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PREFACE

Computation is an essential part of the cell biologist’s toolbox. The value of

computation in analyzing systems involving numerous, interconnected mechanisms

has long been appreciated. Computational models provide a framework not only to

formally represent and simulate the mechanisms, but also predict the response of an

integrated system to new perturbations and thereby lead to testable hypotheses. In

this way, computational modeling and analysis can suggest new experiments that

challenge and help revise our mechanistic understanding of the cell system.

Prediction and hypothesis-generation, however, tells only part of the story. The

need for computation is now far more pervasive in cell biology. Cell biological data

is increasingly gathered with high bandwidth, often exploiting heterotypic measure-

ment modalities. This flood of data includes changes in gene expression, post-

translational modifications, and the subcellular location of key regulatory events.

The ‘-omic’ scale in vivo imaging of spatiotemporal patterns in gene expression

during the development of model organisms is a compelling example. Extracting

meaningful data from such images is a key challenge and involves reliable segmen-

tation, annotation, storage and data management, bioinformatics, and data mining.

Having acquired the data, one seeks to infer salient mechanistic relationships and

models. Deriving a model of how a system works based on experimental data is, of

course, not new. The challenge now is that the volume, the spatiotemporal resolution,

and the heterotypic nature of the data make such inferences difficult to execute by

intuition alone. Computational algorithms to sift through the data and extract models

consistent with the data are essential. Furthermore, model schematics, whether

derived by computation or intuition, are conceptual until they are used to generate

concrete, testable predictions. Making such predictions, however, is encumbered by

a dearth of information regarding parameter values and by the fact that cellular

mechanisms often operate over multiple time and spatial scales, in many cases

combining biochemical and mechanical elements. Thus, inferring computablemod-

els that are amenable to simulation requires inference not only of the mechanistic

connections, but also the parameters that describe the strength of those connections

and interactions.

This remarkable breadth of applications of computation in cell biology impresses

the fact that computation is more than a module in a multi-step process that involves

iterative feedback between model and experiment. It is also increasingly integral to

how data is gathered and interpreted, how mechanistic models are inferred, and how

new mechanisms are hypothesized and uncovered. This volume captures this broad

integration of computation in experimental cell biology. The volume covers the role

of computation in the extraction of quantitative information from raw data; inference

xv



of mechanistic computable (i.e., parameterized) models from large, heterotypic

datasets; and prediction and hypothesis-generation to drive new experiments.

The contributors to this volumewere presented with a difficult challenge: to tailor

each chapter in a way that provides both high-level and in-depth tutorials of key

computational methods, while also communicating the biological question that

inspired the computational approach and the biological insights that were uncovered.

The contributors have, in our opinion, succeeded admirably in tackling this chal-

lenge. The chapters are organized into three parts that focus on (1) molecular

regulatory networks, (2) spatial and biophysical aspects of cell regulation, and

finally (3) multicellular systems. Each part of the volume contains chapters that

deal with the different applications of computation in cell biology: measurements

and data extraction, model development and inference, and prediction and hypoth-

esis generation.

With acknowledgment and deepest gratitude to the tremendous efforts of the

contributors and to the many anonymous peer reviewers, we are pleased to present

this volume and trust that it will provide inspiration and instructive tutorial in your

search for the right computational tool for your cell biology quest.

Anand R. Asthagiri

Department of Chemical Engineering,

Northeastern University, Boston,

Massachusetts, USA

Adam P. Arkin

Department of Bioengineering,

University of California, Berkeley,

California, USA

September 30, 2011
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CHAPTER 1

Principles of Model Building: An
Experimentation-Aided Approach to
Development of Models for Signaling
Networks
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Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA

Abstract
I. Introduction
II. Signaling Systems and Mathematical Models
III. Experimentation-aided Model Development

A. Template Identification
B. Module Development
C. Architectural Revision
D. Model Simulations

IV. Conclusion
Acknowledgments
References

Abstract

Living cells continuously probe their environment and respond to a multitude of

external cues. The information about the environment is carried by signaling cas-

cades that act as ‘‘internal transducing and computing modules,’’ coupled into

complex and interconnected networks. A comprehensive understanding of how cells

make decisions therefore necessitates a sound theoretical framework, which can be

achieved through mathematical modeling of the signaling networks. In this chapter,

we conceptually describe the typical workflow involved in building mathematical

models that are motivated by and are developed in a tight integration with experi-

mental analysis. In particular, we delineate the steps involved in a generic, iterative

experimentation-driven model-building process, both through informal discussion
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and using a recently published study as an example. Experiments guide the initial

development of mathematical models, including choice of appropriate template

model and parameter revision. The model can then be used to generate and test

hypotheses quickly and inexpensively, aiding in judicious design of future experi-

ments. These experiments, in turn, are used to update the model. The model devel-

oped at the end of this exercise not only predicts functional behavior of the system

under study but also provides insight into the biophysical underpinnings of signaling

networks.

I. Introduction

Models represent useful abstractions of reality, and are clearly a part of how

we learn about and understand various aspects of the world around us. These

models we all seem to have are frequently conceptual, but they can also be

quite quantitative, for instance in developing intuitive predictive abilities in

applying just enough force in lifting a full glass of water, in applying brakes

while driving on a busy road, or in catching a ball during a windy afternoon

game. Many initial models, formed in the early childhood, turn out to be wrong

or overly simplistic when faced with increasingly complex realities of testing

them in a real world. Arguably following a very similar tendency, we try to

build models while engaged in scientific research. These models also frequently

start out as simplistic and largely incorrect during the infancy of a scientific

discipline, being gradually refined and honed as they face the reality checks

provided by experimental analysis. As experiments become more precise, they

provide more stringent tests of related models, enabling model development in

more quantitative, mathematical fashion. This gradual refinement of our under-

standing of a particular phenomenon through iteration of modeling and exper-

iment is at the heart of the scientific method itself, and as models are never

complete, nor are they meant to be, they provide us with the best hope for

making continuous progress in furthering our understanding of complex

processes.

Computational models of biological phenomena, particularly at the level of

description of subcellular, molecular processes, are still very much in their

infancy. And it is still very much unclear what metaphors and what mathematical

and computational concepts and tools would provide a useful platform for devel-

oping these models. Arguably, the ultimate test here is again provided through a

tight linkage between the model and experiment. If a model, whatever its math-

ematical embodiment or degree of sophistication, is able to provide a hitherto

unavailable insight, useful generalization or abstraction, or make unanticipated

prediction, its value becomes increasingly high, a kind of justification of its use a

posteriori. In this regard, many models, based on and using the concepts and

mathematics for applications in engineering and physics, turn out to be still quite
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predictive and thus justified in their use, when applied to biological processes. In

this chapter, we provide some examples of such models.

Recently, the ‘‘classical’’ approaches to model development described above

have gradually become challenged due to the exceedingly rapid progress in how

many biological variables can be measured, and how fast it can be done. In many

ways, there is now a requirement for building models that need to be multidimen-

sional from the start, dealing with hundreds or even thousands of simultaneously

measured entities, accompanying complex biological events. In some ways, this

rapid technological development heralded the ‘‘age of Kepler’’ in biology, the age

of finding statistical relations that can capture many aspects of the biological

processes, while also being predictive of the ultimate outcomes. However, the

understanding of the primary causes of relations between the underlying ultimate

controlling processes may still be awaiting the ‘‘age of Newton,’’ the age of

important conceptual breakthroughs. Arguably, these breakthroughs in under-

standing the processes described from the large-scale, multivariable, ‘‘bottom

up’’ perspective can and will emerge from a more of a classical, iterative ‘‘top-

down’’ description, aimed at accounting for processes, however ostensibly com-

plex, using the simplest models possible.

II. Signaling Systems and Mathematical Models

An area of biological research that has been extremely amenable to and hence

benefited from mathematical modeling is the study of signaling systems, largely

facilitated by the fact that signaling cascades are, in their basest form, nothing but

elementary chemical reactions. What started as an attempt to quantitatively describe

the action of a single enzyme by Leonor Michaelis, Maud Menten, and others has

now blossomed into a full-fledged undertaking to model the workings of large

signaling cascades involving not one but scores of enzymes, their substrates, and

myriad other biomolecules. The fact that steps in a signaling cascade can be con-

strued as chemical reactions lends itself easily to the development of mathematical

models comprising simple Ordinary Differential Equations (ODEs), each of which

describes a particular reaction. The real power of these models, however, arises from

the fact that signaling systems are built not unlike many man-made control systems,

replete with nonlinear connections between different components. The presence of

such nonlinear connections, which give rise to interesting dynamics, makes it

difficult to intuitively predict the response of a system under different conditions.

Mathematical models are immensely useful in not only helping us quantitatively

predict system responses but also allowing us to generate additional hypotheses for

experimental testing. More and more frequently, models of signaling networks

provide insights into the abstract principles that have guided Nature in the evolu-

tionary ‘‘design’’ of signaling networks, facilitating efforts in understanding of the

existing and (re-)designing of novel networks of desired properties (Lim, 2010;

Antunes et al., 2009; Toettcher et al., 2010).

1. Principles of Model Building 3



III. Experimentation-aided Model Development

Nonlinear connections in signaling cascades inherently give rise to dynamically

interesting behavior such as oscillations. Over the course of evolution, life forms

seem to have exploited such temporal dynamics to their advantage. Crucial infor-

mation about external stimuli can be embedded in the parameters of oscillations such

as frequency and amplitude (Cheong and Levchenko, 2010). Oscillations are exhib-

ited by multiple signaling systems and are thought to underlie the rhythmic beating

of the heart, insulin secretion, and memory formation. Central to many such oscil-

lating systems is the ubiquitous second messenger, calcium. This, combined with a

long history of observations of intracellular calcium dynamics, has led to many

mathematical models describing putative mechanisms of how calcium oscillations

can arise in diverse settings (see reviews: (Schuster et al., 2002; Dupont et al., 2011).

However, experimental validation of such models is frequently not undertaken.

More recently, we and many other groups have used experimental monitoring of

calcium oscillations in conjunction with computational models to address basic

questions of signaling. In this chapter, we will illustrate the experimentation-

aided development, refinement, and implementation of computational models in

general, using the specific example of a recent modeling–experimental analysis

project (Ni et al., 2011), which we believe captures many archetypal features of

an integrative effort relying on both modeling and experimental research in equal

measure. The principles involved in such a model-building process can be gen-

eralized as follows:

1. Template identification: Mathematical models have already been built for many

signaling cascades. A good starting point therefore in the development of a

computational model may therefore be to identify an existing model that is

suitable for the system of choice.

2. Module development: No models are ever complete. Experimental results could

identify new components or links in a signaling pathway, which need to be

incorporated in the model. Newly identified components and links often occur

as subsystems, which could be modeled semi-independently as individual

modules.

3. Architectural revision: Although the modules within a complex model could

be relatively independent of each other, the modules have to be integrated in

a seamless manner in the final model to reproduce the experimental results.

In many cases, all the links between different components may not be known,

in which the most likely configuration of a signaling network has to be

selected.

4. Model simulations: The complete model is then simulated to replicate experi-

mental results and to generate additional hypotheses, which are subsequently

verified by experiments.

Although, these principles have been enumerated as a defined list, it is not

uncommon to employ them in a combined and iterative fashion.
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A. Template Identification

As the efforts to employ modeling in the analysis of biological processes

accelerate, it is becoming more and more common to initiate the analysis, with

existing prior art in the form of published models capturing a certain aspect of

the biological process of interest. Models for calcium oscillations, for instance,

abound in literature (Schuster et al., 2002; Dupont et al., 2011). Choosing

the right template to start with depends mainly on the system under study and

the purpose of the intended final model. For example, stochastic models are

immensely helpful in addressing questions of dynamics pertaining to single

molecules, such as ion channels (Dupont et al., 2008; Cannon et al., 2010), or

in the exploration of how noise affects transcriptional control and signaling

dynamics (Roberts et al., 2011; Ko et al., 2010). Multiscale models may be

necessary to explain tissue-level functionalities using molecular mechanisms

(See reviews: (Greenstein and Winslow, 2011; Du et al., 2010). In most cases,

however, simple deterministic models can serve the purpose of explaining how

signaling cascades regulate cellular functions. When setting out to address

potential mechanisms of cross-talk between calcium, cyclic adenosine monopho-

sphate (cAMP), and protein kinase A (PKA) signaling, our choice of the template

model was based on our initial experimental results and the particular set of

questions we sought to address. The fact that intracellular levels of calcium

oscillate in pancreatic b-cells upon membrane depolarization has been well

documented for more than two decades (Bertram et al., 2010; Grapengiesser

et al., 1988; Corkey et al., 1988). Using genetically encoded biosensors based on

F€orster Resonance Energy Transfer (FRET) (Zhang et al., 2001; DiPilato et al.,

2004), we observed that cAMP and the associated kinase, PKA, also exhibited

temporal oscillatory dynamics, matching the calcium oscillations in a calcium-

dependent manner. Further, our experiments indicated that calcium oscillations

could be regulated by PKA through a putative feedback loop. These experiments

presented us with the need and the opportunity to expand current models describ-

ing the generation and regulation of calcium oscillations. The main purpose of

our modeling analysis was then to develop a minimal yet sufficiently detailed

model accounting for and constrained by the experimented observations.

We chose the original Chay–Keizer model (Chay and Keizer, 1983) and its

later version detailed by Sherman, Li, and Keizer (Sherman et al., 2002) as our

initial modeling templates and thus built a ‘‘voltage module’’ to describe the

membrane potential dynamics and its connection to calcium concentration

dynamics. When the parameters present in the original model were used, we

observed that the frequency of oscillations was much lower than the frequency of

oscillations experimentally observed. Hence, some of the parameter values

needed to be refined in order to corroborate the experimental data. Certain

parameters are likely cell-type specific and hence are most likely to vary when

distinct experimental systems are analyzed. The net conductance of a type of

channels in a cell, for instance, is a function of the number of available channels,

1. Principles of Model Building 5



and so conductance values vary among different cell types. In our model, the

conductance of voltage-dependent calcium channels (VDCCs) was altered, as has

been similarly done in a model published by Fridlyand et al. (Fridlyand et al.,

2007). To match the change in VDCC activity owing to this reduced conductance

and to match the experimentally observed frequency of oscillations, the conduc-

tance of the delayed rectifier K+ channels also was reduced. The value of another

parameter that reflects the fraction of free calcium in a cell was chosen by Chay

and Keizer on the basis of the time scale of the oscillations in their model, in the

absence of any concrete experimental measurements. Because the frequency of

oscillations experimentally observed in our system was much lower than that in

the study by Chay and Keizer, this parameter was also reduced accordingly.

Apart from these frequency-related parameters, the reversal potential for

VDCCs, ECa, was modified to 100 mV, as previous reports have consistently

used this value (Chay and Keizer, 1983; Bertram et al., 2000). Following these

modifications, the calcium module (see ‘‘B. Module Development’’) was devel-

oped to simulate the calcium dynamics. Simulations of the modified template

model with the new parameter values matched the experimental results quite well

(Fig. 1).

[(Fig._1)TD$FIG]

Fig. 1 (A) Experimental measurements of intracellular calcium in a single MIN6 pancreatic b-cell.

MIN6 cells were loaded with Fura2-AM (2 mM), and the ratio of excitation at 340 nm to that at 380 nm

was recorded. (B) Simulations of the modified template model with new parameters. F, fluorescence

intensity at 340 nm; Fo, fluorescence intensity at 380 nm.

6 Ambhighainath Ganesan and Andre Levchenko



B. Module Development

Regulatory biochemical networks and the corresponding mathematical and

computational models can be frequently decomposed into constituent ‘‘modules,’’

subsets of reactions that always occur in particular combination, whenever they are

encountered. Modules can have variable ‘‘linkages,’’ or cross-activation reactions,

which may be cell- or tissue-specific, or display other types of specificity. One can

therefore first attempt to model each of the modules in detail, and then attempt to

understand how they may be ‘‘linked’’ in a particular system of interest. Below we

describe examples of modules modeled within the context of the pancreatic b-cell
signaling.

1. Calcium Module

Apart from calcium influx across the plasma membrane, calcium release from the

internal stores is also assumed to play a major role in many processes that involve

calcium oscillations, as evidenced by the glucose-regulated expression of IP3 recep-

tors (IP3Rs) in rat pancreatic islets (Bezprozvanny et al., 1991). Hence, we derived

equations to describe the net calcium release from and uptake by internal stores

mediated by IP3Rs and Smooth Endoplasmic Reticulum Calcium ATPases

(SERCAs), respectively. As in the case of the voltage module, we made initial use

of the models by Gorbunova and Spitzer (Gorbunova and Spitzer, 2002) and Tang

and Othmer (Tang and Othmer, 1995) as templates for modeling calcium release

from internal stores. Although the equations of the voltage module employ para-

meters that are specifically suited for the pancreatic b-cell system, the equations for

flux across the internal stores employed by Gorbunova and Spitzer and by Tang and

Othmer were developed in the context of aplysia neurons and cardiac myocytes,

respectively. Hence, using the equations with the values derived from these models

could lead to oscillations with frequencies different from that observed in our experi-

ments. The parameters defining IP3R density, for instance, or others governing the

flux through internal stores would be expected to differ when used in the pancreatic

b-cell system. In the absence of any published values for the number or density of

IP3Rs in these or other cell types, we again resorted to matching of experimental

results andmodel simulations. Similarly, the parameters pertaining to SERCA activity

were also refined so as to ensure robust oscillations of frequencies matching those in

the initial experimental results shown in Fig. 1. This process is an integral part of

model ‘‘training.’’ The trained model was then used to make further predictions.

2. cAMP and PKA Modules

We used kinetic parameters published earlier (see Supplementary material of the

study by Bhalla and Iyengar (Bhalla and Iyengar, 1999) to develop the cAMP and

PKA modules. Certain parameters pertaining to kinetics of adenylyl cyclases (ACs,

enzymes that synthesize cAMP) were also derived from other studies with appro-

priate assumptions (see Supplementary methods of (Ni et al., 2011) for complete

1. Principles of Model Building 7



derivation of the equations). The advantage of developing such semi-independent

modules is that they could be used to test certain hypotheses even at the early

stages of model development. These results may further guide the development of

appropriate experiments and in refining of the model itself. For instance, in the

calcium–cAMP–PKA system that we were investigating, we had experimentally

observed that cAMP could oscillate in tandem with calcium oscillations. Given

that cAMP oscillates, we wondered if it automatically translates into PKA oscilla-

tions. In order to test this hypothesis, we used the PKA module independently and

simulated PKA dynamics in response to a sinusoidal cAMP input signal. In theory,

as the model results suggested, cAMP input can lead to diverse PKA dynamics

(Fig. 2) depending on the value of a parameter that reflects the binding constant of

cAMP to the PKA homodimer. Based on these modeling results, we were able to

conclude that cAMP oscillations do not always necessarily translate into PKA

oscillations. Based on these modeling results, we decided to monitor PKA activity

dynamics concurrently with calcium dynamics. Using a FRET-based biosensor,

the A Kinase Activity Reporter (AKAR), to monitor changes in PKA activity in live

cells, we observed that PKA activity does in fact oscillate in tandem with calcium

oscillations – an observation that formed the central basis of our whole study.

C. Architectural Revision

Modules constituting complex regulatory systems may be linked in a variety of

ways, displaying cell, tissue, and condition specificity. The number of such linkages

in fact can be combinatorially large for an increasing number of modules. Thus, if

[(Fig._2)TD$FIG]

Fig. 2 Simulation of PKA activity (PKA*) in the presence of oscillatory cAMP, showing different

activity patterns depending on the characteristics of the oscillations and parameters of PKA activation and

deactivation. The parameter, k1, reflecting the binding of cAMP to PKA homodimer was varied in this

simulation. The parameter k1 is the ratio of the new value to the nominal value of k1. cAMP, cyclic

adenosine monophosphate; PKA, protein kinase A. (For color version of this figure, the reader is referred

to the web version of this book.)
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one was to include all possible regulatory interactions and feedbacks regulating

individual modules, the resulting model can be too complex to be of predictive

value, and more importantly, potentially irrelevant to the particular cell type and

regulatory situation considered in the model. If, therefore, there is a way to restrict

the type and number of putative regulatory links in the modeled system, the resulting

model can be more powerful, relevant, and predictive. Again, contrasting model

predictions with experimental observations can be of considerable help. An example

of such a process is described below.

Several possible simplified versions of how the calcium and cAMP modules in

the signaling network of pancreatic b-cells might interlink were initially consid-

ered for consistency with the experimental data (Fig. 3). In particular, we focused

on the need by the model to account for the experimental observation that

calcium and cAMP oscillations are out of phase. This could be explained by

the activation of calcium-inhibited ACs (enzymes that synthesize cAMP) and/or

calcium-activated phosphodiesterases (PDEs, enzymes that degrade cAMP). We

therefore explored different possible combinations in which the components of

the signaling circuit could be connected as shown in Fig. 3. Furthermore, the

experiments suggested that calcium rise phase and cAMP decay phase in each

peak are coincident and very sharp, suggesting another criterion for the model

‘‘pruning.’’

ACs can be activated by calcium-calmodulin (CaM.Ca4) or inhibited by calcium.

There are therefore twoways to represent the calcium-AC link in the model in terms

of kinetic parameters (which are equivalent to exponents in S-system models (Voit,

2000): inactivation by calcium is denoted by�1, whereas no dependence on calcium

[(Fig._3)TD$FIG]

Fig. 3 Possible topologies for the circuit with the components shown. Solid lines indicate fixed

connections. Dotted lines indicate variable connections. The numbers �1, 0, and 1 indicate if the link

is inhibitory, absent, or activating, respectively. AC, adenylyl cyclase; cAMP, cyclic adenosine monopho-

sphate; CaM, calmodulin; PDE, phosphodiesterases; PKA, protein kinase A. (For color version of this

figure, the reader is referred to the web version of this book.)
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is denoted by 0. Similarly, the effect of CaM.Ca4 on AC can be represented in two

ways: activation by CaM.Ca4 is denoted by 1, whereas no dependence on CaM.Ca4 is

denoted by 0. PDEs likewise can be activated or inactivated by CaM.Ca4 or can be

independent of CaM.Ca4 activity. Following the same logic, the parameter for this

link can be represented as 1, 1, or 0, respectively. Accordingly, we have

2 � 2 � 3 = 12 possible circuits.

As the experimental criteria used in the analysis are essentially dynamic, we

developed a ‘‘Time Delay Metric,’’ whose value quantifies the phase delay between

the calcium and cAMP oscillations, using a circular cross-correlation function as a

function of time of oscillations. To quantify the ‘‘sharpness’’ of the calcium rise and

cAMP decay phases, we determined the time taken to reach half maximum or

minimum (t1/2) by these species. Finally, a metric to quantify the coincidence of

sharp rises in calcium and decays in cAMP was also evaluated. The model was a

simplified version of the full ODE model, primarily designed to capture the overall

positive or negative effect of one variable on another, without accounting for precise

temporal kinetics.

We also defined four sensitivity parameters, which were varied one-by-one to

describe different possible circuits. In particular, three different values for the

parameter under investigation were chosen: ‘‘�1,’’ to represent a ‘‘low’’ value;

‘‘0,’’ to represent a nominal value; or ‘‘1,’’ to represent a ‘‘high’’ value, respec-

tively. An instance of one such simulation is presented in Fig. 4. The ordered set

of numbers in the plots should be read as: [sensitivity parameter value, Calcium-

AC link, calmodulin (CaM)-AC link, CaM-PDE link]. The sensitivity parameter

value changes across the rows. Therefore, each row corresponds to the full set of

12 circuits at a fixed sensitivity parameter value. Conversely, each column

corresponds to a particular circuit with the sensitivity parameter value spanning

the complete range. In the plots, the ‘‘warmer’’ (red being the warmest) colors

indicate a higher value for the corresponding metric and ‘‘cooler’’ (blue being the

coolest) colors correspond to lower values. White patches indicate that the

corresponding circuits did not produce oscillations or produced complex oscilla-

tions with varying amplitude, a feature that we do not observe in our experimen-

tal results. As mentioned above, we looked for circuits that satisfied certain key

criteria in accordance with our experimental results. So, we identified circuits

that could produce antiphasic oscillations (which correspond to warmer patches

in the Time Delay Metric plots) and had a simultaneously fast calcium rise phase

and cAMP decay phase (which correspond to cooler patches in the Rise–Decay

Metric plots).

The results in Fig. 4 correspond to variation in the parameter that relates to the

PKA feedback to calcium. Analyzing all such plots, we identified the five following

circuits that repeatedly satisfied the required criteria:

(�1, 1, 1), (�1, 0, 0), (�1, 0, 1), (0, 1, 1), and (0, 0, 1).

Of these, the three following circuits appeared to be relatively robust to parameter

variation in each case:

(�1, 1, 1), (�1, 0, 1), and (0, 0, 1).
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In all of the three circuits above, we found a common feature, namely that the third

number in the set was always 1. In other words, PDE activation by CaM is sufficient to

produce calcium and cAMP oscillations out of phase with each other, with calcium

having a sharp rise and cAMP having a sharp decay phase. We used this result in

formulating our model for the calcium–cAMP–PKA circuit as detailed below.

[(Fig._4)TD$FIG]

Fig. 4 Changes in (A) the time delay between Ca2+ and cAMP oscillations and (B) the coincidence of

rapid Ca2+ rise phase and a rapid cAMP decay phase due to change in one of the sensitivity parameters,

KPKAvar. KPKAvar takes one of the values (�1, 0, 1) to represent a ‘‘low,’’ ‘‘nominal,’’ or ‘‘high’’ value,

respectively. cAMP, cyclic adenosine monophosphate. (See color plate)
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D. Model Simulations

The results obtained during the architectural revision process can be used to

guide the model development in finalizing the signaling network architecture. At

this juncture, a few simple equations or additional parameters may need to be

incorporated to describe the actual links between the different modules. This

complete model may still need to have a few parameter revisions so as to match

the experimental results. In our study of the signaling network in pancreatic

b-cells, we were led to assume that cAMP dynamics in the final model is regulated

by CaM.Ca4-dependent PDE and PKA feeds back to calcium. The model simula-

tions were able to capture most of the salient features in the experimental results

(Figs. 5 and 6). This complete model was then used to generate hypotheses and test

them experimentally. This process has led to a variety of interesting predictions

confirmed experimentally, increasing the level of confidence in the model

precision.

[(Fig._6)TD$FIG]

Fig. 6 Simulations of mathematical model showing oscillatory changes in (A) Ca2+ and PKA, (B) Ca2+

and cAMP, and (C) cAMP and PKA. cAMP, cyclic adenosine monophosphate; PKA, protein kinase A. (For

color version of this figure, the reader is referred to the web version of this book.)

[(Fig._5)TD$FIG]

Fig. 5 Coordinated oscillatory changes, observed uponmembrane depolarization, in (A) [Ca2+]i (Fura-

2 traces, in black) and PKA (monitored by PKA-specific biosensor, AKAR-GR, in red). (B) [Ca2+]i
(monitored by Fura-2, in black) and cAMP (monitored by cAMP biosensor, ICUE, in red). (C) cAMP

(black) and PKA (red), monitored simultaneously using the dual-specificity FRET-based biosensor

ICUEPID. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this book.)
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One important aspect of having a working model is that it can be used to address

certain questions that would require infeasible experiments. Thus, in addition to

generation of experimentally testable hypotheses, a model can be used to theoreti-

cally test the importance of certain responses. For instance, although the experimen-

tal results showed that PKA oscillated in tandem with calcium and that PKA

feedback is necessary for the calcium oscillations, it was not clear if oscillations

of elevated PKAwere essential for oscillations of calcium and cAMP. In other words,

it was of interest to examinewhether a constant elevated level of PKA activity would

be sufficient to trigger and sustain calcium oscillations. As experimental ‘‘pegging’’

of the PKA activity to a constant level is not easily achievable, we explored this

question by model simulation. The results (Fig. 7) revealed that calcium and cAMP

entered into an oscillatory regime even when a constant level of PKA activity was

maintained. We modeled this by eliminating the ODEs in the PKA module and

fixing the concentration of active PKA as a parameter in the model. This modeling

result indicated that PKA activity oscillations might not be required for Ca2+ oscil-

lation per se, but rather have other regulatory roles. Indeed, based on other results,

we noted that PKA activity oscillations can help make this molecule a frequency

modulator, and that this frequencymodulation can enable PKA to switch from acting

locally (restricted to a certain intracellular domain) to acting globally (controlling

gene expression).

Among particularly useful model analyses that can lead to experimental validation

are the tests of perturbation of signaling and other networks through the use of

genetic and pharmacological inhibitors of molecular function. One can investigate

whether such perturbations can lead to considerable disruption of particular signal-

ing functions or specific other network components. In the calcium oscillatory

circuit, one can explore, for instance, the role of PKA feedback to calcium. If the

feedback is ‘‘abolished’’ computationally by setting the concentration of active PKA

to 0 in simulations, one observes complete termination of the calcium oscillations

[(Fig._7)TD$FIG]

Fig. 7 A hypothetical circuit with a constant normalized PKA activity of 0.4 produces oscilla-

tions at a much higher frequency than when PKA is in feedback. The concentration of each species

was normalized with respect to its maximal level during the course of the oscillations. The

concentration of active PKA was normalized with respect to the maximal level of [PKA*] achieved

when the PKA is in feedback in the nominal system. cAMP, cyclic adenosine monophosphate; PKA,

protein kinase A. (For color version of this figure, the reader is referred to the web version of this book.)
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(Fig. 8). This computationally generated hypothesis was then validated using the

PKA inhibitor H89, which indeed completely abolished calcium oscillations.

The ultimate test and benefit of a model lies not just in testing interactions but in

providing novel insights into the workings of the system – explaining why a system

behaves the way it does. Again, taking the example of the calcium-PKA cross-talk,

the model helped us address a long-standing paradox of localization and control of

PKA activation. The molecular mechanisms of PKA activation indicate that increas-

ing input signal to PKAwould result in continued diffusion of its catalytic subunits

away from the regulatory subunits, ultimately losing its ability to reset itself and

allowing all the catalytic subunits to translocate to the nucleus, in response to the

naturally present nuclear localization signal. Oscillatory PKA activity might help

address this potential problem. At low frequency of oscillations, the number of the

catalytic subunits escaping a local signaling domain (proportional to the time-

average of the PKA activity) would be relatively low, allowing the local PKA

activation to transiently exceed a threshold needed for spatially localized substrate

activation, while avoiding escape into the cytosol and the nucleus. An increase in

PKA activation can, however, change the oscillation frequency, increasing the aver-

age PKA activity and thus the escape of the catalytic subunits from the local

signaling domain, allowing them to have global cellular activity, including activation

of nuclear targets and regulation of gene expression (Fig. 9).

[(Fig._8)TD$FIG]

Fig. 8 (A) Simulation of the model in the presence or absence of PKA (shaded region). (B) The effect

of inhibiting PKA by H89 (10 mM) on calcium oscillations. PKA, protein kinase A. (For color version of

this figure, the reader is referred to the web version of this book.)
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The oscillation frequency can, therefore, control the switch between the local PKA

activity controlled by anchor proteins and global PKA activity in pancreatic b-cells
and, potentially, many other cell types. We tested this hypothesis by monitoring the

nuclear activity of PKA using AKAR-NLS (a nucleus-targeted version of the PKA

activity biosensor). At a ‘‘low dose’’ of cAMP input, which was expected to corre-

spond to low-frequency oscillations, we noticed that the nuclear activity was low.

However, a ‘‘high dose’’ of cAMP input, expected to correspond to high-frequency

oscillations, resulted in a dramatic increase in nuclear PKA activity (Fig. 10).

[(Fig._9)TD$FIG]

Fig. 9 Simulations of the model indicate that at low-frequency conditions (left panel), catalytic

subunits of PKA would be periodically released and captured for ‘‘local’’ target phosphorylation.

However, at high-frequency conditions (right panel), the mean PKA activity (red line) may cross a

threshold (black dotted line) leading to continued release of catalytic subunits resulting in phosphoryla-

tion of ‘‘global’’ targets. PKA, protein kinase A. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this book.)

[(Fig._0)TD$FIG]

Fig. 10 Representative time courses of nuclear localized AKAR (NLS-AKAR) showing the absence

and presence of nuclear PKA activity upon stimulation with low (1–3 mM) and high (10–20 mM) doses of

a PKA-specific cAMP analogue, respectively (n = 7 and 4, respectively). cAMP, cyclic adenosine mono-

phosphate; PKA, protein kinase A. (For color version of this figure, the reader is referred to the web

version of this book.)
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IV. Conclusion

Modeling can be a very powerful tool in defining the framework for the analysis

and understanding of a variety of biological systems, including the biomolecular

systems responsible for signal transduction. Modeling can be used both to generate

progressively sophisticated testable hypotheses about the workings of the systems

under investigation and to gain a better understanding of the systems’ design and

properties. Whatever its use, modeling analysis can be at its most effective if tightly

coupled to experimental validation. Only through this coupling, it can be more

evident whether model assumptions are fit for a specific system, from the standpoint

of both specific molecular interactions and the parameter values defining them.

Only through a very tight coupling between model and experiment can one hope to

see instances of model invalidations, usually reflective of unanticipated, novel con-

nections between the constituent components or suggestive of the presence of novel

mechanistic details. These are the most exciting points of scientific discovery, which

will depend more and more on our ability to recognize the necessity for making a

breakthrough due to an essential conceptual missing link, as expressed in a model.

As systems biology is providing a rapidly increasing and detailed information about

the complexity of a variety of regulatory processes, experimental and computational

biology will have to be intimately interlinked, as it has happened in many other areas

of human knowledge and endeavor. Some lessons discussed here will be hopefully

useful in guiding this process and making it more effective and enjoyable.
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Abstract

Regulatory and signaling networks coordinate the enormously complex interac-

tions and processes that control cellular processes (such as metabolism and cell

division), coordinate response to the environment, and carry out multiple cell deci-

sions (such as development and quorum sensing). Regulatory network inference is the

process of inferring these networks, traditionally from microarray data but increas-

ingly incorporating other measurement types such as proteomics, ChIP-seq, metabo-

lomics, and mass cytometry. We discuss existing techniques for network inference.

We review in detail our pipeline, which consists of an initial biclustering step,

designed to estimate co-regulated groups; a network inference step, designed to select

and parameterize likely regulatory models for the control of the co-regulated groups

from the biclustering step; and a visualization and analysis step, designed to find and

communicate key features of the network. Learning biological networks from even

the most complete data sets is challenging; we argue that integrating new data types

into the inference pipeline produces networks of increased accuracy, validity, and

biological relevance.

I. Introduction

Regulatory networks (RNs) can provide global models of complex biological

phenomena, such as cell differentiation or disease progression. Knowledge of the

underlying RNs has been key to understanding the functioning of diseases such as

certain cancers (Carro et al., 2010; Suzuki et al., 2009), the creation of biofuels, and

understanding the functioning of newly sequenced organisms (Bonneau et al., 2007).

Although some cancers can be traced to a single causative mutation, many cancers

are much more functionally complex, requiring simultaneous mutations in multiple

genes that result in aberrations in the functions of multiple signaling pathways.

Elucidation of the global RN allows for the study of disease-associated mutations

in their global context. Biological regulation is a process that inherently occurs on

multiple levels, such as transcription, translation, phosphorylation, and metabolism

that span varying temporal and physical scales. Effective methods for RN inference

must likewise integrate multiple types and scales of data – transcriptomic, proteo-

mic, metabolomic – in order to most accurately recapitulate the complex underlying

RNs. Our work, as described in this chapter, focuses on methods that can integrate

multi-level data to elucidate an RN-scale view of complex biological processes.

The current explosion in the quantity, quality, and availability of high-throughput,

genome-scale measurements provides powerful new tools to understand complex

processes. Such measurements are now becoming available at different biological

levels (e.g., transcriptomics and proteomics) for the same cell types or disease

processes. At present, the most readily available genome-wide data type is micro-

array data, capturing the ‘‘transcriptomic state’’ of the cell. We first discuss this data

type in the context on network inference, then discuss other equally relevant data
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types. Microarray data provide genome-wide measurements of the abundance of

mRNA for every transcript for which there is a probe on the microarray (typically

thousands). Online compendia such as the Gene Expression Omnibus (Edgar et al.,

2002) and Microbes online (http://www.microbesonline.org/) contain many thou-

sands of suchmicroarrays spanning many species and diseases, making this the most

complete data available for the purpose of RN inference. Since these data are

collected on the transcript level, they allow for the interrogation of only transcrip-

tional effects. The mediators of these effects are transcription factors (TFs), which

are proteins that bind the DNA and modulate the transcript abundance of their

downstream targets, and environmental factors (EFs), which are environmental cues

that modify the transcriptional program.

Inferring accurate, global RNs from such data remains a challenge for a multitude

of reasons. The error (or variance in replicate measurements) in the measurement of

transcript abundance is proportional to the expression level that is being measured

(more expression means more error in the measurement) and many statistical meth-

ods do not properly account for this heteroskedasticity. Additionally, many of the

data compendia used contain experiments from different laboratories and can thus

contain batch effects (changes in expression that are mostly due to variations in

experimental procedure from different labs). Even if a data compendium were to be

normalized for batch effects and the other types of noise, the best data set would

contain many more variables (genes) than data points that can be used for inferring

regulatory interactions (conditions), leading to a computationally underdetermined

problem. Finally, as transcriptomics data only capture one level of regulatory inter-

actions, it provides an inherently biased and incomplete view of the underlying RN.

Despite these caveats, it has been shown by us and others that novel biological

interactions can be elucidated from these data.

A. Experimental Design

No technique or technology can provide a ‘‘one size fits all’’ solution to

network inference that is optimal with respect to the completeness or accuracy

of the learned network topology or the ability of the model to describe system

behavior. Further, careful experimental design is needed to balance the biological

goals of any given systems biology effort (what cell processes are of interest to

the effort as a whole, what biology is interesting to the graduate person doing the

work). In general, microarray experimental designs fall into two broad catego-

ries: (1) steady-state experiments, and (2) time-series experiments. Balancing

steady-state measurements following perturbations (both genetic and environ-

mental) with time-series experiments that provide measurements of the system in

action (capturing key changes post-perturbation and providing a means of char-

acterizing system dynamics) is key to the success of efforts to elucidate biolog-

ical networks. In steady-state experiments, a perturbation (i.e., drug or genetic

perturbation such as knock-down of a gene by RNAi) is introduced for a period of

time, presumably until the system has reached a steady state, at which point the
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state of the system is assayed via microarray. We refer to these experiments as

‘‘steady state’’ even though the system may not have achieved a true steady state

when measured. In a time-series experiment, a perturbation is introduced, and the

response of the system is measured at multiple time points. Although these time-

series experiments are more costly, this type of information can aid in resolving

causality, and inferring not only topological structure but also the degree of

regulation (i.e., kinetic parameters).

However, these types of data cover only the transcriptional level of regulation,

and even state-of-the-art methods (Greenfield et al., 2010; Huynh-Thu et al.,

2010; Pinna et al., 2010; Prill et al., 2010) still make a significant number of false

predictions. The accuracy of these predictions can be improved with the addition

of other data types. Recently, chromatin immunoprecipitation followed by

sequencing (ChIP-seq) has become a widely used method for collecting direct

TF–DNA binding data. These data can be used to help infer direct binding events.

Note that these data typically contain many false positives as many binding

events are non-functional. Another approach involves using single nucleotide

polymorphism (SNP) data in conjunction with mRNA expression data to learn

the extent to which each mutation can have a functional effect (Lee et al., 2009).

Such an approach can be used to uncover the TFs that are more likely to have a

phenotypically important effect. Current approaches to learning RNs combine

(1) binding data (from ChIP-seq and scans using well-characterized binding

sites), (2) priors on network structure from known/validated regulatory interac-

tions, (3) perturbation/genetic data, and (4) expression/proteomics data to trian-

gulate regulatory interactions. We discuss our pipeline in the context of expres-

sion data (to describe our core model and prior work) and then develop a method

that can integrate these four sources of information (Chen et al., 2008; Christley

et al., 2009; De Smet and Marchal, 2010; Friedman and Nachman, 1999; Geier et al.,

2007; Gevaert et al., 2007; Husmeier and Werhli, 2007; Huynh-Thu et al., 2010;

Ideker et al., 2001; Lee et al., 2009).

B. Estimating Co-regulated Genes Prior to Network Inference

If only mRNA expression data are available, as is the case in many processes/

diseases of interest, other steps can be taken to improve the quality of the final output

network. One means of dealing with the ambiguities of direct inference from micro-

array data is to reduce the complexity of the problem by estimating co-regulated

groups via clustering or biclustering, which we discuss here specifically in the

context of RN inference. Automatic learning of genetic RNs from microarray data

presents a severely under-constrained problem: even in the most complete data set,

the number of genes is greater than the number of experimental conditions. This is

traditionally addressed by applying dimensionality reduction techniques to reduce

the number of genes, for example, eliminating genes based on signal-to-noise ratio,

or clustering genes based on similarity of expression.
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Clustering methods, when applied correctly, can reflect the known biological

property that many gene products work together in functional modules under iden-

tical regulatory control, forming components of tightly conserved pathways or

molecular machines. Thus, applying a clustering method prior to network inference

serves not only as a dimensionality reduction technique, but also as an additional

method to capture the relevant underlying biology. Standard clustering groups

together genes that show common expression across all experimental conditions

(referred to as co-expression). However, co-expression may not extend across all

conditions, particularly as the number of conditions in a data set increases. A subset

of genes may be co-expressed over only a subset of conditions; or a gene may

participate in multiple processes, and therefore be co-expressed with several differ-

ent subsets of genes across different subsets of conditions.

Biclustering (Cheng and Church, 2000) refers to simultaneous clustering of both

genes and conditions, and can account for these more complex patterns of co-

expression (Cheng and Church, 2000; Lazzeroni and Owen, 1999). Both genes and

conditions can belong to multiple biclusters, and each bicluster’s subset of genes and

conditions represents a putative functional module reflecting the organization of

known biological networks into modules (Singh et al., 2008). Early works (Morgan

and Sonquist, 1963) introduced the idea of biclustering as ‘‘direct clustering’’

(Hartigan, 1972), node deletion problems on graphs (Yannakakis, 1981), and biclus-

tering (Mirkin, 1996). More recently, biclustering has been used in several studies to

address the biologically relevant condition dependence of co-expression patterns

(Ben-Dor et al., 2003; Bergmann et al., 2003; Cheng and Church, 2000; DiMaggio

et al., 2008; Gan et al., 2008; Kluger et al., 2003; Lu et al., 2009; Supper et al., 2007;

Tanay et al., 2004). Biclustering also provides another advantage relating to increasing

the signal (relative to the noise) of microarray data. These data are noisy due to both

random noise (e.g., fluctuations in the scanner’s laser) and systematic effects (e.g.,

sequence-specific differences in performance of probes or PCR amplification), aswell

as inherent biological noise, all of which occur per-gene. When genes are combined

intomodules, the average expression of themodule is used, and thus the per-gene noise

is averaged out, and the expression of the signal (relative to the noise) is increased.

Traditional biclustering is based solely on microarray data. Additional genome-

wide data (such as association networks and TF binding sites) greatly improves the

performance of these approaches (Elemento and Tavazoie, 2005; Huttenhower et al.,

2009; Reiss et al., 2006; Tanay et al., 2004). Examples include the most recent

version of SAMBA, which incorporates experimentally validated protein–protein

and protein–DNA associations into a Bayesian framework (Tanay et al., 2004), and

cMonkey (Reiss et al., 2006), an algorithm we recently introduced. Bicluster infer-

ence has also been extended to detect conservation of modules across multiple

species (Waltman et al., 2010). These integrative biclustering methods provide more

accurate and biologically relevant biclusters, and provide a template for the use of

integrative methods in network inference.

Biclusters are of particular interest for network inference: inference on these

putative functional modules is both more tractable and more easily interpreted than
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inference on individual genes. The regulation of biclusters (or individual genes) by

the relevant TFs and EFs in the system can be learned in a variety of ways. Common

difficulties for any network inference method include determining the direction of a

regulatory relationship (does gene a regulate gene b or does gene b regulate gene a),

and separating direct from indirect regulatory relationships (does gene a regulate

gene b directly, or does gene a regulate gene c which then regulates gene b)

(Marbach et al., 2010). The ability to resolve the directionality of a regulatory

relationship can be improved by using microarray data collected from time-series

or genetic-knockout experiments, as such data allow for causal inferences to bemade

(Chaitankar et al., 2010; Madar et al., 2010; Marbach et al., 2009b; Pinna et al.,

2010; Schmitt et al., 2004; Yip et al., 2010). However, it is still difficult to distin-

guish direct interactions from indirect: again, data such as ChIP-seq and ChIP-chip

help resolve this ambiguity, and would ideally be available for the construction of an

accurate, global RN. Even in cases where multiple, putatively complementary data

types are available (i.e., microarray and ChIP-seq), validation of the output RN and

comparison of RNs generated by different methods is a challenging task. For exam-

ple, many top-performing methods are likely to involve data-integration methods

that may integrate datawith complex relationships and co-dependencies. Also, as the

full integrated data set used for network inference becomes more complex, gener-

ating leave-out test sets that are completely separate from the integrated inference

data becomes a research problem of its own.

C. Validation of Network Inference Methods is Key to Progress

The plethora of different methodologies available for RN inference makes the

comparison of the RNs produced by different algorithms a challenging problem.

Until recently, a group developing an RN inference algorithm would generate a long

list of hypothesis, experimentally validate their first few predictions, and consider

their method successful. This tradition of validating top predictions makes good

sensewhen one considers that biologists may only have the capacity to follow up on a

limited number of top predictions. This focus on top predictions, however, is insuf-

ficient for comparing network inference methods and assessing their relative

strengths and weaknesses, as a typical RN inference method generates thousands

of predictions. For such comparisons, a gold-standard RN inference data set is

needed in which the topology of the underlying network is unambiguously

and completely determined (Marbach et al., 2009c, 2010; Prill et al., 2010;

Stolovitzky et al., 2007). Databases for model organisms that collate thousands of

validated regulatory interactions (such as Transfac, RedFly, and RegulonDB) are

also critical to developing and validating RNs. A fully complete RN gold standard,

however, cannot currently be obtained from real biological experiments, as known

biological networks, even in the simplest organisms, are both extremely complex and

considered to be incomplete.

In an effort to standardize the comparison and assessment of algorithms for RN

inference, the Dialogue in Reverse Engineering Assessments and Methods
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(DREAM) has posed a set of challenges to the network inference community in a

double-blind fashion (Marbach et al., 2009c, 2010; Prill et al., 2010; Stolovitzky

et al., 2007). Participating groups only see the microarray data (either synthetically

generated, or from real data compendia) and not the underlying topology. Likewise

the evaluators only see the predictions from each group (in the form of ranked lists of

regulatory interactions), and not the method that was used to generate them. When

such gold standards exist, metrics such as area under the precision recall curve

(AUPR) and area under the receiver operator curve (AUROC) (Davis and

Goadrich, 2006) can be used to assess an algorithm’s performance. However, when

applying RN inference techniques to mammalian data, relatively little of the true

underlying topology is known, and AUPR and AUROC are not nearly as informative

as for simpler systems.

D. Visualization

Analysis of inferred RNs for such systems presents a difficult set of problems.

RNs have an intuitive visual representation as graphs consisting of nodes connected

by directed or undirected edges, and programs such as Cytoscape (Shannon et al.,

2003) provide a straightforward means of rendering these graphs and annotating

them with manifold types of associated information. This visual representation can

be used by a researcher with domain knowledge of the underlying biological problem

to extract the most meaningful and interesting parts of the network. Unfortunately,

for networks larger than tens of nodes connected by at most hundreds of edges, this

straightforward visualization becomes too dense to comprehend as a whole, pre-

senting visually as the familiar network ‘‘hairball.’’ While this dense representation

contains much valuable information that can be interpreted by a researcher who has

spent days or weeks investigating it, to the uninitiated it is essentially meaningless.

Dimensionality reduction (e.g., via biclustering) can reduce visual complexity, but

imposes other issues: a gene name is unambiguous, but how best to label a collection

of genes and conditions?Whether inference is performed directly on all genes or on a

reduced set of TFs and biclusters, the challenges are the same: to tease out the

meaningful information contained in the network, and to convey this information

effectively to other researchers not intimately familiar with the overall network.

Thus, a set of visualization and analysis tools is necessary to query the network in an

intuitive, meaningful, and easily accessible manner. Below, we describe one coor-

dinated visualization system that allows users to explore biclusters, networks, and

annotations.

II. Overview of Model/Algorithm

Our pipeline for network inference (Fig. 1) consists of three main steps: (1)

inference of co-regulated modules using cMonkey, (2) RN inference using the
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Inferelator (Inf) pipeline, and (3) network analysis and visualization using software

tools connected by the Gaggle (Fig. 2). Here, we present an overview of biclustering

methods, RN inference methods, and a detailed overview of each step of our

pipeline.

[(Fig._1)TD$FIG]

Fig. 1 Overall inference pipeline. Our inference pipeline is composed of three main steps: (1) inference

of biclusters, which are putative functionally related, co-regulated modules of genes, by Multi-species

cMonkey (MScM); (2) inference of the regulation of these biclusters by transcription factors (TFs)

via our Inferelator inference pipeline; and (3) analysis and visualization using a collection of Gaggle-

connected tools. The input to cMonkey consists of mRNA expression data, known as interactions

(some of which come from ChIP-seq), and upstream sequence information from two or more species.

The output of MScM is biclusters that are conserved between multiple species. These biclusters can

be used for hypothesis generation, and also serve as the input to the Inferelator network inference

pipeline. Along with biclusters, the Inferelator also uses mRNA expression data, known interactions

between relevant TFs and their targets, proteomics data, and ChIP-seq data. The output of the

Inferelator inference pipeline is a set of regulatory interactions between the biclusters and TFs.

This putative regulatory network can be visualized and analyzed by the Gaggle-connected set of

tools shown in Fig. 2. (For color version of this figure, the reader is referred to the web version of this

book.)
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A. Biclustering

Biclustering methods can be broken into three categories, whichwewill refer to as

co-expression, co-regulation, and conserved co-regulation. Some methods, such

as that of Cheng and Church (2000), rely solely on gene expression data to find

groups of genes that are co-expressed. More recently, algorithms such as cMonkey

(Reiss et al., 2006; Waltman et al., 2010), COALESCE (Huttenhower et al., 2009),

and themost recent version of SAMBA (Tanay et al., 2004) consider additional types

of data such as common binding motifs, protein–DNA binding, and protein–protein

interaction networks. These integrative techniques infer modules that are co-

regulated rather than simply co-expressed. This distinction is of particular impor-

tance for RN inference, as genes in co-regulated biclusters are more likely to exhibit

shared transcriptional control. Finally, several techniques (Bergmann et al., 2003;

[(Fig._2)TD$FIG]

Fig. 2 Gaggle visualization and analysis framework. The Gaggle Boss, shown in the center, coordi-

nates communication among the various member tools (geese), removing the need for file import/export

and format translation. Also shown is a subset of geese, including two – Cytoscape and Sungear – that are

used as part of the analysis discussed in Biological Insights section andMethods section. Each of the geese

can both send to and receive from the Boss, which permits an iterative workflow: for example, a small set

of genes from Sungear can be sent to Cytoscape, analyzed to find its 1-hop network, then sent back to

Sungear for further analysis. In addition, several geese provide extensible means to connect to a larger set

of tools: Cytoscape and Sungear via plug-in frameworks, FireGoose via its connections to other websites,

and R via its downloadable packages. (For color version of this figure, the reader is referred to the web

version of this book.)
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Waltman et al., 2010) extend the integrative approach by searching for conserved

biclusters across different species.

The biclusteringmethod cMonkey was designed to produce putatively co-regulated

biclusters that are optimal for network inference. In addition to microarray expression

data, cMonkey also incorporates upstream sequences and interaction networks into

the biclustering process. Upstream sequences are used to find putative common

binding motifs among genes in a bicluster, providing additional evidence for possible

co-regulation. Co-regulated genes are also more likely to share other functional

couplings, which will be reflected as an above-average number of connections

between genes within a bicluster according to databases of known interactions such

as BIND (Bader et al., 2003) and DIP (Salwinski et al., 2004) – in other words, these

genes form small, highly connected sub-networks within these larger networks.

Compared to other methods, cMonkey generates biclusters that are ‘‘tighter’’ (have

lower variance across bicluster gene expressionvalues) yet includemore experimental

conditions.

Multi-species cMonkey (MScM) (Waltman et al., 2010) is an extension of the

cMonkey method to allow discovery of modules conserved across multi-species

datasets. Recent work (Ihmels et al., 2005; Tirosh and Barkai, 2007) shows signif-

icant conservation of co-regulated modules across species. Therefore, biclusters that

are highly conserved between organisms are most likely to be biologically relevant.

In addition, by pairing a well-studied model organism such as yeast or mouse with a

closely related but less well-studied organism, MScM is more likely to find mean-

ingful biclusters in the other organism. Even pairing well-studied organisms may be

beneficial as different processes may be better elaborated in each organism. The

regulation of these putative conserved functional modules of genes can be inferred

using the Inf-based inference pipeline.

B. Regulatory Network Inference

The key question that RN inference aims to answer is which EFs and TFs regulate

which genes? In other words, given a set of observations (e.g., expression data), what

is the underlying network responsible for observed data? Furthermore, can predic-

tions be made from the output network? In order for quantitative predictions to be

made about the response of the system to new perturbations, the dynamics of the

system must be learned from time-series data. A multitude of inference methods

exist, using varying underlying assumptions and modeling principles. We limit our-

selves to the discussion of the following broad groups of methods: (1) Bayesian

methods, (2) mutual information (MI)-based methods, and (3) ordinary differential-

equation (ODE)-based methods. We briefly describe each grouping, and then proceed

with a description of our network inference method. Here, we focus on methods that

scale to systems with thousands of interactions.

ABayesian network is defined as a graphical model that represents a set of random

variables and their conditional dependencies. Such a framework naturally applies to

RN inference, as RNs can intuitively be though of as directed graphs. The observed
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data are used to compute the model whose probability of describing the data is the

highest, and such methods have resulted in several notable works (Friedman et al.,

2000; Friedman andNachman, 1999; Husmeier andWerhli, 2007; Sachs et al., 2002;

Sachs et al., 2005; Segal et al., 2003). Bayesian methods also allow for the incor-

poration of priors such as sparsity constraints and structured priors (Geier et al.,

2007; Gevaert et al., 2007; Mukherjee and Speed, 2008). However, Bayesian

methods have difficulty in explicitly handling time-series data. Additionally,

many Bayesian methods suffer from the identifiability problem: multiple network

topologies produce equally high probabilities. In this situation, it is unclear which

topology is best.

Differential-equation-based methods for RN inference attempt to learn not only

the topology of the network but also the dynamical parameters of each regulatory

interaction. RN models resulting from these methods can be used to predict the

system-wide response to previously unseen conditions, future time points, and the

effects of removing system components. A drawback of these methods is that they

generally require time-series data and more complete datasets than many alternative

methods. Typically these methods are based on ordinary differential equations

(ODEs) due to several assumptions that improve the computational cost for param-

eterizing these models. ODE-based methods model the rate of change in the expres-

sion of a gene as a function of TFs (and other relevant effectors) in the system.

Differential-equation-based methods differ in their underlying functional forms,

how the system of equations is solved or parameterized (coupled or uncoupled

solution, optimization procedures, etc.), and how structured priors and sparsity

constraints are imposed on the overall inference procedure. For example, several

methods have been proposed that use complex functional forms (Mazur et al., 2009)

and solve a coupled system (Madar et al., 2009; Mazur et al., 2009), while other

methods solve a simplified linear system of ODEs (Bansal et al., 2006; Bonneau

et al., 2007; Bonneau et al., 2006; di Bernardo et al., 2006; di Bernardo et al., 2005).

Several methods have been developed that are able to incorporate structured priors

into network inference (Christley et al., 2009; Yong-a-poi et al., 2008).

A number of methods for detecting significant regulatory associations are based

on similarity metrics derived from information theory, such as MI (Shannon, 1948).

The MI between two signals (in this case the expression of a TF and its target) is

calculated by subtracting the joint entropy of each signal from the sum of their

entropies. It is similar to correlation (higher values connote stronger relationships),

but is more generally applicable as it assumes neither a linear relationship between

two signals nor continuity of signal. At their core, methods that rely on MI generally

infer undirected interactions, as the MI between two variables is a symmetric

quantity (Butte and Kohane, 2000; Faith et al., 2007; Margolin et al., 2006); how-

ever, modifications can be made that allow for the inference of direction (Chaitankar

et al., 2010; Liang and Wang, 2008; Madar et al., 2010).

Each RN inference method has its own simplifying assumptions, biases, and data

requirements. Recently, there has been much interest and progress in combining

methods that use multiple different data types and modeling algorithms into RN
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inference pipelines. For example, it has been demonstrated by us and others

(Greenfield et al., 2010; Pinna et al., 2010; Prill et al., 2010; Yip et al., 2010) that

the response of a system to a genetic knockout is a very powerful data type for

uncovering the topology of the underlying RN. Methods that take this into account

performed very well in the DREAM3 and DREAM4 network inference challenges

(Greenfield et al., 2010; Pinna et al., 2010; Yip et al., 2010).

It has also been shown that when multiple network inference methods, or ensem-

bles of networks generated by the same method, are combined, the overall perfor-

mance is better than that of any individual method (Greenfield et al., 2010; Marbach

et al., in press, 2009a; Prill et al., 2010). This improvement in performance due to

combining multiple methods is an important technique that can be applied to

complex biological problems where complete knockout data are not available. In

such cases it is also important to supplement microarray data with other available

data types. The Encyclopedia of DNA Elements Consortium (ENCODE) has been

compiling a vast database of high-sequence data such RNA-seq, ChIP-seq, and

genome-wide distribution of histone modifications. These data can be used in many

ways to influence the confidence that a network inference algorithm assigns to a

regulatory interaction. We have incorporated these ideas into our network recon-

struction methods in two forms: (1) topology dominated, where evidence from

different data types is combined to rank interactions by converting all regulatory

hypothesis derived from each data type into p-values or ranks, then combining them

to form an overall p-value or rank for all regulatory interactions (Greenfield et al.,

2010; Marbach et al., in press), and (2) model dominated, where information from

different data types is used as structure priors during the network inference step

(described below).

Our inference pipeline is built on three core principles: (1) combining multiple

methods and data types in a mutually reinforcing manner, (2) using time-series

information to infer putative causal, directed relationships (as opposed to undirected

associations), and (3) inferring sparse models of regulation using model selection.

The input to our method is a microarray dataset consisting of multiple types of

experiments. All data sets include steady-state data (in response to perturbation),

time-series data is often available; and in the best-case scenario, genetic-knockout

steady-state data are available as well. The core of our inference pipeline comprises

two methods that work in tandem: time-lagged context likelihood of relatedness

(tlCLR) and the Inferelator 1.0. tlCLR computes a prediction of the RN that is further

refined and optimized by the Inferelator 1.0. The output of tlCLR is the input to Inf,

and we refer to the combined method as tlCLR-Inf. tlCLR-Inf uses all available

microarray data and treats all steady-state data the same (making no distinction

between knockout perturbations and any other perturbations). tlCLR-Inf takes

advantage of the time-series data to learn putatively causal, directed edges, and

assign dynamical parameters (see Methods).

tlCLR (Greenfield et al., 2010; Madar et al., 2010) is based on the well-known

RN inference algorithm context likelihood of relatedness (CLR) (Faith et al.,

2007). CLR uses MI followed by background correction to calculate the
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confidence in the existence of any regulatory interaction. tlCLR uses the same

CLR strategy of MI followed by background correction, but takes advantage of the

time-series data to learn the direction of the regulatory interaction. This method is

described in detail in the Methods section. The output of this method is a set of

predicted regulators for each target, and is used by the Inf to remove the least

likely regulatory interactions and improve accuracy and computational efficiency.

The Inf models the network as a system of linear ODEs. The rate of change for

each gene is modeled as a function of the known regulators in the system. This

function can take many different functional forms, and can be easily modified to

capture biologically relevant behaviors. For example, it is common in biological

systems that two TFs must act in tandem in order to affect their target. The core Inf

model allows for these non-linear combinatorial interaction terms. Additionally, it is

known that the activation of a target by its regulator follows a hill-type curve

(multiple functionswith a roughly sigmoidal shape can be used tomodel biologically

relevant activation thresholds, cooperation, and saturation of TF-target response).

This can be incorporated into the core Inf model by approximating this behavior via

sigmoidal functions compatible with efficient learning methods, such as constrained

logistic regression. Once a functional form is chosen, the parameters for each

regulatory interaction are calculated using least angle regression (LARS)

(Efron et al., 2004) which is a constrained linear-regression approach that imposes

an l1 constraint on the model parameters. This constraint ensures that sparse models

are learned (in concordance with the known properties of TF RNs). Importantly, we

have modified this core model selection algorithm, LARS, such that we can influ-

ence the degree to which a predictor is incorporated into or removed from a model.

Using this modification, we can incorporate structured priors (derived from vali-

dated interactions, literature search algorithms, or alternate data types) into our

network inference approach. We have shown that using a simple linear model with

(and also without) interaction terms performs well in recovering the topology of the

network.

C. Network Visualization and Analysis

RNs often consist of hundreds or thousands of nodes connected by thousands or

more of regulatory edges. Analysis methods for networks of this scale generally fall

into two categories that we will refer to as ‘‘network-centric’’ and ‘‘gene-centric,’’

with some techniques bridging the two. Network-centric (or ‘‘holistic’’) techniques

accumulate statistics about the network as a whole that can provide a sense of the

validity of the overall network (e.g., by comparing statistics with those of validated

biological networks) or guide further exploration (e.g., by pointing out the existence

of highly connected nodes or densely inter-connected sub-networks). The simplest

of these network-centric techniques is simply to count each node’s in- and out-

degrees, that is, its incoming and outgoing regulatory edges, respectively.

Analysis of node out-degree will highlight network ‘‘hubs’’: those TFs that regulate
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many more genes than average. Examination of the distribution of node in- and out-

degree also provides valuable information. Biological networks, such as metabolic

networks (Jeong et al., 2000), as well as many other types of complex networks, tend

to be ‘‘scale free’’ networks: the probability of a node having k in or out edges is

described by P(k) � k�g. This is considerably different from random networks

generated according to the classical Erd€os-R�enyi model, where any two nodes in a

graph have an equal probability of being connected: such graphs are characterized by

a Poisson distribution that peaks strongly at the average number of connections

(Jeong et al., 2000). Average shortest-path length (the ‘‘small world’’ property),

average clustering coefficient distribution (Ravasz et al., 2002), andmany other have

metrics have been shown or theorized to have biological relevance. Zhou et al.

(2010) provide an example of using general network statistics to characterize and

differentiate between ecological networks under different conditions. Cytoscape

plug-ins such as NetworkAnalyzer (http://med.bioinf.mpi-inf.mpg.de/netanalyzer/

index.php), the R packages sna (Butts, 2008), and igraph (http://cneurocvs.rmki.

kfki.hu/igraph/) are designed to perform these and many other types of network

analysis.

In general, and particularly with inferred networks, these network-centric metrics

act as a guide to suggest areas of further exploration – such as network hubs – rather

than an explicit measure of network plausibility. Gene-centric (or ‘‘constructive’’)

analysis techniques tend to follow a ‘‘find and connect’’ approach. They start with a

small set of nodes – such as a set of genes of interest, a small sub-network of

known function, a bicluster with significant functional annotations, or a set of

network hubs identified through network-centric analysis – then gradually add

connected nodes to grow the size of the network. The most basic approach is to

start with a single gene, then examine its ‘‘1-hop’’ sub-network within the full

network: the genes directly connected to it, that is, its direct targets and regula-

tors. One can also make a 1-hop network for multiple genes that is simply the

union of the 1-hop networks of the individual genes. These sub-networks can be

expanded to an arbitrary number of ‘‘hops,’’ with each additional step adding all

nodes directly connected to those already in the sub-network. Typically, the hope

is that the small 1- or 2-hop networks will include some known regulatory edges

(as a ‘‘sanity check’’ of the inference process) as well as some plausible novel

edges that bear further investigation.

Another gene-centric approach is to find, for some set of genes or biclusters, the

smallest sub-network that includes all these genes or biclusters of interest (the phrase

‘‘gene-centric’’ is used generically to refer to network consisting of genes or biclus-

ters). This sub-network may resemble a known functional module (another ‘‘sanity

check’’); it may connect known genes or biclusters in a novelway; and it may include

unknown or unexpected genes in an otherwise well-described functional module.

While no Cytoscape plug-in provides this functionality directly, the Subgraph

Creator (http://metnet.vrac.iastate.edu/MetNet_fcmodeler.htm) plug-in can be used

to find the sub-network with a given number of directed hops for a set of starting

genes, and so iteratively find a sub-network containing all the desired genes.
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1. Gaggle Tools

We supplement the network viewer-based approaches above by providing a col-

lection of tools that provide analysis of different types of information at varying

scales. The Gaggle (Shannon et al., 2006) connects together many independent tools

into a cohesive framework where the component tools (geese) can exchange infor-

mation such as lists of genes directly without the need for intermediate files or

format conversion. A key aspect of this type of approach is that it enables iterative

exploration across multiple tools, where results are repeatedly sent from one tool to

the next and further refined with each step in this process. Gaggle-enabled tools

include

� Network viewers Cytoscape (Shannon et al., 2003) and nBrowse (http://www.

gnetbrowse.org)
� Firegoose (Bare et al., 2007), a Firefox plug-in that provides data exchange with

externalweb resources such as STRING (Snel et al., 2000; Szklarczyk et al., 2011)
� The Comparative Microbial Module Resource (CMMR) (Kacmarczyk et al.,

2011), a comprehensive bicluster visualization and analysis tool
� The Data Matrix Viewer (DMV) (http://gaggle.systemsbiology.net/docs/geese/

dmv.php), a data matrix exploration tool
� MultiExperiment Viewer (MeV) (Saeed et al., 2003), a sophisticated analysis tool

for microarray data
� Sungear (Poultney et al., 2007), a set analysis and exploration tool
� The Integrative Genomics Viewer (IGV) (Robinson et al., 2011), a browser for

associating annotations and other data with chromosomal locations
� The statistical programming language R (http://www.R-project.org).

III. Biological Insights

In this section, we will focus mainly on ways of extracting potential insights or

points for further investigation. The networks discussed here were chosen to show a

range of inference and analysis techniques across different network scales. For

details of the methods used to create these networks, see the Computational

Methods section.

Fig. 3 shows a subset of a larger network inferred on biclusters derived from the

Immunological Genome Project (IMMGEN) (Painter et al., 2011) mouse immune

cell data set and human immune cell experimental data from GEO (see Methods for

details). This sub-network has been chosen to show the subset of biclusters from the

full network that are most strongly linked to various hallmarks of cancer (Hanahan

and Weinberg, 2000, 2011). An immediately striking feature of this network is that

different hallmarks separate naturally into sub-regions of the network, joined by the

TF MTA2. This is not a deliberate design feature of this sub-network, but rather an

intriguing consequence of choosing the set of biclusters with high-confidence con-

nections (via significant GO terms) to hallmarks of cancer. The top region, whose
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regulators include FOXM1 and MYC, includes all biclusters annotated with the

hallmark ‘‘limitless replicative potential’’ (blue icon). The bottom region includes all

biclusters annotated with the hallmark ‘‘self-sufficiency in growth signals’’ and

all but one bicluster annotatedwith the hallmark ‘‘insensitivity to anti-growth signals.’’

The few biclusters annotated with ‘‘evading apoptosis’’ are spread evenly between the

network clusters.

[(Fig._3)TD$FIG]

Fig. 3 Hallmarks of cancer shown overlaid on a sub-network of biclusters and transcriptions factors

(TFs). Biclusters are shown as squares, with shading indicating the bicluster residual (variance in gene

expression values). Surrounding icons indicate the putative hallmarks of cancer. A small K or G to the

bicluster left indicates particularly significant enrichment for one or more KEGG or GO terms, respec-

tively. TFs are shown as triangles, with regulatory edges to biclusters and other TFs. Green edges indicate

upregulation, and red edges downregulation. Four of the six original hallmarks are represented in the

network: biclusters associated with self-sufficiency in growth signals and insensitivity to anti-growth

signals are clustered together, as are those associated with limitless replicative potential; biclusters

inferred to be involved in evading apoptosis are spread through the network. (See color plate)
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Figs. 4–6 illustrate a comparative analysis of two different cell lines: normal

human breast epithelial tissue (MCF-10) and invasive, metastatic breast cancer

(MDA-MB-231) (see Methods for details). In all three figures, a blue-to-yellow

continuum is used to indicate relative specificity of a gene, gene product, or regu-

latory edge to MDA-MB-231 (blue) or MCF-10A (yellow), with the intermediate

gray denoting neutrality. Fig. 4 illustrates a typical network ‘‘hairball’’: with 1866

[(Fig._4)TD$FIG]

Fig. 4 Breast cancer network with the top 4822 edges ranked by combined confidence from the two cell

line inference runs. Edge color denotes differential inferred regulation on a yellow-to-blue gradient from

MCF-10A (yellow) toMDA-MB-231 (blue). Nodes are rendered semi-transparent so that the distribution of

cell-line-specific regulatory edges can be clearly seen. Proteomics data from MCF-10A/MDA-MB-231

comparison are also shown using node colors: differential expression in MCF-10A is shown in yellow,

and MDA-MB-231 in blue. Genes present but not differentially expressed are shown in darker gray. (See

color plate)

2. Integrated Inference and Analysis of Regulatory Networks from Multi-Level Measurements 35



nodes and 4822 regulatory edges, it is useful mostly for giving a general sense of the

proportion of edges more active in MDA-MB-231 (blue) and MCF-10 (yellow), as

well as the abundance of proteomics data (nodes colored yellow, blue, or dark gray).

Fig. 5 is designed to present a summary of Fig. 4 that allows much more intuitive

identification of features of interest. It represents the largest connected sub-network

of TFs (142 of 220 total TFs in the original network). The number of regulatory

[(Fig._5)TD$FIG]

Fig. 5 Largest connected sub-network of transcription factors (TFs) from the overall cell line comparison network. A

‘‘summary’’ of the entire network is provided by (a) hiding all targets of the shown TFs that are not themselves TFs, and

(b) setting the size and color of each remaining TF node to reflect its number and proportion of cell-line-specific edges. Node

size shows the number of edges in the master network that were above a cutoff for specificity to either cell line. Larger nodes

have more cell-line-specific edges; the largest, IKZF1, has 67 edges above the threshold. Node color is determined by the ratio

of above-cutoff edges specific to MCF-10Aversus MDA-MB-231, with yellow denoting more MCF-10A edges and blue more

MDA-MB-231 edges. Nodes with many edges specific to one cell line or the other are therefore large and brightly colored, such

as IKZF1 or COPS2. Edges are colored on a yellow-to-blue gradient based on the inferred confidence of the edge in the

MCF-10A cell line (yellow) or MDA-MB-231 cell line (blue). (See color plate)
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targets of eachTF is represented by the size of the node,while the node color denotes the

ratio of regulatory edges strongly active in one cell type or another on a gradient from

blue (MDA-MB-231) to yellow (MCF-10A). This ‘‘summary’’ representation of targets

and regulatory edges allows the removal of all non-TF targets and their corresponding

regulatory edges so that hubs such as CSDA, COPS2, IKZF1, and FBN1 are easily

spotted: they are large and brightly colored. This constitutes a powerful use of simple

network-centric techniques to simplify network visualization and analysis.

Fig. 6 shows a putative sub-network involved in cell motility. Our data set includes

differential proteomics data for two conditions, shown in this network using node

[(Fig._6)TD$FIG]

Fig. 6 A sub-network extracted from the cell line comparison network illustrating all interactions with

ITGB4 along with overlays of experimental proteomics (SILAC) data. Shown is the 1-hop network from

gene ITGB4 along with differential expression in two experimental conditions, referred to as treatment A

and treatment B. ITGB4 was identified a priori as a gene of interest, and is inferred to regulate gene of

interest EGFR and several Laminins. Differential expression in treatment A is shown using node center,

and in treatment B using node border, as follows: bright yellow denotes upregulation inMCF-10A, bronze

denotes downregulation in MCF-10A, and blue denotes downregulation in MDA-MB-231. Gray denotes

proteins that were present in either cell line but that did not meet the differential expression cutoff.

Therefore, KRT17 (bottom right) is downregulated in MCF-10A with treatment A but upregulated in

MCF-10A with treatment B, while EGFR is downregulated in MDA-MB-231 with treatment B. Edge

colors are as in Fig. 5. (See color plate)
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center and border colors. An analysis of sub-networks containing all differen-

tially expressed proteins in both conditions found a sub-network centered on

ITGB4 – identified a priori as a protein of interest involved in cell matrix,

cell–cell adhesion, and motility – that contained an unusual number of differen-

tially expressed proteins given the relatively small number of differentially

expressed proteins in the network (r = 5 � 10�7 via hypergeometric distribution).

Among the genes inferred to be regulated by ITGB4 are two members of the

laminin family also thought to be involved in motility, providing a degree of

‘‘sanity check’’ as mentioned earlier. The presence of JUP in this sub-network is

particularly interesting because of (a) its differential expression in one of the

proteomics conditions, and (b) its known participation in c-MET and EGFR

signaling cascades (Guo et al., 2008).

IV. Open Challenges

Combining multiple data types in the inference of RNs is still in its beginning

stages, and many questions remain to be answered. Among these are the integration

of additional data types into both the biclustering and inference processes, integrat-

ing across multiple temporal and physical scales, validation of inferred networks,

using multiple-species datasets, and visualization of networks that are multi-scale

and change across time and conditions.

A. Integrating New Data Types

New types of experimental data are becoming available that will be informative to

the network inference process. Metabolomic data can provide detailed measurements

of changes in hundreds of metabolite levels in response to changing cell state or

environment. Techniques such as surface plasmon resonance imaging (SPRi) (Smith

and Corn, 2003) can provide additional high-throughput data on protein-binding

constants via measurements of association and dissociation rates, potentially provid-

ing small but high-accuracy interaction networks. Mass cytometry can provide single-

cell measurements of phosphorylation on a very fine time scale (Bendall et al., 2011).

New data types can be added to cMonkey fairly easily since its basic model is already

integrative (see Methods). The network inference pipeline can accommodate some of

these data, such as SPRi-derived interaction networks, by using them to influence the

likelihood that a regulatory interaction is incorporated into the model. However, other

data types – particularly those that are on different time scales, like mass cytometry –

pose a more difficult challenge for network inference. Even integrating proteomics

data – which may superficially resemble microarray data – into the inference pipeline,

rather than simply overlaying it on inferred microarray-derived networks, poses new

challenges. Proteomics measurements still produce sparser data sets thanmicroarrays,

and techniques such as SILAC (Ong et al., 2002) will be systematically biased against
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certain proteins. A more serious issue is that TFs tend to have low expression values,

and proteomics techniques do a poor job of capturing proteins expressed at low levels.

B. Validation

Validation of inferred networks of biclusters and genes is a key issue that we

address explicitly inMethods. It should be emphasized, however, that new data types

as discussed above will not only improve the quality of the inferred biclusters and

networks, but will aid validation as well. Bicluster enrichment analysis already

provides an example of using independent data types (KEGG and GO pathways)

for validation as the annotations used for enrichment analysis are independent from

those used in bicluster inference: because of this independence, significant enrich-

ment provides one indicator of bicluster quality. After such enrichment analysis, it is

crucial for experts with domain knowledge to highlight their most interesting genes

and pathways. With the thousands of predictions that are made in a single run of our

pipeline and the lack of a true gold-standard data set, such biological expertise is

crucial to fully realize the hypothesis-generating potential of our methods.

C. Visualization

One issue that needs to be addressed with current visualization tools concerns

displaying per-gene measurements, like the proteomics overlays in Fig. 6, in net-

works consisting mostly of biclusters like the hallmarks network in Fig. 3 – in other

words, what is the best way to indicate differential expression of a small subset of

genes contained in one or more biclusters? This may only be relevant until overlays

of data from other sources are replaced by integration of these data into the inference

pipeline, but for now the issue of overlaying single-gene data on biclustered net-

works remains open.

A larger issue is that network visualizations such as those produced by Cytoscape

show a single view of a network as it might exist at one point in time. This network

viewmay also represent a superset of the RNs that produced the data: any regulatory

interaction with enough support across the various conditions is reproduced in the

final network. But networks change over time, as is shown in many cancers; and

different parts of any network will be active under different conditions. In other

words, what is currently shown might be called a union or average of many poten-

tially valid inferred networks. As inference tools and data availability improve, what

is really desired is a tool (or set of tools) that can be used to explore this multiplicity

of possible networks. This will probably require tools that can display changes in

networks, in real time and in interpretable fashion, extending the ‘‘network-centric/

gene-centric’’ metaphor introduced earlier: network-centric techniques would sum-

marize the possible network changes over time and/or condition with the goal of

steering the user to interesting features of the data, gene-centric techniques would

create network sets from one or more networks of interest, and hybrid techniques

might answer questions posed by the user about specific alterations in the network.
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V. Computational Methods

A. cMonkey Integrative Biclustering

The steps below describe the cMonkey algorithm. Examples of data sources used

are those for Escherichia coli in a multi-species biclustering by Kacmarczyk et al.

(2011). For further details on cMonkey and MScM see Reiss et al. (2006) and

Waltman et al. (2010).

1. Data Preparation

cMonkey uses three main data types: microarray expression, upstream sequences,

and networks of associations or interactions. Data preparation and translation into a

format that cMonkey can use is a key and non-trivial part of running cMonkey.

Specifics of this process will be addressed in the section for each data type. The

overall data preparation process involves (a) finding appropriate expression data,

(b) determining upstream sequence information for the relevant organism(s), (c) down-

loading the association and interaction network data to be used, and (d) processing

network data as necessary to reduce it to a list of interacting pairs of genes. A crucial

issue across all these steps is determining a single-gene naming convention across all

input data types and converting as necessary. cMonkey uses the Global Translator

goose for this (http://err.bio.nyu.edu/cytoscape/bionetbuilder/translator.php).

2. Expression Data

Expression data for cMonkey is given in matrix form, where rows represent genes

and columns represent experimental conditions. Expression data are row-normalized

to have mean = 0, SD = 1. E. coli expression data for the multi-species biclustering by

Kacmarczyk et al. were comprised of 507 conditions covering 16 projects from the

Many Microbe Microarrays Database (M3D) (Faith et al., 2008).

We denote the expression levels of the genes by x ¼ x1; . . . ; xNg

� �
T. We store the

C observations of these Ng genes in an Ng � C matrix, X, where the columns

correspond to the experimental observations. For a given bicluster k, if p(xij) is

defined as the normally distributed likelihood of the expression value xij within

bicluster k, then the co-expression p-value rik for gene i relative to bicluster k is rik ¼X
j2Jk p xij

� �
where Jk indexes the conditions in bicluster k. The co-expression p-

value rjk for condition j is defined similarly.

3. Sequence Data

Methods for obtaining and processing upstream sequence data depend on the

organism. Generally the regulatory sequence analysis tools (RSAT) (van Helden,

2003) are used to extract upstream cis-regulatory sequences: sequence length

depends on whether the organisms are archaea, bacteria, or eukaryotes, and
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additional processing may be required to account for the presence of operons (see

Reiss et al., 2006, for details). E. coli data for the Kacmarczyk et al. biclustering

were obtained using RSATas above and adding network edges between genes known

to share operons to the network data (see below).

For a given bicluster k, MEME (Bailey and Elkan, 1994) is used to determine a

set of motifs common to some or all of the upstream sequences of the genes in

that cluster. MAST (Bailey and Gribskov, 1998) is then used to calculate a motif

value sik for each gene i relative to bicluster k (motif values for conditions are set

to zero).

4. Network Data

Network data are themost varied, generally comprisingmultiple network types for

a given biclustering analysis. These data break down into two types: association and

metabolic networks, such as Prolinks (Bowers et al., 2004) and Predictome

(Mellor et al., 2002); and interaction networks, such as DIP (Salwinski et al.,

2004) and BIND (Bader et al., 2003). While data sources such as DIP provide pairs

of interacting proteins directly, others must be processed to generate these lists of

interacting pairs. For example, KEGG (Kanehisa and Goto, 2000) metabolic path-

ways are examined for pairs of genes that participate in a reaction sharing one or

more ligands (excluding water and ATP). Network data are also the most species-

dependent as different network data types are available for different organisms. This

is reflected in the number and diversity of network data types in the Kacmarczyk

et al. E. coli biclustering: operon edges between genes known to lie on the same

operon; metabolic edges from KEGG as described above; gene neighbor, phyloge-

netic profile, and gene cluster edges from Prolinks; and COG-code edges from COG

(Tatusov et al., 2000).

For a given bicluster k, gene i, and network N, the network association p-value qNik
is computed using a hypergeometric distribution based on the number of connections

between gene i and bicluster k, connections between gene i and genes not in bicluster

k, and connections within and between genes in k and not in k. This metric assigns

better p-values to densely connected sub-networks of genes that are likely to partic-

ipate in common functional modules.

5. cMonkey Bicluster Model

cMonkey determines biclusters by iteratively (a) updating the conditional proba-

bility of each bicluster based on its previous state, and (b) further optimizing the

bicluster by adding or dropping genes and/or conditions. This constitutes a Markov

chain process where the probabilities in the optimization step depend only on the

previous state of the bicluster. Additions and deletions are made by sampling from the

conditional probability distribution using a Monte Carlo procedure. The component

contributions to the conditional probability come from the expression, sequence, and

network p-values described above, which are combined into a regression model.
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Denoting an arbitrary gene or condition by i, we define the vector gik as the projection

into one dimension of the space defined by rik, sik, and qik, as follows:

gik ¼ r0log ~rikð Þ þ s0log ~sikð Þ þ
X
N

qN0 log ~qNik
� � ð1Þ

The use of ~rik instead of rik denotes that the log(rik) values have been normalized, for

each bicluster, to have mean = 0, SD = 1; the same applies for ~sik and ~q
N
ik, placing all

three on the same scale for each bicluster. The likelihood of any gene or condition i

belonging to bicluster k is then

pik / exp b0 þ b1gikð Þ ð2Þ
The parameters b0, b1 determine the conditional probability of membership of gene

or condition i in bicluster k. The importance of each evidence type can be adjusted

using the ‘‘mixing parameters’’ r0; s0; q
N
0 .

A cMonkey run starts with ‘‘seeding’’ of initial biclusters, with each bicluster

randomly seeded according to one of several algorithms. After seeding, each itera-

tion (a) updates the bicluster motifs, (b) recalculates the probabilities pik described

above for each gene or condition i, and (c) preferentially adds or drops genes or

conditions according to their probability of membership using a simulated annealing

protocol. Unlikely moves (additions or deletions) are permitted according to an

annealing temperature T that is decreased over time. Mixing parameters r0; s0; q
N
0

are also varied according to a set schedule: s0 starts small early in the process, when

biclusters are unlikely to have coherent motifs, and is gradually ramped up until its

influence is equivalent to that of r0. Values of q
N
0 follow a schedule that depends on

the networks involved.

6. Multi-Species cMonkey

MScM is similar to single-species cMonkey as described above, with a few addi-

tional steps. The overall MScM process, assuming a two-species run, is to (1) find

orthologous genes between the two species; (2) perform the cMonkey Markov Chain

Monte Carlo procedure, using orthologous gene pairs identified in step 1 instead of

individual genes, to produce biclusters of ‘‘orthologous core’’ genes; (3) for each

organism, elaborate these orthologous core biclusters by adding and dropping individ-

ual genes (instead of orthologous gene pairs) using the normal single-species cMonkey

process, with the restriction that no orthologous core genes are dropped; and optionally

(4) perform separate single-species cMonkey runs on the remaining genes for each

species. Orthologous genes are identified using existing tools, such as the Mouse

Genomics Informatics database (Bult et al., 2008) or the InParanoid algorithm

(Remm et al., 2001). Determination of biclusters in step 2 begins by calculating values

for each species U and V, gUik and gVik as in Eq. (1). These are combined to produce a

likelihood of an orthologous pair i belonging to cluster k similarly to Eq. (2)

pik / expðb0 þ b1ðgUik þ gVikÞÞ ð3Þ

42 Christopher S. Poultney et al.



7. Enrichment Analysis

Analysis and validation of biclusters is a key component of the cMonkey design.

As a post-biclustering step, biclusters are analyzed for significant enrichment

according to standard annotations such as GO (Ashburner et al., 2000), KEGG,

and COG (Tatusov et al., 2000). These annotations provide a standard way to assign

putative functions to biclusters, somewhat resolving the issue of giving meaningful

names to biclusters in inferred networks. With the exception of the shared-ligand

network derived from KEGG, these annotations are separate from the data used to

infer the biclusters, so enrichment analysis also provides a means of assessing

bicluster quality (see the Validation section below).

8. Integrating New Data Types

Integration of new data types into cMonkey is relatively straightforward.

Additional network types are easily added as additional qNik terms. New data, such

as relative expression levels from proteomics experiments, could be incorporated as

a fourth major data type (in addition to microarray expression, sequence, and net-

works) and added to the calculation of gik. In both cases, an appropriate annealing

schedule for the weight given to the new network or data type would have to be

determined.

B. Inferelator Pipeline

We have applied our network inference pipeline to a variety of different data sets

(synthetic, prokaryotic, yeast, human white blood cells). We have developed several

closely related variants of the core pipeline, which is composed of two core methods:

(1) tlCLR, and (2) the Inferelator 1.0. A coarse prediction of the topology is made

using tlCLR, which is further refined by the Inf. This pipeline of tlCLR followed by

Inf is repeated for multiple permutations of the data set (resampling), resulting in an

ensemble of predicted RNs, which is then combined into one final network. Here we

present a brief description of tlCLR (for a more detailed description we refer to the

reader to Greenfield et al., 2010 and Madar et al., 2010). Additionally, we present a

modification to the core Inf method that allows for the incorporation of a priori

known regulatory edges.

1. Problem Setup

As in the description of cMonkey, we denote the expression levels of the genes by

x ¼ x1; . . . ; xNg

� �
T. We store the C observations of these Ng genes in an Ng � C

matrix, where the columns correspond to the experimental observations. These obser-

vations can be of two types: time-series data (Xts), and steady-state data (Xss). Sincewe

make explicit use of the time-series data in the description of our inference procedure,

we denote time-series conditions by t1, t2, . . ., tk, (i.e., x t1ð Þ; x t2ð Þ; . . . ; x tkð Þ are the k
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time-series observations that constitute the columns of Xts). Our inference pro-

cedure produces a network in the form of a ranked list of regulatory interactions,

ranked according to confidence. We refer to the final list of confidences as an

Ng � Np matrix Zfinal, where Np denotes the possible predictors. Element i,j of

Zfinal represents our confidence in the existence of a regulatory interaction

between xi and xj.

2. Core Method 1: Time-Lagged Context Likelihood of Relatedness

tlCLR (Greenfield et al., 2010; Madar et al., 2010) is a MI-based method that

extends the original CLR algorithm (Faith et al., 2008) to take advantage of time-

series data. MI (Shannon, 1948) is an information theory metric of mutual depen-

dence between any two random variables. The original formulation of CLR was

unable to learn directionality of regulatory edges as MI is a symmetric measure. In

the tlCLR algorithm, we make explicit use of the time-series data to learn directed

regulatory edges. We describe, in brief, three main steps: (1) model the temporal

changes in expression as an ODE, (2) calculate the MI between every pair of

genes, and (3) apply a background correction (filtering) step to remove least likely

interactions. We refer the reader to Greenfield et al. (2010) and Madar et al.

(2010) for a thorough description of this method.

We assume that the temporal changes in expression of each gene can be approx-

imated by the linear ODE:

dxi tð Þ
dt

¼ �aixi þ
XN
j¼1

bi;jxj tð Þ; i ¼ 1; . . . ;N ð4Þ

where ai is the first-order degradation rate of xi and the bij s are a set of

dynamical parameters to be estimated. Note that the functional form presented

above treats the rate of change of the response (xi) as linear function of the

predictors (xjs). Here, we describe only this linear form for simplicity, but in

several applications we employ more complex functional forms. The value of bij
describes the extent and sign of the regulation of target gene xi by regulator xj. We

store the dynamical parameters in a N � P matrix b, where N is the number of

genes, and P is the number of possible regulators. Note that b is typically sparse,

that is, most entries are 0 (reflecting the sparsity of transcriptional RNs). Later,

we describe how to calculate the values bij by a constrained linear-regression

scheme. First, we briefly describe how to use the time-series data in the context

of improving the calculation of MI values between a gene xi and its potential

regulator xj.

We first apply a finite approximation to the left-hand side of Eq. (4), for each xi,

i = 1, . . ., Ng and rewrite it as a response vector yi, which captures the rate of

change of expression in xj. We pair the response yi with a corresponding explan-

atory variable xj, j = 1 . . . Np. Note each xj is time-lagged with respect to the

response yi, that is, xj(tk) is used to predict yj tkþ1ð Þ. For more details of this
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transformation, we refer the reader to Greenfield et al. (2010). As a measure of

confidence for a directed regulatory interaction between a pair of genes (xj ! xi),

we use MI, I(xi, xj), where a pair that shows a high MI score (relative to other

pairs) is more likely to represent a true regulatory interaction. Note that

I(yi, xj) 6¼ I(yj, xi), making one regulatory direction more likely than the other.

We refer to the MI calculated from I(yi, xj) as dynamic MI, as it takes advantage of

the temporal information available from time-series data (distinguishing time-

series data from steady-state data). As described above, we calculate I(xi, xj) and I

(yi, xj) for every pair of genes and store the values in the form of two Ng � Np

matrices Mstat and Mdyn, respectively. Note that Mstat is symmetric, while Mdyn is

not. We now briefly describe how tlCLR integrates both static and dynamic MI to

produce a final confidence score for each regulatory interaction. For a more

detailed explanation, we refer the reader to Greenfield et al. (2010) and

Madar et al. (2010).

For each regulatory interaction xj ! xi, we compute two positive Z-scores (by setting

all negative Z-scores to zero): one for the regulation of xi by xj based on dynamic-MI

(i.e., based on Mdyn), Z1 xi; xj
� � ¼ max 0;

M
dynf g
i;j �

X
j
0 M

dynf g
i;j
0

N

si

0
B@

1
CA, where si is the stan-

dard deviation of the entries in row i of Mdyn; and one for the regulation of xi by xj

based on both static and dynamic MI, Z1 xi; xj
� � ¼ max 0;

M
dynf g

i;j �

X
i
0 M

statf g
i
0
;j

N

sj

0
B@

1
CA where

sj is the standard deviation of the entries in column j of Mstat. We combine the two

scores into a final tlCLR score, Z tlCLR
i;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ2

1 þ Z2
2Þ

q
. Note that some entries in

ZtlCLR are zero, that is, ZtlCLR is somewhat sparse. The output of tlCLR, ZtlCLR, is

used as the input to Inf, as only the highest ranked predictors from row i of ZtlCLR are

considered as possible predictors for gene i

3. Core Method 2: Inferelator 1.0

We use Inf to learn a sparse dynamical model of regulation for each gene xi. As

potential regulators of xi, we consider only the P highest confidence (non-zero)

regulators (i.e., the Pi most-highly ranked regulators from row i of ZtlCLR).

Accordingly, for each gene, xi, we denote this subset of potential regulators as xi.

We then learn a sparse dynamical model of regulation for each xi as a function of the

potential regulators xi using Inf. We assume that the time evolution in the xis is

governed by
dxi tð Þ
dt

¼ �aixi þ
XPi

j¼1
bi;jxjðtÞ; i ¼ 1; . . . ;N which is exactly Eq. (4)

with our constraint on the number of regulators. LARS (Efron et al., 2004) is used to

efficiently implement l1 constrained regression to determine a sparse set of the

parameters b. This is done by minimizing the following objective function,
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amounting to a least-square estimate based on the ODE in Eq. (4) under an l1-norm

penalty on regression coefficients,

XPi

j¼1

bi;j

�� �� < si
XPi

j¼1

jbols
i;j j ð5Þ

where bols are the values of b determined by ordinary least squares regression (ols),

and si, the shrinkage parameter. This parameter is in the range [0,1], and controls the

sparsity of the model, with si = 0 amounting to a null model, and si = 1 amounting the

full ols model. We select the optimal values of si by 10-fold cross validation. After

applying this l1 regression, we have b, an Ng � Np matrix of dynamic parameters bij
for each regulatory interaction xj ! xi. We use the percentage of explained variance

of each parameter bij as confidences in these regulatory interactions, as described in

Greenfield et al. (2010). We store these confidences in ZInf. We combine these

confidences in a rank-based way such that each method is weighted equally, as

described in Greenfield et al. (2010), to generate ZtlCLR�Inf, which represents our

confidence in each regulatory interaction after running our pipeline one time. We

now describe how we resample our network inference pipeline to generate an ensem-

ble of predicted networks (i.e., lists of confidences for each regulatory interaction).

