

Cracking Windows Phone
and BlackBerry

Native Development

Cross-Platform Mobile Apps
Without the Kludge

� � �

Matthew Baxter-Reynolds

Cracking Windows Phone and BlackBerry Native Development: Cross-Platform Mobile Apps Without
the Kludge

Copyright © 2011 by Matthew Baxter-Reynolds

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN 978-1-4302- 3374-9

ISBN 978-1-4302- 3375-6 (eBook)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Jonathan Hassell
Technical Reviewer: Matthew Fitchett
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,

Jonathan Hassell, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey
Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt
Wade, Tom Welsh

Coordinating Editor: Anita Castro
Copy Editor: Mary Ann Fugate
Compositor: Bytheway Publishing Services
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.multimobiledevelopment.com.

For Martha and Elliott

� CONTENTS AT A GLANCE

iv

 Contents at a Glance

� About the Author.. xi
� About the Technical Reviewer .. xii
� Acknowledgments ... xiii
� Chapter 1: Introduction...1

� Chapter 2: The Six Bookmarks Server Service ...7

� Chapter 3: Application Architecture and Functional Specification......................21

� Chapter 4: Windows Phone 7: Installing the Toolset ...39

� Chapter 5: Windows Phone 7: Building the Logon Form and Consuming
 REST Services ..49

� Chapter 6: Windows Phone 7: Persisting Bookmarks Locally83

� Chapter 7: Windows Phone 7: Pushing Changes Back to the Server..................131

� Chapter 8: Six Bookmarks on Windows Mobile ..163

� Chapter 9: BlackBerry: Installing the Toolset ...201

� Chapter 10: BlackBerry: Building the Logon Form and Consuming
 REST Services ..217

� Chapter 11: BlackBerry: An ORM Layer on SQLite ...243

� Chapter 12: BlackBerry: Pushing Changes to the Server297

� Index ...339

� CONTENTS

v

Contents

� About the Author.. xi
� About the Technical Reviewer .. xii
� Acknowledgments ... xiii
� Chapter 1: Introduction...1

What’s the Purpose of This Book?...2
How Is This Book Structured? ...3

Where Can You Get Help and Support? ...5
Conclusion ...5

� Chapter 2: The Six Bookmarks Server Service ...7

Creating an API Account ..7
Creating a User... 8

The Users Service..10
RESTful Web Services .. 10
Testing the Calls ... 10
Examining Logon Operations.. 11

The Bookmarks Service...14
Adding Some Test Data .. 14
Working with OData.. 15
OData Queries... 19
Issuing Updates over OData ... 20
Constraining Data to the Logged-On User .. 20

Conclusion ...20

� CONTENTS

vi

� Chapter 3: Application Architecture and Functional Specification......................21

A Word About Tablets ..21
Functional Specification ..21

Logging On ... 22
Synchronizing... 23
Navigator .. 23
Configuring Bookmarks .. 24
Configuring a Single Bookmark (“Configure Singleton”).. 25
Missing Functionality.. 26

Application Architecture and Technical Specification ...27
Approach .. 27
Object-Relational Mapping ... 28
Server Communication ... 32
Technical Approach Broken Down by Platform .. 34

Conclusion ...37

� Chapter 4: Windows Phone 7: Installing the Toolset ...39

Silverlight vs. XNA ...39
Visual Studio 2010...39
Installing the Windows Phone Developer Tools ...39

Creating a Test Application..40
Conclusion ...47

� Chapter 5: Windows Phone 7: Building the Logon Form and Consuming
 REST Services ..49

Creating the Project ...49
Building the Logon Form..50

Running the Logon Form .. 53
Calling the Services ...55

Testing HttpHelper.. 59

� CONTENTS

vii

Special Note on MessageBox ... 63
Building Out the API and User Service Proxies ..63

Implementing the Authenticate Method ... 70
Making the Logon Button Work .. 73
Implementing “Remember Me”.. 77

Conclusion ...82

� Chapter 6: Windows Phone 7: Persisting Bookmarks Locally83

Approach ...83
Entities...83

The EntityType Class .. 84
The Entity Class .. 88
Setting Values in an Entity.. 89
Building Bookmark ... 94
Creating SBEntityType Instances.. 96

Displaying Some Fake Bookmarks ..97
Creating Fake Bookmarks .. 99
Showing and Populating the View.. 100
Implementing Button Clicks ... 104

Tombstoning—A Brief Word..107
Storing Entities in the Data Box ...107

Data Box Basics.. 107
Creating the Entity Change Processor .. 111
Building the Sync Class .. 113
Selecting Entities.. 119
Implementing Delete All on the Sync.. 126

Using the ORM Subsystem to Support Tombstoning ...126

Conclusion ...130

� CONTENTS

viii

� Chapter 7: Windows Phone 7: Pushing Changes Back to the Server..................131

The Configuration User Interface...131
Building ConfigurePage.xaml ... 131
Binding the List... 134
Configuring the Application Bar.. 137
The ConfigureSingletonPage Page ... 142

Sending Changes to the Server ...149
Building the PushUpdates Method ... 149
Issuing Server Requests to Insert, Update, and Delete .. 154
Building PushNextWorkItem ... 154
Update via HTTP MERGE and Insert via HTTP POST ... 155
Marking Fields As Being Available on the Server ... 155

Conclusion ...162

� Chapter 8: Six Bookmarks on Windows Mobile ..163

Migrating/Porting...163
The Toolset ..164
Hello, World ...164

Six Bookmarks...164
How the Windows Mobile Application Was Built .. 165
Logging On and Calling RESTful Services... 165
Synchronization 1: Downloading Bookmarks ... 171
Using SQL CE .. 176
Navigator .. 191
Configuring Bookmarks .. 193
Synchronization 2: Uploading Changes .. 195

Downloading Assemblies/Custom Bootstrappers..199
Conclusion ...199

� CONTENTS

ix

� Chapter 9: BlackBerry: Installing the Toolset ...201

A Word About Versions ..201
Installing the Toolset ...201

Installing the Java SDK... 201
Installing Eclipse... 201
Installing the BlackBerry Plug-In .. 202
Installing the BlackBerry Device Simulator .. 202
Installing the BlackBerry Email and MDS Simulator... 204

“Hello, World”..206
Conclusion ...215

� Chapter 10: BlackBerry: Building the Logon Form and Consuming
 REST Services ..217

How This Project Was Built and Significant Issues with BlackBerry Development217

Creating the Project ...218
Conventions for Presenting Code...219

Calling RESTful Services..220
Issuing Web Requests .. 220
Authenticating Our API Account.. 224
Authenticating the User via UsersService .. 235

Creating the Logon Form ...236
Logging On ... 239

Conclusion ...242

� Chapter 11: BlackBerry: An ORM Layer on SQLite ...243

SQLite on BlackBerry ...243
Entities...243

EntityType... 244
Creating the Basic Entity Class... 250
Setting Values in an Entity.. 252
Building Bookmark ... 257

� CONTENTS

x

Registering the EntityType.. 259
Displaying Some Fake Bookmarks ..261

Creating the Form... 261
Showing a Web Page.. 264
Creating Fake Bookmarks .. 265

Building the Sync Class ...269
Calling the Server’s Bookmarks OData Service.. 269
Managing the Database.. 277
The SqlStatement Class and ISqlStatementSource Interface... 278
Creating Tables... 280
Examining the Database with Sqliteman.. 283
Writing Bookmarks to the Database... 285
Reading Bookmarks and Displaying Them on the Navigator.. 291

Conclusion ...296

� Chapter 12: BlackBerry: Pushing Changes to the Server297

Capturing Local Changes...297
Constraining SQL Filters ... 297
Excluding Deleted Entities from the View... 302
Getting a Bookmark by Ordinal... 303
Building the Configuration Form... 304
Configuring Singletons ... 313

Pushing Changes to the Server ...320
My “Facepalm” Moment... 320
Detecting Local Changes .. 321
Issuing Server Requests to Insert, Update, and Delete .. 325
Update via HTTP MERGE and Insert via HTTP POST ... 326
Marking Fields As Being Available on the Server ... 326
Building XmlSerializer .. 331

Conclusion ...337

� Index ...339

xi

About the Author

� Matthew Baxter-Reynolds is an independent software development consultant, trainer, and author
based in the UK, specializing in mobile technology solutions. He can be contacted via LinkedIn at
www.linkedin.com/in/mbrit.

xii

About the Technical Reviewer

In 2004, Matthew Fitchett, with experience in VB.Net, joined a small e-
commerce team to trial C# within a (then) small DVD- and CD–focused
e-commerce company.

Play.com went on to become one of Europe’s largest e-commerce
companies, with Matthew playing a major role as one of a handful of
senior software developers. After six and a half enjoyable years, Matthew
decided to move on to specialize in mobile technology, which he sees as
a significant growth area for software developers and enterprises.

Working alongside Matthew Baxter-Reynolds, Matthew produced
prototypes on a variety of technology platforms (Android, iPhone,
Windows Phone 7, to name three) for a leading company in the mobile
survey software market.

Matthew and his beautiful wife, Sarah, have two young boys, Isaac
and Harry, and live in the beautiful town of Bury St. Edmunds. He enjoys films, games, music, and eating
good food while drinking good beer, and he regularly practices Muay Thai.

His blog at www.mattfitchett.com covers all of the above, along with more mobile technology
discussion.

xiii

Acknowledgments

With much thanks and appreciation to my wife, Andy, for the patience and support she has shown
during writing and development of this book, Matt Fitchett for his excellent suggestions and review
work, and Jonathan Hassell, Anita Castro, and the others at the Apress team for their sterling work in
turning this book into reality.

C H A P T E R 1

� � �

1

Introduction

For me, this book has become all about change. In the time that I have been watching the mobile
computing marketplace and developing software solutions for it, there has never been a time when there
has been a more rapid series of shifts and changes. A good friend of mine tells me that this is because of
market consolidation. As of the time of writing (March 2011), we’re looking at the time when the people
who will be leaders in this space for the next 20 years jostle for position. There is a ton of money out
there being spent, which is fantastic news for the typical reader of this book. Position yourself correctly,
and you could earn a seriously good living out of it all.

To illustrate this point about change, I proposed this book to Apress in February 2010, and in the
time between then and March 2011, a massive amount of changes have happened.

In a normal year, in a normal market, just a few of these things would be big news.

• Microsoft was still developing and building Windows Mobile 6.5. Windows Phone
7 had not been announced. No one really knows what sort of impact Windows
Phone 7 will have.

• The iPad had not been announced, let alone sold the millions and millions of units
that it has, and, of course, this has now been followed up with iPad 2. (For me, this
is perhaps the biggest change of all—the world will never be the same now that
this class of device has been introduced.)

• There was no sign of Android running on tablets. Now we’re looking forward to
Gingerbread making for a fabulous tablet experience.

• The Pre/webOS was included in the original proposal. HP has now bought Pre,
and in the last week or so HP has announced that it intends to include webOS on
all of its shipped PCs.

• Android has been growing, and growing, and growing. IDC has this week
announced it is the fastest growing OS of all time.

• Canalys has also recently announced that 50 percent of BlackBerry users are
looking to defect to iOS or Android.

• The image of Flash hadn’t been damaged by Apple’s insistence that it had no
place on its platform. Although there was a short resurgence, Mozilla has come
out saying that it sees little future in it as a platform.

• iPhone 4 had not been announced or released, and “Antennagate” had not
happened. Now the rumor mill is talking about iPhone 5.

• You couldn’t multitask on an iPhone.

• iOS was still a trademark owned by Cisco.

CHAPTER 1 � INTRODUCTION

2

• Gartner had not come out and likened Symbian to “re-arranging the deck chairs
on the Titanic” in the face of the Android threat. Symbian then seemed to spend
the next few months dying, not with a bang, but with a whimper. Now, Microsoft
and Nokia are moving to become strange bedfellows, effectively moving to
Windows Phone 7 as its primary platform.

• No one knew anything about QNX and the BlackBerry PlayBook. It looks like now
the PlayBook will even run Android apps.

• Steve Ballmer hadn’t said that Apple had sold more iPads than he would have
liked and that “Microsoft-powered tablets are ‘job one’ urgency.” Microsoft still
won’t look at rolling out the Windows Phone 7 platform onto tablet devices,
insisting that Windows 8 is the platform of choice.

• There was no Amazon Appstore, and no one was doing anything as cool as firing
up a Dalvik VM in the cloud to try the app before you buy. (How cool!)

• We didn’t know that Google could remote uninstall applications from any Android
phone using a “kill switch.” It has recently used this to kill off a score of
applications that were causing problems with users.

• Amazon hadn’t announced its Android app store, although even today the details
of it are sketchy.

• The United Arab Emirates had not turned off BlackBerry Enterprise Services
within the country.

• Motorola was looking very sick indeed, but it is now looking much healthier
thanks to the Droid, Droid X, and Xoom.

• MeeGo had not been announced (and as of the time of writing is not substantial
enough to include in this book). My prediction, for what it’s worth, is that this will
get traction in spaces like automotive as opposed to slate or phone factors.

• Microsoft announced, launched, and killed a device called “Kin.” To give you
some idea of how much money is being thrown around, Microsoft attributes
US$240 million of written-off monies to Kin. That’s not small change.

In fact, this book has been difficult to write because of the velocity of all of this change. I’ll be forever
grateful to the team at Apress for managing to corral it into the place where, I hope, it’s helpful and
relevant to you, in spite of this almost constant upheaval in the market.

What’s the Purpose of This Book?
In 2001, I set up a web site called .NET 247 (www.dotnet247.com/) that at the time achieved some success
in the community that had sprung up around Microsoft’s new software development toolset. The
premise of the site was to help me as a developer migrate my knowledge from pre-.NET technologies
(Win32, MFC, classic ASP, etc.) over to .NET. I found it frustrating that spinning up a thread or opening a
file would be a few seconds’ work prior to .NET, but in .NET it took hours of research.

With this book, I’ve looked to do a similar thing—answer the common questions and give you a leg
up into understanding the platform so that you can get on and do the clever thing that only you’ve
thought of. The idea of this book is not to go into masses of detail on every little thing; however, if you

CHAPTER 1 � INTRODUCTION

3

work through all of the different platforms in this book and its companion, you’ll know enough to be
proficient on any platform that you turn your hand to.

Specifically, what I’ve tried to concentrate on is the following:

• Getting to a point where you can compile and run an application on the emulator
or device

• Showing how to build a user interface—specifically move between forms, handle
events, get data on the screen, and capture input

• Showing how to connect to HTTP-based resources so that you can talk to services
in the cloud

• Showing how to store and cache data locally for performance and for offline
support

• Showing how to build a simple but real application that works end to end

How Is This Book Structured?
This book is split into three sections. There’s an introduction section, which takes you through the
background of the two applications that we’re going to build. There is then a section on Windows Phone
7 and another section on BlackBerry. There is also a bonus chapter on Windows Mobile.

In addition, this book has a sister book, which is structured similarly and takes you through building
the same application that we’re going to build in this book. The book’s title—Multimobile Development:
Building Applications for Android and iPhone—should tell you what you need to know.

Each section starts with instructions on how to install the toolset that you are supposed to use with
the platform. Some toolsets are very easy to install, while some have gotchas; thus the aim of the toolset
installation chapter is mainly to cover the gotchas.

The next three chapters in each section take you through building what’s called the “Six Bookmarks”
application. This is a very simple application that is designed to show six buttons on the screen, and
each button can be configured with a URL that invokes the device’s default browser. The purpose of the
application is not to be a fantastic piece of UI—it’s designed to be a “carrier” to help you understand
how to build all of the back-end bits and pieces that you need to make an application functional. Figure
1-1 shows an example.

CHAPTER 1 � INTRODUCTION

4

Figure 1-1. The Six Bookmarks application running on an iPhone

Each volume contains two chapters that are essential to following the work in the book, and I
strongly recommend that you read them first.

To reduce the amount of work required to build the application, Six Bookmarks works on the
assumption that there is a cloud-based service that holds the user’s bookmarks. In order to use the
software on a device, the user needs an account on this service. (This model will seem familiar to all
readers of this book, I hope.) Chapter 2 discusses the structure of this service and familiarizes you with
the service calls that make the application work.

The second important chapter is Chapter 3, which discusses the functional specification of the Six
Bookmarks application and the technical architecture. Again, it’s important that you read this in order to
understand what it is that you are trying to build.

CHAPTER 1 � INTRODUCTION

5

Where Can You Get Help and Support?
This book has a companion web site, located at www.multimobiledevelopment.com/, which hosts
important resources that will support you in getting the most out of this book. Specifically, you will find
the following:

• Downloads of all of the code for all of the platforms

• The Six Bookmarks cloud service implementation that you need to use to make
the applications work

• A hosted version of the Six Bookmark HTML application (discussed in detail in
Volume 2)

• Support forums (I’ll be monitoring and contributing to these, so if you have a
question or a problem, this is the best place to try.)

Finally, going back to my earlier point about the amount of flux in the market at the moment, I’ll be
updating the web site to keep it up-to-date with changes in the toolsets and other movements within the
industry.

Conclusion
Thanks for purchasing this book. Remember that if you do need help or support, then please visit the
web site’s discussion forums; but if you would like to contact me personally, you can find me at
www.linkedin.com/in/mbrit/.

Matthew Baxter-Reynolds, April 2011

C H A P T E R 2

� � �

7

The Six Bookmarks Server Service

We’re going to talk more about the architecture and specification of the Six Bookmarks application in
Chapter 3. In this chapter, we’re going to look at the Six Bookmarks service. To support this book, I have
set up a server with REST-based (a.k.a. “RESTful”) services that allow the application to log on, retrieve
bookmarks over the OData protocol, and post updates back, again using the OData protocol. (We’ll talk
more about OData later on.)

As discussed previously, Six Bookmarks is a commercial product provided in two ways—once as a
commercial product and once as an open source product. In this book, we’re going to be accessing a
service based on the open source version of the code. Both applications communicate with a publically
accessible server. The open source server operates a sandbox, and in order to complete the work in this
book, you’ll need your own account.

� Note It’s currently very popular to talk about the “cloud” and storing things “in the cloud.” The Six Bookmarks
server service is one of these “cloud” services—I’ve provided a server hosted on the public Internet that allows
you to store bookmarks “in the cloud” and retrieve bookmarks “from the cloud.”

We will not be covering how to build this service in the book; however, the source code for the
service can be downloaded from the source repository at http://code.multimobiledevelopment.com/.
This code and all of the other code downloads are distributed under the Mozilla Public License 1.1. More
information on this can be found here: www.mozilla.org/MPL/MPL-1.1-annotated.html.

Creating an API Account
To create an API account, visit the services web site at http://services.multimobiledevelopment.com/.
You will find a link on that page entitled “Register a new API account”. Click this to access a standard
registration form, as shown in Figure 2-1.

CHAPTER 2 � THE SIX BOOKMARKS SERVER SERVICE

8

Figure 2-1. The service registration form

� Note The site at http://services.multimobiledevelopment.com is a live work in progress. Some of the
screenshots presented here may differ from the current reality of the site as you see it today. Also, the site you are
using is not secured when accessed over HTTPS, as this is a test site not intended for production use. Were you to
build a similar thing for production applications, it would be essential that you secure the site using HTTPS.

Go ahead and create your account. Please provide a valid e-mail address, as you will need this
should you need to reset your password in the future. (You will not get spammed.)

Registering your account will automatically log you on.

Creating a User
The purpose of registering for an account is to partition off a private section of the database for you to
keep your own data in. A single SQL Server database exists on the server, and everyone’s users and

 CHAPTER 2 � THE SIX BOOKMARKS SERVER SERVICE

9

bookmarks are contained within this. This is likely to be slightly different for your own applications. For
this book, we need to provide you with a sandbox service that makes it easier for you to work with the
chapters on the actual application creation on the devices; however, in production applications, you
typically do not need this. I have to hive off individual readers’ data into separate “virtual databases” to
prevent corruption of data and weird behavior, and with potentially tens of thousands of you out there
doing this, it’s impractical to create physically separate databases.

Under the covers, you’re going to be working with three tables: ApiKeys, Users, and Bookmarks. The
entity-relationship diagram (ERD) shown in Figure 2-2 illustrates.

Figure 2-2. ERD showing relationship between the ApiKeys, Users, and Bookmarks tables

When you register for an API account, you do not get any users created for you. A user in this context
relates to someone who would use an instance of the various mobile Six Bookmarks applications
targeted for separate device platforms. To create a user, click the Manage Users link. You will be
presented with a message that indicates no users are available, as per Figure 2-3.

Figure 2-3. The Manage Users page showing no available users

Click the “Add a new user” link to enter a new user. Figure 2-4 illustrates.

CHAPTER 2 � THE SIX BOOKMARKS SERVER SERVICE

10

Figure 2-4. The Edit User page

You’ll need to create at least one user in order to proceed to the next section.

The Users Service
The “Users” service is a RESTful web service that provides a capability to log on a user. (This book deals
only with logging users on; however, the service is capable of other functions, including registering
users.) It’s important to familiarize yourself with how the service works, as it will aid in understanding
the flow of the applications that we will build in later sections.

RESTful Web Services
A “RESTful” web service is a service that is based on the principle of REST, which stands for
“Representational State Transfer.” It is not a formal, standardized protocol, but rather a set of principles
or constraints that describes the shape and operational usage of a service that you can get data from or
provide data to. It is a very natural way of working with remote services, which is why they are so popular
and prevalent. That naturalness translates into being very easy to build, and equally very easy to
consume.

One common and straightforward way of structuring a RESTful web service is to request data using
an HTTP GET request and retrieving results back as XML. The HTTP request can be a GET request,
including parameters specified in the query string. Alternatively, the parameters can be made via a POST
request that works by passing up XML.

Let’s continue this by looking in more detail at the logon operation on the Users service.

Testing the Calls
The API relies on sending up custom HTTP headers, and as such we can’t test it using a regular web
browser. Rather than asking you to build some custom code to call the service, you can download a test
harness for trying the service. You can download this from the source repository at

 CHAPTER 2 � THE SIX BOOKMARKS SERVER SERVICE

11

http://code.multimobiledevelopment.com/. Look for a file in the Downloads section of the form
Amx.Services-<Version>-TestClient.zip. This is a .NET application, and hence you’ll need the .NET
runtime installed on the machine you’re looking to use.

If you download the utility and run it, you’ll see you have an area to enter a URL and an area to enter
two values: the API username header and the Token header. We’ll talk about these values later, but
essentially they provide additional information to the service to help guide the response.

Examining Logon Operations
The first thing we can try to do with our Users service is log on a user. Ultimately, a successful logon will
return a token that we can use in subsequent requests.

If you open the test harness, the URL will be given as follows:

http://services.multimobiledevelopment.com/services/apirest.aspx?operation=logon&password=AP
IPASSWORD

Click the Send Request button, and you’ll see a result like Figure 2-5.

Figure 2-5. An example of a failed request to the API service

You can see in the response that an error has been returned.
The protocol for the REST services exposed by the service is that exceptions are returned back in the

Error element, and the HasException element is set to true if an error has been returned. (The value
shown in the XML is 1, but the datatypes schema is used to indicate that this is a Boolean value.)

� Note This error notification and transmission are just how I have designed the service—it doesn’t follow that all
RESTful web services will use this approach. It’s down to the owner of the service to design a protocol that is
sensible and logical to use within the loose construct of what a RESTful service typically looks like.

CHAPTER 2 � THE SIX BOOKMARKS SERVER SERVICE

12

Referring back to Figure 2-5, we see the error indicates that “Neither a logon token nor API key were
provided in this request.” What this is telling us is that the headers have not been provided to the server.

To call the operations on the server, we need a token. In order to get a token, we need to call the
server, so we have a chicken and egg situation! However, one operation on the server does not need a
token—this is the Logon operation on the API service, which is used solely to obtain a token for use with
the other methods.

Obtaining a Token
By default, when you start the harness, it will be set to connect to the API service and to call the Logon
method. Firstly, into the API username header text box, enter the username of the account you created in
the first part of the chapter. Secondly, modify the password value in the URL to be the username on your
account.

If you click Send Request now and the details are correct, you’ll see something similar to the image
shown in Figure 2-6.

Figure 2-6. An example of the result of a successful request to the API service

You’ll see in this case an error has not been returned. The Result element will be set to LogonOk or
InvalidPassword. (Any other errors will result in an exception being returned.)

The most important element here is the Token value. This is the token that we’ll use in all other
requests. Copy the token into the clipboard, and then paste it into the Token header field. We’ll use this
later.

Logging On the User
Now that we have obtained a token to use and authenticated the API, we can actually log on the user.
We’ve used the API service so far—we’re now going to use the Users service.

If you click the User Logon link on the test harness, the URL will be rewritten to the following:

 CHAPTER 2 � THE SIX BOOKMARKS SERVER SERVICE

13

http://services.multimobiledevelopment.com/services/usersrest.aspx?operation=logon&username=
USERNAME&password=PASSWORD

This URL is configured to call the Users REST service. If you replace the USERNAME and PASSWORD
placeholders in that string, and assuming you have copied the token into the Token header field, and
click Send Request, you’ll get a response like Figure 2-7, which, apart from the URL, looks identical to
Figure 2-6.

Figure 2-7. An example of a response from a successful request to the Users service

Assuming this works, you’ll see another LogonOk response. What a LogonOk tells you here is that the
token is now bound to the user you authenticated. (This is important—this means that you cannot use
the same token with different users. This will never be a problem on a mobile device as these are
typically solo-user devices and one’s global state only ever refers to oneself, but in a web application, it is
worth considering.) Other results you can get back from the service are InvalidUsername,
InvalidPassword, or AccountInactive.

Cleaning Up
To clean up the service, we have to log off of the API. This is done via the Logoff operation. Click the “API
logoff” link on the harness, and the URL will be rewritten once again. Click the Send Request button, and
you’ll see a response much like in Figure 2-8.

CHAPTER 2 � THE SIX BOOKMARKS SERVER SERVICE

14

Figure 2-8. An example of a successul Logoff call to the API service

This operation is used to give the server the opportunity to clean up resources related to the token.
(Specifically, it deletes a row in the database.) We’ll look at token cleanup in more detail when we build
the native device applications.

The Bookmarks Service
The final service exposed from the server is the Bookmarks OData service. OData is an up-and-coming
data format that is currently being pitched as the proposed de facto standard for data interchange in a
Web 2.0 world. My opinion is that it is a decent standard with a good, practical working method, and
hence I’ve chosen to use it in this book to bridge the gap between relational data stored in the cloud and
data stored on the device.

� Tip You can find out more about OData at the official site: www.odata.org/.

Adding Some Test Data
In order to see how the OData service works, you’re going to need some test data. There’s an interface on
the service that lets you maintain the bookmarks against a user.

Log on to services.multimobiledevelopment.com, and find a user that you want to work with. Click
the “Manage this user’s bookmarks” link at the bottom of the page. You will see an interface that allows
you to define bookmarks. Figure 2-9 illustrates.

 CHAPTER 2 � THE SIX BOOKMARKS SERVER SERVICE

15

Figure 2-9. The Edit Bookmarks screen showing three bookmarks

Add a number of bookmarks, and click Save Changes.

Working with OData
Now that we have some bookmark data, we can look at using the Bookmarks service. We’re going to be
using the test harness again, and you will need a token—so if you do not currently have a token, go
through the steps described previously to obtain one.

On the harness, if you click the Bookmarks OData link, you’ll get a rewritten URL, like this one:
http://services.multimobiledevelopment.com/services/bookmarks.svc/.

Click Send Request, and you’ll get a response like Figure 2-10. You should note that the test harness
continues to send up the special headers. The service call would be rejected should these headers be
missing or incorrect.

CHAPTER 2 � THE SIX BOOKMARKS SERVER SERVICE

16

Figure 2-10. An example of a successful call to the Bookmarks OData service

� Note The OData standard allows for data to be returned either in Atom or JSON format. Atom format is the most
relevant here—JSON is typically used when working with Ajax calls from a web page. The actual format of the
data is not important—what is important is that OData is built on open standards. (Notably, Microsoft sees OData
as a core data protocol going forward, starting with a full implementation in .NET 3.5 SP1 and support on the
Azure platform.)

The preceding output is telling us that the Bookmarks service is about to return data of type
Bookmark (look for the //collection/atom:title element in the XML). Thus, if we issue this URL, again
using the test harness, we’ll get back some bookmarks. Here’s the URL:

http://services. multimobiledevelopment.com/services/ bookmarks.svc/Bookmark

From this point, I’m going to show you the XML output as a listing, rather than screenshots. This
will make it easier to follow the discussion.

In the following example, three bookmarks are returned from this call, and these are shown in the
following listing. (Your output will vary depending on the bookmarks you’ve set up against the user that
you’ve logged in as, obviously.) Here’s the listing:

 CHAPTER 2 � THE SIX BOOKMARKS SERVER SERVICE

17

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<feed xml:base="http://services. multimobiledevelopment.com/services/Bookmarks.svc/"�
 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"�
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"�
 xmlns="http://www.w3.org/2005/Atom">
 <title type="text">Bookmark</title>
 <id>http://services. multimobiledevelopment.com/services/bookmarks.svc/Bookmark</id>
 <updated>2010-04-18T10:54:32Z</updated>
 <link rel="self" title="Bookmark" href="Bookmark" />
 <entry>
 <id>http://services. multimobiledevelopment.com/services/Bookmarks.svc/Bookmark(1002)</id>
 <title type="text"></title>
 <updated>2010-04-18T10:54:32Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Bookmark" href="Bookmark(1002)" />
 <category term="AmxMobile.Services.Bookmark"�
 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:BookmarkId m:type="Edm.Int32">1002</d:BookmarkId>
 <d:UserId m:type="Edm.Int32">1001</d:UserId>
 <d:Name>.NET 247</d:Name>
 <d:Url>http://www.dotnet247.com/</d:Url>
 <d:Ordinal m:type="Edm.Int32">1</d:Ordinal>
 </m:properties>
 </content>
 </entry>
 <entry>
 <id>http://services. multimobiledevelopment.com/services/Bookmarks.svc/Bookmark(1001)</id>
 <title type="text"></title>
 <updated>2010-04-18T10:54:32Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Bookmark" href="Bookmark(1001)" />
 <category term="AmxMobile.Services.Bookmark"�
 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:BookmarkId m:type="Edm.Int32">1001</d:BookmarkId>
 <d:UserId m:type="Edm.Int32">1001</d:UserId>
 <d:Name>Google</d:Name>
 <d:Url>http://www.google.co.uk/</d:Url>
 <d:Ordinal m:type="Edm.Int32">0</d:Ordinal>
 </m:properties>
 </content>
 </entry>
 <entry>
 <id>http://services.multimobiledevelopment.com/services/Bookmarks.svc/Bookmark(1003)</id>

CHAPTER 2 � THE SIX BOOKMARKS SERVER SERVICE

18

 <title type="text"></title>
 <updated>2010-04-18T10:54:32Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Bookmark" href="Bookmark(1003)" />
 <category term="AmxMobile.Services.Bookmark"�
 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:BookmarkId m:type="Edm.Int32">1003</d:BookmarkId>
 <d:UserId m:type="Edm.Int32">1001</d:UserId>
 <d:Name>Topaz Filer</d:Name>
 <d:Url>http://www.topazfiler.com/</d:Url>
 <d:Ordinal m:type="Edm.Int32">2</d:Ordinal>
 </m:properties>
 </content>
 </entry>
</feed>

Thanks to the clarity of the Atom format, it’s very easy to understand the format of the data, even
though the dataset is an unfamiliar one. Each of the feed/entry elements contains a single data item
(which we’ll be calling an “entity” throughout to keep in line with nomenclature on the object relational
mapping structures that we’re going to be using). The m:properties element within them contains the
data.

An interesting element here is the ID element against each entry. These provide a URL that can be
used to access an individual item. (But remember that you need to pass up the special headers in order
for the service to return the data.)

Pick the ID of an item in your set of bookmarks and issue a request for it, passing in the token—for
example, the following:

http://services.multimobiledevelopment.com/services/bookmarks.svc/Bookmark(1003)

This time you will just see that item, as per the following listing:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<entry xml:base="http://services.multimobiledevelopment.com/services/Bookmarks.svc/"�
 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"�
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"�
 xmlns="http://www.w3.org/2005/Atom">
 <id>http://services.multimobiledevelopment.com/services/Bookmarks.svc/Bookmark(1003)</id>
 <title type="text"></title>
 <updated>2010-04-18T10:55:13Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Bookmark" href="Bookmark(1003)" />
 <category term="AmxMobile.Services.Bookmark"�
 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />

 CHAPTER 2 � THE SIX BOOKMARKS SERVER SERVICE

19

 <content type="application/xml">
 <m:properties>
 <d:BookmarkId m:type="Edm.Int32">1003</d:BookmarkId>
 <d:UserId m:type="Edm.Int32">1001</d:UserId>
 <d:Name>Topaz Filer</d:Name>
 <d:Url>http://www.topazfiler.com/</d:Url>
 <d:Ordinal m:type="Edm.Int32">2</d:Ordinal>
 </m:properties>
 </content>
</entry>

OData Queries
The OData standard provides for a number of operations that should be available on providers. One

of these is the $metadata directive. This is a neat way of determining the format of data returned by the
service. For example, if you issue the following request, you’ll see the structure of the data, as per the
following listing.

http://services.multimobiledevelopment.com/services/ bookmarks.svc/$metadata

<edmx:Edmx Version="1.0" xmlns:edmx="http://schemas.microsoft.com/ado/2007/06/edmx">
 <edmx:DataServices xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices�
/metadata" m:DataServiceVersion="1.0">
 <Schema Namespace="AmxMobile.Services"�
 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"�
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"�
 xmlns="http://schemas.microsoft.com/ado/2007/05/edm">
 <EntityType Name="Bookmark">
 <Key>
 <PropertyRef Name="BookmarkId" />
 </Key>
 <Property Name="BookmarkId" Type="Edm.Int32" Nullable="false" />
 <Property Name="UserId" Type="Edm.Int32" Nullable="false" />
 <Property Name="Name" Type="Edm.String" Nullable="true" />
 <Property Name="Url" Type="Edm.String" Nullable="true" />
 <Property Name="Ordinal" Type="Edm.Int32" Nullable="false" />
 </EntityType>
 <EntityContainer Name="BookmarkCollection" m:IsDefaultEntityContainer="true">
 <EntitySet Name="Bookmark" EntityType="AmxMobile.Services.Bookmark" />
 </EntityContainer>
 </Schema>
 </edmx:DataServices>
</edmx:Edmx>

Another useful method is the ability to issue queries to constrain the data. For example, if you
wanted to return all of the bookmarks where the name was equal to Google, you can issue the following:

CHAPTER 2 � THE SIX BOOKMARKS SERVER SERVICE

20

http://services.multimobiledevelopment.com/services/ bookmarks.svc/Bookmark?$filter=Name eq
'google'

� Note You should note here is where the additional constraints are being added to the query so that the set of
bookmarks the service is working with contains only the bookmarks of the logged-in user. There’s more
information on the mechanics of this later.

In this book, we’re using this service only to retrieve all of the bookmarks for a user and to send back
changes, although feel free to experiment with the OData. The web site at www.odata.org/ contains
plenty of information on the protocol and also includes references to sample datasets that are more
interesting and more fully featured than the Six Bookmarks service. See www.odata.org/producers for
some live OData services.

Issuing Updates over OData
As mentioned previously, we are looking to use OData to update our server-side data; however, this is
difficult to demonstrate using a web browser, and therefore we’ll cover updating the data in later
chapters.

Constraining Data to the Logged-On User
Internally to the service, when a request is received by IIS, ASP.NET, ADO.NET, and the Windows
Communication Foundation (WCF) work together to process the request. This ultimately results in a
SQL statement being formed and passed to SQL Server. Just before this SQL statement is executed, an
additional constraint is added so that only bookmarks where the user ID equals the logged-on user are
returned. Therefore, if WCF wants to issue the statement select * from bookmarks, an additional
constraint is added behind the scenes that makes it read select * from bookmarks where userid=27, or
whatever the user ID happens to be. This is done by using URL rewriting to extract the token from the
URL, storing the token in the HttpContext.Current.Items collection, and then de-referencing that at the
appropriate time and attaching the additional constraint to the SQL query.

You’ll see this code if you download the server source code package, but, as I’ve mentioned before,
it would be unusual if your own server needed this functionality.

Conclusion
In this chapter, we’ve taken our first look at the cloud services that we’re going to use to provide data and
functionality to our client applications going forward. We have looked at how to call the API and Users
RESTful services, and also how to request data over the Bookmarks OData service. In the next section,
we’ll look at the architecture and specification of the Six Bookmarks application.

C H A P T E R 3

� � �

21

Application Architecture
and Functional Specification

In this book and its sister book, we’re going to build the same application natively on five mobile phone
platforms—Android, iPhone, Windows Phone, Windows Mobile, and BlackBerry. So that we know what
we’re going to build, we’re going to spend the first half of this chapter defining the functional
specification of the Six Bookmarks application. In the second half, we’re going to have a quick look at the
application architecture as a sort of quasi-technical specification.

As mentioned in the introduction, this book covers Windows Phone, Windows Mobile, and
BlackBerry development. This chapter (which incidentally exists in both books) covers all of the
platforms to give you a good overview of each platform regardless of whether you have one book, the
other book, or both.

A Word About Tablets
The examples used in this book and its sister book are all applications that run on smartphones, such as
the iPhone and the crop of Android phones on the market. This is largely due to the time at which this
book was proposed and developed—when it was started, the iPad had not been announced and there
was little industry interest in iPad-class devices, which over time have adopted the moniker of tablets,
erstwhile used for Microsoft’s disastrous “tablet PC” initiatives.

At the time of writing (March 2011), there is massive interest in tablets, the iPad 2 recently having
been announced and currently under restricted supply. Everyone is waiting for Android slates to come
out, complete with the “Gingerbread” build of that OS optimized for the larger device formats, plus the
BlackBerry Playbook is waiting in the wings (together with its rumored Android application support). HP
is also doing something with webOS, although only time will tell if that’s going to be interesting.

Although we won’t look specifically at building applications for tablet devices, what you learn in this
book will be valuable. The underlying libraries remain the same—all that you need to do to port an
application from, for example, iPhone to iPad is to build a new user interface.

Functional Specification
To illustrate the functional specification, I’m going to use the screenshots from the iOS application. To
write this book, I’ve already written the five native applications, and so I can use these as a basis for the
functional specification. Obviously, in the real world, this wouldn’t happen, although you may have a
prototype to work from.

We’ll break the functional specification down into screens, and we’ll state what the user will be able
to do on each of the screens.

CHAPTER 3 � APPLICATION ARCHITECTURE AND FUNCTIONAL SPECIFICATION

22

Logging On
The logon screen looks like Figure 3-1.

Figure 3-1. The logon screen

The required functions are the following:

• The user must be able to key in his or her username and password.

• If logon is successful, the local database is synchronized (see later) and the
navigator screen displayed (also see later).

• The user must be able to indicate that his or her credentials should be
remembered for next use.

• Where credentials have been remembered, the application should attempt to use
these.

 CHAPTER 3 � APPLICATION ARCHITECTURE AND FUNCTIONAL SPECIFICATION

23

Synchronizing
The synchronize operation does not have a user interface. The required functions are the following:

• If no local database exists, a new one must be created.

• If no bookmarks table exists, a new one must be created.

• If the local database contains changes to send to the server, they must be sent to
the server.

• Regardless of whether changes were sent to the server, the up-to-date list of
bookmarks from the server must be downloaded, the local bookmarks table
created, and the local bookmarks table updated from the server set.

Navigator
The navigator screen, with my sample bookmarks, looks like Figure 3-2.

Figure 3-2. The navigator screen

CHAPTER 3 � APPLICATION ARCHITECTURE AND FUNCTIONAL SPECIFICATION

24

The required functions are the following:

• If a bookmark exists at a given ordinal, the text of the corresponding button must
be set to the name of the bookmark.

• If a bookmark does not exist at a given ordinal, the text of the corresponding
button must be set to an ellipsis (“…”).

• If the user presses a configured button, the device’s default browser must be
invoked to show the URL related to the bookmark/button.

• If the user presses an unconfigured button, the configuration function (see the
following) must be invoked.

• The user must have a way of accessing the configuration function directly.

• The user must be able to invoke a logoff function, which will clear the current
user, reset any remembered credentials, and return the user to the logon form.

• The user must be able to invoke an “about” function, which will take the user to
the www.multimobiledevelopment.com/ site.

Configuring Bookmarks
The configuration screen looks like Figure 3-3.

 CHAPTER 3 � APPLICATION ARCHITECTURE AND FUNCTIONAL SPECIFICATION

25

Figure 3-3. The configuration screen

The required functions are the following:

• The user must be presented with a list of the defined bookmarks.

• If the user selects a bookmark, he or she must be taken to the “configure
singleton” form (see the following).

• The user must be able to add a bookmark, up to a maximum of six.

• The user must be able to delete existing bookmarks.

Configuring a Single Bookmark (“Configure Singleton”)
The singleton configuration screen looks like Figure 3-4.

CHAPTER 3 � APPLICATION ARCHITECTURE AND FUNCTIONAL SPECIFICATION

26

Figure 3-4. The “configure singleton” screen

The required functions are the following:

• The user must be able to change the bookmark’s name.

• The user must be able to change the bookmark’s URL.

• If the user tried to save a bookmark without entering both a name and a URL, an
error must be displayed.

Missing Functionality
The Six Bookmarks applications are intended to be as close to real-world applications as is possible
within the limitations of writing a book. There are some things that I have left out, and in each case when
I’ve left something out, it’s with the express intention of making the central thrust of the discussion
easier to understand. The areas are the following:

 CHAPTER 3 � APPLICATION ARCHITECTURE AND FUNCTIONAL SPECIFICATION

27

• New user registration: Users will not be able to register for an account on the
device. This would typically be a requirement if you were rolling an application
like this out for real.

• Offline support: The applications will all run without having to have an active
TCP/IP connection; however, code has been omitted to gracefully handle a lack of
such a connection. I made this decision primarily to make the code more
straightforward.

• Defensive coding: The code listings do not demonstrate a level of defensive coding,
again to make the central thrust of things clear. (This is particularly true of the iOS
chapters.)

Application Architecture and Technical Specification
Now that we know what we’re going to build, let’s have a look at how we’re going to build it.

The interesting bit of this book is about how you solve the same problem on each of the platforms.
Although we’re building five applications, since Microsoft has deprecated Windows Mobile, in this
section we’re going to discuss Android, iOS, Windows Phone, and BlackBerry.

Approach
What I wanted to demonstrate with this book is that there are common things that all of the applications
have to be able to do regardless of vendor. Moreover, the application has to assume that the master
version of the data is held in the cloud and that each device holds a locally cached copy of the server-side
master set. (But, with regards to this last point, a number of device independent software vendors (ISVs)
just don’t get this, particularly on iOS, and they think the device holds the master data. This is a
fundamentally wrong approach.) We saw in Chapter 2 that we have a cloud-based, always-on service
that holds our master dataset. What I’m also keen to do as an approach is make this as “real-world” as
possible.

Given that, each application has to be able to do the following:

• Issue an HTTP request to the server to access a proprietary RESTful service:
Although I own/designed the Six Bookmarks service, it is likely that you will need
to access cloud-based services that operate on protocols not of user design but
based on RESTful principles.

