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Preface

At the time of his death in April, 2004, Professor Philip H. Rieger had nearly
finished the manuscript of this book. His intention was to present a monograph
summarizing his approach to the field of Electron Spin Resonance using
examples and other explanatory material developed during the course of a
40-year career of research and teaching at Brown University. Although
the presentation was intended to be at the beginning graduate level, it could
also serve as an introduction to the fundamentals of ESR for working re-
search scientists in organometallic chemistry or other areas from which Phil
attracted his many research collaborators. It gives the reader a thorough
introduction to the analysis and interpretation of CW ESR spectra at X-band
(9.5 GHz.) as applied to paramagnetic organic, inorganic and organometallic
molecules.

When Professor Rieger first became interested in ESR, commercial instru-
ments were not available. His introduction to the field, as a graduate student
with George Fraenkel at Columbia University, took place in one of the
few laboratories in the world at the time where ESR equipment had been
built. Upon arriving at Brown his first item of business was to design and
construct a spectrometer. The instrument was eventually retired once reliable,
sensitive commercial instruments became available. Nevertheless, that first
spectrometer enabled one of us (ALR) to begin a scientific collaboration that
lasted the rest of Phil’s life, and the other (RGL) to get his own career started at
Brown.

In a preliminary draft of this book Phil wrote the following paragraph
explaining its origin:

This book has been many years in the making. It began with an
invitation from Prof. William Trogler to write a chapter on ESR appli-
cations for the book Organometallic Radical Processes that was published
in 1990. There are some strong resemblances to Chapter 4 of the present
book. The writing was extended to a handout in 1991 when I was invited
to spend a sabbatical year at the University of Bristol. It was extended a
bit further when I was invited to give a series of lectures on ESR at the
University of Oviedo, still further when I was invited to give some lectures
at the University of Edinburgh, and still further in 1999 for a lecture series
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at the University of Otago. Meanwhile, I had given a short series of
lectures on ESR at Brown University most years as part of a graduate
course in Physical Inorganic Chemistry.

In completing Phil’s book we have retained the set of examples and expla-
nations, and occasional commentary, as he had intended it. It has, however,
been some time since a book on ESR for the non-expert has appeared. We have
therefore supplemented his original manuscript in two ways. At the end of
Chapter 1 is added an up-to-date list of texts and monographs on ESR which
should serve the interested reader as a source of additional treatments of the
subject. Secondly, in Appendix 2 we have referenced and given brief descrip-
tions of some advanced ESR methods that have been developed in recent years
and applied in various fields, including biochemistry. The modern ESR spec-
troscopist is now as likely to need an understanding of these techniques as of
the classic X-band methods described here. We hope that this book will provide
a basis for study of the newer methods.

One of Philip Rieger’s most important contributions to the field of ESR, and
the motivation for much of his collaborative research, was his instinctive
understanding of how to analyze the powder patterns of paramagnetic inor-
ganic complexes, often using programs for simulating and analyzing such
spectra that he had developed over the years. A summary of his work in this
area may be found in a review titled ‘‘Simulation and analysis of ESR powder
patterns’’ published in the Specialist Periodical Report Electron Spin Reso-
nance, Royal Society of Chemistry, Cambridge, 1993, vol 13B, ch. 4, pp.
178–199. Specism and other ESR tools written by Prof. Rieger are available
from the Manchester University website at www.epr.chemistry.manchester.
ac.uk. When you go to this site you will find a menu on the left with a
‘Software’ button which will give you access to this material.

We are particularly grateful to Elsevier Publishing Company for allowing the
use, and modification, of material that originally appeared in Organometallic
Radical Processes, Journal of Organometallic Chemistry Library, ed. W. C.
Trogler, Elsevier, Amsterdam, 1990, vol 22. Most of Chapter 4, and also
substantial parts of Chapter 3, were first published in this review. Other reviews
by Professor Rieger on topics covered in this book include ‘‘Electron
paramagnetic resonance studies of low-spin d5 metal complexes’’, Coord.
Chem. Rev., 1994, 135, 203; ‘‘Chemical insights from EPR spectra of organo-
metallic radicals and radical ions’’ (with Dr. Anne L. Rieger), Organometallics,
2004, 23, 154; and ‘‘Electron spin resonance’’, in Physical Methods of Chem-
istry, ed. A. Weissberger and B. W. Rossiter, John Wiley and Sons, Inc., New
York, 1972, Part IIIA, ch.VI. pp 499–598.

Anne L. Rieger (Mrs. Philip Rieger) is grateful to Brown University for
providing her with the facilities to make the completion of this project possible:
office space, computers, the use of libraries, and a high speed internet connec-
tion to Professor Lawler in the mountains of New Hampshire. For many years
Professor Rieger was associated with the ESR group of the Royal Society of
Chemistry. The support and encouragement of many members of the group has
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served as an impetus to see this project to completion and is gratefully
acknowledged. Professor Neil Connelly of Bristol University, a long time
collaborator and friend, has also contributed to the completion of the project
and his input is very much appreciated. Finally, Ron Lawler is grateful to
Margaret Merritt for her advice and support during this occasionally frustrat-
ing, but always interesting, introduction to the world of desktop publishing.
We hope that our friend, companion and colleague Phil would be pleased with
the result.

Anne L. Rieger
Ronald G. Lawler

Pawtucket, RI, USA
Center Sandwich, NH, USA
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CHAPTER 1

Introduction

1.1 What is ESR Spectroscopy?

Electron spin resonance spectroscopy (ESR), also known as electron paramag-
netic resonance (EPR) or electron magnetic resonance (EMR), was invented by
the Russian physicist Zavoisky1 in 1945. It was extended by a group of
physicists at Oxford University in the next decade. Reviews of the Oxford
group’s successes are available2 and books by Abragam and Bleaney and by
Abragam3 cover the major points discovered by the Oxford group. In the
present book, we focus on the spectra of organic and organotransition metal
radicals and coordination complexes. Although ESR spectroscopy is supposed
to be a mature field with a fully developed theory,4 there have been some
surprises as organometallic problems have explored new domains in ESR
parameter space. We will start in this chapter with a synopsis of the funda-
mentals of ESR spectroscopy. For further details on the theory and practice of
ESR spectroscopy, the reader is referred to one of the excellent texts and
monographs on ESR spectroscopy.3,5–36 Sources of data and a guide to the
literature of ESR up to about 1990 can be found in ref. 16a. The history of ESR
has also been described by many of those involved in the founding and
development of the field.37

The electron spin resonance spectrum of a free radical or coordination
complex with one unpaired electron is the simplest of all forms of spectroscopy.
The degeneracy of the electron spin states characterized by the quantum
number, mS ¼ �1/2, is lifted by the application of a magnetic field, and
transitions between the spin levels are induced by radiation of the appropriate
frequency (Figure 1.1). If unpaired electrons in radicals were indistinguishable
from free electrons, the only information content of an ESR spectrum would be
the integrated intensity, proportional to the radical concentration. Fortunately,
an unpaired electron interacts with its environment, and the details of ESR
spectra depend on the nature of those interactions. The arrow in Figure 1.1
shows the transitions induced by 0.315 cm�1 radiation.

Two kinds of environmental interactions are commonly important in the
ESR spectrum of a free radical: (i) To the extent that the unpaired electron has
residual, or unquenched, orbital angular momentum, the total magnetic
moment is different from the spin-only moment (either larger or smaller,
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depending on how the angular momentum vectors couple). It is customary to
lump the orbital and spin angular momenta together in an effective spin and to
treat the effect as a shift in the energy of the spin transition. (ii) The electron
spin energy levels are split by interaction with nuclear magnetic moments – the
nuclear hyperfine interaction. Each nucleus of spin I splits the electron spin
levels into (2I þ 1) sublevels. Since transitions are observed between sublevels
with the same values of mI, nuclear spin splitting of energy levels is mirrored by
splitting of the resonance line (Figure 1.2).
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Figure 1.1 Energy levels of an electron placed in a magnetic field.
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Figure 1.2 Energy levels of an unpaired electron in a magnetic field interacting with a
spin-1/2 nucleus. The arrows show two allowed transitions.
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1.2 The ESR Experiment

When an electron is placed in a magnetic field, the degeneracy of the electron
spin energy levels is liftedw as shown in Figure 1.1 and as described by the spin
Hamiltonian:

Ĥ s ¼ gmBBŜz ð1:1Þ

In eqn (1.1), g is called the g-value (or g-factor), (ge ¼ 2.00232 for a free
electron), mB is the Bohr magneton (9.274 � 10�28 J G�1), B is the magnetic
field strength in Gaussz, and Sz is the z-component of the spin angular
momentum operator (the magnetic field defines the z-direction). The electron
spin energy levels are easily found by application of Ĥ s to the electron spin
eigenfunctions corresponding to mS ¼ �1/2:

Ĥ s �1
2

�� �
¼ �1

2
gmBB �1

2

�� �
¼ E� �1

2

�� �

Thus

E� ¼ � 1
2

� �
gmBB ð1:2Þ

The difference in energy between the two levels:

DE ¼ Eþ � E� ¼ gmBB ¼ hn ð1:3Þ

corresponds to the energy, hn, of a photon required to cause a transition; or in
wavenumbers by eqn (1.4), where gemB/hc ¼ 0.9348 � 10�4 cm�1 G�1:

~n ¼ l�1 ¼ n=c ¼ ðgmB=hcÞB ð1:4Þ

Since the g-values of organic and organometallic free radicals are usually in
the range 1.9–2.1, the free electron value is a good starting point for describing
the experiment.

Magnetic fields of up to ca. 15000 G are easily obtained with an iron-core
electromagnet; thus we could use radiation with ~n up to 1.4 cm�1 (n o 42 GHz
or l 4 0.71 cm). Radiation with this kind of wavelength is in the microwave
region. Microwaves are normally handled using waveguides designed to trans-
mit radiation over a relatively narrow frequency range. Waveguides look like
rectangular cross-section pipes with dimensions on the order of the wavelength

wEnergy level splitting in a magnetic field is called the Zeeman effect, and the Hamiltonian of eqn
(1.1) is sometimes referred to as the electron Zeeman Hamiltonian. Technically, the energy of a
magnetic dipole in a magnetic field is the negative of that shown in eqn (1.1). For electron spins,
however, the parameter g is negative, i.e., the magnetic moment and spin angular momentum
vectors are anti-parallel, and both negative signs may be combined to give the formula as written.
This has the advantage of allowing g-values to be tabulated as positive numbers.
zUsing the symbol ‘‘B’’ for the magnetic field technically implies we are using the MKS system of
units in which B is given in Tesla (T). Many spectroscopists still express the magnetic field in Gauss
(G) ¼ 10�4 T, however, and we will continue that practice here.
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to be transmitted. As a practical matter for ESR, waveguides can not be too big
or too small �1 cm is a bit small and 10 cm a bit large; the most common
choice, called X-band microwaves, has l in the range 3.0–3.3 cm (n E 9–10
GHz); in the middle of X-band, the free electron resonance is found at 3390 G.

Although X-band is by far the most common, ESR spectrometers are
available commercially or have been custom built in several frequency ranges
(Table 1.1).

1.2.1 Sensitivity

As for any quantum mechanical system interacting with electromagnetic radi-
ation, a photon can induce either absorption or emission. The experiment
detects net absorption, i.e., the difference between the number of photons
absorbed and the number emitted. Since absorption is proportional to the
number of spins in the lower level and emission is proportional to the number
of spins in the upper level, net absorption, i.e., absorption intensity, is propor-
tional to the difference:

Net absorption / N� �Nþ

The ratio of populations at equilibrium is given by the Boltzmann distribution:

Nþ=N� ¼ expð�DE=kTÞ ¼ expð�gmBB=kTÞ ð1:5Þ

For ordinary temperatures and ordinary magnetic fields, the exponent is very
small and the exponential can be accurately approximated by the expansion,
e�x E 1 � x. Thus

Nþ=N� � 1� gmBB=kT

Since N� E N1 E N/2, the population difference can be written:

N� �Nþ ¼ N� ½1� ð1� gmBB=kTÞ� ¼ NgmBB=2kT ð1:6Þ

This expression tells us that ESR sensitivity (net absorption) increases with
the total number of spins, N, with decreasing temperature and with increasing
magnetic field strength. Since the field at which absorption occurs is propor-
tional to microwave frequency, in principle sensitivity should be greater for

Table 1.1 Common frequencies used for ESR

Designation n (GHz) l (cm) B (electron) (G)

L 1.1 27 390
S 3.0 10 1070
X 9.5 3.2 3400

K 24 1.2 8600
Q 35 0.85 12500
W 95 0.31 34000
– 360 0.083 128000
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higher frequency K- or Q-band spectrometers than for X-band. However, the
K- or Q-band waveguides are smaller, so samples are also necessarily smaller
and for the same concentration contain fewer spins. This usually more than
cancels the advantage of a more favorable Boltzmann factor for samples of
unlimited size or fixed concentration.

Under ideal conditions, a commercial X-band spectrometer can detect about
1012 spins (ca. 10�12 moles) at room temperature. This number of spins in a 1
cm3 sample corresponds to a concentration of about 10�9 M. By ideal condi-
tions, we mean a single line, on the order of 0.1 G wide, with sensitivity going
down roughly as the reciprocal square of the line width. When the resonance is
split into two or more hyperfine lines, sensitivity decreases still further. None-
theless, ESR is a remarkably sensitive technique, especially compared with
NMR.

1.2.2 Saturation

Because the two spin levels are affected primarily by magnetic forces, which are
weaker than the electric forces responsible for most other types of spectroscopy,
once the populations are disturbed by radiation it takes longer for equilibrium
population differences to be established. Therefore an intense radiation field,
which tends to equalize the populations, leads to a decrease in net absorption
which is not instantly restored once the radiation is removed. This effect is
called ‘‘saturation’’. The return of the spin system to thermal equilibrium, via
energy transfer to the surroundings, is a rate process called spin–lattice relax-
ation, with a characteristic time (T1), the spin–lattice relaxation time (relaxation
rate constant ¼ 1/T1). Systems with a long T1 (i.e., spin systems weakly coupled
to the surroundings) will be easily saturated; those with shorter T1 will be more
difficult to saturate. Since spin–orbit coupling provides an important energy
transfer mechanism, we usually find that odd-electron species with light atoms
(e.g., organic radicals) have long T1s, those with heavier atoms (e.g., organo-
transition metal radicals) have shorter T1s. The effect of saturation is con-
sidered in more detail in Chapter 5, where the phenomenological Bloch
equations are introduced.

1.2.3 Nuclear Hyperfine Interaction

When one or more magnetic nuclei interact with the unpaired electron, we have
another perturbation of the electron energy, i.e., another term in the spin
Hamiltonian:

Ĥ s ¼ gmBBŜz þ AÎ � Ŝ ð1:7Þ

where A is the hyperfine coupling parameter in energy units (joule). Strictly
speaking we should include the nuclear Zeeman interaction, gBIz. However, in
most cases the energy contributions are negligible on the ESR energy scale, and,

5Introduction



since observed transitions are between levels with the same values of mI, the
nuclear Zeeman energies cancel in computing ESR transition energies.y

The eigenfunctions of the spin Hamiltonian [eqn (1.7)] are expressed in terms
of an electron- and nuclear-spin basis set |mS, mIi, corresponding to the
electron and nuclear spin quantum numbers mS and mI, respectively. The
energy eigenvalues of eqn (1.7) are:

E 1
2
; 1

2

� �
¼ 1

2
gmBBþ 1

4
A ð1:8AÞ

E �1
2
; �1

2

� �
¼ �1

2
gmBBþ 1

4
A ð1:8BÞ

Eþ ¼ 1
2
gmBB ½1þ ðA=gmBBÞ

2�
1
2 � 1

4
A ð1:8CÞ

E� ¼ �1
2
gmBB ½1þ ðA=gmBBÞ

2�
1
2 � 1

4
A ð1:8DÞ

The eigenfunctions corresponding the E1 and E� are mixtures of j1
2
; �1

2
i

and j � 1
2
; 1

2
i.

If the hyperfine coupling is sufficiently small, Aoo gmBB, the second term in
brackets in eqns (1.8C) and (1.8D) are negligible, which corresponds to first-
order in perturbation theory, and the energies become:

E ¼ �1
2
gmBB� 1

2
A ð1:9Þ

These are the energy levels shown in Figure 1.2. The exact energies in eqn.
(1.8), which were first derived by Breit and Rabi,38 are plotted as functions of B
in Figure 1.3 for g ¼ 2.00, A/hc ¼ 0.1 cm�1. Notice that, at zero field, there are
two levels corresponding to a spin singlet (E ¼ �3A/4hc) and a triplet (E ¼ þA/
4hc). At high field, the four levels divide into two higher levels (mS ¼ þ1/2) and
two lower levels (mS ¼ �1/2) and approach Figure 1.2, the first-order result,
eqn. (1.9) (the first-order solution is called the high-field approximation). To
conserve angular momentum, transitions among these levels can involve
changes in angular momentum of only one unit. At high fields this corresponds
to flipping only one spin at a time; in other words, the selection rules are DmS ¼
�1, DmI ¼ 0 (ESR transitions) or DmS ¼ 0, DmI ¼ �1 (NMR transitions). The
latter involves much lower energy photons, and, in practice, only the DmS ¼ �1
transitions are observed in an ESR spectrometer. At lower fields, or when A

yAn exception to this rule arises in the ESR spectra of radicals with small hyperfine parameters in
solids. In that case the interplay between the Zeeman and anisotropic hyperfine interaction may
give rise to satellite peaks for some radical orientations (S. M. Blinder, J. Chem. Phys., 1960, 33,
748; H. Sternlicht, J. Chem. Phys., 1960, 33, 1128). Such effects have been observed in organic free
radicals (H. M. McConnell, C. Heller, T. Cole and R. W. Fessenden, J. Am. Chem. Soc., 1959, 82,
766) but are assumed to be negligible for the analysis of powder spectra (see Chapter 4) where A is
often large or the resolution is insufficient to reveal subtle spectral features. The nuclear Zeeman
interaction does, however, play a central role in electron-nuclear double resonance experiments
and related methods [Appendix 2 and Section 2.6 (Chapter 2)].
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becomes comparable in magnitude to gmBB, the transitions may involve
simultaneous flipping of electron and nuclear spins. This gives rise to second-
order shifts in ESR spectra (see Chapters 2 and 3).

1.3 Operation of an ESR Spectrometer

Although many spectrometer designs have been produced over the years, the
vast majority of laboratory instruments are based on the simplified block
diagram shown in Figure 1.4. Plane-polarized microwaves are generated by the
klystron tube and the power level adjusted with the Attenuator. The Circulator

Klystron Attenuator

Load

Circulator

Magnet

Cavity

µ-Ammeter

Diode 
Detector

Figure 1.4 Block diagram of an ESR spectrometer.
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Figure 1.3 Energy levels for an electron interacting with a spin-1/2 nucleus with A/hc¼
0.1 cm�1. The arrows show the transitions induced by 0.315 cm�1 radiation.
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behaves like a traffic circle: microwaves entering from the klystron are routed
toward the Cavity where the sample is mounted. Microwaves reflected back
from the Cavity (which is reduced when power is being absorbed) are routed to
the Diode Detector, and any power reflected from the diode is absorbed
completely by the Load. The diode is mounted along the E-vector of the
plane-polarized microwaves and thus produces a current proportional to the
microwave power reflected from the cavity. Thus, in principle, the absorption
of microwaves by the sample could be detected by noting a decrease in current
in the Microammeter. In practice, of course, such a measurement would detect
noise at all frequencies as well as signal and have a far too low signal-to-noise
ratio to be useful.

The solution to the signal-to-noise problem is to introduce small amplitude
field modulation. An oscillating magnetic field is superimposed on the dc field
by means of small coils, usually built into the cavity walls. When the field is in
the vicinity of a resonance line, it is swept back and forth through part of the
line, leading to an a.c. component in the diode current. This a.c. component is
amplified using a frequency selective amplifier tuned to the modulation fre-
quency, thus eliminating a great deal of noise. The modulation amplitude is
normally less than the line width. Thus the detected a.c. signal is proportional
to the change in sample absorption as the field is swept. As shown in Figure 1.5,
this amounts to detection of the first derivative of the absorption curve.

It takes a little practice to get used to looking at first-derivative spectra, but
there is a distinct advantage: first-derivative spectra have much better apparent
resolution than do absorption spectra. Indeed, second-derivative spectra are
even better resolved (though the signal-to-noise ratio decreases on further
differentiation). Figure 1.6 shows the effect of higher derivatives on the reso-
lution of a 1:2:1 triplet arising from the interaction of an electron with two
equivalent I ¼ 1/2 nuclei.

The microwave-generating klystron tubez requires explanation. A schematic
drawing of the klystron is shown in Figure 1.7. There are three electrodes:
a heated cathode from which electrons are emitted, an anode to collect the
electrons, and a highly negative reflector electrode that sends those electrons
which pass through a hole in the anode back to the anode. The motion of
the charged electrons from the hole in the anode to the reflector and back to the
anode generates an oscillating electric field and thus electromagnetic radiation.

The transit time from the hole to the reflector and back again corresponds to
the period of oscillation (n). Thus the microwave frequency can be tuned
(over a small range) by adjusting the physical distance between the anode and

zSome modern spectrometers, especially those employing pulsed excitation (see Appendix 2), use a
solid-state Gunn diode microwave source. This device makes use of the Gunn Effect, discovered by
J. B. Gunn of IBM in 1963, in which electrons become ‘‘trapped’’ in potential wells within a solid
and oscillate at a frequency that may be varied by changing the applied voltage. As with a
klystron, tuning is done by varying the voltage. Gunn diode oscillators have better frequency
stability and longer lifetimes than klystrons and are becoming the preferred microwave source for
ESR spectrometers.
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Figure 1.6 First-derivative curves show better apparent resolution than do absorption
curves – and second-derivatives curves are still better.
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the reflector or by adjusting the reflector voltage. In practice, both methods
are used: the metal tube is distorted mechanically to adjust the distance
(a coarse frequency adjustment) and the reflector voltage is adjusted as a
fine control.

The sample is mounted in the microwave cavity (Figure 1.8). The cavity is a
rectangular metal box, exactly one wavelength long. An X-band cavity has
dimensions of about 1 � 2 � 3 cm. The electric and magnetic fields of the
standing wave are shown in the figure. Note that the sample is mounted in the
electric field nodal plane, but at a maximum in the magnetic field. The static
field, B, is perpendicular to the sample port.

The cavity length is not adjustable, but it must be exactly one wavelength.
Thus the spectrometer must be tuned such that the klystron frequency is equal
to the cavity resonant frequency. The tune-up procedure usually includes
observing the klystron power mode. That is, the frequency is swept across a
range that includes the cavity resonance by sweeping the klystron reflector
voltage, and the diode detector current is plotted on an oscilloscope or other
device. When the klystron frequency is close to the cavity resonance, microwave
energy is absorbed by the cavity and the power reflected from the cavity to the
diode is minimized, resulting in a dip in the power mode (Figure 1.9). The
‘‘cavity dip’’ is centered on the power mode using the coarse mechanical
frequency adjustment, while the reflector voltage is used to fine tune the
frequency.

Electric Field

Magnetic Field

Sample Port

Iris

Figure 1.8 Microwave cavity.

Electron
pathway

Reflector
electrodeAnode

Heated
filament
cathode

Figure 1.7 Schematic drawing of a microwave-generating klystron tube.
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1.4 Optimization of Operating Parameters8

Determining the ESR spectrum of a sample using a typical CW spectrometer of
the sort outlined in Figure 1.4, which is still the most common commercially
available type of instrument, involves adjustment of the set of operating
parameters described below. In the early days of ESR these adjustments would
be carried out using control knobs on a console. Nowadays, of course, the
settings are carried out under control of a computer interface. The purpose of
these parameters and typical values, however, has remained unchanged. Such
spectrometers are quite adequate for studying relatively stable samples. Char-
acterizing transient species by ESR, however, requires substantial modification
of commercial instruments or the use of a pulsed spectrometer.

There are twelve parameters that must be set or known in recording an ESR
spectrum (Table 1.2). Briefly, below, each parameter is discussed and the means
used to optimize or measure the parameter described.

1.4.1 Microwave Frequency

The resonant microwave frequency reaching the sample is determined by the
effective length of the microwave cavity. The actual length is somewhat

Reflector Voltage

D
io

de
 C

ur
re

nt

Figure 1.9 Klystron mode and cavity dip.

Table 1.2 Parameters involved in the recording of an ESR spectrum

Microwave frequency Center field Modulation frequency Modulation phase
Microwave power Sweep width 1st or 2nd harmonic Signal gain
Sweep time Field offset Modulation amplitude Filter time constant

8A comprehensive discussion and illustrations of the effects of spectrometer operating parameters
on ESR spectra are given by the author in Electron spin resonance, in Physical Methods of
Chemistry, ed. A. Weissberger and B. W. Rossiter, John Wiley and Sons, Inc., New York, 1972,
part IIIA, ch. VI,.
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modified by the influence of the sample tube and the Dewar insert (if controlled
temperature operation is required) so that the microwave frequency varies by a
few percent even for the same cavity. Since the klystron frequency is locked to
the cavity resonant frequency by a suitable feedback circuit, this is not an
adjustable parameter. However, to compute a g-value from a spectrum, the
frequency must be known quite accurately. This is normally done using a
microwave frequency counter installed somewhere in the waveguide circuit.

1.4.2 Microwave Power

According to the solution of the Bloch equations (Chapter 5), the magnetic
resonance absorption, sometimes called the ‘‘v-mode signal’’, v, is given by eqn
(1.10).

v ¼ gB1M0T2
1þ T 2

2 ðo0 � oÞ2 þ g2B2
1T1T2

ð1:10Þ

where T1 and T2 are the spin–lattice and transverse relaxation times, respec-
tively, M0 is the bulk magnetization, g is the magnetogyric ratio (gmB in ESR
terms), o0 is the resonant frequency (proportional to B0), o is the angular
microwave frequency (n), and B1 is the amplitude of the oscillating field. The
microwave power is proportional to B1

2. For small B1, the absorption signal
increases linearly with increasing B1. However, when the third term in
the denominator becomes important, v goes through a maximum when
g2B1

2T1T2 ¼ 1, and begins to decrease with increasing B1 – the resonance
begins to ‘‘saturate’’. At maximum v, however, the saturation term leads to an
increase in apparent line width by a factor of O2. This effect is illustrated in
Figure 1.10.

To simultaneously maximize signal-to-noise ratio (S/N) and minimize dis-
tortion, it is best to adjust the microwave power, as measured by the power

Figure 1.10 Effect of increasing microwave power on intensity and shape of an ESR
line. Power increases from top to bottom of the figure. Units are relative
values of B1

2.
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meter, down by a factor or 4 or 5 (6–7 db) from the maximum amplitude power.
This will result in a decrease of less than 2 in signal amplitude. In practice,
following this procedure would require finding the maximum amplitude by trial
and error and then turning the power level down by 6–7 db. This effect is
illustrated in Figure 1.11.

In general it is unnecessary to spend much time adjusting the power level.
The general rule is to adjust the power to about 10 db attenuation for
organic radicals and to use full power for transition metal complexes and
those organometallics where the unpaired electron is primarily located on
the metal.

1.4.3 Center Field, Sweep Width and Field Offset

Once you know, or can guess, the field limits of your spectrum, setting the
center field and sweep width values is not very difficult. The center field
corresponds to the middle of the spectrum and a sufficiently large sweep width
chosen so that all of the spectrum is recorded.

If you do not know the field range occupied by your spectrum in advance, the
center field must be chosen by educated guess; set the sweep width 2–4� greater
than the expected width. Hopefully, you will see at least a piece of your
spectrum and can make appropriate adjustments to zero in on the correct
settings.

Most spectrometers measure the magnetic field by a Hall effect probe
consisting of a sensor mounted on one of the pole faces of the magnet.
However, such estimates of the value of B inside the cavity are not sufficiently
accurate to be used for g-factor determinations. There are two ways around this
problem: (i) measure the spectrum of a solid free radical such as dip-
henylpicrylhydrazyl (DPPH), which has a well-known g-value (2.0028), at least
once during acquisition of the desired spectrum; or (ii) use of an NMR
gaussmeter probe inserted in or near the cavity several times during the
collection of the spectrum.

Figure 1.11 Effect of microwave power on relative width and amplitude of a line.
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1.4.4 Sweep Time

In general, the longer the sweep time the better the sensitivity since the filter
time constant parameter can be set longer with consequent improvement in
signal-to-noise ratio. In practice, however, sweep times are usually set in
accordance with the expected lifetime of the radical species, the stability of
the instrument, and the patience of the operator. Decay of the radical or drift of
the spectrometer during a scan is clearly undesirable. The sweep time is most
commonly set in the range 4–10 min.

1.4.5 Modulation Frequency

With most spectrometers, you have a choice of either 100 kHz or a lower
frequency of field modulation. The higher frequency generally gives better S/N,
but if the lines are unusually sharp (o0.08 Gauss), 100 kHz modulation leads
to ‘‘side bands’’, lumps in the line shape that confuse the interpretation of the
spectrum. This effect is illustrated in Figure 1.12. Under such circumstances,
use the lower frequency for which the sidebands are closer together and thus
less likely to be a problem.

Figure 1.12 Effect of 100 kHz modulation on an ESR line of decreasing width. The
x-axis is magnetic field, in Gauss, relative to the center of the line.
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1.4.6 Second Harmonic Detection

In most cases, you will use the first harmonic and the normal first-derivative of
the absorption spectrum will be presented. If your spectrum has very good S/N
and has some regions where you would like better resolution, a second-
derivative presentation may help. However, second derivatives from second
harmonic detection are very costly in terms of S/N ratio and so you really do
have to have a strong signal!

1.4.7 Modulation Amplitude

Since the absorption signal is usually detected by imposing a 100 kHz field
modulation on the static field, the signal disappears when the modulation
amplitude is turned to zero. In general, the signal increases more or less in
proportion to the modulation amplitude, but eventually the detected lines begin
to broaden and then the signal amplitude decays as well. This is illustrated in
Figure 1.13.

Depending on what you want to optimize, here are some rules:

For optimum S/N ratio, but decreased resolution: Modulation amplitude¼ 2�
line-width.
For accurate line width measurements: Modulation amplitude ¼ line-width/10.
For most practical work: Modulation amplitude ¼ line-width/3.

1.4.8 Modulation Phase

To improve the S/N ratio, the modulation signal is processed by amplification
with a tuned amplifier using phase-sensitive detection. This means that the
detected signal must not only be at the modulation frequency, but must also be
in phase with the modulation. Since the amplifier itself can introduce a bit of
phase shift, there is a phase control which, in principle, should be adjusted to
maximize the signal amplitude. In practice, this control needs to be adjusted
only rarely and in most cases the best approach is to leave it alone.

Figure 1.13 Effect of field changing (modulation/line width) on relative amplitude
(left-hand axis) and observed width (right-hand axis) of an ESR line.
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1.4.9 Signal Gain

Adjustment of the signal gain is straightforward. Set the gain sufficiently high
that the recorded spectrum is nearly full-scale on the computer displays or
recorder. If you have no idea of the strength of your expected signal, a good
starting point would be 1 � 104. Too high a gain can result in amplifier
overload.

1.4.10 Filter Time Constant

The output of the signal amplifier is filtered using a circuit designed to pass low-
frequency, but not high frequency, signals. The cut-off frequency is the recip-
rocal of the time constant setting. Thus, a time constant of 0.1 s would lead to
signals with frequencies greater than about 10 Hz being attenuated. The best
time constant setting thus depends critically on the sweep time. If you sweep
through a line rapidly using a long time constant, you may filter out the signal
altogether! With a shorter, but still too long, time constant, the line shape will
be distorted, the apparent line center will shift, and the apparent line width will
increase. These effects are illustrated in Figure 1.14. The best rule-of-thumb is
to set the time constant to 10% of the time required to pass through the
narrowest line of your spectrum.

Figure 1.14 Effect of time constant/time to sweep through the line (x-axis) on the
relative amplitude and signal-to-noise ratio (left-hand axis) and relative
width and shift (right-hand axis) of an ESR line.
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For example, suppose that the line width is 0.25 G, that you are scanning
through 10 G in 4 min. The scan rate then is 10 G/4 min ¼ 2.5 G min�1. The
time required to pass through a line is 0.25 G/2.5 G min�1 ¼ 0.1 min or 6 s. The
time constant should be set close to 0.6 s.

1.5 Applications of ESR Spectroscopy

1.5.1 Electronic Structure Determination

Most commonly, ESR spectroscopy is used to obtain information pertaining to
the electronic structure of the species being studied. We will explore these kinds
of applications extensively in subsequent chapters.

The magnetic field values at which microwaves are absorbed to produce the
ESR spectrum of an isotropic sample, e.g., the spectrum of a freely tumbling
radical in liquid solution, can contain two principal types of chemically useful
information: (i) The hyperfine coupling pattern provides information on the
numbers and kinds of magnetic nuclei with which the unpaired electron
interacts. (ii) The spacing of the lines and the center of gravity of the spectrum
yield the hyperfine coupling constants, Ai, and g-value, g, which are related to
the way in which the unpaired electron spin density is distributed in the
molecule. In isotropic spectra the observed parameters are averaged over
rotation of the molecules. In solids the parameters may also depend on
molecular orientation relative to the magnetic field, B.

Structural applications range from organic, inorganic and organometallic
radicals to coordination complexes and biological macromolecules containing a
paramagnetic center.

Even more information is available from the spectrum of a solid-state
sample, either a dilute single crystal or a frozen solution. We will discuss solid
state samples later, beginning in Chapter 4.

1.5.2 Analytical Applications

Like all forms of spectroscopy, ESR intensities, through the dependence on the
number of spins,N, can be used analytically to determine the concentration of a
paramagnetic species. Such analytical applications usually require a standard
solution to establish a calibrated intensity scale. Computer software is required
in most cases to doubly integrate the spectrum (two integrations are required to
convert the derivative spectrum into absorption and then to a number repre-
senting the total concentration of the species being studied). The interested
reader is referred to Wertz and Bolton,12a who discuss the technique, point out
the variables that must be controlled, and suggest intensity standards. The
degree to which ESR intensities have been exploited varies widely. Experimen-
talists often make qualitative observations relating ‘‘strong’’ or ‘‘weak’’ spectra
to chemical circumstances, but quantitative applications of integrated intensi-
ties are rare in ESR studies.
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‘‘Spin traps’’ which scavenge a reactive radical to give a more persistent
radical may be used to detect the intermediacy of such transient radicals in
sorting out a reaction mechanism.39

1.5.3 Determination of Rates

In some cases, ESR spectra can be used to determine the rate of a chemical
reaction or the rate of a conformation change. Such applications are discussed
in more detail in Chapter 5.

The spectral line widths are related to the rate of the rotational motions,
which average anisotropies in the g- and hyperfine matrices (Chapter 5), and to
the rates of fluxional processes, which average nuclear positions in a radical.

The saturation behavior of a spectrum – the variation of integrated intensity
with microwave power – is related to the spin–lattice relaxation time, a measure
of the rate of energy transfer between the electron spin and its surroundings.
Saturation often depends on the same structural and dynamic properties as line
widths.

Largely because spin–orbit coupling results in spin state admixture, elec-
tronic spin–lattice relaxation times are normally short for species containing
heavy atoms such as transition metals. This has three consequences. Short
relaxation times mean that saturation problems, which plague ESR spec-
troscopists studying organic radicals and NMR spectroscopists in general,
are largely absent in organometallic ESR studies. Thus, spectra ordinarily can
be recorded at full microwave power with salutary consequences for sensitivity.
However, relaxation times are most easily determined by measuring spectral
intensity as a function of microwave power in the saturation region. If relax-
ation times are short, very high power is required, which is out of the range of
operation of most continuous wave spectrometers. Similarly, short relaxation
times imply broad lines and reduced sensitivity. The advent of modern high
power pulsed spectrometers32,34,36 has made it possible to overcome some of the
restrictions arising from relaxation behavior.

Some workers have used ‘‘spin labels’’ attached to a membrane or biolog-
ical macromolecule to study the motion of these components of living cells
(Chapter 5).
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CHAPTER 2

Isotropic ESR Spectra of
Organic Radicals

2.1 Isotropic ESR Spectra

2.1.1 Line Positions in Isotropic Spectra

As introduced in Chapter 1, ESR spectra of radicals in liquid solution are
usually interpreted in terms of a spin Hamiltonian:

ĤS ¼ mBgBŜz þ
X

i

Ai Î i � Ŝ ð2:1Þ

where we have generalized eqn (1.7) to include the possibility of many nuclei,
each with an isotropic hyperfine coupling constant Ai. The spectral infor-
mation is contained in the parameters, g, the isotropic g-factor, and the set of
values of Ai. Using spin functions based on the quantum numbers mS and mI,
eqn (2.1) can be used to compute energy levels. Equating energy differ-
ences for the allowed transitions (DmS ¼ �1, DmIi ¼ 0 for all i) with the
microwave photon energy (hn) [eqn (2.2)] the resonant magnetic fields can be
predicted.

Eðms ¼ 1=2;mIiÞ � Eðms ¼ �1=2;mIiÞ ¼ hn ð2:2Þ

As will be derived in Chapter 3, to first-order in perturbation theory, the
resonant fields are:

B ¼ B0 �
X

i

aimIi ð2:3Þ

where B0 ¼ hn/gmB represents the center of the spectrum and ai ¼ Ai/gmB is the
hyperfine coupling constant in field units.

The coupling constants in eqn (2.1) have energy units, but the energies are
very small so that frequency (MHz) or wavenumber (10�4 cm�1) units are more
commonly used. Even more often, however, isotropic coupling constants are
given in units of magnetic field strength, since they may be derived directly from
line positions in magnetic field units. The unit usually employed for a is gauss
(G) (or oersteds), although SI purists sometimes use millitesla (1 mT ¼ 10 G).
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Conversions from units of gauss into frequency or wavenumber units involves
the g-value:

AiðMHzÞ ¼ 2:8025ðg=geÞaiðGÞ ð2:4aÞ

Aið10�4 cm�1Þ ¼ 0:93480 ðg=geÞaiðGÞ ð2:4bÞ

Note that coupling constants in 10�4 cm�1 are comparable in magnitude to
those expressed in gauss. Although the units used for isotropic hyperfine
coupling constants is largely a matter of taste, the components of an aniso-
tropic hyperfine coupling matrix (Chapter 4) should be given in frequency or
wavenumber units unless the g-matrix is virtually isotropic.