4. Using Resampling to Improve Network Inference

To further improve the quality of our ranked list, we apply a resampling approach

to the pipeline described above to generate an ensemble of putative RNs. We denote

the matrix of response variables yi, i = 1, . . .,Ng by Y. Similarly we denote the matrix

of predictor variables xj, j = 1, . . ., Np by X. We sample with replacement from the

indices of the columns of Y, generating a permutation of the indices, c*. We use this

permutation c* to permute the columns of Y and X, generating Y* and X*, respec-

tively. Note that (1) c* is typically picked to be the number of conditions in the

dataset (i.e., we sample from all experimental conditions), and (2) the columns of Y

match the columns of X in the sense that the time-lagged relationship between the

response and the predictors is preserved. We generated ZtlCLR, ZInf, and ZtlCLR�Inf as

described before, with the only difference being that we use the response and

explanatory vectors from Y* and X* instead of Y and X. We repeat this procedure

B times. This generates an ensemble of B predicted RNs. The final weight we

assign to each regulatory interaction is the median weight assigned to that

interaction from each of the B networks. Thus, the final weight can be considered

an ‘‘ensemble vote’’ of the confidence the ensemble of networks has in that edge:

Zfinal
i;j ¼ medianðZ tlCLR�Inf

i;j ð1Þ; Z tlCLR�Inf
i;j ð2Þ; . . . ; Z tlCLR�Inf

i;j ðBÞÞ.

5. Incorporating Prior Information Directly into Network Inference

Our tlCLR–Inf pipeline is capable of inferring not only topology but also dynam-

ical parameters, which can be used to predict the response of the system to new
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perturbations (Greenfield et al., 2010). Our predictions, like those of any network

inference method, contain false-positive interactions. One way to improve the per-

formance of network inference is to constrain the model selection procedure to

incorporate regulatory interactions that are known a priori, as many databases of

known regulatory interactions exist (Aranda et al., 2010; Bader et al., 2003; Ceol et

al., 2010; Chautard et al., 2011; Croft et al., 2011; Goll et al., 2008; Knox et al.,

2011; Lynn et al., 2008; Michaut et al., 2008; Prieto and Rivas, 2006; Razick et al.,

2008; Stark et al., 2011). However, if one is studying a particular process (e.g.,

lymphoma) not all of the known interactions will be relevant in lymphoma. Thus, a

method is needed that incorporates a known edge only if it is supported by the given

data. We do so by solving Eq. (4) subject to the following constraint:

XPi

j¼1

uij bi;j

�� �� < si
XPi

j¼1

jbols
i;j j ð6Þ

which is exactly Eq. (5) with the parameter uij (Yong-a-poi et al., 2008; Zou, 2006).

This parameter is referred to as the adaptive weight, and regulates the degree to

which bij is shrunk out of the model. If it is known from an external data type (e.g.,

literature mining, ChIP-seq, etc.) that xj regulates xi, then this knowledge can be

incorporated by setting uij < 1, which will make it less likely that bij will be shrunk

(removed from the model) by LARS. If there exists negative prior knowledge (i.e.,

knowledge that xj does not regulate xi), this can be incorporated by setting uij > 1.

The exact values of uij that are needed to incorporate an a priori known interaction

vary from dataset to dataset and must be chosen heuristically. This behavior is

similar to that of many other methods for incorporating priors, including Bayesian

methods, which require a heuristically chosen hyper-parameter to determine the

shape of the prior (Mukherjee and Speed, 2008). In our method, once an informed

choice of uij is made, an edge is incorporated only if it is supported by the data. Even if

uij is set to a very low value (approaching zero, reflecting strong belief in the existence

of this edge), the corresponding parameter, bij, will be non-zero only if there is

support from the data set. This is exactly the desired behavior when we are given a

priori knowledge that may or may not be completely relevant for our data sets.

C. Analysis and Visualization

Given the wide range of network properties, features of interest, and intended

audiences, there is no ‘‘silver bullet’’ approach to visualizing biological networks.

The most effective visualizations come from detailed analysis of the network,

followed by a careful linking of important network properties to visual features such

that interesting properties are immediately and intuitively obvious. The steps below

show how Figs. 3–6 were created, and are intended to provide an arsenal of examples

and tools to arrive at an effective combination of analysis and representation.

Fig. 3 uses publicly available mouse and human microarray data from GEO. The

mouse data consisted of 508 conditions from the IMMGEN (Painter et al., 2011) data
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set of experiments on characterized mouse immune cell lineages (GEO accession

number: GSE15907). Human microarray data were gathered from 23 different

experiment sets measuring the response of human immune cells to different stimuli.

In an attempt to mirror the conditions of the IMMGEN data set, only the control

conditions from the different experiment sets were used, yielding a total of 140 con-

ditions. The network was generated from a full run of theMScM and Inf pipelines on

the data described above as follows:

1. Run MScM to generate a collection of 176 mouse and human biclusters.

2. Perform enrichment analysis over all biclusters using generic GO slim, GO, and

KEGG.

3. Run the Inf pipeline using the mouse biclusters and known TFs for mouse alone

to produce a preliminarymouse-specific network. Although the human biclusters

are not used directly, their presence in the MScM run should improve the bio-

logical relevance of the mouse biclusters as discussed above.

4. Remove low-confidence edges (Inf z-score < 3.5, or bj j < 0:1) to produce a

refined preliminary network.

5. Find biclusters with significantly enriched GO slim terms and label them with

hallmarks of cancer associated with these terms. This results in 17 biclusters with

hallmark annotations.

6. Reduce the network to the smallest possible network containing all 17 biclusters

identified above along with their regulators, giving the final Fig. 3 network.

Further analysis of this network would begin with further investigation of the biclus-

ters to obtain a better sense of the function represented by each bicluster. The

Annotation Viewer (http://gaggle.systemsbiology.net/docs/geese/anno.php) is a

Gaggled tool that allows browsing of arbitrary gene or bicluster annotations – in

this case, bicluster GO and KEGG annotations. The CMMR provides more detailed

examination of all facets of the biclusters: genes, conditions, residuals, etc. When

bicluster functions are better understood, one can then ask whether the inferred

regulatory interactions make sense, and investigate the significance of the observed

separation of cancer hallmarks into two different clusters.

The next three examples (Figs. 4–6) use breast cell lines from normal breast

epithelial tissue (MCF-10A) (Soule et al., 1990) and invasive, metastatic breast

cancer tumor tissue (MDA-MB-231) (Cailleau et al., 1978). Data for each cell line

were gathered from a total of eight GEO data sets, giving a total of 103 MCF-10A

conditions and 121 MDA-MB-231 conditions covering roughly 12,000 genes.

Proteomics data consisting of genes up- and downregulated in each cell line under

two treatments were also provided. Here, we infer regulation of individual genes

directly, instead of regulation of biclusters, so that we can overlay the proteomics

data on the corresponding genes in the resulting network. As a result, we are unable

to take advantage of the dimensionality reduction and noise reduction provided by

cMonkey, and used the following heuristic approach instead. From the initial 12,000

genes, we selected those genes whose standard deviation across experiments was at

the 75th percentile or better, then added the 2000 genes with the most differential
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expression according to significance analysis of microarrays (SAM) (Tusher et al.,

2001). The final input set for inference on each cell line consisted of 4619 genes, 289

of which were TFs. Network inference proceeded as follows:

1. Perform separate Inf pipeline runs on each cell line to produce a ranked list of

putative regulatory edges for each cell line.

2. Combine separate network edges from the individual runs into a single ‘‘differ-

ential network’’ where edge color shows the likelihood of each regulatory edge

being active in one cell type or another. The rank of each edge in this differential

network is determined by using Stouffer’s method to combine the Inf scores from

the individual networks. Specificity to one cell line or the other is calculated as

the log ratio of individual edge ranks.

3. Retain the top-ranked 5000 edges of the differential network; remove those with

bj j < 0:05 for a final total of 4822 edges and 1866 nodes. Overlay proteomics

data from two experimental conditions to produce the network are shown in Fig. 4.

4. Starting with the network in Fig. 4, find the largest connected sub-network of TFs

using the Subgraph Creator Cytoscape plug-in. Map node out-degree to node

size. Map node color to fraction of edges specific to one cell line or the other,

counting only those edges with absolute value rank ratio above 4. This provides

the network ‘‘summary’’ shown in Fig. 5.

5. Given lists of genes up- and downregulated in each cell line in the two proteomics

experiments, load these lists into Sungear. Send each gene list to Cytoscape using

the Gaggle and annotate genes according to cell line, experimental condition, and

up- or downregulation.

6. Find the smallest sub-network for each condition that includes all differentially

expressed genes. This identifies ITGB4 as a likely key gene involved in motility

as discussed in Biological Insights.

7. Find the 1-hop network around ITGB4. Distinguish up- and downregulated genes

for each treatment using the annotations assigned earlier to the Sungear-derived

gene lists, producing Fig. 6.

Further analysis of the network in Fig. 6 might proceed as follows: send the set of

differentially regulated genes back to Sungear to look for interesting intersections,

such as over-representation within a particular intersection of conditions; or broad-

cast ITGB4 and some of its targets to the Firegoose, then from there to EMBL

STRING to look for additional evidence for the inferred edges or grow the network

further.

D. Validation

Validation of inferred networks of genes or biclusters (i.e., of predicted regulatory

topology and kinetic models) is a critical challenge that has not been well resolved.

In all cases, the best validation is of course follow-up experimentation to verify the

computational results, but this approach is inherently limited by available time and

resources.
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Bicluster validation is currently a more tractable problem than network validation.

Several metrics used to compare biclustering methods (Waltman et al., 2010) can

also be used to assess the quality of individual biclusters and biclustering runs. Each

bicluster has a residual score that shows the variance in expression data within the

bicluster; lower residuals mean higher coherence in expression values. Significant

bicluster enrichment implies that a cluster contains co-functional genes. High cov-

erage of the input expression matrix, in terms of fraction of overall genes and

conditions included in the overall set of biclusters, is favorable, as is a low degree

of overlap between biclusters. For multi-species biclustering, the degree of conser-

vation between species in a bicluster is also important.

Inferred networks present a more significant challenge, especially when no gold

standard is available. A simple approach is to calculate some of the network statistics

mentioned earlier: for example, compare the distribution of node in- and out-degrees

to the expected power-law curves. However, the inference technique itself, as well as

any means used to filter results or select sub-networks of interest, may skew these

distributions: for example, the Inf limits the in-degree of any gene to a user-defined

threshold. Another means of network validation is to determine the degree to which

the inferred network recapitulates known network edges. However, this can become

circular when known edges are used to provide priors for inference. Recent work by

the DREAM consortium incorporated the prediction of multiple methods by differ-

ent research groups into one ‘‘community’’ prediction, and experimentally validated

the top-ranked predictions. Ideally, such integrative methods will continue to be

developed and shed light on previously unknown biology. Although the notion of

‘‘community predictions’’ is novel and exciting, such vast resources not always exist.

Even in such cases, methods that are integrative in terms both the algorithms and

data types used show great promise in building global, predictive RNs of complex

biological phenomena.

References

Aranda, B., Achuthan, P., Alam-Faruque, Y., Armean, IBridge, A., Derow, CFeuermann, M.,

Ghanbarian, A. T., Kerrien, S., Khadake, J., Kerssemakers, J., Leroy, C., Menden, M.,

Michaut, M., Montecchi-Palazzi, L., Neuhauser, S. N., Orchard, S., Perreau, V., Roechert, B.,

van Eijk, K., and Hermjakob, H. (2010). The IntAct molecular interaction database in 2010.

Nucleic Acids Res. 38, D525–D530.

Ashburner, M., Ball, C. A., Blake, J. ABotstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K.,

Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S.,

Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., and Sherlock, G. (2000). Gene

ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25,

25–29.

Bader, G. D., Betel, D., and Hogue, C.W. (2003). BIND: the Biomolecular Interaction Network Database.

Nucleic Acids Res. 31, 248–250.

Bailey, T. L., and Elkan, C. (1994). Fitting a mixture model by expectation maximization to discover

motifs in biopolymers. Proceedings /.. International Conference on Intelligent Systems for Molecular

Biology; ISMB. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36.

50 Christopher S. Poultney et al.



Bailey, T. L., and Gribskov, M. (1998). Combining evidence using p-values: application to sequence

homology searches. Bioinformatics 14, 48–54.

Bansal, M., Gatta, G. D., and di Bernardo, D. (2006). Inference of gene regulatory networks and

compound mode of action from time course gene expression profiles. Bioinformatics 22, 815–822.

Bare, J. C., Shannon, P. T., Schmid, A. K., and Baliga, N. S. (2007). The Firegoose: two-way integration of

diverse data from different bioinformatics web resources with desktop applications. BMC Bioinformat.

8, 456.

Ben-Dor, A., Chor, B., Karp, R., and Yakhini, Z. (2003). Discovering local structure in gene expression

data: the order-preserving submatrix problem. J. Comput. Biol. 10, 373–384.

Bendall, S. C., Simonds, E. F., Qiu, P., Amir el, A. D., Krutzik, P. O., Finck, R., Bruggner, R. V., Melamed,

R., Trejo, A., Ornatsky, O. I., Balderas, R. S., Plevritis, S. K., Sachs, K., Pe’er, D., Tanner, S. D., and

Nolan, G. P. (2011). Single-cell mass cytometry of differential immune and drug responses across a

human hematopoietic continuum. Science 332, 687–696.

Bergmann, S., Ihmels, J., and Barkai, N. (2003). Iterative signature algorithm for the analysis of large-

scale gene expression data. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67, 031902.

Bonneau, R., Facciotti, M. T., Reiss, D. J., Schmid, A. K., Pan, M., Kaur, A., Thorsson, V., Shannon, P.,

Johnson,M. H., Bare, J. C., Longabaugh,W., Vuthoori, M.,Whitehead, K., Madar, A., Suzuki, L., Mori,

T., Chang, D. -E., Diruggiero, J., Johnson, C. H., Hood, L., and Baliga, N. S. (2007). A predictive model

for transcriptional control of physiology in a free living cell. Cell 131, 1354–1365.

Bonneau, R., Reiss, D. J., Shannon, P., Facciotti, M., Hood, L., Baliga, N. S., and Thorsson, V. (2006). The

Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets

de novo. Genome Biol. 7, R36.

Bowers, P. M., Pellegrini, M., Thompson, M. J., Fierro, J., Yeates, T. O., and Eisenberg, D. (2004).

Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol. 5, R35.

Bult, C. J., Eppig, J. T., Kadin, J. A., Richardson, J. E., and Blake, J. A. (2008). The Mouse Genome

Database (MGD): mouse biology and model systems. Nucleic Acids Res. 36, D724–D728.

Butte, A. J., and Kohane, I. S. (2000). Mutual information relevance networks: functional genomic

clustering using pairwise entropy measurements. 418–429.

Butts, C. T. (2008). Social network analysis with sna. J. Stat. Softw. 24, 1–51.

Cailleau, R., Olive, M., and Cruciger, Q. V. (1978). Long-term human breast carcinoma cell lines of

metastatic origin: preliminary characterization. in vitro 14, 911–915.

Carro, M. S., Lim, W. K., Alvarez, M. J., Bollo, R. J., Zhao, X., Snyder, E. Y., Sulman, E. P., Anne, S. L.,

Doetsch, F., Colman, H., Lasorella, A., Aldape, K., Califano, A., and Iavarone, A. (2010). The

transcriptional network for mesenchymal transformation of brain tumours. Nature 463, 318–325.

Ceol, A., Aryamontri, A. C., Licata, L., Peluso, D., Briganti, L., Perfetto, L., Castagnoli, L., and Cesareni,

G. (2010). MINT, themolecular interaction database: 2009 update.Nucleic Acids Res. 38, D532–D540.

Chaitankar, V., Ghosh, P., Perkins, E. J., Gong, P., and Zhang, C. (2010). Time lagged information theoretic

approaches to the reverse engineering of gene regulatory networks. BMC Bioinformat. 11(Suppl 6), S19.

Chautard, E., Fatoux-Ardore, M., Ballut, L., Thierry-Mieg, N., and Ricard-Blum, S. (2011). MatrixDB,

the extracellular matrix interaction database. Nucleic Acids Res. 39, D235–D240.

Chen, X., Xu, H., Yuan, P., Fang, F., Huss,M., Vega, V. B.,Wong, E., Orlov, Y. L., Zhang,W., Jiang, J., Loh,

Y. -H., Yeo, H. C., Yeo, Z. X., Narang, V., Govindarajan, K. R., Leong, B., Shahab, A., Ruan, Y.,

Bourque, G., Sung, W. -K., Clarke, N. D., Wei, C. -L., and Ng, H. -H. (2008). Integration of external

signaling pathwayswith the core transcriptional network in embryonic stem cells.Cell 133, 1106–1117.

Cheng, Y., and Church, G. M. (2000). Biclustering of expression data. Proc. Int. Conf. Intell. Syst. Mol.

Biol. 8, 93–103.

Christley, S., Nie, Q., and Xie, X. (2009). Incorporating existing network information into gene network

inference. PloS One 4, e6799.

Croft, D., O’Kelly, G.,Wu,G., Haw, R., Gillespie,M.,Matthews, L., Caudy,M., Garapati, P., Gopinath, G.,

Jassal, B., Jupe, S., Kalatskaya, I.,Mahajan, S.,May, B., Ndegwa, N., Schmidt, E., Shamovsky, V., Yung,

C., Birney, E., Hermjakob, H., D’Eustachio, P., and Stein, L. (2011). Reactome: a database of reactions,

pathways and biological processes. Nucleic Acids Res. 39, D691–D700.

2. Integrated Inference and Analysis of Regulatory Networks from Multi-Level Measurements 51



Davis, J., Goadrich, M., 2006. The relationship between precision-recall and ROC curves. Proceedings of

the 23rd International Conference on Machine Learning – ICML’06, 233–240.

De Smet, R., and Marchal, K. (2010). Advantages and limitations of current network inference methods.

Nature reviews. Microbiology 8, 717–729.

di Bernardo, D., Bansal, M., and Gatta, G. D. (2006). Inference of gene regulatory networks and

compound mode of action from time course gene expression profiles. Bioinformatics 22, 815–822.

di Bernardo, D., Thompson, M. J., Gardner, T. S., Chobot, S. E., Eastwood, E. L., Wojtovich, A. P., Elliott,

S. J., Schaus, S. E., and Collins, J. J. (2005). Chemogenomic profiling on a genome-wide scale using

reverse-engineered gene networks. Nat. Biotechnol. 23, 377–383.

DiMaggio, P. A., Jr., McAllister, S. R., Floudas, C. A., Feng, X. J., Rabinowitz, J. D., and Rabitz, H. A.

(2008). Biclustering via optimal re-ordering of data matrices in systems biology: rigorous methods and

comparative studies. BMC Bioinformat. 9, 458.

Edgar, R., Domrachev, M., and Lash, A. E. (2002). Gene expression omnibus: NCBI gene expression and

hybridization array data repository. Nucleic Acids Res. 30, 207–210.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. Ann. Statist. Data

407–451.

Elemento, O., and Tavazoie, S. (2005). Fast and systematic genome-wide discovery of conserved regu-

latory elements using a non-alignment based approach. Genome Biol. 6, R18.

Faith, J. J., Driscoll, M. E., Fusaro, V. A., Cosgrove, E. J., Hayete, B., Juhn, F. S., Schneider, S. J., and

Gardner, T. S. (2008). Many Microbe Microarrays Database: uniformly normalized Affymetrix com-

pendia with structured experimental metadata. Nucleic Acids Res. 36, D866–D870.

Faith, J. J., Hayete, B., Thaden, J. T., Mogno, I., Wierzbowski, J., Cottarel, G., Kasif, S., Collins, J. J., and

Gardner, T. S. (2007). Large-scalemapping and validation ofEscherichia coli transcriptional regulation

from a compendium of expression profiles. PLoS Biol. 5, 54–66.

Friedman, N., Linial, M., and Nachman, I. (2000). Using Bayesian networks to analyze expression data. J.

Comput. Biol. 7, 601–620.

Friedman, N., and Nachman, I. (1999). Learning Bayesian Network Structure fromMassive Datasets: The

‘‘Sparse Candidate’’ Algorithm. UAI, San Fransisco, CA, pp. 206-215.

Gan, X., Liew, A. W., and Yan, H. (2008). Discovering biclusters in gene expression data based on high-

dimensional linear geometries. BMC Bioinformat. 9, 209.

Geier, F., Timmer, J., and Fleck, C. (2007). Reconstructing gene-regulatory networks from time series,

knock-out data, and prior knowledge. BMC Syst. Biol. 11.

Gevaert, O., Van Vooren, S., and De Moor, B. (2007). A framework for elucidating regulatory networks

based on prior information and expression data. Ann. N Y Acad. Sci. 1115, 240–248.

Goll, J., Rajagopala, S. V., Shiau, S. C., Wu, H., Lamb, B. T., and Uetz, P. (2008). MPIDB: the microbial

protein interaction database. Bioinformatics 24, 1743–1744.

Greenfield, A., Madar, A., Ostrer, H., and Bonneau, R. (2010). DREAM4: combining genetic and

dynamic information to identify biological networks and dynamical models. PLoS ONE 5, e13397.

Guo, A., Villen, J., Kornhauser, J., Lee, K. A., Stokes, M. P., Rikova, K., Possemato, A., Nardone, J.,

Innocenti, G., Wetzel, R., Wang, Y., MacNeill, J., Mitchell, J., Gygi, S. P., Rush, J., Polakiewicz, R. D.,

and Comb, M. J. (2008). Signaling networks assembled by oncogenic EGFR and c-Met. Proc. Natl.

Acad. Sci. U S A 105, 692–697.

Hanahan, D., and Weinberg, R. A. (2000). The hallmarks of cancer. Cell 100, 57–70.

Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646–674.

Hartigan, J. A. (1972). Direct clustering of a data matrix. J. Amer. Statist. Assoc. 67, 123–129.

Husmeier, D., and Werhli, A. V. (2007). Bayesian integration of biological prior knowledge into the

reconstruction of gene regulatory networks with Bayesian networks. Computational systems bioinfor-

matics/Life Sciences Society. Comput. Syst. Bioinformat. Conf. 6, 85–95.

Huttenhower, C., Mutungu, K. T., Indik, N., Yang, W., Schroeder, M., Forman, J. J., Troyanskaya, O. G.,

and Coller, H. A. (2009). Detailing regulatory networks through large scale data integration.

Bioinformatics 25, 3267–3274.

52 Christopher S. Poultney et al.



Huynh-Thu, V. A., Irrthum, A., Wehenkel, L., and Geurts, P. (2010). Inferring regulatory networks from

expression data using tree-based methods. PLoS ONE 5, e12776.

Ideker, T., Thorsson, V., Ranish, J. a., Christmas, R., Buhler, J., Eng, J. K., Bumgarner, R., Goodlett, D. R.,

Aebersold, R., and Hood, L. (2001). Integrated genomic and proteomic analyses of a systematically

perturbed metabolic network. Science (New York, NY) 292, 929–934.

Ihmels, J., Bergmann, S., Berman, J., and Barkai, N. (2005). Comparative gene expression analysis by

differential clustering approach: application to the Candida albicans transcription program. PLoS

Genet. 1, e39.

Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and Barab�asi, a. L. (2000). The large-scale organization of
metabolic networks. Nature 407, 651–654.

Kacmarczyk, T., Waltman, P., Bate, A., Eichenberger, P., and Bonneau, R. (2011). ComparativeMicrobial

Modules Resource: Generation and Visualization of Multi-species Biclusters. PLoS computational

biology 7, e1002228.

Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes.Nucleic Acids Res.

28, 27–30.

Kluger, Y., Basri, R., Chang, J. T., and Gerstein, M. (2003). Spectral biclustering of microarray data:

coclustering genes and conditions. Genome Res. 13, 703–716.

Knox, C., Law, V., Jewison, T., Liu, P., Ly, S., Frolkis, A., Pon, A., Banco, K., Mak, C., Neveu, V.,

Djoumbou, Y., Eisner, R., Guo, A. C., and Wishart, D. S. (2011). DrugBank 3.0: a comprehensive

resource for ‘omics’ research on drugs. Nucleic Acids Res. 39, D1035–D1040.

Lazzeroni, L., and Owen, A. (1999). Plaid models for gene expression data. Statistica Sinica 12, 61–86.

Lee, S. -I., Dudley, A.M., Drubin, D., Silver, P. A., Krogan, N. J., Pe’er, D., and Koller, D. (2009). Learning

a prior on regulatory potential from eQTL data. PLoS Genet. 5, e1000358.

Liang, K. -C., and Wang, X. (2008). Gene regulatory network reconstruction using conditional mutual

information. EURASIP J. Bioinformat. Syst. Biol. 2008, 253894.

Lu, Y., Huggins, P., and Bar-Joseph, Z. (2009). Cross species analysis of microarray expression data.

Bioinformatics 25, 1476–1483.

Lynn, D. J.,Winsor, G. L., Chan, C., Richard, N., Laird,M. R., Barsky, A., Gardy, J. L., Roche, F.M., Chan,

T. H. W., Shah, N., Lo, R., Naseer, M., Que, J., Yau, M., Acab, M., Tulpan, D., Whiteside, M. D.,

Chikatamarla, A.,Mah, B.,Munzner, T., Hokamp,K., Hancock, R. E.W., andBrinkman, F. S. L. (2008).

InnateDB: facilitating systems-level analyses of the mammalian innate immune response. Mol. Syst.

Biol. 4, 218.

Madar, A., Greenfield, A., Ostrer, H., Vanden-Eijnden, E., and Bonneau, R. (2009). The inferelator 2.0: A

scalable framework for reconstruction of dynamic regulatory network models. Conference proceed-

ings:.. Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

IEEE Eng. Med. Biol. Soc. Conf. 1, 5448–5451.

Madar, A., Greenfield, A., Vanden-Eijnden, E., and Bonneau, R. (2010). DREAM3: network inference

using dynamic context likelihood of relatedness and the inferelator. PLoS ONE 5, e9803.

Marbach, D., Costello, J., K€uffner, R., Vega, N., Prill, R., Camacho, D., Allison, K., Consortium, T.D.,

Kellis, M., Collins, J., Stolovitzky, G., submitted. Wisdom of crowds for gene network inference.

Marbach, D.,Mattiussi, C., and Floreano, D. (2009a). Combiningmultiple results of a reverse-engineering

algorithm: application to the DREAM five-gene network challenge.Ann. N YAcad. Sci. 1158, 102–113.

Marbach, D., Mattiussi, C., and Floreano, D. (2009b). Replaying the evolutionary tape: biomimetic

reverse engineering of gene networks. Ann. N Y Acad. Sci. 1158, 234–245.

Marbach, D., Prill, R. J., Schaffter, T., Mattiussi, C., Floreano, D., and Stolovitzky, G. (2010). Revealing

strengths and weaknesses of methods for gene network inference. Proc. Natl. Acad. Sci. U S A 107,

6286–6291.

Marbach, D., Schaffter, T., Mattiussi, C., and Floreano, D. (2009c). Generating realistic in silico gene

networks for performance assessment of reverse engineering methods. J. Comput. Biol. 16, 229–239.

Margolin, A. A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R. D., and Califano, A.

(2006). ARACNE: an algorithm for the reoncstruction of gene regulatory networks in a mammalian

cellular context. BMC Bioinformat. 15, 1–15.

2. Integrated Inference and Analysis of Regulatory Networks from Multi-Level Measurements 53



Mazur, J., Ritter, D., Reinelt, G., and Kaderali, L. (2009). Reconstructing nonlinear dynamic models of

gene regulation using stochastic sampling. BMC Bioinformat. 10, 448.

Mellor, J. C., Yanai, I., Clodfelter, K. H., Mintseris, J., and DeLisi, C. (2002). Predictome: a database of

putative functional links between proteins. Nucleic Acids Res. 30, 306–309.

Michaut, M., Kerrien, S., Montecchi-Palazzi, L., Chauvat, F., Cassier-Chauvat, C., Aude, J. -C., Legrain,

P., and Hermjakob, H. (2008). InteroPORC: automated inference of highly conserved protein interac-

tion networks. Bioinformatics 24, 1625–1631.

Mirkin, B. G. (1996). Mathematical classification and clustering. Kluwer Academic Publishers,

Dordrecht, the Netherlands.

Morgan, J. N., and Sonquist, J. A. (1963). Problems in the analysis of survey data, and a proposal. J. Amer.

Stat. Assoc. 415–434.

Mukherjee, S., and Speed, T. P. (2008). Network inference using informative priors. Proc. Natl. Acad. Sci.

U S A 105, 14313–14318.

Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., and Mann, M. (2002).

Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to

expression proteomics. Mol. Cell Proteomics 1, 376–386.

Painter, M. W., Davis, S., Hardy, R. R., Mathis, D., and Benoist, C. (2011). Transcriptomes of the B and T

lineages compared by multiplatform microarray profiling. J. Immunol. 186, 3047–3057.

Pinna, A., Soranzo, N., and de la Fuente, A. (2010). From knockouts to networks: establishing direct

cause-effect relationships through graph analysis. PloS ONE 5, e12912.

Poultney, C. S., Guti�errez, R. a., Katari, M. S., Gifford, M. L., Paley,W. B., Coruzzi, G. M., and Shasha, D.

E. (2007). Sungear: interactive visualization and functional analysis of genomic datasets.

Bioinformatics (Oxford, England) 23, 259–261.

Prieto, C., and Rivas, J. D. L. (2006). APID: agile protein interaction dataanalyzer. Nucleic Acids Res. 34,

W298–W302.

Prill, R. J., Marbach, D., Saez-Rodriguez, J., Sorger, P. K., Alexopoulos, L. G., Xue, X., Clarke, N. D.,

Altan-Bonnet, G., and Stolovitzky, G. (2010). Towards a rigorous assessment of systems biology

models: the DREAM3 challenges. PloS ONE 5, e9202.

Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., and Barabasi, A. L. (2002). Hierarchical

organization of modularity in metabolic networks. Science 297, 1551–1555.

Razick, S., Magklaras, G., and Donaldson, I. M. (2008). iRefIndex: a consolidated protein interaction

database with provenance. BMC Bioinformat. 9, 405.

Reiss, D. J., Baliga, N. S., and Bonneau, R. (2006). Integrated biclustering of heterogeneous genome-wide

datasets for the inference of global regulatory networks. BMC Bioinformat. 7, 280.

Remm, M., Storm, C. E., and Sonnhammer, E. L. (2001). Automatic clustering of orthologs and in-

paralogs from pairwise species comparisons. J Mol Biol 314, 1041–1052.

Robinson, J. T., Thorvaldsdottir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., andMesirov, J. P.

(2011). Integrative genomics viewer. Nat. Biotechnol. 29, 24–26.

Sachs, K., Gifford, D., Jaakkola, T., Sorger, P., Lauffenburger, D.A., 2002. Bayesian network approach to

cell signaling pathway modeling. Science’s STKE: signal transduction knowledge environment 2002,

pe38.

Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., and Nolan, G. P. (2005). Causal protein-signaling

networks derived from multiparameter single-cell data. Science (New York, NY) 308, 523–529.

Saeed, A. I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., Braisted, J., Klapa, M., Currier, T.,

Thiagarajan, M., Sturn, A., Snuffin, M., Rezantsev, A., Popov, D., Ryltsov, A., Kostukovich, E.,

Borisovsky, I., Liu, Z., Vinsavich, A., Trush, V., and Quackenbush, J. (2003). TM4: a free, open-source

system for microarray data management and analysis. BioTechniques 34, 374–378.

Salwinski, L., Miller, C. S., Smith, A. J., Pettit, F. K., Bowie, J. U., and Eisenberg, D. (2004). The database

of interacting proteins: 2004 update. Nucleic Acids Res. 32, D449–D451.

Schmitt, W. A., Jr., Raab, R. M., and Stephanopoulos, G. (2004). Elucidation of gene interaction

networks through time-lagged correlation analysis of transcriptional data. Genome Res. 14,

1654–1663.

54 Christopher S. Poultney et al.



Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., and Friedman, N. (2003). Module

networks: identifying regulatory modules and their condition-specific regulators from gene expression

data. Nat. Genet. 34, 166–176.

Shannon, C. (1948). A mathematical theory of communication. Bell Syst.Tech. J. 27, 379–423.

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B.,

and Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular

interaction networks. Genome Res. 13, 2498–2504.

Shannon, P. T., Reiss, D. J., Bonneau, R., and Baliga, N. S. (2006). The Gaggle: an open-source software

system for integrating bioinformatics software and data sources. BMC Bioinformat. 7, 176.

Singh, A. H.,Wolf, D.M.,Wang, P., andArkin, A. P. (2008).Modularity of stress response evolution.Proc.

Natl. Acad. Sci. U S A 105, 7500–7505.

Smith, E. A., and Corn, R. M. (2003). Surface plasmon resonance imaging as a tool to monitor biomo-

lecular interactions in an array based format. Appl. Spectrosc. 57, 320A–332A.

Snel, B., Lehmann, G., Bork, P., and Huynen, M. A. (2000). STRING: aweb-server to retrieve and display

the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 28, 3442–3444.

Soule, H. D., Maloney, T. M., Wolman, S. R., Peterson, W. D., Jr., Brenz, R., McGrath, C. M., Russo, J.,

Pauley, R. J., Jones, R. F., and Brooks, S. C. (1990). Isolation and characterization of a spontaneously

immortalized human breast epithelial cell line, MCF-10. Cancer Res. 50, 6075–6086.

Stark, C., Breitkreutz, B. -J., Chatr-Aryamontri, A., Boucher, L., Oughtred, R., Livstone, M. S., Nixon, J.,

Auken, K. V., Wang, X., Shi, X., Reguly, T., Rust, J. M., Winter, A., Dolinski, K., and Tyers, M. (2011).

The BioGRID Interaction Database: 2011 update. Nucleic Acids Res. 39, D698–D700.

Stolovitzky, G., Monroe, D., and Califano, A. (2007). Dialogue on reverse-engineering assessment and

methods: the DREAM of high-throughput pathway inference. Ann. N Y Acad. Sci. 1115, 1–22.

Supper, J., Strauch, M., Wanke, D., Harter, K., and Zell, A. (2007). EDISA: extracting biclusters from

multiple time-series of gene expression profiles. BMC Bioinformat. 8, 334.

Suzuki, H., Forrest, A. R. R., van Nimwegen, E., Daub, C. O., Balwierz, P. J., Irvine, K. M., Lassmann, T.,

Ravasi, T., Hasegawa, Y., de Hoon, M. J. L., Katayama, S., Schroder, K., Carninci, P., Tomaru, Y.,

Kanamori-Katayama, M., Kubosaki, A., Akalin, A., Ando, Y., Arner, E., Asada, M., Asahara, H.,

Bailey, T., Bajic, V. B., Bauer, D., Beckhouse, A. G., Bertin, N., Bj€orkegren, J., Brombacher, F., Bulger,

E., Chalk, A. M., Chiba, J., Cloonan, N., Dawe, A., Dostie, J., Engstr€om, P. G., Essack, M., Faulkner, G.

J., Fink, J. L., Fredman, D., Fujimori, K., Furuno, M., Gojobori, T., Gough, J., Grimmond, S. M.,

Gustafsson, M., Hashimoto, M., Hashimoto, T., Hatakeyama, M., Heinzel, S., Hide, W., Hofmann, O.,

H€ornquist, M., Huminiecki, L., Ikeo, K., Imamoto, N., Inoue, S., Inoue, Y., Ishihara, R., Iwayanagi, T.,

Jacobsen, A., Kaur, M., Kawaji, H., Kerr, M. C., Kimura, R., Kimura, S., Kimura, Y., Kitano, H., Koga,

H., Kojima, T., Kondo, S., Konno, T., Krogh, A., Kruger, A., Kumar, A., Lenhard, B., Lennartsson, A.,

Lindow, M., Lizio, M., Macpherson, C., Maeda, N., Maher, C. A., Maqungo, M., Mar, J., Matigian, N.

A.,Matsuda, H.,Mattick, J. S., Meier, S., Miyamoto, S.,Miyamoto-Sato, E., Nakabayashi, K., Nakachi,

Y., Nakano, M., Nygaard, S., Okayama, T., Okazaki, Y., Okuda-Yabukami, H., Orlando, V., Otomo, J.,

Pachkov, M., Petrovsky, N., Plessy, C., Quackenbush, J., Radovanovic, A., Rehli, M., Saito, R.,

Sandelin, A., Schmeier, S., Sch€onbach, C., Schwartz, A. S., Semple, C. A., Sera, M., Severin, J.,

Shirahige, K., Simons, C., St Laurent, G., Suzuki, M., Suzuki, T., Sweet, M. J., Taft, R. J., Takeda,

S., Takenaka, Y., Tan, K., Taylor, M. S., Teasdale, R. D., Tegn�er, J., Teichmann, S., Valen, E.,

Wahlestedt, C., Waki, K., Waterhouse, A., Wells, C. A., Winther, O., Wu, L., Yamaguchi, K.,

Yanagawa, H., Yasuda, J., Zavolan, M., Hume, D. A., Arakawa, T., Fukuda, S., Imamura, K., Kai, C.,

Kaiho, A., Kawashima, T., Kawazu, C., Kitazume, Y., Kojima, M., Miura, H., Murakami, K., Murata,

M., Ninomiya, N., Nishiyori, H., Noma, S., Ogawa, C., Sano, T., Simon, C., Tagami, M., Takahashi, Y.,

Kawai, J., and Hayashizaki, Y. (2009). The transcriptional network that controls growth arrest and

differentiation in a human myeloid leukemia cell line. Nat. Genet. 41, 553–562.

Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., Doerks, T., Stark, M.,

Muller, J., Bork, P., Jensen, L. J., and vonMering, C. (2011). The STRING database in 2011: functional

interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39, D561–D568.

2. Integrated Inference and Analysis of Regulatory Networks from Multi-Level Measurements 55



Tanay, A., Sharan, R., Kupiec, M., and Shamir, R. (2004). Revealing modularity and organization in the

yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc. Natl.

Acad. Sci. U S A 101, 2981–2986.

Tatusov, R. L., Galperin, M. Y., Natale, D. A., and Koonin, E. V. (2000). The COG database: a tool for

genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36.

Tirosh, I., and Barkai, N. (2007). Comparative analysis indicates regulatory neofunctionalization of yeast

duplicates. Genome Biol. 8, R50.

Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays applied to the

ionizing radiation response. Proc. Natl. Acad. Sci. U S A 98, 5116–5121.

van Helden, J. (2003). Regulatory sequence analysis tools. Nucleic Acids Res. 31, 3593–3596.

Waltman, P., Kacmarczyk, T., Bate, A. R., Kearns, D. B., Reiss, D. J., Eichenberger, P., and Bonneau, R.

(2010). Multi-species integrative biclustering. Genome Biol. 11, R96.

Yannakakis, M. (1981). Node-deletion problems on bipartite graphs. SIAM J. Comput. 10, 310–327.

Yip, K. Y., Alexander, R. P., Yan, K. -K., and Gerstein, M. (2010). Improved reconstruction of in silico

gene regulatory networks by integrating knockout and perturbation data. PLoS ONE 5, e8121.

Yong-a-poi, J., Someren, E. V., Bellomo, D., and Reinders, M. (2008). Adaptive least absolute regression

network analysis improves genetic network reconstruction by employing prior knowledge. Commun.

Theory 1–14.

Zhou, J., Deng, Y., Luo, F., He, Z., Tu, Q., and Zhi, X. (2010). Functional molecular ecological networks.

mBio 1, e00169-00110.

Zou, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statis. Assoc. 101, 1418–1429.

56 Christopher S. Poultney et al.



CHAPTER 3

Swimming Upstream: Identifying
Proteomic Signals that Drive
Transcriptional Changes using the
Interactome and Multiple ‘‘-Omics’’
Dataset
s

Shao-shan Carol Huang*,z and Ernest Fraenkel*,y
*Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts,
USA

yComputer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA

zCurrent address: Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La
Jolla, California, USA

Abstract
I. Introduction
II. Computational Methods

A. Setting Up the Prize-Collecting Steiner Tree
B. A Probabilistic Interactome
C. Determining Transcription Factor Targets
D. Node Penalties
E. Sensitivity Analysis
F. Practical Advice

III. Biological Insights
A. Properties of the Full Network
B. Biological Functions of Subnetwork/Modules
C. Quantifying the Relevance of the Transcription Factors

IV. Open Challenges
A. Improving the Input Data
B. Other Applications and Potentials

Acknowledgments
References

METHODS IN CELL BIOLOGY, VOL 110
Copyright 2012, Elsevier Inc. All rights reserved. 57

0091-679X/10 $35.00
DOI 10.1016/B978-0-12-388403-9.00003-5

http://dx.doi.org/10.1016/B978-0-12-388403-9.00003-5


Abstract

Signaling and transcription are tightly integrated processes that underlie many

cellular responses to the environment. A network of signaling events, often mediated

by post-translational modification on proteins, can lead to long-term changes in

cellular behavior by altering the activity of specific transcriptional regulators and

consequently the expression level of their downstream targets. As many high-

throughput, ‘‘-omics’’ methods are now available that can simultaneously measure

changes in hundreds of proteins and thousands of transcripts, it should be possible to

systematically reconstruct cellular responses to perturbations in order to discover

previously unrecognized signaling pathways.

This chapter describes a computational method for discovering such pathways that

aims to compensate for the varying levels of noise present in these diverse data

sources. Based on the concept of constraint optimization on networks, the method

seeks to achieve two conflicting aims: (1) to link together many of the signaling

proteins and differentially expressed transcripts identified in the experiments

‘‘constraints’’ using previously reported protein–protein and protein–DNA interac-

tions, while (2) keeping the resulting network small and ensuring it is composed of

the highest confidence interactions ‘‘optimization’’. A further distinctive feature of

this approach is the use of transcriptional data as evidence of upstream signaling

events that drive changes in gene expression, rather than as proxies for downstream

changes in the levels of the encoded proteins.

We recently demonstrated that by applying this method to phosphoproteomic and

transcriptional data from the pheromone response in yeast, we were able to recover

functionally coherent pathways and to reveal many components of the cellular

response that are not readily apparent in the original data. Here, we provide a more

detailed description of the method, explore the robustness of the solution to the noise

level of input data and discuss the effect of parameter values.

I. Introduction

One of the central challenges for systems biology is the reconstruction of cellular

processes from high-throughput experimental data. Much of the early work in this

area was driven by the development of microarray technologies that allowed rela-

tively comprehensive measurement of changes in mRNA expression. Using these

data as proxies for changes at the protein level has generated many insights into the

regulatory networks of the cell (Spellman et al., 1998; Segal et al., 2005; Ozsolak

andMilos, 2011). However, the actual correlation between the transcriptome and the

proteome is unclear (Schwanh€ausser et al., 2011; Maier et al., 2009; de Sousa Abreu

et al., 2009), and more direct proteomic data are likely to provide a more reliable and

thorough view of cellular processes.

Recently, technological advances have made it possible to directly measure prote-

omic changes at the global level. Mass spectrometry (MS) techniques can quantify
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the relative levels of hundreds of peptides across multiple biological conditions

(Choudhary and Mann, 2010; White, 2008) and focused data collection on phos-

phoproteins was able to reveal the regulatory dynamics of cellular signaling net-

works at the level of the proteome (Grimsrud et al., 2010; Macek et al., 2009; Yi

Zhang et al., 2007).

With new data come new challenges. Even in the best-characterized responses

there is poor overlap between hits identified by phosphoproteomics technologies and

known pathway components. For example, in a study of phosphorylation changes

that occur in response to mating pheromone in yeast (Gruhler et al., 2005), 112

proteins contain differentially phosphorylated sites; of these, only 11 are known

components of the expected mitogen-activated protein kinase (MAPK) cascade that

responds to pheromone, and 76 were not present in any of the yeast pathways

annotated in the KEGG PATHWAY database (Kanehisa et al., 2010). Finding new

ways to interpret these data could reveal previously unrecognized cellular pathways.

A second important challenge is to integrate transcriptional and proteomic data in

order to observe the interplay between different layers of cellular signaling. For

example, it may be possible to detect proteomic changes in signal transduction

cascades that drive expression and also to reveal the resulting feedback of transcrip-

tion on the proteome. But integrating these data will require novel computational

approaches. Because regulation is mediated by diverse mechanisms, even the most

comprehensive proteomics technologies cannot capture all these events. For exam-

ple, MS-based methods focusing on protein phosphorylation will fail to detect

changes in other post-translational modifications such as acetylation, ubiquitination,

and sumoylation. Computational techniques are needed to discover proteins that

participate in the signaling networks but are undetected in the experiments and also

to provide insight into their functional roles. One successful approach has been to

map these proteins onto known metabolic and regulatory pathways such as those

curated in the KEGG PATHWAY (Kanehisa et al., 2010) and Reactome (Matthews

et al., 2009) databases. This approach can reveal functional coherence and relevant

biological processes from the data. However, as mentioned above, a large fraction of

the phosphoproteomic data does not map to known pathway models, sowemust turn

to other approaches.

The interactome provides an alternative to using well-studied pathways. Advances

in high-throughput experimental mapping of protein–protein interactions as well as

efforts to extract known interactions from the literature have produced a number of

large databases of protein interactions (selected examples are listed in Table I).

Despite being incomplete, especially for higher organisms, the quantity of interac-

tion data in these databases is still very large. Thus, it may be possible to discover

unknown pathways among these interactions. While utilizing these large interac-

tome datasets improves our ability to find connections among a set of proteins of

interest, it also presents several challenges. First, the size of the potential network

explodes exponentially and quickly becomes non-interpretable, as pointed out by

previous data integration efforts (Hwang et al., 2005). Second, interaction records in

databases come from hundreds of laboratories and many experimental techniques of
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varying degrees of reliability (von Mering et al., 2002), so overall the data quality is

heterogeneous and should not be treated indiscriminately. Lastly, pooling these

interactions together risks losing the specific context under which they were

detected. It is with these issues in mind that we propose a constraint optimization

approach for finding regulatory networks that are interpretable, reliable, and bio-

logically relevant.

Our method starts with a collection of protein–protein and protein–DNA interac-

tions, which represent known or experimentally determined signaling and regulatory

connections. It considers the observed phosphorylation events and differential gene

expression as connectivity constraints that the reconstructed network must satisfy.

Additionally, we take into account the different confidence levels among the inter-

action data sources by preferentially selecting the more reliable interactions. We show

that these objectives can be formulated as a constraint network optimization problem,

in particular, as a prize-collecting Steiner tree (PCST) problem on the interactome

Table I
A selection of publicly available protein–protein interaction databases.

Type of interactions Data sources Database and references

Direct/physical Curation of primary literature Biological General Repository for Interaction Datasets

(BioGRID) (Stark et al., 2011)

Human Protein Reference Database (HPRD)

(Keshava Prasad et al., 2009)

Molecular Interaction database (MINT)

(Chatr-aryamontri et al., 2007)

IntAct molecular interaction database

(Kerrien et al., 2007)

Mammalian Protein-Protein Interaction Database

(MIPS) (Pagel et al., 2005)

Database of Interacting Proteins (DIP) (Salwinski

et al., 2004)

Biomolecular Interaction Network Database (BIND)

(Bader et al., 2001)

Collection of multiple primary

databases

Interaction Reference Index (iRefIndex)

(Razick et al., 2008)

Agile Protein Interaction DataAnalyzer (APID)

(Prieto et al., 2006)

Michigan Molecular Interactions database (MiMI)

(Tarcea et al., 2009)

Unified Human Interactome database (UniHI)

(Chaurasia et al., 2007)

Direct/physical + indirect/

functional

Collection of multiple primary

databases and computational

predictions

STRING (von Mering et al., 2005)

Note: For further details see recent summary and reviews in Turinsky et al. (2011), De Las Rivas et al. (2010), Klingstr€om and Plewczynski (2010).
Many databases in this table have adopted the Proteomic Standards Initiative Molecular Interaction (PSI-MI) data formats and implemented the
PSI Common Query Interface (PSICQUIC) (Aranda et al., 2011) that allows easy, programmatic access and integration of these data.
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graph. Since the interactions are not limited to known pathways and the phosphory-

lation events and differential expressed genes are not limited to known players in these

pathways, there is great potential for novel discoveries. On the other hand, all the

interactions were experimentally determined and therefore have mechanistic basis

that might become relevant in the current context. These two features of the method

strike a balance between finding novel connections and revealing the relevance of

known connections.We hypothesize that since each of our input data sources provides

a different view of the molecular regulatory network, by putting them together we can

generate high-confidence hypotheses that have biological relevance and can be tested

experimentally. This framework serves to organize these heterogeneous datasets and

enhance our understanding of the cell at the systems level.

II. Computational Methods

Network optimization is an area of computer science that has recently become

very useful for analyzing biological problems, and a variety of algorithms are

available to solve specific optimizations. The problem we have posed consists of

finding a set of edges of minimum weight in order to connect a defined set of nodes

(known as termini) in a weighted network. This problem is called the Steiner tree

problem. An important generalization that allows some terminal nodes to be

excluded is known as the PCST problem. For our purpose, we will use a network

in which edge weights reflect our confidence in the interactions and where terminal

nodes represent hits from the experiments, that is, phosphorylated proteins and

differentially expressed transcripts. In this setting, the solution to the PCST optimi-

zation is a set of most confident interactions that link together the hits while possibly

leaving some unconnected (Fig. 1(A)).

Although the concept of Steiner tree has been previously applied to biological

networks (Dittrich et al., 2008; Scott et al., 2005), we note that our approach is

distinctive in multiple aspects. First, instead of mRNA transcript abundance we

use protein-level measurements on nodes in the interactome, which provides a

much more accurate representation of the underlying biological processes.

Second, we explicitly model the confidence of individual edges in the interactome

to account for the uncertainties in the interaction data. Third, we do not require all

nodes in the solution to be detected in the experiments, allowing our approach to

compensate for multiple sources of noise. This last feature is absent in an appli-

cation of a Steiner tree like algorithm to build a high-confidence network with

genetic screening hits as terminal nodes (Yosef et al., 2009). A minimum-cost

flow optimization approach connects genetic hits to differentially expressed genes

(Lan et al., 2011; Yeger-Lotem et al., 2009) but the result is less compact than the

PCST (Huang and Fraenkel, 2009). We now describe the process of constructing

the optimization problem, solving it, and analyzing the results. We also offer some

advice on practical matters such as tuning the parameter values and visualizing the

network.
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A. Setting Up the Prize-Collecting Steiner Tree

We treat the interactome as an undirected graph G = (V, E) where nodes are

proteins or genes and edges represent the known interactions. Each node v 2 V is

associated with a penalty pv � 0. Protein nodes to which experimental data are

mapped receive positive penalty values and therefore are termini for the PCST.

All other nodes receive zero penalties. As the magnitude of the penalty value

increases, the more confident we are that the protein/gene was experimentally

detected as relevant in the signaling response. The algorithm is forced to pay a

[(Fig._1)TD$FIG]

Fig. 1 (A) Finding relevant interactions as a constraint optimization problem. We seek a set of high-

confidence edges present in the interactome that directly or indirectly link the proteins and genes

identified in the experimental assays. Because some of the input data may be false positives (arrowhead)

or may not be explained by currently known interactome (arrow), our approach does not require that all the

input data be connected, but rather uses these data as constraints. Note that the protein product and mRNA

transcript of the same gene are represented as separate nodes. Image reproduced with permission from

Huang and Fraenkel (2009). (B)Work-flow diagram for defining the optimization objective function from

input datasets. Interaction weights go into the edge cost summation term (Step 1) and the changes in

tyrosine phosphorylation fromMS data go into the node penalty summation term (Step 3). The transcrip-

tion factors to mRNA target relationships are added to the edges to form the total interactome (Step 2), and

the mRNA nodes are assigned penalty values (Step 3). (For color version of this figure, the reader is

referred to the web version of this book.)
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penalty each time it leaves a terminal out of its final network. This constraint causes

the network to include as many high-confidence nodes as possible. However, this

constraint alone would lead to very large networks that might contain many unreli-

able edges. Sowe also assign to each edge e 2 E a cost ce � 0 that is inversely related

to our confidence in each interaction.

We aim to find a subtree F = (VF,EF) of G that minimizes the objective functionP
e2EF

ce þ
P

v62VF
pv. Because we incur penalties for excluding nodes while

[(Fig._2)TD$FIG]

Fig. 2 The protein components of the pheromone response network constructed by the PCST approach. Note that the

canonical pheromone response pathway (enclosed by dashed lines) is but a small component of the broad cellular changes

revealed by applying the algorithm to the mass spectrometry and expression data. For clarity, the differentially transcribed genes

included in the network are not presented. Functional groups based on GO annotation are outlined with red boxes. PKC, protein

kinase C; TF with phos. site, transcription factor with at least one differentially phosphorylated sites; TF with no phos. site,

transcription factor with no differentially phosphorylated sites; non-TF protein with phos. site, a protein that is not a transcription

factor and with at least one differentially phosphorylated sites; non-TF with no phos. site, a protein that is not a transcription

factor and with no differentially phosphorylated sites. Image reproduced with permission fromHuang and Fraenkel (2009). (See

color plate)
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paying costs for including edges, the algorithm will be forced to favor connecting

high-confidence data with high-confidence interactions. We further introduce a

scaling parameter b to balance the penalties and the edge costs:

X

e2EF
ce þ

X

v62VF

bpv:

We may solve this optimization problem exactly by using the branch-and-cut

approach (Ljubi�c et al., 2005) implemented in the dhea-code software pro-

gram that calls the ILOG CPLEX mathematical programming solver. As an

alternative to solving it as an integer linear program, an approach from statistical

physics (Bayati et al., 2008) has resulted in new heuristic algorithms based on

message-passing techniques (Bailly-Bechet et al., 2011). We now describe how

the experimental data are transformed into input for the algorithm. An overview

of the work-flow is in Fig. 1(B).

B. A Probabilistic Interactome

This is Step 1 in Fig. 1(B). The set of edges E of the input graph G consists of

direct (physical) protein–protein interactions found in databases of molecular

interactions such as those listed in Table I. To assign confidence values for these

interactions, a few methods have been previously published (Razick et al., 2008;

Orchard et al., 2007; Jansen et al., 2003). Here we use a naı̈ve Bayes probabilistic

model (Jansen et al., 2003). Interaction between two proteins is modeled as

random variable i 2 {0, 1} with i = 1 when two proteins interact and i = 0 other-

wise, and each kind of experimental evidence is modeled as a random variable

fj 2 {0, 1} where fj = 1 indicates fj is observed and fj = 0 otherwise. From pub-

lished gold standard sets of positive (Yu et al., 2008) and negative interactions

(Jansen et al., 2003), we can compute the conditional probability table for each

kind of evidence, P(fj|i). Then, for each interaction e supported by a set of

experimental evidence Fe = {fe,j|j = 1, . . ., n}, assuming independence between

the evidence we have

PðFejiÞ ¼
Y

j

Pðf e;jjiÞ;

and a straightforward application of Bayes rule gives the probability that this

interaction is real:

Pði ¼ 1jFeÞ ¼ PðFeji ¼ 1ÞPði ¼ 1Þ
P

i
0 2f0;1gPðFeji0 Þ

:

The cost ce on edge e that is input into the PCST objective function is

ce = � logP(i = 1|Fe), 8 e 2 E.
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C. Determining Transcription Factor Targets

Transcription factor to mRNA target relationships are added to the protein–pro-

tein interactome to form the total interactome (Step 2 in Fig. 1(B)). A variety of

experimental, computational techniques and combinations of both are possible. For

yeast, there are published genome-wide binding sites for almost all the transcrip-

tional regulators under multiple conditions measured by chromatin immunoprecip-

itation (ChIP) experiments (Harbison et al., 2004;MacIsaac et al., 2006). The human

and mouse ENCODE projects (Birney et al., 2007) represent systematic efforts to

generate ChIP profiles for multiple transcription factors in a variety of human cell

lines and mouse tissues. Computationally, transcription factors often have sequence

specificities that allow binding sites to be predicted to some extent (Box 1).

Commonly used quantitative representations of such binding patterns, also known

as sequence motifs, include position weight matrices (PWM)/position-specific scor-

ing matrices (PSSM) (D’haeseleer, 2006; Stormo, 2000) with an information theo-

retic perspective, and position-specific affinity matrices (PSAM) with a statistical

mechanics perspective (Foat et al., 2006, 2005; Manke et al., 2008; Roider et al.,

2007). Motifs from the TRANSFAC (Wingender, 2008; Matys et al., 2006) and

JASPAR (Sandelin et al., 2004; Bryne et al., 2008) databases, which collect pub-

lished transcription factor binding motifs from the literature, can be used for pre-

dicting regulatory elements. Once a genomic region is determined to be bound by a

transcription factor based on experimental and/or computational evidence, nearby

genes can be associated with this factor as its potential downstream targets, and we

add to the interactome edges going from the transcription factor (a protein node) to

these target mRNA nodes.

D. Node Penalties

This is Step 3 in Fig. 1(B). We define two kinds of penalties for proteins in the

interactome: one at the protein level derived from the phosphoproteomics MS data,

and the other at the mRNA level derived from mRNA expression data.

Although published phosphoproteomicMS datasets often provide the identities of

the proteins that contain the peptide sequences inferred from theMS spectra, it is still

advisable to map the peptides to a database of protein sequences from which the

interactome dataset is derived in order to avoid issues such as inconsistencies in

mapping gene identifiers and in treating protein isoforms. This can be achieved by

finding protein sequences in a database that contains matches to the peptide

sequences, for example, by the sequence alignment search tool BLAST (Altschul

et al., 1990) with parameter settings optimized for matching short peptide

sequences. In an analysis comparing two conditions, proteins that contain perfect

alignment to a peptide sequence receive a positive penalty value that is proportional

to the absolute value of log-fold change in phosphorylation between the conditions

of interest. If one peptide sequence is aligned to multiple proteins in the interaction

graph, all these proteins receive the same penalty value. If multiple phosphorylated
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Box 1
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peptide sequences are perfectly aligned to one protein, the maximum fold change in

phosphorylation of these peptides is used to calculate the penalty value for this

protein. Other methods of assigning penalties are also possible and are discussed

below.

For penalty values on mRNA nodes, some modifications to the interactome are

required to make the resulting network more biologically realistic. If we simply put

penalty values on the mRNA nodes, the tree structure of the solution network means

that any one mRNA node is connected to at most one upstream transcription factor.

Such a network cannot capture one gene being targeted by multiple transcription

factors, which is a common feature of transcriptional regulation. Instead, we represent

multiple transcription factors bound to the same gene with separate nodes. Let M be

the set of differentially expressed transcripts, and fc(m) be the fold change in mRNA

abundance of each genem 2M. For eachm, we searched the interactome for the set of

upstream transcription factors F that target m, remove m from the interactome, and

add one nodemf for each transcription factor f 2 F and one edge between f andmf. The

fold change of m is transferred to all the mf to compute the penalty values on mf. Each

new terminal node mf may be interpreted as a binding site of f on m.

E. Sensitivity Analysis

Applying an optimization approach to inherently noisy biological data makes it

necessary to explore the alternative or suboptimal solution space surrounding the

reported optimal solution. This is to ensure that the nodes and edges selected by the

algorithm, from which significant efforts will be invested to extract biological

Computational representation and discovery of transcription-factor-binding sites,

with an example of the human REL protein-binding profile (JASPARMA0101.1,

curated from Kunsch et al. (1992)) and NFkB binding site in the human IL8

promoter (TRANSFAC binding site HS$IL8_21). in vitro techniques such as

SELEX (systematic evolution of ligands by exponential enrichment)

(Stoltenburg et al., 2007) can generate a set of sequences that bind to a specific

transcription factor with high affinity. From an alignment of these sequences, a

PFM is created to represent the base preference of this factor at each position of

the binding site. After pseudo-count correction, the PSSM approach takes the

base preference at each position, adjusts for background (usually genome-wide)

frequency of that base, and computes a numerical value for the bases at each

position that can be used to score a DNA sequence (D’haeseleer, 2006; Stormo,

2000). Alternatively, an approximate PSAM for scoring can be created from a

pseudo-count corrected PFM by calculating the preference of a base relative to

the most frequent base at each position (Foat et al., 2006, 2005; Manke et al.,

2008; Roider et al., 2007). See MacIsaac and Fraenkel (2006) for a more detailed

treatment of the topic.
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meaning, are relatively stable to possible sources of noise. Fig. 3 presents twoways to

quantify this stability at the global level. First, starting from the optimal solution

reported by the algorithm, we can re-formulate the optimization problem to find a

number of suboptimal solutions – networks that are optimal under the additional

constraint that they must differ from the original optimal solution by a predefined

percentage of nodes. We can then compare these suboptimal solutions to the optimal

one in terms of the objective function value (Fig. 3(A)) and the frequency at which

the nodes in the original optimal solution are preserved in the suboptimal solutions

(Fig. 3(B)) in order to decide whether the solution is robust to noise.

F. Practical Advice

Parameters: Tuning the value of parameter b essentially controls the size of the

PCST solution output. With larger b values it becomes more expensive to exclude

each terminal node (i.e., making the objective function larger), so the optimization

algorithm will include more edges in the PCST solution. Although a larger network

may includemore hits from the experimental data, it is more difficult to interpret and

[(Fig._3)TD$FIG]

Fig. 3 Alternative or suboptimal solutions to the yeast pheromone response dataset. Becausewe use an

optimization approach to analyze inherently noisy data, we asked whether the network we obtained was

stable – are there very different networks that explain the data almost as well? For this, we compared the

optimal solution network to a set of alternative solution networks obtained by finding networks that are

different from the optimal one by at least a specific percentage of nodes. (A) No alternative solutions in

the neighborhood of the optimal solution achieve the same objective function value. (B) Of the nodes that

appear at least once in the 54 suboptimal solutions, at least 80% also appear in the optimal solution. Image

reproduced with permission fromHuang and Fraenkel (2009). (For color version of this figure, the reader

is referred to the web version of this book.)
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also more likely to include false-positive hits that may connect to the real underlying

network via tenuous interactions. To find a suitable value of this parameter, it

is advisable to run the algorithm with a range of values and choose a solution that

(1) includes any expected pathways based on prior biological knowledge, (2) is

stable for the neighborhood of b values, and (3) contains as many of the hits as

possible. One can also start with a small value of b to build a core network and

gradually increase b to explore how more hits are connected to the core network.

It may be possible to use cross-validation to objectively choose b. In such an

approach, one would randomly partition the terminal nodes into two complementary

subsets, build a PCST using one subset (training set), and compute the recovery of

the second subset (validation set) in that PCST. To reduce the effect of random

variations, for each value of b, multiple rounds of such cross-validation can be

performed and one average performance value is reported. Based on this perfor-

mance measure, a b value can be selected.

While this approach has a certain appeal, we urge caution since the assumptions

and requirements of cross-validation may not be satisfied by the biological datasets.

First, in order for the recovery of the validation set by a PCST to be a good indicator

of its performance, the training set and the validation set must be drawn from the

same distribution. This criterion requires the terminal sets to be sufficiently large

that each random sample contains termini from all the underlying biological pro-

cesses. Since the current datasets are subject to many limitations such as the sensi-

tivity of the MS instrument depending on protein abundance and the coverage of the

interactome, we do not know a priori whether this assumption is appropriate.

Second, it is unclear which of the conventionally used measures of predictor per-

formance is suitable in this setting. We aim to recover intermediate nodes that are

undetected in experiments, so we cannot count such nodes included in the PCSTas

false positives. In the absence of a false-positive definition, counting the recovery

of the terminal nodes makes little sense since the optimal value of b will be the

one that produces a PCST that include the most terminal nodes (weighted by

penalty values).

Implementation: There are various approximation algorithms to solve the

PCST problem. These have recently been reviewed (Archer et al., 2011). The

dhea-code program (Ljubi�c et al., 2005), which can be downloaded from Dr.

Ljubi�c’s website (Ljubi�c, 2008), uses a branch-and-cut approach to obtain exact,

optimal solutions. This program requires the ILOG CPLEX (IBM) optimization

library that is available at no-charge for teaching and non-commercial research as

part of the IBM Academic Initiative (IBM, 2010). In the supplement of this

article, we provide a simple Python script for creating the input file for dhea-
code from tab delimited text files of the weighted interactome and terminal

nodes. The output files of dhea-code include the PCST solution in a DOT file

(a plain text format for specifying graphs; Graphviz, 2011b). From there the

solution can be rendered and viewed by the tools in Graphviz (2011a), or further

manipulated and analyzed by the Python library NetworkX (Hagberg et al., 2008).

One standard operation is to convert the DOT file to one of the file formats
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supported by Cytoscape (Smoot et al., 2011; Cline et al., 2007) in order to utilize

Cytoscape’s many visualization capabilities for biological networks.

A recently published message-passing algorithm, although taking a heuristic

approach, is able to find solutions with objective values comparable to dhea-code
under much less computing time and memory (Bailly-Bechet et al., 2011). It

requires a depth parameter to be specified a priori to control the length of paths

in the solution network. This appears to have the consequence of eliminating long

braches in the solution. The effect of this difference on the identities and functional

relevance of the recovered nodes remains to be investigated.

III. Biological Insights

The PCST solution connects together the phosphorylation events and transcrip-

tional changes using a compact set of interactions. Since the method puts the

phosphorylation events in the context of protein–protein interactions, the connec-

tions participated by these events or groups of events are suggestive of their cellular

functions. The transcription factors included in the network and the connections

among them point to the functional consequence of the upstream signals. These are

certainly of great interest for elucidating the role of individual hits. Also interesting

are the properties that emerge from the network at the systems level, and we will

describe a few computational techniques for such analyses using the yeast phero-

mone response PCST solution as an example (Fig. 2).

A. Properties of the Full Network

The PCST solution in Fig. 2 was constructed from published phosphoproteomic

(Gruhler et al., 2005) and transcription profiling (Roberts et al., 2000) datasets of the

yeast Saccharomyces cerevisiae in response to the mating pheromone a-factor. This

network was first reported in Huang and Fraenkel (2009). The network connects 56

of the 112 proteinswith a-factor-responsive phosphorylation sites and 100 of the 201

differentially expressed genes through 94 intermediate proteins.

The solution network shows a few notable features at the global level. First, the

MAPK cascade known to be induced by pheromone (labeled ‘‘pheromone core’’ in
Fig. 2) is recovered by the algorithm. In particular, it correctly identifies the proteins

GPA1, STE11, and BEM1, where no phosphorylation sites were detected, as well as

their connections to other proteins in the pheromone signaling pathway. In addition,

only proteins that are present in the pheromone response pathway are included.

Second, beyond the MAPK cascade, the solution network partitions into highly

coherent subnetworks with biological functions relevant to mating. At the transcrip-

tion level, phosphorylated proteins seem highly informative in selecting interacting

transcription factors. Examples include DIG1/DIG2/STE12 complex in the phero-

mone signaling pathway, SWI4/SWI6 and SWI6/MBP1 in the PKC pathway, and

FKH2/NDD1 complex regulated by CDC28. These observations suggest the
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constraints imposed by the phosphorylated proteins and differentially expressed genes

are sufficient to guide the selection of important players that contribute to the

response.

To assess the functional significance of the intermediate nodes from the PCST

solution in mating response, we examined two independent whole-genome deletion

screen datasets that screen for genes whose deletion result in mating defects. One

screen measures a molecular phenotype in the form of activation of FUS1-lacZ

reporter (Chasse et al., 2006) and the other screen measures a morphological phe-

notype in the form of cell cycle arrest and shmoo formation (Narayanaswamy et al.,

2006). For each screen, we counted the number of hits that overlap with the inter-

mediate nodes in the PCST solution, and using all the screening genes as background

we computed a hypergeometric p-value for which such overlap would appear by

chance. As seen in Fig. 4, compared to networks constructed from shortest paths and

[(Fig._4)TD$FIG]

Fig. 4 The PCST pheromone response network is compact, and when compared to networks

predicted by other methods, it contains higher fraction of genes that are implicated in mating response,

measured by defects in activating a FUS1-lacZ reporter gene (Chasse et al., 2006) and defects in cell

cycle arrest and shmoo formation (Narayanaswamy et al., 2006). The Flow network was constructed

from the phosphorylated proteins and differential expressed genes by a previously published algorithm

based on network flows (Yeger-Lotem et al., 2009). The Shortest path network consists of pairwise

shortest paths between the terminal nodes and the First neighbor network consists of nodes in the

interactome that directly interact with the phosphorylated proteins. Enrichment p-values were com-

puted by hypergeometric tests using all the genes tested in the respective genetic screen as back-

ground. The number above each bar denotes the number of nodes in the network. Image reproduced

with permission from Huang and Fraenkel (2009). (For color version of this figure, the reader is

referred to the web version of this book.)
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first neighbors of the terminal nodes, the PCST solution is more compact while

achieving higher enrichment of genes implicated in mating defects.

B. Biological Functions of Subnetwork/Modules

To objectively quantify the empirical observation that the PCST solution is parti-

tioned into functional coherent subnetworks, we applied the Girvan–Newman algo-

rithm (Dunn et al., 2005; Girvan and Newman, 2002) to cluster the solution. This

algorithm is used for detecting clusters in an interaction network that contain dense

connections between nodes in the same cluster but less dense connections to nodes in

other clusters. Gene Ontology enrichment analysis of the resulting clusters reveals

that all the clusters have high degree of functional coherence (Table II). It is

interesting to note that many of the clusters are not coordinately expressed at the

mRNA level, as quantified by the significance of expression coherence score (Pilpel

et al., 2001) or by the significance of expression activity score (Ideker et al., 2002).

Notably, the clusters that show significant coordinated expression are involved in

cell cycle processes.

Being able to recover functionally coherent clusters that are not coherent at the

transcript level is a significant result. Transcriptional data, which are more readily

available than proteomics data, are the focus of many computational methods for

regulatory network construction. Our results suggest that methods that rely solely on

expression data, including a prior Steiner tree approach (Dittrich et al., 2008), will be

unable to recover the full extent of a biological response.

C. Quantifying the Relevance of the Transcription Factors

In addition to the transcription factors mentioned above that are known to be

induced by pheromone or function in related biological processes, the PCST solution

network features many other transcriptional regulators not previously implicated in

pheromone response. We use expression coherence score as a metric to quantify the

significance of these transcription factors at the global level. For each transcription

factor with targets in the interactome, we obtained the expression values of those

targets across a set of conditions that stimulate pheromone signaling, and computed

the significance p-value of the expression coherence score. Then we set a threshold

on the significant p-value, and compared the percentage of transcription factors

included and excluded in the PCST that pass this threshold. As shown in Fig. 5, the

transcription factors included in the network are more likely to have a set of targets

that are coherently expressed than the factors excluded from the network. To check if

these transcription factors are condition specific, we did a similar calculation for the

expression values from a set of conditions that are unrelated to pheromone: when

yeast undergoes the metabolic shift from fermentation to respiration (diauxic shift).

We found that coherence is specific to the conditions related to pheromone signaling

but not to diauxic shift.
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Table II
Biological functions and measures of coordinated mRNA expression of the clusters in the pheromone response PCST network generated from
edge-betweenness clustering.

Cluster Top three enriched GO biological process terms Corrected

p-value

p-value of

EC score

p-value of EA

score

1 GO:0046907 Intracellular transport 1.23E–09 0.711 1

GO:0051649 Establishment of cellular localization 1.23E–09

GO:0051641 Cellular localization 1.71E–09

2 GO:0006457 Protein folding 1.41E–04 0.251 0.735

GO:0042026 Protein refolding 1.41E–04

GO:0000069 Kinetochore assembly 8.35E–04

3 GO:0016193 Endocytosis 1.73E–06 0.128 1

GO:0007114 Cell budding 1.26E–05

GO:0051301 Cell division 1.26E–05

4 GO:0000074 Regulation of progression through cell cycle 2.68E–06 0.421 0.453

GO:0051726 Regulation of cell cycle 2.68E–06

GO:0006270 DNA replication initiation 3.44E–06

5 GO:0006350 Transcription 8.00E–14 0.863 1

GO:0045449 Regulation of transcription 1.94E–12

GO:0019219 Regulation of nucleobase, nucleoside, nucleotide,

and nucleic acid metabolism

7.15E–12

6 GO:0007096 Regulation of exit from mitosis 3.52E–07 0.063 1

GO:0007088 Regulation of mitosis 4.45E–07

GO:0000074 Regulation of progression through cell cycle 1.05E–05

7 GO:0048856 Anatomical structure development 3.19E–14 0.35 0

GO:0007148 Cell morphogenesis 3.19E–14

GO:0019236 Response to pheromone 1.26E–11

8 GO:0006350 Transcription 1.89E–09 0.504 0.35

GO:0006351 Transcription, DNA-dependent 7.90E–09

GO:0032774 RNA biosynthesis 7.90E–09

9 GO:0000082 G1/S transition of mitotic cell cycle 2.15E–04 0.272 0.008

GO:0051325 Interphase 1.07E–03

GO:0051329 Interphase of mitotic cell cycle 1.07E–03

Full network GO:0006350 Transcription 2.67E–23 0.729 1

GO:0019222 Regulation of metabolism 2.73E–21

GO:0050791 Regulation of physiological process 1.16E–20

Note: EC, expression coherence (Pilpel et al., 2001); EA, expression activity (Ideker et al., 2002). Reproduced with permission from Huang and Fraenkel (2009).
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IV. Open Challenges

A. Improving the Input Data

The central premise behind our constraint optimization framework is that the

experimental measurements at the signaling and transcription level are sufficient

for guiding selection of relevant interactions from the interactome. It is important to

note, however, that many of these interactions may only occur under specific con-

ditions that are not relevant to the problem being studied. It is not yet practical to

collect condition-specific interaction data on a large scale. Nevertheless, there are a

few strategies to ensure the selected interactions are indeed relevant. First, as a pre-

processing step, the input interaction network can be filtered to remove nodes that

are not believed to be expressed under the condition of interest, based on transcript or

protein assays. With the improved sensitivity of RNA-seq to detect low-abundance

[(Fig._5)TD$FIG]

Fig. 5 Percentage of transcription factors (TF) with targets that show significant expression coherence

(EC) scores computed from 50 nM a-factor time course (Roberts et al., 2000) and diauxic shift conditions

(DeRisi et al., 1997), for transcription factors included in and excluded from the PCST solution network.

The p-values indicate thresholds on the significance of the expression coherence score of the target genes.

Image reproduced with permission from Huang and Fraenkel (2009).
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transcripts compared to microarrays, this step may now be done with higher confi-

dence. However, expression data are still noisy, and removing nodes completely risks

missing important components of a network. Alternatively, we can add to the PCST

formulation capacities on the nodes that represent the expression level. There are

well-established procedures that transform node capacitated network flow problems

to ones without the node capacities (Ahuja et al., 1995).

Our current analysis defines node penalties on the phosphorylated proteins in a

practical but ad hocmanner: the penalty values are proportional to the absolute value

of log-fold changes of phosphorylation; if there are multiple phosphorylation sites

on one protein, the maximum value is used. This reflects the assumption that larger

changes in phosphorylation carry higher importance and thus should be given higher

priority to be included. There are other, probably more principled, ways of quanti-

fying the significance of the phosphorylation changes. We distinguish two kinds of

significance: statistical significance and biological significance. The former

requires the development of robust error models (Yi Zhang et al., 2010) while the

latter would benefit from knowledge about the context of the phosphorylation sites,

such as the structural domain or binding sequence motif where the sites are located

(see examples in Naegle et al. (2010)). But these two need not to be exclusive: once

statistical significance is established, penalty values can be defined by analyzing for

potential biological significance.

As phosphorylation sites are the starting point from which the PCST network

solution is built, it is critical to have a good coverage of interactions involving these

proteins in the interactome graph. Phosphorylation sites participate in interactions

with other proteins in two ways: as substrates of kinase and phosphatases, and as

binding partners of proteins that recognize the phosphorylated residues. Many of

these interactions are transient and context specific and thus difficult to capture in

some interaction assays. In particular, among the various high-throughput interac-

tome mapping techniques, a modified affinity capture MS method is the most

informative in identifying kinase targets, with yeast two-hybrid being second

(Sharifpoor et al., 2011). Many in vivo methods are available to link kinases to

phosphorylation substrates (reviewed in Sopko and Andrews (2008)) but only for

specific kinases. Taking these efforts to the global level, and using other information

such as sequence motifs integrated within a computational framework such as

NetworKIN (Linding et al., 2007), will produce interaction datasets that greatly

enhance the ability of our algorithm to connect the phosphorylated proteins.

Beyond the focused mapping of interactions involving phosphorylated proteins,

the ability to discover novel signaling pathways also depends on the coverage of

other parts of the interactome. Even with the combination of large experimental

efforts and curated databases we are still far from a complete mapping of all possible

protein–protein interactions, especially in less well-studied organisms. Therefore,

many computational methods have been developed to predict possible interactions.

These methods make use of features such as gene neighborhood (M. Huynen et al.,

2000), gene fusion (Marcotte et al., 1999), sequence co-evolution (Goh et al., 2000),

and may incorporate several such features in a Bayesian framework (Jansen et al.,
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2003). The probabilistic nature of edge weights in our PCST formulation provides a

natural way to include these computational predictions.

B. Other Applications and Potentials

The PCSTapproach can be used to analyze jointly a wide variety of types of data.

Cellular functions are operated by networks of molecular interactions, which include

a lot more than phosphorylation-mediated signaling and transcription factor binding

to target genes. But regardless of the data type, there are many situations in which we

see to find a parsimonious, high-confidence interaction network satisfying a defined

set of constraints. Therefore, this approach can be applied to many other levels of

regulation, depending on the source of the constraints and themolecular interactions.

For example, wemaymodel the global effect of amicroRNAby using themicroRNA

targets as constraints and including microRNA to target relationships in the inter-

actome. Metabolomics data are another area of great interest and may become an

entry point to link together protein signaling networks with metabolic networks. The

detected metabolites can be used as constraints in a network of metabolic reactions

catalyzed by enzymes that are also part of the protein interaction network. For all

these datasets, taking a network approach such as the PCSTwill yield more insight

than simply following up on the top hits.

One disadvantage of the PCST method is the tree structure of the resulting

network: all the included terminal nodes must be connected to each other.

However, it is possible that the terminal nodes belong to multiple, separate signaling

pathways that are not connected to each other, either because there is no cross-talk

biologically or the cross-talk interactions are not in the known interactome.

Adopting a forest formulation, where multiple trees may be used to connect the

terminal nodes, may remedy this drawback.

Finally, it is useful to consider this approach in the context of other types of

network modeling. The strengths of our method lie in the ability to identify previ-

ously unrecognized components of a cellular response and to discover functionally

coherent subsets of proteins. However, this approach is not designed to capture the

dynamics of a system, including feedback regulation. A natural way to describe such

feedback mathematically is by differential equations, which can be simulated

numerically or analyzed. Differential-equation-based models have been applied

genome-wide in a comprehensive transcriptional and translational network for

Escherichia coli (Thiele et al., 2009) and have been applied extensively to relatively

small networks of mammalian proteins (Eungdamrong and Iyengar, 2004; Aldridge

et al., 2006; Tyson et al., 2003). However, such approaches are not suitable for very

large networks where there are not enough data to sufficiently constrain the neces-

sary parameters of the models.

We believe that these two approaches may ultimately be used together to develop

dynamic models of previously uncharacterized biological systems. In a first phase,

proteomic, transcriptional or other ‘‘-omics’’ datasets would be analyzed using

constraint optimization to identify a set of proteins that seem most relevant to the
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biological process. With the size of the problem now reduced to a more manageable

level, more focused experiments together with differential equation-based modeling

could reveal the dynamics of the system.
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Abstract

In cell signaling systems, the abundances of signaling molecules are generally

thought to determine the response to stimulation. However, the kinetics of molecular

processes, for example receptor trafficking and protein turnover, may also play an

important role. Few studies have systematically examined this relationship between

the resting state and stimulus-responsiveness. Fewer still have investigated the

relative contribution of steady-state concentrations and reaction kinetics. Here we
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describe a mathematical framework for modeling the resting state of signaling

systems. Among other things, this framework allows steady-state concentration

measurements to be used in parameterizing kinetic models, and enables compre-

hensive characterization of the relationship between the resting state and the cellular

response to stimulation.

I. Introduction

Cell systems respond to external stimuli through a coordinated network of bio-

chemical reactions mediated by any number of molecular species. Although it is

customary to think of these systems as being ‘‘at rest’’ prior to stimulation, a growing

number of studies have demonstrated that the resting state of a cell prior to stimu-

lation can be a powerful determinant of the response. For example, with regards to

stimulation by the death-inducing TNF superfamily member TRAIL, studies have

shown that cells may be sensitized via up-regulation of the TRAIL receptor DR5

(Dolloff et al., 2011) or caspase 8 (Fulda et al., 2001), down-regulation of TRADD

(Kim et al., 2011) or c-FILP (Li et al., 2011), or alternatively desensitized by up-

regulation of Bcl-XL (Hinz et al., 2000) or Bcl-2 (Fulda et al., 2002) (reviewed in

Zhang and Fang, 2005).

By contrast, in other systems it has been shown that the kinetics of species

turnover – not their outright abundance – determine the response to stimulation.

For example, high turnover of the Epo receptor is required to maintain a linear, non-

refractory response over a broad range of Epo concentrations (Becker et al., 2010),

while high turnover of the inhibitor of NFkB is required to distinguish acute

inflammatory stimuli from metabolic stress conditions (O’Dea et al., 2008).

Studies like these highlight an important dichotomy in the resting state of a cell.

In one hand are the concentrations of molecules prior to stimulation, and in the

other are the rates of the biochemical processes in which they participate. How do

each of these facets of the resting state affect the cellular response to stimulation?

Because systematic changes in the resting states of living cells are difficult to

engineer, investigating this relationship cannot be addressed by laboratory science

alone. For example, short interfering (si) RNA can be used to reduce the concentra-

tion of a specific gene product, but this reduction is effected by interfering with the

translation of the product (Fire et al., 1998; Izant and Weintraub, 1984). Changes in

stimulus-responsiveness due to siRNA knockdown may, therefore, be caused by a

reduction in the concentration of the target species, reduction in the kinetics of its

turnover, or both. Furthermore, RNA dilution in rapidly dividing cells (Bartlett and

Davis, 2006) or secondary induction of the mammalian interferon response

(Reynolds et al., 2006) may further cloud interpretation of the results.

Using a mathematical model, the behavior of a system can be studied rapidly and

in isolation, providing a sort of sufficiency test for proposed mechanisms of cellular

responsiveness (Faller et al., 2003; Kearns and Hoffmann, 2009; and Kitano, 2002).

The steady-state of a model, discussed in further detail below, is furthermore a good
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approximation for the resting state of the system. A complication that arises in

models when trying to characterize the relationship between steady-state and stim-

ulus-responsiveness, however, is that models of cell systems are typically nonlinear.

As such, the steady-state must often be found numerically, and this compromises the

modeler’s ability to investigate its role in stimulus-responsiveness.

To that end, in this chapter we describe a method for deriving an analytical

expression for the steady-state of a common class of models, called mass action

models. From this analytical expression, we go on to give precise steps for intro-

ducing systematic changes to the steady-state concentrations of molecular species

and the rates of biochemical processes in which they participate. In doing so, we

demonstrate how specific hypotheses can be generated about the resting state of a

system and its impact on stimulus-responsiveness. Examples include:

� Are my measurements of steady-state concentrations and kinetic rate constants

consistent with the proposed model?
� Is a change in the steady-state concentration or activity of a particular species

sufficient to explain the changes I observed in the system’s response to

stimulation?
� Can I expect a system at a particular resting state to exhibit a certain response to

stimulation?

The remainder of this text is divided into the following sections: ‘‘Overview of

Algorithm,’’ in which we provide a verbal description of the steps required to model a

system and derive a solution to its steady-state; ‘‘Biological Insights,’’ in which we

demonstrate how a model at steady-state can help generate hypotheses about the

relationship between the resting state of a system and its response to stimulation;

‘‘Open Challenges,’’ in which we describe limitations of the method and potential

avenues for refinement; ‘‘Computational Methods,’’ in which we provide step-by-step

instructions for modeling a system and manipulating its steady-state; and finally

‘‘Further Reading,’’ where we offer some references for further reading on the subject

of modeling, steady-state, and parameterization, and dynamic response analysis.

II. Overview of Algorithm

For the purposes of this manuscript we assume that the system to be studied can be

described by a biochemical reaction network (BRN). A BRN consists a set of a set of

molecular species and a set of biochemical reactions. The set of species must contain

every species consumed or produced by the reactions. Neither every species nor

every reaction need be elementary – a species may refer to a complex biomolecule

like a ribosome, for example, and a reaction to a multistep process like protein

synthesis.

A simple BRN to illustrate the steps used in the forthcoming algorithm is the

activation of the tumor suppressor p53. This network consists of two species, p53 and

Mdm2, and four reactions. These reactions describe the process by which p53 and
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Mdm2 self-regulate through coordinated synthesis and degradation. Specifically,

p53 is constitutively synthesized but degraded in an Mdm2-dependent manner.

Mdm2 is synthesized in a p53-dependent manner but constitutively degraded. An

illustration of this network is given in Fig. 1, as are all steps used in the forthcoming

algorithm.

A. Model the System of Interest Using Mass Action Kinetics

We further assume that the BRN used to describe our system can be modeled

using mass action kinetics. Mass action assumes that the velocity of a chemical

reaction – or the rate at which it converts reactants into products – is proportional

to the product of each reactant raised to some power. This power is often equal to

the stoichiometry of the reactant and is, therefore, simply one. Note too that when

we refer to a species of a mass action model, we nearly always mean the abundance

of that species. The resultant mathematical expression for the velocity of the

reaction is often called a rate equation.

There are four reactions in the p53 model, which cumulatively describe the

synthesis and degradation of p53 and Mdm2. Under mass action, the velocity of,

say, p53 degradation is proportional to the product of p53 and Mdm2. Equivalently,

we can say that the velocity of p53 degradation is equal to the product of p53,Mdm2,

and a proportionality constant. This proportionality constant is commonly called a

rate constant.

Once rate equations have been written for each chemical reaction, we apply the

principle of mass balance to arrive at a set of governing equations that describes how

every species behaves over time. This principle holds that the rate at which a species

changes over time is equal to the sum of reaction velocities for which that species is

produced, minus the sum of reaction velocities for which it is consumed. For

example, p53 is produced by a zero-order synthesis reaction and consumed by a

second-order degradation reaction. Consequently, we can write that the first deriv-

ative of p53 with respect to time is equal to the velocity of synthesis minus the

velocity of degradation. In this way, application of mass action kinetics to any BRN

yields a system of ordinary differential equations that describes the instantaneous

rate of change for every species as a function of the reaction velocities.

Mass action may not always be appropriate to model the behavior of a BRN. A key

assumption of the rate equation is that of spatial homogeneity. That is, there are no

gradients in the concentration of any species and the local concentration at any point

in space is equal to the global concentration (Grima and Schnell, 2008). This

condition is violated when there are differences in the diffusivity of the species,

due to either complex formation, tethering to subcellular structures, or compartmen-

talization (Kholodenko, 2009). Such systems are more appropriately modeled using

reaction diffusion equations, reviewed in Slepchenko et al., 2002. A second assump-

tion of the rate equation is that the concentration of each participating species is

sufficiently ‘‘large’’ (Sreenath et al., 2008). If this is not the case, then random
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Fig. 1 Schematic of the simple model of p53 activation and regulation by Mdm2 used throughout this

document. Below that, a flowchart of a mathematical framework for modeling the resting state. Diamonds

represent major steps in the framework while boxes represent the outcome of those steps. The outside

track illustrates the results of this framework when applied to the p53 model. (For color version of this

figure, the reader is referred to the web version of this book.)
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fluctuations can no longer be ignored and the reaction velocity must be modeled by a

propensity function, called the chemical master equation (Gillespie, 1992).

Extending the method presented here to systems where the assumptions of mass

action fail is the subject of future research, and is discussed in Open Challenges.

B. Derive an Expression for the Steady-state of the Mass Action Model

For any mass action model there exists at least one set of reaction velocities where

every species is being produced as quickly as it is being consumed. When this is the

case, the model is said to be at steady-state. In this chapter, we equate steady-statewith

the resting state, but remark that a more sophisticated relationship between the two

could be the subject of future work.

Every mass action model will have one or more trivial steady-states. These are

steady-states in which all reaction velocities are zero. Closed systems, or systems

that don’t consider synthesis and degradation, always have a trivial steady-state in

which every species’ abundance is zero. Open systems also require that one or more

synthesis rate be zero. An example of a trivial steady-state in the p53 model is one

where there is neither p53 nor synthesis thereof. Since trivial steady-states are of little

physiological interest, howmight we identify nontrivial steady-states. More pointedly,

in order to examine the relationship between steady-state and the dynamic response,

how might all nontrivial steady-states be identified?

Mathematically, finding steady-states is equivalent to solving the system of equa-

tions that results when we set the rate of change of every species equal to zero. If the

system happens to be linear in the variables of interest, then a solution can often be

found quite easily. The key then is simply to find a subset of species and rate

constants that may be treated as variables such that the resulting system of equations

is linear. Ideally, the complement of that subset will be species and rate constants for

which accurate measurements are available, since these are elements for which

numerical values will need to be given prior to simulation. A detailed description

of this process, which we call py-substitution, is given below.

1. Develop and Apply a py-substitution Strategy

From the set of all rate constants and species abundances, identify a substitution

strategy by which elements with known values are replaced by a p and elements with

unknown values are replaced by a y. We refer to these quantities as parameters and

variables, respectively. Every substitution strategy must also satisfy the following

conditions: (1) the resultant system of equations is linear in y, and (2) there are at

least as many variables as there are linearly independent equations. The latter of

these ensures that the py-substituted system of equations is not overdetermined.

Zero-order reaction velocities and velocities with exponents not equal to unity

introduce a further complication: the former cannot be substituted by parameters nor

the latter by variables. To do so violates the linearity constraint. If this constraint is
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undesirable, awork-around is to introduce a pseudospecies. For example, the velocity

of p53 synthesis in our p53 model is independent of any species abundance. That is,

the rate of synthesis is constant and equal to a single rate constant. If a reliable

measurement exists for that rate constant, we may wish to substitute it with a

parameter rather than a variable. But because doing so would violate the linearity

requirement, we let the velocity be equal to the product of a first order rate constant

and a pseudospecies. The latter of these we substitute normally with a variable and,

once the system of steady-state equations has been solved, go back and make sure its

value is unity.

A similar tactic can be used for reaction velocities that are superlinear in one of

their reactants. If no reliable estimate exists for the abundance of the reactant, we

may wish to substitute it with a variable rather than a parameter. Since doing so

results in a superlinearity in y, we replace the reactant with a pseudospecies whose

exponent is unity. The pseudospecies can then be substituted normally with a

variable. After solving the system of steady-state equations, we go back and ensure

that the steady-state expressions for the pseudospecies and the superlinear reactant

are equal.

2. Solve the Linear System

After developing a py-substitution strategy, the system of steady-state equations is

rendered linear in the variables. This allows us to rewrite the system using matrix

notation. Specifically, we can write that the product formed by a matrix of para-

metersCwith a columnvector of variables y equals a columnvector of zeros.We call

this matrix of parameters the coefficient matrix:

Cy ¼ 0 ð1Þ
The solution to this equation is precisely the null space of the coefficient matrix.

Most modernmathematics software can derive a symbolic basis for the null space, so

long as the matrix is not too large. If it is large (say, over 100 rows and columns,

approximately equivalent to a system containing 100 species and reactions), then so

too is the number of row operations needed to derive a basis. Since the elements in

thematrix are symbolic, they can seldom can be reduced after each rowoperation. As

a result, certain elements will grow geometrically in complexity and consume all the

available RAM on the host device, causing a de facto arrest of the computation. Not

all software packages handle this explosion equally well. In our experience, Maple

outperforms both Mathematica and Matlab.

What is the benefit of a symbolic solution to the steady-state equation over a

numerical one? With the latter, every independent parameter is a numeric value,

which by the coefficient matrix is mapped efficiently to a value for each variable

such that the system is at steady-state. The downside of this approach is that the

contribution of each parameter to the variables is lost during the calculation. If the

values of the independent parameters change, as is often required during the analysis

of a mass action model, the values for the dependent variables must be calculated
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anew. With a symbolic solution, the contribution from each parameter to the steady-

state expression of each variable is preserved. This has several advantages. (1) The

relationship between a variable and an independent parameter can sometimes be

identified directly from its steady-state expression. For example, the expression may

reveal that a certain concentration scales linearly or nonlinearly with another species’

concentration, or that the concentration does not depend at all on certain reaction rates.