• Read XML documents: The RESTful services and OData services return XML, and
we need to be able to read it!

• Read data over the OData protocol: OData will very probably become the prevalent
data transfer mechanism over HTTP. Building our applications on OData a)
future-proofs it but b) gives you experience with an alternative and more complex
RESTful service protocol.

• Maintain a local store of its own data: Ideally this would be as a SQL-compliant
relational database management system.

• Store preference data locally: The devices each have an API for storing preference
data locally, and this should always be used to reduce support problems and
prevent problems with being accepted into the vendor’s applications store (see
the following).

CHAPTER 3 � APPLICATION ARCHITECTURE AND FUNCTIONAL SPECIFICATION

28

• Present a user interface using the native device framework: In the world of mobile
software, each user has a phone that he uses, and he wants all of his applications
to look and feel the same. You cannot do this with a shared framework; hence
each application has to use the native framework directly.

• Write an XML document: To push changes over OData, we need to be able to write
an XML document.

• Submit changes over OData: If we know we can make an HTTP request and build
an XML document, we should be able to push changes up.

• Be acceptable to the vendor’s applications store policy: This varies on a case-by-
case basis for each vendor, and we’re not specifically going to “disassemble” each
vendor’s policy in this book. However, by using open standards and using each
vendor’s recommended tools, frameworks, and standards, the applications should
go through into the application stores without a hitch.

One requirement I have not included is a single stack of source code for each of the platforms. My
personal view on this is that it is simply not possible, although tools like Mono make the world of cross-
compilation and partially equal code stacks easier. Around the time this book was written, the press
coverage about Steve Jobs wanting to keep intermediate frameworks (like Java and Flash) off of iOS, I
think, is entirely justified—these platforms and tools are just all too different to create a single thing that
does not compromise. The answer will probably end up being HTML5, but that’s going to take many
years (2015 onward) to become viable.

Another important principle is that all of this could be done using the standard downloads for the
platform—e.g., if you downloaded the iPhone SDK, you did not then have to download another SDK to
get some part of the application built. Everything we do will use the standard toolset.

Let’s look now at how we solve these problems on each platform.

Object-Relational Mapping
The key architectural premise that I wanted to discuss in this chapter is the way that we’re going to store
data locally on the device. This will be done using an approach called “object-relational mapping,” or
ORM. Since I started my career, I have been a huge fan of ORM, and my keenness on it and familiarly
with it have obviously informed my decisions with regards to using it in this book.

For your information, I am the maintainer of an open source project called BootFX
(www.bootfx.com/). The project is an application framework for .NET that has been under development
since 2002. The ORM design that we’re going to use in this book is based on BootFX, although it will be a
heavily cut-down version.

Metadata
I want to start by talking about “metadata.” In my opinion, the quality of any ORM tool, or any data
access layer (DAL), lives or dies by its metadata. I would go so far as to say it’s better to have an ORM
implementation with excellent metadata that’s quite slow than it is to have an ORM implementation
with poor metadata that’s quite fast.

The reason for this is that my approach is to optimize the development process and minimize the
hassle of maintenance as opposed to build an application that’s blazingly fast in production. Most
people work on small projects with a small set of users that’s easily served by run-of-the-mill hardware,

 CHAPTER 3 � APPLICATION ARCHITECTURE AND FUNCTIONAL SPECIFICATION

29

but our community tends to encourage people to design applications that are ultra-high-performance
and ultra-scalable. Most of the time, “you ain’t gonna need it.”

What good quality metadata does for you is allow for code that is flexible and adapts to changes
within the application. For example, you may have a need to create a database table when an application
starts. With good metadata, you can dynamically build the SQL statement to create the table. Thus, if
you change that table’s structure over time, you can reuse the code that builds the SQL statement to
build the new table, all without you having to do too much work.

The metadata system that I’m going to present is modeled on the excellent type metadata system in
.NET. In .NET you have a System.Type object that represents—for example—a class in your application.
That Type instance can be used to reflect against the methods, properties, events, fields, etc. of that type.

In our projects, we’re going to create a class called EntityType, which holds a collection of fields on
a table. EntityType will map one-to-one with a database table. (In the more fully featured BootFX,
EntityType holds information on relationships, indexes, constraints, etc.) Thus, EntityType will contain
a collection of EntityField instances.

EntityType will extend a class called EntityItem. EntityItem will do something quite important for
us—it will hold two names for each item. The reason for this is that oftentimes in ORM you are inheriting
someone else’s database schema, and you may want to abstract out naming conventions that are hard to
work with (for example, TBL_CUST vs. Customer). Thus EntityItem will include a “native name” (via the
NativeName property) and a “programmatic name” (via the Name property).

EntityField will also extend EntityItem, but will include extra information about the field—
specifically the data type, size, and an indication as to whether it’s a key field. Figure 3-5 shows a UML
static structure sketch that shows these fields in play.

Figure 3-5. UML static structure sketch of the metadata system

Again, to reiterate the point, what this structure lets us do is very easily write code that builds
dynamic SQL statements. For example, if we want to build a SELECT statement, we know the native name
of the table, we know the fields on the table, and we know the name of each field, and from that we can
build up our SELECT. (We can also add WHERE clauses to constrain the SELECT, which we’ll go into later.)

Now that you have an idea of how the metadata system is put together, let’s look at how rows are
represented in memory.

Entities
An EntityType is a one-to-one mapping with a database table. An Entity is a representation of a row on
the entity. Each strongly typed entity has fields that map to the columns on the database. This is where

CHAPTER 3 � APPLICATION ARCHITECTURE AND FUNCTIONAL SPECIFICATION

30

the “object-relational mapping” comes in—we have an object, and we’re mapping it to a relational
database.

For example, we might have a class called Customer that extends Entity. Customer might then have
properties CustomerId, FirstName, LastName, and Email that map to the columns on the underlying table.
When an entity is hydrated from a row in the database, the various field-mapped properties will be
populated. This allows you to do code like this:

foreach(Customer customer in Customer.GetAll())
 Console.WriteLine(customer.Email);

Internally within the entity, what happens is that each entity discovers its EntityType instance, looks
at the number of fields and creates “slots” within it. So, if you have four fields, you will end up with a
“slots” array that is four items in size. The properties then—simplistically—get or set values from the
slots.

Thus if you hydrate an object from the database, all you have to do is create an entity instance to
receive the data, allow it to create the slots and then read the column values from the database and store
it in the appropriate slot.

Likewise, if you want to create an entity to store in the database, you can instantiate one in the
normal way, use the properties to set the slot values, and then ask the entity to save itself. This issue of
“asking the entity to save itself” is something that we’ll cover shortly.

Figure 3-6 shows a UML static structure sketch of the entity and our example Customer class.

Figure 3-6. UML static structure sketch of the Entity class

Generating Entities
This sort of system makes sense only if you use a code generator to create the classes, otherwise it is a
real pain keeping the entities up-to-date. Although BootFX comes with a fully fledged code generator for
just this purpose, the examples in this book do not include one, and we’ll roll the entities by hand.

 CHAPTER 3 � APPLICATION ARCHITECTURE AND FUNCTIONAL SPECIFICATION

31

� Note That said, keep an eye out on the web site, as I may well end up writing an entity code generator
compatible with the work in this book for Android or iOS, or perhaps an intrepid reader will.

SQL Statements
So we’ve discussed in theory how we can manage database records in memory, but we haven’t
mentioned anything about how we instruct the server to that effect.

The approach used in BootFX is to use a class called a SqlStatement. The purpose of the
SqlStatement is to wrap up a command string and a collection of parameters.

A common “mistake” when building data access layers is to create methods that require the
statement to be passed in as parameters—for example, the following:

void Database.ExecuteNonQuery(string commandString, object[] params);

The problem with this approach is that it’s very brittle. It’s much better to wrap up the definition of
a statement in a separate class because a) it makes the interface to your DAL more straightforward, but
b) it allows you to issue instructions to the database that are not quite fully formed.

Let me explain that last point. If you create an interface called ISqlStatementSource, add a method
to this called GetSqlStatement, and make your DAL accept the interface—for example, as follows—it
gives you more leeway about what you can pass in.

void Database.ExecuteNonQuery(ISqlStatementSource sql);

One example of what you could pass in is a SqlFilter instance.
The purpose of a SqlFilter is to allow you to dynamically build a SELECT statement on the principle

that you create a filter that will select everything from the table that it’s mapped to, but allows you to
constrain the results. For example, a filter created without constraints would return all customers. A
filter with a constraint with the last name starting with “C” would, obviously, return just those people
whose name begins with “C.”

If we make SqlFilter implement ISqlStatementSource, we can pass it directly into the DAL and let it
de-reference a full statement just before it needs to run it. This makes it very easy to build the filter class,
creates a DAL with a very clean and simple interface, and also allows the DAL to be extended with other
types of queries going forward (for example, a full-text query).

Figure 3-7 shows a UML static structure sketch of the classes that we just discussed.

CHAPTER 3 � APPLICATION ARCHITECTURE AND FUNCTIONAL SPECIFICATION

32

Figure 3-7. UML static structure sketch of SqlStatement and companion classes

Change Processors
The final part of our ORM tool relates to saving changes back into the database. This is done through the
EntityChangeProcessor.

There will be some deeper logic in our entity implementation that relates to keeping track of the
internal state of the entity and the slots in order to understand what the state of the entity is. For
example, an entity that’s been loaded from the database without a field property being set remains in a
state of “unchanged.” If you set a property, it will become “modified.” You may want to call a method
that sets it to “deleted.” Finally, you may create a new entity, in which case it needs to be flagged as
“new.”

Depending on the state, the ORM subsystem has to issue an INSERT (“new”), UPDATE (“modified”), or
DELETE (“deleted”) statement, or indeed do nothing if none of those states is active. Again, thanks to the
metadata, this is easy—the ORM subsystem knows the fields that make up the entity, it knows the value
in each slot, and it also knows the state. The metadata also mentions which field is the key field, and thus
the UPDATE and DELETE statements can include WHERE clauses to touch just the relevant row.

That brings us to the end of our discussion on ORM. We can now look at the other major
architecture component—server communication.

Server Communication

� Note This section assumes a familiarity with the discussion in Chapter 2.

 CHAPTER 3 � APPLICATION ARCHITECTURE AND FUNCTIONAL SPECIFICATION

33

In Chapter 2, I discussed how we were going to use a proprietary REST web service for some of the
calls and OData for the rest of the calls. I did this primarily because I wanted to create a semi-real-world
example of how you would deal with communicating with a server that you did not own.

Readers who have used SOAP web services on the Microsoft stack before will be familiar with how
easy it is to code against. If you haven’t, what happens is that Visual Studio creates a proxy class that
looks like the service you are trying to call. Thus if you have a method exposed by a SOAP web service
called HelloWorld that takes a string and returns a string, you can access it like this:

HelloWorldWs ws = new HelloWorldWs();
string result = ws.HelloWorld("Bob");
Console.WriteLine(result);

The huge “win” with this approach is that it’s dead easy. The huge “loss,” and why it hasn’t really
caught on, is that SOAP puts a ton of magic in the way that makes cross-platform communication too
difficult. Over the ten or so years since SOAP was released, it’s been overtaken by web services that are
constructed in a “here’s an XML document, can I have an XML document back?” way, with the XML
going each way (we hope) in as easy a fashion as possible.

What I’ve wanted to do with the architecture of the way we deal with these services is try to get to a
point where we get some of the wins of SOAP, but still have a really easy web service in the background.
Thus, when we want to call the “logon” method on the API service, we’ll create an ApiService class and
call the Logon method. Packaging up the request and error handling will all be dealt with by base classes.

Specifically, we’ll build ServiceProxy, RestServiceProxy, and ODataServiceProxy base classes.
RestServiceProxy will specialize calls to the RESTful services. ODataServiceProxy will specialize calls to
the OData service. ApiService, UsersService, and BookmarksService will all provide specific
implementations. Figure 3-8 illustrates.

Figure 3-8. UML static sketch of the service proxy hierarchy

CHAPTER 3 � APPLICATION ARCHITECTURE AND FUNCTIONAL SPECIFICATION

34

I’m not going to go into too much more detail here on this—when we build the code in the specific
Android and iOS implementations, there’s plenty more detail. The important fact from this chapter to
take away is that we want to make calling the services as easy and as natural as possible.

Technical Approach Broken Down by Platform
In this section, we’ll look at each of the major things that we wish to achieve and state the technology
that we’re going to use in each case.

With regards to the HTML application, in this book’s sister book, where we go through this
(remember you can download the code from http://code.multimobiledevelopment.com/ regardless of
whether you own the book), we build an ASP.NET-based web site. Therefore the details in this section
related to HTML discuss the .NET classes that you need to use. You can, of course, build mobile web
applications using any platform.

Core Toolset
Table 3-1 documents the code toolset used for each platform. “HTML via ASP.NET web site” options
have been given for added interest for those familiar with this platform.

Table 3-1. Toolsets by Platform

Platform Approach

Android Eclipse, available on Mac, Windows, or Linux with the “Android ADT”
plug-in providing extra functionality within Eclipse
(http://developer.android.com/sdk/eclipse-adt.html)

iOS Xcode, available only on Mac

Windows Phone Visual Studio 2010, available only on Windows

Windows Mobile Visual Studio 2008, available only on Windows

BlackBerry Eclipse, available on Mac, Windows, or Linux with the “BlackBerry Java
Plug-in for Eclipse” providing extra functionality within Eclipse
(http://na.blackberry.com/eng/developers/javaappdev/javaplugin.jsp)

HTML via ASP.NET web site ASP.NET via Visual Studio

Issue HTTP Requests
This applies to calling the Six Bookmarks proprietary RESTful services, downloading OData data, and
pushing changes over OData. Table 3-2 lists the technology in each case.

 CHAPTER 3 � APPLICATION ARCHITECTURE AND FUNCTIONAL SPECIFICATION

35

Table 3-2. Technologies Used for Issuing HTTP Requests

Platform Approach

Android Apache HTTP Client library (http://hc.apache.org/httpcomponents-
client/) org.apache.http.*

iOS Cocoa Touch NSConnection class and related types

Windows Phone System.Net.HttpWebRequest and related classes for ad hoc requests—see
the following for OData requests.

Windows Mobile System.Net.HttpWebRequest and related classes

BlackBerry javax.microedition.io.Connector class and related classes

HTML via ASP.NET web site System.Net.HttpWebRequest and related classes

Read XML Document (Including Reading OData Results)
Generally speaking, there are two ways of reading an XML document—loading the entire thing into a
document object model (DOM) tree and querying it as an object-hierarchy, or using a parser that is able
to start at the top and read through the document, gathering data as it goes. Table 3-3 lists the
technology in each case.

Table 3-3. Technologies Used for Reading XML Documents

Platform Approach

Android DOM-based approach using standard Java implementation
org.w3c.dom.*

iOS Forward-only reader/parser using NSXMLParser

Windows Phone DOM-based approach using System.X ml.Linq.XDocument for RESTful
services, Visual Studio proxy class for OData

Windows Mobile DOM-based approach using System.Xml.XmlDocument

BlackBerry DOM-based approach using standard Java implementation
org.w3c.dom.*

HTML via ASP.NET web site DOM-based approach using System.Xml.XmlDocument or System.X
ml.Linq.XDocument depending on preference

CHAPTER 3 � APPLICATION ARCHITECTURE AND FUNCTIONAL SPECIFICATION

36

Write an XML Document
Like reading an XML document, you can write an XML document either by creating a DOM tree or by
writing elements in turn programmatically. Table 3-4 lists the technology in each case.

Table 3-4. Technologies Used for Writing XML Documents

Platform Approach

Android Writer approach using XMLPull library and org.xmlpull.v1.XmlSerializer

iOS Writer approach using Libxml2 library via native C-style API

Windows Phone DOM-based approach using System.X ml.Linq.XDocument (However, we
will not see this in the book, as Windows Phone creates a proxy for talking
to OData services that hides this from us.)

Windows Mobile DOM-based approach using System.Xml.XmlDocument

BlackBerry Writer approach using a custom/proprietary implementation based on the
XMLPull library and org.xmlpull.v1.XmlSerializer. (See the notes in the
related chapter for more on this.)

HTML via ASP.NET
web site

DOM-based approach using System.Xml.XmlDocument or System.X
ml.Linq.XDocument depending on preference

Maintain a Local Store
SQLite is available on all of the platforms apart from Windows Phone, which gives us a great opportunity
for a common implementation. A relational store makes the most sense for this book on the principle
that proper, real-world applications would likely need a relational store. Our actual requirements for Six
Bookmarks are that we’re going to have only one table with a small number of rows in it, and practically,
if that were a real-world requirement, storing the bookmarks in an XML file would likely make more
sense. Table 3-5 lists the technology in each case.

Table 3-5. Technologies Used for Maintaining a Local Store

Platform Approach

Android Managed API over SQLite via android.database.sqlite.SQLiteOpenHelper
and related types

iOS Direct access to SQLite via native C-style API

Windows Phone No relational database available—will store XML files on disk using
isolated storage

 CHAPTER 3 � APPLICATION ARCHITECTURE AND FUNCTIONAL SPECIFICATION

37

Platform Approach

Windows Mobile Managed API over SQLCE via System.Data.SqlServerCe.SqlCeConnection
class and related types

BlackBerry Managed API over SQLite via net.rim.device.api.database.Database and
related types

HTML via ASP.NET web site Not needed (However, if server-side storage is needed, a relational
database such as SQL Server or MySQL fits the bill.)

� Note As a short rant, the fact that Windows Phone is coming to market initially without a relational database is
shocking, especially as SQL Server Compact has been around for well over a decade. It would be excellent if
Microsoft decided to bake SQLite into the platform like the other vendors have done.

Conclusion
In this chapter, we have taken an in-depth look at the application that we intend to build, discussed in
some detail the object-relational mapping approach that we’re going to take with local data storage,
discussed the network communications and approach, and enumerated against each device the
technology we intend to use in order to achieve common goals.

C H A P T E R 4

� � �

39

Windows Phone 7:
Installing the Toolset

In this chapter, we’re going to look at installing the Windows Phone 7 toolset. Installation is very
straightforward—so prepare for a very short chapter!

Silverlight vs. XNA
There are two ways that you can develop applications for Windows Phone 7—Silverlight or XNA.

Silverlight is the method that we are going to look at in this book. Silverlight is Microsoft’s
product/strategy for building rich experiences on the desktop, now on mobile phones through Windows
Phone 7 and for the Web. XNA is purely a game development platform.

Visual Studio 2010
Windows Phone 7 development is done within Visual Studio 2010, and hence this needs to be installed
as a prerequisite. I have not included instructions on how to install this, as it’s obvious to do.

Installing the Windows Phone Developer Tools
Once VS 2010 has been installed, you can install the Windows Phone Developer Tools. These can be
found at http://developer.windowsphone.com/. Follow the links through to download the appropriate
package.

The installer will take you through getting up and running. Figure 4-1 shows an example screen
from the installer.

CHAPTER 4 � WINDOWS PHONE 7: INSTALLING THE TOOLSET

40

Figure 4-1. The developer tools setup wizard

Creating a Test Application
Once the installation is done, we can jump straight into creating our test application. Open VS 2010, and
you’ll see the New Project link on the start page (Figure 4-2).

 CHAPTER 4 � WINDOWS PHONE 7: INSTALLING THE TOOLSET

41

Figure 4-2. Visual Studio 2010

Click New Project, and you’ll be presented with options to create projects in the Silverlight for
Windows Phone 7 category. We want to create a new Windows Phone application in C#. Give the project
any name you like, and click OK. Figure 4-3 illustrates the New Project dialog.

CHAPTER 4 � WINDOWS PHONE 7: INSTALLING THE TOOLSET

42

Figure 4-3. The new Windows Phone 7 project option

Silverlight is a framework that combines a declarative markup language for the user interface called
XAML (pronounced “za-mal”) with the .NET Framework. On the phone, we use a subset of the .NET
Framework called the .NET Compact Framework. The huge advantage of Windows Mobile and Windows
Phone development is that it really is true to say that if you know how to write .NET code for the Web or
desktop applications, you already know how to build mobile applications. The only wrinkle now that
Windows Mobile has been deprecated is that developers are forced to learn Silverlight—although
Silverlight is actually pretty easy.

Figure 4-4 shows the default editor that you get when you create the project. You get a (nicely
rendered) phone on the left and a bunch of XAML on the right. (This is where we start to see the major
investment that Microsoft has made in this stuff pay off—the developer tools and APIs are unbelievably
refined and easy to work with. Personally, I really like Android development, but it does have a hobbyist
feel; when you’ve worked with the other platforms for a while, the Microsoft stuff feels like it’s from the
future.)

 CHAPTER 4 � WINDOWS PHONE 7: INSTALLING THE TOOLSET

43

Figure 4-4. The design surface within Visual Studio

What we’ll do for our example is create a simple “Hello World” application as we have done for
Android and for iPhone. The first thing we’ll do is change the text at the top of the page. You can do this
using the designer or in the markup—my personal preference is to use the markup. In the XAML, you
will find two TextBlock elements. Change their Text attributes to read Six Bookmarks and Hello, World
respectively. This listing illustrates:

<phone:PhoneApplicationPage
 x:Class="AmxMobile.Phone7.HelloWorld.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"
 xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 FontFamily="{StaticResource PhoneFontFamilyNormal}"
 FontSize="{StaticResource PhoneFontSizeNormal}"
 Foreground="{StaticResource PhoneForegroundBrush}"
 SupportedOrientations="Portrait" Orientation="Portrait"

CHAPTER 4 � WINDOWS PHONE 7: INSTALLING THE TOOLSET

44

 mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768"
 shell:SystemTray.IsVisible="True">

 <!--LayoutRoot contains the root grid where all other page content is placed-->
 <Grid x:Name="LayoutRoot" Background="Transparent">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>

 <!--TitlePanel contains the name of the application and page title-->
 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="24,24,0,12">
 <TextBlock x:Name="ApplicationTitle" Text="Six Bookmarks" Style="{StaticResource
PhoneTextNormalStyle}"/>
 <TextBlock x:Name="PageTitle" Text="Hello, World" Margin="-3,-8,0,0"
Style="{StaticResource PhoneTextTitle1Style}"/>
 </StackPanel>

 <!--ContentPanel - place additional content here-->
 <Grid x:Name="ContentGrid" Grid.Row="1">
 </Grid>
 </Grid>

</phone:PhoneApplicationPage>

Figure 4-5 shows what the top of the designer view looks like now.

Figure 4-5. Detail of modified labels on the design surface

We now need to add a button. For brevity, the easiest way to do this is to drag and drop a button
onto the form. (When building applications properly, it’s better to add it directly to the markup, as this
provides for more control over the layout, especially when making sure the layout works if you change
the device orientation.) Next, drag and drop a new button onto the design surface and you’ll see
something like Figure 4-6.

 CHAPTER 4 � WINDOWS PHONE 7: INSTALLING THE TOOLSET

45

Figure 4-6. Positioning a button on the design surface

With the button selected, hit Alt+Enter and the properties window will open. Change the Content
property to Say Hello. You also need to change the name of the control to buttonSayHello—this is done
using a hidden text box right at the top of the Properties window. Figure 4-7 illustrates the properties.
You may also wish to make the button a little wider.

Figure 4-7. The Properties window

CHAPTER 4 � WINDOWS PHONE 7: INSTALLING THE TOOLSET

46

To make the button do something, double-click it and it will wire up an event handler into the code-
behind class. Here’s the listing for the code-behind:

 private void buttonSayHello_Click(object sender, RoutedEventArgs e)
 {
 MessageBox.Show("Hello, world.", "Six Bookmarks", MessageBoxButton.OK);
 }

To run the project, select Debug – Start Debugging from the menu. This will build the project, start
the emulator, and run the project.

Figure 4-8 shows the emulator running. You can click the button, the message box will be shown,
and you’ll see something like Figure 4-9.

Figure 4-8. The emulator running our application

 CHAPTER 4 � WINDOWS PHONE 7: INSTALLING THE TOOLSET

47

Figure 4-9. The emulator showing a message box

Conclusion
That’s it! Now that we know that we can build and run projects, we can start work on the Six Bookmarks
application for Windows Phone 7.

C H A P T E R 5

� � �

49

Windows Phone 7: Building
the Logon Form and Consuming
REST Services

At this point in the book, we’ve built the Six Bookmarks application to run natively on Android and
iPhone and also built the generic web application. We’re now going to look at building the Six
Bookmarks application for Windows Phone 7. In this chapter, we’ll build the logon form and the
infrastructure for calling up to the web services. In the next chapter, we’ll look at downloading the
bookmarks over the OData service and storing them locally. In the third chapter of this section, we’ll
look at sending the changes back up over OData.

Creating the Project
To start with, we need to create the new project in Visual Studio 2010. We created a new Windows Phone
Application project in the last chapter. We need to do this again and create a new project called
AmxMobile.Phone7.SixBookmarks. Figure 5-1 illustrates.

CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

50

Figure 5-1. Creating the new project

Click OK, and the new project will be created. Solution Explorer will show MainPage.xaml as the
main file for the project.

Before you progress, you will need to add a reference to the System.Xml.Linq.dll assembly to your
project. In Solution Explorer, right-click References, select Add Reference, and add the assembly.

Building the Logon Form
We’ll jump right in and create our new logon form. We want to keep our naming sensible, and “main
page” doesn’t tell us much about what our page actually does. First of all, delete MainPage.xaml from the
solution, right-click the solution, and select Add – New Item. You will be met with a dialog presenting a
lot of options—in the list on the right, select Silverlight for Windows Phones and then select Windows
Phone Portrait Page from the resulting list. Call the new page LogonPage.xaml. Figure 5-2 illustrates.

 CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

51

Figure 5-2. Adding a page to the project

Building the actual logon form is an issue of dragging controls onto the design surface from the
toolbox. I won’t go through in detail how you do this—it’s likely that you’ve done it before. That said, a
gotcha for me the first time I did this was that there is a separate control for capturing passwords
(PasswordBox as opposed to TextBox). This should obviously be used for the control to capture the
password.

Figure 5-3 illustrates the layout that we’re looking for—and here’s the listing for the XAML markup
that makes up the page.

<phone:PhoneApplicationPage
 x:Class="AmxMobile.Phone7.SixBookmarks.LogonPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"
 xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 FontFamily="{StaticResource PhoneFontFamilyNormal}"
 FontSize="{StaticResource PhoneFontSizeNormal}"
 Foreground="{StaticResource PhoneForegroundBrush}"
 SupportedOrientations="Portrait" Orientation="Portrait"
 mc:Ignorable="d" d:DesignHeight="768" d:DesignWidth="480"
 shell:SystemTray.IsVisible="True">

 <!--LayoutRoot contains the root grid where all other page content is placed-->
 <Grid x:Name="LayoutRoot" Background="Transparent">
 <Grid.RowDefinitions>

CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

52

 <RowDefinition Height="Auto"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>

 <!--TitlePanel contains the name of the application and page title-->
 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="24,24,0,12">
 <TextBlock x:Name="ApplicationTitle" Text="Six Bookmarks" Style="{StaticResource
PhoneTextNormalStyle}"/>
 <TextBlock x:Name="PageTitle" Text="Logon" Margin="-3,-8,0,0"
Style="{StaticResource PhoneTextTitle1Style}"/>
 </StackPanel>

 <!--ContentPanel - place additional content here-->
 <Grid x:Name="ContentGrid" Grid.Row="1">
 <TextBlock Margin="6,6,42,584" Name="textBlock1" Style="{StaticResource
PhoneTextNormalStyle}" Text="Username" />
 <TextBox Height="72" HorizontalAlignment="Left" Margin="0,28,0,0"
Name="textUsername" Text="" VerticalAlignment="Top" Width="480" />
 <TextBlock Margin="6,94,42,496" Name="textBlock2" Style="{StaticResource
PhoneTextNormalStyle}" Text="Password" />
 <PasswordBox Height="72" Margin="0,116,0,0" Name="textPassword"
VerticalAlignment="Top" />
 <CheckBox Content="Remember me" Height="72" HorizontalAlignment="Left"
Margin="0,180,0,0" Name="checkRememberMe" VerticalAlignment="Top" Width="480" IsChecked="True"
/>
 <Button Content="Logon" Height="72" HorizontalAlignment="Left" Margin="0,242,0,0"
Name="buttonLogon" VerticalAlignment="Top" Width="480" Click="buttonLogon_Click" />
 </Grid>
 </Grid>

</phone:PhoneApplicationPage>

 CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

53

Figure 5-3. The design surface of the logon form

Running the Logon Form
When the project was created, it was configured to boot the application using the MainPage.xaml page.
We’ve created this, and so we need to reconfigure the application to boot using LogonPage.xaml. These
settings are held in the WMAppManifest.xml file, which can be found in the ~/Properties folder of the
project. Open this file, and you will find an element with the path Deployment/Task/DefaultTask. You’ll
see MainPage.xaml in the NavigationPage attribute. Change this to LogonPage.xaml. Here’s the revised
configuration.

 <Tasks>
 <DefaultTask Name ="_default" NavigationPage="LogonPage.xaml"/>
 </Tasks>

You can now run the project, and it will appear in the emulator. However, it won’t do anything yet,
as we have yet to code up any logic. Figure 5-4 illustrates.

CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

54

Figure 5-4. The logon screen running within the emulator

That was easy—as it should be—so now let’s look at how we can call our services.

 CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

55

Calling the Services
We’ll devote this first section to building the classes that can call up to our services. As discussed in the
introduction to the chapter, we’re interested only in authenticating against the API and logging in a user
initially, and so, although we’ll introduce all of the classes we’ll build, we’ll build only some of them here.

We need to create three service proxy classes that can communicate with each of the services at
http://services.multimobiledevelopment.com/. Specifically we want to create ApiService,
UsersService, and BookmarksService. As before, we’ll need base classes for these, specifically
ServiceProxy, RestServiceProxy, and ODataServiceProxy. Figure 5-5 illustrates.

Figure 5-5. UML static structure sketch of our service proxy classes

The framework class that we’re going to use to make the request is System.Net.HttpWebRequest,
which has been part of .NET since version 1.0, has been on the .NET Compact Framework since .NET
1.0, and is also in the Silverlight for Windows Phone library. However, the version that is in the Silverlight
library only supports asynchronous communications - blocking calls are not available.

As we’ve done before, we’re going to create an HttpHelper class that can download HTTP resources
for us using this library. HttpHelper will have two methods—one will request an HTTP resource and
return a string. The second will request an HTTP resource and return a System.Xml.Linq.XDocument
instance.

� Note Old-school Windows Mobile and desktop/server-side .NET developers will be more used to using the
regular System.Xml.XmlDocument class. XmlDocument is not available on Windows Phone, and hence the only
option to load a DOM object is to use the Linq API.

CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

56

Before we build HttpHelper, we need a class that allows us to hold a list of headers that need to be
added to any HTTP request. If you recall in Chapter 2, we discussed that to call into our services we
needed to send up special x-amx-apiusername and x-amx-token HTTP headers. In previous chapters, we
have built a class called DownloadSettings to do this, and we’ll repeat this process here. Here’s the
implementation for DownloadSettings that needs to be added to the project:

using System;
using System.Collections.Generic;

namespace AmxMobile.Phone7.SixBookmarks
{
 public class DownloadSettings
 {
 public Dictionary<string, string> ExtraHeaders { get; private set; }

 public DownloadSettings()
 {
 this.ExtraHeaders = new Dictionary<string, string>();
 }
 }
}

We can now look at the implementation of the Download method on HttpHelper. This method uses
regular practice for the System.Net.HttpWebRequest class to make the request, add any extra headers that
we need, and then download any result.

Because the .NET HttpWebRequest class supports only asynchronous communication, we need to
pass in delegates to the method that will be invoked on success or failure. The model I’m going to
propose here is to use two callbacks—one for success and one for failure. This will allow us to use
structured exception handling properly and pass back any exceptions that do occur to the caller in a safe
and controlled manner. .NET provides a generic delegate called Action<T> that can be used to quickly
scaffold up these kinds of callbacks. Using this in combination with anonymous methods makes for an
arrangement whereby developing asynchronous code becomes actually quite rapid and natural.
(Although I don’t wish to lambast Objective-C, if Objective-C did have this sort of functionality, it would
be hugely easier to write.)

We’re going to use Action<T> as the default “success” delegate. For the default “failure” delegate,
we’re going to create a separate Failed delegate. The reasons will become apparent later, but for now
add this type to your project in a separate file:

using System;

namespace AmxMobile.Phone7.SixBookmarks
{
 public delegate void Failed(Exception ex);
}

In a moment, we’ll see the declaration of the HttpHelper class with the Download method in place.
There are two things to note on this implementation. Firstly we designate a private method called
HandleDownloadResult as the callback handler for the actual BeginGetResponse method call. We’ll build
this in a moment. Secondly, we pass an array of vanilla objects into the state for the callback. This allows
us to pass the actual HttpWebRequest instance (which we need in order to unpack the asynchronous call
at the other end) and the two callback delegates that we’re provided. This isn’t hugely natural or

 CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

57

readable; however, it is highly practical. Another approach would be to create a specific class for passing
the state around. My feeling on this is that it would lead to class bloat in the project and not really add
anything, and thus I’ve gone with passing through an array. Here’s the code:

using System;
using System.IO;
using System.Net;

namespace AmxMobile.Phone7.SixBookmarks
{
 public static class HttpHelper
 {
 public static void Download(string url, DownloadSettings settings, Action<string>
success, Action<Exception> failure)
 {
 // create the request stub...
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);

 // add...
 if (settings != null)
 {
 foreach (string name in settings.ExtraHeaders.Keys)
 request.Headers[name] = settings.ExtraHeaders[name];
 }

 // call the server... we'll get notified at some point...
 request.BeginGetResponse(new AsyncCallback(HandleDownloadResult), new object[] {
request, success, failure });
 }
 }
}

The way that structured exception handling is done in these asynchronous framework methods is
that if an exception occurs in the processing on the other thread, the exception is caught and rethrown
at the point when the asynchronous call is “unpacked” when the “end” method is called. Thus we need
to wrap the “end” method in a try…catch block and call out to our callback if necessary. Here’s the code:

// Add method to HttpHelper…
 private static void HandleDownloadResult(IAsyncResult result)
 {
 // unpackage the state...
 object[] state = (object[])result.AsyncState;
 HttpWebRequest request = (HttpWebRequest)state[0];
 Action<string> success = (Action<string>)state[1];
 Failed failed = (Failed)state[2];

 // unwind...
 try
 {

 // get the response...
 HttpWebResponse response = (HttpWebResponse)request.EndGetResponse(result);

CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

58

 using (Stream stream = response.GetResponseStream())
 {
 // read the html out...
 StreamReader reader = new StreamReader(stream);
 string html = reader.ReadToEnd();

 // callback the html...
 success(html);
 }
 }
 catch (WebException ex)
 {
 HandleDownloadException(request.RequestUri.ToString(), ex, failed);
 }
 catch (Exception ex)
 {
 // callback the error...
 failed(ex);
 }
 }

You’ll notice there that we’re specifically catching WebException and deferring to a yet-to-be-built
method called HandleDownloadException. From experience, it’s very helpful having a dump of the data
that the server did send back for troubleshooting purposes. What HandleDownloadException will do is
draw down the content from the server and package it in a new exception. It will then call the “failed”
callback when complete. Here’s the code:

// Add method to HttpHelper…
 private static void HandleDownloadException(string url, WebException ex, Failed
failed)
 {
 StringBuilder builder = new StringBuilder();
 builder.AppendFormat("Failed to download '{0}'.", url);
 builder.Append("\r\n");

 // do we have a response...
 if (ex.Response != null)
 {
 try
 {
 Stream stream = ex.Response.GetResponseStream();
 if (stream == null)
 throw new InvalidOperationException("'stream' is null.");
 using (stream)
 {
 builder.Append("Response data: ");

 // reader...
 using (StreamReader reader = new StreamReader(stream))
 builder.Append(reader.ReadToEnd());
 }
 }

 CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

59

 catch (Exception readEx)
 {
 builder.AppendFormat("An exception occurred when reading error data: " +
readEx.Message);
 }
 }
 else
 builder.Append("(No response)");

 // defer to the context...
 failed(new InvalidOperationException(builder.ToString(), ex));
 }

We’ve already got our form built, so we’ll go back and wire up the logon button to call and test that

so we’re familiar with how the callbacks work.

Testing HttpHelper
Open the designer for the LogonPage.xaml file, and double-click the button. This will add an event
handler for the click event on the button.

One of the peculiarities about .NET development on Windows Forms and Silverlight, both for
desktop, Windows Mobile, and Windows Phones devices, is that you have to handle marshaling control
between the thread that runs your asynchronous request and the thread that runs the controls. This has
been a problem/feature of Windows since the very beginning. Windows is built on a message queuing
system whereby the OS maintains a list of messages to send to windows that represent things like mouse
movements, keypresses, and so on. The main thread in the process walks through this message queue
and dispatches the message to the appropriate window. (A window in this context is any user interface
object from an actual pop-up window down to a control.) Messages need to be pushed onto the queue
from one thread and one thread only—if this rule is violated, horrible and nasty things happen.

The problem comes in that when an asynchronous method is completed, your callback is invoked
on the worker thread, and thus if you want to interact with any controls, you need to marshal control
back to the main thread first. In the very first version of .NET 1.0, there was no protection against this,
but in .NET 1.1 protection was introduced such that an exception is thrown if the “no access from
worker threads” rule is broken. This is actually very easy to do, but unless you get into the habit of it, you
will forever be going back into and adding this marshaling code in when your application crashes.
(Fortunately it is a very obvious crash, and you will typically shake them all down during debugging.)

In the other projects, we have created a MessageBox class to pop up an error. In .NET we already have
a MessageBox class, and hence in this project we’re going to build an Alert class that defers to MessageBox.
We’ll add two methods to this—one to show an arbitrary message string and one to show an exception.

In the Android chapter, we built an interface called IContextSource that could be used to pass
around a reference to the Android application runtime. We’re going to create an interface with the same
name here, primarily to allow access to page objects without having to have a reference to the user
interface. This is something I’ve added to illustrate best practice—we’re not really going to take full
advantage of it in this chapter. What I want to illustrate with this is loosely coupling the business and
user interface tiers, especially in a world where we may well want to have device-agnostic, readily
portable business tiers. The interface will provide access to an instance of
System.Windows.Threading.Dispatcher. This class is the class that’s used to marshal control back from
worker threads to the main user interface thread, and hence it’s a class that is extremely helpful to have
around.

Here’s the interface:

CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

60

using System;
using System.Windows.Threading;

namespace AmxMobile.Phone7.SixBookmarks
{
 public interface IContextSource
 {
 Dispatcher Dispatcher
 {
 get;
 }
 }
}

For the Alert class, we need these two main methods. These will use the IContextSource to de-
reference a Dispatcher instance and, if available, marshal control back to the main user interface thread.
Otherwise we’ll call MessageBox.Show directly and hope or assume that we’re on the correct thread.

using System;
using System.Windows;
using System.Windows.Controls;

namespace AmxMobile.Phone7.SixBookmarks
{
 public static class Alert
 {
 private const string Caption = "Six Bookmarks";

 internal static void Show(object context, Exception ex)
 {
 if (ex == null)
 throw new ArgumentNullException("ex");

 // defer...
 Show(context, "An error occurred.", ex);
 }

 internal static void Show(object context, string message)
 {
 // defer...
 Show(context, message, null);
 }

 internal static void Show(object context, string message, Exception ex)
 {
 string toShow = message;
 if (ex != null)
 toShow = string.Concat(message, "\r\n", ex.ToString());

 // do we need to defer?
 if (context is Page)
 {

 CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

61

 ((Page)context).Dispatcher.BeginInvoke((Action)delegate()
 {
 MessageBox.Show(toShow, Caption, MessageBoxButton.OK);
 });
 }
 else
 {
 // show it, and hope we're on the right thread!
 MessageBox.Show(toShow, Caption, MessageBoxButton.OK);
 }
 }
 }
}

Recall that previously I said we would create a special Failed delegate and that the reason for this
would become apparent. What we’re going to do is add a helper function to Alert that creates a Failed
delegate for us and is automatically rigged to show an error. Here’s the code:

// Add method and private class to Alert…
 internal static Failed GetFailedHandler(IContextSource context)
 {
 // return...
 FailedHandler handler = new FailedHandler(context);
 return new Failed(handler.Failed);
 }

 private class FailedHandler
 {
 private IContextSource Context { get; set; }

 internal FailedHandler(IContextSource context)
 {
 this.Context = context;
 }

 internal void Failed(Exception ex)
 {
 Alert.Show(this.Context, "An error occurred.", ex);
 }
 }

We can run this all through by adding a handler to the button on LogonPage. If you open the designer
and double-click the button, you can add an event handler. Add this code:

// Add method to LogonPage…
 private void buttonLogon_Click(object sender, RoutedEventArgs e)
 {
 HttpHelper.Download("http://www.google.co.uk/", new DownloadSettings(),
 delegate(string html)
 {
 Alert.Show(this, string.Format("Downloaded {0} bytes.", html.Length));

CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

62

 }, Alert.GetFailedHandler(this));
 }

If you run the project and click the Logon button, you should see a successful result. Figure 5-6
illustrates.

Figure 5-6. A successful result!

 CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

63

This demonstrates that we can get an asynchronous HTTP request up to and back from the server
and handle the result in the user interface. After a quick note about the MessageBox class, we’ll look at
making the operations more substantial.

Special Note on MessageBox
There is a rumor that MessageBox is going to be deprecated on Windows Phone. If you have problems
compiling this, check out the support forums at http://forums.multimobiledevelopment.com/, because if
there is a problem I will post a fix to that site.

It would not surprise me too much if it did. The behavior of the class is a little strange compared to
the implementations on Android and iPhone. The Windows Phone implementation is modal, meaning
that the application stops when a message box is shown waiting for input. The Android and iPhone
implementations are not. This is relevant on a device that is primarily geared for asynchronous work.
One of the problems of the way the Windows Phone implementation works is that if you marshal control
from a worker thread to the UI thread like we have done, the worker thread is blocked and unable to do
other work until the message box is cleared.

Building Out the API and User Service Proxies
We can go back to building our service classes now that we know the general principle of how we’re
going to make an HTTP request work.

