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Preface

Fractional systems and fractional control have received great attention recently,
both from an academic and an industrial viewpoint, because of their increased
flexibility (with respect to integer-order systems) which allows a more accurate
modelling of complex systems and the achievement of more challenging control
requirements. In this framework, the aim of this book is to present design meth-
odologies for fractional control systems. Here, fractional control system means that
the controller, the process or both can be fractional. Different approaches are
described but the common framework is that the robustness of the control system is
considered explicitly in the design.

Accordingly, the first part of the book is more industrial oriented and is focused
on the design of fractional controllers for integer processes, aiming at evaluating the
difference between fractional and integer control. In particular, fractional-order
proportional-integral-derivative controllers are considered, since integer-order
proportional-integral-derivative regulators are, undoubtedly, the most employed
controllers in industry.

The second part of the book deals with a more general approach to fractional
control systems. Well-known and effective techniques for integer-order systems,
such as H1 optimal control and optimal input–output-inversion-based control are
extended to fractional systems.

Actually, apart from the specific topic developed in each single chapter, the
leading thread of this book is a widespread effort to generalize to the fractional case
methodologies, techniques and theoretical results that are among the reasons for the
success of classical (integer) control.

As already mentioned, the performance/robustness trade-off is always explicitly
considered in the controller design. It is well known that designing a controller
without considering robustness issues is not sensible. Here, different measures of
both performance (e.g., integrated absolute error, settling time, closed-loop band-
width) and robustness (e.g., maximum sensitivity, uncertainty bounds, control effort
constraints) are considered, but the common concept remains a control system that
explicitly takes into account the fundamental trade-off.
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The book can serve as a reference for postgraduate students and academic
researchers. It can be also exploited by industrial practitioners to evaluate the
suitability of fractional controllers to solve a control problem in a given application.
Readers are assumed to know the fundamentals of linear control systems, which are
typically taught in a basic automatic control course at the university level.

The authors would like to acknowledge all the people who have contributed to
this book in one way or another, in particular their colleagues Giovanna Finzi,
Marialuisa Volta, Claudio Carnevale and Manuel Beschi. The authors are also very
grateful to Ramon Vilanova and Salvador Alcantara for their contribution in
developing the main ideas contained in Chaps. 5 and 6. Special thanks go to the
Editor Oliver Jackson and to the Editorial Assistant Charlotte Cross for their help
during the preparation of the manuscript. Finally, the authors would like to thank
their families and friends for the support during the time spent in writing the book.

Brescia, July 2014 Fabrizio Padula
Antonio Visioli
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Chapter 1
Introduction to Fractional Calculus

1.1 Fractional Calculus

Fractional calculus is the generalization of the classical operation of derivation and
integration to orders other than integer.

The first note about the idea of noninteger differentiation dates back to 1695, in a
letter that L’Hôpital wrote to Leibnitz, wondering about the concept of differentiation
for noninteger numbers.

From then on, many famous mathematicians such as Euler, Laplace, Fourier,
Abel, and Laurent have been working on the idea of fractional differential opera-
tors. Nevertheless, it was only later in the nineteenth century and mainly due to the
contributions of Liouville, Grünwald, Letnikov and Riemann that a complete theory
suitable for modern mathematical developments has been formalized.

Nowadays, fractional calculus is a well-established theory with strong mathemat-
ical bases [56, 68, 80, 85, 87, 108, 115, 127]. The main reason for the diffusion of
fractional calculus is that it actually provides a more accurate tool to describe several
physical systems.

For instance, phenomena such as heat conduction through a semi-infinite solid
[14, 15, 40], water flowing through a porous dyke [88, 90, 91] or infinite lossy
transmission lines [157] are indeed fractional.

In many industrial and research fields, fractional calculus can be conveniently
used. Among these, relevant research topics are electrical circuits [48, 158], chemical
processes [80], signal processing [83, 144], bioengineering [54, 61], viscoelasticity
[24], chaos theory [105], and obviously control systems [91, 106, 116, 118, 146,
148] which are the subject of this book.

It is a common (and meaningful) idea that operations such as integration or differ-
entiation can be repeated a certain (integer) number of times. So, aside from formal
details, the concept of higher (integer) order integration or differentiation is rather
intuitive.

The idea of fractional calculus is to generalize these operations to any possible
real order. It is clear that depending on the derivative/integral order, in a fractional
framework, it is possible to continuously change from derivation to integration.

© Springer International Publishing Switzerland 2015
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2 1 Introduction to Fractional Calculus

Accordingly, it is convenient to define a unique operator, hereafter addressed as
differintegrator that, depending on the sign of the fractional differential order, can
be either a differentiator, an integrator, or the identity operator:

a D p
t =

⎧
⎪⎪⎨

⎪⎪⎩

d p

dt p p > 0
1 p = 0
t∫

a
(dξ)−p p < 0,

(1.1)

where p ∈ R is the differintegral order and a and t are called, respectively, lower and
upper terminal. In the following sections, this concept will be further investigated
and the mathematical definitions and properties necessary for the understanding of
this book will be stated.

1.1.1 Grünwald–Letnikov Fractional Differintegral

Before going into the mathematical definitions of the fractional derivative and inte-
gral, some properties of classical (integer) differential calculus will be briefly sum-
marized. These will be used later on as starting points to define the fractional dif-
ferintegral and in order to better understand that fractional calculus is the natural
generalization of integer-order one.

1.1.1.1 Integer-Order Calculus

Consider the integer derivative of order n ∈ N of a given function f (t), it holds that

Dn f (t) = lim
h→0

1

hn

n∑

r=0

(−1)r
(

n
r

)

f (t − rh), (1.2)

where
(

n
r

)

= n(n − 1) · · · (n − r + 1)

r ! (1.3)

are the well-known binomial coefficients.
An analogous approach can be developed for the p order integral, p ∈ N [115],

leading to

a D−p
t f (t) = lim

h → 0
nh = t − a

h p
n∑

r=0

[
p
r

]

f (t − rh) =
x∫

0

(t − ξ)p−1

(p − 1)! f (ξ)dξ, (1.4)
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where the last term is the Cauchy formula for the p-order integral and

[
p
r

]

= (−1)r
(−p

r

)

= p(p + 1) · · · (p + r − 1)

r ! . (1.5)

It can be shown [115] that (1.2) and (1.4) have a unique representation

a D p
t f (t) = lim

h → 0
nh = t − a

h−p
n∑

r=0

(−1)r
(

p
r

)

f (t − rh), (1.6)

that, depending on the sign of (integer) p can be both the p-order derivative or
integral.

1.1.1.2 Generalization to the Fractional Case

Starting from (1.6), it is natural to wonder what happens if p is allowed to span
over the real numbers. First, the binomial coefficients must be expressed in a general
way. For this purpose, the Euler gamma function Γ (·) can be conveniently used. This
function is well-known in the literature (see [56, 65, 108, 115] for a detailed treatise)
and is defined as follows

Γ (x) =
∞∫

0

e−ξ ξ x−1dξ. (1.7)

It can be shown that the following property holds:

Γ (x + 1) = xΓ (x), (1.8)

from which it can immediately be seen that

Γ (n + 1) = n!, n ∈ N. (1.9)

By means of the previous equation, (1.3) can be expressed as

(
p
r

)

= Γ (p + 1)

Γ (r + 1)Γ (r − p + 1)
, (1.10)

opening the door for a generalization of (1.6).
Up to now, p has been considered to be integer. Now, allowing p to range over

R, the Grünwald–Letnikov (GL) fractional differintegral is obtained:
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a D p
t f (t) = lim

h → 0
nh = t − a

h−p
n∑

r=0

(
p
r

)

f (t − rh), p ∈ R. (1.11)

It can be shown [115] that, for p < 0 the GL differintegral generalizes the Cauchy
formula, indeed it holds that

a D p
t f (t) = 1

Γ (p)

t∫

a

(t − ξ)p−1 f (ξ)dξ, p < 0. (1.12)

Restricting the class of allowable functions f (·) to those whose derivatives are con-
tinuous in [a, t] till the (m + 1)th order, being m the greater integer smaller than |p|,
the following property holds:

a D p
t f (t) =

m∑

k=0

f (k)(a)(t − a)k−p

Γ (−p + 1 + 1)
+ 1

Γ (−p + m + 1)

t∫

a

(t − ξ)m−p f (m+1)(ξ)dξ,

p > 0. (1.13)

Note that, unlike the integer differentiation, fractional differentiation is a nonlocal
operation that is defined over an interval [a, t]. Accordingly, in the differintegral
symbol a Dt , both the upper and the lower terminals (t and a, respectively) are
explicitly expressed.

1.1.2 Riemann–Liouville Fractional Differintegral

The Riemann–Liouville (RL) fractional differintegral is the most common definition
in the literature. The RL fractional integrator is defined as

a D p
t f (t) = 1

Γ (−p)

t∫

a

(t − ξ)−p−1 f (ξ)dξ, p < 0, (1.14)

whereas the fractional derivative is defined as

a D p
t f (t) = 1

Γ (k − p)

dk

dtk

t∫

a

(t − ξ)k−p−1 f (ξ)dξ, p > 0, (1.15)

which is the mth (integer) derivative of the (k − p)th integral of f (·), being k the
smaller integer bigger than p. The RL fractional derivative admits weaker conditions
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of existence than the GL one, indeed it is just required the integrability of f (t) over
[a, t] and the existence of the derivatives of the integral up to the kth order [115].
Nevertheless, it can be proven that, under the condition of existence of both the GL
and RL fractional derivatives, they are equivalent and (1.15) leads to (1.13).

Indeed, since the GL and RL fractional derivatives are equivalent, (1.13) also
applies to the RL derivative showing that the GL and RL fractional derivatives of a
constant are not null.

1.1.3 Caputo Fractional Differintegral

The Caputo fractional derivative [22, 23] provides an alternative to the GL and the
RL ones. As will be clear later on, it is a useful tool to describe physical phenomena.
Indeed, one of the main drawbacks of the RL fractional derivatives is that they lead
to differential equations whose initial conditions are expressed in terms of fractional
derivatives. Fractional initial conditions have no clear physical interpretation, even
though this problem has been partially solved in [50].

Unlike GL and RL ones, the Caputo fractional derivatives lead to differential
equations whose initial conditions are expressed as integer derivatives (thus with a
clear physical meaning) of the function f (·).

The Caputo integral is exactly the same of RL, while the Caputo fractional deriv-
ative is defined as follows:

a D p
t f (t) = 1

Γ (k − p)

t∫

a

(t − ξ)k−p−1 f (k)(ξ)dξ (1.16)

where k is again the smaller integer bigger than p.

1.1.4 Main Properties

Undoubtedly, the most important property of fractional operators is that they are
linear.

Besides this, looking at (1.13), it is clear that the convolution integral appearing in
the right hand side of the equation is actually the Caputo fractional derivative. Thus, it
is immediate to see that, under the conditions of existence for all the three derivatives,
the RL, GL, and Caputo fractional derivative coincides provided that [115]

f (a)(k) = 0, k = 0, . . . ,m, m < p < m + 1, m ∈ N. (1.17)

Another interesting characteristic is that semigroup property (often addressed as
additive index property):

a Dα
t a Dν

t = a Dν
t a Dα

t = a Dα+ν
t (1.18)
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holds provided that (1.17) is satisfied. Indeed, it can be proven that (1.17) is a sufficient
condition to make fractional differentiation become a commutative operation. Note
that, sometimes, depending on the adopted fractional derivative, commutative and
semigroup properties hold under weaker conditions [115].

Beside these properties, fractional operators have other important characteristics
[80, 108]:

• if f (t) is an analytic function, so does a Dα
t f (t) with respect to t and α;

• if α ∈ N, then a Dα
t f (t) gives the same results of the classical differentiation

(independently from the lower terminal);
• the Leibnitz rule for the fractional derivatives:

a Dα
t (φ(t) f (t)) =

∞∑

k=0

(
α

k

)

φ(k)(t)a Dα−k
t f (t). (1.19)

1.2 Geometrical Meaning of Fractional Integration
and Differentiation

The aim of this section is to give a clear geometrical interpretation of fractional
differential calculus. An interesting geometrical interpretation is proposed in [117]
based on the RL fractional integral (note that the fractional derivative is actually an
integer derivative of a fractional integral). Since GL, RL, and Caputo are the same
provided (1.17) to hold, eventually, the proposed interpretation is rather general.
Finally, note that a fractional differintegral of order p < −1 can be treated as the
mth integer integral of a D p+m

t , being m the biggest integer smaller than |p|, so that
it is of interest to study fractional integral for 0 < p < 1. This is always the case
when dealing with the fractional derivatives.

The RL integral (1.14) can be first represented, for the reader convenience, with
respect to a positive real α leading to

a D−α
t f (t) = 1

Γ (α)

t∫

a

(t − ξ)α−1 f (ξ)dξ. (1.20)

The previous expression can be rewritten as

a D−α
t f (t) =

t∫

a

f (ξ)dgt (ξ), (1.21)
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where

gt (x) = 1

Γ (α − 1)

(
tα − (t − ξ)α

)
. (1.22)

From the previous equations, it is possible to derive a clear interpretation of
the fractional integral, indeed (1.21) appears as a normal (integer) integral whose
differential dgt (ξ) depends both on the actual point ξ along the integration axis and
on the actual point t of the integral function (the upper terminal). So, for a given point
t , the differential dgt (ξ) decreases moving back into the past along the integration
axis. In practice, it is like considering a new integration axis for the integral (1.21)
that is not homogeneous, on the contrary, it is “stressed” close to the actual point t
and “compressed” back in to the past.

Up to now, the integration time axis has been described for a given point t of the
integration upper terminal. Now, it will be considered what happens when t changes.
The whole integration axis changes its shape because (1.22) also depends on t . The
way t affects gt (ξ) has an interesting self-similarity property. Indeed, given k > 0,
it holds that

gkt (kξ) = kαgt (ξ). (1.23)

The previous considerations allow for an interesting geometrical interpretation of the
fractional integral due to Podlubny [117]. Consider a 3-dimensional space ξ−gt − f .
First, the curve gt (ξ) for 0 < ξ < t is plotted on the ξ − gt plane and also the 3-
dimensional curve (gt (ξ), f (ξ)) for 0 < ξ < t is plotted. Note that the two curves
create a “fence” in the 3-dimensional space (see Fig. 1.1). Vertical lines are plotted

0
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0
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2
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g
t

f

Fig. 1.1 The fence in the ξ − gt − f space for α = 0.5 and t = 10
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0246810
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g t
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Fig. 1.2 The fences projected onto the ξ − gt plane for α = 0.5 and t varying from 1 to 10

along the fence at uniformly spaced intervals in ξ , then the fence is projected both
onto the ξ − f and the gt − f planes:

• the area of the projection onto the gt − f plane corresponds to the value of (1.20);
• the projection of the fence onto the gt − f plane shows how the uniformly spaced

steps result stressed when ξ is close to t and compressed elsewhere. This corre-
sponds to the deformed integral axis of (1.21);

• when ξ approaches t , the fence becomes parallel to the gt axis (the new integral
axis) because of the convolution kernel (t − ξ)α−1 that tends to infinite and the
integral axis becomes (locally) infinitely stressed.

Now, in order to see what happens to the fence, the integration upper terminal t is
increased. Figure 1.2 shows how the fence grows as the integration time changes
and Fig. 1.3 shows how the shadow of the fence onto the gt − f plane changes.1

The consequence of this growth is that the whole integral time scale gt changes as
the integration horizon moves ahead. Moreover, Fig. 1.3 also offers an interesting
interpretation of the fractional derivative. Indeed, the fractional derivative is the area
of the surface between the current shadow and the previous one divided by the time
elapsed between the two projections.

1 A simple movie showing this effect can be found in [92].
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Fig. 1.3 The fences projected onto the f − gt plane for α = 0.5 and t varying from 1 to 10

1.2.1 The Memory Effect

The previous geometrical interpretation shows that fractional integrators have a pecu-
liar memory property. Indeed, the memory of the past history of the system is lost as
the time horizon t moves ahead. This behavior is related to the integration timescale
that changes its shape continuously. It is geometrically related to the shape of the
fence that, at the lower terminal a (0 in Fig. 1.2) is increasingly perpendicular to the
gt axis. Consequently, when ξ is close to the lower terminal, the shadow (projection)
onto the gt − f plane decreases as t increases causing the typical fading memory
behavior of fractional integrators. Mathematically, the lossy memory of the operator
depends on the convolution kernel appearing in (1.14).

If from one side, the fractional integral has a fading memory behavior, from the
other side, the behavior of the integral at the present time t depends on all the past
history of the system. This behavior can also be interpreted in terms of the fence that
dynamically changes its shape as t increases, so that the shadow onto gt − f changes
and the fractional integral must be recomputed at each time instant integrating from
the lower terminal.

Analogously, the fractional derivative clearly is a nonlocal operator because, look-
ing at (1.15), it immediately appears that it shows the same memory behavior of the
fractional integral.
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Fig. 1.4 The fractal circuit

1.3 A Physical Interpretation of Fractional Differintegrals

In the literature, there are several physical interpretations of fractional operators, see,
for example, [45, 117] and the references therein.

Among the interesting physical properties of fractional operators, a very peculiar
one is that they can be conveniently used to describe the dynamic behavior of a class
of fractal systems that show certain self-similarity properties. Since this chapter is
intended as an introduction to fractional calculus and the whole book is in the field
of automatic control, a detailed discussion about these mathematical aspects is out
of the scope of the book itself. Nevertheless, an example of physical realization of
fractional operators in terms of fractal systems can help the reader to familiarize with
the topic.

Consider the linear circuit in Fig. 1.4. It is a chain of resistors and capacitors
interconnected at each node. In [81], it has been proven that the relation between
the potential difference E AB(t) across the whole circuit and the current i(t) flowing
through the circuit is

E AB(t) =
t∫

0

i(t − ξ)

N∑

j=−n

e−ξ/R j C j

C j
dξ. (1.24)

Now, consider that the capacitors and the resistors are distributed in such a way that

R j = R0g− j C j = C0G− j , (1.25)

where g > 1 and G > 1 are, respectively, the geometric progression ratios of resistor
and capacitor chains.

Now, making n, N tend to infinity and g,G to one, it can be proven [76] that the
inductance of the circuit is exactly a fractional operator, namely

E AB(t) = K 0 Dν−1
t i(t), (1.26)
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where K is a suitable constant and

ν = ln(G)

ln(gG)
. (1.27)

The previous result is actually more general that it could seem at a first sight. Indeed,
apart from the electrical application proposed in the section, this idea has been used in
several applications that involve the model of a porous dyke [88, 90, 91], rheological
models [49], biological models [54, 61], and many others (see [84] and the references
therein).

Eventually, it shows that systems described by repeated linear elements geomet-
rically distributed remarkably exhibit a fractional dynamics [27].

1.4 Laplace Transform of Fractional Differintegrals

Right now, fractional operators have been investigated in the time domain. Now,
the focus will be on their Laplace transform that opens the door for the frequency
domain analysis of fractional operators (note that their are indeed linear operators).
Depending on the adopted definition (RL, Caputo, or GL), the Laplace transform of
the fractional derivative changes. It is worth stressing that the following results hold
provided the lower terminal to be null, i.e., a = 0. The following results are quoted
without proofs.

Laplace Transform of the RL Fractional Integral
and Derivative

The Laplace transform of RL fractional differintegral 0 Dν
t f (t) is [108, 115]:

L
[

0 Dν
t f (t)

] = sνF(s), ν ≤ 0;

L
[

0 Dν
t f (t)

] = sνF(s)−
n−1∑

k=0
sk

0 Dν−k−1
t f (0), n − 1 < ν ≤ n ∈ N, ν > 0.

(1.28)

Laplace Transform of the Caputo Fractional Integral
and Derivative

The Laplace transform of Caputo fractional differintegral 0 Dν
t f (t) is [108, 115]:
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L
[

0 Dν
t f (t)

] = sνF(s), ν ≤ 0;

L
[

0 Dν
t f (t)

] = sνF(s)−
n−1∑

k=0
sν−k−1 dk

dtk f (0), n − 1 < ν ≤ n ∈ N, ν > 0.

(1.29)

Laplace Transform of the GL Fractional Integral
and Derivative

The Laplace transform of GL fractional differintegral 0 Dν
t f (t) is [115]:

L
[

0 Dν
t f (t)

] = sνF(s). (1.30)

The main difference between the RL and Caputo fractional derivatives is that the
second one leads to fractional differential equations whose initial conditions are
expressed, accordingly to (1.29), in terms of the integer derivatives. Hence, in many
practical cases, the Caputo derivatives are preferred because of the clear physical
meaning of initial conditions.

It is worth stressing that under null initial conditions, the Laplace transforms of RL,
Caputo, and GL fractional differintegral become equivalent. This result is somehow
the frequency domain version of the equivalence property presented in Sect. 1.1.4
under condition (1.17). While this is obvious for the Caputo derivative, whose initial
conditions are integer, it is not the case of the RL derivative. Nevertheless, in the
latter case, it holds that [115]:

[
a Dν

t f (t)
]

t=a = 0 ⇐⇒ f (k) = 0, k = 0, 1, . . . , n − 1, n − 1 < ν < n ∈ N.

(1.31)
The consequence of the previous double implication is that under null initial con-
ditions in the classical (integer) sense, also the fractional derivatives at the lower
terminal a are null and the equivalence between the Laplace transforms holds.

As a consequence, the input-output properties of fractional systems (see Chap. 2)
are the same, independently from the adopted definition.

Accordingly, null initial conditions will be assumed from now on, unless explicitly
specified.

1.5 Frequency Domain Interpretation: The Function sν

Despite the complexity of fractional operators in the time domain, in the frequency
domain, they have a very simple form. Indeed, under null initial conditions, the
Laplace transform becomes

http://dx.doi.org/10.1007/978-3-319-10930-5_2
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Fig. 1.5 Bode diagrams of sν , for ν varying from −2 to 2, dashed lines for integer ν

L
[

0 Dν
t f (t)

] = sνF(s), ν ∈ R, (1.32)

and it is immediate to see that they actually are the natural generalization to an
arbitrary order of integer differential operators.

Analyzing the function sν by means of its Bode diagram, Fig. 1.5 shows the
frequency behavior of the fractional differintegrator depending on the order ν.

In the integer case, the slope of the magnitude Bode plot can only be an integer
multiple of 20 dB per decade, depending on the derivative or integral order. Conse-
quently, the phase can only assume values that are integer multiples of 90◦.

On the contrary, in the fractional framework, the order ν can continuously vary.
Hence, all the intermediate slopes and phases in the Bode diagrams are allowed. This
greatly increases the flexibility of fractional control systems.

1.6 The Power Function

The Laplace transform provides a useful tool to further clarify the way fractional
operators work. Indeed, it becomes immediate to see how they operate on power
functions. The reader should be confident with the classical integrals and derivatives
of power functions, so that as a last example, the generalization to the fractional case
of the power function derivatives and integrals and the way the simple frequency
domain behavior reflects in the time domain creating phenomena such as the memory
effect are considered.
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First, consider the Laplace transform of the power function, it holds that [87]

L
[
tβ
] = 1

sβ+1Γ (β + 1). (1.33)

Note that, applying (1.9), when β ∈ N, (1.33) returns exactly the well-known for-
mulae for Laplace transform of step, ramp, parabola and so on.

Now, applying the fractional derivative to the power function and using the Laplace
transform properties, it is immediate to write

0 Dν
t tβ = L −1

[

Γ (β + 1)
sν

sβ+1

]

(1.34)

and applying again (1.33), the left hand side of the previous equation is represented
in the time domain as

0 Dν
t tβ = Γ (β + 1)

Γ (β + 1 − ν)
tβ−ν . (1.35)

Again, note that if ν, β ∈ N, the previous equation generalizes the well-known
formula for the integral and the derivative of power functions.

Some illustrative examples are given. First, consider the fractional derivative of
a function with ramps: the results are reported in Fig. 1.6. When the derivative order
is lower than one, the fractional derivative is continuous, otherwise it shows an
impulse-like behavior. It is interesting to note the long transient of the 0.5th and
1.5th derivatives after the function becomes constant at t = 10. This is because
of the memory effect. Note that the function in the example has been obtained as
the summation of ramp functions, thanks to the linearity of fractional operators.
As a second illustrative example, the fractional integrals of a step-like function are
proposed in Fig. 1.7. Again, the memory effect is clear, indeed, the integral function
does not remain constant when the input becomes zero. Another interesting point is
that the fractional integral becomes unstable when ν > 1, whereas if ν < 1, it is
stable in the sense that because of the loss of memory, it goes to zero with null input,
but is not bounded-input-bounded-output (BIBO) stable. This behavior is peculiar
to fractional linear systems.

Finally, consider the fractional differintegration of the square root function: the
results are shown in Fig. 1.8. The interesting point here is that the 0.5th derivative of
the square root is constant. The square root is not differentiable in the classical (inte-
ger) sense, but in the fractional framework, its differentiation becomes feasible. Note
that, in general, if the derivative order ν is lower than the order of the power function
β, the derivative is smooth, vice versa it shows an impulse-like behavior, accord-
ingly to (1.35). This last example shows how fractional operators that because of
their complexity may seem far from classical ones, actually are the natural extension
of the latter.
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1.7 Conclusions

A brief introduction to fractional calculus has been provided in this chapter. The
main aim has been to give the basic concepts (in both time and frequency domain)
which will be used in the rest of the book. A more detailed treatment of fractional
calculus can be, however, found in many books [56, 68, 80, 85, 108, 115, 127].



Chapter 2
Fractional Systems for Control

2.1 Fractional Control

Fractional systems have received a great attention recently, both from an academic
and an industrial viewpoint [2, 20, 21, 59, 62, 74, 85, 87, 114, 116] because of their
increased flexibility (with respect to integer-order systems), which allows a more
accurate modeling of complex systems [14, 91, 145], and the achievement of more
challenging control requirements [29, 45, 71, 74, 123].

The main idea about fractional control is to design control systems where either
the system or the controller, or both of them are fractional dynamic systems [31,
140, 141]. Regarding the design of control systems, many contributions are related
to the synthesis of robust control systems (see, for example, [12, 87, 88, 91, 94,
114]). Among these method, it is surely worth mentioning the CRONE control [88].
A great effort has been also focused on the synthesis of fractional-order proportional-
integral-derivative controllers (see, for example, [13, 25, 30, 42, 72, 73, 97, 99, 116,
136, 139, 147]). Among the other relevant research topics, it is worth citing the
approximation of a fractional system with integer ones [62, 89, 135, 148] and the
stability of a fractional (control) systems [2, 107, 124, 125]. All the previous methods
share a common mathematical object for the design of fractional control systems:
fractional linear time-invariant (LTI) systems. Exactly as in the integer case, also in
the fractional one, linear systems are undoubtedly the fundamental tool in control
design. Bearing in mind this idea, the rest of this chapter is dedicated to the analysis
of fractional LTI systems.

2.2 The Two Parameters Mittag-Leffler Function

Before approaching LTI systems, a fundamental class of functions is introduced: the
two parameters Mittag-Leffler functions. These special functions play for fractional
LTI systems the same role that exponential functions play for integer ones.

© Springer International Publishing Switzerland 2015
F. Padula and A. Visioli, Advances in Robust Fractional Control,
DOI 10.1007/978-3-319-10930-5_2
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The Mittag-Leffler function (MLF) is defined as [115]

Eα,β(z) =
∞∑

i=0

zi

Γ (αi + β)
, α > 0, β > 0. (2.1)

MLF are generalization of the exponential function, indeed it holds that [115]:

E1,1(z) = ez

...

E1,m = 1
zm

(

ez −
m−2∑

k=0

zk

k!
)

.

(2.2)

A further interesting generalization is the function introduced by Podlubny in [117]
and hereafter addressed as Podlubny function (PF):

εk(t, λ;α, β) = tkα+β−1 dk

d(λtα)k
Eα,β(λtα), (2.3)

being the kth derivative of (2.1) [108]

dk

dzk
Eα,β(z) =

∞∑

i=0

(i + k)zi

Γ (α(i + k)+ β)
. (2.4)

2.2.1 Laplace Transforms

Now, the Laplace transform of the functions defined in Sect. 2.2 is introduced. The
Laplace transform of (2.1) is [108, 115]

L
[
tβ−1 Eα,β(λtα)

]
= sα−β

sα − λ
, (2.5)

while the Laplace transform of (2.3) is

L [εk(t, λ;α, β)] = k!sα−β

(sα − λ)k+1 . (2.6)

MLFs and PFs are fundamental tools to solve fractional LTI systems. Indeed, the
previous equations look like a generalization to the fractional case of simple and
multiple poles (and actually they are). This concept will be fully clarified through
the rest of the chapter.



2.3 Fractional LTI Systems 19

2.3 Fractional LTI Systems

In general, a fractional LTI system is represented in the external form by a fractional
differential equation with the following structure

n∑

k=0

ak 0 Dβk
t y(t) =

m∑

k=0

bk 0 Dαk
t u(t), βk, αk ∈ R

+, ak, bk ∈ R. (2.7)

By means of (1.28)–(1.30), it is immediate to see that, independently from the adopted
definition, the transfer function of (2.7) is

H(s) = Y (s)

U (s)
=

∑m
k=0 bksαk

∑n
k=0 aksβk

, βk, αk ∈ R
+, ak, bk ∈ R. (2.8)

In general, a fractional transfer function is the ratio of two fractional polynomials,
i.e., polynomials whose exponents are real numbers.

The following theorem shows the behavior of fractional polynomial at their roots.

Theorem 2.1 Let P(s) be a fractional polynomial

P(s) =
n∑

i=1

ai s
γi , ai ∈ R, γi ∈ R

+, (2.9)

whose zeros are z1, . . . , zm. It holds that

lim
s→zi

P(s)

(s − zi )ki
(2.10)

exists finite, for some ki ∈ N for i = 1, . . . ,m provided that zi �= 0.

Proof By means of the substitution t = s − zi (2.10) can be rewritten as

lim
t→0

P(t + zi )

(t)ki
, i = 1, . . . ,m. (2.11)

By series expansion, P(s) can be represented around zi as

P(t) =
n∑

i=1

ai

li∑

m=1

dm P(t + zi )

d(t)m

∣
∣
∣
∣
∣
∣
t=0

tm + o(t li ) for t → 0, li ∈ N; (2.12)

since the function P(s), evidently, is not constant in the complex plane, for each zero

zi , there exists li such as
∑n

i=1 ai
∑li

m=1
dm P(t+zi )

d(t)m

∣
∣
∣
t=0

�= 0. Choosing ki equal to

the smallest li such as this condition holds, (2.11) exists finite.

http://dx.doi.org/10.1007/978-3-319-10930-5_1
http://dx.doi.org/10.1007/978-3-319-10930-5_1
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Fig. 2.1 The multivalued function P(s) = 1 + s1/3

Definition 2.1 The integer ki is called order of the zero zi .

Calculating the zeros of a fractional polynomial is, in general, a complex task and it is
beyond the scope of this book. From now on their knowledge is assumed. However, it
is worth stressing that when dealing with commensurate-order fractional polynomials
(see Sect. 2.4), the computation of the roots becomes trivial [135].

Another interesting characteristic of fractional polynomials (and fractional trans-
fer functions) is that they are multivalued functions [107] as in Fig. 2.1, where a
representation of the multivalued behavior of (1 + s)1/3 is shown. It is worth stress-
ing that only the first Riemann sheet has a physical meaning [41]; it is defined as
[107]

Ω = {re jφ : r > 0,−π < φ < π}. (2.13)

Hence, from now on, the analysis will be limited to this surface.

2.4 Commensurate Fractional LTI Systems

An important class of fractional LTI systems is the set of commensurate systems.