(2) More generally, the sensitivity of each dependent variable to each independent

parameter can be calculated, so that, for example, changes in parameter values can be

identified that only affect a certain subset of variables. This is precisely the approach

we use below to selectively alter the steady-state turnover of p53 and Mdm2.

3. Derive a General Expression for the Vector of Variables

A basis for the null space of the coefficient matrix spans the solution to the steady-

state equation. If we let the vector of variables be any linear combination of null

space basis vectors, then the system will be at steady-state no matter what values we

assign to the parameters. By any linear combination, we mean that the coefficient of

each basis vector can be any real-valued number. If the basis vectors are arranged as

columns in a matrix, this is equivalent to postmultiplying that matrix by a column

vector of real-valued coefficients.

4. Resolve Any Constraints Imposed by Pseudospecies

Once a general expression is derived for the vector of variables, we must resolve any

additional constraints imposed by the pseudospecies. Typically thesewill have the form

ya= yb
2 in the case of a superlinearity, or ya= 1 in the case of a sublinearity. The solution

to these equations is not always straightforward, especially the former. Whichever

mathematics software was employed to derive the null space for the coefficient matrix,

however, can be used again here to solve the pseudospecies constraints.

Another complication that may arise during this step is that a superlinear con-

straint will yield two or more possible solutions. In theory, this presents a very

interesting scenario where two or more values for the same species result in an

otherwise identical steady-state. In other words, this may represent a bi- or multi-

stability. In practice, our experience has been that when two solutions are possible,

one of them is always negative and, therefore, physiologically infeasible.

Furthermore, bistabilities reported in the literature typically manifest themselves

in all of the species, not just one. Therefore, a practical resolution to this complica-

tion has been to keep both symbolic solutions but discard the infeasible one after

numerical values are given to the parameters.

5. Reverse the py-substitution

Once the steady-state equation is solved and an expression derived for the vector

of variables, one may wish to revert the substitution so that the relationships between
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variables and parameters are expressed in terms of species and rate constants. For

simple systems, this can yield insight into how steady-state is achieved. For larger

systems, these relationships can become intractable. Furthermore, for subsequent steps

in this algorithm, the parametric description of steady-state can be the more useful of

the two. For these reasons, reverting the py-substitution is an optional step.

If reversion is desired, note that a technical complication was introduced by the

linear combination of null space basis vectors. Specifically, the forward py-substi-

tution results in a linear system that is solvable but underdetermined. If this was not

the case then the coefficient matrix would not have a null space. By taking a linear

combination of the basis vectors, we effectively identify dimensions of the null space

that are independent and thus need to be given a numerical value. In other words, the

original py-substitution contained too many variables. A number of these variables

equal to the dimension of the null space must become parameters. Fortunately, by

scaling the basis vectors such that they are normalized with respect to the desired

variable, we have a fair amount of freedom in specifying which variables are to

become parameters.

Once this is done, we are left with an equation where the left hand side is the

original vector of variables, and the right hand side is the product of thematrix of null

space basis vectors and the vector of coefficients. Letting these elements be repre-

sented by y, N, and q, respectively, the equation looks like the following.

y ¼ Nq ð2Þ
It is precisely this equation that preserves the steady-state in our mass action

model. The left hand side is within the domain of the inverse of the original py-

substitution and can be reverted quite easily. The right hand side is a function of

parameters and basis vector coefficients. The latter of these is not within the domain

of the inverse py-substitution, sowemust first convert these tovariables. Fortunately,

this conversion can be easily identified from the equation itself. By the derivation of

the null space basis via row reduction of the coefficient matrix, there will exist at

least one row inN for which only one column contains a nonzero entry. If the vector

is scaled to this entry, then the row defines a one-to-one mapping between basis

vector coefficients and variables. This mapping restores the right hand side to the

domain of the inverse py-substitution, thus making the full reversion possible.

C. Identify the Isostatic Subspace of the Mass Action Model

Oncewe have derived an expression for the steady-state of our mass action model,

wemaywish to characterize the relationship between the dynamics of the system and

its rate constants and steady-state abundances. The former of these is not straight-

forward, however, because changes in kinetic rate constants often result in changes

to the abundances. To isolate the effects of changes in rate constants on system

dynamics, we must derive an expression for the isostatic subspace of the model, that

being the set of all parameter perturbations that do not in turn alter the steady-state

species abundances.
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1. Calculate the Jacobian Matrix of Partial Sensitivities in Abundances
With Respect to Parameters

The first step in deriving the isostatic subspace is to define precisely what we

mean by a perturbation in parameters that in turn does not alter the steady-state

abundances. From our derivation of the steady-state above, we have that every

species abundance is equal to some function of parameters and null space basis

vector coefficients. It is convenient at this point to simply consider the latter of these

as parameters as well. Some species equate one-to-onewith a single parameter; other

species are equal to complex expressions in the parameters. Either way, we are

interested in a change in parameters Dp that, when added to the original set of

parameters p, results in a change in species Dx equal to zero. This is expressed

succinctly by the following equation.

Dp 2 fDp 6¼ 0 : Dx ¼ xðpÞ � xðpþDpÞ ¼ 0g ð3Þ
Avalid change in parameters is thus any that satisfies

xðpÞ ¼ xðpþDpÞ ð4Þ
The right hand side of this equation can be approximated by a truncated Taylor

series, as follows,

DxðpþDpÞ � xðpÞ þ J xDp ð5Þ
where Jx is the Jacobian matrix whose elements are the partial derivatives of each

species with respect to each parameter. The first step in deriving the isostatic

subspace is, therefore, to calculate this matrix, which can be done efficiently using

our choice of mathematics software.

2. Derive a Basis for the Null Space of the Jacobian Matrix

We are now confronted with the same situation as we were when deriving an

expression for the steady-state. Since wewant our new vector of species abundances

to equal the old one, we require that

J xDp ¼ 0 ð6Þ
In other words, the change in parameters must reside within the null space of the

Jacobian matrix. Equivalently, we call this particular null space the isostatic sub-

space, since it contains every perturbation in the parameters that does not affect the

steady-state species abundances. A basis for this subspace can be derived as before.

3. Derive a General Isostatic Perturbation Vector

Every dimension in the isostatic subspace is a degree of freedom through which we

can introduce an isostatic perturbation. A general expression for an isostatic pertur-

bation then is simply the product of a matrix whose columns are the basis vectors of

the isostatic subspace and a vector of basis vector coefficients. Notice how closely this
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step mirrors the derivation for an expression for the vector of variables, above. Once

this multiplication is done, we are left with a general isostatic perturbation vector.

4. Derive a Specific Isostatic Perturbation Vector

Each degree of freedom in the general isostatic perturbation vector may introduce

a perturbation that, in isolation, is of no physiological interest. For example, in the

p53 model, we may be interested in introducing a perturbation that alters the rate of

synthesis and degradation of p53. There is no guarantee that this perturbation exists

as a single vector in our basis for the isostatic subspace. Therefore, the final step is to

identify a specific combination of basis vectors to achieve the desired perturbation.

In Section V, below, all of these steps are illustrated in detail as they are applied to our

simple model of p53 activation.

III. Biological Insights

In this section, we illustrate some of the insights and hypotheses that can be

generated from the steady-state and isostatic subspace of a mass action model. First,

we show that statics and kinetics must cooperate to achieve steady-state. If an expres-

sion for the steady-state is known, then static parameters can be used to calculate the

values for some, but not all, kinetic parameters. The fact that not all kinetic parameters

can be calculated is related to the fact that the dynamic response to perturbation cannot

be uniquely determined from static information alone. Using our simple model for the

activation of the tumor suppressor p53,we show that the kinetics of homeostatic protein

turnover determine the dynamic response of p53 to DNA damage.

A. Explicit Derivation of Kinetic Rate Constants From Static Measurements

A key motivation for the development of py-substitution was to calculate kinetic

rate constants directly from static measurements (Fig. 2). For example, in the p53

[(Fig._2)TD$FIG]

Fig. 2 A comparison of py-substitution versus a traditional parameterization strategy. A traditional

strategy requires numeric values for all four rate constants. Using py-substitution, the steady-state

abundances of p53 and Mdm2 can be given explicitly. In conjunction with the rates of synthesis of p53

andMdm2, the degradation rate constants can be calculated such that steady-state is preserved. (For color

version of this figure, the reader is referred to the web version of this book.)

4. A Framework for Modeling the Relationship Between Cellular Steady-state and Stimulus-responsiveness 91



model, values can be given for the steady-state abundances of p53 and Mdm2. Just

the degradation rates of p53 and Mdm2 are then required to fully parameterize the

model. The rates of synthesis can be calculated explicitly using these four para-

meters and the steady-state expression derived by py-substitution.

By comparison, a traditional parameterization strategy would require that all four

kinetic rate constants be specified. The steady-state abundances of p53 and Mdm2

could then be derived numerically by integrating the model to steady-state, but this

process is comparatively less efficient. Furthermore, the steady-state behavior of

p53 andMdm2 over a range of synthesis and degradation rates is unknowable except

through simulation. If estimates for the steady-state abundances of p53 and Mdm2

exist, then a parameter fitting procedure must be used to infer the optimal values for

the kinetic rate constants. This is an example of a ‘‘backward problem,’’ in that the

‘‘forward problem’’ – calculating the steady-state abundances of p53 and Mdm2

given a set of four kinetic rate constants – must be iteratively solved until an optimal

set of rate constants is identified. If, however, an expression for the steady-state is

known, this backward problem is turned into a forward problem: given the steady-

state abundances for p53 and Mdm2 and their rates of degradation, a simple calcu-

lation gives the rates of synthesis required to support that steady-state.

The significance of this difference is that making kinetic measurements can be a

considerable technical challenge. Typically kinetic parameters must be determined

with purified proteins using in vitro assays (Nutiu et al., 2011; Tanious et al., 2008)

or must be derived from biochemical assays requiring millions of cells

(Schwanh€ausser et al., 2011). By contrast, static measurements are often more

sensitive and can be performed using fixed cells (Itzkovitz and van Oudenaarden,

2011; Jain et al., 2011). As a result, measuring static variables is easier and more

accurate than measuring kinetic ones, and py-substitution allows kinetic rate con-

stants to be derived explicitly from simpler, static measurements.

B. Static Control of the Dynamic Response

Another benefit of py-substitution is that we can systematically evaluate the

relationship between dynamic responsiveness and steady-state abundances. This is

made possible by the fact that py-substitution allows steady-state abundances to be

treated as independent parameters. For example, the dynamic response of p53 to

DNA damage is affected by the steady-state abundance of Mdm2. Because we have

modeled this abundance as an input parameter, it is straightforward to vary it over a

range of values and simulate the p53 response at each value.

In Fig. 3, we let Mdm2 vary from 0.1 to 10 times its nominal wildtype value. As

Mdm2 increases, p53 exhibits a faster and stronger dynamic response. As it

decreases, p53 becomes slower and weaker. This is because the rate of p53 degra-

dation scales with the steady-state abundance of Mdm2. As the latter increases, so

does the former. Since we have not varied the steady-state abundance of p53 but

rather kept it fixed, the rate of p53 synthesis must also scale with the abundance of

Mdm2. In other words, a higher steady-state abundance of Mdm2 results in a higher
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steady-state turnover of p53. The velocity of this turnover partially dictates the

dynamics of the p53 response. Homeostatic turnover will be examined in more

detail in the next subsection.

Interestingly, even though steady-state abundances affect the dynamic response,

they do not uniquely determine it. Put another way, the dynamic response to pertur-

bation is underdetermined with respect to the steady-state abundances. This is

illustrated in Fig. 3, bottom. Here, each panel depicts the median behavior of

1000 simulations of the p53 model. For a given panel, every simulation has the same

steady-state abundance of Mdm2 and p53. The rates of homeostatic turnover of

Mdm2 and p53, however, are allowed to take a uniform random value between 0.1

and 10 times their nominalwildtype value.We say that these simulations are isostatic

but anisokinetic – their steady-state abundances are identical but their kinetic rate

constants are not. This variability in the kinetics causes variability in the dynamics,

but is entirely opaque with respect to the steady-state abundances.

C. Kinetic Control of the Dynamic Response

As Fig. 3 shows, isostatic systems can exhibit significant variability in their

response to perturbation. This is a consequence of the fact that the steady-state of
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Fig. 3 The effect of the steady-state abundance of Mdm2 on the dynamic response of p53 to stimulation. At top, the steady-

state abundance of Mdm2 is varied from 0.1 (light gray) to 10 (dark gray). The result of this variation on the time and amplitude

of the p53 response are shown as bar graphs on the right. At bottom,Mdm2 is again varied from 0.1 to 10. Each of the five panels

represents a distinct but constant abundance of Mdm2. The abundance of p53 is always 1. The rates of p53 and Mdm2 synthesis

and degradation are then allowed to take a random value from a uniform distribution over 0.1 to 10 times their nominal wildtype

values. The p53 response to perturbation is simulated for 1000 samples in each panel and the median dynamics plotted. (For

color version of this figure, the reader is referred to the web version of this book.)
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a mass action model is degenerate with respect to its kinetics; an infinite number of

kinetic rate constants can support the same set of steady-state abundances. We call a

change in kinetic rate constants that does not affect any steady-state abundances an

isostatic perturbation to the parameters, or an isostatic perturbation for short.

Special cases of isostatic perturbations are those that simultaneously alter the

homeostatic rates of synthesis and degradation – or flux – of a particular species.

Above we saw that changing the steady-state abundance of Mdm2 altered the flux of

p53 and thereby its dynamic responsiveness. However, we can alter the flux of p53

without altering the steady-state abundance ofMdm2 aswell. This is shown in Fig. 4.

Similar to the subsection above, increasing the flux of p53 results in a faster, stronger

response. Decreasing the p53 flux results in a slower, weaker response, and to a

greater degree than observed when changing Mdm2 alone.

In addition to p53, we can alter the homeostatic flux of the negative regulator,

Mdm2. This is shown in Fig. 4, bottom. In contrast to p53, increasing the flux of

Mdm2 results in a faster but weaker p53 response. This result highlights the fact that

while the homeostatic flux of a species within a biochemical reaction or gene

regulatory network can affect the dynamic response to perturbation, the precise

nature of the effect depends on the function of that species within the network.

D. Precise Control of the Dynamic Response by Homeostatic Flux

The distinct effects of homeostatic p53 versus Mdm2 flux on the dynamic

response of p53 raise the possibility that these fluxes can be used to precisely control

the shape of the p53 trajectory. Using the time and amplitude of the peak of the p53

trajectory as descriptors of the shape, we can look for isostatic perturbations that

[(Fig._4)TD$FIG]

Fig. 4 The effect of p53 andMdm2 flux on the dynamic response of p53 to stimulation. At top, the flux of p53 is varied from

0.1 (light gray) to 10 (dark gray) times its nominal wildtype value. At bottom, the flux of Mdm2 is varied from 0.1 (light gray) to

10 (dark gray) times its wildtype vale. The effects of each on the time and amplitude of the p53 response are shown as bar graphs

on the right. (For color version of this figure, the reader is referred to the web version of this book.)
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affect the flux of both p53 andMdm2 such that the peak time is altered independently

of the amplitude, or the amplitude independently of the time.

In Fig. 5, we see that this is indeed possible. In fact, in Fig. 4 we can see that the p53

and Mdm2 fluxes have an equal but opposite effect on the peak amplitude. This

suggests that an isostatic perturbation that pairs an increase in one flux with an equal

but opposite decrease in the other will preserve the amplitude of p53. This is shown to

be the case in Fig. 5 top. Since this same phenomenon is notmanifested in the p53 peak

time, it is less straightforward to derive the desired isostatic perturbation. However,

given a particular change inMdm2 flux, we can indeed find a change in p53 flux such

that the p53 peak time is preserved (Fig. 5, bottom). Together, these results demon-

strate that the dynamic response of p53 can be precisely controlled by homeostatic

flux, independently of the steady-state abundances of either p53 or Mdm2.

IV. Open Challenges

Because the assumptions of spatial homogeneity and high concentrations remain

prevalent in the systems biology and modeling literature, we believe there is ample

opportunity to use py-substitution to generate novel hypotheses about the impact of

steady-state on stimulus responsiveness. Nevertheless, even within a mass action

framework there are limitations to the method as described here. Chief among these

is that of model size. Deriving symbolic bases for the solution space to the steady-

state equation and isostatic subspace of a large model can yield elements with

[(Fig._5)TD$FIG]

Fig. 5 Precise tuning of the dynamic response of p53 to stimulation by homeostatic flux. At top, the flux of p53 is varied from

0.1 (light gray) to 10 (dark gray) times its nominal wildtype value, while the flux of Mdm2 is varied from 10 (light gray) to 0.1

(times its wildtype value). The result of this modulation is that amplitude of the p53 response is held constant. At bottom, the flux

of Mdm2 is varied from 0.1 (light gray) to 10 (dark gray) times its wildtype value. A modification to the flux of p53 is then

derived numerically such that the time of the p53 response is held constant. (For color version of this figure, the reader is referred

to the web version of this book.)
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hundreds and sometimes thousands of terms. An attractive solution to this problem

would be a priori identification of network modules (Bowsher, 2011; Hartwell et al.,

1999). In the ideal case, this would result in block diagonal coefficient and Jacobian

matrices. Since each block can be treated independently, the algebraic complexity of

the resultant basis vectors would be much more manageable. Identifying modules

would also offer the benefit of allowing some species to be in disequilibrium, as the

case might be when a signaling network experiencing ambient, tonic signaling is

coupled to a periodic oscillator such as the cell cycle.

For systems in which the assumptions for mass action are not supported, somework

will have to be done to extend the py-substitution framework. For spatially heteroge-

neous systems, the mass balance equations include a diffusion term in addition to the

standard mass action rate equations. It remains to be shown whether such a system of

equations can be linearized in the samemanner as described here. If indeed it can, this

could lead to new insights regarding the interplay between reaction kinetics and

diffusivity in establishing spatial gradients and responding to spatially heterogeneous

signals.When the assumption of high concentrations is violated and a system loses its

deterministic behavior, the inference of kinetic parameters from steady-state concen-

trations or dynamic response measurements becomes a probabilistic one. Additional

work will be done to extend py-substitution to these stochastic systems.

More generally, the class of models that can be addressed using py-substitution

remains to be determined. Are their structural motifs within a BRN that are partic-

ularly challenging to linearize? Can more exotic reaction rate equations be enter-

tained, notably Michaelis–Menten kinetics and Hill functions? Precisely defining

the domain of py-substitution will not only guide its further development, but

perhaps also dissuade the use of exotic reaction kinetics to achieve a certain dynam-

ical behavior, at the expense of a knowable steady-state.

V. Computational Methods

In this section, we give step-by-step instructions for identifying the steady-state of

the p53 model. Although the size of this model makes it unnecessary to employ the

rigorous treatment described here, that the results can be reproduced by hand makes

the steps tractable and easy to follow. For information on how the method scales to

larger models, see Loriaux et al., 2012. Once we identify a solution to the steady-

state of the p53 model, we show how to derive a basis for its isostatic subspace.

Finally, from the isostatic subspace we show how to derive specific isostatic pertur-

bation vectors for modifying the homeostatic flux of p53 and Mdm2.

All of the steps below are performed using Matlab. As noted earlier, Matlab is not

the best choice of software for symbolic calculations, but because it enjoys the most

familiarity, we use it here for clarity. In the passages that follow, commands are

identified by a double arrow prompt while output from the Matlab terminal is

identified by a boldface font. Finally, it should be noted that the following code is

in noway optimal; a more efficient implementation would make use of matrices, but

again this efficiency comes at the expense of clarity.
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A. Identifying an Expression for the Steady-state of a Mass Action Model

The p53 model consists of two species and four reactions. These must all be

declared as symbolic variables using the syms keyword. Following convention, we

use x to denote species, v for reaction velocities, and k for reaction rate constants.

The real keyword identifies these variables as being real-valued. The semi-colon

suppresses Matlab output.

By mass balance, we let the rate of change of each species be equal to the sum of

reaction velocities in which that species is produced minus the sum of reaction

velocities in which it is consumed. This yields the following.

Assuming mass action, we let the velocity of each reaction be equal to the product of

its reactants and the corresponding rate constant.

Substituting in the reaction velocities yields a system of mass balance equations

expressed in terms of species and rate constants.

4. A Framework for Modeling the Relationship Between Cellular Steady-state and Stimulus-responsiveness 97



Wemust now linearize the system by imposing a py-substitution strategy. Even for

a model of this size, several strategies exist. Here we’ll implement a strategy that

assumes we have accurate measurements for the abundances of p53 and Mdm2 and

the rate of p53 synthesis. The degradation rate constants and rate ofMdm2 synthesis

will be left variable. Note that substituting for the rate of p53 synthesis requires the

use of a pseudospecies, x3, which we introduce now.

As before, we must declare all symbolic parameters and variables prior to substitu-

tion. Once a strategy is defined, we can use the same subs command to generate the

py-substituted mass balance equations.

As expected, py-substitution results in a linear system of mass balance equations. As

such, we can express it as the product between a coefficient matrix of parameters and a

vector of variables. To derive the coefficientmatrix, we use thejacobian command.
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Nowwe’d like to find all vectors that, when left-multiplied by the coefficient matrix,

equal zero. In other words, the vector must be in the null space of the coefficient

matrix. To ensure this is true, we need to find a basis for the null space. This can be

done using the null command. We’ll store the results of this operation in a second

matrix, N.

We now let the vector of variables equal any linear combination of column vectors

in N. Because N has two columns, we’ll need two additional parameters, q1 and q2.
These will be the coefficients of the null space basis vectors.

Next, we must resolve the pseudospecies such that its value is one. Since y1 is the

variable that corresponds to the pseudospecies x3, this means we must find a value
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for q1 such that y1=1. Also note that the coefficient q2maps to y4. This indicates
that the rate constant k4must in fact be a parameter. Here wewill assume that this is

not desirable, and that we would prefer to let the rate of Mdm2 synthesis be a

parameter instead. To do this, we scale the second null space vector N(:,2) by a

factor a2 such that N(2,:)*[q1;a2*q2]=q2.

The final expression for the vector of variables is as follows.

To be prudent, we verify that this vector is in the null space of the coefficient matrix.
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Finally, wemaywish to revert the substitution so that our steady-state expression is in

terms of species and rate constants. Notice that the linear combination [q1;q2]
effectively identifiesvariables that,because thecoefficientmatrixwasunderdetermined,

turn out to be parameters. These variables map one-to-one with null space basis vector

coefficients. Thus in our steady-state expression for y, to the left hand side we simply

reverse the substitution from py back to kx. To the right hand sidewe first perform the

one-to-one substitution from q to y, then the reverse substitution from py to kx.

The result of the inverse substitution is a relationship between dependent and

independent species and rate constants that, if satisfied, guarantees steady-state.

Note that this relationship is particular to our choice of py-substitution strategies

and null space basis vector coefficients. As illustrated above, by scaling the appropri-

ate basis vector, wewere able to choosewhich variables remain dependent. Finally, it is

worth verifying that our solution for y does indeed guarantee steady-state.

B. Identifying the Isostatic Subspace of a Mass Action Model

AsillustratedinFigs.2–4,therearemanyadvantagestohavingananalyticalexpression

forthesteady-stateofamassactionmodel:(a)staticmeasurementsofspeciesabundances

canbeusedtocalculatekineticrateconstants, (b) thetotalnumberofparameters required

is often reduced (Loriaux et al., 2012), and perhaps most importantly, (c) we can char-

acterize the relationshipbetweendynamic responsiveness and theabundancesof species

at steady-state. However, as seen in Fig. 3, steady-state abundances do not uniquely

determine the dynamic response; the kinetics of the system are also important.
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To study the effects of kinetics on dynamic responsiveness in isolation, we would

like to identify any and all changes that can be made to the kinetic rate constants that

do not alter the steady-state species abundances. The set of all such changes is called

the isostatic subspace. To identify this subspace, it is first easier to return to the

parametric description of the steady-state. At this point, we’ll also replace the null

space basis vector coefficient q2 with the parameter, p4.

As expected, every element in our model is a function of the four parameters

used in the py-substitution strategy. Now recall that a Taylor expansion can be

used to approximate how these elements change in response to changes in

parameters. The first order term of this expansion requires a matrix of partial

derivatives of each element with respect to each parameter. This matrix is also

called the Jacobian matrix, and can be calculated in Matlab using the jaco-
bian command.
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In the Jacobian Jx, the rows correspond to steady-state species abundances

and the columns to parameters. Element Jx(1,1)=1 indicates that a change in

parameter p1 results in an equal change in species x1. This of course is not

surprising since our py-substitution strategy had that x1=p1. It is also not

surprising that Jx(1,2)=Jx(1,3)=Jx(1,4)=0; the species x1 doesn’t depend

on any other parameter. The second row of Jx has a similar structure; the species x2
depends only on the parameter p2. This Jacobian matrix is extraordinarily simple

because both steady species abundances were modeled as independent parameters. In

general, there will be species whose steady-state abundances are variable expressions

of the parameters, and this significantly complicates the Jacobian.

It now remains to identify the set of all vectors that, when left multiplied by Jx,
result in zero. By our Taylor expansion, any such vector identifies a change in

parameters that results in no changes to the species abundances. By the same

argument as above, any such vector must be in the null space of the Jacobian, and

as before, a basis for this null space is found using the null command.

In this matrix, each row corresponds to a parameter and every column to a degree of

freedomin thenull space.That the first two rowsare comprisedentirelyof zeros indicates

that we can alter neither p1 nor p2without altering at least one steady-state abundance.

Again, this is not surprising sincex1=p1 andx2=p2. The bottom two rows indicate that

wecanaltereitherp3orp4 independentlyofoneanother.Thistooisnotsurprising;neither
p3 nor p4 appear in the steady-state expressions for x1 and x2. As with the Jacobian
matrix, the null space basis will typically have amore complicated expression.

To derive a general expression for the isostatic subspace of our p53model, we take

a linear combination of the null space basis vectors. The null space is two-dimen-

sional so two coefficients are required, q1 and q2. And because we already used

these variables in the previous subsection, we’ll clear them prior to using them again.
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The vector isox states simply that wemaymake any change to the parameters p3
and p4without altering the steady-state abundances x1 and x2. To verify that this is
true, wemap the parameter perturbationisox into a species abundance perturbation

delx using the Jacobian, Jx. As expected, the parameter perturbation resides in the

null space of the Jacobian, indicating that the perturbation causes no change in

species abundances.

How does the general isostatic perturbation isox affect the rate constants of our

model? And how do we identify a specific perturbation such that only certain rate

constants are altered? To calculate the effect of the general perturbation isox on the

set of rate constants we use the same procedure as above, but using the Jacobian

matrix of rate constants with respect to the parameters instead of species

abundances.
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As we saw with Jx, the first two rows indicate that changes to p3 and p4 result in

equivalent changes to k1 and k2, respectively. This simply reflects the fact that

k1=p3 and k2=p4, and that our py-substitution strategy was designed to make the

rates of synthesis of p53 and Mdm2 independent parameters. The degradation rate

constants k3 and k4 are variable and constrained by steady-state, and are thus each

sensitive to changes in three out of four parameters. The product of Jx and isox
maps this perturbation into a change in rate constants.

As we observed in the Jacobian, a change q1 in parameter p3 results in an

equivalent change in the rate constant k1. A change q2 in parameter p4 results

in an equivalent change in k2. The resultant changes in the degradation rate con-

stants, however, are scaled by the species abundancesp1 and p2.We can calculate the

vector of rate constants that results from the perturbation isox by executing the first

sum in the Taylor expansion.

Finally, what if we are interested in not just any isostatic perturbation but a specific

one? In Fig. 5, we saw that the homeostatic flux of p53 and Mdm2 can precisely

control the dynamic response of p53 to DNA damage. Altering the homeostatic flux

is just a special case of the general perturbation isox. We need only find values for

q1 and q2 such that the rate constants k1 and k3 and k2 and k4 take on values
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theta1 and theta2 times their nominal wildtype values, respectively. To do this,

we first declare the symbolic variables theta1 and theta2. We then express our

desired outcome as a system of equations. Specifically, letting k1prime and

k2prime be the altered values of k1 and k2, the ratio of the k1 prime to k1 should

be theta1, and the ratio of k2 prime to k2 should be theta2. Once expressed as
such, we can solve for the requisite values of q1 and q2.

Substituting these values into the general isostatic perturbation isox results in the

desired, specific isostatic perturbation that scales the homeostatic flux of p53 and

Mdm2.

Finally, it remains to verify that this perturbation results in the desired change.

Again this is done by executing the first sum in the Taylor expansion.
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In summary, from the parametric expression for the steady-state of our model, we

have identified a specific isostatic perturbation that alters the homeostatic flux of

either or both p53 and Mdm2 to the user-specified parameters theta1 and

theta2, respectively.

VI. Further Reading

Another method for deriving expressions for the steady-states of mass action

models was introduced by King and Altman in 1956 (King and Altman, 1956). This

graphical method was greatly improved upon in Volkenstein and Goldstein (1966)

and again in Thomson and Gunawardena (2009), and enjoys a robust and sophisti-

cated implementation in Matlab (Qi et al., 2009).

The application of linear algebra to dynamical networks has a similarly rich

history, especially as it pertains to flux balance analysis (Gianchandani et al.,

2010) and systems biology (Palsson, 2006). For a deeper understanding of the

relevant concepts in linear algebra, see Poole (2010) and Cooperstein (2010).

Evaluating the effects of perturbations on network dynamics and steady-state has

long been the subject of metabolic control analysis, or MCA (Heinrich and

Rapoport, 1974; Fell, 2005). Succinctly, MCA can be used to quantify the steady-

state change in a reaction velocity or species concentration due to a change in an

independent parameter. Recently this framework was extended to dynamical states
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aswell (Ingalls and Sauro, 2003). For an excellent reviewof quantitativemodeling of

network dynamics, see Sauro (2009).
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Abstract

Noise and stochasticity are fundamental to biology because they derive from the

nature of biochemical reactions. Thermal motions of molecules translate into random-

ness in the sequence and timing of reactions, which leads to cell–cell variability

(‘‘noise’’) in mRNA and protein levels even in clonal populations of genetically
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identical cells. This is a quantitative phenotype that has important functional repercus-

sions, including persistence in bacterial subpopulations challenged with antibiotics,

and variability in the response of cancer cells to drugs. In this chapter, we present the

modeling of such stochastic cellular behaviors using the formalism of jump Markov

processes, whose probability distributions evolve according to the chemical master

equation (CME). We also discuss the techniques used to solve the CME. These include

kineticMonte Carlo simulations techniques such as the stochastic simulation algorithm

(SSA) and method closure techniques such as the linear noise approximation (LNA).

I. Introduction

Cells are microscopic reactors where multitudes of chemical reactions occur.

Biochemical reactions are probabilistic collisions between randomly moving mole-

cules, with each event resulting in the increment or decrement of molecular species by

integer amounts (Hasty and Collins, 2002; McAdams and Arkin, 1999; Rao et al.,

2002; Raser andO’Shea, 2005).Asmany crucial biological species including RNAand

DNA are present in small quantities (ones or tens) per cell, these stochastic events can

havemeasurable effects. The amplified effect of fluctuations in amolecular reactant, or

the compounded of fluctuations across many molecular reactants, referred to as

‘‘molecular noise,’’ often can accumulate as an observable phenotype, endowing the

cellwith individuality and generating nongenetic cell-to-cell variability in a population.

Observations of such nongenetic variation date back to the 1940s when it was

determined that bacterial cultures were not completely killed by antibiotic treat-

ment—a small fraction of cells ‘‘persist’’ (Bigger, 1944). The insensitivity to anti-

biotics exhibited by these persister cells was nonheritable (Moyed and Broderick,

1986), and persister cells spontaneously switched back to the nonpersistent state,

regaining sensitivity to antibiotics. The advent of optical measurement methods,

which monitor fluorescent reporter expression in single cells using flow cytometry

or fluorescence microscopy, further illustrated that isogenic populations of cells can

show great variability or ‘‘noise’’ in their gene expression (Cai et al., 2006; Thattai

and van Oudenaarden, 2001). By measuring the fluorescence intensity of single

cells, probability distributions representing variability in a process across a popula-

tion of cells can be constructed (Fig. 1). A broad distribution indicates a large

dispersion of expression levels across the population. Recently, genome scale assays

of variability in gene expression revealed that specific types of genes—those

involved in energy metabolism and stress response—showed heightened variability

(Bar-Even et al., 2006; Newman et al., 2006b). These data were used to lend support

to the hypothesis that variability in protein content among cells might be a regulated

trait that confers a selective advantage through a ‘‘bet-hedging’’strategy with respect

to future environmental shifts (Avery et al., 2007; Blake et al., 2006). Such

stochastic fate specification has also been postulated in other contexts. For exam-

ple, each cell in the mouse olfactory bulb must select only one olfactory receptor

to express, and is thought to implement this decision by stocastically selecting to

express a gene which then mediates global repression of the other �1300
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receptors (Serizawa et al., 2003). A similar model exists in two precursor cells in

Caenorhabditis elegans, called Z1.ppp and Z4.aaa. In 50% of embryos, Z1.ppp

differentiates into the AC cell, whereas Z4.aaa adopts the VU cell fate. In the other

50% of embryos, the opposite occurs. Through a random process, one cell adopts

the VU cell fate, and then inhibits that choice in the other through a Notch

signaling mechanism (Karp and Greenwald, 2003).

Variability, however, is not always beneficial. In the cell cycle for example,

numerous feedback loops exist to ensure a tightly regulated and orderly transition

through DNA replication and cell division (Tsai et al., 2008). Similarly, in the

Drosophila embryos, variability in the pattern of the bicoid protein results in

[(Fig._1)TD$FIG]

Fig. 1 Biochemical noise. (a) Distribution of a cellular component A for large cell–cell variability

(blue, noisy) and small cell-to-cell variability (red). (b) Fluctuations of A as a function of time in one cell.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this book.)
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undesirable developmental alterations, and studies suggest that the system is poised

at the fundamental limit of the precision it can achieve (Gregor et al., 2007a, b). In all

these cases, understanding the roots and consequences of variability in the cell

through careful measurements and quantitative modeling was of paramount impor-

tance for understanding the functioning of the underlying biological networks.

II. The Need for a Stochastic Modeling Framework

Most often than not, mathematical models represent the dynamic operation of

cellular networks as deterministic processes with continuous variables. This contin-

uous and deterministic approach may be warranted when large numbers of mole-

cules justify a continuous valued concentration description. This is, for example, the

case in metabolic networks where the concentration of reactants is in the millimolar

range. There, chemical reactions can bemodeled as reaction diffusion processes, and

their dynamics described by partial differential equations (PDEs).When the reacting

chemical solutions are well-mixed, these PDEs can then be well approximated with

ordinary differential equations (ODEs).

There are many situations where this continuous deterministic modeling fails and

stochastic models are necessary to capture biologically relevant properties of the

systems under study. One such scenario is onewhere continuousmodels fail to describe

quantitatively the behavior of a system because key regulatory molecules are found in

very small integer populations. For example, the Lac operon in Escherichia coli is

regulated by lactose binding to the repressorLacI,which needs to be inactivated to allow

for transcription of the operon. In this system, the key regulatory event in sensing lactose

is the stochastic expression of a very small number of copies of the lactose permease

lacY. As a result, the switching rate ofE. coli to a lactosemetabolizing state is governed

by small number fluctuations of lacY (Choi et al., 2008), necessitating a discrete

stochastic model of the chemical species involved in this regulation.

A second situation where stochastic models are needed arises when fluctuations

induce dynamical behaviors, which cannot be captured even qualitatively using

deterministic models. For example, stochastic fluctuations in excitable systems

cause them to undergo large excursions away from their equilibrium point. Such

excitable behavior occurs in the prokaryote Bacillus subtilis when it transitions

between low- and high-‘‘competence’’states that have differential abilities to absorb

DNA from their environments. Periods of high competence occur stochastically

when the master regulators comK and comS exceed a certain concentration. After

an individual cell has passed the threshold, strong positive feedback loops drive the

cell toward competence, followed by a slower negative feedback loop, which

switches the system off after a defined period (Suel et al., 2006, 2009). These

dynamics occur nonsynchonously in a small population of cells, and therefore

cannot be recapitulated using a deterministic mode, which, in this instance, can only

settle into its only stable equilibrium. In contrast, accounting quantitatively for

stochastic variation in protein concentrations is needed to reproduce this behavior.
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III. Overview of Computational Approach

A quantitative modeling framework that takes into account the inherent stochas-

ticity of biochemical interactions occurring inside a cell should handle discrete

systems, should be adaptable to many different problems, and should be computa-

tionally tractable. Awidely used such approach that we review in this chapter is one

developed to address the chemical kinetics of well-mixed homogeneous systems. In

this approach the cell is treated as a well-mixed bag of chemical species (Gillespie,

1977; Mcquarri, 1967). A model then probabilistically describes the chemical inter-

actions of a subset of these species as a Markov (memoryless) jump process. After

such a model is initiated from a defined state (in terms of the number of molecules of

different species), reactions are allowed to occur between the chemical species.

These reactions are represented by state transitions in a Markov chain, and transi-

tions occur in discrete steps after a random time period, with the change and the time

both depending only on the previous state. In this way, the transitions model the

change in the number of each type of biological molecule in accordance with the

stoichiometry of the chemical reaction (Fig. 2).

[(Fig._2)TD$FIG]

Fig. 2 Markov chain model for chemical kinetics. The states of the Markov chain are defined by the

numbers of biological molecules of each chemical species, labeled X1, X2,. . ., XN. Transitions between

these states model the individual chemical reactions which may occur in the system. The transition

corresponding to the chemical reaction of type k is labeled by Rk. (For color version of this figure, the

reader is referred to the web version of this book.)
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The chemical master equation (CME) is a differential equation that governs the

time evolution of the probability for observing the Markov chain in a given state at a

given time. The CME is generally derived using the Markov property, by writing the

Chapman–Kolmogorov equation, an identity that must be obeyed by the transition

probability of any Markov process (Gillespie, 1992; Mcquarri, 1967). Although the

CME is straightforward to write, it cannot be analytically solved for any but the

simplest problems. Therefore, numerical simulations on a computer are the key tool

used for understanding the behavior of a system described by a CME. Monte Carlo

simulation techniques are routinely used. Specifically, in this context, an algorithm

known as the stochastic simulation algorithm (SSA, but more commonly known as

the Gillespie algorithm) is used to generate exact realizations (or ‘‘runs’’) of the

Markov jump process (Gillespie, 1977). The algorithm generates time course tra-

jectories of the system states over a given time window, starting from a given initial

system state. Each such run is ‘‘exact’’ in the sense that it is an independent

realization from the true underlying process. However, each realization is also

stochastic and is therefore different for each simulation run. A construction of the

probability distributions of the underlying stochastic processes can then be done by

executing and compiling a sufficient number of such runs.

IV. Biological Insights from Computational Approaches

Cell-to-cell variability (molecular noise) is ubiquitous in the cellular world where

typical transcription factors can exist in as a few as 10 copies per cell and bind to

promoters of individual genes, which produce bursts of a fewmRNAs. Although the

functional repercussions of this variability were observed in bacterial persistence as

early as 1944 (Bigger, 1944), it is only recently that this aspect of cellular physiology

has captured the imagination of both theorists and biologists. As a result, the last few

decades have witnessed many discoveries about how cells and organisms attenuate

or exploit their molecular fluctuations, and what implications these bear on cellular

phenotypes. Computational methods based on the formalism presented in this chap-

ter continue to play a central role in these investigations.

Cellular decision making has been one area where stochastic models have

made a crucial contribution. One of the earlier landmark works to apply the

Gillespie algorithm (Gillespie, 1977) for modeling a natural gene network

included a comprehensive model of the Lambda switch (McAdams et al.,

1998). This seminal work described how the Lamba phage balanced lytic and

lysogenic outcomes of bacterial infection and illustrated how stochastic molec-

ular events, originating from the random movement of molecules, can trigger

decisions on a much larger scale leading to divergent cellular fates. A flurry

of subsequent work used the same approach to investigate stochastic cellular

switching and decision making in a number of biological contexts. For example,

theoretical work illustrated that a population of cells capable of random phenotypic

switching can have an advantage in a fluctuating environment (Kussell et al., 2005;

Thattai and van Oudenaarden, 2001; Wolf et al., 2005). Some of these predictions
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have subsequently been confirmed, showing that noise can aid survival in severe stress

(Blake et al., 2006) and can optimize the efficiency of resource uptake during

starvation (Suel et al., 2009) and survival in fluctuating environments

(van Oudenaarden et al., 2008).

In addition to their role in unraveling the functional repercussions of molecular

noise, computational methods that capture biological fluctuations have been instru-

mental in pinpointing their origins and the cellular mechanisms that modulate them.

Stochasticity in gene expression received special attention. There, the synergy

between quantitative measurements at the single cell or single molecule level and

appropriate quantitative models deepened our understanding of the processes involved

in transcription and translation and yielded some unexpected observations (Cai et al.,

2006; Chubb et al., 2006; Cluzel et al., 2005; Golding et al., 2005; Raj et al., 2006; Yu

et al., 2006). For example, it was demonstrated that transcription of genes in E. coli is

not as simple as RNA polymerases transcribing with a constant flux. Instead, the

process is highly variable and proceeds in bursts rather than continuously. The origin

of this behavior is still unknown, although possible candidates include global fluctua-

tions of chromosome supercoiling states and RNA polymerase availability. A discrete

stochastic framework accounting for all possible promoter states was also necessary to

interpret experimental measurements of stochastic expression from eukaryotic pro-

moters (Murphy et al., 2007). Quantitative computational approaches of the type we

discuss in this chapter and high-resolution measurement technologies are poised to

further reveal the workings of these fundamental cellular processes.

Synthetic biology is a nascent branch of biological investigation where accurate

predictivemodeling is of crucial importance. The aim of synthetic biology is to bring

together ideas from biology and engineering to design and build biological networks

that can achieve novel functions inside cells. It is now appreciated that the robust

operation of synthetic cellular networks requires an understanding of molecular

fluctuations, and that this understanding stems from rigorous probing of their sto-

chastic dynamics. Analysis of stochastic models of the type we will tackle in this

chapter has, for example, enabled the design and construction of synthetic oscillators

that are robust to expected cellular variability (Tigges et al., 2009).

V. Computational Methods

A. A Simple Example

In a simple model of transcription, a gene is transcribed to generate a mRNA at a

constant rate k, and each mRNA molecule is independently degraded at a rate g. The
mRNA copy number is then a random variableM(t), which can assume positive integer

values m. These interactions can be written using chemical reaction notation as:

Ø!k M

M !gm Ø
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From a deterministic perspective, the mean mRNA copy number per cell across a

population can be described with the differential equation:

dM

dt
¼ k � gM

At steady state, dM/dt = 0 and hence the mean mRNA copy number is then

given by:

Mss ¼ k=g

This result gives the mean mRNA per cell as a ratio of synthesis and decay

rates. Note that this mean value does not necessarily represent the number of

mRNA in any given cell. It is just the average expected value of mRNA at steady

state across the population.

In a stochastic context, we are concerned with finding the distribution of mRNA

numbers across a population of cells. That is, we want to document the number

of mRNA molecules in individual cells, and use this information to determine how

many cells in a population are expected to contain a given number of mRNA

molecules. To do this, we begin by writing an equation governing the time evolution

of p(m, t), the probability thatM(t) = m.We can start with p(m, t + dt), the probability

that the system achieves m mRNA molecules at time t + dt. This probability is

intuitively computed by enumerating the number of scenarios through which this

outcome could be achieved. For example, the system could achieve m molecules at

time t + dt if it had m � 1 molecules at time t, and then one molecule is transcribed

during time interval dt. This probability is simply given by P(m � 1, t)kdt. Similarly,

the probability that the system has m + 1 molecules and loses one by degradation in

time dt is given by P(m + 1, t) (m + 1)gdt, whereas the probability of the system to

have exactly m mRNA molecules at time t and not lose or gain any additional

molecules in the time interval dt is given by P(m, t)(1�kdt)(1�mgdt). As a result,

P(m, t + dt) can be written as:

Pðm; t þ dtÞ ¼ Pðm� 1; tÞkdt þ Pðmþ 1; tÞðmþ 1Þgdt þ Pðm; tÞ
ð1� kdtÞð1� mgdtÞ ð1Þ

Multiplying out and rearranging terms in Eq. (1), we get:

Pðm; t þ dtÞ � Pðm; tÞ ¼ Pðm� 1; tÞkdt þ Pðmþ 1; tÞðmþ 1Þgdt
�Pðm; tÞðK þ mgÞdt þ ’ðdt2Þ ð2Þ

Dividing Eq. (2) by dt and taking the limit as dt ! 0, we get:

d

dt
Pðm; tÞ ¼ kPðm� 1; tÞ þ ðmþ 1ÞgPðmþ 1; tÞdt � ðK þ mgÞPðm; tÞdt ð3Þ

Eq. (3) is known as the CME. Although the derivation of the CME was illustrated

for this specific example, similar derivations can be done for any biomolecular

network described by a system of chemical reactions. Below, we provide a general

formulation of the CME.
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B. The General Formulation for Building Discrete Stochastic Models for
Biomolecular Networks Using the Chemical Master Equation

In this section we describe the discrete state, continuous time Markov process

model for well-stirred chemical reaction systems. First, we consider a system of

chemical reactions with N molecular species (S1, S2, .., SN) occurring in a volume

V. We make two key assumptions. The first is that the system is well-mixed, that

is the probability of finding any molecule in the volume V is given by dV/V. In

many biological systems this is a reasonable assumption. For example, the length

of a bacterial cell is around 1 mm and the diffusion coefficient of a protein in vivo

has been measured to be on the order of 10 mm/s. Therefore, complete mixing of

the bacterial cytosolic protein pool can possibly occur on the milisecond to

second time scale (Konopka et al., 2006). However, the diffusion constant of

many proteins moving in 2D on membranes may be much less than the area over

which reactions occur, causing local depletion or enrichment of chemical species

that renders the well-mixed assumption invalid (Vrljic et al., 2002). The second

assumption we make is that the system is at thermal equilibrium. As a result, the

velocity v of a molecule moving due to thermal energy is given by the Boltzman

distribution:

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

2pkBT

r
e�ðm=2kBTÞv2

where T is the constant system temperature. We use the state X ðtÞ 2 ZN
þ to denote

the vector whose elements Xi(t) are the number of molecules of the ith species at

time t. If there areM elementary chemical reactions that can occur among these N

species, then we associate with each reaction rj (j = 1, . . .M) a nonnegative

propensity function aj defined such that aj(X(t))t + o(t2) is the probability that

reaction rj will happen in the next small time interval (t, t + t) as t ! 0. The

polynomial form of the propensities aj(x) may be derived from fundamental

physical principles under certain assumptions (Gillespie, 1977). If rj is the

unimolecular reaction S1 ! product, then a quantum mechanical argument dic-

tates the existence of some constant cj such that cjdt gives the probability that any

particular S1 molecule will transform into product in the next infinitesimal time

dt. If there are currently n1 such S1 molecules in the system, then the probability

that one of them will undergo the reaction in the next dt is n1cjdt. Therefore, the

propensity function of this unimolecular reaction is aj = n1cj. By contrast, if rj is

a bimolecular reaction of the form S1 + S2 ! product, then kinetic arguments

can be used to assert the presence of a constant cj such that cjdt is the probability

that a randomly chosen pair of molecules S1 and S2 will react in the next

infinitesimal time interval dt. Therefore, if n1 molecules of S1 and n2 molecules

of S2 exist in volume V, then a reaction rj will occur in the next dt with a

probability ajdt = n1n2cjdt (aj is again called the propensity function of this

reaction). Propensity functions for different types of reactions are summarized

in Table I.
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The occurrence of a reaction rj leads to a stoichiometric change of #j for the stateX

of the reactants involved. #j is therefore a stoichiometric vector that reflects the

integer change in reactant species due to a reaction rj.

It is useful to define these quantities:

Probability that reaction rj fires one in [t, t + dt] = aj(x)dt + O(dt2)

Probability that no reaction in the system fires in ½t; t þ dt� ¼
1�PM

j¼1

ajðxÞdt þ Oðdt2Þ
Probability that more than one reaction fires in [t, t + dt] = O(dt2)

As in the simple example above, the CME for this system can be written by

inspection using these quantities. Specifically, the probability of achieving state

X = x at time t + dt, p(x, t + dt), is the sum of the following terms:

pðx; t þ dtÞ ¼ pðx; tÞ 1�
XM
j¼1

ajðxÞdt þ Oðdt2Þ
" #

þ
XM
j¼1

½pðx� #j; tÞajðx� #jÞdt

þOðdt2Þ� þ Oðdt2Þ ð4Þ
The first term in Eq. (4) is simply the probability that the system was already in

state x in terms of the number of its molecules for different species, and remained in

that state with no reactions occurring during dt. The second term is the probability

that the systemwas a#j step away from state x, and thenwas brought into that state by

the occurrence of a reaction. Obviously, one has to account for all the reactions that

can drive the system into that state, hence the summation.

Rearranging Eq. (4) we obtain:

pðx; t þ dtÞ � pðx; tÞ ¼ �pðx; tÞ
XM
j¼1

ajðxÞdt þ
XM
j¼1

½pðx� #j; tÞajðx� #jÞdt�

þOðdt2Þ ð5Þ
Dividing Eq. (5) by dt and taking the limit as dt ! 0 gives the differential form

dPðx; tÞ
dt

¼
XM
j¼1

ajðx� #jÞPðx� #jÞ � ajðxÞPðx; tÞ ð6Þ

Table I
Stochastic Reaction Propensities

Reaction Propensity aj(x)

Ø!cj product cj

Si !cj product cjni

Si þ Sj !cj product cjninj

Si þ Si !cj product cj
niðni�1Þ

2
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Eq. (6) is the CME for a general set of chemically reacting species in a constant,

well-stirred volume.

C. Stationary Solutions of the CME

The stationary (steady state) distribution of the CME is solved for by setting

dP(x, t)/dt = 0. For the simple model of transcription described by the CME in

Eq. (3), this translates to: kp(m � 1) + (m + 1)gp(m + 1) = (K + mg)p(m)

Solution of this balance equation can be done by induction. We observe that:

kpð0Þ ¼ g pð1Þ

kpð1Þ ¼ 2gpð2Þ

kpðm� 1Þ ¼ mgpðmÞ

As a result, p(m) can be expressed as a function of p(0) as:

pðmÞ ¼ k

g

� �m
1

m!
pð0Þ ð7Þ

We can solve for p(0) from Eq. (7) using the fact that
P

mp(m) = 1. Therefore,

1 ¼Pmðk=gÞm 1
m! pð0Þ ¼ ek=gpð0Þ. As a result, p(0) = e�(k/g) and pðnÞ ¼ e�aðam=m!Þ

with = k/g. This corresponds to a Poisson distribution with equal mean and variance

m = s2 = a.

This model has recently been validated using RNA fluorescence in situ hybrid-

ization (FISH) for �100 well-expressed bacterial genes. These measurements con-

formed reasonably well to the predicted Poisson distribution, showing a relationship

m = 1.6s2 (in contrast, protein expression in Saccharomyces cerevisiae scales as

m = 1200s2 (Bar-Even et al., 2006)). However, the subtle quantitative deviation

from the Poisson relationship also suggested that other processes beyond simple

production/degradation model might be at play to account for all the variability

occurring in bacterial gene expression (Taniguchi et al., 2010).

In general for a typical biological problem with several species and parameters

neither the time evolution nor the stationary distribution described by the CME are

analytically solvable. Therefore, one has to resort to numerical techniques to deter-

mine these quantities through sample path computations.

1. The Stochastic Simulation Algorithm: Generating Sample Paths

The approach here is to run a simulation describing the fluctuating behavior of a

set of interacting chemical reactions in a single cell over time, and then to repeat this

procedure multiple times to build an ensemble of behaviors across a population of

cells.
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To each of the chemical reactions rj(j = 1, . . ., M) occurring among species

(S1, S2, . . ., SN) in a well-stirred volume, we attribute a random variable tj
defined as the time to the firing of the next reaction rj. Based on this formula-

tion, tj is exponentially distributed with parameter aj(x) (aj is the propensity

function of this reaction). It can be shown that the time to the next reaction,

defined as the random variable t = min {tj} , is exponentially distributed with

parameter
PM
j¼1

ajðxÞ. The random variable representing the index of the next

reaction to occur m = argmin {tj} can also be shown to be uniformly distributed

with ðm ¼ jÞ ¼ ajðxÞ=
PM
j¼1

ajðxÞ. Using these quantities, one can then simulate the

system with the four simple steps:

Initialize time t0 and state x0
Draw a sample t̂ from P(t), the distribution of t

Draw a sample m̂ from P(m), the distribution of m
Update time t t þ t̂ and state x xþ m̂ and repeat if final time is not reached.

This method is known as the SSA, and belongs to a wider class of numerical

techniques known as Kinetic Monte Carlo algorithms. Every run of the algorithm

above will generate a sample path of the stochastic process described by the CME

(see for example Fig. 1(b)). To generate the probability distributions, one can run a

large number of such sample paths.

D. Moment Computations

The CME is an equation for the probability distribution and can therefore be used

in a straightforwardmanner to derive an expression for the evolution of themean and

higher order moments of these distributions. Simply put, for the first-order moment,

E(Xi), we canmultiply the CME by xi and then sum over all values of x. That is,E[Xi]

= Sxip(x, t), and (dSxip(x, t)/dt) = (dE[Xi]/dt). Similarly, for the second moment E

[XiXj], we can multiply the CME by xixj and sum over values of x. If we define

A(X) = [a1(X), a1(X), . . . . aM(X)]
T as the vector of propensity functions, and

S = [#1#2 . . . . #M] as the stoichiometry matrix, then we can derive (using some

straightforward algebraic manipulations that we will omit here) the following equa-

tions for the mean and second-order moments:

dE½X �
dt

¼ SE½AðX Þ� ð8Þ

dE½XXT �
dt

¼ SE½AðX ÞXT � þ E½XAT ðX Þ�ST þ S diagðE½AðX Þ�ÞST ð9Þ

1. Moment Equations for a System With Affine Propensities

An especially tractable form of the moment equations derived above arises when

the propensity functions are affine, that is A(X) =WX+w0, where W is an N � N

matrix and w0 is an N � 1 vector. In this case, E½AðX Þ� ¼ W E½X � þ wo and
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E½AðX ÞXT � ¼ W E½XXT � þ woE½XT �. Replacing these expressions in Eqs. (8) and

(9) above gives the moments equations:

dE½X �
dt

¼ SWE½X � þ Swo ð10Þ

dE½XXT �
dt

¼ SWE½XXT � þ E½XXT �WTST þ S diagðWE½X � þ woÞST

þSwoE½XT � þ E½X �wo
TST ð11Þ

Eq. (11) is for the uncentered second moment. The covariance matrix (containing

the centered second-order moments) is defined as C = E[(X � E[X])(X � E[X])T].

Therefore, an expression for its time evolution can be derived by manipulation of

Eqs. (11) and (12) to give:

dC

dt
¼ SWC þ CWTST þ S diagðWE½X � þ woÞST

The steady state means and covariances can be obtained by solving the linear

algebraic equations corresponding to setting (dE[X]/dt) = 0 and (dC/dt) = 0. LetX ¼
limt!1 E½X ðtÞ� and C ¼ limt!1 CðtÞ. Then,

SW X ¼ �Swo ð12Þ

SW C þ CWTST þ S diagðW X þ woÞST ¼ 0 ð13Þ

Now, if we define M = SW, B ¼ S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðW X þ woÞ

p
, and D = BBT, then the

steady state covariance given by Eq. (13) becomes

MC þ CMT þ D ¼ 0

This is the well-known Lyapunov equation, which characterizes the steady state

covariance of the output of the linear dynamical system

dY

dt
¼ MY þ Bw

where w is the unit intensity white Gaussian noise.

E. An Example Where Calculations of Means and Covariances
Generated Rich Biological Insight

Consider as extension of our initial model of transcription to include translation of

a protein product from an mRNA (Figure 3). mRNA and protein can also decay with

first-order kinetics. The simplest representation of this module contains four bio-

chemical reactions:

R1 : Ø!kr mRNA
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R2 : mRNA!gr Ø

R3 : mRNA!kp proteinþ mRNA

R4 : protein!
gp

Ø

If we denote the number of molecules of mRNA by X1(t) and that of the protein by

X2(t), then X(t) = [X1(t)X2(t)]
T. Also, the stoichiometry matrix is given by:

S ¼ 1 �1 0 0

0 0 1 �1

� �

Although the propensity vector is given by:

AðX Þ ¼
kr
grX 1

kpX 1

gpX 2

2
664

3
775 ¼

0 0

gr 0

kp 0

0 gp

2
664

3
775 X 1

X 2

� �
þ

kr
0

0

0

2
664

3
775 ¼ WX þ w0

Therefore, M ¼ SW ¼ �gr 0

kp �gp

� �
and Sw0 ¼ kr

0

� �
. As a result, the steady

state as given by Eq. (12) is: X ¼ �M�1Sw0 ¼
kr

gr
kpkr

gpgr

2
664

3
775.

[(Fig._3)TD$FIG]

Fig. 3 Simple transcription and translation module. (For color version of this figure, the reader is

referred to the web version of this book.)
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The steady-covariance matrix can also be computed using Eq. (13). Specifically,

BBT ¼ S diagðWX þ woÞST ¼
2kr 0

0
2kpkr

gr

2
4

3
5

As a result, the steady state covariance matrix C is given by:

C ¼
kr

gr

kpkr

grðgr þ gpÞ
kpkr

grðgr þ gpÞ
kpkr

gpgr
ð1þ kp

gr þ gp

Þ

2
664

3
775 ð14Þ

Notice that for the mRNA in Eq. (14), we have exactly recapitulated the result

derived based on the exact solution of the CME above, namely that its stationary

distribution has an equal mean and variance given by kr/gr. Themean of the protein is

given by:X 2 ¼ ðkpkr=gpgrÞ, while its variance isC22 ¼ ðkpkr=gpgrÞð1þ ðkp=ðgr þ
gpÞÞÞ: Therefore, the coefficient of variation for the protein (a unitless quantity to be
intuitively thought of as a normalized standard deviation) is given by:

CV ¼
ffiffiffiffiffiffiffi
C22

p
X 2

¼ 1ffiffiffiffiffiffi
X 2

p 1þ kp

gr þ gp

 !1=2

ð15Þ

This equation confirms our intuition that as the number of molecules increases,

the CV (‘‘noise’’) of the system would decrease. Most importantly, it assigns a very

specific pattern for this decrease in that it should follow an inverse square-root

function of the mean with a scaling constant dependant on the translation rate of

the mRNA and decay rates of the protein andmRNA. Experimental investigations of

noise in gene expression of a large set of genes in the yeast S. cerevisae and

bacterium E. coli subsequently confirmed this prediction (Newman et al., 2006a).

However, does a large X 2 necessarily imply a small CV?

Notice that:

CV 2 ¼ 1

X 2

1þ kp

gr þ gp

 !
¼ 1

kpkr
gpgr

1þ kp

gr þ gp

 !
� 1

kpkr
gpgr

kp

gr þ gp

 !

¼ gpgr

kr
� 1

gr þ gp
ð16Þ

Therefore, for some values of gr, gp, and gr, CV
2 in Eq. (16) can be arbitrarily large.

Simultaneously, through choice of kp, X 2 ¼ ðkpkr=gpgrÞ can be set independently of
CV2 to be arbitrarily large. Therefore, large mean does NOT necessarily imply small

fluctuations. This model of gene expression predicts that decreased translation rates

should decrease noise in gene expression, a result that was confirmed experimentally

(Ozbudak et al., 2002). More generally this framework suggests cellular contexts

where noise might be expected to be particularly problematic. For example, this
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model predicts that when proteins are rapidly degraded and expressed at low copy

number, such as the cyclins in the cell cycle, high variability would ensue. Given this

insight, many recent investigations of the cell cycle focused precisely on what

control strategies implemented through interlinked positive and negative feedback

loops can compensate for this effect to provide robust noise free oscillations

(Tsai et al., 2008).

Exceptions aside, Eq. (15) and some of its variations have guided many investiga-

tions that delineated fundamental properties of noise in gene expression. Researchers

have used this equation to infer promoter, mRNA and protein dynamics based on

snapshots of protein distributions (see Paulsson (2005) for a review). Furthermore,

these analyses proved particularly useful in describing the effect of chromatin features

on gene expression. In one recent such study, a viral vector was used to integrate a

green fluorescent protein (GFP) reporter construct randomly in a mammalian cell line

and the CV of each integrant was measured. Fitting the data to a two-state gene

expression model similar to Eq. (16), with the addition that a promoter can transition

between OFF and ON states, suggested that the chromatin state of the integration site

affects the stability and productivity of the ON state, but not the frequency of

activation (Skupsky et al., 2010). It is worth noting here that these static snapshots

of noise in gene expression are not always sufficient to resolve all the parameters

involved in the process. For example, in the study mentioned above, these distribu-

tions were sufficient to determine the promoter activation frequency but not its active

duration. Dynamic measurements might be necessary to resolve such parameters.

F. Linearization of Macroscopic Dynamics and the Linear Noise Approximation:
Computing Approximate Moments for Nonlinear Propensity Functions

Although computation of first and second moments at steady state could be done

using an algebraic equation when the propensity functions that appear in the CME

are affine, no such calculation is possible when these propensity functions are

nonlinear as is the case for many biological reactions. The reason is rather simple;

close inspection of Eqs. (10) and (11) reveals that in this case, everymoment depends

on higher order moments, resulting in an infinite hierarchy of ODEs to solve. The

Linear Noise Approximation (LNA) is a procedure to truncate this hierarchy. Before

we present the LNA, we review selected parts of the standard treatment of linearized

dynamics around a steady state (Strogatz, 1994). First, we remind the reader that the

system of reaction rate equations describing the macroscopic behavior of the con-

centration of N biochemical species interacting through a set of M biochemical

reactions is given by the coupled ODEs (Cornish-Bowden, 1979):

dx

dt
¼ SAðxÞ ð17Þ

where x(t) = [x1(t)x2(t) . . . xN(t)]
T is the vector of macroscopic concentrations, and

S is the N �M stoichiometry matrix. If a steady state x exists for the macroscopic

dynamics, it follows from solving the algebraic system of equations:
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0 ¼ SAðxÞ
Linearization of Eq. (17) around the steady state vector x ¼ ½x1x2 . . . :xn�T leads

to a matrix equation for the deviations dx = [dx1dx2 . . . dxN]
T from x given by:

d

dt
dx ¼ Mdx

M is the Jacobian matrix, with the elements:

Mij ¼ q½SiAðxÞ�
qxk

jx¼x

Therefore, in compact notation M ¼ S
qAðxÞ
qx jx¼x.

Going back to the stochastic representation, we assume that the distribution of

the chemical species is tightly distributed around its mean. We also assume that

x(t) = (X(t)/V) (where X(t) is the mean of the distribution) is identical to the

solution ’(t) of the reaction rate equations (Eq. (17)) that describe the macro-

scopic concentrations of molecular species in the system. Notice that ’(t) is a

vector of concentrations, while X(t) is a vector containing the number of mole-

cules, hence the need for a volume scaling factor V.

More formally, let X(t) = V’(t) + e(t), where e(t) is the zero mean random variable

denoting the deviation from the deterministic term V’(t) (Tomioka et al., 2004).

Expanding in Taylor series around ’(t) in Eq. (10), we get

dE½X �
dt

¼ dV’

dt
þ dE½e�

dt
¼ VSAð’Þ þ S

qAðVxÞ
qVx

jx¼’ EðeÞ þ Oðe2Þ ð18Þ

The assumptions on the distributions imply that O(e2) can be neglected in Eq.

(18) above. Therefore, recovering the equation: d’
dt
¼ SAð’Þ. Furthermore, we

obtain:

dE½e�
dt

¼ S
qAðVxÞ
qVx

jx¼’ E½e�

Rewriting Eq. (11) similarly in terms of Taylor series expansion and truncating

the O(e2) terms generates the following equation for the time evolution of the

noise covariance matrix Ce = E[eeT] � E[e]E[eT]:

dCe

dt
¼ Mð’ÞCe þ CeM

T ð’Þ þ DðV’Þ þ qDðVxÞ
qVx

jx¼’ E e½ � ð19Þ

In Eq. (19), we defined M = S(qA(Vx)/qVx)|x=’ as the Jacobian matrix and

D = S diag[A(V’)]ST. Now, we have the closed simultaneous questions for the

time evolution of mean and covariance of the random fluctuations around the

macroscopic solution. We assume that the macroscopic solution is stable around

’(t). That is, the eigenvalues of the Jacobian matrix M are negative for all t. This

assumption is necessary to justify the linearization.
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We also assume that the macroscopic rate equations converge to a stable steady

state ’. Under these assumptions, there exists a distribution around ’ with mean

E[e] = 0 and covariance matrix Ce that satisfies the following equation:

Mð’ÞC þ CMT ð’Þ þ DðV’Þ ¼ 0 ð20Þ
Notice again that Eq. (20) is a Lyapunov equation, with Mð’Þ being the Jacobian

matrix obtained by linearizing the system around its macroscopic steady state.

In summary, one can obtain the covariance matrix of this distribution around a

macroscopic steady state by taking the following simple procedure:

Find the stoichiometry matrix S and the propensity vector A(X)

Find a stable equilibrium of the reaction rate equations of the system

Calculate two matrices Mð’Þ and DðV’Þ
Solve Lyapunov equation (Eq. (20))

Above, we have presented a multivariable and compact derivation of the LNA.

Multiple forms of this derivation exist under alternative names such as the system

size expansion (Elf and Ehrenberg, 2003; Kampen, 1992).

Due to its minimal computation costs, the LNA makes rapid analytical investiga-

tion of noise features for different models and parameter sets possible. For example,

LNA analysis of all possible three node networks over awide range of parameter sets

has recently been used to show that both positive and negative feedback motifs can

buffer noise from an upstream node, but that only positive feedback loops can do so

while maintaining network responsiveness. This insight was confirmed by a detailed

analysis of nitrogen metabolism in yeast, which suggested that coupled positive

and negative feedback in this system may indeed act to buffer noise (Hornung and

Barkai, 2008).

G. Other Closure Techniques for the Moment Equations

As discussed above, the solution to the CME can be expanded in a Taylor series

about the macroscopic deterministic trajectory. The first-order terms correspond to

the macroscopic rate equations, and the second-order terms approximate the system

noise. Variations on this procedure exist. For example, mass fluctuations kinetics

(MFK) calculations take a similar approach to the LNA except that the computation

of themean is coupled with that of the variances (Gomez-Uribe andVerghese, 2007).

Therefore, theMFK approach allows one to capture situations where the mean of the

stochastic distributions may deviate from the solution of the macroscopic rate

equations. This is particularly important for systems that exhibit emergent stochastic

phenomena such as, for example, excitability (Suel et al., 2006, 2007) and stochastic

resonance or focusing (Paulsson et al., 2000).

Other moment closure techniques proceed by assuming specific probability dis-

tributions for the underlying stochastic processes, and then using this assumption to

express higher order moments as a function of the lower order ones to effectively

truncate the dynamics. This has been done for well-known classes of distributions,

such as normal (Whittle, 1957), lognormal (Keeling, 2000), Poisson binomial
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(Nasell, 2003). Moment closure techniques that do not make explicit assumptions

about the shape of the distribution also exist. One such moment closure approxima-

tion known as separable derivative matching (Singh and Hespanha, 2007) approx-

imates the (N + 1)th moment as a polynomial function of the first N moments. This

approach matches time derivatives between the approximate closed system and the

exact nonclosed system at the initial time t0 and the given initial conditions. This

allows the exponents (which remain constant over the simulation) in the polynomial

function to be uniquely determined, and the solution turns out to be consistent with

the underlying distribution probability distribution being lognormal. It is worth

noting here that the derivation of the moment equations implicitly assumes the

presence of a single macroscopic steady state. Hence, the distributions are unimodal

and the process is well characterized by the first few moments. However, problems

that exhibit multimodal distributions will require many higher order moments, and

the applicability of these methods may quickly degrade. Usually, the choice between

accurate numerical approaches and approximation analytical approaches (such as

the LNA and moment closure techniques) is done on a case-by-case basis to balance

computational cost versus accuracy.

VI. Open Challenges

Stochastic modeling of biological dynamics, especially at the cellular level, is

increasingly making its way to the mainstream of quantitative biology investigation.

The CME and its accompanying SSA have proven to be invaluable computational

tools for such studies. There are, however, many challenges that need to be addressed

in order to make stochastic modeling a widely applicable tool for realistic biological

problems. Below, we discuss some of these challenges and recent developments in

the literatures to address them.

A. Efficient Stochastic Simulation and Analysis for Systems Evolving
at Disparate Temporal and Spatial Scales

For many cellular networks of biological importance, the chemical reactions occur

at significantly different rates. As a motivating example, consider gene regulation in

the bacteriumEscherichia coli.There, a typical time scale for mRNA transcription is

on the order of minutes, whereas the time scale for protein degradation/dilution is on

the order of an hour (Alon, 2007). This suggests that the protein concentrations do

not depend strongly on the instantaneous number of mRNAs but rather on their

average over time. Even more drastically, posttranslational modifications of the

protein (e.g., phosphorylation) often occur on the time scale of seconds. These

disparate time scales in the chemical reactions pose great challenges for efficient

numerical simulation of these processes. These challenges arise from having to

resolve the stochastic dynamics on the fastest characteristic time scales of the
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system. Take for example a model in which a kinase activates a transcription factor

by phosphorylating it, while a phosphotase removes the phosphate.We are interested

in understanding the fluctuations in the expression of the gene that is regulated by the

transcription factor. It is often the case that the competing phosphorylation and

dephosphorylation reactions occur rapidly (fast reactions), whereas gene expression

is relatively slow. In this situation a stochastic simulation of the system will spend

most of its computational time fruitlessly adding and removing phosphates from the

transcription factor and relatively little time on reactions that result in gene expres-

sion, our actual interest.

Multiple approaches have emerged to address this problem. On the analytical side,

the strategy is often to derive reduced models by explicitly representing the chemical

species having dynamics with relatively slow characteristic time scales while elim-

inating representations of the chemical species having dynamics with relatively fast

characteristic time scales (Atzberger et al., 2011; Cao et al., 2005; Haseltine and

Rawlings, 2002; Rao and Arkin, 2003). Roughly speaking, these methods parallel

quasi-steady state approximations for deterministic chemical kinetics where a subset

of species is assumed to be asymptotically at steady state on the time scale of

interest. One commonly used example is the Hill function (a[TF/(TF + Kd)]), which

describes the expression of a gene for a given concentration of a transcription factor

(TF), affinity of the transcription factor for the promoter (Kd), and maximal activa-

tion (a). This expression is derived using the assumption that transcription factor

binding and unbinding events are rapid relative to the rate of gene expression, and so

one can approximate them as an average occupancy rather than explicitly model

every individual event (Nemenman et al., 2009).

On the numerical side, several approximate methods have been developed to

speed up simulations while sacrificing some of the exactness of the SSA. The basic

idea behind these approximate methods is that instead of simulating a single reaction

per step, a number of reactions can occur in each simulation step. These approximate

methods are known as leap methods including the t-leap method (Gillespie, 2001;

Gillespie and Petzold, 2003), the binomial t-leap method (Chatterjee et al., 2005;

Rathinam and El Samad, 2007), and the K-leap method (Cai and Xu, 2007).

Despite such productive work on the subject, the efficient analysis and simulation

of stochastic cellular dynamics for realistic problems is still very difficult. For

example, there is little theory that can provide reassurance about the accuracy of

the approximate SSAs in challenging scenarios. Furthermore, quasi-steady state

approximations of stochastic fast scales are done based on intuition and assumptions

derived from deterministic chemical kinetics. For these methods to be broadly

applicable, they need to be placed on more solid theoretical footing in terms of

the assumptions that can and cannot be made in a stochastic context and rigorous

proofs need to be generated for their accuracy in different realistic contexts.

The holistic understanding of biological systems often involves the probing of

cellular biochemical networks in the context of the cell, of cells in the context of a

tissue, and of a tissue in the context of the organism. How to account for and move

between these spatial scales remains an open problem for stochastic modeling. This
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‘‘multiscale’’ problem is of poignant relevance to pharmacological studies, which

need to integrate effects of small molecules therapies at the single cell level with

global metabolic processes within the body such as prodrug activation, degradation

of the active molecules, and off-target toxicities (Eissing et al., 2011).

B. Efficient Spatiotemporal Simulations

Previous sections cover the stochastic algorithms for modeling biological path-

ways with no spatial information. However, biological networks in practice

consist of components that interact in a three-dimensional space and are not

necessarily distributed homogeneously as they diffuse between different cellular

compartments. For example, even within E. coli (the prototypical cell-as-a-bag

modeling system) membrane invaginations can dramatically alter the diffusive

properties of molecules (Weisshaar et al., 2006). In eukaryotic neuronal cells,

axons can be meters long raising immense barriers to diffusive mixing. Thus, the

basic assumption of spatial homogeneity and large concentration diffusion may

be challenged in some biological systems. In this context, stochastic spatiotem-

poral representations are required.

Roughly speaking, discrete spatial stochastic simulations can be separated into

lattice and off-lattice particle based methods. In off-lattice methods, the Brownian

movements of the individual molecules are accounted for and all particles in the

system have explicit spatial coordinates (Bartol, 2002). At each time step, molecules

with nonzero diffusion coefficients are able to move, in a random walk fashion, to

new positions. In this case, the motion and direction of the molecules are determined

by using random numbers during the simulation. Similarly, collisions with potential

binding sites and surfaces are detected and handled by using only random numbers

with a computed binding probability. Particle methods can provide very detailed

simulations of highly complex systems at the cost of exceedingly large amounts of

computational effort.

For lattice methods, the two- or three-dimensional volume used to represent a

cellular compartment (organelles or membranes) is covered by a computational

mesh (Morton-Firth and Bray, 1998; Schnell et al., 2004). The lattice is then ‘‘pop-

ulated’’ with particles of the different molecular species that comprise the system.

Particles with nonzero diffusion coefficient are able to diffuse by jumping to an

empty neighboring domain. If the domain is assumed to accommodate only one

molecule, chemical reactions can take place with a certain probability among

molecules in adjacent domains. Another scenario is one in which subvolumes can

host many molecules, with well-mixedness assumed in each subvolume. In both

cases, diffusion steps are treated as treated first-order reactions, with a reaction rate

constant proportional to the diffusion coefficient (Ander et al., 2004; Baras and

Mansour, 1996; Elf et al., 2010; Stundzia and Lumsden, 1996). As a result, diffusion

can be treated as an additional chemical reaction, and one is back to the SSA

formalism.
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Many caveats of these methods exist. For example, the artificial nature of the

lattice may introduce lattice anisotropy (Ridgway et al., 2009). Furthermore, in

many physiologically relevant situations, molecular crowding can prevent reacting

molecules from reaching regions of the domain due to the high concentration

of macromolecules impeding their passage (Ridgway et al., 2009). A particularly

striking example of this is diffusive motion in the context of the eukaryotic nucleus

where densely packed nucleoli and hetrochromatin structures greatly reduce diffu-

sive rates, suggesting one mechanism whereby heterchormatin prevents active tran-

scription (Bancaud et al., 2009). Therefore, despite their conceptual appeal, these

spatiotemporal algorithms need to be updated to capture the full scope of biological

reality. Furthermore, even in their current approximate forms, these algorithms

require substantial and sometimes prohibitive computational power and have only

been successfully applied to small systems with finite number of molecular species.

As a result, many computational innovations are still needed to enable the quanti-

tative probing of the spatial stochastic dynamics of biological systems.

C. Parametrization and Sensitivity Analysis of Stochastic Models

Stochastic models of biological systems typically depend on a set of kinetic

parameters whose values are often unknown or fluctuate due to an uncertain envi-

ronment. These parameters determine the dynamic behavior of the model, and

changes in them may alter the system’s output in nonintuitive ways. Typically, many

of the parameters in a biological system have not been measured or are unmeasur-

able. For example, a typical assay for measuring the affinity of a transcription factor

for its promoter by gel shift will describe this interaction in terms of a disassociation

constant (Kd), which gives the ratio of binding and unbinding rates. A stochastic

model, however, requires explicit ON and OFF rates that are rarely available. In this

case, one strategy would be to estimate the ON and OFF rates under the assumption

that binding of two molecules is ‘‘diffusion limited.’’ However, a more commonly

encountered situation is one in which no direct measurement exists from which to

base a choice of parameters. In this case, it becomes imperative to establish that

specific choices for the value of these parameters do not substantially change the

model behavior of interest.

Assessing the change in a system output pursuant to perturbations in its kinetic

parameters is carried out using sensitivity analysis. Traditionally, the concept of

sensitivity analysis has been applied largely to continuous deterministic systems, for

example, systems described by differential (or differential-algebraic) equations.

Much of these analyses have focused on the effects of infinitesimal perturbations

of certain parameters. In deterministic chemical kinetics, the infinitesimal sensitiv-

ities are represented using the first-order sensitivity coefficients, given by

(Varma et al., 2005):

SijðtÞ ¼ qxiðtÞ
quj

ð21Þ
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where xi denotes that i
th output of the system at time t (e.g., the concentration of

chemical species as given by Eq. (17)) and uj is the jth parameter. This equation

assumes implicitly that the output xi is continuous with respect to the parameter uj.

Using the definition in Eq. (21), dynamic evolution equations can be derived for

Sij(t) and solved along with the original system equation. In the context of biological

systems modeling, sensitivity analysis has been indispensable to deduce important

system properties, such as robustness in an uncertain environment (Stelling et al.,

2004). In large networks, sensitivity analysis can pinpoint critical or rate limiting

pathways and aid in reduced order modeling. Despite their usefulness, these sensi-

tivities report on changes of model behavior changes as parameters change locally,

but do not address the outcome of large changes to parameters or simultaneous

perturbations to multiple parameters. Assessing the effect of large perturbations is

typically carried out numerically by recomputing the reaction rate equations for the

perturbed parameter values and comparing these to the nominal parameter values.

Themost common approach for sensitivity analysis in stochastic systems resembles

the simulation-based strategy. Monte Carlo (SSA) simulations are run for various

values of the parameter whose sensitivity is of interest, and the variation in the

outcome of these simulations for a variable of interest, such as mean, quantified.

The sensitivity at time T to a finite perturbation h of a parameter u about its nominal

value u = u0 can be computed via a finite difference of the expected value, such as

S ¼ E½X ðT ; u0 þ hÞ� � E½X ðT ; u0Þ�
h

Basically, one uses SSA to compute these expected values by generating many

samples ofX(T, u0 + h) andX(T, u0), usually using two independent streams of random

numbers to generate samples of X(T, u0 + h) and X(T, u0). This is called the indepen-

dent random number (IRN) approach and has been recently used in combination with

the Fisher information matrix to generate several different sensitivity measures

(Gunawan et al., 2005). Evidently, Monte Carlo simulations need to be carried out

for the nominal and perturbed parameter value making this approach often compu-

tationally expensive. Furthermore, the use of IRNs usually results in a statistical

estimator with large variance, thereby increasing the computational effort as large

samples may be required. Recent work has shown that using the same stream of

common randomnumbers (CRNs) to generate samples ofX(T, u0 + h) andX(T, u0) can

typically result in an estimator with low variance and thus requires far fewer samples

(Rathinam et al., 2010). Approaches based on the Girasnov measure have also been

proposed to smooth the sensitivity estimates and reduce their bias (Plyasunov and

Arkin, 2006). Finally, more tractable but approximate approaches to computing

sensitivities of stochastic models have also been formulated based on the LNA

(Hornung and Barkai, 2008).

The application of sensitivity analysis, nonetheless, is still prohibitive for most

realistic models of stochastic cellular networks. This problem is further compounded

by the aforementioned challenge posed by large numbers of unknown model para-

meters, which need to be identified from data. Many parameter identifiability
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analyses use the concept of sensitivity to determine a priori whether certain para-

meters can be estimated from experimental data and to search for these parameters

using iterative algorithms. Efficient computation of parameter sensitivities is there-

fore a topic of great interest and bearing on the applicability of stochastic methods,

and one where many challenges still lie ahead.

VII. Conclusions

Stochastic modeling methods are generating many important insights into the

operation and organizational principles of cellular networks. Challenges remain

before the full power of these methods can be unleashed in the study of many complex

biological dynamics. This is an area of great promise, and one where progress will

greatly deepen our understanding of the stochastic underpinnings of life.
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Abstract

Contractile force generation plays a critical role in cell adhesion, migration, and

extracellular matrix reorganization in both 2D and 3D environments. Characterization

of cellular forces has led to a greater understanding of cell migration, cellular

mechanosensing, tissue formation, and disease progression. Methods to characterize

cellular traction stresses now date back over 30 years, and they have matured from

qualitative comparisons of cell-mediated substrate movements to high-resolution,

highly quantitative measures of cellular force. Here, we will provide an overview of

common methods used to measure forces in both 2D and 3D microenvironments.

Specific focus will be placed on traction force microscopy, which measures the force

exerted by cells on 2D planar substrates, and the use of confocal reflectance micros-

copy, which can be used to quantify collagen fibril compaction as a metric for 3D

traction forces. In addition to providing experimental methods to analyze cellular

forces, we discuss the application of these techniques to a large range of biomedical

problems and some of the significant challenges that still remain in this field.

I. Introduction

Cellular traction forces have been shown to drive cell adhesion (Reinhart-King

et al., 2003), spreading (Reinhart-King et al., 2005), migration (Dembo and

Wang, 1999; Pelham and Wang, 1997), and extracellular matrix (ECM) deposi-

tion and remodeling (Lemmon et al., 2009). To migrate, a cell must undergo

changes in cellular force production to modify both its shape and its internal

tension to interact with the surrounding ECM, which provides both a substrate for

the cell to adhere to as it moves forward, but also a barrier through which the cell

must advance (Ehrbar et al., 2011). In most adherent cells, forward movement is

initiated by actin polymerization, causing a pseudopod to extend from the leading

edge of the cell. Cell extensions interact with the surrounding ECM and initiate

binding through transmembrane integrin receptors, forming focal complexes and

focal adhesions (Hynes, 2002). Contractile force caused by actomyosin contrac-

tion generates both intracellular tension and extracellular tension transmitted to

the substrate, ultimately causing the cell’s posterior focal adhesions to release and

allowing the cell to move forward (Lauffenburger and Horwitz, 1996). During

migration, changes in the cytoskeleton alter cell–matrix dynamics and cellular

force generation. These processes can also be altered in disease states. For

example, during malignant transformation, cellular forces have been shown to

increase (Paszek et al., 2005; Rosel et al., 2008). Because migration is funda-

mental to many essential biological processes including development, immune

response, inflammation and wound healing, and cells must exert force to migrate,

many groups have described methods to characterize force generation of adherent

cells (Dembo and Wang, 1999; du Roure et al., 2005; Galbraith and Sheetz, 1997;

Harris et al., 1980; Tan et al., 2003).

140 Casey M. Kraning-Rush et al.



The earliest technique used to describe the traction forces exerted by cells was

developed by Harris and colleagues in the 1980s. In this landmark article, cells were

seeded on top of an elastomeric silicone rubber substrate (Harris et al., 1980). As the

cells adhered and migrated, they generated wrinkles within the substrate during

contraction. Although both the cells and the wrinkles they produced were easily

visualized, it was difficult to extract out quantitative information regarding the

cellular forces as the wrinkles were typically nonlinear and irregularly shaped.

Therefore, although informative as a probe of cellular forces, this technique yielded

only semiquantitative data in the form of number and length of wrinkles (Harris

et al., 1981). In later work using wrinkling substrates, cellular force data were

extracted by using flexible microneedles to exert a known force onto the substrate,

reversing the wrinkle caused by the cell (Burton and Taylor, 1997).

Building upon the work pioneered by Harris et al. in the early 1990s, the idea of

observing and measuring bead displacement in an elastic substratum, rather than

wrinkles, was introduced. A thin layer of latex beads was airbrushed over a non-

wrinkling elastic film created by cross-linking silicone oil to the sides of a rigid

vessel. This created a tightly stretched film upon which cellular forces transmitted to

the surface could be more directly detected through bead displacements (Lee et al.,

1994; Oliver et al., 1995). This technique had the advantage of being more sensitive

than the silicone wrinkling technique, in that relatively small forces (�20 nN) could

be detected based on bead movements. Additionally, the silicone oil could be cross-

linked to varying degrees to produce a range of substrate moduli. However, this

approach did suffer from some limitations. For instance, more compliant silicone

substrates were unable to completely recover from cellular deformation (Lee et al.,

1994). Moreover, these substrates were nonporous and poorly adhesive, and their

mechanical properties could not be sufficiently tuned to match the strength of the

majority of mammalian cell types (Dembo and Wang, 1999).

These limitations were overcome in the late 1990s with the advent of polyacryl-

amide (PA) hydrogels as a substrate on which to plate cells (Brandley et al., 1987;

Wang and Pelham, 1998). The mechanical and chemical properties of PA gels are

ideal for the study of cellular forces. First, similar to the earlier generation of silicone

films, PA gels are optically transparent, allowing cells cultured on them to be easily

imaged, and they can also have fluorescent markers embedded into them, allowing

the user to measure deformations caused by cell migration using standard fluores-

cent microscopy. More importantly, PA gels are elastic and will deform in direct

proportion to a broad range of applied force. Once this force is removed, PA gels

immediately and reproducibly recover to an unstressed conformation. Moreover, the

stiffness and ECM protein ligand density presented on the surface of PA gels can be

independently tuned, allowing for precise control over experimental conditions. PA

gels are also nontoxic, and create a more physiological environment than glass or

silicone rubber for short-term culture of a wide variety of adherent mammalian cell

types (Wang and Pelham, 1998).

The PA system was rapidly adapted for use in quantifying the traction forces of

adherent cells by Dembo and co-workers, giving rise to the technique of traction
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force microscopy (TFM), which we currently use in our own lab and is the primary

focus of this chapter (Dembo and Wang, 1999). TFM can be used to calculate the

traction stresses of individual cells based on the displacement of fluorescent bead

markers embedded within PA gels to produce sensitive, quantitative data character-

izing intracellular force generation (Reinhart-King et al., 2003). The goal of this

chapter is to describe the basic theory underlying TFM and to describe in detail this

technique for quantifying cellular forces during 2D migration. Additionally, we will

examine the current state of the field, and discuss the current transitions from 2D to

3DTFMmethods.Wewill describe a technique used in our own lab tovisualize force

generation of cells embedded within 3D collagen matrices: confocal reflectance

microscopy. In summary, in this chapter we will describe (1) the steps to fabricate

substrates for TFM, (2) a protocol for acquiring and analyzing TFM data, (3) a novel

method for qualitatively assessing force generation in 3D collagen gels, and (4)

applications of the techniques described herein.

II. Overview of Method

A. Polyacrylamide Gel Substrates

As previously described, TFM in its current form utilizes a well-characterized PA

gel substrate system (Wang and Pelham, 1998). Themost unique and useful property

of PA gels is the ability to independently adjust their mechanical and chemical

properties. The Young’s modulus (E) of PA gels is tunable simply by altering the

ratio of acrylamide to bis-acrylamide (for ratios used in our lab, Table I).

Additionally, the density of protein ligand available to the cell on the surface of

Table I
Components required to synthesize polyacrylamide gels of stiffness 0.2–300 kPa.

E

(kPa)

Percentage of

Acrylamide

Acrylamide

(mL)

Percentage of

Bis-acrylamide

Bis-acryl-

amide (mL)

250 mM

HEPES (mL)

MilliQ water

(mL)

TEMED

(mL)

0.2 3.0 1.50 0.040 0.40 2.60 13.99 10

0.5 3.0 1.50 0.050 0.50 2.60 13.89 10

1a 3.0 1.50 0.100 1.00 2.60 13.39 10

2.5a 5.0 2.50 0.100 1.00 2.60 12.39 10

5a 7.5 3.75 0.175 1.75 2.60 10.39 10

10a 7.5 3.75 0.350 3.50 2.60 8.64 10

15 12.0 6.00 0.130 1.30 2.60 8.59 10

20 12.0 6.00 0.190 1.90 2.60 7.99 10

30 12.0 6.00 0.280 2.80 2.60 7.09 10

300 15.0 7.50 1.200 12.00 0.65b 0.00 10

a Indicates PA gel stiffness used successfully with TFM.
b Substitute 1 M HEPES buffer.
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the gel is controlled by reacting varying concentrations of ligand with a bifunctional

linker, which is added to the polymer mix. The ligand can be any protein or amino

acid sequence desired, as the cross-linker within the gel is designed to form a stable

amide linkage to any molecule with a primary amine group (Pless et al., 1983).

Given the mechanical and chemical flexibility of PA gels, they are useful to recreate

various physiological conditions as well as disease states in vitro, which will be

discussed later in the chapter (Califano and Reinhart-King, 2010; Rosel et al., 2008;

Yeung et al., 2005).

B. Traction Force Microscopy

1. Rationale

TFM is a technique that allows for the precise quantification of traction stresses

generated by cells adherent to an underlying two-dimensional substrate, most often a

PA gel (Dembo et al., 1996). As cells adhere to and migrate over sufficiently

compliant substrates, traction forces generated by the cell create deformations.

These deformations are detected by the inclusion of fiduciary markers (usually

submicron diameter fluorescent beads) within the PA gel that relax back to their

original position when the cell is either released chemically from the substrate (e.g.,

with trypsin) (Fig. 1A and B) or when it migrates away from the field of view during

a time-course study.

[(Fig._1)TD$FIG]

Fig. 1 Traction force microscopy is used to quantify traction forces in 2D. MDA-MB-231 cells were

seeded onto a polyacrylamide substrate (A). To quantify traction forces, fluorescent images are acquired

of the bead field beneath the cell during force generation (B, red) and after the cell has been released with

trypsin (B, green). An overlay of these two images indicates the regions of greatest bead displacement

(inset, white arrow). To calculate the most likely traction field causing the observed bead displacement,

the cell is first discretized into a mesh (C). Individual tractions are then calculated for each node of the

mesh (D). From these tractions, a color contour plot can be generated indicating regions of highest and

lowest traction stresses (E). Scale bar = 50 mm. (See color plate.)
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Experimentally, calculation of the substrate strain field requires images of the

bead field in both its stressed state (with the cell present) and relaxed state (without

the cell). The image of the beads in their relaxed state is typically captured after the

cell is removed and the beads in the field of view have returned to their ‘‘unstressed’’

position due to the elastic nature of the PA gel substrate. The displacements caused

by the cells are computed by comparing the stressed and relaxed images of the bead

field.

The calculation of traction stresses is regarded as an inverse problem, that is,

measurements of substrate deformation are used to statistically compute the most

likely traction stress field that can give rise to the observed deformations. The

traction field is thus derived from numerical integrals to determine the maximum

likelihood tractions based on the displacement field. These tractions are tied to

chi-square and Bayesian statistics that iterate until convergence. TFM thus

involves both methods that determine the substrate displacements caused by

adherent cells and algorithms that convert these displacements into a traction

stress field (Fig. 1C–E). Although the precise details of TFM theory are dis-

cussed at length elsewhere (Dembo et al., 1996; Dembo and Wang, 1999), we put

forth here a brief summary describing key equations leading to the determination

of the traction stress field.

2. Theory

The theory of TFM is founded on the isotropic and linearly elastic material

properties of the PA gel. First, a basic stress–strain relationship describing homo-

geneous deformation of the PA gel is established in Eq. (1),

sik ¼ E

1þ y
eik þ y

1� 2y
elldik

� �
ð1Þ

where sik are the components of the stress tensor, eik are the components of the strain

tensor, E is the Young’s Modulus, y is the Poisson’s ratio, and dik is the Kronecker

delta (Dembo et al., 1996; Landau et al., 1986). Next, the assumption is made that

our system is a longitudinal plate that is sufficiently thin, such that the deformation is

regarded as uniform over its thickness and the strain tensor is dependent only on x

and y (with the x–y plane being that of the plate or PA gel) (Landau et al., 1986). The

boundary conditions on both surfaces of the plate are then siknk = 0, where nk is the

normal vector. Because the normal vector is parallel to the z axis in this case, siz = 0

(i.e. sxz = syz = szz = 0). It is also important to note that because siz = 0 at the

surface, the quantities sxz, syz, and szz must be small throughout the thickness of

the plate, and we will approximate them as zero everywhere within the plate

(Landau et al., 1986). These boundary conditions can then be substituted into Eq.

(1) to get the nonzero components of stress, Eqs. (2)–(4),

sxx ¼ E

1� y2
ðexx þ yeyyÞ ð2Þ
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syy ¼ E

1� y2
ðeyy þ yexxÞ ð3Þ

sxy ¼ E

1þ y
exy ð4Þ

If the plate is considered as a 2D elastic plane of zero thickness, then a displace-

ment vector d can be considered as a two-dimensional vector with components dx
and dy. If Tx and Ty are the components of the external body force per unit area of the

plate, then the general equations of equilibrium are Eqs. (5) and (6),

h
@sxx

@x
þ @sxy

@y

� �
þ Tx ¼ 0 ð5Þ

h
@syx

@x
þ @syy

@y

� �
þ Ty ¼ 0 ð6Þ

where h is the thickness of the PA gel. Next, if the stress components from Eqs. (2) to

(4) are substituted in, the results are the equations of equilibrium in the form of Eqs.