Recall that the architecture of our Six Bookmarks services requires that we authenticate ourselves
before we make any calls. Also recall that we have a “chicken and egg” situation in that we have to call up
to the server to authenticate ourselves, but we need to be partly authenticated to do that. In the first
instance, we need to make a call to the Logon operation of the API service, passing up a special HTTP
header called x-amx-apiusername. This will return back a token that we store in global memory and pass
up in x-amx-token in all future calls. To support this bit of functionality, we need to have ServiceProxy
able to store the token in static memory, have it be able to build URLs, and also present the headers to
anyone who needs them via a DownloadSettings instance. Here’s the code:

using System;

namespace AmxMobile.Phone7.SixBookmarks
{
 public abstract class ServiceProxy
 {
 // YOU MUST CHANGE THESE VALUES IN ORDER TO USE THIS SAMPLE...
 internal const string ApiUsername = "amxmobile";
 internal const string ApiPassword = "password";

 private const string RootUrl = "http://services.multimobiledevelopment.com/services/";

 internal string ServiceName { get; private set; }
 internal static string Token { get; set; }

 protected ServiceProxy(string serviceName)
 {
 if (serviceName == null)
 throw new ArgumentNullException("serviceName");
 if (serviceName.Length == 0)

CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

64

 throw new ArgumentException("'serviceName' is zero-length.");

 // set...
 this.ServiceName = serviceName;
 }

 internal virtual bool IsAuthenticated
 {
 get
 {
 // we are not authenticated if we do not have a token...
 return !(string.IsNullOrEmpty(Token));
 }
 }

 public string ResolvedServiceUrl
 {
 get
 {
 return RootUrl + this.ServiceName;
 }
 }

 protected DownloadSettings GetDownloadSettings()
 {
 DownloadSettings settings = new DownloadSettings();
 settings.ExtraHeaders["x-amx-apiusername"] = ApiUsername;
 if (!(string.IsNullOrEmpty(Token)))
 settings.ExtraHeaders["x-amx-token"] = Token;

 // return...
 return settings;
 }
 }
}

In order to call the RESTful services, we need to build up URLs that have parameters specified in the
query string. We’ll therefore add a class called RestRequestArgs that can hold these parameters as a
collection of name/value pairs and add a method to HttpHelper that can build a URL out of a collection
of name/value pairs. Here’s the code for RestRequestArgs:

using System;
using System.Collections.Generic;

namespace AmxMobile.Phone7.SixBookmarks
{
 internal class RestRequestArgs : Dictionary<string, string>
 {
 internal RestRequestArgs(string operation)
 {
 this["operation"] = operation;

 CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

65

 }
 }
}

And here’s the method for HttpHelper that configures the query string of a URL with values from a
name/value collection:

// Add method to HttpHelper…
 internal static string BuildUrl(string url, RestRequestArgs args)
 {
 StringBuilder builder = new StringBuilder();

 // remove the old query...
 int index = url.IndexOf("?");
 if(index != -1)
 builder.Append(url.Substring(0, index));
 else
 builder.Append(url);

 // add the arguments...
 if (args.Count > 0)
 {
 builder.Append("?");

 // params...
 bool first = true;
 foreach (string key in args.Keys)
 {
 if (first)
 first = false;
 else
 builder.Append("&");
 builder.Append(key);
 builder.Append("=");
 builder.Append(HttpUtility.UrlEncode(args[key]));
 }
 }

 // return...
 return builder.ToString();
 }

RestServiceProxy will act as a base class for ApiService and UsersService. The class will have one
method—SendRequest—that will call up to the server, download the XML, and check that the rules in the
Six Bookmarks RESTful service protocol have been adhered to—specifically it will look to see if an
exception has been sent back and raise an exception if it has.

The extra wrinkle to SendRequest is that if it detects that the API has not been authenticated it needs
to go off and do that first. (For example, if we call Logon on the Users service, if Logon on the API service
has not been called, it will automatically call the API service.) This is a little complicated because the
service calls are asynchronous. If the API has not been authenticated, a new asynchronous call has to
complete first before the original call can be made. Therefore we have to capture the arguments to the

CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

66

original call, hold them in memory until the API authentication call has completed, and then bring those
original call arguments back and call the original operation as intended. This sounds ugly, but once you
see it I hope you find that it’s reasonably straightforward.

� Note Again, this is really difficult to do neatly in Objective-C but much easier to do in C# because of the
anonymous methods and delegates. I raise this point not to badmouth Objective-C but rather to illustrate the
importance in bringing forward the toolset for iOS to make life easier for developers.

The code for RestRequestProxy is verbose, but it’s hard to break down into smaller sections, and
hence I will present it as a single chunk. Here’s the overview:

• The RestRequestProxy class contains a private sub-class called RequestState. This
holds the details of the original call. This will be used in situations where the API is
not authenticated.

• RequestState has a method on it called DoRequest. This is the code that actually
connects up to the server, downloads the XML, and processes it. If the call is
successful, the “success” callback provided to SendRequest is invoked.

• On SendRequest, if the API is not authenticated, the Authenticate method on
ApiService will be called, passing in a delegate to RequestState.DoRequest. Thus
when the authenticate call is successful, the action of the “success” callback will
be to invoke the original call.

• If the API has been authenticated when SendRequest is invoked, DoRequest is called
directly.

• This code references a class called XmlHelper, which we’ll build shortly. As
background, this class simply extracts values from an XML document.

The upshot of the above is that we can divert of to do other setup operations without the original
caller needing to be aware.

Here’s the code:

using System;
using System.IO;
using System.Xml.Linq;
using System.Collections.Generic;

namespace AmxMobile.Phone7.SixBookmarks
{
 public abstract class RestServiceProxy : ServiceProxy
 {
 protected RestServiceProxy(string serviceName)
 : base(serviceName)
 {
 }

 CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

67

 internal void SendRequest(RestRequestArgs args, Action<XElement> success, Failed
failed)
 {
 // create a request state...
 RequestState state = new RequestState()
 {
 Owner = this,
 Args = args,
 Success = success,
 Failed = failed
 };

 // are we authenticated? if we're not, we need to call that first...
 if (!(IsAuthenticated))
 {
 // call the authenticate routine, and ask it to call the state we just set up
 // if authentication works...
 ApiService.Authenticate(new Action(state.DoRequest), failed);
 }
 else
 {
 // call the method directly...
 state.DoRequest();
 }
 }

 private class RequestState
 {
 internal RestServiceProxy Owner { get; set; }
 internal RestRequestArgs Args { get; set; }
 internal Action<XElement> Success { get; set; }
 internal Failed Failed { get; set; }

 internal void DoRequest()
 {
 // get a url...
 string url = this.Owner.ResolvedServiceUrl;
 url = HttpHelper.BuildUrl(url, this.Args);

 // call download. this is an async method, so we need to block...
 XDocument doc = null;
 HttpHelper.Download(url, this.Owner.GetDownloadSettings(), delegate(string
result)
 {
 // we'll have some content - initialize XDocument and parse it...
 using (TextReader reader = new StringReader(result))
 {
 doc = XDocument.Load(reader);
 if (doc == null)
 throw new InvalidOperationException("'doc' is null.");
 }

CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

68

 // look for the response element...
 var responseElements = new List<XElement>(doc.Descendants("AmxResponse"));
 if (responseElements.Count == 0)
 throw new InvalidOperationException("An AmxResponse element was not
returned.");

 // select out "HasException"...
 XElement responseElement = responseElements[0];
 bool hasException = XmlHelper.GetElementBoolean(responseElement,
"HasException", true);
 if (!(hasException))
 this.Success(responseElement);
 else
 {
 // get the error...
 string message = XmlHelper.GetElementString(responseElement, "Error",
true);
 throw new InvalidOperationException(string.Format("The server returned
an error: {0}.", message));
 }

 }, this.Failed);
 }
 }
 }
}

To complete this work, we’ll look at XmlHelper. The purpose of this class is to make working with the
DOM-based XML a little easier. I’ve mentioned a few times now that I’m very keen on DOM-based XML
manipulation; however, I’m the first to admit that the code is rather verbose, and so I tend to build
helper classes to support the operation.

In the implementation, we’ll see in this book that we’ll add support for three data types—string, 32-
bit integer, and Boolean. In a production implementation, you would need more data types supported;
however, to keep the code down in the book, we’ll keep it short. Here’s an enumeration that defines the
types:

using System;

namespace AmxMobile.Phone7.SixBookmarks
{
 public enum XmlDataType
 {
 String = 0,
 Int32 = 1,
 Boolean = 2
 }
}

For the actual XmlHelper implementation, we’ll have one set of methods that find a child element
given a name, and one set of methods that extract strongly typed values out of a given element. Here’s
the code:

 CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

69

using System;
using System.Xml.Linq;

namespace AmxMobile.Phone7.SixBookmarks
{
 public static class XmlHelper
 {
 public static string GetElementString(XElement element, string name, bool
throwIfNotFound)
 {
 return (string)GetElementValue(element, name, XmlDataType.String,
throwIfNotFound);
 }

 public static bool GetElementBoolean(XElement element, String name, bool
throwIfNotFound)
 {
 return (bool)GetElementValue(element, name, XmlDataType.Boolean,
throwIfNotFound);
 }

 public static int GetElementInt32(XElement element, String name, bool
throwIfNotFound)
 {
 return (int)GetElementValue(element, name, XmlDataType.Int32, throwIfNotFound);
 }

 private static Object GetElementValue(XElement element, String name, XmlDataType
dt, bool throwIfNotFound)
 {
 // find it...
 XElement child = element.Element(name);
 if(child != null)
 {
 if(dt == XmlDataType.String)
 return GetStringValue(child);
 else if(dt == XmlDataType.Boolean)
 return (bool)GetBooleanValue(child);
 else if(dt == XmlDataType.Int32)
 return (int)GetInt32Value(child);
 else
 throw new Exception(string.Format("Cannot handle '{0}'.",
dt));
 }
 else
 {
 if(throwIfNotFound)
 throw new Exception(string.Format("An element with name
'{0}' was not found within an element with name '{1}'.", name, element.Name));
 else
 return null;
 }

CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

70

 }

 public static String GetStringValue(XNode item)
 {
 if(item == null)
 throw new ArgumentNullException("item");

 if (item is XElement)
 return ((XElement)item).Value;
 else
 throw new Exception(string.Format("Cannot handle '{0}'.", item.GetType()));
 }

 public static int GetInt32Value(XNode item)
 {
 string asString = GetStringValue(item);
 return int.Parse(asString);
 }

 public static bool GetBooleanValue(XNode item)
 {
 string asString = GetStringValue(item);

 // check...
 if(asString == "0" || string.Compare(asString, "false",
StringComparison.InvariantCultureIgnoreCase) == 0)
 return false;
 else if (asString == "1" || string.Compare(asString, "false",
StringComparison.InvariantCultureIgnoreCase) == 0)
 return true;
 else
 throw new Exception(string.Format("The value '{0}' could not be
recognised as valid Boolean value.", asString));
 }
 }
}

At this point, we’re able to make a call to either of the RESTful services. Now we just have to call one.

Implementing the Authenticate Method
You may have noticed that the Authenticate method was called as a static method from within
RestServiceProxy. What we’re going to do is create an instance method on ApiService that calls the
Logon operation and then have a static Authenticate method that acts as a wrapper.

The reason for this is to divide responsibility. We want Logon to be responsible just for
communication with the server, and we want Authenticate to defer to Logon and interpret the result.

As we know, the actual logon operation runs asynchronously, and so when we call SendRequest we
need to pass in two delegates. One will be an anonymous method that will do some processing with the
result; the other will be a reference to the “failed” callback. Also, in this code, we’ll use a to-be-built class
called LogonResult that will interpret the result from the server and package it up. We’ll reuse this class
we call the UsersService later on.

 CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

71

Either of the two logon operations can return four results—OK, invalid username, invalid password,
or account expired. We need an enumeration to represent these states—here it is:

using System;

namespace AmxMobile.Phone7.SixBookmarks
{
 public enum LogonResult
 {
 LogonOk = 0,
 InvalidUsername = 1,
 InvalidPassword = 2,
 UserInactive = 3
 }
}

The behavior of LogonResponse will be to look at the XML that comes back and package up
properties to represent the result, any message that the server wishes to send, or any token that the
server wishes to send. Here’s the code:

using System;
using System.Xml.Linq;

namespace AmxMobile.Phone7.SixBookmarks
{
 public class LogonResponse
 {
 public LogonResult Result { get; private set; }
 public string Message { get; private set; }
 public string Token { get; private set; }

 internal LogonResponse(LogonResult result, string message, string token)
 {
 this.Result = result;
 this.Message = message;
 this.Token = token;
 }

 internal static LogonResponse FromXmlElement(XElement element)
 {
 if (element == null)
 throw new ArgumentNullException("element");

 // get the result...
 string asString = XmlHelper.GetElementString(element, "Result", true);
 LogonResult result = (LogonResult)Enum.Parse(typeof(LogonResult), asString, true);
 return new LogonResponse(result, XmlHelper.GetElementString(element, "Message",
false),
 XmlHelper.GetElementString(element, "Token", false));
 }
 }
}

CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

72

Here’s the implementation for ApiService with the Logon method in play. I’ve also overridden the
operation of IsAuthenticated. This is very important—the base class will call Authenticate whenever it
detects that the API has not been authenticated. We need to disable this function when calling up to the
API service in order to set up the service.

using System;
using System.Xml.Linq;

namespace AmxMobile.Phone7.SixBookmarks
{
 public class ApiService : RestServiceProxy
 {
 public ApiService()
 : base("apirest.aspx")
 {
 }

 public void Logon(string password, Action<LogonResponse> result, Failed failed)
 {
 // create the request...
 RestRequestArgs args = new RestRequestArgs("logon");
 args["password"] = password;

 // send the request...
 this.SendRequest(args, (Action<XElement>)delegate(XElement element)
 {
 // walk...
 LogonResponse response = LogonResponse.FromXmlElement(element);
 if (response == null)
 throw new InvalidOperationException("'response' is null.");

 // call...
 result(response);

 }, failed);
 }

 internal override bool IsAuthenticated
 {
 get
 {
 // make this return true, otherwise we'll get a stack overflow...
 return true;
 }
 }
 }
}

Within the Authenticate method, we need to look at the result from the server. If the logon
operation was OK, we need to take the provided token and store it in the static Token property of
ServiceProxy. This effectively puts the application into a state of “API authenticated,” meaning that we
don’t need to call the Authenticate method for the duration of the application run. Here’s the code:

 CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

73

// Add Authenticate method to ApiService.cs…
 internal static void Authenticate(Action callback, Failed failed)
 {
 ApiService service = new ApiService();
 service.Logon(ApiPassword, (Action<LogonResponse>)delegate(LogonResponse result)
 {
 // we have a result from *our* call to ApiService, if that works, call back to
the next
 // item in the chain...
 if (result.Result == LogonResult.LogonOk)
 {
 // store the token in static memory...
 Token = result.Token;

 // call the caller...
 callback();
 }
 else
 throw new InvalidOperationException(string.Format("A response of '{0}' was
returned when authenticating the API. Check that the the values of ApiUsername and
ApiPassword correspond to your unique API account.", result.Result));

 }, failed);
 }

Within the anonymous “success” method, you’ll notice that we call the “success” callback that we
were originally provided. This delegate will actually be a reference to the DoRequest method buried
within the RestServiceProxy class. The upshot of this is that when the service layer has finished making
its call to authenticate the API, the original call will be made. The chain then continues until the original
caller has been satisfied.

To finish this piece of code off, we need to look at building the UsersService class. We’ll do this next.

Making the Logon Button Work
We’ve already seen that the ApiService class makes its logon operation. The equivalent method on
UsersService should hold no surprises. Here it is:

using System;
using System.Xml.Linq;

namespace AmxMobile.Phone7.SixBookmarks
{
 public class UsersService : RestServiceProxy
 {
 public UsersService()
 : base("usersrest.aspx")
 {
 }

 public void Logon(String username, String password, Action<LogonResponse> callback,
Failed failed)

CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

74

 {
 // create the request...
 RestRequestArgs args = new RestRequestArgs("logon");

 // add the username and password...
 args["username"] = username;
 args["password"] = password;

 // send the request...
 SendRequest(args, delegate(XElement element)
 {
 // create a result from that...
 LogonResponse response = LogonResponse.FromXmlElement(element);
 if (response == null)
 throw new InvalidOperationException("'response' is null.");

 // callback...
 callback(response);

 }, failed);
 }
 }
}

We can now call that method from the button handle on the logon form; however, the first thing we
need to do is validate the user input. In previous chapters, we have built an “error bucket,” and we’re
going to do the same thing here. This is going to be a very simple class—essentially just a generic
collection of string instances with a couple of helper members. Here’s the code:

using System;
using System.Text;
using System.Collections.Generic;

namespace AmxMobile.Phone7.SixBookmarks
{
 public class ErrorBucket : List<string>
 {
 public ErrorBucket()
 {
 }

 public bool HasErrors
 {
 get
 {
 if (this.Count > 0)
 return true;
 else
 return false;
 }
 }

 CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

75

 public string GetAllErrorsSeparatedByCrLf()
 {
 StringBuilder builder = new StringBuilder();
 foreach (string error in this)
 {
 if (builder.Length > 0)
 builder.Append("\r\n");
 builder.Append(error);
 }

 // return...
 return builder.ToString();
 }
 }
}

The actual button handling code is now pretty easy. We get the username and password values off of
the UI, and if validation is OK we create a new UsersService instance and call Logon. The result for us in
this chapter will be to show a message box. In the next chapter, we’ll go on and present the bookmarks
as we had done previously.

Here’s the code:

// Replace handle method in LogonPage.xaml.cs and add method…
 private void buttonLogon_Click(object sender, RoutedEventArgs e)
 {
 DoLogon();

}

private void DoLogon()
{

 // validate...
 ErrorBucket bucket = new ErrorBucket();
 string username = this.textUsername.Text.Trim();
 if (string.IsNullOrEmpty(username))
 bucket.Add("Username is required.");
 string password = this.textPassword.Password.Trim();
 if(string.IsNullOrEmpty(password))
 bucket.Add("Password is required.");

 // error?
 if (bucket.HasErrors)
 {
 Alert.Show(this, bucket.GetAllErrorsSeparatedByCrLf());
 return;
 }

 // logon...
 UsersService users = new UsersService();
 users.Logon(username, password, delegate(LogonResponse response)
 {
 // we managed to get a response...

CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

76

 if (response.Result == LogonResult.LogonOk)
{

// defer...
LogonOk();

}
 else
 Alert.Show(this, response.Message);

 }, Alert.GetFailedHandler(this));
 }

private void LogonOk()
{

Alert.Show(this, "Logon OK.");
}

You can now run the code and try to log on. Figure 5-7 shows a successful result.

 CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

77

Figure 5-7. Another sucessful result!

Implementing “Remember Me”
The last feature to implement in this chapter is “remember me.” This will store the user’s username and
password securely on the device.

On Android and iPhone, we have custom APIs for storing user settings. Perhaps oddly on WP7 we
don’t have this feature. I say “perhaps oddly” because we won’t have this feature in the full-blown .NET
Framework either. When solving this problem on the desktop, I have tended to create an XML file and
store the values in there.

CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

78

In the next two chapters, we’re going to be looking quite intensively at working with XML files—as
we’ve mentioned before, WP7 does not have a database and the only solution we have for storing data is
to use files. To work with files, we need to use a .NET feature called “isolated storage.” This feature has
been around in .NET since version 1.0, but it’s rarely used. Isolated storage was designed to support
applications that downloaded .NET components over Internet Explorer and run in a special privilege
mode that had limited access to the local disk. Isolated storage makes sense in the context of a phone
because we do want to make sure that our applications are nicely isolated away from other apps that
may be running.

In this section, we’re going to build a class called SimpleXmlPropertyBag. I’ve named this class after a
commonly used class in BootFX—simply, all it does is maintain a list of values and read and write them
from an XML file. (The BootFX implementation can handle any type of data; the one that we’re going to
build works only with strings.) We will use the bag to store the user’s username and password if the
“remember me” option is checked.

The SimpleXmlPropertyBag class will hold a property containing the path that it was stored in. (In
isolated storage, the path of the file is relative to the root of the store, which is then mapped to a “magic”
folder on disk. On WP7 this magic folder is named for the unique ID of the application.)

Here’s the basic implementation of SimpleXmlPropertyBag that sets the base class to be a generic
dictionary and accepts a file path through the constructor:

using System;
using System.Collections.Generic;
using System.IO;
using System.IO.IsolatedStorage;
using System.Xml.Linq;

namespace AmxMobile.Phone7.SixBookmarks
{
 public class SimpleXmlPropertyBag : Dictionary<string, string>
 {
 private string Path { get; set; }

 internal SimpleXmlPropertyBag(string path)
 {
 if (path == null)
 throw new ArgumentNullException("path");
 if (path.Length == 0)
 throw new ArgumentException("'path' is zero-length.");

 // set...
 this.Path = path;
 }
 }
}

To create an XML document, we use the XDocument class again. By adding a method called
ToXmlDocument to SimpleXmlPropertyBag, we can turn the values into XML at any point. Here’s the
implementation:

// Add method to SimpleXmlPropertyBag…
 private XDocument ToXmlDocument()
 {

 CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

79

 XDocument doc = new XDocument();

 // root...
 XElement root = new XElement("Root");
 doc.Add(root);

 // items...
 foreach (string key in this.Keys)
 {
 // create a child element...
 XElement element = new XElement(key);
 root.Add(element);

 // set...
 element.SetValue(this[key]);
 }

 // return...
 return doc;
 }

Once we have an XML document containing the values, we can save them to disk using the path
that we captured when the class was instantiated. Here’s the code for the Save method:

// Add method to SimpleXmlPropertyBag…
 public void Save()
 {
 IsolatedStorageFile store = IsolatedStorageFile.GetUserStoreForApplication();

 // get a document...
 XDocument doc = this.ToXmlDocument();

 // open a stream and recreate the file...
 if (store.FileExists(this.Path))
 store.DeleteFile(this.Path);
 using (Stream stream = store.OpenFile(this.Path, FileMode.Create,
FileAccess.Write))
 doc.Save(stream);
 }

The Load method takes a parameter that indicates whether we should ignore missing files. If we’re
not ignoring files, we’ll create a blank one. (The motivation for this will become apparent shortly.) If we
do load a file, we’ll walk the elements within the document and recreate the property bag to the state
that it was in immediately prior to it being saved. Here’s the code:

// Add method to SimpleXmlPropertyBag…
 internal static SimpleXmlPropertyBag Load(string path, bool throwIfNotFound)
 {
 IsolatedStorageFile store = IsolatedStorageFile.GetUserStoreForApplication();

 // does the file exist?
 if (store.FileExists(path))

CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

80

 {
 // load it...
 XDocument doc = null;
 using(Stream stream = store.OpenFile(path, FileMode.Open, FileAccess.Read))
 doc = XDocument.Load(stream);

 // find the root...
 XElement root = doc.Element("Root");
 if(root == null)
 throw new InvalidOperationException("'root' is null.");

 // load...
 SimpleXmlPropertyBag bag = new SimpleXmlPropertyBag(path);
 foreach(XElement element in root.Elements())
 bag[element.Name.LocalName] = element.Value;

 // return...
 return bag;
 }
 else
 {
 if(throwIfNotFound)
 throw new InvalidOperationException(string.Format("A file at '{0}' was not
found.", path));
 else
 {
 // return a new one...
 return new SimpleXmlPropertyBag(path);
 }
 }
 }

At the moment, we have an object that is able to save and load its settings at will. What we need is a
globally available bag that can be used to store all user settings. We’ll do this by creating a class called
SixBookmarksRuntime that will persist for the life of the application. A property on this—Settings—will
hold a SimpleXmlPropertyBag instance representing the user settings. We’ll build SixBookmarksRuntime as
a singleton class. Here’s the code:

using System;

namespace AmxMobile.Phone7.SixBookmarks
{
 public class SixBookmarksRuntime
 {
 /// <summary>
 /// Private field to hold singleton instance.
 /// </summary>
 private static SixBookmarksRuntime _current = new SixBookmarksRuntime();

 // settings...
 public SimpleXmlPropertyBag Settings { get; private set; }

 CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

81

 /// <summary>
 /// Private constructor.
 /// </summary>
 private SixBookmarksRuntime()
 {
 // settings...
 this.Settings = SimpleXmlPropertyBag.Load("Settings.xml", false);
 }

 /// <summary>
 /// Gets the singleton instance of <see
cref="SixBookmarksRuntime">SixBookmarksRuntime</see>.
 /// </summary>
 internal static SixBookmarksRuntime Current
 {
 get
 {
 if(_current == null)
 throw new
ObjectDisposedException("SixBookmarksRuntime");
 return _current;
 }
 }
 }
}

We’ll use SixBookmarksRuntime a little more in the next chapter.
We can now change the behavior of the logon page so that it understands how to use the property

bag exposed through Settings to save and load user options. (Although we’ve had to do a reasonable
amount of work here, this is basically what iPhone and Android are doing with their custom user settings
buckets.)

To LogonPage we’ll add a new method called LogonOk. In the next chapter, when we start building the
synchronization class, we’ll shim in a call to LogonOk to kick off the sync operation. However, for now
we’ll just set the credentials if needed. As a wrinkle to this, we need to marshal control back to the main
user interface thread, as our callback telling us that the logon operation has been successful will come in
on a worker thread. We’ll also add a method to clear the credentials. Here’s the code:

// Replace LogonOk method and add ClearCredentials method to LogonPage…
 private void LogonOk()
 {
 // flip back - we're not on the right thread...
 this.Dispatcher.BeginInvoke(delegate()
 {
 // save...
 if (this.checkRememberMe.IsChecked.Value)
 {
 SimpleXmlPropertyBag settings = SixBookmarksRuntime.Current.Settings;
 settings[UsernameKey] = this.textUsername.Text.Trim();
 settings[PasswordKey] = this.textPassword.Password.Trim();
 settings.Save();
 }
 else

CHAPTER 5 � WINDOWS PHONE 7: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

82

 this.ClearCredentials();

 // do sync will come here...

 // show...
 Alert.Show(this, "Logon (still) OK.");

 });
 }

 private void ClearCredentials()
 {
 // set...
 SimpleXmlPropertyBag settings = SixBookmarksRuntime.Current.Settings;
 if (settings.ContainsKey(UsernameKey))
 settings.Remove(UsernameKey);
 if (settings.ContainsKey(PasswordKey))
 settings.Remove(PasswordKey);

 // save...
 settings.Save();
 }

And that’s it! If you run the application, you’ll find that it remembers your credentials.

Conclusion
In this chapter, we’ve built the foundations of our Six Bookmarks application by creating classes that can
communicate with our RESTful API and Users services and also capture and validate input to a form on
the device. In the next chapter, we’ll look at how we can store a persistent set of bookmarks on the
device.

C H A P T E R 6

� � �

83

Windows Phone 7: Persisting
Bookmarks Locally

As I’ve mentioned several times now, as of the time of writing, there is no relational database available
for third-party apps on Windows Phone 7. There is, in fact, an implementation of the SQL CE database
on the devices, but this is locked down so that it is available only to Microsoft applications, notably the
Office Hub applications available on the device. One can only assume that SQL CE will become available
again given time. This would be a definite good thing—Microsoft has a proven track record in building
synchronization frameworks that work between its full-on SQL Server database and devices. It would be
nice to have this back again on its mobile devices. Over time we’ll probably see close integration with its
Azure cloud services.

All this means that this chapter is a bit of an oddball because it’s the only one in the book in which
we’re not using a database at all, let alone SQLite, which features prominently on the other platforms.

� Note Although I hope this chapter is of interest even when a full-on SQL database is available on Windows
Phone 7, it’s my intention to update this chapter online. Check the content on
www.multimobiledevelopment.com/ for more information.

Approach
The approach we’re going to take in this chapter is to store individual entities in individual files within a
folder in isolated storage. We’ll be reproducing the same entity-based scheme, including the metadata
subsystem. We’ll also have a SqlFilter class, although, unlike the name implies, this won’t work with
SQL statements. My rationale for doing this is that we want to aim for consistency across the different
code bases wherever possible.

Entities
In Chapter 3, we looked at the structure of the entity model and its associated metadata subsystem, and
we built an implementation on Android and iOS. In this section, we’ll repeat this work in C# for
Windows Phone 7. This code will more or less work unchanged on Windows Mobile, and also in the
Mono implementations on Android and iOS. More importantly, it will also work if you do move over to a
proper relational database.

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

84

The EntityType Class
The purpose of the EntityType class is to bundle together all of the information that you need in order to
build code that can “magically” manipulate the underlying store and user interface depending on the
structure of the data. In our case, instances of EntityType classes are going to group fields together, plus
static memory on EntityType itself will hold a list of entity types. (But in this example we’re going to have
only one entity type.)

Each entity type will have two names—a programmatic name and a native name. Having separate
values for the names makes it possible to smooth out other problems with the underlying store. For
example, you may have a database table called TBL_CUST that you would like to refer to as Customer in
code. In this case, TBL_CUST would be the native name, and Customer would be the programmatic name.

To this end, we’ll create a class called EntityItem that will act as a base class for things that we want
to store using the metadata system. Here’s the code:

using System;

namespace AmxMobile.Phone7.SixBookmarks
{
 public abstract class EntityItem
 {
 public string Name { get; private set; }
 public string NativeName { get; private set; }

 protected EntityItem(string name, string nativeName)
 {
 this.Name = name;
 this.NativeName = nativeName;
 }
 }
}

We’ll look at the fields first. Each field will store the following information:

• A native name and programmatic name

• A data type

• A size

• In this chapter, we’re going to have only one, which indicates whether the field is a
key field. In a full-on implementation, another example of a flag would be
indicating whether the field could be nullable.

In this example, we’re going to support just two data types; in a more full-on implementation, we’d
obviously need to support all of the data types that the underlying database supports. (If we implement
all of them now, half the book will be taken up with methods exposing out all of the data types.) Our
server-side service used only strings and 32-bit integers, so we will need these, plus a Boolean type that
we’ll use on fields that are held locally and not on the server. Here’s the SBDataType enumeration that we
need to support those three types:

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

85

using System;

namespace AmxMobile.Phone7.SixBookmarks
{
 public enum DataType
 {
 String = 0,
 Int32 = 1,

Boolean = 2
 }
}

Now that we have the enumeration, we can build EntityField. As well as supporting native name,
name, data type, size, and an indication as to whether the field is a key, we’ll have another property
holding the ordinal of the field within the type. Here’s the code:

using System;

namespace AmxMobile.Phone7.SixBookmarks
{
 public class EntityField : EntityItem
 {
 public DataType Type { get; private set; }
 public int Size { get; private set; }
 public int Ordinal { get; private set; }
 public bool IsKey { get; set; }

 internal EntityField(string name, string nativeName, DataType type, int size, int
ordinal)
 : base(name, nativeName)
 {
 this.Type = type;
 this.Size = size;
 this.Ordinal = ordinal;
 }
 }
}

One other thing we need EntityField to be able to do is return a default value for the given type. We
need this in order to support the insert operation. We’ll talk more about this at that time—for now,
here’s the DefaultValue property:

// Add property to EntityField…
 public object DefaultValue
 {
 get
 {
 if (this.Type == DataType.Int32)
 return 0;
 else if (this.Type == DataType.String)
 return null;
 else if (this.Type == DataType.Boolean)

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

86

 return false;
 else
 throw new NotSupportedException(string.Format("Cannot handle '{0}'.",
this.Type));
 }
 }

So that we can effectively work with entities, we need EntityType to be able to instantiate instances
of individual entities and collections of entities. In this example, we’re going to have only one entity—
Bookmark. In any real-world application, you’re likely to have many entitity types. This will be done by
holding references to the relevant .NET types. Our motivation for doing this is so that we can say to
framework code “give me a list of bookmarks” and the framework code itself will be able to create an
appropriate collection type and individual entities. (Of all the platforms that we’ve seen in this book, the
reflection subsystem in .NET is far and away the best.)

In addition, we’re going to add a method to EntityType called AddField. This will be used to
programmatically define the fields available on an entity type. Here’s the code:

using System;
using System.Collections.Generic;

namespace AmxMobile.Phone7.SixBookmarks
{
 public class EntityType : EntityItem
 {
 public List<EntityField> Fields { get; private set; }
 public Type InstanceType { get; private set; }

 public EntityType(Type instanceType, string nativeName)
 : base(instanceType.Name, nativeName)
 {
 // set...
 this.Fields = new List<EntityField>();
 this.InstanceType = instanceType;
 }

 public EntityField AddField(string name, string nativeName, DataType type, int size)
 {
 EntityField field = new EntityField(name, nativeName, type, size,
this.Fields.Count);
 this.Fields.Add(field);

 // return...
 return field;
 }
 }
}

An important part of the code there is that when we add a field using the AddField method, we need
to assign each field a unique ordinal. By passing in the length of the array as the ordinal, we effectively
do that.

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

87

Next we can look some of the other methods on EntityType. We’re going to need to be able to find a
field with a specific name, find the key field, or determine whether a field with a specified name actually
exists. (This latter one is used for populating entities from data received over XML where the XML may
reference fields that we don’t know about.) Here are the three methods that also need to be added to
EntityType:

// Add methods to EntityType…
 public EntityField GetField(String name, bool throwIfNotFound)
 {
 foreach(EntityField field in Fields)
 {
 if(string.Compare(field.Name, name,
StringComparison.InvariantCultureIgnoreCase) == 0)
 return field;
 }

 // throw...
 if(throwIfNotFound)
 throw new Exception(string.Format("Failed to find a field with
name '{0}'.", name));
 else
 return null;
 }

 public EntityField GetKeyField()
 {
 foreach (EntityField field in this.Fields)
 {
 if (field.IsKey)
 return field;
 }

 // nope...
 throw new InvalidOperationException("Failed to find a key field.");
 }

 public bool IsField(string name)
 {
 EntityField field = this.GetField(name, false);
 if (field != null)
 return true;
 else
 return false;
 }

Recall that the other function EntityType needs is the ability to hold a register of the available entity
types. We’ll do this by creating a static hashtable on EntityType and methods called RegisterEntityType
and GetEntityType.

// Add static field and methods to EntityType…
 private static Dictionary<Type, EntityType> EntityTypes { get; set; }

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

88

 static EntityType()
 {
 EntityTypes = new Dictionary<Type, EntityType>();
 }

 public static void RegisterEntityType(EntityType entityType)
 {
 EntityTypes[entityType.InstanceType] = entityType;
 }

 public static EntityType GetEntityType(Type type)
 {
 if (EntityTypes.ContainsKey(type))
 return EntityTypes[type];
 else
 throw new Exception(string.Format("Failed to get entity type for '{0}'.",
type));
 }

We can now use this class to create and store entity types. Let’s look now at building the Entity base
class.

The Entity Class
The basic functionality of an entity is to store a dynamic list of data that represents the columns in the
underlying database table. An entity will be created either manually by the developer or by framework
code that retrieves the data from some source. (In our application, the source of data is going to be either
the local files on disk or the Bookmarks data service at http://services.multimobiledevelopment.com/.)
At some point during the entity’s life, the data stored within will either be read for display on a screen, or
be used to issue some sort of change request to the underlying store.

In our entity, we are going to hold three sets of values. Firstly we’re going to store a reference to our
related EntityType instance. Secondly we’re going to store an array of values that map 1:1 with the data
in the underlying store. Thirdly and finally, we’re going to store a bunch of flags that help the entity keep
track of its internal state.

Storage of data within the entity will be done in “slots.” You will notice on our EntityField instance
we have a property called Ordinal. This ordinal value is the index of the slot in the entity. Thus if we have
five fields, we’ll have five slots numbered from zero to four inclusive.

� Note Recall in Chapter 3 we spoke about the BootFX application framework and its ORM functionality.
Internally within BootFX, this functionality is known as “storage.”

To manage the lifetimes of values stored within the new Entity class, we need to create an
enumeration that indicates the status of the slots. We’ll call this enumeration EntityFieldFlags, and it
needs to be defined prior to building Entity. Here’s the listing:

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

89

using System;

namespace AmxMobile.Phone7.SixBookmarks
{
 [Flags()]
 public enum FieldFlags
 {
 NotLoaded = 0,
 Loaded = 1,
 Modified = 2
 }
}

Next we’ll look at the definition for the basic “storage” capability of Entity. The first thing we do is
capture the entity type in the constructor. We’ll need this later to allow all of the methods on the base
class to reflect against the metadata. The second thing that we do is create two arrays—one to hold the
values of the slots, the other to hold the flags. Here’s the code:

using System;

namespace AmxMobile.Phone7.SixBookmarks
{
 public abstract class Entity
 {
 public EntityType EntityType { get; private set; }
 private object[] _values { get; set; }
 private FieldFlags[] _flags { get; set; }
 public bool IsDeleted { get; private set; }

 protected Entity()
 {
 // get the entity type...
 this.EntityType = EntityType.GetEntityType(this.GetType());
 if (this.EntityType == null)
 throw new InvalidOperationException("'this.EntityType' is null.");

 // create the slots...
 _values = new object[this.EntityType.Fields.Count];
 _flags = new FieldFlags[this.EntityType.Fields.Count];
 }
 }
}

We’ll now look at making our entity do something interesting.

Setting Values in an Entity
Whenever we set a value within an entity, we’ll be doing one of two things—we’ll be plugging in either a
value that the user has provided through some form of input, or a value that we have retrieved from a
database or service. It’s important that we can distinguish between these two operations—if the user has
changed something, we may need to update the underlying store with that value. Conversely, if the user

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

90

has not changed something, we do not want to be issuing unnecessary update requests back to the
underlying store.

To keep track of which operation we intend when we set a value, we’ll create an enumeration called
SetReason. Here’s the code:

using System;

namespace AmxMobile.Phone7.SixBookmarks
{
 public enum SetReason
 {
 UserSet = 0,
 Load = 1
 }
}

As we add methods to the entity, we’ll find that oftentimes we need to add overloads for each of the
methods that take either the name of a field as a string or an actual instance of an EntityField class. This
is going to create additional code, but there is a substantially higher level of utility in not requiring the
caller to dig out an EntityField instance every time the caller wishes to access field data. Whenever one
of the string-based “name” overloads is used, we’ll defer to the EntityType for the field name. Here’s a
collection of methods that allow values to be set:

// Add methods to Entity…
 protected void SetValue(String name, Object value, SetReason reason)
 {
 EntityField field = EntityType.GetField(name, true);
 SetValue(field, value, reason);
 }

 public void SetValue(EntityField field, Object value, SetReason reason)
 {
 int ordinal = field.Ordinal;
 SetValue(ordinal, value, reason);
 }

 private void SetValue(int ordinal, Object value, SetReason reason)
 {
 _values[ordinal] = value;

 // if...
 SetFlag(ordinal, FieldFlags.Loaded);
 if(reason == SetReason.UserSet)
 SetFlag(ordinal, FieldFlags.Modified);
 }

 private void SetFlag(int ordinal, FieldFlags flag)
 {
 _flags[ordinal] = _flags[ordinal] | flag;
 }

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

91

The function of SetValue is twofold. Firstly, it sets the value in the Values array to be the value
passed in. Secondly, it sets the value in the Flags to indicate the state of the field. Regardless of the value
of the reason parameter, it will indicate that the field has been loaded. If the value of reason indicates
that the user changed a value, the field is marked as having been modified.

Retrieving the values is—oddly—a little trickier. In the first instance, we need to be able to behave
differently depending on the state of the data. For example, if we’re trying to retrieve the value for a field
and we have not loaded it, we need to throw an error indicating that the value is not available. (Some
implementations, including BootFX, will demand load data in this situation. However, for simplicity,
we’re not doing this here.)

Before we do that, we’ll add a few methods that will help us understand whether fields have been
loaded or modified, or whether the entity as a whole is new. We’ll need these later on. Here’s the
implementation:

// Add methods to Entity…
 public bool IsNew
 {
 get
 {
 EntityField key = EntityType.GetKeyField();

 // state...
 if (!(IsLoaded(key)) && !(IsLoaded(key)))
 return true;
 else
 return false;
 }
 }

 public bool IsModified()
 {
 for (int index = 0; index < _flags.Length; index++)
 {
 if (IsModified(index))
 return true;
 }

 // nope...
 return false;
 }

 public bool IsLoaded(EntityField field)
 {
 return IsLoaded(field.Ordinal);
 }

 private bool IsLoaded(int index)
 {
 return IsFlagSet(index, FieldFlags.Loaded);
 }

 public bool IsModified(EntityField field)

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

92

 {
 return IsModified(field.Ordinal);
 }

 private bool IsModified(int index)
 {
 return IsFlagSet(index, FieldFlags.Modified);
 }

 private bool IsFlagSet(int index, FieldFlags flag)
 {
 if((_flags[index] & flag) == flag)
 return true;
 else
 return false;
 }

 public void MarkForDeletion()
 {
 // set the flag to indicate that we want to delete on the next save…
 this.IsDeleted = true;
 }

Those methods lay the groundwork for the GetValue method that we implied must exist when we
created our SetValue earlier. One implementation point is that we have to add a rule whereby if we’re
not new and we don’t have it, we have to throw an error as we can’t demand-load the value. This is
called “demand-loading.” It’s common enough in ORM tools, but to keep things simple, I have chosen
not to implement it here. (Plus, seeing as we’re not using a database at the moment on WP7, there’s no
mileage in not loading the whole entity in memory.)

We’ve touched a few times on this idea that we have deliberately limited data type support in this
application to keep the code simple. We’re about to see an example—there’s quite a lot of code here to
support just the few data types that we do support. Here’s the code:

 public Object GetValue(String name)
 {
 EntityField field = EntityType.GetField(name, true);
 return GetValue(field.Ordinal);
 }

 public Object GetValue(EntityField field)
 {
 return GetValue(field.Ordinal);
 }

 private Object GetValue(int index)
 {
 // do we need to demand load?
 if(!(IsLoaded(index)) && !(this.IsNew))
 throw new Exception("Demand loading is not implemented.");

 // return...

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

93

 return _values[index];
 }

 public String GetStringValue(String name)
 {
 EntityField field = EntityType.GetField(name, true);
 return GetStringValue(field);
 }

 public String GetStringValue(EntityField field)
 {
 Object value = GetValue(field);
 if(value != null)
 return value.ToString();
 else
 return null;
 }

 public int GetInt32Value(String name)
 {
 EntityField field = EntityType.GetField(name, true);
 return GetInt32Value(field);
 }

 public int GetInt32Value(EntityField field)
 {
 Object value = GetValue(field);
 if (value == null)
 return 0;
 else if (value is Int32)
 return (int)value;
 else
 throw new Exception(string.Format("Cannot handle '%s'.", value.GetType()));
 }

 public bool GetBooleanValue(String name)
 {
 EntityField field = EntityType.GetField(name, true);
 return GetBooleanValue(field);
 }

 public bool GetBooleanValue(EntityField field)
 {
 Object value = GetValue(field);
 if(value == null)
 return false;

else if (value is bool)
return (bool)value;

 else if(value is int)
 {
 int asInt = (int)value;
 if(asInt == 0)

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

94

 return false;
 else
 return true;
 }
 else
 throw new Exception(string.Format("Cannot handle '{0}'.",
value.GetType()));
 }

Now that we can get data into and out of our base entity, let’s look at creating a strongly typed
Bookmark class.

Building Bookmark
The point of ORM is that you’re looking to get the entity layer to do most of the hard work of managing
the data for you—i.e., it’s easier to call a property called Name and know you’re getting a string value back
than it is to request an item with the name “name” out of a bucket of values returned over a SQL
interface. Thus we need to add a bunch of properties to Bookmark that abstract calls to GetValue and
SetValue.

Before we do that, though, there’s one thing to consider. As discussed in Chapter 2, the database
stores against each bookmark an internal ID, the user ID, the name, the URL, and ordinal values. In our
database, in order to support the synchronization functionality that we’ll build in the next chapter, we
also need to store flags to indicate whether the item has been modified or deleted locally. We’ll add
IsLocalModified and IsLocalDeleted to achieve this.