Definition 2.2 A fractional LTI system (2.8) is said to be commensurate if all the
exponents are integer multiples of the same real number ν. The derivative order ν is
called commensurate order of the system.
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The transfer function of a fractional commensurate LTI system always has the
following form:

H(s) =
∑m

k=0 bkskν

snν + ∑n−1
k=0 akskν

, ν ∈ R
+, ak, bk ∈ R, (2.14)

It is worth noting that every system whose exponents are rational numbers is com-
mensurate. Moreover, when a system has irrational exponents, they can always be
approximated with the desired precision degree as ratios of natural numbers.

For many practical applications, commensurate fractional LTI systems are much
more diffused than incommensurate one. First, if the exponents are numerically
expressed using a finite number of digits, a fractional LTI system is commensurate,
but this is almost always the case, unless the system results to be incommensurate
from an analytical procedure. Moreover, they are far more mathematically treat-
able compared to the incommensurate ones. For this second reason, this chapter,
which is intended as an introduction to fractional systems in order to drive the reader
through for the rest of the book, is focused on commensurate fractional LTI sys-
tems. Furthermore, some theoretical results e.g., stability criteria) are still missing
for incommensurate systems. Nevertheless, when a given result also exists for incom-
mensurate systems, references to the literature will always be present. Finally, it has
to be stressed that, from a mathematical point of view, incommensurate systems are
much more interesting and challenging than commensurate ones.

One of the main advantage of commensurate systems is that they can be factorized
via partial fraction expansion exactly as integer systems can. Indeed, it is always
possible to associate to a given commensurate system an integer-order one by means
of the substitution sν = w into (2.14):

H̃(s) = Ỹ (w)

Ũ (w)
= b̃(w)

ã(w)
=

∑m
k=0 bkwk

wn + ∑n−1
k=0 akwk

. (2.15)

A function such as (2.14) is, in general, a multivalued function [107] and the sub-
stitution operated to obtain the previous equation maps all the Riemann sheets onto
the w plane, as Fig. 2.2 shows.

Evidently, it is possible to operate over (2.15) as an integer transfer function
and then reobtaining the corresponding fractional one by means of the substitution
w = sν . Accordingly, a commensurate LTI system can always be factorized via
partial fractions expansion leading to:

H(s) =
p∑

i=1

gi

(sν − λi )ki +1 , (2.16)

where the coefficients λi and gi can be either real or complex (in the latter case they
always appear in conjugate pairs).
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Fig. 2.2 The Riemann sheets for the function P(s) = 1 + s1/3 and their map onto the w plane

Now, by means of (2.6), it is immediate to see that the impulse response of (2.16) is

L −1 [H(s)] = η(t) =
p∑

i=1

gi

ki !εki (t, λi ; ν, ν). (2.17)

Note that, in case of complex coefficients, the PF in (2.16) may be complex valued,
but the result of the summation (2.17) is always real valued.

2.5 Modes

The previous results highlight that the basic elements of a commensurate LTI system
are a kind of fractional generalization of integer simple fractions, hereafter called
fractional-first-order (FFO) system:

P(s) = K

T sν + 1
. (2.18)
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Fig. 2.3 Bode diagram of P(s) = 1
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Figures 2.3 and 2.4 show that FFO systems have the interesting properties of being
able to describe both monotonic and nonmonotonic behaviors depending on the
exponent ν. Note that both the peak frequency ω̄ and the peak amplitude depend on
the derivative order accordingly to [64]

ω̄ = − ( 1
T

) 1
ν cos(ν π2 )

|P( jω̄)|dB = −20 log
(
sin

(
ν π2

))
,

(2.19)

with ν > 1, otherwise (2.18) is not resonant.
It is worth noting that the peak amplitude only depends on the differential order

ν, whereas its frequency also depends on the time constant T .
For a given input function u(t), the corresponding function output y(t) can be

computed as the convolution integral between (2.17) and u(t) [82, 85, 115], that is:

y(t) =
t∫

0

η(t − ξ)u(ξ)dξ. (2.20)

When the input function is simple, the solution of the input–output problem for a
commensurate LTI system becomes trivial. For fractional integrators, by considering
(2.5) with λ = 0 and ν = α = β, it results
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L −1

[
1

sν

]

= tν−1

Γ (ν)
,

L −1

[
1

sν
L [1(t)]

]

= tν

Γ (ν + 1)
,

...

L −1

[
1

sν
L [tn]

]

= tν+n

Γ (ν + n)
,

(2.21)

where 1(t) is the Heaviside function.
For simple fractions (FFO systems), the following expressions can be derived (see
(2.5) with ν = α = β and a = λ):

L −1

[
1

(sν ∓ a)

]

= tν−1 Eν,ν(±atν),

L −1

[
1

(sν ∓ a)
L [1(t)]

]

= tνEν,ν+1(±atν),

...

L −1

[
1

(sν ∓ a)
L [tn]

]

= tν+n Eν,ν+n(±atν).

(2.22)
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An analogous reasoning can be applied in case of multiple fractions starting from
(2.6), yielding

L −1

[
1

(sν ∓ a)k+1

]

= tν(k+1)−1

Γ (k + 1)

dk Eν,ν(±atν)

d(±atα)
,

L −1

[
1

(sν ∓ a)k+1L [1(t)]
]

= tν(k+1)

Γ (k + 1)

dk Eν,ν+1(±atν)

d(±atα)
,

...

L −1

[
1

(sν ∓ a)k+1L [tn]
]

= tν(k+1)+n

Γ (k + 1)

dk Eν,ν+n(±atν)

d(±atα)
.

(2.23)

The previous equations can also be expressed in term of PFs, and together with
(2.17) and (2.20), completely address the input–output problem of commensurate
LTI systems.

Finally, for the sake of completeness, it has to be said that similar results also
exists for incommensurate LTI systems, but in this case, the impulse response (the
so-called fractional Green’s function) cannot be expressed as a finite summation of
PF. For the reasons discussed at the beginning of the section, this solution has been
dropped here, the reader may conveniently refer to [115] for a complete treatise.

2.6 Stability

It is well known that stability is a property of main concern for a control systems.
Research on stability of fractional linear system is still an ongoing process and many
research works have been proposed in the last years [3, 8, 107, 120]. Unlike for
integer system, a simple general stability test only exists for commensurate fractional
systems. The following theorem generalizes in a very natural way the well-known
stability criteria for integer systems [66, 67, 107].

Theorem 2.2 A fractional-order commensurate fractional systems. The following
theorem generalizes in a very natural way the well-known systems described by a
commensurate transfer function (2.14) with commensurate fractional systems. The
following theorem generalizes in a very natural way the well-known order ν < 2, is
stable if and only if all the poles p̃i of its integer counterpart (2.15) satisfy

| arg( p̃i )| > ν
π

2
. (2.24)

The previous theorem states that the stable region for a fractional commensurate
system fractional systems. The following theorem generalizes in a very natural way
the well-known is no longer the left half plane (LHP), see Fig. 2.5. This concept is
true but sometimes misleading. Indeed (2.24) defines a stable region for the integer



26 2 Fractional Systems for Control

Fig. 2.5 Stable regions with ν = 0.5 (left) and ν = 1.5 (right)

system associate to a commensurate one. This condition corresponds at having all
the singularities of the fractional system (that, in view of Lemma (2.1), may be called
poles) in the LHP. Indeed, the first Riemann sheet is mapped onto the region defined
by | arg(w)| > νπ and the right half plane (RHP) is mapped onto the region defined
by inequality (2.24).

When the system is incommensurate, stability should be checked computing the
roots of the characteristic fractional polynomial (in the first Riemann sheet).

Nevertheless, if it is possible to factorize the system as

H(s) =
N∑

i=1

nk∑

k=1

gi , k

(sβi + λi )k
, βi < 2, (2.25)

then, it holds that the system is stable if [107]

| arg(λi )| < π

(

1 − βi

2

)

, ∀i. (2.26)

Again, note that the previous condition is equivalent to saying that H(s) has no poles
of the first Riemann sheet in the RHP.

As a final remark, it has to be stressed that only the first Riemann sheet is of
interest in the stability analysis because the roots that lie on secondary sheets will
give solutions that are always monotonically decreasing [67, 146, 158].

2.7 Conclusions

An introduction to fractional linear system and fractional control has been provided
in this chapter. Basic concepts that will be useful in the next chapters have been
explained. A more detailed overview on fractional systems and fractional control
can be found in many contributions to the literature, see for example [21, 31, 45, 71,
87, 123, 140, 141].



Chapter 3
Fractional-Order
Proportional-Integral-Derivative Controllers

3.1 Introduction

Proportional-integral-derivative (PID) controllers are surely the most adopted
controllers in industry owing to the cost/benefit ratio they are capable to provide.
Indeed, the large numbers of tuning rules [79] for their three parameters and the
presence of reliable automatic tuning techniques [11] allow the user to design this
kind of controllers with a moderate effort, and to obtain a satisfactory performance
for many processes [151]. Hence, it seems that PID controllers are still the preferred
control algorithm and object of many interesting researches [16, 98, 121, 152]. Since
they are based on an integral and a derivative action, it seems natural to let these action
to span over a wider range of dynamics by allowing differentiation and integration
of an arbitrary (real) order. Bearing in mind this idea, the application of fractional
calculus to PID controllers leads straightforwardly to the main object of this chapter,
the fractional-order PID (FOPID) controller.

In the last ten years, the design of FOPID controllers has been the subject of many
investigations (see, for example, [13, 17, 20, 25, 26, 30, 34, 42, 43, 63, 70, 72–74,
116, 135, 136, 138, 139, 147, 161]) because of the additional flexibility they are
capable to provide with respect to standard (integer-order) PID controllers. Indeed,
the presence of five parameters to select makes the achievement of an increased
performance virtually possible, but this also implies that the tuning of the controller
can be much more complex.

3.2 FOPID Controller Structure

The FOPID controller can be defined both in ideal (noninteracting) or series (inter-
acting) form.

© Springer International Publishing Switzerland 2015
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The first was introduced by Podlubny [116], and is defined as follows:

C(s) = Kp

(

1 + 1

Tisλ
+ Tdsμ

)

, (3.1)

where λ is the integral order and μ the derivative one.
The interacting form has been proposed in [97], and has the following formulation

C(s) = Kp
Tisλ + 1

Tisλ
(Tdsμ + 1). (3.2)

where, again, λ is the integral order and μ the derivative one.
It can be easily noted that, by selecting λ = μ = 1, a standard PID controller is

obtained independently from the adopted configuration.
The different FOPID forms have different properties, and they are not equivalent,

unless λ = μ. Indeed, by expanding Eq. (3.2), the following expression is obtained

C(s) = Kp

(

1 + 1

Tisλ
+ Tdsμ + Td

Ti
sμ−λ

)

. (3.3)

Comparing the previous equation with Eq. (3.1) it clearly appears that their dynamics
differ because of the term

Kp
Td

Ti
s
μ
λ . (3.4)

If Ti � Td , the term (3.4) can be safely neglected as Figs. 3.1 and 3.2 show (note
that this is the case when an ideal PID controller can be represented as a series one).
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Fig. 3.1 The noninteracting FOPID bode plot, with Ti = 100, Td = 0.001 and μ = λ+ 0.4 swept
into the range [0.6 1.8]
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Fig. 3.2 The interacting FOPID bode plot, with Ti = 100, Td = 0.001 and μ = λ + 0.4 swept
into the range [0.6 1.8]

Conversely, when Ti � Td the two controllers have strongly different dynamics, see
Figs. 3.3 and 3.4. This is the case when a commutation between parallel and series
PID controllers would lead to complex coefficients.
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Fig. 3.3 The interacting FOPID bode plot, with Ti = 0.001, Td = 100 and μ = λ + 0.4 swept
into the range [0.6 1.8]
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Fig. 3.4 The noninteracting FOPID bode plot, with Ti = 0.001, Td = 100, and μ = λ+0.4 swept
into the range [0.6 1.8]

3.3 FOPID Tuning

Looking at (3.1) and (3.2) it appears clearly that one of the main extra features that
FOPID controllers provide with respect to standard PID controllers is that they allow
for a continuous slope regulation of the controller Bode plot both at low and high
frequencies, depending, respectively, on λ and μ. This opportunity can be exploited
for a more effective loop shaping, but the tuning can be much more complex in
practice, in particular because the FOPID transfer function is nonlinear with respect
to the coefficients λ and μ.

In order to address this problem, different methods for the design of a FOPID con-
troller have been proposed in the literature. They are based on the use of evolutionary
algorithms, where different objective functions are considered [17, 63, 161], or on
the solution of a nonlinear constrained optimization problem where, in particular, the
iso-damping property (namely, the robustness to variations in the gain of the process)
is considered [13, 72, 73].

For example, considering a FOPI controller (namely, avoiding to use the derivative
action, i.e., setting Td = 0 in Expressions (3.1) and (3.2)), the three controller
parameters Kp, Ti and λ can be selected in order to satisfy three specifications related
on the gain crossover frequency ωcg, on the phase margin φm, and on the flatness of
the phase at the gain crossover frequency. Formally, these conditions can be written as

∣
∣C(jωcg)P(jωcg)

∣
∣
dB = 0 dB, (3.5)
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arg(C(jωcg)P(jωcg)) = −π + φm, (3.6)

d arg(C(jω)P(jω))

dω

∣
∣
∣
∣
ω=ωcg

= 0, (3.7)

where P(s) is the process transfer function. The application of this method to the
process

P(s) = K

62s + 1
e−10s, (3.8)

where the nominal value of K is 0.55, is shown in [72]. By settingωcg = 0.02 rad and
φm = 65◦, and by applying an optimization procedure where Expression (3.5) is
minimized subject to constraints (3.6) and (3.7), the following controller is obtained:

C(s) = 2.2326

(

1 + 1

78.4142s1.1274

)

(3.9)

The resulting Bode plot of the loop transfer function C(s)P(s) for K = 0.55 is shown
in Fig. 3.5 where it appears that the phase is flat around the gain crossover frequency.
The robustness of the system with respect to changes in the process gain is shown in
Fig. 3.6, where three different set-point step responses are plotted for the values of
K = 0.55, K = 0.55 · 2 = 1.10 and K = 0.55/2 = 0.275. It appears the overshoot
remains almost the same despite the changes of ±50 % in the process gain.

It is, however, recognized that for their widespread use in industry, FOPID con-
trollers should possess the same ease of use of standard PID controllers and the
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Fig. 3.5 Bode plot of the loop transfer function for the iso-damping tuning
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improvement in the performance they are capable to provide should be clear. Actually,
one of the reasons of the great success of standard PID controllers is the presence
of a lot of tuning rules [79] and of the automatic tuning feature [11] that simplifies
significantly their design. In [136, 138] tuning rules have been developed in order
to achieve the iso-damping property. However, they are not general because they are
valid only for first-order-plus-dead-time (FOPDT) processes with specific values of
the time constant and of the dead time, and the gain crossover frequency is selected
a priori. A more general tuning rule, which is valid for every FOPDT process but
just for FOPI controllers, based on the fractional maximum sensitivity constrained
integral gain optimization method has been proposed in [30]. Another set of tuning
rules has been developed in [42, 43] with the aim of minimizing the effects of low
frequency load disturbances.

Indeed, it has to be remarked that effective tuning rules should consider both the
set-point following and the load disturbance rejection tasks (the latter is actually often
of main concern in the process industry) and different kinds of process dynamics,
namely, self-regulating (i.e., asymptotically stable) processes, non-self-regulating
(i.e., integral) processes and unstable processes. In fact, this kind of processes is fre-
quently encountered in the process industry. Typical examples of integral processes
include tanks, where the level is controlled by manipulating the difference between
the input and output flow rates, and batch distillation columns [153], while typical
examples of unstable processes are continuous stirred tank reactors, polymerization
reactors, and bioreactors [128].

In the next sections, a set of optimization-based tuning rules that address the
problem for self-regulating, integral and unstable processes is presented [97, 99].
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Robustness is explicitly taken into account by setting a maximum required level of
sensitivity.

3.4 Optimal Tuning Rules for Self-Regulating Processes

In this section, a set of tuning rules for PID and FOPID controllers for asymptotically
stable processes is given. It is based on the minimization of the integrated absolute
error (which is meaningful because this yields, in general, a low overshoot and a low
settling time at the same time [130]), subject to a constraint on the maximum sensitiv-
ity (as in the well-known Kappa-Tau tuning rules for standard PID controllers [9, 44])
in order to provide a required level of robustness. In fact, the robustness of a control
system, which is in general associated to the control effort, is very important in prac-
tice. It is shown that, in this context, if the controller is restricted to a PI structure,
then the use of a fractional integral action is not useful in improving the performance,
and therefore a standard PI controller is the best option. Conversely, the use of a frac-
tional derivative action allows the improvement of the control performance. Both the
set-point following and the load disturbance rejection tasks are considered explic-
itly. An analytical expression of the performance index is also given, and this can be
exploited in a performance assessment context. In fact, the performance assessment
of a control loop is generally performed by first calculating a performance index
based on the available data and then by evaluating the current control performance
against a selected benchmark, which represents the desired performance [55, 151].

3.4.1 Problem Formulation

Consider the unity-feedback control scheme of Fig. 3.7 where the process is assumed
to have a FOPDT dynamics, namely,

P(s) = K

Ts + 1
e−Ls, (3.10)

where, evidently, K is the gain, T is the time constant and L is the dead time. The
process dynamics can be conveniently characterized by the normalized dead time

Fig. 3.7 The considered control scheme
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defined as L/T or, equivalently, as

τ = L

L + T
, (3.11)

which represents a measure of the difficulty in controlling the process. Note that, by
using (3.11), it results τ ∈ [0, 1]. Typical values of the normalized dead time are in
the range 0.05 ≤ τ ≤ 0.8. Actually, for values of τ < 0.05 the dead time can be
virtually neglected and the design of a controller is rather trivial, while for values
of τ ≥ 0.8 the process is significantly dominated by the dead time, and therefore a
dead time compensator should be employed.

The standard PID controller in ideal (noninteracting) form is defined as

C(s) = Kp

(

1 + 1

Tis
+ Tds

)
1

Tf s + 1
(3.12)

where Kp is the proportional gain, Ti is the integral time constant, Td is the derivative
time constant. An output first-order filter, whose time constant is Tf , has been also
employed in order to make the controller proper, and to filter the high frequency
noise. By generalizing the previous expression, the FOPID controller is defined as

C(s) = Kp

(

1 + 1

Tisλ
+ Tdsμ

)
1

Tf s + 1
(3.13)

where λ andμ are the non-integer orders of the integral and derivative terms, respec-
tively. The value of the time constant Tf can be conveniently selected as

Tf = min

⎧
⎨

⎩

T
1
λ

i

10
,

T
1
μ

d

10

⎫
⎬

⎭
(3.14)

so that the corresponding pole does not influence the controller dynamics signifi-
cantly, and it does filter the high-frequency noise at the same time (note that this is
a typical choice in standard PID controllers [7]). Also note that, even for the FOPID
controller, the filter is an integer-order first-order system, because, for the imple-
mentation of the fractional-order controller, the Oustaloup continuous integer-order
approximation [89] is employed. It consists in using the following approximation
based on a recursive distribution of zeros and poles:

sν ∼= k
N∏

n=1

1 + s
ωz,n

1 + s
ωp,n

, ν > 0, (3.15)

which is valid in a frequency range [ωl, ωh] and where the gain k is adjusted so that
both sides of (3.15) have the same gain in the mid point of the interval [ωl, ωh].



3.4 Optimal Tuning Rules for Self-Regulating Processes 35

Frequencies ωz,n and ωp,n are selected as follows. Starting with a zero it is

ωz,1 = ωl
√
η

ωp,n = ωz,nα, n = 1, . . . ,N
ωz,n+1 = ωp,nη n = 1, . . . ,N − 1,

(3.16)

while starting with a pole it is

ωp,1 = ωl
√
η

ωz,n = ωp,nα, n = 1, . . . ,N
ωp,n+1 = ωz,nη n = 1, . . . ,N − 1,

(3.17)

where

α =
(
ωh

ωl

)|ν|/N
(3.18)

and

η =
(
ωh

ωl

)(1−|ν|)/N
. (3.19)

In order to determine the tuning rules, the value N = 8 has been chosen, while ωl
and ωh have been selected as 0.001ωc and 1,000ωc respectively, where ωc is the
gain crossover frequency of the loop transfer function.

The standard PID controller in series (interacting) form is described by the fol-
lowing transfer function:

C(s) = Kp
Tis + 1

Tis

Tds + 1
Td
N s + 1

(3.20)

where N is the filter constant. Along the same line, a filter has been added to the
fractional-order PID in series form (3.2), leading to

C(s) = Kp
Tisλ + 1

Tisλ
Tdsμ + 1

Td
N s + 1

. (3.21)

Here, N = 10 if T = 1 has been selected, so that the pole is at frequency ω = 10/Td ,
namely, as for the ideal controller, it does not influence the controller dynamics
significantly, and it does filter the high-frequency noise at the same time. In all the
other cases, the value of N is conveniently modified in order to rigidly shift the Bode
magnitude plot along the abscissa axis without changing its shape, (i.e., in order to
scale the system step response proportionally to the value of T when the normalized
dead time value is kept constant):

N = 10T (μ−1). (3.22)
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The specified control requirement is to minimize the (set-point r or load distur-
bance d) step response integrated absolute error [130]

IAE =
∞∫

0

|e(t)|dt =
∞∫

0

|r(t)− y(t)|dt (3.23)

because this yields, in general, a low overshoot and a low settling time at the same
time in the set-point or load disturbance step response. Obviously, minimizing (3.23)
implies that the closed-loop system is stable.

However, aiming at just obtaining the theoretical minimum integrated absolute
error that can be achieved for the single-loop system might not be sensible in practical
cases because the robustness issue and the control effort have also to be taken into
account. For this reason, the devised tuning rules aim at minimizing the integrated
absolute errorby constraining at the same time the maximum sensitivity, which is
defined as

Ms = max
ω∈[0,+∞)

1

1 + C(s)P(s)
, (3.24)

and which represents also the inverse of the maximum distance of the Nyquist plot
from the critical point (−1, 0). Obviously, the higher the value of Ms is, the less
robust is the system to modeling uncertainties.

3.4.2 Optimal Tuning

In order to find the tuning rules for the minimization of the integrated absolute
error by constraining the maximum sensitivity value, an approach similar to that
employed in [149] has been used. In particular, the set-point following and the load
disturbance rejection tasks have been considered separately, and different processes
with different values of the normalized dead time have been considered. For each
of them, the values of the parameters of both integer and fractional-order PI and
PID controllers have been found by means of a genetic algorithm [69] (which are
known to provide a global optimum of a problem in a stochastic frame) in order to
minimize the integrated absolute error in a step response, by imposing two typical
values of the maximum sensitivity, namely, Ms = 1.4 and Ms = 2 [9]. Note that
Ms = 1.4 and Ms = 2.0 are two different significant cases in the range of suitable
values, namely, one where the robustness issue is of primary concern (Ms = 1.4)
and one where the aggressiveness is more important (Ms = 2.0). Finally, for each
considered controller, the optimal coefficients found for the different values of L/T
or τ , have been interpolated in order to derive suitable tuning rules [9, 11, 129]. In
this context, different interpolating functions have been considered [134], by taking
into account the aim of providing tuning rules where the resulting performance is
scaled by the time constant T . As a result, the following structure for the controller
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parameters has been devised for the controllers in ideal form:

Kp = 1

K

(
aτ b + c

)
(3.25)

Ti = Tλ
(

aτ 3 + bτ 2 + cτ + d
)

(3.26)

Td = Tμ (a · exp(bτ)+ c · exp(dτ)) (3.27)

λ = 1 (3.28)

μ = aτ 3 + bτ 2 + cτ + d (3.29)

while the following interpolating functions are used for the PI controller and the
controllers in series form:

Kp = 1

K

(
aτ b + c

)
, (3.30)

Ti = Tλ
(

a

(
L

T

)b

+ c

)

, (3.31)

Td = Tμ
(

a

(
L

T

)b

+ c

)

, (3.32)

λ = 1. (3.33)

In this latter case piecewise constant functions have been considered for μ. The
different cases are then considered separately in the following subsections.

3.4.3 PI Controller

If a PI controller is considered, (namely, Td = 0), the ideal and series form are equiv-
alent, and therefore just one case has to be considered. As a result of the optimization
procedure for fractional-order PI controllers, the value λ = 1 is obtained for all the
cases addressed. This means that, for the problem considered, there is no point in
using a fractional-order integrator. The tuning rules obtained by interpolating the
results are, therefore, (3.30) and (3.31) with λ = 1 where the values of the parame-
ters a, b, and c to be employed in the different cases are shown in Tables 3.1 and 3.2.
As an example of how the tuning rules have been obtained, the optimal values of Kp

for the different values of τ and the corresponding interpolating function has been
plotted in Fig. 3.8.
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Table 3.1 Kp tuning rule parameters for a PI controller

Control task Ms = 1.4 Ms = 2.0

a b c a b c

Set-point 0.3220 −1.049 −0.2292 0.5261 −1.074 −0.2157

Load disturbance 0.2958 −1.014 −0.2021 0.5327 −1.029 −0.2428

Table 3.2 Ti tuning rule parameters for a PI controller

Control task Ms = 1.4 Ms = 2.0

a b c a b c

Set-point 0.1726 1.156 0.9907 0.4626 0.9252 0.9393

Load disturbance 1.624 0.2269 −0.5556 1.440 0.4825 −0.1019
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Fig. 3.8 Determination of the Kp tuning rule for a PI controller for set-point following (Ms = 1.4).
Plus sign optimal value of Kp. Solid line interpolating function (3.30)

For the purpose of the performance assessment task, it is also useful to deter-
mine the optimal value of the integrated absolute error as a function of the process
parameters. In fact, the assessment of the performance of a control loop is generally
performed by first calculating a performance index based on the available data, and
then by evaluating the current control performance against a selected benchmark,
which represents the desired performance. The same approach used for the con-
troller parameters have been employed also for the determination of the integrated
absolute error function, namely, the optimal IAE values for different values of τ
have been interpolated with a suitable function. The desired performance can be,
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Fig. 3.9 Determination of the performance index function IAEsp for a PI controller for set-point
following (Ms = 1.4). Plus sign optimal value of IAEsp. Solid line interpolating function (3.34)

therefore, expressed as

IAEsp =
{

AsT
(
0.0020e9.837τ + 0.8695e2.270τ + 1.158τ − 0.9188

)
if Ms = 1.4;

AsT
(
0.0021e9.046τ + 0.5488e2.244τ + 1.292τ − 0.5836

)
if Ms = 2.0;

(3.34)

for the set-point following task, where As is the amplitude of the step signal, and

IAEld =
{

AdT
(
0.8220e2.538τ + 0.0261e6.453τ + 0.0877τ − 0.9474

)
if Ms = 1.4;

AdT
(
0.0234e6.485τ + 0.3228e2.474τ + 0.5557τ − 0.4255

)
if Ms = 2.0;

(3.35)

for the load disturbance rejection task, where Ad is the amplitude of the step signal.
As an illustrative example, the interpolation for the set-point following case with
Ms = 1.4 is plotted in Fig. 3.9.

3.4.4 PID Controller

In case the derivative action is employed, the results obtained for integer and
fractional-order PID controllers are different. For an integer-order PID controller in
series form, the tuning rules obtained for Kp and Ti and Td are given by expressions
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Table 3.3 Kp tuning rule parameters for an integer-order PID controller

Control task Ms = 1.4 Ms = 2.0

a b c a b c

Set-point 0.4290 −1.032 −0.4654 0.6566 −1.076 −0.6705

Load disturbance 0.1724 −1.259 −0.05052 0.2002 −1.414 0.06139

Table 3.4 Ti tuning rule parameters for an integer-order PID controller

Control task Ms = 1.4 Ms = 2.0

a b c a b c

Set-point 0.06949 −0.5366 0.7119 0.1604 −0.1288 0.7814

Load disturbance 0.5968 0.6388 0.07886 0.4460 0.9541 0.1804

Table 3.5 Td tuning rule parameters for an integer-order PID controller

Control task Ms = 1.4 Ms = 2.0

a b c a b c

Set-point 0.4568 1.153 0.001962 0.4900 1.069 0.001149

Load disturbance 0.5856 0.5004 −0.1109 0.6777 0.4968 −0.1499

(3.30)–(3.32) where, obviously, λ = μ = 1 and the values of the parameters a, b, and
c for the different cases are shown in Tables 3.3, 3.4 and 3.5. Indeed, as it is always
Ti > 4Td , the values of the parameters for a PID controller in ideal form can always
be obtained by applying suitable conversion formulae [11]. The optimal values of the
integrated absolute error as a function of the process parameters can be expressed as

IAEsp =
{

AsT
(
0.0004e12.279τ + 0.6107e2.0849τ + 1.390τ − 0.6546

)
if Ms = 1.4

AsT
(
0.0020e9.202τ + 0.4256e2.3008τ + 0.6196τ − 0.4405

)
if Ms = 2.0

(3.36)

for the set-point following task and

IAEld =
{

AdT
(
0.5933e2.587τ + 0.0070e8.0967τ + 0.0850τ − 0.6888

)
if Ms = 1.4

AdT
(
0.0059e8.116τ + 0.1047e2.8826τ + 1.169τ − 0.1882

)
if Ms = 2.0

(3.37)

for the load disturbance rejection task.

3.4.5 FOPID Controller

If a fractional-order PID controller (3.13) or (3.21) is considered, the optimal value
λ = 1 is still found (see Sect. 3.4.3), while an optimal value μ �= 1 is found in
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Table 3.6 Kp tuning rule parameters for a FOPID controller in ideal form

Control task Ms = 1.4 Ms = 2.0

a b c a b c

Set-point 0.6189 −0.9695 −0.4648 0.9004 −0.9792 −0.5552

Load disturbance 0.6316 −0.9376 −0.4906 1.024 −0.9978 −0.7035

Table 3.7 Ti tuning rule parameters for a FOPID controller in ideal form

Control task Ms = 1.4 Ms = 2.0

a b c d a b c d

Set-point 6.248 −5.930 2.341 0.8237 5.476 −3.913 1.731 0.9057

Load disturbance 6.765 −8.305 4.774 −0.03675 4.138 −3.841 3.631 −0.02886

Table 3.8 Td tuning rule parameters for a FOPID controller in ideal form

Control task Ms = 1.4 Ms = 2.0

a b c d a b c d

Set-point 0.1876 2.927 −0.1867 1.964 0.07963 3.132 −0.08624 −1.608

Load disturbance 0.08677 3.354 −0.08395 0.426 0.05433 3.594 −0.05696 −1.372

Table 3.9 μ tuning rule parameters for a FOPID controller in ideal form

Control task Ms = 1.4 Ms = 2.0

a b c d a b c d

Set-point −0.1360 −0.3489 0.07781 1.199 −0.9618 0.879 −0.2997 1.173

Load disturbance −0.1285 −0.5261 0.2229 1.124 −0.4019 0.04827 0.02034 1.166

general. In other words, only a fractional derivative action is useful to increase the
performance.

For the FOPID controller in ideal form, the structure of the tuning rules is that of
(3.25)–(3.29) where the values of the parameters are shown in Tables 3.6, 3.7, 3.8 and
3.9. The optimal IAE values for different values of τ have been also interpolated with
a suitable function for the performance assessment purpose. The desired performance
can be, therefore, expressed as

IAEsp =
{

AsT
(
0.2240e4.205τ − 0.2850e−7.940τ

)
if Ms = 1.4

AsT
(
0.1747e4.108τ − 0.1912e−5.592τ

)
if Ms = 2.0

(3.38)

for the set-point following task and

IAEld =
{

AdKT
(
0.5366e3.430τ − 0.5733e1.536τ

)
if Ms = 1.4

AdKT
(
919.094e3.25797τ − 919.110e3.25750τ

)
if Ms = 2.0

(3.39)

for the load disturbance rejection task.