2.1.2 Hyperfine Coupling Patterns

Nuclear hyperfine coupling results in a multi-line ESR spectrum, analogous to
the spin–spin coupling multiplets of NMR spectra. ESR spectra are simpler to
understand than NMR spectra in that second-order effects normally do not
alter the intensities of components; on the other hand, ESR multiplets can be
much more complex when the electron interacts with several high-spin nuclei,
and, as we will see in Chapter 3, there can also be considerable variation in line
width within a spectrum.

When several magnetically equivalent nuclei are present in a radical, some
of the multiplet lines appear at exactly the same field position, i.e., are
‘‘degenerate’’, resulting in variations in component intensity. Equivalent spin-
1/2 nuclei such as 1H, 19F, or 31P result in multiplets with intensities given by
binomial coefficients (1 : 1 for one nucleus, 1 : 2 : 1 for two, 1 : 3 : 3 : 1 for three,
1 : 4 : 6 : 4 : 1 for four, etc.). One of the first aromatic organic radical anions
studied by ESR spectroscopy was the naphthalene anion radical,1 the spectrum
of which is shown in Figure 2.2. The spectrum consists of 25 lines, a quintet of
quintets as expected for hyperfine coupling to two sets of four equivalent
protons.

Just as in NMR, a multiplet pattern gives an important clue to the identity of
a radical. For example, in the naphthalene anion radical, there are four a
(positions 1, 4, 5, 8) and four b protons (positions 2, 3, 6, 7). Each proton splits
the electronic energy levels in two. Since the a protons are equivalent, for
example, the splitting is the same for each proton. Thus, as shown on the right
side of Figure 2.1, five equally spaced energy level values result.

The degeneracies of the levels shown in Figure 2.1 can be obtained by the
following line of reasoning: Assuming that the probability that any one proton
is spin up is identical to the probability that it is spin down, the probability that
all four protons are spin up or spin down is (1/2)4 ¼ 1/16. Similarly, the
probability that three of the four protons are spin up or spin down is 4/16 and
the probability that two of the four protons are spin up or spin down is 6/16. If
this pattern sounds familiar, it should be since this is just the set of binomial
coefficients for (a þ b)4 ¼ a4 þ 4a3b þ 6a2b2 þ 4ab3 þ b4. We can generate these
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coefficients for other numbers of equivalent protons by the familiar Pascal’s
triangle (Figure 2.11), which is similar in structure to Figure 2.1.

Naphthalene and other aromatic hydrocarbons can be reduced by one
electron to produce the anion radical. The reduction can be carried out with
sodium in an ether solvent or electrochemically in a polar aprotic solvent.

The naphthalene anion radical spectrum (Figure 2.2) provided several sur-
prises when Samuel Weissman and his associates1 first obtained it in the early
1950s at Washington University in St. Louis. It was a surprise that such an
odd-electron species would be stable, but in the absence of air or other
oxidants, [C10H8]

� is stable virtually indefinitely. A second surprise was the
appearance of hyperfine coupling to the two sets of four equivalent protons.
The odd electron was presumed (correctly) to occupy a p* molecular orbital

Figure 2.1 Splitting pattern for one of the electron spin energy levels coupled to four
equivalent protons. Note that the degeneracies of the levels are not shown.
See Section 2.5 for details.

3340 3345 3350 3355 3360
Magnetic Field/Gauss

α
β

Figure 2.2 ESR spectrum of the naphthalene anion radical;1 simulated using hyperfine
couplings given in Table 2.1.
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(MO) with the protons in the nodal plane. The mechanism of coupling
(discussed below) requires ‘‘contact’’ between the unpaired electron and the
proton, an apparent impossibility for p electrons that have a nodal plane at
the position of an attached proton. A third, pleasant, surprise was the ratio of
the magnitudes of the two couplings, 5.01 G/1.79 G ¼ 2.80. This ratio is
remarkably close to the ratio of spin densities at the a and b positions, 2.62,
predicted by simple Hückel MO theory for an electron placed in the lowest
unoccupied MO (LUMO) of naphthalene (see Table 2.1). This result led to
Hückel MO theory being used extensively in the semi-quantitative interpre-
tation of ESR spectra of aromatic hydrocarbon anion and cation radicals.

Things get a little more complicated when a spin 1 nucleus like 14N is added
to the picture, but the same technique works again for the determination of
the relative intensities of the ESR lines. Consider, for example, the relative
intensities of the hyperfine lines arising from the pyrazine anion radical, whose
spectrum is shown in Figure 2.3. Like that of the naphthalene anion radical, the
spectrum observed for the pyrazine anion radical2 consists of 25 well-resolved

Table 2.1 Hyperfine parameters and spin densities for aromatic radical
anions. (Data from ref. 11.)

Compound aH (G) rp Compound aH (G) rp

Benzene (B) 3.75 0.167 Pyrene (Py) 4.75 0.136
C8H8 (C) 3.21 0.125 1.09 0.000
Naphthalene (N) 5.01 0.181 2.08 0.087

1.79 0.069 Perylene (P) 3.09 0.083
Anthracene (A) 2.74 0.096 0.46 0.013

1.57 0.047 3.53 0.108
5.56 0.192 Biphenylene (Bi) 0.00 0.027

2.75 0.087

3325 3330 3335 3340 3345 3350 3355 3360 3365
Magnetic Field/Gauss

N

N

Figure 2.3 ESR spectrum of the potassium salt of pyrazine radical anion; simulated
using hyperfine couplings from ref. 2.
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lines. In fact, the spectra in Figures 2.2 and 2.3 appear almost identical and are
only distinguishable by careful examination of the intensities of the lines.

The intensities for pyrazine are derived in Figure 2.4, assuming that the ratio
of hyperfine couplings, aN/aH, is nearly the same as aa/ab for naphthalene anion
radical. The method used is the same as implied by the energy level splittings
shown in Figure 2.1. The pattern arising from the two equivalent 14N nuclei
that have the larger hyperfine splitting are first derived, giving five lines with
relative intensities of 1 : 2 : 3 : 2 : 1. Each of these is then split into five lines
with relative intensities of 1 : 4 : 6 : 4 : 1, corresponding to the four equivalent
protons. The relative intensities of all 25 lines are shown at the bottom of the
figure in the same order in which they are appear in the observed spectrum in
Figure 2.2. Section 2.5 gives a fuller explanation of this procedure.

2.1.3 Second-order Splittings

Equation (2.3) describes line positions correctly for spectra with small hyperfine
coupling to two or more nuclei provided that the nuclei are not magnetically
equivalent. When two or more nuclei are completely equivalent, i.e., both
instantaneously equivalent and equivalent over a time average, then the nuclear
spins should be described in terms of the total nuclear spin quantum numbers
I and mI rather than the individual Ii and mIi. In this ‘‘coupled representation’’,
the degeneracies of some multiplet lines are lifted when second-order shifts are
included. This can lead to extra lines and/or asymmetric line shapes. The effect
was first observed in the spectrum of the methyl radical, CH3

d, produced by

N

N
H

H

H

H

-

 one spin-1 nitrogen:   1       1  1

      1 1       1 
1       1    1

  1     1 1 

 two spin-1 nitrogens:    1     2 3        2     1

     1     4     6 4       1 
  2      8     12 8       2 

plus four spin-1/2 protons:       3    12 18     12      3
2      8     12      8 2 

  1     4      6    4     1 

Relative intensities:     1    4     6  2  4  8  1 12   3 8 12  2 18  2 12  8 3  12  1 8   4 2  6     4     1

Figure 2.4 Derivation of the relative intensities of the 25 ESR lines of the pyrazine
anion radical. See Section 2.5 for details of the method.
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high-energy electron irradiation of liquid methane, by Fessenden and Schuler.3

The three equivalent protons lead to a nondegenerate nuclear spin state
with I ¼ 3/2 (mI ¼ �3/2, �1/2) and a two-fold degenerate state with I ¼ 1/2
(mI ¼ �1/2). Thus, six hyperfine lines are observed under conditions of high
resolution (Figure 2.5).

2.1.4 Spin Hamiltonian Parameters from Spectra

Once a hyperfine pattern has been recognized, the line position information can
be summarized by the spin Hamiltonian parameters, g and ai. These parameters
can be extracted from spectra by a linear least-squares fit of experimental line
positions to eqn (2.3). However, for high-spin nuclei and/or large couplings,
one soon finds that the lines are not evenly spaced as predicted by eqn (2.3)
and second-order corrections must be made. Solving the spin Hamiltonian,
eqn (2.1), to second order in perturbation theory, eqn (2.3) becomes:4

B ¼ B0 �
X

i

aimIi þ a2i =2B
� �

IiðIi þ 1Þ �m2
Ii

h i
þ . . .

n o
ð2:5Þ

The magnitude of the second-order corrections is often quite significant. For
example, Figure 2.5 shows the ESR spectrum of methyl radical, CH3

d. Notice
that all lines are shifted to low field, relative to the first-order spectrum, but, as
expected from eqn (2.5), the shift depends on mI. Failure to account for the
second-order terms in an analysis results in a significant error in both the
g-value and in the hyperfine coupling constants For large Ii and ai, well-
resolved spectra may warrant inclusion of third- or higher-order corrections.
Since the third-order corrections involve cross terms among coupling constants,
in principle they permit determination of the relative signs of the coupling
constants.5 However, in the example of Figure 2.5, the third-order corrections

3356 3357 3358

Magnetic Field/Gauss

3333 3334 3335 3379 3380 3381
3402 3403 3404

Figure 2.5 ESR spectrum of the methyl radical, CH3
d (note discontinuities in magnetic

field axis). Simulated using hyperfine splitting from ref. 3 and eqn (2.5).
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amount to ca. 1 mG. Second-order corrections are also required for accurate
determinations of g-factors of radicals with very narrow lines6 or in properly
accounting for line positions in radicals exhibiting chemical exchange effects.7

Second-order effects on hyperfine structure in organometallic compounds are
discussed in Chapter 3.

2.2 Interpretation of Isotropic Parameters

When ESR spectra were obtained for the benzene anion radical, [C6H6]
�d, and

the methyl radical, CH3
d, the proton hyperfine coupling constants were found

to be 3.75 and 23.0 G, respectively, i.e. they differ by about a factor of 6. Since
the carbon atom of CH3 has a spin density corresponding to one unpaired
electron and the benzene anion carries an electron spin density of 1/6, the two
results suggest that the proton coupling to an electron in a p-orbital is
proportional to the spin density on the adjacent carbon atom:

aH ¼ QH
CHr

p
C ð2:6Þ

where the parameterQH
CH¼ 23.0 G (based on CH3), 22.5 G (based on [C6H6]

�),
or �23.7 G based on a valence-bond theoretical calculation by McConnell.8

Karplus and Fraenkel went on to analyze the origins of 13C couplings in
aromatic radicals.9 Their results are summarized by eqn (2.7):

aC ¼ SC þ
X

i

QC
CXi

 !

rpC þ
X

i

QC
XiC

rpXi
ð2:7Þ

where Sc ¼ �12.7 G, QC
CC0 ¼ þ14:4 G, QC

CH ¼ þ19:5 G, and QC
C0C ¼ �13:9 G.

The first term refers to the spin density in the p-orbital of the carbon in question
and the second term from p-orbital spin density on atoms attached to that
carbon.

An isotropic hyperfine coupling to H can only arise through the so-called
Fermi contact interaction of the unpaired electron at the position of the
H nucleus; but this is apparently symmetry forbidden for organic p-radicals
where the H nuclei lie in the nodal plane. The interaction arises in a slightly
more complicated way: ‘‘spin polarization’’. As shown in Figure 2.6, the C 2pz
orbital has zero probability at the H nucleus, but there is significant overlap of
the C 2pz and C–H s bond orbitals. The H 1s orbital is part of the s-bond
orbital and the C 2pz part of the singly-occupied p* MO (SOMO). In the
overlap region of these two MOs, there is a tendency for the unpaired spin in
the SOMO to polarize the pair of electrons in the bonding MO such that the
spins in the overlap region are parallel, necessarily leaving an oppositely
oriented spin near the H nucleus.

For aromatic hydrocarbon radical anions, this approach works pretty well.
Figure 2.7 shows a correlation plot of observed hyperfine splitting versus the
spin density calculated from Hückel MO theory. It also correctly predicts the
negative sign of aH for protons attached to p systems.
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Examination of Figure 2.7 shows that the largest fractional errors are for the
smallest spin densities. The reason for this is related to the mechanism for
aromatic proton coupling. Positions with very small spin density, according to
Hückel MO theory, tend to be polarized such that a negative spin density is
found at that site. Thus the zero spin density predicted for one position in
pyrene leads to a coupling of a bit more than 1 G as a result of this polarization
mechanism. Note that the sign of a coupling constant is not an experimental
result in ordinary ESR. The alternation of the sign of aH between positions was

H

C

π*-orbital

σ-orbital

Figure 2.6 Schematic representation of spin polarization of a C–H s-orbital by
electron spin in a p* orbital. Note that the polarization effect is far from
complete; only a tiny fraction of the electron density near the H nucleus is
excess spin-down.
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Figure 2.7 Correlation plot of observed 1H coupling constant vs. computed spin
density from Hückel MO theory. See Table 2.1 for identification of points.
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confirmed by performing NMR measurements of the Knight shift of pyrene
anion radical in the solid state.10

It is sometimes assumed that there is a relation analogous to eqn (2.6) for metal
or ligand hyperfine couplings in spectra of organometallic radicals. Such an
assumption is usually unwarranted. An isotropic hyperfine coupling has three
contributions: (i) Fermi contact interaction between the nuclear spin and electron
spin density in the valence-shell s-orbital; (ii) Fermi contact interaction between
the nuclear spin and spin density in inner-shell s-orbitals arising from spin
polarization by unpaired electron density in valence-shell p- or d-orbitals; and
(iii) a contribution from spin–orbit coupling. The first contribution is positive
(for a positive nuclear magnetic moment), the second is normally negative, and
the third may be of either sign. Because direct involvement of hydrogen 1s
character in the SOMO of an organic p-radical is symmetry-forbidden and spin–
orbit coupling is negligible in carbon-based radicals, proton couplings in such
radicals result solely from spin polarization and thus are proportional to the
polarizing spin density. In contrast, all three contributions are usually significant
for organometallic radicals. Although there are a few cases where polarization
constants, analogous to QH

CH, have been estimated, they are of use only in a more
complete analysis based on the results of a solid-state ESR study.

The situation with regard to protons that are attached to atoms adjacent to
p centers, such as the b-protons (methyl group) of the ethyl radical, CH3CH2

d, is
on somewhat firmer ground. In this case aH varies with the dihedral angle between
the C–H bond and the adjacent p-orbital containing the unpaired electron. This
was interpreted early on as evidence for ‘‘hyperconjugation’’ which delocalizes the
unpaired electron onto the adjacent proton. The dependence of aH on geometry
had also proven to be a very useful tool for studying the conformations of radicals.

Most ESR studies of organic radicals were carried out in the 1950s and
1960s. They provided important tests of early developments in valence theory.
The results of these early studies are nicely summarized in a review by
Bowers.11 Applications of hyperfine splittings to structure determination are
discussed in many of the texts and monographs referenced in Chapter 1.

As we will see in Chapter 4, g-matrices are often difficult to interpret reliably.
The interpretation of isotropic g-values is even less useful and subject to
misinterpretation. Thus isotropic ESR spectra should be used to characterize
a radical by means of the hyperfine coupling pattern, to study its dynamical
properties through line width effects, or to measure its concentration by
integration of the spectrum and comparison with an appropriate standard;
but considerable caution should be exercised in interpreting the g-value or
nuclear hyperfine coupling constants.

2.3 Line Widths in Isotropic Spectra

2.3.1 Incomplete Averaging of Anisotropies

Careful examination of the isotropic ESR spectra of organic radicals may reveal
variations in line widths from one hyperfine component to another. Such effects
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are enhanced in solvents of high viscosity or at low temperatures. The widths
can often be expressed as a power series in the nuclear spin quantum numbers:

Width ¼ aþ
X

i

bimi þ gim
2
i þ . . .

� �
ð2:8Þ

Much of the width arises from incomplete averaging of anisotropies in the g-
and hyperfine matrices (Chapter 3). For radicals with axial symmetry the
parameters of eqn (2.8) depend on Dg ¼ g|| – g>, DAi ¼ Ai,|| – Ai,> and tR,
the rotational correlation time:12

a / a0 þ ðDggBÞ2tR ð2:9aÞ

b / DggBDAtR ð2:9bÞ

g / ðDAÞ2tR ð2:9cÞ
Since these terms are proportional to tR, they increase with decreasing temper-
ature.w There are several line-width contributions, included in a0, which do not
depend onmi. These include magnetic field inhomogeneity and the spin–rotation
interaction, the latter increasing with 1/tR and thus with increasing temperature.
These and other line-width effects have been studied in some detail and are
discussed elsewhere.13

If the g- and hyperfine anisotropies are known from analysis of a solid-state
spectrum, the line-width parameters bi and gi can be used to compute the
rotational correlation time, tR, a useful measure of freedom of motion. Line
widths in ESR spectra of nitroxide spin labels, for example, have been used to
probe the motional freedom of biological macromolecules.14 Since tR is related
to the molecular hydrodynamic volume, Vh, and the solution viscosity, Z, by a
relationship introduced by Debye:15

tR ¼ 4pr3Z=3kT ¼ VhZ=kT ð2:10Þ

ESR line widths can provide a measure of the effective size of a paramagnetic
molecule or ion – useful information when there is a suspicion that a radical has
polymerized.

2.3.2 Rates of Fluxionality from Line Widths

ESR line widths are also sensitive to processes that modulate the g-value or
hyperfine coupling constants or limit the lifetime of the electron spin state. The
effects are closely analogous to those observed in NMR spectra of dynamical
systems. However, since ESR line widths are typically on the order of 0.1–10 G

wEquations (2.9a–c) assume that the product tRo041, where o0 is the (angular) frequency of the
microwaves. For X-band microwaves o0 ¼ 6�1010 rad s�1, so these relationships hold for
tR41.6�10�11 s. Using eqn (2.10) this corresponds to the tumbling time for a molecule with a
molecular weight of about 40 in water at room temperature. Equations (2.9a–c) should therefore
apply to all but the smallest, i.e., most rapidly tumbling, radicals in media of normal viscosity.
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Figure 2.8 ESR spectra resulting from the reduction of PhCN (bottom) and p-F-PhCN
(top). The top spectrum is identical to that of the 4,40-dicyanobiphenyl
anion radical. (Spectra were simulated using hyperfine couplings with
permission from ref. 16, copyright (1963) American Chemical Society.)
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(0.3–30 MHz), rate processes that give observable increases in line widths must
be fast. Such processes are discussed in detail in Chapter 5.

2.4 Organic Radical Reactions

Sometimes the ESR spectrum obtained when an organic molecule undergoes
one-electron oxidation or reduction is not of the expected cation or anion radical.
Figure 2.8 shows spectra that result when benzonitrile and 4-fluorobenzonitrile
are reduced electrochemically.16 The spectrum from the reduction of benzonitrile
is indeed that of [C6H5CN]�d, but the spectrum resulting from the reduction of
FC6H4CN is not that of the expected radical anion. Careful examination of the
spectrum shows 1 : 4 : 6 : 4 : 1 quintets at either end of the spectrum, indicating
the presence of four equivalent protons. This suggests that F� is lost from the
initially formed radical anion and that the resulting neutral radical dimerizes. In
fact, the observed spectrum is identical to that obtained by one-electron reduc-
tion of 4,40-dicyanobiphenyl, the product of radical dimerization.

Another example from the same paper16 involves the cyanocarbon anion,
1,1,2,3,3-pentacyanopropene. One-electron reduction produces the expected
dianion radical, the spectrum of which is shown in Figure 2.9. However, further
reduction leads to a very different spectrum, which results from loss of CN�

from position 2, and attachment of a proton (presumably from the solvent
N,N-dimethylformamide) to produce the 1,1,3,3,-tetracyanopropene dianion
radical the spectrum of which is also shown in Figure 2.9.

2.5 Analysis of Isotropic ESR Spectra

The analysis of an isotropic ESR spectrum is relatively straightforward if a
systematic approach is used, but it can be a frustrating experience for a

3340 3342 3344 3346 3348 3350 3352 3354 3356 3358 3360
Magnetic Field/Gauss

Figure 2.9 (Top) ESR spectrum of 1,1,2,3,3-pentacyanopropene dianion radical;
(bottom) ESR spectrum of the dianion radical of 1,1,3,3-tetracyanopro-
pene. Spectra were simulated using hyperfine couplings with permission
from ref. 16, copyright (1963) American Chemical Society.
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beginner. Given below is a series of steps which, if followed with care, will result
in a successful interpretation for most reasonably well-resolved spectra.

2.5.1 Preliminary Examination of the Spectrum

(A) Check to see if the spectrum is symmetric in line positions and relative
intensities. If it is not, then most likely there are two or more radical species.
Variation of line widths with mI may, in principle, cause the spectrum to appear
unsymmetric, but in such a case line positions would still be at least approx-
imately symmetrically distributed about the center.

(B) Is there a central line? If there is no central line, then there must be
an even number of lines, which suggests an odd number of half-integer nuclei
(i.e., I ¼ 1/2, 3/2, etc.), which would cause splitting of any center line arising
from an even number of half-integral nuclei or any number of nuclei with
integer spin (I ¼ 1, 2, etc.).

(C) Are the outermost lines visible above the noise? Observation of the lines
in the ‘‘wings’’ of the spectrum is often crucial to successful interpretation of
ESR spectra since less overlap of lines may occur there. In noisy spectra,
however, it may be difficult to account for all the expected lines in the wings.

(D) How many lines are there? Count them carefully, watching for evidence
of unresolved features (shoulders or bumps).

(E) What is the ratio of the amplitudes of the most intense to least intense
lines in the spectrum?

2.5.2 What do you Expect to See?

(A) If the radical was produced by a chemically straightforward procedure,
you usually have some idea of the identity of the radical. How many and what
kinds of magnetic nuclei, i.e. nuclei with spins, should be present if your guess is
correct?

(B) How many lines are expected from this model? The total number of
nuclear spin states is (2I1 þ 1) � (2I2 þ 1) � (2I3 þ 1) . . . . Thus, if the model
structure has six protons (I ¼ 1/2), there should be (2 � 1/2 þ 1)6 ¼ 26 ¼ 64
nuclear spin states. If some of the nuclei are expected to be equivalent, then the
number of lines will be less than the number of spin states, i.e., some of the spin
states will be degenerate (to first-order in perturbation theory). Thus, if the six
protons are in three groups of two, it is as if you had three spin-1 nuclei and you
expect (2 � 1 þ 1)3 ¼ 33 ¼ 27 distinct lines. If there is one group of four
equivalent protons and another group of two, then it is as if you had one spin-2
nucleus and one spin-1 nucleus and you expect (2 � 2 þ 1)(2 � 1þ1) ¼ 15 lines.

If all the nuclei are non-equivalent, then all lines should have the same
intensity (barring accidental overlap). If there are equivalent sets of nuclei, then
the expected ratio is the product of the largest-to-smallest ratios of the various
multiplets. Thus, for the above examples, three groups of two spin-1/2 nuclei
gives a 1 : 2 : 1 triplet of 1 : 2 : 1 triplets of 1 : 2 : 1 triplets; thus the maximum
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intensity ratio would be 2 � 2 � 2 ¼ 8. If we have a 1 : 4 : 6 : 4 : 1 quintet of
1 : 2 : 1 triplets, then the maximum intensity ratio will be 6 � 2 ¼ 12.

2.5.3 Are the Gross Features of the Spectrum Consistent with the

Model?

(A) Compare the number of observed lines with the number expected. If
there are more lines than expected, either the model is wrong or there is more
than one radical contributing to the spectrum. If the expected and observed
numbers are equal, you are in luck – the analysis should be easy. If you see
fewer lines than expected (the most common case!), there may be accidental
superpositions, small amplitude lines buried under large ones, or just poor
resolution. The bigger the discrepancy between expected and observed numbers
of lines, the less definitive the analysis will be.

(B) Compare the expected and observed largest-to-smallest intensity ratios.
Accidental degeneracies (or a mI

2 line-width dependence) may cause the
observed ratio to be bigger than expected. It is rarer (but not unknown) to
find a smaller ratio than expected.

(C) Is the presence or absence of a central line consistent with the odd or even
number of expected lines?

(D) If the model still seems plausible after these tests, go on to a detailed
analysis. If there are gross inconsistencies, the model is probably wrong.

2.5.4 An Example

We can apply these rules to the three spectra shown in Figure 2.10. The radicals
in the figure are anion radicals of the three isomers of xylene (dimethylben-
zene).17 Let us see if we can figure out which is which.

The p-xylene anion radical is easiest. We expect to have four equivalent ring
protons and six equivalent methyl protons. Thus we expect to see a 1 : 4 : 6 : 4 : 1
quintet of 1 : 6 : 15 : 20 : 15 : 6 : 1 septets. Spectrum (b) shows the quintet clearly,
but the CH3 proton coupling is poorly resolved. No other isomer has a quintet,
so we can assign (b) to the p-xylene radical anion.

The o-xylene anion radical should have two pairs of ring protons and,
again, six equivalent methyl protons. Spectrum (a) shows a 1 : 2 : 1 triplet of
multiplets, which could well be the expected quintets. The outermost lines have
intensity ratios: 1 : 2 : 6 : 1 : 12 : 12�, suggesting that the methyl and ring proton
couplings are comparable. Apparently only one pair of ring protons has a
significant coupling, but, with this assumption, spectrum (a) is consistent with
o-xylene.

That leaves spectrum (c) for m-xylene. We expect two unique protons, one
pair of equivalent ring protons, and six equivalent methyl protons. When we
examine the wings of the spectrum, we see a 1 : 6 : 15 : 20 : 15 : 6 set of doublets.

Table 2.2 gives the coupling constants for the three xylene anion radical
isomers.
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Figure 2.10 ESR spectra of o-, m-, and p-xylene radical anions (see text for assignment
of spectra). Spectrum (a) was simulated with permission using hyperfine
parameters from Ref. 17b, copyright (1964) American Institute of Physics;
spectra (b) and (c) were simulated with permission using hyperfine pa-
rameters from ref. 17a, copyright (1961) Taylor and Francis (www.tandk.
co.uk).

Table 2.2 Hyperfine parameters for xylene radical anions17

o-Xylene m-Xylene p-Xylene

Number aH (G) Number aH (G) Number aH (G)
2 ring H 6.93 1 ring H 6.85 4 ring H 5.34
2 ring H 1.81 1 ring H 7.72 6 Me H 0.10
6 Me H 2.00 2 ring H 1.46

6 Me H 2.26

35Isotropic ESR Spectra of Organic Radicals



2.5.5 Detailed Analysis for Determination of Parameters

(A) Measure the positions and amplitudes of all the lines in the spectrum and
list them in order in a table (a spreadsheet program is convenient for this
purpose). A well-defined measure of ‘‘position’’ in a complex spectrum is the x-
axis point halfway between the maximum and minimum of the first-derivative
line. The ‘‘amplitude’’ is the difference in height between the maximum and
minimum. If convenient, measure the line positions in gauss; if this is inconven-
ient, use arbitrary units such as inches, centimeters, or recorder chart boxes
measured from an arbitrary zero. In your table, also provide headings for the
quantum numbers (m1, m2, etc.) for each of the line positions, for the coupling
constants (a1, a2, etc.), and for the theoretical intensity (degeneracy) of each peak.

(B) The highest and lowest field lines will always have theoretical intensities
of 1 and will have maximum positive and negative values for all the quantum
numbers. It does not really matter whether you start with positive quantum
numbers at the high-field or low-field end of the spectrum – the signs of the
coupling constants are indeterminant – but, for consistency, let us agree to
assign positive quantum numbers to the lowest field line (i.e., pretend that the
coupling constants are positive). Enter these assignments in the table. From this
point on, you can work from either end of the spectrum or even from both at
once. In the following, we assume that we are working from the low-field end.

(C) The spacing between the first and second lines will be the smallest
coupling constant, a1. The intensity ratio of these two lines will usually indicate
the multiplet to which the coupling constant corresponds. Assign quantum
numbers to the second line, compute a1 and enter these numbers in the table. If
you have started into a multiplet, you can then predict the positions and
intensities of the remaining lines of the multiplet. Find them and enter the
quantum numbers and new estimates of a1 in the table.

(D) After finding all the lines of the first a1 multiplet, find the first unassigned
line as you move upfield. This will correspond to the next larger coupling
constant a2. From the ratio of its amplitude to that of the end line, you can
usually figure out which multiplet this coupling constant corresponds to.
Assign the quantum numbers and compute the coupling constant a2. Enter
in the table. This line will also correspond to the first line in a second a1
multiplet, and, knowing a1, you can predict the positions and intensities of the
remaining lines of this multiplet. Find them and enter the quantum number
assignments and new estimates of a1 and a2 in the table.

(E) If a2 corresponds to a multiplet, the positions of the remaining lines can
be predicted and located. Continue in this way through the spectrum. Small
discrepancies may arise through measurement errors or because of overlapped
lines. A position discrepancy larger than your estimated measurement accu-
racy, however, may signal a misassignment or inconsistency with the model.
Notice that the spacing between the lowest and highest field lines is equal to the
sum of the coupling constants. Thus, if you have found two coupling constants
and know the total extent of the spectrum, you can compute the sum of the
remaining couplings.
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(F) When all the lines have been assigned, average all the measured values
of each coupling constant and compute the standard deviation. If an arbitrary
position scale was used, convert the coupling constants into gauss. Least-
squares fitting of line positions to quantum numbers gives better statistics
than this method, but it is impossibly tedious to do by hand in all but the
simplest cases. Fortunately, computer programs and spreadsheet templates
for carrying out a multiparameter least-squares analysis are now readily
available.

2.5.6 Computation of Multiplet Intensity Ratios

For sets of spin-12 nuclei, the multiplet intensity ratios are simply the binomial
coefficients found most easily from Pascal’s triangle (Figure 2.11).

For higher spin nuclei, one can construct a splitting diagram. For example,
for two spin-1 nuclei:

This procedure quickly gets out of hand, however, and a more compact
notation is preferable. Thus if we think of each of the three lines resulting from
coupling to the first spin-1 nucleus split into a 1 : 1 : 1 triplet, we have:

1 1 1

1 1 1

1 1 1

Add:        1        2        3          2          1

This procedure can be extended to three spin-1 nuclei by thinking of each line
of a 1 : 1 : 1 triplet split into a 1 : 2 : 3 : 2 : 1 quintet:

    1          2          3          2       1

1 2 3 2 1

1 2 3 2 1

Add: 1          3          6          7       6          3          1

For really complicated situations, this method can be used as the basis for a
computer algorithm.
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2.5.7 Multiplet Patterns due to Isotopomers

We often encounter cases where an element has one or more isotopes with a
nuclear spin and one or more isotopes with zero spin. The most common
example is that of carbon where 1.1% of naturally occurring carbon is 13C with
I ¼ 1/2 and 98.9% is 12C with I ¼ 0. Thus, in a carbon-containing radical, the
probability that any given carbon is 13C is 0.011. Now suppose that there are
n equivalent carbon atoms in the radical. The probability that all n will be 12C is
(0.989)n. The probability that one specific carbon is 13C and the other n�1 12C
will be (0.011)(0.989)n�1; but, since any one of the n carbons could be 13C, we
see that the total probability of finding one 13C is n(0.011)(0.989)n�1. Similarly,
the probability that two specific carbons are 13C is (0.011)2(0.989)n�2, but any
one of the n carbons could be 13C and any of the n�1 remaining carbons
could also be 13C, so that the total probability of having two 13Cs is
n(n�1)(0.011)2(0.989)n�2. Since the two 13Cs are indistinguishable, however,
the coefficient must be divided by 2 to avoid double counting. On reflection, we
see that the coefficients 1, n, n(n�1)/2, are just binomial coefficients and that
the probabilities of finding 0, 1, 2, etc., 13Cs out of n equivalent carbon atoms
are just the terms in the expansion of the expression:

ð0:989þ 0:011Þn ¼ð0:989Þn þ nð0:989Þn�1ð0:011Þ
þ nðn� 1Þ=2ð0:989Þn�2ð0:011Þ2 þ � � �

For example, in a radical with six equivalent carbon atoms (e.g., benzene
anion radical), the probabilities are: P0 ¼ 0.936, P1 ¼ 0.062, P2 ¼ 0.0017,
P3 ¼ 0.00003, etc. In practice, we would probably see only the central line with
intensity 0.936 and a pair of satellites with intensity 0.031, corresponding to
splitting of the center line by a single 13C (the intensity is distributed between
the two resonances).

More complex patterns can arise from atoms with a higher fraction of
magnetic isotopes. Consider the case of a radical species with three equivalent

1

1      1

1      2      1

1      3      3      1

1      4      6      4      1

1      5    10    10     5      1

1      6    15    20    15     6      1

1      7    21    35    35    21     7      1

1      8    28    56    70    56     28     8     1

Figure 2.11 Pascal’s triangle for the determination of binomial coefficients.
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platinum atoms. 195Pt has I ¼ 1/2 and is 33.8% in natural abundance. Other
Pt isotopes have I ¼ 0. Thus the probabilities are: P0 ¼ 0.290, P1 ¼ 0.444,
P2 ¼ 0.227, and P3 ¼ 0.039. These four isotopomers will result, respectively, in
a singlet, a doublet, a 1 : 2 : 1 triplet, and a 1 : 3 : 3 : 1 quartet. However, since the
platinum atoms are assumed to be equivalent, the coupling constant will be
the same in each pattern and there will be some superpositions. Consequently,
seven hyperfine components are expected with positions and intensities
(Figure 2.12).

The relative intensities of the seven-line pattern then is expected to be
approximately: 1 : 12 : 49 : 84 : 49 : 12 : 1. With luck, all seven lines might be
observable. Patterns like this are more complicated to analyze, but they also
provide a fingerprint, identifying the number of equivalent nuclei involved in
the multiplet pattern.

2.5.8 Second-order Shifts in Line Positions

Our analysis thus far has assumed that solution of the spin Hamiltonian to first
order in perturbation theory will suffice. This is often adequate, especially for
spectra of organic radicals, but when coupling constants are large (greater than
about 20 gauss) or when line widths are small (so that line positions can be very
accurately measured) second-order effects become important. As we see from

.290

0

.444/2
1 aPt

.227/2
2 .227/4

.039x3/8
3 .039/8

.404

SUM .237
.057

.005

Figure 2.12 Predicted hyperfine pattern for a radical with three equivalent Pt atoms.
Numbers on the left refer to the number of 195Pt atoms in the radical. The
intensity labels indicate the normalized probabilities of the corresponding
lines which are derived from the isotope probabilities.
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eqn (2.5) for a single nucleus with nuclear spin I, the hyperfine line positions are
given to second order in perturbation theory by:

B ¼ B0 � amI �
a2

2B0
IðI þ 1Þ �m2

I

� �
ð2:11Þ

Thus, for example, a spin-1 nucleus with a ¼ 20 G and B0 ¼ 3200 G will have
lines at:

B ¼ 3200� 20ðþ1Þ � ð0:0625Þð2� 1Þ ¼ 3179:94 G
B ¼ 3200� 20ð0Þ � ð0:0625Þð2� 0Þ ¼ 3199:88 G
B ¼ 3200� 20ð�1Þ � ð0:0625Þð2� 1Þ ¼ 3219:94 G

so that the line spacings are, respectively, 19.94 and 20.06 G, and the center line
is shifted to low field (relative to the first-order result) by 0.12 G. This is a rather
small effect and would require careful measurements to notice. When a is
larger, the shifts are much more noticeable. Thus, for example, when a¼ 100 G,
the line spacings become 98.44 and 101.56 G, a much more easily noticeable
discrepancy.

When a spectrum results from coupling to several equivalent nuclei with
couplings large enough to warrant second-order corrections, the situation
becomes somewhat more complicated since we must then think of the quantum
numbers I and mI corresponding to the sum of the quantum numbers for a full
set of equivalent nuclei. The second-order corrections then depend on the total
I rather than the individual Iis. Thus, for example, two equivalent spin-1 nuclei
will give rise to an I ¼ 2 state with mI ¼ �2, �1, and 0. There is only one way of
getting mI ¼ �2 (each nucleus has mIi ¼ �1), but there are two ways of getting
mI ¼ �1 (either of the nuclei can have mIi ¼ 0 and the other mIi ¼ �1), so there
must also be a I ¼ 1 state with mI ¼ �1 and 0. There are three ways of getting a
mI ¼ 0 state (either of the nuclei can have mIi ¼ �1 and the other mIi ¼ �1
or both nuclei can have mIi ¼ 0); thus there must be a I ¼ 0 state with mI ¼ 0.
Substituting into eqn (2.11), to second-order, the degeneracies of the
1 : 2 : 3 : 2 : 1 multiplet pattern are lifted and a total of (3)2 ¼ 9 individual
lines would be observed. Summarizing these results in Table 2.3, we have, for
B0 ¼ 3200 G, a ¼ 20 G:

Table 2.3 Second-order shifts for two I ¼ 1 nuclei

mI I [I(I þ 1) – mI
2]/2 B (G)

2 2 1 3159.88
1 2 5/2 3179.69
1 1 1/2 3179.94
0 2 3 3199.62
0 1 1 3199.88
0 0 0 3200.00
–1 2 5/2 3219.69
–1 1 1/2 3219.94
–2 2 1 3239.88
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2.6 Related Techniques (ENDOR)

The instrumental method described in Chapter 1 and illustrated in this chapter
proves to be adequate for studying many of the samples to which chemists and
biologists wish to apply ESR. Indeed, even if more advanced techniques turn
out to be required, CW, field-swept X-band ESR still provides the most
convenient, and commonly used, method for preliminary examination of
samples that are known, or suspected, to possess interesting paramagnetic
properties. Nevertheless, for those who may need to extend their studies to
more advanced methods Appendix 2 lists several of the most useful techniques
and gives references to recent reviews and relevant papers that should serve as
an entry into the still developing literature on advanced ESR.