Here’s the definition of Bookmark:

using System;

namespace AmxMobile.Phone7.SixBookmarks
{
 public class Bookmark : Entity
 {
 public const String BookmarkIdKey = "BookmarkId";
 public const String OrdinalKey = "Ordinal";
 public const String NameKey = "Name";
 public const String UrlKey = "Url";
 public const string IsLocalModifiedKey = "IsLocalModified";
 public const string IsLocalDeletedKey = "IsLocalDeleted";

 public Bookmark()
 {
 }

 public int BookmarkId
 {
 get
 {
 return this.GetInt32Value(BookmarkIdKey);
 }
 set
 {

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

95

 this.SetValue(BookmarkIdKey, value, SetReason.UserSet);
 }
 }

 public string Name
 {
 get
 {
 return this.GetStringValue(NameKey);
 }
 set
 {
 this.SetValue(NameKey, value, SetReason.UserSet);
 }
 }

 public string Url
 {
 get
 {
 return this.GetStringValue(UrlKey);
 }
 set
 {
 this.SetValue(UrlKey, value, SetReason.UserSet);
 }
 }

 public int Ordinal
 {
 get
 {
 return this.GetInt32Value(OrdinalKey);
 }
 set
 {
 this.SetValue(OrdinalKey, value, SetReason.UserSet);
 }
 }

 public bool IsLocalModified
 {
 get
 {
 return this.GetBooleanValue(IsLocalModifiedKey);
 }
 set
 {
 this.SetValue(IsLocalModifiedKey, value, SetReason.UserSet);
 }
 }

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

96

 public bool IsLocalDeleted
 {
 get
 {
 return this.GetBooleanValue(IsLocalDeletedKey);
 }
 set
 {
 this.SetValue(IsLocalDeletedKey, value, SetReason.UserSet);
 }
 }
 }
}

As well as the singleton entity, we’ll create a strongly typed collection. (I’m always a fan of building
strongly typed collections when building entities, as it makes building a strong API on your business tier
easier.) Here’s the code:

using System;
using System.Collections.Generic;

namespace AmxMobile.Phone7.SixBookmarks
{
 public class List<Bookmark> : List<Bookmark>
 {
 }
}

When we built our EntityType class previously, we missed a couple of methods—specifically ones
that would dynamically create singleton entity instances and collections. Here’s the code to add to
EntityType:

 internal Entity CreateInstance()
 {
 return (Entity)Activator.CreateInstance(this.InstanceType);
 }

Creating SBEntityType Instances
Before we can create instances of Bookmark and use them, we need to be able to create an instance of
EntityType that supports it. In more sophisticated ORM layers, it’s commonplace to build the metadata
up from some sort of decoration in the code (this is very easy to do using attributes in .NET). In this
implementation, we’re going to add code to the SixBookmarksRuntime that we built in the last chapter
and have it register the entity type on start. Here’s the code to the constructor of SixBookmarksRuntime:

// Add code to SixBookmarksRuntime…
 private SixBookmarksRuntime()
 {
 // settings...
 this.Settings = SimpleXmlPropertyBag.Load("Settings.xml", false);

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

97

 // register the entity type...
 EntityType bookmark = new EntityType(typeof(Bookmark), "Bookmark");
 bookmark.AddField(Bookmark.BookmarkIdKey, Bookmark.BookmarkIdKey,
DataType.Int32, -1).IsKey = true;
 bookmark.AddField(Bookmark.NameKey, Bookmark.NameKey, DataType.String, 128);
 bookmark.AddField(Bookmark.UrlKey, Bookmark.UrlKey, DataType.String, 128);
 bookmark.AddField(Bookmark.OrdinalKey, Bookmark.OrdinalKey, DataType.Int32, -
1);
 bookmark.AddField(Bookmark.IsLocalModifiedKey, Bookmark.IsLocalModifiedKey,
DataType.Boolean, -1);
 bookmark.AddField(Bookmark.IsLocalDeletedKey, Bookmark.IsLocalModifiedKey,
DataType.Boolean, -1);
 EntityType.RegisterEntityType(bookmark);
 }

We’re essentially done here—we can now move on to creating some fake bookmarks and showing
them on the device.

Displaying Some Fake Bookmarks
To keep us going until we have real data on the device, we’ll display some fake bookmarks on the screen.
To do this, we’ll need a form that in previous incarnations of the application we have called the
“navigator.”

� Note The name “navigator” is a little unfortunate in Silverlight, as Silverlight has a thing called a “navigation
service” that is used to move the user around features of the application, and hence we have a little bit of a
naming collision. However, as you know by now, to me the most important thing is consistency across the
applications, and hence we’ll keep the name “navigator.”

To the project, add a new Windows Phone Portrait Page called NavigatorPage.xaml. We’ll add nine
buttons to the form, one for each of the six buttons and one for each of the three options—configure,
logoff, and about. These can be dragged and dropped onto the design surface in the usual way. For each
of the buttons, change the Content value as per Figure 6-1, and set the Name properties to be
buttonNavigate1, buttonNavigate2, etc., buttonConfigure, buttonLogoff, and buttonAbout.

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

98

Figure 6-1. The design surface for the Navigation page

Here’s the XAML that creates this view:

<navigation:PhoneApplicationPage
 x:Class="AmxMobile.Phone7.SixBookmarks.NavigatorPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:navigation="clr-
namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone.Controls.Navigation"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 SupportedOrientations="Portrait"
 mc:Ignorable="d" Loaded="PhoneApplicationPage_Loaded" d:DesignHeight="800"
d:DesignWidth="480">

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

99

 <Grid x:Name="LayoutRoot" Background="{StaticResource PhoneBackgroundBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="170"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>

 <!--This is the name of the application and page title-->
 <Grid Grid.Row="0" x:Name="TitleGrid">
 <TextBlock x:Name="ApplicationName" Text="Six Bookmarks" Style="{StaticResource
PhoneTextPageTitle1Style}"/>
 <TextBlock x:Name="ListName" Text="Bookmarks" Style="{StaticResource
PhoneTextPageTitle2Style}"/>
 </Grid>

 <!--This section is empty. Place new content here Grid.Row="1"-->
 <Grid Grid.Row="1" x:Name="ContentGrid">
 <Button Content="..." Height="70" HorizontalAlignment="Left"
Name="buttonNavigate1" VerticalAlignment="Top" Width="480" />
 <Button Content="..." Height="70" HorizontalAlignment="Left" Margin="0,59,0,0"
Name="buttonNavigate2" VerticalAlignment="Top" Width="480" />
 <Button Content="..." Height="70" HorizontalAlignment="Left" Margin="0,116,0,0"
Name="buttonNavigate3" VerticalAlignment="Top" Width="480" />
 <Button Content="..." Height="70" HorizontalAlignment="Left" Margin="0,174,0,0"
Name="buttonNavigate4" VerticalAlignment="Top" Width="480" />
 <Button Content="..." Height="70" HorizontalAlignment="Left" Margin="0,231,0,0"
Name="buttonNavigate5" VerticalAlignment="Top" Width="480" />
 <Button Content="..." Height="70" HorizontalAlignment="Left" Margin="0,289,0,0"
Name="buttonNavigate6" VerticalAlignment="Top" Width="480" />
 <Button Content="Configure" Height="70" HorizontalAlignment="Left"
Margin="0,383,0,0" Name="buttonConfigure" VerticalAlignment="Top" Width="480" />
 <Button Content="Logoff" Height="70" HorizontalAlignment="Left" Margin="0,441,0,0"
Name="buttonLogoff" VerticalAlignment="Top" Width="480" />
 <Button Content="About" Height="70" HorizontalAlignment="Left" Margin="0,500,0,0"
Name="buttonAbout" VerticalAlignment="Top" Width="480" />
 </Grid>
 </Grid>
</navigation:PhoneApplicationPage>

This gets as far as having a view that we can actually show. What we need to do now is create our set
of fake bookmarks and update the view.

Creating Fake Bookmarks
Creating the fake bookmarks is very straightforward—we just need to create instances of the Bookmark
class that we built earlier and populate the properties accordingly.

To add a little finesse, we’ll add a static method to Bookmark called GetBookmarksForDisplay. This will
make more sense in the next chapter, but for now what we’re looking to do is provide a mechanism
whereby we can “soft-delete” bookmarks from the local data store by marking them as deleted. The real
implementation of GetBookmarksForDisplay will return a list of bookmarks that are not soft-deleted. For
now, here’s the implementation that returns the fakes:

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

100

// Add method to Bookmark…
 internal static List<Bookmark> GetBookmarksForDisplay()
 {
 List<Bookmark> results = new List<Bookmark>();

 // add...
 Bookmark bookmark = new Bookmark();
 bookmark.Name = ".NET 247";
 bookmark.Url = "http://www.dotnet247.com/";
 bookmark.Ordinal = 0;
 results.Add(bookmark);

 // again...
 bookmark = new Bookmark();
 bookmark.Name = "Apress";
 bookmark.Url = "http://www.apress.com/";
 bookmark.Ordinal = 1;
 results.Add(bookmark);

 // return...
 return results;
 }

Showing and Populating the View
To use the bookmarks, we need to firstly modify the logon form so that it launches the navigator form,
and we also need to implement a page load handler on the navigator form so that it displays the buttons.
We do the logon form changes first.

As I alluded to earlier, Silverlight uses an approach of exposing out a class that provides navigation
services to the application as a whole, which in this context means providing access to different views.
These are done via URIs. In order to move from the logon form to the navigator form, we need to
construct a URI for the navigator form and ask the Silverlight navigation service to show it. This is
actually pretty straightforward—as the forms are in the root of the project, we create a URI relative to the
root of the application that specifies the name of the .xaml file that drives the form. Here’s the code that
shows the change to the LogonOk method in the LogonPage class:

// Modify LogonOk method on LogonPage…
 private void LogonOk()
 {
 // flip back - we're not on the right thread...
 this.Dispatcher.BeginInvoke(delegate()
 {
 // save...
 if (this.checkRememberMe.IsChecked.Value)
 {
 SimpleXmlPropertyBag settings = SixBookmarksRuntime.Current.Settings;
 settings[UsernameKey] = this.textUsername.Text.Trim();
 settings[PasswordKey] = this.textPassword.Password.Trim();
 settings.Save();
 }
 else

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

101

 this.ClearCredentials();

 // do sync will come here...

 // ask the navigation service to show the form...
 NavigationService.Navigate(new Uri("/NavigatorPage.xaml",
UriKind.RelativeOrAbsolute));
 });
 }

Those are all the changes that we need to make to the logon form.
Going back to the navigator form, in the designer, double-click the white background of the design

surface. This will add a Loaded event handler, like this one:

// This is added by the designer when you double-click the background of the design surface…
 private void PhoneApplicationPage_Loaded(object sender, RoutedEventArgs e)
 {
 }

The approach we’ll take on this form is that we’ll create a property called Bookmarks that will hold a
List<Bookmark>. When this property is set, we will refresh the view. This will involve going through each
of the six buttons and resetting them to a “not set” state, which in our case will mean returning them to
having an ellipsis (“…”) for their text. For each bookmark that we do have, we’ll find the appropriate
button and set the text to be the name. Here’s the code to be added to NavigatorPage.

// Modify Loaded handler, add field, properties and methods on NavigatorPage…
 private List<Bookmark> _bookmarks = null;

 private void PhoneApplicationPage_Loaded(object sender, RoutedEventArgs e)
 {
 // get a list of bookmarks and bind it...
 this.Bookmarks = Bookmark.GetBookmarksForDisplay();
 }

 private List<Bookmark> Bookmarks
 {
 get
 {
 return _bookmarks;
 }
 set
 {
 _bookmarks = value;
 this.RefreshView();
 }
 }

 private void RefreshView()
 {
 // reset...
 for (int index = 0; index < 5; index++)
 ResetButton(index);

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

102

 // configure...
 foreach (Bookmark bookmark in this.Bookmarks)
 ConfigureBookmark(bookmark);
 }

 private void ConfigureBookmark(Bookmark bookmark)
 {
 if (bookmark == null)
 throw new ArgumentNullException("bookmark");

 // get...
 Button button = this.GetButton(bookmark.Ordinal);
 if (button == null)
 throw new InvalidOperationException("'button' is null.");

 // set it...
 button.Content = bookmark.Name;
 }

 private void ResetButton(int ordinal)
 {
 Button button = this.GetButton(ordinal);
 button.Content = "...";
 }

 private Button GetButton(int ordinal)
 {
 if (ordinal == 0)
 return this.buttonNavigate1;
 else if (ordinal == 1)
 return this.buttonNavigate2;
 else if (ordinal == 2)
 return this.buttonNavigate3;
 else if (ordinal == 3)
 return this.buttonNavigate4;
 else if (ordinal == 4)
 return this.buttonNavigate5;
 else if (ordinal == 5)
 return this.buttonNavigate6;
 else
 throw new NotSupportedException(string.Format("Cannot handle '{0}'.",
ordinal));
 }

� Note You’ll notice that the code to return the button given an ordinal (GetButton) is kinda clunky (if you’ve
read along during the iOS and Android implementations, you’ll notice something similar). There are slicker ways to
handle a set of controls that operate in a similar fashion, but my view on the code for this book was that this was
easier to follow than something slicker.

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

103

You can now run the code and log on. Figure 6-2 shows you what to expect.

Figure 6-2. The Navigation form running and displaying fake bookmarks

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

104

Implementing Button Clicks
Those of you familiar with .NET and a particular product in its ancestry called Visual Basic will know that
when you double-click a button on a design surface, it will give you a handler method for that button.
This is the case with the toolset we’re using now. However, we want to create just a single handler
method for the navigation buttons. One way to do this is to change the XAML for all six buttons with the
name of the handler that we want and double-click one of the buttons to create an appropriate handler
in code.

The XAML is changed by adding a Click attribute. This snippet of the XAML from the designer
shows the method reference in place:

<!—markup removed for brevity… -->
 <Button Content="..." Height="70" HorizontalAlignment="Left"
Name="buttonNavigate1" VerticalAlignment="Top" Width="480" CClick="buttonNavigate_Click" />
 <Button Content="..." Height="70" HorizontalAlignment="Left" Margin="0,59,0,0"
Name="buttonNavigate2" VerticalAlignment="Top" Width="480" CClick="buttonNavigate_Click" />
 <Button Content="..." Height="70" HorizontalAlignment="Left" Margin="0,116,0,0"
Name="buttonNavigate3" VerticalAlignment="Top" Width="480" CClick="buttonNavigate_Click" />
 <Button Content="..." Height="70" HorizontalAlignment="Left" Margin="0,174,0,0"
Name="buttonNavigate4" VerticalAlignment="Top" Width="480" CClick="buttonNavigate_Click" />
 <Button Content="..." Height="70" HorizontalAlignment="Left" Margin="0,231,0,0"
Name="buttonNavigate5" VerticalAlignment="Top" Width="480" CClick="buttonNavigate_Click" />
 <Button Content="..." Height="70" HorizontalAlignment="Left" Margin="0,289,0,0"
Name="buttonNavigate6" VerticalAlignment="Top" Width="480" CClick="buttonNavigate_Click" />
<!—markup removed for brevity… -->

If you double-click one of these buttons, you will get a method handler stub. Here’s the listing for
the stub. This code goes back into the Bookmarks property and extracts the bookmark with the matching
ordinal. (Again the code to de-reference the button could be slicker—I’m biased toward ease of reading.)

// Add methods to NavigatorPage…
 private void buttonNavigate_Click(object sender, RoutedEventArgs e)
 {
 int ordinal = GetOrdinalForButton((Button)sender);

 // find it...
 Bookmark bookmark = GetBookmarkForOrdinal(ordinal);
 if (bookmark != null)
 SixBookmarksRuntime.Current.ShowUrl(bookmark.Url);
 else
 HandleConfigure();
 }

 private int GetOrdinalForButton(Button button)
 {
 if (button == buttonNavigate1)
 return 0;
 else if (button == buttonNavigate2)
 return 1;
 else if (button == buttonNavigate3)
 return 2;
 else if (button == buttonNavigate4)

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

105

 return 3;
 else if (button == buttonNavigate5)
 return 4;
 else if (button == buttonNavigate6)
 return 5;
 else
 throw new NotSupportedException(string.Format("Cannot handle '{0}'.",
button.Name));
 }

 private Bookmark GetBookmarkForOrdinal(int ordinal)
 {
 foreach (Bookmark bookmark in this.Bookmarks)
 {
 if (bookmark.Ordinal == ordinal)
 return bookmark;
 }

 // return...
 return null;
 }

 private void HandleConfigure()
 {
 Alert.Show("TBD.");
 }

You’ll notice that the way we open a web resource is to defer to a to-be-built method on
SixBookmarksRuntime called ShowUrl. Here’s what this method this looks like:

// Add method to SixBookmarksRuntime…
 internal void ShowUrl(string url)
 {
 WebBrowserTask task = new WebBrowserTask();
 task.URL = url;
 task.Show();
 }

This method, as you can see, uses the WebBrowserTask class. The operation of this class is to open the
instance of Internet Explorer installed on the phone.

If you run the application and click one of the links, IE will launch and show the page. Figure 6-3
illustrates.

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

106

Figure 6-3. Internet Explorer showing a web page that we have navigated to

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

107

Tombstoning—A Brief Word
At this point, it’s worth introducing the idea of “tombstoning.” Windows Phone 7 has a feature whereby
rather than having proper multitasking, when you switch to a new application (as we have done by
opening the web browser), your application is dumped out of memory. Should you click the phone’s
back button, your application will be brought back to life. The only wrinkle with this is that you are the
one responsible for saving and restoring your application’s global state when this happens. Windows
Phone 7 is unique in this regard—none of the other phones works in this way.

I personally think this is a neat idea—it keeps memory usage and processor cycles on the device
down to a minimum. What I don’t think is neat is that you have to manage this yourself (i.e., you have to
open a file of some kind and dump your static data into it)! You would think that in the OS design they
would have built in a mechanism for serializing the application state down to the disk itself.

But I digress—for now, we’re not going to look at tombstoning, but we will come back to it toward
the end of the chapter. We’re going to use the ORM subsystem to store data, and we can’t do that until
we’ve been through getting the ORM system working.

Storing Entities in the Data Box
As you know by now, as of the time of writing, a database management system is not available for
Windows Phone 7, and, as such, we need to store our entities on disk. In the rest of this chapter, we’ll
examine how to do this by storing entities into what I’m going to call a “data box.” (This isn’t a fabulous
name, but it will do!)

We’ve already seen in the last chapter how we can use .NET’s isolated storage feature to store files
on disk. We’ll use this feature again as part of our data box.

The design that we’re going to aim for is one whereby we will create exactly one XML file per entity
and we’ll use the ID of the entity as the file name. When we create a data box, we’ll give it an entity type,
and it will use this entity type as part of the name of the folder. So, if we want to store a bookmark with
ID 27, it would have a path like this:

~/Entities/Bookmark/27.xml

One complication with this arrangement is that we cannot rely on the store to manage the IDs for
us. (With SQLite, or any relational DBMS we have an “autonumbering” scheme that manages the IDs of
values as we put them into the store.)

Finally, as mentioned before, we’ll build the SQL filter and change processor implementations as we
have done on the other implementations with a proper SQL database.

Data Box Basics
The basics of a data box are a class with a property that holds a reference to an entity type and another
that holds a reference to a folder. As mentioned before, we’ll be using isolated storage for this. I’m also
proposing creating a folder underneath a root Entities folder—this is analogous to a table. In our case,
it makes it easier to get all the entities of a given type in a single hit. Here’s the code:

using System;
using System.IO;
using System.IO.IsolatedStorage;
using System.Xml.Linq;

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

108

namespace AmxMobile.Phone7.SixBookmarks
{
 internal class DataBox
 {
 public EntityType EntityType { get; private set; }
 internal string FolderName { get; private set; }

 internal DataBox(EntityType et)
 {
 this.EntityType = et;

 // create a folder...
 IsolatedStorageFile store = GetStore();
 this.FolderName = "Entities/" + et.NativeName;
 if (!(store.DirectoryExists(FolderName)))
 store.CreateDirectory(FolderName);
 }

 internal IsolatedStorageFile GetStore()
 {
 return IsolatedStorageFile.GetUserStoreForApplication();
 }
 }
}

The first things we’ll look at are methods to insert and update entities. These are actually the same
operation—if we’re doing an insert, we do not have a file to insert into, and if we’re doing an update, we
have an existing file that we wish to overwrite.

In both cases, we need to be able to transform the ID of an entity of a known type into a full file path
within isolated storage. This is one example where the metadata system pays dividends. We can ask the
entity type to return the key value for a given entity. We can then use this in the file name. Here’s a
method called GetFilePath that, when given an entity, de-references the ID and transforms it into a file
name:

// Add method to DataBox…
 private string GetFilePath(Entity entity)
 {
 return string.Format("{0}/{1}.xml", this.FolderName,
entity.GetValue(EntityType.GetKeyField()));
 }

This means that we can now take a bookmark entity with an ID of, say, 27 and turn it into a file path,
such as ~/Entities/Bookmark/27.xml.

If we need to insert an entity, we need to obtain the next ID in the set. As alluded to earlier, if we
were using a proper relational database management system (RDBMS) to do this, we could ask it to
retrieve an ID from its internal table. We don’t have as much luck—what we need to do is ask isolated
storage to return a list of file names to us. We can then walk these file names and look for the largest ID.
The result of GetNextId would be this largest ID value plus one. Here’s the code:

 private int GetNextId()
 {

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

109

 IsolatedStorageFile store = this.GetStore();
 int max = 0;
 foreach (string path in store.GetFileNames(this.FolderName + "/*.*"))
 {
 string filename =
System.IO.Path.GetFileNameWithoutExtension(System.IO.Path.GetFileName(path));
 int id = int.Parse(filename);
 if (id > max)
 max = id;
 }

 // return...
 return max + 1;
 }

As a thought on this method, this is fine if you don’t mind potentially repeating IDs. For example, if
you had bookmark 27 and asked for the next ID, you would get 28. If you created 28.xml and deleted it, if
you called GetNextId again, the largest ID would be 27, and hence you be given 28 again. This almost
certainly works OK for our method here, but this behavior does not mimic that of a regular database,
which, without explicit instruction, will not return the same ID twice.

As just mentioned, Insert and Update are pretty similar. Insert will retrieve an ID value and set that
ID value into the entity before deferring to Update. (This process ensures not only that the ID is written to
the internals of the file, but also that Entity.IsNew will return false after SaveChanges is called.) The
Update method will obtain a file path and then save the entity via SaveEntity. (We’ll build SaveEntity
shortly.)

There is one special thing that Insert has to do that Update does not. When we write an entity to disk
for the first time, we need to make sure that all of the fields are populated. If we don’t do this, if we later
rely on a field being there (for example, we want to select out entities by constraining on the field’s
values), we’ll get an error. Therefore, after we have set the ID, we loop through all of the fields and find
any not marked as modified. If we find any that are not modified, we set the value of the field to be the
default value for that field type. (Recall that when we built EntityField field, we added the DefaultValue
property.)

Here’s the code:

// Add methods to DataBox…
 internal void Insert(Entity entity)
 {
 // get an ID by walking files...
 int id = GetNextId();

 // set the id into the entity...
 entity.SetValue(this.EntityType.GetKeyField(), id, SetReason.UserSet);

 // when we create an entity, all of the values have to be set as "modified"
otherwise we get
 // a problem when reading them back...
 foreach (EntityField field in entity.EntityType.Fields)
 {
 if (!(entity.IsModified(field)))
 {
 object defaultValue = field.DefaultValue;

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

110

 entity.SetValue(field, defaultValue, SetReason.UserSet);
 }
 }

 // ...and then update it, because that operation is basically just a save...
 Update(entity);
 }

 internal void Update(Entity entity)
 {
 // get the filename...
 string path = GetFilePath(entity);

 // save it...
 SaveEntity(entity, path);
 }

The operation of SaveEntity will be to call a method called EntityToXml, which will return back to us
an XDocument instance. After we have the XML, we save it by asking isolated storage to give us a file
stream. The operation of EntityToXml is straightforward—it uses the metadata on the entity type to
enumerate the fields and simply dumps the entity’s current value for that field to the XML document.
Here’s the code:

// Add methods to DataBox…
 private void SaveEntity(Entity entity, string path)
 {
 // create a document...
 XDocument doc = EntityToXml(entity);

 // save the file...
 IsolatedStorageFile store = this.GetStore();
 using (IsolatedStorageFileStream stream = store.CreateFile(path))
 doc.Save(stream);
 }

 private XDocument EntityToXml(Entity entity)
 {
 // save...
 XDocument doc = new XDocument();
 XElement root = new XElement(EntityType.NativeName);
 doc.Add(root);

 // walk the fields...
 foreach (EntityField field in EntityType.Fields)
 {
 XElement element = new XElement(field.NativeName);
 root.Add(element);

 // get...
 object value = entity.GetValue(field);
 if (value != null)

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

111

 element.Value = value.ToString();
 }

 // return...
 return doc;
 }

For completeness, we’ll also build the Delete method. Here’s the code:
 internal void Delete(Entity entity)
 {
 string path = this.GetFilePath(entity);

 // delete...
 IsolatedStorageFile store = this.GetStore();
 if(store.FileExists(path))
 store.DeleteFile(path);
 }

Creating the Entity Change Processor
In this section, we’re going to build the change processor. However, the approach I’m going to propose
is to build it so that we can swap out the data box implementation for a proper RDBMS implementation
at a future point. To do this, we’ll build a strategy class that knows how to work with data boxes and a
base class that is strategy-agnostic. When the time comes, we can create a new strategy class for the
database.

Here’s the implementation for the base class. All it needs to do is look at the state of the entity and
decide whether to insert, update, delete, or take no action.

using System;

namespace AmxMobile.Phone7.SixBookmarks
{
 internal abstract class EntityChangeProcessor
 {
 public EntityType EntityType { get; private set; }

 protected EntityChangeProcessor(EntityType et)
 {
 if (et == null)
 throw new ArgumentNullException("et");
 this.EntityType = et;
 }

 internal void SaveChanges(Entity entity)
 {
 if (entity == null)
 throw new ArgumentNullException("entity");

 // new?
 if (entity.IsNew)
 Insert(entity);
 else if (entity.IsModified())

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

112

 Update(entity);
 else if (entity.IsDeleted)
 Delete(entity);
 }

 internal abstract void Insert(Entity entity);

 internal abstract void Update(Entity entity);

 internal abstract void Delete(Entity entity);
 }
}

You may notice that on the EntityChangeProcessor class we have Insert, Update, and Delete
methods. What we’ll do is implement a DataBoxEntityChangeProcessor class that defers to an instance of
a DataBox. Here’s the implementation:

using System;

namespace AmxMobile.Phone7.SixBookmarks
{
 internal class DataBoxEntityChangeProcessor : EntityChangeProcessor
 {
 private DataBox DataBox { get; set; }

 internal DataBoxEntityChangeProcessor(EntityType et)
 : base(et)
 {
 this.DataBox = new DataBox(et);
 }

 internal override void Insert(Entity entity)
 {
 // defer...
 this.DataBox.Insert(entity);
 }

 internal override void Update(Entity entity)
 {
 // defer...
 this.DataBox.Update(entity);
 }

 internal override void Delete(Entity entity)
 {
 // defer...
 this.DataBox.Delete(entity);
 }
 }
}

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

113

All that remains now is to add a SaveChanges method to Entity. We’ll hard-code the
DataBoxEntityChangeProcessor instantiation in here. In a more sophisticated implementation, we would
look at this being a factory method of some sort, but for our purposes here, this is fine. Here’s the code:

 public void SaveChanges()
 {
 DataBoxEntityChangeProcessor processor = new
DataBoxEntityChangeProcessor(this.EntityType);
 processor.SaveChanges(this);
 }

Now that we can write entities onto disk, we’ll look at building our Sync class. In this chapter, we’ll
implement this so that it will download bookmarks from the OData service. In the next chapter, we’ll
modify this implementation so that we can transmit changes back.

Building the Sync Class
The Sync class will be the provider of the functionality to our application that downloads bookmarks
from the server and pushes changes back again. We’ll call it when we log on, and we’ll also call it in the
next chapter in response to the user actually changing bookmarks.

If you’ve followed along during the Android and iOS implementations, you’ll know that we had to
handcrank the code to talk to the OData service. Ideally, back in the Microsoft “we’ll give you a wizard to
do everything” world, we should not have to do this. However, it transpires that there is no support for
the kind of OData operation that we wish to build on Windows Phone 7.

Interesting story—when the first draft of this chapter was written against the CTP bits for Windows
Phone 7, this support was there! However, by the time it went to release, support was dropped. There is
some support available through open source efforts, but the major initiative in this space approaches
the problem in a way that’s not directly compatible with the other platforms. Therefore, in this chapter
and the next, we’re going to roll our own OData support, just as we have done for the other chapters.
Let’s get started and build a class called Sync that we’ll use whenever we need to upload changes to the
server or download the definitive set of bookmarks from the server. (In this chapter, we’re not going to
upload changes—that’ll happen in the next chapter.)

As you know from the last chapter, when we communicate with the server, we do so
asynchronously. While this adds extra difficulty to building the application, it’s worth doing so because
the effect is much nicer for the user. (Plus on Windows Phone you do not have a non-asynchronous—
i.e., synchronous—option.)

Each of the calls that we build will use the pattern we saw last time of providing one callback
delegate for the successful path and another callback delegate for the error path. Moreover we’ll reuse
the Failed delegate that we introduced last time.

Let’s look now at consuming the OData service. First of all, here’s the code for ODataServiceProxy.
We’ll add more to this later.

using System;
using System.Data.Services.Client;

namespace AmxMobile.Phone7.SixBookmarks
{
 internal abstract class ODataServiceProxy : ServiceProxy
 {
 protected ODataServiceProxy(string serviceName)
 : base(serviceName)

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

114

 {
 }

}
}

On our BookmarksService class, we need to add a method called GetAll. The method ultimately
needs to call up to the server and retrieve a set of bookmarks. This is done by building and issuing a
query to the server.

As you know from our work on the basic REST services, all HTTP requests happen asynchronously,
and hence, when we call the GetAll method, we will pass in a success callback and a failure callback.
We’ll make the success delegate accept a list of bookmarks by way of a return value. In order to pass
these callbacks through to the delegate that gets called when the query has executed, we’ll create a
private class in BookmarksService called ODataFetchState that holds the state that we need, and has some
methods on it to help interpret and package the results. (This class in a real-world implementation
would be internal rather than private, but this would mean making it more generic, and this seems
overkill for this example.) Here’s the basic implementation of BookmarksService:

using System;
using System.Data.Services.Client;
using AMX = AmxMobile.Services;

namespace AmxMobile.Phone7.SixBookmarks
{
 internal class BookmarksService : ODataServiceProxy
 {
 internal BookmarksService()
 : base("Bookmarks.svc/")
 {
 }

 private string GetServiceUrl(EntityType et)
 {
 return HttpHelper.CombineUrlParts(this.ResolvedServiceUrl, et.NativeName);
 }
 }
}

Let’s look at how to build the ODataFetchState class first. This class will be a generic class and will
accept a type related to an entity that we support (the Bookmark instance in this case). As part of its state,
we need to track a callback to call when we have data (which will be passed into the GetAll method), and
a callback if there’s a failure (again, passed into the GetAll method).

The GetAll method itself will run asynchronously and will retrieve XML from the server. This will be
passed into a method called ReceiveXml on the state class. Here’s the implementation of GetAll first:

// Add to ODataServiceProxy…
 public void GetAll<T>(Action<List<T>> callback, Failed failed)
 where T : Entity
 {
 EntityType et = EntityType.GetEntityType(typeof(T));

 // create a state object...

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

115

 ODataFetchState<T> state = new ODataFetchState<T>();
 state.Callback = callback;
 state.Failed = failed;

 // run...
 String url = GetServiceUrl(et);
 HttpHelper.DownloadXml(url, GetDownloadSettings(), new
Action<XDocument>(state.ReceiveXml), failed);
 }

And here’s the stub implementation of the state class and its ReceiveXml method:

// Add to ODataServiceProxy…
 private class ODataFetchState<T>
 where T : Entity
 {
 internal Action<List<T>> Callback;
 internal Failed Failed;

 internal void ReceiveXml(XDocument doc)
 {
 Debug.WriteLine("Received XML from server...");

 // got...
 List<T> items = LoadEntities(doc, EntityType.GetEntityType(typeof(T)));

 // debug...
 Debug.WriteLine(string.Format("{0} item(s) loaded.", items.Count));

 // callback...
 this.Callback(items);
 }

You can see there that ReceiveXml actually defers to a method called LoadEntities, and it’s this
LoadEntities call that actually does the work. This will reel through the XML from the server, creating
entities as it goes.

By way of a reminder, here’s what the XML from the server typically looks like (I’ve included only
one bookmark here for brevity, but a larger snippet is shown in Chapter 2).

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<feed xml:base="http://services. multimobiledevelopment.com/services/Bookmarks.svc/"
xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
xmlns="http://www.w3.org/2005/Atom">
 <title type="text">Bookmark</title>
 <id>http://services. multimobiledevelopment.com/services/bookmarks.svc/Bookmark</id>
 <updated>2010-04-18T10:54:32Z</updated>
 <link rel="self" title="Bookmark" href="Bookmark" />
 <entry>
 <id>http://services. multimobiledevelopment.com/services/Bookmarks.svc/Bookmark(1002)</id>
 <title type="text"></title>
 <updated>2010-04-18T10:54:32Z</updated>

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

116

 <author>
 <name />
 </author>
 <link rel="edit" title="Bookmark" href="Bookmark(1002)" />
 <category term="AmxMobile.Services.Bookmark"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:BookmarkId m:type="Edm.Int32">1002</d:BookmarkId>
 <d:UserId m:type="Edm.Int32">1001</d:UserId>
 <d:Name>.NET 247</d:Name>
 <d:Url>http://www.dotnet247.com/</d:Url>
 <d:Ordinal m:type="Edm.Int32">1</d:Ordinal>
 </m:properties>
 </content>
 </entry>
</feed>

Thus, to read in a bookmark, all we have to do is find the entry elements and then walk the
properties contained within the m:properties element. Here’s the code that does that:

// Add to the private ODataFetchState class within ODataServiceProxy…

 protected List<T> LoadEntities(XDocument doc, EntityType et)
 {
 // feed...
 XElement feed = doc.Element(XName.Get("feed", AtomNamespace));

 // walk...
 List<T> results = et.CreateCollectionInstance<T>();
 var entries = feed.Elements(XName.Get("entry", AtomNamespace));
 foreach (XElement entry in entries)
 {
 // get the content item...
 XElement content = entry.Element(XName.Get("content", AtomNamespace));

 // then get the properties element...
 XElement properties = content.Element(XName.Get("properties",
MsMetadataNamespace));

 // create an item...
 T item = (T)et.CreateInstance();

 // then get the fields...
 Dictionary<string, object> values = new Dictionary<string, object>();
 foreach (XElement fieldElement in properties.Elements())
 {
 if (fieldElement.Name.Namespace == MsDataNamespace)
 {
 // do we have that field?
 EntityField field = et.GetField(fieldElement.Name.LocalName,
false);
 if (field != null)

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

117

 {
 // get the value...
 object value = this.GetValue(fieldElement);
 item.SetValue(field, value, SetReason.UserSet);
 }
 }
 }

 // add...
 results.Add(item);
 }

 // return...
 return results;
 }

During the read process, LoadEntities calls a helper method called GetValue. This latter method’s
job is to interpret the data type and return strongly typed values back to the caller, ready to store within
the entity. We’re going to support only two data types here—a real-world implementation would contain
more first-class support for different types.

 private Object GetValue(XElement field)
 {
 // fields are provided with a data element, like this....
 // <d:BookmarkId m:type="Edm.Int32">1002</d:BookmarkId>

 // look up the type name...
 string typeName = null;
 XAttribute attr = field.Attribute(XName.Get("type", MsMetadataNamespace));
 if (attr != null)
 typeName = attr.Value;

 // nothing?
 if (string.IsNullOrEmpty(typeName))
 return XmlHelper.GetStringValue(field);
 else if (string.Compare(typeName, "Edm.Int32",
StringComparison.InvariantCultureIgnoreCase) == 0)
 return XmlHelper.GetInt32Value(field);
 else
 throw new Exception(string.Format("Cannot handle '%s'.", typeName));
 }

Calling GetAll
The operations of the Sync class have to run asynchronously, as we’ve already stated that all server
communication has to be done in this way. As a result, the DoSync method on the Sync class will also
need to accept a success callback and a failed callback. As we’ll need to use these from various places in
the code, we’ll store these callbacks as properties on the Sync class.

Internal to the Sync class will be a GetLatest method. The operation of this method will be to call the
GetAll method and wait until some bookmarks are returned. The bookmarks that are returned will be

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

118

ready for committal to disk via a change to SaveChanges. In addition to this, we also need to delete the
existing bookmarks from disk; however, we cannot do this part yet as we have not built the code that
retrieves the bookmarks back. (We’ll do this shortly.)

As a result, the Sync method is actually pretty simple. Here’s the code:

using System;

namespace AmxMobile.Phone7.SixBookmarks
{
 public class Sync
 {
 private Action Callback { get; set; }
 private Failed Failed { get; set; }

 public Sync()
 {
 }

 public void DoSync(Action callback, Failed failed)
 {
 // set...
 this.Callback = callback;
 this.Failed = failed;

 // get latest...
 GetLatest();
 }

 private void GetLatest()
 {
 BookmarksService service = new BookmarksService();
 service.GetAll((Action<List<Bookmark>>)delegate(List<Bookmark> bookmarks) {

 // go through and save them...
 foreach (Bookmark bookmark in bookmarks)
 bookmark.SaveChanges();

 // signal that we've finished...
 this.Callback();

 }, this.Failed);
 }
 }
}

If you recall, when we built the logon form, we added a method called LogonOk, and also added a
comment indicating where the code to the synchronization code would go. We can now add this in—on
success what we want to do is navigate over to the navigator form using the Silverlight
NavigationService.

There’s one wrinkle that we have to deal with, however. When our success callback is invoked, we’ll
be running on a worker thread and not on the main user interface thread. As a result, we have to use the

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

119

Silverlight Dispatcher class to marshal control back to the main thread before using the
NavigationService.

Here’s the modified implementation of LogonOk:

// Change implementation of LogonOk on LogonForm…
 private void LogonOk()
 {
 // flip back - we're not on the right thread...
 this.Dispatcher.BeginInvoke(delegate()
 {
 // save...
 if (this.checkRememberMe.IsChecked.Value)
 {
 SimpleXmlPropertyBag settings = SixBookmarksRuntime.Current.Settings;
 settings[UsernameKey] = this.textUsername.Text.Trim();
 settings[PasswordKey] = this.textPassword.Password.Trim();
 settings.Save();
 }
 else
 this.ClearCredentials();

 // do sync will come here...
 Sync sync = new Sync();
 sync.DoSync(delegate() {

 // we worked...
 Dispatcher.BeginInvoke(delegate()
 {
 NavigationService.Navigate(new Uri("/NavigatorPage.xaml",
UriKind.RelativeOrAbsolute));
 });

 }, Alert.GetFailedHandler(this));
 });
 }

Now you can run the application, and the sync code will complete. However, you won’t be able to
see anything different, as all we’re doing is writing files to disk and there’s no way of browsing those files
on the device. In the next section, we’ll look at reading the files back out.

Selecting Entities
In this section, we’re going to create a class called DataBoxFilter that can be used to read entities from
disk.

If you’ve been reading along the Android and iOS implementations, you’ll know that we built a class
called SqlFilter that was able to select data out of a table in a relational store. This class worked by
assuming that when you created a filter you wanted all entities of a given type. You could then add
constraints to limit the entities that were returned.

In DataBoxFilter, we’re going to do much the same thing. This class will be bound to a data box and
initially be configured to return back a list of all entities of a given type. We can add constraints to limit
the results returned. (Because we are trying to move to a world where we have a relational store, I’m

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

120

going to call the constraint class SqlConstraint, as ultimately we’d like to do away with DataBoxFilter
and use SqlFilter instances instead.) In terms of how we’re going to do the filtering, we’ll always load all
entities from disk and walk them one by one to see if they are included based on the constraints. This is
the easiest way to achieve what we want, but it is the least efficient. Given that we need to keep this code
easy to read in order to make the book more comprehendable, and given that our dataset is small, this
approach is suitable in this case. If you were looking to work with a larger set of data, you’d need to be
more sophisticated with your approach.

� Note I’ve avoided trying in this case to create a provider pattern-like approach here, whereby we abstract the
user away from knowing whether he or she is using a data box or a relational store, primarily to reduce
complexity. What I’ve tried to do is take a stab in the direction of making it easier to move over to a relational
database, rather than create something that lets the developer move between the two at will.

The first method we’ll need is one that returns all of the entities out of the data box. We’ll implement
this on DataBox itself and use it from within DataBoxFilter. This method will need to be able to create a
strongly typed, generic collection of entities for a given entity type, and therefore we’ll add a method
called CreateCollectionInstance to EntityType. This method uses some semi-advanced .NET magic to
create an appropriate collection type at runtime—suffice it to say that if we call this method on the entity
type that represents Bookmark, we’ll get a List<Bookmark> returned. Here’s the code:

// Add method to EntityType…
 internal List<T> CreateCollectionInstance<T>()
 where T : Entity
 {
 Type listType = typeof(List<>);
 Type genericType = listType.MakeGenericType(new Type[] { typeof(T) });

 // return...
 return (List<T>)Activator.CreateInstance(genericType);
 }

We can now implement our GetAll method on DataBox. The operation of this method will be to ask
isolated storage for a list of file names. These file names will then be turned into full paths (e.g., 27.xml �
~/Entities/Bookmark/27.xml) and passed to a method called EntityFromXml for rehydration back into an
instance. Here’s the implementation of the basic GetAll method:

// Add method to DataBox…
 internal List<T> GetAll<T>()
 where T : Entity
 {
 IsolatedStorageFile store = this.GetStore();

 // load them all...
 List<T> results = this.EntityType.CreateCollectionInstance<T>();
 foreach (string filename in store.GetFileNames(this.FolderName + "/*.xml"))
 {

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

121

 // get the xml...
 XDocument doc = null;
 using (Stream stream = store.OpenFile(this.FolderName + "/" + filename,
FileMode.Open, FileAccess.Read))
 doc = XDocument.Load(stream);

 // turn it into an entity...
 T entity = (T)EntityFromXml(doc);
 results.Add(entity);
 }

 // return...
 return results;
 }

The EntityFromXml method is intended to be able to be able to hydrate any form of entity (i.e., it’s
not Bookmark-specific). Its operation is to use the field definition within the entity type to identify
elements contained within the document. If there is a match between a field and an element, the field’s
value is set and marked as loaded. If there is no match, no error occurs. Here’s the code:

// Add method to DataBox…
 private Entity EntityFromXml(XDocument doc)
 {
 Entity entity = this.EntityType.CreateInstance();

 // walk...
 List<XElement> elements = new
List<XElement>(doc.Descendants(this.EntityType.NativeName));
 if (elements.Count == 0)
 throw new InvalidOperationException(string.Format("An element with name '{0}'
was not found.", this.EntityType.NativeName));

 // walk the fields...
 XElement root = elements[0];
 foreach (EntityField field in this.EntityType.Fields)
 {
 // find an element...
 XElement element = root.Element(field.NativeName);
 if (element != null)
 {
 if (field.Type == DataType.String)
 entity.SetValue(field, XmlHelper.GetStringValue(element),
SetReason.Load);
 else if (field.Type == DataType.Int32)
 entity.SetValue(field, XmlHelper.GetInt32Value(element),
SetReason.Load);
 else if (field.Type == DataType.Boolean)
 entity.SetValue(field, XmlHelper.GetBooleanValue(element),
SetReason.Load);
 else
 throw new NotSupportedException(string.Format("Cannot handle '{0}'.",
field.Type));

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

122

 }
 }

 // return...
 return entity;
 }

Now that we can load the entities, we can turn our attention to creating a filter. The first class we
need to support our filter is SqlConstraint. This class exists simply as a pair of properties—specifically
an EntityField instance and the value be constrained. (In more sophisticated implementations, this
may include an operator, such as “not equal to” or “greater than.” Our implementation will support only
“equal to.”)

