix reorganization
and redistribution and shedding of cell adhesions (Friedl et al., 1997). More recent
studies have compared the temporal and spatial dynamics of zyxin-positive cell
adhesions with 3D ECM deformation (Petroll and Ma, 2003) and demonstrated that
ECM density can, in part, determine the extent of matrix reorganization (Pizzo et al.,
2005). Further, Fraley et al. identified several specific matrix adhesion molecules
that are involved in traction generation during 3D cell migration of HT-1080 fibro-
sarcoma cells (Fraley et al., 2010). Interestingly, the authors found that, while
classical 2D focal adhesion proteins such as talin, VASP, and FAK contribute to
elastic matrix deformation by HT-1080 cells, these molecules are not significantly
involved in inelastic matrix remodeling in 3D. Together, these studies suggest that, as
in 2D, the size, morphology, and composition of 3D cell adhesions may be related to
cell traction as assessed through local ECM strains and matrix remodeling.

B. TFM for the Study of Cell Migration in 2D

TFM has been widely utilized to study the specific mechanisms by which cells use
force to migrate. Performing TFM on cells while manipulating the actomyosin
cytoskeleton has revealed that actin stress fibers are critical for the transmission
of forces to the substrate (Kraning-Rush et a/., 2011; Pelham and Wang, 1999). In a
study by Kumar et al., a single actin stress fiber within a living cell was ablated using
multiphoton laser nanoscissors, resulting in large-scale cytoskeletal rearrangement,
particularly on compliant substrates (Kumar et al., 2006). This study and others lend
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support to the tensegrity model of cellular architecture, wherein a network of
cytoskeletal elements maintains a prestress within the cell, which drives its adhesion
and migration behavior (Wang et al., 1993, 2001).

Studies in fibroblasts have also revealed that traction forces tend to be spatially
concentrated at the periphery of the cell, with little to no force being exerted beneath
the nucleus of the cell. Force generation is also generally greater at the leading edge,
or anterior of the cell, with weaker, more passive forces located in the posterior of the
cell (Dembo and Wang, 1999; Munevar et al., 2001; Pelham and Wang, 1999).
Interestingly, this trend is reversed in neutrophil migration, when forces are concen-
trated in the uropod of the cell during migration (Smith et al., 2007). Additionally, in
fibroblast (Gaudet et al., 2003) and endothelial cell (Califano and Reinhart-King,
2010; Reinhart-King ef al., 2003) models, increasing the density of ECM protein
conjugated to the surface of PA gels has been shown to increase both the spread area
of cells and the magnitude of the force generated by these cells, although whether
this phenomenon is driven by stronger cells spreading more or by larger cells
inherently exerting greater forces remains an area of debate. Moreover, in this
fibroblast model, the increase in force and area was also directly correlated to an
increase in migration speed with increasing collagen density, suggesting that stron-
ger traction forces drive increased cell motility (Gaudet ef al., 2003).

In addition to the widespread use in the study of mammalian cells described here,
2D TFM has also been used to study the forces generated by several other unique cell
types, for example, during the unique single-cell and multicellular stages in the life
of the amoeba Dictyostelium discoideum (Delanoe-Ayari et al., 2008; Lombardi
et al., 2007), during migration of the malarial parasite Plasmodium berghei in the
stage after it is injected into the host’s skin during a mosquito bite (Munter et al., 2009),
and during the migration of fish keratocytes on compliant substrates (Lee, 2007).

C. Cellular Force Generation in 3D Migration

Evaluation of cell forces in 3D environments has revealed several insights into
the molecular mechanisms of three-dimensional force generation and cell migra-
tion. Although ROCK-mediated traction can enable 3D matrix reorganization
through mechanisms analogous to contractility in 2D (Kim ez al., 2006), the role
of cell forces in driving cell migration in 2D and 3D are unique. By tracking the
displacement of beads around cells in 3D, Shih et al. demonstrated that myosin-
ITA-dependent retrograde flow at the cell cortex exerts traction forces against the
anterior ECM, propelling the cell body forward during amoeboid migration of
MDCK epithelial cells (Shih and Yamada, 2010). Through assessment of ECM
displacement fields around amoeboid-migrating MDA-MB-231 breast cancer
cells in Matrigel, Poincloux et al. identified regions of the cell that generate
distinct cell tractions in a RhoA/ROCK/myosin II-dependent manner
(Poincloux et al., 2011). Similar traction-dependent patterns of matrix deforma-
tion have been defined during mesenchymal migration of HT-1080 cells
(Bloom ef al., 2008). Finally, there has been substantial interest in exploring the
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requirement for proteolysis during 3D cell migration (Dikovsky et al., 2008; Wolf
and Friedl, 2009; Wolf et al., 2003), and ROCK- and myosin-dependent matrix
deformation has been identified as a primary facilitator of protease-independent
3D tumor cell migration both in vitro and in vivo (Wyckoff et al., 2006).

D. Force Generation and Cancer Progression

Given the intimate role that traction forces play in cell adhesion and migration,
two key behaviors that have been shown to be disrupted during certain disease states,
it is logical that cell contractility may be affected by disease, or perhaps even a factor
driving the condition. Indeed, TFM has been used as a tool for examining the effect
of several diseases on cellular force generation, including hypertensive heart disease
and arthritis (Bakker et al., 2009; Marganski et al., 2003a). Most notably, Marganski
et al. found that hypertensive cardiac fibroblasts were excessively contractile com-
pared to their healthy counterparts, and that the hypertensive cells were unable to
effectively regulate their contractions (Marganski et al., 2003a).

Perhaps the most comprehensive disease state in which TFM research has been
done is in cancer progression. In the seminal work on tensional homeostasis during
tumor progression, Paszek et al. found that increasing the stiffness of the 3D
microenvironment surrounding mammary epithelial cells drives malignant progres-
sion by clustering integrins, increasing focal adhesion formation, disrupting adhe-
rens junctions, and increasing cell proliferation (Paszek et al., 2005). Likewise, Tang
et al. found that increasing 2D stiffness promotes a metastasis-like phenotype in
colon carcinoma cells (Tang et al., 2010), suggesting that increased mechanical
stiffness may be an important driving factor in a wide range of cancer models.
Additionally, Paszek et al. examined the relationship between malignancy and
contractile force generation. Using the human isogenic nonmalignant S-1 mammary
epithelial cells and malignant T4-2 cell lines, they found that tractions forces were
significantly elevated in the malignant cancer cells, and that these forces were RhoA-
dependent. Likewise, Rosel ef al. found that in a rat sarcoma model of protease-
independent amoeboid migration, highly metastatic A3 cells generated traction
forces that were five times greater than the spontaneously transformed, nonmeta-
static K2 cells, with traction forces at the leading edge found to be even higher
(Rosel et al., 2008). Moreover, using a Deformation Quantification and Analysis
(DQA) algorithm to quantify collagen fiber deformation, Wyckoff et al. found that
during nonproteolytic amoeboid migration, metastatic MTLn3E murine mammary
tumor cells generated increased force, and were thus able to push through collagen
fibers and invade into the ECM in 3D, while their nonmetastatic parental cells were
unable to invade (Wyckoff et al., 2006). However, more recent research has called
into question the existence of protease-independent migration in native collagen
environments, and this remains an area of great controversy in three-dimensional
tumor migration research (Sabeh et al., 2009).

Surprisingly, in contrast to these four studies, Indra et al. recently found that in yet
a different set of murine mammary tumor cells, traction forces actually decreased as
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the metastatic potential of the subpopulations increased (Indra et al., 2011).
Similarly, using patterned PA gels and inducing tumoral transformation, Tseng
et al. found that increased contractility appeared to be dependent on the method
of transformation, with TGFg-treated mammary epithelial cells generating
increased force, while ErbB2 receptor-activated cells and CK2b-knockdown cells
exerted weaker forces (Tseng et al., 2011). Given these conflicting results, the
precise role of force generation in cancer progression, and particularly in relation
to proteolytic activity, remains somewhat unclear. It may be that the effect of
malignant transformation on force generation is specific to the type of cancer and
the underlying genetic mutations. Regardless, this remains an exciting area of study,
and holds great potential for future diagnostic and therapeutic applications.

IV. Open Challenges

Quantification of three-dimensional cell tractions within a physiologically rele-
vant ECM is a complex problem, and there are still several challenges to overcome
before it will be possible to translate 3D displacement fields of beads or ECM fibers
into true traction stresses. Toward this, Legant et al. have developed a technique to
numerically quantify three-dimensional tractions of cells embedded in PEG
(Legantet al.,2010). Additionally, techniques have recently been developed to probe
the three-dimensional forces exerted by cells plated on a 2D substrate using laser
scanning confocal microscopy (Franck et al., 2011; Maskarinec et al., 2009).
Although these methods have the inherent limitations as previously discussed, they
should serve as a foundation for the development of increasingly quantitative models
for 3D cell tractions that incorporate the viscoelastic fibrillar architecture and
bioactivity of natural ECM.