(7) and (8) (Dembo et al., 1996),
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Because the response of the PA gel substrate to deformation is linear, the displace-

ment of the pth bead marker can be related to the traction field via an integral

transform, Eq. (9),

dpa ¼
ð ð

gbaðmp � rÞTbðrÞdr1dr2 ð9Þ

where gba(mp � r) represent the coefficients of a Green’s tensor that give the substrate

displacement in the a direction at location m induced by a force in the b direction

acting at location r (Dembo andWang, 1999). As the thickness of our PA gel substrate

(�70 mm) can be considered infinite compared to the greatest bead displacement

(�1 mm), the coefficients of gba can be approximated using the Boussinesq theory

for an elastic solid in the half-space beneath the cell, Eqs. (10)–(18),

g11 ¼
1þ n

2pE

ð2ð1� nÞr � x3Þ
rðr � x3Þ þ ð2rðnr � x3Þ þ x23Þx21

r3ðr � x3Þ2
( )

ð10Þ
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g21 ¼
1þ n

2pE

ð2rðnr � x3Þ þ x23Þx1x2
r3ðr � x3Þ2
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ð11Þ
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The functions for the coefficients of the Green’s tensor incorporate both n and E of

the PA substrate (Dembo and Wang, 1999), which can be determined experimentally

(Boudou et al., 2006; Li et al., 1993). One technique for measuring the parameterEwill

be described in a later section (Lo et al., 2000). Additionally, it is important to note that

Boussinesq theory predicts negligible coupling of in-plane displacements to out-of-

plane tractions at or near the surface of an incompressible substrate (i.e., g13 = g23 = 0).

In this manner, bead displacement in the direction normal to the PA substrate is ignored

(Dembo and Wang, 1999).

To produce a traction image from the displacement data, the projected area of the

cell must be imposed onto the traction field (Fig. 1A). The cell is outlined with a
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series of points that generate a list of pixel coordinates defining the cell boundary.

These points define a bounded region that corresponds to the projected cell area. In

the TFM theory described by Dembo and Wang, the assumption is made that all

tractions occur within this domain (Fig. 1B). The outline of the cell is divided into a

quadrilateral mesh utilizing a paving algorithm (Dembo andWang, 1999) (Fig. 1C).

The x and y components of the traction located at each node of the mesh can then be

determined (Fig. 1D), and a representation of the continuum of forces that occurs

over the entire mesh interior can be constructed (Fig. 1E).

Within the bounded domain the in-plane traction components are first approxi-

mated using standard bilinear shape functions, Hk(r), as in Eq. (19),

TbðrÞ � TkbHkðrÞ ð19Þ
where Tkb are now the components of the nodal traction vectors (Dembo et al., 1996;

Dembo and Wang, 1999). Next, for this mesh, any choice of Tkb corresponds to an

allowable traction image. By substituting Eq. (19) into Eq. (9), this traction image

can make a definite prediction about the calculated marker displacements, Eq. (20),

dpa ¼ daðmpÞ ¼ Tkb

ð ð
gabðmp � rÞHkðrÞdr1dr2 ¼ AkbpaTkb ð20Þ

where the index p runs over all of the bead markers (i.e., p = 1, 2, . . ., Np) (Dembo

andWang, 1999). It is important to note that here,Akbpa depends only on the imposed

mesh, the location of the bead markers, and the material properties of the PA gel.

Next, the ability of this traction image to explain the observed bead marker

displacements can be quantified by using the chi-square statistic, Eq. (21),

x2 � ðd̂pa � dpaÞ2s�2
pa ¼ ðd̂pa � AkbpaTkbÞ2s�2

pa ð21Þ
where d̂pa is the experimental displacement of the pth marker particle along the

a-coordinate axis, spa is the error of d̂pa, and summation over all repeated indices is

implied (Dembo and Wang, 1999). Additionally, Dembo et al. quantify the intrinsic

‘‘complexity’’ of a traction image using the scalar invariant shown in Eq. (22),

c2 �
ð
V

ð@aTb þ @bTaÞð@aTb þ @bTaÞdr1dr2 ð22Þ

Again, by substituting Eq. (19) into Eq. (22), the complexity of the traction image

can be written as a quadratic form in the nodal degrees of freedom, Eq. (23),

c2 ¼ CiajbTiaTjb ð23Þ
where Ciajb are constants dependent on the geometry of the mesh (Dembo and

Wang, 1999). Finally, by combining Eq. (21) and Eq. (23), the Bayesian likelihood

of the Tkb is found to be represented by Eq. (24),

LbðTkbjd̂paÞ ¼ exp½�ðx2 þ lc2Þ� ð24Þ
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where l is a positive real number determined by obtaining the simplest traction

image consistent with the given data set (Dembo andWang, 1999). l is progressively
increased, and new values of x2and c2 are found by minimizing the linear combi-

nation x2 + lc2. These new values are substituted into Eq. (21) and Eq. (23), becom-

ing x2 and c2. As l is increased, x2 increases and c2 decreases. Finally, once

x2 � Np þ
ffiffiffiffiffiffi
Np

p
, that threshold image is the simplest distribution of traction forces

consistent with the experimental data (Dembo and Wang, 1999).

Once solved, the magnitude and direction of traction forces, and other parameters

including the bead displacement vector field and strain energy density field may be

examined. For many cells types, the magnitude of traction forces is on the order of

�0.05–2 mN (Califano and Reinhart-King, 2010; Gaudet et al., 2003; Paszek et al.,

2005; Reinhart-King et al., 2003). It is important to recognize that others have used a

similar experimental system (PA gels embedded with fluorescent beads), but have

solved the inverse problem using Fourier’s method to solve the general equations of

equilibrium relating displacements to tractions (Butler et al., 2002).

3. Calculating Substrate Displacements: Correlation-based Optical Flow

All current methods to calculate cell-generated traction stresses first require

calculation of the underlying substrate deformations. In TFM, substrate deforma-

tions are calculated based on the movements of beads embedded within the PA gel

substrate. While it is possible, in theory, to map individual bead movements by hand,

this would be cumbersome. To automate this process, Marganski et al. developed an

algorithm based on correlation-based optical flow, which has been refined since its

original description (Marganski et al., 2003b). This algorithm takes two images (the

stressed and relaxed bead field images described above) as the input. Bead tracking

is done by systematically scanning all pixels in the relaxed image to find the pixel

coordinates of the fluorescent beads (identified as strict pixel intensity maxima after

image intensity normalization). For each bead that is tracked, a box of pixels

centered on the local maximum intensity pixel is defined and the relative pixel

intensities in that box serve as a ‘‘fingerprint’’ for the tracked bead. This search

box is used to determine the coordinates of the corresponding ‘‘fingerprint’’ in the

stressed image. This process is iterated for every pixel in the image and is able to

determine the bead displacements with submicron resolution.

An important parameter considered when comparing the pixel coordinates

between two images from the same region of interest is the registration error

introduced into the images by the misalignment of the relaxed and stressed images.

This error is usually inadvertently introduced as rectilinear motion by mechanical

vibrations of the microscope stage or imperfect stage return during multipoint

acquisition of multiple fields of view. Rectilinear motion introduces a constant

vector on the displacements between images that would normally be absent in a

perfect experiment. A histogram of the raw displacements of tracked beads provides

an elegant way to identify and remove the registration error (the most frequent

constant vector tracked by the optical flow algorithm). The current TFM algorithm
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in use accounts for the presence of a translational, but not a rotational, drift.

Rotational drift is rarely introduced as long as the cell sample sits firmly in the

microscope stage, and the PA gel is not disturbed during trypsinization. Problems

encountered with correlation-based optical flow include occasional bead mistrack-

ing between images, which will result in erroneous displacement vectors. In the

majority of cases these displacement vectors are easily identified by a single large

vector pointing in an unexpected direction, and can be discounted. Additionally,

some cell types may also phagocytose beads from the substrate, which causes similar

tracking errors. Decreasing incubation time prior to TFM imaging can reduce the

occurrence of phagocytosis.

It should be noted that in addition to the correlation-based optical flow algorithm

described here, a number of other algorithms have also been developed that can be

applied to bead tracking for TFM, including algorithms based on digital image

correlation (Qin et al., 2007; Sutton et al., 1983) and, more recently, a combination

of particle image velocimetry (PIV) and particle tracking velocimetry (PTV) (Sabass

et al., 2008; Tseng et al., 2011). Digital image correlation is a widely used method for

the detection of optical displacements, and has undergone numerous refinements in

the last 20 years (Huang et al., 2009; Schreier et al., 2000). In digital image correlation,

markers are tracked by searching the matching pixel-matrix of intensities in a pair of

fluorescent images in order to numerically correlate a selected subset of markers.

Digital image correlation has recently been adapted for quantifying 3D tractions

exerted by cells on a 2D substrate (Franck et al., 2011). PIV is a technique that has

been widely utilized to track bulk particle movement through fluid flow, which does

not generally require individual particle tracking. Recently, Sabass et al. have paired

PIV with PTV in a technique termed correlation-based PTV. PIV is first used to

determine the deformation of a PA gel on a coarse scale before PTV is used to segment

individual bead displacement. In contrast to the correlation-based optical flow algo-

rithm described above, several variations of these algorithms are available through

open source or free software, or else through commercial sources.

4. Key Assumptions

The calculation of traction forces is based on the Boussinesq equations, which

describe the relationship between the deformation of a material due to forces applied

to its free surface. In this regard, the elastic PA gel substrate is assumed to be

uniform, isotropic, and linearly elastic, and it is assumed that the inclusion of marker

beads in the substrate does not perturb this elastic behavior. The external loads acting

on the substrate surface are assumed to be solely tangential with negligible displace-

ments in the z-direction.

Inherent to TFM is the ability of cells to deform the substrate. This assumption

ultimately limits the range of substrate stiffness that is testable using TFM or any

traction method that requires the substrate to deform a detectable amount. Although

there is considerable variation between the strength of different cell types, TFMmay

have an upper limit of E � 10–30 kPa. At the other end of the spectrum, compliant
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substrates (<1 kPa) may not adequately support theweight of adherent cells and will

allow significant bead displacement in the z direction, disrupting the in-plane bead

marker displacements quantified in the TFM calculations. It is important to note that

recent work (Franck et al., 2011) has demonstrated that cells are able to displace

beads in the z-direction even on stiff substrates. These displacements are not

accounted for using the protocols and algorithms described in this chapter, intro-

ducing a small degree of error into the final calculation.

C. Alternative Methods for Measuring 2D Cell Tractions

In addition to TFM, several other techniques have been developed to quantify

traction forces during cell migration. In the late 1990’s, Galbraith and Sheetz developed

a micromachined device consisting of an array of lithographically patterned silicon

cantilever pads coated with ECM protein (Galbraith and Sheetz, 1997). This method

allows for the quantification of isolated subcellular tractions, and as a result is quite

sensitive, measuring stresses on the order of single nN/mm2. However, an individual

cell can only depress a limited number of cantilevers at a time, limiting the spatial

resolution of forces. Additionally, because the cantilevers can move in only one

direction, they can only be used to quantify traction forces in that direction. For cells

that do not cross the cantilever beam at a 90� angle, forces are calculated based on the
assumption that traction stresses are directed along only the long axis of the cell, which

is not necessarily always valid (Califano and Reinhart-King, 2010; Dembo and Wang,

1999). Moreover, production of the device requires an elaborate fabrication procedure

that requires specialized technology that may not be readily accessible for many labs.

The most commonly used alternative to TFM is the use of microfabricated post-

array detection systems (mPADs) (du Roure et al., 2005; Tan et al., 2003). In this

method, cylindrical microposts are fabricated out of polydimethylsiloxane (PDMS),

and ECM protein is adsorbed to the top of the posts to enable cell adhesion. Traction

forces are based on the extent of deflection of the posts from their original position.

Post deflection can then be linearly correlated to the local traction forces exerted by

the cell using classical beam bending theory. In this system, the height of the

micropost can be varied to adjust the rigidity of the posts, and thus to adjust the

stiffness of the substrate sensed by the cell. Each post acts as an individual vertical

cantilever, sensing force at a discrete location beneath the cell. Moreover, unlike the

silicon cantilevers described above, mPADs are able to detect forces generated in all

directions of the x–y plane. A more detailed description of the fabrication process

and supporting theory and computation can be found elsewhere (Fu et al., 2010;

Sniadecki and Chen, 2007; Yang et al., 2011).

Although elastomeric microposts offer several advantages over the original sili-

con cantilever system, there are several disadvantages that are important to note,

especially when comparing this technique to PA gel-based TFM. First, there is

considerable controversy over the appropriateness of culturing cells on a topograph-

ical landscape which is very distinct from the native environment of mammalian

cells. mPADs restrict adhesions to distinct circular patches, imposing arbitrary
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constrictions on the size, shape, and location of focal adhesions, thus controlling

where and how the cell transmits force (Yang et al., 2007). Although this system has

been used to elegantly determine the amount of force that individual focal adhesions

can exert (Fu et al., 2010), it remains unclear how these calculations relate to the

forces actually transmitted in the native physiological environment. Additionally,

while the elastomeric posts may be more easily fabricated than the silicon cantile-

vers, and protocols have been published describing this process in great detail

(Yang et al., 2011), an advanced microfabrication facility is still required to repro-

ducibly fabricate the posts. PA gels, on the other hand, are easily produced using

standard laboratory chemicals and equipment.

Another significant limitation of mPAD technology is the lower limit of E that can

be produced. Posts have been successfully fabricated with a lower limit ofE� 1.5 kPa

(Fu et al., 2010), which is considerably higher than that of PA gels (E� 0.1 kPa),

although it should be fairly noted that performing TFMon PA gels ofE< 1 kPa has its

own limitations. PA gels can also be used to examine the effect of mechanical

communication of multiple cells through the underlying substrate (Califano and

Reinhart-King, 2010; Reinhart-King et al., 2008), a technique that could not be done

using microposts, which effectively isolate cells from one another. On the other hand,

the ability to mechanically isolate cells can be advantageous. For example, microposts

were recently used to determine specific point forces at cell–cell junctions (Liu et al.,

2010). In summary, elastomeric microposts and PA gels each have their own distinct

advantages and disadvantages, which must be considered when determining the

appropriate system to use for quantifying traction forces in a given experiment.

D. Quantifying Cell Force in 3D

Like cells on 2D substrates, cells within 3D microenvironments encounter bio-

chemical, biomechanical, and physical cues that affect basic cellular processes such

as adhesion, spreading, and migration. As in 2D, these 3D cell behaviors are closely

tied to cellular biomechanics and the generation of cell forces. However, because of

the spatial complexity and dimensionality of the three-dimensional microenviron-

ment, both the control andmanifestation of cell forces are likelymore complex in 3D

(Dikovsky et al., 2008; Fraley et al., 2010; Gunzer et al., 2000; Mierke et al., 2008).

For example, while the interactions among traction forces and regulators of cell

migration such as cell adhesion, the cytoskeleton, and ECM deposition are increas-

ingly well characterized in 2D, there are many additional factors, including ECM

steric hindrance and proteolytic path-making, that are unique to cells within 3D

microenvironments (Wolf et al., 2003). Such factors critically impact cell migration

and are also intimately tied to traction forces (Zaman et al., 2006).

1. Overview of 3D Methods

Avariety of techniques have been developed to assess single-cell tractions inmodels

that recapitulate the 3D in vivomicroenvironment, and the majority of these methods
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rely upon microscopic visualization and tracking of either embedded beads (Fraley

et al., 2010; Poincloux et al., 2011; Shih and Yamada, 2010; Tamariz and Grinnell,

2002) or the structural components of the microenvironment (Friedl et al., 1997;

Hartmann et al., 2006; Kim et al., 2006). Briefly, cells are embedded within collagen,

fibrin, Matrigel, or synthetic hydrogel matrices or allowed to invade into 3D matrices.

To probe 3D cell tractions, the displacements of randomly dispersed, micron-scale

beads or ECM components are tracked over time or compared between the stressed

and relaxed states (as in 2D TFM) with widefield, confocal, or multiphoton micros-

copy. These displacement fields can be used themselves as quantitative metrics of 3D

cell traction forces or can be used to compute strain energy and traction stress fields.

2. Bead Tracking

A common technique to assess 3D cell traction forces is to track the displacement of

fluorescent beads embedded within a 3D hydrogel scaffold. The resulting strain maps

can be used to describe 3D cell contractility and traction-mediated matrix reorgani-

zation (Fraley et al., 2010; Poincloux et al., 2011; Shih and Yamada, 2010; Tamariz

and Grinnell, 2002). To compute the traction stresses that give rise to the observed 3D

displacements, current techniques require that themechanics of the hydrogel matrix be

well characterized and isotropic. Using a PEG hydrogel and confocal microscopy,

Legant et al. showed that cells exerted traction stresses ranging from 0.1 to 5 kPa and

that the strongest forces were generated primarily at the tips of long, thin pseudopodia

(Legant et al., 2010). Additionally, Maskarinec et al. used confocal microscopy to

quantify traction stresses in the z direction in fibroblasts plated on 2D PA gel sub-

strates, indicating that 3D forces may also play a significant role in 2D cell migration

(Franck et al., 2011; Maskarinec et al., 2009). These findings, which are based upon

many of the same principles and assumptions as 2D TFM, represent the most quan-

titative description of fully 3D traction forces to date. However, although the mechan-

ically defined synthetic hydrogels required for computation of numerical traction

stresses can be engineered to be degraded, modified, and remodeled by cells, they

often lack the fibrillar structure and full bioactivity of native ECM. Notably, these are

the very factors that impart complex mechanical properties to 3D matrices and are

normally involved in the critical mechanical and biochemical feedback networks that

determine many cell behaviors both in vivo and in natural fibrillar extracellular

matrices in vitro (Wolf and Friedl, 2009). For these reasons, there is presently increas-

ing interest in quantifying the functional outcomes of 3D cell traction by monitoring

the dynamic microstructure in physiologically relevant microenvironments rather than

translating measured strains into numerical traction stresses.

3. Matrix Tracking

The use of natural biopolymer matrices for 3D in vitro cell culture presents unique

opportunities and challenges to mechanobiologists: on the one hand, these matrices

are analogous to the microenvironment in which cells reside in vivo, and on the other
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hand, they are heterogeneous and mechanically complex. Importantly, use of such

in vitro tissue models allows multiscale interactions between cells and the fibrillar

matrix and cell behaviors such as native ECM deposition, ECM remodeling, path-

making, and path-finding, all of which have been shown to occur in vivo (Wolf and

Friedl, 2009; Wolf et al., 2003). Furthermore, microscopy techniques such as differ-

ential interference contrast (DIC) and confocal reflectance microscopy can be used to

visualize the dynamic fibrillar structural elements of these matrices due to differences

in refractive index between the fibrils and the surrounding media. As it is a functional

outcome of 3D traction forces and provides direct visualization of how mechanical

loads are bidirectionally transferred between a cell and its microenvironment, our lab

and others have used ECM reorganization as a metric of cell force generation in 3D

environments (Kim et al., 2006; Kraning-Rush et al., 2011; Pang et al., 2009).

Qualitative work with confocal reflectance and DIC microscopy has enabled the

visualization of ECM fibers during cell migration and demonstrated how cell–matrix

adhesions dynamically associate with the ECM, enabling remodeling (Friedl et al.,

1997; Gunzer et al., 2000; Hartmann et al., 2006; Petroll et al., 2004). Recently, more

rigorous techniques have been developed to assess local ECM remodeling at the

single-cell level. Quantitative analysis of ECM fiber alignment around cell pseudo-

podia using Fourier transforms provides insight into the spatiotemporal development

of 3D traction forces and matrix reorganization (Kim et al., 2006; Pang et al., 2009).

Similar orientation-based strategies are used to assess fiber alignment in gels sub-

jected to exogenous forces, which can help elucidate the interdependence of the ECM,

external factors such as interstitial flow and macroscale strain, and cell behaviors like

migration and remodeling (Ng and Swartz, 2006; Vader et al., 2009). As dynamic,

local matrix alignment and remodeling events ultimately lead to ECM compaction

around single cells, optical measurement of collagen density has emerged as another

metric of 3D cell traction (Kim et al., 2006; Ng and Swartz, 2006; Pang et al., 2009).

Our lab recently developed an image-processing technique based on local changes

in collagen compaction that allows us to quantitatively describe the extent of ECM

remodeling that a cell has induced through traction forces (Kraning-Rush et al.,

2011). This method is based on the principle that 3D cell tractions result in pericel-

lular matrix compaction, which manifests in a higher density of ECM fibers and

thus, increased confocal reflectance signal in proximity to the cell. Using either live

or fixed and stained samples, sparsely seeded cells in fibrillar 3D collagen gels are

simultaneously imaged with reflected light and either fluorescence or DIC. Using

ImageJ, the cell area, which is determined from the fluorescence or DIC/phase

contrast image, is subtracted from the reflectance channel and a 40–50 mm selector

line is drawn from the cell’s centroid into the surrounding matrix. A custom-written

ImageJ script rotates the selector line around the entire cell at 1-degree increments,

capturing an intensity profile at each step. Zero-intensity values are removed, which

defines the cell membrane as the origin and effectively normalizes the data for cell

shape. Reflectance intensities are averaged as a function of distance from the cell

membrane and the resulting collagen intensity profiles are normalized by subtract-

ing the baseline intensity measured far from the cell membrane. Collagen intensity
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profiles are fit to an exponential decay model and the half-length of the exponential

decay, l, is extracted to describe how far from the cell the collagen has been

remodeled. This method has allowed us to assess the dynamics and evolution of

matrix remodeling (Fig. 2) as well as to indirectly assess 3D traction forces generated

[(Fig._2)TD$FIG]

Fig. 2 MDA-MB-231metastatic breast cancer cell seeded in 1.5 mg/mL collagen gel for 24 h. (A) DIC

and (B) confocal reflectance images show coordinated changes in cell morphology and collagen matrix

reorganization, respectively, over time. Confocal reflectance image intensity increases with collagen

fibril compaction. (C) Quantification of collagen fibril compaction. Data points show normalized,

baseline-subtracted, average reflectance intensity as a function of distance from the cell membrane; solid

lines are best-fit exponential decays for 12 and 24 h. Consistent with no compaction, 0 h images show no

increase in reflectance intensity over baseline. (D) Collagen intensity decreases exponentially as a

function of distance from the cell membrane and can be modeled by the equation I = I0 � exp(�d/l),
where I is the average intensity, I0 is the intensity at the cell membrane, d is the distance from the cell

membrane in microns, and l is the half-length of the exponential decay, which describes how far from the

cell the collagen has been remodeled. Confocal reflectance images are 1 mm slices; scale bar = 50 mm.
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by cells treated with various cytoskeleton-perturbing agents (Kraning-Rush et al.,

2011). Our results show that increased traction forces in 2D and bulk collagen gel

contraction correlate with 3D ECM remodeling as quantified through the above

method. The matrix compaction metric that our lab uses is outlined in more detail in

the Computational Methods section.

III. Biological Insights from Traction Methods

PA gel substrates and TFMhave beenwidely utilized to study cell forces and other

behaviors in a variety of contexts, in both physiologically normal and disease states.

These behaviors include morphology (Tang et al., 2010; Yeung et al., 2005), differ-

entiation (Engler et al., 2006), single-cell (Dembo and Wang, 1999) and collective

cell migration (Trepat et al., 2009), cell–cell interactions (Califano and Reinhart-

King, 2010; Reinhart-King et al., 2008), cell–ECM interactions (Maskarinec et al.,

2009), and focal adhesion assembly (Balaban et al., 2001; Rape et al., 2011; Stricker

et al., 2011). In this section, we will briefly describe an overview of some of this

work. However, this is by no means considered to be all-inclusive, but rather is

designed to spark further interest in these topics. For excellent reviews on these and

other related topics, see the Further Reading section.

A. Using PA Gel Patterning to Study Force Generation

In addition to manipulating the stiffness of PA gels to assess the effects of

matrix mechanics on cell behavior, work has also been done using these gels to

generate cell adhesive ‘‘islands’’ where cell morphology is controlled by the

geometry of a patterned substrate. Several similar techniques have been devel-

oped to pattern protein ligands onto PA gels using microcontact printing (Li

et al., 2008a; Rape et al., 2011; Wang et al., 2002). Additionally, other substrates

have also been employed, including PDMS (Balaban et al., 2001) and glass

(Chen et al., 1997), patterned with ECM proteins such as collagen and fibronec-

tin, although these substrates are limited in their mechanical stiffness range.

Using these methods, cell spreading is constricted to the patterned shape, and

the shape can be manipulated to induce a desired morphology. For example,

patterning elongated cell geometries has been shown to enhance the differenti-

ation and maturation of myotubes (Li et al., 2008a), and also to increase the

expression of type I collagen in human tendon fibroblasts (Li et al., 2008b).

Moreover, by embedding beads within the PA gel, contractile forces exerted by

patterned cells can be examined using TFM (Wang et al., 2002). Recently, a

study by Rape et al. has shown that the magnitude and spatial distribution of

traction forces are not necessarily dependent on cell size, but on the distance

from the cell centroid to the perimeter, such that when comparing cells of equal

area, the more elongated cell will generate stronger traction forces (Rape et al.,

2011). Legant et al. identified a similar pattern of traction force generation in 3D,
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with cells generating the strongest inward traction stresses at the tips of long,

matrix-probing pseudopodia (Legant et al., 2010).

Patterned PA and PDMS gels have also been used to elucidate the exact nature of

the relationship between focal adhesions and force generation. In a study by Balaban

et al., the size and elongated shape of mature focal adhesions correlated with the

magnitude and direction of traction forces exerted by a cell (Balaban et al., 2001).

Building on this work, Rape et al. also manipulated the size of focal adhesions the

cell could form by patterning 4 and 200 mm2 adhesive squares within a 2500 mm2

square region. The cells that could only form small focal adhesions exerted signif-

icantly less force than thosewith larger focal adhesions, regardless of the fact that the

cells themselves were the same size (Rape et al., 2011). Interestingly, while Balaban

et al. report a linear relationship between force and focal adhesion size in uncon-

strained spread cells, Rape et al. note an increase in amount of force exerted per focal

adhesion as the distance from cell centroid to perimeter increases. Recent work by

Stricker et al. in unconstrained cells indicates that the correlation between focal

adhesion size and traction force generation may exist only in the early stages of focal

adhesion formation. Once mature, they find that this correlation is abolished, and

these adhesions can now generate a broad range of forces (Stricker et al., 2011).

Because cell adhesion and morphology differ between 2D and 3D environments

(Cukierman et al., 2001), there is also interest in exploring the relationship between

cell traction and cell–matrix adhesion in three-dimensional environments. Early

work by Friedl et al. linked 3D tumor cell migration with 3D matrix reorganization

and redistribution and shedding of cell adhesions (Friedl et al., 1997). More recent

studies have compared the temporal and spatial dynamics of zyxin-positive cell

adhesions with 3D ECM deformation (Petroll and Ma, 2003) and demonstrated that

ECM density can, in part, determine the extent of matrix reorganization (Pizzo et al.,

2005). Further, Fraley et al. identified several specific matrix adhesion molecules

that are involved in traction generation during 3D cell migration of HT-1080 fibro-

sarcoma cells (Fraley et al., 2010). Interestingly, the authors found that, while

classical 2D focal adhesion proteins such as talin, VASP, and FAK contribute to

elastic matrix deformation by HT-1080 cells, these molecules are not significantly

involved in inelasticmatrix remodeling in 3D. Together, these studies suggest that, as

in 2D, the size, morphology, and composition of 3D cell adhesions may be related to

cell traction as assessed through local ECM strains and matrix remodeling.

B. TFM for the Study of Cell Migration in 2D

TFMhas been widely utilized to study the specific mechanisms by which cells use

force to migrate. Performing TFM on cells while manipulating the actomyosin

cytoskeleton has revealed that actin stress fibers are critical for the transmission

of forces to the substrate (Kraning-Rush et al., 2011; Pelham and Wang, 1999). In a

study by Kumar et al., a single actin stress fiber within a living cell was ablated using

multiphoton laser nanoscissors, resulting in large-scale cytoskeletal rearrangement,

particularly on compliant substrates (Kumar et al., 2006). This study and others lend
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support to the tensegrity model of cellular architecture, wherein a network of

cytoskeletal elements maintains a prestress within the cell, which drives its adhesion

and migration behavior (Wang et al., 1993, 2001).

Studies in fibroblasts have also revealed that traction forces tend to be spatially

concentrated at the periphery of the cell, with little to no force being exerted beneath

the nucleus of the cell. Force generation is also generally greater at the leading edge,

or anterior of the cell, with weaker, more passive forces located in the posterior of the

cell (Dembo and Wang, 1999; Munevar et al., 2001; Pelham and Wang, 1999).

Interestingly, this trend is reversed in neutrophil migration, when forces are concen-

trated in the uropod of the cell during migration (Smith et al., 2007). Additionally, in

fibroblast (Gaudet et al., 2003) and endothelial cell (Califano and Reinhart-King,

2010; Reinhart-King et al., 2003) models, increasing the density of ECM protein

conjugated to the surface of PA gels has been shown to increase both the spread area

of cells and the magnitude of the force generated by these cells, although whether

this phenomenon is driven by stronger cells spreading more or by larger cells

inherently exerting greater forces remains an area of debate. Moreover, in this

fibroblast model, the increase in force and area was also directly correlated to an

increase in migration speed with increasing collagen density, suggesting that stron-

ger traction forces drive increased cell motility (Gaudet et al., 2003).

In addition to the widespread use in the study of mammalian cells described here,

2D TFMhas also been used to study the forces generated by several other unique cell

types, for example, during the unique single-cell and multicellular stages in the life

of the amoeba Dictyostelium discoideum (Delanoe-Ayari et al., 2008; Lombardi

et al., 2007), during migration of the malarial parasite Plasmodium berghei in the

stage after it is injected into the host’s skin during a mosquito bite (Munter et al., 2009),

and during the migration of fish keratocytes on compliant substrates (Lee, 2007).

C. Cellular Force Generation in 3D Migration

Evaluation of cell forces in 3D environments has revealed several insights into

the molecular mechanisms of three-dimensional force generation and cell migra-

tion. Although ROCK-mediated traction can enable 3D matrix reorganization

through mechanisms analogous to contractility in 2D (Kim et al., 2006), the role

of cell forces in driving cell migration in 2D and 3D are unique. By tracking the

displacement of beads around cells in 3D, Shih et al. demonstrated that myosin-

IIA-dependent retrograde flow at the cell cortex exerts traction forces against the

anterior ECM, propelling the cell body forward during amoeboid migration of

MDCK epithelial cells (Shih and Yamada, 2010). Through assessment of ECM

displacement fields around amoeboid-migrating MDA-MB-231 breast cancer

cells in Matrigel, Poincloux et al. identified regions of the cell that generate

distinct cell tractions in a RhoA/ROCK/myosin II-dependent manner

(Poincloux et al., 2011). Similar traction-dependent patterns of matrix deforma-

tion have been defined during mesenchymal migration of HT-1080 cells

(Bloom et al., 2008). Finally, there has been substantial interest in exploring the

6. Quantifying Traction Stresses in Adherent Cells 157



requirement for proteolysis during 3D cell migration (Dikovsky et al., 2008; Wolf

and Friedl, 2009; Wolf et al., 2003), and ROCK- and myosin-dependent matrix

deformation has been identified as a primary facilitator of protease-independent

3D tumor cell migration both in vitro and in vivo (Wyckoff et al., 2006).

D. Force Generation and Cancer Progression

Given the intimate role that traction forces play in cell adhesion and migration,

two key behaviors that have been shown to be disrupted during certain disease states,

it is logical that cell contractility may be affected by disease, or perhaps even a factor

driving the condition. Indeed, TFM has been used as a tool for examining the effect

of several diseases on cellular force generation, including hypertensive heart disease

and arthritis (Bakker et al., 2009; Marganski et al., 2003a). Most notably, Marganski

et al. found that hypertensive cardiac fibroblasts were excessively contractile com-

pared to their healthy counterparts, and that the hypertensive cells were unable to

effectively regulate their contractions (Marganski et al., 2003a).

Perhaps the most comprehensive disease state in which TFM research has been

done is in cancer progression. In the seminal work on tensional homeostasis during

tumor progression, Paszek et al. found that increasing the stiffness of the 3D

microenvironment surrounding mammary epithelial cells drives malignant progres-

sion by clustering integrins, increasing focal adhesion formation, disrupting adhe-

rens junctions, and increasing cell proliferation (Paszek et al., 2005). Likewise, Tang

et al. found that increasing 2D stiffness promotes a metastasis-like phenotype in

colon carcinoma cells (Tang et al., 2010), suggesting that increased mechanical

stiffness may be an important driving factor in a wide range of cancer models.

Additionally, Paszek et al. examined the relationship between malignancy and

contractile force generation. Using the human isogenic nonmalignant S-1 mammary

epithelial cells and malignant T4–2 cell lines, they found that tractions forces were

significantly elevated in themalignant cancer cells, and that these forceswere RhoA-

dependent. Likewise, Rosel et al. found that in a rat sarcoma model of protease-

independent amoeboid migration, highly metastatic A3 cells generated traction

forces that were five times greater than the spontaneously transformed, nonmeta-

static K2 cells, with traction forces at the leading edge found to be even higher

(Rosel et al., 2008). Moreover, using a Deformation Quantification and Analysis

(DQA) algorithm to quantify collagen fiber deformation, Wyckoff et al. found that

during nonproteolytic amoeboid migration, metastatic MTLn3E murine mammary

tumor cells generated increased force, and were thus able to push through collagen

fibers and invade into the ECM in 3D, while their nonmetastatic parental cells were

unable to invade (Wyckoff et al., 2006). However, more recent research has called

into question the existence of protease-independent migration in native collagen

environments, and this remains an area of great controversy in three-dimensional

tumor migration research (Sabeh et al., 2009).

Surprisingly, in contrast to these four studies, Indra et al. recently found that in yet

a different set of murine mammary tumor cells, traction forces actually decreased as
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the metastatic potential of the subpopulations increased (Indra et al., 2011).

Similarly, using patterned PA gels and inducing tumoral transformation, Tseng

et al. found that increased contractility appeared to be dependent on the method

of transformation, with TGFb-treated mammary epithelial cells generating

increased force, while ErbB2 receptor-activated cells and CK2b-knockdown cells

exerted weaker forces (Tseng et al., 2011). Given these conflicting results, the

precise role of force generation in cancer progression, and particularly in relation

to proteolytic activity, remains somewhat unclear. It may be that the effect of

malignant transformation on force generation is specific to the type of cancer and

the underlying genetic mutations. Regardless, this remains an exciting area of study,

and holds great potential for future diagnostic and therapeutic applications.

IV. Open Challenges

Quantification of three-dimensional cell tractions within a physiologically rele-

vant ECM is a complex problem, and there are still several challenges to overcome

before it will be possible to translate 3D displacement fields of beads or ECM fibers

into true traction stresses. Toward this, Legant et al. have developed a technique to

numerically quantify three-dimensional tractions of cells embedded in PEG

(Legant et al., 2010). Additionally, techniques have recently been developed to probe

the three-dimensional forces exerted by cells plated on a 2D substrate using laser

scanning confocal microscopy (Franck et al., 2011; Maskarinec et al., 2009).

Although these methods have the inherent limitations as previously discussed, they

should serve as a foundation for the development of increasingly quantitativemodels

for 3D cell tractions that incorporate the viscoelastic fibrillar architecture and

bioactivity of natural ECM.

If we are to use native ECM as a probe for 3D cell force, we will need to better

understand its dynamic biomechanics. Already, several computational biophysi-

cal approaches have been developed to dynamically assess local matrix deforma-

tions (Mierke et al., 2008; Roeder et al., 2004; Vanni et al., 2003; Wyckoff et al.,

2006). For example, automated tracking of individual fibers can be achieved by

using a DQA algorithm, which transforms fiber deformations into a displacement

field (Vanni et al., 2003). This technique has been used to track both the rate and

spatial dependence of cell-mediated matrix remodeling (Wyckoff et al., 2006).

Roeder et al. have incorporated three-dimensional biomechanics into their 3D

Incremental Digital Volume Correlation algorithm, enabling them to relate mac-

roscale stresses to the resulting microscale changes in ECM architecture

(Roeder et al., 2004), track collagen fibers during 3D matrix reorganization,

and quantify local cell-induced volumetric strains (Pizzo et al., 2005).

Although these strategies provide a more detailed assessment of how the ECM

microstructure is changing under cellular traction forces, there remains a need for

a more robust definition of the mechanical properties of the 3D ECM.

Importantly, unlike most 2D substrates used to assess cell tractions, the mechanics
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of 3D matrices are subject to cell-induced changes as cell forces are transmitted to

the 3D microenvironment. Ultimately, because of the deformation, degradation,

and secretion processes that constitute a cell’s interaction with its physiological

3D microenvironment, computation of a true traction stress may not be a suitable

stand-alone metric by which to assess cell contractility. However, a better under-

standing of the microscopic mechanics of the ECM will contribute to improved

biomechanical models of 3D force generation.

Finally, an important open challenge to quantifying cell forces in 3D is the variety

of cellular outcomes that 3D tractions can elicit. As discussed in this chapter, 3D cell

tractions have been shown to enable elastic matrix deformation, permanent matrix

remodeling, and both amoeboid and mesenchymal migration. While the molecular

players involved in these behaviors are beginning to be revealed (Fraley et al., 2010;

Wyckoff et al., 2006), there is still a need for more extensive evaluation of the

molecular mechanisms of 3D traction force generation and transmission. Such work

may provide an explanation for the diverse phenotypic manifestations of three-

dimensional contractility and would ultimately improve models for 3D cell traction

forces.

V. Methods

A. 2D Polyacrylamide Gel Preparation and Functionalization

Using the following steps, PA gels can be created that have a Young’s Modulus (E)

between 0.2 and 300 kPa. A number of groups have published methods for making

PA gels as model substrates to investigate the effects of matrix stiffness on cell

behavior, a method originally described by Wang and Pelham (Beningo and Wang,

2002; Klein et al., 2007; Wang and Pelham, 1998; Yeung et al., 2005). Here, we

include our own method that was adapted and modified from Pelham andWang, and

has successfully been used to make PA gels for use with TFM. One of the more

significant differences between our methods and the methods of most other groups is

the protocol for conjugation of proteins to the PA gels. Most groups have used photo

cross-linkers, whereas we use a bifunctional linker that is polymerized into the gel.

We find that this method produces a more uniform coating of protein on the gel

surface.

We have successfully performed TFM within a stiffness range of 1–10 kPa. PA

gels with a stiffness lower than 1 kPa tend to have significant exogenous bead

movement to be easily tracked using our system. On the other hand, the cell types

that we have used have not been able to exert enough force to deform a PA gel with

E greater than 10 kPa. However, these PA gels can be very useful for measuring the

effects of stiffness on other cell behaviors such as morphology (Yeung et al., 2005),

migration (Dembo and Wang, 1999), and proliferation (Klein et al., 2009). Once

prepared, these gels can be stored in phosphate-buffered saline (PBS, Invitrogen,

Carlsbad, CA) at 4�C for up to 2 weeks. Storing these gels in a dehydrated state is not

recommended.
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1. Coverslip Activation

This step can be performed in advance of the polymerization process. Dry acti-

vated coverslips can be stored for over a month, preferably under desiccation. For

TFM studies, we recommend an activated glass coverslip size of 43 	 50 mm

(VWR, West Chester, PA). Other PA gel studies that do not require a traction

chamber can use square 22 	 22 mm glass coverslips, which will fit easily into a

6-well dish for cell seeding, or other sizes as desired. The following steps assume the

use of 43 	 50 mm slips.

a. Line up coverslips on top of inverted Petri dishes (2 slips/dish). This aids in the

ease of handling of the coverslips.

b. In a chemical fume hood, holding a corner of the coverslip with forceps, briefly

pass the coverslip through the flame of a Bunsen burner. Using a clean cotton

swab, immediately apply 0.1N NaOH (Sigma-Aldrich, St. Louis, MO) to the

flamed side. Be careful not to overheat the glass, or it will break. If the glass is not

heated enough, the NaOH will not spread well. If this occurs, repeat flaming step

and reapply NaOH.

c. Allow coverslips to dry completely inside the fume hood, about 10–20 min.

d. Reapply 0.1N NaOH with clean cotton swab until the whole coverslip appears

coated. Allow the coverslips to dry.

e. In fume hood, add �60 mL of 3-aminopropyl-trimethyoxysilane (APTMS,

Sigma-Aldrich) to each coverslip and spread quickly by rolling the thin end of

a glass Pasteur pipette over the coverslip surface.

i. Work in groups of two coverslips at a time, use 120 mL of APTMS and deposit

half on each coverslip. Use one Pasteur pipette for two coverslips, and spread

drop until it looks evenly coated and glossy. Note that once the drop is

deposited on the coverslip, it should be spread quickly, as the APTMS will

dry rapidly. APTMS is corrosive, and care should be taken to avoid skin

contact. We recommend discarding gloves after this step.

f. Allow coverslips to dry for 5 min inside the fume hood. Do not allow the cover-

slips to dry for more than 10 min.

g. Place each coverslip in a separate Petri dish filled with 18.2 MV cm purified

deionized (MilliQ) water.Wait until APTMS layer starts to crack and lift off from

the surface of the coverslip. Shake dishes to dislodge APTMS from each slip and

discard water.

h. Rinse three more times with MilliQ water, incubating for 5 min between each

rinse.

ii. If coverslips are not thoroughly rinsed, the gluteraldehyde in the next step will

react with any remaining APTMS and form an orange–red precipitate on the

coverslip. These coverslips must be discarded.

i. In fume hood, prepare a 0.5% gluteraldehyde solution (70% aqueous gluteralde-

hyde stock solution, Sigma-Aldrich) in 1	 PBS (pH 7.1, without Ca2+ or Mg2+).
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Each 43 	 50 mm coverslip requires 1 mL. Vortex the solution to ensure thor-

ough mixing.

j. Tape down a piece of Parafilm to the benchtop long enough for all coverslips to be

laid down side by side. Pipette a 1-mL drop of diluted gluteraldehyde solution

onto the Parafilm for each coverslip. Remove coverslips from Petri dishes and

invert onto the gluteraldehyde drop. Incubate for 30 min.

k. Remove coverslips from parafilm and return them to the Petri dishes. Dispose of

gluteraldehydewaste in specified container.Wash each coverslip three timeswith

MilliQ water, incubating for 5 min between each rinse.

l. Remove coverslips from dishes and place on a clean paper towel. Allow cover-

slips to dry inside fume hood,�30–45 min. This step can be performed overnight,

and coverslips can be stored after this point as described above.

2. Polyacrylamide Gel Polymerization

There are many different formulations of acrylamide/bis-acrylamide that can be

used to make PA gels with a similar stiffness. The formulations described in this

chapter have been adapted from (Yeung et al., 2005) and their Young’s moduli have

been measured using the protocol described later in this chapter. The volumes

describe herein will create a gel that has a height of �70 mm. It is important to note

that gels will shrink after polymerization, and because of this, the height of the gel

cannot be directly calculated from the volume of polymerization solution used.

Because the extent of polymer swelling varies with the polymer formulation

(Charest et al., 2011) and cannot be easily predicted based on modulus alone, it is

important to measure the height of the resulting gel that is used for TFM. The gel

must be sufficiently thick such that the gel can freely deform due to cellular forces

without the influence of the underlying glass (Sen et al., 2009).

a. Using a clean cotton swab, coat one 18 mm diameter circular glass coverslip for

each 43 	 50 mm activated coverslip with Rain-X (ITW Global Brands,

Houston, TX). Allow circular coverslips to dry for at least 5 min. Buff off excess

Rain-X with a Kimwipe, making sure to buff the edges well. Remove dust and

debris using canned air to obtain a clean surface. It is particularly important to

minimize particles that may appear on the glass and be transferred to the gel as

they can interfere with even polymerization and imaging.

b. Mix 30 mL of 0.5 mm diameter fluorescent polystyrene beads (Invitrogen) and

90 mL of MilliQ water per gel formulation to be made in a 1.5 mL microcen-

trifuge tube and sonicate for 10 min to create a homogenous mixture.

c. In a 50 mL tube, for each desired stiffness, combine in order acrylamide (40%w/v

aqueous stock solution, Bio-Rad, Hercules, CA), N,N0-methylene-bis-acrylamide

(2% w/v aqueous stock solution, Bio-Rad), 250 mM 4-(2-hydroxyethyl)-1-piper-

azineethanesulfonic acid (HEPES, pH 6.0, Sigma-Aldrich), MilliQ water, and N,

N,N,N-tetramethylethylenediamine (TEMED, Bio-Rad), according to Table I. Mix

thoroughly before and after TEMED addition.
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d. Adjust the pH of the solution to 6.0 by adding �40–50 mL of 2N HCl (Sigma-

Aldrich).

e. Remove 845 mL of acrylamide mixture and place in a 5 mL plastic culture tube.

Add 80 mL of the sonicated fluorescent bead mixture and mix thoroughly. If not

performing TFM, add 80 mL of MilliQ water to the mixture instead. Place the

tube in a vacuum flask and cover flask with aluminum foil to prevent bleaching of

the beads. Degas the solution for at least 30 min. Insufficient degassing will

affect the extent of polymerization. One tube contains enough mixture to poly-

merize �35 PA gels.

f. Add 70 mL of 200 proof ethyl alcohol (Sigma-Aldrich) to 5.6 mg of N-6 ((acry-

loyl)amido)hexanoic acid ((N-6), synthesized in our lab according to the method

of (Pless et al., 1983)) for each gel formulation. Pipette until N-6 is well distrib-

uted throughout the ethyl alcohol and add it to the degassed acrylamide mixture.

g. To initiate polymerization, add 5 mL of freshly prepared 10% ammonium per-

sulfate (APS, Bio-Rad) in MilliQ water to acrylamide mixture and mix gently by

pipetting up and down with a 1-mL pipettor, being careful not to introduce

bubbles.

h. Add 25 mL of gel solution to activated coverslips from Section 1. Gently apply

the Rain-X-coated circular coverslip by carefully touching the round coverslip to

the edge of the drop and lowering it slowly using forceps, being careful to avoid

bubbles. For TFM gels, invert the coverslip sandwich onto a 35 mm dish to allow

the beads to form a uniform layer at the top of the gel.

i. Allow polymerization to occur for 25–45 min. More compliant gels (<2.5 kPa)

will require more time to polymerize (�45 min), while less compliant gels

(>5 kPa) will require less time (�25 min). The edges of the gel should begin

to recede beneath the top coverslip.

j. Peel off the top coverslip from each gel using a clean razor blade.

3. Functionalization with Protein Ligand

Cells cannot adhere directly to an unmodified PA gel. However, PA gels can be

readily functionalized with a variety of different protein ligands, depending on the

cell type used and desired experimental conditions. In our lab, we have successfully

functionalized PA gels with collagen, laminin, fibronectin, and RGD peptide, at

concentrations ranging from 0.1 to 1000 mg/mL, although other proteins could be

easily substituted. We most commonly use a concentration of 100 mg/mL as the

ligand density.

a. Just before the PA gels have finished polymerizing, dilute the desired concen-

tration of protein ligand in 50 mM HEPES (pH 8.0, Sigma-Aldrich) on ice. You

will need 200 mL of protein solution for each coverslip.

b. Tape down a piece of Parafilm onto a plastic tray long enough to hold each

coverslip. Pipette a 200 mL drop of protein solution onto the Parafilm for each

coverslip.
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c. Once the top coverslips have been removed, immediately invert coverslips over

the protein solution, taking care to ensure that the surface of the PA gel is covered

entirely, with no air bubbles.

d. Incubate at 4�C for 2 h.

e. Remove gels from parafilm, and place each gel into a labeled Petri dish for

storage.

f. In a tube, mix a 1:1000 volume of ethanolamine (Sigma-Aldrich) with 50 mM

HEPES (pH 8.0, Sigma-Aldrich). Youwill need 500 mL of ethanolamine solution

for each gel.

g. Deposit 500 mL of the ethanolamine solution directly onto each gel, making sure

the volume covers the entire gel surface. Incubate at room temperature for

30 min.

h. Rinse gels with MilliQ water. Place gels in PBS and store at 4�C. For best results,
use gels within 2 weeks of polymerization. To prevent bacterial growth, gels can

also be stored in 1	 penicillin/streptomycin.

4. Validating the Young’s Modulus of PA Gels

To measure the Young’s Modulus of PA gels, two primary methods have been

reported: the use of Atomic Force Microscopy (AFM) and the ‘‘steel ball’’ method.

Although the use of AFM poses some advantage over the steel ball method, it is

muchmore technically challenging and requires a skilled user. Here, we focus on the

steel ball method, as it is a tractable method that requires no specialized tools. It is

important to note that batch to batch variations in acrylamide and bis-acrylamide

stock solutions will result in some variation in the PA gels. Additionally, there is

some error inherent in this measurement in determining the precise focal plane of the

beads before and after deformation. Moreover, E should be measured only in PA gels

that have been equilibrated with media and incubated at 37�C in order to most

closely mimic the cell culture conditions in which they are typically used.

a. On the stage of an epifluorescent microscope, place a steel ball (radius (r)

= 0.32 mm, Abbott Ball Co., West Hartford, CT) on a gel with embedded fluo-

rescent beads. Focus the microscope at 20	 magnification. This is most easily

done by placing the ball on the gel first, and then moving the stage until the ball is

in the field of view. The ball is visible because it blocks the light path and can be

seen as a shadow once it is in the field of view. Focus on the top layer of beads

directly beneath the center of the steel ball and note z position (Z1).

b. Remove the steel ball using a magnet. Focus the microscope on the top layer of

beads once they have returned to their original, unstressed, position. Note the z

position (Z0).

c. Using Hertz theory (Lo et al., 2000), calculate E using Eq. (25),

E ¼ 3ð1� n2Þ f
4

ffiffi
r

p ffiffiffiffi
d3

p ð25Þ
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where d is the indentation depth of the steel ball (d = jZ1 � Z0j) exerting a

buoyancy-corrected force f on the surface of a gel with Poisson’s ratio n = 0.3–

0.5 (Dembo and Wang, 1999; Li et al., 1993). f can be calculated by subtracting

the buoyant force, Fb, of the ball from the weight of the ball. The buoyant force is

calculated as Fb = rVg, where r is the density of the ball, V is the volume of the

spherical cap submerged into the substrate surfacewith depth d (from above), and

g is the acceleration due to gravity.

B. Traction Force Microscopy Data Collection

The seeding and analysis described in this section are for isolated, single-cell

studies, although they can be adapted for quantifying forces of multiple cells in

contact (Califano and Reinhart-King, 2010). It is important for the cells to be fairly

isolated so that bead movement from one cell does not interfere with the bead

movement from a neighboring cell. Additionally, cells can transmit forces through

PA substrates and affect the behavior of nearby cells (Reinhart-King et al., 2008), a

phenomenon that is dependent on the stiffness and ligand density of the substrate. To

avoid this effect, when quantifying forces on stiffer substrates (
5 kPa), cells should

be at least 50 mm apart, while on softer substrates (<2.5 kPa), cells should be greater

than 200 mm apart (generally limit one cell per field of view under standard 20	
magnification). Additionally, care should be taken to avoid bead movement from

cells outside the viewing region, as this can also negatively affect the accurate

quantification of traction forces of your target cell. A schematic of the chamber

setup is shown in Fig. 3A.

This procedure uses a custom-made traction chamber that fits into a custom stage

manufactured by Zeiss (see Fig. 3B). The chambers used in our lab are 7 cm long,

8 cmwide, and 1 cm deep, and contain a central hole, 3 cm in diameter. Additionally,

our insets are designed with a ridge around the opening that fits the bottom of a

35-mm petri dish, for use as a lid. Each chamber is designed to accommodate one

circular PA gel with an 18-mm diameter polymerized on a 43 	 50 mm glass

coverslip, as described above.

1. Chamber Setup and Cell Seeding

The following steps should be performed within a sterile biosafety cabinet.

a. UV sterilize one traction chamber and one 35 mm petri dish for each PA gel, as

well as several KimWipes (Kimberly-Clark, Neenah, WI), paper towels, and a

syringe filled with vacuum grease (Dow Corning, Midland, MI) for 20 min.

b. Remove the coverslip containing the PA gel from PBS using a razor blade and

place on paper towel. Using a KimWipe, gently dry off the excess PBS surround-

ing the gel surface. Be careful not to touch the gel surface with the KimWipe.

c. Invert the traction insert so that the ridged side is facing down. Apply a thin line of

vacuum grease around the circular opening.
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d. Invert the coverslip with the PA gel over the traction insert such that the PA gel is

centered over the opening.

e. Gently press down on the coverslip until the vacuum grease has formed a tight

seal around the entire opening. If the chamber leaks, it is likely that the coverslip

was not properly sealed to the traction insert, andmore vacuum grease is required.

f. Flip over the traction insert and add 2 mL sterile PBS to the gel to keep it hydrated

until cell seeding. Repeat these steps until all PA gels are attached to their

respective traction inserts. At this point, gels can be stored overnight prior to

cell seeding if desired.

g. Passage the desired cell population and determine the cell count. Seed 2000–

4000 cells onto each PA gel, depending on the size of the cells and the

duration of incubation prior to imaging. Typical incubation times in our lab

[(Fig._3)TD$FIG]

Fig. 3 Traction chamber setup. (A) A polyacrylamide gel on an activated coverslip is attached with

vacuum grease to a traction chamber and seeded with a low density of the desired cell type.Measurements

are acquired using an inverted microscope. (B) A custom-made traction chamber and stage insert used in

our lab. (For color version of this figure, the reader is referred to the web version of this book.)
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range from 6 to 18 h, although this time can be extended if desired. However,

note that if the cells begin to proliferate, finding isolated cells to analyze

becomes more difficult.

2. Acquiring Traction Images

In our lab, cells are imaged inside a temperature, humidity, and CO2-controlled

automated stage of a Zeiss Axio Observer Z1m inverted phase contrast microscope

with a Texas Red fluorescent filter, using a Hamamatsu ORCA-ER camera. Cells are

incubated on the microscope stage at 37�C, 40% humidity, and 5% CO2 until

trypsinization. Images are acquired using AxioVision software (v. 4.6.3, Carl

Zeiss), and many of the steps described below may be specific to this software,

but should be readily adaptable to other microscope systems. Note that these steps

can be performed without stage top incubation, as long as the length of time the cells

spend outside of the incubator prior to trypsinization is minimized, preferably no

longer than 20–30 min. An automated stage is required for imaging more than one

cell per PA gel, and can greatly increase the efficiency of data collection. If a time

course study is desired, a phase and stressed image can be acquired at each time point

for each cell, and one final image of the relaxed bead field can be acquired at the end

of the study.

a. Place traction insert containing cell-seeded PA gel onto the stage of the microscope.

b. Using a 10	 objective, identify isolated cells and mark their positions.

c. Using a 20	 objective, acquire a phase contrast image of the cell, focusing

primarily on the cell boundaries. Immediately acquire a fluorescent image of

the uppermost layer of beads directly beneath the cell. It is important that these

two images are taken as close in time as possible, as cells can change position

(and thus change the underlying bead placement) fairly rapidly, and both images

need to be consistent for quantification. Repeat for each cell. Note that for

compliant gels (<2.5 kPa), it may be appropriate to use a 10	 objective to

acquire these images, in order to obtain a significant population of fluorescent

beads with negligible movement.

d. Aspirate media from the well, being careful not to touch the PA gel surface with

the pipette, as this will cause distortion of the bead layer and become unusable.

e. Rinse well three times with 3 mL PBS.

f. Apply 1 mL of trypsin–EDTA. Let sit for 5–10 min depending on cell type.

g. Aspirate trypsin and wash with PBS. Check all fields of view to confirm that the

cells of interest have been removed. If not, repeat PBS rinse. Once cells are

removed, keep the gel hydrated with PBS.

h. Return to the location of the first cell. Open the corresponding stressed image.

Align the beads in the x and y directions such that they line up at a distance far

from the cell. It is generally easier to do this in a corner. Some error is acceptable

in this adjustment, as the tracking software described above will ignore the most

common bead displacement (Marganski et al., 2003b).

6. Quantifying Traction Stresses in Adherent Cells 167



i. Adjust the z direction such that the same layer of beads is in focus. Acquire an

image of the unstressed bead field.

j. Repeat for each marked location.

C. Traction Force Microscopy Data Analysis

There are a number of methods now described to convert the images that are

gathered experimentally into stress and strain fields (Angelini et al., 2010; Del

Alamo et al., 2007; Yang et al., 2006). The original method was invented and

described by Dr. Micah Dembo (Boston University) and is the method we use in

our lab. The analysis is done through the LIBTRC software package that includes

algorithms for bead tracking, calculation of the traction stresses, and a graphical

interface to organize and display the output. Complete detailed instructions for

running the software can be found in the LIBTRC Users Guide.

Prior to analysis, the stressed and relaxed images of the bead field should be

compared to ensure that they overlap uniformly at distances far removed from the

target cell. If a bead is lost or if there is bead movement caused by a cell outside

of the field of view, the images can be cropped to remove the offending area as

long as there is still a large portion of the image that remains unstressed (minimal

bead displacement). If this phenomenon occurs, it is important that all three

images (the phase image of the cell, and the two images of the bead field) are

cropped identically. At no point should beads actively displaced by the target cell

be removed from the image set.

The LIBTRC software outputs a wealth of information regarding the traction

forces exerted by the cell. One commonway to represent this force data is by plotting

total force, jFj, which is an integral of the magnitude of the traction field over the cell

area, Eq. (26),

Fj j ¼
ð ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T 2
xðx; yÞ þ T2

yðx; yÞ
q

dxdy ð26Þ

where

Tðx; yÞ ¼ ½Txðx; yÞ; Tyðx; yÞ� ð27Þ
is the continuous field of traction vectors defined at any (x,y) position within the

projected cell area (Reinhart-King et al., 2005). The polarization of the force

distribution within the cell is also computed in LIBTRC as the integral of the

absolute value of the traction magnitudes dotted with a unit vector directed

along the long axis of the cell or the perpendicular short axis of the cell

(Kraning-Rush et al., 2011). Forces can also be analyzed by plotting the average

traction stress, or total force divided by the cell area (Califano and Reinhart-

King, 2010). Additionally, strain energy (erg), or the total energy transferred

from the cell to the elastic displacement of the substrate, can also be used as a

metric of force:
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erg ¼ 1

2
T � D ð28Þ

where D is the displacement field at the substrate surface caused by the traction

field T.

D. Imaging Collagen Remodeling Using Confocal Reflectance Microscopy

Quantitative matrix remodeling as a functional measure of cell traction forces can

provide critical information about the spatial and temporal nature of cell contractility

and mechanical cell–matrix interactions in 3D. Importantly, these metrics can be

coupled with fluorescent tagging of cell components such as the cytoskeleton, focal

adhesions, and regulatory molecules to identify cell structures and phenotypes that

are uniquely involved in the generation of 3D traction forces (Wolf et al., 2003;

Zaman et al., 2006), ultimately allowing us to better probe the dynamic interactions

between cell contractility and the ECM.Herewe present onemetric used in our lab to

quantitatively describe collagen matrix remodeling using confocal reflectance

microscopy (Kraning-Rush et al., 2011).

1. Preparation of collagen gels

Our method of quantifying 3D cell traction forces utilizes confocal reflectance

microscopy to probe the structure and organization of collagen fibers surrounding

cells embedded within a collagen matrix. In our lab, we maintain a 10-mg/mL stock

of acid-solubilized collagen type I isolated from rat-tail tendon (Bornstein, 1958),

and dilute this stock to a final gel collagen concentration of 1.5 mg/mL. Collagen

density can be varied to alter matrix sterics and ligand density if desired. To limit

cell–cell interactions, cells are seeded sparsely at 50,000–100,000 cells/mL. After

cells are embedded within collagen gels, they can be cultured under a variety of

conditions and imaged live or after fixation and staining.

a. Calculate the following:

i. Volume of collagen stock to be used = (Final gel volume � Final collagen
concentration)/Collagen stock concentration

ii. Volume of 1N NaOH to neutralize the solution = Volume of collagen stock �
0.023

iii. Volume of cell suspension and media to be added = Final gel volume –

Volume of collagen stock – Volume of 1N NaOH

The following steps should be performed within a sterile biosafety cabinet.

b. Place on ice a sterile 15 mL conical tube to hold the final mixture. All reagents

should be kept on ice until use, as collagen gel polymerization is pH- and

temperature-dependent.

c. Trypsinize and resuspend cells in cold media such that the volume of cell

suspension is approximately 25% that of the volume of culture media.
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d. Place desired volume of collagen stock in cold 15 mL conical tube.

e. Add acellular culture media; if using media containing phenol red, solution will

turn yellow due to the acetic acid–collagen stock solution. Keeping the tube on

ice, thoroughly and quickly mix the solution without introducing air bubbles until

it turns uniformly yellow.

f. Add cold 1N NaOH and mix as in step (e) until solution is uniformly pink. Use of

different types of media may require adjustment of NaOH volume; neutralization

to pH 7.2 should be verified initially.

g. Add cell suspension to collagen solution and mix.

h. Aliquot the collagen–cell solution into desired volume in a glass-bottom Petri

dish or multiwell plate (MatTek, Ashland, MA) and allow gel to polymerize at

37 �C for 30–60 min.We find that collagen solution batches of 1–5 mLwork best

as this range of volumes permits accuracy and precision of volumemeasurements

and thorough mixing.

i. Gently add prewarmed media to gel and culture at 37 �C.
Optional:

j. To study cell contractility, allow cells to adhere and spread for 4–12 h before

experimental treatments. This time period is used to allow establishment of cell–

matrix adhesions while minimizing cell tractions and collagen reorganization

prior to treatment. This incubation period can be optimized depending on the cell

type and the cellular mechanisms being studied.

2. Confocal Reflectance Microscopy

To probe the organization of the fibrillar collagen microenvironment, the cell-

seeded collagen gels prepared above can be imaged with confocal reflectance micros-

copy. While microscopy systems vary widely and a variety of imaging parameters can

be used successfully, consistency is critical to enable quantitative comparison of

collagen remodeling. We will discuss the equipment and parameters used in our lab.

Since macroscale stresses induce changes in the microscopic structure of fibrillar

hydrogels, care should be taken to not handle or disturb the collagen gel. Therefore, it

is best to image the collagen gel in the container in which it was originally polymer-

ized. We use a Zeiss 710 laser scanning confocal on an Axio Observer.Z1 inverted

stand. This microscope has an interchangeablemain beam splitter, which is critical for

sequential fluorescence and reflectance imaging. For confocal reflectance acquisition,

samples are illuminated through an 80/20 dichroic mirror with low power laser light,

which is reflected off of collagen fibrils and detected by a photomultiplier tube

(PMT). A 40	 water-immersion lens (C-Apochromat 40	/1.2 W Corr, Zeiss) pro-

vides sufficient magnification for visualization of collagen fibrils as well as a cor-

rection collar to facilitate use of glass-bottom dishes. We use 488 nm light to mini-

mize phototoxicity, and we adjust the laser power and PMT gain to utilize the entire

dynamic range of the detector. Using either live samples in a microscope incubator or

fixed samples, we capture 1 mm slices at the axial center of cells. Notably, we choose

isolated cells that are 150–300 mm above the bottom surface of the gel to avoid gel
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inconsistencies at the surface and mechanical edge effects. For live-cell experiments,

cells can be visualized with DIC through a transmitted light-PMT (Fig. 2A) or with

confocal fluorescence by labeling with a vital dye such as CellTracker (Invitrogen).

3. Image Analysis and Quantification of Collagen Compaction

Our metric of cell tractions is based upon the assumption that increased local

collagen fiber density increases the confocal reflectance signal. Thus, as cells

generate 3D traction forces, they compact the pericellular ECM and there is an

increase in reflectance intensity. The output of this method is the average collagen

reflectance intensity as a function of distance from the cell. The following procedure

is used to quantify collagen fiber compaction around isolated cells.

a. Using ImageJ, subtract the cell area, determined from the fluorescence or DIC/

phase contrast image (Fig. 2A), from the reflectance image (Fig. 2B).

b. On the reflectance image, draw a 40–50 mm selector line from the cell’s centroid

into the surrounding matrix. We use a custom-written ImageJ script to rotate the

selector line around the cell at 1-degree increments and capture an intensity

profile at each step.

c. Remove zero-intensity values from the intensity profile to define the cell mem-

brane as the origin and normalize for differences in cell size and shape.

d. Average all of the ‘‘zeroed’’ reflectance intensity profiles to create a single

intensity profile for the cell.

e. Normalize the intensity profile to the peak intensity and subtract the baseline

reflectance value (average intensity of matrix 45–50 mm from the cell centroid,

where the intensity profile reaches an asymptote). If more extensive matrix

remodeling occurs, it may be necessary to extend the initial selector line into

the ECM such that the baseline intensity can be assessed. Representative reflec-

tance intensity profiles are shown as symbols in Fig. 2C.

f. Fit the intensity profile to an exponential decay model, Eq. (29),

I ¼ I0 � eð�d=lÞ ð29Þ
allowing I0 and l to vary to minimize the sum of squared error. In this equation, I

is the intensity of collagen reflectance, d is the distance from the cell membrane,

I0 is the normalized, baseline-subtracted intensity of collagen reflectance at the

cell membrane (d = 0), and l is the half-length of the exponential decay, which

describes how far from the cell the collagen has been remodeled. Representative

fits are shown as solid lines in Fig. 2C.

g. Extract the half-length of the exponential decay, l (Fig. 2D). A longer decay, fit

by a relatively larger l, is indicative of more substantial collagen compaction and

remodeling.

h. To compare 3D traction force and matrix reorganization among cells, half-

lengths from several cells per treatment group can be compared directly

(Kraning-Rush et al., 2011).

6. Quantifying Traction Stresses in Adherent Cells 171



VI. Summary

The study of traction forces has yielded valuable insights into key cellular beha-

viors including cell–cell communication, cell–ECM interactions, adhesion, and

migration in both healthy and disease states. In this chapter we have described the

various methods by which traction forces have been quantified in the past and at

present. Moreover, we have provided a detailed description and protocol for synthe-

sizing PA gels and performing TFM experiments. Additionally, we have discussed

current techniques for qualitatively and quantitatively describing traction forces in

3D environments, and shared a technique used by our lab to extract quantitative data

from confocal reflectance microscopy of collagen matrices.
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Abstract

This chapter describes approaches for learning models of subcellular organization

from images. The primary utility of these models is expected to be from incorpo-

ration into complex simulations of cell behaviors. Most current cell simulations do

not consider spatial organization of proteins at all, or treat each organelle type as a

single, idealized compartment. The ability to build generativemodels for all proteins

in a proteome and use them for spatially accurate simulations is expected to improve
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the accuracy of models of cell behaviors. A second use, of potentially equal impor-

tance, is expected to be in testing and comparing software for analyzing cell images.

The complexity and sophistication of algorithms used in cell-image-based screens

and assays (variously referred to as high-content screening, high-content analysis, or

high-throughput microscopy) is continuously increasing, and generative models can

be used to produce images for testing these algorithms in which the expected answer

is known.

I. Introduction

As traditional reductionist paradigms of biomedical research increasingly give

way to systems approaches, the need to build predictive models that synthesize large

amounts of information from potentially diverse sources is becoming critical. Most

such current models take the form of transcriptional regulatory networks, protein–

protein interaction maps, or biochemical reaction simulations. These typically do

not consider spatial organization of cells or tissues. Important advances came with

systems such as MCell (Stiles et al., 1998), which allowed models to be constructed

using mesh representations of cells built from electron microscope images, and the

Virtual Cell (Loew and Schaff, 2001), which allowed appropriately processed

images to provide surface area and volume for its compartmental models.

Ontologies such as the genome ontology (GO) can be used to describe protein

attributes, including location, primarily at a major organelle level. Such assignments

can also be used to create compartmental models (e.g., http://biologicalnetworks.

net/tutorials). However, compartmental models suffer from some important limita-

tions, in that they treat all molecules within each compartment as being homoge-

nously distributed, and they do not allow appearance, disappearance, fission or

fusion of compartments.

Given the energy expended by cells to maintain their subcellular organization, and

the many defects that are associated with alterations in it, models that do not

accurately reflect subcellular organization are unlikely to perform satisfactorily at

predicting complex cell behaviors or how they respond to changes in conditions.

There is therefore a need for computational models that accurately represent the

number, size, shape, and positions of subcellular structures, the spatial relationships

between different structures, and how proteins (and other molecules) are distributed

between them (Murphy, 2010, 2011). In addition, there is a need for a mechanism for

representing how all of these vary within a population of cells of a single cell type,

within a single cell type under different conditions, among different cell types, and

among different organisms. Such models can not only capture cell behavior but can

also be an important step in understanding that behavior, since, for example, a

sufficiently detailed model helps distinguish aspects that are conserved and presum-

ably necessary from those that are highly variable and potentially not necessary.

In considering how to build such models, we can distinguish descriptive

models, which allow one to recognize what state a particular cell is in, from
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generative models, which can also synthesize new examples of cells in particular

states. We can also distinguish theoretical or conceptual models, which posit a

particular structure based on a generalized understanding, from data-driven

models that are learned from data and capture both general behavior and varia-

tion in that behavior.

My focus in this chapter will be primarily on methods developed in my group that

have been used to learn generative models of cell organization and protein distribu-

tion from two-dimensional and three-dimensional fluorescence microscope images

(Zhao and Murphy, 2007; Rohde et al., 2008a,b; Peng et al., 2009; Shariff et al.,

2010a, 2011; Peng and Murphy, 2011). We have recently grouped these methods as

part of the open source CellOrganizer project (http://cellorganizer.org), which

includes collaborations with a number of investigators studying particular cell

systems.

II. Components of a Model of Subcellular Organization
and Protein Distribution

Although there are a number of ways to break down the tasks necessary for

creating such models, we can distinguish at least three major components of a model

of the distribution of proteins within cells of a given type under a given condition:

� A model of subcellular organization, including distributions of the number, size,

shape, and position of each subcellular structure, any of which may be conditional

on the model(s) for other structures;
� A model representing the probability that a cell of a given type will contain a

certain number of molecules of a given protein, the expected fraction of those

molecules in each subcellular structure, and a measure of the variation in that

fraction from cell to cell;
� A model of how each protein is distributed within each structure, which may

consist of a self-organizing model that specifies only the affinities between pairs

of proteins within each structure.

Higher order models can then be built to specify how any of these models change

over time and condition: for example, during the cell cycle, in the presence of

perturbagens, for cells expressing mutations, or for different cell types.

I will focus below on work on the first two types of components.

III. Models of Subcellular Organization

At a conceptual level, the most complete model of subcellular organization is

probably the GO cellular component ontology (Ashburner et al., 2000). A significant

effort has been made to capture the vast majority of terms used to describe subcel-

lular structures. The terms in this ontology can be assigned to proteins in order to
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represent the results of experimental or computational analyses. The advantage of

this approach is precisely its disadvantage: general terms such as ‘‘mitochondria’’

can be associated with a protein while leaving many questions about what mito-

chondria are unanswered. However, to be useful for spatially realistic modeling,

ontology terms must be associated with a representation of each organelle’s number,

structure, and distribution within cells. Currently, such representations are abstract

and implicit rather than concrete and they often leave unspecified how the organelle

would look in different cell types. For example, the abstract concept of a mitochon-

drion is well understood by biologists but most would be hard pressed to accurately

describe how mitochondria vary in number, size, shape, and distribution from cell

type to cell type or organism to organism.

In building generative models, we refer to an individual image, stack, or movie to

be an instance drawn from an underlying model, whether an actual image or a

synthetic image. These instances are considered to have been generated by particular

values for the parameters of the model. The model is generative if it captures how

parameter values can be chosen for new instances.

A critical concept in creating models of subcellular organization is the conditional

relationships that exist among different components. This is easily illustrated by

considering the task of building generativemodels of nuclear and cell shape (i.e., the

positions of the nuclear and plasma membranes). We could build one generative

model from many examples of nuclear shapes, and build another generative model

frommany examples of cell shapes. If we want to synthesize a new example of a cell

containing a nucleus, we can imagine drawing a random example of a nuclear shape

from the first model, and drawing a random example of a cell shape from the second.

However, there is nothing that would prevent the example nuclear shape from being

too wide to fit inside the example cell shape, and nothing to tell us where within the

cell shape to put the nuclear shape. We must therefore connect the generation

processes, which we do by making the models dependent, or conditional, upon each

other. In our work, we have chosen tomake the cell shapemodel conditional upon the

nuclear shape. As we will see below, this means that during the learning process the

relationship between the shapes is captured, and during the generation process, an

example nuclear shape is first generated and used to generate an appropriate cell

shape.1 An alternative is to make the models joint, in which we learn simultaneously

a model for both shapes.

Another major consideration is whether to make the models parametric, in which

the values of model parameters explicitly describe various aspects of the sizes and

shapes of cell components, or nonparametric, in which sizes and shapes are implic-

itly described by the relationships between examples. This distinction will be made

clearer in the next sections where we consider models of cell components and how

they can be made conditional upon each other. In each case, we will consider

1 Of course, we might also have chosen to make the nuclear shape conditional upon the cell shape. Which

order is better will need to be determined by future work.
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� the inputs necessary for training the model,
� the means of assessing how adequately the model describes the data,
� what types of outputs the model can generate.

A. Nuclear and Cell Shape Models

1. Nuclear Shape – Medial Axis Models

Nuclear shape is often represented in theoretical models as a sphere or more

generally an ellipsoid. Examination of only a few images of some cell types (espe-

cially adherent cultured cells) reveals how inaccurate this model can be. A somewhat

more accurate model can be learned directly from images (Zhao and Murphy, 2007)

using a medial axis approach (Blum, 1973). As illustrated in Fig. 1, medial axis

construction typically begins by first orienting all nuclear shapes (instances) so that

their major axes point in the same direction). Each instance is then represented by the

position of a curve bisecting the shape perpendicular to the major axis, and by the

width at each position along that curve. These curves can be fit using splines, such

[(Fig._1)TD$FIG]

Fig. 1 Illustration of a medial axis method for modeling a 2D nuclear shape instance. The original

nuclear image (a) was binarized (b) and rotated so that its major axis is vertical (c). The position of the

curve that divides the shape in half horizontally at each vertical position is then found (d). The horizontal

positions of the medial axis as a function of the fractional vertical distance are shown by the symbols (e),

along with a B-spline fit (solid curve). The width as a function of fractional distance is shown by the

symbols (f), along with the corresponding fit (solid curve). Scale bar, 5 um. From Zhao and Murphy

(2007).
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that a set of 11 spline coefficients describes each instance. The distribution(s) of these

parameters over many instances can then be learned. In this case, two multivariate

Gaussian distributions, one for the medial axis position and one for the width, were

shown to provide a good representation of nuclear shape in two-dimensional images

(Zhao and Murphy, 2007). Sampling from these distributions using a random number

generator can be done in order to create synthetic examples from the learned model.

2. Nuclear Shape – Cylindrical Spline Surface Model

For three-dimensional images, the medial axis method can result in an oversim-

plified shape model. An alternative is to convert the nuclear shape to cylindrical

coordinates and then fit a periodic spline surface (Peng and Murphy, 2011). This is

illustrated in Fig. 2. In this case, there is one parameter for the nuclear height and 32

parameters for the coefficients of the spline surface. For a collection of three-

dimensional images of HeLa cells, these parameters were also shown to be well

represented by a multivariate Gaussian distribution. As before, parameter values can

be randomly sampled from this distribution to generate new nuclear shape instances.

3. Nuclear Shape – Large Deformation Diffeomorphic Metric Mapping

These parametric models of nuclear shape have two significant advantages: first,

they can be computed fairly quickly, and second, the parameters (and parameter

distributions) can be stored compactly. However, they make assumptions about the

characteristics of nuclear shape that need to be captured (e.g., that small bumps can

be ignored) and do not handle well many concave or branched shapes. An important

alternative therefore is to use nonparametric models such as the large deformation

[(Fig._2)TD$FIG]

Fig. 2 Illustration of cylindrical spline surfacemethod for modeling a three-dimensional nuclear shape

instance. (a) Surface plot of a 3D HeLa cell nucleus. (b) Unfolded surface of the nuclear shape in a

cylindrical coordinate system. The surface plot shows the radius r as a function of azimuth u and height z.

(c) B-spline surface fitted to the unfolded nuclear surface. From Peng and Murphy (2011). (For color

version of this figure, the reader is referred to the web version of this book.)
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diffeomorphic metric mapping (LDDMM) framework developed by Miller and

colleagues (Beg et al., 2005). In this framework, shape is represented implicitly

by measuring differences between pairs of shape instances (see Fig. 3). The distance

matrix is then used to create a shape space in which similar shapes are near each

other. This approach has been demonstrated to provide an excellent representation of

nuclear shape in HeLa cells (Rohde et al., 2008a), and the method can be applied to

two-, three-, or four-dimensional images. This power comes at a price: saving the

shape model requires storing both the distance matrix (or the shape space) and the

example images used to create it. Generating new shape instances can be achieved by

interpolating between the original examples (Peng et al., 2009), but this can be

computationally expensive.

An important additional use of non-rigid registration methods is to identify posi-

tions within nuclei. In an exciting example, the positions of different chromosome

regions have been mapped to a common frame of reference using a multiresolution

non-rigid registration approach (Yang et al., 2008). Potentially, position mapping

could be combined with modeling of the nuclear shape itself as described above.

4. Cell Shape – Circular and Spherical Coordinate Ratiometric Models

Cell shape can also be represented using diffeomorphicmethods, using exactly the

same approach as used for nuclei. This is appropriate when modeling only the cell

shape is desired, but if nuclei are to be included, as discussed above, the nuclear and

cell shape models must be conditionally related. This can be achieved using diffeo-

morphic methods by creating indexed images in which pixels/voxels that are part of

the background have one value (e.g., 0), pixels/voxels in the nucleus have a second

value (e.g., 1), and pixels/voxels inside the cell but not in the nucleus have a third

value. Finding the distance between such indexed images is a bit more computa-

tionally demanding.

[(Fig._3)TD$FIG]

Fig. 3 Determining the distance between two shapes using large deformation metric mapping. The

goal is to measure the distance between the starting shape and the target shape. This is done by gradually

deforming the starting shape to become more similar to the target shape while recording how much

perturbation is necessary at each step. From Rohde et al. (2008a).
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To create more compact conditional models of cell shape, a simple approach can

be used. For two-dimensional images, the coordinates of the cell and nuclear bound-

ary are first mapped to polar coordinates, and then the ratio between the two is

calculated for a fixed number of angles (e.g., every degree over 360 degrees) (Zhao

and Murphy, 2007). For three-dimensional images, these ratios are calculated for

each two-dimensional slice (Peng and Murphy, 2011). The model is then simplified

by keeping only a certain number of principal components (for HeLa cells, 10

components were used for two-dimensional images and 25 for three-dimensional

images). The distributions of these components have been shown to follow a mul-

tivariate Gaussian, providing a very compact conditional model. To generate

instances from the model, a nuclear shape is first generated using one of the methods

above, principal component coefficients are chosen using random numbers and

converted to the cell/nuclear ratio as a function of angle, and then these ratios are

multiplied by the corresponding position on the synthetic nuclear boundary to

generate the synthetic cell boundary.

B. Models of Vesicular Organelles: Shape

1. Gaussian Object Models

Many vesicular organelles, such as lysosomes, show a roughly spherical shape in

both electron microscope and fluorescent microscope images. Such shapes can be

easily modeled if the organelles are well resolved from each other in images.

However, vesicular organelles are frequently found quite close to each other, and

they can appear to overlap when imaged in two dimensions. Furthermore, sampling

noise may make them appear irregularly shaped. One approach to this problem is to

assume that the organelles are all spherical (or ellipsoidal) and try to estimate what

configuration of organelles gave rise to a particular cell image. This can be done by

thresholding the image of an organelle marker to identify connected components

that may consist of more than one organelle. As shown in Fig. 4, image processing

[(Fig._4)TD$FIG]

Fig. 4 Illustration of fitting objects using a 2DGaussianmixture model. A region of a cell containing a

single composite object (found by thresholding and connecting above threshold pixels) (a) is smoothed by

a Gaussian low pass filter (b) to facilitate detection of local maxima (peaks) in the composite object.

Fitting using a spherical covariance matrix(c) yields the estimated positions and sizes of the Gaussian

objects assumed to have given rise to the original image. A similar approach is used for 3D images. After

Zhao and Murphy (2007).
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and parameter estimation can then be used to find the positions and sizes of the

individual organelles. A statistical model of the distribution of the number of objects

per cell, and the distribution of the Gaussian parameters (covariancematrix) can then

be constructed. Thismethod can be used for both two-and three-dimensional images,

although distinguishing different organelles is easier in three-dimensional images.

2. Outline Models

More accurate models can be obtained using methods that seek to estimate the

position of the outline of vesicular organelles. For example, piece-wise linear closed

splines have been used to describe the shape of endosomes (Helmuth et al., 2009).

Such methods could be combined with eigenshape or diffeomorphic methods to

create generative models.

3. Object Type Models

Even more detailed (but not necessarily more accurate!) models can be obtained

by finding all objects in a large set of cell images and clustering them to identify

distinct object types. This approach has been applied to a large collection of HeLa

cell images, and the resulting object types were found to enable recognition of

different subcellular patterns (Zhao et al., 2005). As discussed below, this approach

has been used to estimate the amount of a given probe in different organelles.

However, it could also be used as part of a generative model by modeling the number

and shape of each object type.

C. Models of Vesicular Organelles: Position

Regardless of which method is used for estimating object number and shape, a

model of the position of each object within the cell is also needed. This clearly needs

to be conditional upon the cell and nuclear shape model. One simple approach is to

represent the position of each observed object in a normalized polar or spherical

coordinate system (depending on whether the image is two- or three-dimensional).

To do this, the distance of the center of each object from the nuclear boundary is

expressed as a fraction of the sum of the distance from the nuclear boundary and the

distance from the cell boundary (this normalized distance can be negative if the

object is inside the nucleus). The angle (or angles) of the object’s center to the center

of the nucleus are also found. An empirical probability density map is then formed

by tabulating these positions for many objects from many cells. To use this model to

synthesize an image, the number of objects is drawn from the appropriate distribu-

tion, a size and shape are drawn for each (depending on which shape model is being

used), and distances and angles are chosen randomly according to the density map

for each and converted to actual coordinates for particular cell and nuclear shape

instances.
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D. Models of Cytoskeletal Structures

The methods described above for building nuclear, cell, and organelle models

all make direct estimates of model parameters from real images. Although decom-

posing a cluster of organelles into individual objects may be difficult, it is usually

possible. Some organelles or structures are much more difficult to resolve into

individual elements. For example, two- or three-dimensional images of the dis-

tribution of tubulin by either wide-field or confocal microscopy typically show

individual microtubules at the cell periphery but a tangle of crossing microtubules

near the centrosome. Estimating the number of individual microtubules or their

individual paths is nearly impossible. One solution is to use specialized micro-

scope methods, such as speckle microscopy, to resolve individual microtubules.

An alternative is to use inverse modeling methods to try to estimate the parameters

of a microtubule model, as illustrated in Fig. 5a. A generative model is created and

then instances of that model are created for many different sets of parameters.

These instances are compared to a real image and the parameters corresponding to

the best match are chosen. This approach has been used to study kinetochore-

microtubule dynamics (Sprague et al., 2003). We have used a similar approach to

build a generative model of microtubules in interphase HeLa cells and 3T3 cells

(Shariff et al., 2010a, 2011). An example of a synthetic microtubule distribution is

shown in Fig. 5b.

E. Putting it all Together

Once the various components of a model have been created, it is a simple matter to

construct synthetic cell instances. Figs. 6 and 7 show idealized images (with no

blurring or noise) for instances created from two- or three-dimensional models,

respectively. As discussed below, these idealized images can also be used to estimate

how that cell might look if imaged in a particular microscope.

[(Fig._5)TD$FIG]

Fig. 5 (a) Overview of inverse modeling approach for estimating parameters of the microtubule

generative model. From Sharif et al. (Shariff et al., 2010a). (b) Example of two-dimensional slice from

three-dimensional synthetic image generated by tubulin model.
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[(Fig._6)TD$FIG]

Fig. 6 Example of synthetic image generated by a two-dimensional model learned from images of the

lysosomal protein LAMP2. The DNA distribution is shown in red, the cell outline in blue, and LAMP2-

containing objects in green. From http://murphylab.web.cmu.edu/data/2007_Cytometry_GenModel.

html. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this book.)

[(Fig._7)TD$FIG]

Fig. 7 Example synthetic image generated by a three-dimensional model learned from images of the

lysosomal protein LAMP2. The nuclear surface is shown in red, the cell surface in blue, and LAMP2-

containing objects in green. (See color plate.)
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IV. Protein Distributions Across Subcellular Structures

Themodels described above capture how cellular organelles are arrangedwithin a

cell, but do not address the critical question of how the tens of thousands of proteins

in each cell are distributed among these organelles. Images, especially fluorescence

microscope images, can be a major source of information on the subcellular dis-

tributions of proteins, and, as mentioned above, may be used directly in cell simula-

tions. The feasibility of using automated pattern recognition approaches to recognize

the subcellular patterns of proteins that localize primarily to one organelle has been

well demonstrated (for reviews see (Chen et al., 2006; Conrad and Gerlich, 2010;

Shariff et al., 2010b)). However, many proteins are found to varying extents in more

than one organelle, and therefore a means of determining that distribution is needed.

A. Boolean Vectors: GO Terms

Some information about protein subcellular location can be obtained from protein

databases, which have at least some GO terms associated with most proteins.

However, there are a number of limitations of these annotations, most of which derive

from the absence of enough experimental data. For example, these databases do not

attempt to capture changes in GO terms for different conditions or cell types or

distinguish between subcellular locations of different splice isoforms. Nonetheless,

when no other information is available, GO terms can be represented as a Boolean

vector describing whether a particular protein is or is not found in each organelle.

B. Dirichlet Distributions: Pattern Unmixing

What is really needed for accurate modeling of a protein is a Dirichlet distribution

– a probability distribution (that sums to one) for each molecule of that protein over

the different organelles. We can convert the Boolean vector for a particular protein

derived from GO terms into a Dirichlet distribution by dividing by the number of

organelles it is thought to be found in. This assumes, in the absence of any other

information, that it is equally likely to be in each of them.Amuch better alternative is

to try to estimate the amount of a given protein in each organelle or structure. To do

this, we define a set of fundamental patterns to be a set from which all composite

patterns can be constructed. This might correspond to the set of all organelle

patterns, but, depending on the extent to which they are distinct, might contain

multiple subpatterns for a given organelle. For example, protein distributions in

the nucleus have been divided into at least eight nuclear subdomains (Bauer et al.,

2011). For a collection of images of a particular protein, we seek to find the Dirichlet

distribution over these fundamental patterns. In other words, we estimate how much

of the protein would have to be in each pattern in order for the overall image to appear

as it does. This task can be viewed as unmixing an image formed by mixing

fundamental patterns.
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Wehave described two approaches for estimating this: one in whichwe specify the

fundamental patterns in advance and just try to estimate the fractions (referred to as

supervised unmixing), and one in which we try to find the fundamental patterns as

well as the fractions (referred to as unsupervised unmixing). Using a test set of

images created by an automated high content imaging system, we have demonstrated

that good estimates of the fractions can be obtained by both the supervised (Peng

et al., 2010) and unsupervised (Coelho et al., 2010) approaches.

V. Use of Models for Testing Algorithms

A classic problem in testing algorithms for microscope images is that the correct

results are frequently not known. A generative model for a desired pattern or

structure can be combined with a model of image formation in a particular micro-

scope to generate test images (phantoms) for which the correct results from image

analysis are known. The process by which an image is formed in a microscope is

quite well understood, so accurate models of point-spread functions and sampling

noise can be constructed and applied to the idealized images generated by the

methods described above. This approach has been applied previously for nuclei

(Yang et al., 2008; Svoboda et al., 2009); the paper by Svoboda et al. (Svoboda

et al., 2009) provides a particularly good image formation model.

The phantom approach can be extended to any combination of the tools in the

CellOrganizer project to generate test images with known cell boundaries, object

locations, and/or subcellular patterns. The accuracy of algorithms can also be

determined as a function of the parameters of the generative model, such as cell

size or extent of nuclear elongation. Collections of already synthesized synthetic cell

images can be found at http://CellOrganizer.org.

VI. Conclusion

In this chapter, I have described current approaches for building accurate models

of cell organization directly from fluorescent microscope images. These models

capture variation in cell organization at the level of the nucleus, cell membrane, and

individual organelles, and can capture how particular proteins are distributed among

cellular components. They represent a significant advance over the use of words

(such as GO terms) as the means by which results of experiments on subcellular

localization and organization are captured and communicated. Nonetheless, the

field is at the beginning, and it is hoped that many investigators will develop and

make available tools that improve and extend the approaches described here.

Examples of futurework that can be anticipated includemethods for merging images

at different resolutions (especially light and electron microscope images) and meth-

ods for describing the interplay between localization and structure for proteins

involved in creating subcellular structures.
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Abstract

The shape of a cell, the sizes of subcellular compartments, and the spatial distri-

bution of molecules within the cytoplasm can all control how molecules interact to

produce a cellular behavior. This chapter describes how these spatial features can be

included in mechanistic mathematical models of cell signaling. The Virtual Cell

computational modeling and simulation software is used to illustrate the considera-

tions required to build a spatial model. An explanation of how to appropriately

choose between physical formulations that implicitly or explicitly account for cell

geometry and between deterministic versus stochastic formulations for molecular

dynamics is provided, along with a discussion of their respective strengths and

weaknesses. As a first step toward constructing a spatial model, the geometry needs
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to be specified and associated with the molecules, reactions, and membrane flux

processes of the network. Initial conditions, diffusion coefficients, velocities, and

boundary conditions complete the specifications required to define the mathematics

of themodel. The numerical methods used to solve reaction–diffusion problems both

deterministically and stochastically are then described and some guidance is pro-

vided in how to set up and run simulations. A study of cAMP signaling in neurons

ends the chapter, providing an example of the insights that can be gained in inter-

preting experimental results through the application of spatial modeling.

I. Introduction

The cell is distinctly nonhomogeneous and the spatial distribution of molecules

can be of critical importance to cellular pathways. Signaling events initiated within

the two-dimensional plane of the membrane move through the three-dimensional

volume of the cytosol and propagate through multiple intracellular compartments.

Spatial segregation of interacting molecules, whether by localization to different

cellular compartments or by associations with supramolecular complexes, is a

common mechanism of regulating pathway activity. Mathematical modeling and

simulation in these situations requires spatial simulation methods that incorporate

actual cell geometry, compute local concentrations, and account for changes that

arise from transport processes (diffusion and active processes).

Spatial modeling of signaling pathways has already begun to provide unique

insights into how cellular geometry intersects with the kinetic behavior of signaling

components to create spatially encoded information in the cell. We are now beginning

to understand at a quantitative level not only how surface to volume effects impact

signaling pathways that arise on a membrane (e.g., Fink et al. (2000), but also how

geometry effects are transmitted to downstream components. Spatial modeling studies

have demonstrated that the creation of signaling molecules at the membrane and their

destruction or inhibition throughout the cytosol can create gradients that vary as the

local geometry of the cell changes (Kholodenko et al., 2010). Local gradients likewise

can have significant downstream effects. For example, regulation of calcium levels

during repetitive firing of synapses is highly dependent on the specialized geometry

of the neuronal spine, leading to new hypotheses for coincidence detection localized

to individual synapses, a key aspect of learning and memory (Brown et al., 2008;

Hernjak et al., 2005). Also in neuronal cells, experiments coupled to spatial simula-

tions demonstrated that while microdomains of elevated cAMP arise from the local-

ization of receptors and adenyl cyclase to the membrane, the kinetics of negative

regulators localized to the cytosol creates spatially distinct regions of activity of

downstream targets such as PKA and MAPK (Neves et al., 2008).

Events at the plasma membrane that dictate polarized cellular responses, such as

chemotaxis and cell migration as well as yeast budding and cell division, are among

the more obvious cases where spatial modeling can lead to new insights into how

signaling pathways evoke spatially discrete responses in the cell. Already modeling

196 Ann E. Cowan et al.



efforts have led to a number of new hypotheses in these fields. Some examples

include the local excitation, global inhibition (LEGI) model to explain how cells

respond to shallow gradients of chemoattractants (Ma et al., 2004), a hypothesis that

Turing-type activator–inhibitor dynamics involving the small Rho GTPase Cdc42 can

explain the selection of only a single budding site in yeast (Goryachev and Pokhilko,

2008), and a proposed mechanism by which spatial gradients of two regulatory

molecules evaluates cell size in yeast mitotic checkpoints (Vilela et al., 2010).