Here’s the code:

using System;

namespace AmxMobile.Phone7.SixBookmarks
{
 public class SqlConstraint
 {
 internal EntityField Field { get; private set; }
 internal object Value { get; private set; }

 internal SqlConstraint(EntityField field, object value)
 {
 this.Field = field;
 this.Value = value;
 }
 }
}

For our actual DataBoxFilter, we’ll hold a DataBox instance and set of constraints in instance fields.
For our ExecuteEntityCollection method, we’ll call GetAll to get them all back and then go through and
“black ball” any in the collection that do not meet the constraints. For extra flexibility, when we know
we’re matching string fields, we’ll do the matching in a case-insensitive fashion. Here’s the code:

using System;
using System.Collections.Generic;

namespace AmxMobile.Phone7.SixBookmarks
{
 internal class DataBoxFilter
 {
 private DataBox Box { get; set; }
 private List<SqlConstraint> Constraints { get; set; }

 internal DataBoxFilter(DataBox box)
 {
 this.Box = box;
 this.Constraints = new List<SqlConstraint>();
 }

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

123

 internal List<T> ExecuteEntityCollection<T>()
 where T : Entity
 {
 // get them all from the box...
 List<T> all = this.Box.GetAll<T>();

 // create a new collection to put the filtered results in...
 List<T> results = this.Box.EntityType.CreateCollectionInstance<T>();

 // walk the master list...
 foreach (T item in all)
 {
 bool ok = true;

 // look for non-matches...
 foreach (SqlConstraint constraint in this.Constraints)
 {
 if (constraint.Field.Type == DataType.String)
 {
 string value = item.GetStringValue(constraint.Field);
 if (string.Compare(value, (string)constraint.Value,
StringComparison.InvariantCultureIgnoreCase) != 0)
 ok = false;
 }
 else if (constraint.Field.Type == DataType.Int32)
 {
 int value = item.GetInt32Value(constraint.Field);
 if (value != (int)constraint.Value)
 ok = false;
 }
 else
 throw new InvalidOperationException(string.Format("Cannot handle
{0}.", constraint.Field.Type));

 // stop early?
 if(!(ok))
 break;
 }

 // add if we're OK...
 if (ok)
 results.Add(item);
 }

 // return...
 return results;
 }

 internal T ExecuteEntity<T>()
 where T : Entity
 {
 List<T> items = ExecuteEntityCollection<T>();

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

124

 if (items.Count > 0)
 return items[0];
 else
 return null;
 }

 internal void AddConstraint(string name, object value)
 {
 EntityField field = this.Box.EntityType.GetField(name, true);
 if (field == null)
 throw new InvalidOperationException("'field' is null.");

 // defer...
 AddConstraint(field, value);
 }

 internal void AddConstraint(EntityField field, object value)
 {
 if (field == null)
 throw new ArgumentNullException("field");

 // add...
 this.Constraints.Add(new SqlConstraint(field, value));
 }
 }
}

Now all that remains is to create a filter, configure it, and call the ExecuteEntityCollection method.
At this point, we already have a method on Bookmark called GetBookmarksForDisplay. At the moment,

this returns a list of fake bookmarks; what we can do now is change it so that it returns the bookmarks
from the data box. At this stage, we’re going to return all of them—in the next chapter, we’re going to add
an additional flag to the bookmark and make a further change to GetBookmarksForDisplay to constrain
against that field. For now, here’s the revised implementation of GetBookmarksForDisplay:

// Modify implementation of GetBookmarksForDisplay…
 internal static List<Bookmark> GetBookmarksForDisplay()
 {
 // create a filter...
 DataBoxFilter filter = new DataBoxFilter(GetDataBox());
 return filter.ExecuteEntityCollection<Bookmark>();
 }

With that method in place, all we have to do is run the project, and it will load the real bookmarks
and display them. Figure 6-4 shows the result.

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

125

Figure 6-4. The Navigation form showing real bookmarks from the server

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

126

That’s it! The whole thing works from end to end. We can connect up to the server, download the
bookmarks, and show them on the screen. There’s just one housekeeping task missing, which we’ll do
next.

Implementing Delete All on the Sync
The synchronization routine needs to delete all of the bookmarks off of the local device before the new
bookmarks are downloaded. Although it’s not obvious, at this stage we’re actually creating an ever-
increasing list of bookmarks on the device. It’s not obvious because when the UI is built, the ordinal of
the bookmark is used to choose the button to associate the bookmark with. Hence we can have multiple
bookmarks with the same ordinal, and the result is to just keep reconfiguring the same bookmark again
and again.

Here’s the code:

// Add method to Bookmark…
 internal static void DeleteAll()
 {
 DataBoxFilter filter = new DataBoxFilter(GetDataBox());
 foreach(Bookmark bookmark in filter.ExecuteEntityCollection<Bookmark>())
 {
 bookmark.MarkForDeletion();
 bookmark.SaveChanges();
 }
 }

All we have to do once we have that method is call DeleteAll from within the GetLatest method on
Sync. Here’s the code:

// Modify GetLatest method on Sync…
 private void GetLatest()
 {
 BookmarksService service = new BookmarksService();
 service.GetAll((Action<List<Bookmark>>)delegate(List<Bookmark> bookmarks)
 {
 // delete first...
 Bookmark.DeleteAll();

 // go through and save them...
 foreach (Bookmark bookmark in bookmarks)
 bookmark.SaveChanges();

 // signal that we've finished...
 this.Callback();

 }, this.Failed);
 }

Using the ORM Subsystem to Support Tombstoning
Before we finish the chapter, we should clear up the issue related to tombstoning the applications.

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

127

As discussed previously, when we switch to another application (of which Internet Explorer is one),
we will get dismissed from memory automatically. The state of our application is not preserved when
this happens—we are responsible for serializing and deserializing whatever state we want to keep in
order to maintain our application. The only state that we absolutely need to keep in this fashion is our
logon token to the services.

Various bits of documentation related to tombstoning suggest using isolated storage to keep the
data safe. We already use isolated storage with our ORM subsystem, so it seems logical to reuse this for
this purpose. Specifically we’ll build a new entity called TombstoneItem and create a related entity type.
The format of TombstoneItem will be as a basic name/value pair.

Without further ado, we’ll define our TombstoneItem class like this:

using System;
using System.Collections.Generic;

namespace AmxMobile.Phone7.SixBookmarks
{
 public class TombstoneData : Entity
 {
 public const string TombstoneDataIdKey = "TombstoneDataId";
 public const string NameKey = "Name";
 public const string ValueKey = "Value";

 public TombstoneData()
 {
 }

 public int TombstoneDataId
 {
 get
 {
 return this.GetInt32Value(TombstoneDataIdKey);
 }
 set
 {
 this.SetValue(TombstoneDataIdKey, value, SetReason.UserSet);
 }
 }

 public string Name
 {
 get
 {
 return this.GetStringValue(NameKey);
 }
 set
 {
 this.SetValue(NameKey, value, SetReason.UserSet);
 }
 }

 public string Value
 {

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

128

 get
 {
 return this.GetStringValue(ValueKey);
 }
 set
 {
 this.SetValue(ValueKey, value, SetReason.UserSet);
 }
 }

 private static DataBox GetDataBox()
 {
 EntityType et = EntityType.GetEntityType(typeof(TombstoneData));
 return new DataBox(et);
 }
 }
}

To use this name/value collection, we’ll need to be able to get a TombstoneItem instance for a given
name. We’ll do this via a method called GetTombstoneItem, which will use the DataBoxFilter that we built
earlier, plus it will have the capability to create a new item, should one not be found. Here’s the code:

// Add to TombstoneItem…
 internal static TombstoneData GetTombstoneItem(string name, bool createIfNotFound)
 {
 DataBoxFilter filter = new DataBoxFilter(GetDataBox());
 filter.AddConstraint(NameKey, name);

 // return...
 TombstoneData data = filter.ExecuteEntity<TombstoneData>();
 if (data == null && createIfNotFound)
 {
 data = new TombstoneData();
 data.Name = name;
 }

 // return...
 return data;
 }

As you know, in order to use entities, we need to define an entity type. As before, we’ll do this within
the SixBookmarksRuntime class. Here’s the modified code:

// Modified SixBookmarksRuntime constructor…

 private SixBookmarksRuntime()
 {
 // settings...
 this.Settings = SimpleXmlPropertyBag.Load("Settings.xml", false);

 // register the entity type...
 EntityType bookmark = new EntityType(typeof(Bookmark), "Bookmark");

 CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

129

 bookmark.AddField(Bookmark.BookmarkIdKey, Bookmark.BookmarkIdKey, DataType.Int32,
-1).IsKey = true;
 bookmark.AddField(Bookmark.NameKey, Bookmark.NameKey, DataType.String, 128);
 bookmark.AddField(Bookmark.UrlKey, Bookmark.UrlKey, DataType.String, 128);
 bookmark.AddField(Bookmark.OrdinalKey, Bookmark.OrdinalKey, DataType.Int32, -1);
 bookmark.AddField(Bookmark.IsLocalModifiedKey, Bookmark.IsLocalModifiedKey,
DataType.Boolean, -1).IsOnServer = false;
 bookmark.AddField(Bookmark.IsLocalDeletedKey, Bookmark.IsLocalDeletedKey,
DataType.Boolean, -1).IsOnServer = false;
 EntityType.RegisterEntityType(bookmark);

 // create a tombstone data entity type...
 EntityType tombstone = new EntityType(typeof(TombstoneData),
"TombstoneData");
 tombstone.AddField(TombstoneData.TombstoneDataIdKey,
TombstoneData.TombstoneDataIdKey, DataType.Int32, -1).IsKey = true;
 tombstone.AddField(TombstoneData.NameKey, TombstoneData.NameKey,
DataType.String, 64);
 tombstone.AddField(TombstoneData.ValueKey, TombstoneData.ValueKey,
DataType.String, 256);
 EntityType.RegisterEntityType(tombstone);
 }

To support tombstoning, the Windows Phone 7 runtime will call events on our application class—
specifically Activated and Deactivated. When we’re deactivated, we need to store the user token held in
static memory within the RestServiceProxybase class. (For a more elegant solution, each class that you
know should be storing state could be enlisted in some sort of chain, and each class given responsibility
for storing its own state. However, this is probably good enough for this example.) Here’s the
“deactivated” event handler:

// Add to App…

 private void Application_Deactivated(object sender, DeactivatedEventArgs e)
 {
 // get a tombstonedata item...
 TombstoneData data = TombstoneData.GetTombstoneItem("UserToken", true);
 if (data == null)
 throw new InvalidOperationException("'data' is null.");
 data.Value = RestServiceProxy.Token;
 data.SaveChanges();
 }

The “activated” handler is a similar shape, although, on top of restoring the data, we also have to
“reboot” the application runtime. This is done by using a method called EnsureInitialized, which we’ll
build in a moment. Here’s the “activated” handler:

// Add to App…
private void Application_Activated(object sender, ActivatedEventArgs e)

 {
 SixBookmarksRuntime.EnsureInitialized();

 // load up the token...
 TombstoneData data = TombstoneData.GetTombstoneItem("UserToken", false);

CHAPTER 6 � WINDOWS PHONE 7: PERSISTING BOOKMARKS LOCALLY

130

 if (data != null)
 RestServiceProxy.Token = data.Value;
 }

The operation of EnsureInitialized is very straightforward. By calling any static method on the
class, we’ll end up calling the constructor as we did before. Here’s the code:

// Add to SixBookmarksRuntime…

 internal static void EnsureInitialized()
 {
 // called after we have been "tombstoned"... all we have to do here is check that
we

// have Current defined. this will re-establish our state...
 if (Current == null)
 throw new InvalidOperationException("'Current' is null.");
 }

There’s one final thing to consider. Our state is persistently stored on disk; therefore we have to
reset it when the application starts. We can listen out for the “launching” event and delete the
tombstone item out at this stage. Here’s the code:

// Add to App…

 private void Application_Launching(object sender, LaunchingEventArgs e)
 {
 // check...
 SixBookmarksRuntime.EnsureInitialized();

 // delete any old token that we may have...
 TombstoneData data = TombstoneData.GetTombstoneItem("UserToken", false);
 if (data != null)
 {
 data.MarkForDeletion();
 data.SaveChanges();
 }
 }

That’s all we need to do! Now we can flip back and forth between our application and Internet
Explorer with impunity.

Conclusion

In this chapter, we have seen how, despite the lack of a relational database management system on
Windows Phone, we can still use the object-relational mapping approach we outlined in the system
architecture chapter and implemented on iOS and Android. We saw how we could create a “data box”
and entities in it as individual files. We also saw how to communicate with the standard OData service in
order to download entities from the cloud service. In the next chapter, we’ll look at how to push up
changes to the server.

C H A P T E R 7

� � �

131

Windows Phone 7: Pushing
Changes Back to the Server

In this last chapter on Windows Phone, we’re going to look at allowing the user to configure his or her
bookmarks and then push those bookmarks back up to the server. This will involve building two forms—
one for displaying a list of the bookmarks and one for editing and modifying the Sync class that we built
in the last chapter to allow for changes to be sent back. We’ll look at the user interface first.

The Configuration User Interface
The new wave of phones (Android, iOS, and Windows Phone) has a common user interface metaphor
whereby the user is presented with lists of items. This metaphor is particularly prevalent on iOS; Apple
did a lot of work on the iPhone to make these lists particularly flexible and attractive to the users
(although we don’t cover iOS in this book, obviously—but you can follow along in the sister book).
Android picked up the lists when designing its UI, and now Windows Phone has a list metaphor too.

� Note A control called ListBox has been around since version 1.0 of Windows, but the Windows Phone
implementation is tweaked to create a particularly “phone-y” experience.

Another feature of Silverlight that we’re going to be using in this chapter is databinding. Windows
Phone has the best databinding story out of all of the major platforms, probably because Microsoft has
been continually improving its databinding story on all of its toolsets since before the days of the original
Visual Basic. Databinding makes it much easier to get information onto and off of the screen by allowing
data to be pushed onto the view declaratively, rather than having to write code that explicitly pushes
data onto the screen.

Let’s start by building the core view.

Building ConfigurePage.xaml
To start, add a new page to the project called ConfigurePage.xaml. This will create a new page with the
usual header containing two labels. Change the small text in the header to Six Bookmarks and the large
text in the header to Configure.

From the toolbox, drag a ListBox control on the grid surface and size it so that it occupies all of the
available space. Set the Name property of the control to listBookmarks. You’ll have something that looks
like Figure 7-1.

CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

132

Figure 7-1. The ListBox control on the design surface

ASP.NET developers will find this next part familiar—we need to define a “template” that items within
the list box will use to create items for display.

This is done by adding markup to the XAML code. What we’re going to do is define an item template
as using a StackPanel control. The StackPanel control is a standard Silverlight layout control that allows

 CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

133

you to arrange items horizontally or vertically. The details of how to use it are beyond the scope of this
book, but essentially what we’re going to do is define a container stack panel with the items arranged
horizontally. The left-hand control will show an icon, and the right-hand control will be another stack
panel. This second stack panel will be arranged vertically and contain two text boxes, one for the name
and one for the URL of the bookmark.

This is also the first time that we’re going to see databinding in Silverlight. The principle of
Silverlight databinding is that you can specify any property in XAML as being data bound by enclosing
an expression in curly brackets and using the keyword Binding. For example, this expression binds the
Text value to the Name member of the object that is being bound:

Text="{Binding Name}"

Later we’re going to bind the ListBox control to a list of bookmarks (List<Bookmark>). As the view is
being built, it will walk each bookmark in turn and binding expressions will be evaluated on an item-by-
item basis; hence the {Binding Name} expression will evaluate against Bookmark.

To create the stack panels and contained controls, specify the following XAML markup within the
ListBox element created when you dropped the ListBox control onto the design surface:

 <ListBox x:Name="listBookmarks">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel x:Name="DataTemplateStackPanel"
Orientation="Horizontal">
 <Image x:Name="ItemImage"
Source="/AmxMobile.Phone7.SixBookmarks;component/Images/ArrowImg.png" Height="43"
Width="43" VerticalAlignment="Top" Margin="10,0,20,0"/>
 <StackPanel>
 <TextBlock x:Name="ItemText" Text="{Binding Name}"
Margin="-2,-13,0,0" Style="{StaticResource PhoneTextExtraLargeStyle}"/>
 <TextBlock x:Name="DetailsText" Text="{Binding Url}"
Margin="0,-6,0,3" Style="{StaticResource PhoneTextSubtleStyle}"/>
 </StackPanel>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>

You’ll notice in that markup that we specified an Image element. The Source attribute of this element
points to a local URI within the application that references an image. This image and others that we’ll
see later are not standard Windows Phones resources and need to be included manually. You can obtain
the images by downloading the Visual Studio solution from http://code.multimobiledevelopment.com/.
In this case, the images have to be created in an Images folder in the root of the project and have a Build
Action value of Resource.

� Note It’s important that the Build Action is set to Resource. If it isn’t, it won’t load.

CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

134

Binding the List
To make the list do something, we have to bind it to some data. This is where the view model approach
of Silverlight development comes in.

Silverlight, and by extension Windows Phone development, is supposed to be done using something
called MVVM, or Model-View-ViewModel. The principle is that you have a “model” containing the data
that you wish to display, the “view,” which is the code and markup that drives the user interface, and a
“view model,” which is a specialized model that is tailored to the view that you are building. For
example, our model contains the entire list of bookmarks stored locally on the device. Some of these
bookmarks will be marked as “locally deleted,” meaning that the user has indicated that they should be
deleted but that the delete instruction has not yet been passed to the server. Thus our view model for our
configuration page needs to select all bookmarks apart from those that have been locally deleted.
Further, our bookmarks need to be presented ordered by the ordinal value specified on each bookmark.

That said, although MVVM is strongly recommended as a standard for Silverlight applications, my
own view is that you need to feel your way through these things and find an approach that makes the
most sense to you. It’s certainly true to say that data binding in Silverlight is easier if you adopt an
MVVM approach, but it’s equally true to say that the tools are flexible enough so that you will not get
horrendously stuck if you choose to go your own way.

We’re going to create a class in our project called ConfigurePageViewModel, which, as the name
implies, will be the view model for our configure page. On instantiation this will load the appropriate
bookmarks from disk and sort them by ordinal. Here’s the code:

using System;
using System.Collections.Generic;

namespace AmxMobile.Phone7.SixBookmarks
{
 public class ConfigurePageViewModel
 {
 public List<Bookmark> Items { get; private set; }

 internal ConfigurePageViewModel()
 {
 // set...
 List<Bookmark> items = new List<Bookmark>(Bookmark.GetBookmarksForDisplay());

 // sort...
 items.Sort(new OrdinalComparer());

 // set...
 this.Items = items;
 }

 private class OrdinalComparer : IComparer<Bookmark>
 {
 public int Compare(Bookmark x, Bookmark y)
 {
 if (x.Ordinal < y.Ordinal)
 return -1;
 else if (x.Ordinal > y.Ordinal)
 return 1;

 CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

135

 else
 return 0;
 }
 }
 }
}

The important thing there is the Items property. Note how this is a public property and that the
ConfigurePageViewModel is a public class. Silverlight databinding will bind to any public property on any
public type; thus if we set the list box to bind to the model and specify a binding expression of Items,
when it’s time to retrieve the data, the ListBox control will query the Items property, find that it’s of type
IEnumerable, and walk through the bookmarks, creating list items as it goes. Further, because the items
themselves are specified with binding expressions as each list item is created, the properties specified in
the per-item bindings will be queried and pushed through to the relevant controls.

To specify that we want the list to bind to something called Items, we need to change the XAML to
include a binding expression. This is done by specifying an expression in the ItemSource attribute. Here’s
a snippet of the XAML:

<!-- markup omitted for brevity… -->
 <ListBox x:Name="listBookmarks" IItemsSource="{Binding Items}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel x:Name="DataTemplateStackPanel" Orientation="Horizontal">
 <Image x:Name="ItemImage"
Source="/AmxMobile.Phone7.SixBookmarks;component/Images/Arrow.png" Height="43" Width="43"
VerticalAlignment="Top" Margin="10,0,20,0"/>
 <StackPanel>
 <TextBlock x:Name="ItemText" Text="{Binding Name}" Margin="-
2,-13,0,0" Style="{StaticResource PhoneTextExtraLargeStyle}"/>
 <TextBlock x:Name="DetailsText" Text="{Binding Url}"
Margin="0,-6,0,3" Style="{StaticResource PhoneTextSubtleStyle}"/>
 </StackPanel>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
<!-- markup omitted for brevity… -->

It’s not necessary to bind the view model directly to the control. The page itself has a DataContext
property. If we set this property to be our view model, when the list box notices that it was an ItemSource
value set, it will go to the page to discover the value in DataContext. To make this happen, all we have to
do is override the OnNavigatedTo method and set DataContext to be a new instance of the view model.
Here’s the code:

// Add method to ConfigurePage…
 protected override void OnNavigatedTo(System.Windows.Navigation.NavigationEventArgs e)
 {
 base.OnNavigatedTo(e);

CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

136

 // set the context...
 this.DataContext = new ConfigurePageViewModel();
 }

The final step in making this work is to modify the HandleConfigure method on the navigator page
so that it opens the new configuration page. Here’s the modified method:

// Modify method in NavigatorPage
 private void HandleConfigure()
 {
 NavigationService.Navigate(new Uri("/ConfigurePage.xaml",
UriKind.RelativeOrAbsolute));
 }

Run the application now, and you’ll be able to access the configuration page. Figure 7-2 illustrates.

Figure 7-2. The configuration screen running on the emulator

 CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

137

Configuring the Application Bar
One of the user interface metaphors that Microsoft is very keen to promote on Windows Phone is the
application bar. This is a bar that is shown at the bottom of a page, offers commonly used functions by
way of “always on” buttons, and allows the user to access more options via an ellipsis button shown to
the right of the bar. Figure 7-3 illustrates the application bar from Internet Explorer.

Figure 7-3. IE’s application bar

If we press the ellipsis button, we get more options—plus we also get some text describing the “always
on” buttons. Figure 7-4 illustrates.

CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

138

Figure 7-4. The expanded application bar

In our application, we’re going to add a couple of buttons—one for adding a bookmark and one for
saving changes and returning to the navigator form.

Adding the buttons is a little bit fiddly—you have to get the images exactly right. The rules are that
you need to create a 48x48 pixel image, and design the actual image so that it fits exactly within a 26x26
pixel square within the middle of that image. The image has to be white, and the background has to be
transparent (which is fun, because when you’re looking at the images in preview mode in Explorer with a
default background of white, you end up looking through images that are white rendered on white.) The
circle is rendered by the Windows Phone runtime itself—you only have to worry about the central image.

As mentioned before, Windows Phone doesn’t have any stock images that we can reuse, and so we
have to add them manually. In the solution that you can download from
http://code.multimobiledevelopment.com/, you will find three images for buttons: Add.png, Finish.png,
and Delete.png. Add these to the Images folder within your project, and make sure that the Build Action
for each is set to Content. Copy to Output Directory should be set to Copy always.

� Note It’s important that the Build Action is set to Content, otherwise the image will not load. Recall that we
set the Arrow.png image to a Build Action of Resource. Because the images are referenced in different ways,
they need different Build Actions.

 CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

139

In terms of code, the easiest way to configure the application bar is to do so programmatically by
first creating an ApplicationBar instance and then creating and adding ApplicationBarIconButton
instances to the bar’s Buttons collection. For each button, we can also create an event handler that will
be called when the button is pressed. Here’s the revised version of the constructor for ConfigurePage:

// Modified constructor and stub event handlers within ConfigurePage…
 public ConfigurePage()
 {
 InitializeComponent();

 // application bar...
 this.ApplicationBar = new ApplicationBar();
 this.ApplicationBar.IsVisible = true;
 this.ApplicationBar.IsMenuEnabled = true;

 // add...
 ApplicationBarIconButton add = new ApplicationBarIconButton(new
Uri("/Images/Add.png", UriKind.Relative));
 add.Text = "add";
 add.Click += new EventHandler(add_Click);
 this.ApplicationBar.Buttons.Add(add);

 // finish...
 ApplicationBarIconButton finish = new ApplicationBarIconButton(new
Uri("/Images/Finish.png", UriKind.Relative));
 finish.Text = "finish";
 finish.Click += new EventHandler(finish_Click);
 this.ApplicationBar.Buttons.Add(finish);
 }

 void finish_Click(object sender, EventArgs e)
 {
 Alert.Show(this, "TBD");
 }

 void add_Click(object sender, EventArgs e)
 {
 Alert.Show(this, "TBD");
 }

Now, if you run the project, you will see the application bar with the two buttons shown in all their
glory. Figure 7-5 illustrates.

CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

140

Figure 7-5. The application bar on a running configuration page

Now that we have the buttons, we can wire up the functionality.

 CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

141

Implementing the Button and List Selection Handler
When the user clicks one of the items in the list, we want to take the user to a page where he or she can
edit that individual bookmark. To do this, we need to subscribe to the SelectionChanged event on the list
box.

The easiest way to add a handler is to double-click the list box in the designer view. Once there, add
this code:

// Methods in ConfigurePage…
 private void listBookmarks_SelectionChanged(object sender, SelectionChangedEventArgs
e)
 {
 Bookmark selected = (Bookmark)this.listBookmarks.SelectedItem;
 if (selected != null)
 ConfigureBookmark(selected.Ordinal);
 }

 private void ConfigureBookmark(int ordinal)
 {
 NavigationService.Navigate(new
Uri(string.Format("/ConfigureSingletonPage.xaml?ordinal={0}", ordinal),
UriKind.RelativeOrAbsolute));
 }

The magic here happens in the ConfigureBookmark method. When we want to configure a bookmark,
we’ll pass in the ordinal through a query string variable (in this case, called ordinal). The singleton page
that edits a single bookmark will de-reference the ordinal and find the appropriate bookmark. If a
bookmark with a given ordinal cannot be found, a new one will be created. This approach makes it easy
to write some relatively simple code that can handle working with existing bookmarks or creating new
ones.

Therefore, for the “add” button handler, we need to find the next available bookmark ordinal. If an
ordinal can be found, a call to ConfigureBookmark will redirect the user appropriately. If all six slots are
taken, we can show an error. Here’s the code:

// Replace add_Click method in ConfigurePage…
 void add_Click(object sender, EventArgs e)
 {
 // get the next ordinal...
 bool[] taken = new bool[6];
 foreach (Bookmark bookmark in this.listBookmarks.Items)
 taken[bookmark.Ordinal] = true;

 // walk...
 for (int index = 0; index < taken.Length; index++)
 {
 if (!(taken[index]))
 {
 ConfigureBookmark(index);
 return;
 }
 }

CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

142

 // show...
 MessageBox.Show("There are no more slots available.");
 }

The final thing to do on the configuration page is handle the user clicking the “finish” button. When
he does this, we want to call the sync routine to push the changes back up to the server. Although, at the
moment, the sync routine is not able to push changes back, if we call the method here, it’ll save us a job
later on. Here’s the code:

// Replace finish_Click method in ConfigurePage…
 void finish_Click(object sender, EventArgs e)
 {
 // sync...
 Sync sync = new Sync();
 sync.DoSync((Action)delegate()
 {
 Dispatcher.BeginInvoke((Action)delegate()
 {
 NavigationService.Navigate(new Uri("/NavigatorPage.xaml",
UriKind.RelativeOrAbsolute));
 });

 }, Alert.GetFailedHandler(this));
 }

The next thing we have to do is create the page for modifying a single bookmark. We’ll do this in the
next section.

The ConfigureSingletonPage Page
To configure a single bookmark, we need a page (called ConfigureSingletonPage) that has one text box
for the name and another for the URL. We’ll also need a Save Changes button and labels to suit. Figure 7-
6 illustrates.

 CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

143

Figure 7-6. The singleton view design surface

In terms of things that you cannot see from the screenshot, the name text box needs to have a Name value
of textName and the URL text box needs to have a Name value of textUrl. The Text property of textName
needs to be set to {Binding Name}, and similarly the Text property of textural needs to be set to {Binding
Url}. Here’s the markup:

<phone:PhoneApplicationPage
 x:Class="AmxMobile.Phone7.SixBookmarks.ConfigureSingletonPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"
 xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 FontFamily="{StaticResource PhoneFontFamilyNormal}"
 FontSize="{StaticResource PhoneFontSizeNormal}"
 Foreground="{StaticResource PhoneForegroundBrush}"
 SupportedOrientations="Portrait" Orientation="Portrait"
 mc:Ignorable="d" d:DesignHeight="768" d:DesignWidth="480"
 shell:SystemTray.IsVisible="True">

CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

144

 <!--LayoutRoot contains the root grid where all other page content is placed-->
 <Grid x:Name="LayoutRoot" Background="Transparent">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>

 <!--TitlePanel contains the name of the application and page title-->
 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="24,24,0,12">
 <TextBlock x:Name="ApplicationTitle" Text="Six Bookmarks" Style="{StaticResource
PhoneTextNormalStyle}"/>
 <TextBlock x:Name="PageTitle" Text="Configure" Margin="-3,-8,0,0"
Style="{StaticResource PhoneTextTitle1Style}"/>
 </StackPanel>

 <!--ContentPanel - place additional content here-->
 <Grid x:Name="ContentGrid" Grid.Row="1">
 <TextBlock Margin="6,4,42,586" Name="textBlock1" Style="{StaticResource
PhoneTextNormalStyle}" Text="Name" />
 <TextBox Height="72" Text="{Binding Name}" HorizontalAlignment="Left"
Margin="0,26,0,0" Name="textName" VerticalAlignment="Top" Width="480" />
 <TextBlock Margin="6,97,42,493" Name="textBlock2" Style="{StaticResource
PhoneTextNormalStyle}" Text="URL" />
 <TextBox Height="72" Text="{Binding Url}" HorizontalAlignment="Left"
Margin="0,119,0,0" Name="textUrl" VerticalAlignment="Top" Width="480" />
 <Button Content="Save Changes" Height="72" HorizontalAlignment="Left"
Margin="0,197,0,0" Name="buttonSaveChanges" VerticalAlignment="Top" Width="480"
Click="buttonSaveChanges_Click" />
 </Grid>
 </Grid>

</phone:PhoneApplicationPage>

I’ll go through the code for this page quite quickly, as it’s pretty straightforward. Recall that
previously we said that when we navigated the user to this page, we were going to provide the ordinal in
the URL. We also said that if we were unable to load a bookmark for the given ordinal, we would create a
new one. The dependency in this is a business method that loads a bookmark for a given ordinal. Here’s
the code for the GetByOrdinal method:

// Add method to Bookmark…
 internal static Bookmark GetByOrdinal(int ordinal)
 {
 DataBoxFilter filter = new DataBoxFilter(GetDataBox());
 filter.AddConstraint("ordinal", ordinal);

 // return...
 return filter.ExecuteEntity<Bookmark>();
 }

Here’s the implementation for the Bookmark property on ConfigureSingletonPage. You’ll also need a
private field called _bookmark to hold the item that we’re working on.

 CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

145

// Add property to ConfigureSingletonPage…
 private Bookmark Bookmark
 {
 get
 {
 if (_bookmark == null)
 {
 string asString = NavigationContext.QueryString["ordinal"];
 int ordinal = int.Parse(asString);

 // get...
 _bookmark = Bookmark.GetByOrdinal(ordinal);

 // if we don't have one, we must be new...
 if (_bookmark == null)
 {
 Bookmark newBookmark = new Bookmark();
 newBookmark.Ordinal = ordinal;
 newBookmark.IsLocalDeleted = false;
 newBookmark.IsLocalModified = true;

 // set...
 _bookmark = newBookmark;
 }
 }
 return _bookmark;
 }
 }

By overriding the OnNavigatedTo method, we can set the DataContext property of the page to
initialize the databinding. Thanks to the {Binding <name>} declarations that we added to the markup,
this will push the values onto the page. Here’s the code:

// Add method to ConfigureSingletonPage…
 protected override void OnNavigatedTo(System.Windows.Navigation.NavigationEventArgs e)
 {
 base.OnNavigatedTo(e);

 // show...
 if (Bookmark == null)
 throw new InvalidOperationException("'Bookmark' is null.");
 this.DataContext = this.Bookmark;
 }

To add a click handler to the Save Changes button, double-click the button in the designer view, and
one will be created for you. In this method, we’re going to do validation of the data, push the values onto
the bookmark, and save them back. When we save the bookmark, we’ll set the IsLocalModified and
IsLocalDeleted properties so that we know we have to write the changes back to the server. Note that
here we’re not using Silverlight databinding to pull data from the control. My motivation for this is that
I’m trying to keep the logic between the different platforms the same, and, as iOS and Android do not

CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

146

have Silverlight-style databinding, I have kept this manual. Here’s the code for the Save Changes
handler.

// Add method (and wire up handler via designer) to ConfigureSingletonPage…
 private void buttonSaveChanges_Click(object sender, RoutedEventArgs e)
 {
 ErrorBucket errors = new ErrorBucket();
 string name = this.textName.Text.Trim();
 if (string.IsNullOrEmpty(name))
 errors.Add("Name is required.");
 string url = this.textUrl.Text.Trim();
 if (string.IsNullOrEmpty(url))
 errors.Add("URL is required.");

 // ok?
 if(!(errors.HasErrors))
 {
 // set...
 if (Bookmark == null)
 throw new InvalidOperationException("'Bookmark' is null.");
 this.Bookmark.Name = name;
 this.Bookmark.Url = url;

 // set...
 this.Bookmark.IsLocalModified = true;
 this.Bookmark.IsLocalDeleted = false;

 // save...
 this.Bookmark.SaveChanges();

 // back...
 NavigationService.Navigate(new Uri("/ConfigureForm.xaml",
UriKind.RelativeOrAbsolute));
 }

 // show...
 if(errors.HasErrors)
 Alert.Show(this, errors.GetAllErrorsSeparatedByCrLf());
 }

The only thing that remains now is the “delete” functionality.

On Android we have a “long click” on the list, from which we can pop up a context menu. On iOS we
can put the list into “edit” mode, where each item has a delete item. Windows Phone does not have
either of these—specifically there is no support for context menus. Therefore, to implement the delete
option, we have to put it as an application bar option on the singleton edit page itself. Here’s the
implementation:

// Modify constructor on and add button handler to ConfigureSingletonPage…
 public ConfigureSingletonPage()
 {
 InitializeComponent();

 CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

147

 // application bar...
 this.ApplicationBar = new ApplicationBar();
 this.ApplicationBar.IsVisible = true;
 this.ApplicationBar.IsMenuEnabled = true;

 // add...
 ApplicationBarIconButton delete = new ApplicationBarIconButton(new
Uri("/Images/Delete.png", UriKind.Relative));
 delete.Text = "delete";
 delete.Click += new EventHandler(delete_Click);
 this.ApplicationBar.Buttons.Add(delete);
 }

 void delete_Click(object sender, EventArgs e)
 {
 // delete...
 if (Bookmark == null)
 throw new InvalidOperationException("'Bookmark' is null.");
 this.Bookmark.IsLocalDeleted = true;
 this.Bookmark.SaveChanges();

 // navigate...
 NavigationService.Navigate(new Uri("/ConfigureForm.xaml",
UriKind.RelativeOrAbsolute));
 }

That’s it! We can now add, edit, and delete bookmarks. Figure 7-7 illustrates the singleton page in
operation. Now that we’re able to make changes to the bookmarks locally, let’s look now at pushing the
changes up to the server.

CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

148

Figure 7-7. The running singleton page

 CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

149

Sending Changes to the Server
In the last chapter, we discussed how there was limited support in Windows Phone 7 for directly
consuming the OData service via one of Microsoft’s classic “magic wizards.” Although I’m not a fan of
these sorts of wizards and never have been (you can’t write a “proper” application without rolling your
sleeves up and getting down and dirty in code), it is helpful to be able to shortcut some of the plumbing.
But, no matter—the approach we’re going to take in the remainder of this chapter is to roll our own
OData client implementation.

The sync operation will run in two phases, and in this order: it will detect and push local changes to
the server, and it will then download the latest version of the bookmarks from the server using the
method that we have already built. We can be confident that by the time we get through this process, not
only have our changes been merged, but also our local database contains an up-to-date set of what is on
the server.

Building the PushUpdates Method
We’ll start by building the PushUpdates method. There’s going to be quite a lot of work here. In this
section, we’ll first look at the algorithm for detecting changes, and then we’ll look at how we physically
send changes up.

The algorithm for detecting changes looks like this:

• Download the latest set of bookmarks from the server.

• Walk each change detected on the client, and find the matching server item based
on the ordinal of the item.

• If a local change is found and that change can be mapped to a server item, issue an
update to the server.

• If a local change is found and that change cannot be mapped to a server item,
issue an insert to the server.

• If we delete a bookmark locally and a bookmark with that ordinal is in the server’s
set, issue a delete to the server.

To support this operation, we’ll need a method that updates a server bookmark, a second that
inserts a server bookmark, and a third that deletes a server bookmark. If none of those applies, nothing
will happen. We’ll add these stub methods to the ODataServiceProxy class now—recall that we built this
class in the last chapter.

� Note Although this implementation is going to be used only with bookmarks in this book, this approach will
work with any sort of OData entity (with the caveat that for BlackBerry we’re going to send the requests through a
shim).

Here are the stub methods that we’ll add to ODataServiceProxy to help us along. Note that these
methods take callbacks for success and failure—we have to do this because we’re working within an
asynchronous programming model.

CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

150

// Add methods to ODataServiceProxy…
 public void PushUpdate(Entity entity, int serverId, Action callback, Failed failed)
 {

 throw new NotImplementedException("TBD.");
}

 public void PushInsert(Entity entity, Action callback, Failed failed)
 {
 throw new NotImplementedException("TBD.");
}

 public void PushDelete(Entity entity, int serverId, Action callback, Failed failed)
 {
 throw new NotImplementedException("TBD.");
}

Moving back onto the PushChanges method in Sync, one thing it’s going to need to be able to do is
get back the changed local bookmarks and the local deleted (i.e., “soft deleted”) bookmarks. I’m going to
propose building these as separate methods. Although it’s easy enough to build them as a single method,
the discussion is easier to follow if they are separate. To do this, we’ll add static methods to the Bookmark
class itself.

The code for GetBookmarksForServerUpdate will return a list of the bookmarks that have been flagged
as having local changes but not flagged as having been deleted. Here’s the code:

// Add method to Bookmark…
 internal static List<Bookmark> GetBookmarksForServerUpdate()
 {
 DataBoxFilter filter = new DataBoxFilter(GetDataBox());
 filter.AddConstraint("islocalmodified", true);
 filter.AddConstraint("islocaldeleted", false);

 // return...
 return filter.ExecuteEntityCollection<Bookmark>();
 }

Likewise, the code for GetBookmarksForServerDelete will return a list of only those bookmarks that
have been specifically flagged for deletion. Here’s the code:

// Add method to Bookmark…
 internal static List<Bookmark> GetBookmarksForServerDelete()
 {
 DataBoxFilter filter = new DataBoxFilter(GetDataBox());
 filter.AddConstraint("islocaldeleted", true);

 // return...
 return filter.ExecuteEntityCollection<Bookmark>();
 }

We now have everything that we need to build PushChanges. The fact that we’re working in an
asynchronous world makes this a little harder than it would in a synchronous world. For one thing, in a

 CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

151

synchronous world, you would make one call to a method called PushChanges and immediately after it
call a method called GetLatest. We can’t do that if we’re coding up asynchronously. Instead we have to
chain the calls by passing delegates around.

More onerously, because each change itself will block, we actually have to chain the individual
change commands (insert, update, or delete) together. The approach I’m going to propose for doing that
is a “unit of work” pattern. PushChanges will formulate a list of work units based on what it discovers
about the changes. We’ll then build a work unit processor that will rattle through these in turn, all the
time doing so in a synchronous fashion.

Here’s the code for SyncWorkItem. All it needs to do is store the bookmark, the ID on the server (for
example, we might have a local ID of “5” referring to a server bookmark with an ID of “105”), and a
reference to the type of operation that we’re going to do.

 internal enum ODataOperation
 {
 Insert = 0,
 Update = 1,
 Delete = 2
 }

 internal class SyncWorkItem
 {
 internal ODataOperation Operation { get; private set; }
 internal Bookmark Bookmark { get; private set; }
 internal int ServerId { get; private set; }

 internal SyncWorkItem(ODataOperation op, Bookmark bookmark, int serverId)
 {
 if (bookmark == null)
 throw new ArgumentNullException("bookmark");

 this.Operation = op;
 this.Bookmark = bookmark;
 this.ServerId = serverId;
 }
 }

We’ll go through the code for PushChanges in chunks, as it’s a little complicated. The first thing we
need to do is get the latest version of the bookmarks from the server. This itself is an asynchronous call,
so we’ll do this using an anonymous method.

// Add method to Sync…
 private void PushChanges()
 {
 // need to get all from the server - we need to calculate a delta...
 BookmarksService service = new BookmarksService();
 service.GetAll<Bookmark>((Action<List<Bookmark>>)delegate(List<Bookmark>
fromServer)
 {

Once we’ve got our value back from the server, we’ll have a look at our local state and store the
results in updates and deletes, like so:

CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

152

 // get the local set...
 List<Bookmark> updates = Bookmark.GetBookmarksForServerUpdate();
 List<Bookmark> deletes = Bookmark.GetBookmarksForServerDelete();

Next, for neatness later, we’ll get and store the EntityType instance that maps to our Bookmark class.
We’ll also create a place to store our work units.

 // et...
 EntityType et = EntityType.GetEntityType(typeof(Bookmark));
 if (et == null)
 throw new InvalidOperationException("'et' is null.");

 // reset the work items...
 this.WorkItems = new List<SyncWorkItem>();

Now we can get into the change detection code proper. We’ll set up one loop that walks each local
change, and for each local change, we’ll first find a matching server change:

 // walk the local updates...
 foreach (Bookmark local in updates)
 {
 // find it in our server-side set...
 Bookmark toUpdate = null;
 foreach (Bookmark server in fromServer)
 {
 if (local.Ordinal == server.Ordinal)
 {
 toUpdate = server;
 break;
 }
 }

If we do detect a change (i.e., toUpdate is not null), we need to create a new Bookmark instance and
populate every field on it, bar the key. When we encounter the key, we’ll set the ID to be the ID of the
server’s copy instead of the local copy. This doesn’t matter too much, as when we issue the update
request, we won’t send up the ID, but it feels appropriate. If we do not detect a change (i.e., toUpdate is
null), we’ll call insert as opposed to update. Here’s the code that makes that choice and also closes off
the local bookmark loop. Remember, as we go, we’re just tracking changes in work units for later
processing.