If we are to use native ECM as a probe for 3D cell force, we will need to better
understand its dynamic biomechanics. Already, several computational biophysi-
cal approaches have been developed to dynamically assess local matrix deforma-
tions (Mierke et al., 2008; Roeder et al., 2004; Vanni et al., 2003; Wyckoff et al.,
20006). For example, automated tracking of individual fibers can be achieved by
using a DQA algorithm, which transforms fiber deformations into a displacement
field (Vanni et al., 2003). This technique has been used to track both the rate and
spatial dependence of cell-mediated matrix remodeling (Wyckoff et al., 2006).
Roeder et al. have incorporated three-dimensional biomechanics into their 3D
Incremental Digital Volume Correlation algorithm, enabling them to relate mac-
roscale stresses to the resulting microscale changes in ECM architecture
(Roeder et al., 2004), track collagen fibers during 3D matrix reorganization,
and quantify local cell-induced volumetric strains (Pizzo et al., 2005).
Although these strategies provide a more detailed assessment of how the ECM
microstructure is changing under cellular traction forces, there remains a need for
a more robust definition of the mechanical properties of the 3D ECM.
Importantly, unlike most 2D substrates used to assess cell tractions, the mechanics
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of 3D matrices are subject to cell-induced changes as cell forces are transmitted to
the 3D microenvironment. Ultimately, because of the deformation, degradation,
and secretion processes that constitute a cell’s interaction with its physiological
3D microenvironment, computation of a true traction stress may not be a suitable
stand-alone metric by which to assess cell contractility. However, a better under-
standing of the microscopic mechanics of the ECM will contribute to improved
biomechanical models of 3D force generation.

Finally, an important open challenge to quantifying cell forces in 3D is the variety
of cellular outcomes that 3D tractions can elicit. As discussed in this chapter, 3D cell
tractions have been shown to enable elastic matrix deformation, permanent matrix
remodeling, and both amoeboid and mesenchymal migration. While the molecular
players involved in these behaviors are beginning to be revealed (Fraley et al., 2010;
Wyckoff et al., 2006), there is still a need for more extensive evaluation of the
molecular mechanisms of 3D traction force generation and transmission. Such work
may provide an explanation for the diverse phenotypic manifestations of three-
dimensional contractility and would ultimately improve models for 3D cell traction
forces.

V. Methods

A. 2D Polyacrylamide Gel Preparation and Functionalization

Using the following steps, PA gels can be created that have a Young’s Modulus (E)
between 0.2 and 300 kPa. A number of groups have published methods for making
PA gels as model substrates to investigate the effects of matrix stiffness on cell
behavior, a method originally described by Wang and Pelham (Beningo and Wang,
2002; Klein et al., 2007; Wang and Pelham, 1998; Yeung et al., 2005). Here, we
include our own method that was adapted and modified from Pelham and Wang, and
has successfully been used to make PA gels for use with TFM. One of the more
significant differences between our methods and the methods of most other groups is
the protocol for conjugation of proteins to the PA gels. Most groups have used photo
cross-linkers, whereas we use a bifunctional linker that is polymerized into the gel.
We find that this method produces a more uniform coating of protein on the gel
surface.

We have successfully performed TFM within a stiffness range of 1-10 kPa. PA
gels with a stiffness lower than 1 kPa tend to have significant exogenous bead
movement to be easily tracked using our system. On the other hand, the cell types
that we have used have not been able to exert enough force to deform a PA gel with
E greater than 10 kPa. However, these PA gels can be very useful for measuring the
effects of stiffness on other cell behaviors such as morphology (Yeung et al., 2005),
migration (Dembo and Wang, 1999), and proliferation (Klein et al., 2009). Once
prepared, these gels can be stored in phosphate-buffered saline (PBS, Invitrogen,
Carlsbad, CA) at 4°C for up to 2 weeks. Storing these gels in a dehydrated state is not
recommended.
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1. Coverslip Activation

This step can be performed in advance of the polymerization process. Dry acti-

vated coverslips can be stored for over a month, preferably under desiccation. For
TFM studies, we recommend an activated glass coverslip size of 43 x 50 mm
(VWR, West Chester, PA). Other PA gel studies that do not require a traction
chamber can use square 22 x 22 mm glass coverslips, which will fit easily into a
6-well dish for cell seeding, or other sizes as desired. The following steps assume the
use of 43 x 50 mm slips.

a.

b.

Line up coverslips on top of inverted Petri dishes (2 slips/dish). This aids in the
ease of handling of the coverslips.

In a chemical fume hood, holding a corner of the coverslip with forceps, briefly
pass the coverslip through the flame of a Bunsen burner. Using a clean cotton
swab, immediately apply 0.1N NaOH (Sigma-Aldrich, St. Louis, MO) to the
flamed side. Be careful not to overheat the glass, or it will break. If the glass is not
heated enough, the NaOH will not spread well. If this occurs, repeat flaming step
and reapply NaOH.

Allow coverslips to dry completely inside the fume hood, about 10-20 min.
Reapply 0.1N NaOH with clean cotton swab until the whole coverslip appears
coated. Allow the coverslips to dry.

In fume hood, add ~60 wL of 3-aminopropyl-trimethyoxysilane (APTMS,
Sigma-Aldrich) to each coverslip and spread quickly by rolling the thin end of
a glass Pasteur pipette over the coverslip surface.

i. Work in groups of two coverslips at a time, use 120 wL of APTMS and deposit
half on each coverslip. Use one Pasteur pipette for two coverslips, and spread
drop until it looks evenly coated and glossy. Note that once the drop is
deposited on the coverslip, it should be spread quickly, as the APTMS will
dry rapidly. APTMS is corrosive, and care should be taken to avoid skin
contact. We recommend discarding gloves after this step.

Allow coverslips to dry for 5 min inside the fume hood. Do not allow the cover-
slips to dry for more than 10 min.

Place each coverslip in a separate Petri dish filled with 18.2 M) cm purified
deionized (MilliQ) water. Wait until APTMS layer starts to crack and lift off from
the surface of the coverslip. Shake dishes to dislodge APTMS from each slip and
discard water.

. Rinse three more times with MilliQ water, incubating for 5 min between each

rinse.

ii. If coverslips are not thoroughly rinsed, the gluteraldehyde in the next step will
react with any remaining APTMS and form an orange-red precipitate on the
coverslip. These coverslips must be discarded.

In fume hood, prepare a 0.5% gluteraldehyde solution (70% aqueous gluteralde-
hyde stock solution, Sigma-Aldrich) in 1 x PBS (pH 7.1, without Ca** or Mg*").
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Each 43 x 50 mm coverslip requires 1 mL. Vortex the solution to ensure thor-
ough mixing.

j. Tape down a piece of Parafilm to the benchtop long enough for all coverslips to be
laid down side by side. Pipette a 1-mL drop of diluted gluteraldehyde solution
onto the Parafilm for each coverslip. Remove coverslips from Petri dishes and
invert onto the gluteraldehyde drop. Incubate for 30 min.

k. Remove coverslips from parafilm and return them to the Petri dishes. Dispose of
gluteraldehyde waste in specified container. Wash each coverslip three times with
MilliQ water, incubating for 5 min between each rinse.

1. Remove coverslips from dishes and place on a clean paper towel. Allow cover-
slips to dry inside fume hood, ~30—45 min. This step can be performed overnight,
and coverslips can be stored after this point as described above.

2. Polyacrylamide Gel Polymerization

There are many different formulations of acrylamide/bis-acrylamide that can be
used to make PA gels with a similar stiffness. The formulations described in this
chapter have been adapted from (Yeung et al., 2005) and their Young’s moduli have
been measured using the protocol described later in this chapter. The volumes
describe herein will create a gel that has a height of ~70 pm. It is important to note
that gels will shrink after polymerization, and because of this, the height of the gel
cannot be directly calculated from the volume of polymerization solution used.
Because the extent of polymer swelling varies with the polymer formulation
(Charest et al., 2011) and cannot be easily predicted based on modulus alone, it is
important to measure the height of the resulting gel that is used for TFM. The gel
must be sufficiently thick such that the gel can freely deform due to cellular forces
without the influence of the underlying glass (Sen et al., 2009).

a. Using a clean cotton swab, coat one 18 mm diameter circular glass coverslip for
each 43 x 50 mm activated coverslip with Rain-X (ITW Global Brands,
Houston, TX). Allow circular coverslips to dry for at least 5 min. Buff off excess
Rain-X with a Kimwipe, making sure to buff the edges well. Remove dust and
debris using canned air to obtain a clean surface. It is particularly important to
minimize particles that may appear on the glass and be transferred to the gel as
they can interfere with even polymerization and imaging.

b. Mix 30 nL of 0.5 wm diameter fluorescent polystyrene beads (Invitrogen) and
90 kL of MilliQ water per gel formulation to be made in a 1.5 mL microcen-
trifuge tube and sonicate for 10 min to create a homogenous mixture.

c. Ina 50 mL tube, for each desired stiffness, combine in order acrylamide (40% w/v
aqueous stock solution, Bio-Rad, Hercules, CA), N,N' -methylene-bis-acrylamide
(2% w/v aqueous stock solution, Bio-Rad), 250 mM 4-(2-hydroxyethyl)-1-piper-
azineethanesulfonic acid (HEPES, pH 6.0, Sigma-Aldrich), MilliQ water, and N,
N,N,N-tetramethylethylenediamine (TEMED, Bio-Rad), according to Table I. Mix
thoroughly before and after TEMED addition.
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d.