This chapter concludes with a brief description of one advanced technique,
Electron Nuclear Double Resonance (ENDOR), the capabilities for which,
unlike pulsed methods, may be added as a relatively minor modification to
commercial CW ESR spectrometers.

ENDOR was first developed in the mid-1950s18 by George Feher as a means
of determining unresolved nuclear hyperfine coupling parameters in solids. It
has since found many other applications, including simplifying the hyperfine
patterns of complex radicals in solution. The technique works by partially
saturating an ESR transition at a fixed field while simultaneously sweeping the
NMR frequency through nuclear spin transitions. The result, which is illus-
trated in Figure 2.13 for a single spin-1/2 nucleus, is an increase in absorption at
the microwave frequency when an appropriate NMR transition is irradiated. In
Figure 2.13 the vertical arrow on the left refers to the orientation of the electron
spin and the one on the right the nuclear spin. At equilibrium, the lower and
upper pairs of levels have relative populations indicated by 1þd and 1�d,
respectively [see Section 1.2 (Chapter 1)]. In the example, saturation of one of
the ESR transitions initially equalizes the populations of the km and mm levels,
leading to a decrease in intensity of that transition. If the NMR transition from

Equilibrium
populations

1 - δ
1 - δ

1 + δ
1 + δ

Saturate one
ESR transition

1 - δ

1 + δ

Saturated
populations

1 - δ/2

1

Perturbed
populations

Microwave absorption spectrum

νN – A/2 νN + A/2νN

1

1 + δ

1
1 - δ/2

↑↑

↑↑

↑↓

↓↑

Figure 2.13 Example of an ENDOR experiment for a single spin-1/2 nucleus. See text
for explanation.
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mm to mk is then saturated by irradiation at the frequency of the corresponding
NMR transition at, in this example, nN þ A/2, the resulting population change
will lead to an increase in the population difference between the km and mm
levels and increased microwave absorption at the ESR frequency. Irradiation of
the other NMR transition, km to kk, at frequency nN – A/2, will also lead to an
increase in intensity of the same saturated ESR transition. The ENDOR
spectrum is generated by varying the NMR frequency and observing the
corresponding increase in intensity of the saturated ESR transition. Notably,
the example given here corresponds to the case where the hyperfine frequency,
A ¼ A/h, is less than the nuclear Zeeman frequency, nN. For the case where
A/2 4 nN, interpretation of the ENDOR frequencies is somewhat modified.
The interested reader should consult the relevant references in Appendix 2 or
one of the more general books on ESR.

An early example of an application of ENDOR to extract hyperfine couplings
from a very complex, poorly resolved ESR spectrum is that of Allendoefer and
Englemann19 who studied a solution of bis(p-methoxyphenyl)nitroxide and
obtained the results shown in Table 2.4. The figures in parentheses indicate
the level of precision.
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CHAPTER 3

Isotropic Spectra of
Organometallic Radicals

Most of the information content from ESR spectra of organometallic radicals and
coordination complexes comes from dilute single-crystal spectra or frozen solu-
tion spectra. Nonetheless, there are some bits of information and applications that
come uniquely from isotropic spectra, and we discuss those aspects in this chapter.

3.1 Second-order Effects on Line Positions

As illustrated in Chapter 2, ESR spectra of radicals in liquid solution can
usually be interpreted in terms of the spin Hamiltonian:

Ĥs ¼ mBgB � Ŝþ
X

i

Ai Îi � Ŝ ð3:1Þ

This is a simplified Hamiltonian that ignores the direct interaction of any
nuclear spins with the applied field, B. Because of the larger coupling, Ai, to
most transition metal nuclei, however, it is often necessary to use second-order
perturbation theory to accurately determine the isotropic parameters g and A.
Consider, for example, the ESR spectrum of vanadium(IV) in acidic aqueous
solution (Figure 3.1), where the species is [VO(H2O)5]

21.
Clearly, the eight hyperfine lines (I ¼ 7/2 for 51V) have different widths; but

careful examination also shows that the line spacing varies, increasing with increas-
ing B. To understand the origin of this effect we must take a closer look at the
solutions to Eqn. (3.1) for the case of an unpaired electron interacting with a single
nucleus. This will lead us to a derivation of eqns (2.5) and (2.11) of Chapter 2.

Given the Hamiltonian eqn (3.1), it is reasonable to express the eigen-
functions in terms of the electron and nuclear spin quantum numbers: |mS,mIi.
Applying to this function only the two terms in the Hamiltonian operator that
involve the z-direction of the field B we get:

Ĥs ms; mIj i ¼ gmBB Ŝz þ A ŜzÎz
� �

ms; mIj i
¼ msgmBBþ AmsmIð Þ ms; mIj i

ð3:2Þ

44



Thus the zeroth-order, or unperturbed, energy is:

Eð0Þ ¼ msgmBBþmsmIA

or, since mS ¼ �1/2:

Eð0Þ ¼ �1
2
gmBB� 1

2
mIA

With I ¼ 7/2, mI ¼ �7/2, �5/2, �3/2, �1/2. This ‘‘first-order’’ solutionw would
of course lead to eight lines, equally spaced.

Now consider the application of second-order perturbation theory. First, we
need to represent the x�y components of the spins, Sx, Sy, Ix and Iy, in terms of
their raising and lowering combinations:

S� ¼ Sx � iSy I� ¼ Ix � iIy

Sx ¼
1

2
Sþ þ S�ð Þ Ix ¼

1

2
Iþ þ I�ð Þ

Sy ¼ �
i

2
Sþ þ S�ð Þ Iy ¼ �

i

2
Iþ þ I�ð Þ

3000 3200 3400 3600 3800

 v = 9.5 GHz

B/Gauss

Figure 3.1 Isotropic ESR spectrum of 0.005 M vanadium(IV) in 1 M NaClO4, pH 2.0.
(Reproduced with permission from ref. 3, copyright (1975) American
Chemical Society.)

wBy convention, the hyperfine energy is usually referred to as a ‘‘first-order’’ correction to the
Zeeman energy. This nomenclature will also be used here, despite the fact that the notation E(0)

properly acknowledges that both terms are included in the ‘‘zeroth-order’’ energy. Strictly
speaking, in this case there is no first-order perturbation.
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Thus the hyperfine term of the spin Hamiltonian becomes:

AS � I ¼ A SxIx þ SyIy þ SzIz
� �

¼ ASzIz þ 1
2
A SþI� þ S�Iþð Þ

Operating on the spin functions with the extra hyperfine operator then gives:

1
2
A ŜþÎ� þ Ŝ�Îþ

� �
1
2
; mI

�� �

¼ A

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðI þ 1Þ �mI mI þ 1ð Þ

p
�1

2
; mI þ 1

�� �

1
2
A ŜþÎ� þ Ŝ�Îþ

� �
�1

2
; mI

�� �

¼ A

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðI þ 1Þ �mI mI � 1ð Þ

p
1
2
; mI � 1
�� �

Thus the matrix elements are:

�1
2; mI þ 1

� ��Ĥ þ1
2; mI

�� �
¼ A

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðI þ 1Þ �mI mI þ 1ð Þ

p

þ1
2
; mI � 1

� ��Ĥ �1
2
; mI

�� �
¼ A

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðI þ 1Þ �mI mI � 1ð Þ

p

and the second-order energy corrections are:

Eð2Þ 1
2
; mI

� �
¼ A2 IðI þ 1Þ �mI mI þ 1ð Þ½ �

4 Eð0Þ þ1
2
; mI

� �
� Eð0Þ �1

2
; mI þ 1

� �� �

Eð2Þ �1
2; mI

� �
¼ A2 IðI þ 1Þ �mI mI � 1ð Þ½ �

4 Eð0Þ �1
2
; mI

� �
� Eð0Þ þ1

2
; mI � 1

� �� �

or since the zeroth-order energy differences are:

Eð0Þ þ1
2
; mI

� �
� Eð0Þ �1

2
; mI þ 1

� �
¼ gmBBþ 1

2
A 1þ 2mIð Þ

Eð0Þ �1
2
; mI

� �
� Eð0Þ þ1

2
; mI � 1

� �
¼ �gmBBþ 1

2
A 1� 2mIð Þ

Eð2Þ 1
2
; mI

� �
¼ A2 IðI þ 1Þ �mI mI þ 1ð Þ½ �

4gmBBþ 1
2A 1þ 2mIð Þ

Eð2Þ �1
2
; mI

� �
¼ A2 IðI þ 1Þ �mI mI � 1ð Þ½ �

4gmBBþ 1
2
A 1� 2mIð Þ

We can neglect the hyperfine terms in the denominators without serious error
since 4gmBB � 1

2
Að1� 2mIÞ. Including them would lead to energies that are

third-order or higher in powers of A, making it necessary to use higher order
perturbation theory.1
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The transition energies, correct to second order in A, are:

DE ¼ gmBBþmIA

þ A2 IðI þ 1Þ �mI mI þ 1ð Þ½ �
4gmBB

	 

� �A2 IðI þ 1Þ �mI mI � 1ð Þ½ �

4gmBB

	 


¼ gmBBþmIAþ
A2 IðI þ 1Þ �m2

I

� �

2gmBB

and the resonant fields are:

B ¼ B0 � amI �
a2 IðI þ 1Þ �m2

I

� �

2B
ð3:3Þ

where

B0 ¼
hn
gmB

a ¼ A

gmB

For [VO(H2O)5]
21 (Fig. 3.1), g ¼ 1.964, a ¼ 116.4 G, and v ¼ 9.5000 GHz. The

predicted line positions (in Gauss) are given in Table 3.1.

3.2 Understanding the Variation in Line Widths

The widths of the lines in Fig. 3.1 vary because the anisotropies of g and A (to
be discussed in Chapter 4) are not completely averaged out when the molecule
or ion tumbles in solution. This issue was implicit in the classic work of
Bloembergen, Purcell and Pound2a on nuclear spin relaxation and was for-
mulated in a useful way for EPR by Daniel Kivelson and co-workers.2b–d As
described in Chapter 2, they showed that the widths, in units of Hz, can often
be written as a power series in mI with terms up to second-order (a third-order
term is sometimes significant):

width ðmI Þ ¼ aþ bmI þ gm2
I ð3:4Þ

Table 3.1 Higher order effects on line positions in [VO(H2O)5]
21

mI

First-order
positions

Second-order
positions

Exact
positionsa

Second-order
spacingb

7/2 3048.6 3040.8 3041.6 103.9
5/2 3165.0 3144.7 3146.2 108.8
3/2 3281.4 3253.5 3254.8 113.4
1/2 3397.8 3366.9 3367.2 117.4
�1/2 3514.2 3484.3 3483.7 121.1
�3/2 3630.6 3605.4 3604.1 124.4
�5/2 3747.0 3729.8 3728.4 127.5
�7/2 3863.4 3857.3 3856.6

a Calculated to nearest 0.1 G using methods given in ref. 1 by iterative solution of the Breit-Rabi
equation.

b 1st-order spacing of lines would be 116.4 G.
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where

a / a0 þ ðDggBÞ2tR ð3:5aÞ

b / DggBDA tR ð3:5bÞ

g / ðDAÞ2 tR ð3:5cÞ

and tR is the rotational correlation time, usually expressed in an equation first
introduced by Debye:2

tR ¼
4pr3k
3

Z
kT

ð3:6Þ

where Z is the viscosity of the solution, r is the radius of the (spherical) particle, and
k is a correction factor to account for deviations from sphericity. The rotational
correlation time therefore provides a measure of the ‘‘hydrodynamic volume’’ of
the tumbling molecule or ion. If values of Dg and DA can be determined
independently, e.g., from solid state spectra (Chapter 4), line width measurements
may be used to evaluate tR as a function of Z and T, allowing r to be estimated.

For example, dilute aqueous solutions of vanadium(IV) show an eight-line
ESR spectrum in both acid (Fig. 3.1) and strong base, suggesting a monomeric
unit under all conditions. (51V has I ¼ 7/2 so more than eight lines would be
observed if more than one 51V was coupled to the unpaired electron.) A likely
structure in base would be [VO(OH)3(H2O)2]

�, formed by removal of three
protons from the species whose spectrum is shown in Fig. 3.1.3 Previous work
on the system, however, was also consistent with the formation of polymers
such as V3O7

2� or V4O9
2� or even V18O42

12� at high pH. Comparison of values
of tR from the basic solution line widths with those obtained from spectra
of acidic solutions containing VO(H2O)5

21 showed that the hydrodynamic
volume of the aquo cation is actually about twice that of the basic solution
species, effectively ruling out the presence of ESR-active polymers in solution
(Figure 3.2).4 The slopes correspond to r values of 3.4 Å in acid solution and 2.7
Å in basic solution. The conclusion is that vanadium(IV) is monomeric in dilute
basic solutions.

3.3 Puzzling Line Shapes

An example of second-order splitting, in addition to the second-order shifts
described above for a single nucleus, and related to the spectrum of methyl
radical discussed in Chapter 2, is seen in Fig. 3.3 for the isotropic ESR spectrum
of [PhCCo3(CO)9]

� (ref. 5). The situation is complicated by the fact that
magnetically equivalent nuclei with I4 1/2 give less familiar multiplet intensity
ratios. Thus, for example, three equivalent 59Co nuclei (I ¼ 7/2) give (to first-
order) 22 lines with intensity ratios 1:3:6:10:15:21:28:36:42:46:48:48:46 . . . ,
(Figure 3.3a). The experimental spectrum of [PhCCo3(CO)9]

� (Figure 3.3c)
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does indeed exhibit a spectrum with about the expected relative intensities, and
all but the weakest outermost pair of lines is visible. The observed line shapes,
however, are very unsymmetrical and correspond to a marked deviation from a
Lorentzian shape. Incorporating second-order splittings into the spectrum as
follows solves the puzzle.

The combined spin angular momentum of three equivalent spin-7/2 59Co
nuclei is properly described in terms of 11 J-states with J ranging from 21/2 to
1/2. The line positions through second-order are then calculated using
Eqn. (3.3) substituting J for I. The mJ ¼ 17/2 feature, for example, has three
components with J ¼ 21/2, 19/2, and 17/2, degeneracies of 1, 2, and 3, and
second-order shifts of 97a2/4B, 55a2/4B, and 17a2/4B, respectively. The shifts
are too small compared with the line width to be resolved, but they lead to
an asymmetric absorption line envelope with apparent broadening on the
low-field side, as shown in Figure 3.3(b) and in the experimental spectrum
(Figure 3.3c).5

3.4 Use of ESR Spectra to Determine Formation

Constants

Reeder and Rieger6 used ESR spectra to identify complex ions and to estimate
formation constants for aqueous oxovanadium(IV) complexes with lactic acid,
thiolactic acid, glycolic acid, and thioglycolic acid. Through the use of second-
harmonic detection, which produces second-derivative spectra, the resolution
was good enough that several of the individual species could be separately
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Figure 3.2 Plots of tR, determined from ESR line widths, vs. Z/T for [VO(H2O)5]
21

and for [VO(OH)3(H2O)2]
�. Data from ref. 4.
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detectable. The key requirement was that the 51V coupling constant varied with
the nature of the ligands, the coupling constant decreasing with each additional
ligand coordinated. For each acid, H2A, the equilibria were:

VO2þ þHA�  ! VOðHAÞþ

VOðHAÞþ þHA�  ! VOðHAÞ2

VOðHAÞþ  ! VOðAÞ þHþ

VOðHAÞ2 ! VOðAÞðHAÞ� þHþ

VOðAÞðHAÞ�  ! VOðAÞ2�2 þHþ

where HA� indicates ionization of the carboxyl group but retention of the
hydroxyl or sulfhydryl proton. For example, for VO21/lactic acid mixtures at

Figure 3.3 ‘‘Stick spectrum’’ showing hyperfine pattern for coupling to three equiva-
lent 59Co nuclei (I ¼ 7/2) computed to (a) first-order and (b) second-order
in perturbation theory. (Adapted from ref. 7.) (c) Isotropic ESR spectrum
of [PhCCo3(CO)9]

� in THF solution at 401C.
(Experimental spectrum, reprinted from ref. 5 with permission, copyright
(1979) American Chemical Society.)
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pH 3.5, the low-field hyperfine line (in second-derivative presentation) appears
as shown in Figure 3.4.

Peak I was assigned to the superposition of peaks resulting from
VO(H2O)5

21 and VO(HA)(H2O)3
1; peak II was assigned to VO(HA)2(H2O),

and peak III to the superposition of VO(A)(H2O)3 and VO(A)(HA)(H2O)–.
From the variation in peak heights with pH, a reasonable set of formation
constants was deduced for each of the complexes.
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CHAPTER 4w

Anisotropic ESR Spectra

4.1 Introduction

The anisotropies that lead to line broadening in isotropic ESR spectra influence
solid-state spectra more directly. Accordingly a more complex spin Hamiltonian
is required to interpret such spectra:

Ĥ s ¼ mB~B � g � ~S þ
X

i

~Ii � Ai � ~S ð4:1Þ

In eqn (4.1), g and Ai are 3 � 3 matrices representing the anisotropic Zeeman
and nuclear hyperfine interactions. In general, a coordinate system can be found
– the g-matrix principal axes – in which g is diagonal. If g and Ai are diagonal in
the same coordinate system, we say that their principal axes are coincident.

In species with two or more unpaired electrons, a fine structure term must be
added to the spin Hamiltonian to represent electron spin–spin interactions. We
confine our attention here to radicals with one unpaired electron (S ¼ 1/2) but
will address the S 4 1/2 problem in Chapter 6.

Nuclear quadrupole interactions introduce line shifts and forbidden transi-
tions in spectra of radicals with nuclei having I4 1/2. In practice, quadrupolar
effects are observable only in very well-resolved spectra or in spectra of radicals
with nuclei having small magnetic moments and large quadrupole moments.
The most extreme case of a small magnetic moment to quadrupole moment
ratio is that of 191Ir and 193Ir. The spectra of [Ir(CN)6]

3� (ref. 1), [Ir(CN)5Cl]
4�

and [Ir(CN)4Cl2]
4� (ref. 2), and [Ir2(CO)2(PPh3)2(m-RNNNR)2]

1, R ¼ p-tolyl
(ref. 3), show easily recognizable quadrupolar effects. Other nuclei for which
quadrupolar effects might be expected include 151Eu/153Eu, 155Gd and 157Gd,
175Lu, 181Ta, 189Os, and 197Au. When quadrupolar effects are important, it is
usually necessary to take account of the nuclear Zeeman interaction as well.
The nuclear quadrupole and nuclear Zeeman interactions add two more terms

wThis chapter has been taken in part from material first published by Elsevier Publishing in
The Journal of Organometallic Chemistry Library Series, Organometallic Radical Processes, ed.
D. Trogler, 1990, ch. 8. The material from that chapter has been somewhat modified and is
republished here with permission from the publisher. Figures reprinted from the chapter are
designated by an ‘‘[E]’’.
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to the spin Hamiltonian. Since these terms considerably complicate an already
complex situation, we will deal with quadrupole effects in Chapter 7 and
confine our attention here to nuclei for which quadrupolar effects can be
neglected.

When a radical is oriented such that the magnetic field direction is located by
the polar and azimuthal angles, y and j, relative to the g-matrix principal axes,
the resonant field is given, to first order in perturbation theory, by:4

B ¼ B0 �
X

i

Aimi

gmB
ð4:2Þ

where

B0 ¼
hn
gmB

ð4:3Þ

g2 ¼ g2x cos
2 jþ g2y sin

2 j
� �

sin2 yþ g2z cos
2 y ð4:4Þ

A2
i ¼ A2

ixS
2
ix þ A2

iyS
2
iy þ A2

izS
2
iz ð4:5Þ

Sik ¼
gx sin y cosj lixk þ gy sin y cosj liyk þ gz cos y lizk
� �

g
ð4:6Þ

and the lijk are direction cosines indicating the orientation of the kth principal
axis of the ith hyperfine matrix relative to the jth g-matrix principal axis. When
the matrix principal axes are coincident, only one of the lijk in eqn (4.6) will be
nonzero. When the hyperfine matrix components are large, second-order terms4

must be added to eqn (4.2); these result in down-field shifts, proportional tomi
2.

4.2 Solid-state ESR Spectra

So long as they are dilute (to avoid line broadening from intermolecular spin
exchange), radicals can be studied in the solid state as solutes in single crystals,
powders, glasses or frozen solutions. Radicals can be produced in situ by UV-
or g-irradiation of a suitable precursor in a crystalline or glassy matrix. While
many organometallic radicals have been studied in this way,5 it is often easier to
obtain solid-state ESR spectra by freezing the liquid solution in which the
radical is formed. Various techniques then can be used to generate radicals, e.g.,
chemical reactions, electrochemical reduction or oxidation, or photochemical
methods. Furthermore, the radical is studied under conditions more closely
approximating those in which its reaction chemistry is known. Not all solvents
give a satisfactory frozen solution. Highly symmetrical solvent molecules like
benzene tend to freeze with semi-crystalline regions, which leads to undesirable
orientation of the solute molecules. The goal is a completely random
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arrangement of solutes. Toluene gives a good random glass, as do mixtures of
CH2Cl2 and C2H4Cl2 or of tetrahydrofuran and CH2Cl2.

4.2.1 Spectra of Dilute Single Crystals

Spectra of radicals in a dilute single crystal are obtained for various orientat-
ions, usually with the field perpendicular to one of the crystal axes. Each
spectrum usually can be analyzed as if they were isotropic to obtain an effective
g-value and hyperfine coupling constants for that orientation. Since the g- and
hyperfine-matrix principal axes are not necessarily the same as the crystal axes,
the matrices, written in the crystal axis system, usually will have off-diagonal
elements. Thus, for example, if spectra are obtained for various orientations in
the crystal xy-plane, the effective g-value is:

g2j ¼ gxx cosjþ gyx sinj
� �2þ gxy cosjþ gyy sinj

� �2

þ gxz cosjþ gyz sinj
� �2 ð4:7Þ

or

g2j ¼ K1 þ K2 cos 2jþ K3 sin 2j ð4:8Þ

where

K1 ¼
1

2
g2xx þ g2yy þ g2xz þ g2yz þ 2g2xy

� �
ð4:9aÞ

K2 ¼
1

2
g2xx � g2yy þ g2xz � g2yz

� �
ð4:9bÞ

K3 ¼ gxygxx þ gxygyy þ gxzgyz ð4:9cÞ

A sinusoidal plot of gj
2 vs. j can be analyzed to determine K1, K2, and K3.

Exploration of another crystal plane gives another set of Ks that depend on
other combinations of the gij; eventually enough data are obtained to determine
the six independent values of gij (g is a symmetric matrix so that gij ¼ gji). The
g-matrix is then diagonalized to obtain the principal values and the transforma-
tion matrix, elements of which are the direction cosines of the g-matrix
principal axes relative to the crystal axes. An analogous treatment of the
effective hyperfine coupling constants leads to the principal values of the A2-
matrix and the orientation of its principal axes in the crystal coordinate system.

In their 1967 book, Atkins and Symons6a summarized much of the early ESR
work on small inorganic radicals, many of which were produced by photolysis
or radiolysis of single crystals of the precursor molecules. A good example of
the application of the information that can be obtained from such single-crystal
studies is the analysis of the spectrum of NO3, produced by g-irradiation of
KNO3 crystals by Livingston and Zeldes.6b Table 4.1 summarizes the results.
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The data clearly show that NO3 in this medium has axial symmetry, most
likely with a three-fold axis passing through the nitrogen atom. Furthermore,
the relatively small 14N hyperfine splitting is consistent with spin density
localized to a large degree on the oxygen atoms. While the geometry may in
principle also be obtained from vibrational and rotational spectra, the spin
density distribution would be inferred only indirectly without the ESR data.

Dilute solutions of well-oriented paramagnetic molecules can also sometimes
be prepared by co-crystallization with a suitable diamagnetic host. Much of the
early work by Bleaney and co-workers (Chapter 1, ref. 2) on transition metal
ions was carried out this way. In such samples one may often obtain not only
the desired ESR parameters but also determine the orientation of the para-
magnetic molecule within the host crystal. A good example of this approach is
the work by Collison and Mabbs7 who studied [VO(mquin)2] (mquin ¼
2-methylquinolin-8-olate) dissolved in a single crystal of [GaCl(mquin)2], using
both X- and Q-band spectrometers. As it happened, [GaCl-(mquin)2] was not
the perfect host and the ESR matrix axes differed from the crystal axes by 11.71.
Furthermore, the g-matrix axes were not coincident with the A-matrix axes,
being displaced in the xy-plane by a ¼ 27.51. The frozen solution spectrum (in
toluene) of [VO(mquin)2] and the powder spectrum of [VO(mquin)2] in
[GaCl(mquin)2] are nearly identical. Simulations of the powder spectra at X-
and Q-band are shown in Figure 4.1. The spectra of Figure 4.1 illustrate one of
the advantages of higher frequencies over X-band ESR spectra: The various
g-components are better separated and the spectrum is more easily analyzed.

The next section deals with the analysis of frozen solution spectra.

4.2.2 Analysis of Frozen Solution Spectra

Since ESR spectra are normally recorded as the first derivative of absorption vs.
field, observable features in the spectrum of a powder correspond to molecular
orientations for which the derivative is large in magnitude or changes in sign.
For any spin Hamiltonian, there will be minimum and maximum resonant
fields at which the absorption changes rapidly from zero, leading to a large
value of the derivative and features that resemble positive-going and negative-
going absorption lines. Peaks in the absorption envelope correspond to deriv-
ative sign changes and lead to features resembling isotropic derivative lines. The
interpretation of a powder spectrum thus depends on the connection of the
positions of these features to the g- and hyperfine-matrix components.

Frozen solution spectra must be taken in solvents that form good glasses. A
random but homogeneous distribution of the species to be studied is required to
obtain a well-resolved spectrum. Notably, some solvents, such as toluene, can
‘‘crack’’ when frozen, thus giving rise to more features than predicted as spectra

Table 4.1 ESR parameters for NO3
6b

gxx ¼ 2.0232 gyy ¼ 2.0232 gzz ¼ 2.0031
Axx ¼ 3.46 G Ayy ¼ 3.46 G Azz ¼ 4.31 G
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from different regions of the sample will be overlapped. Thawing and refreezing
of the sample often corrects the problem; but it is well to keep the predicted
number of features in mind when attempting to interpret the results. Drago has
given a list of good glass-forming solvents and mixtures.8

Early treatments of powder patterns attempted to deal with the spatial
distribution of resonant fields by analytical mathematics.9 This approach led to
some valuable insights but the algebra is much too complex when non-axial
hyperfine matrices are involved. Consider the simplest case: a single resonance
line without hyperfine structure. The resonant field is given by eqn (4.3).
Features in the first derivative spectrum correspond to discontinuities or
turning points in the absorption spectrum that arise when qB/qy or qB/qj
are zero:

@B

@y
¼ hn

mB

g2z � g2?
g3

sin y cos y ¼ 0 ð4:10aÞ

@B

@f
¼ hn

mB

g2x � g2y

g3
sin2 y sinf cosf ¼ 0 ð4:10bÞ

and

g2? ¼ g2x cos
2 jþ g2y sin

2 j
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N
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CH3

Figure 4.1 Powder spectrum of [VO(mquin)2] in [GaCl(mquin)2]: (bottom) 9.25 GHz
(X-band), (top) 34.99 GHz (Q band).
(Reproduced from ref. 7 with permission, copyright (1987) Royal Society
of Chemistry.)
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These equations have three solutions: (i) y ¼ 0; (ii) y ¼ 901, j ¼ 0; and (iii) y ¼
j ¼ 901. Since y and j are in the g-matrix axis system, observable features are
expected for those fields corresponding to orientations along the principal axes
of the g-matrix. This being the case, the principal values of the g-matrix are
obtained from a straightforward application of eqn (4.10).

Powder spectra with hyperfine structure often can be interpreted similarly
with spectral features identified with orientation of the magnetic field along one
of the g- and hyperfine-matrix principal axes. However, this simple situation
often breaks down. Using a first-order theory and one hyperfine coupling,
Ovchinnikov and Konstantinov10 have shown that eqns (4.10) may have up to
six solutions corresponding to observable spectral features. Three of these
correspond to orientation of B along principal axes, but the ‘‘extra lines’’
correspond to less obvious orientations. Even more extra lines may creep in
when the spin Hamiltonian is treated to second-order or when there is more
than one hyperfine coupling. The problem is illustrated by the resonant field
vs. cos y and j surface shown in Figure 4.2, corresponding to mCu ¼ �3/2 in
the spectrum of Cu(acac)2 (g ¼ 2.0527, 2.0570, 2.2514; ACu ¼ 27.0, 19.5,

Figure 4.2 [E] Resonant field as a function of cos y and j for the mCu ¼ �3/2 ‘‘line’’ of
the frozen solution spectrum of Cu(acac)2, ESR parameters from ref 10.
(Figure reproduced from ref. 13.)
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193.4 � 10�4 cm�1).10 The minimum resonant field, B ¼ 3290.7 G, corresponds
to B along the z-axis (cosy ¼ �1). With B along the x-axis (cosy ¼ 0, j ¼ 01),
the surface shows a saddle point at 3344.3 G (which corresponds to a maximum
in the absorption spectrum and therefore appears with closely spaced maxi-
mum and minimum first-derivative features), and with B along the y-axis (cosy
¼ 0, j ¼ 901) there is a local minimum at 3325.5 G. In addition, another saddle
point occurs in the yz-plane at B ¼ 3371.2 G (cosy ¼ �0.482, j ¼ 901); the only
maximum is in the xz-plane at B¼ 3379.0 G (cosy¼ � 0.459, j¼ 01). Thus five
features are expected and indeed are shown in the computer-simulated spec-
trum of Cu(acac)2 shown in Figure 4.3. Interestingly, the two most intense
features, high-field, correspond to off-axis field orientations and thus are ‘‘extra
lines’’. The situation is more complex when the g- and hyperfine-matrix
principal axes are non-coincident (see below); in this case, none of the features
need correspond to the orientation of B along a principal axis direction.

Since the analytical approach is so complicated, powder patterns have
usually been analyzed by comparing the experimental spectrum with a com-
puter-simulated spectrum using estimates of the g- and hyperfine-matrix com-
ponents.11 Parameters are then adjusted and another simulation computed
until the fit is satisfactory (or the experimentalist loses patience with the
problem). The most straightforward computer simulation method10 involves
computation of the resonant magnetic field using eqn (4.2) for ca. 105 values of
cosy and j for each set of nuclear spin quantum numbers. The field is then
divided into equal increments and the number of times the resonant field falls
between Bi and Bi11 is plotted vs. B to give an approximation to the unbroad-
ened absorption spectrum. The absorption spectrum is then broadened by
numerical convolution with a line shape function and differentiated to give the
desired simulation. Although such a ‘‘cut and try’’ approach to spectrum

Figure 4.3 [E] Computer-simulated first-derivative ESR powder spectrum of Cu(acac)2.
(a) Features corresponding to mCu ¼ �3/2, (b) the complete spectrum.

58 Chapter 4



analysis works reasonably well when there are small numbers of parameters,
analysis of a complex spectrum is exceedingly tedious.

DeGray and Rieger12 have developed a computer algorithm to locate powder
pattern features in spectra, given estimates of the spin Hamiltonian parameters.
The method employs a search of the resonant field surface in cosy, j space for
maxima, minima, and saddle points. Since the search procedure requires
computation of B for only B100 orientations, the method is much faster than
a complete simulation. The predicted locations of spectral features are then
compared with the experimental values and the parameters are refined using a
nonlinear least-squares method. Using this method, relatively complex powder
patterns can be analyzed, provided that the spectrum is sufficiently well-
resolved that enough features can be located and identified to provide statis-
tically significant estimates of the parameters. Even with least-squares fitting,
however, comparison of the experimental spectrum with a high-resolution
computer simulation is required to check the assignments of spectral features.

4.3 Interpretation of the g-Matrix

The g-value of a free electron is a scalar, ge ¼ 2.00232. In a radical species, g
becomes a matrix because of the admixture of orbital angular momentum into S
through spin–orbit coupling. The components of the g-matrix thus differ from ge
to the extent that p-, d-, or f-orbital character has been incorporated, and they
differ from one another, depending on which p-, d-, or f-orbitals are involved.

In general, the components of the g-matrix are given by:

gij ¼ gedij þ 2
X

k

X

m 6¼0

zk m lkij j0h i 0 lkj
�� ��m

� 	

E0 � Em
ð4:11Þ

where the indices i and j refer to molecular coordinate axes (x, y, z), k sums over
atoms with unpaired electron density, and m sums over filled and empty
molecular orbitals with energy Em (E0 is the energy of the SOMO); zk is the
spin–orbit coupling constant for atom k, and lki is the i-component orbital
angular momentum operator for atom k. The integrals hm|lki|ni are easily
computed for an electron centered on a single atom if the MOs are written as
linear combinations of real p or d atomic orbitals. Table 4.2 shows the results of
operation by li on these functions. Thus, for example, in the usual shorthand
notation for p and d orbitals:

zjlxjyh i ¼ i and z2jlyjxz
� 	

¼ �
ffiffiffi
3
p

i

The orbital angular momentum operations needed to calculate integrals for
other orbitals are summarized in Table 4.2.

Notice that dz2 is unique among the d-orbitals in that lz does not couple it to
any other orbital. Thus if the major metal contribution to the SOMO is dz2 , gz
will be close to the free electron value. Accordingly, when one g-matrix
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component is found close to the free electron value, it is often taken as evidence
for a dz2 -based SOMO; such reasoning should be applied with caution, how-
ever, since cancellation of negative and positive terms in eqn (4.11) could have
the same effect.

Spin–orbit coupling to empty MOs (E0�Em o 0) gives a negative contribu-
tion to gij whereas coupling to filled MOs has the opposite effect. Thus, for
example, ESR spectra of d1 vanadium(IV) complexes generally have g-values
less than ge (admixture of empty MOs) whereas d9 copper(II) complexes have
g-values greater than ge (admixture of filled MOs).

Since the g-matrix has only three principal values and there are almost
always many potentially interacting molecular orbitals, there is rarely sufficient
information to interpret a g-matrix with complete confidence. When a well-
resolved and reliably assigned optical spectrum is available, the energy differ-
ences, E0�Em, are known and can be used in eqn (4.11) to estimate the
contribution of the corresponding MOs to the g-matrix. Extended Hückel
MO (EHMO) calculations can be useful (but do not trust EHMO energies!),
but one is most commonly reduced to arguments designed to show that the
observed g-matrix is consistent with the interpretation placed on the hyperfine
matrix.

4.4 Interpretation of the Hyperfine Matrix

Electron–nuclear hyperfine coupling arises mainly through two mechanisms: (i)
The Fermi contact interaction between the nuclear spin and s-electron spin
density; this contribution, designated A, is isotropic and has been discussed in
Chapters 2 and 3. (ii) The electron spin–nuclear spin magnetic dipolar interac-
tion; this contribution is almost entirely anisotropic, i.e., neglecting spin–orbit
coupling, the average dipolar contribution to the hyperfine coupling is zero.

The general form of the dipolar contribution to the hyperfine term of the
Hamiltonian is:

Ĥdipolar ¼ gegNmBmN cSOMO

~S � ~I
r3
� 3ð~S �~rÞð~I �~rÞ

r5

�����

�����
cSOMO

* +

ð4:12Þ

Table 4.2 [E] Angular momentum operations on the real p and d orbitals

lx ly lz

|xi 0 �i|zi i|yi
|yi i|zi 0 �i|xi
|zi �i|yi i|xi 0
|x2�y2i �i|yzi �i|xzi 2i|xyi
|xyi i|xzi �i|yzi �2i|x2�y2i
|yzi ijx2 � y2i þ

ffiffiffi
3
p

ijz2i i|xyi �i|xzi
|xzi �i|xyi ijx2 � y2i �

ffiffiffi
3
p

ijz2i i|yzi
|z2i �

ffiffiffi
3
p

ijyzi
ffiffiffi
3
p

ijxzi 0
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where ge and gN are the electron and nuclear g-values, mB and mN are the Bohr
and nuclear magnetons, and the matrix element is evaluated by integration over
the spatial coordinates, leaving the spins as operators. Equation (4.12) can then
be written:

Ĥdipolar ¼ ~I � Ad � ~S ð4:13Þ

where Ad is the dipolar contribution to the hyperfine matrix, and the total
hyperfine coupling is:

A ¼ AE þ Ad ð4:14Þ

(E is the unit matrix). In evaluating the matrix element of eqn (4.12), the
integration over the angular variables is quite straightforward.14 The integral
over r, however, requires a good atomic orbital wavefunction. Ordinarily, the
integral is combined with the constants as a parameter:

P ¼ gegNmBmN r�3
� 	

ð4:15Þ

P has been computed using Hartree–Fock atomic orbital wavefunctions and
can be found in several published tabulations14–17 and in Appendix 1. Because
of the hr�3i dependence of P, dipolar coupling of a nuclear spin with electron
spin density on another atom is usually negligible.

If an atom contributes px, py, and pz atomic orbitals to the SOMO:

cxjxi þ cyjyi þ czjzi ð4:16Þ

the total p-orbital spin density is (in the Hückel approximation, i.e., neglecting
overlap):

rp ¼ c2x þ c2y þ c2z ð4:17Þ

and the dipolar contribution to the hyperfine matrix can be written:

ðAdÞij ¼
2

5
Plij ð4:18Þ

where the lij are:

lxx ¼ 2c2x � c2y � c2z ð4:19aÞ

lyy ¼ 2c2y � c2x � c2z ð4:19bÞ

lzz ¼ 2c2z � c2x � c2y ð4:19cÞ

lij ¼ �3cicj ði 6¼ jÞ ð4:19dÞ
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The factor of 2/5 and the weighting of the orbital coefficients is determined by
the angular factors.14 Equations (4.17–4.19) can therefore be combined in
matrix notation to write the dipolar hyperfine matrix for p-orbitals as:

Ad ¼ ð2=5ÞPrp
2 0 0
0 �1 0
0 0 �1

0

@

1

A ð4:20Þ

where rp, the spin density, is defined by eqn (4.17). The p-orbital axis corre-
sponds to the positive principal value of the matrix. When the p-orbitals are
written as hybrids, the orbital shape is unchanged, but the principal axes of the
hyperfine matrix, which reflect the spatial orientation of the hybrid p-orbital,
differ from those in which the SOMO was formulated. Thus, for example, a p-
hybrid with cx ¼ cz and cy ¼ 0 corresponds to a p-orbital with the major axis in
the xz-plane and halfway between the x- and z-axes (Euler angle b ¼ 451).