42 3 Fractional-Order Proportional-Integral-Derivative Controllers

Table 3.10 Kp tuning rule parameters for a FOPID controller in series form

Control task Ms = 1.4 Ms = 2.0

a b c a b c

Set-point 0.6846 −0.9166 −0.7096 0.9294 −0.9330 −0.9205

Load disturbance 0.2776 −1.095 −0.1426 0.1640 −1.449 0.2108

Table 3.11 Ti tuning rule parameters for a FOPID controller in series form

Control task Ms = 1.4 Ms = 2.0

a b c a b c

Set-point 0.04701 −0.2611 0.9276 −0.001427 −1.003 1.031

Load disturbance 0.6241 0.5573 0.0442 0.6426 0.8069 0.05627

Table 3.12 Td tuning rule parameters for a FOPID controller in series form

Control task Ms = 1.4 Ms = 2.0

a b c a b c

Set-point 0.3563 1.200 0.0003108 0.4203 1.229 0.01822

Load disturbance 0.4793 0.7469 −0.02393 0.5970 0.5568 −0.09536

Table 3.13 μ tuning rule parameters for a FOPID controller in series form

Control task Ms = 1.4 Ms = 2.0

Set-point 1.1 if τ < 0.1 1.0 if τ < 0.1

1.2 if τ ≥ 0.1 1.1 if 0.1 ≤ τ < 0.4

1.2 if τ ≥ 0.4

Load disturbance 1.0 if τ < 0.1 1.0 if τ < 0.2

1.1 if 0.1 ≤ τ < 0.4 1.1 if 0.2 ≤ τ < 0.6

1.2 if τ ≥ 0.4 1.2 if τ ≥ 0.6

Regarding the FOPID controller in series form, the structure (3.30), (3.31) and
(3.32), is applied for the tuning rules where the values of a, b, and c are shown in
Tables 3.10, 3.11 and 3.12. The tuning rules for μ (note that, once again, it is always
λ = 1) are shown in Table 3.13. For the purpose of performance assessment, the
optimal values of the integrated absolute error as a function of the process parameters
can be expressed as

IAEsp =
{

AsT
(
0.0011e10.414τ + 0.6304e2.2226τ + 0.7910τ − 0.6547

)
if Ms = 1.4

AsT
(
0.0017e9.258τ + 0.4573e2.2474τ + 0.4777τ − 0.4711

)
if Ms = 2.0

(3.40)
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for the set-point following task and

IAEld =
{

AdT
(
0.6512e2.394τ + 0.0031e8.663τ + 0.1353τ − 0.7456

)
if Ms = 1.4

AdT
(
0.0025e8.995τ + 0.1188e2.836τ + 1.193τ − 0.2005

)
if Ms = 2.0

(3.41)

for the load disturbance rejection task.

3.4.6 Comparison

At this point it is worth comparing the performance achievable with optimally tuned
FOPID controllers in ideal and series form, with those achievable by using an integer-
order PID controller.

The percentage increment/decrement of the IAE values by using an integer-order
PID controller and a FOPID controller in series form with respect to a FOPID con-
troller in ideal form are shown in Figs. 3.10 and 3.11 for the set-point following task
and in Figs. 3.12 and 3.13 for the load disturbance rejection task, where the cases
Ms = 1.4 and Ms = 2.0 are considered, respectively.

It appears that, in general, there is an advantage in using the FOPID controller in
ideal form (with the optimal tuning rules (3.25)–(3.29)), especially for the case of a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−10

−5

0

5

10

15

20

25

30

35

40

τ

IA
E

 [
%

]

Fig. 3.10 Percentage increment of IAE with respect to ideal FOPID controllers for set-point fol-
lowing tuning with Ms = 1.4. Solid line series FOPID controllers. Dotted line integer-order PID
controllers
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Fig. 3.11 Percentage increment of IAE with respect to ideal FOPID controllers for set-point fol-
lowing tuning with Ms = 2.0. Solid line series FOPID controllers. Dotted line integer-order PID
controllers
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Fig. 3.12 Percentage increment of IAE with respect to ideal FOPID controllers for load disturbance
tuning with Ms = 1.4. Solid line series FOPID controllers. Dotted line integer-order PID controllers
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Fig. 3.13 Percentage increment of IAE with respect to ideal FOPID controllers for load disturbance
tuning with Ms = 2.0. Solid line series FOPID controllers. Dotted line integer-order PID controllers

load disturbance and Ms = 2.0. As it is expected, there is then always a decrement
of the IAE by using a FOPID controller with respect to an integer one.

3.4.7 Simulation Results

In order to verify the effectiveness of the proposed tuning rules and to compare the
performance achieved by a FOPID controller in ideal or series form with the one
achieved by an integer-order PID controller, the following FOPDT process is first
considered (note that τ = 0.4):

P(s) = 1

s + 1
e−0.67s. (3.42)

Simulation results related to both the set-point and load disturbance unit step signals
are plotted in Figs. 3.14, 3.15, 3.16 and 3.17, where both cases Ms = 1.4 and Ms =
2.0 have been considered. The resulting values of the controller parameters, of the
integrated absolute errors and the actual maximum sensitivity for the different cases
are shown in Table 3.14, where SP is for set-point, LD is for load disturbance, 1.4
and 2.0 denote the required maximum sensitivity and I is for integer-order, FNI is for
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Fig. 3.14 Set-point step response for the FOPDT system and Ms = 1.4. Solid line FOPID con-
troller in ideal form. Dashed line FOPID controller in series form. Dotted line integer-order PID
controller
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Fig. 3.15 Set-point step response for the FOPDT system and Ms = 2.0. Solid line FOPID con-
troller in ideal form. Dashed line FOPID controller in series form. Dotted line integer-order PID
controller
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Fig. 3.16 Load disturbance step response for the FOPDT system and Ms = 1.4. Solid line FOPID
controller in ideal form. Dashed line FOPID controller in series form. Dotted line integer-order PID
controller

0 1 2 3 4 5 6 7 8
−0.2

0

0.2

0.4

0.6

time

pr
oc

es
s 

va
ri

ab
le

0 1 2 3 4 5 6 7 8
−1.5

−1

−0.5

0

time

co
nt

ro
l v

ar
ia

bl
e

Fig. 3.17 Load disturbance step response for the FOPDT system and Ms = 2.0. Solid line FOPID
controller in ideal form. Dashed line FOPID controller in series form. Dotted line integer-order PID
controller
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Table 3.14 Results related to the FOPDT process

Tuning rules Kp Ti λ Td μ Ms IAEsp IAEld

SP 1.4 I 0.64 0.80 1 0.29 1 1.42 1.34 1.26

SP 2.0 I 1.09 0.95 1 0.32 1 1.92 0.95 0.87

LD 1.4 I 0.50 0.54 1 0.37 1 1.43 1.42 1.21

LD 2.0 I 0.79 0.48 1 0.40 1 1.98 1.23 0.74

SP 1.4 FNI 1.04 1.21 1 0.20 1.17 1.40 1.22 1.16

SP 2.0 FNI 1.65 1.32 1 0.23 1.13 1.97 0.89 0.80

LD 1.4 FNI 1.00 0.98 1 0.23 1.12 1.40 1.30 1.07

LD 2.0 FNI 1.85 1.07 1 0.20 1.16 2.00 1.07 0.61

SP 1.4 FI 0.83 0.98 1 0.22 1.2 1.42 1.26 1.20

SP 2.0 FI 1.26 1.03 1 0.27 1.2 2.15 0.92 0.83

LD 1.4 FI 0.61 0.54 1 0.33 1.2 1.44 1.38 1.12

LD 2.0 FI 0.91 0.52 1 0.38 1.1 1.95 1.15 0.70

fractional-order in non-interacting form, and FI is for fractional-order in interacting
form. It should be noted that the IAE values achieved in the control task (set-point
following or load disturbance rejection) different from the one for which the controller
has been tuned have also been shown for completeness. However, the controller
should be evaluated in relationship with the task for which they have been specifically
tuned. It appears that, as it is expected, the FOPID controller in ideal form provides
overall the best performance, and the decrement of the IAE value is more significant
for the case of load disturbance rejection with Ms = 2.

As a second illustrative example, the high-order process

P(s) = 1

(s + 1)8
(3.43)

has been considered. The process has been first modeled as a FOPDT process with
K = 1, T = 3.06, and L = 4.95, and then the optimal tuning rules have been applied.
Results are shown in Figs. 3.18, 3.19, 3.20 and 3.21 and in Table 3.15. By analyzing
them, the same considerations made in the previous example can be derived, thus
confirming the effectiveness of the devised tuning rules even in the presence of
modeling uncertainties. Note however that the difference between the performance
obtained by the two FOPID controllers is not very significant as the high-order
dynamics of the process reduces this difference.

More results related to the presented optimal robust tuning techniques can be
found in [97].
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Fig. 3.18 Set-point step response for the high-order system and Ms = 1.4. Solid line FOPID
controller in ideal form. Dashed line FOPID controller in series form. Dotted line integer-order PID
controller
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Fig. 3.19 Set-point step response for the high-order system and Ms = 2.0. Solid line FOPID
controller in ideal form. Dashed line FOPID controller in series form. Dotted line integer-order PID
controller
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Fig. 3.20 Load disturbance step response for the high-order system and Ms = 1.4. Solid line FOPID
controller in ideal form. Dashed line FOPID controller in series form. Dotted line integer-order PID
controller
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Fig. 3.21 Load disturbance step response for the high-order system and Ms = 2.0. Solid line FOPID
controller in ideal form. Dashed line FOPID controller in series form. Dotted line integer-order PID
controller
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Table 3.15 Results related to the high-order process

Tuning rules Kp Ti λ Td μ Ms IAEsp IAEld

SP 1.4 I 0.24 2.34 1 2.44 1 1.45 9.77 9.76

SP 2.0 I 0.43 2.85 1 2.51 1 1.94 7.63 6.87

LD 1.4 I 0.27 2.72 1 1.94 1 1.42 10.26 10.25

LD 2.0 I 0.46 2.71 1 2.17 1 2.02 8.25 7.13

SP 1.4 FNI 0.52 1.48 1 0.52 1.08 1.43 8.85 8.82

SP 2.0 FNI 0.89 1.77 1 0.52 1.10 1.76 6.88 6.29

LD 1.4 FNI 0.50 1.34 1 0.58 1.03 1.44 8.92 8.84

LD 2.0 FNI 0.95 1.72 1 0.48 1.10 1.92 7.32 6.34

SP 1.4 FI 0.34 2.96 1 2.43 1.2 1.39 9.25 9.20

SP 2.0 FI 0.54 3.15 1 2.97 1.2 2.08 6.88 6.48

LD 1.4 FI 0.33 2.63 1 2.53 1.2 1.43 8.95 8.81

LD 2.0 FI 0.59 3.07 1 2.62 1.2 2.09 7.28 6.40

3.5 Optimal Tuning Rules for Integral Processes

By following an approach similar to that proposed in the previous section, a new
set of tuning rules, based again on the minimization of the integrated absolute error,
for PID and FOPID controllers for integrator-plus-dead-time (IPDT) processes is
proposed in this section. A peculiar feature of the optimization procedure employed
is highlighted. Again, both the set-point following and the load disturbance rejection
tasks will be considered explicitly. Further, an analytical expression of the perfor-
mance index is also given, and this can be exploited in a performance assessment
context. It will be shown that, in this context, as for FOPDT self-regulating processes
(see Sect. 3.4), in order to improve the performance the use of a fractional integral
action is not useful, while it is worth using a fractional derivative action.

3.5.1 Problem Formulation

The unity-feedback control scheme of Fig. 3.7 is considered, where the process is
assumed to have an IPDT dynamics, namely,

P(s) = K

s
e−Ls (3.44)

where, evidently, K is the gain and L is the dead time.
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As in Sect. 3.4.1, the FOPID controller in ideal form (3.13) and that in series
form (3.21) are compared with a standard integer-order PID controller in series form
(3.20), which is equivalent to a standard integer-order PID controller in ideal form
(3.12) as it always results Ti > 4Td (analogously to the case of self-regulating
processes). The same first-order filters and the same Oustaloup continuous integer-
order approximation (3.15) as in Sect. 3.4.1 has been employed. The specified control
requirement is again to minimize the (set-point r or load disturbance d) step response
integrated absolute error (3.23) under a constraint on the maximum sensitivity (3.24).

3.5.2 Optimal Tuning

Similarly to the case of self-regulating processes, in order to find the tuning rules
for the minimization of the integrated absolute error by constraining the maximum
sensitivity value, the following approach has been used. First, the set-point following
and the load disturbance rejection tasks have been considered separately. Second,
the values of the parameters of the FOPID and PID controllers have been found by
means of a genetic algorithm [69], which is known to provide a global optimum
of a problem in a stochastic frame. The objective function to be minimized is the
integrated absolute error in a step response, whereas the maximum sensitivity values
Ms = 1.4 and Ms = 2 are used as constraints [9].

In the context of integral systems, the genetic algorithm can be applied to a
normalized process transfer function where s̄ = Ls, i.e.,

P̄(s) = KL

s̄
e−s̄ (3.45)

so that the optimization can be performed just once on the process (3.45) and then
the resulting parameters have simply to be scaled by L (note that the gain K can be
neglected in the optimization procedure provided that the value of the proportional
gain Kp is eventually divided by K).

The tuning rules and the performance indexes obtained in the different cases are
reported in the next subsections. It is worth noting that the analytical expressions of
the optimal performance indexes can also be used for the assessment of the controller
performance.

3.5.2.1 Set-Point Following Task

If only the set-point following task is of concern, the results obtained by applying
the optimization procedure show that there is no need of using the (possibly frac-
tional) integral action. Indeed, the pole at the origin of the complex plane in the
loop transfer function that ensures a null steady-state error with a constant set-point
value is already present in the process, and therefore there is no need to add it in
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the controller. The optimal tuning rules obtained by means of the genetic algorithm
for the fractional-order PD controller are (note that, if there is no integral action the
ideal and series forms of the controller are equivalent)

Kp = a

KL
(3.46)

Td = bLμ (3.47)

and the optimal value of the performance index IAE is

IAEopt = AskL (3.48)

where the values of the parameters and of μ are shown in Table 3.16 and As is the
amplitude of the set-point step.

Regarding the integer-order PD tuning rules, the following expressions have been
obtained:

Kp = a

KL
(3.49)

Td = bL (3.50)

and the optimal value of the performance index IAE is again

IAEopt = AskL (3.51)

where the values of the parameters are shown in Table 3.17.
It appears that the presence of the fractional derivative action allows a performance

improvement of 17.2 % for Ms = 1.4 and of 6.34 % for Ms = 2.0.

Table 3.16 Tuning rules and performance index parameters for FOPD controllers for set-point
following task for integral processes

Ms a b μ k

1.4 0.5962 0.3354 1.20 1.80

2.0 0.8699 0.4494 1.15 1.34

Table 3.17 Tuning rules and performance index parameters for PD controllers for set-point fol-
lowing task for integral processes

Ms a b k

1.4 0.4745 0.3300 2.11

2.0 0.7399 0.5061 1.44
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3.5.2.2 Load Disturbance Rejection Task

When the (constant) load disturbance rejection task is considered, the (possibly
fractional) integral action has to be employed to ensure a null steady-state error.
The resulting optimal tuning rules obtained by means of the genetic algorithm for
the FOPID controller are

Kp = a

KL
(3.52)

Ti = cLλ (3.53)

Td = bLμ (3.54)

and the optimal value of the performance index IAE is

IAEopt = AdkKL2 (3.55)

where the values of the parameters λ and μ are shown in Table 3.18 for the FOPID
controller in ideal form and in Table 3.19 for the FOPID controller is series form.
Note that in both cases λ = 1 and μ �= 1, that is, it is worth using a fractional-order
derivative action and an integer-order integral action.

Regarding the integer-order PID tuning rules, the following expressions have been
obtained:

Kp = a

KL
(3.56)

Ti = cL (3.57)

Td = bL (3.58)

Table 3.18 Tuning rules and performance index parameters for FOPID controllers in ideal form
for load disturbance rejection task for integral processes

Ms a b c λ μ k

1.4 0.5636 0.4170 4.6206 1 1.15 8.75

2.0 1.0357 0.3723 3.1698 1 1.18 3.19

Table 3.19 Tuning rules and performance index parameters for FOPID controllers in series form
for load disturbance rejection task for integral processes

Ms a b c λ μ k

1.4 0.5106 0.4489 3.9856 1 1.15 8.79

2.0 0.8015 0.4863 1.9206 1 1.15 3.53
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Table 3.20 Tuning rules and performance index parameters for PID controllers in series form for
load disturbance rejection task for integral processes

Ms a b c k

1.4 0.4058 0.5267 3.5035 10.82

2.0 0.6718 0.5099 2.2727 4.13

and the optimal value of the performance index IAE is again

IAEopt = AdkKL2 (3.59)

where the values of the parameters are shown in Table 3.20.
In this case the presence of the fractional derivative action allows a performance

improvement, with respect to the standard integer-order PID controller, of 19.1 for
Ms = 1.4 and of 22.7 % for Ms = 2.0 for the FOPID controller in ideal form and of
18.8 % for Ms = 1.4 and of 14.6 % for Ms = 2.0 for the FOPID controller in series
form.

3.5.3 Simulation Results

As a first illustrative example, consider the following integral process [149]:

P1(s) = 0.0506

s
e−6s. (3.60)

The tuning rules presented in Sect. 3.5.2 have been applied and the results for the
set-point and load disturbance step responses are plotted in Figs. 3.22, 3.23, 3.24 and
3.25 for the different cases. The resulting values of the integrated absolute errors are
shown in Table 3.21. Note that the tuning rule employed is described as SP or LD
(which means that the set-point following or the load disturbance rejection task is
addressed, respectively) followed by the target maximum sensitivity.

It appears that, as expected, the fractional-order PID controller provides a better
performance than the integer-order one.

As a second illustrative example, the following high-order integral process is
considered:

P2(s) = 1

s(s + 1)8
e−s. (3.61)

In order to apply the tuning rules proposed in Sect. 3.5.2, an IPDT model (3.44)
has been estimated with K = 1 and L = 8. The results obtained for the different
cases are summarized in Table 3.22 (note that the obtained value of the maximum
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Fig. 3.22 Set-point unit step response for the IPDT process. Solid line FOPD with Ms = 1.4.
Dashed line PD with Ms = 1.4
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Fig. 3.23 Set-point unit step response for the IPDT process. Solid line FOPD with Ms = 2.0.
Dashed line PD with Ms = 2.0
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Fig. 3.24 Load disturbance unit step response for the IPDT process. Solid line series FOPID with
Ms = 1.4. Dash-dot line ideal FOPID with Ms = 1.4 Dashed line PID with Ms = 1.4
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Fig. 3.25 Load disturbance unit step response for the IPDT process. Solid line series FOPID with
Ms = 2.0. Dash-dot line ideal FOPID with Ms = 2.0. Dashed line PID with Ms = 2.0
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Table 3.21 Results related to the IPDT process

Controller Kp Ti Td λ μ IAEsp IAEld Ms

PD SP 1.4 1.57 – 1.98 – – 12.65 ∞ 1.42

PD SP 2.0 2.44 – 3.04 – – 8.60 ∞ 1.98

PID LD 1.4 1.34 21.02 3.16 – – 23.05 19.68 1.42

PID LD 2.0 2.21 13.64 3.06 – – 17.06 7.52 2.02

FOPD SP 1.4 1.96 – 2.88 – 1.2 10.74 ∞ 1.43

FOPD SP 2.0 2.87 – 3.53 – 1.15 8.09 ∞ 1.99

Series FOPID LD 1.4 1.68 23.91 3.52 1 1.15 20.02 15.92 1.43

Series FOPID LD 2.0 2.64 11.52 3.82 1 1.15 17.06 6.29 2.07

Ideal FOPID LD 1.4 1.86 27.72 3.27 1 1.15 19.61 15.88 1.42

Ideal FOPID LD 2.0 3.41 19.02 3.08 1 1.18 14.72 5.80 2.05

Table 3.22 Results related to the high-order integral process

Controller Kp Ti Td λ μ IAEsp IAEld Ms

PD SP 1.4 0.06 – 2.64 – – 16.87 ∞ 1.42

PD SP 2.0 0.09 – 4.05 – – 12.26 ∞ 1.78

PID LD 1.4 0.05 28.03 4.21 – – 33.36 706.4 1.51

PID LD 2.0 0.08 18.18 4.08 – – 26.44 286.0 2.19

FOPD SP 1.4 0.07 – 4.07 – 1.2 15.33 ∞ 1.45

FOPD SP 2.0 0.11 – 4.91 – 1.15 12.06 ∞ 1.73

Series FOPID LD 1.4 0.06 31.88 4.91 1 1.15 30.10 566.2 1.55

Series FOPID LD 2.0 0.10 15.36 5.31 1 1.15 27.58 261.6 2.49

Ideal FOPID LD 1.4 0.07 36.96 4.56 1 1.15 28.13 560.2 1.54

Ideal FOPID LD 2.0 0.13 25.36 4.33 1 1.18 23.28 229.8 2.32

sensitivity is obviously different from the target one because of the low-order model
approximation), while the set-point and load disturbance step responses are shown
in Figs. 3.26, 3.27, 3.28, and 3.29 for the different cases.

It appears that the provided tuning rules can address the robustness issue
satisfactorily.
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Fig. 3.26 Set-point unit step response for the high-order integral process. Solid line FOPD with
Ms = 1.4. Dashed line PD with Ms = 1.4
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Fig. 3.27 Set-point unit step response for the high-order integral process. Solid line FOPD with
Ms = 2.0. Dashed line PD with Ms = 2.0
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Fig. 3.28 Load disturbance unit step response for the high-order integral process. Solid line series
FOPID with Ms = 1.4. Dash-dot line ideal FOPID with Ms = 1.4. Dashed line PID with Ms = 1.4

0 20 40 60 80 100 120
−5

0

5

10

15

time

pr
oc

es
s 

va
ri

ab
le

0 20 40 60 80 100 120
−2

−1.5

−1

−0.5

0

0.5

time

co
nt

ro
l v

ar
ia

bl
e

Fig. 3.29 Load disturbance unit step response for the high-order integral process. Solid line series
FOPID with Ms = 2.0. Dash-dot line ideal FOPID with Ms = 2.0. Dashed line PID with Ms = 2.0
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3.6 Optimal Tuning Rules for Unstable Processes

In this section, the tuning problem is formulated and solved for unstable processes.
In particular, the unity-feedback control scheme of Fig. 3.7 is considered, where P(s)
is unstable. Once again, optimal tuning rules for both FOPID controllers in ideal and
series form as well as for integer-order PID controllers are presented.

3.6.1 Problem Formulation

The process is assumed to have an unstable-first-order-plus-dead-time (UFOPDT)
dynamics, namely,

P(s) = K

Ts − 1
e−Ls (3.62)

where K is the gain, T is the time constant and L is the dead time. As for FOPDT mod-
els, the process dynamics (3.62) can be conveniently characterized by the normalized
dead time defined as L/T . Hereafter unstable processes with 0.05 ≤ L/T ≤ 1 are
considered. This is a sensible range within the stabilizable range by considering
a PID controller [132]. The aim of the tuning rules is always to minimize the inte-
grated absolute error in the set-point and load disturbance step responses (considered
separately). However, differently from the previous cases, here a constraint on the
maximum sensitivity (3.24) has not been posed. Actually, constraining the maximum
sensitivity for an unstable system might prevent the stabilization of the control system
and, in this case, minimizing the integrated absolute error yields also a satisfactory
robustness.

3.6.2 Optimal Tuning

The optimization procedure employed for unstable processes is more complex than
that employed for integral processes. Indeed, in order to find the tuning rules for the
minimization of the integrated absolute error an approach similar to that employed
in Sect. 3.4 for FOPDT processes has to be used. In particular, the set-point follow-
ing and the load disturbance rejection tasks have been considered again separately,
and different processes with different values of the normalized dead time have been
considered. For each of them, the values of the parameters of the FOPID and PID
controllers have been found by means of a genetic algorithm and, eventually, for each
considered controller, the optimal coefficients found for the different values of L/T
have been interpolated in order to derive suitable tuning rules. The obtained perfor-
mance indexes has been interpolated as well. The tuning rules and the performance
indexes obtained in the different cases are reported in the next subsections.
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3.6.2.1 Set-Point Following Task

If only the set-point following task is of concern, the optimal tuning rules obtained
by means of the genetic algorithm for the FOPID and PID controller are

Kp = 1

K

(

a exp

(

−b
L

T

)

+ c

(
L

T

)d
)

(3.63)

Ti =
(

a exp

(

b
L

T

)

+ c exp

(

d
L

T

))

Tλ (3.64)

Td =
(

a

(
L

T

)b

+ c

)

Tμ (3.65)

where the values of the tuning rule parameters are shown in Tables 3.23 and 3.24 for
FOPID controllers in series and ideal form, respectively, and in Table 3.25 for PID
controller. Obviously it is λ = μ = 1 for the standard integer-order PID controllers.
For the FOPID controller, it is

λ = 1 (3.66)

Table 3.23 Tuning rules parameters for FOPID controllers in series form for set-point following
task for unstable processes

Parameter a b c d

Kp −2.363 0.6377 2.693 −0.6977

Ti 0.4528 3.127 7.359 × 10−16 25.32

Td 0.5011 1.303 0.004218 −

Table 3.24 Tuning rules parameters for FOPID controllers in ideal form for set-point following
task for unstable processes

Parameter a b c d

Kp 1.065 0.9063 1.051 −1.088

Ti 0.5659 2.942 −0.6172 −4.655

Td 0.4884 1.350 0.001938 –

Table 3.25 Tuning rules parameters for PID controllers for set-point following task for unstable
processes

Parameter a b c d

Kp 0.07809 −0.9958 1.035 −0.9305

Ti 6.107 × 10−7 12.49 0.4247 3.031

Td 0.5522 1.026 0.006063 −
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and

μ = −0.008233

(
L

T

)2

− 0.05605
L

T
+ 1.205 (3.67)

for the series form, and

μ = 0.1301

(
L

T

)2

− 0.1996
L

T
+ 1.216 (3.68)

for the ideal form. The optimal value of the performance index IAE can be
expressed as

IAEopt = As

(

a exp

(

b
L

T

)

+ c

(
L

T

)d
)

T (3.69)

where the values of the parameters a, b, c and d for FOPID and PID controllers
are shown in Table 3.26 and As is the amplitude of the set-point step. The unit step
response IAE values obtained for different normalized dead times are shown in
Fig. 3.30. It appears that the FOPID controller (both in ideal or series form) is capable
to provide a better performance than the standard integer-order PID controller. The
improvement of the performance for series FOPID is more significant when the
normalized dead time of the process increases, as it is shown in Figs. 3.30 and 3.31.

The ideal FOPID controller shows a behavior similar to the series one when the
value of the normalized dead time is in the middle of the admissible range. On the
contrary, for small values of the normalized dead time it is convenient to use the ideal
form, while the opposite is true for big values of the normalized dead time.

It is worth noting that, as for stable FOPDT systems and for IPDT systems the
value λ = 1 results for FOPID controllers, that is, it is just the fractional derivative
action that is useful in improving the performance.

3.6.2.2 Load Disturbance Rejection Task

If the load disturbance rejection task is considered, the same expressions (3.63)–
(3.65) for the tuning rules can be employed. The related parameters are shown in

Table 3.26 Parameters of the IAE performance index expression for the set-point following task
for unstable processes

Controller a b c d

PID L/T ≤ 0.4 0.0288 7.1112 3.0542 1.1122

PID L/T > 0.4 0.1153 4.6010 2.7518 1.2484

FOPID series L/T ≤ 0.4 0.0429 5.9277 2.8148 1.1667

FOPID series L/T > 0.4 0.3255 3.8420 −5.3195 4.5204

FOPID ideal L/T ≤ 0.4 0.1137 4.3033 −0.2588 0.2205

FOPID ideal L/T > 0.4 4.9722 × 10−6 13.2717 4.9926 2.7626
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Fig. 3.30 Values of the normalized IAE obtained for the set-point following task for unstable
processes. Solid line FOPID in series form. Dash-dot line FOPID in ideal form. Dashed line PID
controllers
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Fig. 3.31 Percentage improvement obtained by the FOPID in series form (continuous line) and the
FOPID in ideal form (dashed line) controllers with respect to the PID controller for the set-point
following task for unstable processes
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Table 3.27 Tuning rules parameters for FOPID controllers in series form for load disturbance
rejection task for unstable processes

Parameter a b c d

Kp −0.4346 0 1.947 −0.7747

Ti 0.2736 3.491 −0.5366 −13.33

Td 0.5038 1.298 0.008506 −

Table 3.28 Tuning rules parameters for FOPID controllers in ideal form for load disturbance
rejection task for unstable processes

Parameter a b c d

Kp 1.602 1.255 1.075 −1.126

Ti 0.5207 2.875 −0.5913 −3.752

Td 0.4939 1.383 0.002607 –

Table 3.29 Tuning rules parameters for PID controllers in series form for load disturbance rejection
task for unstable processes

Parameter a b c d

Kp 5.418 8.539 1.268 −0.6704

Ti 0.2125 3.758 −0.4673 −16.62

Td 0.5786 0.9149 0.0006551 −

Tables 3.27, 3.28 and 3.29 for the FOPID and PID controllers respectively. Again,
for FOPID controllers it is λ = 1 while it is useful to employ a fractional derivative
action where the derivative order is

μ = −0.04783

(
L

T

)2

− 0.01017
L

T
+ 1.218 (3.70)

for FOPID controllers in series form, and

μ = 0.06326

(
L

T

)2

− 0.1508
L

T
+ 1.245 (3.71)

for FOPID controllers in ideal form. The optimal value of the performance index
IAE can be expressed as

IAEopt = Ad

(

a exp

(

b
L

T

)

+ c

(
L

T

)d
)

TK (3.72)
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Table 3.30 Parameters of the IAE performance index expression for the load disturbance rejection
task for unstable processes

Controller a b c d

PID L/T ≤ 0.4 0.0024 11.0222 2.5593 2.0682

PID L/T > 0.4 0.0503 6.1840 −14.2533 7.3901

FOPID series L/T ≤ 0.4 0.0017 11.2262 2.0663 2.0247

FOPID series L/T > 0.4 0.0365 6.3840 −15.0042 7.4056

FOPID ideal L/T ≤ 0.4 7.6922 × 10−4 10.4503 2.8310 2.2116

FOPID ideal L/T > 0.4 8.5461 × 10−6 12.7409 4.9206 2.7406

where Ad is again the amplitude of the load disturbance step and the values of
the parameters a, b, c and d for FOPID and PID controllers are shown in Table 3.30.
The unit step response IAE values obtained for different normalized dead times
and the improvement of the performance obtained by using the fractional derivative
action are plotted in Figs. 3.32 and 3.33, respectively. It appears that in this case the
use of the FOPID controller ideal form is more convenient for a large range of the
values of the normalized dead time.
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Fig. 3.32 Values of the normalized IAE obtained for the load disturbance rejection task for unstable
processes. Solid line FOPID in series form. Dash-dot line FOPID in ideal form. Dashed line PID
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Fig. 3.33 Percentage improvement obtained by the FOPID in series form (continuous line) and
the FOPID in ideal form (dashed line) controllers with respect to the PID controller for the load
disturbance rejection task for unstable processes

3.6.3 Simulation Results

As an illustrative example, consider the following unstable process with a small
normalized dead time [149]:

P(s) = 1

s − 1
e−0.2s. (3.73)

The tuning rules presented in Sect. 3.6 have been applied and the results for the
different cases are summarized in Table 3.31, while the set-point and load disturbance
step responses are shown in Figs. 3.34 and 3.35 respectively, for the different cases.