Adjust the pH of the solution to 6.0 by adding ~40-50 pL of 2N HCI (Sigma-
Aldrich).

Remove 845 pL of acrylamide mixture and place in a 5 mL plastic culture tube.
Add 80 L of the sonicated fluorescent bead mixture and mix thoroughly. If not
performing TFM, add 80 L of MilliQ water to the mixture instead. Place the
tube in a vacuum flask and cover flask with aluminum foil to prevent bleaching of
the beads. Degas the solution for at least 30 min. Insufficient degassing will
affect the extent of polymerization. One tube contains enough mixture to poly-
merize ~35 PA gels.

Add 70 wL of 200 proof ethyl alcohol (Sigma-Aldrich) to 5.6 mg of N-6 ((acry-
loyl)amido)hexanoic acid ((N-6), synthesized in our lab according to the method
of (Pless et al., 1983)) for each gel formulation. Pipette until N-6 is well distrib-
uted throughout the ethyl alcohol and add it to the degassed acrylamide mixture.
To initiate polymerization, add 5 WL of freshly prepared 10% ammonium per-
sulfate (APS, Bio-Rad) in MilliQ water to acrylamide mixture and mix gently by
pipetting up and down with a 1-mL pipettor, being careful not to introduce
bubbles.

Add 25 pL of gel solution to activated coverslips from Section 1. Gently apply
the Rain-X-coated circular coverslip by carefully touching the round coverslip to
the edge of the drop and lowering it slowly using forceps, being careful to avoid
bubbles. For TFM gels, invert the coverslip sandwich onto a 35 mm dish to allow
the beads to form a uniform layer at the top of the gel.

. Allow polymerization to occur for 2545 min. More compliant gels (<2.5 kPa)

will require more time to polymerize (~45 min), while less compliant gels
(>5 kPa) will require less time (~25 min). The edges of the gel should begin
to recede beneath the top coverslip.

. Peel off the top coverslip from each gel using a clean razor blade.

3. Functionalization with Protein Ligand

Cells cannot adhere directly to an unmodified PA gel. However, PA gels can be

readily functionalized with a variety of different protein ligands, depending on the
cell type used and desired experimental conditions. In our lab, we have successfully
functionalized PA gels with collagen, laminin, fibronectin, and RGD peptide, at
concentrations ranging from 0.1 to 1000 wg/mL, although other proteins could be
easily substituted. We most commonly use a concentration of 100 pg/mL as the
ligand density.

a.

Just before the PA gels have finished polymerizing, dilute the desired concen-
tration of protein ligand in 50 mM HEPES (pH 8.0, Sigma-Aldrich) on ice. You
will need 200 L of protein solution for each coverslip.

Tape down a piece of Parafilm onto a plastic tray long enough to hold each
coverslip. Pipette a 200 wL drop of protein solution onto the Parafilm for each
coverslip.
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. Once the top coverslips have been removed, immediately invert coverslips over

the protein solution, taking care to ensure that the surface of the PA gel is covered
entirely, with no air bubbles.

d. Incubate at 4°C for 2 h.
. Remove gels from parafilm, and place each gel into a labeled Petri dish for

storage.

. In a tube, mix a 1:1000 volume of ethanolamine (Sigma-Aldrich) with 50 mM

HEPES (pH 8.0, Sigma-Aldrich). You will need 500 wL of ethanolamine solution
for each gel.

. Deposit 500 L of the ethanolamine solution directly onto each gel, making sure

the volume covers the entire gel surface. Incubate at room temperature for
30 min.

. Rinse gels with MilliQ water. Place gels in PBS and store at 4°C. For best results,

use gels within 2 weeks of polymerization. To prevent bacterial growth, gels can
also be stored in 1x penicillin/streptomycin.

4. Validating the Young’s Modulus of PA Gels

To measure the Young’s Modulus of PA gels, two primary methods have been

reported: the use of Atomic Force Microscopy (AFM) and the “steel ball” method.
Although the use of AFM poses some advantage over the steel ball method, it is
much more technically challenging and requires a skilled user. Here, we focus on the
steel ball method, as it is a tractable method that requires no specialized tools. It is
important to note that batch to batch variations in acrylamide and bis-acrylamide
stock solutions will result in some variation in the PA gels. Additionally, there is
some error inherent in this measurement in determining the precise focal plane of the
beads before and after deformation. Moreover, £ should be measured only in PA gels
that have been equilibrated with media and incubated at 37°C in order to most
closely mimic the cell culture conditions in which they are typically used.

a. On the stage of an epifluorescent microscope, place a steel ball (radius ()

=0.32 mm, Abbott Ball Co., West Hartford, CT) on a gel with embedded fluo-
rescent beads. Focus the microscope at 20 x magnification. This is most easily
done by placing the ball on the gel first, and then moving the stage until the ball is
in the field of view. The ball is visible because it blocks the light path and can be
seen as a shadow once it is in the field of view. Focus on the top layer of beads
directly beneath the center of the steel ball and note z position (Z;).

. Remove the steel ball using a magnet. Focus the microscope on the top layer of

beads once they have returned to their original, unstressed, position. Note the z
position (Zy).

c. Using Hertz theory (Lo ef al., 2000), calculate £ using Eq. (25),

31 —v)f

VG 23
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where § is the indentation depth of the steel ball (§=|Z; — Zy|) exerting a
buoyancy-corrected force f on the surface of a gel with Poisson’s ratio v =0.3—
0.5 (Dembo and Wang, 1999; Li et al., 1993). f can be calculated by subtracting
the buoyant force, F},, of the ball from the weight of the ball. The buoyant force is
calculated as F}, = pVg, where p is the density of the ball, V' is the volume of the
spherical cap submerged into the substrate surface with depth § (from above), and
g is the acceleration due to gravity.

B. Traction Force Microscopy Data Collection

The seeding and analysis described in this section are for isolated, single-cell
studies, although they can be adapted for quantifying forces of multiple cells in
contact (Califano and Reinhart-King, 2010). It is important for the cells to be fairly
isolated so that bead movement from one cell does not interfere with the bead
movement from a neighboring cell. Additionally, cells can transmit forces through
PA substrates and affect the behavior of nearby cells (Reinhart-King et al., 2008), a
phenomenon that is dependent on the stiffness and ligand density of the substrate. To
avoid this effect, when quantifying forces on stiffer substrates (>5 kPa), cells should
be at least 50 wm apart, while on softer substrates (<2.5 kPa), cells should be greater
than 200 wm apart (generally limit one cell per field of view under standard 20x
magnification). Additionally, care should be taken to avoid bead movement from
cells outside the viewing region, as this can also negatively affect the accurate
quantification of traction forces of your target cell. A schematic of the chamber
setup is shown in Fig. 3A.

This procedure uses a custom-made traction chamber that fits into a custom stage
manufactured by Zeiss (see Fig. 3B). The chambers used in our lab are 7 cm long,
8 cm wide, and 1 cm deep, and contain a central hole, 3 cm in diameter. Additionally,
our insets are designed with a ridge around the opening that fits the bottom of a
35-mm petri dish, for use as a lid. Each chamber is designed to accommodate one
circular PA gel with an 18-mm diameter polymerized on a 43 x 50 mm glass
coverslip, as described above.