In addition to testing and developing new hypotheses, spatial modeling also

provides an exceptional tool for analyzing and interpreting the ever expanding

arsenal of fluorescence-based microscope imaging methods. Spatial simulations

help one to extract quantitative information about the dynamic behavior of mole-

cules and the detailed kinetics of molecular interactions and enzymatic events within

the exact geometry of experimental cells. This allows direct comparison of simula-

tion results of different models and parameters with experimental image time series.

Most current methods for quantitative analysis of dynamic fluorescence imaging

experiments rely on analytic solutions that assume simple analytic geometries for the

cell. The ability of numerical simulation approaches to account for exact morphol-

ogies of real cells dramatically broadens the range of these experimental techniques.

Simulation-based approaches have been used to analyze many different types of

experiments including uncaging experiments (Roy et al., 2001) and fluorescence

photobleaching or photoactivation experiments (Holt et al., 2004; Kapustina et al.,

2010;Moissoglu et al., 2006; Shen et al., 2008). Indeed, any experimental data based

on changes in fluorescence distributions over time and space can be amenable to

analysis by spatial simulation methods. Particularly exciting is the promise of spatial

simulation-based analysis to extract high temporal and spatial resolution informa-

tion on pathway dynamics from the array of new fluorescence biosensors for kinase

and phosphatase activities (Saucerman et al., 2006; Zhong et al., 2009).

This chapter provides a discussion of the problems that spatial modeling can

effectively address in cell signaling, and different overall strategies for developing

models of cellular pathways. Using our web-based Virtual Cell (VCell) modeling

environment to illustrate the process (http://vcell.org), we discuss some of the

important issues that need to be addressed in order to build a useful spatial model

and how to negotiate the important choices and parameters involved in running

numerical simulations of the models. This is followed by working through a specific

example of a VCell spatial model and exploring how the model can be used to

simulate specific experimental or conceptual conditions to generate predictions of

the model (i.e., simulation data) that can be tested experimentally.

II. Overview of Spatial Modeling

A spatial model is a mathematical system that accounts for processes such as

reactions kinetics, diffusion, advection, and membrane transport. A pair of equa-

tions serves to summarize the physical chemistry of cell signaling systems with
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explicit consideration of the voyage of a molecule from one region of the cell to

another:

@Ci

@t
¼ �div F

!
i þ RiðCj;Ck; . . . ;FÞ ð1Þ

F
!

i ¼ �DirCi � CiV
!

i � zimiCirF ð2Þ

The first equation describes the change in concentration, Ci, of a molecular

species, i as a function of time at some point within the cell. It is a partial

derivative of Ci with respect to time; Ci can also vary over spatial coordinates,

x,y,z. On the right hand side of Eq. (1), Ri is the rate expression for the formation

or destruction of species i; it can be a function of the concentration of any of the

other molecular species in the system, as well as the electrical potential across the

membrane, F, for a voltage-sensitive membrane bound species. The first term on

the right side is the divergence of the flux of i, Fi, which is further described in

the second equation. Eq. (2) is the Nernst–Planck flux equation with an added

advection term, showing the factors that govern the net flow of molecules: the

gradient of concentration times the diffusion coefficient, Di; the velocity field, V
!

i

(possibly driven by molecular motors); and an electrical term, where zi is the

charge, mi is the electrical mobility, and rF is the voltage gradient (i.e., the

electric field; the electrical term is unimportant within the cytosol, but can, of

course, control ionic transport across membranes). The geometry specification

for the model should include all the morphological features of the cell that might

influence the molecular processes; it should also account for the heterogeneous

distribution of the molecules within this geometry. The resulting set of partial

differential equations (PDEs) for all the molecular species represent a continuous

deterministic mathematical description of the system and also serve to summa-

rize all the biophysical mechanisms hypothesized to govern the biological pro-

cess under study (Slepchenko et al., 2003). However, when the number of

molecules involved in the process is small (<100), a deterministic mathematical

description may prove to be inaccurate because it fails to account for the prob-

abilistic nature of the reactions of single molecular species and of the Brownian

dynamics of single molecules that underlie diffusion. In such a case, a stochastic

mathematical formulation needs to be employed.

But it is important to ask howmuch detail is actually required to address a specific

cell biological problem. Clearly, the more detail, the more likely that the investigator

will not overlook a key contribution to the biology. However, the more detail, the

greater the computer power and the longer the computation time required for

the numerical methods to compute a simulation. Furthermore, the simpler themodel,

the easier it is to analyze and understand the simulation results; that is, when

simulations from simple models fail to reproduce an experimental result, it is easier

to uncover what may be missing or incorrect in the model. Arguably, this process of
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interacting with experiment is the most important reason for building a model and

running simulations. We will therefore discuss varying choices for posing a model

mathematically, in order of increasing computational intensity, describing the lim-

itations of each. These can all be modeled and simulated with the VCell software

system, as illustrated in Fig. 1, which shows simulation results for the passive flux of

a molecule through the nuclear membrane from four different mathematical models.

[(Fig._1)TD$FIG]

Fig. 1 Four different mathematical models, all based on a simple flux of a molecule (‘‘Ran’’) from the nucleus to the cytosol,

can incorporate spatial information at different levels of detail. The rate expression for the membrane flux density was set as

(1.0 � (Ran_cyt - Ran_nuc)) mM mm s�1. (A) Simulation results from a compartmental (ODE) model which accounts for the

differing volumes of the nuc and cyt compartments, but does not explicitly model the geometry or diffusion. (B) Similar

simulation for a stochastic model initially containing 100 molecules in the nuc compartment. (C) The spatial distribution of the

molecule, given a diffusion coefficient of 10 mm2 s�1, after a 1 s simulation using a geometry based on a 3D experimental image;

the upper inset shows a 15 s time course averaged over each domain; the lower inset shows the time courses at the two points

indicated by the asterisks in the image. (D) Spatial stochastic simulation result after 1 s for 100 molecules all initially randomly

placed in the nucleus domain (red dots are cytosol molecules and blue dots are nuclear molecules); the inset shows the

concentration over each compartment for the entire 15 s simulation. (See color plate.)
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At the simplest level, if all diffusive and advective processes are fast compared to

any of the reaction rates in the system, the flux term in equation (1) can be ignored;

that is, the cell is behaving like a well-mixed reaction vessel. Instead of PDEs, this

would result in a set of ordinary differential equations (ODEs) describing all the

changes in species concentrations as a result of reactions or membrane transport

processes. By definition, an ODE model is classified as a nonspatial model because

it cannot simulate spatial gradients within volumes or surfaces. However, the geom-

etry can still be represented in ODE models by accounting for the sizes of compart-

ments and membranes; indeed, the surface areas of membranes and the volumes of

compartments can influence the dynamics of the molecular components of the

system. For example, consider a molecular flux of a molecule from a small com-

partment into a larger compartment, for example, from the nucleus to the cytosol.

Because of the difference in volume, a flux through the nuclear membrane will

produce a larger change in concentration within the nucleus than in the cytosol; these

changes can be represented in the math as simple rate expressions for the species in

each compartment, scaled by their relative volumes. A screenshot of the VCell

simulation results for this compartmental ODE model are shown in Fig. 1A, where

the nuclear concentration of our molecule (green curve), set initially to 10 mM,

decays much more than the cytosolic concentration (violet curve) increases. This

is because the volume of the cytosolic compartment is about five times larger than

the volume of the nucleus. The two curves reach equilibrium at the same concentra-

tions after about 10 s. These simulations were carried out with the ‘‘Combined Stiff

Solver,’’ one of eight numerical solvers for ODEs available in VCell.

The same compartmental model can also be solved stochastically, as illustrated in

Fig. 1B. The results for this single trajectory for 100 molecules initially in the

nucleus, are qualitatively similar to the deterministic results in Fig. 1A. To be able

to make this comparison, the stochastic results are plotted in terms of concentrations

rather than number of molecules, where an initial concentration in the nucleus of

45 pM corresponds to 100 molecules. Notice that at the steady state there are still

fluctuations of concentration and these fluctuations are greater for the nuclear

species than for the cytosolic species; this is because the nucleus contains a smaller

number of molecules, so fluctuations are more significant. This simulation used the

Gibson–Bruck variation (Gibson and Bruck, 2000b) of the Gillespie next reaction

step algorithm (Gillespie, 1977, 2001) to calculate the trajectory; this is one of four

stochastic solvers available in VCell. VCell also provides a utility for running

multiple stochastic trajectories and generating a histogram for the final time point

to evaluate the distribution of the species numbers. Stochastic simulations can

capture behaviors due to the intrinsic fluctuations of molecular processes, but they

are more computationally intensive than ODE simulations. For large numbers of

molecules, such simulations become both impractical, because of the long comput-

ing times, and unnecessary, because fluctuations are relatively insignificant.

Diffusion is important in a cell biological process when it is slower than the

reaction rates producing or consuming the diffusing species. This produces spatial

gradients in concentration. A number of examples were given in the introduction and
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a specific examplewill be analyzed in detail in the final section of this chapter. Here,

in Fig. 1C, we explore howour simplemodel of nucleocytoplasmic transport behaves

in a real 3D cell geometry. We used a cell geometry based on a 3D confocal

microscope image that had the same nucleus and cytoplasm volumes as the com-

partmental model used for the simulations of Fig. 1A and 1B (actually, VCell derived

the size parameters in the compartmental model from the real geometry). Fig. 1C

shows a volume rendering of the distribution of the concentration at the 1 s time

point with the standard rainbow color scheme corresponding to the full range of

concentration (red�9 mM; blue�1 mM). As can be seen in this simulation, which

used a diffusion coefficient of 10 mm2 s�1 (typical for a protein in cytoplasm), the

distribution of the species is far from the uniform distribution that is assumed in a

compartmental model. Furthermore, the overall kinetics are strongly affected, as

demonstrated by the time plots shown in the inset for the same 15 s duration used in

Fig. 1A. The upper inset shows the concentration of the nuclear and cytosolic species

not reaching steady state even after 15 s (compare Fig. 1A); this is because the slow

diffusion prevents the molecule from instantly equilibrating within each compart-

ment. The lower inset shows time plots at the two spatial points indicated by the

asterisks in the cell image; the cytoplasmic concentration for the point (green curve)

where the nucleus is close to the outer membrane actually overshoots the steady state

value because of the restricted diffusion in this crowded region of the cell. The other

point, at the mouth of a process at the left side of the cell, shows (violet curve) a

several second lag period in the appearance of our molecule – again a behavior that

cannot be captured in a compartmental model. Clearly spatial models provide details

that may be missed in a compartmental model. But not always: if the diffusion

coefficient in our model was an order of magnitude greater (as for a metabolite or

a nucleotide), the results of the spatial model would be virtually identical to those of

the compartmental ODE model. Of course the disadvantage of a spatial simulation

is that it is computationally intensive; the model in Fig. 1C, with 367,000 grid points,

took about 100 s to simulate on a single processor compared to essentially instan-

taneous for the ODEmodel of 1A.We used the fully implicit adaptive time step finite

volume solver in VCell to run this simulation; it is fully described in Section IVon

spatial simulation methods.

The most detailed (and computationally intensive) mathematical model to simu-

late for cell biology is a spatial stochastic model. The results of a spatial stochastic

simulation for 100 molecules are shown in Fig. 1D. These simulations are performed

with the Smoldyn algorithm developed by Steven Andrews (Andrews et al., 2010).

This model accounts for both probabilistic reactions of individual molecular species

and Brownian dynamics of the motion of individual molecules in solution. The

image in Fig. 1D is taken at the 1 s time point and therefore can be directly compared

to 1C. The blue molecules are in the nucleus and the red molecules are in the cytosol

(some of the red molecules appear to be in the nuclear region but they are actually

above or below the nucleus in this 3D rendering). The inset shows the time course of

change in concentration for the entire nucleus and cytosol – a noisy version of the

upper inset in Fig. 1C. The computing time for the Smoldyn algorithm was about
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600 s (compared to 100 s for the PDE simulation of Fig. 1C). However, there is

significant overhead for special geometry handling required by Smoldyn for non-

analytic geometries such as the one we used (as opposed to analytical geometries

such as a sphere or cylinder); such image-based geometries could add hours to the

computation time. But even without the geometry issue, spatial stochastic simula-

tions are themost computationally expensive; furthermore, multiple simulationswill

often be required to develop statistics for the overall behavior of the system.

Alternative algorithms and software packages for spatial stochastic simulations

are described in Section IV.

III. Building a Spatial Model

In the VCell, a biological model is described in a layered branched fashion within

the graphical user interface know as the ‘‘BioModel Workspace.’’ The trunk is the

‘‘Physiology,’’describing the underlying network of quantitative reaction and transport

mechanisms that are associated with volumetric and membrane cellular compart-

ments (Fig. 2). These mechanisms makes no explicit reference to spatial coordinates,

but rather describes the local time rate of change of concentration for reaction rates

and the local molecular flux density for membrane transport mechanisms (flux reac-

tions) in terms of the local environment. The Physiology in Fig. 2C consists of two

compartments, ‘‘extra’’ and ‘‘cyto’’ separated by a membrane, ‘‘cyto_mem.’’ The

small circles represent species, four of which are highlighted; note how many species

are required to fully represent all the states and interactions represented by the cartoon

diagram of (B). The yellow squares each contain a rate expression for the quantitative

mechanism of the reaction specified by the connecting lines. This Physiology is taken

from a public model found in the VCell database as ‘‘susana:neves_cell_2008’’; it

contains the model and simulations published by Neves et al. (2008), which is

discussed in Section E. This type of description is very flexible, allowing a single

Physiology to simultaneously form the basis of multiple spatial, nonspatial, determin-

istic, and stochastic computational experiments (Applications), such as the four

mathematical models already discussed in Section II (Fig. 1). An Application together

with its parent Physiology is sufficient to completely define the mathematical system.

The remainder of this section will discuss the geometry definition and other speci-

fications required to define an Application in VCell.

The cellular distributions of organelles, fixed structures, and free and bound

molecules are far from homogeneous. To begin, consider those cellular compart-

ments that are encapsulated by membranes, and are thus capable of maintaining

distinct cellular environments with specialized composition (e.g., the organelles).

Some organelles are small, punctate, and numerous and could be considered as either

discrete objects, spatially resolved compartments, or as a continuous average density

(e.g., volume fraction of cytoplasm). The endoplasmic reticulum (ER) presents the

problem of fine structure that is contiguous and distributed throughout the cyto-

plasm. The fine structure of the ER is difficult to spatially resolve, and therefore it is
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more readily modeled as a continuous average density. For most models of eukary-

otic cells, spatially resolving the plasmamembrane and the nuclear envelope provide

the basic encapsulation, whereas the finer structures are represented in a mean field

manner by considering their effects to be continuously distributed within these

compartments. Thus, a spatial model can be a hybrid where some features are

represented with an explicit geometry, whereas fine structures are represented as

compartments within the geometry that occupy a continuous volume fraction with a

continuous surface-to-volume ratio. Importantly, these continuously distributed

compartments may be nonuniform.

[(Fig._2)TD$FIG]

Fig. 2 VCell model of a signaling pathway. The top panels showa schematic diagram of signaling through the beta-adrenergic

receptor at the membrane level (A) and extended to the mitogen-activated protein kinase effector (B). The bottom (C) is a

screenshot of the detailed reaction diagram corresponding to the summary diagram from panel (B) in the ‘‘Physiology’’

component of aVCell BioModel. (A andB are fromNeves et al., 2008; reprinted by permission of Cell Press). (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this book.)
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To build a spatial model in VCell, a cellular geometry must be defined using raw

experimental images, segmented images, or shapes described using mathematical

expressions (Analytic Geometry). The analytic geometry capability of VCell allows

arbitrary inequalities in x, y, and z combined with Boolean operators to identify

volume domains (e.g., ‘‘(x2 + y2 + z2 < 32) OR ((x � 2)2 + y2 + z2 < 32)’’ is the

union of two spheres of radius 3, centered at (0,0,0) and (2,0,0)).

Through the use of a universal image format library (Linkert et al., 2010), various

native microscopy formats (e.g., Zeiss LSM) can be imported into VCell as raw

image data and additional microscope data information describing the size of the

field of view and space between image planes. Thus, the imported image data can be

treated as samples from a scalar field, which can be used to describe protein

distributions. The experimental images can also be used to define the geometry of

the cell or subcellular structures.

To assist in this process, VCell provides tools for image processing and segmenta-

tion (Fig. 3). For example, if the cell interior is fluorescently labeled, then the cell

membrane can often be determined by using an isosurface of pixel intensities and the

set of all pixels that are brighter than a specified threshold in the cell interior. VCell

provides a tool for 2D or 3D intensity histogram segmentation, which can apply a low-

pass filter to accommodate noise and punctate staining. Thin or narrow processes (e.g.,

dendrites, lamellipodia, and filopodia) have a relatively weaker observed fluorescence

and are often underrepresented by threshold segmentations. Therefore, manual editing

tools are provided as well as tools for merging numerous small objects due to uneven

staining. This process is repeated for each resolved cellular feature (e.g., nucleus and

cytosol) and the resulting geometric domains are given appropriate labels. In Fig. 3,

one cell is chosen with the cropping tool and segmented by this combined process of

histogram thresholding and manual editing. The resultant 3D surface rendered geom-

etry is shown in the inset on the upper right of Fig. 4.

Once the geometry is complete, one must map the compartments from the

Physiology to the geometric domains defined in the geometry so that the reaction

and transport mechanisms can be distributed spatially. Fig. 4 shows how the

‘‘extra’’ and ‘‘cyto’’ compartments in the Physiology (Fig. 2) are mapped, respec-

tively, to the geometry domains labeled ‘‘background’’ and ‘‘cell’’ in the seg-

mented geometry produced from Fig. 3; the software simply requires the user to

draw a line connecting the compartment to the color assigned to the corresponding

domain in the geometry. The same geometry can be reused in multiple models as it

is accessible through the VCell database. In this example, the compartment to

domain mapping is one-to-one. Often, however, multiple physiological compart-

ments may be mapped to the same geometric domain, with specification of the

volume fraction of each compartment within the domain. For example, the ‘‘cyto-

sol’’ and ‘‘ER lumen’’ compartments can be mapped to the same ‘‘cellular’’

geometric domain with volume fractions of 0.85 and 0.15, respectively. This

approximation assumes that the ER structure is fine enough to be not resolvable

on the spatial scale of the model and avoids having to represent the difficult

geometry and expensive computation of a spatially resolved ER.
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To complete a spatial model, initial concentrations, diffusion coefficients, and

velocities need to be specified (Fig. 5). In this example, we highlight the species

iso_extra, the only species in the ‘‘extra’’ compartment in the reaction network of

Fig. 2. Its initial concentration is set to 1 mM. Diffusive transport is specified by the

diffusion coefficient that defaults to 10 mm2 s�1 for volumetric species and

0.1 mm2 s�1 for membrane species; iso_extra represents a small drug molecule with

a much higher diffusion coefficient than a protein, so it is set at 300 mm2 s�1. The

flux due to advection of a molecular species can be specified by the x, y, and z

components of the velocity for each molecular species; these are all set to 0 for our

[(Fig._3)TD$FIG]

Fig. 3 Image segmentation screen in VCell. VCell allows geometries for spatial models to be derived from 2D or 3D

experimental images. The figure shows utilities for editing and segmenting an image to define the regions of a cell. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this book.)
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example, but if the Application is meant to simulate a microfluidics experiment, it

could be set to a value representing the perfusion rate. Spatially invariant initial

concentration, diffusion coefficient, or the velocity components are specified with

numerical constants. The initial concentration, diffusion, and advection specifica-

tions need not be constants, however, but can be expressions of spatial coordinates,

time, or variables in the model. An initial concentration may be specified as an

explicit function of spatial coordinates. It can also be based on an image of a protein

distribution as a fieldData object, which is imported as an image file. This object is a

named dataset that may be multivariate for multichannel recordings. Diffusion and

advection coefficients may also be explicit functions of coordinates or of fieldData.

If other model parameters must be specified as a nonuniform distribution, then one

may define a dummy species that can then be referenced anywhere in the model, and

can be given a spatial or spatiotemporal profile using explicit functions or fieldData.

[(Fig._4)TD$FIG]

Fig. 4 Screen shot of the Virtual Cell geometry mapping window. A surface rendering of the geometry produced by the

cropping and segmentation utilities of Fig. 3, is shown in the inset on the upper right. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this book.)
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Finally, in models that aim to directly fit experimental spatiotemporal fluorescence

image data, the simulated fluorescence and the experimental measurements may be

directly compared to evaluate the fitting error.

The flux density of a molecular species at a membrane results from the sum of the

transmembrane transport and adsorption and desorption due to surface-binding

reactions. This flux density is constrained to equal the flux due to diffusion and

advection at the surface of the membrane and results in the generation of gradients

near the membrane for nonzero flux. Thus, VCell handles boundary conditions of

domains bounded by membranes automatically, based on the specified membrane-

associated reactions and transport mechanisms. Boundary conditions at the edges of

the simulations geometry, however, must be specified for any species that exists in a

domain that intersects with one or more of these edges, as is the case for iso_extra in

Fig. 5. The portion of the domain boundary that coincides with the walls of the

geometry’s bounding box represents an artificial truncation of a larger geometric

[(Figure_5)TD$FIG]

Figure 5 Specification of initial concentrations, diffusion coefficients, velocities and boundary conditions within a VCell

Application.The species iso_extra is highlighted in the upper table and its editable properties are listed in the lower panel. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this book.)
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domain and so either the concentration or the flux density must be given as a

boundary condition at these walls to recover a unique solution. If the concentration

is specified at a wall (i.e., ‘‘value’’ boundary condition), then this wall acts as a

perfect buffer at the given concentration and will supply the required molecular flux

to maintain the given concentration at the boundary. If instead the molecular flux

density is given at the wall (i.e., ‘‘flux’’ boundary condition), then the concentration

at the wall will be such that the diffusive (and advective) flux at the wall is equal to

the given flux density. This ‘‘flux’’ boundary condition is often specified with zero

flux, as is the case for the example in Fig. 5; 0 flux is equivalent to either a plane of

symmetry or an impermeable wall. In all cases, the influence of the boundary

condition will be made smaller as the geometry’s bounding box is made larger (at

the expense of simulation time).

To summarize, the VCell BioModel workspace provides the flexibility to map a

single physiological model to multiple mathematical frameworks, ODEs, PDEs,

nonspatial stochastic, and spatial stochastic (Fig. 1). This rich set of simulation

capabilities enables the modeler to independently consider and evaluate spatial

effects and stochastic effects as illustrated in Fig. 6, which summarizes the process

[(Fig._6)TD$FIG]

Fig. 6 Choices and required information when building a Virtual Cell BioModel. A single Physiology can

spawn multiple Applications (varying geometries, initial conditions, boundary conditions, ODE, PDE, non-

spatial stochastic, spatial stochastic, and so on). Here, the ‘‘y’’ choice for ‘‘neglect diffusion?’’ implies that the

diffusion is fast enough to uniformly distribute all molecules within a compartment. The ‘‘small number of

molecules?’’decision reflects the desire to explore randomvariation aswell as rare events. (For interpretationof

the references to color in this figure legend, the reader is referred to the web version of this book.)
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for specifying multiple Applications based a single Physiology. Of note, even within

a single physical formulation, say a deterministic spatial model, there can be many

Applications, each with different initial concentrations of species, clamped species

concentrations, different geometries for different cell types, and so on. In other

words, any combination of the specifications described in Fig. 6 can be chosen to

exercise the parent Physiology. A VCell Application is thus akin to a ‘‘virtual

experiment.’’ After an Application is completely specified, VCell automatically

generates a full mathematical description, which contains all the constants, vari-

ables, functions, ODEs, PDEs, or stochastic processes of the system. This can be

viewed and even copied into an editable ‘‘MathModel’’ workspace. This math-

ematical description (whether generated automatically in the BioModel work-

space or edited manually in the MathModel workspace) is directly translated into

the input to our various simulation solvers. This separation of biological model

construction from the mathematics of numerical simulation enables independent

development and verification of modeling and simulation capabilities. The con-

siderations required to set up and run spatial simulations are the subject of

Section IV.

IV. Running Spatial Simulations with VCell: Numerical
Method and Simulation Parameters

Mathematically, spatial aspects of cell signaling are deterministically modeled by

systems of PDEs that involve rates of change of concentrations of signaling mole-

cules in both space and time (time and spatial derivatives), as described in Section II,

Eqs. (1) and (2). Most spatial mathematical models, particularly models with real-

istic geometries and complex nonlinear behaviors, do not have analytical solutions,

and the problems need to be solved numerically.

Numerical solution of a PDE entails discrete sampling of both spatial domains

and a time interval of interest. The spatial sampling should be fine enough to

capture the essential geometric features of both the volumetric and surface

domains of the geometry. The temporal sampling should be fine enough to capture

any fast events in the mathematical system. This spatiotemporal sampling pro-

duces a solution in the form of tables of floating point numbers. It is important to

realize that the numerical solution of a PDE is approximate: what the computer

actually solves is not the original PDE but rather a system of algebraic equations

that approximates the original PDE. This algebraic system of equations is

obtained through discretization of time and spatial derivatives included in a

PDE. Although this can be done using different discretization approaches (i.e.,

a PDE can be approximated by different algebraic systems), the numerical solu-

tion of the algebraic system converges to the exact solution of the original PDE

with increasing sampling density, that is, the numerical solution can in principle

be made as close to the exact solution of a PDE as desired, by refining the spatial

grid and decreasing the integration time step.
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Still, various discretization schemes have different characteristics with respect to

order of convergence, numerical stability, conservation of mass, and other para-

meters. In VCell, for example, spatial discretization of PDEs is performed using a

finite volume scheme (Ferziger and Peric, 2002), a conservative method with a built-

in mass balancing, a feature that is particularly important in biological applications

(Novak et al., 2007; Schaff et al., 1997, 2000; Slepchenko and Loew, 2010;

Slepchenko et al., 2000, 2003). More details about handling geometry in VCell

can be found in (Novak et al., 2007; Resasco et al., 2011; Schaff et al., 2001;

Slepchenko and Loew, 2010).

Time discretization methods can differ by how they advance the solution from

one time point to the next. The methods that advance the system based on the

rates evaluated at the ‘‘old’’ time point (explicit solvers) require a sufficiently

small integration step to ensure numerical stability (numerical instability can

manifest itself as qualitatively wrong behaviors, such as unphysical oscillations

or negative concentrations, or an exponential growth of numerical error resulting

in machine infinity). In contrast, the implicit methods that propagate the system

on the basis of rates corresponding to the ‘‘new’’ time point are unconditionally

stable but they result in a system of nonlinear algebraic equations that must be

solved iteratively.

Efficient numerically stable solvers have long been provided for simulating tem-

poral behaviors of cell signals (Alves et al., 2006). In particular, systems biologists

have come to rely on so-called stiff solvers that retain their numerical stability and

good performance in the presence of vastly disparate time scales – a common

situation in biological applications. However, for the case of spatially resolved

systems described by PDEs, solvers that meet such requirements and apply to a

general class of problems are less common. A relatively new addition to the list of

VCell spatial algorithms is a fully implicit spatial simulator (Resasco et al., 2011;

Slepchenko and Loew, 2010), which meets requirements of numerical stability and

efficiency that modelers are used to in nonspatial simulators. With a built-in auto-

matic time-step control and in combination with automatic meshing, the new spatial

integrator in VCell is easy to use. It is freely accessible through the VCell user

interface (www.vcell.org).

The fully implicit spatial solver in VCell is based on the well-known method of

lines (Schiesser, 1991): after applying spatial discretization, a system of PDEs is first

replaced with a large system of ODEs, which is then solved using a stiff ODE solver.

The stiff solver advances the solution in time using implicit differentiation formulas

and adaptive time step control. The latter allowed us to relieve the user of the burden

of specifying the integration time step, which is generally a nontrivial task. Based on

model parameters and tolerances, the solver automatically determines the initial

integration time step and adjusts it along the way: the required accuracy is main-

tained by applying small time steps during periods of rapid change in the solution,

whereas the time step is allowed to safely growoutside of these periods. The adaptive

time step control essentially eliminates the time discretization error and significantly

enhances efficiency of the solver.
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The method, however, results in a large coupled nonlinear system of algebraic

equations that must be solved at each step in time. A commonly used alternative

called operator-splitting (Sportisse, 2000) avoids solving large, coupled nonlinear

systems of algebraic equations, but it can carry more error and is not always

applicable, especially in situations when stiffness originates from binding of mole-

cules to membranes, interactions that are represented in terms of fast, nonlinear

boundary conditions. The fully implicit approach, although sometimes dismissed as

inefficient because of the large size and complexity of the nonlinear solves, can in

fact be efficient when implemented with the use of effective technologies designed

to optimize storage requirements and computation time. In particular, the adaptive

control of the time step and order of the integration method, efficient iterative

approaches to solving large-scale sparse nonlinear systems (see e.g., Knoll and

Keyes (2004) and references within), and the application of effective physics-based

preconditioners (Saad, 2003) are the main ingredients that contribute to the robust-

ness and good performance of this solver. More details of the implementation of the

fully implicit solver in VCell are provided in (Resasco et al., 2011).

The VCell fully implicit simulator is essentially turnkey. The solver is accessed

through a Solver dialog box from the Simulation Editor (Fig. 7). Using this panel,

one can switch between the solvers using a dropdown menu. This, plus simulation

start and end times and the desired output time interval, is all the information needed

to run the fully implicit solver. The user may also choose to adjust the relative and

absolute tolerances for local (time-discretization) errors and the maximum integra-

tion time-step allowed. These simulation parameters are initially set at default

values: 1e-7 and 1e-9, for the relative and absolute tolerances respectively, and 0.1

for the maximum integration time step.

The other two tabs of the Simulation Editor reveal panels for Parameter and Mesh

specification. TheMesh panel allows a user to refine or coarsen the mesh by changing

the mesh size for each Cartesian direction. In this way, the user can increase or

decrease the number of grid points for which the solution is computed. In the

Parameter panel, the user can vary model parameters, such as rate constants or initial

concentrations, for a given run. This can be done individually or through the option of

parameter scanning. The latter allows a user to run a batch of simulations for a selected

set of combinations of parameter values. For this, the user specifies parameter ranges

and the number of values within a range, which will be selected, either uniformly or

logarithmically, for scanning. This is done by checking boxes in the ‘‘Scan’’ column,

under the ‘‘Edit > Parameters’’ tab. VCell then automatically initiates simulations for

all combinations of selected parameters. The results for individual parameter combi-

nations can be viewed by selecting a set of parameter values from the table at the

bottom of the ‘‘Results’’ window, in which simulation results are displayed.

The continuous description in terms of PDEs becomes inadequate when concen-

trations of signaling molecules are relatively low and stochastic fluctuations need to

be taken into account. Instead, spatial stochastic approaches should be applied.

Stochastic modeling of signaling events seeks to predict dynamics of a probability

distribution over states of signaling molecules and their spatial location. Realistic
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models formulated in terms of stochastic processes rarely have exact solutions

(Gardiner, 2004; Kim and Shin, 1999; van Kampen, 1992), and computer simulations

have inevitably become a method of choice for stochastic applications to cell biology.

Numerical methods for modeling stochastic processes often rely on random

number generators, which are nowadays built in every computer; such algorithms

are called Monte Carlo methods. In recent years, there has been significant progress

in developing Monte Carlo algorithms designed for applications in cell biology

(Andrews et al., 2010, Elf et al., 2003; Isaacson and Peskin, 2006; Kerr et al.,

2008; Morelli and ten Wolde, 2008; Morton-Firth and Bray, 1998; Plimpton

and Slepoy, 2005; Saxton, 2007; van Zon and ten Wolde, 2005). Some

of these methods have been implemented in software packages such as MCell

[(Fig._7)TD$FIG]

Fig. 7 Specifying and running simulations in VCell. The background shows the overall simulations interface and the

foreground shows the Solver tab in the ‘‘Edit Simulation’’dialog box. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this book.)
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(http://www.mcell.cnl.salk.edu), StochSim (http://www.pdn.cam.ac.uk/groups/comp-

cell/StochSim.html), Smoldyn (http://www.smoldyn.org/),ChemCell (http://ipal.sandia.

gov/ip_details.php?ip=8030), and MesoRD (http://mesord.sourceforge.net/).

Stochastic simulators utilize different approaches and yield results with a varying

degree of detail. A method based on a reaction-diffusion master equation (Elf et al.,

2003; Isaacson and Peskin, 2006; Stundzia and Lumsden, 1996) approximates

volume elements as well-stirred compartments and describes a system in terms of

a number of copies of each signaling molecule in each volume element. Diffusion

fluxes between neighboring locations are treated as a subset of unimolecular reaction

steps, and Gillespie-type (event-driven) algorithms (Gibson and Bruck, 2000a;

Gillespie, 1976, 1977) optimized for spatial simulations (Fange and Elf, 2006) are

used to generate stochastic trajectories of the system. Although conceptually appeal-

ing, the method does not have a well-defined scope of applicability and diverges as

the mesh is refined.

In a more detailed description, the state of the system is defined in terms of

locations and states of every signaling molecule (velocities of the molecules are

considered to be in equilibrium at any time because of low Reynolds numbers).

Particle-based Brownian dynamics algorithms that advance a system in time with a

fixed time step are widely used to simulate dynamics of interacting molecules in

cells (Andrews and Bray, 2004; Kerr et al., 2008; Plimpton and Slepoy, 2003). In one

of most recent developments, VCell has incorporated Smoldyn (Andrews et al.,

2010) (Fig. 1D), which is among the most efficient particle-based spatial stochastic

simulators. Interpolation techniques implemented in Smoldyn become exact in the

diffusion-controlled limit. The algorithm is designed to reproduce observable on-

and off- reaction rates, and therefore results are expected to be sufficiently accurate

even when obtained with relatively large steps. Still, numerical error cannot be

regularly estimated, other than for the case of diffusion-limited reactions. In this

regard, more accurate, but likely less efficient, methods were recently proposed in

(Morelli and ten Wolde, 2008; van Zon and ten Wolde, 2005).

V. Application to a Specific Example: cAMP Signaling
in Neuronal Cells

Intracellular signal transduction often leads to localized regulation of specific

cellular processes. Such spatial heterogeneity can be experimentally observed by

in vivo high-resolution subcellular imaging and can involve localized production of

small molecule messengers and/or localized activation of protein kinases, protein

phosphatases and other signaling components. Concentration gradients of key sig-

naling components can form dynamic subcellular regions, called signaling micro-

domains, where selected molecules have elevated (or decreased) levels compared to

other contiguous areas. It has long been thought that some of the specificity observed

in the effects of signals that use similar or identical signaling pathways arise from

such spatial domains of signaling components within the cells. Signaling
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microdomains involving cAMP and protein kinase cascades have been recently

studied in a number of different cell types. These studies revealed a surprising

complexity that is not easily explained by simple reaction mechanisms and the

geometrical shape of the particular cells. Performing quantitative simulations of

the biochemistry in spatially resolved geometries using software such as VCell can

be of critical help to guide experiments and unravel this complexity. This is illus-

trated in this Section by example, using a recent study of beta-adrenergic receptor

signaling in hippocampal neurons (Neves et al., 2008).

A. Initial Hypothesis and Overall Approach

The overall goal was to study the role of morphology and spatial anisotropy in

regulating intracellular signaling in neurons. The original hypothesis was the fol-

lowing: due to the shape of hippocampal neurons, microdomains of cAMPmay form

in response to global beta-adrenergic receptor stimulation, and this would then lead

to localized activation of the downstream effector, mitogen-activated protein kinase

(MAPK; active in its phosphorylated state, P-MAPK). The approach used was to

resolve the information flow within the cell using spatial specifications from real-

istic cell shapes and locations of relevant components. Models were developed using

VCell and simulations were used to analyze how the various factors (signaling

network connectivity map, individual reaction kinetics, diffusion constraints, shape,

etc.) could affect the dynamics of the signaling microdomains. The predictions

generated from these simulations were tested experimentally in an iterative cycle

of model building/refinement – simulation predictions – new experiments. This

work has resulted in exciting new insights into the interplay between signaling

network topology, biochemical kinetics, and spatial anisotropy in the regulation of

the cellular response to receptor stimulation.

B. Creating and Testing the Model and the Initial Hypothesis

The first step was to build a simple, but quantitatively accurate model of the signal

transduction at the membrane that controls the concentration of the cytosolic second

messenger, cAMP. This initial model included the extracellular ligand (isoprotere-

nol), the beta-adrenergic membrane receptor, the G-protein cascade leading to

adenylyl cyclase activation, cAMP generation, the activation of protein kinase A

(PKA), and the cAMP degradation by PKA activation of phosphodiesterase (PDE4)

(see Fig. 2A). This simple stimulatory pathway with one negative feedback loop had

many parameters known from experimental measurements. The unknown para-

meters were constrained by running simulations as a compartmental (i.e., ODE)

model to fit time curves and dose–response curves of a few selected components

whose average concentration was measured in brain slice experiments.

The second step was to use microscope images of cultured hippocampal neurons

as geometries for simulating the spatially resolved activity of this signaling network

(an example is shown in Fig. 8D). All molecules involved were assumed to be evenly
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[(Fig._8)TD$FIG]

Fig. 8 Spatiotemporal distribution of key signaling molecules. The top three panels show the simulation results

analyzing the dependence of local concentration of cAMP (panel A), activated PKA (panel B) and activated MAPK

(panel C) on dendrite diameter. Maximum concentrations at 600 s poststimulus are plotted (blue diamonds) together with

dendritic surface/body ratio (red squares). Note how cAMP concentration strongly depends on S/V values as opposed to

PKA and MAPK. Panel D shows a typical image of the cultured hippocampal neuron geometries that were used for

spatially resolved simulations. Panel E shows kymographs (produced in the VCell Results Viewer) depicting the activation

profile of key signaling components downstream of cAMP. A line scan was done on the dendrite highlighted in white in

panel D (X-axis) over a 10-min time course (Y-axis); each image has the respective pseudocolor key to concentration values

on the right. Note how the information flow for conservation of microdomain downstream of PKA appears to occur

through the inhibitory path (modulation of PTP by PKA). This Figure is adapted from Neves et al. (2008), and is

reproduced by permission of Cell Press. (See color plate.)
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distributed at the initial steady state. The time-course simulations after ligand

stimulus predicted that cAMP microdomains would form, with relatively steep

concentration gradients (strong activation in the dendrites and essentially no acti-

vation in the cell body). This was then confirmed by live cell measurements of

cAMP concentration in slice experiments (using a cAMP FRET sensor), which were

compared to further simulations that used the actual geometries of the neurons from

the slice experiments’ microscope images. Theoretical analysis of this (still rela-

tively simple) model had shown that a critical parameter that influences the cAMP

gradients is dendrite diameter. This mathematical analysis was confirmed by sim-

ulation results on idealized geometries where the dendrite diameter was varied and a

strong correlation was seen with cAMP concentrations (Fig. 8A).

C. First Unexpected Model Prediction

The model was then extended to include the signaling elements connecting the

second messenger production to effector activation: a stimulatory (PKA! b-Raf!
MAPK) and an inhibitory (PKA : PTP : MAPK) feed-forward link, both with

negative regulation by phosphatases (PPP2A and PP1, respectively). The schematic

overview of the extended signaling network is shown in Fig. 2B and the detailed

reaction diagram of the corresponding VCell model is shown in Fig. 2C. Spatially

resolved simulations of the extended model were started by activating the receptors

with saturating concentrations of isoproterenol, and they showed that, similar to the

case of cAMP, distinct microdomains for P-MAPK were also formed in the distal

dendrites, as originally hypothesized. However, when analyzing the dependency of

the P-MAPK microdomains on dendrite diameter, the results were very different

than for the cAMP microdomain, in that the P-MAPK microdomain was far more

robust (compare Fig. 8A and C). Thus, the model predicted that localized cAMP

signaling is directly dependent on cellular geometry, but other factors must contrib-

ute to the control of the spatial distribution of MAPK activation. One possible

hypothesis was that this was due to differences in diffusion constants of the different

molecules involved, for example, cytosolic proteins diffuse much slower than the

small molecule cAMP. This hypothesis was tested in silico, by performing parameter

scan simulations where the diffusion constants of several of the molecules were

changed to higher values. (It is worth noting that this was a quite important model

analysis step independent of the hypothesis because many of these diffusion con-

stants were estimated based on molecular radius and not experimentally measured

values). These simulations showed, however, that the characteristics of the P-MAPK

microdomains were not significantly affected when any of the diffusion constants

were increased (within physically reasonable bounds).

So what could be the cause? When looking at the simulation data for other

cytosolic proteins, the very first protein in the signaling path, PKA* (the cAMP-

activated PKA), also exhibited a microdomain formation that was more robust to

changes in dendrite size and shape, similar to the case of P-MAPK (Fig. 8B). A
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natural hypothesis was that the cause must reside in the upstream part of the

signaling – for example, the phosphodiesterase-mediated upper negative feedback

loop. An in silico ‘‘virtual knockout’’ experiment was performed where simulations

where run with the PDE4 activity set to zero. These simulations showed a complete

loss of microdomain formation for both PKA* and P-MAPK. This important pre-

diction was then confirmed experimentally: hippocampal tissue slices were treated

with the PDE4 inhibitor rolipram before beta-adrenergic stimulation, and as a result,

global (body + dendrite) activation of P-MAPK was seen, perfectly matching sim-

ulation predictions.

D. More Unexpected Model Predictions

While doing the above model analysis to compare microdomain characteristics

for the second messenger cAMP versus the downstream effectors PKA* and P-

MAPK, a second surprising feature was observed. Looking at the spatial dynamics

of all of the diffusible components involved, the proteins that form the interme-

diary link between them in the stimulatory pathway, P-b-Raf and P-MEK, not only

do not have robust spatial microdomains, they essentially do not form any micro-

domain, and show little difference in activation between different areas of the cell

(Fig. 8E). Given the previous insight gained into the importance of the upper

negative feedback loop in propagating spatial information, a new round of

in silico and in vivo experiments was done, focused on the negative feedback

component of the downstream activation path: phosphatases PP2A and P1.

Simulations of inhibited PP2A/PP1 activity showed a disappearance of the

downstream P-MAPK microdomain, while the upstream PKA* microdomain

was unaffected. This was then confirmed experimentally by treatment with the

phosphatase inhibitor, okadaic acid.

Given the apparent critical role of negative regulators, further efforts were made

to understand the role of the parallel inhibitory feed-forward loop (PTP inhibition

by PKA followed by MAPK inhibition by PTP). Indeed, P-PTP (currently not

measurable experimentally) also showed a similar robust microdomain like PKA*

and P-MAPK (Fig. 7E). A PTP ‘‘virtual knockout’’ experiment in silico (where

phosphatase activities were kept normal) resulted in simulations where only

shallow P-MAPK microdomains were formed, which were also not at all robust

to changes in cellular shape characteristics such as dendrite versus cell body

surface-to-volume ratios. Experimental testing of this prediction was far more

complicated because no good specific direct inhibitor of PTP was available. Gene

knockdown experiments were performed, where animals were treated with anti-

sense oligonucleotides that were designed to reduce the expression of the PTPRR

gene products, prior to sacrificing them for tissue slice experiments. Comparison

of P-MAPK imaging after isoproterenol stimulation in tissue slices from the

antinsense oligonucleotide-treated animals versus those from scrambled oligonu-

cleotide-treated controls matched the simulation predictions. This also prompted

further more detailed analyses to study the relative role of kinetic parameters of
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the reactions in the stimulatory and inhibitory feed-forward paths, as well as of

their respective reverse loops via phosphatases.

E. Conclusions

This study achieved a new understanding of how cell morphology characteristics,

biochemical parameters, and network topology combine in subtle ways to control the

propagation of spatial information through the signaling networks (in the particular

case of beta-adrenergic stimulation of neurons). To put in perspective the complexity

of the study, it should be noted that the presentation here only briefly summarizes the

stepwise progression from an initial hypothesis throughmany cycles of in silico and in

vivo experiments. Considerable more data is provided and discussed in the original

paper by Neves et al. (2008): the six multi-paneled results figures are accompanied by

a 50-page supplement with more simulation and experimental data (34 more figures

and tables) as well as additional theoretical mathematical analyses. Overall, this study

is an excellent example of how geometry can control cell signaling and howmodeling

and experiment can interact to solve a complex cell biological problem.
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Abstract

During cell migration, local protrusion events are regulated by biochemical and

physical processes that are in turn coordinated with the dynamic properties of cell-

substratum adhesion structures. In this chapter, we present a modeling approach for

integrating the apparent stochasticity and spatial dependence of signal transduction

pathways that promote protrusion in tandem with adhesion dynamics. We describe

our modeling framework, as well as its abstraction, parameterization, and validation

against experimental data. Analytical techniques for identifying and evaluating the
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effects of model bistability on stochastic simulation results are shown, and implica-

tions of this analysis for understanding cell protrusion behavior are offered.

I. Introduction

Cell crawling over an adhesive surface is a mechanical phenomenon marked by

coordinated protrusion at the cell front and retraction at the rear (Parsons et al.,

2010). Fibroblasts and other migratory cells of mesenchymal lineage exhibit dis-

crete, micron-sized adhesive contacts that are nucleated by transmembrane adhesion

receptors and which form as the leading edge of a migrating cell protrudes over the

surface. These adhesions are dynamic, responsive to external and intracellular

forces, and conducive to assembly of molecularly diverse protein complexes.

Although protrusion, adhesion, and retraction are clearly mechanical processes, they

are apparently organized by the timing and partitioning of biochemical signaling

pathways. This handoff from chemical regulation to mechanical actuation, together

with the ability of cells to sense and respond to mechanical forces, creates a bidi-

rectional feedbackmechanism that is thought to play a critical role in controlling cell

migration (Welf and Haugh, 2011). In this chapter, we discuss development and

simulation of a computational model representing adhesion dynamics and adhesion-

mediated signaling both as a cause and a consequence of localized protrusion.

How do diverse cellular protrusion behaviors arise from the interplay among

physical and biochemical subprocesses? As with any complex system, the variety

of interacting molecular components and processes at work during cellular protru-

sion demand analytical approaches for parsing their influence on cellular behaviors,

and the apparently random nature of those events suggests that stochastic computa-

tional modeling is well-suited for representing them. The key challenges include

how to model the components that are not fully understood at a mechanistic level,

and, for those components that are better understood, deciding how much detail to

include (Mogilner, 2009). As we discuss, our approach for dealing with these

challenges has been to simplify (coarse-grain) certain aspects of the system while

employing phenomenological assumptions to balance the scope and desired detail of

the model with computational tractability and physical understanding.

II. Model Synthesis

A. Adhesion Dynamics

During active membrane protrusion in cells of mesenchymal origin, actin poly-

merization at the leading edge of the cell applies force on the membrane, which is

balanced by immobile adhesion structures that couple with the actin network and

transmit force to the substrate. These cell–matrix adhesions thus serve as mechanical

linkages that enable the cell to pull itself along, but they alsomediate the localization

of numerous intracellular signaling proteins. The signaling properties of adhesion
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structures differ according to their sizes and intracellular locations. The small

nascent adhesions that form at the leading edge of a cell protrusion facilitate actin

polymerization through activation of Rac and certain other signaling intermediates

(Cox et al., 2001); however, when these nascent adhesions mature to form larger,

more stable focal adhesions, they accumulate actomyosin activity and inhibit pro-

trusion and cell shape change either by biochemical means or by acting as firm

anchors for the actin cytoskeleton (Vicente-Manzanares et al., 2007, 2011). Thus,

within a local region at the cell periphery, spontaneous transitions between predom-

inantly protrusive and adhesive phenotypes are observed.

Observation of adhesion dynamics by live-cell microscopy directly illustrates why

a stochastic framework, in which adhesions are treated as discrete entities, is well-

suited for modeling adhesion and migration (Fig. 1a). In tandem with adhesion

formation and turnover, protrusion is rarely smooth with respect to time and space;

it is most common to see leading edges bulge in transient, localized bursts

(Machacek and Danuser, 2006; Tsukada et al., 2008). Likewise, the process of

adhesion maturation occurs infrequently, and as a result there are relatively low

numbers of stable adhesions that nonetheless have dramatic phenotypic effects.

To model the spatial aspects of local adhesion formation, turnover, maturation,

and signaling, we consider a control volume comprising a region starting at the

leading edge of a protruding region of the cell and extending rearward toward the cell

center, terminating just following the boundary between the lamellipodium (LP) and

the lamella (LM), as shown in Fig. 1b. The LP is the region of dense, dynamic actin

[(Fig._1)TD$FIG]

Fig. 1 Stochastic nature and spatial representation of adhesions. (a) Inverted grayscale image of a

CHO.K1 cell expressing GFP-paxillin, monitored by TIRF microscopy, showing regions of nascent

adhesion formation/turnover (red arrowheads) and the discrete nature of the larger, mature adhesions

(adapted from Cirit et al. (2010)). (b) Diagram illustrating the control volume for the model system and

the locations of adhesions therein. Nascent adhesions are formed and move rearward relative to the

leading edge as the cell protrudes, and they either mature or turn over when they reach the back edge of the

lamellipodium. (For color version of this figure, the reader is referred to the web version of this book.)
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starting at the leading edge of the cell and extending several microns into the cell

body, terminating at the location where actin depolymerization thins the dense actin

network of the LP to form the LM. As the boundary between the LP and the LM

moves forward relative to immobile adhesions, nascent adhesions that reach the LM-

LP boundary either turn over (i.e., disintegrate) or mature to form stable adhesions

(Nayal et al., 2006). As the front of a protruding region moves forward, adhesions

move rearward relative to the leading edge, which is the frame of reference for the

model; increases in protrusion velocity directly affect adhesion turnover by increas-

ing the rate at which nascent adhesions reach the LM-LP boundary (Choi et al.,

2008). Likewise, the effects of stable adhesions are assumed to fade with increasing

distance from the cell front.

Nascent adhesions form at a rate proportional to the rate of local protrusion

(Choi et al., 2008), thus placing them within the positive feedback loop, protrusion

! nascent adhesion formation ! Rac signaling ! protrusion, which we term the

core protrusion cycle (Fig. 2). As explained below, nascent adhesions are assumed to

mediate localized activation of Rac by one of two mechanisms, which differ in

mathematical form (rate law). It is further assumed that the velocity of leading-edge

protrusion is a monotonically increasing function of the local Rac concentration.

[(Fig._2)TD$FIG]

Fig. 2 Conceptual model framework. The rate of formation of nascent adhesions depends on the ECM

concentration, and the rates of nascent adhesion formation and turnover depend on the velocity of

membrane protrusion. Nascent adhesions promote protrusion via Rac activation, either via a pathway

utilizing bPix that is reinforced by positive feedback through PAK, or through a pathway involving

DOCK180. Those nascent adhesions that are not turned over mature to form stable adhesions, a process

that is reinforced by myosin-mediated feedback and attenuated by Src. Stable adhesions directly antag-

onize protrusion, disassemble over a relatively long time scale, and have a diminishing influence on

processes at the leading edge as a function of their growing distance from the leading edge during

protrusion. (For color version of this figure, the reader is referred to the web version of this book.)
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Experimental observations indicate that formation of stable adhesions coincides

with local pauses in protrusion, and the myosin-dependent contractile processes

stimulated by stable adhesions encourage adhesion maturation (Choi et al., 2008).

Thus, the core protrusion cycle is subject to an opposing feedback loop whereby

stable adhesions reduce the rate of nascent adhesion formation while enhancing the

probability of nascent adhesion maturation (Fig. 2). Although the effects of stable

adhesions on local protrusion have not been characterized inmechanistic detail, their

importance demands that these effects be included at least phenomenologically in

our model.

B. Adhesion-Mediated Signaling

A host of scaffolding proteins and kinases are recruited to cell–matrix adhesions,

and our focus here is on adhesion-associated signaling pathways that promote local

protrusion. Paxillin is a scaffold protein recruited to nascent adhesions shortly after

their formation, and once phosphorylated on specific sites, paxillin mediates binding

of guanine exchange factors (GEFs) that activate Rac, which in turn enhances actin

polymerization (Deakin and Turner, 2008). The Rac effector p21-activated kinase

(PAK) phosphorylates paxillin on serine 273, providing a binding site for the recruit-

ment of the scaffold protein GIT1, which forms a complex with both the Rac-GEF

bPIX and PAK; this positive feedback loop involving local Rac activation, embed-

ded within the core protrusion cycle, is apparently required for maintenance of

protrusion, at least in certain cell contexts (Nayal et al., 2006). In parallel, paxillin

phosphorylated on tyrosine residues 31 and 118 by focal adhesion kinase (FAK)

recruits the CrkII adapter and the unconventional Rac-GEF DOCK180, further

amplifying Rac activation in response to paxillin localization and phosphorylation

(Smith et al., 2008; Kiyokawa and Matsuda, 2009). Paxillin phosphorylated on

tyrosines 31 and 118 alsomediates binding of the tyrosine kinase Src, which opposes

myosin function and may thus attenuate adhesion maturation (Tsubouchi et al.,

2002).

C. Model Formulation

We are concerned with both biochemical signaling and physical processes gov-

erning adhesion dynamics and extension of the cell membrane, and how stochastic

fluctuations in these processes are coupled. The appropriate level of detail therefore

involves biochemical interactions and reactions at the molecular level; however, as

with many biochemical systems we employ simplifying assumptions to reduce the

number of adjustable model parameters and decrease the computational burden. A

compromise in the degree of coarse-graining was reached by including abbreviated

descriptions of biochemical mechanisms that are relatively well-characterized while

employing phenomenological descriptions of other important processes. For exam-

ple, we model the phosphorylation of different amino acid residues on paxillin as
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distinct events but assume that the subsequent binding and modifications of adapter

proteins and GEFs are implicit in the activation of Rac (for a discussion of kinetic

model simplification, see Cirit and Haugh, 2011). Adhesion maturation is an exam-

ple of a process that is less well-understood, and our phenomenological approach

was to treat nascent and mature adhesions as discrete entities and cast the transition

between the two in terms of a probability that increases according to the local myosin

activity.

The locations of adhesions relative to the leading edge and laterally along the cell

contour determine the degree to which the two adhesion types influence protrusion

or adhesion maturation (Fig. 1b). The mechanical effects of adhesion formation and

maturation are widely speculated to involve force-responsive proteins (i.e., mechan-

otransduction) and propagation of stress within the heterogeneous actin network

(Anderson et al., 2008; Gardel et al., 2010; Parsons et al., 2010). Although the

molecular and physical details involved in thesemechanical processes form the basis

of continuing theoretical and experimental work, it seems reasonable to focus the

details of a coarse-grainedmodel on either the signaling or mechanical aspects of the

system. Whereas other studies have dealt primarily with the mechanical side (Chan

and Odde, 2008; Li et al., 2010; Sabass and Schwarz, 2010; Zimmermann et al.,

2010; Barnhart et al., 2011), we chose to emphasize the properties of adhesion-

mediated signaling.

As described above, our approach for dealing with the spatial relationships

between model variables is to define a control volume that moves along with the

leading edge of a cell; within a control volume, molecular species are assumed to be

well-mixed, and the width of the control volume is set so that the validity of this

approximation is ensured. We investigated the possibility of spatial propagation

along the one-dimensional leading-edge contour by performing spatially extended

simulations (described in detail under Computational Methods).

III. Model Analysis

The performance of the model was evaluated in part by comparing the qualitative

behavior of model simulations at different values of the parameter representing the

effect of extracellular matrix (ECM) to experiments assessing protrusion of CHO.K1

cells on different densities of the ECMprotein fibronectin ([Fn]). An intermediate [Fn]

(2 mg/mL coating concentration) fosters optimal cell migration speed of this cell line

(Palecek et al., 1997), and the relative abundance of nascent and stable adhesions at

different [Fn] apparently contributes to this optimality. As shown in both experiments

and simulations, intermediate [Fn] supports maximal protrusion in conjunction with a

high abundance of nascent adhesions, whereas high [Fn] supports mostly stable adhe-

sions, and low [Fn] does not support many adhesions of either type (Cirit et al., 2010).

Although values for some of the model parameters were chosen based on

experimental evidence, other parameters representing phenomenological relation-

ships were varied systematically (Table I). Fig. 3a shows stochastic simulation
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results for the model with bPix/no DOCK180 signaling and different values of the

parameters In and Es, which characterize the phenomenological effects of protru-

sion inhibition by stable adhesions and enhancement of adhesion maturation by

myosin, respectively. Qualitative characterization of the stochastic simulation

behaviors, as shown in Fig. 3b, facilitates comparison of simulation results across

different combinations of parameter values. The effect of myosin-mediated adhe-

sion strengthening, modeled by the Es parameter, can be seen clearly in the

spatially extended simulations shown in Fig. 4 – when Es is low, protrusion

dominates, but when Es is higher, the formation of stable adhesions inhibits

protrusion yet allows for stochastic protrusion bursts that propagate laterally as

active Rac diffuses. Another approach for characterizing stochastic simulation

results is to calculate the mean lifetimes of protrusion and adhesion events

occurring during an extended simulation period (1000 min was used).

Protrusion events were identified as periods of time during which the dimension-

less protrusion velocity v > 0.5, and adhesion events were identified as periods

of time during which the number of stable adhesions was nonzero (S � 1).

Table I
Model parameters

Parameter Description Comment

kECMa;n
Rate constant, N assembly Model input; varied from 0.01–100 min�1

En Rac! protrusion coupling Set to 100 (>> 1)

Kv Saturation of protrusion velocity Set to 1; moderate saturation

In S! protrusion inhibition Varied from 0–10

Is Src! maturation inhibition Varied from 0–100

kd,n Rate constant, basal N turnover Set to 0.1 min�1; same value as kd,s
Cn Protrusion! N turnover coupling Set to 20 (Nayal et al., 2006)

ka,s Rate constant, basal S growth Set to 0.01 min�1 (<< kd,s)

Es Myosin! S growth coupling Varied from 0 – 100

kd,s Rate constant, S disassembly Set to 0.1 min�1 (Nayal et al., 2006)

Cs Protrusion! S convection Varied from 1–100

kd;xi Rate constant, X dephosphorylationy Set to 10 min�1 (arbitrarily fast)

Kxi Saturation of phospho-paxilliny Set to 1; moderate saturation

po Basal paxillin phosphorylation Set at 0.01 (<< 1)

kd,r Rate constant, Rac deactivation Set at 4 min�1 (Moissoglu et al., 2006)

Kp Saturation of Pak activation Set to 1; moderate saturation

kd,m Rate constant, myosin deactivation Set at 4 min�1; same value as kd,r
N* Scaling factor, N Varied from 1 – 10

Km Amplification factor, S!Myosin Set to 10

Kr Amplification factor, Paxillin! Rac Set to 10

Dr Mobility coefficient, Rac Next subvolume model; set to 15 mm2/min

(Moissoglu et al., 2006)

y i denotes paxillin phosphorylation on serine 273 or tyrosines 31 and 118.
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Fig. 5 shows the effect of changes to En and Cs for different values of ka,n and Es,

respectively, in the model with DOCK180/no bPix signaling.

A deterministic analysis of the model equations, treating the molecular species

as continua rather than as discrete entities, was also performed. Although a

[(Fig._3)TD$FIG]

Fig. 3 Characterization of protrusion/adhesion phenotypes via stochastic simulation. The model

system was simulated starting with all species numbers initialized at zero. (a) Protrusion velocity v is

plotted as a function of time for kECMa;n = 0.3 min-1,N* = 3, and a matrix of Es and In values as indicated. (b)

The same (Es, In) matrix was repeated for different values of kECMa;n and N* as indicated, and the apparent

phenotype of each simulation is categorized qualitatively. The matrix framed with a thicker border

corresponds to the simulations shown in a. (See color plate.)

[(Fig._4)TD$FIG]

Fig. 4 Spatially extended simulation results. Spatially extended simulations were performed using the

Next SubvolumeMethod to account for lateral diffusion of active Rac; the virtual leading edge is subdivided

into 20 subvolumes, each 1.94 mm in size. Protrusion velocity is indicated in grayscale (white: v = 0; black:

v = 1) as a function of time and position for a range of Es values. Adapted from Cirit et al. (2010).
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purely deterministic treatment was not able to produce switching between pro-

trusive and adhesive states, the calculations proved useful in identifying condi-

tions where the model exhibits bistability, which is related to the existence of

multiple steady states (Cirit et al., 2010). In the context of our models, bistability

is a condition in which both the protrusive and adhesive phenotypes are stable.

Fig. 6 shows identification of regions of model bistability via phase plane

analysis, with the nullclines for nascent adhesions and stable adhesions plotted

in (v,s) space. Intersections of the n and s nullclines indicate fixed points in the

system, and regions of bistability are shown as functions of model parameters in

Fig. 6b. A method for comparing regions of model bistability with stochastic

model simulation results (in terms of mean protrusion or stable adhesion life-

times) is shown in Fig. 7.

[(Fig._5)TD$FIG]

Fig. 5 Characterization of stochastic simulation results. Mean lifetimes of protrusion and adhesion

events at various values for kECMa;n ,Es,En,Cn,Cs, and ka,swere calculated. Protrusion events were identified

as periods of time during which the dimensionless protrusion velocity v> 0.5, and adhesion events were

identified as periods of time during which the number of stable adhesions was nonzero (S � 1). Adapted

fromWelf and Haugh (2010). (For color version of this figure, the reader is referred to the web version of

this book.)
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IV. Biological Insights from the Modeling Approach

In many cell signaling systems, the coupling of multiple feedback mechanisms

complicates the mapping of stimuli to cell responses. Feedback loops can give rise

to nonlinear effects such as amplification, oscillation, and hysteresis (Besser and

Schwarz, 2010; López, 2010). In the context of cell migration, it was of interest to

investigate how feedback loops might amplify or attenuate signaling events to

affect the observed stochastic switching between protrusion and adhesion pheno-

types. For example, measurements of the leading-edge protrusion velocity in

migrating CHO.K1 cells clearly show isolated bursts in protrusion that appear

to arise randomly; monitoring the localization of adhesions in these cells confirms

that a lack of protrusion is accompanied by formation of large stable adhesions

(Cirit et al., 2010).

[(Fig._6)TD$FIG]

Fig. 6 Determination of regions of bistability by phase plane analysis. In the upper panels, the

nullclines for n (green) and s (magenta) are plotted in (v, s) space. For the n-nullclines, the values of

the ECM parameter are 0.03 (light green), 0.1 (green), and 0.3 (dark green) min-1. Intersections of the

n- and s-nullclines are fixed points of the system. In the lower panels, the shaded region of (kECMa;n , Es)

parameter space indicates where there are multiple fixed points (kECMa;n values given in units of min-1).

Adapted from Cirit et al. (2010). (See color plate.)
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Based on our modeling studies, we can propose biochemical mechanisms that

generate, through amplification of stochastic fluctuations, transient yet dramatic

excursions from a particular stable state (Cirit et al., 2010; Welf and Haugh, 2010).

Such transient behavior takes the form of accelerations from an otherwise low

[(Fig._7)TD$FIG]

Fig. 7 Regions of bistability overlaid on stochastic simulation results. Mean lifetimes of protrusion and

adhesion eventswere calculated as described in the caption for Fig. 5, and regions of bistabilitywere identified

by finding the steady state(s) of the deterministicmodel equations numerically using different combinations of

initial conditions (upper panels). Stochastic simulation results corresponding to the parameter values indicated

by the symbols in the upper panels are shown in the lower panels. Results are adapted fromWelf and Haugh

(2010) with In = 10, Is = 1, and Cs = 100.
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protrusion state or decelerations (pauses) from an otherwise persistent protrusion

state. Positive feedback amplification via Rac/PAK signaling and negative feedback

attenuation via Src-mediated inhibition of adhesion maturation are capable of medi-

ating these respective behaviors. If both signaling mechanisms are in play as we

would propose, the same cell could employ one or the other mechanism at different

times and/or at different subcellular locations.

Simulation results show that in order to achieve protrusion under high ECM

density or high myosin activity conditions, the magnitude of the Src-mediated

inhibition of maturation must be of a certain magnitude relative to the inhibition

of protrusion by stable adhesions. Because Src-mediated buffering of adhesion

maturation does not prevent adhesion formation under low ECM/low myosin con-

ditions, this hypothetical mode of regulation presents an attractive means for main-

taining sensitivity to changes in ECM density or myosin activity across wide ranges

of these variables (Welf and Haugh, 2010).

Our original hypothesis held that model bistability would be important for

stochastic phenotype switching. Although such behavior is likely to occur in

regions of parameter space that are close to the bistability envelope, we found

that model bistability is not required for the model to produce switching behav-

ior. Bistable regions of parameter space usually lie between those regions that

give monostable low and monostable high protrusion, and in the vicinity of the

interface between the two, the stochastic model readily produces transient depar-

tures from the stable state.

V. Open Challenges

A central issue in formulating increasingly useful models of cellular processes is

how best to rectify the increasing molecular-level detail of the biology knowledge

base with a desire to create holistic models encompassing a large set of regulatory

interactions. In general, the granularity of a model should be determined by howwell

the constituent mechanisms are understood, balanced by the need to specify values of

their corresponding rate parameters and tempered by the availability of quantitative

data (Cirit and Haugh, 2011; Mogilner et al., 2006). In many biological systems,

biochemical complexity is combined with the need to describe mechanical effects

and account for spatial concentration and stress gradients. Particularly in systems

where spatial considerations are clearly important, as in cell migration, inclusion of

all known biochemical interactions is computationally intractable. Further, many

important cellular phenomena, such as those mediating mechanotransduction,

remain to be characterized mechanistically (Bershadsky et al., 2006). Although

mechanical and biochemical models of cell migration have been independently

proposed, and integration of biochemical and mechanical phenomena has been

achieved recently in the context of leukocyte rolling and firm adhesion (Caputo

and Hammer, 2009), these two fundamental modes of regulation have yet to be

combined in a satisfactory way in a single model of cell migration.
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In this chapter we have presented one approach for integrating the spatial and

mechanical processes mediated by stable adhesion formation and myosin contrac-

tility into the biochemical framework that regulates cell protrusion. Our treatment of

these processes represents only the most basic relationships between model vari-

ables, and these relationships should be refined as new data, especially those of a

quantitative nature, become available. The recent development of new experimental

approaches for perturbing and analyzing the spatial, temporal, and mechanical

aspects of cell signaling will enable collection of such data (Grashoff et al., 2010;

Toomre and Bewersdorf, 2010; Wu et al., 2009). Hence, as increasingly detailed

descriptions of the underlying network are developed, it will be necessary to evaluate

and compare their emergent properties, mapped to the behaviors encoded by the

more coarse-grained or phenomenological treatments used to construct necessarily

less detailed, holistic models.

VI. Computational Methods

A. Parameter Nomenclature

Certain model parameters are dimensionless and phenomenological; these are

classified by whether they characterize enhancement of species i formation (Ei),

inhibition of species i formation (Ii), or augmentation of species i consumption rate

(Ci). Other parameters have dimensions and include first-order rate constants with

units of inverse time, characterizing assembly/activation or disassembly/deactivation

of species i (ka,i or kd,i, respectively), and diffusion coefficients with units of area/

time (Di). Dimensionless parameters Ki denote ratios of rate constants, characteriz-

ing the rate of assembly or activation relative to that of disassembly or deactivation

for species i (Ki = ka,i/kd,i). Definitions of all model parameters are listed in Table 1.

B. Model Equations

We constructed model equations considering conservation of molecular and adhe-

sion-based species based on the conceptual model shown in Fig. 2. We have explored

two variations of the model, each corresponding to the scaffolding effect of a different

phosphorylation site or sites on paxillin: serine 273 (Cirit et al., 2010) or tyrosines 31

and 118 (Welf and Haugh, 2010). The equations for each instance of the model were

identical, except as indicated. The dimensionless densities of nascent adhesions (n),

stable adhesions (s), and recruited myosin (m) are generally written as follows.

dn

dt
¼ kECMa;n 1þ Envð Þ � kd;n 1þ Cnvð Þn� ka;sf m; x31=118

� �
n ð1Þ

ds

dt
¼ ka;sf m; x31=118

� �
n� kd;s 1þ Csvð Þs ð2Þ
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and

dm

dt
¼ kd;mðs� mÞ ð3Þ

The value of the parameter kECMa;n maps in some way to the density and

character of the ECM, and v is the dimensionless protrusion velocity. The alge-

braic function f(m,x31/118) describes the enhancement of adhesion maturation by

myosin and its inhibition by paxillin phosphorylated on tyrosines 31 and 118,

which directs Src recruitment; in the model considering serine 273 only, the

dependence on the x31/118 variable is absent.

Previous theoretical studies have analyzed in detail how the kinetics of actin

polymerization might affect local membrane protrusion (Barnhart et al., 2011; Gov,

2006; Zimmermann et al., 2010); in this work we employ a simple functional

relationship between Rac activity (r) and membrane protrusion, such that the protru-

sion velocity increases in response to Rac signaling until a saturation limit is reached.

v ¼ Kvr

1þ Kvrð ÞgðsÞ ð4Þ

The function g(s) specifies the relationship between stable adhesion density and

inhibition of protrusion.

Although various phenomenological forms of the f and g functions may be

proposed, we adopted simple, linear forms as follows.

f m; x31=118
� � ¼ 1þ Esm

1þ Isx31=118
ð5Þ

gðsÞ ¼ 1þ Ins ð6Þ
Again, the variable x31/118 in the f function is effectively fixed at zero in the bPix/no

DOCK180 model (Cirit et al., 2010).

The equations for the signaling circuit variables are as follows. The variable xi
(i = 273 or 31/118) represents the subset of n harboring phosphorylated paxillin (and,

implicitly, GIT1/bPIX/PAK or CrkII/DOCK180 complexes), r is the density of

active Rac (activated by bPIX or DOCK180), and p is the subset of x273 harboring

Rac-activated PAK. For the case where we consider phosphorylation of serine 273

(Cirit et al., 2010), we write:

dx273

dt
� kd;x273 ½Kx273 po þ pð Þ n� x273ð Þ � x273� ð7Þ

The small basal paxillin phosphorylation activity, p0, is included so that x273, r,

and p can evolve in time when all initial values are zero. Likewise, the fraction of

nascent adhesions harboring paxillin phosphorylated on tyrosine 31/118 (Welf and

Haugh, 2010) is written

dx31=118

dt
� kd;x31=118 ½Kx31=118

n� x31=118
� �� x31=118� ð8Þ
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The equation for the activation of Rac is written

dr

dt
¼ kd;rðx273 � rÞ ð9Þ

or

dr

dt
¼ kd;rðx31=118 � rÞ ð10Þ

In spatially extended simulations, the conservation of active Rac also includes

lateral diffusion. For the bPix/no DOCK180model, an additional equation describes

the activation of PAK on paxillin/GIT1/PAK complexes.

dp

dt
� kd;p½Kpr x273 � pð Þ � p� ð11Þ

C. Specification of Stochastic Models

To specify the stochastic model, we convert dimensionless model variables to

numbers of molecules via scaling factors, indicated with an asterisk, for example,

N = N*n, where N is the absolute number of nascent adhesions in the control

volume and n is the corresponding dimensionless variable. Based on the scaling of

the conservation equations listed in the previous section, the other scaling factors

are related to N* as follows.

S� ¼ X � ¼ P� ¼ N � ð12Þ

M� ¼ KmN
� ð13Þ

R� ¼ KrN
� ð14Þ

Because our model contains certain phenomenological rate laws, the stochastic

formulation is not automatically specified as in the case of a mass action model.

Our reaction propensity functions, in units of number of molecules per minute, are

specified as follows.

Nascent adhesion assembly (Ø! N):

kECMa;n 1þ Envð ÞN � ð15Þ

Nascent adhesion turnover (N! Ø):

kd;n 1þ Cnvð ÞN ð16Þ

Adhesion maturation (N! S):

ka;sf m; x31=118
� �

N ð17Þ
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Disappearance of stable adhesions (S! Ø):

kd;s 1þ Csvð ÞS ð18Þ

Myosin activation (Ø!M):

kd;mKmS ð19Þ

Myosin deactivation (M! Ø):

kd;mM ð20Þ

Paxillin phosphorylation on serine 273 (Ø! X273):

kd;x273Kx273 po þ pð Þ N � X 273ð Þ ð21Þ

Paxillin dephosphorylation of serine 273 (X273 ! Ø):

kd;x273X 273 ð22Þ

Paxillin phosphorylation on tyrosine 31/118 (Ø! X31/118):

kd;x31=118Kx31=118
N � X 31=118

� � ð23Þ

Paxillin dephosphorylation on tyrosine 31/118 (X31/118 ! Ø):

kd;x31=118X 31=118 ð24Þ

Rac activation by bPix (Ø! R):

kd;rKrðX 273Þ ð25Þ

Rac activation by DOCK180 (Ø! R):

kd;rKrðX 31=118Þ ð26Þ

Rac deactivation (R! Ø):

kd;rR ð27Þ

PAK activation (Ø! P):

kd;pKpr X 273 � Pð Þ ð28Þ

238 Erik S. Welf and Jason M. Haugh



PAK deactivation (P! Ø):

kd;pP ð29Þ

Stochastic simulations were performed using the Next Reaction Method (Gibson

and Bruck, 2000), a modification of the Gillespie algorithm (Gillespie, 1977),

implemented in MATLAB (MathWorks, Natick, MA). These methods simulate

trajectories of the chemical master equation describing discrete stochastic systems,

such as those encountered in cells where small numbers of reacting species or rare

reaction events dominate system dynamics.

D. Spatially Extended Simulations

Spatially extended stochastic simulations were performed using the Next

Subvolume Method (Elf and Ehrenberg, 2004), whereby diffusion of species

i between adjacent compartments is modeled as a ‘‘hopping’’ reaction with first-

order rate constant Di/L
2, where Di is the diffusivity of species i, and L is the node

spacing between adjacent compartments. A compromise between numerical accu-

racy and computational expense is achieved by setting the node spacing L equal to

the smallest of the dynamic length scales, Li ¼
ffiffiffiffiffiffiffiffiffi
Diti

p
, where ti is the mean lifetime

of diffusible species i. In most of our spatially extended simulations (Cirit et al.,

2010), we assumed that only active Rac is diffusible, with tr = 1/kd,r. Estimates ofDr

and kd,r were obtained from the literature (Moissoglu et al., 2006), yielding L = Lr�
2 mm. We assumed a one-dimensional geometry, corresponding to the contour of a

leading edge, with periodic boundary conditions.
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Abstract

Because of the increasing diversity of data sets and measurement techniques in

biology, a growing spectrum of modeling methods is being developed. It is generally

recognized that it is critical to pick the appropriate method to exploit the amount and

type of biological data available for a given system. Here, we describe a method for

use in situations where temporal data from a network is collected over multiple time

points, and in which little prior information is available about the interactions,

mathematical structure, and statistical distribution of the network. Our method

results in models that we term Nonparametric exterior derivative estimation

Ordinary Differential Equation (NODE) model’s. We illustrate the method’s utility

using spatiotemporal gene expression data fromDrosophila melanogaster embryos.

We demonstrate that the NODE model’s use of the temporal characteristics of the

network leads to quantifiable improvements in its predictive ability over nontem-

poral models that only rely on the spatial characteristics of the data. The NODE

model provides exploratory visualizations of network behavior and structure, which

can identify features that suggest additional experiments. A new extension is also

presented that uses the NODE model to generate a comb diagram, a figure that

presents a list of possible network structures ranked by plausibility. By being able to

quantify a continuum of interaction likelihoods, this helps to direct future

experiments.

I. Introduction

Understanding gene expression is important because it will provide greater

insights into the generation of phenotype from genetic information and enable a

better comprehension of many disease processes. But studying gene expression is

challenging because it is the end result of complex interactions between many

quantitative inputs, including protein–DNA binding and regulatory protein expres-

sion. These inputs are often experimentally measured, leading to large data sets that

are difficult to understand without the help of computational methods. Modeling is a

useful approach for studying gene expression and its associated data sets because it

handles data in an automated manner. When correctly done, modeling is capable of

using the data to quickly invalidate many hypotheses, while also generating new

hypotheses that are consistent with the data and suggest novel biology.

Considerable work has been done on modeling regulatory networks at the level of

protein and mRNA expression (Aswani et al., 2009b; Bansal et al., 2007; Bonneau

et al., 2006; Cinquemani et al., 2009; D’haeseleer et al., 1999; Eisen et al., 1998;

Fakhouri et al., 2010; Friedman et al., 2000; Jong and Ropers, 2006; Markowetz and

Spang, 2007; Porreca et al., 2008; Rao et al., 2008; Stuart et al., 2003; Werhli et al.,

2006). These models span a spectrum of detail ranging from heuristic Boolean

networks to mechanistic dynamical models. The particular modeling technique that

is chosen is dependent on the biological data available; and this choice requires
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implicitly or explicitly making strong assumptions about the biological behavior,

mathematical structure, or statistical distribution of the network. Making these

assumptions is arguably reasonable when the purpose of modeling a regulatory

network is to reverse engineer the network structure. However, such assumptions

may be inaccurate when studying the biological processes of regulation itself. For

this reason, alternative modeling techniques are needed.

In this chapter, we present an exploratory modeling technique for regulatory

networks where temporal data is collected over a large number of time points or

experiments. We propose what we call a Nonparametric exterior derivative estimate

Ordinary Differential Equation (NODE) model (Aswani et al., 2010). The method

was originally designed to study a data set of gene expression from Drosophila

melanogaster embryogenesis that has been collected (Fowlkes et al., 2008; Luengo

Hendriks et al., 2006) by the Berkeley Drosophila Transcription Network Project

(BDTNP). This data set provides relative levels of transcription factor protein and

target gene mRNA expression at cellular resolution for multiple time points. The

NODEmodel does notmake any prior assumptions on the structure of the underlying

network or on the biological modes of regulation and so is well suited for studying

the process of regulation itself. Specifically, the NODE model has been able to

identify novel modes of regulation, suggesting future directions of experimental

study.

Transcriptional regulation in all animals occurs through a complicated set of inter-

actions between transcription factor proteins and the cis-control regions (CCRs) of

DNA that regulate target genes (Davidson, 2006; Young, 2011). Different combina-

tions of transcription factors in a nucleus influence diverse protein–protein interactions

on the CCR, and in this way generate complex spatial and temporal patterns of

expression. However, while it is clear that the levels of occupancy of factors on

CCRs and the spatial arrangement of their recognition sites within the CCR are

important (Fakhouri et al., 2010), we are not yet able to correctly predict how particular

combinations of binding lead to specific spatiotemporal patterns of transcription. This

has important implications for parametric modeling where a mathematical form of the

network is assumed.

An advantage of the NODE model in the context of the Drosophila gene expres-

sion data set is that it enables the methodical study of the modes of regulation of a

transcription factor when CCR-architecture is not considered. The classical picture

is to categorize factors into activators/promoters and inhibitors/repressors. When

applied to the early Drosophila embryo data, the NODE model suggests that this

classification is too coarse, and finer notions of regulation should be considered and

modeled. Furthermore, the NODE model explicitly considers the temporal features

of biological networks in order to generate quantitatively more accurate models of

the gene expression, in comparison to a (quasi-)static model. The temporal nature

of the NODE model brings it closer to the biology.

This chapter provides an overview of the NODE method, and describes some

resulting biological insights into modes of regulation in the earlyDrosophila system.

A new extension of the NODE model is also described that generates a list of
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possible network structures ranked by likelihood. This approach recognizes that it

may be difficult to identify the ‘‘best’’ model for a system, and that by instead

generating a list of ‘‘good’’ models experiments can then be designed to distinguish

between them. The chapter concludes by providing a detailed description of NODE

and discussing some of the open computational challenges for nonparametric

approaches that incorporate temporal characteristics.

II. Overview of the NODE Model

The NODE model seeks to capture the total net effect of direct and indirect

influence of each transcription factor on a target gene. The model is generated by

looking at the correlation between factor protein concentrations and the change in

target mRNA concentration over time. By looking at the change in target mRNA

over time, we are able to generate a dynamic equation model that describes each

transcription factor’s influence on each gene. This model describes the regulatory

network at cellular resolution using the concentrations of gene products like protein

and mRNA from each cell. In addition, the model can be extended to generate a

comb diagram, which shows a variety of network structures that are ranked by their

plausibility. Some technical assumptions are made by NODE and its extension, but

they are quite general and apply to many biological systems.

A. Experimental Data

Weapply our technique to experimental data that has been collected and processed

by the BDTNP (Fowlkes et al., 2008; Luengo Hendriks et al., 2006), where mea-

surements of protein and mRNA concentrations are taken by analyzing images of

manyDrosophila embryos to create a virtual embryo. The virtual embryo consists of

6078 cells and is a computational, spatial decomposition that is determined by

averaging the geometry and number of cells of different embryos. The virtual

embryo has measurements of the concentration (averaged over multiple embryos

at a fixed time point) of various transcription factor protein and target mRNAs at the

cellular level for six different time points during Stage 5 of the Drosophila embryo.

For example, Fig. 1 shows the experimentally measured pattern of even-skipped

(eve) mRNA on the virtual embryo during late Stage 5 of embryogenesis.

B. Assumptions

Three assumptions aremade byNODE to enable the use of an ordinary differential

equation (ODE) model. First, it assumes that the rate-limiting species (e.g., tran-

scription factor protein concentrations) that drive the behavior of the network have

been measured; actions on faster timescales (e.g., the dynamics of factors binding to

target genes) are not considered by the model. Second, transcription factor protein
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concentrations in nuclei are assumed to be large enough for the levels of occupancy

on CCRs to be deterministic. Note that a small degree of randomness is introduced

into the modeling procedure due to measurement noise present in the data. Third,

there is an assumption that spatial processes such as diffusion of gene products

between cells are a negligible portion of the system behavior.

For statistical reasons, there are a few other assumptions that are made about the

biological network. There are no assumptions made on whether a factor for a partic-

ular target CCR is always a repressor or always an activator, in contrast to many other

modeling methods that often make this assumption. However, the extension of the

NODE model for the generation of a comb diagram assumes that a particular tran-

scription factor on a particular gene has a greater tendency toward activation or

repression.Whether or not this is biologically valid is not clear, but it seems intuitively

reasonable. This extension also assumes that only a small subset of transcription

factors actually regulates each individual target gene to a significant degree.

Under these assumptions, the system can be reasonably described by an ODE

dx

dt
¼ f ðxÞ; ð1Þ

where x is a vector whose elements are the concentrations of the rate-limiting

species. Nonlinear regression techniques (Bansal et al., 2007; Markowetz and

Spang, 2007) start by making additional assumptions about the network in order

[(Fig._1)TD$FIG]

Fig. 1 Quantitative cellular resolution 3D gene expression. (A) A three-dimensional plot of the

Drosophila embryo showing the experimentally measured pattern of eve mRNA as it appears in late

Stage 5. There are seven distinct expression stripes located along the anterior–posterior axis (AP) of the

embryo, with the intensity of each stripe also varying moderately along the dorsal–ventral axis (DV).

(B) A two-dimensional cylindrical projection of a Stage 5 Drosophila embryo provides an easier visu-

alization of the details of the eve mRNA patterns, showing that expression of each stripe is similar on

either side of the ventral mid line (V). (For color version of this figure, the reader is referred to the web

version of this book.)
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to hypothesize a function with unknown coefficients, and then they regress the data

onto this function. This can be problematic if the prior knowledge is incorrect. In

contrast, our NODE method does not make any assumptions on the functional form

of f(x). Nevertheless, both approaches require the use of statistical regularization to

protect against overfitting.

Note that no assumptions are made regarding the presence or absence of feed-

forward or feedback loops or other cross-regulatory interactions in the network. The

NODE model ignores the complexity of such loops because it does not attempt

to predict which interactions are direct and which are indirect, but only seeks to

determine the net effect that a given transcription factor has on a target, including all

direct and indirect influences.

C. Interpretation

Instead of using a single ODE model to describe the regulatory network, the

NODE model uses a group of ODE models consisting of the first-order Taylor

expansion (i.e., linearization) of the ODE given in Eq. (1). Each equation of the

NODE model describes how the behavior of the regulatory network changes if

protein concentrations of the transcription factors in the cell of a particular exper-

iment are slightly perturbed. This approach requires fewer assumptions because it

does not require knowing the mathematical structure of the single ODE model in

Eq. (1). The disadvantage of this flexibility is that it is more difficult to interpret the

NODE model.

To further understand the intuition of the NODEmodel, consider Fig. 2. The target

gene is eve mRNA, and there are five protein transcription factors: bicoid (bcd),

giant (gt), hunchback (hb), knirps (kni), Kr€uppel (Kr) (Arnosti et al., 1996; Fujioka
et al., 1999; Small et al., 1996). The horizontal axes give the measured transcription

factor protein concentrations for different time points and cells of the embryo, and

the vertical axis gives the measured change in eve mRNA concentration for the

corresponding time point and cell. Generating a model of the form of Eq. (1) means

identifying a function that takes protein factor concentrations as an input and then

gives change in target gene mRNA concentration as an output. The idea of the

NODE model is to have a separate submodel for each time point and cell.

Each submodel is valid for only when the factor concentrations are moderately

perturbed, and it technically corresponds to the linearization of Eq. (1). In the case of

Fig. 2A, the nth submodel corresponding to a vector of transcription factor concen-

trations j[n] is given by

dxeve;mRNA½n�
dt

¼ abcd ½n�ðxbcd � j1½n�Þ þ � � � þ aKr½n�ðxKr � j5½n�Þ þ b½n�; ð2Þ

and it is valid for when the factor concentrations are perturbed within the gray circle.

Because of this formulation, the NODEmodel has many submodels and requires the

use of statistical tools that protect against overfitting.
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For a particular vector of transcription factor protein concentrations j[n], the gray
circle in Fig. 2A represents measurements of factor concentrations that are similar in

value to j[n]. When the parameters of the submodel in Eq. (2) are fit, the points

within the gray circle are used to do the regression. In the case of theDrosophila data,

the gray circle can be visualized as a group of cells with similar concentrations of

factors. Such a group of cells is shown in gray in Fig. 2B. As expected, cells nearby

often have similar concentrations of factors. More surprisingly, cells far away can

sometimes have similar concentrations of factors.

D. Statistical Improvements

To improve the accuracy of the model, our method uses a novel regression

technique (Aswani et al., 2011) known as the nonparametric exterior derivative

estimator (NEDE) that makes local estimates of the ODE in Eq. (1) and can scale

to networks with hundreds of species. It is able to utilize measurements from

multiple experiments while protecting against overfitting. The NEDE estimator adds

constraints to the identification problem by learning correlations between factors,

and these constraints protect the model from overfitting and erroneously identifying

[(Fig._2)TD$FIG]

Fig. 2 Neighborhood of cells with similar factor concentrations. (A) Identifying the model in Eq. (1) is

mathematically equivalent to computing a function that takes transcription factor protein concentrations as

an input and then gives change in target gene mRNA concentration as an output. The NODE model has a

separate submodel for each time point and cell, and each submodel is computed by looking at a window of

cells with similar concentrations of regulatory factors. An example of such a window is given by the gray

circle centered about the cell with factor concentrations j[n], which is labeled with a black line. Cells with

concentrations similar to j[n] are those points that fall within the gray circle, and darker shades of gray

indicate more similar concentrations. Cells with dissimilar concentrations are those points that are not

within the gray circle. (B) The same window of cells is indicated on the virtual embryo by the set of cells

colored gray. Darker shades of gray indicate higher similarity in concentration to j[n], and white indicates

large dissimilarity. The black lines show the boundaries of the experimental eve pattern. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this book.)
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weak biological effects as strong effects. Tuning parameters for our method are

selected in a data-driven manner using cross-validation. Details on its theoretical

properties can be found in (Aswani et al., 2011).

It is the use of the NEDE estimator that distinguishes the NODE model from

similar models that build a set of local models (Cinquemani et al., 2009; Jong and

Ropers, 2006; Porreca et al., 2008). The use of this statistical tool is necessary for

reducing overfitting, and Fig. 3 shows a striking example of its importance. The

figure compares a simulation of the NODE model for the eve mRNA stripes when

the NEDE statistical tool is and is not used. The initial condition of the simulation in

both cases is the experimentally measured eve concentration, and the models are fit

using data from only the first two time measured points. Fig. 3 shows the concen-

tration predicted by each simulation at Stage 5:51–75 (i.e., the portion of Stage 5 in

which cell membranes are 51–75% formed) of embryo development, which corre-

sponds to the fifth time point. Examining it shows that the NODEmodel with NEDE

leads to a significantly better simulation.

[(Fig._3)TD$FIG]

Fig. 3 Comparison of NODE model without and with the NEDE estimator. (A) A NODE model was

generated without using the NEDE method: Ordinary least squares was used instead. The model was fit

with data from the first two measured time points of Stage 5, and then the model was simulated using the

first time point as an initial condition. The experimental and simulated eve mRNA patterns, as well as

simulation error, are shown for Stage 5:51–75 of development, which corresponds to the fifth time step.

(B) A NODEmodelwas generated using the NEDEmethod. The modelwas fit and simulated in the same

manner as before, and visual examination shows that the NEDE statistical method results in a model that

makes significantly better predictions. (For color version of this figure, the reader is referred to the web

version of this book.)
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E. Extension for Network Selection

One of the original aims in developing the NODE model was to create a new

technique for learning the network structure of a regulatory network that could

exploit the mathematical features of temporal data. The original NODE model is

not able to do this, but it can be easily extended for this purpose by using a variant of

the NEDE regression tool that is able to select relevant regulators. This regression

technique (Aswani et al., 2011) is known as the nonparametric adaptive lasso

exterior derivative estimator (NALEDE), and it uses lasso regularization to select

a sparse set of regulators of the target gene for each submodel. Next, our extension

combines the sparsity structure of these submodels in order to generate a list of

possible network structures. Cross-validation is used to select the network topology

that best explains the experimentally measured data, and it is in this way that the

NODE model can be extended to identify network topologies.

The NODE model and its extension generate distinct network topologies from

each other where the edges have different biological interpretations, and so it is

important to explain the differences. In both the original and extended NODE

models, an edge from a regulator to a target indicates that on the timescale of the

measurements that make up the data set, the net effect of the regulator through direct

and indirect interactions is to control the expression of the target. For the original

NODE model, each submodel has a corresponding network topology; and the edge

between a regulator and a target can be classified into one of four potential

categories:

1. Type I Repression – At current factor concentrations, the target mRNA will

decrease in concentration over time. An increase in factor concentration

will lead to a faster rate of decrease in target mRNA amounts over time.

2. Type II Repression – At current factor concentrations, the target mRNA will

increase in concentration over time. An increase in factor concentration will lead

to a slower rate of increase in target mRNA amounts over time.

3. Type I Activation – At current factor concentrations, the target mRNA will

increase in concentration over time. An increase in factor concentration will lead

to a faster rate of increase in target mRNA amounts over time.

4. Type II Activation – At current factor concentrations, the target mRNA will

decrease in concentration over time. An increase in factor concentration

will lead to a slower rate of decrease in target mRNA amounts over time.

In contrast, the extension of the NODEmodel generates a single network topology

that describes the aggregate behavior of regulators and their influence on a target.

For the network topology generated by the extension, the edge does not categorize

the nature of the interaction (e.g., activation or inhibition), and in fact biological

insights from our modeling results suggest that such a cumulative classification is

too restrictive. Rather, the absence of an edge indicates that any potential interac-

tions are not statistically significant according to the extension of the NODEmodel.

The opposite holds as well.
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III. Biological Insights

We identified a NODE model for evemRNA pattern formation in theDrosophila

blastoderm that assumed that the only protein regulatory factors were bcd, gt, hb, Kr,

kni (Arnosti et al., 1996; Fujioka et al., 1999; Small et al., 1996). The model was

validated by fitting the model to only the first two time points and then measuring

how well a simulation could predict the remaining time points. This shows that the

NODE model fits the experimental eve data well, and that it has some predictive

ability when the network and the transcription factor concentrations are slightly

perturbed from wild type (Aswani et al., 2010). The NODE model can also be

analyzed and extended to suggest hypothesis for further study through additional

biological experiments and mathematical modeling.

In general, biological validation is done by fitting a NODEmodel to one set of data

and then quantifying how well it can predict another set of data. The most basic

comparison is when both sets of data occur under the same biological conditions, and

this is the one used here to evaluate the NODE model for the eve stripes. The

disadvantage of this approach is that it does not examine the applicability of the

model to new biological conditions. Genetic point mutation experiments are argu-

ably the most powerful method for evaluating this, but they are too drastic because

the generated NODE models will in general not apply such situations. Gene over-

and underexpression studies are better suited for validation, because NODE models

apply to situations in which the biological conditions are slightly perturbed from

those of the data set that was used to generate the model.