Similarly, if an atom contributes d atomic orbitals to the SOMO,

cz2 jz2
	
þ cyzjyz

	
þ cxzjxzi þ cx2�y2 jx2 � y2

	
þ cxyjxy

	
ð4:21Þ

the total d-orbital spin density is (in the Hückel approximation):

rd ¼ cz2ð Þ2þ cyz
� �2þ cxzð Þ2þ cx2�y2

� �2þ cxy
� �2 ð4:22Þ

and the dipolar contribution to the hyperfine matrix is:18

ðAdÞij ¼
2

7
Plij ð4:23Þ

where P is given by eqn (4.15) and the lij are:

lxx ¼� cz2ð Þ2�2 cyz
� �2þ cxzð Þ2

þ cx2�y2
� �2þ cxy

� �2�2
ffiffiffi
3
p

cz2ð Þ cx2�y2
� � ð4:24aÞ

lyy ¼� cz2ð Þ2�2 cyz
� �2þ cxzð Þ2

þ cx2�y2
� �2þ cxy

� �2þ2
ffiffiffi
3
p

cz2ð Þ cx2�y2
� � ð4:24bÞ

lzz ¼ 2 cz2ð Þ2þ cyz
� �2þ cxzð Þ2�2 cx2�y2

� �2�2 cxy
� �2 ð4:24cÞ

lxy ¼ �2
ffiffiffi
3
p

cz2ð Þ cxy
� �

þ 3 cyz
� �

cxzð Þ ð4:24dÞ

lyz ¼
ffiffiffi
3
p

cz2ð Þ cyz
� �

þ 3 cxzð Þ cxy
� �

� 3 cyz
� �

cx2�y2
� �

ð4:24eÞ

lxz ¼
ffiffiffi
3
p

cz2ð Þ cxzð Þ þ 3 cyz
� �

cxy
� �

þ 3 cxzð Þ cx2�y2
� �

ð4:24fÞ
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The dipolar contribution to the hyperfine matrix for a pure d-orbital is:

Ad ¼ ð�2
7
ÞPrd

2 0 0
0 �1 0
0 0 �1

0

@

1

A ð4:25Þ

where the positive sign applies for dz2 and the negative sign to the other
four orbitals. Hybrid combinations of dyz, dxz, and dxy or dx2�y2 and dxy give
a d-orbital of the same shape and the same dipolar matrix, though the
principal axes in general are different from the axes in which the SOMO was
formulated. Other hybrid orbitals are generally of different shape, reflected by
different principal values of the dipolar matrix, usually with different principal
axes.

Spin–orbit coupling perturbs these results, adding terms to the diagonal
matrix components on the order of P(gi�ge). These can be neglected only
when the g-matrix anisotropy is small. Calculation of the spin–orbit coupling
corrections is fairly straightforward for mononuclear complexes where the
SOMO is composed mainly of d-orbitals from a single metal.19–21 In radicals
with two or more transition metals, the spin–orbit coupling calculation is
seriously nontrivial. A major part of the problem is that the solution must
be gauge-invariant, i.e., it must not depend on the choice of coordinate
system. This problem was addressed in the context of spin–orbit coupling
corrections to the g-matrix,22 with eqn (4.11) as the result, but it has received
only cursory examination with regard to spin–orbit contributions to hyperfine
matrices.23 Fortunately, polynuclear radicals containing first-row transition
metals generally have g-matrix components sufficiently close to ge that the
problem can be ignored. As organometallic radicals with second- and third-
row transition metals appear, the problem will become more urgent; it is to
be hoped that some future theoretician will deem the problem worthy of
attention.

The AO composition of the SOMO can often be deduced from the dipolar
hyperfine matrix, particularly when the radical has enough symmetry to restrict
possible hybridization. Thus an axial hyperfine matrix can usually be inter-
preted in terms of coupling to a SOMO composed of a single p- or d-orbital. A
departure from axial symmetry may be due to spin–orbit coupling effects, if (for
example) A||¼ Az and Ax�AyEP(gx�gy). If the departure from axial symmetry
is larger, it is usually caused by d-orbital hybridization. The procedure is best
illustrated by examples.

4.5 Organometallic Examples

4.5.1 A Low-spin Manganese(II) Complex

The spectrum of the low-spin manganese(II) complex, [Mn(dppe)2(CO)(CN-
Bu)]21, (dppe ¼ Ph2PCH2CH2PPh2), in a CH2Cl2/THF glass is shown in
Figure 4.4(a).24 The spin Hamiltonian parameters, obtained from least-squares
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fitting of the field positions of the spectral features, are given in Table 4.3, and a
simulation based on those parameters is shown in Figure 4.4(b). In this case the
principle axes of the g- and hyperfine-matrices are coincident.

[Mn(dppe)2(CO)(CNBu)]21 has approximate C2v symmetry, although the
actual symmetry is reduced to C2, depending on the conformation of the
CH2CH2 bridges of the dppe ligands. Since it has a nominal d5 configuration,
the SOMO is expected to be one of the ‘‘t2g’’ orbitals of an idealized octahedral
complex – dxz (b1), dyz (b2), or dx2�y2 (a1), where the representations refer to C2v.
The energies of the dxz and dyz orbitals are expected to be lowered by

Figure 4.4 [E] (a) ESR spectrum of [Mn(dppe)2(CO)(CNBu)]21 in frozen CH2Cl2/
THF glass.
(Reproduced with permission from ref. 24, copyright (1987) Royal
Society of Chemistry). (b) Computer simulation using the parameters in
Table 4.3.

Table 4.3 [E] ESR parameters for [Mn(dppe)2(CO)(CNBu)]21

gii 104Aii
Mn (cm�1) 104Aii

P (cm�1)

2.107 30.2 27.2
2.051 20.6 25.3
1.998 146.9 26.4
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back-donation into the p* orbitals of the CO and CNBu ligands so that the
SOMO is likely based on dx2�y2 :

jSOMOi ¼ ajz2
	
þ bjx2 � y2

	
þ � � � ð4:26Þ

Although the isotropic spectrum was not sufficiently resolved to unambigu-
ously determine AMn, other closely related species give isotropic couplings on
the order of 60–70 G;25 if we assume an isotropic coupling in this range, all
three matrix components must have the same sign. If the isotropic hyperfine
coupling is negative, as expected if it arises mostly through polarization of
inner-shell s orbitals, we have AMn ¼ �65.9 � 10�4 cm�1. Assuming that the
SOMO is mostly dx2�y2 , (b 44 a) and including the appropriate spin–orbit
coupling corrections, we have:21,26

Az � AMn ¼ P
4

7
a2 � b2
� �

� 2

3
Dgz �

5

42
Dgx þ Dgy
� �

� �
ð4:27Þ

With Dgz ¼ �0.004, (Dgx þ Dgy) ¼ 0.154, and P ¼ 207.6 � 10�4 cm�1 (ref. 14),
we get (a2�b2) ¼ �0.655. The departure from axial symmetry is due to spin–
orbit coupling and/or dx2�y2=dz2 hybridization,

Ax � Ay ¼ P � 8
ffiffiffi
3
p

7
abþ 17

14
Dgx � Dgy
� �

" #

ð4:28Þ

Substituting the parameters, we have ab ¼ �0.058. (The upper sign applies if
the components are listed in the order x, y, z in Table 4.3, the lower sign if the
order is y, x, z.) Finally, we get b2¼ 0.660, a2¼ 0.005. The dz2 component is not
really significant, given the accuracy of the data and the theory, i.e., most of the
departure from axial symmetry can be explained by the spin–orbit coupling
correction.

Using eqn (4.11), the deviations of the g-matrix components from the free-
electron value, ge, are found to be:

Dgxx ¼ 2zMn

X

k

b2c2yz;k

E0 � Ek
ð4:29aÞ

Dgyy ¼ 2zMn

X

k

b2c2xz;k
E0 � Ek

ð4:29bÞ

Dgzz ¼ 2zMn

X

k

4b2c2xy;k

E0 � Ek
ð4:29cÞ

If we assume coupling with single pure dyz, dxz, and dxy orbitals, we have
DEyz ¼ 16z, DExz ¼ 19z, DExy ¼ –1100z, which is qualitatively consistent with
the expected MO energy level scheme.
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4.5.2 Some Cobalt(0) Radical Anions

ESR spectra of [CpCo(1,3-COD)]� in frozen THF solution and [CpCo(1,5-
COD)]� in frozen DMF have been reported by Geiger and co-workers27 and
are reproduced in Figures 4.5(a) and 4.6(a). These spectra have been

-]2O)Co(C)5Ph5C[(-D)]CO-o(1,5[CpC-])DOC-1,3o(C[Cp

_

_
COOC

Co

Ph

PhPh

PhPh

Co Co

_

Figure 4.5 [E] ESR spectrum of [CpCo(1,3-COD)]�: (a) experimental spectrum in
frozen THF solution.
(Reproduced with permission from ref. 27, copyright (1981) American
Chemical Society.) (b) Computer simulation, based on the parameters in
Table 4.4.
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reinterpreted to give the parameters shown in Table 4.4; computer-simulated
spectra based on these parameters are shown in Figures 4.5(b) and 4.6(b). Also
shown in Table 4.4 are the ESR parameters for [(C5Ph5)Co(CO)2]

�.20

The 59Co hyperfine matrix components must have identical signs in order
that the average values match the observed isotropic couplings; we assume the
signs are negative since the isotropic couplings almost certainly arise from
polarization of inner shell s orbitals (see below).

The SOMO in these radicals is expected from extended Hückel MO calcu-
lations27–29 to be primarily cobalt 3dyz in character. In the Cs symmetry of the
radicals, dyz belongs to the a00 representation and d-hybridization is possible
only with dxy. Assuming that such hybridization is negligible, the g-matrix

Figure 4.6 [E] (a) ESR spectrum of [CpCo(1,5-COD)]� in frozen DMF solution.
(Reproduced with permission from ref. 27, copyright (1981) American
Chemical Society.) (b) Computer simulation, based on the parameters in
Table 4.4.

Table 4.4 [E] ESR parameters for cobalt(0) radical anions

Radical anion gx gy gz 104Ax(cm
�1) 104Ay (cm

�1) 104Az (cm
�1)

[CpCo(1,5-COD)]�a 2.171 2.027 1.985 158.6 36.7 45.8
[CpCo(1,3-COD)]�a 2.151 2.027 1.997 139.2 36.4 38.2
[(C5Ph5)Co(CO)2]

�b 2.018 2.041 1.995 157.9 16.8 44.1

a From ref. 27.
b From ref. 20.
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components are given by:20

Dgxx ¼ 2zCo
X

k

a2 cx2�y2;k
� �2þ3a2 cz2;k

� �2

E0 � Ek
ð4:30aÞ

Dgyy ¼ 2zCo
X

k

a2 cxy;k
� �2

E0 � Ek
ð4:30bÞ

Dgzz ¼ 2zCo
X

k

a2 cxz;k
� �2

E0 � Ek
ð4:30cÞ

The dipolar contribution to the hyperfine matrix is given by eqn (4.20), but
spin–orbit coupling contributions are significant. These often can be expressed
in terms of the g-matrix components, as in the Mn(II) example discussed above,
but here spin–orbit coupling with the four other d-orbitals contributes some-
what differently to the g-matrix and to the hyperfine matrix. The simplest way
of expressing the hyperfine matrix is in terms of the isotropic coupling, the x-
component, and the departure from axial symmetry. With the assumed signs of
the hyperfine components of Table 4.4, eqn (4.31b) can be used unambiguously
to compute a2 ¼ rd with the results shown in Table 4.5.

A ¼ As þ
1

3
P Dgxx þ Dgyy þ Dgzz
� �

ð4:31aÞ

Ax � A ¼ P � 4

7
a2 þ 2

3
Dgxx �

5

42
Dgyy þ Dgzz
� �

� �
ð4:31bÞ

Ay � Az ¼
17P

14
Dgyy þ Dgzz
� �

þ 6a2zP
7

1

DEx2�y2
� 1

DEz2

 !

ð4:31cÞ

Since 3dyz/4s admixture is symmetry-forbidden for these radicals, the Fermi
contact contribution to the isotropic coupling, As, must be entirely from spin
polarization,

As ¼ Qdrd ð4:32Þ

Table 4.5 [E] Electron spin densities in cobalt(0) radical anions

Radical anion rd As
a As/Qd

[CpCo(1,5-COD)]�b 0.681 �97.0 0.740
[CpCo(1,3-COD)]�b 0.591 �87.2 0.666
[(C5Ph5)Co(CO)2]

�c 0.540 �77.4 0.591

a In units of 10�4 cm�1.
b From ref. 27.c From ref. 20.
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Thus we can obtain an independent estimate of the d-electron spin density from
the values of As, taking Qd ¼ �131 � 10�4 cm�1 – estimated from the isotropic
Co coupling in [PhCCo3(CO)9]

� (ref. 18). The results are shown in the last
column of Table 4.5. The spin densities estimated from the isotropic couplings
are consistently about 10% higher than those from the dipolar coupling matrix,
suggesting a systematic error in one of the parameters, but a reliable ordering of
the spin densities.

The g-matrix presents an interesting problem in these cases. EHMO calcu-
lations27,28,29 suggest that the SOMO is the highest-energy MO, which is
primarily cobalt 3d in character. At lower energy is an orbital with dxz
character and still lower, but grouped at about the same energy, are MOs with
dx2�y2 , dxy, and dz2 contributions. Equations (4.30) then would suggest that
Dgxx/4 E Dgyy o Dgzz. With the assignments of Table 4.4, the first relationship
is approximately correct for [CpCo(1,3-COD)]� and [CpCo(1,5-COD)]�, but
very poor for [(C5Ph5)Co(CO)2]

�. The second relationship is not found for any
of the anions. Reversing the y and z assignments makes the agreement worse. In
discussing this problem for [(C5Ph5)Co(CO)2]

�,20 we postulated admixture of
some cobalt 4py character in the SOMO,

jSOMOi ¼ ajyzi þ bjyi þ � � � ð4:33Þ

which would result in additional contributions to gxx and gzz:

gxxðpÞ ¼ 2zpb
2=DEz and gzzðpÞ ¼ 2zpb

2=DEx ð4:34Þ

where zp is the cobalt 4p spin–orbit coupling parameter (zpE zd/3). If MOs with
significant pz or px character lie just above the SOMO, then gxx and gzzwould be
less positive than expected from eqns (4.30), and possibly even negative. The
component gxx is indeed smaller than expected for [(C5Ph5)Co(CO)2]

� and
EHMO calculations do indeed suggest an MO with significant pz character just
above the SOMO in energy; this orbital is apparently substantially higher in
energy in [CpCo(1,3-COD)]� and [CpCo(1,5-COD)]�. An MO with significant
px character, at about the same energy for all three anions, is implied by these
results but is unsubstantiated by the reported EHMO calculations.

4.6 Organic Examples of Solid-state ESR Spectra

Far less effort has been directed at organic solid-state spectra than at organo-
metallics and coordination complexes. Much of the work on organic systems
was done by Walter Gordy and his students at Duke University in the 1960s
and 1970s. We review a couple of these experiments here. More information is
available in Gordy’s book.30

4.6.1 Irradiated Single Crystal of Glycylglycine

Katayama and Gordy31 studied ESR spectra of g-irradiated single crystals of
glycylglycine. The data were analyzed as described above to yield the
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parameters shown in Table 4.6. The axes were defined as follows: z is along the
CH bond, y is in the NCHC plane > to CH, and x is > to the NCHC plane.

The conclusion was that the radical produced by g-irradiation was that
pictured in Table 4.6. This conclusion was based on the larger coupling to H
than to N, but nonetheless there is a significant coupling to N.

4.6.2 X-irradiated Single Crystal of Methylene Diphosphonic Acid

Lucken and co-workers32 subjected a single crystal of methylene diphosphonic
acid to X-irradiation. The ESR spectrum indicated that the radicals produced
were those pictured in Tables 4.7 and 4.8. The spectra were analyzed as
described above and the results are also summarized in the tables. The species
shown in Table 4.7 is the more abundant of the two. The methylene group freely
rotates at room temperature but is stationary at 77 K, where splitting from two
non-equivalent protons is observed for some orientations of the crystal.

Table 4.6 ESR parameters for the glycylglycine radical.31

(H and N hyperfine splittings from nuclei in
structure shown in boldface.)

H3N+

C
C

N
C

CO2
-

HO

H H H

Axis g aH(G) aN(G)

x 2.0028 19 4
y 2.0035 28 3
z 2.0033 9 2

Table 4.7 ESR parameters for the phosphonylmethyl
radical32

P

O

CH2
HO

HO

Axis g aH(G) aP(G)

x 2.0024 16.3 38.7
y 2.0029 27.2 44.3
z 2.0022 20.4 41.4
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4.7 Non-coincident Matrix Axes

In general, the g- and nuclear hyperfine coupling matrices, g and Ai, can be
written in diagonal form with three principal values, i.e., gx, gy, gz and Aix, Aiy,
Aiz. In textbooks on ESR6a,30,33–35 it is usually assumed that the same set of
principal axes diagonalizes all the relevant matrices. While this is sometimes
true, there are many instances where the principal axes are non-coincident.36

4.7.1 Symmetry Considerations

Kneubühl37,38 has given a detailed group theoretical analysis of symmetry
restrictions on the orientations of g- and hyperfine matrix principal axes. His
results are summarized in Table 4.9.

For a nucleus sharing all the molecular symmetry elements (e.g., the metal
nucleus in a mononuclear complex), the hyperfine matrix is subject to the same

Table 4.8 ESR parameters for the diphosphonyl-
methyl radical32

P

C

P

OO

HO

HO
OH

OH

H

Axis g aH(G) aP(G)

x 2.0024 12.7 36.5
y 2.0029 30.0 38.1
z 2.0022 18.5 40.4

Table 4.9 [E] Symmetry restrictions on g-matrix components

Symmetry Triclinic Monoclinic Orthorhombic Axial

Point groups C1, Ci C2, Cs, C2h C2v, D2, D2h Cn, Cnv, Cnh, Dn,
Dnd, Dnh, n 4 2

Restrictions on
diagonal
elements

None None None gxx ¼ gyy

Restrictions on
off-diagonal
elements

None gxz¼ gyz¼ 0 gxz ¼ gyz ¼ gxy ¼ 0 gxz ¼ gyz ¼ gxy ¼ 0

Required
matrix axes

None z x,y,z x,y,z
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restrictions as the g-matrix. In orthorhombic or axial symmetry, such nuclear
hyperfine matrices necessarily share principal axes with the g-matrix. In
monoclinic symmetry, one hyperfine axis is also a g-matrix axis, but the other
two may be different. In triclinic symmetry (C1 or Ci), none of the three
principal axes need be shared by the g-matrix and hyperfine matrix. The
hyperfine matrix for a ligand atom (or for a metal in polynuclear complexes)
is constrained only by the symmetry elements that the nucleus shares with the
molecule.

Although symmetry considerations often permit g- and hyperfine matrix
principal axes to be non-coincident, there are relatively few cases of such non-
coincidence reported in the literature. Most of the examples discussed by
Pilbrow and Lowrey in their 1980 review36 cite cases of transition metal ions
doped into a host lattice at sites of low symmetry. This is not to say that matrix
axis non-coincidence is rare but that the effects have only rarely been recognized.

4.7.2 Experimental Determination of Matrix Axis Orientations

We have seen that spectra of dilute single crystals are analyzed in a way that
gives the orientations of the g- and hyperfine-matrix principal axes relative to
the crystal axes. Historically, most of the information on noncoincident matrix
axes is derived from such studies.

At first glance, it would appear that all orientation dependence should be lost
in the spectrum of a randomly oriented sample and that location of the g- and
hyperfine-matrix principal axes would be impossible. While it is true that there
is no way of obtaining matrix axes relative to molecular axes from a powder
pattern, it is frequently possible to find the orientation of a set of matrix axes
relative to those of another matrix.

The observable effects of matrix axis non-coincidence on powder patterns
range from blatantly obvious to negligible. In general, the effects of axis non-
coincidence will be more noticeable if two (or more) matrices have large
anisotropies that are comparable in magnitude, e.g., DgmBBE DA. This follows
from the fact that minimum and maximum resonant fields are determined by a
competition between extrema in the angle-dependent values of g and A.
Consider the case of non-coincident g- and hyperfine-matrix axes. For large
values of |mI|, the field extrema will be determined largely by the extrema in the
effective hyperfine coupling and will occur at angles close to the hyperfine
matrix axes, but for small |mI| the extrema will be determined by extrema in the
effective g-value and will correspond to angles close to the g-matrix axes. The
result of such a competition is that a series of features that would be equally
spaced (to first-order) acquires markedly uneven spacings.

Two corollaries stem from this generalization. Since a spin-1/2 nucleus gives
only two hyperfine lines, there can be no variation in spacings. Thus powder
spectra cannot be analyzed to extract the orientations of hyperfine matrix axes
for such important nuclei as 1H, 13C, 19F, 31P, 57Fe, and 103Rh. Secondly, since
the observable effects in powder spectra depend on the magnitude of the matrix
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anisotropies, the principal axes of the hyperfine matrix for a nucleus with small
hyperfine coupling generally cannot be located from a powder spectrum, even
though the relative anisotropy may be large.

4.8 Organometallic Examples of Non-coincident Matrix

Axes

4.8.1 A Chromium Nitrosyl Complex

A good example of the effect of g- and hyperfine matrix axis noncoincidence is
the ESR spectrum of [CpCr(CO)2NO]�, studied by Geiger and co-workers;39 a
simulation is shown in Figure 4.7.

Cr

N
O

CC
OO

-

3340 3360 3380 3400 3420 3440

Magnetic Field/Gauss

(a)

(b)

Figure 4.7 (a) Computer simulation of an absorption spectrum, zero line-width,
showing positions mA ¼ �1, 0, þ1. (b) First-derivative spectrum in frozen
DMF.
(Reproduced with permission from ref. 39, copyright (1984) American
Chemical Society.)
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The g- and 14N hyperfine matrices are approximately axial for this radical,
but the g|| axis lies close to the perpendicular plane of the hyperfine matrix. If
the g|| axis was exactly in the A> plane, the three negative-going g||, A>

features, corresponding to resonant field maxima, would be evenly spaced. In
fact, the spacings are very uneven – far more so than can be explained by
second-order shifts. The effect can be understood, and the spectrum simulated
virtually exactly, if the g|| axis is about 151 out of the A> plane.

4.8.2 Iron Pentacarbonyl Ions

Two particularly interesting organometallic examples have been reported by
Morton, Preston and co-workers.40,41 Spectra of single crystals of Cr(CO)6,
doped with 13C- or 57Fe-enriched Fe(CO)5 and g-irradiated at 77 K, showed
two different radicals. One species, identified as Fe(CO)5

1, showed coupling to
57Fe and to a unique 13C nucleus with axial hyperfine matrices sharing principal
axes with the g-matrix.40 Coupling was also observed to four other 13C nuclei
with identical coupling matrices but with the major axis approximately along
the g-matrix x-axis for two nuclei and along the g-matrix y-axis for the other
two. Table 4.10 lists the parameters.

If the radical is square pyramidal (C4v) Fe(CO)5
1 (1), the principal axes of

the g-matrix must be the molecular axes (the C4 axis and normals to the
reflection planes). The iron atom and the carbon of the axial CO group would
have the full symmetry of the group and so these hyperfine matrices would
share principal axes with the g-matrix. The four equatorial carbonyl carbons,
on the other hand, lie in reflection planes, but not on the C4-axis and so are
symmetry-required to share only one principal axis with the g-matrix. In fact,
the major matrix axes for the equatorial carbons are tilted slightly in the –z
direction from the ideal locations along the �x and �y axes. The g-matrix
suggests that the metal contribution is dz2 and the iron hyperfine matrix then
can be used to estimate about 55% iron 3d and 34% axial carbon 2pz spin
density. The spin density on the equatorial carbons then is mostly negative and
due to spin polarization.

The other species observed in irradiated Fe(CO)5-doped crystals of Cr(CO)6
also showed coupling to 57Fe, to a unique 13C, and to four other carbons.
However, in this case g, AFe, and AC1 have only one matrix axis in common
(that corresponding to the third component of each matrix listed in Table 4.10).

Table 4.10 [E] ESR parameters for Fe(CO)5
1 and Fe(CO)5

�a

Fe(CO)þ5 g|| ¼ 2.001 A||
Fe ¼ 9.4 A||

C1 ¼ 19.6 A||
C2-C5¼ (þ)6.4

g>¼ 2.081 A>
Fe ¼ 6.2 A>

C1 ¼ 17.6 A>
C2-C5¼ (þ)8.6

Fe(CO)�5 g1 ¼ 1.989 A1
Fe ¼ 6.7 A1

C1 ¼ 87.4
g2 ¼ 2.003 A2

Fe ¼ 4.5 A2
C1 ¼ 70.7

g3 ¼ 2.010 A3
Fe ¼ 3.2 A3

C1 ¼ 65.7

a Coupling constants in units of 10�4 cm�1. Data from refs. 40 and 41.
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The other 57Fe hyperfine axes are rotated by about 271 and those of the 13C
hyperfine matrix by about 481 relative to the g-matrix axes. Insufficient data
were accumulated to determine the complete hyperfine matrices for the other
four carbons, but the components are considerably smaller (4–15 � 10�4 cm�1).
The hyperfine matrices suggest about 38% iron 3dz2 , 18% carbon 2p, and 6%
carbon 2s spin densities. Using detailed arguments regarding the orientation of
the g-matrix axes relative to the crystal axes, the authors conclude that the
carbon 2p axis is oriented at about 1061 relative to the Fe–C bond axis and that
the Fe–C–O bond angle is about 1191.
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The most striking feature of these results is the orientation of the unique 13C
hyperfine matrix axes, relative to those of the 57Fe hyperfine axes. This
orientation led Fairhurst et al.41 to assign the spectrum to [Fe(CO)5]

� (2)
and to describe the species as a substituted acyl radical. However, these authors
did not discuss the orientation of the g-matrix axes. The y-axis, normal to the
reflection plane, is common to all three matrices. The x- and z-axes of the
g-matrix, however, are oriented about 271 away from the corresponding 57Fe
hyperfine matrix axes. Since the iron d-orbital contribution to the SOMO
appears to be nearly pure dz2 , the 57Fe hyperfine matrix major axis must
correspond to the local z-axis, assumed to be essentially the Fe–C bond. Thus
we must ask: Why are the g-matrix axes different? The SOMO can be written:

jSOMOi ¼ ajz2;Fe
	
þ bxjx;Ci þ bzjz;Ci ð4:35Þ

where a ¼ 0.62, bx ¼ �0.41, and bz ¼ 0.12. Spin–orbit coupling will mix the
SOMO with MOs having iron dyz or dxz character, but dyz is involved in the p
orbitals of the C ¼ O group:

jpi ¼ cyzjyz;Fe
	
þ cyjy;C

	
ð4:36Þ

Assuming that there is only one p orbital close enough in energy to couple
significantly, eqn (4.11) gives the g-matrix components:

Dgxx ¼ 2zFe
3a2c2yz þ

ffiffiffi
3
p

abzcyzcy

DEp
ð4:37aÞ

Dgyy ¼ 2zFe
3a2c2xz
DExz

ð4:37bÞ
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Dgzz ¼ 0 ð4:37cÞ

gxz ¼ �2zFe
ffiffiffi
3
p

abxcyzcy

DEp
ð4:37dÞ

The g-matrix can be diagonalized by rotation about the y-axis by the angle b:

tan 2b ¼ 2gxz

gxx � gzz
¼ �2

ffiffiffi
3
p

abx

3a2 cyz=cy
� �

þ
ffiffiffi
3
p

abz
ð4:38Þ

With b ¼ 271, this expression gives cyz/cy E 0.5, a reasonable result.
This may be a rather general effect; if the unpaired electron in a radical is

delocalized asymmetrically, and other MOs are similarly delocalized, the g-
matrix will have off-diagonal elements that may be large enough to shift the
principal axes away from the molecular coordinate system.

4.8.3 Another Low-spin Manganese(II) Complex

The low-spin manganese(II) complex [Mn(dppe)2-(CO)(CNBu)]21 gave us a
textbook example of a well-behaved ESR spectrum characterized by coincident
g- and hyperfine-matrix principal axes. The nearly identical complex
[Mn(dppm)2(CO)(CN)]1, (dppm ¼ Ph2PCH2PPh2) (ref. 25) provides us with
a good example of non-coincident principal axes. The frozen solution spectrum
(Figure 4.8) shows that the ‘‘parallel’’ features are not evenly spaced.

3000 3200 3400 3600 3800
Magnetic Field/Gauss

Figure 4.8 ESR spectrum of the Mn(II) complex [Mn(dppm)2(CO)(CN)]1 in CH2Cl2/
C2H4Cl2 at 90 K.
(Reproduced with permission from ref. 25, copyright (1993) Royal Society
of Chemistry.)
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The spectrum can be understood if the z-axes of the g- and A-matrices are
displaced by b ¼ 19.61. This, of course, tells us that the molecule does not have
C2v symmetry, and that, unlike the dppe analog, dx2�y2 is not the only Mn
contribution to the SOMO. One way of interpreting the results is that the Mn
contribution to the SOMO incorporates a small amount of dxz character. The
consequence of this hybridization would be to tilt the ‘‘x’’ lobes of dx2�y2 up
and down, i.e., rotation about the y-axis. The reason for this hybridization is
not difficult to discover. If the CH2 groups of the dppm ligands were coplanar
with Mn, the ‘‘x’’ lobes of the dx2�y2 SOMO would be directed toward the
carbon atoms and an anti-bonding interaction would result. To avoid this
interaction, two things happen: (1) incorporation of dxz character tilts the lobes
up and down, away from the C atoms. At the same time, the X-ray structure of
the Mn(II) cation (Figure 4.9) shows that the CH2 groups tilt down and up,
further decreasing the anti-bonding interaction. With only one electron in the
SOMO, the anti-bonding interaction is strong enough to produce this distor-
tion. With two electrons, the neutral parent Mn(I) complex would be expected
to be even more distorted, and an X-ray structure shows that the up and down
displacements of the CH2 groups is approximately doubled.

4.8.4 Chromium(I) Piano-stool Complex

Ordinarily, there is no way of extracting the orientation of the principal axes of
the g-matrix from a powder or frozen solution ESR spectrum. However, there
are exceptional circumstances in which nature is kind to the experimentalist!

Figure 4.9 X-ray structure showing methylene groups tilted up and down to avoid
anti-bonding interaction with the Mn dx2�y2 SOMO in the complex
[Mn(dppm)2(CO)(CN)]1.
(Reproduced with permission from ref. 25, copyright (1993) Royal Society
of Chemistry.)
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Spectra of the low-spin d5 Cr(I) complex [(C5Ph5)Cr(CO)2PMe3]
28 are shown

at 125 and 200 K in Figure 4.10. The low-temperature spectrum shows three
sets of doublets, corresponding to the three g-components (2.104, 2.013, 1.994),
each a doublet due to hyperfine coupling to 31P. As the sample is warmed to
200 K, above the freezing point of toluene, the spectrum still appears as a
‘‘powder pattern’’, but the low-field ‘‘perpendicular’’ features are nearly
averaged and the ‘‘parallel’’ features have shifted slightly upfield (g|| ¼ 2.090,
g> ¼ 2.012).

The exceptionally bulky C5Ph5 ligand apparently moves very slowly at 200 K
but on the ESR time scale the Cr(CO)2PMe3 moiety rotates quickly, producing
a spectrum averaged about the Cr–C5 axis. With this interpretation, we can
assign this axis as the principal axis for g|| measured at 200 K and, noting that
the g|| axis differs from the gz axis by the angle b and that gy and gx are averaged
according to:

2g2jj ¼ g2z þ g2x þ ðg2z þ g2xÞ cos2 2b

Substitution of the g-components gives b ¼ 151.
The symmetry of the static complex is at most Cs, requiring one of the

g-matrix principal axes to be normal to the plane of symmetry – this is assumed

3200 3250 3300 3350 3400 3450

Magnetic Field/Gauss

125 K

200 K

×4

Figure 4.10 Spectra of [(Z-C5Ph5)Cr(CO)2PMe3] in toluene at 125 and 200 K.
(Reproduced with permission from ref. 28, copyright (1996) American
Chemical Society.)
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to be xz. p-Back-bonding to the CO ligands is expected to lead to a hybrid
SOMO. If, as suggested by extended Hückel MO calculations, the SOMO and
first HOMO are of a0 symmetry, and the second HOMO of a00 symmetry:

jSOMOi ¼ a1jx2 � y2
	
þ a2jz2

	
þ a3jxzi

jHOMO1i ¼ b1jx2 � y2
	
þ b2jz2

	
þ b3jxzi

jHOMO2i ¼ c1jxyi þ c2jyzi

the g-matrix components can be computed:42

gxx ¼ ge þ
zCr a1c2 þ

ffiffiffi
3
p

a2c2 þ a3c1
� �2

E0 � E2

gzz ¼ ge þ
zCr 2a1c1 þ a3c2ð Þ2

E0 � E2

gyy ¼ ge þ
zCr a1b3 � a3b1 þ

ffiffiffi
3
p

a3b2 þ a2b3ð Þ
� �2

E0 � E1

gxz ¼ �
zCr 2a1c1 þ a3c2ð Þ a1c2 þ

ffiffiffi
3
p

a2c2 þ a3c1
� �

E0 � E2

Rotation about the y-axis by b diagonalizes the matrix, and we find:

tan 2b ¼ � 2gxz

gzz � gxx

The single experimental observable, b, is hardly enough to evaluate the LCAO
coefficients for the SOMO and second HOMO, but we can compare the results
of an extended Hückel MO calculation. (Since zCr and E0�E2 cancel in the
calculation of tan 2b, the EHMO calculation could come close.) The results are:
a1 ¼ 0.538, a2 ¼ 0.216, a3 ¼ �0.194, c1 ¼ 0.582, c2 ¼ �0.061, b ¼ 14.81.
Nevertheless, if we were to substitute these LCAO coefficients, but also use the
EHMO estimate of the energy difference, into the expressions for gxx, gyy, gzz,
and gxz, the results would be in very poor agreement with experiment; the
moral here is that EHMO calculations, lacking charge self-consistency, usually
have large errors in the energies, but the MO wavefunctions are often fairly
accurate.

4.8.5 [(RCCR0)Co2(CO)6]
�
and [SFeCo2(CO)9]

�

Non-coincident matrix axis effects are seen in the frozen solution spectra of
[(RCCR0)Co2(CO)6]

� (3)18 and [SFeCo2(CO)9]
� (4),43 but the effects are rather

more subtle than those discussed above.
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In these cases, the g-matrix is nearly isotropic, but the principal axes of the
two 59Co hyperfine matrices are non-coincident. The largest hyperfine matrix
component (ay ¼ 66.0 G in the case of the Co-Co-Fe-S cluster) results in 15
features, evenly spaced (apart from small second-order shifts). Another series
of features, less widely spaced, shows some variation in spacing and, in a few
cases, resolution into components. This behavior can be understood as follows:
Suppose that the hyperfine matrix y-axes are coincident and consider molecular
orientations with the magnetic field in the xz-plane. To first order, the resonant
field then is:

B ¼ Bo �m1aþ �m2a� ð4:39Þ

where Bo ¼ hn/gmB and:

a2� ¼ a2z cos
2ðy� bÞ þ a2x sin

2ðy� bÞ ð4:40Þ

where b describes the orientation of the hyperfine matrix z-axes relative to the
g-matrix z-axis. Since g is nearly isotropic, the extrema in B are determined
mostly by the hyperfine term. When m1 ¼ m2, a1 and a� are equally weighted
and the extrema occur at y ¼ 0 or 901, but when m1 a m2, the extrema
correspond to other angles. Consider, for example, the five components of the
m ¼ m1 þ m2 ¼ þ3 feature. With az ¼ 53.6 G, ax ¼ 15.5 G, b ¼ 181, the
hyperfine contributions to the field extrema and the corresponding values of y
are given in Table 4.11. In the experimental spectrum of the Co-Co-Fe-S
cluster, two resolved field maximum features were seen, corresponding to the
first two and the last three of the above components. Since the resolution is
sensitive to the non-coincidence, it was possible to fit the experimental spectrum
to obtain b quite accurately.

Table 4.11 [E] Splitting of m ¼ 3 features in the [SFeCo2(CO)9]
� spectrum43

(m1, m2) ymin (1) (B�B0)
min (G) ymax (1) (B�B0)max (G)

þ7/2,�1/2 �20 37.0 þ67 166.1
�1/2,þ7/2 þ20 37.0 �67 166.1
þ5/2,þ1/2 �15 55.3 þ78 156.9
þ1/2,þ5/2 þ15 55.3 �78 156.9
þ3/2,þ3/2 0 66.5 90 153.6

80 Chapter 4



It is relatively easy to understand the significance of the non-coincident
matrix axes in these cases. For the Co2C2 cluster, the C2v molecular symmetry
permits a specific prediction of the possible matrix axis orientations. The g-
matrix principal axes must be coincident with the molecular symmetry axes.
The two cobalt nuclei are located in a reflection plane (which we label xz) so
that symmetry requires the y-axis to be a principal axis for all three matrices.
The other two axes may be rotated, relative to the molecular x- and z-axes,
by�b. (Since the two nuclei are symmetrically equivalent, the rotations must be
equal and opposite.)