1. Chamber Setup and Cell Seeding

The following steps should be performed within a sterile biosafety cabinet.

a. UV sterilize one traction chamber and one 35 mm petri dish for each PA gel, as
well as several KimWipes (Kimberly-Clark, Neenah, WI), paper towels, and a
syringe filled with vacuum grease (Dow Corning, Midland, MI) for 20 min.

b. Remove the coverslip containing the PA gel from PBS using a razor blade and
place on paper towel. Using a KimWipe, gently dry off the excess PBS surround-
ing the gel surface. Be careful not to touch the gel surface with the KimWipe.

c. Invert the traction insert so that the ridged side is facing down. Apply a thin line of
vacuum grease around the circular opening.
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PA gel

E \ activated
coverslip

Fig. 3 Traction chamber setup. (A) A polyacrylamide gel on an activated coverslip is attached with
vacuum grease to a traction chamber and seeded with a low density of the desired cell type. Measurements
are acquired using an inverted microscope. (B) A custom-made traction chamber and stage insert used in
our lab. (For color version of this figure, the reader is referred to the web version of this book.)

d. Invert the coverslip with the PA gel over the traction insert such that the PA gel is
centered over the opening.

e. Gently press down on the coverslip until the vacuum grease has formed a tight
seal around the entire opening. If the chamber leaks, it is likely that the coverslip
was not properly sealed to the traction insert, and more vacuum grease is required.

f. Flip over the traction insert and add 2 mL sterile PBS to the gel to keep it hydrated
until cell seeding. Repeat these steps until all PA gels are attached to their
respective traction inserts. At this point, gels can be stored overnight prior to
cell seeding if desired.

g. Passage the desired cell population and determine the cell count. Seed 2000—
4000 cells onto each PA gel, depending on the size of the cells and the
duration of incubation prior to imaging. Typical incubation times in our lab



6. Quantifying Traction Stresses in Adherent Cells 167

range from 6 to 18 h, although this time can be extended if desired. However,
note that if the cells begin to proliferate, finding isolated cells to analyze
becomes more difficult.

2. Acquiring Traction Images

In our lab, cells are imaged inside a temperature, humidity, and CO,-controlled
automated stage of a Zeiss Axio Observer Z1m inverted phase contrast microscope
with a Texas Red fluorescent filter, using a Hamamatsu ORCA-ER camera. Cells are
incubated on the microscope stage at 37°C, 40% humidity, and 5% CO, until
trypsinization. Images are acquired using AxioVision software (v. 4.6.3, Carl
Zeiss), and many of the steps described below may be specific to this software,
but should be readily adaptable to other microscope systems. Note that these steps
can be performed without stage top incubation, as long as the length of time the cells
spend outside of the incubator prior to trypsinization is minimized, preferably no
longer than 20—30 min. An automated stage is required for imaging more than one
cell per PA gel, and can greatly increase the efficiency of data collection. If a time
course study is desired, a phase and stressed image can be acquired at each time point
for each cell, and one final image of the relaxed bead field can be acquired at the end
of the study.

a. Place traction insert containing cell-seeded PA gel onto the stage of the microscope.

b. Using a 10x objective, identify isolated cells and mark their positions.

c. Using a 20x objective, acquire a phase contrast image of the cell, focusing
primarily on the cell boundaries. Immediately acquire a fluorescent image of
the uppermost layer of beads directly beneath the cell. It is important that these
two images are taken as close in time as possible, as cells can change position
(and thus change the underlying bead placement) fairly rapidly, and both images
need to be consistent for quantification. Repeat for each cell. Note that for
compliant gels (<2.5 kPa), it may be appropriate to use a 10x objective to
acquire these images, in order to obtain a significant population of fluorescent
beads with negligible movement.

d. Aspirate media from the well, being careful not to touch the PA gel surface with

the pipette, as this will cause distortion of the bead layer and become unusable.

Rinse well three times with 3 mL PBS.

Apply 1 mL of trypsin—EDTA. Let sit for 5-10 min depending on cell type.

g. Aspirate trypsin and wash with PBS. Check all fields of view to confirm that the
cells of interest have been removed. If not, repeat PBS rinse. Once cells are
removed, keep the gel hydrated with PBS.

h. Return to the location of the first cell. Open the corresponding stressed image.
Align the beads in the x and y directions such that they line up at a distance far
from the cell. It is generally easier to do this in a corner. Some error is acceptable
in this adjustment, as the tracking software described above will ignore the most
common bead displacement (Marganski et al., 2003b).

-0
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i. Adjust the z direction such that the same layer of beads is in focus. Acquire an
image of the unstressed bead field.
j. Repeat for each marked location.

C. Traction Force Microscopy Data Analysis

There are a number of methods now described to convert the images that are
gathered experimentally into stress and strain fields (Angelini et al., 2010; Del
Alamo et al., 2007; Yang et al., 2006). The original method was invented and
described by Dr. Micah Dembo (Boston University) and is the method we use in
our lab. The analysis is done through the LIBTRC software package that includes
algorithms for bead tracking, calculation of the traction stresses, and a graphical
interface to organize and display the output. Complete detailed instructions for
running the software can be found in the LIBTRC Users Guide.

Prior to analysis, the stressed and relaxed images of the bead field should be
compared to ensure that they overlap uniformly at distances far removed from the
target cell. If a bead is lost or if there is bead movement caused by a cell outside
of the field of view, the images can be cropped to remove the offending area as
long as there is still a large portion of the image that remains unstressed (minimal
bead displacement). If this phenomenon occurs, it is important that all three
images (the phase image of the cell, and the two images of the bead field) are
cropped identically. At no point should beads actively displaced by the target cell
be removed from the image set.

The LIBTRC software outputs a wealth of information regarding the traction
forces exerted by the cell. One common way to represent this force data is by plotting
total force, |F|, which is an integral of the magnitude of the traction field over the cell
area, Eq. (20),

Fl= [ [T + Thday (26)
where

T(X,y) = [Tx(xvy)>Ty(x>y)] (27)

is the continuous field of traction vectors defined at any (x,)) position within the
projected cell area (Reinhart-King et al., 2005). The polarization of the force
distribution within the cell is also computed in LIBTRC as the integral of the
absolute value of the traction magnitudes dotted with a unit vector directed
along the long axis of the cell or the perpendicular short axis of the cell
(Kraning-Rush et al., 2011). Forces can also be analyzed by plotting the average
traction stress, or total force divided by the cell area (Califano and Reinhart-
King, 2010). Additionally, strain energy (erg), or the total energy transferred
from the cell to the elastic displacement of the substrate, can also be used as a
metric of force:
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1
erg:§T~D (28)

where D is the displacement field at the substrate surface caused by the traction
field T.

D. Imaging Collagen Remodeling Using Confocal Reflectance Microscopy

Quantitative matrix remodeling as a functional measure of cell traction forces can
provide critical information about the spatial and temporal nature of cell contractility
and mechanical cell-matrix interactions in 3D. Importantly, these metrics can be
coupled with fluorescent tagging of cell components such as the cytoskeleton, focal
adhesions, and regulatory molecules to identify cell structures and phenotypes that
are uniquely involved in the generation of 3D traction forces (Wolf et al., 2003;
Zaman et al., 2006), ultimately allowing us to better probe the dynamic interactions
between cell contractility and the ECM. Here we present one metric used in our lab to
quantitatively describe collagen matrix remodeling using confocal reflectance
microscopy (Kraning-Rush et al., 2011).

1. Preparation of collagen gels

Our method of quantifying 3D cell traction forces utilizes confocal reflectance
microscopy to probe the structure and organization of collagen fibers surrounding
cells embedded within a collagen matrix. In our lab, we maintain a 10-mg/mL stock
of acid-solubilized collagen type I isolated from rat-tail tendon (Bornstein, 1958),
and dilute this stock to a final gel collagen concentration of 1.5 mg/mL. Collagen
density can be varied to alter matrix sterics and ligand density if desired. To limit
cell—cell interactions, cells are seeded sparsely at 50,000—100,000 cells/mL. After
cells are embedded within collagen gels, they can be cultured under a variety of
conditions and imaged live or after fixation and staining.

a. Calculate the following:

i. Volume of collagen stock to be used = (Final gel volume - Final collagen
concentration)/Collagen stock concentration
ii. Volume of 1N NaOH to neutralize the solution = Volume of collagen stock -
0.023
iii. Volume of cell suspension and media to be added = Final gel volume —
Volume of collagen stock — Volume of 1N NaOH
The following steps should be performed within a sterile biosafety cabinet.

b. Place on ice a sterile 15 mL conical tube to hold the final mixture. All reagents
should be kept on ice until use, as collagen gel polymerization is pH- and
temperature-dependent.

c. Trypsinize and resuspend cells in cold media such that the volume of cell
suspension is approximately 25% that of the volume of culture media.



170 Casey M. Kraning-Rush et al.

d. Place desired volume of collagen stock in cold 15 mL conical tube.

e. Add acellular culture media; if using media containing phenol red, solution will
turn yellow due to the acetic acid—collagen stock solution. Keeping the tube on
ice, thoroughly and quickly mix the solution without introducing air bubbles until
it turns uniformly yellow.

f. Add cold IN NaOH and mix as in step (e) until solution is uniformly pink. Use of
different types of media may require adjustment of NaOH volume; neutralization
to pH 7.2 should be verified initially.

g. Add cell suspension to collagen solution and mix.

h. Aliquot the collagen—cell solution into desired volume in a glass-bottom Petri
dish or multiwell plate (MatTek, Ashland, MA) and allow gel to polymerize at
37 °C for 30—60 min. We find that collagen solution batches of 1-5 mL work best
as this range of volumes permits accuracy and precision of volume measurements
and thorough mixing.

i. Gently add prewarmed media to gel and culture at 37 °C.