A. Importance of Temporal Dynamics

To evaluate the importance of considering the temporal features of the network

when building the mathematical model, we also generated a nontemporal, spatial-

correlation model

xeve;mRNA½n� ¼ abcd ½n�ðxbcd � j1½n�Þ þ � � � þ aKr½n�ðxKr � j5½n�Þ þ b½n�; ð3Þ
where the left-hand side of the equation is simply the evemRNA concentration (cf.,

Eq. (2) that has the change in eve on the left-hand side). The spatial-correlation and

NODE models were generated using only the first two time points of data, and then

their simulations were compared to the experimentally measured patterns. This is a

nonbiased comparison between spatial and temporal models for this system, because

the mathematical form and statistical methods used for both are identical.

The NODE model gives 59% better agreement than the spatial-correlation model

to the experimentally measured eve pattern (Aswani et al., 2010). For comparison,

Fig. 4 shows the concentration predicted by each simulation at Stage 5:51–75 of

embryo development, which corresponds to the fifth time point. This result supports

the intuitive assumption that the NODE model is intrinsically more biologically

realistic than a spatial-correlation model. As stated earlier, biological networks are

marked by temporal effects. For instance, a protein binds to DNA that initiates
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transcription. This is not an instantaneous process, and there is some delay between

when a regulatory factor initiates transcription and when the target mRNA is

expressed. The spatial-correlation model does not model this notion of temporal

effects, whereas the NODE model does.

This is not to say spatial-correlation models are incorrect. Visual comparison

of the spatial-correlation model to the NODE model shows many similarities, and

there are many matches between the interactions predicted by the two models

(Aswani et al., 2010). This is encouraging because many experimentally validated

regulatory interactions have been implicitly interpreted using a spatial-correlation

model (Arnosti et al., 1996; Fowlkes et al., 2008; Fujioka et al., 1999; Marco et al.,

2009; Small et al., 1996), and this agreement provides mutual support both for our

NODE model and the previously determined interactions.

B. Concentration-Dependent Effects of Transcription Factors

The NODE (and the spatial-correlation) model can be visualized as spatiotempo-

ral maps of transcription factor activities. These factor activity plots show the

intensity and variation of predicted effects of factors at different locations on the

[(Fig._4)TD$FIG]

Fig. 4 Comparison of spatial-correlation model and NODE model. (A) A spatial-correlation model

was generated using the NEDE method. The model was fit with data from the first two measured time

points of Stage 5, and then the model was simulated using the first time point as an initial condition. The

experimental and simulated evemRNA patterns, as well as simulation error, are shown for Stage 5:51–75

of development, which corresponds to the fifth time step. (B) A NODE model was generated using the

NEDE method. The model was fit and simulated in the same manner as before, and visual examination

shows that the NODE model makes significantly better predictions. (For color version of this figure, the

reader is referred to the web version of this book.)
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embryo and at different time points. An example of such a map for our NODEmodel

for Stage 5:9–25 can be found in (Aswani et al., 2010). This plot shows how the five

transcription factors (directly or indirectly) affect eve mRNA pattern formation,

indicating the predicted degree of repression (i.e., an anticorrelation between factor

expression and the rate of change of target expression) and the predicted degree of

activation (i.e., a positive correlation between factor and the change in target).

TheNODEmodel is not amechanisticmodel because it cannot capture the various

mechanisms involved in the regulation of eve mRNA. However, this is a strength

because of the flexibility gained by not having to make a priori assumptions on

regulatory mechanisms. This comes at the cost of not being able to identify which

interactions are direct or indirect, however.

In many cases it is known that individual gene expression stripes can be controlled

via a single CCR and current computational models generally assume that a given

factor acts only as an activator or a repressor on a given CCR (Bansal et al., 2007;

Markowetz and Spang, 2007). However, the NODE (and the spatial-correlation)

model frequently predicts concentration-dependent effects whereby, on and around

the same expression stripe, a transcription factor has both repressing and activating

effects (Aswani et al., 2010). For example, while the NODE model for eve stripe 2

formation is consistent with previous molecular genetic evidence that Kr is a repres-

sor at the posterior margin of this expression stripe (Arnosti et al., 1996), the model

also implies that Kr is an activator just anterior of this in cells where Kr concentra-

tions are lower.

This and the many other similar cases could represent spurious correlations, per-

haps due to other transcription factors having dominant effects on targets in cells

where the transcription factor under study is expressed at lower levels. However, there

are a number of cases where factors, including Kr, have been shown to switch from

activating to repressing the same target as their concentrations increase (Ptashne et al.,

1980; Sauer and J€ackle, 1991). Thus, the predictions of our NODE (and spatial-

correlation) model make it more obvious that gene regulation can involve multiple

mechanisms of transcription factor action that should be considered.

C. Network Structure Hypotheses

Analysis of in vivo binding data (Li et al., 2008; MacArthur et al., 2009) shows

that there is a continuous spectrum of transcription factor binding levels to CCRs, in

which much of the lowest levels of binding do not result in functionally significant

regulation of transcription. There are many reasons for this, including that transcrip-

tion factors are expressed at high enough concentrations in cells that they will be

driven thermodynamically to bind to fortuitous occurrences of their recognition sites

in any parts of the genome that are accessible within chromatin (Kaplan et al., 2011;

Li et al., 2011). Conceptually, this is important because it suggests that many

regulatory networks should be thought of in terms of potential models with varying

levels of resolution that can be validated through experimentation, rather than in

terms of an exact model that encompasses all of the important biological behaviors.
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Here, different models mean different collections of transcription factors that enter

into Eq. (1) that describes the mRNA expression of a target gene, and this notion of

modeling is related to reverse engineering the network structure.

This conceptual framework of a set of models, rather than an exact model, can be

applied to an extension of the NODE model. We applied the NODE model with the

NALEDE estimator to expression data of the second eve expression stripe, and we

only considered the portions of the embryo where (a) the stripe is expressed,

(b) immediately anterior of the stripe, or (c) immediately posterior of the stripe.

Here, we used 16 protein regulatory factors in themodel. The results are summarized

in Fig. 5, which is called a comb diagram and individually ranks each factor by its

likelihood of being a regulator. A horizontal line on the comb diagram represents

a likelihood threshold, and the network structure corresponding to this threshold

value is the set of factors that extend below this line. By varying the likelihood

threshold, different sets of models can be generated.

An example of a likelihood threshold is given by the horizontal line in Fig. 5 that is

labeled ‘‘cv,’’ which stands for cross-validation. This is a special likelihood threshold

because it denotes the threshold value that corresponds to the model with the best

predictive ability, given the experimentally measured data. In other words, the model

that has bcd, gt, hb, hkb, Kr, run, and tll as regulators of eve stripe 2 is the bestmodel for

the data set out of all the possible network structures given by the comb diagram. This

shows that this extension of the NODEmodel is promising because the comb diagram

is able to accurately select the most well characterized regulators of the second eve

stripe (i.e., bcd, gt, hb, and Kr) (Arnosti et al., 1996) and several additional likely

regulators – hkb, run, and tll – that have been found to bind to stripe 2 at high levels

in vivo (MacArthuret al., 2009).Additionally, the results of the extension conclude that

[(Fig._5)TD$FIG]

Fig. 5 Comb diagram for regulators of eve stripe 2 at Stage 5:0–3. Sixteen protein regulatory factors

are individually ranked based on their likelihood of being a regulator of eve stripe 2, as determined by the

extension of the NODE model that uses the NALEDE estimator. A horizontal line on the comb diagram

represents a likelihood threshold, and the network structure corresponding to this threshold value is the set

of factors that extend below this line. The likelihood threshold that corresponds to the modelwith the best

predictive ability as measured by cross-validation error is labeled ‘‘cv.’’ This threshold generates a set of

factors that has good agreement with what is biologically known or hypothesized.
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ftz, prd, slp1, sna, and twi are not significant regulators, which is also consistent with in

vivo DNA binding data (MacArthur et al., 2009). On the other hand, in vivo DNA

binding data suggests that cad, kni, and D may also be regulators (MacArthur et al.,

2009), but the comb diagram does not provide strong evidence for this. There are

several possible explanations: These transcription factors may be redundant with

respect to other regulators, or more likely their role occurs in portions of the embryo

that are not covered by our model. These explanations show the importance of con-

sidering multiple data sets when building models of regulatory networks.

IV. Open Challenges

There are still some unanswered, theoretical questions regarding the NODE

model and its extensions. Cross-validation is an approach for selecting the tuning

parameters of the method, in a data-drivenmanner; however, there are many specific

implementations of cross-validation, and the most accurate methods are computa-

tionally slow. The current implementation of the NODE model uses a less accurate

version of cross-validation that is guided by theory (Aswani et al., 2011; Shao, 1993;

Yang, 2007), but there are no results on which cross-validation procedure provides

the best tradeoff between computational complexity and statistical performance.

Furthermore, the theoretical properties on the consistency of variable selection when

using the NODE model with the NALEDE estimator are unexplored; intuition

suggests that combining the theorems of (Aswani et al., 2011; Bertin and Lecu�e,
2008) will lead to this result, but it needs to be rigorously checked.

V. Computational Methods

In this section, we describe the technical details of the NODE model and its

extension. We denote the vector of transcription factor protein concentrations as

x[t, e] and the vector of target genemRNA concentrations as y[t, e], where t 2 T is the

time of the measurement and e 2 E is an index, which uniquely identifies each

experiment. For the virtual embryo data set, there are six time points T =

{1, . . ., 6} and each cell in the virtual embryo is considered to be a separate exper-

iment E = {1, . . ., 6078}. Note that notation like xbcd[t, e] denotes the bcd protein

concentration in cell e at time t.

VI. Building a NODE Model

The NODE technique is summarized in the following algorithm. Any tuning

parameters are chosen in a data-driven manner using cross-validation (Aswani

et al., 2011; Shao, 1993; Yang, 2007). Without loss of generality, this section

describes the algorithm for the specific case of the NODE model for the eve

mRNA stripes with five regulatory factors: bcd, gt, hb, kni, and Kr.
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Inputs: Transcription factor protein concentrations x[t, e], target gene mRNA

concentrations y[t, e]

Outputs: NODE model

(1) Presmooth the transcription factor protein concentrations x[t, e] and then com-

pute time derivatives of the target gene mRNA concentrations y[t, e].

(a) For each e 2 E

(i) Do a least-squares fit of the polynomial x̂½t; e� ¼ c0 þ c1t þ � � � þ crt
r

(where c0, c1, . . ., cr are coefficients and r is a tuning parameter) with

the data points: x[t, e] for each t 2 T.

(ii) Do a least-squares fit of the polynomial ŷ½t; e� ¼ k0 þ k1t þ � � � þ krt
r

(where k0, k1, . . ., kr are coefficients and r is a tuning parameter) with

the data points: y[t, e], for each t 2 T.

(b) Presmoothed factor protein concentration data is given by x̂½t; e�, and

time derivative of target gene mRNA data is given by

dŷ½t; e�=dt ¼ k1 þ k2t þ � � � þ rkrt
r�1.

(2) Define matrix Y with rows given by ðdŷ½t; e�=dtÞ, for each t 2 T and e 2 E.

(3) Calculate the NODE model.

(a) For each t 2 T and e 2 E

(i) Define matrix X ½t;e� ¼ ½ 1 J½t;e� �, where first column is all ones and

J[t,e] is the matrix with rows given by ðx̂½u; v� � x̂½t; e�Þ, for each u 2 T

and v 2 E.

(ii) Define weighting matrix W[t,e] to be the diagonal matrix with entries

along diagonal given by

w½u; v� ¼
3

4
1� n½u; v�

h

� �2
 !

; if n½u; v� � h

0; otherwise

8><
>: ð4Þ

for each u 2 T and v 2 E, where n½u; v� ¼ x̂½u; v� � x̂½t; e�k k is the

Euclidean distance and h is a tunable parameter.

(iii) Define matrix P[t,e] by making its columns be the (p�d) principal

components of J[t,e]
TW[t,e]J[t,e] with smallest eigenvalues, where p

is number of factors (p = 5 for the NODE model of target eve mRNA)

and d is a tuning parameter.

(iv) Coefficients of NODEmodel, for eth cell at tth time point, are given by

NEDE estimator

½ b½t;e� abcd;½t;e� � � � aKr;½t;e� �T ¼ arg min
b

W ½t;e�1=2ðY � X ½t;e�bÞ
�� ��

2

2

þl P½t;e�b
�� ��

2

2
; ð5Þ
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where

dxeve;mRNA½t;e�
dt

¼ abcd;½t;e�ðxbcd � x̂bcd ½t; e�Þ þ � � � þ aKr;½t;e�ðxKr
�x̂Kr½t; e�Þ þ b½t;e�: ð6Þ

Step 1 presmoothes the experimental data and computes its time derivative. If this

were not done, the resulting NODEmodelwould be statistically biased (Schneeweiß,

1976). Step 1.a describes polynomial regression (PR) for the purpose of simplifying

the presentation, though the actual NODE method uses local polynomial regression

(LPR) for this step; LPR is a variant of PR which protects against oversmoothing the

data, and it can be quickly computed by doing a weighted linear regression.

Caution must be used when deciding to presmooth certain data sets in which the

measurements are very noisy and taken at a sparse grid of points in time. In such

cases, there is a risk of smoothing out biologically relevant, temporal trends in the

data because of the sparsity of the temporal grid. There is another implementation

issue that needs to be considered. The NODEmodel uses a moderate to large amount

of data, and so it may be that another modeling technique is better suited to the data in

such cases.

A NODE model is computed in Step 3 using the NEDE estimator, which is an

advanced statistical tool that protects against overfitting (Aswani et al., 2011). The

NEDE estimator can be calculated quickly on a computer because it is a convex

optimization problem, and it is statistically well behaved. Step 3.a.ii determines a

window of data points that have measured concentrations similar to experiment e at

time t, and the size of this window is selected by the parameter h. Data points with

highly (weakly) similar concentrations are weighted highly (weakly) in the estima-

tion of the coefficients of the NODEmodel. Eq. (4) uses the Epanechnikov kernel to

do this weighting.

The coefficients of the NODE model are computed in Step 3.a.iv using the NEDE

estimator in Eq. (5). It protects against overfitting by learning constraints that the data

obeys (Step 3.a.iii), and then using these constraints to reduce the degrees of freedom in

the regression. In general, the data points form amanifold, and the projectionmatrix in

Eq. (5) enforces that the regression coefficients lie close to the manifold. This meth-

odology ismotivated by differential geometry, which says that the exterior derivative of

a function on an embedded submanifold lies in the cotangent space (Lee, 2003).

VII. Building a Comb Diagram with the NALEDE Extension

The procedure for computing a NODE model with the NALEDE estimator

(Aswani et al., 2011) is nearly identical to that for the original NODE model. The

only difference is Eq. (5), which is replaced by the NALEDE estimator
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½ b½t;e� abcd;½t;e� � � � atll;½t;e� �T ¼ arg min
b

W ½t;e�1=2ðY � X ½t;e�bÞ
�� ��

2

2

þ l P½t;e�b
�� ��

2

2 þ m
Xp
j¼1

vi bij j; ð7Þ

wherevi ¼ ai;½t;e�
�� ��g and ai,[t,e] are the estimated coefficients fromEq. (5). The idea is

that this estimator adds a lasso regularization that promotes sparsity of the coeffi-

cient values and leads to local variable selection. The weighting values vi help to

ensure that the NALEDE estimator has good theoretical properties on its ability to

select the correct variables.

Generating a comb diagram from a NODEmodelwith the NALEDE estimator is a

simple process. For each transcription factor, we compute its inclusion frequency

that is defined as

f i ¼
1

#T � #E

X
t2T ;e2E

½ð1ðai; t;e½ � 6¼ 0ÞÞ�: ð8Þ

This counts the fraction of submodels in which a factor is included. If a transcrip-

tion factor is included in more (fewer) submodels, it is individually more (less) likely

to be a regulator of the target gene. The comb diagram plots the inclusion frequency

for each transcription factor, with bars for each factor that go from 0 (at the top of the

plot) to fi (at the bottom of the plot).

For a likelihood threshold of value L, the transcription factors that are deemed

significant regulators are those for which fi > L. From a modeling perspective, this

helps to select different network structures based on whether or not a transcription

factor is a significant regulator. Furthermore, statistics can be used to select the

likelihood threshold, which gives the set of regulatory factors that generate a NODE

model that best fits the experimentally measured data set. This is done by computing

a NODE model and its cross-validation error for different likelihood thresholds and

then selecting the threshold with the lowest cross-validation error.

Further Reading

More details on the NODE model and its biological insights for Drosophila

embryogenesis can be found in (Aswani, 2010; Aswani et al., 2010). The NODE

model has been used in engineering domains as well, including modeling for a

helicopter system (Aswani, 2010; Aswani et al., 2009a). Theoretical properties of

the statistical methods NEDE and NALEDE that underlie the NODE model and its

extensions were studied in (Aswani, 2010; Aswani et al., 2011).
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Abstract

Animal transcription factors drive complex spatial and temporal patterns of gene

expression during development by binding to awide array of genomic regions.While

the in vivoDNA binding landscape and in vitroDNA binding affinities of many such

proteins have been characterized, our understanding of the forces that determine

where, when, and the extent to which these transcription factors bind DNA in cells

remains primitive.

In this chapter, we describe computational thermodynamic models that predict the

genome-wide DNA binding landscape of transcription factors in vivo and evaluate the

contribution of biophysical determinants, such as protein–protein interactions and

chromatin accessibility, on DNA occupancy. We show that predictions based only on

DNA sequence and in vitroDNAaffinity data achieve amild correlation (r = 0.4) with

experimental measurements of in vivo DNA binding. However, by incorporating

direct measurements of DNA accessibility in chromatin, it is possible to obtain much

higher accuracy (r = 0.6–0.9) for various transcription factors across known target

genes. Thus, a combination of experimental DNA accessibility data and computa-

tional modeling of transcription factor DNA binding may be sufficient to predict the

binding landscape of any animal transcription factor with reasonable accuracy.

I. Introduction

Animal transcription factors each bind to many thousands of DNA regions

throughout the genome in cells (Boyer et al., 2005; Georlette et al., 2007;

MacArthur et al., 2009; Robertson et al., 2007; Zeitlinger et al., 2007; reviewed

by Biggin, 2011). While many of the most highly occupied regions are functional

cis-regulatory regions and are evolutionarily conserved, many thousands of other

genomic regions that are bound at lower levels in vivo do not appear to be functional

targets (Carr and Biggin, 1999; MacArthur et al., 2009). It is, therefore, a critical

challenge to quantitatively predict the DNA binding levels of regulatory transcrip-

tion factors in cells and to determine the biochemical mechanisms that direct these

complex patterns of factor occupancy.

Animal transcription factors recognize short (5–12 bp) sequences of DNA that occur

with high frequency throughout the genome (Wunderlich and Mirny, 2009), yet most

occurrences of these recognition sites are not detectably bound in vivo (Carr and
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Biggin, 1999; Li et al., 2008; Liu et al., 2006). There are severalmechanisms that could

account for this discrepancy between predicted and observed transcription factor DNA

binding in cells. Competitive inhibition of binding at those DNA recognition sites that

overlap sequences occupied either by other sequence-specific factors (Stanojevic et al.,

1991) or nucleosomes (Agalioti et al., 2000; Cosma et al., 1999; Narlikar et al., 2002)

could selectively inhibit DNA occupancy at these sites. In addition, direct or indirect

cooperative interactions between transcription factors bound at close by recognition

sites could increase their occupancy at other genomic locations (Buck and Lieb, 2006;

Mann et al., 2009;Miller andWidom, 2003; Zeitlinger et al., 2003).Herewe describe a

computationalmodeling strategy that can analyze the relative influence of each of these

biochemical mechanisms on the overall pattern of transcription factor DNA binding

in vivo (Kaplan et al., 2011). A glossary is provided to explain key technical terms used

in describing the computational modeling (Section VII).

II. Overview of Model/Algorithm

A. Alternate Modeling Strategies

Many computational algorithms have been developed for predicting in vivo DNA

binding. Crudely, these studies fall into two categories:

Qualitative models aim at identifying statistically significant occurrences of DNA

binding sites or cis-regulatory regions (Agius et al., 2010; Ernst et al., 2010; Frith

et al., 2001;Granek andClarke, 2005; Narlikaret al., 2007;Narlikar andOvcharenko,

2009; Rajewsky et al., 2002; Ramsey et al., 2010; Schroeder et al., 2004; Sinha,

2006; Sinha et al., 2003; Ward and Bussemaker, 2008; Whitington et al., 2009; Won

et al., 2010). These computational methods usually rely onmodeling the background

distribution of transcription factor DNA recognition sites and focus on identifying

significant p-values, that is, sites where the background hypothesis is rejected. These

algorithms can identify a subset of cis-regulatory binding sites and provide a putative

transcriptional regulatory architecture for an organism by connecting regulators to a

set of putative target genes. They are less adequate, however, for predicting the levels

of transcription factor DNA occupancy, which has been shown to be critical for

relating DNA binding patterns to biological function (Carr and Biggin, 1999;

MacArthur et al., 2009).

Quantitative models, on the other hand, estimate the occupancy of a factor along

the genome. Statistically, they aim to calculate the binding probability (hence, the

percent of time or cells) at which the protein binds a specific DNA locus. These

methods are, thus, more suitable for modeling the continuous quantitative landscape

of transcription factor DNA occupancy as measured by genome-wide chromatin

immunoprecipitation (ChIP) studies. An additional advantage of the quantitative

approach is its natural generative probabilistic settings, which allow for easy inte-

gration of external data, such as chromatin state, the concentration of transcription

factors in cells, or interactions between neighboring proteins (He et al., 2009; He

et al., 2010; Roider et al., 2007; Wasson and Hartemink, 2009).
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In addition to direct quantitative models of transcription factor DNA binding, a

related set of models have focused on predicting the gene transcription patterns

driven by predefined DNA cis-regulatory regions. These studies generally use

thermodynamic models to predict transcription factor DNA binding within known

cis-regulatory regions as well as the resulting expression patterns driven by these

target regions in animal embryos (He et al., 2010; Kazemian et al., 2010; Raveh-

Sadka et al., 2009; Segal et al., 2008; Zinzen et al., 2006). Three-dimensional

changes in the concentration of regulatory transcription factors result in differential

occupancy at the same DNA locus over different nuclei, which in turn results in

different expression outputs in each cell. Unfortunately, these models do not explic-

itly train their models (or test them) on experimental in vivo DNA binding data, and

limit their scope to predict the expression levels driven by specific target genes or

cis-regulatory regions across the embryo. Therefore, their success in predicting

in vivo DNA occupancy cannot be directly assessed.

B. Generalized Hidden Markov Models

Most direct quantitative algorithms for predicting transcription factor DNA bind-

ing rely on a probabilistic framework based on generalized hidden Markov models

(gHMMs). These models use inference algorithms to estimate the occupancies

(or DNA binding probability) of one or more transcription factors across any DNA

sequence given their concentrations and protein–DNA binding specificities (Frith

et al., 2001; Granek and Clarke, 2005; Kulp et al., 1996; Raveh-Sadka et al., 2009;

Segal et al., 2008; Sinha et al., 2003; Wasson and Hartemink, 2009).

We have adopted a form of gHMM for modeling transcription factor-DNA bind-

ing in vivo, as this class of model offers several advantages. These models have very

few parameters and are therefore straightforward to optimize. Unlike most proba-

bilistic graphical models, they offer exact inference of posterior probabilities in

linear time, using a forward-backward dynamic programming algorithm (Durbin

et al., 1998; Rabiner, 1989). Finally, gHMMs are related to thermodynamic equi-

librium models: they view the ensemble of all possible configurations of bound

factors along the DNA as a Boltzmann distribution in which each configuration is

assigned a weight (or probability) depending on its energetic state; the probability

that a factor is bound at a specific location is calculated by summing the probabilities

of all configurations in which it is bound (Ackers et al., 1982; Buchler et al., 2003;

Granek and Clarke, 2005; Rajewsky et al., 2002; Schroeder et al., 2004; Segal et al.,

2008; Sinha, 2006; Wasson and Hartemink, 2009).

On the other hand, gHMMs are limited in their modeling power due to their

Markovian property: these models lack any memory for past states, and so when

estimating the probability of binding at a certain position the model is agnostic of

other (nonoverlapping) DNA binding sites. This prevents this class of models from

considering the full context in which DNA binding occurs. We will address this

limitation below and offer an approximation to allow a full thermodynamic model

using sampling procedures.
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C. Experimental Datasets

We demonstrated our approach by modeling the genomic binding of five reg-

ulators of early embryonic anterior-posterior (A-P) patterning in Drosophila

melanogaster: Bicoid (BCD), Caudal (CAD), Hunchback (HB), Giant (GT), and

Kruppel (KR).

ChIP-seq data for the five factors in stage 5 blastoderm embryos were used to

provide the measure of in vivo DNA occupancy (Bradley et al., 2010). 20-bp-long

sequence reads were mapped to the genome (Apr. 2006 assembly, BDGP Release 5).

To minimize mapping noise, we only considered reads uniquely mapped to the

genome with up to one mismatch. The mapped reads were then extended according

to their orientation to a length of 150 bp, and binned (down-sampled) to a 10 bp

resolution. Finally, the genomic binding landscape of each factor was smoothed

using a running window of 10 bins (or 100 bp), to account for sampling noise.

DNA binding affinities of the five factors (expressed as position weight matrices –

PWMs) were derived from previous in vitro measurements that used SELEX-Seq

(Berkeley Drosophila Transcription Network Project, unpublished data;

(MacArthur et al., 2009) (Fig. 1). The PWMcounts were normalized to probabilities,

[(Fig._1)TD$FIG]

Fig. 1 The generalized hidden Markov model. Diagram of the model states, including the unbound

background (BG) state, five states corresponding to the five transcription factors in the model (BCD,

CAD, GT, HB, and KR), and a 141-bp-long nucleosomal binding state (Nucleo.). The emission proba-

bilities of each transcription factor state are visualized using sequence logos that are based on position

weight matrices (PWMs). (See color plate.)
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after adding a pseudo-count of 0.01 to avoid zero probabilities (available at http://

bdtnp.lbl.gov/gHMM). Additional sources of PWMs (Noyes et al., 2008; Segal

et al., 2008) were also tested in the model, yielding similar results (Kaplan et al.,

2011). In all cases, the DNA binding specificities defined by these various experi-

ments (i.e., the PWMs) were maintained and were not optimized as parameters in the

model. We found that the tradeoff between having potentially more accurate PWMs

(and a better fit to experimental in vivoDNAbinding data) versus the cost of additional

parameters to optimize was not beneficial for most factors. Moreover, using fixed

PWMs from external studies prevents overfitting or drift toward additional motifs

that are often present near developmental regions, such as the CAGGTAG sequence

known to be bound by the transcription factor Zelda (Bradley et al., 2010).

The accessibility of DNA in chromatin was obtained from DNase-seq data result-

ing from the DNase I digestion of isolated stage 5 blastoderm embryo nuclei

(Li et al., 2011; Thomas et al., 2011). 34-bp-long reads were mapped to the genome

by requiring unique matches with no more than two mismatches, then these were

extended to a length of 150 bp, binned (down-sampled) to a 10 bp resolution, and

smoothed using a running window of 10 bins.

Estimates of transcription factor protein concentrations in each nucleus were

derived from three-dimensional fluorescence microscopy of D. melanogaster

embryos at early stage 5 (Fowlkes et al., 2008).

All of the above experimental datasets are available from the supplemental web-

site for Kaplan et al. (2011) at http://bdtnp.lbl.gov/gHMM.

D. Model Overview

Hidden Markov models are probabilistic frameworks where the observed data

(such as, in our case the DNA sequence) are modeled as a series of outputs (or

emissions) generated by one of several (hidden) internal states. The model then uses

inference algorithms to estimate the probability of each state along every position

along the observed data. In our case, the model is composed of the various states that

theDNAcould be in: unbound (the background state), bound by transcription factor t1,

bound by transcription factor t2, etc., or wrapped around a nucleosome (Fig. 1).

Each state holds some probability distribution of the DNA sequences it favors (and

emits according to the HMM). In our case, the background state is derived using the

simplemononucleotide (single base) probability (frequency) in the genome tomodel

the A/T distribution along the noncoding parts of the genome. The ‘‘bound’’ states

hold a probabilistic DNA model that represents the sequences that each protein

prefers to bind (its recognition sites). Additional parameters of the gHMM include

the prior probabilities of entering each state, which are modeled using the transition

probabilities between states. For example, a highly expressed protein that is more

likely to be in the bound state along the DNAwill have a higher transition probability

than a protein present at lower concentrations in cells. Once the parameters of the

gHMM are optimized (using a held-out set of training sequences) and given a new

DNA sequence, it is straightforward to infer the probability of each state (unbound,

268 Tommy Kaplan and Mark D. Biggin

http://bdtnp.lbl.gov/gHMM
http://bdtnp.lbl.gov/gHMM
http://bdtnp.lbl.gov/gHMM


bound by factor t1, bound by factor t2, etc.) at each position along the sequence. See

Section V for further details of these models.

All our computational models estimate the DNA binding probability of each

transcription factor at a single-nucleotide resolution. A model-based algorithm is

then used to transform these predictions into smoothed ChIP-like landscapes so they

can be compared to the in vivo ChIP-seq measurements of protein–DNA binding

(Fig. 2). For this, the length distribution of DNA fragments recovered by the ChIP

process is used to simulate the overall shape of one peak, corresponding to a single

DNA binding event measured by ChIP-seq. For a length distribution c(l), the esti-

mated shape F of a peak is described as:

FðDxÞ /
X1
l¼Dx

cðlÞ

whereDx denotes the relative distance from the binding locus or peak center. In other

words, the probability of obtaining a read Dx bp away from the binding event is

proportional to the total number of reads at least Dx bp long (Capaldi et al., 2008;

Kaplan et al., 2011).

[(Fig._2)TD$FIG]

Fig. 2 From DNA binding probabilities to ChIP landscape. (A) Each DNA binding event (left) was

transformed to a model-based estimation of expected ChIP peak shape based on the average length of the

DNA fragments immunoprecipitated in the ChIP experiment (right) (Kaplan et al., 2011). (B) This model

was then used to convolve the model’s binding predictions (vertical black bars) to the expected landscape

of ChIP sequencing assay (thin black line), which was then compared to the measured in vivo DNA

binding landscape (gray shaded landscape).
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III. Biological Insights

A. A Simple Model is Mildly Successful

We began with the simplest model – a single transcription factor binding to DNA.

This required optimizing only a single parameter, P(t), for each transcription factor

that corresponds to its effective concentration in nuclei and assuming, for this first

simple case at least, that the protein is expressed at the same concentration in all

embryo cells. We used standard optimization techniques (based on a combination of

genetic algorithms and gradient ascent-based algorithm) to optimize these para-

meters (see section V). For each tested value of P(t), we used the generalize hidden

Markov model to estimate the binding probability per position, and then convoluted

these predictions into the predicted DNA binding landscape.

To analyze our predictions, we compiled a list of 21 known target loci of the A-P

patterning system. Each target gene was expanded by �10 Kb upstream and down-

stream of the transcription unit to capture its cis-regulatory regions. In each analyses

presented in this chapter, we trained the model parameters to optimize the fit

between the predicted and the observed ChIP-seq landscapes at a set of six loci,

which spanned �87 Kb, and evaluated the trained model on the remaining set of

15 loci, which spanned �280 Kb. To account for long genomic regions where no

DNA binding is observed in vivo by ChIP, the training and test sets were enhanced by

addition of three or five control regions, spanning a total of 100 and 221 Kb,

respectively (Kaplan et al., 2011).

After parameter optimization using the training set, the model was applied to the

test set. The predicted DNA binding landscape around one gene in the test set is

shown in Fig. 3A. The total correlation between the model predictions and measured

data was quite weak when averaged over all �500 kb of the test set (r = 0.36), with

specific factors varying from r = 0.15 (GT) to r = 0.66 (BCD) (Kaplan et al., 2011).

In addition to estimating accuracy using the correlation between the model’s

predictions and experimentally measured in vivo DNA binding, we also tried two

alternatives. In one, we used distance-based measures such as the root mean square

deviation (RMSD) between the predicted and measured genomic landscapes. In the

second, we tried a peak-centric comparison method, where a peak calling algorithm

was used to identify ‘‘bound regions’’ in both the predicted and the measured data

and then the overlap between called peaks was compared. These alternate scoring

methods resulted in qualitatively similar results to the correlation coefficients given

in the rest of the text and in Fig. 4.

B. Allowing Transcription Factor Competition Does Not Improve the
Predictions’ Accuracy

Encouraged by the results with each transcription factor considered singly, we

examined the effect of DNA binding site competition between the five factors on our

ability to predict in vivo DNA occupancy. Overlapping DNA recognition sites can
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allow direct competition between transcription factors (Stanojevic et al., 1991).

Moreover, overlapping sites are often conserved at long evolutionary distances,

suggesting an important role for inter-factor competition (Hare et al., 2008).

Therefore, we expanded the gHMM in our model to consider all five transcription

[(Fig._3)TD$FIG]

Fig. 3 High-resolution predictions of protein–DNA binding landscape. (A) The model’s DNA binding

predictions (thin black line) for BCD are compared to the measured in vivoDNA binding landscape (dark

shaded landscape) across the 15 Kb around the os locus. In this example, the BCD binding landscape was

predicted without considering the other transcription factors. (B) Same as (A), except that direct DNA

binding competition between the five factors and with nucleosomes was allowed, and BCD binding was

modeled independently in each of 6,078 nuclei of the stage 5 blastoderm embryo. (C) Same as (B), but

also incorporating a nonuniform DNase I hypersensitivity-based prior on transcription factor binding to

account for variations in DNA accessibility (shown as light shaded landscape). (D) Same as (C), but

further adding cooperative interactions between adjacently bound transcription factor molecules in a

thermodynamic setting.
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factors simultaneously in a probabilistic framework (Fig. 1), where the concentra-

tions of each factor t is modeled by an additional probabilistic term P(t). In the single

transcription factor model, binding of one protein to a recognition site did not affect

the DNA occupancy of a different transcription factor at an overlapping site. In this

new model, however, because the total occupancy at a site cannot exceed 1, tran-

scription factors effectively compete for DNA binding to overlapping recognition

sites. Surprisingly, this competitive model gave slightly less accurate predictions

than its single factor counterpart. On the test data, the model’s predictions decreased

from a total correlation of 0.36 to 0.33 (see Fig. 4).

C. Expanding the Model to Three Dimensions With Single Nucleus Resolution
Has Only Slight Effects

One reason why the model did not improve when competition was allowed could

have been that, because we treated the embryo as a homogenous entity, the model

allowed competition between transcription factors that are not expressed together at

high levels in the same cells. We therefore expanded our algorithm to model the

DNA binding of all transcription factors in each of the �6000 nuclei of the embryo

separately. To scale the optimized concentration parameters of the five transcription

factors for each nuclei, we further scaled the prior probability P(t) of every tran-

scription factor t proportionally to its protein expression level, as measured at a

single-cell resolution (Fowlkes et al., 2008). We then averaged the predicted DNA

binding landscape of all nuclei to obtain whole-embryo genomic predictions, which

were then compared to the (whole-embryo average) in vivo DNA binding measure-

ments from ChIP-seq (Kaplan et al., 2011). This slightly improved the predictions

relatively to the whole-embryo predictions (Figs. 3B and 4). However, combining

[(Fig._4)TD$FIG]

Fig. 4 Prediction accuracy at increasing degrees of model complexity. Accuracy of DNA binding

predictions for the test set of 15 known A-P targets and five control loci. Shown are the correlation

coefficients between model prediction and measured in vivo DNA binding landscape for increasing

degrees of model complexity. These are, from left to right: independent predictions per transcription

factor using our simplest model; allowing DNA binding site competition between transcription factors;

making predictions at a single-nucleus resolution; including nucleosomes using a sequence-specific or a

sequence-independent model of nucleosome binding; adding a nonuniform prior on transcription factor

binding using DNA accessibility measurements; and adding cooperative DNA binding interactions in a

thermodynamic setting.
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DNA binding site competition and 3D expression data yields a model that is only

about as effective as the simplest model. Thus, while competition between transcrip-

tion factors is likely important at a subset of recognition sites, it does not appear to be

a principal determinant of the overall distribution of transcription factor DNA

occupancy in vivo.

D. Predicting Nucleosome Location Does Not Improve the Model’s Predictive Power

To test if chromatin state influences the accuracy of our model, we first attempted

to predict the locations of nucleosomes to enable modeling of the competition

between transcription factors and nucleosomes in binding to DNA (Narlikar et al.,

2007; Raveh-Sadka et al., 2009; Wasson and Hartemink, 2009). As there are no

direct measurements of nucleosome positions from early Drosophila embryos, we

modeled these computationally. We extended our Markov model to represent the

sequence bound by a single nucleosome. This was done by including an additional

state in the gHMM that comprised a sequence-independent model of nucleosome

DNA binding in which nucleosomes are viewed as long ‘‘space-fillers’’ that, when

present, prevent regulators from binding to DNA. We used a 141-bp long model of

nucleosome binding, based on a fixed distribution of nucleotides as in the back-

ground state PB of the Markov model (0.32 for A/T, 0.18 for G/C). Similarly to the

transcription factor states, the nucleosomal state was assigned a prior probability

term P(t) to reflect a fixed nucleosomal concentration along the embryo. P(t) was

optimized together with other concentration-related parameters P(t) for all transcrip-

tion factors. Alternatively, due to uncertainty in the literature about the contribution

of DNA sequence specificity to in vivo nucleosome positioning, we also tested a

sequence-specific model of nucleosome binding (Segal et al., 2006). Neither of

these nucleosomal models dramatically improved the DNA binding predictions for

the five transcription factors (Fig. 4).

E. DNA Accessibility Data Greatly Improve DNA binding Predictions

Aweakness of the above strategies to predict nucleosome location is that only one

constitutive model is derived for all cells of the organism for all stages of develop-

ment. Yet it is known that chromatin accessibility varies dramatically over time and

between cells (Kharchenko et al., 2011; Thomas et al., 2011). Therefore, we sought

to exploit direct genome-wide measurements of DNA accessibility for the same

developmental stage from which the ChIP-seq data were derived (Li et al., 2011;

Thomas et al., 2011). Interestingly, when we compared these DNA accessibility data

to the predictions of the original, simple version of our gHMM, we found that the

model correctly predicts DNA binding on the most highly accessible genomic

regions but tended to predict stronger DNA binding than was actually measured

on less accessibility regions (Kaplan et al., 2011). We therefore leveraged the

statistical framework of generalized hidden Markov models and incorporated
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DNA accessibility data into the model as a nonuniform prior probability of regula-

tory binding along the genome – with regions of low accessibility being given a

greatly reduced probability of binding.

The incorporation of differential DNA accessibility in this way dramatically

boosted the model’s accuracy by almost twofold to a correlation of r = 0.67 with

themeasured in vivo occupancy datawhen averaged over all the�500 kb test set, with

the factor-specific correlationvarying from 0.58 (HB) to 0.79 (BCD) (Figs. 3C and 4).

In addition to the sigmoidal prior described in Section V, we investigated addi-

tional methods to transform the DNA accessibility data DDx into probabilities PDx.

First, we tried to linearly scale the accessibility dataDDx and limit the maximal PDx

values at one. This resulted with slightly less accurate predictions (r = 0.66 on test

data). Also, we tried an even simpler model using a step function, namely modeling

PDx as one value below some minimal value of DDx, and another value above it.

Even this naive model achieved comparable accuracy, at r = 0.64. This slightly

reduced correlation suggests that the effect of DNA accessibility on transcription

factor binding may be almost binary – low accessibility regions show almost no

regulatory binding, while binding at accessible regions is modeled quite accurately

by DNA sequence alone (Kaplan et al., 2011).

F. Modeling Direct Cooperative DNA Binding Does Not Affect Model Performance

Although our predictions that included DNA accessibility data were reasonable,

we sought to further refine our model by considering factor-factor interactions other

than the simple direct competition (via overlapping recognition sites) described

earlier. For example, direct physical interactions between transcription factors bound

at neighboring recognition sites have often been found to increase the occupancy of

one or both proteins on DNA, for both homomeric and heteromeric cooperative

interactions, and to sharpen the regulatory response to changes in transcription factor

concentration (Arnosti et al., 1996; Small et al., 1992).

Generalized hidden Markov models, however, have limited ability to model the

broader context of DNA binding events, including cooperative interactions between

neighboring sites.We therefore added a second, sampling-based phase to our compu-

tational model. In this phase, a large ensemble of DNA binding configurations is

sampled, each with a different set of protein–DNA interactions. The probability of

each configuration is then estimated based on all pairs of nearby occupied sites (up to

95 bp apart) and the parameterized energetic gain of each pair. Finally, the overall

DNA binding probability at each position is quantified as a weighted sum of all

sampled configurations.

By adopting a statistical mechanics perspective, the exponential space of protein–

DNA binding configurations can be viewed as a canonical ensemble in a thermo-

dynamic equilibrium. Here, the probability of each configuration is directly linked to

its energetic state, including direct protein–DNA interactions, steric hindrance con-

straints, and cooperative interactions with neighboring factors (Ackers et al., 1982;

Segal et al., 2008). We extended our model to capture cooperative interactions

between transcription factors using a novel set of 15 parameters (one for each
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nonredundant pair of the five factors), modeling the energy gain for the nearby

binding of every possible pair of the five transcriptional regulators in our model.

The optimized set of cooperative DNA binding parameters includes predictions of

interactions between many homomeric and heteromeric pairs (Kaplan et al., 2011).

These cooperativity parameters improved the predictive power of the model to a

correlation of r = 0.67 on the test data, ranging from r = 0.58 (HB) to r = 0.79

(BCD), a marginal improvement over the Markovian approach (Figs. 3D and 4).

Thus, our model suggests that cooperative interactions between transcription factor

molecules have a rather limited contribution in shaping the genomic landscape of

in vivo DNA binding (Kaplan et al., 2011).

G. Implications for Determining Transcription Factor DNA Occupancy in vivo

The increasing availability of genome-wide in vivomeasurements of DNA acces-

sibility (via DNase I, FAIRE) for a variety of cell types, developmental stages, and

environmental conditions, together with the laborious nature of direct ChIP mea-

surements, suggests a mixed computational-experimental streamlined strategy for

estimating the genome-wide binding landscape of proteins. While we often fail to

predict transcription factor DNA binding levels from DNA sequence and in vitro

DNA affinity measurements alone, by incorporating DNA accessibility data into a

thermodynamic model, a reasonable job of quantitatively predicting the occupancy

of transcription factors can be made. While such an approach should not be viewed

as a substitute for systematic experimental measurement of transcription factor DNA

binding in vivo, we believe our predictions are good enough to be useful when such

experimental data are unavailable or impractical to obtain.

IV. Open Challenges

Quantitative computational models of sequence-specific protein–DNA interac-

tions offer a fast approximation of the genomic landscape of protein–DNA binding.

Nonetheless, these predictions are still far from being reliable enough to fully

replace experimental in vivo measurements.

One of the greatest challenges for improving future models is in modeling locus-

specific DNA accessibility using genomic DNase I hypersensitivity data. Our cur-

rent models rely on a probabilistic platform, in which we tested various ways to

transform read coverage into a priori DNA binding probabilities, with a sigmoid

function being the most useful. While this approach worked well on relatively

accessible regions (cis-regulatory regions and the regions flanking actively

expressed genes), it was not as accurate on a full genomic scale, giving a correlation

coefficient of only 0.33 for an entire chromosome arm (Kaplan et al., 2011). Most

false predictions arose from bona fide sites predicted to be strongly bound, but which

show limited or no binding in vivo due to limited accessibility. In addition, we

observed some highly accessible regions bound by several transcription factors,

even in the absence of cognate sequence recognition sites. We believe that
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optimizing the transformation fromDNase I read densities into binding probabilities

at very low and very high DNase-seq read densities could strengthen the model.

A second challenge is to improve the modeling of cooperative DNA binding (both

direct and indirect). In our work to date, we applied a somewhat simple approach,

where two nearby transcription factor molecules contribute some constant energetic

value only if they bind in close proximity (<95 bp). It seems probable that more

sophisticated methods, with a greater number of parameters, could model the bio-

logical/physical effect with greater accuracy.

Wasson and Hartemink (2009) recently used hidden Markov models to analyze

transcription factor DNA binding in yeast and showed that their predictions improve

as more sequence-specific transcription factors are added to themodel.Whilewe did

not observe this trend with our data, possibly because we only analyzed five tran-

scription factors, revisiting this approach with a greater number of transcription

factors could be revealing.

Finally, while the direct goal of the work described in this chapter was to predict

in vivo DNA binding from DNA sequence, in vitro affinity, and chromatin accessi-

bility data, a more challenging question is to understand and predict de novo how

dynamic patterns of DNA accessibility are themselves generated in cells. This may

require correctly modeling the activities of hundreds of sequence-specific transcrip-

tion factors, the chromatin remodeling proteins that they recruit, nucleosomes, and

other chromatin proteins. We doubt that sufficient data or knowledge is available to

yet take up this task.

V. Computational Methods

A. Generalized Hidden Markov Models

Generalized hiddenMarkovmodels were used to predict transcription factor DNA

binding based on the factor concentration and the DNA sequence. We followed a

thermodynamic rationale, and considered the space of all valid DNA binding con-

figurations as a Boltzmann distribution. Under this statistical framework, the prob-

ability of each configuration, Pi, is proportional to its energetic state Ei

Pi / e�bEi

where b equals 1/kBT, with kB being the Boltzmann constant and T the temperature

(25 �C).
The energetic state of each configuration could therefore be calculated from its

binding probability. Under this model, bound nucleotides are generated according to

the protein–DNA binding preference, or PWM, of the transcription factor. The

probability of a subsequence Si to be bound by transcription factor t equals

PtðSiÞ ¼ PðtÞ
Ylt�1

j¼0

PjðSiþjjutÞ
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with P(t) being the a priori binding probability of transcription factor t, lt the length

of the binding site for factor t, and Pj(Si+j|ut) corresponds to the probability of the

nucleotide Si+j, at the j position of a binding site for factor t, as modeled by its

recognition parameters ut. Unbound nucleotides are generated from a mononucleo-

tide background distribution PB (0.32 for A/T, 0.18 for G/C).

It is useful to visualize this family of models as a series of probabilistic transitions

between the internal states of the model (Fig. 1). The different types of DNA

sequence (unbound DNA; DNA bound by factor t, etc.) are the nodes, and the

allowed transitions between states are shown as arrows in the figure. The parameters

of themodel correspond to the probabilities of transition between states. Each state is

associated with one transcription factor; the probability of the corresponding DNA

subsequence is calculated using its binding site model Pj(Si). Each configuration is

viewed as one path along the internal states of the model, starting in one state at the

beginning of the DNA sequence, and transitioning among the states until the end of

the sequence. The full binding configuration of DNA sequence S, with multiple

factors t1,. . .,tk bound at positions x1. . .xk, respectively, is viewed as a path that loops
into the unbound state along most of the DNA sequence except for positions x1. . .xk
where it enters the states corresponding to the transcription factors t1,. . .,tk. We can

then write the probability of this path as:

PðSÞ ¼ PBðSÞ
Yk
i¼1

PðtÞPtiðSxiÞ
PBðSxiÞ

Note that no overlapping binding sites are allowed in each configuration. To further

account for steric hindrance, each PWM was extended by two flanking regions of 3

bp. These were modeled by a nonspecific background distribution PB (0.32 for A/T,

0.18 for G/C). The minimal distance between two occupied sites in one binding

configuration is therefore 7 bp (two 3 bp flanks plus a 1 bp transition through the

unbound state).

To infer the overall binding probability of each transcription factor at each DNA

position, one must account for the exponentially large number of possible config-

urations, whileweighting each configuration based on its probability.While this task

seems difficult at first, it can be solved in a linear time using the dynamic program-

ming inference algorithm (Durbin et al., 1998; Rabiner, 1989). Specifically, we use

the forward-backward algorithm. First, we calculate the local probabilities of each

transcription factor t to bind DNA at each position i, Ut,i = P(t) * Pt(Si). We then

calculate the Forward Potentials Ft,i and the Backward Potentials Bt,i by summing the

probabilities of all configurations (paths) that end (for Forward Potentials) or begin

(for Backward Potentials) at position i with a binding site of t. Finally, we calculate

the exact a posteriori probability of transcription factor t bound at position i by

multiplying the forward and backward potentials. This calculates the binding prob-

ability of factor t at position i, given all possible combinations of other transcription

factors along the entire sequence S.
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B. Model-based Simulation of Chromatin

We used a sigmoid transformation to convert the genomic landscape of DNase I

hypersensitivity data DDx (density of sequenced reads along the genome) into the a

priori probability PDx of entering a bound state at position x:

PDx ¼ 1

1þ e�b DDxþa

The parameters of this equation, a = 6.008 and b = 0.207, were optimized over the

training data, separately from the concentration parameters in an iterative manner

(piecewise optimization). Those probabilities PDx are then multiplied by the prior

probability of binding P(t) for each transcription factor t in order to calculate the

actual transition probability into the bound state of transcription factor t at position x

along the genome.

C. Thermodynamic Modeling of Protein–DNA Interactions Using Boltzmann Ensembles

To predict transcription factor DNA binding in a full thermodynamic setting we

first used the generalized hidden Markov model to analyze the underlying sequence

and predict proteins’DNA binding according to the different protein concentrations

within each nucleus in the Drosophila blastoderm stage embryo. This was used to

calculate an approximate map of DNA binding. To allow for cooperative interactions

between the transcription factor molecules, we then used the DNA binding proba-

bilities described above to sample 10,000 binding configurations per sequence/run

and reweighted them to account for the energetic gain due to cooperative DNA

binding interactions. This was done in a thermodynamic setting, where every con-

figuration i was reweighted by Wi

W i ¼ exp �
X

jxj�xk j< 95

Cj;k

0
@

1
A

where xj and xk are the binding locations of factors j and k, while Cj,k corresponds to

their optimized cooperativity parameter. The reweighted samples are then averaged,

and the binding probability of every factor at every position is calculated. This

combination of direct gHMM calculations followed by importance-weighted sam-

pling allows us to approximate the full thermodynamic landscape of binding using a

fast framework with few parameters.

D. Optimization of Model Parameters

We optimized all the parameters in our models by focusing on the train set loci and

maximizing the correlation among the model predictions and the in vivo measure-

ments of transcription factor DNA binding. The prior probabilities P(t) of entering

into the bound state for each transcription factor, which reflect the nuclear protein
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concentration of each factor, were first optimized by a genetic optimization algo-

rithm (Goldberg and Holland, 1988) with 25 generations and a population size of 15.

We then further optimized the P(t) variables using a gradient-based trust-region

algorithm (Steihaug, 1983).

VI. Glossary

Qualitative Models of DNA Binding Sites: A family of computational models

aimed at identifying transcription factor binding sites along a given DNA sequence.

Quantitative Models of DNA Binding: A family of computational models aimed

at estimating the occupancy of DNA-binding proteins along the positions of a given

DNA sequence. For example, given an input sequence, a qualitative model may

identify two putative recognition sites, while a quantitative model may predict that

one of these sites is occupied twice as often (i.e., for longer periods of time) as the other.

Position Weight Matrix (PWM): A statistical representation of a DNA motif.

Commonly used to model the DNA recognition element of a transcription factor, a

PWM is a table of 4-by-N that records the probability of observing each of the four

nucleotides at every position of the motif. These models assume independence

between theN positions of themotif such that each nucleotide position is represented

as a single column with the estimated probabilities for each of the four nucleotides.

To calculate the probability of transcription factor binding at a DNAword of size N

given the PWM, the probabilities given in the cells of the table that correspond to the

nucleotide at each of the N positions of the word are multiplied.

Background Model of DNA: A statistical representation of DNA sequences,

typically used as a negative control when scanning DNA for sequence motifs.

These models typically model only the general nucleotide (A-T content) of the

DNA and as a result are too weak to model the entire length of a sequence-specific

binding site for transcription factors.

Thermodynamic Model: According to statistical thermodynamics, the relative

amount of time a complex system with multiple states would spend in each state is

related to its energetic states. Using aBoltzmann distribution, the energetic state of each

configuration is used to estimate the probability of the system being in each state. For

example, every position along a DNA sequence could be bound by many transcription

factors, but it is more likely the system is usually in a ‘‘stable’’state – such as no binding

at all or binding of one or more proteins at their higher-affinity recognition sites.

Hidden Markov Model (HMM):A probabilistic framework for modeling a series

of observations (in our case a DNA sequence) using a series of unobserved transi-

tions between the internal states of the model. The parameters of the model include

the probabilities of transition between the various states (the transition probabilities),

and the probabilities for each of the possible outputs of each state (the emission

probabilities). Using inference algorithms, HMMs are used to efficiently find the

most probable explanation (path over the states of the model) of the data, or to infer

the posterior probability of a given state at a given position.
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Generalized Hidden Markov Model (gHMM): An extended class of HMMs that

allow states with longer outputs as well as mute states with no output at all. We

employ a gHMM with ‘‘bound’’ states that use PWM to model sequence-specific

binding sites, and a ‘‘not-bound’’ state that uses a background model of DNA

nucleotide distribution. Given a DNA sequence, we use the gHMM to infer which

positions along the sequence are likely to correspond to the ‘‘bound’’ states and to

what extent.

Prior and Posterior Probabilities: In Bayesian statistics, the prior and posterior

probabilities estimate the likelihood of an event before or after we take evidence into

account, respectively. For example, the prior probability of a given state in model

corresponds to how often we believe a given transcription factor binds DNA in

general, while the posterior probability of the protein’s binding depends of the actual

sequence of the DNA.

Dynamic Programming: A class of algorithms in computer science that solve

certain problem by breaking them down into simpler overlapping subproblems.

Forward-Backward Algorithm:A dynamic programming inference algorithm for

calculating the posterior probability of all states at all the positions of an input series

of observations. Here, we use the algorithm to estimate the posterior binding prob-

ability of each transcription factor along a sequence of DNA. First, the algorithm

calculates the probabilities of each state at any position given the DNA sequence

from the start until that point (forward probabilities). It then calculates the proba-

bilities of all states given the remaining part of the DNA sequence (background

probabilities). Finally, these are combined to produce the posterior probability given

the full sequence.

Further Reading

More details on our model and the implications of our analysis for transcription

factor DNA binding can be found in Kaplan et al. (2011). A companion paper

providing additional biochemical arguments suggesting that chromatin accessibility

plays a more important role than direct heteromeric cooperative association between

transcription factors in directing factor binding in cells can be found in Li et al.

(2011). Finally, Biggin (2011) comprehensively reviews the relationship between the

continuum of transcription factor DNA occupancy levels seen in animal cells and

biological function.
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Abstract

Quantitative studies in plant developmental biology require monitoring and mea-

suring the changes in cells and tissues as growth gives rise to intricate patterns. The

success of these studies has been amplified by the combined strengths of two

complementary techniques, namely live imaging and computational image analysis.

Live imaging records time-lapse images showing the spatial-temporal progress of

tissue growth with cells dividing and changing shape under controlled laboratory

experiments. Image processing and analysis make sense of these data by providing

computational ways to extract and interpret quantitative developmental information

present in the acquired images. Manual labeling and qualitative interpretation of

images are limited as they don’t scale well to large data sets and cannot provide field

measurements to feed into mathematical and computational models of growth and

patterning. Computational analysis, when it can be made sufficiently accurate, is

more efficient, complete, repeatable, and less biased.

In this chapter, we present some guidelines for the acquisition and processing of

images of sepals and the shoot apical meristem of Arabidopsis thaliana to serve as a

basis for modeling.We discuss fluorescent markers and imaging using confocal laser

scanning microscopy as well as present protocols for doing time-lapse live imaging

and static imaging of living tissue. Image segmentation and tracking are discussed.

Algorithms are presented and demonstrated together with low-level image proces-

sing methods that have proven to be essential in the detection of cell contours. We

illustrate the application of these procedures in investigations aiming to unravel the

mechanical and biochemical signaling mechanisms responsible for the coordinated

growth and patterning in plants.

I. Introduction

One of the great challenges in developmental biology is to understand how the

growth, regulation, and division of individual cells result in the overall morphogen-

esis of the organ. Understanding morphogenesis requires time-lapse live imaging of

the cells in the tissue to observe their growth and their division pattern. Extracting

information from this complex four-dimensional imaging data requires image pro-

cessing to automatically quantify features of interest and changes in developing

tissues.

Current methods in imaging and image analysis unfortunately require a trial and

error approach to optimize the technique for each individual situation. Here, we give

general recommendations and specific details about methods we have used, with the

intention that these methods will be modified to fit each specific individual situa-

tion. In this chapter, we illustrate and detail the methodologies of live imaging and

image processing of two specific tissues, the sepal epidermis and the shoot apical

meristem (SAM), both of which relate to understanding the roles of growth and cell

division in morphogenesis of these tissues. One reason to use the model plant
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Arabidopsis thaliana, in addition to its well-known properties for genetics and

genomics, is that plant cells cannot move or migrate relative to their neighbors.

These properties make Arabidopsis a tractable model system for image analysis,

simplifying the study of growth and cell division in morphogenesis.

First, we examine the sepal, which is the outermost, green, leaf-like floral organ

that encloses and protects the developing bud (Fig. 1A). The sepal is a representative

example of a plant lateral organ that, unlike many other candidates including leaves

and petals, is easily accessible for imaging. The outer epidermal cell layer of

Arabidopsis sepals has a characteristic pattern consisting of highly elongated giant

cells interspersed between a diversity of smaller cells (Roeder et al., 2010).We asked

how the growth and division of these cells simultaneously generated the pattern and

the organ.

In our second example, we discuss live imaging and computational techniques to

study the cell division and growth patterns of one of the two stem cell niches of

Arabidopsis, the SAM. The indeterminate growth of shoots is accompanied by the

continual production of new organ primordia on the flanks of the SAM. Elucidation

of the underlying genetic and biochemical networks that maintain this stem cell

population at the growing shoot and the molecular signals required for organ initi-

ation are fundamental questions in plant developmental biology. Understanding how

these networks operate in real time to regulate cell division and growth patterns in

the SAM is approached by time-lapse live imaging using laser scanning confocal

microscopy (LSCM) to follow changes in gene expression patterns, hormone syn-

thesis or signaling, and cell–cell communication.

The combined strengths of live imaging and image processing give us ways to

generate quantitative data necessary to assist in the design and validation of math-

ematical and computational models of growth and patterning. In silico simulation

allows one to quickly explore diverse hypotheses that are otherwise time-consuming

and maybe difficult to set up in the wet lab. A key component of this computational

endeavor is the ability to routinely turn the objects seen in images into faithful

geometrical models amenable to computer manipulation. Once we are able to

determine the real geometry (volume, surface area, distances) of cells and their

topology (the neighboring cells of every cell), we are then one step closer to

computationally investigate cell–cell signaling on entire tissues and make simula-

tions to assess and predict the importance of hormones and proteins, mechanics,

geometry, and network organization in organ development with digital cells closely

resembling their living counterparts.

Describing plant cells and tissues in all their geometrical and topological com-

plexity has intrigued researchers for many decades. Lewis systematically investi-

gated almost a century ago the actual three-dimensional shape of cells in plant and

animal tissues using serial sections and showed that cells rarely have regular shapes

and sizes (a hypothesis defended by many but not verified until then); however, the

great majority of cells are surrounded by an average of 14 neighboring cells (Lewis,

1923). Matzke and Duffy (1955) performed a similar study of meristem cells and

concluded after observations that cells deeper in the meristem do not exhibit a
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dominant shape but have all kinds of forms, mostly convex. The primary goal of

these investigations and others from the same period was to precisely reveal what

shape cells have in tissues, how they are connected to each other, and what was the

prevalent polygonal shape of their faceted walls. They were very quantitative in

nature, characterizing the three-dimensional cell shapes in terms of total number of

facets per cell, the number of same shape facets per cell, and providing average

numbers over thousands of cells from different species. Both investigations had

difficulties in image interpretation that are still very contemporary. For example,

Lewis stated that ‘‘the chief difficulty will be in interpreting the cell walls which fall

nearly in the plane of section and consequently appear as hazy films’’. We are faced

with exactly the same problem when using confocal microscopy: cell walls, perpen-

dicular to the focal plane, are poorly resolved, hazy, and sometimes invisible in the

acquired images. By improving image acquisition strategies and considering such

limitations during the development of algorithms, we should be able to indirectly

localize with some precision such cell walls and determine cell shapes and connec-

tivity. We hope the work presented here sheds some light on how to successfully

image sepals andmeristems and obtain accurate geometrical reconstructions of plant

cells and tissues from confocal images.

II. Overview of Systems and Methods

We give below a brief description of the two plant systems we introduced in the

previous section together with recommendations for imaging and image processing

that can be freely modified to suit specific needs. They have been successfully

applied in our laboratory experiments and they continue to be further refined and

expanded to accommodate our reconstruction needs. We believe a close collabora-

tion and constant interaction between imaging and image-processing specialists can

produce superior quantitative results and thus we address both areas in this chapter.

We stress the importance of having awell-planned image acquisition step to promote

a successful computational analysis. Determining the requirements and difficulties

of each allows one to identify adequate methods on both fronts to cope with physical

and computational limitations.

Beforewe cover the general methodologies of time-lapse live imaging of sepal and

meristem tissues, we will first point out several basic considerations to keep in mind

before beginning any time-lapse live imaging study. Similarly, we present a few low-

level image processing methods that we suggest apply to treat the acquired micro-

scope images before performing the segmentation and tracking of cells.

A. Sepal Epidermis

The sepal is a defensive organ that encloses and protects the developing repro-

ductive structures. At maturity, the sepal opens when the flower blooms. The outer

sepal epidermis (see Fig. 1) contains a characteristic pattern of diverse cell sizes
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ranging from giant cells one-fifth the length of the sepal to small cells one-hundredth

the length of the sepal (Roeder et al., 2010). To determine how growth and cell

division are coordinated to create this pattern, we used live imaging to track the cell

division pattern and static imaging with image processing tomeasure the cell sizes in

wild-type and mutant sepals (Roeder et al., 2010).

B. Shoot Apical Meristem Anatomy

The SAM sits atop the most apical part of the growing shoot, which can be

identified grossly under a dissecting microscope as the dark green region between

the developing floral primordia. The SAM is defined as the first 4–5 cell layers in the

[(Fig._1)TD$FIG]

Fig. 1 Sepals and giant cells (refer to color figure). (A) The sepal is a defensive organ that opens when

the flower blooms. Sepals are marked with letter S. (B) A scanning electron micrograph shows the pattern

of diverse cell sizes in sepal epidermis. Giant cells (shown in pink online) are cells that undergo

endoreduplication and grow much larger than other cells. Measuring cell size distribution and cell

network topology helps in the investigation of a fundamental question in biology: how a pattern of

different cell types develops from a field of relatively uniform cells. We developed algorithms (Cunha

et al., 2010) to segment sepal images and provide cell size and shape information enabling the endor-

eduplication study of sepals in Roeder et al. (2010). (C-D) We show a montage of a confocal maximum

intensity projection of the plasmamembrane of sepal cells (C) and its segmentation (D)where stomata and

unrecognized regions (due to image aberrations) are manually filled with white color after segmentation.

Segmented plasma membranes (D) are slightly blurred to improve visualization. (See color plate.)
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center of the shoot between the developing organ primordial (see Fig. 2). The SAM is

further subdivided into three zones based on gene expression patterns, cellular

behavior, and a cell’s differentiation status/potential. Fluorescent reporter constructs

are available for each of these genes and can serve as a starting point for anyone

learning live imaging techniques for the SAM.

[(Fig._2)TD$FIG]

Fig. 2 Anatomy of the SAM (refer to color figure). (A) Image of a transverse section of the SAM in

which the SAM is subdivided into three primary domains where the central zone (CZ) is labeled in

medium grey (green online), the rib meristem (RM) is labeled in light grey (yellow online), and the

peripheral zone is labeled in dark gray (blue online). Note that a few cells in the middle of the L3 may

express both theCLV3 andWUS genes (pink cell online) as visualized by the expression ofCLV3 andWUS

in the middle of the L3 (C). (B-E)Maximum intensity projection (B andD) and transverse sections (C and

E) of SAMs showing the cellular architecture together with gene expression patterns. (B, C) The CZ is

marked by the expression of the pCLV3::mTFP-ER reporter in the 20–30 pluripotent stem cells in the first

three central layers of the SAM. (D, E) Below the CZ is the RM, which is delineated by the expression

domain for the homeodomain transcription factor WUSCHEL (pWUS::mTFP-ER). Surrounding the CZ

and the RM is the peripheral zone (PZ), which is roughly marked by the expression domain for several

genes, including UNUSAL FLORAL ORGANS (UFO) and FILAMENTOUS FLOWER (FIL) (not shown,

blue region in A). (See color plate.)
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C. Time-Lapse Live Imaging Versus Static Imaging of Living Tissue

The first choice to make is whether to undertake time-lapse live imaging of the

organ while it is attached to the living plant or to remove it from the plant and take a

single static image. Both protocols are detailed here and both procedures are often

used in concert. We recommend starting with static imaging of individual organs at

different time points to gain a sense of the relevant time frame. Then live imaging of

a few samples should give detailed information about the changes occurring. The

computer can assist with tracking these cells over time. Finally, many static images

of a specific time point can be measured after image segmentation to produce large

datasets that can be analyzed with statistics.

For example, we first imaged sepals from various flowers and found that giant

cells were established very soon after the sepal primordium formed.We observed the

development of sepals throughout this period using live imaging and found that giant

cells stopped dividing and entered the specialized endoreduplication cell cycle in

which they replicated their DNA and grew (Roeder et al., 2010). Concurrently,

neighboring cells divided, thereby degreasing their size. Finally, we took static

images of mature sepals, segmented them, andmeasured the final cell sizes of nearly

all the epidermal cells in the sepal.

D. Considerations for Engineering Transgenic Lines and Use of Fluorescent
Probes for Live Imaging

The selection of the correct combinations of fluorescent proteins (FPs) or probes

is very important for a successful live imaging study. Generation of suitable trans-

genic reporters is a labor-intensive process; therefore, careful consideration of the

goals of the live imaging study can save substantial time. The following are a set of

recommendations pertaining to the engineering of T-DNAvectors for making trans-

genic plant lines.

The first step in the production of any transgenic fluorescent reporter line requires

deciding whether to engineer a transcriptional or translational reporter. There are

advantages and disadvantages to both. A transcriptional reporter is constructed by

replacing the gene of interest’s (GOI) open reading frame (ORF) with a FP such that

the expression of FP is now controlled by the GOI genetic regulatory elements. A

transcriptional reporter is useful for visualizing the expression pattern of the GOI

and level of promoter activity in different cell types. However, a transcriptional

reporter may lack additional transcriptional regulatory elements present outside the

gene’s proximal promoter and 30UTR.
A translational reporter requires fusing the ORF of a FP in frame with the GOI

ORF. This can be done to produce either an N-terminal or C-terminal fusion protein.

A translational reporter can faithfully reproduce a gene’s subcellular localization and

post-transcriptional/translation regulation. However, care must be taken to ensure

that an N-terminal or C-terminal FP tag does not alter the normal subcellular

targeting of the fusion protein. Furthermore, some subcellular compartments can
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be difficult to visualize by confocal microscopy. In general, the larger the cellular

organelle, the more pronounced it is in the image. As a general guide, transcription

factors and stable membrane-targeted proteins are the easiest to visualize as trans-

lational fusions. Proteins targeted to smaller cellular compartments (such peroxi-

somes and mitochondria) can be difficult to visualize in the image. To correctly

identify these subcellular compartments requires co-visualization with known

marker dyes or transgenes known to localize to these cellular compartments.

When confronted with this issue it is generally wise to make a transcriptional

reporter of the GOI.

The production of cytoplasmic transgene FP reporters, whether transcriptional or

translational, should be avoided when reasonable due to the difficulty these markers

present in downstream image processing. Many subcellular localization tags are

available to avoid this complication when making transcriptional reporters (Cutler

et al., 2000). For nuclear localization, the FP can be fused to Histone2B (H2B) such

that it is incorporated into the nucleosomes (Boisnard-Lorig et al., 2001), or N7

such that it is in the nuclear envelope (Cutler et al., 2000). The advantage of H2B is

that the chromosome dynamics of mitosis can be observed. For the plasma mem-

brane, the 29-1 tag is common (Cutler et al., 2000) and the low-temperature-induced

transmembrane protein RCI2A is also used (Thompson and Wolniak, 2008).

Standard molecular cloning techniques are used to engineer fluorescent reporter

transgenes. We routinely clone approximately 5 Kb of genomic sequence upstream

of the GOIs initiating ATG as the promoter. If another gene is present within this

region, we will clone the entire sequence up to the adjacent gene. As a general rule,

we also clone approximately 1.5 Kb of theGOI’s 30UTR,which is also determined by

the proximity of an adjacent gene. To aid in the generation of new reporters we have

adopted the gateway recombination-based technology (Invitrogen Life Technologies

Corporation, Grand Island, New York, USA) as the preferred method for introduc-

tion of FPs or FP translational fusions into the GOIs regulatory region. There are

several published gateway compatible plasmids available to accomplish this (Karimi

et al., 2007a, b). While these plasmids are useful, we have found engineering our

own gateway destination vectors by inserting a gateway recombination cassette

between the GOI’s cloned regulatory regions for transgene expression gives us

additional flexibility. In addition to the available gateway recombination technology,

a BAC clone-based recombineering method for generating transgene reporters is

gaining traction (Venken et al., 2009). One advantage of this system is that it allows a

larger region of the chromosomal DNA to be present, which may contain distal

enhancer elements (>5 Kb from the GOIs ATG).

Cloning the genetic control elements is the first step. The next step is deciding

whether to construct a transcriptional or translational reporter. The main advantage

of the gateway recombination-based system is that it makes this step versatile. Once

the gateway recombination cassette (that contains the attR1 and attR2 sites) is

inserted in between the GOIs genetic control elements transcriptional or/and trans-

lational reporters can are easily constructed. Our lab has created a standard set of FP

constructs in pENTR-D/TOPO that allows us to introduce the FP into the converted
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GOI destination vector. To increase the expression levels of these FP reporters, we

have introduced the Tobacco Mosaic Virus translation enhancer (V translational

enhancer) upstream of the FP ORF (Sleat et al., 1987). The inclusion of the V
translational enhancer results in a consistent level of transgene expression across

independent insertion clonal lines. It also enhances the FP signal from weak pro-

moters due to increased translation of the FP mRNA. We have also included an

idealized Kozak sequence (a stretch of six adenines) found in the most highly

expressed Arabidopsis genes (Nakagawa et al., 2008). In addition, we have multi-

merized the FP ORF such that each of the FP reporters are 2X or 3X versions

separated by a Pro-Ala(9)-Pro linker sequence to allow for proper folding. The

signal from these engineered FPs is further enhanced by their targeting to subcellular

compartments (as discussed above). One note on making an FP targeted to the

endoplasmic reticulum (ER). We have noticed that the signal from ER-targeted

transcriptional FP reporters has a major drawback of perdurance, where the reporter

signal is maintained after cell division in cells that may not express the GOI. Care

should be taken when looking at the ER-localized proteins for the first time before

making a conclusion about the expression pattern and domain size of your GOI.

Research on the biochemistry and biophysics of FPs continues to yield an expand-

ing spectrum of FP colors that are brighter andmore photostable (Shaner et al., 2005,

2008). One should select a set of FPs that are compatiblewith the laser lines and filter

sets on the available microscope and the other FP reporters that will be used in your

study. Some of our favorite FPs for expression in Arabidopsis include YPet (yellow),

mGFP (green), mTFP (blue), and tdTomato (red) (Nguyen and Daugherty, 2005;

Shaner et al., 2008). Other FPs that have been used with success include mYFP

(yellow), mCitrine (yellow), and Venus (yellow). Note the signal for Venus bleaches

quickly and should be used sparingly. When choosing combinations of FPs to use,

consider the excitation wavelengths available and the emission filters on your

microscope, such that optimal imaging conditions can be achieved. We have found

that the following FPs sets offer a nice combination of photostability, brightness, and

compatible emission spectra, which can be separated in double and triple marker

lines; mTFP, YPET, and mCherry; mGFP, YPET, and mCherry; mGFP, YPET, and

tdTomato; mGFP and tdTomato. For the combination of YPET and tdTomato, the

emission spectra for the two FPs partially overlap due to the long emission tail of

YFP. This can be overcome if the two FPs are targeted to different subcellular

compartments and bright enough. Also if using more than one marker, imaging of

separable colors greatly reduces the difficulty of automatic segmentation. Markers

of the same colors with different subcellular localizations can be segmented

manually.

The previous discussion has outlined the steps involved and issues to be consid-

ered when engineering new transgene constructs. However, some applications

require the ubiquitous expression of a translational reporter gene. Choosing the

appropriate promoter to drive expression of the fusion protein is essential. Many

promoters considered to be ubiquitous are not expressed well in certain tissues. For

example, the cauliflower mosaic virus 35S RNA promoter (35S) is not expressed
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well in the SAMor embryos but it is highly expressed in lateral organs such as sepals.

Furthermore, transgenes made with the 35S promoter are silenced at a high fre-

quency. A better choicewe have found is theUBIQUITIN10 (UBQ10) gene promoter

(Nimchuck et al., 2011. While this promoter is not as strong as the 35S promoter, it

gives a nice middle level of transgene expression without the problem of silencing.

We now use the UBQ10 promoter as our primary driver for transgenes in the SAM

and tissues outside the SAM and embryo.

E. Important Considerations Regarding Selection of the Microscope and
Microscopy Settings for Live Imaging

Live imaging of plant development described in the methods herein involves the

use of a LSCM. While several variations of confocal microscope technology exist,

such as a spinning disk confocal microscope or two-photon or two-photon light sheet

microscopy, it is not clear if any of these microscopes offer any improvements over

the standard LSCM microscope when referring to time-lapse live imaging of sepals

or the SAM over long periods. What is of upmost importance, however, are the

parameters used during a time-lapse live imaging or static live imaging study. The

methods described here are based on imaging with a Zeiss 510 LSCM microscope,

as used by our lab, and the general guidelines outlined may need to be altered if you

are using a different microscope, such as a Leica or Nikon LSCM.

The total working distance available should be the first thing checked to see if it

will suit your needs, before proceeding with any new live imaging experiment of the

SAM. Without sufficient working distance it may not be possible to image all the

time points desired for your time-lapse live imaging experiment due to plant growth.

The working distance on an upright Zeiss 510 LSCM generally allows you to

conduct a 72 h time course.

The next two important considerations are scan speed versus resolution.

Increasing the frame size (e.g., 1024 instead of 512) will increase the time required

to scan each image in the z-stack. Although this will improve the final quality of the

image (i.e., pixel or voxel number), it increases the total scan time required to capture

the z-stack. One of the greatest challenges in time-lapse or static live imaging is to

acquire the total image stack before tissue growth pushes the desired region of

interest (ROI) outside the specified imaging distance in the z-plane. Cell expansion

in the growing stem occurs at a significant rate, such that during the acquisition of

the average SAM z-stacks (30–60 mm) the cell expansion in the stem will have

pushed your ROI out of the specified scan region. Ideally, downstream image

processing applications will benefit from a pixel resolution close to 1:1:1 in the

x–y–z planes. To achieve a 1:1:1 pixel resolution for the acquisition of a 30 mm
image stack at a 1024 resolution with the maximum scan speed of 1.94 s per image

(this is the maximum scan speed of the Zeiss 510 with the 63X/0.95NA water-

dipping objective commonly used in live imaging SAM tissue) will take approxi-

mately 6 min and 54 s (see Fig. 3). The best way to solve this dilemma of growth
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during the imaging session is to determinewhat theminimum image quality required

is for any downstream image processing application and adjusting scan speed, image

resolution, and the z-interval distance parameters accordingly to capture an image

that is sufficiently good for your specific downstream image processing applica-

tions. However, if your downstream image processing needs do require a 1:1:1 pixel

resolution placing your plants at 4�C for approximately 15–30 min and then using

cold water for the imaging session will slow growth enough during that time period

to allow you to image your ROI without significant altering of the image quality

from growth.

The final consideration for any time-lapse live imaging study is the selection of a

reporter line that is sufficiently strong such that the laser light input can be kept to a

minimum to reduce the potential for damaging the tissue. In fact, the major com-

plication for any time-lapse live imaging experiment is tissue damage/death caused

by laser light radiation. This is an unavoidable side effect but can be minimized by

engineering transgene constructs to maximize brightness (discussed above) and

selecting transgenic lines with the highest level of expression while retaining the

fidelity of its endogenous expression pattern. This will allow for the reduction of

tissue damage, increasing the possibility of achieving the maximum desired time

course of your experiment. However, cellular damage from laser light radiation and

free radicals generated by the excitation of the FP fluorophore will make damage to

the tissue an unavoidable outcome of any time-lapse live imaging experiment.

Therefore, it is of utmost importance that the viability of the SAM or sepal tissue

[(Fig._3)TD$FIG]

Fig. 3 High-resolution shoot apical meristem. A large, high-resolution z-stack with 307 slices of a

shoot apical meristem, SAM is shown in (A) together with primordia (marked with letter P). The stackwas

acquired with x:y:z resolution of 0.11:0.11:0.13 mm using a slice spacing of 0.13 mm. Each slice has

1024 � 1024 pixels in the xy plane. We manually dissect the digital central SAM from the other parts to

obtain the image in (B) after denoising. Note in (A) and (B) the presence of dead cells which are

sometimes caused while preparing the plant for imaging. Magnified details are shown in (C–E). In (C)

and (E) we can visualize many layers within the SAM, starting from the epidermal layer L1. Note that the

top and bottom walls of cells are not shown because they were not captured in the raw z-stack, thus

allowing one to see through the cells. (D) Close-up view of the SAM looking from the bottom. (For color

version of this figure, the reader is referred to the web version of this book.)
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is monitored, especially at later time points (>24 h). This is most easily accom-

plished by monitoring primordia outgrowth and development in the SAM or

monitoring cell division and expansion in the sepal. If you notice that the position

of the primordia is unchanged or outgrowth has ceased after successive image

stacks taken 16–24 h apart, the SAM tissue has been severely damaged and

cellular growth has all but stopped, and further (and perhaps even earlier) time

points will yield no useful data.

F. Noise Reduction

Images acquired using a LSCM are inevitably corrupted by shot noise, a type of

noise due to detection of photons or other particles, that follows a Poisson distribu-

tion and is accentuated in low light emission conditions (here, low photon count by

the CCD detector). The consequence of reducing light intensity is an amplification

of noise and hence an increase in the uncertainty in the location of labeled regions. It

is worth remembering that the labeled regions in a fluorescent image are the result of

a probabilistic measurement of photon count at a certain location in space and time

recorded by the microscope camera. Therefore, the spatiotemporal location of a

labeled region is a probability measure with an associated error. Any computational

contouring detection scheme can only offer, at best, an approximate location for the

true contours of the labeled regions.

Other important factors, in no particular order, regulating noise and image reso-

lution in fluorescence LSCM for live imaging include scanning speed (faster/slower

scans increase/decrease noise), size of raster line and zoom magnification (for the

same amount of light, the larger the size, the noisier the image will be), light

wavelength–dye combination (proper matching reduces noise), instability of laser

(heavily used equipment tends to be less stable and noisier), and numerical aperture

(affects amount of collected light). Explaining the mechanisms of influence of each

of these factors is beyond the scope of this chapter, so we refer the reader to Pawley

(2006a) for a contemporary account on the subject.

Reducing noise in fluorescent images is a natural first step prior to attempting

segmentation. The hope is that by reducing noise one can improve the chances of

restoring contour locations in low-contrast images and detecting cell boundaries

with better accuracy. In fact, we show that combining robust computational methods

for noise reduction and contrast enhancement does reveal cell contours even in deep

tissue locations. Since we want to reduce Poisson noise, it is natural that we explore

noise-reduction methods adopting a Poisson distribution model for the noise com-

ponent. But, perhaps surprisingly, we do not have to restrict ourselves to such a case.

As we will show through examples, white noise models represented by a Gaussian

distribution are also adequate in removing Poisson noise toward accentuating plasma

membrane location. There is an abundance of algorithms designed for additivewhite

Gaussian noise reduction and recent methods have been shown to be extremely

effective (e.g., Buades et al., 2005; Dabov et al., 2007). While these are developed

with natural, mesoscopic images in mind, mostly for digital-camera-like devices, we
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have experimented with them on confocal images and successfully generated

denoised images with quality suitable for segmentation. Recent work by Makitalo

and Foi (2011) for Poisson noise removal has suggested transforming image data to

match the constant variance property of white Gaussian noise and then use these

powerful Gaussian-based denoising schemes followed by an inverse transformation.

But we have yet to verify any practical application suggesting that approaches of

this nature outperform the white Gaussian noise removal methods for our pro-

blems. We have favored the nonlocal means method (Buades et al., 2005) to

denoize our confocal images and will present details about the method and results

in Section V.B.

G. Segmentation

Segmentation refers to the partitioning of an image into homogeneous regions

each representing a single object or parts of the same object. This is a classical image

processing problem with decades of development and a vast literature. Methods

range from simple thresholding (classify pixels in an image as either foreground or

background based on a global cutoff value) to more elaborate energy-minimization

methods that require numerical optimization to cluster pixels into uniform regions.

Unfortunately, most methods are designed towork well for a particular set of images

that conform to prior knowledge built into the method. In our experience, algorithms

that claim to be general cannot cope with all possible variations in image quality and

content. It is thus common practice to rework and tune an already developed

segmentation method to fit specific needs or build from scratch. In all cases, results

are most often not complete, missing details, even if minor, that are sometimes

important, and a post-processing manual intervention is necessary to augment the

automatic results. Given these practical limitations, our goal is to develop a semi-

automatic segmentation strategy requiring the least amount of manual editing to

achieve high-quality results.

We have experimented with much-used segmentation methods (e.g., Chan and

Vese, 2001) and customized pipelines and have shown that good-quality semi-

automatic segmentation can be achieved for sepals and meristems (Cunha et al.,

2010). Because our live confocal images can exhibit poor quality, we start our

processing by enhancing the images prior to segmentation – denoising and contrast

enhancement. It is much easier to segment a high-contrast, clean image where the

separation of regions is more evident than a noisy, low-contrast image where it is

difficult to distinguish where boundaries begin and end. All our processing is done

for slices of a z-stack (SAM) and projections obtained from z-stacks (sepals). Our

strategy for the SAM is to build up from the segmented slices a volumetric segmen-

tation. We assume, based on observations from our own work and from others, that

the SAM is composed of convex or almost convex cells. This property has advan-

tageous implications when considering reconstructing from slices. If slices are

acquired with sufficient resolution in all Cartesian directions and are properly

segmented, then it is possible to merge them and obtain full three-dimensional
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segmentation of cells. In this chapter, we present the first part of our work, segment-

ing SAM slices.

There are a multitude of image segmentation approaches for two-dimensional

images.We have opted towork with the active contours without edges method (Chan

and Vese, 2001) and build our own segmentation pipeline from a collection of low-

level operations. The former is a well-known method in the image processing

literature and it was chosen because it is designed for separating an image into only

two regions, matching our needs (our two regions are plasma membrane and cell

interior whichmatches the dark background). Given the good quality of the denoized

images we obtained with nonlocal means, we decided to invest in an alternative

method, a segmentation pipeline combining mathematical morphology (Soille,

2004) and other low-level image processing operations (Gonzales and Woods,

2008). The pipeline is tuned to our own sepal and meristem images but we believe

it is applicable to other images presenting similar content. The results have been

proven to greatly reduce the manual labor required to obtain good-quality segmen-

tation of sepal and meristem images.

There are few publications presenting computational methods to segment plant

tissues. We are not aware of any method for sepals besides our own (Cunha et al.,

2010) and only a few have been developed for root meristems (Marcuzzo et al., 2008)

and shoot meristems (Cunha et al., 2010; Fernandez et al., 2010; Liu et al., 2010; de

Reuille et al., 2005). Thework of Reuille et al. is mostly manualwhere users manually

select junction points in the image and specify which sets of junctions comprise each

cell in the L1 layer of the SAM. The work of Liu et al. (2010) is similar to ours as it

segments slices of the SAM but they use the watershed transform (Soille, 2004) to

segment cell boundaries. Fernandez et al. (2010) also uses the watershed transform to

segment cells but now directly in three dimensions. They use more than one z-stack

image of the same meristem to improve the signal of plasma membranes in the overall

floral meristem tissue thus increasing the number of correctly segmented cells when

compared to using a single z-stack. Although highly computational, these proposed

methods still need some manual intervention in their segmentation pipeline to correct

faulty segmentation results and to align the z-stacks prior to segmentation. The work

of Cunha et al. (2010) also uses manual editing to augment the automatic segmen-

tation but the segmentation methods differ from those mentioned above. We present

the details of this work in Section V.

H. Tracking

From the computer vision perspective, cell tracking presents a combination of

specific challenges: (1) Low frame rates: Images are often acquired in multiple

independent channels, such as alternate fluorescence colors. The need to avoid photo-

bleaching and phototoxicity, and other natural constraints such as developmental cycles

can result in very long intervals between successive frames. For example, Arabidopsis

movies considered in this work have a 6 hours interval between consecutive frames.

The resulting abruptness of motion, as well as morphological changes may render
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many classical motion estimation and tracking algorithms ineffective (Arulampalam

et al., 2002; Comaniciu et al., 2003; Peterfreund, 1999; Veenman, 2001). (2) Cell

division and cell death: The number of cells often changes during tracking because of

cell division and death (cell fusion is also possible). In our particular plant tissues,

neither cell death nor cell fusion occurs, so the actual number of cells in the tissue

changes only through cell division. But in addition, cells can disappear and reappear as

they transiently leave the imaging surface or field of view. Some algorithms are robust

to missing data points in time (Veenman, 2001); however, object integrity is assumed

bymost algorithms (Broida and Chellappa, 1986; Veenman, 2001; Yilmaz et al., 2006).

(3) Change in cell morphology and appearance: Cell shape and appearance can change

significantly over time. For example, differentiation involves rapid morphological and

gene expression changes. (4) Tight clustering:Many cell types, including ES cells, tend

to literally stick together, forming tight cell clusters, making individual cells more

difficult to identify and track. (5) Quantitation: Due to fluctuations in illumination,

changes in expression levels, and photobleaching, cell appearance may vary greatly

over time, even between successive frames. For example, boundaries may blend into

background or may overlap with a neighboring cell.

To tackle the issues mentioned above, various cell-tracking algorithms have been

developed (Song et al., 2000). These include commercial microscopy analysis

packages (MediaCybernetics, Bethesda, MD, USA); academic cell-tracking soft-

wares, such as CellTracker (Shen et al., 2006), CellTrack (Sacan et al., 2008),

DynamiK (Jaeger et al., 2009), and Soft-Assign (Gold et al., 1998; Gor et al., 2005;

see also Section V.E); and plug-in modules in more general analysis frameworks such

as CellProfiler (Jones et al., 2008) and ImageJ (Rasband, 1997). These methods range

in sophistication and generality, from manual clicking on object positions (ImagePro

Software - Media Cybernetics, Inc., Bethesda, Maryland, USA;Metamorph Software,

Molecular Devices, Inc., Sunnyvale, California, USA) to standalone implementations

(Shen et al., 2006) and to cell lineages (Mosig et al., 2009; Wang et al., 2010).

Assessing the performance of a tracking algorithm is less characterized. It can be

evaluated by several domain-specific metrics. Intensity coherencies along tracks can

be evaluated (Black et al., 2003). An event-based metric, which is analogous to

identifying cell division and death events, was suggested in Roth et al. (2008) and a

tracking-difficulty metric was introduced in Pan et al. (2009), which considers local

tracking failures over time. Paired with temporal locations of cell events, this type of

evaluation can measure the effectiveness of tracking algorithms on capturing cell

events. We illustrate this on the dataset considered in this work.

III. Biological Insights

The ability to track cells or follow changes in gene expression patterns during

plant development has already yielded significant advances in our understanding of

morphogenesis and cell–cell communication in both lateral organ, such as the sepal,

and stem cell maintenance and morphogenesis of organ outgrowth in the SAM
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(Reddy and Meyerowitz, 2005; Roeder et al., 2010). For example, following the

change in the size of the pluripotent stem cell pool in the central zone (CZ) of the

SAM following transient reduction in the expression of the CLAVATA3 gene product

suggested that cells that exit the CZ and enter the PZ can be respecified as

CLAVATA3 expressing CZ cells without undergoing cell division (Reddy and

Meyerowitz, 2005).

Roeder et al. (2010) combined time-lapse live imaging and image processing with

computational modeling to conclude that variations in cell cycle decisions to divide

or endoreduplicate are responsible for generating the characteristic pattern of cells in

sepals. Live imaging and computational modeling have also contributed to our

understanding of the relationship between the hormone-mediated lateral organ

growth and the mechanical properties of the SAM epidermis (Hamant et al.,

2008; Heisler et al., 2010). Each of these studies reached conclusions that would

have been very difficult without time-lapse live imaging, image processing, and

computational modeling. As the time-lapse live imaging technique combined with

image processing and computational modeling is extended to new applications, even

more will be learned about cell growth and morphogenesis in plant development.

IV. Open Computational Challenges

Despite many decades of research, there are enduring challenges in the image

processing and analysis area that directly affect our reconstruction developments of

plant tissues. Wewill address a few important ones below and offer some thoughts of

what might lie ahead.

One computational challenge is the proper stitching of the sub-images forming the

larger whole sepal tissue image. Sepal images presented in this chapter are com-

posed of up to six overlapping images each acquired by carefully repositioning the

sepal on the microscope to avoid shifts and distortions. Large shifts and distortions

might render a poorly formed composite image, which will inevitably lead to con-

touring errors during the image segmentation stage. We used specialized commer-

cial software (Photoshop Photomerge, Adobe Systems Inc., San Jose, California,

USA) followed by manual verification and repositioning to mosaic the sub-images,

but solutions were suboptimal: cell walls on the overlapping areas were not fully

matched in some images leaving cells with broken, unaligned contours. We believe

this is mostly due to nonlinear warping of the tissue during acquisition, a feature that

is not detected by the photo merger software and difficult to realize manually

(rotations and translations alone are not sufficient to align walls). We have experi-

mented with tools developed for aligning medical images but to no avail. A special-

ized nonlinear image registration procedure is necessary to unwarp and bring all cell

walls in the overlapping regions to a full alignment.

A fully three-dimensional geometrical reconstruction of a living SAM of

Arabidopsis continues to be a daunting task. A few groups have proposed semi-

automatic solutions (see Section II.G) with different levels of manual intervention
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and computational complexity. There are presently quite a few challenges to compu-

tationally generate a faithful reconstruction in three dimensions. The poor signal-to-

noise ratio typical of live confocal images prevents obtaining an accurate location of

cell contours especially in deep parts of the tissue. A more limiting factor is the signal

absence of partial or entire cell walls (as occurs when walls in the X–Y plane are

skipped in the z-axis because of the finite distance between z-stack slices), generating

gaps that are challenging to be automatically detected especially in three dimensions.

Using the fusion of three or more image stacks of the same meristem, each taken from

a different viewing angle, helps reduce the number of gaps and it improves cell wall

localization (Fernandez et al., 2010). This comes at the expense of submitting the plant

to amuch higher dosage of laser radiation (45–60 min to acquire three z-stacks), which

in turn might limit the total amount of light that can deeply penetrate the tissue, thus

preventing resolving the cell network architecture in interior parts of the meristem.

The z-stack fusion process requires manually collocating and establishing the corre-

spondence of fiducial points to assist in the alignment of all stacks after acquisition, a

task not easily accomplished in three dimensions.We believe, the development of new

markers and image acquisition techniques will allow the generation of high-resolution

images in all directions with better quality thus facilitating the three-dimensional

reconstruction of meristems from single stacks.

Tuning of algorithm and software parameters is usually necessary to achieve

robust image processing results. Repeated unsuccessful trials can lead to frustrations

when end-users are not familiar with the underlying methods and their limitations,

when such limitations are not clearly presented in the software, or simply due to

unpreparedness. For example, not fully knowing what to expect, a biologist might try

several times an open source general image segmentation software to process data

before realizing it only produces partially acceptable results. The process is repeated

a few more times with new promising software packages producing similar out-

comes. User frustration builds up and the tendency is to abandon the automatic route

and solely rely on the manual labeling where success is likely, though not necessarily

immediate or reproducible by peers. When presented later on with a similar problem

and slightly different data set, the entire process might be repeated. This is not an

uncommon scenario. Image processing software is specialized, and general algo-

rithms rarely produce complete results (though for simple, high-quality images,

most methods work pretty well). In general, building good software is an art in itself

and constructing effective processing pipelines requires substantial knowledge of all

of its components. In our experience, the most successful users of bioimage proces-

sing are those who take the time to understand the methods, at least in a high-level

fashion, partner with image processing specialists, accept the current limitations of

algorithms, and are willing to manually correct what results from the automatic

processing. The challenge here is to make this knowledge widespread, foster part-

nership between specialists and nonspecialists, and to build the necessary interactive

and friendly software tools easily adaptable to multiple scenarios.