Table 3.31 Results related to the unstable process with small normalized dead time

Controller Kp Ti Td λ μ IAEsp IAEld

PID SP 4.72 0.78 0.11 – – 0.63 0.17

PID LD 4.71 0.43 0.13 1 1 0.69 0.11

Series FOPID SP 6.20 0.85 0.07 1 1.19 0.57 0.14

Series FOPID LD 6.34 0.51 0.07 1 1.21 0.70 0.09

Ideal FOPID SP 6.94 0.78 0.06 1 1.18 0.55 0.11

Ideal FOPID LD 7.83 0.65 0.06 1 1.22 0.70 0.09
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Fig. 3.34 Set-point unit step response for the unstable process with small normalized dead time.
Solid line FOPID controller in series form. Dash-dot line FOPID controller in parallel form. Dashed
line PID controller
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Fig. 3.35 Load disturbance unit step response for the unstable process with small normalized
dead time. Left set-point unit step response Right load disturbance step response. Solid line FOPID
controller in series form. Dash-dot line FOPID controller in parallel form. Dashed line PID controller
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Table 3.32 Results related to the unstable process with high normalized dead time

Controller Kp Ti Td λ μ IAEsp IAEld

PID SP 1.25 8.97 0.56 – – 14.25 11.45

PID LD 1.27 9.11 0.58 – – 14.05 10.28

Series FOPID SP 1.44 10.32 0.50 1 1.14 9.86 7.34

Series FOPID LD 1.51 8.98 0.51 1 1.16 11.61 6.73

Ideal FOPID SP 1.48 10.72 0.49 1 1.15 11.25 8.64

Ideal FOPID LD 1.53 9.22 0.50 1 1.16 11.27 7.83

It appears that, as expected, the fractional-order PID controllers provides a better
performance than the integer-order one.

Finally, as a last illustrative example, consider an unstable process with a greater
normalized dead time:

P(s) = 1

s − 1
e−s. (3.74)

Table 3.32 summarizes the results of the presented tuning methods. The set-point
and load disturbance step responses are shown in Figs. 3.36 and 3.37 for the different
cases.

Obviously, the peak errors are significant in the different cases because of the
large normalized dead time, but in any case the performance provided by the FOPID
controllers is much better than that provided by the PID controller.
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Fig. 3.36 Set-point unit step response for the unstable process with small normalized dead time.
Solid line FOPID controller in series form. Dash-dot line FOPID controller in parallel form. Dashed
line PID controller
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Fig. 3.37 Load disturbance unit step response for the unstable process with small normalized dead
time. Solid line FOPID controller in series form. Dash-dot line FOPID controller in parallel form.
Dashed line PID controller

3.7 Conclusions

In this chapter a set of tuning rules for fractional-order PID controllers for self-
regulating, integral and unstable processes have been presented. In particular, the
tuning rules allow the minimization of the integrated absolute error for either the
set-point tracking task or the load disturbance rejection task subject to a constraint
on the maximum sensitivity (for stable and integral processes).

By comparing the results with those obtained for standard PID controllers
(for which tuning rules have been also presented) the improvement of the perfor-
mance that can be achieved by employing a FOPID controller has been specified
quantitatively so that the user can characterize the cost/benefit ratio of such con-
trollers for a given application. Indeed, analytical expressions of the performance
index have been provided so that they can be employed effectively for the purpose
of performance assessment. More simulation results can be found in [97, 99].



Chapter 4
FOPID Controller Additional Functionalities

4.1 Set-Point Weighting

It has been recognized that, for their widespread use in industry, FOPID controllers
should possess the same ease of use and the same capability of dealing with practical
issues of standard PID controllers. In particular, they should possess those additional
functionalities (anti-windup, feedforward action, set-point weight, derivative filter,
etc.) that allow the user to improve the performance in practical cases [151].

In this section, the use of the set-point weighting technique is considered. This
is usefully exploited in the context of integer-order PID controllers in order to im-
plement easily a two-degree-of-freedom control scheme, that is, in order to recover
the set-point following performance when the controller is tuned in order to com-
pensate the load disturbances as better as possible [11]. It is shown that the method,
if properly implemented, is also effective for FOPID controllers and explicit tuning
rules are provided for the selection of the optimal set-point weight in order to mini-
mize the integrated absolute error in the set-point step response when the controller
parameters are selected, as proposed in the previous chapter, in order to optimize the
load disturbance rejection performance [100].

4.1.1 Problem Formulation

As already mentioned in the previous section, set-point weighting is an effective
technique for the reduction of the overshoot in the set-point step response when
the controller is aggressively tuned (for the purpose of achieving a satisfactory load
disturbance rejection performance). In order to introduce the set-point weight for
the FOPID controller, it is convenient to extend the procedure which is typically
employed for integer-order PID controllers [11, 151].

© Springer International Publishing Switzerland 2015
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DOI 10.1007/978-3-319-10930-5_4
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Fig. 4.1 Two-degree-of-
freedom FOPID control
scheme
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In fact, transfer function (3.21) can be expressed as

C(s) = K p

(

1 + 1

Ti sλ
+ Tdsμ + Td

Ti
sμ−λ

)
1

T f s + 1
. (4.1)

It can be easily deduced that the term Td/Ti sμ−λ has to be added to the proportional
action only if μ = λ. Thus, the use of the set-point weight implies the use of the
two-degree-of-freedom control scheme of Fig. 4.1 where C(s) is that of expression
(4.1) and

Csp(s) =
⎧
⎨

⎩

K p

(
β

(
1 + Td

Ti

)
+ 1

Ti sλ
+ Tdsμ

)
1

T f s+1 if μ = λ

K p

(
β + 1

Ti sλ
+ Tdsμ + Td

Ti
sμ−λ

)
1

T f s+1 if μ �= λ
(4.2)

4.1.2 Set-Point Weight Tuning Rules

Tuning rules for the selection of the value of β have been devised by considering
the different kind of processes, namely FOPDT, IPDT and UFOPDT, and the corre-
sponding tuning rules presented in Sects. 3.4, 3.5 and 3.6 that minimize the integrated
absolute error for the load disturbance step response.

Then, each kind of process (self-regulating, integral, or unstable) has been con-
sidered separately. For self-regulating and unstable processes, the value of β that
minimizes the integrated absolute error value in the set-point unit step response has
been found for different values of the normalized dead time. Eventually, results have
been interpolated in order to provide analytical tuning rules. The same procedure has
been also applied to the optimally tuned integer-order PID controllers for the sake
of comparison.

This procedure is greatly simplified in case of IPDT processes as already high-
lighted in Sect. 3.5. Indeed, as the optimal controller shape does not depend on L ,
the set-point weight β does not depend on L as well.

http://dx.doi.org/10.1007/978-3-319-10930-5_3
http://dx.doi.org/10.1007/978-3-319-10930-5_3
http://dx.doi.org/10.1007/978-3-319-10930-5_3
http://dx.doi.org/10.1007/978-3-319-10930-5_3
http://dx.doi.org/10.1007/978-3-319-10930-5_3
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Table 4.1 Parameters of the tuning rules for the set-point weight β

Controller Process a b c d

FOPID FOPDT 1.4 2.3941 1.6256 0.6149 –

FOPDT 2.0 0.5325 1.9620 0.5116 –

IPDT 1.4 0.61 – – –

IPDT 2.0 0.41 – – –

UFOPDT −1.3623 3.0007 −2.1063 0.6876

PID FOPDT 1.4 2.4767 1.9973 0.7341 –

FOPDT 2.0 1.1674 4.6515 0.6857 –

IPDT 1.4 0.57 – – –

IPDT 2.0 0.44 – – –

UFOPDT −1.129 2.477 −1.874 0.6388

The optimal values of β can be therefore expressed as

β = aτ b + c (4.3)

when controlling self-regulating processes, as

β = a (4.4)

when controlling integral processes and as

β = a

(
L

T

)3

+ b

(
L

T

)2

+ c

(
L

T

)

+ d (4.5)

when controlling unstable processes. The values of a, b, c, and d, depending on the
controlled process type and on the required maximum sensitivity (for FOPDT and
IPDT processes) are shown in Table 4.1 for both FOPID and PID controllers.Note
that, due to the time-scale invariancy property of integrating processes, the optimal
set-point weight β in this case is just a number. Also note that, in the case of un-
stable processes, the optimal set-point weight is parametrized with respect of L/T
instead of τ as for FOPDT processes. The reason of this choice lies in the smaller
maximum dead time allowable when controlling UFOPDT processes with respect
to one allowable when controlling FOPDT processes (with the same time constant).
Indeed, the smaller range of admissible values of the dead time can be better (and
linearly) parametrized by means of the ratio L/T .

The interpolated function (4.3) for the FOPDT case is plotted in Fig. 4.2, while
the decrement of IAE obtained by using the set-point weight in this case is shown
in Fig. 4.3 (also for PID controllers). It appears that, for FOPID controllers, with the
use of the set-point weight the value of IAE in the step response can be decreased
up to 17 % for Ms = 1.4 (this decrement is more significant for high values of the
normalized dead time) and up to 35 % for Ms = 2 (in this case the decrement is
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Fig. 4.2 Values of the set-point weight for different values of τ for FOPDT processes. Solid line
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Fig. 4.3 IAE decrement (in percentage) obtained with the set-point weight for FOPDT processes.
Solid line FOPID Ms = 1.4. Dashed line FOPID Ms = 2.0. Dash-dot line PID Ms = 1.4. Dotted
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Table 4.2 IAE decrement (in
percentage) obtained with the
set-point weight for IPDT
processes

Ms IAE decrement[%]

F 1.4 21

F 2.0 43

I 1.4 18

I 2.0 38

more significant for low values of the normalized dead time). Similar decrements
are obtained in general for standard PID controllers, with the exception of the case
of a high normalized dead time for Ms = 1.4 where the decrement obtained by PID
controllers is higher.

For integral processes, the obtained decrement of IAE is shown in Table 4.2.
Finally, for the case of unstable processes, Figs. 4.4 and 4.5 show again, respec-

tively, the interpolated function (4.5) and the performance improvement in the set-
point step response obtained by using the set-point weight. It can be seen that, for
FOPID controllers, the value of IAE can be decreased up to 35 % for high values of
L/T . A more significant decrement is obtained for PID controllers.
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Fig. 4.4 Values of the set-point weight for different values of L/T for UFOPDT processes with
FOPID controllers (continuous line) and PID controllers (dashed line)
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Fig. 4.5 IAE decrement (in percentage) obtained with the set-point weight for UFOPDT processes
with FOPID controllers (continuous line) and PID controllers (dashed line)

4.1.3 Discussion

In order to evaluate the results, it is worth stressing again that the aim of the tuning
rules is to minimize the integrated absolute error. In this context, the resulting value
of β can be conveniently greater than one for FOPDT processes in order to decrease
the rise time at the expense of a larger overshoot [6, 44]. In fact, for Ms = 1.4 and
for high values of the normalized dead time, the optimal PID parameters provide a
somewhat sluggish (robust) response. Obviously, from a practical point of view, if
the increment of the set-point weight results in a still too big overshoot (for the given
application), the value of β can be easily reduced until the overshoot specification is
met.

Conversely, if there are no tight robustness constraints as for Ms = 2.0, the
minimization of the integrated absolute error in the load disturbance rejection is
achieved with an aggressive controller and for this reason the value of the optimal
set-point weight is in general less than one as it is essential to reduce the overshoot in
the set-point step response in order to minimize the integrated absolute error for this
task (with the same controller parameters). By analyzing Fig. 4.3, it can be deduced
that the use of the set-point weight when 0.25 ≤ τ ≤ 0.4 for Ms = 1.4 and when
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τ ≥ 0.6 for Ms = 2.0 does not provide a significant decrement of the performance
because in these cases the trade-off between the overshoot and the rise time in the set-
point step response obtained with the optimal (FO)PID parameters and with β = 1
is such that the resulting integrated absolute error is close to optimality.

Regarding integral and unstable processes, the optimal set-point weight β is
always smaller than 1. This happens because large overshoots are likely to occur
with this kind of processes.

It has then to be noted that, for FOPDT processes, the performance improvement
in the fractional case is similar in general to the integer-order one, and in some cases
it is larger for PID controllers than for FOPID controllers. This is due to the fact
that FOPID controllers provide already a better performance (without the set-point
weight) in the set-point following task case and ,therefore, it is more difficult to obtain
an increment in the performance. Conversely, for IPDT processes, despite the fact
that FOPID controllers already provide better results without the set-point weight,
they are still capable of a more significant increment of the performance. Finally,
for UFOPDT processes, the IAE decrement obtained by standard PID controllers is
always larger than that obtained by FOPID controllers. This is explained by the fact
that for this kind of processes the FOPID (aggressive) tuning obtained to optimize the
load disturbance rejection performance is actually more unsuitable for the set-point
following task than that employed for PID controllers. In any case the use of the
set-point weight for FOPID controllers has been proven to be effective.

4.1.4 Simulation Results

The same processes used in Chap. 3 for the evaluation of the (FO)PID tuning rules
are used also here for the evaluation of the set-point weight tuning.

As a first example, consider the self-regulating FOPDT process

P(s) = 1

s + 1
e−0.67s . (4.6)

By applying the tuning rules for FOPID and PID controllers and for the set-point
weight, the results shown in Table 4.3 are obtained, where IAEβ denotes the integrated
absolute error obtained by applying the set-point weight. For the different cases, the
set-point step responses with and without the use of the set-point weight are plotted
in Fig. 4.6. For the case Ms = 1.4, the integrated absolute error reduction is not
significant (around 1 % for FOPID controller and 2 % for PID controller). This very
slight improvement of the performance is expected by considering Fig. 4.3 and by
taking into account that the normalized dead time for process (4.6) is τ = 0.4. On
the contrary, when Ms = 2.0 there is a more sensible IAE reduction of 13 % for the
FOPID controller and of 11 % for the PID controller.

As a second example, consider the self-regulating high-order process

http://dx.doi.org/10.1007/978-3-319-10930-5_3
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Table 4.3 Results obtained
with the FOPDT process

Controller K p Ti λ Td μ β IAEβ IAE

PID 1.4 0.50 0.54 – 0.37 – 1.13 1.39 1.42

PID 2.0 0.79 0.48 – 0.40 – 0.70 1.09 1.23

FOPID 1.4 0.61 0.54 1 0.33 1.2 1.15 1.37 1.38

FOPID 2.0 0.91 0.52 1 0.38 1.1 0.60 1.00 1.15
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Fig. 4.6 Set-point unit step response for the FOPDT process. Top-left PID controller with Ms = 1.4.
Top-right PID controller with Ms = 2.0. Bottom-left FOPID controller with Ms = 1.4. Bottom-
right FOPID controller with Ms = 2.0. Solid line with set-point weight. Dashed line without
set-point weight

P(s) = 1

(s + 1)8
. (4.7)

After having approximated it with a FOPDT transfer function with K = 1, T = 3.06,
and L = 4.95 (τ = 0.3820), the devised tuning rules give the results in Table 4.4
for the different controllers and the different values of the desired sensitivity. The
set-point step responses with and without the use of the set-point weight are plotted
in Fig. 4.7. The integrated absolute error value is decreased of 5.4 % for the FOPID
controller and of 20 % for the PID controller with Ms = 1.4, while for Ms = 2.0, a
decrement of 2.3 % for the FOPID controller and of 3.5 % for the PID one is obtained.
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Table 4.4 Results obtained
with the high-order
self-regulating process

Controller K p Ti λ Td μ β IAEβ IAE

PID 1.4 0.27 2.72 – 1.94 – 1.68 8.20 10.26

PID 2.0 0.46 2.71 – 2.17 – 0.81 7.96 8.25

FOPID 1.4 0.33 2.63 1 2.53 1.2 1.71 8.47 8.95

FOPID 2.0 0.59 3.07 1 2.62 1.2 0.72 7.11 7.28
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Fig. 4.7 Set-point unit step response for the high-order self-regulating process. Top-left PID con-
troller with Ms = 1.4. Top-right PID controller with Ms = 2.0. Bottom-left FOPID controller with
Ms = 1.4. Bottom-right FOPID controller with Ms = 2.0. Solid line with set-point weight. Dashed
line without set-point weight

It can be seen that the use of the set-point weight is effective also in the presence of
modeling uncertainties. Note that the performance improvement is lower when using
the FOPID controller because their performance are already satisfactory without the
set-point weight.
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Table 4.5 Results obtained with the IPDT process

Controller K p Ti λ Td μ β IAEβ IAE

PID 1.4 1.34 21.02 – 3.16 – 0.57 18.93 23.09

PID 2.0 2.21 13.64 – 3.06 – 0.44 10.42 17.04

FOPID 1.4 1.68 23.91 1 3.52 1.15 0.61 15.76 20.01

FOPID 2.0 2.64 11.52 1 3.81 1.15 0.41 9.65 17.06
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Fig. 4.8 Set-point unit step response for the IPDT process. Top-left PID controller with Ms = 1.4.
Top-right PID controller with Ms = 2.0. Bottom-left FOPID controller with Ms = 1.4. Bottom-
right FOPID controller with Ms = 2.0. Solid line with set-point weight. Dashed line without
set-point weight

As a third example, consider the IPDT process [153]

P(s) = 0.0506

s
e−6s . (4.8)

In this case, the proposed tuning rules give the results shown in Table 4.5. The set-
point step responses with and without the use of the set-point weight are plotted in
Fig. 4.8. As expected (see Table 4.2), by using the set-point weight the integrated
absolute error value is decreased of 21 % for the FOPID case with Ms = 1.4, of 43 %
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Table 4.6 Results obtained with the high-order integral process

Controller K p Ti λ Td μ β IAEβ IAE

PID 1.4 0.05 28.03 – 4.21 – 0.57 26.19 32.93

PID 2.0 0.08 18.18 – 4.08 – 0.44 15.86 25.51

FOPID 1.4 0.06 31.88 1 4.91 1.15 0.61 21.78 28.55

FOPID 2.0 0.10 15.36 1 5.31 1.15 0.41 15.46 27.52
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Fig. 4.9 Set-point unit step response for the high-order integral process. Top-left PID controller
with Ms = 1.4. Top-right PID controller with Ms = 2.0. Bottom-left FOPID controller with
Ms = 1.4. Bottom-right FOPID controller with Ms = 2.0. Solid line with set-point weight. Dashed
line without set-point weight

for the FOPID case with Ms = 2.0, of 18 % for the PID case with Ms = 1.4 and of
38 % for the PID case with Ms = 2.0.

As a fourth example, consider the high-order integral process

P(s) = 1

s(s + 1)8
e−s, (4.9)

which can be approximated with an IPDT transfer function with K = 1 and L =
8. With these process parameters, the FOPID and PID controller parameters are
determined and the corresponding results are shown in Table 4.6. The set-point step
responses are plotted in Fig. 4.9. The values of the integrated absolute errors for
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Fig. 4.10 Set-point unit step response for the UFOPDT process with small dead time. Left PID
controller. Right FOPID controller. Solid line with set-point weight. Dashed line without set-point
weight

Ms = 1.4 decrease of 24 % when a FOPID controller is considered, while a PID
controller gives a performance improvement of 20 %. For Ms = 2.0 the performance
improvements are of 44 % for the FOPID controller and of 38 % for the PID one. It
turns out that, for integral processes, the use of the set-point weight allows the user
to increase the set-point following performance significantly also in the presence of
modeling uncertainties.

As a fifth example, consider the UFOPDT process with small (normalized) dead
time

P(s) = 1

s − 1
e−0.2s . (4.10)

In this case, the values of the FOPID parameters given by the tuning rules (3.63)–
(3.70) are K p = 6.34, Ti = 0.51, λ = 1, Td = 0.07 and μ = 1.21 while the PID
parameters are K p = 4.71, Ti = 0.43, Td = 0.13. The set-point weight determined
by means of (4.5) is β = 0.38 for the FOPID controller and β = 0.35 for the PID
one. The set-point step responses with and without the use of the set-point weight are
plotted in Fig. 4.10. The integrated absolute error value decreases from 0.69 to 0.54,
that is, of 22 %when using the FOPID controller and from 0.69 to 0.46 (33 %) when
using the PID one, as it could have been derived from Fig. 4.5 (note that L/T = 0.2).
It is worth noting that, because of the higher order of the fractional derivative, the
control effort is increased when using a FOPID controller.

As a last example, consider the following UFOPDT process, with a significant
dead time (L/T = 1):

P(s) = 1

s − 1
e−s . (4.11)

In this case, the parameter values of K p = 1.51, Ti = 8.98, λ = 1, Td = 0.51,
μ = 1.16, and β = 0.22 for the FOPID controller and of K p = 1.27, Ti = 9.11, and

http://dx.doi.org/10.1007/978-3-319-10930-5_3
http://dx.doi.org/10.1007/978-3-319-10930-5_3


4.1 Set-Point Weighting 83

0 5 10 15 20 25 30

0

2

4

6

time

pr
oc

es
s 

va
ri

ab
le

0 5 10 15 20 25 30

−5

0

5

time

co
nt

ro
l v

ar
ia

bl
e

0 5 10 15 20 25 30

0

2

4

6

time

pr
oc

es
s 

va
ri

ab
le

0 5 10 15 20 25 30
−10

−5

0

5

time

co
nt

ro
l v

ar
ia

bl
e

Fig. 4.11 Set-point unit step response for the UFOPDT process with high dead time. Left PID
controller. Right FOPID controller. Solid line with set-point weight. Dashed line without set-point
weight

Td = 0.58 and β = 0.11 for the PID one are obtained. The set-point step responses
with and without the set-point weight are shown in Fig. 4.11. The integrated absolute
error decreases from 11.62 to 7.55 (that is, of 35 %) for the FOPID controller and from
14.06 to 6.58 (that is, of 53 %) for the PID controller. Note that the improvement
in the performance is more significant, as expected, with respect to the previous
example as the normalized dead time is bigger for this example (see, Fig. 4.5).

4.2 Anti-Windup Strategies

Among the additional functionalities that a FOPID controller should possess, the
anti-windup ones play a major role. In fact, it is well known that the performance
of a PID controller can be severely limited in practical cases by the presence of
saturation of the actuators, which causes the integrator windup [51, 52].

To deal with this problem, it should be necessary, from a theoretical point of
view, to design the controller explicitly taking into account the actuator constraints
from the first stage, e.g., referring to the nonlinear systems framework. However, the
overall design becomes much more complicated and ,therefore, quite inappropriate
in the typical industrial control context, where the ease of implementation has to be
preserved as a major feature. Therefore, the typical method to deal with the integrator
windup problem is to tune the controller by ignoring the actuator saturation and
subsequently to add an anti-windup compensator to prevent the degradation of the
performance.

In this context, several techniques have been devised to design the compensator
for a standard PID controller [18, 103]. Basically, they belong to two different ap-
proaches, namely, the conditional integration (in which the value of the integrator is
frozen when certain conditions are verified) and the back-calculation (in which the
difference between the controller output and the actual process input is fed back to
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the integral term) [11]. Note that the latter case is comprehensive also of the condi-
tioning technique [47, 155] and that a unified framework of the linear time-invariant
anti-windup schemes (including the use of an observer to estimate the correct state
of the controller [10, 122]) has been presented in [150]. Indeed, a technique which
combines the use of conditional integration and back-calculation has been presented
in [150]. Further, a simple anti-windup scheme can be implemented also when the
PI controller part is implemented in the automatic reset configuration.

However, despite the remarkable effort for the design of anti-windup schemes
for standard PID controllers, this issue has been overlooked for FOPID controllers.
In this section, the use of different (standard) anti-windup schemes with FOPID
controllers is discuss and compared.

It is worth noting that, although many sophisticated methods have been proposed
to solve the general anti-windup problem (see, for example, [160]), this section
focuses on those traditionally applied to PID controllers in the industrial framework.

4.2.1 Problem Formulation

A non-interacting FOPID controller (3.1) is considered here. Nevertheless, with
respect to the formulation (3.1), the fractional derivative action is applied directly
to the process variable rather than to the error variable, so that, in the presence of a
set-point step signal, the so-called derivative kick phenomenon is avoided (see, for
example, [11]). In this way the saturation of the actuator is not determined by the
derivative action in the time instant when the step signal is applied to the set-point.
Moreover, a first-order filter whose time constant is ten time faster than the derivative
one is applied on the derivative action to obtain a proper transfer function.

4.2.2 Standard Approaches

In this section, anti-windup techniques that are typically employed for integer-order
PID controllers are briefly reviewed and applied to fractional-order controllers in
order to compare them. In particular, the performance with respect to different values
of the fractional order of the integral action will be evaluated.

Consider the control scheme of Fig. 4.12, where u is the controller output, u′ is the
actual process input, y is the process output, r is the set-point reference value, and

FOPID P(s) us

- usr y u  u' 

Fig. 4.12 The considered control scheme

http://dx.doi.org/10.1007/978-3-319-10930-5_3
http://dx.doi.org/10.1007/978-3-319-10930-5_3
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e = r − y is the control error. It is worth noting that the integrator windup mainly
occurs when a step is applied to the reference set-point signal rather than to the
manipulated variable (i.e., in the presence of a load disturbance) [154]. Furthermore,
the most significant effects of the integrator windup take place when the process is of
low order. For these reasons, hereafter, the analysis will be restricted to the set-point
step response of FOPDT systems.

4.2.2.1 Conditional Integration

In the conditional integration approach (also called integrator clamping) the integral
term is modified only when certain conditions are satisfied, otherwise it is kept
constant. In particular, different strategies can be implemented:

1. the integral term is limited to a selected value;
2. the error for the integral action is set to zero when the system error is large, em

i.e., when |e| > ē where ē is a selected value;
3. the error for the integral action is set to zero when the controller saturates, em

i.e., when |u| > us where us is the actuator saturation limit;
4. the error for the integral action is set to zero when the controller saturates and the

system error and the manipulated variable have the same sign, i.e., when |u| > us

and e · u > 0.

A slightly different approach (called preloading) consists of giving a prescribed value
to the integral term when the controller saturates [131].

All these methods have been already compared in the literature [9, 46] and the
method 4 has been found to be the best. For this reason the analysis related to the
conditional integration will be limited to this case.

4.2.2.2 Automatic Reset Configuration

The PI part of the controller can be implemented in the so-called automatic reset
configuration [11, 151]. In this context, a very simple anti-windup technique is that
shown in Fig. 4.13, where a saturation block that expresses the true limits of the
actuator is placed in the forward part of the controller (similarly, the saturation block
can be placed in the feedback part).

4.2.2.3 Back-Calculation

The back-calculation approach consists of recomputing the integral term once the
controller saturates. In particular, the integral value is reduced by feeding back the
difference of the saturated and unsaturated control signal, as shown in Fig. 4.14 where
Tt is an additional parameter called tracking time constant. Formally, denoting by ei

the (fractional) integrator input, it is:
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Fig. 4.13 The anti-windup scheme with the PI(D) controller in automatic reset configuration

Fig. 4.14 The back-calculation anti-windup scheme

ei = K p

Ti
e + 1

Tt
(us − u). (4.12)

The value of Tt determines the rate at which the integral term is reset and its choice
determines the performance of the overall control scheme. Some suggestions are to
set Tt = Ti [18,103], or Tt = √

Ti Td [9] when the derivative action is employed.

4.2.3 Simulation Results

In order to evaluate and compare the anti-windup techniques for FOPID controllers,
a large number of FOPDT processes (see, Sect. 4.2.2) has been considered and a
large number of FOPID controllers (em i.e., with different parameters) has been
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simulated in order to draw the conclusions about this method. However, for the sake
of clarity, hereafter the process with K = 1, T = 1, and L = 1 is considered as a
benchmark system, as it is representative of the typical behavior of the different anti-
windup techniques. The tuning rules described in the previous chapter (which aims
at obtaining a minimum integrated absolute error subject to a maximum sensitivity
constrained to the value of Ms = 2) have been applied initially, resulting in K p =
0.8539, Ti = 1.0296, Td = 0.4385, λ = 1, and μ = 1.2 (the tracking time constant
for the back-calculation technique has been selected as Tt = √

Ti Td = 0.6719).
A simulation has been performed by considering a unit step signal applied to the
set-point at time t = 0 and a saturation limit for the control variable us = 1.2. The
resulting process variables, control variables, and integral actions for the different
anti-windup schemes are shown in Figs. 4.15, 4.16 and 4.17, respectively.

Then, the order λ of the integral part (which obviously plays a key role in the
windup effect) has been increased to λ = 1.3 (note that reducing the value of λ
implies that the windup effect is less significant). The corresponding results are
shown in Figs. 4.18, 4.19 and 4.20.
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Fig. 4.15 Process variable obtained with λ = 1.0. Solid line back-calculation. Dashed line auto-
matic reset. Dash-dot line conditional integration
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Fig. 4.16 Control variable obtained with λ = 1.0. Solid line back-calculation. Dashed line auto-
matic reset. Dash-dot line conditional integration
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Fig. 4.17 Integral action obtained with λ = 1.0. Solid line back-calculation. Dashed line automatic
reset. Dash-dot line conditional integration
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Fig. 4.18 Process variable obtained with λ = 1.3. Solid line back-calculation. Dashed line auto-
matic reset. Dash-dot line conditional integration
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Fig. 4.19 Control variable obtained with λ = 1.3. Solid line back-calculation. Dashed line auto-
matic reset. Dash-dot line conditional integration
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Fig. 4.20 Integral action obtained with λ = 1.3. Solid line back-calculation. Dashed line automatic
reset. Dash-dot line conditional integration

4.2.4 Discussion

From the results obtained it can be deduced that the conditional integration technique
is the less appropriate for FOPID controllers. In fact, because of the fractional char-
acteristic of the integrator, the integral action is not frozen when the input error is
set to zero (as it is for a standard integer-order integrator). This means that, depend-
ing on the order of the integrator, the integral action of the controller can achieve
high values during the transient in spite of the anti-windup mechanism. This might
therefore yield large overshoots, as it appears in Fig. 4.20.

The best performance is achieved by the back-calculation approach, as the integra-
tor winds down in the same way as it winds up, and, therefore, there are no significant
differences in this context between the use of integer-order or fractional-order PID
controllers.

An acceptable performance is also achieved by the anti-windup technique for the
PI controller part in the automatic reset configuration. Indeed, in that case the integral
action is limited to the saturation level of the actuator disregarding the order of the
integrator.

Summarizing, it appears that the use of a FOPID controller requires that the
anti-windup technique is chosen suitably. In particular, the conditional integration
technique should be avoided and it is advisable to use the back-calculation approach.

It is worth noting that, due the infinite memory properties of fractional operators,
it is not possible to impose constant integral action by forcing the fractional integrator
input to be null. On the other hand, computing a signal such as the integrator output
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remains constant requires complex mathematical techniques. Along the same line, it
is not possible to easily force a constant integrator output when the actuator saturates
and to restart the integration from a suitable initial condition when the actuator no
more saturates. Indeed, this would mean that the memory of the previously integrated
signal is lost when restarting integration, (i.e., the fractional behavior of the integrator
is partially lost).

4.3 Conclusions

In this chapter the use of techniques such as set-point weighting and anti-windup for
FOPID controllers has been analyzed.

The use of the set-point weight for FOPID controllers tuned for optimal distur-
bance rejection performance has been first evaluated. It has been shown that the use
of set-point weight allows the user to improve the set-point following performance
by conveniently slowing down or speeding up the step response, depending on the
achieved level of robustness of the control system and on the process dynamics. The
increment of the performance that is achieved has been quantified for the different
cases. A comparison with the integer-order PID controllers has been performed. In
this context it is worth noting again that, for stable processes, the IAE decrement can
be more significant in the integer case, because the FOPID controller, even if tuned
by considering just the load disturbance rejection task, provides already a better
performance (without the set-point weight) in the set-point following task case and,
therefore, it is more difficult to obtain a significant increment in the performance.
The quantitative evaluation of the achievable performance allows the user to select
the best controller depending on the specific control task, namely, depending on
the relevance given, for a particular application, to the set-point following task with
respect to the load disturbance rejection one and vice versa.