Optional:

j- To study cell contractility, allow cells to adhere and spread for 4-12 h before
experimental treatments. This time period is used to allow establishment of cell—
matrix adhesions while minimizing cell tractions and collagen reorganization
prior to treatment. This incubation period can be optimized depending on the cell
type and the cellular mechanisms being studied.

2. Confocal Reflectance Microscopy

To probe the organization of the fibrillar collagen microenvironment, the cell-
seeded collagen gels prepared above can be imaged with confocal reflectance micros-
copy. While microscopy systems vary widely and a variety of imaging parameters can
be used successfully, consistency is critical to enable quantitative comparison of
collagen remodeling. We will discuss the equipment and parameters used in our lab.

Since macroscale stresses induce changes in the microscopic structure of fibrillar
hydrogels, care should be taken to not handle or disturb the collagen gel. Therefore, it
is best to image the collagen gel in the container in which it was originally polymer-
ized. We use a Zeiss 710 laser scanning confocal on an Axio Observer.Z1 inverted
stand. This microscope has an interchangeable main beam splitter, which is critical for
sequential fluorescence and reflectance imaging. For confocal reflectance acquisition,
samples are illuminated through an 80/20 dichroic mirror with low power laser light,
which is reflected off of collagen fibrils and detected by a photomultiplier tube
(PMT). A 40x water-immersion lens (C-Apochromat 40x/1.2 W Corr, Zeiss) pro-
vides sufficient magnification for visualization of collagen fibrils as well as a cor-
rection collar to facilitate use of glass-bottom dishes. We use 488 nm light to mini-
mize phototoxicity, and we adjust the laser power and PMT gain to utilize the entire
dynamic range of the detector. Using either live samples in a microscope incubator or
fixed samples, we capture 1 wm slices at the axial center of cells. Notably, we choose
isolated cells that are 150-300 pm above the bottom surface of the gel to avoid gel
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inconsistencies at the surface and mechanical edge effects. For live-cell experiments,
cells can be visualized with DIC through a transmitted light-PMT (Fig. 2A) or with
confocal fluorescence by labeling with a vital dye such as CellTracker (Invitrogen).

3. Image Analysis and Quantification of Collagen Compaction

Our metric of cell tractions is based upon the assumption that increased local

collagen fiber density increases the confocal reflectance signal. Thus, as cells
generate 3D traction forces, they compact the pericellular ECM and there is an
increase in reflectance intensity. The output of this method is the average collagen
reflectance intensity as a function of distance from the cell. The following procedure
is used to quantify collagen fiber compaction around isolated cells.

a.

b.

Using Image], subtract the cell area, determined from the fluorescence or DIC/
phase contrast image (Fig. 2A), from the reflectance image (Fig. 2B).

On the reflectance image, draw a 40—50 pm selector line from the cell’s centroid
into the surrounding matrix. We use a custom-written ImagelJ script to rotate the
selector line around the cell at 1-degree increments and capture an intensity
profile at each step.

Remove zero-intensity values from the intensity profile to define the cell mem-
brane as the origin and normalize for differences in cell size and shape.
Average all of the “zeroed” reflectance intensity profiles to create a single
intensity profile for the cell.

. Normalize the intensity profile to the peak intensity and subtract the baseline

reflectance value (average intensity of matrix 45-50 wm from the cell centroid,
where the intensity profile reaches an asymptote). If more extensive matrix
remodeling occurs, it may be necessary to extend the initial selector line into
the ECM such that the baseline intensity can be assessed. Representative reflec-
tance intensity profiles are shown as symbols in Fig. 2C.

Fit the intensity profile to an exponential decay model, Eq. (29),

I=1y- 4% (29)

allowing /y and £ to vary to minimize the sum of squared error. In this equation, /
is the intensity of collagen reflectance, d is the distance from the cell membrane,
Iy is the normalized, baseline-subtracted intensity of collagen reflectance at the
cell membrane (d = 0), and A is the half-length of the exponential decay, which
describes how far from the cell the collagen has been remodeled. Representative
fits are shown as solid lines in Fig. 2C.

Extract the half-length of the exponential decay, 4 (Fig. 2D). A longer decay, fit
by arelatively larger 4, is indicative of more substantial collagen compaction and
remodeling.

To compare 3D traction force and matrix reorganization among cells, half-
lengths from several cells per treatment group can be compared directly
(Kraning-Rush et al., 2011).
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VI. Summary

The study of traction forces has yielded valuable insights into key cellular beha-
viors including cell-cell communication, cell-ECM interactions, adhesion, and
migration in both healthy and disease states. In this chapter we have described the
various methods by which traction forces have been quantified in the past and at
present. Moreover, we have provided a detailed description and protocol for synthe-
sizing PA gels and performing TFM experiments. Additionally, we have discussed
current techniques for qualitatively and quantitatively describing traction forces in
3D environments, and shared a technique used by our lab to extract quantitative data
from confocal reflectance microscopy of collagen matrices.
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Abstract

This chapter describes approaches for learning models of subcellular organization
from images. The primary utility of these models is expected to be from incorpo-
ration into complex simulations of cell behaviors. Most current cell simulations do
not consider spatial organization of proteins at all, or treat each organelle type as a
single, idealized compartment. The ability to build generative models for all proteins
in a proteome and use them for spatially accurate simulations is expected to improve
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the accuracy of models of cell behaviors. A second use, of potentially equal impor-
tance, is expected to be in testing and comparing software for analyzing cell images.
The complexity and sophistication of algorithms used in cell-image-based screens
and assays (variously referred to as high-content screening, high-content analysis, or
high-throughput microscopy) is continuously increasing, and generative models can
be used to produce images for testing these algorithms in which the expected answer
is known.

I. Introduction

As traditional reductionist paradigms of biomedical research increasingly give
way to systems approaches, the need to build predictive models that synthesize large
amounts of information from potentially diverse sources is becoming critical. Most
such current models take the form of transcriptional regulatory networks, protein—
protein interaction maps, or biochemical reaction simulations. These typically do
not consider spatial organization of cells or tissues. Important advances came with
systems such as MCell (Stiles et al., 1998), which allowed models to be constructed
using mesh representations of cells built from electron microscope images, and the
Virtual Cell (Loew and Schaff, 2001), which allowed appropriately processed
images to provide surface area and volume for its compartmental models.
Ontologies such as the genome ontology (GO) can be used to describe protein
attributes, including location, primarily at a major organelle level. Such assignments
can also be used to create compartmental models (e.g., http://biologicalnetworks.
net/tutorials). However, compartmental models suffer from some important limita-
tions, in that they treat all molecules within each compartment as being homoge-
nously distributed, and they do not allow appearance, disappearance, fission or
fusion of compartments.

Given the energy expended by cells to maintain their subcellular organization, and
the many defects that are associated with alterations in it, models that do not
accurately reflect subcellular organization are unlikely to perform satisfactorily at
predicting complex cell behaviors or how they respond to changes in conditions.
There is therefore a need for computational models that accurately represent the
number, size, shape, and positions of subcellular structures, the spatial relationships
between different structures, and how proteins (and other molecules) are distributed
between them (Murphy, 2010, 2011). In addition, there is a need for a mechanism for
representing how all of these vary within a population of cells of a single cell type,
within a single cell type under different conditions, among different cell types, and
among different organisms. Such models can not only capture cell behavior but can
also be an important step in understanding that behavior, since, for example, a
sufficiently detailed model helps distinguish aspects that are conserved and presum-
ably necessary from those that are highly variable and potentially not necessary.

In considering how to build such models, we can distinguish descriptive
models, which allow one to recognize what state a particular cell is in, from
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generative models, which can also synthesize new examples of cells in particular
states. We can also distinguish theoretical or conceptual models, which posit a
particular structure based on a generalized understanding, from data-driven
models that are learned from data and capture both general behavior and varia-
tion in that behavior.

My focus in this chapter will be primarily on methods developed in my group that
have been used to learn generative models of cell organization and protein distribu-
tion from two-dimensional and three-dimensional fluorescence microscope images
(Zhao and Murphy, 2007; Rohde et al., 2008a,b; Peng et al., 2009; Shariff et al.,
2010a, 2011; Peng and Murphy, 2011). We have recently grouped these methods as
part of the open source CellOrganizer project (http://cellorganizer.org), which
includes collaborations with a number of investigators studying particular cell
systems.