 // did we have one to change?
 if (toUpdate != null)
 {
 // walk the fields...
 int serverId = 0;
 foreach (EntityField field in et.Fields)
 {
 if (!(field.IsKey))
 toUpdate.SetValue(field, local.GetValue(field),
SetReason.UserSet);
 else

 CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

153

 serverId = toUpdate.BookmarkId;
 }

 // send that up...
 this.WorkItems.Add(new SyncWorkItem(ODataOperation.Update, toUpdate,
serverId));
 }
 else
 {
 // we need to insert it...
 this.WorkItems.Add(new SyncWorkItem(ODataOperation.Insert, local, 0));
 }
 }

Once we’ve done that work, we can look at the deletes, which is the last thing we need to do on the
method. The rule here is that if we have marked a bookmark as deleted and we can find a bookmark with
a matching ordinal on the server, we’ll delete it from the server. This code could be improved by deleting
it only if no changes were detected; however, I’ve chosen to keep it simple. Here’s the code.

 // what about ones to delete?
 foreach (Bookmark local in deletes)
 {
 // find a matching ordinal on the server...
 foreach (Bookmark server in fromServer)
 {
 if (local.Ordinal == server.Ordinal)
 this.WorkItems.Add(new SyncWorkItem(ODataOperation.Delete, server,
server.BookmarkId));
 }
 }

The last thing to do in this method is kick off the work unit processor. How this will work is that we’ll
maintain a pointer in instance memory (WorkItemIndex) of the “to-be-done” work units (WorkItems).
We’ll start the index at zero and call a method we’ll build shortly, called PushNextWorkItem. If the pointer
references a valid work unit, it’ll do the work, otherwise it will call the next phase of the update chain—
GetLatest. (But as I say, we’ll do this in a moment.)

 // reset the queue and run it...
 this.WorkItemIndex = 0;
 this.PushNextWorkItem();

 // this is the hanging end of the call to get the server bookmarks...
 }, this.Failed);
 }

That’s all of the changes that we need to make to make the sync run. All that we have to do now is
replace the stubs for PushInsert, PushUpdate, and PushDelete with real logic as well as build the work unit
processor.

CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

154

Issuing Server Requests to Insert, Update, and Delete
In the last chapter, we requested XML data from the server that described our server-side entities in
OData format. When we send insert and update requests back to the server, we need to create XML
documents that adhere to that format. (Delete does not have a payload, so you do not need to send an
XML document.)

The three operations we need to fire can be described thus:

• For insert operations, we issue an HTTP POST to the base URL of the entity’s service
and supply XML that describes the initial value of the fields, e.g., http://
services.multimobiledevelopment.com/services/Bookmarks.svc/Bookmark.

• For update operations, we issue an HTTP MERGE to the URL of the item in question
and supply XML that describes the changed fields, e.g.,
http://services.multimobiledevelopment.com/services/Bookmarks.svc/Bookmark
(1000).

• For delete operations, we issue an HTTP DELETE to the URL of the item in question
and provide no payload, e.g.,
http://services.multimobiledevelopment.com/services/Bookmarks.svc/.

The OData standard allows us to issue an HTTP MERGE or an HTTP PUT to send an “update”
instruction. MERGE is better (in this case at least) because it will update the provided fields but leave the
remaining fields. PUT requires all of the fields to be sent, as any missing fields are reset to their default
values. As a general principle of designing systems that have this kind of intraconnected messaging, it’s
always a good idea to try to keep things loosely coupled, and MERGE feels looser to me.

We’ve already stubbed in methods for each of the three operations, so let’s build them now.

Building PushNextWorkItem
Hopefully this method is easy to understand—I happen to feel this approach is quite elegant, although I
can take no credit for it, as it’s an obvious idea. As mentioned before, if WorkItemIndex refers to a valid
piece of work, it will call the operation. Once the end of the operation (itself being asynchronous) is
signaled, we’ll increment the counter and call PushNextWorkItem again. Eventually the queue will be
exhausted and our work will be done. Here’s the code:

 // Add to Sync…

 private void PushNextWorkItem()
 {
 Debug.WriteLine(string.Format("Pushing work item {0}...", this.WorkItemIndex));

 // have we reached the end? if so, branch off and get the latest...
 if (this.WorkItemIndex == this.WorkItems.Count)
 {
 this.GetLatest();
 return;
 }

 // get it...
 SyncWorkItem item = this.WorkItems[this.WorkItemIndex];

 // callback...

 CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

155

 Action callback = new Action(HandleWorkItemCompleted);

 // run...
 BookmarksService service = new BookmarksService();
 if (item.Operation == ODataOperation.Insert)
 service.PushInsert(item.Bookmark, callback, this.Failed);
 else if (item.Operation == ODataOperation.Update)
 service.PushUpdate(item.Bookmark, item.ServerId, callback, this.Failed);
 else if (item.Operation == ODataOperation.Delete)
 service.PushDelete(item.Bookmark, item.ServerId, callback, this.Failed);
 else
 throw new NotSupportedException(string.Format("Cannot handle '{0}'.",
item.Operation));
 }

 private void HandleWorkItemCompleted()
 {
 Debug.WriteLine("Work item completed.");

 // increment the index...
 this.WorkItemIndex++;

 // run the next one...
 this.PushNextWorkItem();
 }

Update via HTTP MERGE and Insert via HTTP POST
We’re going to create one main method for doing updates and tweak its operation so that it also works
for inserts.

Marking Fields As Being Available on the Server
We’re now going to have to make a change to the application to get around an aspect of the OData
protocol, namely, that if we try to update a field on the server that does not exist, we’ll get an error back.
The LocalModified and LocalDeleted columns that we added do not exist on the server, so any update or
insert server operations that mention those will fail. (I’m not a fan of this—it seems wrong. It would
seem better to me to ignore this situation much as the old SOAP protocol would. It implies it’s possible
to keep all of the clients that use the service in sync, or makes deprecation of server-side functionality
harder than it should be.)

To do this, we’ll add a property to EntityField that indicates whether the property is on the server.

� Note This is one of these application design aspects that end up in a messy design. It’s not brilliant to have a
metadata layer and the application have this “special” behavior in it—it would be better if this flag did not exist.
But as a corollary, I’m not keen on having two classes do roughly the same thing—e.g., a server representation of
a bookmark and a local representation. Essentially, there has to be a compromise somewhere…

CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

156

Firstly, we’ll add an IsOnServer property to EntityField (default true), like so:

// Add IsOnServer property and field to EntityField…
 public class EntityField : EntityItem
 {
 public DataType Type { get; private set; }
 public int Size { get; private set; }
 public int Ordinal { get; private set; }
 public bool IsKey { get; set; }
 ppublic bool IsOnServer { get; set; }

And when we come to define the fields on Bookmark in our constructor on SixBookmarksRuntime,
we’ll set the flag for the two applicable fields:

// Modify Start method on SixBookmarksRuntime…
 private SixBookmarksRuntime()
 {
 // settings...
 this.Settings = SimpleXmlPropertyBag.Load("Settings.xml", false);

 // register the entity type...
 EntityType bookmark = new EntityType(typeof(Bookmark), "Bookmark");
 bookmark.AddField(Bookmark.BookmarkIdKey, Bookmark.BookmarkIdKey, DataType.Int32,
-1).IsKey = true;
 bookmark.AddField(Bookmark.NameKey, Bookmark.NameKey, DataType.String, 128);
 bookmark.AddField(Bookmark.UrlKey, Bookmark.UrlKey, DataType.String, 128);
 bookmark.AddField(Bookmark.OrdinalKey, Bookmark.OrdinalKey, DataType.Int32, -1);
 bookmark.AddField(Bookmark.IsLocalModifiedKey, Bookmark.IsLocalModifiedKey,
DataType.Boolean, -1).IsOnServer = false;
 bookmark.AddField(Bookmark.IsLocalDeletedKey, Bookmark.IsLocalDeletedKey,
DataType.Boolean, -1).IsOnServer = false;
 EntityType.RegisterEntityType(bookmark);

 // create a tombstone data entity type...
 EntityType tombstone = new EntityType(typeof(TombstoneData), "TombstoneData");
 tombstone.AddField(TombstoneData.TombstoneDataIdKey,
TombstoneData.TombstoneDataIdKey, DataType.Int32, -1).IsKey = true;
 tombstone.AddField(TombstoneData.NameKey, TombstoneData.NameKey, DataType.String,
64);
 tombstone.AddField(TombstoneData.ValueKey, TombstoneData.ValueKey,
DataType.String, 256);
 EntityType.RegisterEntityType(tombstone);
 }

Now we can use this property when building the messages to send to the server.

Building the XML
The documentation on the OData web site gives an example of an insert as the following listing:

 CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

157

POST /OData/OData.svc/Categories HTTP/1.1
Host: services.odata.org
DataServiceVersion: 1.0
MaxDataServiceVersion: 2.0
accept: application/atom+xml
content-type: application/atom+xml
Content-Length: 634

<?xml version="1.0" encoding="utf-8"?>
<entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
 xmlns="http://www.w3.org/2005/Atom">
 <title type="text"></title>
 <updated>2010-02-27T21:36:47Z</updated>
 <author>
 <name />
 </author>
 <category term="DataServiceProviderDemo.Category"
 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:ID>10</d:ID>
 <d:Name>Clothing</d:Name>
 </m:properties>
 </content>
</entry>

If you refer back to the XML retrieved from the server in the last chapter, you can see that this is
basically just a rehash of the data that we provided. Our job, then, is to replicate this request.

� Note As of the time of writing, the site at www.odata.org/ is showing the entry elements in the preceding
listing as having an uppercase “E,” e.g., Entry. The interface will not work with Entry compared to entry; hence I
have edited it here, assuming a typo on the OData site.

In our request, we’re going to trim it down slightly and omit the title, updated, author, and
category elements. These are not required to make the request work. We’ll also omit the
DataServiceVersion and MaxDataServiceVersion headers, but we’ll add in our special x-amx-apiusername
and x-amx-token headers. If we patch in bookmark data rather than the sample data from the OData site,
we’ll have something like this:

POST /services/bookmarks.svc/Bookmark HTTP/1.1
Host: services.multimobiledevelopment.com
accept: application/atom+xml
content-type: application/atom+xml
content-encoding: UTF-8
content-length: 384
x-amx-apiusername: amxmobile

CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

158

x-amx-token: 961c8c1b9d4ddd5799e7f0a7b4a5ee8b

<entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
 xmlns="http://www.w3.org/2005/Atom">
 <content type="application/xml">
 <m:properties>
 <d:Name>Apress</d:Name>
 <d:Url>http://www.apress.com/</d:Url>
 <d:Ordinal>0</d:Ordinal>
 </m:properties>
 </content>
</entry>

I personally feel that Microsoft’s XML implementation in the XmlDocument class and others is the
best part of .NET. The LINQ implementation that we have to use for Windows Phone is also solid and
straightforward. For this reason, I’m just going to let the elegance of the API speak for itself in the
following implementation!

Here’s the listing for the ODataServiceProxy class:

// Replace stub method on ODataServiceProxy…
 public void PushUpdate(Entity entity, int serverId, Action callback, Failed failed)
 {
 XDocument doc = new XDocument();

 // entry...
 XElement entryElement = new XElement(XName.Get("entry", AtomNamespace));
 doc.Add(entryElement);

 // content...
 XElement contentElement = new XElement(XName.Get("content", AtomNamespace));
 contentElement.Add(new XAttribute(XName.Get("type", string.Empty),
"application/xml"));
 entryElement.Add(contentElement);

 // properties...
 XElement propertiesElement = new XElement(XName.Get("properties",
MsMetadataNamespace));
 contentElement.Add(propertiesElement);

 // walk the fields...
 EntityType et = entity.EntityType;
 if (et == null)
 throw new InvalidOperationException("'et' is null.");
 foreach (EntityField field in et.Fields)
 {
 if (!(field.IsKey) && field.IsOnServer)
 {
 // create...
 XElement element = new XElement(XName.Get(field.Name, MsDataNamespace));
 object value = entity.GetValue(field);
 if (value != null)

 CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

159

 element.Value = value.ToString();

 // add...
 propertiesElement.Add(element);
 }
 }

 // run...
 String url = null;
 ODataOperation op = ODataOperation.Update;
 String xmlAsString = doc.ToString();
 if (serverId != 0)
 url = GetEntityUrlForPush(entity, serverId);
 else
 {
 url = this.GetServiceUrl(et);
 op = ODataOperation.Insert;
 }

 // run...
 ExecuteODataOperation(op, url, xmlAsString, callback, failed);
 }

 private string GetEntityUrlForPush(Entity entity, int serverId)
 {
 return string.Format("{0}({1})", GetServiceUrl(entity.EntityType), serverId);
 }

The code at the bottom of the PushUpdate defers to ExecuteODataOperation, which we will build in a
moment. Notice as well that we have sneaked in a helper method—GetEntityUrlForPush. This builds the
URL for the item.

The final argument to PushUpdate is the ID of the item on the server. If this is non-zero, we’ll assume
that we’re updating and format the URL and set the operation as appropriate. Conversely, if it is, we’ll
use the base service URL and specify a different value in op.

Now that we have our PushUpdate method, we’ll quickly add PushInsert and PushDelete so that we
have a complete set. Here’s the listing:

// Replace stub methods on ODataServiceProxy…
 public void PushInsert(Entity entity, Action callback, Failed failed)
 {
 // an insert is an update but with a different url...
 PushUpdate(entity, 0, callback, failed);
 }

 public void PushDelete(Entity entity, int serverId, Action callback, Failed failed)
 {
 // get...
 string url = GetEntityUrlForPush(entity, serverId);
 ExecuteODataOperation(ODataOperation.Delete, url, null, callback, failed);
 }

CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

160

Building ExecuteODataOperation
The last thing we have to do is build ExecuteODataOperation. This method will take all of that
information and build a request to issue to the server.

Here’s what ExecuteODataOperation needs to do:

• We’ll ensure that the API has been set up by calling EnsureApiAuthenticated.

• We’ll choose the type of HTTP Client operation we want to run, dependent on
what we’re looking to achieve.

• To make the request, we need to pass up our special x-amx-apiusername and x-
amx-token headers. We’ll obtain these from the GetDownloadSettings method that
we built earlier and pass those on.

• If we have anything other than a DELETE request, we’ll add the XML to the request.

• We’ll then execute the request.

There is one slightly complicated part, and—as usual—it relates to anonymous programming.
When we have to send XML up to the server, we have to access a “request stream.” There’s no

blocking call to get this stream, so, when the time comes, we’ll call BeginGetRequestStream on the
HttpWebRequest class and handle the result in a callback. We can then send up the XML and get the
response, again waiting for a callback.

To facilitate all this, we have to create an ODataRequestState class that can hold references to the
callbacks that were passed into us (these ultimately relate back to the callbacks the caller gave us right at
the top of the chain), a reference to the XML to send, and a reference to the request. If you recall, we had
a similar class called ODataFetchState in the last chapter that was involved in getting data from the
server.

Here’s the private ODataRequestState class:

// Add as a private class within ODataServiceProxy…
 private class ODataRequestState
 {
 internal HttpWebRequest Request;
 internal Action Callback;
 internal Failed Failed;
 internal string OutboundXml;
 }

Oddly, because nothing really magic happens in ExecuteODataOperation, it’s quite a simple method.
We set up the HTTP method as appropriate, set up the headers, and then either branch off and get our
request stream to send up the XML, or branch off and wait for the response from the server in the case of
a “delete.” Here’s the code:

// Add to ODataServiceProxy…
 private void ExecuteODataOperation(ODataOperation opType, String url, String xml,
Action callback, Failed failed)
 {
 // create the request...
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);

 // set the method...

 CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

161

 if (opType == ODataOperation.Insert)
 request.Method = "POST";
 else if (opType == ODataOperation.Update)
 request.Method = "MERGE";
 else if (opType == ODataOperation.Delete)
 request.Method = "DELETE";
 else
 throw new NotSupportedException(string.Format("Cannot handle '{0}'.",
opType));

 // headers... (including our special tokens)...
 DownloadSettings settings = this.GetDownloadSettings();
 foreach (string name in settings.ExtraHeaders.Keys)
 request.Headers[name] = settings.ExtraHeaders[name];

 // create a state object...
 ODataRequestState state = new ODataRequestState();
 state.Request = request;
 state.Callback = callback;
 state.Failed = failed;
 state.OutboundXml = xml;

 // do we have xml?
 if (!(string.IsNullOrEmpty(xml)))
 {
 byte[] bs = Encoding.UTF8.GetBytes(xml);
 request.ContentType = "application/atom+xml";
 request.BeginGetRequestStream(new AsyncCallback(HandleOutboundXmlRequest),
state);
 }
 else
 request.BeginGetResponse(new AsyncCallback(HandleODataOperationResponse),
state);
 }

The last bit of the work is just to finish off that HandleOutboundXmlRequest callback. (This could have
been done anonymously, but I felt this was easier to read.) Here’s the code:

 private void HandleOutboundXmlRequest(IAsyncResult result)
 {
 // state...
 ODataRequestState state = (ODataRequestState)result.AsyncState;
 try
 {
 Stream stream = state.Request.EndGetRequestStream(result);
 if (stream == null)
 throw new InvalidOperationException("'stream' is null.");
 using (stream)
 {
 // send it...
 StreamWriter writer = new StreamWriter(stream);
 writer.Write(state.OutboundXml);

CHAPTER 7 � WINDOWS PHONE 7: PUSHING CHANGES BACK TO THE SERVER

162

 writer.Flush();
 }

 // ok... next...
 state.Request.BeginGetResponse(new
AsyncCallback(HandleODataOperationResponse), state);
 }
 catch (Exception ex)
 {
 state.Failed(ex);
 }
 }

That’s it! The changes we made to the Sync class earlier will run when the logon operation succeeds,
or when the user manually chooses the Finish option on the configuration screen. When the code runs,
the changes will be sent up and new versions downloaded. You can see the results by examining the
database directly by managing the appropriate user at http://services.multimobiledevelopment.com/.

Conclusion

In this chapter, we have covered a lot of ground. We have looked at how to modify the ORM functionality
to bring back selections of data. We have also looked at building a comprehensive user interface for
editing the bookmarks, including how to handle standard UI elements such as lists and menus. Finally,
we completed our synchronization routine so that we can send back updates to the server using the
OData protocol.

C H A P T E R 8

� � �

163

Six Bookmarks on Windows Mobile

In this chapter, we’re going to look at the Windows Mobile version of the Six Bookmarks application.
This chapter will be unique in that I’m not going to show you how to build the Six Bookmarks
application on Windows Mobile. Instead, I’m going to take you through the highlights of the
implementation that you can download from http://code.multimobiledevelopment.com/. The reason for
this is twofold. Firstly, with Microsoft deprecating this platform, it’s more likely that you will have
Windows Mobile code that you wish to port, as opposed to you wanting to build the application from
scratch. Secondly, the code is so similar to the Windows Phone implementation covered in Chapters 4
through 7 that it would be a couple of hundred pages of repeated text.

That said, I will go into more detail in the section on SQL CE since, as of the time of writing, the
Windows Phone chapter did not feature a relational database. My anticipated path of least resistance to
getting a relational database on Windows Phone is for Microsoft to switch SQL CE back on again,
although there are some currently active community efforts to bring SQLite to Windows Phone.

� Note To get the most out of this chapter, make sure that you have gone through the Windows Phone section so
that you have a good picture of how the application hangs together.

Migrating/Porting
In terms of migrating, if you do have an app to migrate, you will most likely be moving to Android, iOS,
or Windows Phone. As of the time of writing, Android and iOS look to be the dominant players for the
medium term, and Windows Phone is an attractive choice for those with an existing investment in
Microsoft’s mobile working solutions.

Whatever migration path you choose, you will have to rewrite the user interface. While some
validation logic can probably be salvaged, the difference in approaches between Windows Mobile and
any of the other platforms is extreme.

In terms of business logic (in this context, “anything that’s not UI”), when moving to iOS, you will
almost certainly need to rewrite the code. Intellectual property in terms of algorithms and architecture
you can probably take with you—but actual lines of code will be hard to port because Objective-C and
C# are so vastly different. The story with Android is a little better—there is enough overlap between C#
and Java to make it possible to move lines of code over. (This will be a degree harder if your code base is
VB.NET.) The story with Windows Phone is better as you’re still using native .NET, but most frustrating
in some ways because it’s so close, yet so far away.

CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

164

� Note As we go through, I shall endeavor to tell you where breaking changes are introduced between Windows
Mobile and Windows Phone. I won’t do this with iOS and Android—the appropriate sections in this book will stand
as a resource for achieving this sort of migration. Look for boxes like this one by way of summaries.

Of course, there is a third way, which is to use Mono for the business logic. By the time you read this,
MonoDroid (Android) will be out of beta and into release. MonoTouch (iOS) is available, but there are
questions about whether applications based on this will continue to be smiled upon in the Apple App
Store. (They are currently, and there have been some very public noises about Mono being OK for iOS
apps.) Personally I feel that Mono is a very attractive option. (I would be a very happy man if I woke up
and found an announcement that Apple was moving to MonoTouch as the de facto method for iOS
development.) There are some community efforts to move SQLite over to Windows Phone—what an
ideal world it would be to be able to use the same database on all three platforms and have one core
code base in C# that you could compile against Windows Phone, Android, and iOS.

Finally, there is also a fourth way, in that you could use an intermediate layer that you can target
and then execute on any of the platforms; however, such layers are explicitly not the remit of this book.

The Toolset
I won’t show you how to install the toolset, as I’m assuming you already have a code base that you wish
to port over. For reference, I have created a Smart Device Project using Visual Studio 2008 for both the
“Hello, world” and Six Bookmarks applications. It’s not possible to create Smart Device Projects in Visual
Studio 2010—only Windows Phone can be targeted from this version of Visual Studio. Likewise, although
the .NET Compact Framework was available in VS.NET 2003, we don’t support this because the version
of the Framework that we need (2.0) was not available then.

Out-of-the-box, Visual Studio 2008 does not support the Windows Mobile 6.0 SDK. You will need to
download and install this separately.

� Note This SDK is becoming increasingly hard to find on Google, as Google tries to make sense of the
increasing “windows phone” traffic. This URL linking to the SDK was correct as of the time of going to print:
http://tinyurl.com/ynlobc.

Hello, World
I’m not going to take you through a “Hello, world” application on Windows Mobile—again, I’m
assuming that you have some experience of this platform. However, you can download a “Hello, world”
application from http://code.multimobiledevelopment.com/.

Six Bookmarks
You can download the Six Bookmarks application from http://code.multimobiledevelopment.com/. You
should download this and confirm that it is working before proceeding.

In the rest of this section, I’ll go through the functional specification presented in Chapter 3,
introduce some salient code, and link off into other platforms.

 CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

165

How the Windows Mobile Application Was Built
It may help to understand how I built the Windows Mobile application.

When building the applications for the other platforms, I started from scratch each time. On
occasion I may have copied some code from some classes, but generally they were all hand-done.

For the Windows Mobile application, I created a new project and copied the code from the
Windows Phone application. As SQL CE is supported on Windows Mobile, I removed the data box
implementation and created a specific class called SqlCeHelper to talk to the SQL CE database. In
addition, there is no OData proxy for Windows Mobile (unlike Windows Phone), and this was written
from scratch, based on the Android implementation.

Logging On and Calling RESTful Services
One of the strengths of Windows Mobile is that the user interface is based on Windows Forms; hence, if
you know how to build an application in Windows Forms, you already know how to target Windows
Mobile devices. (Unfortunately for Microsoft, this cut both ways and painted it into a corner, insofar as
new devices used different and slicker UI metaphors.)

We can start by designing the logon form. This is just an issue of dragging and dropping controls
onto the form. The class in the project we’re referring to here is the LogonForm. Figure 8-1 illustrates.

Figure 8-1. The logon form

CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

166

We’ll look at the operation of the logon form shortly, but now I want to talk about asynchronous
programming.

One thing that I have brought forward from the Windows Phone implementation is the
asynchronous programming model. For example, here’s the code from HttpHelper that makes an
asynchronous download request using BeginRequest:

// Method within HttpHelper class…
 public static void Download(string url, DownloadSettings settings, Action<string>
success, Failed failure)
 {
 // create the request stub...
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);
 request.UserAgent = "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-GB; rv:1.9.2.7)
Gecko/20100713 Firefox/3.6.7";

 // add...
 if (settings != null)
 {
 foreach (string name in settings.ExtraHeaders.Keys)
 request.Headers[name] = settings.ExtraHeaders[name];
 }

 // call the server... we'll get notified at some point...
 request.BeginGetResponse(new AsyncCallback(HandleDownloadResult), new object[] {
request, success, failure });
 }

In Windows Mobile, we do have the GetRequest method that runs synchronously and blocks the
caller. It’s likely that if you are porting code over that does HTTP communications, you will have this sort
of blocking, synchronous call. You have two options in this case.

The first option, which is preferable, is to rewrite the code as asynchronous calls. However, this is
likely to be a big change, requiring lots of dependent code to be reworked, and it could be highly
unattractive. The second option, which is not preferable, is to build a layer on top of the asynchronous
calls that block and make it appear that the original call was synchronous. This is a perfectly workable
idea and is very attractive in that you do not have to rewrite large quantities of dependent code. That
said, the user will not get as good an experience if the application is making blocking network calls all
over the place. (A hidden third option would therefore be to use both techniques.)

� Note When moving from Windows Mobile to Windows Phone, you have no synchronous/blocking HTTP calls.
These would therefore have to be reengineered as asynchronous calls, or you would need to write an intermediate
layer that behaved synchronously from the caller’s perspective, despite the calls being asynchronous.

Back on the logon form, the code to initiate the logon is the same as the Windows Phone
implementation, specifically as follows:

 CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

167

// Method handler and implementation within LogonForm class…
 private void menuLogon_Click(object sender, EventArgs e)
 {
 this.DoLogon();
 }

 private void DoLogon()
 {
 // validate...
 ErrorBucket bucket = new ErrorBucket();
 string username = this.textUsername.Text.Trim();
 if (string.IsNullOrEmpty(username))
 bucket.Add("Username is required.");
 string password = this.textPassword.Text.Trim();
 if (string.IsNullOrEmpty(password))
 bucket.Add("Password is required.");

 // error?
 if (bucket.HasErrors)
 {
 Alert.Show(bucket.GetAllErrorsSeparatedByCrLf());
 return;
 }

 // clear the credentials...
 this.ClearCredentials();

 // logon...
 UsersService users = new UsersService();
 users.Logon(username, password, delegate(LogonResponse response)
 {
 // we managed to get a response...
 if (response.Result == LogonResult.LogonOk)
 {
 // we did it...
 this.LogonOk();
 }
 else
 Alert.Show(response.Message);

 }, Alert.GetFailedHandler());
 }

Let’s look now in more detail at making RESTful calls.

Making RESTful Calls
The RESTful service calls are done in the same way as per Windows Phones—namely a custom request
constructed using the .NET System.Net.HttpWebRequest class. (The service protocol is device-agnostic,
and so the way we make the calls and the data that we need to provide have not changed.)

CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

168

RestRequestArgs contains the arguments that need to be passed up to the RESTful services. This is
used to create a URL with the arguments expressed as query string values—for example,
http://services.multimobiledevelopment.com/services/apirest.aspx?operation=logon&password=pass
word.

As we know, the call has to be done asynchronously, and so whenever we make a service call, we
pass in a “success” delegate and a “failed” delegate. Here’s the Logon method on UsersService that
shows how to make one of these calls:

// Method within UsersService class…
 public void Logon(String username, String password, Action<LogonResponse> callback,
Failed failed)
 {
 // create the request...
 RestRequestArgs args = new RestRequestArgs("logon");

 // add the username and password...
 args["username"] = username;
 args["password"] = password;

 // send the request...
 SendRequest(args, delegate(XElement element)
 {
 // create a result from that...
 LogonResponse response = LogonResponse.FromXmlElement(element);
 if (response == null)
 throw new InvalidOperationException("'response' is null.");

 // callback...
 callback(response);

 }, failed);
 }

SendRequest is implemented in the base RestServiceProxy class. This method takes care of the
problem of needing to authenticate the API before any RESTful calls can be made. What happens is that
SendRequest checks to see whether we have an API token in static memory, and if we do not, it calls the
Logon method on the API service. (The ApiService class contains code that presents an infinite loop
condition.) If a logon token does exist, the method is called directly.

This approach requires a little jiggery-pokery because we need to hold a copy of the original
parameters in memory in case we have to divert off and authenticate the API first. All of these calls are
chained together in a set of asynchronous calls. Here’s the SendRequest method:

// Method in RestServiceBase class…
 internal void SendRequest(RestRequestArgs args, Action<XElement> success, Failed
failed)
 {
 if (args == null)
 throw new ArgumentNullException("args");
 if (success == null)
 throw new ArgumentNullException("success");
 if (failed == null)

 CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

169

 throw new ArgumentNullException("failed");

 // create a request state...
 RequestState state = new RequestState()
 {
 Owner = this,
 Args = args,
 Success = success,
 Failed = failed
 };

 // are we authenticated? if we're not, we need to call that first...
 if (!(IsAuthenticated))
 {
 // call the authenticate routine, and ask it to call the state we just set up
 // if authentication works...
 ApiService.Authenticate(new Action(state.DoRequest), failed);
 }
 else
 {
 // call the method directly...
 state.DoRequest();
 }
 }

The protocol definition states that on the RESTful services we will receive an XML document back
containing values. (Figure 8-2 illustrates.)

Figure 8-2. An example of a response from a successful request to the Users service

CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

170

This document has to have a root element with the name AmxResponse. Further, if this document
contains true within its HasException, we know that the server raised an exception that has to be visible
on the client. If this document does not represent an exception, the success callback is called and the
AmxResponse element is passed through to the caller.

// Private class within RestRequestProxy class…
 private class RequestState
 {
 internal RestServiceProxy Owner { get; set; }
 internal RestRequestArgs Args { get; set; }
 internal Action<XElement> Success { get; set; }
 internal Failed Failed { get; set; }

 internal void DoRequest()
 {
 // get a url...
 string url = this.Owner.ResolvedServiceUrl;
 url = HttpHelper.BuildUrl(url, this.Args);

 // call download. this is an async method, so we need to block...
 XDocument doc = null;
 HttpHelper.Download(url, this.Owner.GetDownloadSettings(), delegate(string
result)
 {
 // we'll have some content - initialize XDocument and parse it...
 using (TextReader reader = new StringReader(result))
 {
 doc = XDocument.Load(reader);
 if (doc == null)
 throw new InvalidOperationException("'doc' is null.");
 }

 // look for the response element...
 var responseElements = new List<XElement>(doc.Descendants("AmxResponse"));
 if (responseElements.Count == 0)
 throw new InvalidOperationException("An AmxResponse element was not
returned.");

 // select out "HasException"...
 XElement responseElement = responseElements[0];
 bool hasException = XmlHelper.GetElementBoolean(responseElement,
"HasException", true);
 if (!(hasException))
 this.Success(responseElement);
 else
 {
 // get the error...
 string message = XmlHelper.GetElementString(responseElement, "Error",
true);
 throw new InvalidOperationException(string.Format("The server returned
an error: {0}.", message));
 }

 CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

171

 }, this.Failed);
 }
 }

In terms of how we’re handling the XML, we have two options. Because I copied this code from
Windows Phone, I’ve used the System.Xml.Linq namespace and XDocument class. It’s likely that if you
have old Windows Mobile code, you are using the System.Xml.XmlDocument class, which has been
available in the .NET Compact Framework since version 1.

� Note If you’re migrating to Windows Phone, the “classic” version is no longer supported, and hence you will
have to migrate the XML calls to the LINQ version.

File Access
The Windows Phone client uses the file system in two ways—it uses the data box to store entities, but it
also uses the file system to store a small configuration file for the “remember me” functionality.

On Windows Phone, we use isolated storage. At the time, I discussed how isolated storage was
originally added to .NET to help with Windows Forms controls exposes, as ActiveX controls sandbox
their file store. Oddly, in Windows Mobile, we don’t have isolated storage (which speaks volumes about
what the world looked like when Windows Mobile was invented). More to the point, in terms of
migration to Windows Phone, it’s not possible to write files anywhere you like on the device’s disk—you
have to use isolated storage.

Luckily this one isn’t that hard—the way that you use file streams and paths hasn’t really changed.
The only problem that you will run into is if your application requires file access outside of isolated
storage for some reason, which essentially is not allowed.

� Note If you’re migrating to Windows Phone, the “isolated storage” file model is the only one that you have. All
file access has to be reworked to use isolated storage.

Synchronization 1: Downloading Bookmarks
OData is a very new protocol, and I wanted to use it in the book because I felt it would become an
important protocol over the next few years. Although it started life within Microsoft, it is now an open
standard. (More importantly, knowing that the RESTful services were proprietary, I wanted to give the
applications the capability of talking to an open protocol.)

If you followed along during the iOS and Android chapters, you’ll know that we had to build an
OData client ourselves. Over the next few years, it’s likely that libraries will become available for iOS and
Android that will make communicating with OData sources easier. That said, it’s not particularly likely
that anyone will build a Windows Mobile library for OData communications.

The Six Bookmarks application therefore has a roll-your-own OData client based, as mentioned
before, on the roll-your-own Android implementation discussed previously.

CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

172

In this section, we’ll look at the code that downloads the bookmarks from the OData source and
look at the stub within the synchronization routine that does the downloading. In a later section, we’ll
send changes back up.

The roll-your-own implementation essentially has to create an XML document of the appropriate
form and send it to the appropriate URL. The server—obviously—will do the hard work in getting it into
the underlying store.

� Note When migrating from Windows Mobile to Windows Phone, if you happen to have rolled your own OData
proxy, this will still work on Windows Phone, and hence the choice to migrate it over to the Windows Phone
library/Visual Studio–generated proxy is up to you. (That said, if your OData service proxy makes calls in a
synchronous fashion, you’ll need to modify this so that calls can be made asynchronously.)

Object-Relational Mapping
I’m not going to talk about the object-relational mapping subsystem that is used in the Windows Mobile
application. It’s identical to the one for Windows Phone. More details can be found in Chapter 6.

Retrieving Entities
By default, when you address the OData source with an HTTP GET operation on the appropriate URL, you
will receive a list of the entities. The URL that we request is this one:

http://services.multimobiledevelopment.com/services/Bookmarks.svc/Bookmark

When this request completes, our “success” callback will be called with an XDocument instance.
Here’s the code that initiates the request:

// Method within ODataServiceProxy class…
 public void GetAll<T>(Action<List<T>> callback, Failed failed)
 where T : Entity
 {
 EntityType et = EntityType.GetEntityType(typeof(T));

 // create a state object...
 ODataFetchState<T> state = new ODataFetchState<T>();
 state.Callback = callback;
 state.Failed = failed;

 // run...
 String url = GetServiceUrl(et);
 HttpHelper.DownloadXml(url, GetDownloadSettings(), new
Action<XDocument>(state.ReceiveXml), failed);
 }

 CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

173

The XML that we receive over this interface will look something like this:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<feed xml:base="http://services. multimobiledevelopment.com/services/Bookmarks.svc/"
xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
xmlns="http://www.w3.org/2005/Atom">
 <title type="text">Bookmark</title>
 <id>http://services. multimobiledevelopment.com/services/bookmarks.svc/Bookmark</id>
 <updated>2010-04-18T10:54:32Z</updated>
 <link rel="self" title="Bookmark" href="Bookmark" />
 <entry>
 <id>http://services. multimobiledevelopment.com/services/Bookmarks.svc/Bookmark(1002)</id>
 <title type="text"></title>
 <updated>2010-04-18T10:54:32Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Bookmark" href="Bookmark(1002)" />
 <category term="AmxMobile.Services.Bookmark"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:BookmarkId m:type="Edm.Int32">1002</d:BookmarkId>
 <d:UserId m:type="Edm.Int32">1001</d:UserId>
 <d:Name>.NET 247</d:Name>
 <d:Url>http://www.dotnet247.com/</d:Url>
 <d:Ordinal m:type="Edm.Int32">1</d:Ordinal>
 </m:properties>
 </content>
 </entry>
 <entry>
 <id>http://services. multimobiledevelopment.com/services/Bookmarks.svc/Bookmark(1001)</id>
 <title type="text"></title>
 <updated>2010-04-18T10:54:32Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Bookmark" href="Bookmark(1001)" />
 <category term="AmxMobile.Services.Bookmark"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:BookmarkId m:type="Edm.Int32">1001</d:BookmarkId>
 <d:UserId m:type="Edm.Int32">1001</d:UserId>
 <d:Name>Google</d:Name>
 <d:Url>http://www.google.co.uk/</d:Url>
 <d:Ordinal m:type="Edm.Int32">0</d:Ordinal>
 </m:properties>
 </content>
 </entry>
 <entry>

CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

174

 <id>http://services.multimobiledevelopment.com/services/Bookmarks.svc/Bookmark(1003)</id>
 <title type="text"></title>
 <updated>2010-04-18T10:54:32Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Bookmark" href="Bookmark(1003)" />
 <category term="AmxMobile.Services.Bookmark"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:BookmarkId m:type="Edm.Int32">1003</d:BookmarkId>
 <d:UserId m:type="Edm.Int32">1001</d:UserId>
 <d:Name>Topaz Filer</d:Name>
 <d:Url>http://www.topazfiler.com/</d:Url>
 <d:Ordinal m:type="Edm.Int32">2</d:Ordinal>
 </m:properties>
 </content>
 </entry>
</feed>

To turn that XML back into entities, all we have to do is walk the feed/entry elements in the ATOM
namespace. We can use the entity type to create instances of single entities and collections, and we can
also use the entity type as a source of information as to what fields are defined on the entity. As we walk
through the fields, we can retrieve the appropriate values from the XML and populate the entity. Here’s
some of the code involved that walks through the XML:

// LoadEntities method in the nested ODataFetchState class within ODataServiceProxy…
 protected List<T> LoadEntities(XDocument doc, EntityType et)
 {
 // feed...
 XElement feed = doc.Element(XName.Get("feed", AtomNamespace));
 if (feed == null)
 throw new InvalidOperationException("'feedElement' is null.");

 // walk...
 List<T> results = et.CreateCollectionInstance<T>();
 var entries = feed.Elements(XName.Get("entry", AtomNamespace));
 foreach (XElement entry in entries)
 {
 // get the content item...
 XElement content = entry.Element(XName.Get("content", AtomNamespace));
 if (content == null)
 throw new InvalidOperationException("'content' is null.");

 // then get the properties element...
 XElement properties = content.Element(XName.Get("properties",
MsMetadataNamespace));
 if (properties == null)
 throw new InvalidOperationException("'properties' is null.");

 // create an item...

 CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

175

 T item = (T)et.CreateInstance();
 if (item == null)
 throw new InvalidOperationException("'item' is null.");

 // then get the fields...
 Dictionary<string, object> values = new Dictionary<string, object>();
 foreach (XElement fieldElement in properties.Elements())
 {
 if (fieldElement.Name.Namespace == MsDataNamespace)
 {
 // do we have that field?
 EntityField field = et.GetField(fieldElement.Name.LocalName,
false);
 if (field != null)
 {
 // get the value...
 object value = this.GetValue(fieldElement);
 item.SetValue(field, value, SetReason.UserSet);
 }
 }
 }

 // add...
 results.Add(item);
 }

 // return...
 return results;
 }

Fetching Latest with the Sync Class
The operation of the Sync class is twofold. In the first instance, it has to be able to fetch a definitive set of
bookmarks from the server and store them in the local database (more on the local database later). In
the second instance, it has to be able to push local changes back. (This will be covered in a later section.)

Until we talk about the database activity, we’ll assume that we can save a Bookmark instance by
calling the SaveChanges method on the base Entity class. Here’s the code that receives the bookmarks
from the server and saves them locally. The wrinkle in this code is that the bookmarks from the server
have the server’s local/native ID in them. In order to insert them into our database, we need to exclude
this server-side ID, and hence we clone the bookmark entities prior to calling SaveChanges. (We’ll learn
more about how the database is updated in response to a SaveChanges call in a later section.)

// GetLatestMethod within Sync class…
 private void GetLatest()
 {
 Debug.WriteLine("Getting latest...");

 BookmarksService service = new BookmarksService();
 service.GetAll((Action<List<Bookmark>>)delegate(List<Bookmark> bookmarks)
 {
 // ensure...

CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

176

 SqlCeHelper db = new SqlCeHelper();
 db.EnsureTableExists(EntityType.GetEntityType(typeof(Bookmark)));

 // delete first...
 Bookmark.DeleteAll();

 // go through and save them...
 foreach (Bookmark fromServer in bookmarks)
 {
 // we need to clone it as the ones that come from the server will have an
ID set. we
 // need to junk this ID...
 Bookmark newBookmark = new Bookmark();
 newBookmark.Ordinal = fromServer.Ordinal;
 newBookmark.Name = fromServer.Name;
 newBookmark.Url = fromServer.Url;

 // set the local only stuff...
 newBookmark.IsLocalModified = false;
 newBookmark.IsLocalDeleted = false;

 // save...
 newBookmark.SaveChanges();
 }

 // signal that we've finished...
 this.Callback();

 }, this.Failed);
 }

Using SQL CE
As of the time of writing, we do not have access to a relational database on Windows Phone; however, we
have had SQL CE available to us on Windows Mobile since the Windows CE days. Therefore using SQL
CE seems like a natural choice. As I alluded to earlier, Microsoft is likely to enable SQL CE on Windows
Phone, and, as such, the work in this section should drop straight in. (As I also alluded to earlier, SQLite
would be nice to have on Windows Phone as well.)

All of the database functionality on the Windows Mobile application is done through a class called
SqlCeHelper. This uses the .NET Compact Framework System.Data.SqlServerCe namespace to
communicate with the SQL CE instance on the device.

SQL CE is file-based, much like SQLite, so all we have to do is nominate a file path to use and pass
that over to SQL CE via a connection string. Unlike SQLite, SQL CE will fail to connect if the database
does not exist, and, as such, we need to check for file existence and call a method on a management class
called System.Data.SqlServerCe.SqlCeEngine to create a database if one does not exist.

As expected, the SqlServerCe namespace operates using the standards laid out in ADO.NET;
therefore, if you’re familiar with using ADO.NET with something like full-blown SQL Server or Oracle,
there should not be too many surprises.