Since the magnitudes and probable signs of the cobalt hyperfine matrices
suggest a SOMO predominantly dz2 in character, the major axes of the
hyperfine matrices approximate the local z-axes at the cobalt atoms and the
angular displacement indicates a bent Co–Co anti-bonding interaction, as
shown in the structure, where the C–C or Fe–S bond axis (the molecular y-
axis) is perpendicular to the plane of the page. Comparison with the crystal
structure of neutral (Ph2C2)Co2(CO)6

44 shows that these local axes are roughly
in the direction of the axial carbonyl ligands (the Co–CO bond is tilted 281
away from the Co–Co vector). Thus it seems reasonable to say that the local
axes on a metal are determined primarily by the more strongly interacting
ligands and that bonds to other atoms can be described as bent.

4.8.6 (o-Xylylene)-Mn(dmpe)2

As part of a study of Mn(II) dialkyls, Wilkinson, Hursthouse, and co-workers45

reported the ESR spectrum of the approximately octahedral (o-xylyl-
ene)Mn(dmpe)2 (Figure 4.11a) (dmpe ¼ Me2PCH2CH2PMe2).

The spectrum was interpreted assuming coincident g- and hyperfine-matrix
axes, but a simulation based on the reported parameters gave a very poor fit to
the published spectrum. On closer examination, it was realized that this is a
rather extreme example of a spectrum influenced by non-coincident g- and
hyperfine matrix principal axes. The clue evident in the spectrum is the large
gap between the mMn ¼ �1/2 and þ1/2 ‘‘parallel’’ features, suggesting one or
more extra features. Figure 4.12 shows a set of simulated spectra for a
hypothetical low-spin Mn(II) species; all seven spectra correspond to the same
g- and hyperfine-matrices, but the angle b, between the g- and hyperfine matrix
z-axes, varies from 0 to 901. As shown in Figure 4.12, it is possible to obtain
spectra with more than six resolved ‘‘parallel’’ features. Indeed, the spectrum is
sufficiently sensitive to the angle that b can be evaluated quite precisely. The
final parameters, based on least-squares fitting of the positions of the resolved
features and the isotropic parameters, are given in Table 4.12; a computer
simulation using these parameters is shown in Figure 4.11(b).

[(o-Xylylene)Mn(dmpe)2] has approximate C2v symmetry, but the ethylene
bridges of the dmpe ligands destroy the reflection planes; the X-ray structure45

shows a small fold at the methylene groups of the o-xylylene ligand, which
destroys the C2 axis. Thus the molecule can be regarded, with increasing
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accuracy, as C2v, Cs, C2, or C1. To explain the matrix axis non-coincidence, the
metal contribution to the SOMO must be a d-hybrid. Since it is a low-spin d5

Mn(II) species, the SOMO is expected to be dominated by one of the orbitals of
the octahedral t2g set – dxz, dyz, or dx2�y2 . This is consistent with a clue
contained in the ESR parameters. The four 31P couplings are apparently
equivalent, and all are relatively small. Thus no lobe of the SOMO can be
directed toward a phosphorus atom, and major dxy or dz2 contributions to the
SOMO can be ruled out. Consider the twelve binary hybrids based on these
orbitals, which are listed in Table 4.13.

Since we know that the hyperfine matrix major axis is not a g-matrix
principal axis, we can immediately reject hybrids 1, 3, 4, 7, 8, and 10 for which
the major axis is a common axis. Hybrids 2 and 6, 5 and 9, and 11 and 12 differ

Mn

C

CP

P

P

P

  x
z

y

Figure 4.11 [E] (a) ESR spectrum of (o-xylylene)Mn(dmpe)2 in frozen toluene
solution.
(Reproduced with permission from ref. 45, copyright (1983) Royal
Society of Chemistry.) (b) Computer simulation of spectrum using
parameters of Table 4.12.
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only in the x- and y-labels and are essentially indistinguishable, so that there are
only three cases to consider in detail.

Hybrid 6 can be written:

jSOMOi ¼ ajx2 � y2
	
þ bjxzi ð4:41Þ

Figure 4.12 [E] Computer-simulated ESR spectra for a hypothetical low-spin Mn(II)
radical with g ¼ (2.100, 2.050, 2.000), AMn ¼ (150, 25, 25) � 10�4 cm�1,
for various values of b, the Euler angle between the g-matrix and hyper-
fine matrix z-axes.

Table 4.12 [E] ESR parameters for (o-xylylene)Mn(dmpe)2
(b ¼ 411)

g 104AMn (cm�1) 104AP (cm�1)

2.110 27 24.5
2.035 27 24.5
2.000 125 24.5
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Straightforward application of eqns (4.24) yields a hyperfine matrix that can be
diagonalized by rotation about the y-axis by the angle b:

tan 2b ¼ �2b=a ð4:42Þ

The g-matrix can be written in relatively simple form if we assume that the only
MOs close enough in energy to contribute significantly are the filled MOs,
primarily dxz and dyz in character. With this assumption, we obtain a matrix
which can be diagonalized by rotation about the y-axis by b0,

tan 2b0 ¼ � 2b=a

1� b=að Þ2
ð4:43Þ

For reasonable values of the hybridization ratio, b/a up to about 0.5, b and b0

can differ by only a few degrees and this kind of hybrid cannot explain the
matrix axis non-coincidence. Following the same reasoning with x and y
interchanged, exactly the same conclusions can be reached for hybrid 2.

Hybrids 11 and 12 are:

jSOMOi ¼ ajxzi þ bjyzi ð4:44Þ

In this case, the hyperfine matrix remains axial, independent of the hybridiza-
tion ratio, although the principal axes are rotated in the xy-plane by an angle a
equal to angle b of eqn (4.43). Assuming that only MOs with predominantly
dxz, dyz, or dx2�y2 character contribute, a g-matrix is found that can be
diagonalized by rotation in the xy-plane by the angle a0, also given by eqn
(4.43). Thus this hybrid gives identical g- and hyperfine matrix principal axes
for all hybridization ratios.

Finally, hybrid 9:

jSOMOi ¼ ajyzi þ bjxyi ð4:45Þ

Table 4.13 [E] SOMO candidates: binary d-hybrids

#

Representation Major Minor Approx. major Common

Cs C2 d-AO d-AO HF axis axis

1 a0 a dx2�y2 dz2 z x,y,z
2 a0 – dx2�y2 dyz z x
3 a0 – dyz dx2�y2 x x
4 a0 – dyz dz2 x x
5 a00 – dxz dxy y x
6 – a dx2�y2 dxz z y
7 – a dxz dx2�y2 y y
8 – a dxz dz2 y y
9 – b dyz dxy x y
10 – – dx2�y2 dxy z z
11 – – dxz dyz y z
12 – – dyz dxz x z
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gives an axial hyperfine matrix with principal axes rotated in the xz-plane by an
angle b, given by eqn (4.43). The g-matrix is somewhat more complicated:

Dg
2z
¼

ac
x2�y2

� �2

DE
x2�y2

þ bcxzð Þ2
DExz

0 �
2ab c

x2�y2

� �2

DE
x2�y2

� ab cxzð Þ2
DExz

0
bcyzð Þ2
DEyz

0

�
2ab c

x2�y2

� �2

DE
x2�y2

� ab cxzð Þ2
DExz

0
2bc

x2�y2

� �2

DE
x2�y2

þ acxzð Þ2
DExz

0

BBBBBBBB@

1

CCCCCCCCA

ð4:46Þ

Diagonalization requires rotation about the y-axis by the angle b0,

tan 2b0 ¼ � 2b

a

2Qþ 1

Q� 1� ðb=aÞ2ð4Q� 1Þ

" #

ð4:47Þ

where

Q ¼
cx2�y2
� �2

DEx2�y2

,
cxzð Þ2

DExz
ð4:48Þ

Since the energy differences, DEx2�y2 and DExz are expected to be comparable,
the parameter Q is probably not far from unity. For Q ¼ 1, eqn (4.47) has a
particularly simple form, tan 2b0 ¼ þ2a/b so that, for small b/a, we expect b E
0 and b0E451, which is entirely consistent with experiment. The axial hyperfine
matrix is in agreement with experiment, and the principal values of the g-matrix
can also be rationalized with reasonable values of Q and b/a. A small rotation
of dyz about the y-axis might reflect the small displacements of the phosphorus
atoms from the idealized octahedral positions.

An extended Hückel MO calculation supports the assumptions made in the
above analysis in that the three ‘‘t2g’’ orbitals are indeed close together in
energy and remain nearly nonbonding metal-based d-orbitals. The detailed
agreement is less satisfactory: the SOMO is predicted to be primarily dx2�y2
with a small dxz admixture (hybrid 6 of Table 4.13), a result that can be ruled
out from our analysis of the ESR results. The EHMO overlap matrix based on
the X-ray structure suggests that the molecule is much closer to C2 symmetry
than to Cs. If we accept that conclusion, then dxz/dxy hybridization is less likely
than dyz/dxy, as we tacitly assumed above.

Several alternative explanations were considered for the matrix axis non-
coincidence. In particular, it seemed possible that delocalization of spin density
into the o-xylylene ligand, either through the s-bonds or into the p-system,
might lead to significant contributions to the off-diagonal terms of the g-matrix.
While the EHMO calculations suggest that the MOs containing dx2�y2 and dyz
do have contributions from the carbon atoms of the o-xylylene group, the
amount is far too small to rationalize rotation of the g-matrix axes by 411;
indeed, to explain the effect in this way would require each of several carbon
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atoms to contribute 5% or more to the MOs with dx2�y2 or dyz character, which
is unreasonably large considering the poor overlap of these metal d-orbitals
with the relevant carbon orbitals.

4.8.7 Cobalt Dithiolene Complexes

In the 1960s and 1970s, dithiolene complexes were very popular subjects for
investigation by inorganic chemists. An ESR spectrum was reported46 for one
such complex, the structure of which is shown in Figure 4.13, coordinated with
an axial PPh3 ligand. A simulation based on a redetermination of the ESR
parameters47 is also shown in Figure 4.13.

Careful examination of the spacings of the 59Co hyperfine lines in the
spectrum reveals that the g and A-axes are non-coincident. This tells us that
the symmetry cannot be as high as C2v. This is surprising since several crystal
structures obtained for iron dithiolene complexes are textbook examples of
square pyramidal complexes of C2v symmetry. Accordingly, Carpenter, et al.47

determined the structure of the above complex and obtained ESR spectra for
various complexes with different steric requirements. The non-coincidence
angle a is given in Table 4.14.

Co

SS

SS

CF3

CF3F3C

F3C
P(Ph)3

3100 3200 3300 3400 3500 3600
Magnetic Field/Gauss

Figure 4.13 Simulation of ESR spectrum of the above cobalt dithiolene complex in
frozen toluene at 77 K.
(Reproduced with permission from ref. 47, copyright (1994) Royal Soci-
ety of Chemistry.)
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Clearly, from inspection of Table 4.14, there is a good correlation between
the steric bulk of R and L and the non-coincidence angle a. Furthermore,
analysis of the hyperfine parameters leads to the conclusion that only about
25% of the electron spin resides in Co orbitals (mainly dxz), and crystal
structures of the R ¼ CF3, L ¼ PPh3 and P(OPh)3 complexes do indeed show
distortions. The difference between iron and cobalt is just one electron, but this
electron occupies a dithiolene p* orbital, which makes the cobalt complexes
much more easily distorted.

4.9 ‘‘g-Strain’’

ESR spectral lines in a frozen solution or powder spectrum are sometimes
peculiarly broad. The phenomenon is sometimes called ‘‘g-strain’’. In most
cases, the matter is dropped at that point and no attempt to explain further is
made. A successful interpretation of the effect has, however, been made for
some organometallic radicals.48

Figure 4.14 shows the ESR spectrum of [Mn(CO)(dmpe)Cp]1. Clearly, the
‘‘parallel’’ features are rather variable in line width, with the low-field lines
broad and the high-field lines narrow. The ESR parameters for this spectrum49

are given in Table 4.15 where b is the angle between the g-matrix z-axis and the
hyperfine matrix z-axis.

Because of the non-coincidence of the g- and A-matrix principal axes, the
various ‘‘parallel’’ features correspond to different orientations of the mag-
netic field in the g-matrix principal axis system. These orientations are given in
Table 4.16.

If the excess width is associated with orientation along the g-matrix z-axis, we
expect all widths to increase in the order mI ¼ �1/2o �3/2o �5/2oo þ5/2o
þ3/2 o þ1/2, and this is observed. The field position of a spectral feature can
be written as:

B ¼ hn � kmI

geffmB
ð4:49Þ

Table 4.14 Non-coincidence angles for [Co{S2C2R2}2L]. (Data reproduced
with permission from ref. 47, copyright (1994) Royal Society of
Chemistry.)

R L a (1)

CN Pet3 2 � 2
CF3 P(OPh)3 11 � 5
CF3 PPh3 16 � 1

Ph P(OPh)3 11 � 5
Ph PPh3 24 � 1
4-MePh Pet3 10 � 2
4-MePh PPh3 24 � 1
4-MeOPh PPh3 31 � 2
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where k is the angle-dependent hyperfine coupling and geff is given by eqn
(4.50):

geff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2z cos
2 yþ g2x cos

2 jþ g2y sin
2 j

� �
sin2 y

r

ð4:50Þ

Differentiating B with respect to gz, we see that the line width of a feature depends
not only on the orientation in the field but also on the magnitude of the field:

@B

@gz
¼ �Bgz

g2eff
cos2 y ð4:51Þ

Values of |qB/qgz| are given in Table 4.16, as are values of wexcess [computed from
eqn (4.52)].

wexcess ¼ wg @B=@gzj j ¼ wgB=gz ð4:52Þ

Figure 4.14 ESR spectrum of [Mn(CO)(dmpe)Cp]1 in 1:1 CH2Cl2:C2H4Cl2.
(Reproduced from ref. 48, with permission.) (a) Experimental spectrum at
120 K, (b) simulation with parameters of Table 4.15 and constant 4.1 G
Gaussian line widths, (c) simulation with constant 4.1 G line widths, wg ¼
0.0049. (Reproduced with permission from ref. 48, copyright (1997)
American Chemical Society.)

Table 4.15 ESR parameters for [Mn(CO)(dmpe)Cp]148

g1 g2 g3 104A1 (cm
�1) 104A2 (cm

�1) 104A3 (cm
�1) b (1)

2.000 2.021 2.187 35.6 ca. 0 115.3 45.4
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The experimental value of wexcess is defined by wexcess ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
low � w2

high

q
where

whigh ¼ 4.1 G (the �3/2 line was used since the �1/2 line was subject to
destructive interferences by a divergence feature). The simulation in Figure
4.14(c) is based on wg ¼ 0.0049 G. A very similar explanation deals with the
broader low-field features in the ESR spectrum of [Cr(CO)2(PMe3)(Z-C5Ph5)]
(ref. 28) (Figure 4.10).
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CHAPTER 5

ESR Kinetic Studies

One of the first uses of ESR spectra to measure the rate of a chemical reaction
was by Ward and Weissman in the early 1950s.1 They made use of a form of the
Heisenberg uncertainty principle (eqn 5.1) to relate the lifetime of a spin state to
the uncertainty in the energy of the state.

dEdt � �h ð5:1Þ

Thus, if the lifetime of a spin state is dt, the energy level is broadened by an
amount �h/dt, with consequences for ESR line widths. Ward and Weissman1

added some unreduced naphthalene to a solution of the radical anion, and,
from the observed broadening, computed dt, and from dt the rate constant for
the electron transfer reaction:

C10H8 þ ½C10H8��  ! ½C10H8�� þ C10H8

The result is very rapid electron exchange, as expected, with k ¼ 1 � 106

L mol�1 s�1.
This approach works well for electron transfer reactions where the rate is

simply related to the broadening, but to proceed further in kinetic applications
of ESR spectroscopy we must deal with the Bloch equations and modified
Bloch equations.

The phenomenological equations proposed by Felix Bloch in 19462 have had
a profound effect on the development of magnetic resonance, both ESR and
NMR, on the ways in which the experiments are described (particularly in
NMR), and on the analysis of line widths and saturation behavior. Here we will
describe the phenomenological model, derive the Bloch equations and solve
them for steady-state conditions. We will also show how the Bloch equations
can be extended to treat inter- and intramolecular exchange phenomena and
give examples of applications.

5.1 Bloch’s Phenomenological Model

When a magnetic field is applied to an electron or nuclear spin, the spin
quantization axis is defined by the field direction. Spin magnetic moments
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aligned with the field are only slightly lower in energy than those aligned
opposed to the field. If we consider an ensemble of spins, the vector sum of all
the spin magnetic moments will be a non-zero net magnetic moment or
macroscopic magnetization:

~M ¼ S
i
~mi ð5:2Þ

At equilibrium ~M is in the direction of the field ~B. If somehow ~M is tilted
away from ~B there will be a torque that causes ~M to precess about ~B with the
equation of motion:

d ~M

dt
¼ g~B � ~M ð5:3Þ

where g ¼ 2pgmB/h (or gmB/�h). In addition to the precessional motion, there are
two relaxation effects.

If M0 is the equilibrium magnetization along ~B and Mz is the z-component
under non-equilibrium conditions, then we assume that Mz approaches M0

with first-order kinetics:

dMZ

dt
¼ �MZ �Mo

T1
ð5:4Þ

where T1 is the characteristic time for approach to equilibrium (the reciprocal
of the rate constant). Since this process involves transfer of energy from the spin
system to the surroundings (conventionally called the ‘‘lattice’’), T1 is called the
spin–lattice relaxation time. Since electrons are much more strongly coupled to
molecular interactions than are nuclei (which are buried in a sea of inner-shell
electrons), it is not surprising that T1 for electrons is usually much shorter (on the
order of microseconds) than are nuclear T1s (on the order of seconds).

There is a second kind of relaxation process that is at least as important for
magnetic resonance as the T1 process. Suppose that ~M is somehow tilted down
from the z-axis toward the x-axis and the precessional motion is started. Each
individual magnetic moment undergoes this precessional motion, but the
individual spins may precess at slightly different rates. Local shielding may
cause small variations in ~B or the effective g-factor may vary slightly through
the sample. Thus an ensemble of spins that all start out in phase will gradually
lose phase coherence – the individual spins will get out of step. We assume that
there is a characteristic time for this process, called the transverse relaxation
time, T2, and that the transverse magnetization components decay to the
equilibrium value of zero accordingly:

dMx

dt
¼ �Mx

T2

dMy

dt
¼ �My

T2
ð5:5Þ

Notice that dephasing of the transverse magnetization does not affect Mz; a T2

process involves no energy transfer but, being a spontaneous process, does
involve an increase in the entropy of the spin system.
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It should be emphasized that the approach to equilibrium by a T1 process, in
which Mz approaches M0, also causes Mx and My to approach zero. Thus, the
T2 of eqn (5.5) must include both the effects of spin–lattice relaxation as well as
the dephasing of the transverse magnetization. Transverse relaxation is often
much faster than spin–lattice relaxation and T2 is then determined mostly by
spin dephasing. In general, however, we should write:

1

T2
¼ 1

T1
þ 1

T20
ð5:6Þ

where T20 is the spin dephasing relaxation time, and T2 is the observed
transverse relaxation time.

In ESR, it is also customary to classify relaxation processes by their effects on
electron and nuclear spins. A process that involves an electron spin flip
necessarily involves energy transfer to or from the lattice and is therefore a
contribution to T1; we call such a process nonsecular. A process that involves
no spin flips, but which results in loss of phase coherence, is termed secular.
Processes that involve nuclear spin flips but not electron spin flips are, from the
point of view of the electron spins, nonsecular, but because the energy trans-
ferred is so small (compared with electron spin flips) these processes are termed
pseudosecular.

5.1.1 Derivation of the Bloch Equations

Combining eqns (5.3)–(5.5), we have:

d ~M

dt
¼ g~B � ~M � î

Mx

T2
� ĵ

My

T2
� k̂

Mz �M0

T1
ð5:7Þ

In a magnetic resonance experiment, we apply not only a static field B0 in the
z-direction but an oscillating radiation field B1 in the xy-plane, so that the total
field is:

~B ¼ î B1 cos otþ ĵB1 sin otþ k̂B0 ð5:8Þ

Note that there are other possible ways to impose a time-dependent B1. The one
described in eqn (5.8) corresponds to a circularly polarized field initially aligned
along the x-axis and rotating about the z-axis in a counterclockwise direction.

The vector product of eqn (5.7) then becomes:

~B � ~M ¼� î B0My � B1Mz sin ot
� �

þ ĵ B0Mx � B1Mz cos ot½ �
þ k̂B1 My cos ot�Mx sin ot

� �

Inserting this expression in eqn (5.7) and separating it into components, we get:

dMx

dt
¼ �gB0My þ gB1Mz sin ot�Mx

T2
ð5:9aÞ
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dMy

dt
¼ gB0Mx � gB1Mz cos ot�My

T2
ð5:9bÞ

dMz=dt ¼ gB1 My cos ot�Mx sin ot
� �

� Mz �M0ð Þ=T1 ð5:9cÞ

It is convenient to write Mx and My as:

Mx ¼ u cos otþ v sin ot ð5:10aÞ

My ¼ u sin ot� v cos ot ð5:10bÞ

or

u ¼Mx cos otþMy sin ot ð5:11aÞ

v ¼Mx sin ot�My cos ot ð5:11bÞ

This is equivalent to transformation into a coordinate system that rotates
with the oscillating field; u is that part of Mx which is in-phase with B1 and v is
the part which is 901 out of phase. Differentiating eqn (5.11a) and substituting
eqns (5.9a) and (5.9b), we get:

du

dt
¼ dMx

dt
cos ot�Mxo sin otþ dMy

dt
sin otþMyo cos ot

¼ gB0 � o½ � Mx sin ot�My cos ot
� �

�Mx cos otþMy sin ot
T2

and substituting from eqns (5.11):

du

dt
¼ � o� gB0½ �v� u

T2
ð5:12aÞ

Similarly, we obtain:

dv

dt
¼ o� gB0½ �u� v

T2
þ gB1Mz ð5:12bÞ

dMz

dt
¼ �gB1v�

Mz �M0

T1
ð5:12cÞ

Equations (5.12a–c) are the Bloch equations in the rotating coordinate frame.

5.1.2 Steady-state Solution

In a continuous wave (CW) magnetic resonance experiment, the radiation field
B1 is continuous and B0 is changed only slowly compared with the relaxation
rates (so-called slow passage conditions). Thus a steady-state solution to eqns
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(5.12) is appropriate. Setting the derivatives to zero and solving the three
simultaneous equations, we get:

u ¼ gB1M0ðo0 � oÞT2
2

1þ T2
2 ðo0 � oÞ2 þ g2B2

1T1T2

ð5:13aÞ

v ¼ gB1M0T2

1þ T2
2 ðo0 � oÞ2 þ g2B2

1T1T2

ð5:13bÞ

Mz ¼
M0 1þ T2

2 ðo0 � oÞ2
h i

1þ T2
2 ðo0 � oÞ2 þ g2B2

1T1T2

ð5:13cÞ

where o0 ¼ gB0 is called the Larmor frequency and corresponds, in a quantum
mechanical description of the experiment, to the (angular) frequency of the
energy level transition.

Notice that as B1 approaches zero, u and v go to zero and Mz approaches
M0, as expected. That is, it is the transverse oscillating field that causes
the magnetization to have a non-equilibrium value. On the other hand, as
B1 increases, Mz decreases (moves away from equilibrium); u and v at first
increase with increasing B1, but eventually they decrease as the third term in the
denominator begins to dominate.

Recall that u is the transverse magnetization component in-phase with the
driving field B1. In general a response that is exactly in phase with a driving
signal does not absorb power from the signal source and in spectroscopy
corresponds to dispersion – in optical spectroscopy dispersion results from a
small reduction of the speed of light as it traverses the medium; but the problem
can also be formulated so that optical dispersion is described in a way closely
analogous to the Bloch equations description. An out-of-phase response, in
contrast, corresponds to absorption. In magnetic resonance, it is usually the
absorption, or v-mode, that is detected and so we confine our attention to
eqn (5.13b) in what follows.

When the microwave or radiofrequency power, proportional to B1
2, is small

so that g2B1
2T1T2 oo 1, eqn (5.13b) becomes:

v ¼ gB1M0T2

1þ T2
2 ðo0 � oÞ2

ð5:14Þ

A plot of v vs. T2(o0 – o) is shown in Figure 5.1. Equation (5.14) corresponds
to the classical Lorentzian line shape function and the absorption curve of
Figure 5.1 is a Lorentzian ‘‘line’’. The half-width at half-height is easily found
to be:

Do ¼ 1

T2
or Dn ¼ 1

2pT2
or DB ¼ �h

gmBT2

where the last form is appropriate when (as in CW ESR) B0 is changed while
keeping o constant.
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When the absorption is detected via small amplitude field modulation, the
signal is proportional to the first derivative of absorption:

dv

do
¼ 2gB1M0T

3
2 ðo0 � oÞ

1þ T2
2 ðo0 � oÞ2

h i2 ð5:15Þ

Figure 5.2 shows a Lorentzian derivative line.
In first-derivative spectra, it is most convenient to describe the line width as

the separation between derivative extrema. This width may be computed by
taking the second derivative and finding the zeros, obtaining:

Do ¼ 2
ffiffiffi
3
p

T2

or Dv ¼ 1
ffiffiffi
3
p

pT2

or DB ¼ h
ffiffiffi
3
p

pgmBT2

The absorption derivative amplitude is proportional to T2
2 whereas the width is

proportional to T2
�1. In other words, the derivative amplitude is inversely

proportional to the square of the line width. Furthermore, the product of the
amplitude and the square of the width is independent of T2 and is sometimes
taken as a measure of the intensity of the line, i.e., proportional to M0.

Notice that in the limit of small B1 [where eqns (5.14) and (5.15) are valid] the
derivative amplitude increases linearly with B1, that the width is independent of
B1 and that neither width nor amplitude depends on T1. At higher power,
g2B1

2T1T2 cannot be neglected in eqn (5.13b), the amplitude is no longer linear

-4 -2 0 2 4

T2(ω - ω0)

Figure 5.1 A Lorentzian absorption line.
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in B1 and both amplitude and width depend on T1. Eventually, the amplitude
begins to decrease with increasing B1 and we say that the resonance is saturated.
In quantum mechanical language this corresponds to equalization of the energy
level populations and reduction of net absorption.

5.2 Chemical Exchange – The Modified Bloch Equations

Suppose we have a system in which a spin can exist in either of two different
sites, A or B, and that these are distinguished by different resonant frequencies,
oA and oB, and/or by different relaxation times, T2A and T2B. If there is no
exchange between sites, site A spins and site B spins can be described separately
and independently by sets of Bloch equations. When exchange takes place,
however, additional rate terms – completely analogous to terms in chemical
rate equations – must be added to the Bloch equations.

The algebra we are about to get into can be compacted somewhat by
introducing the complex magnetization, G ¼ u þ iv, so that eqns (5.12a) and
(5.12b) can be combined to obtain:

dG

dt
¼ du

dt
þ i

dv

dt
¼ � G

T2
þ iðo0 � oÞGþ igB1M0 ð5:16Þ

In eqn (5.16), we have ignored the difference betweenM0 andMz and so have
assumed that B1 is small.

-4 -2 0 2 4

T2(ω - ω0)

Figure 5.2 A Lorentzian first-derivative line.
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Spins at site A will have magnetization GA and those at site B will have
magnetization GB. We now assume that A and B are interconverted by first-order
kinetics with an A- B rate constant tA

�1 and a B - A rate constant tB
�1. The

site A magnetization thus decreases with a rate term –GA/tA and increases with
rate GB/tB. Combining these terms with eqn (5.16) for site A:

dGA

dt
¼ � GA

T2A
� GA

tA
þ GB

tB
þ iðoA � oÞGA þ igB1M0A ð5:17aÞ

and a similar expression for site B:

dGB

dt
¼ � GB

T2B
þ GA

tA
� GB

tB
þ iðoB � oÞGB þ igB1M0B ð5:17bÞ

The rather fearsome algebra can be somewhat simplified by defining:

aA ¼ T�12A � iðoA � oÞ; aB ¼ T�12B � iðoB � oÞ

and noting that, at chemical equilibrium:

pA

pB
¼ tA

tB
and pA þ pB ¼ 1

where pA and pB are the fractions of the population at sites A and B. Defining a
mean lifetime:

t ¼ tAtB
tA þ tB

several useful relations result:

pA ¼
tA

tA þ tB
pB ¼

tB
tA þ tB

t ¼ pAtB ¼ pBtA

Also, if M0 is the total equilibrium magnetization, we can write:

M0A ¼ pAM0 M0B ¼ pBM0

With these relations, it is possible to find the steady-state solution to eqns (5.17):

G ¼ GA þ GB ¼ igB1M0
tA þ tB þ tAtBðpAaA þ pBaBÞ

1þ tAaAð Þ 1þ tBaBð Þ � 1
ð5:18Þ

The absorption signal, of course, is the imaginary part of eqn (5.18); the
equation is too horrible to contemplate, but computer-simulations, such as those
shown in Figures 5.3 and 5.4, are relatively easy to produce. There are two
limiting cases where the equations are easier to understand. In the slow exchange
limit, where tA

�1 and tB
�1 are both small compared with |oA – oB|, the
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absorption, v ¼ Im(G), is:

v ¼
gB1M0pA T�12A þ t�1A

� �

T�12A þ t�1A

� �2þ oA � oð Þ2
þ

gB1M0pB T�12B þ t�1B

� �

T�12B þ t�1B

� �2þ oB � oð Þ2
ð5:19Þ

which corresponds to two Lorentzian lines centered at oA and oB and with
widths ðT2A�1 þ tA�1Þ and ðT2B�1 þ tB�1Þ. In other words, the lines are
unshifted but are broadened by an amount proportional to the reciprocal of
the lifetimes.

In the fast exchange limit, where tA
�1 and tB

�1 are both large compared with
|oA – oB|, the absorption is:

v ¼ gB1M0T
�1
2

T�22 þ ðo0 � oÞ2
ð5:20Þ

-5 0 5 -5 0 5 -5 0 5

(ω - ω0)

τ = 0.001 τ = 0.01 τ = 0.02

τ = 0.05 τ = 0.1 τ = 0.2

τ = 0.5 τ = 1.0 τ = 10

Figure 5.3 Absorption curves, computed using eqn (5.18) for various values of t, and
oA ¼ o0 � 5, oB ¼ o0þ5, T2A

�1 ¼ T2B
�1 ¼ 0.5, PA ¼ PB ¼ 0.5.
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where

o0 ¼ pAoA þ pBoB

1

T2
¼ pA

T2A
þ pB

T2B
þ pApBðoA � oBÞ2t

Thus a single Lorentzian line is obtained that is centered at a weighted average
resonant frequency and has a width proportional to a weighted average
T�12 plus a term proportional to the average lifetime and the square of the
separation of the slow exchange resonances.

In the so-called intermediate exchange region, eqn (5.18) is not easily tractable
and recourse is usually made to computer simulations. Qualitatively, however,
it is clear that as the rate increases, the separate resonances of the slow
exchange limit broaden, shift together, coalesce and then begin to sharpen
into the single line of the fast exchange limit.

-5 0 5 -5 0 5 -5 0 5

(ω - ω0)

x2/3
τ = 0.001

x4
τ = 0.05

x20
τ = 0.1

x20
τ = 0.2

x1
τ = 10

x4
τ = 1.0

x10
τ = 0.5

x1
τ = 0.01

x2
τ = 0.02

Figure 5.4 First-derivative curves, computed using eqn (5.18) for various values of t,
and oA¼ o0� 5, T2A�1 ¼ T2B�1 ¼ 0:5, pA ¼ pB¼ 0.5; note that the vertical
scale differs – the plots are magnified by the factors shown.
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Simulations spanning all three exchange regions are shown in Figures 5.3
and 5.4.

5.3 Further Discussion of Line Shapes

Lorentzian line shapes are expected in magnetic resonance spectra whenever the
Bloch phenomenological model is applicable, i.e., when the loss of magnetiza-
tion phase coherence in the xy-plane is a first-order process. As we have seen, a
chemical reaction meets this criterion, but so do several other line broadening
mechanisms such as averaging of the g- and hyperfine matrix anisotropies
through molecular tumbling (rotational diffusion) in solution.

Some sources of line broadening, however, cannot be thought of as first-order
rate processes. For example, when the magnetic field is inhomogeneous and
varies over the sample, not all the molecules are at resonance at the same nominal
field. It is usually reasonable to guess that the field has a Gaussian distribution
(i.e., a normal error distribution), so that the resonance line will also have a
Gaussian shape. Various other effects can lead to such inhomogeneous broadening
and thus to Gaussian line shapes. For example, the instantaneous chemical
environment may vary from one radical to another because of different degrees
of solvation or ion pairing. Probably for such reasons, Gaussian line shapes are
commonly observed in frozen solution ESR spectra. Unresolved hyperfine
couplings also often give a resonance line with an approximately Gaussian shape.

The Gaussian line shape function can be written:

SðoÞ ¼ e�ðo�o0Þ2=2d2 ð5:21Þ

so that the half-width at half-height is

Half width ¼
ffiffiffi
2
p

ln 2 d ¼ 0:980 d

and the derivative width (between extrema) is exactly 2d.
A Gaussian line and its first derivative are shown in Figures 5.5 and 5.6.

Comparison with Figures 5.1 and 5.2 shows that the Gaussian line is somewhat
fatter near the middle but lacks the broad wings of the Lorentzian line.

5.4 Applications of the Modified Bloch Equations

ESR spectra of the radical anion of bis-(diphenylphosphino)maleic anhydride
(BMA),3 are shown in Figure 5.7. These spectra provide a good example of
dynamical line-width effects. This radical shows a 1:2:1 triplet spectrum at
higher temperatures, aP ¼ 3.52 G at 240 K, but the phosphorus coupling is
strongly temperature dependent and extra lines appear at 200 K and below,
indicating a dynamical equilibrium between two isomeric forms of the radical,
one having two equivalent P nuclei (1:2:1 triplet spectrum), the other two non-
equivalent P nuclei (doublet of doublets spectrum). The lines broaden with
increasing temperature and coalesce at about 220 K.
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These data can be understood in terms of two rotational isomers of BMA�

(1 and 2).

CC

Ph2P PPh2

C
O OO

CC

Ph2P

C
O OO

1 2

C

Ph2P

C

-4 -2 0 2 4
(ω−ω0)/δ

Figure 5.5 Gaussian absorption line.

-4 -2 0 2 4
(ω−ω0)/δ

Figure 5.6 First-derivative Gaussian line.
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Detailed analysis led to the thermodynamic and kinetic parameters: DH1 ¼
0.8 � 0.2 kJ mol�1, DS1 ¼ –4 � 1 J mol�1 K�1 (K160 ¼ 3.0); DHw ¼ 18.2 � 0.4
kJ mol�1, DSw ¼ �30 � 2 J mol�1 K�1 (k200 ¼ 1.9 � 106 s�1).

A very similar application of the modified Bloch equations was based
in the work of Adams and Connelly.4 ESR spectra (Figure 5.8) of
[Mo{P(OMe)3}2(MeCRCMe)Cp] show the expected triplet (two equivalent
31P nuclei) at 280 K, but only a doublet at 160 K. At intermediate temperatures,
the lines broaden. The interpretation is that the alkyne undergoes a pendulum
oscillation, which in the extrema diverts spin density from one or the other
phosphite. Interestingly, the diamagnetic cation undergoes a similar motion on
the NMR time scale, but then the alkyne undergoes a complete rotation. Thus,
analysis of the effect leads to a measure of the rate of the oscillation. The

3365 3370 3375 3380
Magnetic Field/Gauss

280 K

260 K

240 K

220 K

200 K

180 K

160 K

Figure 5.7 Isotropic ESR spectra of the BMA radical anion in THF solution at various
temperatures.
(Reproduced with permission from ref. 3, copyright (1998) American
Chemical Society.)
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resulting kinetic parameters are DHw ¼ 13.2 � 0.3 kJ mol�1, DSw ¼ �14 �
2 J mol�1 K�1, k298 ¼ 1.0 � 109 s�1.

Casagrande et al.5 have used line-width effects to study the rate of fluxiona-
lity in (Ph2C2)Co(CO)[P(OMe)3]2. The experimental spectrum (Figure 5.9a),

3340 3360

240 K

3340 3360
Magnetic Field/Gauss

220 K

3340 3360 3340 3360

220 K 180 K

Figure 5.8 ESR spectra of [Mo{P(OMe)3}2(MeCRCMe)-Cp] in 2:1 THF–CH2Cl2.
(Reproduced with permission from ref. 4, copyright (2001) Royal Society
of Chemistry.)

B/Gauss
3500

(c)

(b)

(a)

3000

Figure 5.9 (a) Experimental spectrum of (Ph2C2)Co(CO)[P(OMe)3]2 in THF solution
at 270 K; (b and c) Computer-simulated spectra: (b) the mCo and mP line
width dependence and (c) the mCo line width dependence only.
(Adapted from ref. 5 with permission, copyright (1984) American Chemical
Society.)
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can be described as a 1:2:1 triplet of octets (I ¼ 7/2 for 59Co); the spectrum
is complicated by a large line width dependence on mCo, but, as demonstrated
in Figure 5.9(b) and 5.9(c), the central lines of the triplets are much broader
than the outer lines. This radical has a distorted tetrahedral structure with
the singly occupied molecular orbital (SOMO) largely cobalt 3 dz2 in character.6

Thus the ligand sites can be described as axial or equatorial relative to the
unique z-axis. Several isomers are possible, but the 31P couplings distinguish
between the isomer with an axial phosphite (ax,eq) and those with either CO
or the acetylene axial and both phosphites equatorial (eq,eq). The rate of
interconversion between (eq,eq) and (ax,eq) isomers (3 and 4) was estimated
from the relative widths of the mP ¼ � 1 and 0 lines, given the isotropic
coupling constants for the various 31P nuclei (which were determined from
the frozen solution spectrum5). The average rate was found to be approxi-
mately 2 � 1010 s�1 (Ea ¼ 17 � 2 kJ mol�1) at 298 K.