II. Components of a Model of Subcellular Organization
and Protein Distribution

Although there are a number of ways to break down the tasks necessary for
creating such models, we can distinguish at least three major components of a model
of the distribution of proteins within cells of a given type under a given condition:

* A model of subcellular organization, including distributions of the number, size,
shape, and position of each subcellular structure, any of which may be conditional
on the model(s) for other structures;

* A model representing the probability that a cell of a given type will contain a
certain number of molecules of a given protein, the expected fraction of those
molecules in each subcellular structure, and a measure of the variation in that
fraction from cell to cell;

* A model of how each protein is distributed within each structure, which may
consist of a self-organizing model that specifies only the affinities between pairs
of proteins within each structure.

Higher order models can then be built to specify how any of these models change
over time and condition: for example, during the cell cycle, in the presence of
perturbagens, for cells expressing mutations, or for different cell types.

I will focus below on work on the first two types of components.

ITII. Models of Subcellular Organization

At a conceptual level, the most complete model of subcellular organization is
probably the GO cellular component ontology (Ashburner et al., 2000). A significant
effort has been made to capture the vast majority of terms used to describe subcel-
lular structures. The terms in this ontology can be assigned to proteins in order to
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represent the results of experimental or computational analyses. The advantage of
this approach is precisely its disadvantage: general terms such as “mitochondria”
can be associated with a protein while leaving many questions about what mito-
chondria are unanswered. However, to be useful for spatially realistic modeling,
ontology terms must be associated with a representation of each organelle’s number,
structure, and distribution within cells. Currently, such representations are abstract
and implicit rather than concrete and they often leave unspecified how the organelle
would look in different cell types. For example, the abstract concept of a mitochon-
drion is well understood by biologists but most would be hard pressed to accurately
describe how mitochondria vary in number, size, shape, and distribution from cell
type to cell type or organism to organism.

In building generative models, we refer to an individual image, stack, or movie to
be an instance drawn from an underlying model, whether an actual image or a
synthetic image. These instances are considered to have been generated by particular
values for the parameters of the model. The model is generative if it captures how
parameter values can be chosen for new instances.

A critical concept in creating models of subcellular organization is the conditional
relationships that exist among different components. This is easily illustrated by
considering the task of building generative models of nuclear and cell shape (i.e., the
positions of the nuclear and plasma membranes). We could build one generative
model from many examples of nuclear shapes, and build another generative model
from many examples of cell shapes. If we want to synthesize a new example of a cell
containing a nucleus, we can imagine drawing a random example of a nuclear shape
from the first model, and drawing a random example of a cell shape from the second.
However, there is nothing that would prevent the example nuclear shape from being
too wide to fit inside the example cell shape, and nothing to tell us where within the
cell shape to put the nuclear shape. We must therefore connect the generation
processes, which we do by making the models dependent, or conditional, upon each
other. In our work, we have chosen to make the cell shape model conditional upon the
nuclear shape. As we will see below, this means that during the learning process the
relationship between the shapes is captured, and during the generation process, an
example nuclear shape is first generated and used to generate an appropriate cell
shape.' An alternative is to make the models joint, in which we learn simultaneously
a model for both shapes.

Another major consideration is whether to make the models parametric, in which
the values of model parameters explicitly describe various aspects of the sizes and
shapes of cell components, or nonparametric, in which sizes and shapes are implic-
itly described by the relationships between examples. This distinction will be made
clearer in the next sections where we consider models of cell components and how
they can be made conditional upon each other. In each case, we will consider

! Of course, we might also have chosen to make the nuclear shape conditional upon the cell shape. Which
order is better will need to be determined by future work.
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* the inputs necessary for training the model,
* the means of assessing how adequately the model describes the data,
* what types of outputs the model can generate.

A. Nuclear and Cell Shape Models
1. Nuclear Shape — Medial Axis Models

Nuclear shape is often represented in theoretical models as a sphere or more
generally an ellipsoid. Examination of only a few images of some cell types (espe-
cially adherent cultured cells) reveals how inaccurate this model can be. A somewhat
more accurate model can be learned directly from images (Zhao and Murphy, 2007)
using a medial axis approach (Blum, 1973). As illustrated in Fig. 1, medial axis
construction typically begins by first orienting all nuclear shapes (instances) so that
their major axes point in the same direction). Each instance is then represented by the
position of a curve bisecting the shape perpendicular to the major axis, and by the
width at each position along that curve. These curves can be fit using splines, such

0 0.5 1 Y 0.5 1

Fig. 1 Tllustration of a medial axis method for modeling a 2D nuclear shape instance. The original
nuclear image (a) was binarized (b) and rotated so that its major axis is vertical (c). The position of the
curve that divides the shape in half horizontally at each vertical position is then found (d). The horizontal
positions of the medial axis as a function of the fractional vertical distance are shown by the symbols (e),
along with a B-spline fit (solid curve). The width as a function of fractional distance is shown by the
symbols (f), along with the corresponding fit (solid curve). Scale bar, 5 um. From Zhao and Murphy
(2007).
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that a set of 11 spline coefficients describes each instance. The distribution(s) of these
parameters over many instances can then be learned. In this case, two multivariate
Gaussian distributions, one for the medial axis position and one for the width, were
shown to provide a good representation of nuclear shape in two-dimensional images
(Zhao and Murphy, 2007). Sampling from these distributions using a random number
generator can be done in order to create synthetic examples from the learned model.

2. Nuclear Shape — Cylindrical Spline Surface Model

For three-dimensional images, the medial axis method can result in an oversim-
plified shape model. An alternative is to convert the nuclear shape to cylindrical
coordinates and then fit a periodic spline surface (Peng and Murphy, 2011). This is
illustrated in Fig. 2. In this case, there is one parameter for the nuclear height and 32
parameters for the coefficients of the spline surface. For a collection of three-
dimensional images of HeLa cells, these parameters were also shown to be well
represented by a multivariate Gaussian distribution. As before, parameter values can
be randomly sampled from this distribution to generate new nuclear shape instances.

3. Nuclear Shape — Large Deformation Diffeomorphic Metric Mapping

These parametric models of nuclear shape have two significant advantages: first,
they can be computed fairly quickly, and second, the parameters (and parameter
distributions) can be stored compactly. However, they make assumptions about the
characteristics of nuclear shape that need to be captured (e.g., that small bumps can
be ignored) and do not handle well many concave or branched shapes. An important
alternative therefore is to use nonparametric models such as the large deformation

b (6

Fig.2 Illustration of cylindrical spline surface method for modeling a three-dimensional nuclear shape
instance. (a) Surface plot of a 3D HeLa cell nucleus. (b) Unfolded surface of the nuclear shape in a
cylindrical coordinate system. The surface plot shows the radius 7 as a function of azimuth v and height z.
(c) B-spline surface fitted to the unfolded nuclear surface. From Peng and Murphy (2011). (For color
version of this figure, the reader is referred to the web version of this book.)
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Target shape
s
Starting shape
0 0.0165 0.0191 0.0194 0.0195
Distance

Fig. 3 Determining the distance between two shapes using large deformation metric mapping. The
goal is to measure the distance between the starting shape and the target shape. This is done by gradually
deforming the starting shape to become more similar to the target shape while recording how much
perturbation is necessary at each step. From Rohde ez al. (2008a).

diffeomorphic metric mapping (LDDMM) framework developed by Miller and
colleagues (Beg et al., 2005). In this framework, shape is represented implicitly
by measuring differences between pairs of shape instances (see Fig. 3). The distance
matrix is then used to create a shape space in which similar shapes are near each
other. This approach has been demonstrated to provide an excellent representation of
nuclear shape in HeLa cells (Rohde ef al., 2008a), and the method can be applied to
two-, three-, or four-dimensional images. This power comes at a price: saving the
shape model requires storing both the distance matrix (or the shape space) and the
example images used to create it. Generating new shape instances can be achieved by
interpolating between the original examples (Peng et al., 2009), but this can be
computationally expensive.

An important additional use of non-rigid registration methods is to identify posi-
tions within nuclei. In an exciting example, the positions of different chromosome
regions have been mapped to a common frame of reference using a multiresolution
non-rigid registration approach (Yang et al., 2008). Potentially, position mapping
could be combined with modeling of the nuclear shape itself as described above.

4. Cell Shape — Circular and Spherical Coordinate Ratiometric Models

Cell shape can also be represented using diffeomorphic methods, using exactly the
same approach as used for nuclei. This is appropriate when modeling only the cell
shape is desired, but if nuclei are to be included, as discussed above, the nuclear and
cell shape models must be conditionally related. This can be achieved using diffeo-
morphic methods by creating indexed images in which pixels/voxels that are part of
the background have one value (e.g., 0), pixels/voxels in the nucleus have a second
value (e.g., 1), and pixels/voxels inside the cell but not in the nucleus have a third
value. Finding the distance between such indexed images is a bit more computa-
tionally demanding.
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To create more compact conditional models of cell shape, a simple approach can
be used. For two-dimensional images, the coordinates of the cell and nuclear bound-
ary are first mapped to polar coordinates, and then the ratio between the two is
calculated for a fixed number of angles (e.g., every degree over 360 degrees) (Zhao
and Murphy, 2007). For three-dimensional images, these ratios are calculated for
each two-dimensional slice (Peng and Murphy, 2011). The model is then simplified
by keeping only a certain number of principal components (for HeLa cells, 10
components were used for two-dimensional images and 25 for three-dimensional
images). The distributions of these components have been shown to follow a mul-
tivariate Gaussian, providing a very compact conditional model. To generate
instances from the model, a nuclear shape is first generated using one of the methods
above, principal component coefficients are chosen using random numbers and
converted to the cell/nuclear ratio as a function of angle, and then these ratios are
multiplied by the corresponding position on the synthetic nuclear boundary to
generate the synthetic cell boundary.