To start with, let’s have a look at our CreateConnection method. The purpose of this method is to
return back to us a configured SqlCeConnection instance. Here’s the code:

 CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

177

// CreateConnection method within SqlCeHelper…
 private SqlCeConnection CreateConnection()
 {
 // conn string...
 string filePath = Path.Combine(SixBookmarksRuntime.Current.ApplicationFolderPath,
SixBookmarksRuntime.Current.DatabaseFilename);
 string connString = string.Format("Data Source={0};Persist Security Info=False",
filePath);

 // if the file does not exist, create it...
 if (!(File.Exists(filePath)))
 {
 SqlCeEngine engine = new SqlCeEngine(connString);
 engine.CreateDatabase();
 }

 // return...
 return new SqlCeConnection(connString);
 }

If you’ve been reading along during the Android chapter, you’ll know that my preferred way to build
data access layers (DAL) is to create a class that represents a SQL statement. This class can be used to
build a proper, database-specific command at some point during the process. In addition, I also like to
build an interface that describes the source of a SQL statement and continue that by making the DAL
accept this interface as its base currency of execution instruction. The interface, I think, is particularly
neat because it means you can create a class that is a concrete representation of a statement, but you
can also create a class that is able to turn itself into a statement near the time of execution. Here’s the
interface:

using System;

namespace AmxMobile.WinMo.SixBookmarks
{
 public interface ISqlStatementSource
 {
 SqlStatement GetStatement();
 }
}

Here’s the implementation of SqlStatement. This class holds not only the command text to execute
but also a list of parameters that will be used with the statement. (Unlike SQLite, SQL CE uses named
parameters.)

using System;

namespace AmxMobile.WinMo.SixBookmarks
{
 public class SqlStatement : ISqlStatementSource
 {
 public string CommandText { get; set; }
 public List<SqlStatementParameter> Parameters {get; private set; }

CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

178

 public SqlStatement()
 {
 this.Parameters = new List<SqlStatementParameter>();
 }

 public SqlStatement(string commandText)
 : this()
 {
 this.CommandText = commandText;
 }

 public SqlStatement(string commandText, params object[] paramValues)
 : this(commandText)
 {
 for (int index = 0; index < paramValues.Length; index++)
 this.AddParameter("p" + index.ToString(), paramValues[index]);
 }

 public SqlStatement GetStatement()
 {
 return this;
 }

 private string GetNextUniqueName()
 {
 int index = 0;
 while (true)
 {
 // check...
 string name = "z" + index.ToString();
 SqlStatementParameter existing = GetParameter(name);
 if (existing == null)
 return name;

 // next...
 index++;
 }
 }

 private SqlStatementParameter GetParameter(string name)
 {
 foreach (SqlStatementParameter param in this.Parameters)
 {
 if (string.Compare(param.Name, name, true) == 0)
 return param;
 }

 // nope...
 return null;
 }

 CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

179

 internal SqlStatementParameter AddParameter(object value)
 {
 return AddParameter(GetNextUniqueName(), value);
 }

 internal SqlStatementParameter AddParameter(string name, object value)
 {
 SqlStatementParameter param = new SqlStatementParameter(name, value);
 this.Parameters.Add(param);

 // return...
 return param;
 }
 }
}

One final thing to discuss on this implementation is that if you add a parameter without a name, it
will allocate a name for you. (This comes in handy when building dynamic SQL with database engines
that use named parameters. We’ll see this later.)

Initially we need two basic methods—one that runs a statement and doesn’t return a value
(ExecuteNonQuery), and another that returns the first value from the first returned row (ExecuteScalar).
Both of these methods establish a connection and defer to a method we’ll see shortly, called
CreateCommand, which turns the ISqlStatementSource instance into a SqlCeCommand instance. Here’s the
code:

// Methods in SqlCeHelper…
 internal void ExecuteNonQuery(ISqlStatementSource sql)
 {
 using (SqlCeConnection conn = CreateConnection())
 {
 SqlCeCommand command = CreateCommand(conn, sql);

 // execute...
 try
 {
 command.ExecuteNonQuery();
 }
 catch (Exception ex)
 {
 throw HandleException(command, ex);
 }
 }
 }

 internal object ExecuteScalar(ISqlStatementSource sql)
 {
 using (SqlCeConnection conn = CreateConnection())
 {
 SqlCeCommand command = CreateCommand(conn, sql);

CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

180

 // execute...
 try
 {
 return command.ExecuteScalar();
 }
 catch (Exception ex)
 {
 throw HandleException(command, ex);
 }
 }
 }

The operation CreateCommand is to take the supplied ISqlStatementSource instance and call the
GetStatement method to get a real statement. (If the provided statement happens to be a SqlStatement
instance already, the GetStatement method will return a reference to this.)

CreateCommand, as well as creating the basic command and setting the command text, will also set
the parameters on the command. The final operation is to open the connection, if it’s not already open.
Here’s the code:

// CreateCommand method within SqlCeHelper…
 private SqlCeCommand CreateCommand(SqlCeConnection conn, ISqlStatementSource sql)
 {
 SqlStatement real = sql.GetStatement();

 // create...
 SqlCeCommand command = conn.CreateCommand();
 command.CommandText = real.CommandText;

 // params...
 foreach (SqlStatementParameter param in real.Parameters)
 command.Parameters.Add(param.Name, param.Value);

 // open...
 if (conn.State != System.Data.ConnectionState.Open)
 conn.Open();

 // return...
 return command;
 }

The final method to look at during this stage is the HandleException method. When errors are
thrown by SQL CE, the message text does not include the statement that failed. This makes
troubleshooting very difficult—HandleException wraps the SQL CE exception in another exception that
contains information on the failing query. (I haven’t included parameter information, to keep the code
simple in the book, but dumping the parameter values is very helpful in this sort of method.)

// HandleException method within SqlCeHelper…
 private Exception HandleException(SqlCeCommand command, Exception ex)
 {

 CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

181

 return new InvalidOperationException(string.Format("SQL statement execution
failed. SQL: {0}", command.CommandText), ex);
 }

That covers the basics of how we can undertake basic database operations. Next we’ll look at how
we can ensure that the database tables that we want to work with exist.

Ensuring Tables Exist
If you’ve followed along during the iOS or Android chapters, you’ll know that we need to be able to
determine if the table to support a given entity exists. If the table does not exist, we need to create it.

To save cycles from us having to check again and again whether a table exists, we’ll create a static
property on SqlCeHelper that stores a list of the entity types that have been checked. When a call to
EnsureTableExists is made, this property will be checked. If it’s the first time we have seen a call for the
given entity type, we’ll go ahead and check if the table is there—if not, we’ll create it. If it has been seen
before, we’ll short-circuit and return immediately.

In SQLite we have a directive (IF NOT EXISTS) that we can tack onto a CREATE TABLE statement that
means an error is not raised if a given table exists. On SQL CE, we have to physically check the schema.
This is done by querying the ANSI standard INFORMATION_SCHEMA.TABLES view that is exposed by SQL CE.
As stated earlier, if we find that the table is not there, we’ll create it. Here’s the code:

// Static property, static constructor and EnsureTableExists method within SqlCeHelper…
 private static List<EntityType> CheckedTables { get; set; }

 static SqlCeHelper()
 {
 CheckedTables = new List<EntityType>();
 }

 internal void EnsureTableExists(EntityType et)
 {
 // have we already checked it?
 if (CheckedTables.Contains(et))
 return;

 // check it...
 SqlStatement sql = new SqlStatement("select table_name from
information_schema.tables where table_name=@p0", et.NativeName);
 object result = this.ExecuteScalar(sql);
 try
 {
 if(!(result is string))
 CreateTable(et);
 }
 finally
 {
 CheckedTables.Add(et);
 }
 }

CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

182

The CreateTable method simply has to obtain a statement that can be used to build the table based
on the definition contained within the entity type’s metadata. In the implementation featured, we are
going to support strings, 32-bit integers, and Boolean values. In a real-world implementation, you would
likely need to support more; however, in order to keep the size of the code down in the book, I have
deliberately limited the data type support.

SQL CE does not support the VARCHAR SQL data type and, as such, needs to declare string fields as
the UNICODE-capable NVARCHAR type.

Here’s the code that will create a table for the given entity type:

// Methods within SqlCeHelper…
 private void CreateTable(EntityType et)
 {
 SqlStatement create = GetCreateStatement(et);

 // run...
 ExecuteNonQuery(create);
 }

 private SqlStatement GetCreateStatement(EntityType et)
 {
 StringBuilder builder = new StringBuilder();
 builder.Append("create table ");
 builder.Append(et.NativeName);
 builder.Append(" (");
 bool first = true;
 foreach (EntityField field in et.Fields)
 {
 if (first)
 first = false;
 else
 builder.Append(", ");

 // append...
 AppendCreateSnippet(builder, field);
 }
 builder.Append(")");

 // return...
 return new SqlStatement(builder.ToString());
 }

 private void AppendCreateSnippet(StringBuilder builder, EntityField field)
 {
 builder.Append(field.NativeName);
 builder.Append(" ");
 if (field.Type == DataType.String)
 {
 builder.Append("nvarchar(");
 builder.Append(field.Size);
 builder.Append(")");
 }
 else if (field.Type == DataType.Int32)

 CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

183

 {
 builder.Append("int");

 // autonumber?
 if (field.IsKey)
 builder.Append(" identity not null primary key");
 }
 else if (field.Type == DataType.Boolean)
 builder.Append("bit");
 else
 throw new NotSupportedException(string.Format("Cannot handle '{0}'.",
field.Type));
}

Now that we can create tables to store entities in, let’s look at how we can actually insert them.

Building EntityChangeProcessor
In the Windows Phone implementation, we built a class called DataBoxEntityChangeProcessor that was
able to create, change, or delete files from disk based on what had happened to the entity. If you
followed along during the iOS or Android discussions, you’ll know that we did essentially the same thing
by using SQLite.

The Entity class contains a stub method that creates a change processor and defers. Here’s the
code:

// SaveChanges method within Entity…
 public void SaveChanges()
 {
 EntityChangeProcessor processor = new EntityChangeProcessor(this.EntityType);
 processor.SaveChanges(this);
 }

From there, the SaveChanges method within EntityChangeProcessor can determine whether the
entity is new, has changed, or needs to be deleted, or whether no change needs to be made. Here’s the
code:

// SaveChanges method within EntityChangeProcessor…
 internal void SaveChanges(Entity entity)
 {
 if (entity.IsNew)
 Insert(entity);
 else if (entity.IsModified())
 Update(entity);
 else if (entity.IsDeleted)
 Delete(entity);
 }

The operation of the Insert, Update, or Delete methods is therefore one where a specialized SQL
query is constructed to perform the operation in question. We’ll start off by looking at Insert.

As you know, an insert statement is structured thus:

CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

184

INSERT INTO <table> (<columns>) VALUES (<values>)

Therefore all we have to do is build a statement of that form based on the metadata held in the
entity type and based on the values of the entity.

The one wrinkle is that best practice dictates that we have to use parameters to provide the values
into the query. In SQL CE, we have named parameters—e.g., @foo and @bar—whereas in SQLite, we have
ODBC-style ordinal parameters—i.e., every parameter is designated with ?. When we built the
SqlStatement class, we included an overload of AddParameter that would choose a unique name within
the context of the statement. This allows us to add named parameters into the query without having to
worry about naming collisions.

Here’s the code for Insert:

// Insert method within EntityChangeProcessor…
 internal void Insert(Entity entity)
 {
 SqlStatement sql = new SqlStatement();

 // create...
 StringBuilder builder = new StringBuilder();
 builder.Append("insert into ");
 builder.Append(this.EntityType.NativeName);
 builder.Append(" (");
 bool first = true;
 foreach (EntityField field in this.EntityType.Fields)
 {
 if (entity.IsModified(field))
 {
 if (first)
 first = false;
 else
 builder.Append(", ");
 builder.Append(field.NativeName);
 }
 }
 builder.Append(") values (");
 first = true;
 foreach (EntityField field in this.EntityType.Fields)
 {
 if (entity.IsModified(field))
 {
 if (first)
 first = false;
 else
 builder.Append(", ");

 // param...
 object value = entity.GetValue(field);
 SqlStatementParameter param = sql.AddParameter(value);
 builder.Append("@");
 builder.Append(param.Name);
 }
 }

 CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

185

 builder.Append(")");

 // run...
 sql.CommandText = builder.ToString();

 // run...
 SqlCeHelper db = new SqlCeHelper();
 db.EnsureTableExists(entity.EntityType);
 db.ExecuteNonQuery(sql);
 }

� Note This method works by looking for field values that have been modified. Therefore, if you try to insert an
entity, and a value for a given field has not been set, SQL CE will attempt to insert the default value for that
column. This may break constraints that you have specified on the table.

The Update method works essentially in the same way. The only real difference is that we need to
limit the UPDATE statement to update just the entity that we specify. To do this, there is a method called
AppendSelectConstraint that, as the name implies, appends a constraint to the query based on the key
value of the entity. Here’s the code:

// Methods within EntityChangeProcessor…
 internal void Update(Entity entity)
 {
 SqlStatement sql = new SqlStatement();

 // create...
 StringBuilder builder = new StringBuilder();
 builder.Append("update ");
 builder.Append(this.EntityType.NativeName);
 builder.Append(" set ");
 bool first = true;
 foreach (EntityField field in this.EntityType.Fields)
 {
 if (entity.IsModified(field))
 {
 if (first)
 first = false;
 else
 builder.Append(", ");
 builder.Append(field.NativeName);
 builder.Append("=@");

 // value...
 object value = entity.GetValue(field);
 builder.Append(sql.AddParameter(value).Name);
 }
 }

CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

186

 builder.Append(" where ");
 this.AppendSelectConstraint(builder, sql, entity);

 // run...
 sql.CommandText = builder.ToString();

 // run...
 SqlCeHelper db = new SqlCeHelper();
 db.EnsureTableExists(entity.EntityType);
 db.ExecuteNonQuery(sql);
 }

 private void AppendSelectConstraint(StringBuilder builder, SqlStatement sql, Entity
entity)
 {
 EntityField key = this.EntityType.GetKeyField();
 if (key == null)
 throw new InvalidOperationException("'key' is null.");
 builder.Append(key.NativeName);
 builder.Append("=@");
 builder.Append(sql.AddParameter(entity.GetValue(key)).Name);
 }

Finally, although we do not use it in the application, and hence it’s here just for completeness,
here’s the Delete method:

// Delete method within EntityChangeProcessor…
 internal void Delete(Entity entity)
 {
 SqlStatement sql = new SqlStatement();

 // delete...
 StringBuilder builder = new StringBuilder();
 builder.Append("delete from ");
 builder.Append(this.EntityType.NativeName);
 builder.Append(" where ");
 AppendSelectConstraint(builder, sql, entity);

 // run...
 sql.CommandText = builder.ToString();

 // run...
 SqlCeHelper db = new SqlCeHelper();
 db.EnsureTableExists(entity.EntityType);
 db.ExecuteNonQuery(sql);
 }

Selecting Entities
To round off the work that we need to do with SQL CE, we’ll look at how we can select out entities again.

 CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

187

Once more, if you’ve been following along during the Android and iOS development, you’ll know
that my preferred method for selecting entities is to create a “SQL filter.” The idea of a filter is that you
create one that is bound to a given type, and by default that filter will select out all entities of that type.
You can add constraints to the filter to limit the data returned to just the set that you want. The main
limitation of such a SQL filter is that it’s not suitable (in this implementation at least) to executing joins
or returning sets of data—it’s geared to providing a list of entities.

Our SqlFilter class essentially just has to associate an entity type with a set of constraints, and be
able to turn those two into a SELECT statement. (SqlFilter will implement ISqlStatementSource,
meaning that we can pass a SqlFilter directly into DAL methods without having to de-reference a
command first.) Each constraint will comprise a pair of values made up of an EntityField instance and
some value. Here’s the code for SqlConstraint:

using System;

namespace AmxMobile.WinMo.SixBookmarks
{
 public class SqlConstraint
 {
 internal EntityField Field { get; private set; }
 internal object Value { get; private set; }

 internal SqlConstraint(EntityField field, object value)
 {
 this.Field = field;
 this.Value = value;
 }
 }
}

� Note In this implementation, I have not included operators, implying that constraints can be matched only on
an “equal to” basis. More complete implementations would include all common operators, including “not equal
to,” “less than,” “contains,” etc.

After instantiating a SqlFilter instance and passing in an entity type, the caller can then invoke the
AddConstraint method to add constraints in. I have provided two overloads here—one that takes a name
and one that takes an EntityField instance. (Typically developers would work with the string names of
fields, as this is easier.) Here’s the code:

// Methods within SqlFilter…
 internal void AddConstraint(string name, object value)
 {
 EntityField field = this.EntityType.GetField(name, true);
 AddConstraint(field, value);
 }

 internal void AddConstraint(EntityField field, object value)

CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

188

 {
 this.Constraints.Add(new SqlConstraint(field, value));
 }

The most important method on SqlFilter is GetStatement. This method does two things—it will
check to make sure a table for the related entity type exists, and it will build a concrete SqlStatement
instance based on the metadata for the entity type and the parameter values. Here’s the code:

// GetStatement method within SqlFilter…
 public SqlStatement GetStatement()
 {
 // check that we have a table...
 SqlCeHelper helper = new SqlCeHelper();
 helper.EnsureTableExists(this.EntityType);

 // build it...
 SqlStatement sql = new SqlStatement();
 StringBuilder builder = new StringBuilder();
 builder.Append("select ");
 bool first = true;
 foreach (EntityField field in this.EntityType.Fields)
 {
 if (first)
 first = false;
 else
 builder.Append(", ");
 builder.Append(field.NativeName);
 }
 builder.Append(" from ");
 builder.Append(this.EntityType.NativeName);

 // constraints...
 if (Constraints.Count > 0)
 {
 builder.Append(" where ");

 // walk...
 first = true;
 foreach (SqlConstraint constraint in this.Constraints)
 {
 if (first)
 first = false;
 else
 builder.Append(" and ");

 // add...
 builder.Append(constraint.Field.NativeName);
 builder.Append("=@");
 builder.Append(sql.AddParameter(constraint.Value).Name);
 }
 }

 CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

189

 // return...
 sql.CommandText = builder.ToString();
 return sql;
 }

� Note You’ll also note that the constraints are always combined using AND. Again, a more sophisticated
implementation would allow for OR operators and nested operations.

The purpose of a SqlFilter is to get back a collection of entities or a single entity. The real
implementation of ExecuteEntityCollection will reside on SqlCeHelper, but for increased utility, there
are sub-methods on SqlFilter itself. Here’s the code:

// Methods within SqlFilter…
 internal List<T> ExecuteEntityCollection<T>()
 where T : Entity
 {
 SqlCeHelper db = new SqlCeHelper();
 return db.ExecuteEntityCollection<T>(this);
 }

 internal T ExecuteEntity<T>()
 where T : Entity
 {
 List<T> items = ExecuteEntityCollection<T>();
 if (items == null)
 throw new InvalidOperationException("'items' is null.");
 if (items.Count > 0)
 return items[0];
 else
 return null;
 }

The final thing to look at in terms of the database bits and pieces is the implementation of the real
ExecuteEntityCollection method on SqlCeHelper.

ExecuteEntityCollection has to do two things. It has to execute a command on the SQL CE
database that returns back a “firehose”-style data reader on the connection. It then has to walk the rows
returned by the reader and create concrete entities based on the data within. The result collection and
individual entities are created by the CreateCollectionInstance and CreateInstance methods on
EntityType. The values are set using the SetValue method. Importantly, when the value is set, the “set
reason” is specified as Load. What this does is mark the field within the entity as being loaded, but it does
not mark it as having been modified. This is important for keeping track of the entity’s state—after all,
when an entity has just been loaded from the database, none of its fields nor the entity itself has been
modified. Here’s the code:

CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

190

// ExecuteEntityCollection method within SqlCeHelper…
 internal List<T> ExecuteEntityCollection<T>(ISqlStatementSource sql)
 where T : Entity
 {
 using (SqlCeConnection conn = CreateConnection())
 {
 SqlStatement real = sql.GetStatement();

 // get...
 EntityType et = EntityType.GetEntityType(typeof(T));

 // command...
 SqlCeCommand command = CreateCommand(conn, real);
 try
 {
 // walk the reader...
 SqlCeDataReader reader = command.ExecuteReader();
 using (reader)
 {
 // create...
 List<T> results = et.CreateCollectionInstance<T>();
 while (reader.Read())
 {
 // create...
 T item = (T)et.CreateInstance();

 // walk...
 for (int index = 0; index < et.Fields.Count; index++)
 {
 EntityField field = et.Fields[index];

 // value...
 object value = reader.GetValue(index);
 item.SetValue(field, value, SetReason.Load);
 }

 // add...
 results.Add(item);
 }

 // return...
 return results;
 }
 }
 catch (Exception ex)
 {
 throw HandleException(command, ex);
 }
 }
 }

 CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

191

You’ll notice that we call HandleException at the end—again, I’ve included this to make
troubleshooting easier.

That brings us to the end of the (more detailed) examination of how the SQL CE implementation
works. Now we can look at the remainder of the application’s functionality.

Navigator
Showing the navigator form is the first example of how we have to transition from one form to the next.
This is done in a different fashion on Windows Mobile—in our case, each form is created as a modal
dialog and shown on top of the form below. Specifically, here’s the code to show the NavigatorForm class
when logon has passed and the synchronization operation has succeeded:

// Snippet of code from LogonOk method on LogonForm…
 using(NavigatorForm form = new NavigatorForm())
 form.ShowDialog();

In Windows Phone, there is no notion of modal forms—i.e., in the foregoing example, processing

will halt on LogonForm until the NavigatorForm is dismissed. It puts the application into a certain “mode,”
hence the name “modal.” Instead you have to ask the Sliverlight runtime to navigate to a URI that points
to a page within your application. (In fact, neither iOS nor Android supports modal forms at all, and
Windows Phone is odd in that its message box implementation is modal, whereas the iOS and Android
ones are not.)

Another place where this is a little nasty is that in Windows Mobile, if you want to pass information
to a child dialog, you simply define and set properties on that dialog. In Windows Phone, you cannot do
this—you either have to pass values in the query string of the URI or use shared memory as a “broker”
between the two classes. Both approaches have their plusses and minuses.

Another thing to consider is that on Android and Windows Phone you have a back button that
operates outside of your direct control. (For example, on Android after you have logged in and can see
the navigator, you can click the back button and get back to the logon form.)

� Note When moving from Windows Mobile to Windows Phone, you need to consider that you no longer have
modal forms and that navigation is done by specifying the URI of a local form.

Navigator Form Design
Like the iOS, Android, and Windows Phone implementations, the navigator form is a set of six buttons
(one for each possible bookmark) and one button each for the configure, logoff, and about options.
Figure 8-3 shows the designer view.

CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

192

Figure 8-3. The Navigator form

The functionality of this view is to request a list of bookmarks for display, which is then used to configure
the buttons.

The key difference between Windows Mobile and Windows Phone is how the device is instructed to
show a web page. In Windows Mobile, this is done in the same way as it is in Windows Forms—you
create a process targeted at the URL in question and let the operating system shell work out how to show
it. (In this case, the Internet Explorer instance is started and instructed to show the URL.) Here’s the
Windows Mobile code:

// Navigate method within NavigatorForm…
 private void Navigate(string url)
 {
 System.Diagnostics.Process.Start(url, string.Empty);
 }

On Windows Phone, you give the full URL to Silverlight and let it work out whether it’s supposed to
show a form within the application or use Internet Explorer to go to the URL in question.

 CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

193

� Note When moving from Windows Mobile to Windows Phone, any calls that show URLs have to be changed
from starting a process bound to the URL to a call via the Silverlight NavigationService class.

Configuring Bookmarks
The configuration window highlights an important difference between the user interface approaches on
iOS, Android, and Windows Phones.

All three of these devices have a user interface metaphor whereby an entire page is given over to a
list. (This approach has been particularly well implemented on iOS, where it’s extremely easy to build
rich and functional lists.) It’s extremely likely that any user of one of the new devices will expect to find
list information presented in the vendor’s preferred way, and hence a challenge to those migrating from
Windows Forms lies in rebuilding list-based user interfaces.

Figure 8-4 shows the old-school approach used in Windows Mobile. In particular it has a standard
Windows Forms ListBox control and two buttons.

Figure 8-4. A design surface showing a ListBox, the intended target for bookmarks

CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

194

On the Windows Phone implementation, we implemented the list in the proper way, using a view model
and a separate page for the singleton view. The dependencies in this approach mean that your current
representation of data within your code is likely not to be compatible with the Silverlight way of doing
things and, as such, migrating your list presentations from Windows Mobile to Windows Phone may not
be trivial.

� Note When moving from Windows Mobile to Windows Phone, old-school ways of presenting lists should be
migrated to the new way of presenting lists, using view models, data templates, and the like.

The mechanics of the bookmark modification (i.e., the business logic) are no different between
Windows Mobile and Windows Forms. A user interface is presented, and the values the user provided
are patched into the entity when the changes are saved. Figure 8-5 shows the designer of the singleton
edit.

Figure 8-5. The singleton edit page

 CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

195

As I’ve mentioned before, the actual logic of checking values and saving changes has not changed
between the Windows Mobile and Windows Phone implementations. Let’s look now at sending the
changes back up to the server.

Synchronization 2: Uploading Changes
In this last section, we’ll take a look at the other aspect of synchronization—pushing changes back up to
the server.

The actual synchronization logic hasn’t changed between the Windows Mobile and Windows Phone
versions. The state of the bookmarks stored on the device is tracked via the IsLocalModified and
IsLocalDeleted properties. When the “push changes” operation starts, it downloads the latest set of
bookmarks from the server and combines the server and local set to create a delta between the two. This
delta is then walked, pushing changes to the server as it progresses.

The difference between the two platforms is that on Windows Mobile we have had to roll our own
OData client, whereas on Windows Phone we can use the Visual Studio-generated proxy. (As before, if
you do happen to have coded up OData communication via a roll-your-own handler, it’s up to you
whether you want to migrate over to using the new Windows Phone approach. But remember that if
your handler works synchronously, you will need to make it asynchronous.)

For completeness, I’ll go through the implementation of the OData client in the Windows Mobile
application.

OData Operations
There are three supported OData operations (excluding reading, which we have already covered). These
are insert, update, and delete. Each of these methods uses a different HTTP request verb. Insert uses
POST, update uses MERGE, and delete uses DELETE.

Making the request is simply a matter of building XML in the correct format. I won’t go through the
structure of the XML again here, as this has been covered in the iOS and Android chapters (plus the
protocol can be found on the OData web site at www.odata.org/). The other wrinkle to handle is the URL.

For insert operations, the request is directed to the list URL, which in our case is this:
http://services.multimobiledevelopment.com/services/Bookmarks.svc/Bookmark.

For update and delete operations, the URL has to be specified as the specific URL for that specific
item. This URL is actually provided for us when we request entities from the server; however, the
protocol describes the URL as being the list URL plus the key of the entity in parentheses. For example,
the following refers to the bookmark with an ID of 27:
http://services.multimobiledevelopment.com/services/Bookmarks.svc/Bookmark(27).

In our implementation, GetEntityUrlForPush takes an entity and returns back a derived URL for that
entity. Here’s the code:

// Methods within ODataServiceProxy…
 private string GetServiceUrl(EntityType et)
 {
 return HttpHelper.CombineUrlParts(this.ResolvedServiceUrl, et.NativeName);
 }

 private string GetEntityUrlForPush(Entity entity, int serverId)
 {
 return string.Format("{0}({1})", GetServiceUrl(entity.EntityType), serverId);
 }

CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

196

The actual XML used for both update and insert is the same—only the verb and the URL change. For
this reason, we have to build only one method and tweak its operation when dealing with the other.
Here’s the code for PushUpdate that builds the URL and also initializes a call to the server via
ExecuteODataOperation (we’ll see this in a moment), and PushInsert, which defers to PushUpdate.

// Methods within ODataServiceProxy…
 public void PushUpdate(Entity entity, int serverId, Action callback, Failed failed)
 {
 XDocument doc = new XDocument();

 // entry...
 XElement entryElement = new XElement(XName.Get("entry", AtomNamespace));
 doc.Add(entryElement);

 // content...
 XElement contentElement = new XElement(XName.Get("content", AtomNamespace));
 contentElement.Add(new XAttribute(XName.Get("type", string.Empty),
"application/xml"));
 entryElement.Add(contentElement);

 // properties...
 XElement propertiesElement = new XElement(XName.Get("properties",
MsMetadataNamespace));
 contentElement.Add(propertiesElement);

 // walk the fields...
 EntityType et = entity.EntityType;
 if (et == null)
 throw new InvalidOperationException("'et' is null.");
 foreach (EntityField field in et.Fields)
 {
 if (!(field.IsKey) && field.IsOnServer)
 {
 // create...
 XElement element = new XElement(XName.Get(field.Name, MsDataNamespace));
 object value = entity.GetValue(field);
 if (value != null)
 element.Value = value.ToString();

 // add...
 propertiesElement.Add(element);
 }
 }

 // run...
 String url = null;
 ODataOperation op = ODataOperation.Update;
 String xmlAsString = doc.ToString();
 if (serverId != 0)
 url = GetEntityUrlForPush(entity, serverId);
 else
 {

 CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

197

 url = this.GetServiceUrl(et);
 op = ODataOperation.Insert;
 }

 // run...
 ExecuteODataOperation(op, url, xmlAsString, callback, failed);
 }

 public void PushInsert(Entity entity, Action callback, Failed failed)
 {
 // an insert is an update but with a different URL...
 PushUpdate(entity, 0, callback, failed);
 }

The delete operation does not require XML—all that we need to do is make a DELETE request against
the entity’s URL. Here’s the code, which again defers to ExecuteODataOperation:

// PushDelete method within ODataServiceProxy…
 public void PushDelete(Entity entity, int serverId, Action callback, Failed failed)
 {
 string url = GetEntityUrlForPush(entity, serverId);
 ExecuteODataOperation(ODataOperation.Delete, url, null, callback, failed);
 }

Actually sending the request is just an issue of getting the headers right. We need to pass up our
special headers defined on the Six Bookmarks protocol (x-amx-apiusername and x-amx-token), and we
also need to tell the server that we’re sending up application/atom-xml format data. Apart from that, it’s
just a matter of using the regular System.Net.HttpWebRequest class that’s available on both Windows
Mobile and Windows Phone. Here’s the code:

// Methods within ODataServiceProxy…
 private void ExecuteODataOperation(ODataOperation opType, String url, String xml,
Action callback, Failed failed)
 {
 // create the request...
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);

 // set the method...
 if (opType == ODataOperation.Insert)
 request.Method = "POST";
 else if (opType == ODataOperation.Update)
 request.Method = "MERGE";
 else if (opType == ODataOperation.Delete)
 request.Method = "DELETE";
 else
 throw new NotSupportedException(string.Format("Cannot handle '{0}'.",
opType));

 // headers... (including our special tokens)...
 DownloadSettings settings = this.GetDownloadSettings();
 foreach (string name in settings.ExtraHeaders.Keys)
 request.Headers.Add(name, settings.ExtraHeaders[name]);

CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

198

 // do we have xml?
 if (!(string.IsNullOrEmpty(xml)))
 {
 byte[] bs = Encoding.UTF8.GetBytes(xml);
 request.ContentLength = bs.Length;
 request.ContentType = "application/atom+xml";
 using (Stream stream = request.GetRequestStream())
 stream.Write(bs, 0, bs.Length);
 }

 // create a state object...
 ODataRequestState state = new ODataRequestState();
 state.Request = request;
 state.Callback = callback;
 state.Failed = failed;

 // run...
 request.BeginGetResponse(new AsyncCallback(HandleODataOperationResponse), state);
 }

 private class ODataRequestState
 {
 internal HttpWebRequest Request;
 internal Action Callback;
 internal Failed Failed;
 }

 private void HandleODataOperationResponse(IAsyncResult result)
 {
 // state...
 ODataRequestState state = (ODataRequestState)result.AsyncState;

 // try...
 try
 {
 // unwrap...
 HttpWebResponse response =
(HttpWebResponse)state.Request.EndGetResponse(result);

 // dispose the response...
 response.Close();

 // ok...
 state.Callback();
 }
 catch (WebException ex)
 {
 StringBuilder builder = new StringBuilder();
 builder.Append("An error occurred when making an OData request.");
 if (ex.Response is HttpWebResponse)
 {

 CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

199

 using (Stream stream = ((HttpWebResponse)ex.Response).GetResponseStream())
 {
 StreamReader reader = new StreamReader(stream);
 builder.Append(reader.ReadToEnd());
 }
 }

 // throw...
 throw new InvalidOperationException(builder.ToString(), ex);
 }
 catch (Exception ex)
 {
 state.Failed(ex);
 }
 }

One thing to consider in that code is that if an error does occur on the request, we’re getting all of
the content that comes back from the server and wrapping it in a new exception. This really helps with
troubleshooting.

That’s it! We’ve completed our whistle-stop tour of the Windows Mobile application.

Downloading Assemblies/Custom Bootstrappers
In this last section, I’d like to talk about a commonly done application feature that’s not possible on
Windows Phone, iOS, or Android.

In Windows Mobile, it’s entirely possible to do a neat trick possible on desktops, whereby you create
a bootstrapper application that downloads the latest version of the application from the Internet or an
intranet. This makes managing applications easier, in that you have to touch a device only once in order
to configure it and allow the device to automatically update as you go.

In the new order of the new phones, it’s not possible to do this. This has been done as a security
measure—all malware works by tricking the user into downloading and installing an application that he
or she did not agree to. Thus, while it’s possible to download a Windows Mobile assembly, late bind to it,
and run it, you cannot do this on Windows Phone, Android, or iOS.

This can be a big problem (it has been for at least one of my customers). If you manage a fleet of
devices and need to control exactly what version runs on those devices centrally and in a fashion that is
not a burden on the users, you are effectively going to have to wait for the world to catch up with you
again. For example, on Android Market, you can have only one version of the application published, and
users will be prompted to upgrade as and when new versions become available. The same is true for the
Apple App Store. Microsoft has said that on the Windows Phone Marketplace there will be the ability to
define “beta groups” and do a more controlled rollout. However, when all is said and done, as a
developer, you are essentially no longer allowed to download and run whatever code you fancy—the
only practical way to get software onto the device is through the store.

Conclusion
In this chapter, I haven’t shown you how to build the Windows Mobile application, but I have taken you
through the code, which you can download from http://code.multimobiledevelopment.com/. With
Microsoft deprecating the platform, it’s unlikely any of you will be looking to start new development on
Windows Mobile; however, it’s very likely that a good number of you have Windows Mobile code that
you need to migrate over. The main difference to look out for is a lack of synchronous calling capability

CHAPTER 8 � SIX BOOKMARKS ON WINDOWS MOBILE

200

on network requests—if you are doing any network communications, this will need to be changed. The
second large difference is that the user interface is essentially not migratable—you’re going to have to
rebuild your user interface from scratch.

C H A P T E R 9

� � �

201

BlackBerry: Installing the Toolset

In this chapter, we’re going to look at installing the toolset for building native BlackBerry projects.

A Word About Versions
As of the time of writing, BlackBerry is working on bring the PlayBook to market—PlayBook being a
competitor to the iPad. This does not work on the regular BlackBerry OS (currently version 6) but rather
uses an embedded operating system called QNX. QNX was bought by RIM prior to the PlayBook.
Strategically it looks like RIM has identified that native application development on BlackBerry OS is a
bit of a dead end and has looked to diversify into using a different platform. (This is rather similar to
Microsoft’s approach with Windows Mobile and Windows Phone.) BlackBerry has also gone on the
record saying that in the long term, QNX will be used as the OS of choice in the regular BlackBerry
smartphones, as opposed to BlackBerry OS.

In this chapter and the next few, we’re going to be developing on the regular BlackBerry OS version
6, as opposed to QNX.

Installing the Toolset
Development for BlackBerry is done within the Eclipse environment; hence, if you happened to go
through the Android section in this book’s sister book, you’ve got a bit of a head start. If you haven’t, the
first thing to do is install the Java SDK and the Eclipse IDE.

Installing the Java SDK
To find the Java SDK, Google “java sdk”. The first few hits should take you to a page where you can
download the Java JDK. The version that I have based the work in this book on is version 6u20.

Installing Eclipse
You can download Eclipse from www.eclipse.org/. In its Downloads section, it offers a number of what it
calls “packages,” which target different user sets. The package and version that I’ve used in this book is
the Eclipse IDE for Java Developers, which is based on Eclipse 3.6 SR1.

The installer for Eclipse is straightforward—go through and use the options that seem the most
sensible to you. As this process is straightforward and obvious, I’m not going to present any screenshots
or steps in this section.

CHAPTER 9 � BLACKBERRY: INSTALLING THE TOOLSET

202

Installing the BlackBerry Plug-In
The BlackBerry development tools and project templates are presented within the Eclipse environment
via a plug-in. Unlike most Eclipse plug-ins, which self-download and install from within Eclipse, you
have to run a separate installer, downloadable from the RIM web site, to get started.

To find the plug-in, Google “blackberry eclipse plugin”. The top hit should be a link to a page like
this one: http://us.blackberry.com/developers/javaappdev/javaplugin.jsp.

Download the plug-in installer, and install the plug-in. You will need to tell the installer where
Eclipse is installed—I’d advise caution on this because the installer implies that it has looked for where it
is installed, and it actually has not!

Installing the BlackBerry Device Simulator
To test your applications, you can use the BlackBerry device simulator. You get a few of these by default
when you install the plug-in.

The device that I’m using in these sections is the Storm2 9550 model, although you can, of course,
use any model that you wish. One word of warning, though—it’s far easier to work with the simulator if
you use one that supports a touchscreen interface. This allows you to click directly on the screen,
whereas if you do not have a simulated touchscreen, you have to drive the simulator by faking button
clicks on the device.

To start the simulator, navigate to the location where the Eclipse plug-in was installed. This will be a
path like c:\Program Files
(x86)\eclipse\plugins\net.rim.ejde.componentpack5.0.0_5.0.0.25\components\simulator. You should
find within that folder a batch file called 9550.bat. Run this batch file, and the simulator will start. Figure
9-1 shows the running simulator.

 CHAPTER 9 � BLACKBERRY: INSTALLING THE TOOLSET

203

Figure 9-1. The BlackBerry Storm2 9550 simulator running

As you would expect, you can use the simulator as if it were a regular BlackBerry device—although,
at the moment, it doesn’t have any Internet connection, which is something that we need to fix in the
next section.

To prove that you do not have an Internet connection, open the Browser application and attempt to
navigate to www.google.com/. The simulator will sit there for several minutes, and you won’t get to see
Google’s home page.

CHAPTER 9 � BLACKBERRY: INSTALLING THE TOOLSET

204

Installing the BlackBerry Email and MDS Simulator
BlackBerry’s heritage with regards to network connectivity is a bit odd because the OS predates the
regular “TCP/IP over cellular network”–type stack that the other devices are based on. In addition, a lot
of the functionality within a BlackBerry is tied to back-end/back-office systems (like BlackBerry
Enterprise Server, or BES), and, as a result, the BlackBerry simulator requires some extra software to be
running on your machine in order to give it access to the Internet. This comes in the guise of the
BlackBerry Email and MDS Simulator.

To download the package, Google “blackberry email and mds simulator”. The first hit should be the
item that you require. By way of a gotcha, make sure that you download something called a “simulator
package.” You need to get hold of an executable or an MSI file. (It is possible to download a “runtime,”
which is the wrong thing.)

When you run the installer, it will check for prerequisites—specifically it will look for the Java JDK
1.5 or higher. (Figure 9-2 illustrates.)

Figure 9-2. The prerequisites wizard asking for Java JDK 1.5

Your mileage may vary on this, but when I clicked Next and the wizard opened the web site to
download the JDK package, I was met with a message saying that it had been deprecated. (The URL that
it tries to go to as of the time of writing is http://java.sun.com/j2se/1.5.0/download.jsp.) I was able to

 CHAPTER 9 � BLACKBERRY: INSTALLING THE TOOLSET

205

make this work by downloading and installing the JDK 5.0 Update 22 package, although the
prerequisites wizard failed to identify this on loading. Anyway, once this is done, you can progress
through the installer and then try to run the MDS application.

To run the MDS application, open a command prompt and navigate to the directory where the MDS
service was installed. (On my machine, this happened to be C:\Program Files (x86)\Research In
Motion\BlackBerry Email and MDS Services Simulators 4.1.2\MDS.) From a command prompt (you
cannot do this from Explorer—you must do this from a command prompt), run the run.bat file in that
folder. This will start the service.

Now if you go back to the Browser application and try to go to Google again, you will see the home
page. Figure 9-3 illustrates.

Figure 9-3. Google’s home page in the BlackBerry simulator

CHAPTER 9 � BLACKBERRY: INSTALLING THE TOOLSET

206

We won’t be building a network-aware application in this chapter, but we will need an Internet
connection in the other BlackBerry chapters—hence the need to go through how to install and run the
MDS simulator.

“Hello, World”
Now that we have the basic setup complete, we can turn our attention to the “Hello, World” application.

To start with, create a new Eclipse workspace and add a new BlackBerry project to it. Figure 9-4
shows the wizard. Provide the name HelloWorld for the project. The only other important thing on this
page is to specify the Java Runtime Environment (JRE) that you wish to use. For this to work at all, you
must specify a special “BlackBerry JRE.” By default you are prompted to use the 5.0.0 version.

 CHAPTER 9 � BLACKBERRY: INSTALLING THE TOOLSET

207

Figure 9-4. The BlackBerry Project wizard

You can click Finish on this page, as the remainder of the options are suitable for our needs.
When the project has been created, Eclipse’s Package Explorer will show the project, but you don’t

have much created for you apart from a reference to the JAR file containing the BlackBerry libraries and
a manifest file called BlackBerry_App_Descriptor.xml. Figure 9-5 illustrates.

CHAPTER 9 � BLACKBERRY: INSTALLING THE TOOLSET

208

Figure 9-5. The Package Explorer state on creating a new project

For our project, we need to build two classes. One class will hold the regular Java main method that is
used to boot the application. The other class will hold a form.

We’ll start with the one that boots the application. Add a new class called AppMain, and add this
code:

// AppMain class
import net.rim.device.api.ui.UiApplication;

public class AppMain extends UiApplication
{
 public static void main(String[] args)
 {
 AppMain instance = new AppMain();
 instance.enterEventDispatcher();
 }

 public AppMain()
 {
 pushScreen(new AppForm());
 }
}

The purpose of this code is to create a new instance of a type that extends the special UiApplication
class. This, together with the call to enterEventDispatcher, effectively boots your application.

When building a user interface for a BlackBerry application, it’s necessary to do it all
programmatically by creating control instances and manually pushing them onto a presentation surface.
There is no designer capability within the regular BlackBerry tools. (This fact, together with the
crudeness of the BlackBerry user interface library, means it’s very difficult to make swish-looking
applications in comparison to the other dominant mobile platforms.)

Our AppForm class is actually very straightforward. We need to create a label for the form and add a
button. Here’s the code:

 CHAPTER 9 � BLACKBERRY: INSTALLING THE TOOLSET

209

// AppForm class
import net.rim.device.api.ui.component.ButtonField;
import net.rim.device.api.ui.component.LabelField;
import net.rim.device.api.ui.container.MainScreen;

public class AppForm extends MainScreen
{
 public AppForm()
 {
 super();

 // title...
 LabelField applicationTitle = new LabelField("Hello, World");
 setTitle(applicationTitle);

 // button...
 ButtonField button = new ButtonField("Say 'Hello'", ButtonField.CONSUME_CLICK);
 this.add(button);
 }
}

To try this, run the application by launching the project with the debugger (Run – Debug). When the
simulator starts, you will see the main screen, as per Figure 9-6.