3 4

Co

P(OMe)3

P(OMe)3

C
O

Co
C

C
Ph

Ph

O
C

P(OMe)3

P(OMe)3

C

C
Ph

Ph

zz

(ax,eq) (eq,eq)

F. A. Walker et al. studied the rate of base exchange with VO(acac)2 in
benzene solution:7

VOðacacÞ2 þ Base ! VOðacacÞ2 � Base

where Base ¼ pyridine, 3-picoline, 4-picoline, 3,4-lutidine, 3,5-lutidine, and
piperidine, by using ESR line broadening. Line widths were fitted to a power-
series expression:

T�12 ¼ aþ bmI þ gm2
I þ dm3

I

Table 5.1 shows the spin Hamiltonian parameters for some of the complexes.
The equilibrium constants and rate constants are given in Table 5.2.

Table 5.1 ESR parameters for VO(acac)2 �Base7

g 104AV (cm�1)

VO(acac)2-pyridine 1.9693 99.5
VO(acac)2-2-picoline 1.9697 96.7
VO(acac)2-piperidine 1.9690 96.9
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5.5 Alternating Line Width Effects

Several examples were found during the 1950s and 1960s of spectra of organic
radical ions in which the line widths were alternatively sharp and broad. One
example of this is the ESR spectrum of dinitrodurene (5) (Figure 5.10).

NO2H3C

O2N

CH3

CH3

CH3

5

Table 5.2 Equilibrium and rate constants for VO(acac)2 .Base exchange.
(Reproduced from ref. 7a with permission, copyright (1966)
American Institute of Physics.)

Base T (1C) K (M�1)a kr (s
�1) kr (M

�1 s�1)

Pyridine 18 78 1.3 � 107 1.0 � 109

2-Picoline 16 0.78b 7.2 �107 5.0 � 106

Piperidine 17 1400 o0.2 � 107 o2.8 � 109

a Ref. 7b.
b Using estimated DH1.

τ = 2 × 10-11 s

τ = 2 × 10-10 s

τ = 2 × 10-9 s

-50 -40 -30 -20 -10 0 10 20 30 40 50

(B – B0)/Gauss

Figure 5.10 Simulations of the ESR spectrum of the dinitrodurene radical anion.
Parameters taken from ref. 8.
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This spectrum was at first quite puzzling, but, on reflection, the explanation
became clear.8 The unpaired electron is mostly on the electron-withdrawing nitro
groups in the p-dinitrobenzene radical anion but, in the present case, the methyl
groups do not allow the two nitro groups to be coplanar with the ring simul-
taneously. Thus the unpaired electron hops back and forth between the two nitro
groups, with the one having the unpaired electron coplanar with the ring. The
simulations in Figure 5.10 show the effect of rate on the shape of the spectrum.

Another example of alternating line width effect was found in the spectra of
durosemiquinone (6),9,10 where the effect is due to alkali metal ions hopping
back and forth from one oxygen atom to the other. The rates depend on the
alkali metal as shown in Table 5.3.

O

CH3

H3C

O

CH3

CH3

6

Another example is them-dinitrobenzene anion radical in aqueous solution,11,12

where the effect is due to asymmetric solvation (one nitro group solvated, the
other not), an effect very similar to that with dinitrodurene anions. In this case the
mean lifetime of one solvation state was 0.8 ms at 291 K and 4.5 ms at 282 K. Still
more examples are mentioned in the reviews by Atkins in the early 1970s.13

5.6 Spin Labels

One of the many advances in ESR spectroscopy introduced by Harden
McConnell is the idea of labeling a biological membrane or macromolecule
with a stable free radical (typically a nitroxide).14 Since in a nitroxide the spin is
primarily in a nitrogen 2p orbital, A|| a A>, and the isotropic line widths give a
good indication of the freedom of motion of the nitroxide. Moro and Freed15

developed an algorithm for the analysis of ESR spectra to give motional

Table 5.3 Effect of cation and solvent on hopping rate
in durosemiquinone

Cation/solventa Log A Ea (kJ mol�1)

K1/THF 10.7 24
Rb1/THF 10.9 22
Cs1/THF 11.1 20
Na1/DME 12
K1/DME 28

a THF ¼ tetrahydrofuran (ref. 9); DME ¼ dimethoxyethane (ref. 10).
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lifetimes. The subject has been reviewed nearly annually in the Specialist
Periodical Report, Electron Spin Resonance and other monographs.16 The
effects of decrease in the rate of rotation motion on the appearance of nitroxide
ESR is shown qualitatively in Figure 5.11.

Applications of spin labels to problems in structural biology have continued
to grow over the four decades since McConnell’s original proposal. We
mention here only two examples, which provided early support for the method.

Morrisett, et al.17 studied phase transitions in E. coli membranes using three
different spin labels, including 5-doxyl stearate (5-DS) (7).

7

O

NO

(CH2)3COOHH3C(H2C)12

They observed abrupt changes in the slope of Arrhenius plots for reactions
catalyzed by NADH oxidase and p-lactate oxidase that correlate well with
phase transitions detected by the ESR spectra of the nitroxide spin labels bound
covalently to the enzymes (Table 5.4).

Another example comes from the work of Johnson, et al.18 These workers
studied spin labels dissolved in lipid bilayer dispersions of dipalmitoylphos-
phatidylcholine and cholesterol (9:1 by weight) in the hope that anisotropic
rotational diffusion of the spin label would mimic the motion of the bilayer
components. In addition to 5-DS, which is sensitive to rotational motion about
the NO bond, they used the steroidal nitroxide 8, which tends to rotate about
an axis perpendicular to the N–O bond. ESR measurements were carried out at
both 9 and 35 GHz and at temperatures ranging from –30 to 30 1C. Rather
different results were obtained with the two spin labels, largely as a result of the
different axes of rotation. Because the rotation rates were very slow, ESR
spectra appeared as powder patterns rather than isotropic spectra and special
methods were needed to extract the motional data.

8

N

O

H

C6H13

O
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CHAPTER 6

ESR Spectra of Biradicals,
Triplet States, and other S41/2
Systems

6.1 Biradicals

Molecules with two or more unpaired electrons may be divided into two classes:
by far the most common examples are molecules where the unpaired electrons
are contained in a set of degenerate atomic or molecular orbitals with quali-
tatively similar spatial distributions, e.g., an octahedral Cr(III) (4A2g) or Ni(II)
(3A2g) complex, a ground state triplet molecule like O2, or the excited triplet
states of naphthalene or benzophenone.

A second class of molecules with two unpaired electrons has the two
electrons localized, to a first approximation, in different parts of the molecule.
We refer to such molecules as biradicals (or, with three or more unpaired
electrons, triradicals, etc.). Examples are the dinitroxides (e.g. 1), and certain
binuclear vanadium(IV) and copper(II) complexes.

NO N O

1

From the point of view of ESR spectroscopy, the distinction between molecules
with one unpaired electron and those with more than one lies in the fact that
electrons interact with one another; these interactions lead to additional terms
in the spin Hamiltonian and additional features in the ESR spectrum. The most
important electron–electron interaction is coulombic repulsion; with two un-
paired electrons, repulsion leads to the singlet–triplet splitting. As we will see,
this effect can be modeled by adding a term, J~S1 � ~S2, to the spin Hamiltonian,
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where J is called the exchange coupling constant and turns out to be equal to
energy difference between the singlet and triplet states, i.e. the singlet–triplet
splitting.

In many cases, the singlet–triplet splitting is large compared with kT, as well
as any other term in the spin Hamiltonian, and we can safely ignore the singlet
state, focusing entirely on the triplet. The simplification of being able to ignore
the singlet state is more than compensated for by the introduction of a fine
structure term into the spin Hamiltonian.

This term, which has the form shown in eqn (6.1) introduces considerable
complication into the shape and interpretation of ESR spectra.

D S2
Z � 1

3
SðS þ 1Þ

� �
þ E S2

x � S2
y

� �
ð6:1Þ

Further complicating the situation is the fact that the same term can arise
from two quite different physical effects: electron–electron dipolar interaction
and spin–orbit coupling.

The distinction between a biradical and an ordinary triplet state molecule is
often somewhat fuzzy. For our purposes, we consider a molecule a biradical
if the exchange interaction between the two electrons is relatively weak –
comparable in energy to the electron–nuclear hyperfine interaction. When the
exchange interaction is weak, the singlet–triplet splitting is small and (as we will
see) singlet–triplet mixing has an effect on the ESR spectrum. J falls off with
electron–electron distance as 1/r, whereas the dipolar coupling constant D falls
off as 1/r3. Thus when J is small, D is negligible (though spin–orbit effects may
contribute).

6.1.1 Exchange Coupling

In this section we consider the spin Hamiltonian appropriate to a biradical with
weak dipolar coupling and see how ESR spectra of such species should appear.
Obviously, it is possible to find triradicals, tetraradicals, etc.; treatment of such
species is similar, though of course somewhat more complicated.

The spin Hamiltonian for a biradical consists of terms representing the
electron Zeeman interaction, the exchange coupling of the two electron spins,
and hyperfine interaction of each electron with the nuclear spins. We assume
that there are two equivalent nuclei, each strongly coupled to one electron and
essentially uncoupled to the other. The spin Hamiltonian is:

Hs ¼ gmBB ðS1z þ S2zÞ þ A ð~S1 � ~I1 þ ~S2 � ~I2Þ þ J ~S1 � ~S2 ð6:2Þ

where J is the exchange coupling constant. Notice that we have also assumed that
the g-values for the two electrons are the same. To simplify matters, we will
assume that |A| { gmBB so that a first-order treatment of the hyperfine term will
suffice.We choose as basis functions the singlet and triplet electron spin functions:

S0j i ¼ 1ffiffi
2
p 1

2
; �1

2

�� �
� �1

2
; 1

2

�� �� 	
ð6:3aÞ
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T0j i ¼ 1ffiffi
2
p 1

2
; �1

2

�� �
þ �1

2
; 1

2

�� �� 	
ð6:3bÞ

T1j i ¼ 1
2
; 1

2

�� �
ð6:3cÞ

T�1j i ¼ �1
2
; �1

2

�� �
ð6:3dÞ

The singlet function corresponds to zero total electron spin angular momen-
tum, S¼ 0; the triplet functions correspond to S¼ 1. Operating on these
functions with the spin Hamiltonian, we get:

Ĥ s T1j i ¼ gmBBþ 1
4J þ 1

2A ðm1 þm2Þ
� �

T1j i

Ĥ s T�1j i ¼ �gmBBþ 1
4
J � 1

2
A ðm1 þm2Þ

� �
T�1j i

Ĥ s T0j i ¼ 1
4
J T0j i þ 1

2
A ðm1 �m2Þ S0j i

Ĥ s S0j i ¼ �3
4
J S0j i þ 1

2
A ðm1 �m2Þ T0j i

Thus |T1i and |T�1i are eigenfunctions of Ĥ s, but |T0i and |S0i are mixed.
(Notice, however, that if there were no hyperfine coupling, A¼ 0, then |T0i and
|S0i would be eigenfunctions as well.) In the absence of a hyperfine interaction,
the triplet energy is J/4 and the singlet energy is�3J/4; J is normally negative so
that the triplet lies lower in energy.

To get the eigenvalues resulting from the admixture of |T0i and |S0i, we solve
the secular equation:

J
4
� E A

2
ðm1 �m2Þ

A
2
ðm1 �m2Þ � 3J

4
� E

����

����

¼ E2 þ 1
2JE � 3

16J
2 � 1

4A
2ðm1 �m2Þ2 ¼ 0

The roots are:

E ¼ �1
4
J � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ A2ðm1 �m2Þ2

q

or, defining:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ A2ðm1 �m2Þ2

q

we have:

E ¼ � J

4
� R

2
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The eigenfunctions corresponding to these energies may be found by inserting a
value of E into one of the linear equations that lead to the secular equation:

1
4
J � E

� 	
cT þ 1

2
Aðm1 �m2Þ cS ¼ 0

1
2Aðm1 �m2Þ cT þ �3

4J � E
� 	

cS ¼ 0

where cT and cS are the coefficients of |T0i and |S0i in the eigenfunc-
tion corresponding to E(c2T þ c2S¼ 1). The resulting eigenfunctions and
energies are:

E1 ¼ gmBBþ
J

4
þ A

2
ðm1 þm2Þ 1j i ¼ T1j i

E2 ¼ �
J

4
þ R

2
2j i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ J

2R

r

T0j i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R� J

2R
S0j i

r

E3 ¼ �
J

4
� R

2
3j i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R� J

2R

r

T0j i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ J

2R
S0j i

r

E4 ¼ �gmBBþ
J

4
� A

2
ðm1 þm2Þ 4j i ¼ T�1j i

Remembering that each of these is further split by the hyperfine interaction,
there are obviously several possible transitions among these four energy levels.
To find out which are important, we must evaluate the transition dipole
moment matrix elements, hi|Sx|ji, since the absorption intensity is proportional
to the square of these matrix elements. The operator Sx can be written:

Ŝx ¼ Ŝ1x þ Ŝ2x ¼ 1
2
Ŝ1þ þ Ŝ1� þ Ŝ2þ þ Ŝ2�

� �

Applying Sx to |1i and |4i, we have:

Ŝx 1j i ¼1
2
Ŝ1þ þ Ŝ1� þ Ŝ2þ þ Ŝ2�

� �
1
2
; 1
2

�� �

¼1
2
�1

2
; 1
2

�� �
þ 1

2
; �1

2

�� �� 	
¼

ffiffiffi
2
p

T0j i

Ŝx 4j i ¼1
2
Ŝ1þ þ Ŝ1� þ Ŝ2þ þ Ŝ2�

� �
�1

2
; �1

2

�� �

¼1
2

1
2
; �1

2

�� �
þ �1

2
; 1
2

�� �� 	
¼

ffiffiffi
2
p

T0j i

Thus the matrix elements are:

1 Ŝx

���
���1

D E
¼ 4 Ŝx

���
���4

D E
¼ 1 Ŝx

���
���4

D E
¼ 4 Ŝx

���
���1

D E
¼ 0

2 Ŝx

���
���1

D E
¼ 2 Ŝx

���
���4

D E
¼ 1 Ŝx

���
���2

D E
¼ 4 Ŝx

���
���2

D E
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ J

R

r

3 Ŝx

���
���1

D E
¼ 3 Ŝx

���
���4

D E
¼ 1 Ŝx

���
���3

D E
¼ 4 Ŝx

���
���3

D E
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R� J

R

r
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Since the relative intensity of a transition is proportional to the square of the
corresponding matrix element of Ŝx, we see that there are four allowed
transitions:

DE42 ¼ gmBBþ
1

2
ðR� JÞ þ 1

2
Aðm1 þm2Þ

Relative intensity ¼ Rþ J

R

DE43 ¼ gmBB�
1

2
ðRþ JÞ þ 1

2
Aðm1 þm2Þ

Relative intensity ¼ R� J

R

DE31 ¼ gmBBþ
1

2
ðRþ JÞ þ 1

2
Aðm1 þm2Þ

Relative intensity ¼ R� J

R

DE21 ¼ gmBB�
1

2
ðR� JÞ þ 1

2
Aðm1 þm2Þ

Relative intensity ¼ Rþ J

R

Consider now the limiting case of strong exchange coupling. When |J|44 |A|,
R E J, and the 43 and 31 transitions are forbidden. The 42 and 21 transitions
are at equal energy and so we have only:

DE ¼ gmBBþ 1
2
Aðm1 þm2Þ ð6:4Þ

Thus in the limit of strong exchange interaction, the resulting spectrum is
identical to that which would be observed if one electron interacted with two
equivalent nuclei with coupling constant A/2.

In the limiting case of weak coupling, |J| { |A|, R E A(m1 � m2), and all
four transitions have equal relative intensities; the transition energies then are:

DE42 ¼DE31

¼gmBBþ
A

2
ðm1 �m2Þ þ

A

2
ðm1 þm2Þ

¼gmBBþAm1

ð6:5aÞ

DE43 ¼DE21

¼gmBB�
A

2
ðm1 �m2Þ þ

A

2
ðm1 þm2Þ

¼gmBBþAm2

ð6:5bÞ

Thus in the limit of negligible exchange interaction, we expect a spectrum
identical to that observed for two independent radicals.
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Now consider a concrete example. Suppose we have a nitroxide biradical
with aN¼ 13 G. In the strong exchange limit, we expect a five-line spectrum
with a spacing of 6.5 G and the usual 1:2:3:2:1 intensity ratios for two
equivalent spin-1 nuclei. In the weak exchange limit, we expect a three-line
spectrum with a spacing of 13 G and intensity ratios 1:1:1. In intermediate
cases, up to 15 lines are expected, as shown in Figure 6.1.

In a classic early study of biradicals, Glarum and Marshall1 were able to vary
the exchange coupling between two nitroxide radicals by changing the temper-
ature, solvent, and the number of atoms linking the two groups. Most of their
spectra corresponded to the intermediate exchange region where J E A.

6.2 Organic Triplet State Molecules and the Dipolar

Interaction

The Hamiltonian term for the electron–electron dipolar interaction is:

Ĥd ¼ g2m2B
~s1 �~s2
r3
� 3

~s1 �~rð Þ ~s2 �~rð Þ
r5


 �
ð6:6Þ

Figure 6.1 Stick spectra for a dinitroxide biradical with a¼ 13 G for various values of
the exchange coupling constant J. (Several very small, widely spaced
resonances have been omitted for J¼ 2A and J¼ 5A.)
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where r is the vector pointing from electron 1 to electron 2. We have used a
lower-case s for the one-electron spin operators, reserving upper-case S for the
total electron spin operators. The dot products can be expanded to give:

Ĥd ¼g2m2B
r2 � 3x2
� 	

r5
ŝ1xŝ2x þ

r2 � 3y2
� 	

r5
ŝ1yŝ2y




þ
r2 � 3z2
� 	

r5
ŝ1zŝ2z �

3xy

r5
ŝ1xŝ2y þ ŝ2yŝ1x
� 	

� 3yz

r5
ŝ1yŝ2z þ ŝ1zŝ2y
� 	

� 3zx

r5
ŝ1zŝ2x þ ŝ1xŝ2zð Þ

�

Our next goal is to transform this expression into one based on the total
electron spin operator, S¼ s1 þ s2. The first three terms can be simplified by
making use of the identity (derived using raising and lowering operators):

2s1is2i ¼ S2
i � 1

2
ði ¼ x; y; zÞ

When these are substituted in the above expression, the terms arising from –1/2
cancel since x2 þ y2 þ z2¼ r2. Transformation of the last three terms makes use
of the identities:

2ðs1is2j þ s1js2iÞ ¼ SiSj þ SjSi

The transformed Hamiltonian then is:

Ĥd ¼
1

2
g2m2B

r2 � 3x2

r5



Ŝ
2

x þ
r2 � 3y2

r5
Ŝ
2

z

þ r2 � 3z2

r5
Ŝ
2

z �
3xy

r5
ŜxŜy þ ŜyŜx

� �

� 3yz

r5
ŜyŜz þ ŜzŜy

� �
� 3zx

r5
ŜzŜx þ ŜxŜz

� ��

The coefficients of the spin operators must be evaluated using the electron wave
function, an operation that is not usually possible in practice. However, we can
parameterize the problem, defining the matrix D with elements:

Dij ¼
1

2
g2m2B

r2dij � 3ij

r5

� 
ð6:7Þ

where the angle brackets indicate averaging over the spatial coordinates of the
wave function.

It is possible to choose an axis system in which the D-matrix is diagonal – the
principal axes. In many cases, these axes will also be the principal axes of the
g-matrix and we will so assume in the following.

Since the trace of D (Dxx þ Dyy þ Dzz) is zero, there are really only two
independent parameters. The conventional choice of these parameters is:

D ¼ 3
2
Dzz E ¼ 1

2
Dxx �Dyy

� 	
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or:

Dzz ¼ 2
3
D Dxx ¼ �1

3
Dþ E Dyy ¼ �1

3
D� E

The Hamiltonian then becomes:

Ĥd ¼ DxxŜ
2

x þDyyŜ
2

y þDzzŜ
2

z ð6:8aÞ

or:

Ĥd ¼ D Ŝ
2

z � 1
3
Ŝ
2

x þ Ŝ
2

y þ Ŝ
2

z

� �h i
þ 1

2
E Ŝ

2

x þ Ŝ
2

y

� �
ð6:8bÞ

We can somewhat simplify the Hamiltonian by noting that Sx
2 þ Sy

2 þ
Sz

2¼S2 and the eigenvalue of S2 is S(S þ 1), and that Sx and Sy can be written
in terms of the raising and lowering operators:

Ĥd ¼ D Ŝ
2

z � 1
3
SðS þ 1Þ

h i
þ E Ŝ

2

þ þ Ŝ
2

�

� �
ð6:9Þ

We will see that a Hamiltonian term identical in form also arises from spin–
orbit coupling, but first we will pause to see the effect of this Hamiltonian on
the energy levels and ESR spectrum of a triplet-state molecule. The spin triplet
wave functions can be written in the notation |S,mSi:

Ĥd 1; 1j i ¼ D 1� 2
3

� 	
1; 1j i þ E 1;�1j i

Ĥd 1; 0j i ¼ D 0� 2
3

� 	
1; 0j i

Ĥd 1;�1j i ¼ D 1� 2
3

� 	
1;�1j i þ E 1; 1j i

The Hamiltonian matrix then is:

1
3
D 0 E

0 � 2
3
D 0

E 0 1
3D

0

@

1

A

Solution of the corresponding secular equation leads to energy levels, �2D/3
and D/3 � E. The splitting pattern is shown in Figure 6.2.

Notice that if the molecule has axial symmetry, Dxx¼Dyy so that E¼ 0. If the
molecule has octahedral symmetry, Dxx¼Dyy¼Dzz so that D¼E¼ 0. Thus the
appearance of a zero-field splitting into two or three levels tells the spectroscopist
something about the symmetry of the molecule. It is possible, of course, to do
spectroscopy on these energy levels at zero magnetic field. Our concern here is the
effect of zero-field splitting on the ESR spectrum where a magnetic field is applied.

When we include the Zeeman interaction term, gmBB �S, in the spin
Hamiltonian a complication arises. We have been accustomed to evaluating
the dot product by simply taking the direction of the magnetic field to define the
z-axis (the axis of quantization). When we have a strong dipolar interaction, the
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molecule defines a quantization axis for itself. Thus, in general, the B �S term
has three components. It is possible to deal with the general case, but the
algebra is very messy and not very enlightening. Instead we will assume that
the triplet molecule is in a dilute single crystal and that we can orient the crystal
in the field with B along one of the internal coordinate axes.

Suppose that we orient the crystal with B in the z-direction. The spin
Hamiltonian then is:

Ĥ s ¼ gmBBŜz þD Ŝ
2

z � 1
3
SðS þ 1Þ

h i
þ 1

2
E Ŝ

2

þ þ Ŝ
2

�

� �

Operating on the triplet wave functions as before, we get the Hamiltonian
matrix:

gmBBþ 1
3
D 0 E

0 �2
3
D 0

E 0 �gmBBþ 1
3
D

0

@

1

A

Solution of the secular equation leads to the energies:

�2
3
D; 1

3
D �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2m2BB2 þ E2

q

These are plotted vs. magnetic field in Figure 6.3, using D¼ 0.1003 cm�1,
E¼�0.0137 cm�1 – parameters appropriate to the excited triplet of
naphthalene.2

The energies of the allowed transitions are:

DE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2m2BB2 þ E2

q
�D

Figure 6.2 Zero-field splitting of a triplet state.
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At constant frequency, n0¼DE/h, the resonant fields are:

B ¼ 1

gmB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hn0 �Dð Þ2�E2

q

With the magnetic field oriented along the x-axis, the Hamiltonian is:

Ĥ s ¼ gmBBŜx þD Ŝ
2

z � 1
3
SðS þ 1Þ

h i
þ 1

2
E Ŝ

2

þ þ Ŝ
2

�

� �

The Hamiltonian matrix is:

1
3
D 1ffiffi

2
p gmBB E

1ffiffi
2
p gmBB �2

3D
1ffiffi
2
p gmBB

E 1ffiffi
2
p gmBB

1
3
D

0

B@

1

CA

The cubic secular equation factors; the resulting energies are:

D

3
� E; �D� 3E

6
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2m2BB2 þ 1

4
ðDþ EÞ2

r

These energies are also plotted in Figure 6.3; energies of the allowed transitions
are:

DE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2m2BB2 þ 1

4
ðDþ EÞ2

q
� 1

2
ðD� 3EÞ

The resonant fields then are:

B ¼ 1

gmB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hn0 �
1

2
ðD� 3EÞ

� �2

� 1

4
ðDþ EÞ2

s

Figure 6.3 Energy level diagram for the triplet state of naphthalene (D¼ 0.1003 cm�1,
E¼�0.0137 cm�1, g¼ 2.003). Solid lines correspond to orientation of
the magnetic field along the z-axis, dashed lines for orientation along the
x-axis. Arrows show the allowed transitions for 9.50 GHz microwave
radiation.
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6.2.1 Organic Triplet State Molecules

The phosphorescent triplet state of naphthalene, for which the energy levels are
shown in Figure 6.3, is produced by irradiation of naphthalene doped into a
single crystal of durene. This prevents relaxation effects due to rapid transfer of
energy between triplet and ground state naphthalene molecules. The triplet
state is long-lived at 77 K. The energy-level diagram (Figure 6.3) predicts two
transitions: at 2315 and 4465 G when the field is oriented along the z-axis, and
at 2595 and 4125 G for orientation along the x-axis (n0¼ 9.50 GHz).

The experimental determination of D and E for a dilute single crystal is not
trivial, even when the crystal axes are known. Durene, for example, has two
molecules per unit cell with different orientations of the molecular plane. Thus
for any orientation there are four resonances, two from each type of site.
Sorting out the data is a challenging exercise.2

Triplet state powder spectra (or frozen solution glasses) are generally easier to
interpret and much easier to get experimentally than dilute single crystal spectra.
The features of the derivative spectrum correspond to orientations along the
principal axis directions. Thus, six features can be found in the spectrum of
naphthalene in glassy THF solution at 77 K (after irradiation). The problem, as
is usual with powder spectra, is that there is no way to assign the features to
molecular axes; recourse must be made to theoretical considerations or
to analogy with a related system studied in a dilute single crystal. Since the
resonances are spread over a large field range and are very orientation depend-
ent, there is little hope of detecting the resonance of a triplet state molecule in
liquid solution, even if the triplet state lifetime could be made long enough.

What do we make of the parameters D and E once we have extracted them
from a spectrum? Seven examples are given in Table 6.1.

There are some qualitative trends that make some sense. Since D is a measure
of the dipolar interaction of the two unpaired electrons, we might expect that
D would be large when both electrons are forced to be close together, and
naphthalene and the related nitrogen heterocyclics do indeed give the largest
values of D. When the p-system remains about the same size but heteroatoms
are substituted, we might expect that D would not change by much, and we see
that naphthalene and related nitrogen heterocyclics do indeed have nearly the
same values of D. When the p-system gets bigger, we might expect D to
decrease, and anthracene and pyrene fulfill this expectation, but phenanthrene
seems anomalous. To go beyond a qualitative explanation of D or to explain
E at all requires rather sophisticated valence theory calculations. Indeed
electron dipolar interaction parameters provide one of the more challenging
tests of valence theory.

6.3 Transition Metal Complexes with S41/2

6.3.1 Spin–Orbit Coupling

We now will show that spin–orbit coupling can give a spin Hamiltonian term
identical to that we obtained from the electron dipolar interaction. Consider the
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spin Hamiltonian including orbital angular momentum and the usual spin–
orbit coupling term:

Ĥ ¼ mB~B � ~Lþ ge~S
� �

þ l~L � ~S ð6:10Þ

where l is the spin–orbit coupling constant. The zero-order ground state wave
function will be characterized by the quantum numbers L, mL, S, mS, and we

Table 6.1 ESR data for some organic triplet-state molecules

Molecule Structure D (cm�1) E (cm�1) Ref

Naphthalene (in durene) 0.1003 –0.0137 2

Quinoline (in durene)
N

0.1030 –0.0162 3

Isoquinoline (in durene)

N

0.1004 –0.0117 3

Quinoxaline (in durene)

N

N
0.1007 –0.0182 4

Anthracene (in biphenyl) 0.0716 –0.0084 5

Phenanthrene (in biphenyl) 0.1004 –0.0466 6

Pyrene (in fluorene) 0.0678 –0.0314 7
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assume that the wave function is orbitally nondegenerate, i.e., mL¼ 0. Thus we
write the ground state wave function as |mL,mSi¼ |0,mSi. With B defining the
z-axis, the energy is easily found to first order in perturbation theory:

Eð1Þ ¼ gmBBms ð6:11Þ

since Lz|0,mSi¼ 0. The second-order energy is not so simple since the excited
states in general have nonzero mL. Thus we get second-order contributions
from matrix |0,mSi elements connecting with excited state functions:

Eð2Þ ¼ �
X

i

0;mS;0

� �� mB~Bþ l~S
� �

� ~Lþ gemB~B � ~S mL;i; mS;i

�� �h i2

E
ð1Þ
i � E

ð1Þ
0

ð6:12Þ

The matrix element can be expanded and written as:

0;mS;0

� �� mB~Bþ l~S
� �

mS;i

�� �
� 0 ~L

�� ��mL;i

D E

þ gemB~B � mS;0
~S
���
���mS;i

D E
0jmL;i

� �

Since the orbital functions, h0| and |mL,ii are orthogonal, the second term
vanishes. The absolute value square of the matrix element of a Hermitean
operator can be written as:

ijOpjjh ij j2¼ ijOpjjh i jjOpjih i

Thus we can write E(2) as:

Eð2Þ ¼
X1

mS
0

mS;0 mB~B þ l~S
���

���mS
0

D En

�
X

i

0j~LjmL

D E
mLj~Lj0
D E

E
ð1Þ
i � E

ð1Þ
0

0

@

1

A

� mS
0jmB~B þ l~SjmS;0

D Eo

Defining:

L
$
¼
X

i

0j~LjmL

D E
mLj~Lj0
D E

E
ð1Þ
i � E

ð1Þ
0

ð6:13Þ

we can write E(2) as:

Eð2Þ ¼
X1

mS
0

m2B mSj~B � L
$
� ~BjmS

0
D En

þ l2 mSj~S � L
$
� ~SjmS

0
D E

þ2lmB mSj~B � L
$
� ~SjmS

0
D Eo ð6:14Þ
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We now notice that we could write a Hamiltonian operator that would give
the same matrix elements we have here, but as a first-order result. Including the
electron Zeeman interaction term, we have the resulting spin Hamiltonian:

Ĥ s ¼ gemB~B � ~S þ m2B~B � L
$
� ~B þ 2lmB~B � L

$
� ~S þ l2~S � L

$
� ~S ð6:15Þ

The m2B~B � L
$
~B term is independent of spin state and so changes all levels by

the same amount. Although the term would be important to the thermo-
dynamic properties of the system, it is uninteresting to spectroscopists and we
will ignore it. The first and third terms can be combined to obtain the g-tensor:

g ¼ geE þ 2lL
$

ð6:16Þ

where E is the unit matrix. We can also define the fine structure tensor D as:

D ¼ l2L
$

ð6:17Þ

so that the spin Hamiltonian reduces to:

H s ¼ mB~B � g � ~S þ ~S �D � ~S ð6:18Þ

Notice that the fine structure term found here has the same form (and the
tensor is given the same symbol) as that obtained from the electron dipolar
interaction. Unlike the dipolar D-tensor, however, the spin–orbit coupling
D-tensor in general does not have zero trace. Nonetheless, we introduce
analogous parameters:

D ¼ Dzz � 1
2
Dxx �Dyy

� 	

E ¼ 1
2 Dxx �Dyy

� 	

In the coordinate system that diagonalizes g, the related D-tensor is also
diagonal. Expanding the fine structure term in the principal axis system, we have:

~S �D � ~S ¼ DxxS
2
x þDyyS

2
y þDzzS

2
z

and substituting:

~S �D � ~S ¼D S2
z � 1

3
S2
x þ S2

y þ S2
z

� �h i

þ E S2
x � S2

y

� �

þ 1
3
Dxx þDyy þDzz

� 	
S2
x þ S2

y þ S2
z

� �

Since S2¼S2x þ S2y þ S2z and the eigenvalue of S2 is S(S þ 1) we have:

~S �D � ~S ¼D S2
z � 1

3SðS þ 1Þ
� �

þ E S2
x � S2

y

� �

þ 1
3
Dxx þDyy þDzz

� 	
SðS þ 1Þ
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The last term (which would be zero if D came from the dipolar interaction and
thus had zero trace) raises all levels equally and so has no effect on spectroscopy
and can be dropped. Thus, again, only two parameters, D and E, are required to
completely specify the fine structure interaction.

Although it is unfortunate that spin–orbit coupling and the electron dipolar
interaction give fine structure terms of the same form, it is possible to separate
the effects. Since the spin–orbit contribution to D is related to the g-tensor:

Dso ¼
l
2

g� geEð Þ

the parameters Dso and Eso can be computed:

Dso ¼
l
2

gzz �
1

2
gxx þ gyy
� 	
 �

Eso ¼
l
4

gxx � gyy
� 	

The difference between the fine structure parameters computed from the
experimental g-tensor and those measured from the spectrum are presumed
to be the electron dipolar contributions.

In the above derivation, we have made no explicit assumption about the total
electron spin quantum number S so that the results should be correct for S¼ 1/2
as well as higher values. However, the fine structure term is not usually included
in spin Hamiltonians for S¼ 1/2 systems. The fine structure term can be ignored
since in that case the results of operating on a spin-1/2 wave function is always
zero:

D S2
z � 1

3S S þ 1ð Þ
� �

þ 1
2E S2

þ þ S2
�

� 	� �
1
2; �1

2

�� �

¼ D 1
4
� 1

3
� 1

2
� 3

2

� �
þ 1

2
E � 0

� �
1
2
; �1

2

�� �
¼ 0

6.3.2 High-spin Transition Metal Ions

For axially symmetric complexes, the parameter E is zero, and the spin
functions |S,mSi are eigenfunctions of the spin Hamiltonian:

H s ¼ mB~B � g � ~S þD S2
z � 1

3
SðS þ 1Þ

� �

For example, consider a d3 Cr(III) complex in an axial ligand field with g¼ 1.98,
D¼ 0.0455 cm�1, E¼ 0. For the magnetic field along the molecular z-axis, the
energies are:

E �3
2

� 	
¼� 3

2
gjj þD

E �1
2

� 	
¼� 1

2
gjj �D

These energies are plotted vs. magnetic field in Figure 6.4.
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Transitions among these levels have intensities proportional to the square of
the matrix element of Sx. These are easily found to be:

3
2; �3

2

� ��Sx
3
2; �1

2

�� �
¼

ffiffi
3
p

2

3
2
; 1
2

� ��Sx
3
2
; �1

2

�� �
¼ 1

Thus the �3/2- �1/2 and 1/2- 3/2 transitions, at B¼ hn0(1 � 2D)/gmB, have
relative intensities of 3/4 the intensity of the �1/2 - 1/2 transition, at hn0/gmB.

When the magnetic field is oriented along the x-axis, the Hamiltonian matrix is:

D
ffiffi
3
p

2
g?mBB 0 0ffiffi

3
p

2
g?mBB �D g?mBB 0

0 g?mBB �D
ffiffi
3
p

2
g?mBB

0 0
ffiffi
3
p

2
g?mBB D

0

BBBB@

1

CCCCA

Unfortunately, the secular equation doesn’t factor and the energies must be
computed numerically. A plot of the computed energies is shown in Figure 6.4 as
a function of magnetic field.

As we might expect from the nondiagonal Hamiltonian matrix, the spin
functions are thoroughly mixed when the field is in the x-direction. The
immediate consequence of this mixing is that the selection rules are compli-
cated, and the transition from the lowest level to the highest level becomes
allowed. (For the field along the z-axis, this would be a forbidden two-quantum
transition.) When B¼ 1000 G, corresponding to the lowest-to-highest transi-
tion, the wave functions are:

E ¼ �0:179 cm�1; 1j i ¼ � 0:255 3
2

�� �� �3
2

�� �� 	

þ 0:660 1
2

�� �� �1
2

�� �� 	

-1

-0.5

0

0.5

1

E
ne

rg
y/

cm
–1

0 1000 2000 3000 4000
Magnetic Field/Gauss

B || z

0 1000 2000 3000 4000 5000
Magnetic Field/Gauss

B || x

Figure 6.4 Energy levels and allowed transitions for a Cr(III) complex with g¼ 1.98,
D¼ 0.0455 cm�1, for the magnetic field along the x- and z-axes.
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E ¼ �0:037 cm�1; 2j i ¼ � 0:513 3
2

�� �þ �3
2

�� �� 	

þ 0:487 1
2

�� �þ �1
2

�� �� 	

E ¼ þ0:079 cm�1; 3j i ¼0:660 3
2

�� �� �3
2

�� �� 	

þ 0:255 1
2

�� �� �1
2

�� �� 	

E ¼ þ0:137 cm�1; 4j i ¼0:487 3
2

�� �þ �3
2

�� �� 	

þ 0:513 1
2

�� �þ �1
2

�� �� 	

When the field is along the z-axis, transition intensities are proportional to the
square of the Sz

2 matrix element. The Sz
2 matrix for B¼ 1000 G is:

0 1:197 0 0:0011
1:197 0 0:794 0
0 0:794 0 0:508
0:0011 0 0:508 0

0

BB@

1

CCA

The 1 - 4 transition is only weakly allowed compared with the 1 - 2, 2 - 3,
and 3 - 4 transitions; however, it is often observed, particularly in powder
spectra since it tends to be considerably sharper than the other transitions.
Notice that the 1 - 3 and 2 - 4 transitions are still forbidden. Since the wave
functions are field-dependent, the Sz matrix elements also depend on the field.
Thus the observed 1- 2, 2- 3, and 3- 4 transitions would be different than
predicted from the Sz

2 matrix at 1000 G.
For Cr(III) complexes, D is relatively small (comparable to the X-band

microwave quantum, 0.317 cm�1) and all three fine structure lines are observ-
able. This is not always the case. Consider high-spin Fe(III) in an axial ligand
field with D 44 hn0, E¼ 0. With the same Hamiltonian as above and the
magnetic field along the z-axis, the energies are:

E �5
2

� 	
¼� 5

2gkmBBþ 10
8D

E �3
2

� 	
¼� 3

2
gkmBB� 2

3
D

E �1
2

� 	
¼� 1

2
gkmBB� 8

3
D

These are plotted vs. B in Figure 6.5.
The transition energies are:

E 5
2

� 	
� E 3

2

� 	
¼ gkmBBþ 4D

E 3
2

� 	
� E 1

2

� 	
¼ gkmBBþ 2D

E 1
2

� 	
� E � 1

2

� 	
¼ gkmBB
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E �1
2

� 	
� E �3

2

� 	
¼ gkmBB� 2D

E �3
2

� 	
� E �5

2

� 	
¼ gkmBB� 4D

However, if D 4 hno, only the �1/2 - 1/2 transition will be observable. The
first two transitions are always higher in energy then hno and it is usually not
possible to make B large enough to bring the last two transitions into
resonance.