B. Models of Vesicular Organelles: Shape
1. Gaussian Object Models

Many vesicular organelles, such as lysosomes, show a roughly spherical shape in
both electron microscope and fluorescent microscope images. Such shapes can be
easily modeled if the organelles are well resolved from each other in images.
However, vesicular organelles are frequently found quite close to each other, and
they can appear to overlap when imaged in two dimensions. Furthermore, sampling
noise may make them appear irregularly shaped. One approach to this problem is to
assume that the organelles are all spherical (or ellipsoidal) and try to estimate what
configuration of organelles gave rise to a particular cell image. This can be done by
thresholding the image of an organelle marker to identify connected components
that may consist of more than one organelle. As shown in Fig. 4, image processing

Fig. 4 Illustration of fitting objects using a 2D Gaussian mixture model. A region of a cell containing a
single composite object (found by thresholding and connecting above threshold pixels) (a) is smoothed by
a Gaussian low pass filter (b) to facilitate detection of local maxima (peaks) in the composite object.
Fitting using a spherical covariance matrix(c) yields the estimated positions and sizes of the Gaussian
objects assumed to have given rise to the original image. A similar approach is used for 3D images. After
Zhao and Murphy (2007).
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and parameter estimation can then be used to find the positions and sizes of the
individual organelles. A statistical model of the distribution of the number of objects
per cell, and the distribution of the Gaussian parameters (covariance matrix) can then
be constructed. This method can be used for both two-and three-dimensional images,
although distinguishing different organelles is easier in three-dimensional images.

2. Outline Models

More accurate models can be obtained using methods that seek to estimate the
position of the outline of vesicular organelles. For example, piece-wise linear closed
splines have been used to describe the shape of endosomes (Helmuth ez al., 2009).
Such methods could be combined with eigenshape or diffeomorphic methods to
create generative models.

3. Object Type Models

Even more detailed (but not necessarily more accurate!) models can be obtained
by finding all objects in a large set of cell images and clustering them to identify
distinct object types. This approach has been applied to a large collection of HeLa
cell images, and the resulting object types were found to enable recognition of
different subcellular patterns (Zhao et al., 2005). As discussed below, this approach
has been used to estimate the amount of a given probe in different organelles.
However, it could also be used as part of a generative model by modeling the number
and shape of each object type.

C. Models of Vesicular Organelles: Position

Regardless of which method is used for estimating object number and shape, a
model of the position of each object within the cell is also needed. This clearly needs
to be conditional upon the cell and nuclear shape model. One simple approach is to
represent the position of each observed object in a normalized polar or spherical
coordinate system (depending on whether the image is two- or three-dimensional).
To do this, the distance of the center of each object from the nuclear boundary is
expressed as a fraction of the sum of the distance from the nuclear boundary and the
distance from the cell boundary (this normalized distance can be negative if the
object is inside the nucleus). The angle (or angles) of the object’s center to the center
of the nucleus are also found. An empirical probability density map is then formed
by tabulating these positions for many objects from many cells. To use this model to
synthesize an image, the number of objects is drawn from the appropriate distribu-
tion, a size and shape are drawn for each (depending on which shape model is being
used), and distances and angles are chosen randomly according to the density map
for each and converted to actual coordinates for particular cell and nuclear shape
instances.
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Fig. 5 (a) Overview of inverse modeling approach for estimating parameters of the microtubule
generative model. From Sharif ez al. (Shariff et al., 2010a). (b) Example of two-dimensional slice from
three-dimensional synthetic image generated by tubulin model.

D. Models of Cytoskeletal Structures

The methods described above for building nuclear, cell, and organelle models
all make direct estimates of model parameters from real images. Although decom-
posing a cluster of organelles into individual objects may be difficult, it is usually
possible. Some organelles or structures are much more difficult to resolve into
individual elements. For example, two- or three-dimensional images of the dis-
tribution of tubulin by either wide-field or confocal microscopy typically show
individual microtubules at the cell periphery but a tangle of crossing microtubules
near the centrosome. Estimating the number of individual microtubules or their
individual paths is nearly impossible. One solution is to use specialized micro-
scope methods, such as speckle microscopy, to resolve individual microtubules.
An alternative is to use inverse modeling methods to try to estimate the parameters
of a microtubule model, as illustrated in Fig. 5a. A generative model is created and
then instances of that model are created for many different sets of parameters.
These instances are compared to a real image and the parameters corresponding to
the best match are chosen. This approach has been used to study kinetochore-
microtubule dynamics (Sprague ef al., 2003). We have used a similar approach to
build a generative model of microtubules in interphase HeLa cells and 3T3 cells
(Shariffet al.,2010a, 2011). An example of a synthetic microtubule distribution is
shown in Fig. 5b.

E. Putting it all Together

Once the various components of a model have been created, it is a simple matter to
construct synthetic cell instances. Figs. 6 and 7 show idealized images (with no
blurring or noise) for instances created from two- or three-dimensional models,
respectively. As discussed below, these idealized images can also be used to estimate
how that cell might look if imaged in a particular microscope.
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Fig. 6 Example of synthetic image generated by a two-dimensional model learned from images of the
lysosomal protein LAMP2. The DNA distribution is shown in red, the cell outline in blue, and LAMP2-
containing objects in green. From http://murphylab.web.cmu.edu/data/2007_Cytometry GenModel.
html. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this book.)

Fig. 7 Example synthetic image generated by a three-dimensional model learned from images of the
lysosomal protein LAMP2. The nuclear surface is shown in red, the cell surface in blue, and LAMP2-
containing objects in green. (See color plate.)


http://murphylab.web.cmu.edu/data/2007_Cytometry_GenModel.html
http://murphylab.web.cmu.edu/data/2007_Cytometry_GenModel.html

190 Robert F. Murphy
IV. Protein Distributions Across Subcellular Structures

The models described above capture how cellular organelles are arranged within a
cell, but do not address the critical question of how the tens of thousands of proteins
in each cell are distributed among these organelles. Images, especially fluorescence
microscope images, can be a major source of information on the subcellular dis-
tributions of proteins, and, as mentioned above, may be used directly in cell simula-
tions. The feasibility of using automated pattern recognition approaches to recognize
the subcellular patterns of proteins that localize primarily to one organelle has been
well demonstrated (for reviews see (Chen et al., 2006; Conrad and Gerlich, 2010;
Shariff et al., 2010b)). However, many proteins are found to varying extents in more
than one organelle, and therefore a means of determining that distribution is needed.

A. Boolean Vectors: GO Terms

Some information about protein subcellular location can be obtained from protein
databases, which have at least some GO terms associated with most proteins.
However, there are a number of limitations of these annotations, most of which derive
from the absence of enough experimental data. For example, these databases do not
attempt to capture changes in GO terms for different conditions or cell types or
distinguish between subcellular locations of different splice isoforms. Nonetheless,
when no other information is available, GO terms can be represented as a Boolean
vector describing whether a particular protein is or is not found in each organelle.

B. Dirichlet Distributions: Pattern Unmixing

What is really needed for accurate modeling of a protein is a Dirichlet distribution
— a probability distribution (that sums to one) for each molecule of that protein over
the different organelles. We can convert the Boolean vector for a particular protein
derived from GO terms into a Dirichlet distribution by dividing by the number of
organelles it is thought to be found in. This assumes, in the absence of any other
information, that it is equally likely to be in each of them. A much better alternative is
to try to estimate the amount of a given protein in each organelle or structure. To do
this, we define a set of fundamental patterns to be a set from which all composite
patterns can be constructed. This might correspond to the set of all organelle
patterns, but, depending on the extent to which they are distinct, might contain
multiple subpatterns for a given organelle. For example, protein distributions in
the nucleus have been divided into at least eight nuclear subdomains (Bauer et al.,
2011). For a collection of images of a particular protein, we seek to find the Dirichlet
distribution over these fundamental patterns. In other words, we estimate how much
of the protein would have to be in each pattern in order for the overall image to appear
as it does. This task can be viewed as unmixing an image formed by mixing
fundamental patterns.
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We have described two approaches for estimating this: one in which we specify the
fundamental patterns in advance and just try to estimate the fractions (referred to as
supervised unmixing), and one in which we try to find the fundamental patterns as
well as the fractions (referred to as unsupervised unmixing). Using a test set of
images created by an automated high content imaging system, we have demonstrated
that good estimates of the fractions can be obtained by both the supervised (Peng
et al., 2010) and unsupervised (Coelho et al., 2010) approaches.