In the second part of the chapter anti-windup schemes for fractional-order PID
controllers have been analyzed. It has been shown that the fractional characteristic of
the controller has to be taken into account in the choice of the anti-windup technique.
In particular, conditional integration should be avoided while back-calculation seems
to provide the best performance.



Chapter 5
H∞ Control of Fractional Systems

5.1 Introduction

Despite the large number of results that can be found in the literature, [2, 36, 48,
59, 66, 74, 83, 87, 91, 116, 146] a general analytic solution of the H∞ optimization
problems involving fractional systems has been missing for a long time, as pointed
out in [135, 137], even though methodologies for the computation of the ∞-norm
exist [37, 77, 126] and the H∞ concept has been recently exploited for the design of
fractional proportional-derivative controllers [156]. Only recently, fractional control
has been treated analytically under the point of view of H∞ optimal control [93].

Linear H∞ control became popular in the eighties because of its ability to account
for (worst case) model uncertainty, opening the door to the robust control generation.
As explained in [35, 38, 58], H∞ controllers are usually found by rearranging the
problem into a generalized form, sometimes called standard H∞ control problem.
Within this setup, the aim is to minimize the energy gain of the generalized system,
which remarkably allows for a simultaneous robustness/performance optimization.
For the purpose of the optimal controller synthesis, the well-known Youla–Kuc̆era
parametrization [159] plays an important role, showing that any closed-loop transfer
function can be expressed as an affine function of the controller. The final implication
is that, ultimately, the H∞ synthesis problem turns out to be a model-matching
problem, which can be solved in practice. This is the classical route followed in
[35, 38]. However, although the H∞ standard problem is a well-established one for
integer linear systems, this is not the case for fractional systems.

In this chapter, the problem of H∞ optimal control for fractional single-input-
single-output (SISO) continuous time system is solved. The classical approach of
[38, 39] is generalized to the fractional SISO case, i.e.,, to the standard (possibly
fractional) H∞ problems that result in scalar model-matching problems.

Based on the properties of Taylor series expansion of holomorphic functions (and
fractional polynomials), it is shown that it is always possible to factorize the fractional
transfer function in such a way that it can be represented as the product of an unstable
integer transfer function by a stable fractional one.

© Springer International Publishing Switzerland 2015
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The former result allows the generalization of the so-called Youla parametrization
of all stabilizing controllers to the fractional case. Then, following the classical route
for integer transfer functions, the H∞ optimal control problem is recast, via Youla
parametrization, into a model-matching one, which is finally solved via Nehari’s
theorem. It is remarkable that the optimal model-matching error obtained for the
fractional problem is actually an integer transfer function. As a consequence, the
optimal stable Youla parameter Q is a fractional linear system. It generalizes to the
fractional case the well-known result [38, 39] on the solution of the standard problem
for the integer SISO setup. Besides, it is also shown that the model-matching problem,
exactly as for the integer case, can be seen as a Nevanlinna–Pick optimal interpolation
one.

It is worth stressing that the obtained results apply both to commensurate and
incommensurate fractional systems, even if the commensurability property greatly
simplify the calculus.

5.2 Factorization of Fractional Transfer Functions

This section is devoted to the development of some tools to factorize and decompose
fractional transfer functions. They are needed to solve the main problem proposed
in the next sections. For the sake of simplicity, the dependency of transfer functions
on s from now on will be dropped most of the times.

First, the concepts of FRH∞ and FRL∞ function spaces are introduced. These are
well-established concepts for integer transfer functions (RH∞ and RL∞ spaces), and
their fractional generalizations will be widely used from now on. FRH∞ is the space
of all fractional real-rational functions analytic in the right half plane (RHP). FRL∞
is the space of all the fractional real-rational functions bounded on the imaginary
axes. Note that RH∞ ⊂ FRH∞ ⊂ H∞ and RL∞ ⊂ FRL∞ ⊂ L∞.

The next lemmas solve the problems of two important factorizations of fractional
transfer functions.

The first one provides a result about inner-outer factorization of FRH∞ functions.
First, the concept of inner and outer functions is introduced: a function f (s) ∈ FRH∞
is inner if f (s) f (−s) = 1. The zeros of this function all lie in the open RHP, the
number of its zeros is called its degree. It is outer if it has no zeros in the outer RHP.
This concept, considering Theorem 2.1, straightforwardly applies to the fractional
case.

Lemma 5.1 Every scalar-valued function f in FRH∞ has a factorization f = fi fo,
with fi inner and fo outer. If f has no zeros on the imaginary axis then f −1

o ∈ FRH∞

Proof Let fi be defined as the following product

fi =
∏

i

zi − s

z̄i + s
, (5.1)

http://dx.doi.org/10.1007/978-3-319-10930-5_2
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where zi ranges over all the RHP zeros of f , counting multiplicities in the sense of
Theorem 2.1. Define fo = f

fi
, then fi is inner by construction and fo is outer since,

in view of Theorem 2.1, it has no zeros in the RHP. If f is not strictly proper and has
no zeros on the imaginary axis, so is fo, then f −1

o ∈ FRH∞.

The next lemma provides another decomposition of fractional transfer functions.

Lemma 5.2 Every f ∈ FRL∞ admits a unique decomposition of the form

f = f1 + f2, (5.2)

with f1 integer, strictly proper and analytic in left half plane, and f2 ∈ FRH∞.

Proof Via partial fraction expansion compute ri such that

f =
m∑

i=1

ri

(s − pi )ki
+ R, (5.3)

where m and ki are suitable integer numbers such that all the RHP poles are taken
into account with their multiplicities, in the sense of Theorem 2.1. Define f1 =∑m

i=1
ri

(z−pi )
ki

and f2 = R = f − f1. The first function is evidently integer, strictly

proper and analytic in the LHP while, since f is proper, so do f2 considering that f1
is strictly proper. Moreover, f2, by construction, cannot have singularities in the RHP
and is the summation of FRL∞ functions, thus it is in FRH∞, and this completes the
proof.

5.3 Stabilizing Controllers

In this section, the problem of parametrizing the family of stabilizing controllers
is addressed. A stabilizing controller is a controller that internally stabilizes the
negative feedback loop of Fig. 5.1. Internal stability is obtained when all the four
transfer function in Fig. 5.1 are stable [32, 133].

This condition can be formalized as H(K , P) ∈ H∞, being

[
e1
e2

]

=
[ 1

1+K P
−K

1+K P
P

1+K P
1

1+K P

] [
u1
u2

]

= H(K , P)

[
u1
u2

]

(5.4)

In general, not every plant is stabilizable (that is, admits a stabilizing controller).
However, when a plant admits a stabilizing controller, it is always possible to find
infinitely many others. Moreover, as shown in [119], the parametrization is generally
affine in two parameters. In particular, when a plant admits coprime factorization
(see below), it is possible to simplify the resulting parametrization by using just a
single affine parameter (this is the well-known Youla parametrization). In [19] it has

http://dx.doi.org/10.1007/978-3-319-10930-5_2
http://dx.doi.org/10.1007/978-3-319-10930-5_2
http://dx.doi.org/10.1007/978-3-319-10930-5_2
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Fig. 5.1 Feedback interconnection of the plant with the controller

been shown how to build coprime factorizations for a class of fractional systems
wider than that represented by fractional real-rational transfer functions.

Although these results apply to the systems object of this work, an ad hoc approach
for fractional linear time-invariant SISO systems has been preferred. After proving
the existence of a stabilizing controller, it is shown that it is sufficient to know a
stabilizing controller to parametrize all the stabilizing controllers. Indeed, finding
a stabilizing controller for a SISO system is in general a relatively easy task (in
many practical cases it is already known), and the parametrization of all stabilizing
controllers is done in order to optimize some criteria guaranteeing stability at the
same time. Thus, this approach appears to be simpler in practice.

The next theorem considers the stabilizability of fractional linear systems.

Theorem 5.1 For any given fractional linear system P, without zeros at the origin
of the complex plane, there always exists a stabilizing controller.

Proof First suppose that P has not a (possibly fractional) pole at the origin of the
complex plane. Using the result of Lemma 5.1, P can always be factorized into an
unstable nonminimum-phase integer part Pi and into an outer and FRH∞ fractional
part Po = P

Pi
.

Now define the following controller

K̄ (s) = P−1
o K̃

(s + 1)k
, (5.5)

for some k ∈ N, such as P−1
o

(s+1)k
and Pi

(s+1)k
are proper. K̃ is a proper controller that

stabilizes Pi
(s+1)k

. Note that K̃ always exists because Pi
(s+1)k

is integer. Moreover,

because of the properness of K̃ , the choice of k that guarantees the properness of K̄
does not depend on K̃ . Evidently K̄ stabilizes the system because, by hypothesis, no
(possibly fractional) zero is present at the origin of the complex plane and Po

−1 is
thus stable. Now, suppose that P has also a (possibly fractional) integrator 1

sν . First

define Pτ = P τ sν
1+τ sν , Pτ is proper as long as P is and can be stabilized. Let Kτ be
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a stabilizing controller for Pτ , it is always possible to increase τ until the system P
is stabilized.

Note that the proof of Theorem 4 is constructive, that is, in general it can conve-
niently be used to find a stabilizing controller. However, if the plant is of commensu-
rate order, a stabilizing controller can be determined more simply by pole placement
techniques.

Note also that, only if the system is commensurate it is possible to explicitly
use zero-pole cancellation to compute Po as the ratio of two fractional polynomials
without zeros in the RHP.

Now, the concept of coprime factorization over RH∞ is introduced. Let P be
a proper integer transfer function, a couple M, N ∈ RH∞ is said to be a coprime
factorization of P over RH∞ if P = MN−1 and there exists a couple X,Y ∈ RH∞
such that the following condition, called Bezout identity, is satisfied:

N X + MY = 1. (5.6)

Indeed, once a representation of P as the ratio of coprime elements in RH∞ is
obtained, a couple of transfer function satisfying (5.6) can be found, for instance, by
means of Euclid’s algorithm [142].

The following theorem shows that the Bezout equation is solvable also in FRH∞.
This allows the generalization of the coprime factorization approach to the fractional
case.

Theorem 5.2 Given a proper SISO fractional linear system P, if a stabilizing con-
troller Kstb exists, then there exist M, N , X,Y ∈ FRH∞ such that P = NM−1 and
the Bezout identity (5.6) holds.

Proof Let Kstb a stabilizing controller, and NK ,MK ∈ FRH∞ a couple of coprime
elements in FRH∞ such that Kstb = MK N−1

K . Define

V = N NK + M MK . (5.7)

Note that, since Kstb stabilizes the control loop, V is invertible in FRH∞ [35].
Now define

X = NK V −1

Y = MK V −1; (5.8)

since V −1 ∈ FRH∞, also X and Y are in FRH∞ and the Bezout identity holds by
construction.

Finally, based on the previous results, the following theorem provides a tool to
parametrize all the family of stabilizing controllers.

Theorem 5.3 The set C of all controllers K that stabilize the feedback loop of
Fig.5.1 is:
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C =
{

X + M Q

Y − N Q
: Q ∈ H∞

}

, (5.9)

where P = M N−1 and M, N , X,Y satisfy (5.6).

Proof The proofs in [35, 142] for RH∞ extends straightforwardly to the FRH∞ case.

The previous theorem allows a parametrization of all stabilizing controllers with
respect to Q. The only requirement to stabilize P is that Q ∈ H∞. By means of
Theorems 5.1–5.3 it is always possible to characterize the whole set of stabilizing
controllers for a given fractional system.

5.4 The Standard H∞ Control Problem

Thanks to the results of the previous section, it is now possible to formalize the
standard H∞ control problem.

The standard scalar H∞ problem control scheme is represented in Fig. 5.2, where

G(s) =
[

G11(s) G12(s)
G21(s) G22(s)

]

(5.10)

is a two-input-two-output proper fractional linear system.
Let C be the set of stabilizing controllers for the feedback loop in Fig. 5.2. The

standard problem consists of minimizing the norm from the exogenous input w to
the output z making use of an stabilizing controller. Formally, this can be stated as
follows:

Fig. 5.2 Standard configuration block scheme



5.4 The Standard H∞ Control Problem 99

Problem 5.1
min
K∈C

‖Tzw‖∞ (5.11)

where
Tzw = G11 + G12 K (1 − G22 K )−1G21. (5.12)

Problem 5.1 is well-posed only if 1 − G22 K is invertible. Accordingly, hereafter the
condition for well-posedness is assumed.

Note that the strict properness of G22 is a sufficient condition for the well-
posedness of the problem [38].

Even if the problem is well-posed, the constrained minimization has not always a
solution. Indeed the system G has to be stabilizable. In the integer case, using matrix
coprime factorization it is possible to test the stabilizability of G. This means that G
and G22 share the same unstable modes.

In the fractional case, a general tool to test stabilizability is still missing; thus, it
has to be assumed that the system G is stabilizable.

It is from this assumption that next section will prepare the way to the main result
of this chapter, the model-matching problem for fractional systems. By means of a
characterization of stabilizing controllers for fractional systems, Problem 5.1 can be
indeed rewritten as a model-matching problem.

5.5 The Model-Matching Problem

In view of the results of the previous sections, developed specifically for fractional
systems, it is possible to recast Problem 5.1 into a simpler one and to generalize to
fractional systems the model-matching theory developed for integer ones.

Indeed, by defining the controller K according to (5.9) (changing the sign), it is
easy to see that (5.12) can be rewritten as

z = (T1 − QT2)w; (5.13)

where

T1 = G11 − G12 X MG21

T2 = −G12 M2G21,
(5.14)

and where, by construction, both T1 and T2 are in FRH∞.
Note that the requirement that K stabilizes G is automatically satisfied choosing

Q ∈ H∞. Moreover, as Q ranges on H∞, all stabilizing controllers K are automat-
ically considered. Finally, the problem is affine in Q, thus it is easier to be solved
with respect to Q than with respect to K . Problem 5.1 can now be rewritten as a
scalar model-matching problem formalized as follows.
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Problem 5.2 Find Q ∈ H∞ such that the model-matching error ‖T1 − QT2‖∞ is
minimized, where both T1 and T2 are in FRH∞.

Note that the hypothesis on T1 and T2 are automatically satisfied. Indeed, the transfer
functions involved in the model-matching problem are obtained recasting the stan-
dard H∞ problem into a model-matching one via coprime factorization over FRH∞,
thus they are always in FRH∞.

Summarizing, a scalar H∞ control problem aimed at minimizing the ∞-norm of
a linear fractional SISO system is recast into a scalar model-matching problem via
parametrization of the family of stabilizing controllers.

Now, some important preliminary results necessary in order to solve the model-
matching problem are introduced.

5.5.1 Nehari’s Theorem

The following result, known as Nehari’s theorem [78] is of main concern to solve
Problem 5.2.

Theorem 5.4 [38, 39] There exists a closest H∞-matrix X to a given L∞-matrix
R, and ‖R − X‖ = ‖ΓR‖, where ΓR is the Hankel operator with symbol R.

A detailed discussion about the Hankel operator can be found in [101, 102].
Among the properties of the Hankel operator an important one is stated by the

following theorem.

Theorem 5.5 [38] If f ∈ RL∞ then Γ f has finite rank.

Moreover, the Hankel operator of an H∞ matrix is null.

5.5.2 Model-Matching Problem Solution

The model matching problem can be solved by following the strategy proposed in
[38, 39].

‖T1 − T2 Q‖∞ = ‖T1 − T2i T2o Q‖∞
= ‖T2i (T

−1
2i T1 − T2o Q)‖∞

= ‖T −1
2i T1 − T2o Q‖∞

= ‖R − X‖∞,

(5.15)

where

R = T −1
2i T1

X = T2o Q
(5.16)

Equality (5.15) holds because T2i is inner, thus norm preserving and it is always pos-
sible to make an inner-outer factorization of T2. Moreover, considering the hypothesis
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of the model matching Problem 5.2 together with Lemma 5.1, it is clear that X and
its inverse X−1 are in FRH∞ while R is in FRL∞.

Define α the infimal model-matching error

α = inf {‖T1 − QT2‖∞ : Q ∈ H∞} . (5.17)

Using (5.15), it is possible to rewrite (5.17) as

α = inf {‖R − X‖∞ : X ∈ H∞} , (5.18)

but this is exactly the problem solved by the Nehari’s theorem, thus

α = ‖ΓR‖. (5.19)

Moreover, considering Lemma 5.2, R can be factorized as R = R1 + R2 with R1
unstable and analytic in the left half plane (antistable) and R2 ∈ H∞ and it holds that
ΓR = ΓR1 . But R1 is RL∞ (integer) thus the Hankel operator, in view of Theorem 5.5
has finite rank.

Let the functions f and g be a Schmidt pair [38] of the operator ΓR , the following
theorem holds.

Theorem 5.6 [38] The infimal model-matching error α equals ‖ΓR‖, the unique
optimal X equals R − α

f
g , and, for the optimal Q, the optimal model-matching

error T1 − T2 Q is all-pass.

It is remarkable that the optimal error obtained for the fractional problem is actually
an integer transfer function. As a consequence, the optimal stable Youla parameter
Q ∈ H∞ is actually in FRH∞, since the optimal model-matching error is all-pass.

Taking into account Theorem 2.1, the model-matching problem can be conve-
niently recast into an optimal interpolation one [35, 162]. Let z1, . . . zn be the n RHP
zeros of T2, a necessary and sufficient condition for a proper Q to be in FRH∞ is
that it must have no singularities in the RHP. This condition can be used to define
the interpolation constraints:

Eo(zi ) = T1(zi ) i = 1, . . . , n
dk Eo(s)

dsk

∣
∣
∣
s=zi

= dk T1(s)
dsk

∣
∣
∣
s=zi

k = 1, . . . ,mi − 1; i = 1, . . . , n, (5.20)

being mi the multiplicity of the i th RHP zero of T2 in the sense of Theorem 2.1 and
Eo the optimal model-matching error.

The following theorem gives an alternative way to solve the model-matching
problem.

Theorem 5.7 Consider the model-matching Problem 5.2, the optimal model match-
ing error is an all-pass in RH∞ whose coefficients are completely determined by the
interpolation constraints (5.20).

http://dx.doi.org/10.1007/978-3-319-10930-5_2
http://dx.doi.org/10.1007/978-3-319-10930-5_2
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Proof Theorem 5.6 states that the optimal interpolation error is an all-pass transfer
function (obviously in RH∞) and, in order to be the optimal one, this function
has to meet the interpolation constraints (5.20). But this problem, also known as
Nevanlinna–Pick optimal interpolation problem [1, 35] has a unique optimal solution,
completely determined by the interpolation constraints, that is, the optimal model-
matching error is an all-pass function in RH∞ completely determined by (5.20).

There are different ways to obtain the model-matching (or optimal interpolation)
error, mainly the Nevanlinna–Pick algorithm [35] and the state-space approach [38,
39]. Since nothing changes with respect to the integer case (indeed, R is factorized
so that it is the product of an antistable integer part by a fractional stable one) the
reader may conveniently refer to these works for the computational procedure.

Once the optimal model-matching error Eo has been computed, the optimal Q
can be recovered via

Qo = (Eo − T1)

T2
. (5.21)

Finally, the optimal feedback controller is obtained via (5.9).
Actually, as in any other case where fractional operators are considered, in order

to practically implement the controller an approximation using an integer transfer
function is required. However, the approximated controller can be arbitrarily close
to the optimal fractional one (see, for example, Expression (3.15)).

Note that the exact solution of the fractional H∞ problem is obtained instead
of approximating the fractional system with an integer one, and then finding the
solution of the approximated problem. In this latter case, it would not be possible
to evaluate how far the true optimal solution is from the solution obtained, and if
a high integer system approximation is employed, the solution of the approximated
problem becomes computationally very demanding.

5.6 Illustrative Example

As a worked example, in order to illustrate the presented design procedure, con-
sider the following unstable nonminimum-phase fractional system P whose transfer
function is:

P(s) = (s0.5 + 3)(s0.5 − 1)(s + 7)

s0.5(s1.5 − 8)
. (5.22)

The problem considered is that of stabilizing P while at the same time minimizing
the weighted sensitivity, that is:

min
K∈C

‖W S‖ (5.23)

where S = 1
1+K P and W is the weighting function which is a design parameter,

typically chosen as a low-pass filter transfer function. In this case, the following
structure is adopted:

http://dx.doi.org/10.1007/978-3-319-10930-5_3
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Wk,ω̄ = (0.01ω̄−1s0.5 + 1)k

(0.1ω̄−1s0.5 + 1)k−1s0.5
(5.24)

where k ∈ N and ω̄ are parameters to be selected. The larger the value of k, the
less emphasis is placed on minimizing the sensitivity for frequencies above ω̄. A
fractional integrator in the weighting function is required here because, otherwise,
an optimal Q does not exist in FRH∞. Indeed, an all-pass optimal interpolation error
would imply that Q is an integrator since the system itself is an integrator.

First, the control problem is recast into standard H∞ problem (Fig. 5.2). The
system G becomes [5]

G =
[

W −W P
1 −P

]

(5.25)

and applying (5.12) it is immediate to see that choosing G in this way Tzw = WS.
Now, in order to parametrize all stabilizing controllers a stabilizing one is required.
It is easy to see that the following controller stabilizes the system:

Kstb = 0.14(s0.5 + 100)(s0.5 − 0.07143)(s + 2s0.5 + 4)

(s0.5 − 9)(s0.5 + 3)(s + 7)
. (5.26)

Indeed, (5.26) is obtained by first inverting the outer and FRH∞ part of P . Then, the
poles of the equivalent integer system feedback loop (obtained by substituting s0.5

by s) are placed in the RHP (note that this is a sufficient, but not necessary, condition
for the stability of a fractional system [66]).

Now, both P = NM−1 and Kstb = NK M−1
K are described in terms of ratios of

coprime transfer functions over FRH∞

N = s0.5 − 1

s0.5 + 1
,

M = s0.5(s1.5 − 8)

(s0.5 + 3)(s0.5 + 1)(s + 7)
,

NK = 14(s0.5 − 0.07143)(s + 2s0.5 + 4)

(s0.5 + 3)(s + 7)
,

MK = 100(s0.5 − 9)

(s0.5 + 100)
.

(5.27)

Via Theorem 5.2, the Bezout parameters X and Y are computed:

X = 0.12281(s0.5 + 100)(s0.5 + 1)(s0.5 − 0.07143)

(s0.5 + 0.569)(s + 1.931s0.5 + 1.542)
,

Y = 0.87719(s0.5 − 9)(s0.5 + 3)(s0.5 + 1)(s + 7)

(s0.5 + 0.569)(s + 1.931s0.5 + 1.542)(s + 2s0.5 + 4)
.

(5.28)
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Now, using (5.14) (paying attention to the signs because here G22 is −P) the
following equations, for ω̄ = 0.5 and k = 3, are obtained:

T1 = 0.00017544(s0.5 + 50)3(s0.5 − 9)(s0.5 − 2)

(s0.5 + 5)2(s0.5 + 0.569)(s + 1.931s0.5 + 1.542)
,

T2 = 0.0002(s0.5 + 50)3(s0.5 − 2)(s0.5 − 1)(s + 2s0.5 + 4)

(s0.5 + 3)(s0.5 + 5)2(s0.5 + 1)2(s + 7)
.

(5.29)

Now, once the inner-outer factorization of T1 is done, only the inner part T2i is really
needed:

T2i = (s − 4)(s − 1)

(s + 4)(s + 1)
. (5.30)

Note that, according to Lemma 5.1, the inner part is integer.
Now everything is ready for the computation of R using (5.16):

R = 0.00017544(s0.5 + 50)3(s0.5 − 9)(s0.5 + 1)(s + 4)

(s + 5)2(s0.5 + 2)(s0.5 + 0.569)(s − 1)(s2 + 1.931s + 1.542)
. (5.31)

Again, note that the unstable part of R is integer. Via partial fraction expansion,
according to Lemma 5.2, the antistable part R1 of R is computed. As expected, it is
integer:

R1 = −2.456

s − 1
. (5.32)

At this point, according to Theorem 5.6 and to the procedure of [38, 39], the
function

α
f

g
= 1.2282(s + 1)

(s − 1)
(5.33)

is obtained as well as the optimal model-matching error Eo = α
f
g T2i :

Eo = −1.2282(s − 4)

(s + 4)
. (5.34)

Note that the optimal model matching error is all-pass, and it is immediate to check that
it satisfies the interpolation constraints (5.20). The optimal Q is obtained via (5.21):

Qo = 6142.1272(s0.5 + 7.546)(s0.5 + 3)(s0.5 + 1)2

(s0.5 + 0.569)(s + 1.931s0.5 + 1.542)

× (s + 0.756s0.5 + 3.14)(s + 7)(s + 7.216s0.5 + 25.27)

(s0.5 + 50)3(s + 2s0.5 + 4)(s + 4)
(5.35)
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and the optimal controller K o via (5.9):

K o = −(s0.5 + 6.565)(s0.5 − 1.172)(s + 5.63s0.5 + 10.58)(s + 2s0.5 + 4)

(s0.5 + 3)(s0.5 + 2)(s0.5 + 5)2(s + 7)
.

(5.36)

Not surprisingly, the optimal controller inverts the LHP part of the system. The pre-
vious procedure has been repeated also for different values of k and ω̄, to show the
effects of the weighting function (a high frequency pole (ω = 0.01) has been added
to the closed-loop system to avoid numerical problems in the simulation). Moreover,
in order to investigate how the choice of the weighting function affects the system in
the time domain, the set-point step response of a unity feedback loop whose system
is (5.22), controlled using (5.36) has been simulated (by approximating each frac-
tional term with an integer system of 14th order obtained by means of the Oustaloup
technique [89]).

As initial choice, the following parameter have been selected: ω̄ = 0.05 and
k = 1; it produces a strong interpolation error (Fig. 5.3) and, despite the overshoot,
a sluggish step response (Fig. 5.4) because of the lower complementary sensitivity
function at low frequencies (Fig. 5.5).

In order to speed up the system response ω̄ has been increased ten times, up to
0.5. The new controller yields a bigger overshoot because, as Fig. 5.6 shows, the
sensitivity is higher at high frequencies because of the lower weighting functions at

10
−2

10
0

10
2

10
4

−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

30

frequency

m
ag

ni
tu

de
 [

dB
]

Fig. 5.3 Weighted sensitivity (or model-matching error) and the corresponding weighting function.
Dotted line ω̄ = 0.05 and k = 1. Dash-dot line ω̄ = 0.5 and k = 1. Dashed line ω̄ = 0.5 and
k = 3. Solid line ω̄ = 0.05 and k = 3



106 5 H∞ Control of Fractional Systems

0 0.5 1 1.5 2 2.5 3

−5

0

5

10

15

20

25

30

35

time

pr
oc

es
s 

va
ri

ab
le

0 0.05 0.1 0.15 0.2 0.25 0.3

0

10

20

30

Fig. 5.4 Step response for different values of ω̄ and k. Dotted line ω̄ = 0.05 and k = 1. Dash-dot
line ω̄ = 0.5 and k = 1. Dashed line ω̄ = 0.5 and k = 3. Solid line ω̄ = 0.05 and k = 3

10
−5

10
0

10
5

−20

0

20

40

60

frequency

m
ag

ni
tu

de
 [

dB
]

10
−5

10
0

10
5

−200

−150

−100

−50

0

frequency

ph
as

e 
[°

]

Fig. 5.5 Complementary sensitivity bode plot for different values of ω̄ and k. Dotted line ω̄ = 0.05
and k = 1. Dash-dot line ω̄ = 0.5 and k = 1. Dashed line ω̄ = 0.5 and k = 3. Solid line ω̄ = 0.05
and k = 3



5.6 Illustrative Example 107

10
−2

10
0

10
2

10
4

−50

0

50

100

frequency

m
ag

ni
tu

de
 [

dB
]

10
−2

10
0

10
2

10
4

−200

−100

0

100

frequency

ph
as

e 
[°

]
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those frequencies (see Fig. 5.3). Moreover, since the sensitivity is being reduced in
a wider frequency range including a RHP zero, the undershoot is increased. Finally,
for the same reason, the sensitivity function reduction is smaller at low frequencies
with a consequent sluggish behavior, after the initial overshoot and undershoot.

To solve the problem k has been increased up to 3, in order to make the weighting
function roll-off more severe (it weights less the higher frequencies). For the same
reason discussed before, the overshoot is further increased, as well as the undershoot.

At this point, it appears meaningful to reduce the desired bandwidth by reducing
w to 0.05, while keeping k fixed. In this way, all the weight is concentrated into a
smaller frequency range (see Fig. 5.3). The system response is sensibly improved and
the sluggish behavior disappears, even if the overshoot remains high (see Fig. 5.4).
Indeed, since the weighting function bandwidth is reduced, the system has a bigger
gain at low frequencies (see Fig. 5.5). The price to pay is a bigger undershoot. In fact,
because of the reduced weighting function bandwidth, in this band the sensitivity is
strongly reduced, also close to the RHP zeros, as Fig. 5.6 shows.

5.7 Conclusions

In this chapter, the solution of the standard H∞ control problem for fractional
continuous-time SISO systems has been presented. Using a generalized version of
the Youla parametrization for fractional systems, the optimal control problem has
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been recast into a model-matching one, solvable via Nehari’s theorem. After having
shown that it is always possible to factorize a fractional transfer function in such a
way that it can be represented as the product of an unstable integer transfer function
by a stable fractional one, this property has been used to compute the Hankel norm
of the system to obtain the optimal model-matching error. Exactly as in the integer
case, the optimal error turns out to be an integer all-pass transfer function, which
can be completely determined from the RHP zeros of the system (Theorem 5.7).
Consequently, if the system is fractional, the optimal controller is also fractional.
The obtained results apply both to commensurate and incommensurate fractional
systems.



Chapter 6
H∞ Optimization-Based FOPID Design

6.1 Introduction

In this chapter a fractional-order proportional-integral-derivative (FOPID) controller
design is presented. It is based on the solution of a H∞ model-matching problem
for fractional first-order-plus-dead-time (FFOPDT) processes [95]. Starting from the
analytical solution of the problem, it is shown that a FOPID suboptimal controller
can be obtained. In particular, starting from an Internal Model Control (IMC) repre-
sentation of the feedback loop, the optimization problem is formulated, solved and,
once the optimal IMC controller is obtained. Then, an equivalent feedback controller
is derived [75]. Eventually, a FOPID controller is determined by approximating the
optimal one. This method extends to fractional-order systems the method proposed
in [143] for integer-order ones.

The stability and robustness issues are also addressed and the tuning of the parame-
ters is discussed from a practical point of view by giving suitable guidelines in order
to achieve the desired performance. In fact, as said before, dealing with fractional-
order dynamics means that more flexibility is introduced at design stage. While this
implies that a better performance can be achieved, from another point of view the
design can be more difficult in practice. It is therefore essential that the physical
meaning of all the design parameters is clearly explained and that a tuning procedure
is devised in order to achieve the desired nominal performance while guaranteeing
the robust stability at the same time.

It is also highlighted, by means of simulation examples, that, on the contrary to the
solution of the model-matching problem for integer-order systems, fractional systems
allow the user to treat processes with different dynamics (namely, overdamped or
underdamped processes) in a unified framework, in addition to the capability of
dealing explicitly with fractional-order processes. This is a clear advantage of the
proposed methodology with respect to the integer-order case.

© Springer International Publishing Switzerland 2015
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6.2 Problem Formulation

This section is devoted to the statement of the control problem. First, the process
model is introduced, and then the optimization problem is formalized.