Now consider what happens when the field is applied perpendicular to the
symmetry axis. The large value of D ensures that z will continue to be the
quantization axis. We ought to solve a 6 � 6 secular equation, but we can get a
reasonable approximation more easily. Since D is big, the �5/2 and �3/2 levels
are well separated from the �1/2 levels before application of the magnetic field.
Thus mixing of |3/2i with |1/2i will be much less important than mixing of |1/2i
with |�1/2i. Thus we can solve just the middle 2 � 2 block for the energies of
mS¼�1/2 levels:

�8
3
D 3

2
g?mBB

3
2
g?mBB �8

3
D

� �

The expanded block gives:

�8
3
D� E

� 	2� 3
2
g?mBB

� 	2¼ 0

so that the energies are:

E ¼ � 8
3
D� 3

2
g?mBB

-2

-1

0

1

2

3

E
ne

rg
y/

cm
–1

0 1000 2000 3000 4000

Magnetic Field/Gauss
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1/2

–1/2

Figure 6.5 Energies of an S¼ 5/2 spin system with D¼ 0.5 cm�1 for B along the z-axis.
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and the energy difference is:

E 1
2

� 	
� E �1

2

� 	
¼ 3g?mBB

The apparent g-value for the transition is 3g>, geff¼ 6 if g>¼ 2.
Thus, for example, high-spin d5 Fe(III) in an axial ligand field should show

a resonance around g¼ 2 and another resonance near g¼ 6 when B is perpen-
dicular to the symmetry axis. In solution, where the complex tumbles rapidly
and averages the g-values, the resonance is expected to be so broad as to be
undetectable, but, in frozen solution, both resonances should be observable.

6.3.3 Examples: K3Cr(CN)6 and K4V(CN)6

These two salts were studied by the Oxford physics group in the early days of
ESR spectroscopy.8 The Cr(III) and V(II) salts were doped into diamagnetic
single crystals of K3Co(CN)6 and K4Fe(CN)6, respectively. The spin–orbit
coupling parameters found from the spectroscopic study are listed, together
with the g-components, in Table 6.2.

Let us see what the energy levels look like for these two systems and try to
understand how Baker, Bleaney, and Bowers determined the values given in
Table 6.2. The spin Hamiltonian is:

Ĥ ¼ mB~S � g � ~B þD S2
z � 1

3SðS þ 1Þ
� �

þ E S2
x � S2

y

� �
þ ~I � A � ~S

with eigenfunctions |3/2i, |1/2i, |�1/2i, and |�3/2i for Cr, and |1i, |0i, and |�1i
for V (the 51V hyperfine coupling is essentially isotropic and equal to �55.5 �
10�4 cm�1). With the field along the z-axis, using the Hamiltonian on the
eigenfunctions gives for Cr(CN)6

3�:

Ĥ 3
2

�� � ¼ 3
2
mBgzBþD
� �

3
2

�� �

Ĥ 1
2

�� � ¼ 1
2
mBgzB�D
� �

1
2

�� �

Ĥ �1
2

�� �
¼ �1

2
mBgzB�D

� �
�1

2

�� �

Ĥ �3
2

�� �
¼ �3

2
mBgzBþD

� �
�3

2

�� �

and for V(CN)6
4�:

Ĥ j1i ¼ mBgzBþ 1
3
D

� �
j1i

Ĥ j0i ¼ �2
3
D

� �
j0i

Ĥ j � 1i ¼ �mBBþ 1
3
D

� �
j � 1i
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Substituting the values from Table 6.2 into these equations, we get the energy
levels shown in Figure 6.6.

Given the measured positions of the transitions, the values of gz andD can be
determined. Orienting the field along x and y gives gx, gy, and E. Ligand-field
theory was still in its infancy in 1956, so one of the goals of Baker, Bleaney, and
Bowers8 was a test of the theory – of course it passed with flying colors. In the
same paper, K3Fe(CN)6 and K4Mn(CN)6 were also studied. With the CN�

ligand, which is high in the spectrochemical series, it was expected that both
complexes would be low spin and, sure enough, they were.

Because the d5 configuration is spherically symmetric, high-spin Mn(II) and
Fe(III) usually have nearly isotropic g-matrices and Mn(II) usually has a nearly
isotropic A-matrix. This means that there usually is not much information in
the ESR spectrum of these high-spin species. Indeed, high-spin Mn(II) is usually
an unwanted interference for those interested in low-spin Mn(II); the ESR
spectrum is very characteristic with six hyperfine lines with a coupling constant
of 80–100 G. Because the g- and A-matrices are nearly isotropic, the six-line
spectrum persists in frozen solutions.

In part because the high-spin Mn(II) signal is so easily detected, several
workers have doped Mn(II) into crystals for which a phase transition was
indicated. Thus Das and Pal9 have doped CoSiF6 � 6H2O and Co1�xZnx-

SiF6 � 6H2O with Mn(II), replacing some of the Co(II). For CoSiF6 � 6H2O,

Table 6.2 ESR parameters for two high-spin complexes8

Complex D (cm�1) E (cm�1) gx gy gz

Cr(CN)6
3� 0.083 0.011 1.993 1.991 1.991

V(CN)6
4� –0.0264 –0.0972 1.9919 1.9920 1.9920
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Figure 6.6 Energy levels for Cr(CN)6
3� and V(CN)6

4� for B along the z-axis.8
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following the ESR spectrum as a function of temperature, they found a change
in the dipolar parameterD from �176 to�274 � 10�4 cm�1 while the hyperfine
coupling changed from 93 to 96 � 10�4 cm�1. These changes correlate with the
phase transition. The temperature of the phase transition depended on the
Mn(II) content; for XMn¼ 0.082 and 0.182, the transitions occurred at 205, 218
K and 175, 185 K, respectively.

Hirota10 reported a very similar experiment in which PbCl2 was doped with
Mn(II). In this experiment, the goal was to study Mn(II) in an ionic medium.
The results are summarized in Table 6.3.
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Table 6.3 ESR parameters for Mn(II) in PbCl2
10

g Aa Da Ea

x 1.9996(2) 79.7(5) 463.8(1) 127.9(1)
y 2.0004(2) 79.6(2)
z 2.003(1) 80.9(2)

a A, D, and E in units of 10�4 cm�1. Estimated errors in last significant
figure shown in parentheses.
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CHAPTER 7

Perturbation Theory
Calculations

7.1 Second-order Perturbation Theory Treatment

of Spin Hamiltonian with Non-coincident

g- and A-axes

In Chapter 4 (Sections 4.7 and 4.8) several examples were presented to illustrate
the effects of non-coincident g- and A-matrices on the ESR of transition metal
complexes. Analysis of such spectra requires the introduction of a set of
Eulerian angles, a, b, and g, relating the orientations of the two coordinate
systems. Here is presented a detailed description of how the spin Hamiltonian is
modified, to second-order in perturbation theory, to incorporate these new
parameters in a systematic way. Most of the calculations in this chapter were
first executed by Janice DeGray.1 Some of the details, in the notation used here,
have also been published in ref. 8.

The key to success turns out to be taking careful account of the various axis
systems (Table 7.1).

7.1.1 The Electron Zeeman Term

H ¼ mB~S � g � ~B

~S is quantized along g � ~B i.e.:

~S � g � ~B ¼ gBSz0

Table 7.1 Various axis systems

Coordinate system Coordinates

g-Matrix principal axes x, y, z
A-Matrix principal axes X, Y, Z
Electron spin quantization axes x0, y0, z0

Nuclear spin quantization axes x00, y00, z00
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Since S ¼ (Sx0, Sy0, Sz0), it is necessary that:

g � ~B ¼
0
0
gB

0

@

1

A

The x,y,z coordinate system is defined by the g-matrix principal axes:

g ¼
gx 0 0
0 gy 0
0 0 gz

0

@

1

A

The magnetic field vector in that coordinate system is:

~B ¼
B sin y cosf
B sin y sinf

B cos y

0

@

1

A

where y and j are the usual polar angles.
We therefore have:

g � ~B ¼
gxB sin y cosf
gyB sin y sinf

gzB cos y

0

@

1

A

The transformation from the x,y,z axes to x0,y0,z0 (the axis system in which ~S is
quantized) must then take this form to:

g � ~B ¼
gxB sin y cosf
gyB sin y sinf

gzB cos y

0

@

1

A)
0
0
gB

0

@

1

A

Q � g � ~B ¼ Q �
gxB sin y cosf
gyB sin y sinf

gzB cos y

0

@

1

A ¼
0
0
gB

0

@

1

A

where Q is a transformation matrix corresponding to rotations of the axes
by the Euler angles z (rotation about y-axis), x (rotation about new z-axis),
w (rotation about new y-axis) (Whittaker definitions2,3):

Q ¼
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

0

@

1

A

where:

Q11 ¼ cos z cos x cos w� sin z sin w

Q12 ¼ sin z cos x cos wþ cos z sin w
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Q13 ¼ � sin x cos w

Q21 ¼ � cos z cos x sin w� sin z cos w

Q22 ¼ � sin z cos x sin wþ cos z cos w

Q23 ¼ sin x sin w Q31 ¼ cos z sin x

Q32 ¼ sin z sin x Q33 ¼ cos x

Thus:
Q11gx sin y cosjþQ12gy sin y sinjþQ13gz cos y ¼ 0

Q21gx sin y cosjþQ22gy sin y sinjþQ23gz cos y ¼ 0

Q31gx sin y cosjþQ32gy sin y sinjþQ33gz cos y ¼ g

These equations are satisfied with:

g2 ¼ g2? sin
2 yþ g2z cos

2 y

g2? ¼ g2xcos
2fþ g2ysin

2f

if:

cos z ¼ gx

g?
cosf sin z ¼ gy

g?
sinf

cos x ¼ gz

g
cos y sin x ¼ g?

g
sin y

Note that the angle w is left indeterminant by this transformation. This amounts
to saying that Sx and Sy are not fixed in space by the quantization of ~S along
��g~B. The above result was used in deriving eqn (4.4) in Chapter 4.

7.1.2 Nuclear Hyperfine Interaction

Hhf ¼ ~S � A � ~I

where the principal axes of A are (X,Y,Z), which are related to the principal
axes of g by the transformation matrix R , which depends in the Euler angles
a, b, and g in the same way that Q depends on z, x, and w. Following Blinder,4

we assume that ~I is quantized along the effective or resultant field due to the
applied field B and the hyperfine field due to the unpaired electron:

~Bhf ¼ ~S � A

To a first approximation, we neglect ~B compared with ~Bhf . For BE 3000 G, i.e.
X-band ESR, this will be a good approximation for most metal nuclei and for
protons or fluorines with hyperfine couplings greater than ca. 20 G.

We label the nuclear spin quantization axes (x00,y00,z00) and require that the Sz 0

term has the form KSz 0Iz.
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The hyperfine term may be written in the (x0,y0,z0) system:

Hhf ¼ ~S � Z � ~I

where:

Z ¼ S
�1
� A � S S ¼ Q � R

That is, matrix R transforms from (X,Y,Z) to (x,y,z) and matrix Q transforms
from (x,y,z) to (x0,y0,z0), so that matrix S transforms from (X,Y,Z) to (x0,y0,z0).
In the (x0,y0,z0) coordinate system:

S
!� Z � I!¼Sx0 Z11Ix0 þ Z12Iy0 þ Z13Iz0

� �

þ Sy0 Z21Ix0 þ Z22Iy0 þ Z23Iz0
� �

þ Sz0 Z31Ix0 þ Z32Iy0 þ Z33Iz0
� �

In the nuclear spin quantization axis system, the last term has the form, KSz0Iz00

where K is the effective hyperfine coupling for the particular orientation. Thus:

Iz00 ¼
1

K
Z31Ix0 þ Z32Iy0 þ Z33Iz0
� �

where:

K2 ¼ Z2
31 þ Z2

32 þ Z2
33

As it happens, the only components of the S-matrix we will need to know (for
the perturbation theory treatment) are S31, S32 and S33:

S31 ¼Q31R11 þQ32R21 þQ33R31

¼ gx

g
sin y cosf cos a cos b cos g� sin a sin gð Þ

þ gy

g
sin y sinf � cos a cos b sin g� sin a cos gð Þ

þ gz

g
cos y cos a sin b

ð7:1aÞ

S32 ¼Q31R12 þQ32R22 þQ33R32

¼ gx

g
sin y cosf sin a cos b cos gþ cos a sin gð Þ

þ gy

g
sin y sinf � sin a cos b sin gþ cos a cos gð Þ

þ gz

g
cos y sin a sin b

ð7:1bÞ

S33 ¼Q31R13 þQ32R23 þQ33R33

¼� gx

g
sin y cosf sin b cos g

þ gy

g
sin y sinf sin b sin gþ gz

g
cos y cos b

ð7:1cÞ
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Consider the matrix which transforms the ~I vector from the nuclear-spin into
the electron-spin quantization axes:

QI �
Ix00

Iy00

Iz00

0

@

1

A ¼
Ix0

Iy0

Iz0

0

@

1

A

where QI can be written in terms of Euler angles a, b and g. Since the hyperfine
term can be written:

Sx0

Sy0

Sz0

0

B@

1

CA �
Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

0

B@

1

CA �
Ix0

Iy0

Iz0

0

B@

1

CA ¼

Sx0

Sy0

Sz0

0

B@

1

CA �
Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

0

B@

1

CA �QI �
Ix00

Iy00

Iz00

0

B@

1

CA

we also have:

Ix0 ¼ cos a cos b cos g� sin a sin gð ÞIx00
þ sin a cos b cos gþ cos a sin gð ÞIy00 � sin b cos gIz00

Iy0 ¼ � cos a cos b sin g� sin a cos gð ÞIx00
þ � sin a cos b sin gþ cos a cos gð ÞIy00 þ sin b sin gIz00

Iz0 ¼ cos a sin bIx00 þ sin a sin bIy00 þ cos bIz00

where:

cos a sin b ¼ Z31=K

sin a sin b ¼ Z32=K

cos b ¼ Z33=K

Thus the angles a and b are determined, but g (like w) remains indeterminant.
However, in this case we have a means of approximating g. If QI were used to
transform Z into the nuclear spin quantization axis system, the trace of the
matrix would remain constant. We are multiplying Z from one side only, so
that the trace is not necessarily invariant. However, we can write:

Z11 cos a cos b cos g� sin a sin gð Þ
þZ12 � cos a cos b sin g� sin a cos gð Þ þ Z13 cos a sin b

þZ21 sin a cos b cos gþ cos a sin gð Þ
þZ22 � sin a cos b sin gþ cos a cos gð Þ þ Z23 sin a sin b

� Z11 þ Z22 þ Z33 � K
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Collecting terms in cos g and sin g:

A cos gþ B sin gþ Z13 cos a sin bþ Z23 sin a sin b
� Z11 þ Z22 þ Z33 � K

where:

A ¼Z11 cos a cos b

� Z12 sin aþ Z21 sin a cos bþ Z22 cos a

B ¼� Z11 sin a� Z12 cos a cos b

þ Z21 cos a� Z22 sin a cos b

If this were not an approximation, we could evaluate the components of the
Z-matrix, the angles a and b, and solve for g. The nature of the approximation
causes this approach to fail, but we can still look for the value of g that brings
the function closest to a solution. Differentiating with respect to g, we have:

�A sin gþ B cos g ¼ 0

or:

tan g ¼ B

A

In practice, we must check this result to make sure that we have a minimum and
not a maximum. Now assume that the hyperfine term can be written in the
form:

~S � Z � ~I ¼ Sx0Sy0Sz0
� � Dx Ex Fx

Dy Ey Fy

0 0 K

0

@

1

A
Ix00

Iy00

Iz00

0

@

1

A

~S � Z � ~I ¼Sx0 DxIx00 þ ExIy00 þ FxIz00
� �

þ Sy0 DyIx00 þ EyIy00 þ FyIz00
� �

þ KSz0Iz00

Given values of a, b and g, calculation of the new parameters Dx, Dy, Ex, Ey, Fx

and Fy is straightforward using perturbation theory.

7.1.3 Perturbation Theory Treatment of Hyperfine Term

If we expand the hyperfine term of the spin Hamiltonian and write the
operators in terms of raising and lowering operators:

Sþ� ¼ Sx0 þ�iSy0 Iþ� ¼ Ix00 þ�iIy00
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Hhf ¼ KSz0Iz00 þ 1
2
Fx � iFy

� �
SþIz00 þ 1

2
Fx þ iFy

� �
S�Iz00

þ 1
4

Dx � Ey

� �
� i Dy þ Ex

� �� �
SþIþ

þ 1
4

Dx � Ey

� �
þ i Dy þ Ex

� �� �
S�I�

þ 1
4 Dx þ Ey

� �
� i Dy � Ex

� �� �
SþI�

þ 1
4

Dx þ Ey

� �
þ i Dy � Ex

� �� �
S�Iþ

The unperturbed and perturbation Hamiltonians then are:

H0 ¼ gmBBSz0 þ KSz0Iz00

H1 ¼ 1
2
Fx � iFy

� �
SþIz00 þ 1

2
Fx þ iFy

� �
S�Iz00

þ 1
4

Dx � Ey

� �
� i Dy þ Ex

� �� �
SþIþ þ 1

4
Dx � Ey

� �
þ i Dy þ Ex

� �� �
S�I�

þ 1
4

Dx þ Ey

� �
� i Dy � Ex

� �� �
SþI� þ 1

4
Dx þ Ey

� �
þ i Dy � Ex

� �� �
S�Iþ

Operating on the zero-order wavefunctions:

1
2
;ms; I ;mI

�� �

we have

H0
1
2
;ms; I ;mI

�� �
¼ gmBBSz0 þ KSz0Iz00ð Þ 1

2
;ms; I ;mI

�� �

¼ msgmBBþmsmIKð Þ 1
2
;ms; I ;mI

�� �

H1
1
2
;ms; I ;mI

�� �

¼ 1
2
Fx � iFy

� �
SþIz00 þ 1

2
Fx þ iFy

� �
S�Iz00

� �
1
2
;ms; I ;mI

�� �

þ 1
4

Dx � Ey

� �
� i Dy þ Ex

� �� �
SþIþ

1
2
;ms; I ;mI

�� �

þ 1
4

Dx � Ey

� �
þ i Dy þ Ex

� �� �
S�I�

1
2
;ms; I ;mI

�� �

þ 1
4

Dx þ Ey

� �
þ i Dy � Ex

� �� �
S�Iþ

1
2
;ms; I ;mI

�� �

þ 1
4

Dx þ Ey

� �
� i Dy � Ex

� �� �
SþI�

1
2
;ms; I ;mI

�� �

H1
1
2
; 1
2
; I ;mI

�� �
¼ mI

2
Fx þ iFy

� �h i
1
2
;�1

2
; I ;mI

�� �

þ 1
4

Dx � Ey

� �
þ i Dy þ Ex

� �� �

� I I þ 1ð Þ �mI mI � 1ð Þ½ �
1
2 1
2
;�1

2
; I ;mI � 1

�� �

þ 1
4

Dx þ Ey

� �
þ i Dy � Ex

� �� �

� I I þ 1ð Þ �mI mI þ 1ð Þ½ �
1
2 1
2
;�1

2
; I ;mI þ 1

�� �
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H1
1
2
;�1

2
; I ;mI

�� �
¼ mI

2
Fx � iFy

� �h i
1
2
; 1
2
; I ;mI

�� �

þ 1
4 Dx � Ey

� �
� i Dy þ Ex

� �� �

� I I þ 1ð Þ �mI mI þ 1ð Þ½ �
1
2 1
2
; 1
2
; I ;mI þ 1

�� �

þ 1
4

Dx þ Ey

� �
� i Dy � Ex

� �� �

� I I þ 1ð Þ �mI mI � 1ð Þ½ �
1
2 1
2
; 1
2
; I ;mI � 1

�� �

Thus the significant matrix elements are:

1
2
;� 1

2
; I ;mI

� ��H1
1
2
; 1
2
; I ;mI

�� �
¼ mI

2
Fx þ iFy

� �

1
2
;� 1

2
; I ;mI � 1

� ��H1
1
2
; 1
2
; I ;mI

�� �

¼ 1
4

Dx � Ey

� �
þ i Dy þ Ex

� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I I þ 1ð Þ �mI mI � 1ð Þ

p

1
2
;� 1

2
; I ;mI þ 1

� ��H1
1
2
; 1
2
; I ;mI

�� �

¼ 1
4

Dx þ Ey

� �
þ i Dy � Ex

� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I I þ 1ð Þ �mI mI þ 1ð Þ

p

1
2
; 1
2
; I ;mI

� ��H1
1
2
;�1

2
; I ;mI

�� �
¼ mI

2
Fx � iFy

� �

1
2
; 1
2
; I ;mI þ 1

� ��H1
1
2
;� 1

2
; I ;mI

�� �

¼ 1
4

Dx � Ey

� �
� i Dy þ Ex

� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I I þ 1ð Þ �mI mI þ 1ð Þ

p

1
2
; 1
2
; I ;mI � 1

� ��H1
1
2
;� 1

2
; I ;mI

�� �

¼ 1
4

Dx þ Ey

� �
� i Dy � Ex

� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I I þ 1ð Þ �mI mI � 1ð Þ

p

Thus the zero-, first-, and second-order energies are:

E
ð0Þ
þ�1=2
¼ þ�

1
2
gmBBþ�

1
2
KmI

E
ð1Þ
þ�1=2
¼ 0

E
ð2Þ
1=2 ¼

m2
I

4hv
F2
x þ F2

y

	 


þ 1

16hv
Dx � Ey

� �2þ Dy þ Ex

� �2h i
I I þ 1ð Þ �mI mI � 1ð Þ½ �

þ 1

16hv
Dx þ Ey

� �2þ Dy � Ex

� �2h i
I I þ 1ð Þ �mI mI þ 1ð Þ½ �
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E
ð2Þ
�1=2 ¼�

m2
I

4hv
F2
x þ F2

y

	 


� 1

16hv
Dx � Ey

� �2þ Dy þ Ex

� �2h i
I I þ 1ð Þ �mI mI þ 1ð Þ½ �

� 1

16hv
Dx þ Ey

� �2þ Dy � Ex

� �2h i
I I þ 1ð Þ �mI mI � 1ð Þ½ �

For the ‘‘allowed’’ transitions, DmS ¼ þ 1, DmI ¼ 0, the energy is:

DE ¼ hv ¼ gmBBþ KmI þ
m2

I

2hv
F2
x þ F2

y

	 


þ mI

4hv
D2

x þ E2
y þD2

y þ E2
x

h i
I I þ 1ð Þ �m2

I

� � ð7:2Þ

Defining:

F1 ¼ F2
x þ F2

y

F2 ¼ D2
x þD2

y þ E2
x þ E2

y

the transition energy can be written:

DE ¼ hv ¼ gmBBþ KmI þ
2F1 � F2ð Þm2

I

4hv
þ F2I I þ 1ð Þ

4hv
ð7:3Þ

and the field:

B ¼ hv

gmB
� KmI

gmB
� 2F1 � F2ð Þm2

I þ F2I I þ 1ð Þ
4gmBhv

ð7:4Þ

Thus we must express F1 and F2 in parameters of the original spin
Hamiltonian.

Starting with the two ways of expressing the hyperfine Hamiltonian term, we
equate the coefficients of Sx

0, Sy
0 and Sz

0:

Z11Ix0 þ Z12Iy0 þ Z13Iz0 ¼ DxIx00 þ ExIy00 þ FxIz00

Z21Ix0 þ Z22Iy0 þ Z23Iz0 ¼ DyIx00 þ EyIy00 þ FyIz00

Z31Ix0 þ Z32Iy0 þ Z33Iz0 ¼ K

or:

Z11Ix0 þ Z12Iy0 þ Z13Iz0 ¼Dx a1Ix0 þ b1Iy0 þ c1Iz0
� �

þ Ex a2Ix0 þ b2Iy0 þ c2Iz0
� �

þ Fx a3Ix0 þ b3Iy0 þ c3Iz0
� �

Z21Ix0 þ Z22Iy0 þ Z23Iz0 ¼Dy a1Ix0 þ b1Iy0 þ c1Iz0
� �

þ Ey a2Ix0 þ b2Iy0 þ c2Iz0
� �

þ Fy a3Ix0 þ b3Iy0 þ c3Iz0
� �
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Equating coefficients of Ix 0 , Iy 0 and Iz 0 , we have:

Z11 ¼ Dxa1 þ Exa2 þ Fxa3
Z12 ¼ Dxb1 þ Exb2 þ Fxb3
Z13 ¼ Dxc1 þ Exc2 þ Fxc3

Squaring and summing:

Z2
11 þ Z2

12 þ Z2
13 ¼D2

x a21 þ b21 þ c21
� �

þ E2
x a22 þ b22 þ c22
� �

þ F2
x a23 þ b23 þ c23
� �

þ 2DxEx a1a2 þ b1b2 þ c1c2ð Þ
þ 2DxFx a1a3 þ b1b3 þ c1c3ð Þ
þ 2ExFx a2a3 þ b2b3 þ c2c3ð Þ

or:

Z2
11 þ Z2

12 þ Z2
13 ¼ D2

x þ E2
x þ F2

x

Similarly:

Z2
21 þ Z2

22 þ Z2
23 ¼ D2

y þ E2
y þ F2

y

Since:

a1a3 þ b1b3 þ c1c3 ¼ 0; c1 ¼ �
a1a3 þ b1b3

c3

Thus:

Z11 ¼Dxa1 þ Exa2 þ Fxa3

Z12 ¼Dxb1 þ Exb2 þ Fxb3

Z13 ¼ � Dx
a1a3 þ b1b3

c3

� �
� Ex

a2a3 þ b2b3

c3

� �
þ Fxc3

or:

a3Z11 ¼Dxa1a3 þ Exa2a3 þ Fxa
2
3

b3Z12 ¼Dxb1b3 þ Exb2b3 þ Fxb
2
3

c3Z13 ¼� Dx a1a3 þ b1b3ð Þ � Ex a2a3 þ b2b3ð Þ þ Fxc
2
3

Summing, we have:

Fx ¼ a3Z11 þ b3Z12 þ c3Z13

or:

Fx ¼
1

K
Z31Z11 þ Z32Z12 þ Z33Z13ð Þ
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Similarly:

Fy ¼
1

K
Z31Z21 þ Z32Z22 þ Z33Z23ð Þ

Expanding the Z matrix in terms of Ax, Ay and Az and the components of the
S-matrix, and simplifying making use of the orthonormality of rows of the
S-matrix, we have:

Z33Z13 þ Z32Z12 þ Z31Z11

¼ A2
xS31S11 þ A2

yS32S12 þ A2
zS33S13

Z33Z23 þ Z32Z22 þ Z31Z21

¼ A2
xS31S21 þ A2

yS32S22 þ A2
zS33S23

Thus:

F1 ¼ F2
x þ F2

y ¼
1

K2
A4

xS
2
31 þ A4

yS
2
32 þ A4

zS
2
33 � K4

	 

ð7:5Þ

K2 ¼ Z2
11 þ Z2

12 þ Z2
13 ¼ A2

zS
2
13 þ A2

yS
2
12 þ A2

xS
2
11

D2
x þ E2

x ¼ Z2
11 þ Z2

12 þ Z2
13 � F2

x

K2 Z2
11 þ Z2

12 þ Z2
13

� �
� K2F2

x

¼ S33S2 � S32S3ð Þ2A2
yA

2
z

þ S33S1 � S31S3ð Þ2A2
xA

2
z

þ S32S1 � S31S2ð Þ2A2
xA

2
y

D2
y þ E2

y ¼ Z2
21 þ Z2

22 þ Z2
23 � F2

y

Z2
21 þ Z2

22 þ Z2
23 ¼ A2

zS
2
23 þ A2

yS
2
22 þ A2

xS
2
21

K2 Z2
21 þ Z2

22 þ Z2
23

� �
� K2F2

y

¼ S33S22 � S32S23ð Þ2A2
yA

2
z

þ S33S21 � S31S23ð Þ2A2
xA

2
z

þ S32S21 � S31S22ð Þ2A2
xA

2
y

F2 ¼
1

K2
A2

yA
2
z S2

33 þ S2
32

� �h

þA2
xA

2
z S2

33 þ S2
31

� �
þ A2

xA
2
y S2

32 þ S2
31

� �i ð7:6Þ
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7.1.4 Example Application of these Results

Robert Pike has prepared various low-spin Mn(II) complexes. Figure 7.1 shows
the ESR spectrum of [Mn(CO)2(PPh3)(C5H5)]

1 in frozen CH2Cl2/C2H4Cl2 (see
also Tables 7.2 and 7.3). Some of Pike’s spectra, and an analysis of the
spectrum simulated in Figure 7.1, have been published.5

We will now see how to apply the equations derived above. As a first step, we
notice that the 31P coupling is virtually isotropic. Thus, things can be simplified
by taking the average of the 5/2,1/2 and 5/2,�1/2 assignments, etc.:

The next thing to notice is that the widely spaced features are very approx-
imately equally spaced. This suggests that the g- and A-matrix principal axes
are non-coincident. You might think that a simple application of the above
equations would suffice for a complete analysis. It is not quite so simple, and a
nonlinear least-squares program is required.1,6 Table 7.4 shows the fitted
parameters.

2800 2900 3000 3100 3200 3300 3400 3500

Magnetic Field/Gauss

Figure 7.1 Frozen solution ESR spectrum (n¼ 9.45 GHz) of [Mn(CO)2(PPh3)(C5H5)]
1.

Simulated using parameters in ref. 5.

Table 7.2 Measured line positions (mMn,mP) for [Mn(CO)2(PPh3)(C5H5)]
1a

5/2,1/2 3/2,1/2 1/2,1/2 �1/2,1/2 �3/2,1/2 �5/2,1/2
Min 2836.3 2930.4 3024.1 3116.1 3207.4 3295.3
Sp 3215.1 3246.5 3279.5 3314.0 3350.4 3388.3*
Max 3309.1* 3320.2 3340.6 3372.4 3417.1 3473.6

5/2,�1/2 3/2,�1/2 1/2,�1/2 �1/2,�1/2 �3/2,�1/2 �5/2,�1/2
Min 2865.5 2959.6 3053.4 3145.9 3236.6 3324.6
Sp 3246.5 3277.8 3310.8 3245.5 3381.8 3419.7*
Max 3340.8* 3352.0 3372.4* 3404.3 3448.8 3505.1

a Min ¼ minimum, Sp ¼ saddle point, and Max ¼ maximum; those indicated with an asterisk (*)
are poorly resolved.
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7.2 Quadrupole Coupling

The spectra discussed in Chapter 4 were analyzed by neglecting the effects of
nuclear quadrupole coupling on the nuclear hyperfine structure. Presented here
is the way such effects may be incorporated into the spectra using perturbation
theory.

The quadrupole coupling term in the spin Hamiltonian can be written as:

HQ ¼ ~I � P � ~I

where P is the quadrupole coupling matrix:

P ¼
�Pð1� ZÞ 0 0

0 �Pð1þ ZÞ 0
0 0 2P

0

@

1

A

Assuming identical principal axes for A and P, the Hamiltonian term would
have the form in the (x00,y00,z00) coordinate system:

~I � P � ~I ¼ Ix00Iy00Iz00
� �

P11 P12 P13

P12 P22 P23

P13 P23 P33

0

B@

1

CA

Ix00

Iy00

Iz00

0

B@

1

CA

¼P33I
2
z00 �

1

4
P33 IþI� þ I�Iþð Þ þ 1

2
P13 þ iP23ð Þ I�Iz þ IzI�ð Þ

þ 1

2
P13 � iP23ð Þ IþIz þ IzIþð Þ � i

2
P12 I2þ � I2�
� �

þ 1

4
P11 � P22ð Þ I2þ þ I2�

� �

Table 7.3 Line positions for [Mn(CO)2(PPh3)(C5H5)]
1. Averaged over mP

5

mMn Min SP Max

5/2 2850.94 3230.77 3324.94
3/2 2945.04 3262.15 3336.12
1/2 3038.68 3295.16 3356.51
�1/2 3131.28 3379.81 3388.34
�3/2 3222.05 3366.09 3432.99
�5/2 3309.96 3404.00 3489.34

Table 7.4 ESR parameters for [Mn(CO)2(PPh3)(C5H5)]
15

x y z

g 2.188 2.034 2.002
AMn ca. 10 32.9 98.4
AP 29.8 29.8 29.8
Euler angles (1) a ¼ 0 b ¼ 73.91 g ¼ 0
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Note that transformation by a general coordinate transformation matrix
leaves the quadrupole matrix symmetrical, i.e., Pij ¼ Pji and with zero trace,
P11 þ P22 ¼ �P33.

7.2.1 Perturbation Theory Treatment of Quadrupole Term

Operating on the spin functions, we have:

HQ I ;mj i ¼ 1
2
P33 3m2 � I I þ 1ð Þ
� �

I ;mj i
� 1

2 P13 þ iP23ð Þ 2m� 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I I þ 1ð Þ �m m� 1ð Þ

p
I ;m� 1j i

þ 1
2
P13 � iP23ð Þ 2mþ 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I I þ 1ð Þ �m mþ 1ð Þ

p
I ;mþ 1j i

þ 1
4
P11 � P22 � 2iP12ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I I þ 1ð Þ � mþ 1ð Þ2
h i2

� mþ 1ð Þ2
r

I ;mþ 2j i

þ 1
4
P11 � P22 þ 2iP12ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I I þ 1ð Þ � m� 1ð Þ2
h i2

� m� 1ð Þ2
r

I ;m� 2j i

which leads to matrix elements:

I ;mh jHQ I ;mj i ¼ 1
2
P33 3m2 � I I þ 1ð Þ
� �

I ;m� 1h jHQ I ;mj i ¼ 1
2
P13 þ iP23ð Þ 2m� 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I I þ 1ð Þ �m m� 1ð Þ

p

I ;mþ 1h jHQ I ;mj i ¼ 1
2
P13 � iP23ð Þ 2mþ 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I I þ 1ð Þ �m mþ 1ð Þ

p

I ;mþ 2h jHQ I ;mj i

¼ 1
4
P11 � P22 � 2iP12ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I I þ 1ð Þ � mþ 1ð Þ2
h i2

� mþ 1ð Þ2
r

I ;m� 2h jHQ I ;mj i

¼ 1
4
P11 � P22 þ 2iP12ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I I þ 1ð Þ � m� 1ð Þ2
h i2

� m� 1ð Þ2
r

First- and second-order energy corrections then are:

Eð1Þ ¼ 1
2
P33 3m2 � I I þ 1ð Þ
� �

Eð2Þ ¼ þ�
4m

K
P2
13 þ P2

23

� �
I I þ 1ð Þ � 2m2 þ 1

4

� �� �

�þ
m

2K
P11 � P22ð Þ2þ4P2

12

h i
I I þ 1ð Þ � m2 þ 1

2

� �� �

where K is the angle-dependent hyperfine coupling defined in the previous
section and the upper sign corresponds to ms ¼ þ1/2, the lower to � 1/2.
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In the electron-spin quantization system (x0,y0,z0), the quadrupole interaction
matrix is:

S11 S12 S13

S21 S22 S23

S31 S32 S33

0

@

1

A
�Pð1� ZÞ 0 0

0 �Pð1þ ZÞ 0
0 0 2P

0

@

1

A
S11 S21 S31

S12 S22 S32

S13 S23 S33

0

@

1

A

Since we can transform from the (x0,y0,z0) coordinate system into (x00,y00,z00) by:

Ix00

Iy00

Iz00

0

@

1

A ¼
a1 b1 c1
a2 b2 c2
a3 b3 c3

0

@

1

A
Ix0

Iy0

Iz0

0

@

1

A

the reverse transformation must be:

Ix0

Iy0

Iz0

0

@

1

A ¼
a1 a2 a3
b1 b2 b3
c1 c2 c3

0

@

1

A
Ix00

Iy00

Iz00

0

@

1

A

We next transform the P matrix, using the a,b,c-matrix and compute P33,
F3 ¼ P13

2 þ P23
2, and F4 ¼ (P11 – P22)

2 þ 4P12
2, simplifying the expressions

using the relations:

a1b1 þ a2b2 þ a3b3 ¼ 0 a1c1 þ a2c2 þ a3c3 ¼ 0

b1c1 þ b2c2 þ b3c3 ¼ 0 a21 þ a22 þ a23 ¼ 1

b21 þ b22 þ b23 ¼ 1 c21 þ c22 þ c23 ¼ 1

a1b2 � a2b1 ¼ c3 a1c2 � a2c1 ¼ �b3
b1c2 � b2c1 ¼ a3

with similar expressions relating components of the S-matrices:

P33 ¼ 3 c3S33 þ b3S23 þ a3S13ð Þ2P� P

þ c3S31 þ b3S21 þ a3S11ð Þ2PZ
� c3S32 þ b3S22 þ a3S12ð Þ2PZ

F3 ¼ 9F3aP
2 þ F3bP

2Zþ F3cP
2Z2

F3a ¼ c3S33 þ b3S23 þ a3S13ð Þ2� c3S33 þ b3S23 þ a3S13ð Þ4

F3b ¼ 2 c3S33 þ b3S23 þ a3S13ð Þ2� c3S32 þ b3S22 þ a3S12ð Þ2
h

� c3S31 þ b3S21 þ a3S11ð Þ2
i
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F3c ¼ c3S32 þ b3S22 þ a3S12ð Þ2

þ c3S31 þ b3S21 þ a3S11ð Þ2

� c3S32 þ b3S22 þ a3S12ð Þ2
h

� c3S31 þ b3S21 þ a3S11ð Þ2
i2

F4 ¼ 9F4aP
2 þ F4bPZþ F4cP

2Z2

F4a ¼ 1� 2 c3S33 þ b3S23 þ a3S13ð Þ2þ c3S33 þ b3S23 þ a3S13ð Þ4

F4b ¼ 2 a3S13 þ b3S23 þ c3S33ð Þ2þ1
h i

F4c ¼ 4 a3S13 þ b3S23 þ c3S33ð Þ2

þ a3S11 þ b3S21 þ c3S31ð Þ2
h

� a3S12 þ b3S22 þ c3S32ð Þ2
i2

but:

c3S31 þ b3S21 þ a3S11 ¼
AxS31

K

c3S32 þ b3S22 þ a3S12 ¼
AyS32

K

c3S33 þ b3S23 þ a3S13 ¼
AzS33

K
Finally:

Fi ¼ P2 9Fia þ 3ZFib þ Z2Fic

� �

P33 ¼
P

K2
2A2

zS
2
33 � A2

? 1� S2
33

� �
þ Z A2

xS
2
31 � A2

yS
2
32

	 
h i

F3 ¼
P2

K4
9þ Z2
� �

A2
?A

2
zS

2
33

�
1� S2

33

� �

þ6ZA2
zS

2
33 A2

yS
2
32 � A2

xS
2
31

	 

þ 4Z2A2

xS
2
31A

2
yS

2
32

i

F4 ¼
P2

K4
9A4
? 1� S2

33

� �2þ6Z A2
xS

2
31 � A2

yS
2
32

	 

K2 þ A2

zS
2
33

� �h

þZ2 A2
xS

2
31 � A2

yS
2
32

	 
2
þ4Z2K2A2

zS
2
33



Putting together all the bits and pieces of the above perturbation theory
treatment of quadrupole coupling effects, we arrive at the following equations:

B ¼B0 �
mK

gmB
� F1m

2

2g2m2BB
� F2

4g2m2BB
I I þ 1ð Þ �m2
� �

þ 8mF3

gmBK
I I þ 1ð Þ � 2m2 þ 1

4

� �� �

� mF4

gmBK
I I þ 1ð Þ � m2 þ 1

2

� �� �
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where:

K2 ¼ 1

g2
A2

zzg
2
z cos

2 yþ A2
xxg

2
x cos

2 jþ A2
yyg

2
y sin

2 j
	 


sin2 y
h i

F1ðxÞ ¼
g2xA

4
x � K4

g2K2
;F1ðyÞ ¼

g2yA
4
y � K4

g2K2
;F1ðzÞ ¼

g2zA
4
z � K4

g2K2

F2ðxÞ ¼
g2xA

4
x A2

y þ A2
z

	 


g2K2
F2ðyÞ ¼

g2yA
4
y A2

x þ A2
z

� �

g2K2

F2ðzÞ ¼
g2zA

4
z A2

x þ A2
y

	 


g2K2

F3ðxÞ ¼ F3ðyÞ ¼ P2Z2 1� cos2 2a
� �

;F3ðzÞ ¼ 0

F4ðxÞ ¼ P2 9þ 6Z cos 2aþ Z2 cos2 2a
� �

F4ðyÞ ¼ P2 9� 6Z cos 2aþ Z2 cos2 2a
� �

F4ðzÞ ¼ 4P2Z2

7.2.2 Example Application of Analysis of Quadrupole Effects

The ESR spectrum of a Rh-Ir complex7,8 is shown in Figure 7.2, together with a
very satisfactory simulation.