Our processing pipeline is not different from the scenario pictured above: it

requires tuning of parameters to achieve suitable results, it was designed for a
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specific class of images and with a specific problem in mind, and it usually produces

results requiring some manual intervention for completeness. On the other hand, it

does produce good results much faster than manual labeling alone, it is reproducible,

and by providing easy ways to manually remedy results it engages and, surprisingly,

empowers the biologist in the solution-seeking process, givingmore confidencewith

the achieved results. The crowdsourcing paradigm (demonstrated recently, e.g., in

the Galaxy Zoo and the RNA folding game) has shown that even nonspecialists can

beat the best algorithms when the problems are well explained, the interactive

software is straightforward to use, and the efforts of crowds are properly harvested.

What might lie ahead is thus a futurewhere computers diligently propose a set of best

possible solutions for challenging image processing tasks and human crowds help

refine them to a desirable result. Such refinement might in turn feed back into the

algorithms that learn and incorporate new rules to avoid repeating prior mistakes.

V. Imaging and Computational Methods

We present in this section protocols for image acquisition and processing.

First, we describe four imaging protocols (Methods 1–4) we have developed in

our lab to acquire images of sepals and meristems suitable for visual inspection

and image processing. See Fig. 4 for a hands-on illustration of sample preparation and

image acquisition of a shoot meristem. We then outline the image processing algo-

rithms and methods used to do segmentation and tracking of cells.

[(Fig._4)TD$FIG]

Fig. 4 SAM imaging session (refer to color figure). Well-developed protocols for sample preparation

andmicroscope imaging of the shoot meristem are essential to obtain good-quality images for processing.

Plant preparation for imaging at the lab is illustrated on the top row. An Arabidopsis sample (shown in A)

is dissected with the help of a dissecting microscope (B, C), to expose and clear the way to the minuscule

SAM. It is very important at this stage not to touch the shoot with the fine forceps to avoid damaging and

killing the stem cells. This can only be verified later on during the imaging session. The shoot can then be

stained with a drop of the selected fluorescent dye at its tip (D). After resting a few minutes, the plant is

ready for imaging (bottom row). Adjusting the microscope (E) and positioning the stage at the right

distance (F) will prepare the SAM for image acquisition. At the computer station (G) one can fine-tune the

acquisition parameters (filters, scan speed, aperture, image bit depth, image size, and resolution, etc.) to

produce high-quality images (H) suitable for image processing. (See color plate.)
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A. Imaging Protocols

1. Method 1: Time-lapse live imaging of sepal growth

a. The plants must be planted in special pots to prevent the soil from spilling during

imaging. First, cut fiberglass window screen in roughly 15 cm � 15 cm squares

and soak them in water with a few squirts of Simple Green all-purpose cleaner

overnight. Rinsewith water. Fill a small square pot (about 6.5 cm� 6.5 cm) with

moist soil and cover it tightly with a square of washed window screen. Use a

rubber band to pinch thewindow screen firmly around the top of the pot. Remove

remaining window screen below the rubber band with scissors. Plant the trans-

genic seeds expressing both a plasma membrane marker and a nuclear marker

and growas is standard. A total of 10–15 plants is about themaximum that can be

imaged in one session.

b. When the plants have bolted about 5 cm and are actively flowering, start the

time-lapse live imaging.

c. Dissect the inflorescence to reveal a single stage 3 flower under a dissecting

microscope at about 50� magnification. Use fine forceps (Dumont #5) and 23-

gauge needles. First, remove all of the open flowers. Starting on one side, remove

all the overlying flowers until the stage 3 flower is revealed between two older

flowers which can serve to protect it. Never touch the stage 3 flower. Remove the

older flowers from the other side of the inflorescence so that it will lie flat on the

slide. Some stage 12 flowers should remain on the lateral sides of the inflores-

cence because these improve the health of the plant. Watch for these flowers to

further develop during the whole time series if the plant is healthy, and if not,

discard the sample. Dissecting is the most difficult step and it is typical for many

samples to be thrown out due to damage when the youngest flowers need to be

observed.

d. Tape the stem of the plant to the frosted part of a slide with lab tape about 0.5 cm

below the inflorescence such that the stage 3 flower of choice faces up. The slide

will remain attached to the plant throughout and serve as a guide for returning

the plant to the same orientation for each imaging session.

e. To return the plant to the growth room, cut a small hole in the mesh behind the

plant, place a small plant stake through it (bamboo shish kabob skewers work

well). Tape the back of the slide to the stake so that it is oriented vertically with

the meristem upward. If it is not vertical, the meristem will grow away from the

slide making imaging difficult. Allow the plant to recover several hours before

the first imaging time point. This greatly improves the plant survival rate.

f. To image, tip the plant on its side, detach the slide from the stake. Mount the

inflorescence in 0.02% silwet (a surfactant that does not affect plant viability)

and 0.1 mg/ml propidium iodide (Sigma P4170-10 mg - Sigma-Aldrich Co.

LLC, St. Louis, Missouri, USA). Especially for the first time point, pipette

the liquid up and down around the inflorescence to remove bubbles. Make sure

the flower of interest is completely covered with solution and not obscured by

any bubbles. Cover with a cover slip.
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g. Carefully transport the prepared plants to the upright confocal microscope. We

use a Zeiss 510 Meta. To minimize damage to the plant, it is best to either push

the plants on a cart or use a tray that holds the entire plant on its side instead of

carrying the base in one hand and the slide in the other. Use a small box of same

height as the stage placed adjacent to the stage to hold the plant pot while

inserting the slide in the holder on the microscope stage. First, visualize the

inflorescence under the 10� objective to find the center where the flower of

interest is located. Switch to a 40�water-dipping objective and create a column

of water between the objective and the cover slip. Water-dipping objectives

provide greater working distances and good optics, while not damaging the

plant. In our experience, oil immersion objectives do not provide sufficient

working distances and oil can be quite toxic to the plant.

h. On the confocal microscope, find the flower of interest and make sure it is not

damaged. Damaged tissue will stain strongly with propidium iodide. In healthy

tissue, only the cellwalls will stain with propidium iodide. If the flower is damaged,

either select another flower to image, or discard the sample and try the next plant.

i. Take a confocal z-stack of the flower while exposing the plant to as little laser light

as possible. Reduce laser transmission to around 10%. Maximize scan speed and

use the zoom to scan as small a region around the flower as possible to minimize

the scan time. Scan the image only once. Only image one flower per plant.

j. Remove the plant from themicroscope and remove the cover slip. Gently blot the

inflorescence dry with a kimwipe. Replace the stake and tape the slide to it so the

plant sits directly upright. Return the plant to the growth room.

k. For the next time point, repeat the procedure of mounting the plant and imaging

the flower. Be sure to find the same flower by visual identification. Compare to

the previous image if necessary. Giant cells in the sepals are good landmarks.

The interval between time points should be short enough to capture the dynamics

of the process. For cell division 6 h is reasonable.

l. Continue taking time point images as long as the plant maintains viability and the

process of interest continues. As the organ grows, change zoom and eventually

the objective to maintain a field of view encompassing the whole organ. When

cells start to stain brightly with propidium iodide, viability is compromised, but

the preceding image sequence can be used. Sometimes plants will arrest, growth

and cell division will stop, but no damage is evident. Again the time points while

the plant is actively growing can be analyzed and those after it stops are excluded.

m. After the whole time series has been acquired, the images are aligned using the

Affine Registration function in Amira (Visage Imaging Gmbh, Berlin,

Germany). Open the confocal stack in Amira, and use the Voltex function to

display the volume rendering. Use Volume edit to crop away any other flowers.

Use the hand tools to pull the image into approximate alignment with the image

of the preceding time point. Then set the Affine Registration parameters such

that the computer produces a good alignment of the second time point to the first.

Continue by aligning the third time point to the second and so on. From Amira,

the aligned stacks can be exported for further three-dimensional analysis of the

304 Alexandre Cunha et al.



cells. In addition, a series of two-dimensional snapshots of the volume rendering

can be produced. Choose a level of zoom and angle in which the first time point

and the last are visible and take snapshots of each time point with the camera

button. Finally, movies rotating the three-dimensional image and showing the

time points can be scripted within Amira. Alternatively, the snapshots can be

combined into a movie using QuickTime Pro (Apple Inc., Cupertino, California,

USA).

2. Method 2: Static imaging of living sepals for quantitative image analysis

a. Use a transgenic plant expressing a fluorescent plasma membrane marker, such

as ATML1p::mCitrine-RCI2A. The plant should be healthy and actively

flowering.

b. Under a dissecting scope at about 32� times magnification, gently open the

flower using fine forceps (Dumont #5). Use a 23-gauge, 1-inch needle to cut

downward along the inner side of the sepal to remove the base of the sepal from

the flower.

c. Wet the sepal by placing it in 50 ml of 0.01% triton X-100 on a precleaned Gold

Seal microslide (Cat No 3010). Cover with an 18 mm square cover slip (Corning

Cat. No. 2865-18). Tap the side of the slide to displace air bubbles from the sepal.

Remove the cover slip.

d. Mount the sepal by placing it on a new slide in fresh 0.01% triton X-100.

Carefully turn the sepal such that desired side faces up for imaging. In this case,

the outer abaxial side was imaged. Note that different brands of slide have

different properties that make orientation of the sepal easier or more difficult.

Again carefully lower a cover slip over the sepal and tap the slide to remove air

bubbles. For mosaic images, removing excess mounting solution by placing the

corner of a Kimwipe against the edge of the cover slip is essential. Otherwise, the

sepal flattens as the liquid evaporates causing shifts between parts of the mosaic.

e. Examine the sepal with epifluorescence on the confocal microscope to ensure

that it is properly mounted, is not obscured by air bubbles, and was not damaged

in the dissecting process.

f. Set the light path of the microscope such that the proper excitation is used and the

proper emission is captured. Make sure to exclude chlorophyll (>635 nm). We

used a Zeiss 510Meta upright confocal microscope. For mCitrine, 514 excitation

was used together with a dichroic mirror reflecting only light less than 545 nm

and a 530–600 nm band pass filter, such that only 530–545 nm wavelength light

reached the photomultiplier tube (PMT).

g. Optimize the brightness of the signal and decrease the background noise as much

as possible through adjusting the laser output, transmission, pinhole, detector

gain, and amplifier offset. For segmentation, compromising signal to achieve less

noise is often better than increasing signal with more noise. In our example, laser

output = 50%, transmission = 28.1%, pinhole = 100 mm, detector gain = 711,

amplifier offset = 0, and amplifier gain = 1.
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h. Take multiple confocal stacks such that adjacent images tile (cover) the whole

sepalwith some overlap between images. The mature sepal is larger than the field

of view with either the 10� or 20�. Two images can be used at 10�, whereas six

are generally required at 20�. The increased resolution at 20� is important for

subsequent image processing.

i. To create a complete image, make projections of each stack using the confocal

software. Use Adobe Photoshop Photomerge function to make a single complete

image. There are often slight alignment problems at the junctions between

images. Carefully crop away background that will interfere with automated

segmentation. The image is now ready for segmentation.

3. Method 3: Live imaging of the SAM

a. The live imaging time course is typically over 24–72 h but can be extended if the

plants remain viable. Depending on the goal of the live imaging experiment, you

will need to image your samples every 6–24 h. You will have to do a pilot

experiment to determine what the optimal time points between imaging sessions

are before beginning the experiment. The longer you can go between imaging

sessions and still visualize the cellular process you wish to observe the better, as

you will do less damage to the tissue and prolong the viability of the tissue

thereby extending the possible time course duration.

b. To begin the experiment, germinate seeds on plates containing the appropriate

selective growth media.

c. About 7–10 days post-germination the seedlings are transferred onto one of the

following growth media: (1) The seedlings are transferred into plastic boxes

containing B5 or MS growth media. It is of upmost importance that this step is

carried out following aseptic practices in a tissue culture hood and all instru-

ments be sterilized prior to use. Failure to do so will result in contamination of

the boxes with mold or bacteria, which will impact the viability of your plants. If

you notice mold before the beginning of the live imaging session, the experiment

should be stopped and a new batch of seeds should be germinated and transferred

to the boxes. To prevent contamination of the boxes, prior to removal for the

sterile tissue culture hood, tape the boxes with cloth tape. Place the sealed boxes

into the growth room under constant light. (2) Alternatively, if the seeds are a

homozygous stock they can be germinated on soil. The plants should be watered

from the top to prevent the formation of taproots that will complicate their

transfer into the shallow containers for imaging. After 7–10 days of germination,

the seedlings are transferred into small round containers making sure to fill them

with enough soil from the pot to fill the container. We have found that this

method practically eliminates the complication of mold contamination produc-

ing healthier plants for imaging.

d. Check the plants every 1–3 days watching for the first sign of shoot emergence.

As soon as the bolting shoot is visible and the first floral buds can be seen, begin

dissection of the cauline leaves and floral buds to expose the SAM. Every care
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should be taken to remove as many of the developing flowers as possible without

touching or damaging the SAM. Remove all floral primordia that are growing

over the edges of the SAM, as these will cause shadowing of the SAM during

image acquisition.

e. Once the developing flowers have been dissected and the SAM is exposed, the

imaging session can begin. If you are using the boxes, remove the tape such that

the tape can be replaced after the imaging is complete. If you do not have a

plasma membrane marker in your sample stain the SAM with FM4-64.

Otherwise place the plants at 4 �C for 15 min.

f. Dilute the FM4-64 stock solution (1 mg/ml) 1:10 in ddH2O (final concentration

of 100 mg/ml). Add �20 ml drop to the tip of the shoot and transfer the plants

into a cold room for �10–15 min. If you are using a plasma membrane marker

line (i.e.,UBQ10::V29-1tdTomato) staining with FM4-64 is not necessary as the

cells of plasma membrane will be marked. Once staining is complete begin

imaging.

g. Fill the boxwith ice-cold water or place a drop of ice-cold water on the objective

lens and the tip of the shoot to form awater column for the water immersion lens

(40� or 63�). Lower the stage to a point that the plant will fit under an upright

microscope. Raise the stage such that the objective is over the SAM under

epifluorescent light and find the SAM.

h. Once the SAM has been visualized in the eyepieces, switch over to using the

LSM mode. Note: We use a Zeiss 510 LSCM so the following will be a descrip-

tion of how to proceed using the Zeiss LSM software and interface. If you use a

different microscope you will have to modify the following protocol based on

your particular microscope software and interface.

i. Set the light path for the appropriate filter sets for the laser line/s of interest.

When imaging samples where the plasma membrane will be image with

FM4-64 or a RFP, it is best to change the first secondary dichroic beam

splitter to 635 Vis setting (NFT 635 Vis). This will remove fluorescent

emmission from chloroplasts that will interfere with downstream image

processing steps.

j. We set our Argon/2 laser to 5.7A (50% transmission) and attenuate the output

down to 10–20%. The lower the laser transmission the healthier your samples

will remain throughout the duration of your time-lapse live imaging session.

k. Click on the fast XY to visualize the SAM. Adjust the detector gain, amplifier

offset, and amplifier gain. Typical settings for us are in the following ranges

depending on the samples being imaged: detector gain – 650–850, amplifier

offset – 0.0–0.1, amplifier gain – 1.0–1.5.

l. Once all the settings are set, switch to the z-settings and find the top and bottom

of your image stack, using the fast XY scan. If you are performing image

segmentation following the collection of data points, it is best to scan at a x:y:

z ratio of 1:1:1. In the Zeiss z-settings, there is a button labeled 1:1:1, click on this

and it will automatically set the z-scan setting such that the image resolution is

1:1:1.
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m. In the Scan controlwindow under theMODE tab set the FRAMESIZE to 1024 and

hit the MAX scan speed button. It is best to change the DATADEPTH to 8-bit and

the SCAN DIRECTION as return. Make sure the MODE is LINE, METHOD is

MEAN, NUMBER is 1. This will ensure that the scan speed is as fast as possible.

n. Once everything is set, click the start the button and begin imaging.

o. Once the image stack is acquired, proceed to the next sample.

p. After the last sample has been imaged, place plants back into the growth cham-

ber. If using boxes, try to make sure as much of the water is removed and replace

the cloth tape around the upper and lower seam to prevent mold contamination.

q. Repeat steps e–o. At certain time points, you may have to dissect away newly

emerging primordia that begin to grow over the SAM.

r. Once all time points are collected proceed to image registration and image

processing.

4. Method 4: Static live imaging of the SAM

a. To begin the experiment seeds are germinated on plates containing the appro-

priate selective growth media.

b. After 7–10 days of germination, the seedlings are transferred onto soil.

c. Check the plants for �10 days watching for the first sign of shoot emergence.

Once the shoots have bolted about 5 cm they are ready to image (Note: you can

image early or later depending on the experiment).

d. Fill 2–3 60 � 20 mm deep Petri dishes half waywith 1%molten agarose in water.

Set to the side and allow the agarose to cool.

e. Cut approximately 2 cm of the apical shoot. Dissect away all cauline leaves,

flowers, and siliques. Under a dissecting microscope remove the developing

floral buds to expose the SAM. Every care should be taken to remove as many

of the developing flowers as possible without touching or damaging the SAM.

Remove all floral primordia that are growing over the edges of the SAM, as these

will cause shadowing of the SAM during image acquisition.

f. Once the developing flowers have been dissected and the SAM is exposed, the

imaging session can begin. If you do not have a plasma membrane marker in your

sample stain the SAMwith FM4-64. Dilute the FM4-64 stock solution (1 mg/ml)

1:10 in ddH2O (final concentration of 100 mg/ml). Place 200 ml of FM4-64

staining solution into a 1.7 ml eppendrof tube. Invert the dissected shoot apex

and insert it into eppendrof tube containing the staining solution and tap the tube

to remove air bubbles. Transfer the dissected shoot apex into a cold room for

�10–15 min (Note: If imaging a fluorophore with a temperature-sensitive mat-

uration time youmay lose the signal). If you are using a plasmamembranemarker

line (i.e.,UBQ10::V29-1tdTomato) staining with FM4-64 is not necessary as the

cells plasmamembranewill bemarked. Once staining is complete begin imaging.

g. After staining is complete, make a small hole in the hardened agarose in the Petri

dish. Insert the stem into the agarose such that 0.5–1 mm of the shot apex is above

the agarose surface. Fill the dish with water such that the shoot apex is covered.
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h. Place sample on the stage and center the objective over the SAM under epifluor-

escent light to find the SAM.Once the SAMhas been located switch over to using

the LSM mode.

i. Refer to steps i–r in the Method 3: Live Imaging of the SAM section to complete

imaging experiment.

B. Denoising with Nonlocal Means

The nonlocal means method for white Gaussian noise reduction (Buades et al.,

2005) introduced a new paradigm in image denoising. Its success can be attributed to

its originality, simplicity, and ability to greatly reduce noise while sharply resolving

the boundaries (edges) of objects. Likemany of its predecessors, nonlocal means is a

neighborhood filtering method: the noiseless signal value at a pixel location is the

weighted average intensity value of its closest neighbors (we consider the pixel itself

to be part of its neighborhood). If the signal data has a normal distribution with zero

mean and constant variance, this approach is mathematically grounded and it

works well in practice, that is, it does reduce noise. Methods based on this

framework basically differ in two essential aspects: the averaging scheme and

the selection of neighboring pixels. When considering all neighboring pixels to

have the same exact importance, the noiseless pixel value is simply the mean value

of its neighbors. This old, classical method guarantees noise reduction throughout

but unfortunately the final image is severely blurred with sharp edges destroyed.

This is not a recommended strategy prior to image segmentation as we should

always prefer to have sharp edges in the image, which facilitates the separation of

objects of interest.

By distinguishing how much each pixel contributes to the noiseless value of its

neighbors, denoising results can be significantly improved. Instead of giving the

same weight to all its neighbors, nonlocal means uses a weighted average of pixel

values,

ukþ1
i ¼

X
j2Ni

wk
iju

k
j

whereweightwk
ij measures the contribution of neighboring pixel value ukj to the noise

reduced value ukþ1
i of pixel i at iteration k. The sum above is over all pixels j

belonging to the neighborhood Ni of pixel i. The superscript index k refers to the

current denoising iteration – we can repeat the average scheme as many times as

necessary – starting with the original, k = 0, noisy image (for simplicity, we drop this

index in the expressions below). In practice, we use up to four iterations to denoize

confocal images of sepals and meristem. We mostly work with images having an 8-

bit depth for each color channel, so u 2 [0, 255]. We linearly map Zeiss LSM images

quantized using 12 or 16 bit values to this interval. Although one might rightfully

suspect that such shortening of range values can lead to a loss of information, it has

not proven detrimental at all in our processing of the Arabidopsis images.
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The neighborhood Ni may comprise all pixels in the image but this is neither

efficient nor justifiable. In practice, we chose as neighbors only those other

pixels belonging to a square region centered at a given pixel. This is called the

search window, shown in Fig. 5B, and its size plays an important role: large

search windows tend to over smooth the image while very small windows might

leave the image almost unchanged. We usually compute with search windows

ranging from 11 � 11 to 21 � 21 in size – in order to have a unique center they

need to be odd sized. It should be clear that the computational cost increases with

the size of the search window as we need to perform more arithmetic calculations

[(Fig._5)TD$FIG]

Fig. 5 Nonlocal means scheme (refer to color version). The nonlocal means method succeeds by

denoising patches that are structurally similar. (A)We have a collection of square patches each containing

a piece of a plasmamembrane in a sepal. Averaging pixels whose patches are similar decreases noisewhile

keeping the original image structures intact. (B) How the method works for every pixel in the image. The

pixel at the center (small central red square) is denoized using all its neighbors present in the search

window (large thick white square). Each pixel in the search windowentails a patch (middle-sized squares)

containing structural information used in the patch similarity computation. (C, D) A small portion of a

plasma membrane before (C) and after (D) denoising. The noise is greatly reduced leaving a sharp

contrast-enhanced edge suitable for segmentation. In each of the rows (1-2-3), we show 10 patches which

are the closest (1), halfway closest (2), and farthest (3) from the central patch of the target pixel (large

central red box in B and repeated as the first patch in row 1), classified by distance between patches. One

can visually recognize that patches along the plasma membrane are most similar (row 1) and those away

from the wall (row 3) are the most dissimilar to the central patch and should contribute little to the

denoising of the central pixel. The heatmap (see color version) on the bottom of the picture contains 225

columns (15 � 15 search window), a column for each gray pixelwhich is shown below the heatmap, and it

contains 49 rows referring to the number of pixels in 7 � 7 patches. Each column is color coded to show

the difference vector jvi – vjj for every patch Pj in the search window shown in (B). They are classified,

from left to right, from closest to farthest in similarity to the central patch shown as the first block in row 1.

The numbers 1,2, and 3 in the heatmap correspond to the rows 1-2-3 below panel (C). (See color plate.)
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for larger windows. Depending on the algorithm implementing the nonlocal

means scheme the computational cost can increase from linearly (preferable)

to quadratically.

For the classical denoising method described above, we have constant weight

values, that is, wij ¼ 1=jNij, where |Ni| gives the total number of pixels present in

the square search window Ni. Note that this constant weight expression does not

account for any structural information that could help during denoising; that is,

regardless of the position of a pixel, in an edge or not, it contributes equally as

any other pixel to the denoized value of its neighbors and itself. Intuitively, it should

not be that way. By incorporating structural information on the weight computation,

the nonlocal means method is able to differentiate the contribution of pixels accord-

ing to their structural similarity. Similar pixels should have a mutually positive

contribution on their denoized values while dissimilar pixels should have little or

no influence at all. As an example, the square boxes in Fig. 5A are all structurally

similar, each containing a piece of and centered at a plasma membrane, except that

w6 contains a rotated version. When we averaged their center pixels, we expect to

obtain intensity values consistent with those found exclusively in a plasma mem-

brane, not something else. It is as if we are averaging only those pixels along the

plasma membranes without knowing a priori their location.

Mathematically, we can express the weight between any two pixels i and j as

wk
ij ¼ f kðdij;Ni; hÞ

where dij measures the similarity between pixels i and j, h is a filtering parameter

controlling the amount of smoothing, and f is a function that returns high/low values

for highly similar/dissimilar pixels. It is customary to use a normalized weighting

function wij 2 ½0; 1�, such as

wij ¼ C e�dij=h
2
; C ¼ 1P

j2Ni
e�dij=h

2

or

wij ¼ C
1

1þ h d2ij
; C ¼ 1P

j2Ni
1=ð1þ h d2ijÞ

where C is a normalization constant so we have
P

jwij ¼ 1. To compute the simi-

larity value dij one should use a measurement reflecting the structural properties of

the square patches Pi andPj surrounding, respectively, pixels i and j (see Fig. 5B).We

consider the squared norm of the difference vector vij ¼ vi � vj where vi is the vector

listing all pixel values in patch Pi (likewise for vj) and have dij ¼ jvijj2 ¼ vij _svij. In
practice, this is a cheap and effective way to measure the structural similarity

between patches. Since vii ¼ 0, which will always give the maximum possible value

forwii (wii = 1), we use a trick to computewii : wii ¼ maxj 6¼ifwijg, that is, theweight
of the central pixel is the maximum weight of all its neighbors excluding itself. This

removes a strong bias toward the central pixel value.
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The algorithm is thus very simple. For each pixel in the image, compute the

weighted average of neighboring pixels as given above using a suitable expression

for weights and similarity values. Repeat for every pixel in the image. And if one

needs to apply more than one denoising pass to reduce noise, repeat the process as

many times as needed. Anyone with basic programming skills can quickly imple-

ment the algorithm and experiment to find which combination of parameter values

will give the best denoized results for their particular images.

Once we choose the functions to measure similarity and weight, there are only

three parameters that will control denoising: the size of the search window Ni, the

size of the patch Pi, and the filtering parameter h. Sizes of patches and search

windows are usually kept constant for all pixels but this is not necessary. Adaptive

schemes exist to control these sizes benefitting final results but at an increased

computational cost. The filtering parameter h gives much control on how smooth is

the final result: a value too large might produce a very smooth denoized image and

destroy fine details present in the noisy image. If using a very small value, we

practically have no real denoising. One has to experiment a few times to find the

sweet spot. The patch size should be large enough to capture structural information

but not too large to avoid including mixed information (we do not want to compare

apples to oranges). We use the fast implementation of nonlocal means from Darbon

et al. (2008).

The images in Fig. 5C and 5D show a portion of plasma membrane before and

after denoising. Note the sharpness of the membrane after denoising and contrast

enhancement. It is this recovered sharpness that facilitates segmenting the plasma

membrane of cells in sepals and the meristem.

C. Contrast Enhancement

Averaging schemes used by neighborhood filtering methods usually produce

images with reduced contrast. This is due to averaging which brings intensities of

neighboring pixels closer to a central value thus reducing the difference of their

intensities and hence sharpness. The lower the gradient the less contrast we have in

an image and hence the more difficult it will be to segment it. In areas where we

already have low contrast, something we might commonly find in some slices of a

z-stack, filtering might completely destroy edge information. The denoising scheme

presented above is not immune to this effect and we have to be carefulwhen selecting

the denoising parameters for low-contrast images. After denoising, we apply a

contrast-enhancement strategy to try to recover as much as possible the initial

gradient prior to denoising on the plasma membranes or even locally boost the local

intensity gradient to greater values, something that will tremendously help segment-

ing the image. Themain goal here is to accentuate faint plasmamembranes sowe can

easily distinguish regions of plasma membrane and cell interiors.

The nature of our denoized images – thin light edges (plasmamembranes) on dark

background – have led us to adopt a proven contrast-enhancement technique, namely

high-boost filtering. This is a technique available in many image processing
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packages and can be easily controlled via three parameters. If u gives the intensity of

a pixel in the image, its high-boosted version u0 is

u0 ¼ uþ aðus � uÞ
where us is the Gaussian blurred version of the original pixel using a variance of s

2

and a is a weight value (amplitude) that gives the strength of boosting. The higher its

value, the larger the gradient between the pixel and its neighbors; but a very high

value might saturate the image in areas interior to the cell and close to the plasma

membrane where the intensity might not be uniform even after denoising. We use

amplitude values in the [2,10] interval. The Gaussian blur uses a square kernelwhose

size ranges from 3 � 3 to 5 � 5 – we mostly use the later. How much blurring to use

is image dependent and thus we tune s to suitable values, typically something in the

[0.5, 2.5] range.When boosted values are negative or surpass the image quantization

value they are truncated to, respectively, 0 and 255 (we use 8-bit quantized images).

See Fig. 8C for a contrast-enhanced meristem slice.

D. Segmentation

Our basic strategy to segment sepals and meristems is to manipulate their original

raw images such that the plasma membrane of cells is strongly accentuated through-

out. This should turn the image into a promising segmentation candidate because

high contrast is a key feature to a successful segmentation.

1. Active Contours

We find the nonlocal means method for image denoising straightforward and

easily understandable as it involves very simple mathematics. The same is not true

for the active contours without edges segmentation method of Chan and Vese (2001)

as one would need to understand level set ideas, methods for solving partial differ-

ential equations, and numerical optimization, to name a few, which would take more

space to fully explain than we can afford in this chapter. We will present the main

ideas of the method and refer the reader to the original article (Chan and Vese, 2001)

and our own work with it on Arabidopsis (Cunha et al., 2010) for extended details.

The active contours without edges segmentation model is attractive due to its

simplicity and because it does not require computing image derivatives typically

employed to detect region boundaries. It is suitable for our problem because we need

to separate only two regions, plasma membranes and cell interiors whose average

color matches the dark background. One can view the method as a set of rubber

bands that are allowed to bend, break, and join such that regions enclosed by a rubber

band (e.g., plasma membranes) have similar intensity values. Likewise, regions

external to any rubber band (e.g., cell interior and background) also have similar

intensity values that differ from internal regions. The algorithm works by modifying

the rubber band such that it adds pixels to its interior when their color is closer to the
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interior color rather than the exterior color. The same reasoning applies to pixels

whose color is closer to the exterior color. The interior and exterior colors are given

by the average color of all pixels comprising, respectively, the current interior and

exterior regions. So, the game here is to move pixels either inside or outside the

current boundary configuration according to their color and the average color of

interior and exterior regions. As pixels are exchanged between regions, the regions

themselves change their average color. The process is repeated until there is no more

change in the colors of interior and exterior regions or until the number of pixels

jumping from inside to out, or vice versa, is too small to make any significant change

in the boundary configuration. When this happens, we have achieved a final seg-

mentation with one region representing the plasma membranes and the other region

representing everything else (see far right columns in Fig. 6). A key rule of the game

is that we cannot allow the rubber band to wiggle indefinitely and have an infinite

length so we constrain how much it is allowed to extend. Otherwise, we risk every

single pixel having a rubber band around it, which is not what we want – we want to

form geometrically plausible regions with similar average pixel intensities.

Mathematically, and for completeness, the above can be translated in minimizing

the following energy model:

EðfÞ ¼
Z
V

ðu� c1Þ2HðfÞ þ ðu� c2Þ2ð1� HðfÞÞ þ m

Z
V

jrfj

[(Fig._6)TD$FIG]

Fig. 6 Segmenting with active contours. In row (A) we show in sequence a fewof the transformations a

rubber band (white line) takes, starting from a circle, to segment an entire sepal using the active contours

without edges approach (m = 0.50). Images in row (B) show the respective inside and outside regions of

the rubber band with their respective, different average colors. Note the subtle color change in and out as

the rubber evolves to a final solution. The arrows in (A) and (B) highlight when the rubber band breaks up

(new topology) and then rejoins. A small portion of the plasma membranes of a sepal (shown in C) is

segmented using active contours. The initial guess for the position of the rubber band is a collection of 16

evenly spaced circles (D), which quickly evolve (m = 0.01) to capture the plasma membranes (E-I). (I)

Arrows show where the method failed, mostly due to the weak signal on the cell walls. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this book.)

314 Alexandre Cunha et al.



where u gives the pixel intensity in the image, c1 is the average intensity in the

interior region (e.g., plasma membranes), and c2 is the average intensity in the

outside region (see Fig. 6B). The last integral of the energy gives the rubber band

length that can be controlled using the model parameter m. The f is the level set

function whose zero iso-contour gives the position of the rubber band and H(f) is

a Heaviside function that tell us if we are inside, H(f) = 1, or outside, H(f) = 0,

the region delineated by the boundary. Presenting methods to minimize this

energy function is beyond the scope of this chapter so we refer the reader to

Chan and Vese (2001) and Cunha et al. (2010) for further information including

numerical methods to solve the corresponding Euler–Lagrange partial differen-

tial equation. We would like to note that m is an important parameter that must be

experimented with to achieve a good final segmentation. If it is a very large

number (corresponding to a very stiff rubber) it will be difficult to modify the

band and it might not evolve enough to capture all plasma membrane positions. If

we use a very small number (corresponding to very soft rubber) we might end up

with a very wiggly rubber band with many disjoint regions representing the

plasma membranes.

2. Low-Level Pipeline

As an alternative to active contours, we developed a faster segmentation pipeline.

The good quality of the nonlocal means denoized images encouraged us to pursue a

low-level segmentation pipeline composed of a few mathematical morphology

operations combined with standard image processing procedures. The basic idea

to obtain cell contours is to locally or globally threshold the enhanced image

followed by the formation of a skeleton, removal of dangling edges and other tiny,

insignificant regions. Editing is necessary at the end when automatic results are not

complete. The steps of this pipeline are shown below, where we start with a denoized

image. We refer the reader to Gonzales and Woods (2008) for further details on how

to perform the operations below on an image except editing.

� Edge detection. We used a simple first derivative method (e.g., Prewitt) to detect

the edges.
� Threshold. The current image is then thresholded to remove as much as possible

regions away from the edges, where the gradient is low (within cells).
� Hole closing. The ridges of the original wide edges have zero derivative and they

might need to be closed after thresholding is applied.
� Thinning. We thin edges to form single pixel-wide skeleton lines.
� Pruning. We prune dangling lines and open contours and remove isolated pixels

and tiny areas.
� Editing. After a visual inspection, the user can adjust the segmentation results

whenever necessary by editing the binary image obtained after hole closing and

then reapply thinning and pruning to obtain a new set of complete cells. Repeat

these steps if needed.
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In Fig. 7, we show results of using this pipeline in sepals. Fig. 8 shows the

segmentation of the last slice of a SAM z-stack. Note in this case that even in regions

of low contrast and apparently missing information, we can automatically recover

most of the cell walls with very few edits needed to correct the automatic results.

E. Tracking with Soft-Assign

We describe here our tracking method based on the Soft-Assign algorithm.

Consider the following problem: given two sets of points Xi and Yj find the affine

[(Fig._7)TD$FIG]

Fig. 7 Low-level segmentation (see color version). (A) A portion of a denoised sepal image. We have

enhanced the contrast of the labeled plasma membranes. (B) Automatically constructed thick edges

representing the plasma membranes from which we will extract the final cell contours shown in (C).

Green and magenta are, respectively, the areas manually removed and added to binary image in order to

fix the missing and extra walls. (See color plate.)

[(Fig._8)TD$FIG]

Fig. 8 Segmentation of a SAM slice. (A) Last slice of a 187 slices, uniform x:y:z resolution (pixel size

0.11 mm) floral meristem z-stack; (B) its segmented cell walls. One can note (in A) the different

luminosity across the slice including dark regions where it is difficult to visually distinguishing where

plasma membranes are located and how they are connected. After four iterations of nonlocal means

denoising, contrast enhancement, and the application of mathematical morphology filters to slightly

reduce edge thickness, we obtain the image in (C). To obtain the preliminary segmented image (in D)

showing one pixel-wide edges (blurred here for visualization), we first apply a local normalization step to

even the colors in the entire slice and then local threshold it using mean values of 25 � 25 patches. A

pruned skeleton gives then the final edges. Disks (red online) in (D) mark some non-convex regions that

potentially need to be corrected to obtain the final segmentation shown in (B). Correction is done in a

post-processing editing stage where a few edges are manually added and removed. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this book.)
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transformation y = Ax + b and the correspondence matrix M = {Mij} that provides

the best match between the points. The correspondence matrixM has 1 at position ij

if cell x in frame imatches to cell y in frame j, and 0 otherwise. A general framework

for this problem was proposed in Gold et al. (1998) and adapted to cell division in

Gor et al. (2005).

The overall energy function to be minimized is a total error (Euclidian distance

between cell positions, defined as the cell centroids, in consecutive frames) of all

matches scaled by the expected variance of this error s2:

Ep ¼
X
i; j

Mij

jjAxi � y2j jj2
s2

 !

The mapping may be assumed to affine, with geometric parameters {Aij}.

Alternatively, one may use image warping models such as thin plate splines (Chui

and Rangarajan, 2000; Gor et al., 2005) to allow for image warping as discussed in

Section IV and also for nonuniform tissue growth. When not known, the geometric

(affine or warping) parameters {Aij} are jointly estimated with correspondence

(Gold et al., 1998). To incorporate possible cell divisions in this objective, this

function is modified to minimize total error between current cells and their siblings,

as well as their common parents (Gor et al., 2005):

Es ¼
X
k;l

Lkl
jjyk � yljj2

s2
1

þ jjyk � y
p
l jj

2

s2
2

 !

where the first term stands for the Euclidean distance between two siblings, yk and yl,

on the same frame, scaled by the expected variance s2
1. The second term stands for

the Euclidean distance between yk and the parent of its sibling yl, denoted by y
p
l ,

similarly scaled by the expected variance s2
2. The correspondence matrix {Lkl}

includes a slack row and column for possible non-matches, to allow for disappearing

cells as discussed above in Section II.H. Entries of {Lkl} will have a value of 1 if cells

yk and yl are siblings with common parent, and 0 otherwise.

To represent cell and sibling correspondences simultaneously, a full objective

function is created from the Ep and Es terms above (Gor et al., 2005). In addition,

to account for affine transformations, the full objective function is jointly opti-

mized using Thin Plate Spline transformations with Soft-Assign algorithm

embedded in a deterministic annealing loop (Chui and Rangarajan, 2000; Gor

et al., 2005).

To avoid getting trapped in local minima, this framework uses deterministic

annealing (Kosowsky and Yuille, 1994) to turn a discrete assignment problem into

a continuous one. Initially, it allows the {Mij} to take on fractional values, eventually

converging to binary values. It works byminimizing the objective function described

above, indexed by a control parameter (inverse temperature), which is gradually

increased. Within each iteration the iterative optimization algorithm returns an

optimized (usually globally optimal, always at least locally optimal), doubly
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stochastic matrix of point correspondences for the current value of the control

parameter. Since the interim assignments are ‘‘soft’’ rather than binary and thus able

to smoothly improve, the algorithm is called Soft-Assign.

Cell tracking involves not just matches between individual points, but also cell

division and death events. To represent 1-1 (cell to cell), 1-2 (e.g., cell division), and

1-0 (e.g., cell death) matches between cells, the algorithm was generalized to use

multiple correspondenceM = {Mij}’s padded with a slack column (denoted by none)

(Gor et al., 2005). One matrix represents the usual 1-1 matches, and the other two

matrices encode possible cell divisions as shown in Fig. 9. For the optimization

problem, the property of double stochasticity (1-1 or 1-2 matchings only) must be

preserved. However, slack variables permit also 1-0 and 0-1 matchings. To ensure

that there is no more than one match for 1, a related normalization is applied to the

rows: X
j

Ma¼1
i; j ¼

X
j

Ma¼2
i; j ¼ 1�

X
j

Ma¼0
i; j

where a indexes the three sub-matrices (see Fig. 9). This procedure ensures that

annealing preserves either 1-1 or 1-2 correspondences, but not both simultaneously.

For example in one sepal live imaging sequence, there are a total of 1491 indi-

vidual nuclei and 106 division events on 17 frames (Fig. 10). The Soft-Assign

algorithm correctly tracked 1403 nuclei as they belong with the correct lineage.

Thus, a 94% of the nuclei were tracked in correct lineages. However, out of 106

division events, 42 of them (40%) were identified successfully where both daughters

were assigned correctly to the same parent. All other division events assigned one of

the daughters to the parent, while the other daughter was not assigned to any parent

(Fig. 11). All subsequent division eventsmay still be captured correctly, following an

erroneously detected division event.

[(Fig._9)TD$FIG]

Fig. 9 Handling of 1-1 and 1-2 matching in Soft-Assign. In this example, cell 1 in frame i matches to

cell 2 in frame j. Cell 2 in frame i divides to produce cell 1 and cell 3 in frame j. Cell 3 in frame i

disappears, that is, moves out of the field of view. (For color version of this figure, the reader is referred to

the web version of this book.)
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VI. Further Reading

For those interested in basic and advanced concepts in image processing includ-

ing image enhancement, segmentation, and mathematical morphology the textbook

by Gonzales andWoods (2008) offers a comprehensive account. It is widely adopted

in the classroom and the explanations are easy to follow with many practical

examples. Amore advanced text in computer vision that we recommend is the recent

book by Szeliski (2010), which gives a good account of why computer vision is

[(Fig._0)TD$FIG]

Fig. 10 Sepal lineage. We apply our tracking method in a time-lapse series of sepals consisting of a

total of 1491 individual nuclei and 106 division events on 17 frames similar to the ones shown in (A) and

(B) (scale bar = 20 mm). In row (C) we have enlarged top-left regions with only nuclei shown in each

frame; arrows indicate before and after tracked division events. The Soft-Assign algorithm correctly

tracked 1403 nuclei as they belong to the correct lineage (see text). Two cells, indicated by the arrows in

the first frame of row (C) divide between frames 2 and 3 in the same row. In (D) we have enlarged top-left

regions from original frames (6 hours interval) showing labeled nuclei and cell walls and the same tracked

division events. (For color version of this figure, the reader is referred to the web version of this book.)

[(Fig._1)TD$FIG]

Fig. 11 Tracking in sepals (see color version). (A, B) Two consecutive frames of a sepal time-lapse

image. (B) Six division events manually labeled. Out of these six events, three of them were correctly

detected: the daughters were assigned to the same parent (shown with ellipses in C). Three other division

events (marked using black disks with tails in C) were not assigned to any lineage, they wrongly appear as

the first nuclei on a new lineage. The tails point to the missed daughter. (See color plate.)
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difficult and presents modern methods including machine learning approaches. The

book of Soille (2004) offers basic and advanced concepts on mathematical mor-

phology with illustrations on many practical problems including cell segmentation.

The Handbook of Biological Confocal Microscopy (Pawley, 2006a) is a rich

source of material explaining the image acquisition process in confocal microscopy

including live imaging. Chapter 4 (Pawley, 2006b), in particular, address many of the

issues related to image acquisition tradeoffs and the nature of noise present in

fluorescent laser scanning images. Pawley (2000) offers some practical suggestions

to prevent difficulties during a confocal session.

The most recent articles by Fernandez et al. (2010) and Liu et al. (2010) present

advanced developments for segmenting and tracking in the floral and SAM. Their

audience is biologists with some knowledge of computing and algorithm develop-

ment, and they provide software with which one can readily experiment.

Our recent review articles address the challenges and propose strategies to inte-

grate imaging, image processing and analysis, and mathematical and computational

modeling as an enabling paradigm in the morphodynamics studies of plant devel-

opment (Chickarmane et al., 2010; Roeder et al., 2011).
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Abstract

The study of how cells interact to produce tissue development, homeostasis, or

diseases was, until recently, almost purely experimental. Now, multi-cell computer

simulation methods, ranging from relatively simple cellular automata to complex

immersed-boundary and finite-element mechanistic models, allow in silico study of

multi-cell phenomena at the tissue scale based on biologically observed cell beha-

viors and interactions such as movement, adhesion, growth, death, mitosis, secretion

of chemicals, chemotaxis, etc. This tutorial introduces the lattice-based Glazier–

Graner–Hogeweg (GGH) Monte Carlo multi-cell modeling and the open-source

GGH-based CompuCell3D simulation environment that allows rapid and intuitive

modeling and simulation of cellular and multi-cellular behaviors in the context of
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tissue formation and subsequent dynamics. We also present a walkthrough of four

biological models and their associated simulations that demonstrate the capabilities

of the GGH and CompuCell3D.

I. Introduction

A key challenge in modern biology is to understand howmolecular-scale machin-

ery leads to complex functional structures at the scale of tissues, organs, and organ-

isms. While experiments provide the ultimate verification of biological hypotheses,

models and subsequent computer simulations are increasingly useful in suggesting

both hypotheses and experiments to test them. Identifying and quantifying the cell-

level interactions that play vital roles in pattern formation will aid the search for

treatments for developmental diseases like cancer and for techniques to develop

novel cellular structures.

Unlike experiments, models are fast to develop, do not require costly apparatus,

and are easy to modify. However, abstracting the complexity of living cells or tissues

into a relatively simple mathematical/computational formalism is difficult. Creating

mathematical models of cells and cell–cell interactions that can be implemented

efficiently in software requires drastic simplifications: no complete model could be

solved within a reasonable time period.

Consequently, the quality and reliability of mathematical models depend on how

well complex cell behaviors can be represented using simplified mathematical

approaches.

Tissue-scale models explain how local interactions within and between cells lead

to complex biological patterning. The two main approaches to tissue modeling are

(1) Continuum models, which use cell-density fields and partial differential equa-

tions (PDEs) to model cell interactions without explicit representations of cells, and

(2) Agent-basedmodels, which represent individual cells and interactions explicitly.

Agent-based in silico experiments are gaining popularity because they allow control

of the level of detail with which individual cells are represented.

II. Glazier-Graner-Hogeweg (GGH)Modeling

The GGH model (Glazier and Graner, 1992; Graner and Glazier, 1993) provides

an intuitivemathematical formalism tomap observed cell behaviors and interactions

onto a relatively small set of model parameters – making it attractive both to wet-lab

and computational biologists.

Like all models, the GGH technique has a typical application domain: modeling

soft tissueswithmotile cells at single-cell resolution. The GGHhas been continuously

and successfully applied to model biological and biomedical processes, including

Tumor growth (Dormann et al., 2001; dos Reis et al., 2003; Drasdo et al., 2003; Holm

et al., 1991; Turner and Sherratt, 2002), Gastrulation (Drasdo and Forgacs, 2000;
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Drasdo et al., 1995; Longo et al., 2004), Skin pigmentation (Collier et al., 1996;

Honda et al., 2002; Wearing et al., 2000), Neurospheres (Zhdanov and Kasemo,

2004a,b), Angiogenesis (Ambrosi et al., 2004; Ambrosi et al., 2005; Gamba et al.,

2003; Merks et al., 2008; Merks and Glazier, 2006; Murray, 2003; Pierce et al., 2004;

Serini et al., 2003), the Immune system (Kesmir and de Boer, 2003; Meyer-Hermann

et al., 2001), Yeast colony growth (Nguyen et al., 2004; Walther et al., 2004),

Myxobacteria (Alber et al., 2006; Arlotti et al., 2004; B€orner et al., 2002;

Bussemaker et al., 1997; Dormann et al., 2001), Stem cell differentiation (Knewitz

and Mombach, 2006; Zhdanov and Kasemo, 2004a,b), Dictyostelium discoideum

(Mar�ee and Hogeweg, 2001, 2002; Mar�ee et al., 1999a,b; Savill and Hogeweg,

1997), Simulated evolution (Groenenboom and Hogeweg, 2002; Groenenboom

et al., 2005; Hogeweg, 2000; Johnston, 1998; Kesmir et al., 2003; Pagie and

Mochizuki, 2002), General developmental patterning (Honda and Mochizuki,

2002; Zhang et al., 2011), Convergent extension (Zajac, 2002; Zajac et al., 2002;

Zajac et al., 2003), Epidermal formation (Savill and Sherratt, 2003) Hydra regener-

ation (Mombach et al., 2001; Rieu et al., 2000), Plant growth, (Grieneisen et al.,

2007), Retinal patterning (Mochizuki, 2002; Takesue et al., 1998), Wound healing

(Dallon et al., 2000; Maini et al., 2002; Savill and Sherratt, 2003), Biofilms (Kreft

et al., 2001; Picioreanu et al., 2001; Popławski et al., 2008; Van Loosdrecht et al.,

2002), Limb bud development (Chaturvedi et al., 2004; Popławski et al., 2007), somite

segmentation (Glazier et al., 2008; Hester et al., 2011), vascular system development

(Merks and Glazier, 2006), choroidal neovascularization, lumen formation, cellular

intercalation (Zajac et al., 2000, 2003), etc.. . ..
The GGH model represents a single region in space by multiple regular lattices

(the cell lattice and optional field lattices). Most GGH model objects live on one of

these lattices. Themost fundamental GGH object, a generalized cell,may represent a

biological cell, a subcellular compartment, a cluster of cells, or a piece of non-

cellular material or surrounding medium. Each generalized cell is an extended

domain of lattice pixels in the cell lattice that share a common index (referred to

as the cell index s). A biological cell can be composed of one or more generalized

cells. In the latter case, the biological cell is defined as a cluster of generalized cells

called subcells, which can describe cell compartments, complex cell shapes, cell

polarity, etc.. . .. For details on subcells, see Walther et al., 2004; B€orner et al., 2002;
Glazier et al., 2007; Walther et al., 2005.

Each generalized cell has an associated list of attributes, e.g., cell type, surface

area and volume, and more complex attributes describing its state, biochemical

networks, etc.. . .. Interaction descriptions and dynamics define how GGH objects

behave.

The effective energy (H) Eq. (1) implements most cell properties, behaviors

and interactions via constraint terms in H (Glazier et al., 1998; Glazier and

Graner, 1993; Glazier, 1993, 1996; Glazier et al., 1995; Graner and Glazier,

1992; Mombach et al., 1995; Mombach and Glazier, 1996). Since the terminol-

ogy has led to some confusion in the past, we emphasize that the effective energy
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is simply a way to produce a desired set of cell behaviors and does not represent

the physical energy of the cells.

In a typical GGHmodel, cells have defined volumes area, and interact via contact

adhesion, so H is:

H ¼
X
i
*
; j
*

neighbors

Jðtðs
i
*Þ; tðs

j
*ÞÞð1� dðs

i
*; s

j
*ÞÞ þ

X
s

½lvolðsÞðvðsÞ � VtðsÞÞ2�: ð1Þ

The first sum, over all pairs of neighboring lattice sites i
*
and j

*
, calculates the

boundary or contactenergy between neighboring cells to implement adhesive

interactions. Jðtðs
i
*Þ; tðs

j
*ÞÞis the boundary energy per unit contact area for a

pair of cells, with s
i
* of type tðs

i
*Þ occupying cell-lattice site i

*
and s

j
* of

type tðs j!Þ occupying cell-lattice site j
*
. The delta function restricts the contact-

energy contribution to cell-cell interfaces. We specify Jðtðs
i
*Þ; tðs

j
*ÞÞ as a

matrix indexed by the cell types. In practice, the range of cell types - tðs
i
*Þ-

is quite limited, whereas the range of cell indexes s
i
* can be quite large, since s

enumerates all generalized cells in the simulation. Higher contact energies

between cells result in greater repulsion between cells and lower contact energies

result in greater adhesion between cells.

The second sum in (1), over all generalized cells, calculates the effective

energy due to the volume constraint. Deviations of the volume area of cell s

from its target value (Vt(s)), increase the effective energy, penalizing these

deviations. On average, a cell will occupy a number of pixels slightly smaller

than its target volume due to surface tension from the contact energies (J). The

parameter lvol behaves like a Young’s modulus, or inverse compressibility, with

higher values reducing fluctuations of a cell’s volume about its target value. The

volume constraint defines P ¼ 2lvolðsÞðvðsÞ � V tðsÞÞ as the pressure inside the
cell. In similar fashion we can implement a constraint on cell’s surface or

membrane area.

Cell dynamics in the GGH model provide a simplified representation of cytos-

keletally-driven cell motility using a stochastic modified Metropolis algorithm

(Cipra, 1987) consisting of a series of index-copy attempts (see Figs. 1 and 2).

Before each attempt, the algorithm randomly selects a target site in the cell lattice,

i
*
, and a neighboring source site i

*0 . If different generalized cells occupy these

sites, the algorithm sets s
i
* ¼ s

i
*0 with probability Pðs

i
* ! s

i
*0 Þ, given by the

Boltzmann acceptance function (Metropolis et al., 1953):

Pðs
i
* ! s

i
*0 Þ ¼

1 : DH � 0

e
�
DH

Tm : DH > 0

8<
: ; ð2Þ

where DH is the change in the effective energy if the copy occurs and Tm is a

parameter describing the amplitude of cell-membrane fluctuations. Tm can be

specified globally or be cell specific or cell-type specific.
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The average value of the ratio DH/Tm for a given generalized cell determines the

amplitude of fluctuations of the cell boundaries. HighDH/Tm results in rigid, barely- or

non-motile cells and little cell rearrangement. For low DH/Tm, large fluctuations allow
a high degree of cell motility and rearrangement. For extremely low DH/Tm, cells may

fragment in the absence of a constraint sufficient tomaintain the integrity of the borders

between them. Because DH/Tm is a ratio, we can achieve appropriate cell motilities by

varying either Tm orDH. Varying Tm allows us to explore the impact of global changes

in cytoskeletal activity. Varying DH allows us to control the relative motility of the cell

types or of individual cells by varying, for example, cells’ inverse compressibility

(lvol), the target volume (Vt) or the contact energies (J).

An index copy that increases the effective energy, e.g., by increasing deviations

from target values for cell volume or surface area or juxtaposing mutually repulsive

cells, is improbable. Thus, the cell pattern evolves in a manner consistent with the

biologically-relevant ‘‘guidelines’’ incorporated in the effective energy: cells main-

tain volumes close to their target values, mutually adhesive cells stick together,

mutually repulsive cells separate, etc.. . .. The Metropolis algorithm evolves the

cell-lattice configuration to simultaneously satisfy the constraints, to the extent to

which they are compatible, with perfect damping (i.e., average velocities are pro-

portional to applied forces). Thus, the average time-evolution of the cell lattice

corresponds to that achievable deterministically using finite-element or center-

model methodologies with perfect damping.

A Monte Carlo Step (MCS) is defined as N index-copy attempts, where N is the

number of sites in the cell lattice, and sets the natural unit of time in the model.

[(Fig._1)TD$FIG]

Fig. 1 GGH representation of an index-copy attempt for two cells on a 2D square cell lattice – The

‘‘white’’ pixel (source) attempts to replace the ‘‘grey’’ pixel (target). The probability of accepting the

index copy is given by Eq. (2).
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The conversion between MCS and experimental time depends on the average

value of DH/Tm. In biologically-meaningful situations, MCS and experimental

time are proportional (Alber et al., 2002, 2004; Novak et al., 1999; Cickovski

et al., 2007).

In addition to generalized cells, a GGH model may contain other objects such as

chemical fields and biochemical networks as well as auxiliary equations to describe

behaviors like cell growth, division and rule-based differentiation. Fields evolve due

to secretion, absorption, diffusion, reaction and decay according to appropriate

PDEs. While complex coupled-PDEs are possible, most models require only secre-

tion, absorption, diffusion and decay. Subcellular biochemical networks are usually

described by ordinary differential equations (ODEs) inside individual generalized

cells.

Extracellular chemical fields and subcellular networks affect generalized-cell

behaviors by modifying the effective energy (e.g., changes in cell target volume

due to chemical absorption, chemotaxis in response to a field gradient or cell

differentiation based on the internal state of a genetic network).

From a modeler’s viewpoint the GGH technique has significant advantages com-

pared to other methods. A single processor can run a GGH simulation of tens to

hundreds of thousands of cells on lattices of up to 10243 sites. Because of the regular

lattice, GGH simulations are often much faster than equivalent adaptive-mesh finite

element simulations operating at the same spatial granularity and level of modeling

detail. For smaller simulations, the speed of the GGH allows fine-grained sweeps to

explore the effects of parameters, initial conditions, or details of biological models.

Adding biological mechanisms to the GGH is as simple as adding new terms to the

effective energy. GGH solutions are usually structurally stable, so accuracy degrades

gracefully as resolution is reduced. The ability to model cells as deformable entities

allows modelers to explore phenomena such as apical constriction leading to invag-

ination, which are much harder to model using, for example, center models. However,

the lattice-based representation of cells has also some drawbacks. The cell surface is

pixelated, complicating measurements of surface area and curvature. The fixed dis-

cretization makes explicit modeling of fibers or membranes expensive, since the

lattice constant must be set to the smallest scale to be explicitly represented. Cell

membrane fluctuations are also caricatured as a result of the fixed spatial resolution.

However, the latest versions of CC3D support a layer of finite-element links which

have length but zero diameter. These can be used to represent fibers or membranes,

allowing a simulation to combine the advantages of both methods at the cost of

increased model complexity. In addition, the maximum speed with which cells can

move on the cell lattice is approx. 0.1 pixel per MCS, which often fixes a finer time

resolution than needed for other processes in a simulation. A more fundamental issue

is that CC3D generalized cells move by destroying pixels and creating pixels, so rigid-

body motion and advection are absent unless they are implemented explicitly. CC3D

provides tools for both. The rigid-body simulators in CC3D are increasingly popular,

but the advection solvers have so far been little used.
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The canonical formulation of the GGH is derived from statistical physics.

Consequently some of its terminology and concepts may initially seem unnatural to

wet-lab biologist. To connect experimentally measured quantities to simulation para-

meters we employ a set of experimental and analysis techniques to extract parameter

values. For example, even though the GGH intrinsic cell motility is not accessible in

an experiment, the diffusion constant of cells in aggregates can be measured in both

simulation and experiments. We can then adjust the GGH motility to make the

diffusion constants match. Similarly, we can determine the effective form and strength

of a cell’s chemotaxis behavior from experimental dose response curves of net cell

migration in response to net concentration gradients of particular chemoattractant. For

example, if a cell of given type in a given gradient in a given environment moves with

a given velocity, we can then fit the GGH chemotaxis parameters so the simulated

cells reproduce that velocity. The GGH contact energies between cells can also be set

to provide the experimentally accessible surface tensions between tissues (Glazier and

Graner, 1992; Graner and Glazier, 1993; Glazier et al., 2008; Steinberg, 2007). When

experimental parameter values are not available, we perform a series of simulations

varying the unknown parameter(s) and fit to match a macroscopic dynamic pattern

which we can determine experimentally.

To speed execution, CompuCell3D models often reduce 3D simulations to their

2D analogs. While moving from 3D to 2D or vice versa is much easier in CC3D than

in an adaptive mesh finite element simulation, the GGH formalism still requires

rescaling of most model parameters. At the moment, such rescaling must be done by

hand. E.g. in 2D, a pixel on a regular square lattice has 4 nearest neighbors, while in

3D it has 6 nearest neighbors. Therefore all parameters which involve areas surface

(e.g. the surface area constraint, or contact energies) have to be rescaled. To simplify

diffusion calculations, we often assume that diffusion takes place uniformly every-

where in space, with cells secreting or taking up chemicals at their centers of mass.

This approach caricatures real diffusion, where chemicals are secreted through cell

membranes and diffuse primarily in the extracellular space, which may itself have

anisotropic or hindered diffusion. Since most CC3D simulations neglect intercellu-

lar spaces smaller than one or twomicrons, we connect to real extracellular diffusion

by choosing the CC3D diffusion coefficient so that the effective diffusion length in

the simulation corresponds to that measured in the experiment.

Overall, despite these issues, the mathematical elegance and simplicity of the

GGH formalism has led to substantial popularity.

III. CompuCell3D

CC3D allows users to build sophisticated models more easily and quickly than

does specialized custom code. It also facilitates model reuse and sharing.

A CC3D model consists of CC3DML scripts (an XML-based format), Python

scripts, and files specifying the initial configurations of the cell lattice and of any
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fields. The CC3DML script specifies basic GGH parameters such as lattice dimen-

sions, cell types, biological mechanisms, and auxiliary information, such as file

paths. Python scripts primarily monitor the state of the simulation and implement

changes in cell behaviors, for example, changing the type of a cell depending on the

oxygen partial pressure in a simulated tumor.

CC3D is modular, loading only the modules needed for a particular model.

Modules that calculate effective energy terms or monitor events on the cell lattice

are called plugins. Effective-energy calculations are invoked every pixel-copy

attempt, while cell-lattice monitoring plugins run whenever an index copy occurs.

Because plugins are the most frequently called modules in CC3D, most are coded in

C++ for speed.

Modules called steppables usually perform operations on cells, not on pixels.

Steppables are called at fixed intervals measured in MCS. Steppables have three

main uses: (1) to adjust cell parameters in response to simulation events,1 (2) to solve

PDEs, (3) to load simulation initial conditions or save simulation results. Most

steppables are implemented in Python. Much of the flexibility of CC3D comes from

user-defined Python steppables.

The CC3D kernel supports parallel computation in shared-memory architectures

(via OpenMP), providing substantial speedups on multi-core computers.

Besides the computational kernel of CC3D, the main components of the CC3D

environment are (1) Twedit++-CC3D – a model editor and code generator, (2)

CellDraw – a graphical tool for configuring the initial cell lattice, (3) CC3D

Player – a graphical tool for running, replaying, and analyzing simulations.

Twedit++-CC3D provides a Simulation Wizard that generates draft CC3D model

code based on high-level specification of simulation objects such as cell types and

their behaviors, fields and interactions. Currently, the user must adjust default

parameters in the autogenerated draft code, but later versions will provide interfaces

[(Fig._2)TD$FIG]

Fig. 2 Flow chart of the GGH algorithm as implemented in CompuCell3D.

1 Wewill use thewordmodel to describe the specification of a particular biological system and simulation

to refer to a specific instance of the execution of such a model.
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for parameter specification. Twedit++-CC3D also provides a Python code-snippet

generator, which simplifies coding Python CC3D modules.

CellDraw (Fig. 3) allows users to draw regions that it fills with cells of user-

specified types. It also imports microscope images for manual segmentation, and

automates the conversion of segmented regions – from TIFF sequences generated by

3rd party tools such as Fiji/ImageJ/TrakEM2 – for importing into CC3D.

CC3D Player is a graphical interface that loads and executes CC3D models. It

allows users to change model parameters during execution (steering), define

multiple 2D and 3D visualizations of the cell lattice and fields and conduct

real-time simulation analysis. CC3D Player also supports batch mode execution

on clusters.

IV. Building CC3D Models

This section presents some typical applications of GGH and CC3D. We use

Twedit++-CC3D code generation and explain how to turn automatically generated

[(Fig._3)TD$FIG]

Fig. 3 CellDraw graphics tools and GUI. (For color version of this figure, the reader is referred to the

web version of this book.)
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draft code into executable models. All of the parameters appearing in the autogen-

erated simulation scripts are set to their default values.

A. Cell-Sorting Model

Cell sorting due to differential adhesion between cells of different types is one of

the basic mechanisms creating tissue domains during development and wound

healing and in maintaining domains in homeostasis. In a classic in vitro cell sorting

experiment to determine relative cell adhesivities in embryonic tissues, mesenchy-

mal cells of different types are dissociated, then randomly mixed and reaggregated.

Their motility and differential adhesivities then lead them to rearrange to reestablish

coherent homogenous domains with the most cohesive cell type surrounded by the

less-cohesive cell types (Armstrong and Armstrong, 1984; Armstrong and Parenti,

1972). The simulation of the sorting of two cell types was the original motivation for

the development of GGH methods. Such simple simulations show that the final

configuration depends only on the hierarchy of adhesivities, whereas the sorting

dynamics depends on the ratio of the adhesive energies to the amplitude of cell

fluctuations.

To invoke the simulation wizard to create a simulation, we click CC3DProject
!NewCC3DProject in the Twedit++-CC3D menu bar (see Fig. 4). In the initial

[(Fig._4)TD$FIG]

Fig. 4 Invoking the CompuCell3D SimulationWizard fromTwedit++. (For color version of this figure,

the reader is referred to the web version of this book.)
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screen, we specify the name of the model (cellsorting), its storage directory

(C:\CC3DProjects), and whether wewill store the model as pure CC3DML, Python,

and CC3DML or pure Python. This tutorial will use Python and CC3DML.

On the next page of the Wizard (see Fig. 5), we specify GGH global parameters,

including cell-lattice dimensions, the cell-membrane fluctuation amplitude, the

duration of the simulation in MCS and the initial cell-lattice configuration.

In this example, we specify a 100 � 100 � 1 cell lattice, that is, a 2D model, a

fluctuation amplitude of 10, a simulation duration of 10,000 MCS, and a pixel-copy

range of 2. BlobInitializer initializes the simulation with a disk of cells of

specified size.

On the next Wizard page (see Fig. 6), we name the cell types in the model. We

will use two cell types: Condensing (more cohesive) and NonCondensing
(less cohesive). CC3D by default includes a special generalized cell type,

Medium, with unconstrained volume that fills otherwise unspecified space in the

cell lattice.

We skip the Chemical Field page of the Wizard and move to the Cell Behaviors

and Properties page (see Fig. 7). Here, we select the biological behaviors we will

include in our model. Objects in CC3D (for example, cells) have no properties or

behaviors unless we specify then explicitly. Since cell sorting depends on differential

adhesion between cells, we select the Contact Adhesion module from the Adhesion

section (1) and give the cells a defined volume using the Volume Flex module from

Constraints and Forces section.

[(Fig._5)TD$FIG]

Fig. 5 Specification of basic cell-sorting properties in Simulation Wizard. (For color version of this

figure, the reader is referred to the web version of this book.)
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We skip the next page related to Python scripting, after which Twedit++-CC3D

generates the draft simulation code. Double-clicking on cellsorting.cc3d
opens both the CC3DML (cellsorting.xml) and Python scripts for the model.

Because the CC3DML file contains the complete model in this example, we post-

pone discussion of the Python script. ACC3DML file has three distinct sections. The

first, the Lattice Section (lines 2–7) specifies global parameters like the cell-lattice

size. The Plugin Section (lines 8–30) lists all the plugins used, for example,

CellType and Contact. The Steppable Section (lines 32–39) lists all steppables;
here we use only BlobInitializer.

[(Fig._6)TD$FIG]

Fig. 6 Specification of cell-sorting cell types in Simulation Wizard. (For color version of this figure,

the reader is referred to the web version of this book.)

[(Fig._7)TD$FIG]

Fig. 7 Selection of cell-sorting cell behaviors in SimulationWizard.2 (For color version of this figure,

the reader is referred to the web version of this book.)

2 We have graphically edited the screenshots of Wizard pages to save space.
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Listing 1. Simulation-Wizard-generated draft CC3DML (XML) code for cell

sorting.3

All parameters appearing in the autogenerated CC3DML script have default

values inserted by Simulation Wizard. We must edit the parameters in the draft

CC3DML script to build a functional cell-sortingmodel (Listing 1). TheCellType
plugin (lines 9–13) already provides three generalized cell types: Condensing
(C), NonCondensing (N), and Medium (M), so we need not change it.

3 We use indent each nested block by two spaces in all listings in this chapter to avoid distracting rollover

of text at the end of the line. However, both SimulationWizard and standard Python use an indentation of

four spaces per block.
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However, the boundary-energy (contact energy) matrix in the Contact plugin

(lines 22–30) is initially filled with identical values, which prevents sorting. For cell

sorting, Condensing cells must adhere strongly to each other (so we set JCC=2),
Condensing and NonCondensing cells must adhere more weakly (here, we set

JCN=11), and all other adhesions must be very weak (we set JNN=JCM=JNM=16), as
discussed in Section III. The value of JMM = 0 is irrelevant, since the Medium
generalized cell does not contact itself.

To reduce artifacts due to the anisotropy of the square cell lattice we increase the

neighbor order range in the contact energy to 2 so the contact energy sum in Eq. (1)

will include nearest and second-nearest neighbors (line 29).

In the Volume plugin, which calculates the volume-constraint energy given in

Eq. (1) the attributes CellType, LambdaVolume, and TargetVolume inside

the <VolumeEnergyParameters> tags specify l(t) and Vt(t) for each cell

type. In our simulations, we set Vt(t) = 25 and l(t) = 2.0 for both cell types.

We initialize the cell lattice using the BlobInitializer, which creates one or
more disks (solid spheres in 3D) of cells. Each disk (sphere) created is enclosed

between <Region> tags. The <Center> tag with syntax <Center x=
‘‘x_position’’ y= ‘‘y_position’’ z= ‘‘z_position’’/> specifies

the position of the center of the disk. The <Width> tag specifies the size of the

initial square (cubical in 3D) generalized cells and the <Gap> tag creates space

between neighboring cells. The <Types> tag lists the cell types to fill the disk.

Here, we change the Radius in the draft BlobInitializer specification to 40.

These few changes produce a working cell-sorting simulation.

To run the simulation, we right click cellsorting.cc3d in the left panel and

choose the Open In Player option. We can also run the simulation by opening

CompuCellPlayer and selecting cellsorting.cc3d from the File-> Open
Simulation File dialog.

Fig. 8 shows snapshots of a simulation of the cell-sortingmodel. The less-cohesive

NonCondensing cells engulf the more cohesive Condensing cells, which clus-

ter and form a single central domain. By changing the boundary energies we can

produce other cell-sorting patterns (Glazier and Graner, 1993; Graner and Glazier,

[(Fig._8)TD$FIG]

Fig. 8 Snapshots of the cell-lattice configurations for the cell-sorting simulation in Listing 1. The

boundary-energy hierarchy drives NonCondensing (light grey) cells to surround Condensing (dark

grey) cells. The white background denotes surrounding Medium.
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1992). In particular, if we reduce the contact energy between the Condensing cell

type and the Medium, we can force inverted cell sorting, where the Condensing
cells surround the NonCondensing cells. If we set the heterotypic contact energy

to be less than either of the homotypic contact energies, the cells of the two typeswill

mix rather than sort. If we set the cell-medium contact energy to be very small for

one cell type, the cells of that type will disperse into the medium, as in cancer

invasion. With minor modifications, we can also simulate the scenarios for three or

more cell types, for situations in which the cells of a given type vary in volume,

motility or adhesivity, or in which the initial condition contains coherent clusters of

cells rather than randomly mixed cells (engulfment).

B. Angiogenesis Model

Vascular development is central to both development and cancer progression. We

present a simplified model of the earliest phases of capillary network assembly by

endothelial cells based on cell adhesion and contact-inhibited chemotaxis. This

model does a good job of reproducing the patterning and dynamics which occur if

we culture human umbilical vein endothelial cells (HUVEC) on matrigel in a quasi-

2D in vitro experiment (Merks and Glazier, 2006; Merks et al., 2006, 2008). In

addition to generalized cells modeling the HUVEC, we will need a diffusing chem-

ical object, here, vascular endothelial growth factor (VEGF), cell secretion of VEGF,

and cell-contact-inhibited chemotaxis to VEGF.

We will use a 3D voxel (pixel) with a side of 4 mm, that is, a volume of 64 mm3.

Since the experimental HUVEC speed is about 0.4 mm/min and cells in this simu-

lation move at an average speed of 0.1 pixel/MCS, one MCS represents 1 min.

In the Simulation Wizard, we name the model ANGIOGENESIS, set the cell- and
field-lattice dimensions to 50 � 50 � 50, themembrane fluctuation amplitude to 20,

the pixel-copy range to 3, the number of MCS to 10,000, and select

BlobFieldInitializer to produce the initial cell-lattice configuration. We

have only one cell type – Endothelial.
In the ChemicalFields page (see Fig. 9), we create the VEGF field and select

FlexibleDi¡usionSolverFE from the Solver pull-down list.

[(Fig._9)TD$FIG]

Fig. 9 Specification of the angiogenesis chemical field in SimulationWizard. (For color version of this

figure, the reader is referred to the web version of this book.)
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Next, on the CellPropertiesandBehaviors page (see Fig. 10), we select

the Contact module from the Adhesion-behavior group and add

Secretion, Chemotaxis, and Volume-constraint behaviors by checking

the appropriate boxes.

Because we have invoked Secretion and Chemotaxis, the SimulationWizard

opens their configuration screens. On the Secretion page (see Fig. 11), from the

pull-down list, we select the chemical to secrete by selecting VEGF in the Field
pull-down menu and the cell type secreting the chemical (Endothelial), and enter
the rate of 0.013 (50 pg/(cell h) = 0.013 pg/(voxel MCS), compare to Leith and

Michelson, 1995). We leave the Secretion Type entry set to Uniform, so each

pixel of an endothelial cell secretes the same amount of VEGF at the same rate.

Uniform volumetric secretion or secretion at the cell’s center of mass may be most

appropriate in 2D simulations of planar geometries (e.g., cells on a petri dish or agar)

where the biological cells are actually secreting up or down into a medium that carries

the diffusant. CC3D also supplies a secrete-on-contact option to secrete outward from

the cell boundaries and allows specification of which boundaries can secrete, which is

more realistic in 3D. However, users are free to employ any of these methods in either

2D or 3D, depending on their interpretation of their specific biological situation.

CC3D does not have intrinsic units for fields, so the amount of a chemical can be

interpreted in units of moles, number of molecules, or grams. We click the Add
Entry button to add the secretion information, then proceed to the next page to

define the cells’ chemotaxis properties.

On the Chemotaxis page, we select VEGF from the Field pull-down list and

Endothelial for the cell type, entering a value for Lambda of 5000. When the

chemotaxistype is regular, the cell’s response to the field is linear; that is the
effective strength of chemotaxis depends on the product of Lambda and the secre-

tion rate of VEGF, for example, a Lambda of 5000 and a secretion rate of

0.013 has the same effective chemotactic strength as a Lambda of 500 and a

[(Fig._0)TD$FIG]

Fig. 10 Specification of angiogenesis cell behaviors in Simulation Wizard. (For color version of this

figure, the reader is referred to the web version of this book.)
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secretion rate of 0.13. Since endothelial cells do not chemotax at surfaces

where they contact other endothelial cells (contact inhibition), we select Medium
from the pull-down menu next to the Chemotax Towards button and click this

button to add Medium to the list of generalized cell types whose interfaces with

Endothelial cells support chemotaxis. We click the Add Entry button to add

the chemotaxis information, then proceed to the final Simulation Wizard page

Fig. 12.

Next, we adjust the parameters of the draft model. Pressure from chemotaxis to

VEGF reduces the average endothelial cell volume by about 10 voxels from the

target volume. So, in the Volume plugin, we set TargetVolume to 74 (64+10)

and LambdaVolume to 20.0.

[(Fig._2)TD$FIG]

Fig. 12 Specification of angiogenesis chemotaxis properties in SimulationWizard. (For color version

of this figure, the reader is referred to the web version of this book.)

[(Fig._1)TD$FIG]

Fig. 11 Specification of angiogenesis secretion parameters in Simulation Wizard. (For color version

of this figure, the reader is referred to the web version of this book.)
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In experiments, in the absence of chemotaxis no capillary network forms and cells

adhere to each other to form clusters. We therefore set JMM=0, JEM=12, and JEE=5 in

the Contact plugin (M: Medium, E: Endothelial). We also set the

NeighborOrder for the Contact energy calculations to 4.

The diffusion equation that governs VEGF (Vðx!Þ) field evolution is

@Vðx!Þ
@t

¼ DEC
VEGFr2Vðx!Þ � gVEGFVðx

!Þdðtðsðx!ÞÞ;MÞ þ SECdðtðsðx!ÞÞ;ECÞ ð3Þ

where dðtðsðx!ÞÞ;ECÞ ¼ 1 inside Endothelial cells and 0 elsewhere and

dðtðsðx!ÞÞ;MÞ ¼ 1 inside Medium and 0 elsewhere. We set the diffusion constant

DVEGF = 0.042 mm2/s (0.16 voxel2/MCS, about two orders of magnitude smaller

than experimental values),4 the decay coefficient gVEGF =1 h
�1 [130,131]

(0.016 MCS�1) for Medium pixels and gVEGF = 0 inside Endothelial cells,

and the secretion rate SEC = 0.013 pg/(voxel MCS).

In the CC3DML script, describing FlexibleDi¡usionSolverFE (Listing 2,

lines 38–47) we set the values of the <Di¡usionConstant> and

<DecayConstant> tags to 0.16 and 0.016, respectively. To prevent chemical decay

inside endothelial cells, we add the line <DoNotDecayIn>Endothelial</
DoNotDecayIn> inside the <Di¡usionData> tag pair.

Finally, we edit BlobInitializer (lines 49–56) to start with a solid sphere 10

pixels in radius centered at x = 25, y = 25, z = 25 with initial cell width 4, as in

Listing 2.

4 FlexibleDi¡usionSolverFE becomes unstable for values of DVEGF > 0.16 voxel2/MCS. For

larger diffusion constants, we must call the algorithm multiple times per MCS (See the Three-

Dimensional Vascular Solid Tumor Growth section).
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Listing 2. CC3DML code for the angiogenesis model.

The main behavior that drives vascular patterning is contact-inhibited chemotaxis

(Listing 2, lines 26–30). VEGF diffuses away from cells and decays in Medium,
creating a steep concentration gradient at the interface between Endothelial
cells and Medium. Because Endothelial cells chemotax up the concentration

gradient only at the interface with Medium, the Endothelial cells at the surface

of the cluster compress the cluster of cells into vascular branches and maintain

branch integrity.

We show screenshots of a simulation of the angiogenesis model in Fig. 13 (Merks

et al., 2008; Shirinifard et al., 2009). We can reproduce either 2D or 3D primary

capillary network formation and the rearrangements of the network agree with
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experimentally observed dynamics. If we eliminate the contact inhibition, the cells

do not form a branched structure (as observed in chick allantois experiments, Merks

et al., 2008).We can also study the effects of surface tension, external growth factors,

and changes in motility and diffusion constants on the pattern and its dynamics.

However, this simple model does not include the strong junctions HUVEC cells

makewith each other at their ends after a period of prolonged contact. It also does not

attempt to model the vacuolation and linking of vacuoles that leads to a connected

network of tubes.

Since real endothelial cells are elongated, we can include the Cell-elonga-
tion plugin in the Simulation Wizard to better reproduce individual cell morphol-

ogy. However, excessive cell elongation causes cell fragmentation. Adding either the

Global or Fast Connectivity Constraint plugin prevents cell

fragmentation.

C. Overview of Python Scripting in CompuCell3D

In the models we presented above, all cells had parameter values fixed in time. To

allow cell behaviors to change, we need to be able to adjust cell properties during a

simulation. CC3D can execute Python scripts (CC3D supports Python versions 2.x)

to modify the properties of cells in response to events occurring during a simulation,

such as the concentration of a nutrient dropping below a threshold level, a cell

reaching a doubling volume, or a cell changing its neighbors. Most such Python

scripts have a simple structure based on print statements, if-elif-else
statements, for loops, lists, and simple classes and do not require in-depth

knowledge of Python to create.

This section briefly introduces the main features of Python in the CC3D context.

For a more formal introduction to Python, see Lutz (2011) and http://www.python.org.

Python defines blocks of code, such as those appearing inside if statements or

for loops (in general after ‘‘:’’), by an increased level of indentation. This

chapter uses two spaces per indentation level. For example, in Listing 3, we

indent the body of the if statement by two spaces and the body of the inner for

[(Fig._3)TD$FIG]

Fig. 13 An initial cluster of adhering endothelial cells forms a capillary-like network via sprouting

angiogenesis. (A) 0 h (0MCS); (B)�2 h (100MCS); (C)�5 h (250MCS); (D):�18 h (1100MCS). (For

color version of this figure, the reader is referred to the web version of this book.)
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loop by additional two spaces. The for loop is executed inside the if statement,

which checks if we are in the second MCS of the simulation. The command

pixelO¡set=10 assigns to the variable pixelO¡set a value of 10. The for
loop assigns to the variable x values ranging from 0 through self.dim.x-1,
where self.dim.x is a CC3D internal variable containing the size of the cell

lattice in the x-direction. When executed, Listing 3 prints consecutive integers

from 10 to 10+self.dim.x-1.

Listing 3. Simple Python loop.

One of the advantages of Python compared to older languages like Fortran is that it

can also iterate over members of a Python list, a container for grouping objects.

Listing 4 executes a for loop over a list containing all cells in the simulation and

prints the type of each cell.

Listing 4. Iterating over the inventory of CC3D cells in Python.

Lists can combine objects of any type, including integers, strings, complex num-

bers, lists, and, in this case, CC3D cells. CC3D uses lists extensively to keep track of

cells, cell neighbors, cell pixels, etc.

CC3D allows users to construct custom Python code as independent modules

called steppables, which are represented as classes. Listing 5 shows a typical CC3D

Python steppable class. The first line declares the class name together with an

argument (SteppableBasePy) inside the parenthesis, which makes the main

CC3D objects, including cells, lattice properties, etc., available inside the class.

The def __init__(self,_simulator,_frequency=1): declares the initializ-

ing function __init__ which is called automatically during class object instantiation.

After initializing the class and inheriting CC3D objects, we declare three main

functions called at different times during the simulation: start is called before

the simulation starts; step is called at specified intervals in MCS throughout the

simulation; and ¢nish is called at the end of the simulation. The start function

iterates over all cells, setting their target volume and inverse compressibility to 25

and 5, respectively. Generically, we use the start function to define model initial

conditions. The step function increases the target volumes of all cells by 0.001

after the tenth MCS, a typical way to implement cell growth in CC3D. The ¢nish
function prints the cell volumes at the end of the simulation.
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Listing 5. Sample CC3D steppable class.

The start, step, and ¢nish functions have default implementations in the base

class SteppableBasePy. Therefore, we only need to provide definition of those

functions thatwewant to override. In addition,we can addour own functions to the class.

The next section uses Python scripting to build a complex CC3D model.

D. Three-Dimensional Vascular Tumor Growth Model

The development of a primary solid tumor starts from a single cell that proliferates

in an inappropriate manner, dividing repeatedly to form a cluster of tumor cells.

Nutrient and waste diffusion limits the diameter of such avascular tumor spheroids

to about 1 mm. The central region of the growing spheroid becomes necrotic, with a

surrounding layer of cells whose hypoxia triggers VEGF-mediated signaling events

that initiate tumor neovascularization by promoting growth and extension (neoan-

giogenesis) of nearby blood vessels. Vascularized tumors are able to grow much

larger than avascular spheroids and are more likely to metastasize.

Here, we present a simplified 3D model of a generic vascular tumor that can be

easily extended to describe specific vascular tumor types and host tissues. We begin

with a cluster of proliferating tumor cells, P, and normal vasculature. Initially, tumor

cells proliferate as they take up diffusing glucose from the field, GLU, which the

preexisting vasculature supplies (in this model, we neglect possible changes in

concentration along the blood vessels in the direction of flow and set the secretion

parameters uniformly over all blood-vessel surfaces).We assume that the tumor cells

(both in the initial cluster and later) are always hypoxic and secrete a long-diffusing

isoform of VEGF-A, L_VEGF. When GLU drops below a threshold, tumor cells

become necrotic, gradually shrink and finally disappear. The initial tumor cluster

grows and reaches a maximum diameter characteristic of an avascular tumor spher-

oid. To reduce execution time in our demonstration, we choose our model parameters

so that the maximum spheroid diameter will be about 10 times smaller than in

experiments. A few preselected neovascular endothelial cells, NV, in the preexisting
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vasculature respond both by chemotaxing toward higher concentrations of pro-

angiogenic factors and by forming new blood vessels via neoangiogenesis. The

tumor-induced vasculature increases the growth rate of the resulting vascularized

solid tumor compared to an avascular tumor, allowing the tumor to grow beyond the

spheroid’s maximum diameter. Despite our rescaling of the tumor size, the model

produces a range of biologically reasonable morphologies that allow study of how

tumor-induced angiogenesis affects the growth rate, size, andmorphology of tumors.

We use the basic angiogenesis simulation from the previous section to simulate both

preexisting vasculature and tumor-induced angiogenesis, adding a set of finite-element

links between the endothelial cells to model the strong junctions that form between

endothelial cells in vivo. We denote the short-diffusing isoform of VEGF-A, S_VEGF.

Both endothelial cells and neovascular endothelial cells chemotax up gradients of

S_VEGF, but only neovascular endothelial cells chemotax up gradients of L_VEGF.
In the Simulation Wizard, we name the model TumorVascularization, set

the cell- and field-lattice dimensions to 50 � 50 � 80, the membrane fluctuation

amplitude to 20, the pixel-copy range to 3, the number ofMCS to 10,000, and choose

UniformInitializer to produce the initial tumor and vascular cells, since it

automatically creates a mixture of cell types. We specify four cell types: P: prolif-
erating tumor cells; N: necrotic cells; EC: endothelial cells; and NV: neovascular
endothelial cells.

On the ChemicalFields page (see Fig. 14), we create the S_VEGF and L_VEGF
fields and select FlexibleDi¡usionSolverFE for both from the Solver pull-

down list. We also check Enable multiple calls of PDE solvers to work

around the numerical instabilities of the PDE solvers for large diffusion constants.

On the Cell Behavior and Properties page (see Fig. 15) we select both

the Contact and FocalPointPlasticity modules from the Adhesion
group, and add Chemotaxis, Growth, and Mitosis, Volume Constraint,
and GlobalConnectivity by checking the appropriate boxes. We also track the

Center-of-Mass (to access field concentrations) and Cell Neighbors (to

implement contact-inhibited growth). Unlike in our angiogenesis simulation, wewill

implement secretion as a part of the FlexibleDi¡usionSolverFE syntax.

[(Fig._4)TD$FIG]

Fig. 14 Specification of vascular tumor chemical fields in the SimulationWizard. (For color version of

this figure, the reader is referred to the web version of this book.)
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In the Chemotaxis page (see Fig. 16), for each cell-type/chemical-field pair we

click the AddEntry button to add the relevant chemotaxis information, for exam-

ple, we select S_VEGF from the Field pull-down list and EC and NV from the

cell-type list and set Lambda to 5000. To enable contact inhibition of EC and

NV chemotaxis, we select Medium from the pull-down menu next to the

Chemotax Towards button and click the button to add Medium to the list. We

repeat this process for the T and N cell types, so that NV cells chemotax up gradients

of L_VEGF. We then proceed to the final Simulation Wizard page.

Twedit++ generates three simulation files – a CC3DML file specifying the energy

terms, diffusion solvers, and initial cell layout, a main Python file that loads the

[(Fig._5)TD$FIG]

Fig. 15 Specification of vascular tumor cell behaviors in SimulationWizard. (For color version of this

figure, the reader is referred to the web version of this book.)

[(Fig._6)TD$FIG]

Fig. 16 Specification of vascular tumor chemotaxis properties in Simulation Wizard. (For color

version of this figure, the reader is referred to the web version of this book.)
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CC3DMLfile, sets up the CompuCell environment and executes the Python step-

pables and a Python steppables file. The main Python file is typically constructed by

modifying the standard template in Listing 6. Lines 1–12 set up the CC3D simulation

environment and load the simulation. Lines 14–20 create instances of two steppables

– MitosisSteppable and VolumeParamSteppable – and register them

with the CC3D kernel. Line 22 starts the main CC3D loop, which executes MCSs

and periodically calls the steppables.

Listing 6. The Main Python script initializes the vascular tumor simulation and

runs the main simulation loop.

Next, we edit the draft autogenerated simulation CC3DML file in Listing 7.
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Listing 7. CC3DML specification of the vascular tumor model’s initial cell layout,

PDE solvers, and key cellular behaviors.

In Listing 7, in the Contact plugin (lines 36–53), we set JMM=0, JEM=12, and
JEE=5 (M: Medium, E: EC) and the NeighborOrder to 4. The

FocalPointPlasticity plugin (lines 57–80) represents adhesion junctions by

mechanically connecting the centers-of-mass of cells using a breakable linear spring

(see Shirinifard et al., 2009). EC^EC links are stronger than EC^NV links, which are,

in turn, stronger than NV^NV links (see the CC3D manual for details). Since the

Simulation Wizard creates code to implement links between all cell-type pairs in the

model, we must delete most of them, keeping only the links between EC^EC, EC^NV,
and NV^NV cell types.

We assume that L ___ VEGF diffuses 10 times faster than S ___ VEGF, so

DL_VEGF=0.42 mm
2/s (1.6 voxel2/MCS). This large diffusion constant would make

the diffusion solver unstable. Therefore, in the CC3DML file (Listing 7, lines 108–

114), we set the values of the<Di¡usionConstant> and<DecayConstant>
tags of the L ___ VEGF field to 0.16 and 0.0016, respectively, and use nine extra calls per

MCS to achieve a diffusion constant equivalent to 1.6 (lines 87–89). We instruct P
cells to secrete (line 116) into the L_VEGF field at a rate of 0.001 (3.85 pg/(cell h)

= 0.001 pg/(voxel MCS)). Both EC and NVabsorb L ___ VEGF. To simulate this uptake,

we use the <SecretionData> tag pair (lines 117, 118).

Since the same diffusion solver will be called 10 times per MCS to solve

S_VEGF, we must reduce the diffusion constant of S_VEGF by a factor of 10,
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setting the <Di¡usionConstant> and <DecayConstant> tags of

S_VEGF field to 0.016 and 0.0016, respectively. To prevent S_VEGF decay inside

EC and NV cells, we add <DoNotDecayIn>EC</DoNotDecayIn> and

<DoNotDecayIn>NV</DoNotDecayIn> inside the <Di¡usionData>
tag pair (lines 99, 100). We define S_VEGF to be secreted (lines 102–105) by

both the EC and NV cells types at a rate of 0.013 per voxel per MCS (50 pg/(cell

h) = 0.013 pg/(voxel MCS), compared to Leith and Michelson (1995).

The experimental glucose diffusion constant is about 600 mm2/s. We convert the

glucose diffusion constant by multiplying by appropriate spatial and temporal con-

version factors: 600 mm2/s � (voxel/4 mm)2 � (60 s/MCS)=2250 voxel2/MCS. To

keep our simulation times short for this example, we use a simulated glucose

diffusion constant 1500 smaller, resulting in much steeper glucose gradients and

smaller maximum tumor diameters. We could use the steady-state diffusion solver

for the glucose field to be more realistic.

Experimental GLU uptake by P cells is�0.3 mmol/g/min. We assume that stromal

cells (represented here without individual cell boundaries by Medium) take up GLU
at a slower rate of 0.1 mmol/g/min. A gram of tumor tissue has about 108 tumor cells,

so the glucose uptake per tumor cell is 0.003 pmol/MCS/cell or about 0.1 fmol/MCS/

voxel. We assume that (at homeostasis) the preexisting vasculature supplies all the

required GLU to Medium, which has a total mass of 1.28 � 10–5 grams and con-

sumes GLU at a rate of 0.1 fmol/MCS/voxel, so the total GLU uptake (in the absence

of a tumor) is 1.28 pmol/MCS. For this glucose to be supplied by 24 EC cells, their

GLU secretion rate must be 0.8 fmol/MCS/voxel. We distribute the total GLU uptake

(in the absence of a tumor) over all the Medium voxels, so the uptake rate is

�1.28 pmol/MCS/(�20,000 Medium voxels)=6.4 � 10–3 fmol/MCS/voxel.

We specify the uptake of GLU by Medium and P cells in lines 131 and 132 and

instruct NV and EC cells to secrete GLU at the rate 0.4 and 0.8 pg/(voxel MCS),

respectively (lines 129, 130).

We use UniformInitializer (lines 137–170) to initialize the tumor cell

cluster and two crossing vascular cords. We also add two NV cells to each vascular

cord, 25 pixels apart.
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Listing 8. Vascular tumor model Python steppables. The

VolumeParametersSteppable adjusts the properties of the cells in response

to simulation events and the MitosisSteppable implements cell division.

In the Python Steppable script in Listing 8, we set the initial target volume of both

EC and NV cells to 74 (64 + 10) voxels and the initial target volume of tumor cells

to 32 voxels (lines 14–21). All lvol are 20.0.

Tomodel tumor cell growth, we increase the tumor cells’ target volumes (lines 38–

47) according to:

dV tðtumorÞ
dt

¼ GmaxGLUðx!Þ
GLUðx!Þ þ GLU 0

ð4Þ

whereGLUðx!Þ is the GLU concentration at the cell’s center-of-mass andGLU0 is the

concentration at which the growth rate is half its maximum. We assume that the

fastest cell cycle time is 24 h, so Gmax is 32 voxels/24 h = 0.022 voxel/MCS.