6.2.1 Process Model

It is well known that a great number of industrial processes can be described by
means of a FOPDT model. Among the others, one of the reasons of the success of
this kind of models is that the estimation of the model parameters is relatively simple.

In order to provide a more general result in the fractional-order systems frame-
work, the family of the considered models is generalized by taking into account a
FFOPDT system, namely:

Gnt (s) = K

1 + T sα
e−Ls, (6.1)

where K is the process gain, T is the time constant, L is the dead time and α is the
fractional derivative order. Note that, when using α = 1, an integer-order FOPDT
process is obtained.

In order to apply some major results from systems theory, the delay term requires
to be approximated by means of a series expansion. Here, the first-order Taylor
expansion is employed:

e−Ls ≈ 1 − Ls. (6.2)

This approximation allows the determination of a suboptimal FOPID controller from
the optimal one. Thus, by using Eq. (6.2), the nominal plant for the purpose of H∞
optimization is redefined as:

Gn(s) = K
1 − Ls

1 + T sα
. (6.3)

6.2.2 Optimization Problem

Consider, a unity feedback control system (see, Fig. 6.1), where the feedback con-
troller is denoted as C(s). By assuming Gn(s) = Gnt (s), the nominal complementary
sensitivity function of the closed-loop system [defined as T (s)] is:

T (s) = C(s)Gn(s)

1 + C(s)Gn(s)
. (6.4)
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Fig. 6.1 The unity feedback control scheme considered

Fig. 6.2 The IMC control scheme considered

It can be shown (see Fig. 6.2) that, using the IMC paradigm [75], T (s) can be
expressed by means of the equivalent IMC controller and it leads to a very sim-
ple equation:

T (s) = Gn(s)CIMC(s). (6.5)

Once the synthesis of a stable CIMC(s) has been done, the feedback controller can
be easily obtained by means of:

C(s) = CIMC(s)

1 − CIMC(s)Gn(s)
. (6.6)

Usually, when using the IMC tuning method, the desired closed-loop time constant
is treated as a tuning parameter. Thus, through the choice of this time constant the
trade-off between robustness and aggressiveness of the control loop is selected. Using
the same approach proposed in [143] for integer-order transfer functions, the IMC
formulation can be also employed in order to set up a min–max model-matching
optimization problem on which the controller architecture is based.

The min–max optimization problem is formulated as finding an IMC controller
Co

IMC(s) that solves the following optimization problem:

min
CIMC(s)

‖W (s)(M(s)− CIMC(s)Gn(s))‖∞, (6.7)

where M(s) is the reference model for the closed-loop system transfer function,
while W (s) is a weighting function. Then, by means of (6.6), the equivalent feedback
controller transfer function is obtained.
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The reference model is chosen to be a fractional first-order process:

M(s) = 1

1 + Tmsλ
, (6.8)

whose time constant Tm plays the same role of the time constant of the classical IMC
control strategy, i.e., it specifies the desired closed-loop bandwidth.

The weighting function plays a double role: it gives to the user the opportunity
to add degrees of freedom to the controller design and it allows the inclusion of
the integral action into the equivalent feedback controller. Thus, it guarantees, at
least for step signals, zero steady-state set-point following error and complete load
disturbance rejection.

Here, a fractional-order weighting function is employed:

W (s) = γ
1 + zsμ

sμ
(6.9)

It is worth noting that a fractional-order integral action 1
sμ , with μ < 1, as well as

an integer-order one, guarantees zero steady-state error [70].

6.3 Solution of the Optimization Problem

In this section the solution to the min–max optimization problem stated in (6.7)
is obtained. In order to solve the problem, the class of allowable fractional-order
weights and fractional-order reference models must be slightly reduced to the ones
whose exponents can be represented as the ratio of two natural numbers:

W (s) = γ
1 + zs

m
n

s
m
n

, n,m ∈ N, (6.10)

M(s) = 1

1 + Tms
l
n

, l,m ∈ N. (6.11)

Note that, with an appropriate choice of n, m, and l, the corresponding real numbers
μ and λ can be approximated with arbitrary precision. Therefore, the exponents μ
and λ, from now on, are assumed to be rational numbers.

The min–max optimization problem (6.7) can be reformulated as follows.

Problem 6.1 Find a stable transfer function CIMC(s) such that the cost function

J∞ = ‖E(s)‖∞ = ‖W (s)(M(s)− CIMC(s)Gn(s))‖∞ (6.12)
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is minimized, where Gn(s) is defined in (6.3), W (s) is defined in (6.10), and M(s)
in (6.11).

Because of the stability constraint for the free parameter CIMC(s) (which is the
stable Youla parameter), this problem can be interpreted as an optimal interpolation
problem [38, 162]. All the transfer functions involved in the optimization problem
are stable and minimum phase, except Gn(s) that has a right half-plane (RHP) zero
at zg = 1/L . This implies that the optimal IMC controller cannot have an unstable
pole at zg , because it would cause internal instability. Thus, as shown in Chap. 5,
the RHP zero introduces an interpolation constraint since, in order to avoid internal
instability, the model matching error has to satisfy:

Eo(zg) = W (zg)M(zg), (6.13)

where Eo(s) is the optimal interpolation error:

J o∞ = ‖Eo(s)‖∞ = min ‖E(s)‖∞. (6.14)

In general, each RHP zero zi generates a constraints for the optimal interpolation
error. The constraints, together with a theoretical result that states that Eo(s) is an
all-pass transfer function (see, [28, 38, 93, 162]), lead to a general solution to the
H∞ interpolation problem.

Nevertheless, an ad hoc approach can be pursued for the particular (but useful
to describe plenty of applications) problem stated here. By imposing the constraints
(6.13) it is easy to see that the following equation holds:

δ = |Eo(zg)| = γ
L2μ + zLμ

Lμ + Tm Lμ−λ . (6.15)

The constraint imposes a lower bound to the ∞-norm of the optimal interpolation
error, thus, any stable controller CIMC(s) such that:

‖E(s)‖∞ = δ (6.16)

is optimal. Note that, at this point, it is not yet possible state the opposite, indeed an
optimal controller could make the optimal interpolation error ∞-norm to be larger
than δ. The next theorem provides a solution to this problem. First, the following
lemma, useful to prove the main theorem of this section is proven:

Lemma 6.1 A proper fractional-order system whose transfer function is:

P(s) =
∑k

i=0 bi sϕi

∑m
j=0 a j sψ j

, ψi < 1, a j ≥ 0, j = 1, . . . ,m, a0 > 0 (6.17)

is always stable.

http://dx.doi.org/10.1007/978-3-319-10930-5_5
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Proof In order to be stable, denominator of the transfer function (6.17) must have no
roots in the closed RHP in the first Riemann sheet which, as already said in Chap. 2,
is defined as [see, (2.13)]Ω = re jφ : r > 0,−π < φ < π [107]. Note that the term
a0 lies on the positive real axis. In order to have a pole (everywhere in the complex
plane), it means that it should exist some c ∈ Ω such that

∑m
j=1 a j cψ j = −a0.

Now, it is shown that there is no c such as Im
(∑m

j=1 a j cψ j

)
= 0. It is easy to see

that | arg
(∑m

j=1 a j c
ψ
j

)
| < | arg(c)| ∀c ∈ Ω , thus for each point belonging to the

first Riemann sheet the problem does not admit any solution. But if arg(c) = ±π ,
evidently,

∑m
j=1 a j c

ψ
j cannot be a real number and this completes the proof.

At this point the main theorem can be stated.

Theorem 6.1 The optimal controller Co
IMC(s) that solves the min– max problem

stated in (6.7) obeys to the form

Co
IMC(s) = (W (s)Gn(s))

−1(W (s)M(s)− δ) (6.18)

provided that μ = m
n < 2, λ = l

n < 2, l, n,m ∈ R.

Proof First note that, if the controller defined in (6.18) is stable, then E(s) = δ. This
comes directly from the definition (6.18) of Co

IMC(s) together with (6.7) and it is a
sufficient condition for the optimality, provided Co

IMC(s) to be stable.
Now, to conclude the proof, the stability of Co

IMC(s) is shown. It is a fractional
transfer function whose expression with respect to the parameters of the transfer
functions involved in the optimization process is:

Co
IMC(s) = 1

K

1 + T sα

(1 + zsμ)(1 + Tmsλ)
χ(s), (6.19)

where

χ(s) = 1 + zsμ − sμ(1 + Tmsλ) δ
γ

1 − Ls
(6.20)

is a commensurate transfer function. If μ < 2 and λ < 2, the first part of Co
IMC(s) is

stable, it is a direct consequence of the stability theorem stated in [66].
Now the stability of χ(s) has to be proven. Define its integer counterpart as

χ̄ (s) = 1 + zsm − sm(1 + Tmsl) δ
γ

1 − Lsn
. (6.21)

The denominator dχ̄ (s) of χ̄ (s) can be easily factorized:

dχ̄ (s) =
(

n−1∑

k=0

L
k
n sk

)
(

1 − L
1
n s
)

(6.22)

http://dx.doi.org/10.1007/978-3-319-10930-5_2
http://dx.doi.org/10.1007/978-3-319-10930-5_2
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and going back to its fractional counterpart leads to:

dχ (s) =
(

n−1∑

k=0

L
k
n s

k
n

)
(

1 − L
1
n s

1
n

)
. (6.23)

Now, using Lemma 6.1, it is immediate to see that the first multiplicative term of
dχ (s) is stable, while the second one is clearly unstable (it can be proven by means
of [66]).

Focusing on the numerator nχ̄ (s), of χ̄ (s), it can be seen that if it is divisible by

(1− L
1
n s) the optimal controller Co

IMC(s) is stable. By polynomial division, it is easy
to see they divide each other and their ratio Q(s) is:

Q(s) =
m−1∑

k=0

−
(

z − δ

γ
− δ

γ

Tm

L
l
n

)
1

L
m−k

n

sk +
m+l−1∑

k=m

δ

γ

Tm

L
m+l−k

n

sk (6.24)

and, going back once again to the fractional counterpart of nχ̄ (s), the optimal con-
troller can therefore be expressed as:

Co
IMC(s) = 1

K

1 + T sα

(1 + zsμ)(1 + Tmsλ)

×
∑m−1

k=0 −(z − δ
γ

− δ
γ

Tm
Lλ
) 1

L
m−k

n
s

k
n + ∑m+l−1

k=m
δ
γ

Tm

L
m+l−k

n
s

k
n

∑n−1
k=0 L

k
n s

k
n

. (6.25)

If the conditions of the theorem are satisfied, the previous controller is stable and
the theorem is proven.

It is worth stressing that the optimal controller does not depend on the coefficient
γ , see (6.10), because it always appears in the ratio δ

γ
, where δ is defined in (6.15).

Actually, the weight function role is to formalize how much a certain frequency
with respect to the others has to be considered. Indeed, a multiplicative coefficient
that uniformly increases (or decreases) the weighting function magnitude does not
change the result.

Then, note that the previous theorem could also be proven by means of the stability
results stated in [66], indeed it is easy to see that dχ̄ (s) has a pole on the positive real
axis and the other ones are always outside the unstable region, i.e., | arg(p)| > 1

n
π
2 ,

being p a generic pole of dχ̄ (s) except the one lying on the positive real axis.
Note also that dχ(s) has no singularities in the first Riemann sheet, except the

unstable one on the positive real axis. Indeed, mapping back the stable (in the sense
of [66]) poles of dχ̄ (s) into the singularities of dχ(s), they go out the first Riemann
sheet. It is a consequence of Lemma 6.1.
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Finally, it can be deduced that the polynomial division rest R(s) of Nχ̄ (s) by

(1 − L
1
n s) is:

R(s) = 1 +
(

z − δ

γ
− δ

γ

Tm

Lλ

)
1

L
m
n

(6.26)

and it goes to zero (i.e., the optimal Co
IMC(s) is stable) if δ is calculated by means of

(6.15).

6.4 Analysis of the Optimal Interpolation Error

The interpolation constraint is needed in order to avoid internal instability (i.e.,
pole-zero cancelation in the RHP). It could be seen that avoiding to cancel the non-
minimum-phase part of (6.2), both in a fractional stability framework or in an integer
stability one, give rise to the same interpolation constraint for the stated problem. It
is worth pointing out that the optimal interpolation error is related to the parameters
μ, z, Tm , and λ. Note that speaking about optimal interpolation error or about the
∞-norm of the optimal interpolation error does not make any difference in this case
because Eo(s) = δ is constant. Without loss of generality (as the optimal controller
does not depend on γ ) the value γ = 1 is assumed. In order to study how δ varies
with respect to the tuning parameter, its gradient is calculated:

∇δμ,z,Tm ,λ =
[

ln(L)
L2μ

Lμ + Tm Lμ−λ,
Lμ

Lμ + Tm Lmu−λ ,

− L2μ + zLμ

(Lμ + Tm Lμ−λ)2
Lμ−λ, Tm Lμ−λ ln(L)

L2μ + zLμ

(Lμ + Tm Lμ−λ)2

]T

.

(6.27)

Looking at (6.27) it is possible to deduce some interesting properties:

1. the interpolation error δ monotonously increases as μ increases if L < 1, it is flat
with respect to μ if L = 1 and decreases if L > 1;

2. the interpolation error always increases with respect to z;
3. the interpolation error always decreases with respect to Tm ;
4. the interpolation error increases as λ increases if L < 1, it is flat with respect to
λ if L = 1 and decreases if L > 1.

Moreover, it can be noted that the interpolation error only depends on the chosen
model delay L , while it does not depend on the model dynamics, namely, on T and α
from (6.3). Indeed, neglecting the delay, the model dynamics is stable and minimum
phase, and it is canceled by the optimal IMC controller.
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6.5 Equivalent Feedback Controller

In this section, the equivalent optimal feedback controller Co(s) obtained from
Co

IMC(s) (IMC controller) and Gn(s) by means of (6.6) is analyzed. Applying some
calculus it is easy to see that the optimal feedback controller is:

Co(s) = 1

K

1 + T sα

δsμ + Tmsλ + Tm(z + δ)sλ+μ

×
∑m−1

k=0 −(z − δ − δ Tm
Lλ
) 1

L
m−k

n
s

k
n + ∑m+l−1

k=m δ Tm

L
m+l−k

n
s

k
n

∑n−1
k=0 L

k
n s

k
n

.

(6.28)

It has the following properties:

1. low frequency behavior:

lim
s→0

Co(s) =

⎧
⎪⎨

⎪⎩

1
K δsμ if μ < λ

1
K (Tm+δ)sμ if μ = λ

1
K Tm sλ

if μ > λ

(6.29)

is a discontinuous function with respect to μ
λ

. Moreover the optimal feedback
controller, at low frequencies, behaves as an integrator whose (fractional) degree
is always equal to the smallest value between μ and λ;

2. controller properness:

• Co(s) is a strictly proper controller when α < 1, as a consequence of approx-
imating the Gnt (s) process delay [see (6.1)] by means of a first-order Taylor
series (6.2);

• it is a proper controller when α = 1;
• it is an improper controller when α > 1.

Hence, the optimal controller has the same asymptotic behavior of a filtered FOPID
controller. It is worth stressing that, when using unitary exponents μ = 1, λ = 1 and
α = 1, the optimal controller obtained by means of (6.28) is the same one obtained
in [143]. Indeed, the fractional-order case could be seen as the natural extension of
the integer-order one and, vice versa, the integer-order one is a particular case of a
more general solution in the fractional-order systems framework.

6.6 FOPID Controller

6.6.1 Controller Reduction

The optimal controller (6.28) that solves the model-matching problem is very difficult
to implement because of its complexity. Thus, it appears to be meaningful to design a
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simpler (FOPID) suboptimal controller. In order to do that the following assumptions
are done: the fractional degree μ = m

n of (6.10) is equal to the fractional degree
λ = l

n of (6.11). In this way, the complexity of the optimal controller is reduced
by decreasing the number of tuning parameters, allowing for a simpler controller
expression. For this reason from now on only μ will be used.

Consider the optimal feedback controller (6.25). By means of (6.26) and by taking
into account the previous assumption, expression (6.28) can be rewritten as:

Co(s) = 1

K

(1 + T sα)(1 + δ Tm
Lμ sμ)

(δ + Tm)sμ + Tm(z + δ)s2μ

∑m−1
k=0 L

k
n s

k
n

∑n−1
k=0 L

k
n s

k
n

, (6.30)

that, rearranging the equation, becomes:

Co(s) = 1

K

(1 + T sα)(1 + δ Tm
Lμ sμ)

(δ + Tm)sμ + Tm(z + δ)s2μ

(

1 + −∑n−1
k=m L

k
n s

k
n + ∑m−1

k=n L
k
n s

k
n

∑n−1
k=0 L

k
n s

k
n

)

.

(6.31)

where each summation is supposed to be null when the final index is smaller than the
initial one. Neglecting the summation term in the previous equation, the following
controller is obtained:

C̃(s) = 1

K

(1 + T sα)(1 + δ Tm
Lμ sμ)

(δ + Tm)sμ + Tm(z + δ)s2μ , (6.32)

that, once again by means of (6.26), can be rewritten as:

C̃(s) = 1

K (δ + Tm)

(1 + T sα)(1 + Tm
Lμ+z

Lμ+Tm
sμ)

sμ(1 + Tm
δ+z
δ+Tm

sμ)
. (6.33)

The previous equation is a series form FOPID controller [see, Chap. 3, Expres-
sion (3.2)], filtered by means of a fractional pole. It is worth noting that, when using
μ = 1, the suboptimal and the optimal solutions coincide, i.e., C̃(s) = Co(s). Indeed,
when using an integer weight and an integer reference model, the optimal controller
is already an interacting FOPID controller. Finally note that, when using α = μ and
z = Tm , a FOPI controller is obtained.

It is worth noting that, in any case, the suboptimal FOPID controller has the same
low frequencies asymptotic behavior of the optimal one, while, at high frequencies,
the true plant (that is a low-pass filter) makes the controllers mismatch less impor-
tant.

http://dx.doi.org/10.1007/978-3-319-10930-5_3
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6.6.2 Nominal Stability

When using the nominal process model (6.3), the optimal controller (6.28) guarantees
the closed-loop stability for any choice of Tm , z,μ, andλ, provided that the hypothesis
of Theorem 6.1 (i.e., μ < 2 and λ < 2) is satisfied.

Conversely, when considering the actual process model (6.1) and the suboptimal
controller (6.33), it is important to verify the control system stability. In order to do
that, the dual locus method [4] can be employed. By denoting the open-loop transfer
function as H(s) := C̃(s)Gnt (s), the root locus method results in the following
characteristic equation:

1 + H(s) = 1 + (1 + Tm
Lμ+z

Lμ+Tm
sμ)

(δ + Tm)sμ + Tm(δ + z)s2μ e−Ls = 0. (6.34)

By defining

H1(s) := − (L
2μ + zLμ + Tm Lμ + T 2

m)s

(Lμ + Tm)+ Tm(Lμ + z)
− Tm(L2μ + 2zLμ + zTm)s2μ

(Lμ + Tm)+ Tm(Lμ + z)
(6.35)

and H2 := e−Ls , Eq. (6.34), taking into account (6.15), can be rewritten as

H1(s)− H2(s) = 0. (6.36)

The dual locus technique is now applied: first, the intersection point has to be deter-
mined by solving the equation |H1(s)|s= jω = 1. Once the intersection point fre-
quencyωc has been obtained, the phasesφ1(ωc) andφ2(ωc)of H1( jωc) and H2( jωc),
respectively, are obtained. The closed-loop system is stable if φ1 − φ2 < 0. Briefly
speaking, the stability condition is satisfied if the locus of H1(s) reaches the inter-
section point earlier than the one of H2(s).

Solving (6.36) analytically could be a complex task, because, in particular when
μ 
= 1, it results in complex trigonometric equations. Nevertheless, the dual locus
method is useful to study the nominal stability using a worst case approach.

It is worth noting that, as Tm and z decrease, the loop bandwidth increases and
the control system robustness decreases. The worst case is thus obtained by setting
Tm = 0 and z = 0. With this choice, (6.36) becomes −Lμs−e−Ls = 0, and it is easy
to prove that the stability condition is always satisfied, provided that μ < 2π−1

π
≈

1.36. Indeed, the actual process model and the suboptimal controller guarantee the
closed-loop stability for any choice of the tuning parameter Tm and z provided that
μ < 1.36. On the other hand, when μ > 1.36, a numerical solution of the dual locus
equation (6.36) can be easily computed. Anyway, it is quite uncommon to find, in
practical cases, fractional integrators with order greater than 1.3.
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6.6.3 Robust Stability

If the conditions described in Sect. 6.6.2 are satisfied, the closed-loop stability is
guaranteed as long as the process model Gnt (s) perfectly describes the process
dynamics. However, as mismatches between the actual process and the model used
are unavoidable, it is important to be able to stabilize a family of plants around the
nominal one.

Assume that the process belongs to a family F defined as:

F = {
G(s) = Gnt (s)(1 +m(s)) : |m( jω)| < |Γ ( jω)|} , (6.37)

where

m(s) = G(s)− Gnt (s)

Gnt (s)
(6.38)

is the uncertainty description and Γ ( jω) is a weight that defines the plants family by
upper bounding the modeling error. It is well known that a controller that stabilizes a
control system in the nominal case, also stabilizes the family F of the control systems
such that:

‖Γ (s)Tn(s)‖∞ < 1, (6.39)

where Tn(s) is the stable nominal closed-loop transfer function, namely:

Tn(s) = C̃(s)Gnt (s)

1 + C̃(s)Gnt (s)
. (6.40)

The robust stability condition (6.39) is always satisfied if

|Tn( jω)| <
∣
∣
∣
∣

1

Γ ( jω)

∣
∣
∣
∣ . (6.41)

The robust stability constraint, rewritten in this form, is easy to compute and the left
hand side of this inequality is usually a low-pass transfer function.

It is worth noting that Tn(s) is different from T (s) = Co
IMC(s)Gn(s) because

of the approximation of the process dead time (6.2) and because of the suboptimal
FOPID controller (6.33). For this reason, it is no longer possible to use the IMC para-
digm to recover the closed-loop transfer function. It would have been possible to use
T (s) as the nominal stable transfer function by including into the uncertainty Γ (s)
also the mismatches between the actual and approximated dead time expressions and
between the optimal and suboptimal controllers. However, this choice may lead to a
very poor performance in order to achieve the robust stability because it increases the
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uncertainty. Conversely, choosing Tn(s) as the nominal closed-loop transfer func-
tion, allows the enlargement of the closed-loop bandwidth by considering only the
modeling uncertainty.

6.7 FOPID Tuning Guidelines

The methodology proposed in the previous sections has the great advantage that
yields a standard FOPID controller, which has a well-known (standard) structure.
However, it is also necessary to provide some guideline for the tuning of the para-
meters in order to allow the user to achieve the required performance without too
much effort. In this context, the robustness/aggressiveness trade-off is handled by

means of the z parameter. For a fixed desired bandwidth (Tm)
1
μ , the user can modify

the z parameter until the robust stability constraint (6.41) is satisfied. Of course, it
might be possible that the robust stability constraint is never satisfied, in this case the
desired closed-loop bandwidth is too large and it is necessary to reduce it by increas-

ing (Tm)
1
μ . Conversely, it might be possible that the robust stability constraint is

always satisfied, this means that the required performance is easily achievable and it
is possible to speed up the system response by decreasing Tm .

The tuning of theμ parameter is less significant and, in several cases, the use of an
integer-order integrator is the best solution (see, Chap. 3). Nevertheless, sometimes
the system response becomes sluggish when the system output is close to the set-
point value. This behavior mainly depends on the model mismatch between the
actual process and the process model. In this context, theμ parameter can be slightly
modified in order to perform a fine tuning that tries to optimize the transient response
close to the set-point value.

Summarizing, the tuning procedure can be outlined as follows:

1. set μ = 1;

2. select the desired closed-loop bandwidth T
1
μ

m ;
3. compute the process uncertainty and select z to satisfy the robust stability con-

straints;

4. if such a value of z does not exist then increase T
1
μ

m and go to 3;
5. if the transient response is sluggish when the process output is close to the set

point, reduce μ if the process output tends from above to the set-point value,
otherwise increase μ;
else set μ = 1;

6. if μ > 1.36 then verify the nominal stability;
7. if μ 
= 1 go to 3;
8. end.

http://dx.doi.org/10.1007/978-3-319-10930-5_3
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6.8 Simulation Results

6.8.1 Example 1

As a first illustrative example, consider the process

G(s) = Gnt ,F (s) = K

T sα + 1
e−Ls (6.42)

and suppose that the nominal process parameters assume their values in the middle
points of following uncertainty intervals: L ∈ [0.35, 0.65], T ∈ [0.7, 1.3], K ∈
[0.7, 1.3], and α ∈ [0.4, 1.0]. The frequency response of the corresponding family
of plants is shown in Fig. 6.3.

It is worth noting that the considered uncertainty is significant. In particular, the
uncertainty on the order α implies that the controller is required to deal with a wide
range of different dynamics. For the sake of comparison, the integer model with the
nominal parameters and α = 1 has been also considered:

Gnt ,I (s) = 1

s + 1
e−0.5s . (6.43)
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Fig. 6.3 Plants family (green lines), fractional model (solid line) and integer model (dotted line)
for Example 1
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Fig. 6.4 Robust stability boundaries (green lines) and nominal closed-loop transfer functions for
z ∈ {0.1, 0.8} using the fractional model with μ = 1 and Tm = (1.2L)μ for Example 1

Note that, in any case, its frequency response is contained in the family of plants (see,
Fig. 6.3). The desired closed-loop bandwidth is initially selected as Tm = (1.2L)μ =
0.6. Then, it can be seen that by using z = 0.1, both in integer and in the fractional
case the robust stability is not achieved (see Figs. 6.4 and 6.5). Using z = 0.8 the
fractional process model guarantees the robust stability whereas, for the integer one,
it is required to use z = 1.5.

The step responses plotted in Figs. 6.6 and 6.7 show that the use of a fractional
model allows the user to increase the speed of the response without loosing the robust
stability with respect to the same family of plants. Finally, in order to improve the
response when using the integer model, the integrator degree has been increased to
μ = 1.1 (and consequently, to preserve the desired bandwidth, Tm = (1.2L)μ =
0.57), increasing also z to 1.55 in order to satisfy the robust stability constraints (see,
Fig. 6.5). Of course, the price to pay in order to control a family of plants different from
the nominal one used for controller design is a degradation of the system response
that could become oscillatory or sluggish depending on the actual process. It is worth
noting that the fractional model allows the user to guarantee the robust stability with
a more aggressive tuning (i.e., it improves the robustness/performance trade-off).
On the other hand, because of the larger bandwidth, the performance degradation is
more significant when the actual process is very different from the nominal model.
Nevertheless, the stability is always guaranteed.
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Fig. 6.5 Robust stability boundaries (green lines) and nominal closed-loop transfer functions for
z ∈ {0.1, 0.8, 1.5} and μ = 1 (solid lines) and for z = 1.55 and μ = 1.1 (dashed line), using the
integer model with Tm = (1.2L)μ for Example 1
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Fig. 6.6 Step responses using the fractional model with Tm = (1.2L)μ: plant family response with
μ = 1 and z = 0.8 (green lines) and nominal closed-loop step response with μ = 1 and z = 0.8
for Example 1
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Fig. 6.7 Step responses using the integer model with Tm = (1.2L)μ: plants family response
μ = 1.1 and Tm = 1.55 (green lines), nominal closed-loop response with μ = 1.1 and Tm = 1.55
(solid line) and with μ = 1 and Tm = 1.5 (dashed line) for Example 1

6.8.2 Example 2

Consider now the following (underdamped) second-order-plus-dead-time (SOPDT)
process:

G(s) = 1

s2 + 0.4s + 1
e−0.6s . (6.44)

Once again, a FOPDT model of the process has been identified by means of the
Matlab function pem [60], resulting in:

Gnt ,I (s) = 1

0.566s + 1
e−0.9s . (6.45)

Of course, modeling a strongly underdamped process with a FOPDT model is not
sensible, but in this case it is required by the tuning method.

Conversely, a FFOPDT model can also capture an oscillatory behavior. The delay
has been identified by considering the time interval when the process step response
crosses the threshold of 1 % of the steady-state value. Then, considering that the step
response of FFOPDT model is described by means of the two parameters Mittag–
Leffler function [116], by imposing that that first peak of the model step response
coincides with the first peak of the process step response, the FFOPDT model has
been obtained as:
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Gnt ,F (s) = 1

1.05s1.702 + 1
e−0.74s . (6.46)

The uncertainty has been computed as the difference between the process model and
the actual process, normalized with respect to the process model, that is:

Γ ( jω) = G( jω)− Gnt ( jω)

Gnt ( jω)
. (6.47)

Then, Tm = 1.5 has been fixed in order to set the desired bandwidth.
Because of the accurate model, in the fractional case z can be reduced to 0 pre-

serving the robust stability. Thus, the selection of z can be done just with the purpose
to speed up or slow down the system response. Conversely, in the integer case it
is necessary to set z = 10 in order to achieve the robust stability. In Fig. 6.8 the
robust stability boundaries and the nominal closed-loop transfer function frequency
responses are shown both in the integer and in the fractional case: as expected,
the robust stability constraints are much more severe when using an integer model,
because of the incapability of a FOPDT model to capture underdamped dynamics.
It appears that the capability of treating in a unified framework (that is, using the
same process model structure) overdamped and underdamped processes is a great
advantage that the fractional model offers.
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Fig. 6.8 Robust stability boundaries with Tm = 1.5L and μ = 1: fractional case (dashed line) and
integer case (dash-dot line). Nominal closed-loop transfer functions: fractional case z = 0.1 (solid
line) and integer case z = 10 (dotted line) for Example 2
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Fig. 6.9 Step responses with Tm = 1.5L and μ = 1: integer model (dotted line z = 10) and the
fractional model for different values of z (dash-dot line z = 10, dashed line z = 1 and solid line
z = 0.1) for Example 2

The different step responses shown in Fig. 6.9 for different values of z confirm
the role of the parameter z in speeding up or slowing down the transient response
and the major improvement obtained by using a fractional model. As the response is
satisfactory, there is no need in this case to modify the value of μ.

6.8.3 Example 3

In [116], the following fractional-order process describing the dynamics of an heating
furnace has been proposed:

G(s) = 1

14994s1.31 + 6009.5s0.97 + 1.69
. (6.48)

The nominal model has been determined by considering the frequency response. In
particular, after having selected K = G(0), the time constant T and the exponent α
have been chosen (by gridding the values of the two parameters) in order to minimize
the two-norm of the difference between the process frequency response magnitudes
and the model ones in the frequency range [10−4, 10−3], around the process cut-off
frequency.

Finally, the delay has been chosen such as the model phase is equal to the process
one at the frequency ofω = 10−2 where the magnitude is about−40 dB. The resulting
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Fig. 6.10 Process transfer function (solid line) and process model transfer function (dashed line)—
Example 3
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(integer-order) process model is therefore

Gnt (s) = 0.5917

5, 000s + 1
e−12s . (6.49)

Note that it gives an effective description of the actual process frequency behavior
up to ω = 10−2, as Fig. 6.10 shows. For higher frequency, the mismatch is indeed
acceptable because of the actual process low-pass behavior.

The uncertainty has been computed as in the previous example, and, for the chosen
values of z and μ, the control system always respects the robust stability boundaries.
After having chosen μ = 1 and Tm = (0.5L)μ = 6, z has been tuned in order
to speed up the step response. However, Fig. 6.11 shows that, even by reducing z,
the step response becomes sluggish after the peak in reaching the set-point value. To
overcome this problem the exponentμ has been reduced toμ = 19

20 and consequently,
to keep constant the desired bandwidth, Tm = (0.5L)μ = 5.49, effectively improving
the system response.