Since 103Rh has I ¼ 1/2 and both isotopes of Ir have I ¼ 3/2, we might have
expected each g-component to be a quartet of doublets. The Rh coupling is
barely visible on the high-field features, but there is no trace on the other two
g-components; indeed, the low-field and mid-field components are more like
1:2:1 triplets than the expected 1:1:1:1 quartet.

We must first examine the predicted spacing of the expected quartet. The
outer and inner spacings are given by:

DBouter ¼
3K

gmB
þ 24F3

gmBK
þ 3F4

gmBK

DBinner ¼
K

gmB
� 24F3

gmBK
þ 3F4

gmBK

Assuming that the quadrupole matrix axes differ from the g-matrix axes by
a ¼ 451, F3 and F4 simplify to:

F3ðxÞ ¼F3ðyÞ ¼ P2Z2;F3ðzÞ ¼ 0

F4ðxÞ ¼F4ðyÞ ¼ 9P2;F4ðzÞ ¼ 4p2Z2

Under these circumstances, the inner and outer quartet spacings are:

DBouterðx; yÞ ¼
3K

gmB
þ 24P2Z2

gmBK
þ 27P2

gmBK

DBinnerðx; yÞ ¼
K

gmB
� 24P2Z2

gmBK
þ 27P2

gmBK
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DBouterðzÞ ¼
3K

gmB
þ 12P2Z2

gmBK

DBinnerðzÞ ¼
K

gmB
þ 12P2Z2

gmBK

Examination of these equations shows that the spacing of the z-component is
expected to be a little bigger for the inner (1/2, �1/2) spacing than 1/3 the outer
spacing. In contrast, the inner spacing of the x and y components is expected to be
less than 1/3 the outer spacing. This is entirely consistent with the experimental
spectrum of Figure 7.2. Unfortunately, the effect is too big for perturbation theory
to be entirely reliable, and it was necessary to perform a matrix diagonalization to
get the exact solution of the spin Hamiltonian. For further details, see ref. 8.

One more item needs to be discussed in reference to this spectrum. Why did it
turn out that a ¼ 451? Consider the coordination geometry of the Ir atom (1).

Ir

NN

Ph3P

y

x
1

CO

2800 2900 3000 3200 3300 3400 3500

Simulation

Exptl. spectrum

Magnetic Field/Gauss

Figure 7.2 ESR spectrum of [RhLL0{m-(tol)NNN(tol)}2IrLL
0]1 PF6

� (tol¼ p-MeC6H4,
L ¼ CO, L0 ¼ PPh3).
(Reproduced with permission from ref. 7, copyright (2000) Royal Society of
Chemistry. Simulation using methods of ref. 8.)

150 Chapter 7



The Rh–Ir vector defines the z-axis, and the NN bridges define the x- and
y-axes. The N and P atoms are solely electron donors, but the CO ligand
involves a lot of p-back-bonding. Thus the quadrupole matrix, which has large
components if there is an electric field gradient at the Ir nucleus, is rotated 451
compared with the g-matrix principal axes.
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APPENDIX 1

Physical Constants, Conversion
Factors, and Properties of
Nuclei (Tables A1.1–A1.4)

Table A1. 1 Physical constants

Name Symbol Value

Planck constant h 6.62607 � 10�34 J s1

Speed of light c 2.99792 � 108 m s�1

Avogadro’s number NA 6.02214 � 1023 mol�1

Boltzmann constant k 1.38065 � 10�23 J K�1

Bohr magneton mB 9.27401 � 10�28 J G�1

Nuclear magneton mN 5.05078 � 10�31 J G�1

Free electron g-value ge 2.002319304
Gas constant R 8.31447 J mol�1 K�1

Electronic charge e �1.60218 � 10�19 C
Electron mass me 5.486 � 10�4 amu

Table A1. 2 Conversion factors

1 amu 1.66 � 10�24 g
1 Tesla 10 000 Gauss
10�4 cm�1 1.9864 � 10�27 J
A/MHz 2.8025 (g/ge) a/G
A/10�4 cm�1 0.93481 (g/ge) a/G
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Table A1. 3 Some properties of stable magnetic nuclei

Nucleus I % Abund.a 104As (cm
�1)b 104P (cm�1)b m (nm)a 1028Q (m2)a

1H 1/2 99.985 473.8 2.7928 0
2H 1 0.012 0.8574 0.00286
6Li 1 7.5 30.7 0.8220 �0.0008
7Li 3/2 92.4 121.7 3.2564 �0.041
9Be 3/2 100.0 �150.6 �1.1776 0.0529
10B 3 19.9 569 35.1 1.8006 0.085
11B 3/2 80.1 850 52.4 2.6886 0.0406
13C 1/2 1.11 1260 89.6 0.7024 0
14N 1 99.63 604 46.3 0.40376 0.0200
15N 1/2 0.37 �424 �32.5 �0.28319 0
17O 5/2 0.04 �1755 �140.4 �1.8938 �0.026
19F 1/2 100.0 2066 109.4 2.6289 0
23Na 3/2 100.0 309.2 2.2175 0.104
25Mg 5/2 10.0 �162.1 �0.8554 0.199
27Al 5/2 100.0 1304 69.28 3.6415 0.1540
29Si 1/2 4.683 �1532 �95.23 �0.5553 0
31P 1/2 100.0 4438 305.9 1.1316 0
33S 3/2 0.76 1155 83.82 0.6438 0.068
35Cl 3/2 75.78 1909 146.4 0.82187 �0.083
37Cl 3/2 24.22 1589 121.9 0.68412 �0.014
39K 3/2 93.258 76.2 0.39146 0.049
41K 3/2 7.730 41.8 0.21487 0.060
43Ca 7/2 0.135 �213.7 �1.3173 �0.05
45Sc 7/2 100.0 941.6 80.2 4.75649 �0.220
47Ti 5/2 7.44 �260.8 �24.56 �0.78848 0.30
49Ti 7/2 5.41 �365.2 �34.40 �1.10417 0.24
50V 6 0.25 1120 117.7 3.3457
51V 7/2 99.75 1389 146.0 5.148706 �0.04
53Cr 3/2 9.50 �249.6 �34.4 0.47464 �0.15
55Mn 5/2 100.0 1680 207.5 3.4687 0.32
57Fe 1/2 2.12 249.2 32.61 0.0906 0
59Co 7/2 100.0 1984 282.0 4.63 0.41
61Ni 3/2 1.140 �834 �125.2 �0.75002 0.16
63Cu 3/2 69.17 2000 399.0 2.2233 �0.211
65Cu 3/2 30.83 2142 427.0 2.3817 �0.195
67Zn 5/2 4.1 696 117.3 0.8755 0.15
69Ga 3/2 60.11 4073 170.0 2.01639 0.17
71Ga 3/2 39.89 5176 216.0 2.56227 0.11
73Ge 9/2 7.73 �788 �40.1 �0.87947 �0.17
75As 3/2 100.0 4890 278.2 1.43947 0.31
77Se 1/2 7.63 6711 410.0 0.53506 0
79Br 3/2 50.69 10697 682.0 2.1064 0.331
81Br 3/2 49.31 11529 735.0 2.2703 0.276
85Rb 5/2 72.17 346 1.352 0.23
87Rb 3/2 27.83 704 2.7512 0.15
87Sr 9/2 7.00 �584.7 1.0936 0.34
89Y 1/2 100.0 �417 �20.76 �0.13742 0
91Zr 5/2 11.22 �91.8 �51.9 �1.30362 �0.21
93Nb 9/2 100.0 2198 152.5 6.1705 �0.32
95Mo 5/2 15.92 �662 �50.3 �0.9142 �0.02
97Mo 5/2 9.55 �676 �51.3 �0.9335 0.26
99Ru 5/2 12.76 �525 �47.5 �0.6413 0.079
101Ru 5/2 17.06 �588 �53.3 �0.7188 0.46
103Rh 1/2 100.0 �410 �40.4 �0.0884 0
105Pd 5/2 22.33 �62.7 �0.642 0.66
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Table A1. 3 (continued )

Nucleus I % Abund.a 104As (cm
�1)b 104P (cm�1)b m (nm)a 1028Q (m2)a

107Ag 1/2 51.84 �611 �68.3 �0.11357 0
109Ag 1/2 48.16 �703 �78.6 �0.13069 0
111Cd 1/2 12.80 �4553 �430.0 �0.59489 0
113Cd 1/2 12.22 �4763 �450.0 �0.62230 0
113In 9/2 4.29 6731 237.1 5.529 0.80
115In 9/2 95.71 6746 236.6 5.541 0.81
117Sn 1/2 7.68 �14002 �584.0 �1.0010 0
119Sn 1/2 8.59 �14650 �611.0 �1.0473 0
121Sb 5/2 57.21 11708 524.0 3.363 �0.4
123Sb 7/2 42.79 8878 397.0 2.550 �0.5
125Te 1/2 7.07 �18542 �875.0 �0.8885 0
127I 5/2 100.0 13876 677.0 2.8133 �0.79
133Cs 7/2 100.0 823 2.582 �0.004
135Ba 3/2 6.59 1220 0.838 0.16
137Ba 3/2 11.23 1324 0.9374 0.245
139La 7/2 99.91 2004 79.1 2.7830 0.20
141Pr 5/2 100.0 4166 295.1 4.275 �0.08
143Nd 7/2 12.18 �793 �60.0 �0.67 �0.60
145Nd 7/2 8.3 �481 �59.0 �0.66 �0.31
147Sm 7/2 14.99 �672 �55.8 �0.815 �0.26
149Sm 7/2 13.82 �554 �46.0 �0.672 0.075
151Eu 5/2 47.81 1086 91.6 �0.872 0.90
153Eu 5/2 52.19 1909 161.0 1.533 2.41
155Gd 3/2 14.80 �647 �21.9 �2.59 1.30
157Gd 3/2 15.65 �849 �28.78 �3.40 1.36
159Tb 3/2 100.0 4546 417.0 2.014 1.43
161Dy 5/2 18.9 �705 �65.1 �0.480 2.51
163Dy 5/2 24.9 988 91.3 0.673 2.65
165Ho 7/2 100.0 4523 429.0 4.17 3.49
167Er 7/2 22.9 �645 �63.2 �0.5639 3.57
169Tm 1/2 100.0 �1946 �195.3 �0.232 0
171Yb 1/2 14.8 889 89.0 0.4937 0
173Yb 5/2 16.1 �1224 �122.6 �0.6799 2.80
175Lu 7/2 97.41 3546 93.2 2.2327 3.49
177Hf 7/2 18.60 1471 41.4 0.7935 0.337
179Hf 9/2 13.62 �1188 �33.4 �0.641 3.79
181Ta 7/2 99.99 5010 148.6 2.370 3.3
183W 1/2 14.31 1927 60.9 0.11778 0
185Re 5/2 37.40 11718 382.0 3.1871 2.18
187Re 5/2 62.60 11838 386.0 3.2197 2.07
187Os 1/2 1.96 431.4 14.74 0.064652 0
189Os 3/2 16.15 4403 150.4 0.65993 0.86
191Ir 3/2 37.3 1072 37.8 0.151 0.82
193Ir 3/2 62.7 1165 41.0 0.164 0.75
195Pt 1/2 33.83 11478 492.0 0.6095 0
197Au 3/2 100.0 959 44.0 0.14575 0.55
199Hg 1/2 16.87 13969 537.4 0.50588 0
201Hg 3/2 13.18 �15470 �595 �0.56023 0.39
203Tl 1/2 29.52 60711 710 1.62226 0
205Tl 1/2 70.48 61308 717.0 1.63822 0
207Pb 1/2 22.1 27188 542.0 0.59258 0
209Bi 9/2 100.0 25860 553.0 4.111 �0.37

a Ref. 1.
b Ref. 2.

154 Appendix 1



Dipolar hyperfine coupling parameters for the transition metals and (n þ 1)p-
orbitals were computed from SCF Hartree–Fock–Slater atomic orbitals [3].
The parameter P is given by eqn (5) below, and hr�3ind and hr�3i(n11)p are given
by eqns (1) and (3). The s-orbital contribution, responsible for the isotropic
coupling, is given by eqn (3); Dnd is the difference between the number of
d-electrons present in the ion of interest and the number present in the neutral
metal. Using these equations and the parameters given in Table A1.3, the P and
isotropic coupling parameters can be computed for each of the transition
metals (Table A1.4).

r�3
� �

nd
¼ Aþ BD nd þ Cns þDnp ð1Þ

8p
3

c2ð0Þ
� �

ðnþ1Þs¼ Aþ BD nd þ Cns þDnp ð2Þ

r�3
� �

ðnþ1Þp¼ Aþ BD nd þ Cns ð3Þ

F ¼ gegNm0mBmN
4ph

6:74834� 1030 au3m�3
� �

10�6 MHz s�1
� �

ð4Þ

P ¼ gegNmBmN r�3
� �

ð5Þ

P ¼ 4:180hr�3i � 10�4 cm�1 ð5aÞ

Example

For Cr(II), 3d0.94s0.1:

r�3
� �

3d
¼ 3:99� 0:517 ð�2:1Þ � 0:062 ð0:1Þ � 0:017 ð0:0Þ ¼ 5:07

c2ð0Þ
� �

4s
¼ 47:8� 16:0 ð�2:1Þ � 6:9 ð0:1Þ � 3:2 ð0:0Þ ¼ 80:7

r�3
� �

4p
¼ 2:69� 1:70 ð�2:1Þ � 0:97 ð0:1Þ ¼ 6:16

Using eqn (5a):

P3d ¼ 21:2� 10�4 cm�1

P4p ¼ 25:7� 10�4 cm�1
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Table A1. 4 EPR hyperfine coupling parameters for the transition metals

Isotope I Fa Ab �Bb �Cb �Db

47Ti 5/2 �30.13 hr�3i3d 2.554 0.444 0.057 0.009
49Ti 7/2 �30.14 [c2(0)]4s 37.1 12.8 5.5(4) 2.7

hr�3i4p 2.15 1.37 0.76 �
50V 6 53.26 hr�3i3d 3.229 0.479 0.060 0.013
51V 7/2 140.52 [c2(0)]4s 42.6 14.3 6.1 2.9

hr�3i4p 2.42 1.53 0.86 �
53Cr 3/2 �30.22 hr�3i3d 3.990 0.517 0.062 0.017

[c2(0)]4s 47.8 16.0 6.9 3.2
hr�3i4p 2.69 1.70 0.97 �

55Mn 5/2 132.53 hr�3i3d 4.841 0.559 0.064 0.020
[c2(0)]4s 53.6 17.8 7.6 3.4
hr�3i4p 2.96 1.88 1.08 �

57Fe 1/2 17.31 hr�3i3d 5.789 0.604 0.066 0.021
[c2(0)]4s 59.8 9.7 8.5 3.7
hr�3i4p 3.23 2.07 1.19 �

59Co 7/2 126.4 hr�3i3d 6.840 0.650 0.067 0.024
[c2(0)]4s 66.2 21.7 9.4 4.0
hr�3i4p 3.50 2.26 1.32 �

61Ni 3/2 �47.76 hr�3i3d 7.997 0.700 0.070 0.024
[c2(0)]4s 73.1 23.7 0.3 4.3
hr�3i4p 3.77 2.45 1.44 �

63Cu 3/2 141.58 hr�3i3d 9.270 0.750 0.072 0.025
65Cu 3/2 151.67 [c2(0)]4s 80.3 25.8 11.3 4.6

hr�3i4p 4.05 2.65 1.57 �
91Zr 5/2 �49.81 hr�3i4d 3.407 0.542 0.144 0.036

[c2(0)]5s 75.7 21.3 10.3 4.8
hr�3i5p 3.70 2.03 1.20 �

93Nb 9/2 130.98 hr�3i4d 4.197 0.565 0.142 0.045
[c2(0)]5s 86.1 24.2 11.5 5.4
hr�3i5p 4.14 2.27 1.35 �

95Mo 5/2 �34.93 hr�3i4d 5.04 0.591 0.140 0.050
97Mo 5/2 �35.67 [c2(0)]5s 96.0 27.0 12.5 5.6

hr�3i5p 4.55 2.51 1.49 �
99Tc 9/2 120.67 hr�3i4d 5.951 0.619 0.137 0.053

[c2(0)]5s 106.9 �30.4 14.2 6.5
hr�3i5p 4.93 2.76 1.64 �

99Ru 5/2 �24.50 hr�3i4d 6.929 0.648 0.134 0.054
101Ru 5/2 �27.46 [c2(0)]5s 117.6 33.7 15.6 7.0

hr�3i5p 5.29 3.00 1.78 �
103Rh 1/2 �16.89 hr�3i4d 7.980 0.678 0.132 0.055

[c2(0)]5s 128.5 37.2 17.0 7.6
hr�3i5p 5.64 3.24 1.93 �

105Pd 5/2 �24.53 hr�3i4d 9.107 �0.710 �0.129 �0.055
[c2(0)]5s 139.7 �40.9 �18.6 �8.1
hr�3i5p 5.98 �3.49 �2.08 �

107Ag 1/2 �21.70 hr�3i4d 10.31 �0.744 �0.127 �0.054
109Ag 1/2 �24.95 [c2(0)]5s 151.2 �44.8 �20.2 �8.7

hr�3i5p 6.30 �3.73 �2.22 �
177Hf 7/2 21.66 hr�3i5d 6.34 �0.99 �0.30 �0.07
179Hf 9/2 �13.60 [c2(0)]6s 274 �73 �36 �16

hr�3i6p 6.80 �3.61 �2.21 �
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Table A1. 4 (continued )

Isotope I Fa Ab �Bb �Cb �Db

181Ta 7/2 64.68 hr�3i5d 7.51 �0.99 �0.29 �0.09
[c2(0)]6s 310 �81 �40 �18
hr�3i6p 7.51 �3.96 �2.42 �

183W 1/2 22.50 hr�3i5d 8.72 �1.00 �0.28 �0.10
[c2(0)]6s 345 �90 �44 �20
hr�3i6p 8.16 �4.30 �2.63 �

185Re 5/2 121.77 hr�3i5d 9.98 �1.02 �0.27 �0.11
187Re 5/2 123.02 [c2(0)]6s 387 �103 �52 �25

hr�3i6p 8.77 �4.65 �2.84 �
187Os 1/2 12.34 hr�3i5d 11.30 �1.03 �0.26 �0.11
189Os 3/2 42.02 [c2(0)]6s 417 �110 �53 �24

hr�3i6p 9.33 �4.98 �3.05 �
191Ir 3/2 9.62 hr�3i5d 12.68 �1.05 �0.26 �0.11
193Ir 3/2 10.44 [c2(0)]6s 454 �120 �58 �26

hr�3i6p 9.85 �5.32 �3.26 �
195Pt 1/2 116.44 hr�3i5d 14.12 �1.08 �0.25 �0.11

[c2(0)]6s 491 �131 �63 �27
hr�3i6p 10.34 �5.64 �3.45 �

197Au 3/2 9.285 hr�3i5d 15.64 �1.10 �0.24 �0.10
[c2(0)]6s 530 �143 �68 �29
hr�3i6p 10.80 �5.97 �3.66 �

a Factor defined by eqn (4).
b Parameters A, B, C, D refer to eqns (1)–(3).

157Physical Constants, Conversion Factors, and Properties of Nuclei



APPENDIX 2

Advanced ESR Methods

For most of the 60 years since ESR was discovered, the vast majority of
experiments have been carried out using CW spectrometers operating at the
X-band frequency and employing conventional electromagnets. Indeed, most
commercially available instruments are still of the general type described in
Chapter 1, albeit with enhancements made possible by advancements in elec-
tronics, computers and, to some extent, microwave technology. The last two
decades, however, have seen ever increasing development and applications of
other ESR techniques. Most of these advanced methods fall into one of three
broad categories:

� High field/multifrequency ESR
� Double resonance
� Pulsed methods

Although several of these methods were first applied in the 1950s and 1960s,
none would have been possible at their current technical level using the post-
World War II technology that gave rise to X-band ESR. In particular:

High frequency ESR has required not only the use of superconducting magnets,
developed primarily for NMR, but even more importantly employs stable
frequency sources and sensitive detectors in the millimeter and sub-millimeter
range that have only recently become available.
Double resonance techniques, on the other hand, of which the earliest was
ENDOR (described in Chapter 1), have greatly benefited from advances in
signal processing technology, of the sort now employed, for example, in
wireless communication systems.
Pulsed methods in ESR, which have by now taken over NMR instrumentation,
have required the development of high power amplifiers and fast switches for
microwave and higher frequency radiation.

One group of reviewers1 has actually attributed much of the rapid develop-
ment in all three categories to declassification of research in high frequency and
communications technology that was an outgrowth of the end of the Cold War!
The ready availability of this technology is also reflected in the fact that at least
one supplier of commercial ESR equipment now offers a high field, pulsed,
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double resonance spectrometer, i.e., an instrument that incorporates advanced
technology in all three categories.

The impact of these new methods has been felt particularly strongly in two
areas:

(i) Improvements in effective resolution using high fields, double resonance,
and pulsed methods have made possible the analysis and interpretation
of spectra from increasingly complex paramagnetic materials, especially
those of biological and solid state relevance.

(ii) Nanosecond pulsed methods have made possible the detection and
characterization of various transient paramagnetic intermediates that
could be previously studied by optical methods but were inaccessible to
ESR. The latter application, which has led to advances in the under-
standing of reactive intermediates in photochemistry, radiation chemis-
try and other areas of mechanistic chemistry, is beyond the scope of this
book. Reviews of these and other recent chemical applications of ESR
have been written by Christopher Rhodes.6,13

Presented below are brief descriptions of some of the applications to structure
analysis to which each of the three advanced methods are making important
contributions. For the reader who wishes to learn more about these
methods and applications a list of recent reviews and other leading references
to these applications is also included. The titles of the papers that we have
referenced will make it clear that we have tried to include applications of
relevance not only to organometallic chemistry but also to biochemistry and
related fields.

A2.1 High Frequency ESR

The two most obvious advantages of high frequency/high field spectrometers,
better sensitivity and improved resolution of field-dependent features, which
has revolutionized the field of high-resolution NMR, have proved to have
less impact on ESR. For example, the smaller sample sizes that must be used
when higher frequency, smaller wavelength, radiation is used have made it
necessary in many cases to work with smaller numbers of spins and therefore
not fully exploit the sensitivity advantage inherent in use of the higher
frequency. Improved resolution with increasing frequency is also not a forgone
conclusion, especially with randomly oriented samples. While it is certainly
possible, for example, to detect smaller g-factor anisotropies at high fields,
the first indication of such effects often appears as poorer resolution of
individual features because of increased apparent line width as the anisotropy
is revealed.

Nevertheless many recent studies simply could not have been carried out
without the use of high frequency EPR. One of these is described below. In this,
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and most other studies to date, custom-built equipment was necessary because
no commercial instruments are available yet at very high frequencies.

A recent example of an application of high field ESR (‘‘HF-EPR’’) is shown
in Figure A2.1. The sample studied is a frozen aqueous solution of Cr21 sulfate
(3d4, S ¼ 2), cooled to 10 K.

This corresponds to an ‘‘EPR-silent’’ sample that gives no detectable ESR
spectrum at X-band frequencies because it possesses a zero-field splitting larger
than the Zeeman interaction (see Chapter 6), and the energy spacing between
the two lowest levels is too large to be spanned by a microwave quantum at
X-band. Nevertheless, higher frequencies are able to induce transitions. Since

Figure A2.1 Microwave frequency dependent HF-EPR spectra of aqueous Cr21 (0.1–
0.2 M), sulfate counterion. Experimental conditions: temperature 10 K;
microwave frequency as indicated. In the spectrum taken at 329 GHz a
sharp signal from aqueous Cr31 impurity at g ¼ 2 is indicated and the
resonances due to Cr21 are labeled (Figure A2.2).
(Reprinted with permission from ref. 25, copyright (1998) American
Chemical Society.)
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the energy level scheme is quite complex, as shown in Figure A2.1 the spectrum
varies markedly with frequency. Figure A2.2 shows the frequency dependence
of the various spectral features.

Analysis of the spectra at different frequencies yielded the parameters
D¼�2.20(5) cm�1, E¼ 0.0(1) cm�1, and a nearly isotropic g-factor,
g ¼ 1.98(2), none of which could have been determined at X-band. Analysis
was aided by the observation of different slopes of the B vs. n plots for DmS 4 1
and DmS ¼ 1 transitions. A review of advanced methods, including high-field
EPR, is given in ref. 11. Various recent applications of high field and multi-
frequency EPR are described in refs 19–31.

A2.2 Double Resonance

In Chapter 2, ENDOR (electron–nuclear double resonance) was briefly
described. To perform an ENDOR experiment it is necessary to apply both a
radiofrequency and a microwave frequency, effectively performing simultane-
ous NMR and ESR, respectively, on the sample. The experiment is performed
at a fixed magnetic field, with the ESR saturating frequency centered on a

Figure A2.2 Plot of resonance field versus microwave frequency for data from
Figure A2.1. Least squares fits are given for each Cr21resonance (dotted
line) and for the Cr31 impurity (solid line). C and E correspond to
DmS 4 1 while the rest correspond to DmS ¼ 1.

(Reprinted with permission from ref. 25, copyright (1998) Amer-
ican Chemical society.)
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spectral feature usually identified from a CW-ESR experiment. The RF field
at the NMR frequency is then varied. When the RF frequency matches the
appropriate NMR transition frequency the ESR absorption reappears. The
number of observed lines is reduced, making it easier to detect small hyperfine
splittings, even though the number of nuclei giving rise to the coupling is not
revealed. Furthermore, one immediately knows from the NMR frequency what
type of nucleus is involved. We saw, for example, in Chapter 2 that hyperfine
patterns from 14N and 1H splittings can be quite similar and proper analysis
of the spectrum requires recognition of subtle differences in peak intensities.
This in turn demands resolution that is almost never available in randomly
oriented samples. In the case of such samples, ENDOR is playing an increas-
ingly important role since careful selection of the saturated features in the ESR
spectrum leads to excitation of molecules over only a narrow range of orientat-
ions. This makes it possible to extract anisotropic spectral parameters that must
otherwise be obtained using single crystals or laborious simulation of the
full spectrum.32–34,39,42,43 The relatively old technique of Dynamic Nuclear
Polarization (DNP), originally proposed by Overhauser, in which the NMR
spectrum is observed during irradiation of ESR transitions, is being rejuve-
nated as a method of enhancing the NMR spectra of solids.35

As discussed in Chapter 6, in systems with more than one unpaired electron
the ESR spectrum contains features that involve electron–electron coupling
parameters analogous to the nuclear hyperfine parameters. In those types of
samples the advantages of double resonance are carried out by employing the
use of two different microwave frequencies, one fixed and saturating, and one
variable frequency that searches for transitions. This technique is known as
ELDOR (electron–electron double resonance).38,40,41,44 It has been used much
less than ENDOR and usually requires custom-built equipment.

A major limitation of CW double resonance methods is the sensitivity of the
intensities of the transitions to the relative rates of spin relaxation processes.
For that reason the peak intensities often convey little quantitative information
about the numbers of spins involved and, in extreme cases, may be undetect-
able. This limitation can be especially severe for liquid samples where several
relaxation pathways may have about the same rates. The situation is somewhat
better in solids, especially at low temperatures, where some pathways are
effectively frozen out. Fortunately, fewer limitations occur when pulsed radio
and microwave fields are employed. In that case one can better adapt the
excitation and detection timing to the rates of relaxation that are intrinsic to
the sample.50 There are now several versions of pulsed ENDOR and other
double resonance methods. Some of these methods also make it possible to
separate in the time domain overlapping transitions that have different relax-
ation behavior, thereby improving the resolution of the spectrum.

A2.3 Pulsed Methods

The recent advent of the ability to apply short and very intense microwave
pulses to samples and detect the fast response to the excitation has made it
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possible to collect an ESR free-induction decay in the time domain and to
Fourier transform the result and view the data in the frequency domain. Such
experiments are an outgrowth of the pulsed methods commonly used to
determine relaxation times. They mimic the ubiquitous pulsed methods that
have revolutionized NMR. It has taken the ability to do this much longer to
develop for ESR than for NMR, however, due both to the much shorter ESR
relaxation times and to the much wider extent of ESR spectra in the frequency
domain, both of which require shorter, more intense pulses and much faster
detector response8,16,18 than for pulsed NMR. Applications of Fourier-
transform ESR, and related multiple-pulse two-dimensional techniques
now common in NMR, are still in their infancy and require custom-built
equipment.47,48,54,55

Nevertheless, there is one type of pulsed ESR measurement, the phenomenon
of Electron Spin Echo Envelope Modulation (ESEEM) that is growing very
rapidly and is in some instances replacing ENDOR as a way of extracting
parameters from randomly oriented samples, since it can also be used to study
weakly coupled nuclei, i.e., cases where A o 10 MHz. Interestingly, the most
robust version of the method works best in randomly oriented solids with
overlapping lines. In its simplest form, the phenomenon appears as modulation
of the intensity of the ‘‘echo’’ detected after a sequence of two pulses separated
by a time t, on the order of the reciprocal of a hyperfine coupling in frequency
units, typically micro- to nanoseconds. This ‘‘envelope’’ has in it two sorts of
information, an approximately exponential decay corresponding to the phase
memory time, T2, as well as information about the amplitude modulation by
nuclear spin flips under the influence of A. For an ESEEM experiment to be
successful the applied microwave pulse must be such that both allowed and
semi-forbidden, i.e., double quantum, transitions are excited. There must also
be enough nuclear modulations within the time before the echo decays to define
the observable values of A. ESEEM experiments are usually run on frozen
samples at low temperatures both to lengthen decay times and to achieve the
anisotropic effects that make the desired transitions possible. It is also necessary
for the deadtime, the time needed between pulses before the detector can record
new information, to be short compared with the time over which the modu-
lations are observable. The echo intensity as a function of t may then be
Fourier transformed to yield a frequency domain ‘‘spectrum’’ that looks a lot
like ENDOR. ESEEM experiments can also be performed using more than two
pulses, giving somewhat greater flexibility in the range of relaxation times over
which modulations can be observed. As with ENDOR, however, ESEEM
spectra can be quite sensitive to relaxation behavior so that failure to observe a
modulation does not prove the absence of a coupled nucleus. Several recent
reviews of the technique are available.2,9,12,14 ENDOR and ESEEM are also
sometimes employed together.46,49

The combination of higher fields and pulsed, double resonance methods is
now making it possible to use ESR as a tool to determine distances within
macromolecules. This is a valuable supplement to the very widespread use of
multi-dimensional NMR in structural biology.33

163Advanced ESR Methods



References

In developing this short bibliography of advanced ESR methods we have tried
to select references primarily from widely available journals, review series and
books published after 1990. We have therefore avoided references to meeting
abstracts or highly specialized journals with low circulation or earlier publica-
tions where the methods were first demonstrated. Citations to these pioneering
papers are found in the references.

For ease of recognition of papers relevant to a particular method or
application we have included the title of the review or paper within the citation.
The references are grouped by topic and listed in reverse chronological order
within each topic. They are numbered consecutively.

Books and Reviews
1. High-field EPR, Magn. Reson. Chem., Special Issue, ed. W. Lubitz,

K. Mobius and K.-P. Dinse, 2005, 43, S1–S266.
2. G.R. Eaton and S.S. Eaton, Electron-nuclear double resonance spectro-

scopy and electron spin echo envelope modulation spectroscopy, Compre-
hensive Coordination Chemistry II, Elsevier, Boston, 2004, 49.

3. C. Coulon and R. Clerac, Electron spin resonance: A major probe of
molecular conductors, Chem. Rev., 2004, 104, 5655.

4. Biomedical EPR, ed. S.S. Eaton, G.R. Eaton and L.J. Berliner, Kluwer
Academic/Plenum Publishers, New York, 2004.

5. L.J. Berliner, ed., In vivo EPR (ESR): Theory and Applications, Kluwer
Academic/Plenum Publishers, New York, 2004.

6. C.J. Rhodes, Electron spin resonance (some applications for the biolog-
ical and environmental sciences), Annu. Rep. Prog. Chem., Sec. C, 2004
100, 149.

7. Paramagnetic Resonance of Metallobiomolecules, ed. J. Telser, ACS
Symposium Series, 858, American Chemical Society, 2003.

8. T. Prisner, M. Rohrer and F. MacMillan, Pulsed EPR spectroscopy:
Biological applications, Annu. Rev. Phys. Chem., 2001, 52, 279.

9. N.D. Chasteen and P.A. Snetsinger, ESEEM and ENDOR spectro-
scopy, in Physical Methods in Bioinorganic Chemistry, Spectroscopy
and Magnetism, ed. L. Que, Jr, University Science Books, Sausalito,
CA, 2000.

10. G. Palmer, Electron paramagnetic resonance of metalloproteins, in Phys-
ical Methods in Bioinorganic Chemistry, Spectroscopy and Magnetism,
ed. L. Que, Jr, University Science Books, Sausalito, CA, 2000.

11. J.H. Freed, New technologies in electron spin resonance, Annu. Rev. Phys.
Chem., 2000, 51, 655.

12. Y. Deligiannakis, M. Louloudi and N. Hadjiliadis, Electron spin echo enve-
lope modulation (ESEEM) spectroscopy as a tool to investigate the coordi-
nation environment of metal centers, Coord. Chem. Rev., 2000, 204, 1.

13. C.J. Rhodes, Electron spin resonance, Annu. Rep. Prog. Chem., Sect.
C, 1999, 95, 199.

164 Appendix 2



14. J. McCracken, Electron spin echo modulation, in Handbook of Electron
Spin Resonance, ed. C.P. Poole and H.A. Farach, Springer-Verlag,
New York, 1999, vol. 2.

15. M. Ikeya, New Applications of Electron Spin Resonance: ESR Dating,
Dosimetry and Microscopy, World Scientific Publishing Co., Singapore,
1993.

16. A. Schweiger, Pulsed electron spin resonance spectroscopy: Basic princi-
ples, techniques, and examples of applications, Angew. Chem. Int. Ed.
Engl., 1991, 30, 265.

17. L.R. Dalton, A. Bain and C.J. Young, Recent advances in electron
paramagnetic resonance, Annu. Rev. Phys. Chem., 1990, 41, 389.

18. Modern Pulsed and Continuous-Wave Electron Spin Resonance, ed.
L. Kevan and M.K. Bowman, John Wiley and Sons, New York, 1990.

Selected Papers from the Recent Literature

High Field/Multifrequency EPR:
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