V. Use of Models for Testing Algorithms

A classic problem in testing algorithms for microscope images is that the correct
results are frequently not known. A generative model for a desired pattern or
structure can be combined with a model of image formation in a particular micro-
scope to generate test images (phantoms) for which the correct results from image
analysis are known. The process by which an image is formed in a microscope is
quite well understood, so accurate models of point-spread functions and sampling
noise can be constructed and applied to the idealized images generated by the
methods described above. This approach has been applied previously for nuclei
(Yang et al., 2008; Svoboda et al., 2009); the paper by Svoboda et al. (Svoboda
et al., 2009) provides a particularly good image formation model.

The phantom approach can be extended to any combination of the tools in the
CellOrganizer project to generate test images with known cell boundaries, object
locations, and/or subcellular patterns. The accuracy of algorithms can also be
determined as a function of the parameters of the generative model, such as cell
size or extent of nuclear elongation. Collections of already synthesized synthetic cell
images can be found at http://CellOrganizer.org.

VI. Conclusion

In this chapter, I have described current approaches for building accurate models
of cell organization directly from fluorescent microscope images. These models
capture variation in cell organization at the level of the nucleus, cell membrane, and
individual organelles, and can capture how particular proteins are distributed among
cellular components. They represent a significant advance over the use of words
(such as GO terms) as the means by which results of experiments on subcellular
localization and organization are captured and communicated. Nonetheless, the
field is at the beginning, and it is hoped that many investigators will develop and
make available tools that improve and extend the approaches described here.
Examples of future work that can be anticipated include methods for merging images
at different resolutions (especially light and electron microscope images) and meth-
ods for describing the interplay between localization and structure for proteins
involved in creating subcellular structures.
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Abstract

The shape of a cell, the sizes of subcellular compartments, and the spatial distri-
bution of molecules within the cytoplasm can all control how molecules interact to
produce a cellular behavior. This chapter describes how these spatial features can be
included in mechanistic mathematical models of cell signaling. The Virtual Cell
computational modeling and simulation software is used to illustrate the considera-
tions required to build a spatial model. An explanation of how to appropriately
choose between physical formulations that implicitly or explicitly account for cell
geometry and between deterministic versus stochastic formulations for molecular
dynamics is provided, along with a discussion of their respective strengths and
weaknesses. As a first step toward constructing a spatial model, the geometry needs
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to be specified and associated with the molecules, reactions, and membrane flux
processes of the network. Initial conditions, diffusion coefficients, velocities, and
boundary conditions complete the specifications required to define the mathematics
of'the model. The numerical methods used to solve reaction—diffusion problems both
deterministically and stochastically are then described and some guidance is pro-
vided in how to set up and run simulations. A study of cAMP signaling in neurons
ends the chapter, providing an example of the insights that can be gained in inter-
preting experimental results through the application of spatial modeling.

I. Introduction

The cell is distinctly nonhomogeneous and the spatial distribution of molecules
can be of critical importance to cellular pathways. Signaling events initiated within
the two-dimensional plane of the membrane move through the three-dimensional
volume of the cytosol and propagate through multiple intracellular compartments.
Spatial segregation of interacting molecules, whether by localization to different
cellular compartments or by associations with supramolecular complexes, is a
common mechanism of regulating pathway activity. Mathematical modeling and
simulation in these situations requires spatial simulation methods that incorporate
actual cell geometry, compute local concentrations, and account for changes that
arise from transport processes (diffusion and active processes).

Spatial modeling of signaling pathways has already begun to provide unique
insights into how cellular geometry intersects with the kinetic behavior of signaling
components to create spatially encoded information in the cell. We are now beginning
to understand at a quantitative level not only how surface to volume effects impact
signaling pathways that arise on a membrane (e.g., Fink et al. (2000), but also how
geometry effects are transmitted to downstream components. Spatial modeling studies
have demonstrated that the creation of signaling molecules at the membrane and their
destruction or inhibition throughout the cytosol can create gradients that vary as the
local geometry of the cell changes (Kholodenko et al., 2010). Local gradients likewise
can have significant downstream effects. For example, regulation of calcium levels
during repetitive firing of synapses is highly dependent on the specialized geometry
of the neuronal spine, leading to new hypotheses for coincidence detection localized
to individual synapses, a key aspect of learning and memory (Brown ef al., 2008;
Hernjak et al., 2005). Also in neuronal cells, experiments coupled to spatial simula-
tions demonstrated that while microdomains of elevated cAMP arise from the local-
ization of receptors and adenyl cyclase to the membrane, the kinetics of negative
regulators localized to the cytosol creates spatially distinct regions of activity of
downstream targets such as PKA and MAPK (Neves et al., 2008).

Events at the plasma membrane that dictate polarized cellular responses, such as
chemotaxis and cell migration as well as yeast budding and cell division, are among
the more obvious cases where spatial modeling can lead to new insights into how
signaling pathways evoke spatially discrete responses in the cell. Already modeling
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efforts have led to a number of new hypotheses in these fields. Some examples
include the local excitation, global inhibition (LEGI) model to explain how cells
respond to shallow gradients of chemoattractants (Ma et al., 2004), a hypothesis that
Turing-type activator—inhibitor dynamics involving the small Rho GTPase Cdc42 can
explain the selection of only a single budding site in yeast (Goryachev and Pokhilko,
2008), and a proposed mechanism by which spatial gradients of two regulatory
molecules evaluates cell size in yeast mitotic checkpoints (Vilela et al., 2010).

In addition to testing and developing new hypotheses, spatial modeling also
provides an exceptional tool for analyzing and interpreting the ever expanding
arsenal of fluorescence-based microscope imaging methods. Spatial simulations
help one to extract quantitative information about the dynamic behavior of mole-
cules and the detailed kinetics of molecular interactions and enzymatic events within
the exact geometry of experimental cells. This allows direct comparison of simula-
tion results of different models and parameters with experimental image time series.
Most current methods for quantitative analysis of dynamic fluorescence imaging
experiments rely on analytic solutions that assume simple analytic geometries for the
cell. The ability of numerical simulation approaches to account for exact morphol-
ogies of real cells dramatically broadens the range of these experimental techniques.
Simulation-based approaches have been used to analyze many different types of
experiments including uncaging experiments (Roy et al., 2001) and fluorescence
photobleaching or photoactivation experiments (Holt ez al., 2004; Kapustina et al.,
2010; Moissoglu et al., 2006; Shen et al., 2008). Indeed, any experimental data based
on changes in fluorescence distributions over time and space can be amenable to
analysis by spatial simulation methods. Particularly exciting is the promise of spatial
simulation-based analysis to extract high temporal and spatial resolution informa-
tion on pathway dynamics from the array of new fluorescence biosensors for kinase
and phosphatase activities (Saucerman et al., 2006; Zhong et al., 2009).

This chapter provides a discussion of the problems that spatial modeling can
effectively address in cell signaling, and different overall strategies for developing
models of cellular pathways. Using our web-based Virtual Cell (VCell) modeling
environment to illustrate the process (http://vcell.org), we discuss some of the
important issues that need to be addressed in order to build a useful spatial model
and how to negotiate the important choices and parameters involved in running
numerical simulations of the models. This is followed by working through a specific
example of a VCell spatial model and exploring how the model can be used to
simulate specific experimental or conceptual conditions to generate predictions of
the model (i.e., simulation data) that can be tested experimentally.

II. Overview of Spatial Modeling
A spatial model is a mathematical system that accounts for processes such as

reactions kinetics, diffusion, advection, and membrane transport. A pair of equa-
tions serves to summarize the physical chemistry of cell signaling systems with
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explicit consideration of the voyage of a molecule from one region of the cell to

another:
9C; N
atl = —div F; + Ri(C}, Cy,...,®P) (1)
Ei =-D;VC; - C; 171' —zijpn;,C;V P (2)

The first equation describes the change in concentration, C;, of a molecular
species, i as a function of time at some point within the cell. It is a partial
derivative of C; with respect to time; C; can also vary over spatial coordinates,
x,y,z. On the right hand side of Eq. (1), R; is the rate expression for the formation
or destruction of species 7; it can be a function of the concentration of any of the
other molecular species in the system, as well as the electrical potential across the
membrane, @, for a voltage-sensitive membrane bound species. The first term on
the right side is the divergence of the flux of i, F;, which is further described in
the second equation. Eq. (2) is the Nernst—Planck flux equation with an added
advection term, showing the factors that govern the net flow of molecules: the
gradient of concentration times the diffusion coefficient, D;; the veloc