6.9 Conclusions

A fractional H∞ optimal model-matching methodology has been presented in this
chapter. The technique is suitable for FFOPDT processes and allows the designer to
use both fractional-order weighting function and fractional-order reference model. A
FOPID controller can be derived from the optimal solution as a suboptimal controller.
The nominal and robust stability issue has been discussed as well as the tuning of
the user-defined parameters. Indeed, the physical meaning of the parameters has
been clarified, thus showing that the methodology can be easily applied in practical
cases. It has also been shown that the additional flexibility in the design because
of dealing with fractional-order systems plays a key role in improving the control
system performance. In particular, it has been highlighted that a clear advantage of
having extended the model matching design method to fractional-order systems is
to have a unique framework for both underdamped and overdamped systems.



Chapter 7
Control Design Based on Input–Output
Inversion

7.1 Introduction

Set-point regulation of a system based on input–output inversion design is a powerful
design tool that has been exploited for integer-order systems [33, 53, 104, 109, 110,
113, 163] and can be also applied to fractional-order systems [96]. It is based on
the idea of solving an output tracking problem by computing a suitable input via
input–output inversion.

The input–output inversion procedure aims at obtaining a smooth transition of
the system output from a steady-state value to a new one in a predefined transition
time τ . Given an arbitrarily smooth desired output signal, the corresponding input
signal is computed analytically such that zero tracking error occurs. Both the input
and the corresponding output signals are τ -parametrized allowing the user to handle
the trade-off between a fast transition time and the attainment of high values of the
input function and its derivatives.

Among the possible desired output functions, the transition polynomials proposed
in [111] can been chosen because of their nice properties (for example, the optimal
output synthesis problem can be addressed) and because they are at the same time
computationally simple. Moreover, they allow the user to select the desired smooth-
ness easily by choosing the polynomial order.

Thus, once a τ -parametrized input has been obtained, the problem of finding the
minimum constrained transition time can be solved. Indeed, given a set of constraints
on the input signal and on the derivatives of the input and output signals, it can
be proven that (increasing the transition time), the set of feasible solutions is not
empty under very mild and reasonable conditions. A simple bisection algorithm can
therefore be employed to solve the optimization problem and to find the minimum
allowable transition time.

This methodology can be employed to determine a suitable feedforward control
action to be applied to improve the set point tracking performance of a feedback
control architecture. In this context, combining the synthesis of the feedback and of
the feedforward controller can be very useful in order to handle the system robustness.
In particular, a robust control methodology will be presented in order to minimize

© Springer International Publishing Switzerland 2015
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the worst-case settling time by considering a family of plants and constraints on the
control and process variables.

7.2 Input–Output Inversion

7.2.1 Problem Formulation

Consider a general minimum-phase stable commensurate fractional linear systemΣ

whose transfer function is

H(s) = b(s)

a(s)
=

∑m
k=0 bkskν

s pν + ∑p−1
k=0 akskν

, (7.1)

where ν is the commensurate order of the system, andρ := (p−m)ν the relative order
of the systemΣ . The posed problem consists in finding a suitable input function u(t)
to obtain a desired output function which allows a transition from an initial steady-
state value to a new one in a finite time interval τ , given a set of bounds on the input
and output signals and their derivatives. The problem can be formalized as follows:

Problem 7.1 Starting from null initial conditions and given a new steady-state out-
put value ye, design a “sufficiently smooth” τ -parametrized desired output ȳ(·; τ)
such that ȳ(0; τ) = 0 and ȳ(t; τ) = ye ∀t ≥ τ , and ȳ(·; τ) ∈ C (k) for some k ∈ N.
Then, find u(·; τ) such that, for the τ -parametrized couple (u(·; τ); ȳ(·; τ)), it holds
that

L [ȳ(t; τ)] = H(s)L [u(t; τ)]. (7.2)

Moreover, determine the minimum time τ ∗ such that u(t; τ ∗) and the first l ∈ N0
(v ∈ N, respectively) derivatives of u(t; τ ∗) (ȳ(t; τ ∗)), are bounded:

|Di u(t; τ ∗)| < ui
M , ∀t > 0, i = 0, 1, . . . , l;

|Di ȳ(t; τ ∗)| < yi
M , ∀t > 0, i = 1, 2, . . . , v.

(7.3)

It is worth stressing that the requirement of null initial conditions is without loss of
generality in view of the system linearity.

7.2.2 Output Function Design

Although different function bases could be used to design the output function, the
simple and computationally efficient τ -parametrized transition polynomial proposed
in [111] is conveniently chosen. It has the nice property of being monotonic, which
implies that neither overshoots nor undershoots occur. For the sake of simplicity and
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without loss of generality in view of the linearity of the system, the value ye = 1 is
considered. The output function is therefore selected as:

ȳ(t; τ) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if t < 0
(2n + 1)!
n!τ 2n+1 ×

n∑

r=0

(−1)n−rτ r t2n−r+1

r !(n − r)!(2n − r + 1)
if 0 ≤ t ≤ τ

1 if t > τ.

(7.4)

Note that ȳ(t; τ) allows an arbitrarily smooth transition between 0 and 1; indeed,
it is possible to show that ȳ(t; τ) ∈ C (n) [111]. Moreover, it can be shown that the
following lemma holds.

Lemma 7.1 Let be given the transition signal ȳ(·; τ) ∈ C (n) defined in (7.4). Then
there exist constants ci ∈ R+, i = 1, . . . , n + 1 such that

max
t∈[0,τ ] |D

i ȳ(t; τ)| = ci

τ i
. (7.5)

Proof This result has been proven in [111] for i = 1, . . . , n. Now consider the case
i = n + 1: it can be easily checked that, if the transition polynomial (7.4) is of order
n, Dn ȳ(t; τ) is continuous (C (0)), null for t ≤ 0, constant for t ≥ τ and a ramp in
[0, τ ]. Hence, defining Dn+1 ȳ(0; τ) := 0 and Dn+1 ȳ(τ ; τ) := 0 it is immediately
possible to obtain the (n + 1)th derivative of the transition polynomial as

Dn+1 ȳ(τ ; τ) :=
{ cn+1
τ n+1 if 0 < t < τ

0 elsewhere
(7.6)

where cn+1 is the slope of the ramp, and this completes the proof.

In fact, the previous lemma means that the transition polynomial becomes flatter
when τ increases, that is, it is always possible to increase the value of τ until the
second condition of (7.3) is satisfied, provided that n ≥ v − 1 and yi

M > 0, i =
1, . . . , v.

7.2.3 Input–Output Inversion Procedure

Once the transition polynomial (7.4) has been defined, the corresponding input u(t; τ)
can be computed by inverting the system through Laplace transform, that is

U (s; τ) = H−1(s)Ȳ (s; τ), (7.7)
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where Ȳ (s; τ) = L [ȳ(t; τ)] denotes the Laplace transform of the desired output.
The integer-order system associated to (7.1) is

H̃(w) = b̃(w)

ã(w)
=

∑m
k=0 bkw

k

w p + ∑p−1
k=0 akwk

, (7.8)

where ã(s) and b̃(s) are coprime polynomials. By polynomial division on H̃(w) and
by means of the substitution w = sν , the following expression is obtained:

H−1(s) = γn−msρ + γn−m−1sρ−ν + · · · + γ1sν + γ0 + H0(s), (7.9)

where H0(s) is a strictly proper transfer function that describes the zero dynamics
ofΣ . Note that H0(s) is always stable in view of the minimum-phase assumption of
the system Σ .

Defining η0(t) := L −1[H0(s)] and considering the Laplace transform properties,
the following proposition can be derived:

Proposition 7.1 Consider ȳ(t; τ) defined in (7.4). If n ≥ [ρ] then there exists a
bounded inverting signal defined as follows

u(t; τ) = γn−m Dρ ȳ(t; τ)+ γn−m−1 Dρ−ν ȳ(t; τ)+ · · ·
+γ1 Dν ȳ(t; τ)+ γ0 ȳ(t; τ)+

t∫

0
η0(t − ξ)ȳ(ξ ; τ)dξ. (7.10)

Proof The result is immediate by considering (7.9), the properties of linear systems,
the existence of the derivatives till the order n + 1 in view of Lemma 7.1, and the
stability of η0(t).

It is worth stressing that, by considering the polynomial nature of the desired
output signal and the fractional power law, when the relative order of the plant is of
fractional order (i.e., ρ ∈ R\N) the obtained inverting signal is always continuous.
Indeed, even by selecting the lowest possible order n = [ρ] the obtained signal is
not Lipschitz, but continuous.

In view of the minimum-phase assumption, the input (7.10) is bounded. Hence,
by means of (7.10), the input–output inversion problem is completely solved.

In order to compute (7.10), the two parameters Mittag-Leffler function

Eα,β(z) =
∞∑

k=0

zk

Γ (αk + β)
α > 0, β > 0 (7.11)

and the Podlubny function

εk(t, λ;α, β) = tkα+β−1 dk

d(λtα)k
Eα,β(λtα) (7.12)
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introduced in Sect. 2.2 are considered. By considering (2.6), that is,

L −1
[

k!sα−β

(sα ± λ)k+1

]

= εk(t,∓λ;α, β) (7.13)

and by applying to H0(s) the same reasoning applied to H(s), it is easy to see
that H0(s) can be factorized via partial fraction expansion and represented as the
summation of simple terms:

H0(s) =
m∑

i=1

gi

(sν − λi )ki +1 , (7.14)

where λi and gi can be either real or complex (in the latter case they always appear
in conjugate pairs, so that the time response is always real) and ki is a nonnegative
integer. Moreover, in view of the minimum-phase assumption onΣ , H0(s) is stable.

Considering (7.13) and (7.14), it can be seen that

η0(t) =
m∑

i=1

gi

ki !εki (t, λi ; ν, ν). (7.15)

Now, by substituting the previous equation together with (7.4) into the convolution
integral appearing in (7.10), after some calculations it results that

t∫

0

η0(t − ξ)ȳ(ξ ; τ)dξ =
m∑

i=1

gi

ki !
(2n + 1)!
n!τ 2n+1

n∑

r=0

(−1)n−rτ r

r !(n − r)!(2n − r + 1)

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2n − r + 1)!εki (t, λi ; ν, 2n − r + 2 + ν) if t ≤ τ
τ∫

0

εki (t − ξ, λi ; ν, ν)ξ2n−r+1dξ

+
t∫

τ

εki (t − ξ, λi ; ν, ν)dξ if t > τ.

(7.16)

In order to obtain the inverting input (7.10), consider that

xn = (x − τ + τ)n =
n∑

j=0

(
n
j

)

(x − τ)n− jτ j . (7.17)

The transition polynomial can be therefore represented as

http://dx.doi.org/10.1007/978-3-319-10930-5_2
http://dx.doi.org/10.1007/978-3-319-10930-5_2
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ȳ(t; τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if t < 0
(2n + 1)!
n!τ 2n+1

n∑

r=0

(−1)n−rτ r t2n−r+1

r !(n − r)!(2n − r + 1)
if 0 ≤ t ≤ τ

(2n + 1)!
n!τ 2n+1

n∑

r=0

(−1)n−rτ r

r !(n − r)!(2n − r + 1)

×
⎡

⎣t2n−r+1 −
2n−r+1∑

j=0

(
2n − r + 1

j

)

× (t − τ)2n−r+1− jτ j

]

+ 1(t − τ) if t > τ,

(7.18)

where 1(·) is the Heaviside function. The previous expression can be further simpli-
fied by considering that the transition polynomial is C (n) by construction. Hence, the
summation of all the terms that, by differentiating till the order n the transition poly-
nomial, would lead to impulse-like behaviors at t = τ , is null. Thus, the summation
over j can be truncated at n − r .

Now, consider the fractional differintegral of the transition polynomial. By virtue
of the previous reasoning, considering that Dαxn = n!

Γ (n+1−α) x
n−α, α ∈ R and

expanding the binomial coefficients in (7.18), the differintegral of the transition
polynomial is finally obtained for −∞ < α ≤ n + 1:

Dα ȳ(t; τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if t < 0

(2n + 1)!
n!τ2n+1

n∑

r=0

(−1)n−r τ r (2n − r + 1)!
r !(n − r)!(2n − r + 1)Γ (2n − r + 2 − α)

×t2n−r+1−α if 0 ≤ t ≤ τ

(2n + 1)!
n!τ2n+1

n∑

r=0

(−1)n−r τ r (2n − r + 1)!
r !(n − r)!(2n − r + 1)

×
⎛

⎝
t2n−r+1−α

Γ (2n − r + 2 − α)
−

n−r∑

j=0

τ j (t − τ)2n−r+1− j−α
j !Γ (2n − r + 2 − j − α)

⎞

⎠ if t > τ.

(7.19)
It is worth stressing that the previous equation can also be used for a direct compu-
tation of the transition polynomial by selecting α = 0.

Finally, the convolution integral (7.16) has to be solved. In [0, τ ], considering that
the Laplace transform of the convolution integrals equals the product of the Laplace
transforms and that L [tα] = Γ (α+1) 1

sα+1 , starting from (7.19) and using the same
procedure employed to obtain (7.16), the convolution integral (7.16) itself can be
derived as an explicit expression in terms of Mittag-Leffler functions (7.12).

For t > τ a similar result is achievable by considering that the transition poly-
nomial (7.19) can be represented as the summation of a polynomial and a delayed
one. Hence, the same reasoning previously applied can be used by considering that
L [(t − τ)α] = Γ (α + 1) 1

sα+1 e−τ s , that is, the integration of a polynomial func-
tion, possibly delayed, that can be solved again in terms of Mittag-Leffler functions,
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leading to

t∫

0

η0(t − ξ)ȳ(ξ ; τ)dξ =
m∑

i=1

gi

ki !
(2n + 1)!
n!τ2n+1

n∑

r=0

(−1)n−r τ r

r !(n − r)!(2n − r + 1)
(2n − r + 1)!

×

⎡

⎢
⎢
⎣εki (t, λi ; ν, 2n − r + 2 + ν)

−

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if 0 ≤ t ≤ τ
n−r∑

j=0

τ j

j !
×εki (t − τ, λi ; ν, 2n − r + 2 − j + ν) if t > τ

⎤

⎥
⎥
⎥
⎦
.

(7.20)

It is noteworthy that the computation of (7.10), by means of (7.20) only requires the
computation of the Mittag-Leffler function, which is widely treated in the literature
(see, for example, [86, 115]). Note that, in the fractional framework, this is a basic
requirement since the Mittag-Leffler function plays for fractional systems the same
role that the exponential function plays for integer systems.

7.2.4 Minimum-Time Transition

Consider now the constrained minimum-time transition problem (i.e., the second
part of Problem 7.1). It has already been shown that the output constraints of (7.3)
can always be satisfied by increasing τ . Now, consider the input constraints of (7.3),
that is, given the system (7.1), determine the minimum time τ ∗ such that u(t; τ ∗)
and the first l ∈ N derivatives of u(t; τ ∗) are bounded (see 7.3), that is ,

|Di u(t; τ ∗)| < ui
M , ∀t > 0, i = 0, 1, . . . , l. (7.21)

The condition under which the problem admits a solution is determined hereafter.
First, consider the following lemma.

Lemma 7.2 Assume that n ≥ [ρ] + l. The input–output pair defined by (7.4) and
(7.10) satisfies the following limits

limτ→∞ ‖H(0)u(·; τ)− ȳ(·; τ)‖∞ = 0;
limτ→∞ ‖Di u(·; τ)‖∞ = 0 i = 1, . . . , l.

(7.22)

Proof Consider the first one of (7.22).
In [0, τ ] the input computed according to (7.16) is a linear combination of terms

εki (t, λi ; ν, 2n − r + 2 + ν).
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Suppose that no multiple poles occur in H0(s) (i.e., ki = 0); then, the following
set of equalities, considering (7.11) and (7.12) holds:

ε0(t, λ; ν, 2n − r + 2 + ν) = t2n−r+1+ν ∞∑
j=0

(λtν ) j

Γ (( j+1)ν+2n−r+2)

= t2n−r+1
∞∑
j=0

(λtν ) j+1

Γ (( j+1)ν+2n−r+2)

= t2n−r+1

λ

(
∞∑

j=−1

(λtν ) j+1

Γ (( j+1)ν+2n−r+2) − 1
Γ (2n−r+2)

)

= t2n−r+1

λ

(
∞∑
j=0

(λtν ) j

Γ ( jν+2n−r+2) − 1
(2n−r+1)!

)

= t2n−r+1

λ

(
Eν,2n−r+2(λtν)− 1

(2n−r+1)!
)
.

(7.23)

Substituting (7.23) into (7.16) it immediately appears that, if no multiple poles occur,
the convolution integral with t ∈ [0, τ ] is

t∫

0
η0(t − ξ)ȳ(ξ ; τ)dξ =

m∑

i=1

gi
(2n + 1)!
n!τ2n+1

n∑

r=0

(−1)n−r τ r

r !(n − r)!(2n − r + 1)

×(2n − r + 1)! t2n−r+1

λi

(

Eν,2n−r+2(λi tν)− 1

(2n − r + 1)!
)

= H0(0)ȳ(t; τ)+ (2n − r + 1)! ȳ(t; τ)
λi

Eν,2n−r+2(λi tν).

(7.24)

In view of the minimum-phase assumption made on Σ , Eν,2n−r+2(λtν) is infinites-
imal, moreover ȳ(t; τ) is bounded and monotonically increasing in [0, τ ], thus

lim
τ→∞ ȳ(t; τ)

(

H0(0)+ (2n − r + 1)!
λ

Eν,2n−r+2(λtν)

)

= H0(0)ȳ(t; τ). (7.25)

Now consider the multiple poles case, it is

εk(t, λ; ν, 2n − r + 2 + ν) = t(k+1)ν+2n−r+1 dk

d(λtν)k

∞∑

j=0

(λtν) j

Γ (( j + 1)ν + 2n − r + 2)

= t(k+1)ν+2n−r+1
∞∑

j=0

( j + k)!(λtν) j

j !Γ (( j + k + 1)ν + 2n − r + 2)

= t(k+1)ν+2n−r+1k!
∞∑

j=0

(k + 1) j (λtν) j

j !Γ (( j + k + 1)ν + 2n − r + 2)
,

(7.26)
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where (ζ )n := ζ(ζ + 1) · · · (ζ + n − 1), (ζ )0 := 1, ζ �= 0 is the Pochhammer
symbol. The last term of (7.26), except for the term k!, is exactly the definition of
generalized Mittag-Leffler function according to [65]:

Eζα,β(t) :=
∞∑

j=0

(ζ ) j (t) j

j !Γ ( jα + β)
(7.27)

and the following property holds [65]

t Eζα,β(t) = Eζα,β−α(t)− Eζ−1
α,β−α(t). (7.28)

Via (7.27), it can be determined that

εk(t, λ; ν, 2n − r + 1 + ν) = t (k+1)ν+2n−r+1k!Ek+1
ν,2n−r+2+(k+1)ν(λtν) (7.29)

and by recursively applying (7.28) it results

t (k+1)ν+2n−r+1k!Ek+1
ν,2n−r+2+(k+1)ν(λtν)

= tν+2n−r+1

λk k!
k∑

i=0
(−1)i

(
k
i

)

Ek+1−i
ν,2n−r+2+ν(λtν).

(7.30)

Now, by applying the same procedure used for the case with only simple poles to
the last term of the summation in the right hand side of (7.30) and considering that
E1
α,β(t) = Eα,β(t), it appears that the convolution integral for t ∈ [0, τ ] can be

rewritten as

t∫

0
η0(t − ξ)ȳ(ξ ; τ)dξ =

m∑

i=1

gi

ki !
(2n + 1)!
n!τ 2n+1

n∑

r=0

(−1)n−rτ r

r !(n − r)!(2n − r + 1)

×(2n − r + 1)!ki ! t2n−r+1

λ
ki
i

×
[

(−1)ki

(
Eν,2n−r+2(λi tν)− 1

(2n−r+1)!
)

+tν
ki −1∑

j=0
(−1) j

(
k
j

)

Eki +1− j
ν,2n−r+2+ν(λi tν)

]

.

(7.31)

Now, by backward applying (7.26) it is easy to obtain that

Ek+1− j
ν,2n−r+2+ν(λtν) = 1

(k − j)!
d(k− j)

d(λtν)(k− j)
Eν,2n−r+2+(1−k)ν(λtν).

Substituting the previous equation in (7.31) and using (7.11)–(7.13), the last term of
(7.31) can be rewritten as
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(k − 1)!
Γ (2n − r + 2 − kν)

k−1∑

j=0

(−1) j
(

k
j

)
1

t2n−r+1− jν

× L −1
[

L
[
t2n−r+1−kν

] 1

(sν + λ)k− j+1

]

(7.32)

that, evidently, is infinitesimal considering that j < k and the minimum-phase
assumption (i.e., a stable zero-order dynamics).

Using the previous result in (7.31) it is immediate to check that

lim
τ→∞

t∫

0

η0(t − ξ)ȳ(ξ ; τ)dξ = H0(0)ȳ(t; τ) t ∈ [0, τ ], (7.33)

also when multiple poles occur. Using (7.19), it can be seen that the derivatives of
the transition polynomial monotonically decrease when τ increases, thus

limτ→∞ γn−m Dρ ȳ(t; τ)+ γn−m−1 Dρ−ν ȳ(t; τ)+ · · ·
+γ1 Dν ȳ(t; τ)+ γ0 ȳ(t; τ) = γ0 ȳ(t; τ). (7.34)

The existence of the derivatives is guaranteed by the hypothesis n ≥ [ρ] + l.
Considering the previous equation together with (7.10) and considering that

H(0) = (H0(0)+ γ0)
−1 the first of (7.22) is proven for in t ∈ [0, τ ].

Consider now the second expression of (7.22). Again, using (7.19) it is easy to
see that the maximum of the derivatives of ȳ(t; τ) is monotonically decreasing as
τ increases. Hence, except for the convolution integral (7.16), the first l derivatives
of (7.10) are evidently decreasing as τ increases. Thus, it is sufficient to prove that
the convolution integral derivatives are infinitesimal with respect to τ . According
to (7.4), |Di ȳ(t; τ)|=0 outside [0, τ ]. By virtue of the properties of the convolution
integral and by taking into account Lemma 7.1 it holds that

∣
∣
∣
∣
∣
∣
D

t∫

0

η0(t − ξ)ȳ(ξ ; τ)dξ
∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

t∫

0

η0(t − ξ)Dȳ(ξ ; τ)dξ
∣
∣
∣
∣
∣
∣
<

cki

τ i

t∫

0

|η0(t − ξ)|dξ.

(7.35)
In view of the minimum-phase assumption, the last integral is bounded, thus

lim
τ→∞

cki

τ i

t∫

0

|η0(t − ξ)|dξ = 0. (7.36)

By iteratively applying the reasoning to the higher order derivatives, the second
expression of (7.22) is proven.

Finally, the first expression of (7.22) is proven for t > τ . In view of (7.33) and
(7.34), for τ sufficiently large, the output of the convolution integral is arbitrarily
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close to the steady-state value as well as its derivatives. Considering that the zero-
order dynamics is a stable linear system whose input is constant for t > τ and whose
initial condition can be arbitrarily close to the steady-state value at t = τ , it can be
seen that, also for t ≥ τ the output of the systems, i.e., the convolution integral value,
can be arbitrarily close to the steady state.

Finally, observing again that the maximum of the derivatives of ȳ(t; τ) is monoton-
ically decreasing as τ increases the second of (7.22) is proven also for t > τ and this
completes the proof.

Finally, the following theorem states that the problem admits a solution under
very mild conditions.

Theorem 7.1 The constrained minimum-time transition problem admits a solution
provided that

u0
M > 1

H(0) , ui
M > 0, i = 1, . . . , l

yi
M > 0 i = 1, . . . , v.

(7.37)

Proof The result can be obtained by considering Lemmas 7.1 and 7.2.

Roughly speaking, the previous theorem states that it is just required that the
constraints on the maximum input do not prevent the input to keep the system output
constant at the desired steady-state value.

Finally, consider both the constraints (7.3). Lemma 7.1 shows that it is sufficient
to select n ≥ v − 1 in (7.4) and to increase the transition time τ in order to decrease
the maximum value of the first v derivatives of the transition polynomial. In other
words, it is enough to increase τ until the second condition of (7.3) is satisfied.

Analogously, Lemma 7.2 states that the first of (7.3) can be satisfied, provided
that n ≥ [ρ] + l. Thus, in order to satisfy all the constraints (7.3), the desired output
function can be selected by choosing

{
n ≥ max{v − 1; [ρ + l}
τ ≥ max{τ ∗

i ; τ ∗
o }, (7.38)

where τ ∗
o is the minimum transition time satisfying the output constraints (which

can be computed explicitly by following the techniques proposed in [111]), whereas
τ ∗

i is minimum transition time such that the input constraints are satisfied for each
τ ≥ τ ∗

i . For this purpose, a simple bisection algorithm can be suitably employed.

7.2.5 Illustrative Example

As an illustrative example, consider the fractional system Σ1 with the following
transfer function:
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H(s) = 3s0.5 + 1

s1.5 + 1
, (7.39)

whose commensurate order is evidently 0.5. A smooth transition of the output from 0
to 1 is desired, with both constraints on the input value and on its slew rate (note that
this is a common requirement in practical applications). Accordingly, considering
that the relative order of the system is ρ = 1 and that a constraint is imposed on
the input signal first derivative, a transition polynomial of order n ≥ 1 is needed.
Here, the sufficient degree of regularity n = 3 has been chosen and the transition
polynomial ȳ(t; τ) has been computed via (7.4):

ȳ(t; τ) = −20

τ 7 t7 + 70

τ 6 t6 − 84

τ 5
t5 + 35

τ 4 t4. (7.40)

Then, the input–output inversion technique has been applied. The zero dynamics of
Σ1 has been first computed

H0(s) = 0.9630

3s0.5 + 1
(7.41)

and its time-domain representation

η0(t) = 0.9630

3
εki

(

t,
1

3
; 0.5, 0.5

)

. (7.42)

Then, the input–output-inversion-based input function has been computed via (7.10),
(7.19) and (7.20):

u(t; τ) = 0.3333D1 ȳ(t; τ)− 0.1111D0.5 ȳ(t; τ)+ 0.0370 +
t∫

0

η0(t − ξ)ȳ(ξ ; τ)dξ.

(7.43)

Note that, being γ0 = 0.0370 and H0(0) = 0.9630, as expected γ0 + H0(0) =
H(0)−1 = 1.

Now, consider the following set of constraints on the input variable:

u0
M ≤ 1.5, u1

M ≤ 1 (7.44)

A bisection algorithm [111] has been applied resulting in the minimum value of the
transition time τ ∗ = 1.55. Numerically computing u(t; τ) with the obtained transi-
tion time τ ∗ and simulating the system response by using the Oustaloup approxima-
tion [89], the result shown in Fig. 7.1 has been obtained.

As expected, the system response is smooth and monotonic and the input vari-
able is smooth and satisfies the constraints (7.44). In this case, the input slew rate
constraints is the tightest one and imposes severe restrictions on the transition time.
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Fig. 7.1 Results for the systemΣ1 and the set of constraints (7.44). Solid line input–output inversion
response. Dashed line input variable. Dotted line input variable slew rate

In order to speed up the system response, the constraints on the input slew rate have
been relaxed and the one on the maximum input has been tightened in order to be
very close to the minimum allowable value (that is H(0)−1) resulting in
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Fig. 7.2 Results for the systemΣ1 and the set of constraints (7.45). Solid line input–output inversion
response. Dashed line input variable. Dotted line input variable slew rate
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u0
M ≤ 1.001, u1

M ≤ 6 (7.45)

The bisection algorithm results in a value of the transition time τ ∗ = 0.55. A new
simulation has been performed recomputing the input signal, the result is shown in
Fig. 7.2.

Now, as expected, the tightest constraint is the one imposed on the maximum
control variable. Note that, despite the sensible reduction of the transition time, the
system response remains smooth and monotonic.

Finally, for the sake of comparison, in Fig. 7.3, the system response to a ramp
is shown. The ramp is defined in such a way that satisfies the second set of input
constraints (7.45). The response is evidently worse than the one obtained via input–
output inversion (note that, obviously, the step response would present an even larger
overshoot and settling time).

It is worth noting the occurrence of a sluggish response of the system, which is
caused by the memory effect of the fractional operator. In this context, the use if the
inversion methodology appears to be a valuable tool to compensate for this effect.
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Fig. 7.3 Ramp response for the system Σ1 and the set of constraints (7.44). Solid line process
output. Dashed line input variable. Dotted line input variable slew rate
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7.3 Feedforward Control Design

7.3.1 Problem Formulation

The inversion procedure described in the previous section can be effectively used in
order to design a feedforward control law that improves the set point regulation of
a standard feedback control scheme. In fact, it is well-known that the main purpose
of a feedback controller is to compensate for external disturbances and to reduce the
effect of modeling uncertainties and the addition of a feedforward control law can
improve the set point following performance of a control system [110, 112]. In this
context, the problem of achieving a process variable transition from one steady-state
value to another one is addressed by assuming that the feedback controller has been
already designed. Two different cases are considered: the synthesis of a feedforward
signal to be added to the feedback control variable and the synthesis of a command
signal to be applied to the closed-loop control system instead of the typical set point
step signal.

The problem can be formulated as follows (similarly to the case considered in
the previous section). Consider the unity feedback control scheme of Fig. 7.4, where
C(s) is a linear time-invariant commensurate fractional controller and

G(s) = Ḡ(s)e−Ls (7.46)

is a linear time-invariant strictly proper fractional system G(s), where L is a possible
delay term and Ḡ(s) is minimum phase.

The closed-loop transfer function is

T (s) = C(s)G(s)

1 + C(s)G(s)
(7.47)

and is assumed to be strictly proper. Note that the controller can be also improper
from a theoretical point of view in order to make the approach suitable for a wider
range of regulators (e.g., PID controllers). In fact, in many cases the controller can

Fig. 7.4 The unity feedback control scheme considered in the feedforward control synthesis prob-
lem
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be effectively treated and designed as an improper system, even if in practice it has
to be made proper in its implementation (possibly by adding high-frequency poles
that can be neglected in the design phase). It is also assumed that the controller has
been designed in order to make the considered feedback loop internally stable.

The aim of the design method is to find suitable signals for the loop command
signal r(t) or for the feedforward signal f (t) in order to obtain a perfect tracking
of a desired output which allows a transition from an initial steady-state value to a
new one in a finite time interval τ , given a set of bounds on the control and process
variables and their derivatives.

Thus, starting from null initial conditions and given a steady-state output value
ye, design a “sufficiently smooth” τ -parametrized desired output ȳ(·; τ) such that
ȳ(0; τ) = 0 and ȳ(t; τ) = ye ∀t ≥ τ , and ȳ(·; τ) ∈ C (k) for some k ∈ N. Then, find

1. (feedforward signal generation) f (·;τ) and r(·;τ) such that, for the τ -parametrized
functions f (·; τ), r(·; τ) and ȳ(·; τ), it holds that

L [ȳ(t − L; τ)] = G(s)L [ f (t; τ))] (7.48)

and y(t) = ȳ(t − L; τ) ∀t ≥ 0; or
2. (command signal generation) r(·; τ) such that, for the τ -parametrized couple
(r(·; τ); ȳ(·; τ)), it holds that

L [ȳ(t − L; τ)] = T (s)L [r(t; τ))]. (7.49)

Moreover, in both cases, determine the minimum time τ ∗ such that u(t; τ ∗) and the
first l ∈ N0 (v ∈ N, respectively) derivatives of u(t; τ ∗) (ȳ(t; τ ∗)), are bounded:

|Di u(t; τ ∗)| < ui
M , ∀t > 0, i = 0, 1, . . . , l;

|Di ȳ(t; τ ∗)| < yi
M , ∀t > 0, i = 1, 2, . . . , v.