To account for contact-inhibited growth of NV cells, when their common surface

area with other EC and NV cells is less than a threshold, we increase their target

volume according to:

dV tðNVÞ
dt

¼ Gmax L VEGFðx!Þ
L VEGFðx!Þ þ L VEGF0

ð5Þ

where L _ VEGFðx!Þ is the concentration of L_VEGF at the cell’s center-of-mass,

L _ VEGF0 is the concentration at which the growth rate is half its maximum, and

Gmax is the maximum growth rate for NV cells. We calculate the common surface

area between each NV cell and its neighboring NVor EC cells in lines 32–35. If the

common surface area is smaller than 45, then we increase its target volume (lines 36,

37). When the volume of NVand P cells reaches a doubling volume (here, twice their

initial target volumes), we divide them along a random axis, as shown in the

MitosisSteppable (Listing 8, lines 54–75). The snapshots of the simulation

are presented in Fig. 17

With this simple model we can easily explore the effects of changes in cell adhesion,

nutrient availability, cell motility, sensitivity to starvation or dosing with chemother-

apeutics or antiangiogenics on the growth and morphology of the simulated tumor.

[(Fig._7)TD$FIG]

Fig. 17 Two-dimensional snapshots of the vascular tumor simulation taken at: (A) 0 MCS; (B) 500

MCS; (C) 2000 MCS; (D) 5000 MCS. Red and yellow cells represent endothelial cells and neovascular

endothelial cells, respectively. (See color plate.)
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E. Subcellular Simulations Using BionetSolver

While our vascular tumor model showed how to change cell-level parameters like

target volume, we have not yet linked macroscopic cell behaviors to intracellular

molecular concentrations. Signaling, regulatory, and metabolic pathways all steer

the behaviors of biological cells by modulating their biochemical machinery. CC3D

allows us to add and solve subcellular reaction-kinetic pathway models inside each

generalized cell, specified using the SBML format (Hucka et al., 2003), and to use

such models (e.g., of their levels of gene expression) to control cell-level behaviors

like adhesion or growth (Hester et al., 2011).

We can use the same SBML framework to implement classic physics-based phar-

macokinetic (PBPK) models of supercellular chemical flows between organs or

tissues. The ability to explicitly model such subcellular and supercellular pathways

adds greatly to the range of hypotheses CC3D models can represent and test. In

addition, the original formulation of SBML primarily focused on the behaviors of

biochemical networks within a single cell, whereas real signaling networks often

involve the coupling of networks between cells. BionetSolver supports such coupling,

allowing exploration of the very complex feedback resulting from intercell interac-

tions linking intracellular networks, in an environment where the couplings change

continuously due to cell growth, cell movement, and changes in cell properties.

As an example of such interaction between signaling networks and cell behaviors, we

will develop a multi-cellular implementation of Delta–Notch mutual inhibitory cou-

pling. In this juxtacrine signaling process, a cell’s level of membrane-bound Delta

depends on its intracellular level of activated Notch, which in turn depends on the

average level of membrane-bound Delta of its neighbors. In such a situation, the Delta–

Notch dynamics of the cells in a tissue sheet will depend on the rate of cell rearrange-

ment and the fluctuations it induces. Although the example does not explore the wide

variety of tissue properties due to the coupling of subcellular networkswith intercellular

networks and cell behaviors, it already shows how different such behaviors can be from

those of their non-spatial simplifications. We begin with the ODE Delta–Notch pat-

terning model of Collier et al. (1996) in which juxtacrine signaling controls the internal

levels of the cells’Delta andNotch proteins. The basemodel neglects the complexity of

the interaction due to changing spatial relationships in a real tissue:

dD

dt
¼ v

1

1þ bNh
� D

� �
ð6Þ

dN

dt
¼ D

k

aþ D
k
� N ð7Þ

whereD andN are the concentrations of activatedDelta andNotch proteins inside a cell,

D is the average concentration of activated Delta protein at the surface of the cell’s

neighbors, a and b are saturation constants, h and k are Hill coefficients, and v is a

constant that gives the relative lifetimes of Delta and Notch proteins.

Notch activity increases with the levels of Delta in neighboring cells, whereas

Delta activity decreases with increasing Notch activity inside a cell (Fig. 18). When
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the parameters in the ODEmodel are chosen correctly, each cell assumes one of two

exclusive states: a primary fate, in which the cell has a high level of Delta and a low

level of Notch activity; and a secondary fate, in which the cell has a low level of Delta

and a high level of Notch.

To build this model in CC3D, we assign a separate copy of the ODEmodel (6–7) to

each cell and allow each cell to see the Delta concentrations of its neighbors. We use

CC3D’s BionetSolver library to manage and solve the ODEs, which are stored using

the SBML standard.

The three files that specify the Delta–Notch model are included in the CC3D

installation and can be found at <CC3D-installation-dir>/DemosBionetSolver/

DeltaNotch: the main Python file (DeltaNotch.py) sets the parameters and initial

conditions; the Python steppable file (DeltaNotch_Step.py) calls the subcellular

models; and the SBML file (DN_Collier.sbml) contains the description of the

ODE model. The first two files can be generated and edited using Twedit++, the

last can be generated and edited using an SBML editor like Jarnac or JDesigner (both

are open source). Listing 9 shows the SBML file viewed using Jarnac and can be

downloaded from http://sys-bio.org.

Listing 9. Jarnac specification of the Delta–Notch coupling model in Fig. 17.

[(Fig._8)TD$FIG]

Fig. 18 Diagram of Delta–Notch feedback regulation between and within cells.
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The main Python file (DeltaNotch.py) includes lines to define a steppable class

(DeltaNotchClass) to include the ODE model and its interactions with the

CC3D generalized cells (Listing 10).

Listing 10. Registering DeltaNotchClass in the main Python script,

DeltaNotch.py in the Delta–Notch model.

The Python steppable file (Listing 11, DeltaNotch_Step.py) imports the

BionetSolver library (line 1), then defines the class, and initializes the solver inside

it (lines 2–5).

Listing 11. Implementation of the __init__ and start functions of the

DeltaNotchClass in the Delta–Notch model.

The first lines in the start function (Listing 11, lines 9–12) specify the name of

the model, its nickname (for easier reference), the path to the location where the

SBML model is stored, and the time-step of the ODE integrator, which fixes the

relation between MCS and the time units of the ODE model (here, 1 MCS corre-

sponds to 0.2 ODEmodel time units). In line 13, we use the defined names, path and

time-step parameter to load the SBML model.

In Listing 11, line 15 associates the subcellular model with the CC3D cells,

creating an instance of the ODE solver (described by the SBML model) for each

cell of type TypeA. Line 16 initializes the loaded subcellular models.
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To set the initial levels of Delta (D) and Notch (N) in each cell, we visit all cells and
assign random initial concentrations between 0.9 and 1.0 (Listing 11, lines 18–26).

Line 18 imports the intrinsic Python random number generator. Lines 22 and 23 pass

these values to the subcellular models in each cell. The first argument specifies the

ODEmodel parameter to changewith a string containing the nickname of themodel,

here DN, followed by an underscore and the name of the parameter as defined in the

SBML file. The second argument specifies the value to assign to the parameter, and

the last argument specifies the cell id. For visualization purposes, we also store the

values of D and N in a dictionary attached to each cell (lines 25, 26).

Listing 12 defines astep function of the class, which is called by everyMCS, to read

theDelta concentrations of each cell’s neighbors to determine thevalue ofD (the average

Delta concentration around the cell). The first three lines in Listing 12 iterate over all

cells. Inside the loop, we first set the variables D and nn to zero. Theywill store the total

Delta concentration of the cell’s neighbors and the number of neighbors, respectively.

Next, we get a list of the cell’s neighbors and iterate over them. Line 9 reads the Delta

concentration of each neighbor (the first argument is the name of the parameter and the

second is the id of the neighboring cell) summing the total Delta and counting the

number of neighbors. Note the += syntax (e.g., nn+=1 is equivalent to nn=nn+1).
Lines 3 and 7 skip Medium (Medium has a value 0, so if(Medium) is false).

Listing 12. Implementation of a step function (continuation of the code from

Listing 11) to calculate D in the DeltaNotchClass in the Delta–Notch model.

After looping over the cell’s neighbors, we update the variable D, which in the

SBML code has the name Davg, to the average neighboring Delta (D) concentration,
ensuing that the denominator, nn, is not zero (Listing 12, lines 10–12).

The remaining lines (Listing 12, lines 13–15) access the cell dictionary and store

the cell’s current Delta and Notch concentrations. Line 16 then calls BionetSolver

and tells it to integrate the ODE model with the new parameters for one integration

step (0.2 time units in this case).

Fig. 19 shows a typical cell configurations and states for the simulation. The

random initial values gradually converge to a pattern with cells with low levels of

Notch (primary fate) surrounded by cells with high levels of Notch (secondary fate).
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In Listing 13, lines 2–4 define two new visualization fields in the main Python file

(DeltaNotch.py) to visualize the Delta and Notch concentrations in CompuCell

Player. To fill the fields with the Delta and Notch concentrations, we call the

steppable class, ExtraFields (Listing 13, lines 6–9). This code is very similar

to our previous steppable calls, with the exception of line 8, which uses the function

setScalarFields()to reference the visualization Fields.

Listing 13. Adding extra visualization fields in the main Python script

DeltaNotch.py in the Delta–Notch model.

In the steppable file (Listing 14, DeltaNotch_Step.py) we use

setScalarFields() to set the variables self.scalarField1 and self.
scalarField2 to point to the fields DeltaField and NotchField, respec-
tively. Lines 10 and 11 of the step function clear the two fields using

clearScalarValueCellLevel(). Line 12 loops over all cells, line 13

accesses a cell’s dictionary, and lines 14 and 15 use the D and N entries to fill in

the respective visualization fields, where the first argument specifies the visualiza-

tion field, the second the cell to be filled, and the third the value to use.

Listing 14. Steppable to visualize the concentrations of Delta and Notch in each

cell in the Delta–Notch model.

The two fields can be visualized in CompuCell Player using the Field-
selector button of the Main Graphics Window menu (second-to-last button,

Fig. 19).
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Aswe illustrate in Fig. 20, the result is a roughly hexagonal pattern of activity with

one cell of low-Notch activity for every two cells with high Notch activity. In the

presence of a high level of cell motility, the identity of high and low Notch cells can

change when the pattern rearranges. We could easily explore the effects of Delta–

Notch signaling on tissue structure by linking the Delta–Notch pathway to one of its

known downstream targets. For example, if we wished to simulate embryonic

[(Fig._0)TD$FIG]

Fig. 20 Dynamics of the Notch concentrations of cells in the Delta–Notch model. Snapshots taken at

10, 100, 300, 400, 450, and 600 MCS. (See color plate.)

[(Fig._9)TD$FIG]

Fig. 19 Initial Notch (left) and Delta (right) concentrations in the Delta–Notch model. (For color

version of this figure, the reader is referred to the web version of this book.)
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feather-bud primordial in chicken skin or the formation of colonic crypts, we could

start with an epithelial sheet of cells in 3D on a rigid support, and couple the growth

of the cells to their level of Notch activity by having Notch inhibit cell growth. The

result would be clusters of cell growth around the initial low-Notch cells, leading to a

patterned 3D buckling of the epithelial tissue. Such mechanisms are capable of

extremely complex and subtle patterning, as observed in vivo.

V. Conclusion

Multi-cell modeling, especially when combined with subcell (or supercell)

modeling of biochemical networks, allows the creation and testing of hypotheses

concerning many key aspects of embryonic development, homeostasis, and devel-

opmental disease. Until now, such modeling has been out of reach to all but expe-

rienced software developers. CC3D makes the development of such models much

easier, though it still does involve a minimal level of hand editing. We hope the

examples we have shown will convince readers to evaluate the suitability of CC3D

for their research.

Furthermore, CC3D directly addresses the current difficulty researchers face in

reusing, testing, or adapting both their own and published models. Most published

multi-cell, multi-scale models exist in the form of Fortran/C/C++ code, which is

often of little practical value to other potential users. Reusing such code involves

digging into large code bases, inferring their function, extracting the relevant code,

and trying to paste it into a new context. CC3D improves this status quo in at least

three ways: (1) it is fully open source; (2) CC3D models can be executed cross-

platform and do not require compilation; (3) CC3D models are modular, compact,

and shareable. Because Python-based CC3D models require much less effort to

develop than does custom code programming: simulations are fast and easy to

develop and refine. Even with these convenience features, CC3D 3.6 often runs as

fast or faster than custom code solving the same model. Current CC3D development

focuses on adding GPU-based PDE solvers, MPI parallelization, and additional cell

behaviors. We are also developing a high-level cell-behavior model description

language that will compile into executable Python, removing the last need for model

builders to learn programming techniques.

All examples presented in this chapter are included in the CC3D binary distribu-

tion and will be curated to ensure their correctness and compatibility with future

versions of CC3D.
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Fundaç~ao de Amparo �a Pesquisa do Estado do Rio Grande do Sul (FAPERGS) under the grant PRONEX-
10/0008-0. Indiana University’s University Information Technology Services provided time on their

BigRed cluster for simulation execution. Early versions of CompuCell and CompuCell3Dwere developed

at the University of Notre Dame by JAG, Dr. Mark Alber, and Dr. Jesus Izaguirre, and collaborators with

the support of National Science Foundation, Division of Integrative Biology, grant IBN-00836563. Since

the primary home of CompuCell3D moved to Indiana University in 2004, the Notre Dame team have

continued to provide important support for its development. We especially would like to thank our current

collaborators, Herbert Sauro and Ryan Roper, from University of Washington for developing the subcel-

lular reaction kinetics model simulator BionetSolver.

References

Alber, M. S., Jiang, Y., and Kiskowski, M. A. (2004). Lattice gas cellular automation model for rippling

and aggregation in myxobacteria. Physica D 191, 343–358.

Alber, M. S., Kiskowski, M. A., Glazier, J. A., and Jiang, Y. (2002). On cellular automation approaches to

modeling biological cells. In ‘‘Mathematical Systems Theory in Biology, Communication and

Finance,’’ (J. Rosenthal, and D. S. Gilliam, eds.), pp. 1–40. Springer-Verlag, New York.

Alber, M., Chen, N., Glimm, T., and Lushnikov, P. (2006). Multiscale dynamics of biological cells with

chemotactic interactions: from a discrete stochastic model to a continuous description. Phys. Rev. E 73,

051901 (PMID 16802961).

Armstrong, P. B., and Armstrong, M. T. (1984). A role for fibronectin in cell sorting out. J. Cell. Sci. 69,

179–197.

Armstrong, P. B., and Parenti, D. (1972). Cell sorting in the presence of cytochalasin B. J. Cell. Biol. 55,

542–553.

Chaturvedi, R., Huang, C., Izaguirre, J. A., Newman, S. A., Glazier, J. A., and Alber, M. S. (2004). A

hybrid discrete-continuum model for 3-D skeletogenesis of the vertebrate limb. Lect. Notes Comput.

Sci. 3305, 543–552.

Cickovski, T., Aras, K., Alber, M. S., Izaguirre, J. A., Swat, M., Glazier, J. A., Merks, R. M. H., Glimm, T.,

Hentschel, H. G. E., and Newman, S. A. (2007). From genes to organisms via the cell: a problem-

solving environment for multicellular development. Comput. Sci. Eng. 9, 50.

Cipra, B. A. (1987). An introduction to the Ising-model. Amer. Math. Monthly 94, 937–959.

Collier, J. R., Monk, N. A. M., Maini, P. K., and Lewis, J. H. (1996). Pattern formation by lateral inhibition

with feedback: a mathematical model of Delta–Notch intercellular signaling. J. Theor. Biol. 183,

429–446.

Dallon, J., Sherratt, J., Maini, P. K., and Ferguson, M. (2000). Biological implications of a discrete

mathematical model for collagen deposition and alignment in dermal wound repair. IMA J. Math.

Appl. Med. Biol. 17, 379–393.

Drasdo, D., Kree, R., and McCaskill, J. S. (1995). Monte-Carlo approach to tissue-cell populations. Phys.

Rev. E 52, 6635–6657.

Glazier, J. A. (1993). Cellular patterns. Bussei Kenkyu 58, 608–612.

Glazier, J. A. (1996). Thermodynamics of cell sorting. Bussei Kenkyu 65, 691–700.

Glazier, J. A., and Graner, F. (1992). Simulation of biological cell sorting using a two-dimensional

extended Potts model. Phys. Rev. Lett. 69, 2013–2016.

Glazier, J. A., and Graner, F. (1993). Simulation of the differential adhesion driven rearrangement of

biological cells. Phys. Rev. E 47, 2128–2154.

Glazier, J. A., Raphael, R. C., Graner, F., and Sawada, Y. (1995). The energetics of cell sorting in three

dimensions. In ‘‘Interplay of Genetic and Physical Processes in the Development of Biological Form,’’

(D. Beysens, G. Forgacs, F. Gaill, eds.), pp. 54–66. World Scientific Publishing Company, Singapore.

Glazier, J. A., Balter, A., and Poplawski, N. (2007).Magnetization to morphogenesis: a brief history of the

Glazier–Graner–Hogeweg model. In ‘‘Single-Cell-Based Models in Biology and Medicine,’’ (A. R. A.

Anderson, M. A. J. Chaplain, K. A. Rejniak, eds.), pp. 79–106. Birkhauser Verlag Basel, Switzerland.

13. Multi-Scale Modeling of Tissues Using CompuCell3D 363



Glazier, J. A., Zhang, Y., Swat, M., Zaitlen, B., and Schnell, S. (2008). Coordinated action of N-CAM, N-

cadherin, EphA4, and ephrinB2 translates genetic prepatterns into structure during somitogenesis in

chick. Curr. Top. Dev. Biol. 81, 205–247.

Graner, F., and Glazier, J. A. (1992). Simulation of biological cell sorting using a 2-dimensional extended

Potts model. Phys. Rev. Lett. 69, 2013–2016.

Grieneisen, V. A., Xu, J., Maree, A. F.M., Hogeweg, P., and Schere, B. (2007). Auxin transport is sufficient

to generate a maximum and gradient guiding root growth. Nature 449, 1008–1013.

Groenenboom, M. A., and Hogeweg, P. (2002). Space and the persistence of male-killing endosymbionts

in insect populations. Proc. Biol. Sci. 269, 2509–2518.

Groenenboom, M. A., Maree, A. F. M., and Hogeweg, P. (2005). The RNA silencing pathway: the bits and

pieces that matter. PLoS Comput. Biol. 1, 55–165.

Hester, S. D., Belmonte, J. M., Gens, J. S., Clendenon, S. G., and Glazier, J. A. (2011). AMulti-cell, Multi-

scale Model of Vertebrate Segmentation and Somite Formation. PLoS Comput. Biol 7, e1002155.

Hogeweg, P. (2000). Evolving mechanisms of morphogenesis: on the interplay between differential

adhesion and cell differentiation. J. Theor. Biol. 203, 317–333.

Holm, E. A., Glazier, J. A., Srolovitz, D. J., and Grest, G. S. (1991). Effects of lattice anisotropy and

temperature on domain growth in the two-dimensional Potts model. Phys. Rev. A 43, 2662–2669.

Honda, H., and Mochizuki, A. (2002). Formation and maintenance of distinctive cell patterns by coex-

pression of membrane-bound ligands and their receptors. Dev. Dynamics 223, 180–192.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P., Bornstein, B. J.,

Bray, D., Cornish-Bowden, A., Cuellar, A. A., Dronov, S., Gilles, E. D., Ginkel, M., Gor, V., Goryanin, I.

I., Hedley, W. J., Hodgman, T. C., Hofmeyr, J. -H., Hunter, P. J., Juty, N. S., Kasberger, J. L., Kremling,

A., Kummer, U., Le Nov�ere, N., Loew, L. M., Lucio, D., Mendes, P., Minch, E., Mjolsness, E. D.,

Nakayama, Y., Nelson, M. R., Nielsen, P. F., Sakurada, T., Schaff, J. C., Shapiro, B. E., Shimizu, T. S.,

Spence, H. D., Stelling, J., Takahashi, K., Tomita, M., Wagner, J., and Wang, J. (2003). The Systems

biology markup language (SBML): a medium for representation and exchange of biochemical network

models. Bioinformatics 19, 524–531.

Johnston, D. A. (1998). Thin animals. J. Phys. A 31, 9405–9417.

Kesmir, C., and de Boer, R. J. (2003). A spatial model of germinal center reactions: cellular adhesion

based sorting of B cells results in efficient affinity maturation. J. Theor. Biol. 222, 9–22.

Kesmir, C., van Noort, V., de Boer, R. J., and Hogeweg, P. (2003). Bioinformatic analysis of functional

differences between the immunoproteasome and the constitutive proteasome. Immunogenetics 55,

437–449.

Knewitz, M. A., andMombach, J. C.M. (2006). Computer simulation of the influence of cellular adhesion

on the morphology of the interface between tissues of proliferating and quiescent cells. Comput. Biol.

Med. 36, 59–69.

Leith, J. T., and Michelson, S. (1995). Secretion rates and levels of vascular endothelial growth factor in

clone A or HCT-8 human colon tumour cells as a function of oxygen concentration. Cell Prolif. 28,

415–430.

Longo, D., Peirce, S. M., Skalak, T. C., Davidson, L., Marsden, M., and Dzamba, B. (2004). Multicellular

computer simulation of morphogenesis: blastocoel roof thinning and matrix assembly in Xenopus

laevis. Dev. Biol. 271, 210–222.

Lutz, M. (2011). Programming Python. O’Reilly & Associates, Inc, Sebastopol, CA.

Maini, P. K., Olsen, L., and Sherratt, J. A. (2002).Mathematical models for cell-matrix interactions during

dermal wound healing. Int. J. Bifurcation Chaos 12, 2021–2029.

Mar�ee, A. F. M., and Hogeweg, P. (2001). How amoeboids self-organize into a fruiting body: multicellular

coordination in Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 98, 3879–3883.

Mar�ee, A. F. M., and Hogeweg, P. (2002). Modelling Dictyostelium discoideum morphogenesis: the

culmination. Bull. Math. Biol. 64, 327–353.

Mar�ee, A. F. M., Panfilov, A. V., and Hogeweg, P. (1999a). Migration and thermotaxis of Dictyostelium

discoideum slugs, a model study. J. Theor. Biol. 199, 297–309.

364 Maciej H. Swat et al.



Mar�ee, A. F. M., Panfilov, A. V., and Hogeweg, P. (1999b). Phototaxis during the slug stage of

Dictyostelium discoideum: a model study. Proc. Royal Soc. Lond. Ser. B 266, 1351–1360.

Merks, R. M., Brodsky, S. V., Goligorksy, M. S., Newman, S. A., and Glazier, J. A. (2006). Cell elongation

is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol. 289,

44–54.

Merks, R. M., and Glazier, J. A. (2006). Dynamic mechanisms of blood vessel growth. Nonlinearity 19,

C1–C10.

Merks, R. M., Perryn, E. D., Shirinifard, A., and Glazier, J. A. (2008). Contact-inhibited chemotactic

motility can drive both vasculogenesis and sprouting angiogenesis. PLoS Comput. Biol. 4, e1000163.

Metropolis, N., Rosenbluth, A., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state

calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092.

Meyer-Hermann, M., Deutsch, A., and Or-Guil, M. (2001). Recycling probability and dynamical prop-

erties of germinal center reactions. J. Theor. Biol. 210, 265–285.

Mochizuki, A. (2002). Pattern formation of the cone mosaic in the zebrafish retina: A cell rearrangement

model. J. Theor. Biol. 215, 345–361.

Mombach, J. C. M., and Glazier, J. A. (1996). Single cell motion in aggregates of embryonic cells. Phys.

Rev. Lett. 76, 3032–3035.

Mombach, J. C.M., de Almeida, R.M. C., Thomas, G. L., Upadhyaya, A., andGlazier, J. A. (2001). Bursts

and cavity formation in Hydra cells aggregates: experiments and simulations. Physica A 297, 495–508.

Mombach, J. C.M., Glazier, J. A., Raphael, R. C., and Zajac,M. (1995). Quantitative comparison between

differential adhesion models and cell sorting in the presence and absence of fluctuations. Phys. Rev.

Lett. 75, 2244–2247.

Nguyen, B., Upadhyaya, A., van Oudenaarden, A., and Brenner, M. P. (2004). Elastic instability in

growing yeast colonies. Biophys. J. 86, 2740–2747.

Novak, B., Toth, A., Csikasz-Nagy, A., Gyorffy, B., Tyson, J. A., and Nasmyth, K. (1999). Finishing the

cell cycle. J. Theor. Biol. 199, 223–233.

Popławski, N. J., Shirinifard, A., Swat, M., and Glazier, J. A. (2008). Simulation of single-species

bacterial-biofilm growth using the Glazier–Graner–Hogeweg model and the CompuCell3D modeling

environment. Math. Biosci. Eng. 5, 355–388.

Popławski, N. J., Swat, M., Gens, J. S., and Glazier, J. A. (2007). Adhesion between cells diffusion of

growth factors and elasticity of the AER produce the paddle shape of the chick limb. Physica A 373,

C521–C532.

Rieu, J. P., Upadhyaya, A., Glazier, J. A., Ouchi, N. B., and Sawada, Y. (2000). Diffusion and deformations

of single hydra cells in cellular aggregates. Biophys. J. 79, 1903–1914.

Savill, N. J., and Hogeweg, P. (1997). Modelling morphogenesis: from single cells to crawling slugs. J.

Theor. Biol. 184, 229–235.

Savill, N. J., and Sherratt, J. A. (2003). Control of epidermal stem cell clusters by Notch-mediated lateral

induction. Dev. Biol. 258, 141–153.

Steinberg, M. S. (2007). Differential adhesion in morphogenesis: a modern view. Curr. Opin. Genet. Dev.

17(4), 281–286.

Shirinifard, A., Gens, J. S., Zaitlen, B. L., Popławski, N. J., Swat, M. H., and Glazier, J. A. (2009). 3D

multi-cell simulation of tumor growth and angiogenesis. PLoS ONE 4, e7190.

Takesue, A., Mochizuki, A., and Iwasa, Y. (1998). Cell-differentiation rules that generate regular mosaic

patterns: modelling motivated by cone mosaic formation in fish retina. J. Theor. Biol. 194, 575–586.

Turner, S., and Sherratt, J. A. (2002). Intercellular adhesion and cancer invasion: a discrete simulation

using the extended Potts model. J. Theor. Biol. 216, 85–100.

Walther, T., Reinsch, H., Grosse, A., Ostermann, K., Deutsch, A., and Bley, T. (2004). Mathematical

modeling of regulatory mechanisms in yeast colony development. J. Theor. Biol. 229, 327–338.

Walther, T., Reinsch, H., Ostermann, K., Deutsch, A., and Bley, T. (2005). Coordinated growth of yeast

colonies: experimental and mathematical analysis of possible regulatory mechanisms. Eng. Life Sci. 5,

115–133.

13. Multi-Scale Modeling of Tissues Using CompuCell3D 365



Wearing, H. J., Owen, M. R., and Sherratt, J. A. (2000). Mathematical modelling of juxtacrine patterning.

Bull. Math. Biol. 62, 293–320.

Zajac, M. (2002). Modeling convergent extension by way of anisotropic differential adhesion. Ph.D.

thesis, University of Notre Dame.

Zajac, M., Jones, G. L., and Glazier, J. A. (2000). Model of convergent extension in animal morphogen-

esis. Phys. Rev. Lett. 85, 2022–2025.

Zajac, M., Jones, G. L., and Glazier, J. A. (2003). Simulating convergent extension by way of anisotropic

differential adhesion. J. Theor. Biol. 222, 247–259.

Zhang, Y., Thomas, G. L., Swat,M., Shirinifard, A., andGlazier, J. A. (2011). Computer imulations of Cell

Sorting Due to Differential Adhesion. PLoS ONE 6(10), e24999.

Zhdanov, V. P., and Kasemo, B. (2004a). Simulation of the growth and differentiation of stem cells on a

heterogeneous scaffold. Phys. Chem. Chem. Phys. 6, 4347–4350.

Zhdanov, V. P., and Kasemo, B. (2004b). Simulation of the growth of neurospheres. Europhys. Lett. 68,

134–140.

366 Maciej H. Swat et al.



CHAPTER 14

Multiscale Model of Fibrin Accumulation
on the Blood Clot Surface and Platelet
Dynamics

Zhiliang Xu*, Scott Christleyy, Joshua Lioiz, Oleg Kim*,
Cameron Harveyx, Wenzhao Sun*, Elliot D. Rosen{ and
Mark Alber*,jj
*Department of Applied and Computational Mathematics, University of Notre Dame, Notre Dame,
Indiana, USA

yDepartment of Surgery, University of Chicago, Chicago, Illinois, USA

zDepartment of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre
Dame, Indiana, USA

xDepartment of Physics, University of Notre Dame, Notre Dame, Indiana, USA

{Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis,
Indiana, USA

jjDepartment of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA

Abstract
I. Introduction
II. Biological Background
III. Overview of the Modeling Approach
IV. Study of the Role of the Fibrin Network

A. Experimental Materials and Methods
B. Simulations Under Normal Conditions
C. Challenges

V. Multiscale Model of Thrombus Development with Fibrin Network Formation
A. Blood Flow Submodel
B. Coagulation Pathway Submodel
C. "Fibrin Element" Submodel
D. Numerical Schemes Used for Running Simulations

VI. GPU Implementation of the Simulation of the Platelet–Blood Flow Interaction
A. Subcellular Element Model
B. Coupled LB Equation and SCEM

METHODS IN CELL BIOLOGY, VOL 110
Copyright 2012, Elsevier Inc. All rights reserved. 367

0091-679X/10 $35.00
DOI 10.1016/B978-0-12-388403-9.00014-X

http://dx.doi.org/10.1016/B978-0-12-388403-9.00014-X


C. GPU Implementation of the Multiscale Model
D. Simulation Results

VII. Concluding Remarks
Acknowledgments
References

Abstract

A multiscale computational model of thrombus (blood clot) development is

extended by incorporating a submodel describing formation of fibrin network

through ‘‘fibrin elements’’ representing regions occupied by polymerized fibrin.

Simulations demonstrate that fibrin accumulates on the surface of the thrombus

and that fibrin network limits growth by reducing thrombin concentrations on the

thrombus surface and decreasing adhesivity of resting platelets in blood near throm-

bus surface. These results suggest that fibrin accumulation may not only increase the

structural integrity of the thrombus but also considerably contribute toward limiting

its growth. Also, a fast Graphics Processing Unit implementation is described for a

multiscale computational model of the platelet–blood flow interaction.

I. Introduction

To restrict the loss of blood following rupture of blood vessels, the human body

rapidly forms a clot consisting of platelets and fibrin. Although hemostasis (blood

clotting) is essential to prevent hemorrhage, inappropriate clotting initiated by vessel

wall damage or dysfunction of endothelial cells lining the lumen of the vessel wall

can lead to intravascular clots (thrombi) that may disrupt flow causing damage to

tissues and organs in the flow field. Venous thromboembolic disease is a significant

biomedical problem with the annual incidence in the United States being estimated

as high as 900,000 cases per year leading to 300,000 deaths (Wakefield et al., 2009).

The assembly of a blood thrombus requires complex interactions among multiple

molecular and cellular components in the blood and occurs under fluid flow. Under

normal conditions, clotting is started by initiation events requiring components in

flowing blood to form complexes with components in the wall at the injury site.

These include platelet adhesion to matrix proteins in the vessel wall leading to

platelet activation, recruitment of more platelets in the flowing blood, and formation

of coagulation initiation complexes. This results in the activation of a network of

coagulation reactions that generate thrombin. Thrombin converts fibrinogen in

blood to fibrin, which self-polymerizes forming a fibrin network that is a major

structural component of the clot. Thrombin is also a potent platelet activator.

Although most of the components of the hemostatic system and interactions among

them have been identified in biochemical and genetic research during the last several

decades, the regulation of the interactions to provide proper clotting to limit bleeding

but block pathological thrombosis remains to be elucidated. Current biological
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models of thrombus formation (Diamond, 2009; Esmon, 1993, 2001, 2009; Mann et

al., 2006) suggest that the surface of a growing clot recruits resting platelets in

flowing blood to adhere and to become activated on the thrombus. The activated

platelets support coagulation reactions that produce thrombin leading to activation

of more platelets and the formation of a fibrin network. Thus, the growing thrombus

continuously generates a new prothrombotic surface to support continued growth.

We have found that as a thrombus develops, there is a significant increase in the

surface fraction composed of fibrin and a decrease in the fraction composed of platelets

(Fig. 1) (Kamocka et al., 2010). We propose that this fibrin network on the surface of

the developing thrombus limits further development of the thrombus, and that it does

so using two mechanisms: (1) by impeding the transport of clot-promoting and clot-

building materials between the interior of the clot and the clot surface; (2) by binding

less stably to platelets, allowing them to be easilywashed off by blood flow.As fibrin is

a major structural component of the thrombus contributing to structural stability and

that individuals deficient for fibrinogen suffer bleeding disorders, fibrin(ogen) is

considered a prothrombotic component (Lord, 2007). In addition, fibrin(ogen) is also

considered as an anti-thrombotic agent (Lishko, 2007 and Yermolenko et al., 2010).

We use an extended multiscale model to test our hypothesis that fibrinogen also

functions to halt thrombus growth, which may be considered antithrombotic, suggests

that classifying components as pro- or antithrombotic is an oversimplification. The

model is extended by incorporating a phenomenological fibrin cell submodel to

simulate the dynamically formed fibrin network.

Implementation of a multiscale model on a Graphics Processing Unit (GPU) is

described in the second part of this chapter for speeding up latest 3D simulations of

[(Fig._1)TD$FIG]

Fig. 1 Surface composition of developing thrombi. Vertical stacks of images were collected by multi-

photon microscopy of laser-induced injuries in mesenteric veins of a mice. 3D image reconstruction of a late

stage thrombus is shown in (Left) (luminal view) and (Middle) (cross-section in yz plane (wall is on the left,

lumen is on the right). Regions composed primarily of platelets are red, primarily of fibrin—green, composed

of platelets and fibrin—yellow; and regions excluding plasma, fibrin and platelets (other material, cells)—

black. (Right) Shows changing surface composition of the thrombus as it stabilizes. Stabilization is associated

with decreasing amounts of platelets and increasing amounts of fibrin on the surface (A and B are reprinted

from Mu et al. (2009)), with permission from the Royal Society of Chemistry. Mu et al. (2009) is available

online at http://pubs.rsc.org/en/content/articlepdf/2011/sm/c0sm01528h). (See color plate.)
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thrombus formation (Sweet et al., 2011). In vivo blood clot takes minutes to develop;

whereas most computational models that include detailed description of blood clot

components at various spatial and temporal scales are limited to simulating clotting

events only for seconds. The subcellular element model (SCEM) is used in

(Sweet et al., 2011) to represent platelets, whereas the Lattice Boltzmann (LB) equa-

tion is utilized for simulating plasma flow. The coupling between SCEM and LB

equation is implemented through the Langevin method. Using this GPU implementa-

tion, we are capable of simulating dynamics of 100 platelets moving in a blood flow

over a period of 0.5 s using about 2000 s of computer time. This provides a significant

advantage in terms of simulation efficiency because it normally takes days of computer

time to run simulations using CPU-based implementation (without parallelization).

II. Biological Background

Thrombus formation is the result of two interrelated processes, platelet interac-

tions, and activation of the coagulation pathway. Immediately after vessel damage,

platelets adhere to the site of vessel injury forming a single cell layer (Cranmer et al.,

1999; Gruner et al., 2003; Jackson et al., 2000; Kuijpers et al., 2004; Nieswandt and

Watson, 2003). Following adhesion, platelets form multicellular aggregates mediated

by the binding of the platelet receptor on different platelets binding to the same

bridging molecule: fibrin(ogen), von Willebrand factor (vWF), fibrinectin. In addi-

tion, platelets undergo activation involving significant morphological changes, the

exposure of new proteins on the platelet surface and the extracellular release of

contents of alpha and dense granules found in resting platelets. These contents include

a variety of hemostatic proteins and effector molecules that activate resting platelets.

The recruitment of free-flowing platelets to sites of injury is a key step in the

formation of blood thrombus. Targeting of platelets to these sites is a multistep

process with the sequential involvement of distinct adhesion molecules on platelets

and subendothelial cell surfaces. There are multiple mechanisms ranging from the

molecular to cellular level that affect cell rolling on subendothelial cells. The process

is initiated by the binding of GPIba with the subendothelial collagen-bound vWF.

This interaction maintains platelets in close contact with the surface, even though

with platelet rolling, until other receptors and ligands mediate a stable attachment

after activation. When vWF is bound to collagen, the transition from rolling to stable

adhesion occurs in seconds. Moreover, this cascade of highly regulated molecular

events is dictated by local circulatory hemodynamics and themechanical and kinetic

properties of participating adhesion molecules and the cellular material properties

such as cell deformation and microvillus viscoelasticity, which may critically affect

the dynamics of platelet – injury wall interaction (Doggett et al., 2002). Finally, the

type and spatial distribution of the receptors play a key role in cell rolling. However,

their relative roles have yet to be categorized quantitatively.

In addition to platelet interactions, coagulation factor VII (FVII) in the blood is

exposed to tissue factor (TF), expressed on cells in the vessel wall, initiating the
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network of coagulation reactions. These reactions lead to the generation of thrombin

(FIIa), which converts fibrinogen to fibrin, the major matrix protein in a thrombus,

and activates FXIII to cross-link fibrin. Thrombin triggers a positive feedback loop

of propagation reactions. Thrombin is also a potent activator of resting platelets

further promoting thrombus development. The activated platelets provide a procoa-

gulant surface that promotes the surface-dependent coagulation reactions at the site

of injury.

Thrombus development is a complex process with a lot to be explored. For

instance, current biological models of thrombogenesis (Diamond, 2009; Esmon,

1993, 2001, 2009; Mann et al., 2006) suggest that the surface of a growing clot

recruits resting platelets in flowing blood to adhere and to become activated on

the thrombus. The activated platelets support coagulation reactions that produce

thrombin leading to activation of more platelets and the formation of a fibrin

network. Thus, the growing thrombus continuously generates a new prothrombo-

tic surface to support continued growth. However, subocclusive thrombi gener-

ated by vascular injury stop growing and stabilize within minutes after injury.

This suggests that negative feedback mechanisms limit continuous growth of

developing thrombi.

Several processes activated after thrombus initiation and platelet components that

have been identified may provide the negative feedback function to limit thrombus

growth. The protein C (PC) anticoagulant pathway is activated by the thrombin

generated in the developing thrombus. However, the spatial separation between

the sites where thrombin and PC are generated may prevent aPC from limiting

thrombus growth (Fogelson and Tania, 2005; Xu et al., 2010). Activation of PC

would require either thrombin generated in the thrombus to reach upstream endo-

thelial cells or aPC generated on downstream endothelial cells to migrate upstream

to the thrombus (Fogelson and Tania, 2005). Moreover, previous simulations

(Xu et al., 2010) showed that while the generation of aPC reduces the thrombin

concentration, it was still high enough so that fibrin production is almost not

affected.

Platelet ESAM is released from alpha granules after platelet activation and func-

tions to destabilize the thrombus and interfere with late events in thrombus devel-

opment (Stalker et al., 2009). Additionally, platelet Pecam1 inhibits thrombus

growth in murine arterioles following laser injury (Falati et al., 2003). Although

expressed on resting platelets, Pecam1-mediated outside-in signaling is initiated

after the initiation of thrombus growth and may provide a negative feedback mech-

anism to inhibit continued platelet accumulation. However, contradictory results

have been reported (Rosen et al., 2001). The work described in this chapter ex-

plores a novel mechanism in which the accumulation of fibrin on the developing

thrombus surface limits further growth. In what follows, we give an overview of a

multiscale model (Kamocka et al., 2010; Kim et al., 2011; Mu et al., 2009, 2010;

Sweet et al., 2011; Xu et al., 2009a, 2010, 2011) of thrombogenesis in concert with

laboratory experiments to test this mechanism. The details of the computational

method are given in the next section.
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III. Overview of the Modeling Approach

Several models have been developed to study various aspects of thrombosis but

only few simplified models are available for studying the effects of fibrin on

blood clot formation. (See recent review chapters (Diamond, 2009; Xu et al.,

2011) for detailed discussions of these models.) A unique feature of the earlier

introduced multiscale model of thrombogenesis (Kamocka et al., 2010; Kim

et al., 2011; Mu et al., 2009, 2010; Sweet et al., 2011; Xu et al., 2009a, 2010,

2011) is its representation of the movement, adhesivity, and activity of each

individual platelet and blood cell as objects with volumes bounded by fluctuating

membranes. The model involves components that operate at different scales:

platelets, cells, plasma, vessel wall, injury, coagulation factors, and platelet

activators. It couples processes and interactions among components including

platelet–platelet adhesion, activation states of platelets, blood plasma flow, as

well as coagulation and anticoagulation reactions that take into account plasma-

phase and membrane-phase reactions using the general approach introduced in

(Fogelson and Tania, 2005; Kuharsky and Fogelson, 2001). Submodels at specific

scales are as follows:

(a) Biochemical reactions submodel: systems of ODEs and PDEs are used to

describe the coagulation cascade;

(b) Cell submodel: discrete stochastic Cellular Potts Model (Graner and Glazier,

1992; Glazier and Graner, 1993) represents different types of cells as well as

describes cell–cell and platelet-injury adhesion, platelet activation, cell move-

ments, cell state changes, and platelet aggregation;

(c) Fibrin network submodel: extended discrete stochastic CPM includes ‘‘fibrin

elements,’’ which represent a small region occupied by polymerized fibrin.

(d) Flow submodel: incompressible Navier–Stokes (NS) equations and Darcy’s law

describe dynamics of viscous blood plasma.

The CPM for simulating blood clot formation consists of a list of generalized

cells on a lattice, a set of chemical diffusants and local rules based on experimental

observations describing cellular biological and physical behavior. Each platelet or

other blood cell is represented in the CPM by a cluster of lattice sites. Distribution of

multidimensional indices associated with lattice sites determines current system

configuration. The Metropolis algorithm, based on the Monte-Carlo Boltzmann

acceptance rule, is used to determine dynamics of the CPM. The effective CPM

energy mixes true energies, like platelet–platelet adhesion, and terms that mimic

energies, for example, the response of a cell to the chemical fields or to the flow as

well as area and volume constraints. Biochemical reactions as well as chemical

production are modeled on the membrane of each cell. (The details can be found

in (Xu et al., 2008, 2009a, 2009b, 2010).) Using this model blood clot development

was simulated within a 2D rectangular channel representing blood vessel (Kamocka

et al., 2010; Kim et al., 2011; Mu et al., 2009, 2010; Sweet et al., 2011; Xu et al.,

2009a, 2010, 2011). (See also Fig. 5.)
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IV. Study of the Role of the Fibrin Network

A. Experimental Materials and Methods

1. Injury Protocol and Visualization

Fluorescently labeled probes detecting platelets, fibrin, and plasma were injected

into anesthetized mice. Direct laser induced,injuries were made to the luminal

surface of the top of exposed mesenteric venules. Image data were acquired by

the sequential collection of Z-stacks enabling one to generate and analyze 3D

reconstructions of the developing thrombus. (The injury and imaging protocols

are described in detail in Kamocka et al. (2010).)

2. Image Analysis

Z-stacks obtained by multiphoton microscopy were analyzed using algorithms

described in (Mu et al., 2009, 2010). Briefly, algorithms determined thresholds of

each fluorescent signal and each pixelwas categorized as either containing (a) fibrin,

(b) platelets, (c) platelets and fibrin, or (d) ‘‘other material’’ (if signals for all probes,

including plasma, were below threshold). Algorithms grouped like contiguous vox-

els in the Z-stacks enabling one to define surfaces of subdomains as well as the entire

thrombus.

3. Results

Following laser-induced injury of mesenteric venules, thrombi were monitored by

multiphoton microscopy (Kamocka et al., 2010). Using image processing algo-

rithms (Mu et al., 2009, 2010), 3D reconstructions of the developing thrombus were

generated. The volume tracing in Fig. 1 indicates that the thrombus grows rapidly in

the first two to three structures, and then decreases in size reaching a stable volume

by the sixth to eighth structure (8–11 min). As the thrombus stabilizes, the compo-

sition of the thrombus surface changes from one primarily composed of platelets to

one composed mainly of fibrinogen. (See Fig. 1A.) These results suggested the

hypothesis that the accumulation of fibrin on the thrombus surface might provide

a self-limiting mechanism for thrombus growth.

B. Simulations Under Normal Conditions

To examine how fibrin elements affect the outcome of a simulation, we have used

different threshold thrombin concentrations required for fibrin polymerization.

Using a thrombin threshold (1 nM/mL) corresponding to thrombin concentrations

(Weisel and Nagaswami, 1992) that promote fibrin accumulation in experimental

thrombi and a probability (>80%), we simulated fibrin networks formation in the

thrombus.Useof lowprobability (<1%) resulted in thrombogenesiswithonly fewfibrin

elements forming. (See Section 5 for detailed description of themultiscale model.)
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Figure 2 compares the growth of simulated thrombi using normal and very high

thrombin concentrations required for fibrin generation. Using both conditions, resting

platelets adhere to the injury site are activated and can support surface-mediated

coagulation reactions. In proximity to TF in the vessel wall, coagulation is initiated

andmaintained on activated platelets in the developing thrombus generating thrombin.

Resting platelets in blood contacting the thrombusmay adhere and become activated in

response to released platelet activators and thrombin. However, under conditions in

which fibrinogen can readily be converted to fibrin, the simulation predicts rapid

generation of thrombin between 50 and 200 s, leading to the formation of fibrin

elements which cover the surface (Fig. 2). Although the concentration of thrombin

and platelet activators on the thrombus surface is sufficient for platelet activation, it

takes too long before activated platelets bind stably to fibrin to incorporate platelets

under flow. Eventually, the polymerized fibrin network is thick enough to impede the

diffusion of thrombin generated on platelets within the thrombus to reach the surface

[(Fig._2)TD$FIG]

Fig. 2 Simulated thrombus growth. The top panel represents the growth of the thrombus (left) and

accumulation of fibrin elements (right) in a simulation of thrombus growth in which the thrombin

concentration required for the generation of fibrin corresponds to values observed in wild-type animals

permitting normal formation of fibrin elements. The bottom panel represents the growth of the thrombus

(left) and accumulation of fibrin elements (right) in a simulation of thrombus growth in which fibrin

elements are generated with a very low (<1%) probability in the normal thrombin concentration. In the

absence of fibrin generation, few fibrin elements form but thrombus growth continues for 600 s (lower

left) compared to the case with normal fibrin generation (upper left) where growth stops at 200 s.
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[(Fig._3)TD$FIG]

Fig. 3 Thrombin distribution in a simulation of a developing thrombus. The color map shows con-

centration of thrombin in and around the thrombus at 60 s (top), 220 s (middle), and 600 s (bottom) after

injury. The thrombin concentration required for fibrin generation used in the simulation is the same as in

Fig. 2; top panel. The dashed blank line represents the boundary of the thrombus. The simulation includes

platelets but not other blood cells. The simulation indicates low thrombin concentration on the thrombus

surface after the thrombus stabilizes. (For color version of this figure, the reader is referred to the web

version of this book.)
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and the surface thrombin concentration falls (Fig. 3). By 500–600 s the thrombus is

stabilized as the surface thrombin concentration is too low to promote platelet recruit-

ment and to generate new fibrin elements (Fig. 4).

C. Challenges

In this chapter we explore a novel mechanism involving accumulation of fibrin on

the developing thrombus surface and limiting further growth. The chapter describes

an extension of the computational model of thrombogenesis (Kamocka et al., 2010;

Kim et al., 2011; Mu et al., 2009, 2010; Sweet et al., 2011; Xu et al., 2009a, 2010,

2011), which incorporates formation of ‘‘fibrin elements’’ to represent conversion of

fibrinogen into polymerized fibrin. This was motivated by experimental observa-

tions that thrombus stabilization was associated with increased fibrin accumulation

on the surface. Accumulation of the fibrin also increases the structural integrity of

the thrombus. However, simulations also show that it creates a barrier to blood borne

zymogens impeding the generation of thrombin. Additionally, fibrin elements

reduce diffusion of platelet activators and prevent thrombin generated on activated

platelets from reaching the surface limiting further platelet recruitment.

Furthermore, the adhesivity of resting platelets in blood to the thrombus surface

decreases as the percentage of the surface covered with fibrin increases.

The simulations are also consistent with observations of thrombus development in

fibrinogen-deficient mice. Unexpectedly, thrombi develop in fibrinogen knockouts

following ferric chloride, laser-induced, or Rose Bengal experiential injury models.

Thrombi are as large as in wild-type mice but are less stable undergoing initial

growth, embolization, and regrowth. The results are consistent with the hypothesis

that in the absence of fibrin, thrombus stability is reduced, but that thrombi retain the

ability to regrow for an extended time. However, platelet adhesion and signaling

events mediated by fibrinogen-GPIIbIIIa interactions are absent in fibrinogen-defi-

cient mice. Therefore, usage of fibrinogen mutants that retain normal GPIIbIIIa

binding but do not polymerize will enable one (Bowley et al., 2008; Bowley and

Lord, 2009) to more directly test the hypothesis that polymerized fibrin contributes

to the cessation of thrombus growth.

Mosesson et al. (2009) have generated transgenic mice enabling one to test the

effects of fibrin sequestration of thrombin. A naturally occurring splice variant of

[(Fig._4)TD$FIG]

Fig. 4 Time sequence of the simulated wild-type clot structurewith fibrin elements formation. Colors:

inactivated platelets are red, activated platelets are blue and fibrin elements are black. (A) time = 60 s; (B)

time = 220 s; (C) time = 600 s. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this book.)
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human gamma fibrinogen (g 0-fib) generates an isoform containing a COOH-termi-

nal amino acid sequence sequestering thrombin. The analogous murine splice var-

iant does not contain the thrombin-binding sequence. Mosesson et al. (2009) show

impaired thrombus development in mice expressing human g 0-fibrinogen com-

pared to thrombus development in control mice. These results suggest that ability

of fibrin to sequester and reduce the diffusion of thrombin inhibits thrombus growth

consistent with the results presented in this manuscript.

Themultiscale computational model describing formation of the fibrin network in

the form of fibrin elements requires only thrombin concentration on the computa-

tional grid to remain at a level over threshold for a time required for fibrin element

generation (10 s for wild-type case) (Weisel and Nagaswami, 1992), which is a

highly simplification of real scenario. Adhesivity and porosity of the fibrin elements

are chosen using estimates from experimental data in the literature. At this point,

we do not model molecular dynamics of fibrin polymerization or the structure of the

fiber network within the fibrin element. Similarly, the model does not include

intracellular signaling pathways regulating the behavior of platelets in response to

platelet activators (Purvis et al., 2008). Modeling polymerization in detail and

integrating polymerization into a multiscale model to simulate thrombus develop-

ment is a considerable challenge because it requires modeling events (or compo-

nents) from molecular to micron structure scales.

V. Multiscale Model of Thrombus Development
with Fibrin Network Formation

A. Blood Flow Submodel

Blood clot is treated in this chapter as a porousmedium to account for the transport

property of blood flow. In the case of vein thrombus formation studied in the present

chapter, the Reynolds number of the blood flow is�O(1). Therefore, we describe the

blood flowwithin the clot by Darcy’s law and the flow elsewhere by Stokes equation.

Complete flow sub-model consists of the combination of the unsteady Stokes equa-

tions (1) and Darcy’s law (2). Namely, we solve Stokes equations outside the clot, use

Darcy’s law within the clot and couple them using domain decomposition approach

@u

@t
¼ � 1

r
rpþ nr2u

r � u ¼ 0

ð1Þ

u ¼ � k

n
rp ð2Þ

where r is the fluid density, u and p are volume-averaged velocity and pressure,

respectively, and n is the shear viscosity. In our computations, the permeability k
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varies from 10�8 to 10�11 cm2 to examine the effects of permeability on the clot size.

Up to date, no specific permeability data are available for actual platelet-contracted,

flow-compacted blood clots, which contain layers of fibrin, platelets, and red blood

cells (Diamond and Anand, 1993). In coarse fibrin gels of clotted plasma, the

permeability k is about 10�8 cm2; whereas permeability of fine fibrin gels of clotted

plasma is about 10�10 cm2. The effective pore diameter is on the order of a few

microns in coarse gels of clotted plasma; whereas the pore diameter is on the order of

10�1 mm in fine gels. In flow-compacted coarse fibrin (porosity�0.75), the specific

permeability may be as low as 10�11 cm2 or less. See (Diamond and Anand, 1993)

for a summary of these type measurements.

B. Coagulation Pathway Submodel

We utilize the coagulation model introduced in (Xu et al., 2010) which includes

both solution-phase and membrane-phase reactions with concentrations of mem-

brane-binding sites being limited and treated as control variables using method

introduced in (Kuharsky and Fogelson, 2001). The PDEs describe rates of change

of the concentration of each solution-phase factor or complex, and the ODEs

describe rates of change of the concentration of each membrane-phase factor or

complex. Activated platelets provide membrane-binding sites where surface-bind-

ing zymogens and enzymes react.

C. ‘‘Fibrin Element’’ Submodel

We expand the multiscale model (Xu et al., 2008, 2009a, 2009b, 2010) by

introducing ‘‘fibrin elements,’’ which are CPM lattice nodes representing polymer-

ized fibrin (seeXu et al. (2010), Xu et al. (2009a), Xu et al. (2008), Xu et al. (2009b))

for details about CPM biological cell representation). A fibrin element can adhere to

other fibrin elements, vessel wall, and activated or resting platelets. At each simu-

lation time step we compute thrombin production on the surface of each individual

activated platelet and its distribution over space and time. Based on the thrombin

concentration and distribution, we compute fibrin generation. When fibrin concen-

tration remains higher than a threshold value at a lattice cite for a period of time

corresponding to the time required to promote fibrin polymerization in vitro, we

introduce with a certain probability a special type of CPM ‘‘cell,’’ which we call

fibrin element? The porosity of the fibrin elements affects advection and diffusion of

coagulation factors and diffusants released by platelets. The model does not include

molecular details of fibrin polymerization and network formation because such

computational tools are unavailable at this time. The internal structure of the fibrin

network is neglected as well. Nevertheless, by dynamically introducing ‘‘fibrin

elements,’’ one can simulate general role played by fibrin network in thrombogen-

esis. The algorithm for employing CPM to model formation of fibrin network

consists of the following steps:
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(1) Compute concentration of thrombin using coagulation pathway submodel;

(2) Estimate concentration of polymerized fibrinogen converted by thrombin

from.

@f

@t
þ u � rf ¼ Dfr2f� kf½II �af ð3Þ

dF

dt
¼ kf½II �af ð4Þ

where [II]a is the concentration of the thrombin; f is the concentration of

fibrinogen; F is the concentration of fibrin and kf is the fibrin production

(polymerization) rate. Note that Eq. (4) does not contain an advection term

due to the fact that fibrin grows within the platelet aggregate where the flow

velocity is almost zero;

(3) Introduce with a probability pf ‘‘fibrin elements’’ to represent space filled with

the fibrin network. When F around platelet (or already created ‘‘fibrin ele-

ments’’) is higher than a specified threshold value for a period of time repre-

senting time it takes fibrinogen to polymerize, a new fibrin cell is created near

the platelet or the existing ‘‘fibrin cell’’. For thewild-type case, the probability is

set to pf > 0.8. We use a probability (pf < 0.01) to simulate thrombogenesis

where few fibrin elements form.

Other simplifications used in the model are as follows:

� While resting platelets are discoid, initially after activation they become spherical

with irregular protrusions. With the extension of filopodia, which attaches to the

matrix components of the thrombus, platelets spread and flatten. Additionally,

entrapped platelets can retract the fibrin to about a tenth of the original volume by

squeezing plasma from the clot. We neglect in the current model these effects. We

do take into account the permeability and porosity of the clot as we study the role

of the fiber network.
� Platelet–platelet connection through fibrin or fibrinogen is modeled by changing

adhesion between platelets. We do not explicitly model the fiber that bridges two

platelets.
� Fibrinolysis is not taken into consideration. This is justified by the fact that (a) we

study the initial clot formation process on a time scale of several minutes; (b) for

moderately sized clots, substantial fibrinolysis does not occur on a time scale of

seconds or a few minutes (Diamond and Anand, 1993).

D. Numerical Schemes Used for Running Simulations

The model system is solved in a 2D rectangular domain representing a small

section of the blood vessel (see also Fig. 5). New inactivated platelets are

introduced in the simulation domain from the inlet on one side of the vessel

14. Multiscale Model of Fibrin Accumulation on the Blood Clot Surface and Platelet Dynamics 379



lumen domain at a specified rate and are carried by the flow to the outlet on the

other side.

An injury site is set in the middle of the lower boundary. In our model the injury

site is represented by CPM cells with specific positions in space to which platelets

can adhere and get activated. The adhesive interactions between the injury cells and

resting platelets in our model correspond to the adhesion of resting platelets to the

subendothelial matrix that is exposed to blood following injury. In addition we

assume the injury cells expose TF that can complex with FVIIa in the flowing blood

to initiate the extrinsic pathway of coagulation.

At each simulation time step the following elements of the algorithm are

performed:

� Navier–Stokes equations andDarcy’s lawequation for the subdomain identified as

a blood clot are solved resulting in an update of the blood flow field in the whole

computational domain.
� Then convection-reaction-diffusion equations and ODEs, which model the coag-

ulation reactions, are solved to evolve the biochemical coagulation species in

space and time.
� The soluble fibrinogen concentration Eq. (3) is solved to update fibrinogen

distribution in space.
� Next, the CPM is used to update positions and status of the blood cells. For

example, a resting platelet can be activated by thrombin or by touching activated

platelet.
� Then fibrin polymerization Eq. (4) is solved to simulate production of fibrin

monomers.
� Fibrin monomer concentration is checked at each lattice cite. If the concentration

at a lattice cite adjacent to the developing clot stays above the threshold for a time

period that it takes fibrin monomers to form cross links resulting in fiber network,

a ‘‘fiber element’’ is created with certain probability at the lattice cite to represent

the polymerized fiber network.

[(Fig._5)TD$FIG]

Fig. 5 Snapshot of a simulated clot. Colors: fibrin elements are black, blood cells are grey, platelets

connected by fibrin (ogen) or vWF are blue, and inactivated platelets are red. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this book.)
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VI. GPU Implementation of the Simulation of the
Platelet–Blood Flow Interaction

In what follows we describe an implementation of 3D simulations of the platelet

dynamics at low Reynolds numbers in linear flow (Sweet et al., 2011) on the GPUs.

We review in subsections 6.1 and 6.2 the multiscale platelet-flow interaction model

(Sweet et al., 2011) consisting of two submodels: (1) a subcellular element model

(Newman, 2005, 2007, 2008) (SCEM) for representing platelets; and (2) a LB

submodel for describing fluid dynamics of plasma in a vessel. The Langevin equa-

tion approach developed in (Sweet et al., 2011) is used to couple SCEMwith the LB.

Subsection 6.3 describes the GPU algorithm.

A. Subcellular Element Model

The SCEM of a platelet uses N = 53 elements to represent a cell. These elements

(called subcellular elements (SCEs) or nodes) are connected by bonds, which form

the structure of the cell. SCEs are arranged in five layers of ten SCEs each, as well

top and bottom layers made of one SCE each. One SCE is in the center of the cell.We

assume that individual platelet has spherical shape with initially equal bond lengths

between the center node and all others. (See Fig. 6.) All SCEs are bonded to the

center node as well as to their nearest neighbors, seven bonds per element, except for

the central node which bonds with all other elements with a total of 52 bonds. Each

[(Fig._6)TD$FIG]

Fig. 6 Schematic diagram of the SCEM representation of an inactivated platelet. (For color version of

this figure, the reader is referred to the web version of this book.)
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bond is a spring of target length (determined by the equilibrium length lij) and bond

strength (determined by the spring constant kij). Thus, the associated potential

energy function for nodes i and j is as follows

Uij ¼ kij

2
ðjjrijjj � lijÞ2 ð5Þ

where rij = xi � xj is the position vector difference between nodes i and j. The force

vector corresponding to Ue
ij and acting on nodes i and j is

Fe
ij ¼ �rxUijðxÞ ¼ �kijðjjrijjj � lijÞr̂ij ð6Þ

Here rij is a unit vector and r̂ij ¼ ðrij=jjrijjjÞ. The platelet’s shape and movement is

determined entirely by the forces acting on the elements. Bonds deviating from their

target length create forces acting on the two adjacent elements. Similarly, force

created by fluid acts on the elements of a cell.

B. Coupled LB Equation and SCEM

Coupling between the flow and the SCEM is implemented by using one-way

Langevin method (Sweet et al., 2011). We assume that movements of cells do not

disturb the flow field. The LB equation is used to model the fluid flow and is solved

by using the D3Q19 method. We simulate the flow in a rectangular channel with

dimensions 50 mm � 50 mm � 600 mm. The lattice spacing is 1 mm. The platelet

dimensions are about 2–4 mm. The simulation is initialized with the platelets posi-

tioned near the influx of the channel. The initial flow condition is set to satisfy a

Pouiselle flow. The no-slip condition is enforced along the boundary of the channel.

A flux boundary condition is maintained at the inlet and outlet boundary.

Motion of a cell is modeled as movement of a particle in the fluid flow due to

collisions with the molecules of the fluid. Here we briefly summarize the method

developed in (Sweet et al., 2011). Given a system of N particles represented by the

position vector x, the following modified Langevin equation describes the motion of

a cell

M €x ¼ FðxÞ � gð _x � dvf Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gNkT

p
Z ð7Þ

Here Z is a vector of normally distributed random variables and M is a diagonal

matrix of particle masses. Force vector is given byF(x) = � r U(x) (see Eq. (6)). k is

the Boltzmann coefficient, T is the temperature and g is the friction coefficient. dvf,

the flow perturbation vector, is defined by vf = vf� h vf i, where vf and its average

hvfi is defined as follows. The flow velocity vfn at the nth SCE (1 � n � N) is

determined by taking the weighted average (based on distance) of the surrounding

LB nodes for each of the x, y, and z directions. The vector of the flow velocity in the

Langevin equation is vf ¼ v
f
1; . . . ; v

f
N

h iT
. Therefore, observed velocity vo of the

SCEs is defined by vo ¼ _x þ hvf i. A Langevin Leapfrog method (Sweet et al., 2011)

is used to solve Eq. (7).
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C. GPU Implementation of the Multiscale Model

Software toolkit CUDA (Nvidia CUDA, in press) provided by Nvidia has been

used for implementing multiscale model of thrombus formation on the GPU as

follows. Simulation code combines C-language with the CUDA computing lan-

guage. The CPU or host-side of the program handles the initialization and input/

output for the simulation, whereas the GPU or device-side of the program carries out

all calculations. EVGA GeForce GTX 480(Fermi) video card is used for running

simulations.We describe below single-GPU implementation limited by the available

GPU memory.

In what follows, we describe details of implementing the SCEM and LB equation

model on GPUs as well as Langevin coupling. Each submodel has independent data

arrays that store the necessary information. For the SCEM, positions, velocities, and

forces acting on each SCE are stored as 2D arrays similar to (Christley et al., 2010),

whereas for the LB equation, three components of the fluid-velocity (ux, uy, uz),

density (r), and obstacle location are each stored in 3D arrays.

Current implementation of the 3DQ19 method of solving LB equation on GPU

uses an approach similar to the ‘‘ping-pong’’ memory allocation scheme from

(Myre et al., 2011), which uses two separate fluid-packet matrices for managing

the data between the collision and streaming steps. During the collision step, fluid-

input-matrix (fIN) is used for collision algorithm and assigns the results to the fluid-

output-matrix (fOUT). Then, on the streaming step, the fOUT is used as input for the

streaming algorithm that assigns the results back to the fIN for the next step. There

are two sets of 19 fluid-vector 3D arrays that manage the fluid packet collision and

streaming processes. Various 3D arrays for the LB are determined by the LB grid

size. The LB equation submodel requires approximately 1000 times the amount of

memory needed for the SCEM. The 43 arrays (19 fIN, 19 fOUT, r, ux, uy, uz, and

obstacle) for 50 � 50 � 600 LB nodes at 4 bytes (float) or 8 bytes (double) results in

246MB or 492MB ofmemory use, respectively. For the SCEM, the 12 arrays (force,

velocity, and position in 3D) for 100 platelets containing 53 SCE giving 248 kB in

floating point precision or 496 kB in double precision. Even 1000 platelets in double

precision would only need �5 MB of memory. The available memory on the GPUs

used for our code development is about 1.5 GB. Although LB requires considerable

amount of memory, the algorithm is highly parallel and fits well to the GPU archi-

tecture. In the future if a larger LB system is required that exceeds the memory

available on a single GPU, then a straightforward partitioning of the algorithm across

multiple GPUs can be devised.

During a single simulation time-step, we first solve LB equation and then the

Langevin Leapfrog integration scheme is executed. For each SCE, the half-time step

velocity is updated based on the force calculated for that element from previous step.

Second, the position of the element is updated based on the half-time step velocity.

Third, the force is calculated based on the updated positions of the elements. Finally,

the half-time step velocity is updated with the new force values and the velocity for

the next time step is determined.
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For a serial code to implement the SCEM, a number of functions sequentially step

through every element to update the values of velocity, force, and position. Serial

codes must access every element, one after another, in order to read either read the

velocity and write a new position or read the force and write a new velocity value.

When writing new force values from the current position of SCEs, one element must

read multiple positions of other SCEs. Most schemes take advantage of Newton’s

third law that states the force acting on one element by a second element is equal in

magnitude and opposite in direction to the force acting on the second element by

the first element. Therefore, force calculation functions only need to calculate the

distance of separation between two elements once in order to determine the force

acting on each element due to the pair-wise interaction. In order to take advantage of

GPU parallelization, which requires independent accessing and writing to memory

by the parallel threads, the interaction between elements is handled in a different

manner. We assign GPU-threads (or independent tasks) to each SCE during the

various kernels (or GPU functions) responsible for updating position, velocity,

and force. Groups of GPU-threads are processed simultaneously. To update a

SCE’s velocity (position), individual GPU-threadswill use the current force (velocity)

values held in one particular SCE’s memory location within a force (velocity) data

array. The GPU-threads then write the updated velocity (position) to the SCE’s

memory location in the velocity (position) data array. These updates can be done in

parallel because velocity and position updates for individual SCEs are completely

independent of the velocity and position of other elements. (The number of simulta-

neous GPU-threads is determined by the hardware.)

Force update for each element requires positions of multiple SCEs that results in

multiple GPU-threads needing to access the same memory locations for the position

data. This can lead to some fraction of memory reads to be done in serial, but does

not lead to errors in calculations. However, our code is written so that each GPU-

thread can only write updated force values to a single SCE. The force acting on each

SCE for a given simulation step is the summation of multiple pair-wise interactions.

If multiple GPU-threads were allowed to update this sum, then it would be possible,

in theory, for a GPU-thread to use an incorrect value for the sum. This could happen

if another GPU-thread wrote a new force value to a particular SCE in between the

time another GPU-thread read the force value and attempted to update that value.

This limitation prevents taking advantage of Newton’s third law and leads to addi-

tional calculations for each SCE. For instance, the distance between two SCE would

have to be calculated twice, once for each GPU-thread responsible for the two

connected SCEs. However, the additional speed up gain through the GPU paralle-

lization justifies the additional calculations.

D. Simulation Results

We simulated a channel with two million LB nodes as a 50� 50� 600 lattice for a

single-component single-phase (scsp) fluid using GPU card described above. The

code, which could be further optimized, is able to perform�120 millions lattice-node
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updates per second (MLUPS). Code performance of 418 MLUPS has been achieved

in (Myre et al., 2011) for the ‘‘ping-pong’’ implementation. Therefore, further opti-

mization of our code is possible. Additional increase in the performance of our

existing code can be achieved by optimizing memory access through the arrangement

of lattice-nodes into memory blocks on the GPU. We expect to achieve an approx-

imately two- to three-fold speed up by assigning lattice nodes to thread blocks in a

manner that allows for a better coalesced memory access. This is done in

(Myre et al., 2011) by arranging lattice-nodes into single-node columns on thread

blocks rather than in cubic or rectangular volumes as is implemented in our

current code. We ran simulations to test the performance of coupled LB equation

and SCEM simulation code over a period of 0.5 s with 50,000 time steps (Table I).

The second column shows the wall-clock time spent on individual simulation. The

third column shows the time spent on GPU calculations; while the last column

shows the time spent on operating system tasks such as memory transfers, file I/O

and CPU-GPU context switching. Note that the simulation must periodically copy

data from the GPU memory to the CPU memory and then save that data into

output files so the results can be analyzed and visualized. Column 4 of Table I

indicates that this noncomputational data transfer is only a small fraction of the

total time (�2%), especially for large 3D arrays.

VII. Concluding Remarks

A multiscale modeling framework is extended and used in this chapter for

studying fibrin accumulation on the surface of a forming thrombus. Namely, previ-

ously introduced multiscale model (Kamocka et al., 2010; Kim et al., 2011; Mu

et al., 2009, 2010; Sweet et al., 2011; Xu et al., 2009a, 2010, 2011) is refined to

include a phenomenological submodel of a polymerized fibrin network formation

represented by a set of ‘‘fibrin elements.’’ Simulations predict that the development

of a polymerized fibrin network coating the surface of a thrombus can inhibit

continued thrombus growth, which is consistent with the hypothesis suggested by

our experiments. This study suggests a possible and previously neglected mecha-

nism regulating the size of a developed thrombus. Further combined experimental

Table I
Execution time of coupled LB equation and SCEM by cell numbers

Number of cells Real time (s) User time (s) System time (s)

1 609.971 600.981 8.990

25 703.968 689.070 10.770

50 1045.715 1029.590 9.770

100 1772.029 1586.370 11.660

14. Multiscale Model of Fibrin Accumulation on the Blood Clot Surface and Platelet Dynamics 385



and simulation study is needed to confirm current simulation findings. For instance,

studying how resting-state and activated platelets adhere to fibrin network, how

coagulation factors transport by diffusion and blood flow convection through fibrin

network will provide new insight into different roles of the fibrin network.

We also present a GPU-based implementation of a platelet-flow interaction model

introduced in (Sweet et al., 2011). Preliminary simulations using this GPU-based

implementation show a significant performance increase. However, current platelet-

flow interaction model cannot be used at this time to simulate all processes involved

in blood clot formation. To make the model more biologically relevant we are

currently working on adding coagulation pathways, platelet activation and adhesion

submodels to the multiscale modeling environment.

Although simulations of thrombogenesis involve many simplifications, they are

starting to provide quantitative descriptions of thrombus development and are

beginning to predict results of experimental manipulations that were not obvious

solely from earlier experimental data. Continued development of multiscale

approaches combining experiments with biologically relevant simulations will pro-

vide biologists with an import tool to perform simulation in silico to generate novel

hypotheses that can be tested experimentally. Finally, the ability to predict the out-

comes of simultaneous variation at multiple hemostatic components will have

significant biomedical value possibly enabling one to more accurately evaluate

hemorrhagic or thrombotic risk for individual patients
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diagram, 255

Experimentation-aided model

development, 4

architectural revision, 8–11

calcium module, 7

cAMP modules, 7–8

model simulations, 12–15

module development, 7

PKA modules, 7, 8

template identification, 5–6

Exploratory modeling technique, 245

Extracellular matrix (ECM), 228

architecture, 159

deposition, 140

fibers, 159

alignment, 153

fibronectin (Fn)

proteins, 155, 228

F

Fibrillar collagen microenvironment, 170

Fibrin elements formation, 376, 378,

379

Fibrin network formation

thrombus development, multiscale

model of, 377–380

blood flow submodel, 377–378

coagulation pathway submodel, 378

fibrin element submodel, 378–379

running simulations, numerical schemes,

379–380

Fibrinogen-GPIIbIIIa interactions, 376

Fibroblasts, 152, 157

fieldData object, 206

fIN. See Fluid-input- matrix (fIN)

Fingerprint, 148

Fluid-input- matrix (fIN), 383

Fluid-output-matrix (fOUT), 383

Fluorescence-based microscope

imaging methods, 197

Fluorescent microscope images, 186

Fluorescent proteins (FPs), 291

F€orster resonance energy transfer

(FRET), 5

based biosensor, 5, 8, 12

cAMP, 216

Forward-backward algorithm, 280

Fourier’s method, 148

fOUT. See Fluid-output-matrix (fOUT)

FPs. See Fluorescent proteins (FPs)

FRET. See F€orster resonance energy
transfer (FRET)

FUS1-lacZ reporter, 71

G

Gaggle-enabled tools, 33

Gaggle visualization, analysis framework, 27

Galaxy Zoo, 302

Gaussian blur, 313

Gaussian distribution, 184, 186

Gaussian noise, 297

reduction, 309

removal methods, 297

GEFs. See Guanine exchange factors (GEFs)

Gene-centric techniques, 31, 39

Gene fusion, 75

Gene of interest’s (GOI), 291

initiating ATG, 292

3’UTR, 292

Gene Ontology enrichment analysis, 72

Generalized hidden Markov models

(gHMMs), 266, 280

Genetic-knockout experiments, 24

Genetic RNs, automatic learning of, 22

Genome ontology (GO), 180

Boolean vector, 190

cellular component ontology, 181

Genome-wide chromatin immunoprecipitation

(ChIP) studies, 265

Genomic DNase I hypersensitivity data, 275

GEO

accession number, 48

human immune cell experimental data, 33

human microarray data, 47

g0-fib. See Human gamma fibrinogen (g0-fib)
GFP reporter. See Green fluorescent protein (GFP)

reporter

GGH global parameters, 335

GGH modeling. See Glazier-Graner-Hogeweg

(GGH) modeling

gHMMs. See Generalized hidden Markov models

(gHMMs)

Giant cells, 289

Gibson–Bruck variation, 200

Gillespie algorithm, 239

Girvan–Newman algorithm, 72

Glazier-Graner-Hogeweg (GGH) modeling,

326–331

canonical formulation of, 331

2D square cell lattice, 329

GO. See Genome ontology (GO)

GOI. See Gene of interest’s (GOI)
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GPIba, 370

GPU algorithm, 380

Gradient-based trust-region algorithm, 279

Green fluorescent protein (GFP) reporter, 126

Green’s tensor, 146

Guanine exchange factors (GEFs), 227

GUI, 333

H

Hairball, 25

HeLa cells, 185

Hidden Markov model (HMM), 279

Hill function, 130

HMM. See Hidden Markov model (HMM)

Human gamma fibrinogen (g’-fib), 376

I

ILOG CPLEX (IBM) optimization, 69

IMMGEN. See Immunological Genome Project

(IMMGEN)

IMMGEN data set, 48

Immunological Genome Project (IMMGEN), 33

Independent random number (IRN) approach, 133

Inference pipeline, 26

Inf models, 31

IP3 receptors (IP3Rs), 7

IP3Rs. See IP3 receptors (IP3Rs)

IRN approach. See Independent random number

(IRN) approach

Isostatic perturbation vector, 90, 91

ITGB4, 1-hop network, 37, 38

J

jacobian command, 98

Jacobian matrix, 90, 102, 103

K

KEGG PATHWAY database, 59

Kinetic Monte Carlo algorithms, 122

Kinetic rate constants, 89, 92, 101, 102

Kronecker delta, 144

L

Lamella (LM), 225

LP boundary, 226

Lamellipodium (LP), 225

Langevin coupling, 383

Langevin Leapfrog integration scheme, 383

Langevin method, 382

Large deformation diffeomorphic metric mapping

(LDDMM) framework, 185

Large deformation metric mapping, distance

determination, 185

Laser scanning confocal microscopy (LSCM), 287

gene expression patterns, 287

images acquired, 296

for live imaging, 296

Lattice Boltzmann (LB) equation, 370

LB equation. See Lattice Boltzmann (LB) equation

Leapfrog method, 382

LIBTRC software package, 168

Linear noise approximation (LNA), 112, 126

Live-cell microscopy, adhesion dynamics, 225

LM. See Lamella (LM)

LNA. See Linear noise approximation (LNA)

Local excitation, global inhibition (LEGI)

model, 197

Local polynomial regression (LPR), 258

Low-level segmentation, 316

LP. See Lamellipodium (LP)

LPR. See Local polynomial regression (LPR)

LSCM. See Laser scanning confocal microscopy

(LSCM)

Lyapunov equation, 123

Lysosomal protein LAMP2, 189

M

MAPK. See Mitogen-activated protein kinase

(MAPK)

Markov chain, 115

for chemical kinetics, 115

probability for, 116

state transitions, 115

Markov model, 267, 273

Markov process, 119

Mass action models, 83

Mass fluctuations kinetics (MFK), 128

Mass spectrometry (MS) techniques, 58

MathModel workspace, 209

Matlab, 96, 102

MCell, 180

MCS. See Monte Carlo Step (MCS)

MDA-MB-231 metastatic breast cancer cell, 154

MDCK epithelial cells, 157

Mdm2 synthesis, 92

homeostatic flux of, 106, 107

rate constants, 98

steady-state abundance of, 93

Metabolomic data, 38

Metropolis algorithm, 329, 372

MFK. See Mass fluctuations kinetics (MFK)

394 Index



MI-based method, 44

Microarray technologies, development of, 58

Microfabricated postarray detection systems

(mPADs), 150

Microtubule generative model, inverse modeling

approach overview, 188

MilliQ water, 161

MIN6 pancreatic b-cell

intracellular calcium, experimental

measurements of, 6

Mitochondria, 182

Mitogen-activated protein kinase (MAPK), 214

activation, 216

cascade, 70

Model-building process, 4

architectural revision, 4

experimentation-aided model development, 4

architectural revision, 8–11

calcium module, 7

cAMP modules, 7–8

model simulations, 4, 12–15

module development, 4, 7

PKA modules, 8

template identification, 5–6

principles of, 2

signaling systems, mathematical models, 3

template identification, 4

Molecular noise. See Cell-to-cell variability

Molecular species, flux density of, 207

Monte-Carlo Boltzmann acceptance rule, 372

Monte Carlo procedure, 41

Monte Carlo (SSA) simulations, 133

Monte Carlo Step (MCS), 329

N index-copy attempts, 329

vascular tumor simulation, 355

mouse ENCODE projects, 65

mPAD technology, 150

mRNA expression data, 22, 65

mRNA molecule, 117

mRNA node, 67

MScM. See Multi-species cMonkey (MScM)

MStechniques.SeeMassspectrometry(MS) techniques

Multi-species cMonkey (MScM), 26, 28

Mutual information (MI)-based methods, 28

Myosin deactivation, 238

N

NALEDE estimator. See Nonparametric adaptive

lasso exterior derivative estimator

(NALEDE) estimator

Nascent adhesions, 226

Natural biopolymer matrices, use of, 152

Navier–Stokes equations, 380

NEDE. See Nonparametric exterior derivative

estimator (NEDE)

Nernst–Planck flux equation, 198

NetworkAnalyzer, 32

Network-centric techniques, 31

Network optimization, 61

computational methods, 61

interactions, 62

node penalties, 65–67

practical advice, 68–70

implementation, 69–70

parameters, 68–69

probabilistic interactome, 64

sensitivity analysis, 67–68

transcription factor to mRNA target relationships,

65

work-flow diagram, 62

Neuronal cells, cAMP signaling, 213

first unexpected model prediction, 216–217

initial hypothesis

approach, 214

creating/testing, 214–216

more unexpected model predictions, 217–218

Newton’s third law, 384

NLS-AKAR. See Nuclear localized AKAR

(NLS-AKAR)

NODE models. See Nonparametric exterior

derivative estimation Ordinary Differential

Equation (NODE) models

Noise

biochemical, 112, 113

gene expression, 125, 126

Nonlocal means scheme, 310

Nonparametric adaptive lasso exterior derivative

estimator (NALEDE) estimator, 251

Comb diagram building, 258–259

to expression data, 255

NODE model, 256, 258, 259

Nonparametric exterior derivative estimation

Ordinary Differential Equation (NODE)

models, 244, 248

advantage of, 245

biological insights

network structure hypotheses, 254–256

temporal dynamics, importance, 252–253

transcription factors, concentration-dependent

effects, 253–254

building, 256–258

challenges, 256

computational methods, 256
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Drosophila embryo data, 245

NEDE estimator, comparison of, 250

overview of, 245, 246

assumptions, 246–248

experimental data, 246

interpretation, 248–249

network selection, extension for, 251

statistical improvements, 249–250

spatial-correlation model, comparison of, 253

Nonparametric exterior derivative estimator

(NEDE), 249, 250, 256, 258, 259

Nonparametric variable selection, 243–259

Notch activity, 356

Nuclear localized AKAR (NLS-AKAR)

representative time courses of, 15

Nuclear membrane, mathematical models, 199

O

ODE model. See Ordinary differential equation

(ODE) model

Open reading frame (ORF), 291

Ordinary differential equation (ODE) model, 3, 10,

28, 29, 114, 200, 246, 330

assumptions, 29

gene expression, 44

M biochemical reactions, 126

solver, 210

ORF. See Open reading frame (ORF)

Organelles, cellular distributions of, 202

P

p21-activated kinase (PAK)

deactivation, 239

phosphorylates paxillin, 227

Rac-activated, 236

p53 activation, 91

schematic of, 85

PA gels. See Polyacrylamide (PA) gels

PAK. See p21-activated kinase (PAK)

Partial differential equations (PDEs), 114, 198

numerical solution of, 209

Particle image velocimetry (PIV), 149

Particle tracking velocimetry (PTV), 149

Paxillin dephosphorylation on tyrosine, 238

Paxillin phosphorylation, 238

PBPKmodels. See Physics-based pharmacokinetic

(PBPK) models

PBS. See Phosphate-buffered saline (PBS)

PCST. See Prize-collecting Steiner tree (PCST)

PDE4 inhibitor, 217

PDEs. See Partial differential equations (PDEs)

PDMS gels. See Polydimethylsiloxane

(PDMS) gels

p53 flux, 94

effect of, 94

homeostatic flux of, 106, 107

precise tuning of, 95

Phosphate-buffered saline (PBS), 160

Phosphorylated state mitogen-activated protein

kinase (P-MAPK) imaging, 214, 216, 217

Phosphorylation, 129

Photomultiplier tube (PMT), 170, 305

Physics-based pharmacokinetic (PBPK) models,

356

Ping-pong memory allocation scheme, 383

PIV. See Particle image velocimetry (PIV)

PKA modules. See Protein kinase A (PKA)

modules

Plasma membranes, 312, 315

Platelet–blood flow interaction

simulation, GPU implementation of, 381–385

coupled LB equation, 382

multiscale model, 383–384

SCEM, 382

simulation results, 384–385

subcellular element model, 381–382

Platelet ESAM, 371

Platelet–platelet adhesion, 372

P-MAPK imaging. See Phosphorylated state

mitogen-activated protein kinase

(P-MAPK) imaging

p53 model, 97

PMT. See Photomultiplier tube (PMT)

Poisson noise, 296

Poisson’s ratio, 144

Polyacrylamide (PA) gels, 149, 155, 160, 162

hydrogels, 141

studies, 161

substrate, 144

Young’s modulus of, 164

Polyacrylamide gel substrates, 142

Polydimethylsiloxane (PDMS) gels, 150, 156

Polymerized fibrin network, 374

Polynomial regression (PR), 258

Position-specific scoring matrices (PSSM), 65

Position weight matrices (PWMs), 65, 267, 279

Posteriori, 2

PR. See Polynomial regression (PR)

Prediction accuracy, degrees of model

complexity, 272

p53 response, 92

Prior/posterior probabilities, 280
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Prize-collecting Steiner tree (PCST)

amplification, 23

biological insights, 70

full network, properties, 70–72

subnetwork/modules, biological

functions, 72

transcription factors, quantifying, 72–74

disadvantage of, 76

network, 75

network optimization, 62–64

pheromone response network, 71

protein components of, 63

problem, 60

solution, 68, 70, 71

mRNA expression, 73

Pro-Ala(9)-Pro linker sequence, 293

Protein C (PC) anticoagulant pathway, 371

Protein distributions, subcellular organization.

See also Subcellular organization/protein

distribution, image-derived models of

Boolean vectors, 190

Dirichlet distributions, 190–191

Protein–DNA binding, 27, 244, 276

high-resolution predictions of, 271

Protein–DNA interactions, thermodynamic

modeling of, 278

Protein kinase A (PKA) modules

cAMP degradation, 214

experimentation-aided model development, 7

feedback, 10

hypothetical circuit, 13

membrane depolarization, 12

molecular mechanisms, 14

nuclear activity, 15

nucleus-targeted version of, 15

pegging, 13

simulations of, 8, 14, 15

Protein kinase A signaling, 5

Protein nodes, 62

Protein–protein interactions

databases, 60

high-throughput experimental mapping of, 59

Protein transcription factors, 248

Protrusion/adhesion phenotypes, characterization

of, 230

PSSM. See Position-specific scoring matrices

(PSSM)

PTP, MAPK inhibition, 217

PTV. See Particle tracking velocimetry (PTV)

PWMs. See Position weight matrices (PWMs)

py-substitution, 86, 88, 89, 91, 92, 105

Python script, 69, 360

Q

Qualitative models, 265

of DNA binding sites, 265, 279

Quantitative cellular resolution 3D gene expression,

247

Quantitative computational approaches, 117

Quantitative models of DNA binding, 279

R

Rac diffuses, 229, 230, 238

Rac/PAK signaling, 234

Rac signaling, 236

Rate constants, 97

Rectilinear motion, 148

Region of interest (ROI), 294

Registration error, 148

Regulatory biochemical networks, 7

Regulatory networks (RNs), 20

biological insights, 33–38

cell differentiation/disease progression, 20

computational methods

cMonkey bicluster model, 41–42

cMonkey integrative biclustering, 40

data preparation, 40

enrichment analysis, 43

expression data, 40

integrating new data types, 43

multi-species cMonkey, 42

network data, 41

sequence data, 40–41

differential-equation-based methods, 29

environmental factors (EFs), 21

estimating co-regulated genes prior to network

inference, 22–24

experimental design, 21–22

inferelator pipeline

inferelator 1.0, 45–46

network inference, 46–47

problem setup, 43–44

time-lagged context likelihood of relatedness,

44–45

visualizing biological networks, 47–49

model/algorithm, overview of, 25

biclustering, 26–28

Gaggle tools, 33

network visualization, 31–33

regulatory network inference, 28–31

spatial and temporal, 243–259

network inference methods, validation of, 24–25

open challenges, 38

integrating new data types, 38–39
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validation, 39

visualization, 39

transcription factors (TFs), 21

validation, 49–50

visualization, 25

Regulatory protein expression, 244

Regulatory sequence analysis tools (RSAT), 40

RGD peptide, 163

RMSD. See Root mean square deviation (RMSD)

RNA dilution, 82

RNA fluorescence, 121

RNA folding game, 302

RNAi, knock-down of gene, 21

RN inference algorithm, 24

RNs. See Regulatory networks (RNs)

ROCK-mediated traction, 157

Root mean square deviation (RMSD), 270

Rose Bengal experiential injury models, 376

RSAT. See Regulatory sequence analysis tools

(RSAT)

S

SAM. See Shoot apical meristem (SAM)

SCEM. See Subcellular element model (SCEM)

SCEs. See Subcellular elements (SCEs)

scsp fluid. See Single-component single-phase

(scsp) fluid

Sensitivity analysis, application, 133

Sepal lineage, 319

Sepals cells, 289

Sepals, tracking, 319

Shoot apical meristem (SAM)

anatomy, 289–290

Arabidopsis thaliana plant, live imaging,

286, 287

epidermis, 300

fluorescent proteins (FPs) uses, 291–294

high-resolution, 295

imaging protocols, 306–308

imaging session, 302

microscope/microscopy settings, 294–296

segmentation of, 316

static live imaging, 308–309

z-stack, 316

Short interfering (si) RNA, 82

Signaling circuit variables equations, 236

Signaling networks, 3

design of, 3

nonlinear connections, 4

Signaling pathways, spatial modeling of, 196

Signaling systems, mathematical models, 3

Signaling/transcription changes

biological insights, 70

full network, properties, 70–72

subnetwork/modules, biological functions, 72

transcription factors, quantifying, 72–74

challenges

applications and potentials, 76–77

input data, improving, 74–76

challenges for systems biology, 58

constraint optimization problem, 62

determining transcription factor targets, 65

KEGG PATHWAY database, 59

naı̈ve Bayes probabilistic model, 64

node penalties, 65–67

practical advice, 68–70

prize-collecting Steiner tree (PCST) problem,

60, 61

protein–protein interaction databases, 60

sensitivity analysis, 67

Significance analysis of microarrays (SAM), 49

Simulated clot, snapshot of, 380

Simulated thrombus growth, 374

Simulation Wizard, 339

angiogenesis cell behaviors, specification of, 340

angiogenesis chemical field, specification of, 339

angiogenesis chemotaxis properties,

specification of, 341

angiogenesis secretion parameters, specification

of, 341

CC3D steppable class, 346

Cell-elongation plugin, 344

cell-sorting cell types, 336

cell-sorting properties, 335

Python code, 345

vascular tumor cell behaviors, specification of,

348

vascular tumor chemical fields, specification of,

347

vascular tumor chemotaxis properties,

specification of, 348

Simulation-Wizard-generated draft CC3DML

(XML) code

for cell sorting, 337

Single-component single-phase (scsp) fluid, 384

Single nucleotide polymorphism (SNP) data, 22

Smooth Endoplasmic Reticulum Calcium ATPases

(SERCAs), 7

SNP data. See Single nucleotide polymorphism

(SNP) data

Soft-assign

algorithm, 318

handling of, 318
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Software toolkit CUDA, 383

Spatiotemporal distribution, of key signaling

molecules, 215

SPRi-derived interaction networks, 38

Src-mediated buffering, of adhesionmaturation, 234

SSA. See Stochastic simulation algorithm (SSA)

Steiner tree, 61

step function, implementation of, 359

Steppables, 332

Stimulus-responsiveness, 82

Stochastic models, 132

Stochastic reaction propensities, 120

Stochastic simulation algorithm (SSA), 112

Stochastic simulators, 213

Subcellular element model (SCEM), 370

schematic diagram of, 381

Subcellular elements (SCEs), 381

Subcellular organization/protein distribution,

image-derived models of, 179–191

CellOrganizer project, 181

components of, 181

cytoskeletal structures, models of, 188

genome ontology, 180

idealized images, 188–189

microscope images, testing algorithms for, 191

protein distributions

Boolean vectors, 190

Dirichlet distributions, 190–191

subcellular organization, models of, 181

building generative models, 182

cell shape–circular and spherical coordinate

ratiometric models, 185–186

nuclear shape–cylindrical spline surface

model, 184

nuclear shape–large deformation

diffeomorphic metric mapping, 184–185

nuclear shape–medial axis models, 183–184

vesicular organelles, models of

Gaussian object models, 186–187

object type models, 187

outline models, 187

position, 187–188

Sungear, 27

T

Taylor expansion, 103, 104

Taylor series, 127, 128

TFM. See Traction force microscopy (TFM)

TFs. See Transcription factors (TFs)

Thermodynamic model, 279

Three-dimensional nuclear shape, modeling

cylindrical spline surface method for, 184

Thrombin, 368

converts fibrinogen, 368

Thrombin distribution, 375

Thrombi, surface composition, 369

Thrombus development. See Blood clot surface

Time Delay Metric plots, 10

Time discretization methods, 210

Time-lagged context likelihood of relatedness

(tlCLR), 30

Inf pipeline, 46

Tissue factor, 370

tlCLR. See Time-lagged context likelihood of

relatedness (tlCLR)

Traction chamber setup, 166

Traction force microscopy (TFM), 142, 143–150,

144

TRADD, down-regulation of, 82

TRAIL receptor DR5, 82

Transcription changes. See also Signaling/

transcription changes

Transcription factors (TFs), 21, 130. See also

Animal transcription factor binding

binding sites, 23

cell line comparison network, 36

concentration-dependent effects, 253–254

inferelator inference pipeline, 26

percentage of, 74

quantifying, 72–74

Transcription module, 124

Translation module, 124

U

UBIQUITIN10 (UBQ10) gene promoter, 294

V

Value boundary condition, 208

Vascular tumor model Python steppables, 355

VCell, 200

database, 204

fully implicit simulator, 211

image segmentation screen, 205

running simulations, 212

software, 199

spatial model, 197

spatial simulations, 209–213

VCell Application, 207, 209

VCell BioModel workspace, 208

VCell modeling. See Virtual Cell (VCell) modeling

VDCCs. See Voltage-dependent calcium channels

(VDCCs)

VEGF-mediated signaling, 346
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Venous thromboembolic disease, 368

Virtual Cell BioModel, 208

Virtual cell geometry mapping window, screen

shot, 206

Virtual Cell (VCell) modeling, 197, 216

of signaling pathway, 203

spatial model, 204

Voltage-dependent calcium channels (VDCCs), 6

Voltage module, 5

Volume plugin, 338

von Willebrand factor (vWF), 370

VU cell fate, 113

vWF. See von Willebrand factor (vWF)

W

Water-immersion lens, 170

Y

Yeast pheromone response dataset, 68

Young’s modulus, 144, 328

of PA gels, 164–165

Z

Z4.aaa adopts, 113

z-stack fusion process, 301
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