(7.50)

Note that in the first case, since a perfect tracking is obtained, the controller output
is null and the feedforward signal f (t; τ) coincides with the control signal u(t),
whereas in the second case the control variable u(t) and the controller output c(t)
coincide since no feedforward action is considered.

7.3.2 Feedforward Signal Synthesis

In this section, the problem of feedforward regulation is addressed. Consider the
(possibly unstable) process (7.46). First, the delay-free part Ḡ(s) is considered. Given
the transition polynomial ȳ(t; τ) (see 7.4), the corresponding feedforward signal
f (t; τ) can be easily computed via Proposition 7.1 together with (7.19) and (7.20),
provided that
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n ≥ [ρḠ], (7.51)

being ρḠ the relative order of Ḡ(s).
It is easy to see that (7.48) is satisfied. Indeed, (7.48) can be rewritten as

Ȳ (s; τ)e−Ls = G(s)F(s; τ) (7.52)

and, by substituting (7.46) into the previous equation and eliminating the delay terms
from both sides the following expression is obtained

Ȳ (s; τ) = Ḡ(s)F(s; τ). (7.53)

The previous equation holds by construction because f (t; τ) is computed via input–
output inversion of Ḡ(s), thus (7.48) is satisfied.

Note that the inversion-based signal does not excite the system modes, since it
is computed as the convolution of the transition polynomial (7.4) with the inverse
system Ḡ(s)−1. Thus, it is enough to have null control error to obtain the perfect
tracking condition y(t) = ȳ(t−L; τ). Considering that (7.48) holds, it is then enough
to use the desired output as the closed-loop reference signal r in order to obtain a
null error, that is, the perfect tracking is obtained by imposing:

r(t; τ) = ȳ(t − L; τ). (7.54)

Now, the constraints (7.50) can be satisfied by considering (7.38) with ρ = ρḠ ,
that is, {

n ≥ max{v − 1, [ρḠ ] + l}
τ ≥ max{τ ∗

i ; τ ∗
o } (7.55)

and by increasing the transition time τ until the required conditions are met.

7.3.3 Command Input Synthesis

An alternative approach to the one proposed in the previous section is to compute
a suitable command signal r(t) to be applied to the closed-loop system in order to
obtain a perfect tracking of the desired output. In this context, a double strategy can
be developed, one for the case where no dead time is present in the process dynamics
and on for processes with time delay.

Consider first the delay-free case. The closed-loop transfer function T (s), accord-
ingly to (7.47), can be expressed as a fractional transfer function. Hence, the input–
output procedure described in Sect. 7.2.3 can be straightforwardly applied to T (s)
obtaining a suitable command signal r(t; τ) that satisfies (7.49), provided that

n ≥ [ρT ], (7.56)
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where ρT is the relative order of T (s). It is the product of the relative degree of Ḡ(s)
and the (possibly negative) relative degree ρC of the controller C(s). The point here
is that the existence of a suitable command signal does not guarantee the existence
of a bounded control signal. Indeed, when the controller is not proper, i.e., when
ρC < 0, the following condition for the existence of the control signal must also be
considered:

n ≥ [ρḠ]. (7.57)

Conversely, when the controller is strictly proper, it may happen that the user is forced
to use an overregularized control signal u(t) in order to have a feasible command
signal r(t; τ). Note that, thanks to (7.56), the condition (7.57) is always satisfied
when ρC ≥ 0. Also note that it is enough to consider the command signal in order to
check the existence of the control signal. Indeed, the feedback signal is y(t) = ȳ(t; τ)
and its regularity is greater than the one of r(t; τ) because of the properness of T (s).

Regarding the constraints (7.50), it is sufficient to note that since in view of (7.49)
a perfect tracking condition is obtained, this implies that u(t) = Ḡ(s)−1 ȳ(t; τ) and
the same reasoning of the previous section can be applied, leading again to (7.55),
where u(t) = u(t; τ) can be computed via input–output inversion of Ḡ(s). It is worth
stressing that constraints satisfaction automatically implies (7.57).

Finally, the case related to processes with dead time is considered. When a delay
term is present, the closed-loop system cannot be inverted because of the exponential
term appearing in the denominator of the transfer function. In this case, the command
signal is calculated as the summation of two different terms. First, consider the open-
loop transfer function. Neglecting the delay term, C(s)Ḡ(s) can be inverted by using
the same procedure employed to invert T (s) in the delay-free case, yielding the signal
rol(t; τ). Then, a correction term rc(t; τ) = ȳ(t − L; τ) must be considered, so that
the command signal is

r(t; τ) = rol(t; τ)+ rc(t; τ). (7.58)

It is easy to see that command signal (7.58) satisfies (7.49), indeed

Y (s) = T (s)r(t; τ) = C(s)Ḡ(s)e−Ls

1+C(s)Ḡ(s)e−Ls (Rol(s; τ)+ Rc(s; τ)), (7.59)

that is,

Y (s)
(

1 + C(s)Ḡ(s)e−Ls
)

= C(s)Ḡ(s)e−Ls
(
(C(s)Ḡ(s))−1 + e−Ls

)
Ȳ (s; τ).

(7.60)

Simplifying and applying the inverse Laplace transform to the previous expression,
it is immediately evident that y(t) = ȳ(t − L; τ), that evidently implies (7.49).

Regarding the constraints, considering that the relative order of the open-loop
transfer function is the same of the closed-loop one, the reasoning used in the delay-
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free case holds straightforwardly and the problem of the command signal synthesis
subject to constraints (7.55) and (7.56) is completely solved.

Note that here both the reference signal and the control signal (in order to find
τ ∗

i ) must be computed. Nevertheless, the computational weight increment is minimal
because, once a suitable value of n has been chosen, only the control signal must
be computed repeatedly. Indeed, the command signal has to be computed just once
when τ ∗

i and τ ∗
o have been already found.

7.3.4 Illustrative Examples

In all the examples presented hereafter, a process variable transition from 0 to 1 is
considered. For the purpose of simulation, the fractional-order dynamics has been
approximated in the frequency domain by using the Oustaloup approximation [89]
as in Sect. 7.2.5.

7.3.4.1 Example 1

As a first illustrative example, consider an unstable fractional system with the fol-
lowing transfer function:

C(s) = 3s0.5 + 1

s1.5 − 1
e−0.1s, (7.61)

whose commensurate order is evidently 0.5. A very simple stabilizing controller
can be used, indeed the achievement of the perfect tracking is independent from the
chosen controller. Here, a proportional controller C(s) = 2 has been chosen. The
control requirement is to obtain a smooth transition of the output from 0 to 1 with
constraints on both the amplitude and the first derivative (slew rate) of control and
process variables (note that these are common requirements in practical applications).
Accordingly, considering that the relative order of the system Ḡ(s) is ρḠ = 1, the
choice n = 3 has been done and the transition polynomial ȳ(t; τ) has been computed
via (7.4):

ȳ(t; τ) = −20

τ 7 t7 + 70

τ 6 t6 − 84

τ 5
t5 + 35

τ 4 t4. (7.62)

Then, the technique proposed in Sect. 7.3.2 has been applied. The zero dynamics
of Ḡ(s) has been first obtained as

H0(s) = −1.0370

3s0.5 + 1
(7.63)

and its time-domain representation is
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η0(t) = −1.0370

3
εki

(

t,
1

3
; 0.5, 0.5

)

. (7.64)

Subsequently, the inversion-based feedforward signal f (t; τ) (note that it coin-
cides with the control variable) has been computed via (7.10):

f (t; τ) = 0.3333D1 ȳ(t; τ)−0.1111D0.5 ȳ(t; τ)+0.0370+
t∫

0

η0(t −ξ)ȳ(ξ ; τ)dξ.

(7.65)
Now consider the following set of constraints:

u0
M ≤ 1.5, u1

M ≤ 5
y1

M ≤ 2
(7.66)

The bisection algorithm results in the minimum value of the transition time τ ∗
i = 0.72

while, in order to satisfy the constraint on the output signal, τ ∗
o = 1.12 has been

obtained. The tightest constraint is the one on the derivative of the output signal,
therefore τ ∗ = τ ∗

o = 1.12 > τ ∗
i . By numerically computing u(t; τ)with the obtained

transition time τ ∗ and simulating the system response, the result shown in Fig. 7.5
has been obtained. As expected, the system response is smooth and monotonic and
the input variable is smooth and satisfies the constraints (7.66). Note that the system
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Fig. 7.5 Results for the system (7.61) and the set of constraints (7.66). Top, solid line process
output. Top, dashed line derivative of the process output. Top, dotted line: transition polynomial.
Bottom, solid line control variable. Bottom, dotted line control variable first derivative
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Fig. 7.6 Results for the system (7.61) and the set of constraints (7.67). Top, solid line process
output. Top, dashed line derivative of the process output. Top, dotted line transition polynomial.
Bottom, solid line control variable. Bottom, dotted line control variable slew rate

output and the transition polynomial have that same shape, except for the time shift
depending on the process delay.

In order to speed up the system response, the constraints on the output slew rate
have been then relaxed by selecting

u0
M ≤ 1.5, u1

M ≤ 5
y1

M ≤ 5
(7.67)

The previously computed value τ ∗ = τ ∗
i = 0.72 can here be used as in this case

the constraint on the output slew rate is satisfied. The results of a new simulation
performed by recomputing the input signal are shown in Fig. 7.6. Now, as expected,
the tightest constraint is the one imposed on the control variable slew rate.

7.3.4.2 Example 2

As a second example, consider a unity feedback control system where the process and
the controller are the ones proposed in [73]. The controlled process has the transfer
function (note that it is a typical servomotor transfer function)

G(s) = 0.25

s(s + 1)
(7.68)
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and the proposed controller is a fractional-order PID controller whose transfer func-
tion is

C(s) = 3.8159 + 2.1199

s0.6264 + 2.2195s0.809. (7.69)

Aiming at improving the closed-loop response via input–output inversion, first note
that the system is already commensurate because the exponents appearing in C(s)
have a finite number of digits, thus they are rational number and the proposed
algorithm could be directly applied. Nevertheless, if the commensurate order is very
small, then the resulting algorithm is computationally demanding, thus it is con-
venient to approximate the controller by means of a simpler commensurate-order
system, that is:

C̃(s) = 3.8159 + 2.1199

s0.6 + 2.2195s0.8. (7.70)

Hence, the approximated closed-loop system to be inverted is

T̃ (s) = C̃(s)G(s)

1 + C̃(s)G(s)
= 0.5549s1.4 + 0.9540s0.6 + 0.5300

s2.6 + s1.6 + 0.5549s1.4 + 0.9540s0.6 + 0.5300
,

(7.71)

whose commensurate order is ν = 0.2.
Here, only constraints on the maximum control variable have been considered:

u0
M ≤ 10. (7.72)

Note that, in the case of a servomotor, this is a common choice that means avoiding
saturation of the current loop. In order to select the transition polynomial, it must
be considered that relative order of the approximate closed-loop transfer function is
ρT̃ = 1.2, while the relative order of the system is ρḠ = 2. Applying (7.55) and
(7.56), the value n = 2 can be selected. This choice leads to the following transition
polynomial

ȳ(t; τ) = 6

τ 5
t5 − 15

τ 4 t4 + 10

τ 3 t3. (7.73)

The transition time τ ∗ = τ ∗
i can be obtained by applying a bisection algorithm,

yielding τ ∗ = 1.73.
Now, applying to (7.71) the input–output inversion technique, again by polynomial

division the zero-order dynamics of the system has been computed:
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H0(s) = −1.2369 + 1.4054i

s0.2 + 0.8240 − 0.8901i
+ −1.2369 − 1.4054i

s0.2 + 0.8240 + 0.8901i

+ 0.2838 + 0.3133i

s0.2 − 0.8638 − 0.7011i
+ 0.2838 − 0.3133i

s0.2 − 0.8638 + 0.7011i

+ 0.0743 − 0.1112i

s0.2 − 0.3462 − 0.7479i
+ 0.0743 + 0.1112i

s0.2 − 0.3462 + 0.7479i

+ 0.0362

s0.2 + 0.7721
.

(7.74)

Note that the complex coefficients always appear in conjugate pairs. Also, note that
H0(s) is stable, even though some denominator coefficients have real part lower than
zero. Indeed, it is worth stressing that in the fractional case, the stability condition is
different from the integer case (see 2.24). The time-domain version η0(t) of H0(s)
is not shown for the sake of readability, nevertheless the reader can easily obtain it
by means of (2.6). The command signal r(t; τ) has been computed via (7.10) as

r(t; τ) = 1.8022D1.2 ȳ(t; τ)− 3.0985D0.4 ȳ(t; τ)
+1.8022D0.2 ȳ(t; τ)+ ȳ(t; τ)+

t∫

0
η0(t − ξ)ȳ(ξ ; τ)dξ (7.75)

The application of the computed command input to the actual system T (s) has given
the result shown in Fig. 7.7, where also the step response is plotted for comparison.
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Fig. 7.7 Results for the system (7.71) and the set of constraints (7.72). Top, solid line process
output. Top, dashed line command input. Top, dotted line step response. Bottom, solid line control
variable

http://dx.doi.org/10.1007/978-3-319-10930-5_2
http://dx.doi.org/10.1007/978-3-319-10930-5_2
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It is worth noting that the use of the inversion-based command signal, instead of
the step one, provides a significant improvement of the performance despite the
fractional-order PID controller is already very well tuned. Also, note that the proposed
technique gives a continuous control signal, whereas the control signal obtained with
the step response in not shown because it shows a very high peak due to the so called
“derivative kick” phenomenon [151].

7.4 Combined Robust Feedback/Feedforward Design

7.4.1 Generalities

The inversion-based design for the feedforward action described in Sect. 7.3 can be
effectively combined with the design of the feedback controller in order to minimize
the worst-case settling time when a family of fractional first-order-plus-dead-time
(FFOPDT) systems is considered. The approach consists in designing the feedback
controller by following the methodology described in Chap. 6 with a modification of
the weighting function in order to guarantee the properness of the controller. Then,
the command input is designed by applying the input–output inversion procedure to
the closed-loop system and, finally, the transition time τ is selected together with the
parameters of the weighting function in order to minimize the worst-case settling time
subject to constraints on the maximum overshoot and on the maximum amplitude of
the control variable (obviously, also the robust stability condition has to be satisfied).

7.4.2 Feedback Control Design

Considering a nominal FFOPDT system, namely,

G(s) = K

1 + T sα
e−Ls, α ∈ (0, 2) (7.76)

the approach described in Chap. 6 can be effectively employed in order to design
the feedback controller. However, differently from (6.11), here an integer-order first-
order system is chosen as a reference model:

M(s) = 1

1 + Tms
, (7.77)

Further, a simpler weighting function is used, that is,

W (s) = 1 + zsβ

s
, β = max{1, α}. (7.78)

http://dx.doi.org/10.1007/978-3-319-10930-5_6
http://dx.doi.org/10.1007/978-3-319-10930-5_6
http://dx.doi.org/10.1007/978-3-319-10930-5_6
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This choice is done for the sake of simplicity and it is motivated by the fact that
there is no need in this case to obtain a fractional-order PID controller as a feedback
controller. Further, the weighting function (7.77) always guarantees a proper con-
troller and a proper nominal real-rational closed-loop transfer function. Moreover,
it automatically includes in the feedback loop an integer-order integral action 1/s.
Indeed, as shown in Chap. 3, in many cases the use of an integer integral action is
the best solution.

The solution of the optimization problem (6.7) in this case yields

Eo(zg) = W (zg)M(zg) = δ(Tm, z) = Lβ + z

Tm Lβ−2 + Lβ−1 , (7.79)

where Eo(s) is the optimal interpolation error.
Since a single RHP zero appears here, the optimal interpolation error is constant

all over the complex plane and it holds that:

E0(s) = δ(Tm, z). (7.80)

At this point, the optimal IMC controller (see Figs. 6.1 and 6.2) can be easily
obtained as

Co
I MC (s) = (M(s)− W −1(s)δ)G−1

n (s)

= 1

K

(1 + zsβ − δTms2 − δs)

(Tms + 1)(zsβ + 1)

T sα + 1

1 − Ls
(7.81)

and finally, the equivalent optimal feedback controller is obtained via (6.6) as:

Co(s) = 1

K

1

s

(1 + zsβ − δTms2 − δs)

δTms + zTmsβ + δ + Tm

T sα1 + 1

Ls − 1
. (7.82)

Stability is guaranteed by means of the controller Co(s) as long as the nominal
real-rational process model

Gn(s) = K
1 − Ls

1 + T sα
(7.83)

perfectly describes the process dynamics. However, as mismatches between the actual
process and the model used are unavoidable and because of the delay approximation
(6.2), it is important to stabilize a family of plants around the nominal real-rational
one.

Assume that the process belongs to a family F defined as

F = {G(s) = Gn(s)(1 +Δm(s)) : |Δm( jω)| ≤ |Γ ( jω)|} , (7.84)

where

http://dx.doi.org/10.1007/978-3-319-10930-5_3
http://dx.doi.org/10.1007/978-3-319-10930-5_6
http://dx.doi.org/10.1007/978-3-319-10930-5_6
http://dx.doi.org/10.1007/978-3-319-10930-5_6
http://dx.doi.org/10.1007/978-3-319-10930-5_6
http://dx.doi.org/10.1007/978-3-319-10930-5_6
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Δm(s) = G(s)− Gn(s)

Gn(s)
(7.85)

is the uncertainty description and Γ ( jω) is a weight that defines the plants family by
upper bounding the modeling error. It is well-known that a controller that stabilizes
a control system in the nominal case, also stabilizes the family F of control systems
such that:

‖Γ (s)Tn(s)‖∞ < 1, (7.86)

where Tn(s) is the stable real-rational nominal closed-loop transfer function, namely:

Co
I MC (s)Gn(s) = 1 + zsβ − δTms2 − δs

(Tms + 1)(zsβ + 1)
. (7.87)

The following lemma states a sufficient condition under which robust stability can
be obtained.

Lemma 7.3 There exists a couple of parameters (Tm; z) that satisfy the robust
stability constraint (7.86) if |Γ (0)| < 1 and Γ ( jω) has degree of properness
ρΓ ≥ 1 − max {1, α}.
Proof It is easy to see that

lim
Tm → ∞

δ(Tm, z) = 0 (7.88)

and

lim
Tm → ∞

Tmδ(Tm, z) = L2 + zL2−β. (7.89)

Now, consider the nominal real-rational closed-loop transfer function (7.87). Using
the previous results, it can be checked that, for Tm sufficiently large, (7.87) becomes
arbitrarily close to

1 + zsβ − (L2 + zL2−β)s2

(Tms + 1)(zsβ + 1)
. (7.90)

For Tm and Tm/z sufficiently large, the absolute value of the previous expression
can be arbitrarily small for all frequencies greater than an arbitrarily chosen value.
Considering that the relative order of (7.87) is ρTn = max {1, α} − 1, the inequality
|Tn( jω)| < 1

|Γ ( jω)| can be satisfied for ω ∈ [ω̄,∞), where ω̄ is an arbitrarily small
frequency.

Finally, considering that Tn(0) = 1 and, by hypothesis, |Γ (0) < 1|, it is clear that
it is always possible to find a couple (Tm; z) in order to satisfy (7.86).
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7.4.3 Combined Tuning

In this section, the feedback controller design described in the previous subsection
and the command input design described in Sect. 7.3.3 are combined to improve
both performance (feedforward) and robustness (feedback) for an uncertain system
by taking into account both of them simultaneously. Thus, the design of the feed-
back controller C(s; Tm, z) and of the command signal r(t; τ) can be addressed by
considering the following problem.

Consider a family of FFOPDT systems (for the sake of simplicity the same number
l of possible values is considered for each uncertain parameter)

F =
{

G̃(s) = K̃

T̃ sα̃ + 1
e−L̃s : K̃ ∈ {K1, . . . , Kl}, (7.91)

T̃ ∈ {T1, . . . , Tl}, α̃ ∈ {α1, . . . , αl}, L̃ ∈ {L1, . . . , Ll}
}

; l ∈ N

and the nominal system (7.76). The uncertainty set U is defined as the set of uncertain
systems Gi (s) i = 1, . . . , l4 obtained with any possible combination of the uncertain
parameters Ki , Ti , αi and Li and the family F as

F =
{

G̃(s) : G̃(s) ∈ U
}
. (7.92)

The worst-case settling time (at a given percentage) is defined as the maximum
settling time obtained by ranging all over the uncertain set U:

ts,wc(τ, Tm, z) := max
i=1,...,l4

ts,i (τ, Tm, z), (7.93)

where (τ ; Tm; z) is a triple of design parameters to be selected. Thus, the following
min-max optimization problem can be posed.

Problem 7.2
min
τ,Tm ,z

ts,wc(τ, Tm, z) (7.94)

subject to

1. (Robust stability) ‖Γ (s)Tn(s)‖∞ < 1,

Γ ( jω) := Gi ( jω)− Gn( jω)

Gn( jω)
, i = 1, . . . , l4; (7.95)

2. (Maximum overshoot) max yi (t; τ, Tm, z) < y f (1 + Omax), i = 1, . . . , l4;
3. (Maximum control variable) max |ui (t; τ, Tm, z)| < Umax, i = i, . . . , l4;

where (ui (·); yi (·)) is the input–output couple for the i th uncertain system, y f is the
set-point value, Omax > is the maximum allowable overshoot and Umax > 0 the
maximum acceptable control variable.
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Note that here, since the controller is always proper and only a constraint on the
maximum control variable is imposed (i.e., v = 0 and l = 0 in 7.50), the existence
conditions (7.55) and (7.56) for control and command signals reduce to

n ≥ [ρCḠ]. (7.96)

The previous problem is quite complex and can only be solved analytically in trivial
cases. Nevertheless, it can be approached numerically, provided the existence of an
optimal solution. The next theorem states that an optimal solution indeed exists,
under very reasonable conditions.

Theorem 7.2 Problem 7.2 is solvable provided that

max
K̃∈{K1,...,Kl }

∣
∣
∣
∣
∣

K̃ − K

K

∣
∣
∣
∣
∣
< 1 (7.97)

and

Umax > max
K̃∈{K1,...,Kl }

∣
∣
∣
∣

y f

K̃

∣
∣
∣
∣ . (7.98)

Proof First consider that

Γ ( jω) = K̃ (T ( jω)α + 1)e−L̃ jω

K (T̃ ( jω)α̃ + 1)(1 − L jω)
− 1, (7.99)

where each uncertain parameter, denoted by ·̃, respectively belongs to its uncertain
set. Evidently, the smaller possible degree of properness is obtained when α̃ = 0 or
T̃ = 0 and its value is ρΓ = 1 − max{1, α}. Now consider (7.97): it implies that
|Γ (0) < 1|. Hence, it is immediately evident that the hypotheses of Lemma 7.3 are
satisfied and this guarantees the existence of Tm and z that satisfy the robust stability
condition.

Now, consider the command signal r(t; τ) see (7.58) and suppose a unitary final
value y f . For the nominal systems it holds, by construction, that

R(s; τ) = T −1(s)Ȳ (s; τ) =
(

1
C(s)G(s)e−Ls + 1

)
Ȳ (s; τ)e−Ls

= (C(s)G(s))−1Ȳ (s; τ)+ Ȳ (s; τ)e−Ls

= Rol(s; τ)+ Rc(s; τ)
(7.100)

Using Lemma 7.2, it turns out that limτ→∞ ‖Rol(t; τ)‖∞ = 0 and limτ→∞ ‖R(t; τ)
‖∞ = ȳ(t − L; τ). Further, since for the nominal process a perfect tracking is
obtained and each input–output pair for a given system is unique, it holds that
limτ→∞ ‖u(t; τ)‖∞ = y f

G(0) .

The same reasoning is then applied to an arbitrary process G̃(s) ∈ F. It is
immediately evident that, if the actual process would be known, a perfect track-
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ing would be obtained, and because of unitary loop dc-gain, it would hold that
limτ→∞ ‖R̃(t; τ)‖∞ = ȳ(t − L̃; τ).

Thus, when τ → ∞, the perfect command signal for each process of the family
F is always the same transition polynomial, just differently delayed. Evidently, the
output shape does not depend on the delay of the command signal. Hence it holds
that

lim
τ→∞ ‖R(t; τ)T̃ (s)− ȳ(t − L; τ)‖∞ = 0, (7.101)

where T̃ (s) is the closed-loop transfer function of an arbitrary plant G̃(s) ∈ F. Hence,
by increasing τ , each response of the family can be made arbitrarily monotonic.

Finally, considering again that the input–output pairs are unique for each plant
and that when τ → ∞ a perfect tracking is obtained all over the family of plants, it
can be noted that

lim
τ→∞

∥
∥
∥
∥R(t; τ) C(s)

1 + C(s)G̃(s)
− y(t)

G̃(0)

∥
∥
∥
∥

∞
= 0. (7.102)

Considering that G̃(0) = K̃ and that, in view of the linearity of the systems, every
signal is simply scaled by y f , condition (7.98) is obtained and this concludes the
proof.

Roughly speaking, the previous theorem states that the min-max optimization
problem is solvable provided that the uncertainty affecting the process gain is less
than 100 % (that is a very high value) and that the constraints on the control variable
does not prevent the controller to keep each process of the family F at the required
steady-state value y f .

Note that robust stability is a structural property, hence it only depends on the
controller parameters Tm and z and not on the command signal.

Finally, some practical considerations can be made. In order to find an optimal
solution, a numerical approach, for example, a genetic algorithm, can be used. It
is worth stressing that, for the family F, the robust boundary Γ ( jω) can be easily
obtained via (7.85) by gridding the allowable values of the parameters of G̃(s).
This operation may seem computationally demanding, but it is never involved in the
numerical optimization since it must be performed just once before the optimization
starts.

7.4.4 Illustrative Example

Consider the following nominal systems

G(s) = 1

s1.5 + 1
e−s (7.103)

and the family of FFOPDT systems



160 7 Control Design Based on Input–Output Inversion

F =
{

G̃(s) = K̄
T̃ sα̃+1

e−L̃s : K̃ ∈ [Kmin, Kmax],
T̃ ∈ [Tmin, Tmax], α̃ ∈ [αmin, αmax], L̃ ∈ [Lmin, Lmax]

} (7.104)

where an uncertainty of ±10 % over the process parameters is considered in order to
define their minimum and maximum values.

An extremal system Gi (s) is then defined as each system that is obtained with
any possible combination of the extremal values of the uncertainty intervals. The
extremal has then been defined as

U := {Gi (s) i = 1, . . . , 16} . (7.105)

Thus, the aim of the method is to solve Problem 7.2 with F =
{

G̃(s) : G̃(s) ∈ U
}

and the nominal plant G(s) and with the percentage settling time at 2 %, with a
unitary set-point value y f = 1, with a constraint on the maximum control variable
of Umax = 1.5 and that on the maximum acceptable overshoot of Omax = 0.2.

The robust stability boundary has been first computed by gridding the process
uncertainty intervals and by determining for each process G̃(s) the uncertainty (7.85)
with respect to the nominal real-rational model. function Γ ( jω) has been obtained
by upper bounding the computed uncertainties for each frequency, obtaining the
results shown in Fig. 7.8. At this point, the value β = α = 1.5 has been selected
as well as a transition polynomial with regularity n = 3 in order to satisfy (7.96).
Finally, the min-max optimization problem has been solved by means of a genetic
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Fig. 7.8 Results for the case with overshoot constraint Omax = 0.2. Solid line nominal closed-loop
transfer function. Dotted line robust stability boundary
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Fig. 7.9 Results for the case with overshoot constraint Omax = 0.2. Solid line command signal.
Dashed line transition polynomial

algorithm [69]. The obtained optimal parameters are Tm = 3.5469, z = 3.4155 and
τ = 6.3122, that lead to the optimal worst-case settling time ts,wc = 13.42.

The obtained transition polynomial and the corresponding command signal are
plotted in Fig. 7.9. As shown in Fig. 7.8, the robust stability constraint is satisfied.
Finally, Fig. 7.10 shows that also the constraints on the control variable and on the
maximum overshoot are satisfied. Actually, in this case, the most tightening constraint
results to be the one imposed on the maximum overshoot. It is interesting to note
that, thanks to the proposed technique, the nominal system has a prefect response
(see Fig. 7.10), but also all the extremal systems present acceptable responses.

In order to further test the proposed methodology, the maximum overshoot con-
straint has been tightened to Omax = 0.05 and a different transition polynomial with
n = 1 (note that (7.96) is still satisfied) has been chosen. The obtained results are
shown in Figs. 7.11, 7.12 and 7.13. Again, a perfect tracking is obtained in the nom-
inal case and all the extremal systems responses exhibit a satisfactory behavior. The
obtained optimal parameters are Tm = 1.9474, z = 0.5158 and τ = 9.6479, while
the optimal worst-case settling time is ts,wc = 13.55.

The obtained optimal controller is much more aggressive than the one obtained in
the previous case, but the transition time is increased to avoid excessive oscillations.
It is interesting to note that, despite the tighter constraint, the worst-case settling
exhibits a small increment. Obviously this is paid in term of rise time that is evidently
increased (see Figs. 7.10 and 7.13). Also, it is worth analyzing the obtained command
signal (see Fig. 7.12). As mentioned in Sect. 7.2.3, even though the smaller acceptable
degree of regularity for the transition polynomial has been chosen, the obtained
command signal is continuous.
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Fig. 7.10 Results for the case with overshoot constraint Omax = 0.2. Solid line response of the
nominal system. Dotted line responses of the uncertain system
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Fig. 7.11 Results for the case with overshoot constraint Omax = 0.05. Solid line nominal closed-
loop transfer function. Dotted line robust stability boundary
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Fig. 7.12 Results for the case with overshoot constraint Omax = 0.05. Solid line command signal.
Dashed line transition polynomial
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Fig. 7.13 Results for the case with overshoot constraint Omax = 0.05. Solid line response of the
nominal system. Dotted line responses of the uncertain system
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Fig. 7.14 Results obtained using a step command signal. Solid line nominal closed-loop transfer
function. Dotted line robust stability boundary
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Fig. 7.15 Results obtained using a step command signal. Solid line response for the nominal system.
Dotted line responses for the uncertain systems

Finally, for the sake of comparison, Problem 7.2 has been solved using a step
command signal instead of the one obtained via input–output inversion (i.e., only Tm

and z have been optimized). The results are shown in Figs. 7.14 and 7.15. In this case,
the settling time minimization guarantees an overshoot smaller than 5 %, hence the
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obtained controller is optimal independently from the chosen overshoot constraint.
The optimal parameters are Tm = 3.0188 and z = 0.3221 and the optimal worst-case
settling time is ts,wc = 14.82. The obtained controller is even more aggressive (with
a larger closed-loop bandwidth, see Fig. 7.14) than the one obtained in the previous
case, but an inflection at ω ≈ 0.8 appears. This is because in this way excessive
oscillations are avoided and the settling time is reduced, but the price to pay is a
bigger rise time and, in any case, a bigger settling time (compared to the previous
results). Actually, the great benefit of an input–output-inversion-based command
signal lies in its capability to have a higher gain at those frequencies that are needed
to speed up the system response and a lower gain at those frequencies that would
cause oscillations.

7.5 Conclusions

In this chapter, an approach for the controller designed based on the input–output
inversion concept has been presented.

The inversion procedure has been first described for general nonminimum-phase
fractional systems and the solution of the minimum transition time problem subject
to input and output constraints have been determined. Second, the approach has been
applied in order to compute a feedforward action which improves the constrained
set point regulation performance of a feedback fractional control system. Finally, a
technique where the feedback controller and the feedforward action are designed in
a combined way in order to address explicitly the robustness of the system has been
presented.

In general, the described methodologies extends to (nonminimum-phase) frac-
tional systems design techniques already developed for integer-order systems.
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