CHAPTER 9 � BLACKBERRY: INSTALLING THE TOOLSET

210

Figure 9-6. The simulator showing the home screen

Oddly, the BlackBerry tools will not run the application for you, so you have to dig around and find
it. If you click the wallpaper image, you can access the full menu, as per Figure 9-7.

 CHAPTER 9 � BLACKBERRY: INSTALLING THE TOOLSET

211

Figure 9-7. The main menu

In the bottom right-hand corner, you will see the Downloads option. Your application should be in
here. Figure 9-8 illustrates.

CHAPTER 9 � BLACKBERRY: INSTALLING THE TOOLSET

212

� Note Your mileage may vary on this. If your application is not shown in the Downloads area, restart the
debugger.

Figure 9-8. The “Hello, World” application in the Downloads area

If you click the application, it will show the user interface that we defined earlier. Figure 9-9
illustrates.

 CHAPTER 9 � BLACKBERRY: INSTALLING THE TOOLSET

213

Figure 9-9. The “Hello, World” application

Handling the Button Click
To handle the button click, each control library class in the BlackBerry API will issue a fieldChanged
event via an interface on (typically) the owner class. Therefore, to handle the button click in our
application, all we have to do is set up this event and show a dialog. Helpfully within the BlackBerry API
we do have a class that we can use to display ad hoc messages. This class is called Dialog.

CHAPTER 9 � BLACKBERRY: INSTALLING THE TOOLSET

214

Here is the revised code:

// Revised code for AppForm…
import net.rim.device.api.ui.Field;
import net.rim.device.api.ui.FieldChangeListener;
import net.rim.device.api.ui.component.ButtonField;
import net.rim.device.api.ui.component.Dialog;
import net.rim.device.api.ui.component.LabelField;
import net.rim.device.api.ui.container.MainScreen;

public class AppForm extends MainScreen iimplements FieldChangeListener
{
 public AppForm()
 {
 super();

 // title...
 LabelField applicationTitle = new LabelField("Hello, World");
 setTitle(applicationTitle);

 // button...
 ButtonField button = new ButtonField("Say 'Hello'", ButtonField.CONSUME_CLICK);
 button.setChangeListener(this);
 this.add(button);
 }

 public void fieldChanged(Field field, int context)
 {
 // show the message...
 Dialog.alert("Hello, world.");
 }
}

Now if you run the application, you can click the button and see a message, as per Figure 9-10.

 CHAPTER 9 � BLACKBERRY: INSTALLING THE TOOLSET

215

Figure 9-10. The “Hello, world” message successfully displayed

Conclusion
That’s it! Now that we know that we can build and run projects, we can start work on the Six Bookmarks
application for BlackBerry.

C H A P T E R 10

� � �

217

BlackBerry: Building the
Logon Form and Consuming
REST Services

In this chapter, now that we have the toolset configured, we’re going to start building our Six Bookmarks
application for BlackBerry. This is going to involve starting a new project, creating the logon form layout,
and then building the infrastructure to call up to our API and Users RESTful services at
http://services.multimobiledevelopment.com/.

How This Project Was Built and Significant Issues
with BlackBerry Development
As you know, this book has a companion title that covers the same Six Bookmarks application, but
discusses iOS and Android rather than the platforms in this book. For those who do not have both books,
Android is based on Java, just like BlackBerry is (albeit a different variant of Java, which I shall get to
later). It also uses a similar approach to presenting its toolset—specifically a plug-in to Eclipse. So, in
order to build the BlackBerry version of Six Bookmarks, I ported the code from the Android version using
the stalwart technology that is “copy and paste.” This is different from how the other software in the
books was written, which was in every case a ground-up rewrite of each.

Why this is important is that it highlights problems alluded to in the last chapter with regards to
BlackBerry development, or to put it another way, the challenges that are faced by those looking to
develop native applications for BlackBerry that compete with those for iOS or Android, and, to an extent,
Windows Phone 7.

Specifically this is all to do with bits that are missing. BlackBerry’s Java runtime is based on a thing
called J2ME, or “Java 2 Platform, Mobile Edition.” J2ME was specifically written to support the last
generation of feature phones and quasi-smartphones—think Nokia and Symbian here. This, in turn, is
based on the Java Runtime Environment (JRE) v1.5. The v1.5 JRE is now quite old and doesn’t have
major language improvements such as generics and fast iterators (foreach statements). The library is
also missing buckets of things that you will be used to if you are either a Java (Android or non-Android)
or C# developer. There’s no String.format method, for example. Quite unbelievably there is no sort
function on dynamic arrays! And there are many more things missing that present the first layer of
challenges.

CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

218

The second layer of challenges comes from the fact that RIM has managed to get itself hugely
behind the game in terms of building an API and toolset for developing the kinds of applications that are
in vogue right now. For example, as mentioned in the last chapter, there is no WYSIWYG designer for
building user interfaces. There are also other bits missing—e.g., it’s hard to work with XML in any
meaningful way, and there’s a gaping hole in the library for HTTP communication, which means in the
final BlackBerry chapter we’re going to have to do a monumental hack to get things working (more
later).

In summary, building native applications for BlackBerry is much more difficult than it is for any of
the other featured platforms, but, with clever thinking and by picking your battles, it is possible to build
applications that do the same things as are possible on the other platforms. It probably won’t be that
elegant, however.

Creating the Project
The first place to start is creating a new BlackBerry project for the Six Bookmarks application. To do this,
you need to create a new workspace in Eclipse and then add a new project. If you’re not running Eclipse,
when it starts and you are prompted for a workspace folder path, create a new one. If you are running
Eclipse, select File Switch Workspace Other, and then specify a new workspace folder path.

In either case, add a new BlackBerry project like you did in Chapter 9. Figure 10-1 illustrates my
settings.

 CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

219

Figure 10-1. The New BlackBerry Project wizard

In the rest of this chapter, we will be looking at calling the services, and then we’ll look at building a
UI to call them by presenting the logon form to the user.

Conventions for Presenting Code
Each section in this book is going to have its own convention for presenting code, as each toolset
presents its own challenges for presenting code in book form.

In the BlackBerry sections, in the code available on the download, I’m going to separate the code
into distinct packages. I won’t necessarily call out the package before presenting code; therefore look for
package declarations in the code listing.

Another thing that I shall do with the code in these sections is where you’re adding a method to an
existing class, I’ll add a comment at the top of the listing telling you which class to add the code to. If the

CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

220

actual class declaration is specified, I won’t do this, and you should assume the name of the file
matches the name of the class.

The final point is that in Java I’m not necessarily going to follow Java’s code case conventions in
terms of camel case method names, but I will typically use .NET’s Pascal casing. There’s an argument
that when trying to maintain separate code bases with the same function, it’s a little easier to keep the
structure and coding conventions the same. .NET and Java are sufficiently flexible to accept each other’s
standards, and I’ve arbitrarily chosen .NET’s.

Calling RESTful Services
In Chapter 5, we built some classes that acted as proxy objects that could communicate with the services
at http://services.multimobiledevelopment.com/. In this chapter and the next, we’re going to build the
same objects again, but this time for BlackBerry.

If you recall, in Chapter 5, we built final classes called ApiService, UsersService, and
BookmarksService. We also built base classes of ServiceProxy, RestServiceProxy, and ODataServiceProxy.
Figure 10-2 illustrates.

Figure 10-2. UML static structure sketch showing proxy class relationships

Let’s now look at building these classes.

Issuing Web Requests
The first piece we need in place in order to use the API is the code that physically makes the requests to
the server.

 CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

221

In Chapter 5, we used a class in BootFX called HttpHelper that internally used the .NET Framework’s
System.Net.HttpWebRequest and System.Net.HttpWebResponse classes to issue the requests and process
the response. In this section, we’re going to build a new version of HttpHelper for BlackBerry.

The classes available within BlackBerry to do this can be found in the javax.microedition.io
namespace. This library is part of the J2ME library used by BlackBerry.

We’re going to create two main methods and a number of helper methods. The first of the main
methods (Download) will return a string that represents the response from the server. The second
(DownloadXml) will take the result of Download and load it into an XML document that can be processed
later.

The DownloadSettings Class
Recall that in Chapter 5, we passed up with the request special HTTP headers that told the server the
username of the API account and the token for the requests. (These headers were called x-amx-
apiusername and x-amx-token.) To make this happen, when the time comes, we need to provide to the
Download and DownloadXml methods a list of such headers and their values. As such, we’ll create a class
called DownloadSettings that’s designed to hold a collection of these settings in a regular Java Hashtable.
(For those familiar with a more modern version of Java, we can’t use generics here.)

Here’s the listing:

package com.amxmobile.SixBookmarks.Runtime;

import java.util.Hashtable;

public class DownloadSettings
{
 private Hashtable _extraHeaders = new Hashtable();

 public DownloadSettings()
 {
 }

 public Hashtable getExtraHeaders()
 {
 return _extraHeaders;
 }

 public void AddHeader(String name, String value)
 {
 if(value == null)
 value = "";

 getExtraHeaders().put(name, value);
 }
}

The Download and DownloadXml Methods
The Download method is not difficult, but it is a little bit fiddly, so we’ll go through it step by step. What
we’re looking to do is, given a particular URL, use the J2RE HTTP API to call up to the server, wait for a

CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

222

response, and then process it either as an error, or as successful. In the case that it’s successful, we want
to read all of the data that the server wishes to give us and store it in a string. (Ultimately in its
companion method we’ll read that string into an object that represents an XML document.)

Before we do this, we need to create a new class to put this stuff into. Add a class HttpHelper to the
project, like this:

package com.amxMobile.SixBookmarks.Runtime;

public class HttpHelper
{

}

We start off by creating a client instance and then asking it to issue an HTTP GET command to the
given URL. Here’s the code.

// Add to HttpHelper.java…
 public static String Download(String url, DownloadSettings settings) throws Exception
 {
 if(settings == null)
 settings = new DownloadSettings();

 HttpConnection conn = null;
 InputStream stream = null;
 try
 {
 conn = (HttpConnection)Connector.open(url);

The next bit is specific to our project as we have to pass up these special headers. We’ll walk through
the ExtraHeaders property of the supplied DownloadSettings instance and configure the request object
appropriately. Here’s the code:

 // headers...
 Hashtable headers = settings.getExtraHeaders();
 Enumeration keys = headers.keys();
 while(keys.hasMoreElements())
 {
 String key = (String)keys.nextElement();
 conn.setRequestProperty(key, (String)headers.get(key));
 }

We’re now ready to make the requests of the server. In the final part of the method, we’ll copy the
returned data into a string and clean up.

 // open...
 stream = conn.openInputStream();

 // walk...
 final int bufLen = 10240;
 byte[] buf = new byte[bufLen];
 StringBuffer raw = new StringBuffer();

 CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

223

 while(true)
 {
 int len = stream.read(buf, 0, bufLen);
 if(len == -1)
 break;

 // append...
 raw.append(new String(buf, 0, len));
 }

 // return...
 String html = raw.toString();
 return html;
 }
 finally
 {
 if(stream != null)
 stream.close();
 if(conn != null)
 conn.close();
 }
 }

That’s all there is to the Download method. As mentioned before, DownloadXml will take the output of
Download and load it into an object capable of representing an XML document. Specifically, this will be
an org.w3c.dom.Document instance. It’ll do this by deferring to a class called XmlHelper, which we’ll build
shortly. Here’s the code:

// Add to HttpHelper.java…
 public static Document DownloadXml(String url, DownloadSettings settings)�
 throws Exception
 {
 // get the plain content...
 String xml = Download(url, settings);

 // turn that into some XML...
 Document doc = XmlHelper.LoadXml(xml);
 return doc;
 }

We’ll stub out LoadXml on the new XmlHelper class now, so that the application continues to compile.
Here’s the stub code:

package com.amxMobile.SixBookmarks.Runtime;

public class XmlHelper
{
 public static Document LoadXml(String xml) throws Exception
 {
 throw new Exception("Not implemented.");
 }
}

CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

224

Extra Methods on HttpHelper
There are two methods we will need on HttpHelper that help the caller build URLs that can be used with
Download and DownloadXml.

When we come to make a request of our RESTful services, we’re going to create a hashtable of
name/value pairs that need to be built into the query string of the URL. We’ll need methods called
BuildUrl and BuildQueryString that will help us do this. Here’s the code:

 public static String BuildQueryString(Hashtable<String, Object> values)
 {
 StringBuilder builder = new StringBuilder();
 for(Object key : values.keySet())
 {
 if(builder.length() > 0)
 builder.append("&");
 builder.append(key);
 builder.append("=");
 builder.append(values.get(key));
 }

 // return...
 String qs = builder.toString();
 return qs;
 }

 public static String BuildUrl(String url, Hashtable<String, Object> values)
 {
 int index = url.indexOf("?");
 if(index != -1)
 url = url.substring(0, index);

 // add...
 url = url + "?" + BuildQueryString(values);
 return url;
 }

Authenticating Our API Account
We’ve now got the pieces in place to start building the ServiceProxy, RestServiceProxy, and ApiService
classes.

ServiceProxy is the base class that all of the service proxies will use. It has a number of functions:

• It will store as constant strings the username and password to your API account at
http://services.multimobiledevelopment.com/. You will need to change this in
order to use the project files if you download the code.

• It will store in static memory the token provided by the server that should be used
with API requests. (Recall that within a session we make one request to tell the
server we want a token, and then all other requests use that token.)

• It will store in instance memory the name of the service that the proxy relates to.

 CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

225

• It will provide a DownloadSettings instance that’s configured with the special
headers that we need to pass up, depending on the state of the stored token.

• It will manage the process of ensuring the API is authenticated.

Here’s the code that does everything apart from ensuring that the API is authenticated, which we
will do later. Add this new class to the project:

package com.amxmobile.SixBookmarks.Services;

import javax.microedition.global.Formatter;

public abstract class ServiceProxy
{
 private String _serviceName;
 private static String _token;

 private final String RootUrl = "http://services.multimobiledevelopment.com/services/";

 // YOU MUST CHANGE THESE VALUES IN ORDER TO USE THIS SAMPLE...
 protected final String ApiUsername = "amxmobile";
 private final String ApiPassword = "password";

 protected ServiceProxy(String serviceName)
 {
 _serviceName = serviceName;
 }

 public String getServiceName()
 {
 return _serviceName;
 }

 public String getResolvedServiceUrl()
 {
 return RootUrl + getServiceName();
 }

 protected static String getToken()
 {
 return _token;
 }

 protected void setToken(String token)
 {

CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

226

 _token = token;
 }

 protected DownloadSettings GetDownloadSettings()
 {
 DownloadSettings settings = new DownloadSettings();
 settings.AddHeader("x-amx-apiusername", ApiUsername);
 settings.AddHeader("x-amx-token", getToken());

 // return...
 return settings;
 }
}

Here’s something else we need to add to ServiceProxy—the EnsureApiAuthenticated method. We’ll
build this out later.

// Add to ServiceProxy.java
 protected void EnsureApiAuthenticated() throws Exception
 {
 throw new Exception("Not implemented.");
 }

The LogonResponse
Regardless of whether we’re authenticating the API or the user, we’ll need an object that describes the
result of the call. We’ll create a class called LogonResponse that holds this data together with a set of
constants that represents the ultimate result. Here it is:

package com.amxmobile.SixBookmarks.Services;

import javax.microedition.global.Formatter;

public class LogonResponse
{
 public final static int RESULT_OK = 0;
 public final static int RESULT_INVALID_USERNAME = 1;
 public final static int RESULT_INVALID_PASSWORD = 2;
 public final static int RESULT_USER_INACTIVE = 3;

 private String _token;
 private String _message;
 private int _result;

 public LogonResponse(int result, String message, String token)
 {
 _result = result;
 _message = message;
 _token = token;
 }

 CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

227

 public String getMessage()
 {
 return _message;
 }

 public String getToken()
 {
 return _token;
 }

 public int getResult()
 {
 return _result;
 }

 public static int ParseLogonResult(String asString) throws Exception
 {
 if(asString.compareTo("LogonOk") == 0)
 return RESULT_OK;
 else if(asString.compareTo("InvalidUsername") == 0)
 return RESULT_INVALID_USERNAME;
 else if(asString.compareTo("InvalidPassword") == 0)
 return RESULT_INVALID_PASSWORD;
 else if(asString.compareTo("AccountInactive") == 0)
 return RESULT_USER_INACTIVE;
 else
 throw new Exception(Formatter.formatMessage("Cannot handle '{0}'.",�
 new String[] { asString }));
 }
}

Building the XmlHelper Class
In Chapter 5, we used the BootFX HttpHelper class to smooth over the intricacies of making HTTP
requests. We also used the BootFX class XmlHelper to make working with XML data easier.

BlackBerry uses the regular XML DOM manipulation API found in the com.w3c.dom namespace.
Although extremely fiddly, this API provides a very powerful set of functions for reading and changing
XML documents in a safe and ultimately maintainable fashion. (The full version of the API also allows
you to create documents, but this creation functionality is not available on BlackBerry.)

� Note For those who have not used the W3C implementation before but have used the .NET System.Xml
namespace, the two are essentially the same.

For those who are coming at this completely cold, the principle is that a document is made up of
“nodes.” A node represents anything and everything in the document, e.g., elements, attributes, text

CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

228

values, type declarations, etc. When reading the document, you walk the nodes. When building or
changing the document, you create nodes and insert them as children of other nodes.

The first two methods we’ll add to XmlHelper will load a document from a string or from a stream.
(Both use the regular Java I/O library.) Here’s the code:

// Add to XmlHelper.java

 public static Document LoadXml(String xml) throws Exception
 {
 // create...
 ByteArrayInputStream stream = new ByteArrayInputStream(xml.getBytes());
 try
 {
 return LoadXml(stream);
 }
 finally
 {
 if(stream != null)
 stream.close();
 }
 }

 private static Document LoadXml(InputStream stream) throws Exception
 {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 factory.setNamespaceAware(true);

 // builder...
 DocumentBuilder builder = factory.newDocumentBuilder();
 Document doc = builder.parse(stream);

 // return...
 return doc;
 }

Personally, I’m a big fan of these object-model-style libraries for manipulating XML documents;
however, the compromise that one has to make is that they’re very fiddly to use. I tend to build helper
libraries—like the one we’re about to see—to make working with the documents easier.

� Note We’re going to add the minimum number of functions here. Practically, you need a library that has far
more variations of the types of data and the formats that can be returned. However, as always, review the version
of the class in the project files at http://code.multimobiledevelopment.com/, as these will be developed
further and have more functions.

It’s worth mentioning, though, that some people do not like using these DOM-based libraries, as
they are inefficient in terms of processor time and memory used. On mobile devices, this is a greater

 CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

229

consideration than on a desktop or server; however, my personal philosophy is to follow a pragmatic,
“balancing ease of building and ease of maintenance” approach, and parsers are much harder to build
and maintain.

Back to the subject of building helper libraries for reading XML—one common requirement of such
a library is to extract element values from a parent element given the name of a child. For example,
consider the following XML. It would be very helpful to be able to issue a single request against the
Customer element to get FirstName and LastName values back:

<Customer>
 <FirstName>Andy</FirstName>
<LastName>Williams</LastName>
</Customer>

If we have a Customer element and we want to get values back from the child values, a good
approach is to have one method that returns the child element and another that extracts the value from
it. In this implementation, we’re going to support three data types: string, Boolean, and 32-bit integer. In
a more advanced language implementation, we would use an enumeration here, but enumerations are
not supported in the JRE supported on BlackBerry, and hence we’ll have to use constants.

public class XmlHelper
{
 public final static int DATATYPE_STRING = 0;
 public final static int DATATYPE_INT32 = 1;
 public final static int DATATYPE_BOOLEAN = 2;

 // code omitted for brevity…
}

Within XmlHelper, we’ll go ahead and create methods that return back strongly typed data and use a
generic method that can fetch any type of data. Here’s the code:

// Add to XmlHelper.java

 public static String GetElementString(Element element, String name, boolean�
 throwIfNotFound) throws Exception
 {
 return (String)GetElementValue(element, name, DATATYPE_STRING,�
 throwIfNotFound);
 }

 public static boolean GetElementBoolean(Element element, String name, boolean�
 throwIfNotFound) throws Exception
 {
 return ((Boolean)GetElementValue(element, name, DATATYPE_BOOLEAN,�
 throwIfNotFound)).booleanValue();
 }

 public static int GetElementInt32(Element element, String name, boolean�
 throwIfNotFound) throws Exception
 {
 return ((Integer)GetElementValue(element, name, DATATYPE_INT32,�

CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

230

 throwIfNotFound)).intValue();
 }

 private static Object GetElementValue(Element element, String name, int dataType,�
 boolean throwIfNotFound) throws Exception
 {
 // find it...
 NodeList nodes = element.getElementsByTagName(name);
 if(nodes.getLength() == 1)
 {
 if(dataType == DATATYPE_STRING)
 return GetStringValue(nodes.item(0));
 else if(dataType == DATATYPE_BOOLEAN)
 return new Boolean(GetBooleanValue(nodes.item(0)));
 else if(dataType == DATATYPE_INT32)
 return new Integer(GetInt32Value(nodes.item(0)));
 else
 throw new Exception(Formatter.formatMessage("Cannot handle�
 '{0}'.", new String[] { new Integer(dataType).toString() }));
 }
 else if(nodes.getLength() == 0)
 {
 if(throwIfNotFound)
 {
 throw new Exception(Formatter.formatMessage("An element�
 with name '{0}' was not found within an element with name '{1}'.",
 new String[] { name, element.getNodeName()�
 }));
 }
 else
 return null;
 }
 else
 {
 throw new Exception(Formatter.formatMessage("Too many ({0}) child�
 elements were found.",
 new String[] { new�
 Integer(nodes.getLength()).toString() }));
 }
 }

Note that in the generic GetElementValue method, we’re deferring to methods called
GetStringValue, GetBooleanValue, and GetInt32Value. These methods will do the actual conversion for
us. As the data in the XML file is formatted as text, the GetStringValue will be the “master” method, and
the others will defer to that and convert the values. Here’s the code:

// Add to XmlHelper.java

 public static String GetStringValue(Node item) throws Exception
 {
 if(item instanceof Element)

 CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

231

 {
 Node node = item.getFirstChild();
 if(node != null)
 return node.getNodeValue();
 else
 return "";
 }
 else
 throw new Exception(Formatter.formatMessage("Cannot handle '{0}'.",�
 new String[] { item.getClass().getName() }));
 }

 public static int GetInt32Value(Node item) throws Exception
 {
 String asString = GetStringValue(item);
 return Integer.parseInt(asString);
 }

 public static boolean GetBooleanValue(Node item) throws Exception
 {
 String asString = GetStringValue(item);
 if(asString.compareTo("0") == 0 || asString.toLowerCase().compareTo("false")�
 == 0)
 return false;
 else if(asString.compareTo("1") == 0 ||�
 asString.toLowerCase().compareTo("true") == 0)
 return true;
 else
 {
 throw new Exception(Formatter.formatMessage("The value '{0}' could�
 not be recognised as valid Boolean value.",
 new String[] { asString }));
 }
 }

We can now go ahead and build the ApiService class and implement the Logon method.

Creating the Logon Method on the API Service
In Chapter 2, we looked at the protocol exposed by the service at
http://services.multimobiledevelopment.com/. By way of a reminder, here’s what the XML from a
successful call to the Logon operation looks like on the service:

<AmxResponse>
 <Result dt:type="string" xmlns:dt="urn:schemas-microsoft-com:datatypes">LogonOk</Result>
 <Token>d8313229998afe2de52698934a51dfb6</Token>
 <HasException dt:type="boolean" xmlns:dt="urn:schemas-microsoft-com:datatypes">�
0</HasException>
</AmxResponse>

CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

232

And here’s what a call that exposes an error looks like:

<AmxResponse>
 <Error>System.InvalidOperationException: Neither a logon token nor API key was provided�
 in the request. Ensure a token was provided in the URL.
 at AmxMobile.Services.ServiceAuthenticator.GetApi(LogonToken& token)
 at AmxMobile.Services.Web.RestBasePage.OnLoad(EventArgs e)</Error>
 <HasException dt:type="boolean" xmlns:dt="urn:schemas-microsoft-com:datatypes">�
1</HasException>
</AmxResponse>

The reason I wanted to present these here is that we will need to write code that can detect when the
server returned an exception and, if so, throw a Java exception instance based on the data in the XML.

Recall that in Chapter 5, we created a class called RestRequestArgs that would package up the values
that we needed to send to the server. We’ll do the same thing here by extending Hashtable and also
forcing a value to be set representing the operation in the constructor. Here’s the code:

package com.amxmobile.SixBookmarks.Services;

import java.util.Hashtable;

public class RestRequestArgs extends Hashtable
{
 public RestRequestArgs(String operation)
 {
 this.put("operation", operation);
 }
}

That’s all we need to do with RestRequestArgs—the standard operation of Java’s Hashtable class
does the rest.

The job of RestServiceProxy will be to take a RestRequestArgs instance and combine it with the root
URL and the service name to make the request. It will also detect whether an exception occurred on the
server and throw a Java exception if it did. The method will also return the root AmxResponse element
back to the caller. Here’s the code for the new class RestServiceProxy:

package com.amxmobile.SixBookmarks.Services;

import javax.microedition.global.Formatter;

import org.w3c.dom.Document;
import org.w3c.dom.Element;

import com.amxmobile.SixBookmarks.Runtime.HttpHelper;
import com.amxmobile.SixBookmarks.Runtime.XmlHelper;

public class RestServiceProxy extends ServiceProxy
{
 protected RestServiceProxy(String serviceName)
 {

 CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

233

 super(serviceName);
 }

 protected Element SendRequest(RestRequestArgs args) throws Exception
 {
 // ensure that we have an authenticated API...
 this.EnsureApiAuthenticated();

 // get the URL...
 String url = this.getResolvedServiceUrl();
 url = HttpHelper.BuildUrl(url, args);

 // download...
 Document doc = HttpHelper.DownloadXml(url, GetDownloadSettings());
 try
 {
 // find the response...
 Element root = doc.getDocumentElement();
 if(root.getNodeName().compareTo("AmxResponse") != 0)
 throw new Exception(Formatter.formatMessage("The root�
 element had an invalid name of '%s'.", new String[] { root.getNodeName() }));

 // get...
 boolean hasException = XmlHelper.GetElementBoolean(root,�
 "HasException", true);
 if(!(hasException))
 return root;
 else
 {
 // get the error...
 String error = XmlHelper.GetElementString(root, "Error",�
 true);
 throw new Exception(Formatter.formatMessage("The server�
 returned an error: {0}", new String[] { error }));
 }
 }
 catch(Exception ex)
 {
 throw new Exception(Formatter.formatMessage("An error occurred�
 when processing a response returned from a REST request.\nURL: {0}\r\nInner: {1}",
 new String[] { url, ex.toString() }));
 }
 }
}

Note how the first thing this method does is call EnsureApiAuthenticated. We’re going to build that
in the next section (recall that we added it before and forced it to throw an exception).

Building the ApiService class should now be easy, as we have everything in place. Here’s the code:

CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

234

package com.amxmobile.SixBookmarks.Services;

import org.w3c.dom.Element;

import com.amxmobile.SixBookmarks.Runtime.XmlHelper;

public class ApiService extends RestServiceProxy
{
 public ApiService()
 {
 super("apirest.aspx");
 }

 public LogonResponse Logon(String password) throws Exception
 {
 // create the request...
 RestRequestArgs args = new RestRequestArgs("logon");
 args.put("password", password);

 // send the request...
 Element element = SendRequest(args);

 // what happened?
 String asString = XmlHelper.GetElementString(element, "Result", true);
 int result = LogonResponse.ParseLogonResult(asString);

 // message...
 String message = XmlHelper.GetElementString(element, "Message", false);

 // then what?
 if(result == LogonResponse.RESULT_OK)
 {
 String token = XmlHelper.GetElementString(element, "Token", true);
 return new LogonResponse(result, message, token);
 }
 else
 return new LogonResponse(result, message, "");
 }

 protected void EnsureApiAuthenticated()
 {
 // no-op...
 }
}

Now that we have a method that can call the Logon operation on the live service, let’s wire it up so
that it actually happens!

 CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

235

Wiring Up EnsureApiAuthenticated
The flow of the protocol defined by the service is that the RESTful and OData services require a server-
provided token to validate the call. The “chicken and egg” situation is that we need to call the server to
get a token; hence we need a special first step to do so.

EnsureApiAuthenticated is called in RestServiceProxy as part of the method that physically directs
the request to the server. The operation of this method looks to see if a token is defined in global (static)
memory, and, if not, it creates an instance of the ApiService proxy class and calls the Logon operation
that we have just rigged up. To prevent a stack overflow situation, the ApiService class overrides the
operation of EnsureApiAuthenticated to turn it into a “no-operation.” Here’s the implementation of
EnsureApiAuthenticated that needs to be added to the base ServiceProxy class:

// Add to ServiceProxy.java – replace the existing stub method…

 protected void EnsureApiAuthenticated() throws Exception
 {
 // check that we've authenticated...
 String asString = getToken();
 if (asString == null || asString.length() == 0)
 {
 // call up to the API service...
 ApiService service = new ApiService();
 LogonResponse response = service.Logon(ApiPassword);
 if (response == null)
 throw new Exception("'response' is null.");

 // can we?
 if (response.getResult() == LogonResponse.RESULT_OK)
 this.setToken(response.getToken());
 else
 {
 throw new Exception(Formatter.formatMessage("The server request failed with�
 the error '{0}'. Ensure that you have set the values of the ApiUsername and ApiPassword�
 constants to the credentials of your Six Bookmarks service account at {1}.",
 new String[] { new Integer(response.getResult()).toString(), RootUrl }));
 }
 }
 }

You won’t see much output from this flow, but it’s absolutely required in order to make the protocol
work the way that it needs to in order to communicate with the server.

We won’t be calling this method for a while, but first let’s press on and build the UsersService class.

Authenticating the User via UsersService
The Logon method on UserServices is very easy to implement. We’ve worked sufficiently hard on our
base classes and supporting code that making the call is just a few lines. Here it is:

package com.amxmobile.SixBookmarks.Services;

import org.w3c.dom.Element;

CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

236

import com.amxmobile.SixBookmarks.Runtime.XmlHelper;

public class UsersService extends RestServiceProxy
{
 public UsersService()
 {
 super("usersrest.aspx");
 }

 public LogonResponse Logon(String username, String password) throws Exception
 {
 // create the request...
 RestRequestArgs args = new RestRequestArgs("logon");

 // add the username and password...
 args.put("username", username);
 args.put("password", password);

 // send the request...
 Element element = SendRequest(args);

 String asString = XmlHelper.GetElementString(element, "Result", true);
 int result = LogonResponse.ParseLogonResult(asString);

 // message...
 String message = XmlHelper.GetElementString(element, "Message", false);

 // return...
 return new LogonResponse(result, message, "");
 }
}

And that’s it! In the next sections, we’ll build the logon form user interface and actually call the
method (and, of course, the whole chain of operations that makes it possible).

Creating the Logon Form
Now that we have the business logic more or less done, we can build the user interface. As discussed in
the last chapter, building the user interface on BlackBerry is done manually by programmatically adding
controls to a presentation surface.

In the BlackBerry API, presentation surfaces are extended from Screen, although we’ll be extending
from MainScreen, which is the correct class to use to present a full-screen view to the user. Again, within
the API, all of the control classes extend Field, and in this example we’ll be seeing EditField,
PasswordEditField, CheckBoxField, and ButtonField.

When building BlackBerry forms, convention dictates that we add a field to the form that displays a
title. This is done using the setTitle method of MainScreen. Here’s the code for a new LogonForm class
that sets up the basic presentation interface as we require.

package com.amxmobile.SixBookmarks;

import net.rim.device.api.ui.*;

 CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

237

import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;

public class LogonForm extends MainScreen
{
 private EditField _usernameTextBox;
 private PasswordEditField _passwordTextBox;
 private CheckboxField _rememberMeCheckBox;
 private ButtonField _logonButton;

 public LogonForm()
 {
 super();

 // start...
 SixBookmarksRuntime.Start();

 // title...
 setTitle(new LabelField("Welcome to Six Bookmarks"));

 // controls...
 this.add(new LabelField("Username"));
 _usernameTextBox = new EditField();
 this.add(_usernameTextBox);

 this.add(new LabelField("Password"));
 _passwordTextBox = new PasswordEditField();
 this.add(_passwordTextBox);

 _rememberMeCheckBox = new CheckboxField("Remember me", true);
 this.add(_rememberMeCheckBox);

 _logonButton = new ButtonField("Logon", ButtonField.CONSUME_CLICK);
 this.add(_logonButton);
 }
}

If you run the application now, you will see the form, although it obviously won’t do anything yet.
Figure 10-3 illustrates.

CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

238

Figure 10-3. The basic logon form

You may recall in the last chapter that the way we received notification of a button click was by
implementing FieldChangeListener on the form and calling the setChangeListener method. We can do
this again and call a method called HandleLogon, this being a method that we’ll flesh out in more detail in
the next section. Here’s the revised code:

package com.amxmobile.SixBookmarks;

import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;

public class LogonForm extends MainScreen implements FieldChangeListener
{
 private EditField _usernameTextBox;
 private PasswordEditField _passwordTextBox;
 private CheckboxField _rememberMeCheckBox;
 private ButtonField _logonButton;

 public LogonForm()
 {
 super();

 // start...
 SixBookmarksRuntime.Start();

 // title...
 setTitle(new LabelField("Welcome to Six Bookmarks"));

 CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

239

 // controls...
 this.add(new LabelField("Username"));
 _usernameTextBox = new EditField();
 this.add(_usernameTextBox);

 this.add(new LabelField("Password"));
 _passwordTextBox = new PasswordEditField();
 this.add(_passwordTextBox);

 _rememberMeCheckBox = new CheckboxField("Remember me", true);
 this.add(_rememberMeCheckBox);

 _logonButton = new ButtonField("Logon", ButtonField.CONSUME_CLICK);
 _logonButton.setChangeListener(this);
 this.add(_logonButton);
 }

 public void fieldChanged(Field field, int context)
 {
 try
 {
 if(field == _logonButton)
 HandleLogon();
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex);
 }
 }

 private void HandleLogon() throws Exception
 {
 throw new Exception("Not implemented.");
 }
}

If you run the code now, it won’t do anything much different than what it did before. Let’s now look
at the logon functionality itself.

Logging On
Toward the bottom of the Logon class listing, you’ll notice the button handler called HandleLogon on the
controller. What we need to do here is validate the user input—if it’s valid, run a logon operation, and if
it’s invalid, tell the user about the problem.

Recall in Chapter 5 that when we needed to validate the logon input, we created a class called
ErrorBucket that held a simple list of strings. We need a similar thing here, and so we’ll add this class:

package com.amxmobile.SixBookmarks.Runtime;

import java.util.Vector;

CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

240

public class ErrorBucket
{
 private Vector _errors = new Vector();

 public ErrorBucket()
 {
 }

 public void AddError(String error)
 {
 this._errors.addElement(error);
 }

 public boolean getHasErrors()
 {
 if(this._errors.size() > 0)
 return true;
 else
 return false;
 }

 public String GetAllErrors()
 {
 StringBuffer builder = new StringBuffer();
 for(int index = 0; index < _errors.size(); index++)
 {
 if(builder.length() > 0)
 builder.append("\n");
 builder.append(_errors.elementAt(index));
 }

 // return...
 return builder.toString();
 }
}

You’ll see that the structure of the code is basically the same as that given in Chapter 5. This is an
important point. Because you essentially cannot share code easily between the different platforms, if
you do need to manage an intellectual property stack that encompasses different platforms, you can get
considerable benefit by doing things the same way on each. This makes it easier to maintain the
application, as developers approach problems with a “pre-loaded” expectation about how something
should work.

Back on the LogonForm class, here’s the HandleLogon method. This defers to DoLogon, which actually
calls the service proxy.

// Add to LogonForm.java – replace existing method…

 private void HandleLogon() throws Exception
 {
 ErrorBucket bucket = new ErrorBucket();
 String username = _usernameTextBox.getText().trim();
 if(username == null || username.length() == 0)

 CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

241

 bucket.AddError("Username not specified");
 String password = _passwordTextBox.getText();
 if(password == null || password.length() == 0)
 bucket.AddError("Password not specified");

 // errors?
 if(!(bucket.getHasErrors()))
 DoLogon(username, password, _rememberMeCheckBox.getChecked());
 else
 MessageBox.Show(bucket.GetAllErrors());
 }

 private void DoLogon(String username, String password, boolean rememberMe)�
 throws Exception
 {
 UsersService users = new UsersService();
 LogonResponse response = users.Logon(username, password);

 // now what?
 if(response.getResult() == LogonResponse.RESULT_OK)
 {
 // in a while we’ll add code here to show the bookmarks page...
 MessageBox.Show("Logon OK!");
 }
 else
 {
 MessageBox.Show(response.getMessage());
 }
 }

I hope you can see there the power of creating these nicely defined service proxy objects, as the
actual code to manipulate the remote service is very easy.

There isn’t much to show in this chapter, as most of the code is behind-the-scenes stuff. However, if
you do run the project, you can at least try providing different values for the username and password
and seeing the results. Figure 10-4 shows the result of a successful logon.

CHAPTER 10 � BLACKBERRY: BUILDING THE LOGON FORM AND CONSUMING REST SERVICES

242

Figure 10-4. Success! We’ve logged on.

Conclusion
In this chapter, we’ve covered a lot of ground related to building our proper BlackBerry application and
being able to call the hosted services at http://services.multimobiledevelopment.com. We built a set of
support methods for working with web resources and XML, and the proxy objects needed to call up to
the server. We then went on to build the user interface and ultimately called the server’s Logon method to
log on the user. In the next chapter, we’ll see how to use the bookmarks OData service to bring back
bookmarks and store them in a local SQL database.

C H A P T E R 11

� � �

243

BlackBerry:
An ORM Layer on SQLite

In the last chapter, we built the foundation of our application and built a logon screen that connected up
to the logon service over the Internet. In this chapter, we’re going to look at downloading the bookmarks
from the OData service, storing them in a local SQLite database, and displaying them in the screen. We’ll
look at capturing changes to the bookmarks and pushing them back up to the server in the next chapter.

SQLite on BlackBerry
This will be the first time that we meet the SQLite database engine in this book. SQLite is used and
mentioned heavily in this book and this book’s sister book, which covers the Microsoft mobile
technologies, BlackBerry and HTML5.

SQLite is an open source in-memory database engine that is long-established and is published
under an unusual license, in that it is placed in the public domain with no licensing restrictions. It is
baked into BlackBerry, iOS, and Android, plus HTML5 web browsers that wish to support HTML5 local
storage also use SQLite. In fact, the only place where it is not supported natively by the device vendor is
on Windows Phone 7 and Windows Mobile, although community efforts exist to make the platform
available there as well.

It is an ANSI-92–compatible database; thus if you already know how to develop software that uses a
relational database, you already know how to use SQLite.

Entities
In Chapter 3, we went through the principle of building an object-relational mapping layer that could be
“repurposed” for use in the Android, iPhone, BlackBerry and Windows Mobile applications. (This layer
will work on Windows Phone 7, just as soon as it has a database management system available!) Chapter
3 discusses the theory of how you build such a thing. This chapter is going to look at how you actually
do it.

As discussed in Chapter 3, the most important thing about an ORM layer is to imbue it with decent
metadata. It’s only through this metadata that you can code in a decent level of “magic” to make
working with the ORM entities easier than working with the native data directly. Without good metadata,
you’ll spend half your life fighting the ORM tool.

In this section, we’re going to look at building the metadata to support the entities and the entity
class itself. In the next section, we’ll look at physically calling the database and obtaining a list of entities.

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

244

■ Note The ORM layer that we build here is going to be pretty basic and missing support for various data types
and other functions. This is done to make the book easier to comprehend. However, keep an eye on the
documentation at www.multimobiledevelopment.com/, as it’s my fervent hope that this author continues to
develop and enhance such functionality for all of the platforms going forward.

EntityType
In Chapter 3, I discussed the idea of an EntityType class. This class does two things. In the first instance,
there exists exactly one instance of an entity type for every database table in the system. In the second
instance, static members of the entity type maintain a register of all of the available entity types. The
upshot of this is that from anywhere in the application, you access a list of all of the tables that exist, and
from there, all of the fields that exist on any table.

In more sophisticated implementations of this sort of metadata system that you might see, the
entity types are loaded from attributes (C#) or annotations (Java) embedded within the code. However,
in the simple implementations we’ll see in this book, we’re going to programmatically set up the entity
types.

In Chapter 3, we discussed that we need an EntityItem class, EntityField class, and EntityType
class. EntityItem is used to provide every piece of metadata in the system with both a “programmatic
name” and a “native name.” The “native name” is the name of the item in the underlying store, and the
“programmatic name” is the name that we would prefer to use. This abstraction is helpful for situations
where you have a table called—for example—TBL_CUST and would prefer your related class to be called
Customer. (In our actual implementation, both the native name and programmatic name will generally
be the same.)

Without further ado, here’s a listing that contains the code for EntityItem. Add this to the project in
the usual way.

package com.amxmobile.SixBookmarks.Entities;

public abstract class EntityItem
{
 private String _name;
 private String _lowerName;
 private String _nativeName;

 protected EntityItem(String name, String nativeName)
 {
 _name = name;
 _lowerName = name.toLowerCase();

 if(nativeName != null)
 _nativeName = nativeName;
 else
 _nativeName = name;
 }

 public String getName()
 {

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

245

 return _name;
 }

 public String getLowerName()
 {
 return _lowerName;
 }

 public String getNativeName()
 {
 return _nativeName;
 }
}

Now we can look at the fields.
A single field has a number of attributes, mainly the following:

• A native name and a (programmatic) name

• A data type

• A size

• Flags indicating special functionality (In this chapter, we’re going to have only
one, which indicates whether the field is a key field. In a full-on implementation,
another example of a flag would be indicating whether the field could be nullable.)

In this example, we’re going to support just two data types—in a more full-on implementation, we’d
obviously need to support all of the data types that the underlying database supports. (If we implement
all of them now, half the book will be taken up with methods exposing out all of the data types.) Our
server-side service used only strings and 32-bit integers, so these are the two that we will use.

■ Note We will use Boolean data types on the entity, but we’ll store them as integers in the SQLite database.
SQLite’s data type support is a little strange—you can store any value in any column in SQLite regardless of the
definition, and it just tries to “work it out” when it retrieves data. For this and other reasons, we’re going to handle
Boolean data in our data access layer rather than natively in SQLite.

We can now build EntityField. As well as supporting native name (defined in the base), name (also
defined in the base), data type, size, and an indication as to whether the field is a key, we’ll have another
property holding the ordinal of the field within the type. In addition, we need some constants that define
the supported data types. (I’ll explain more about this ordinal value later.) Here’s the listing:

public class EntityField extends EntityItem
{
 public final static int DATATYPE_STRING = 0;
 public final static int DATATYPE_INT32 = 1;

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

246

 private int _type;
 private int _size;
 private boolean _isKey;
 private int _ordinal;
 private boolean _isOnServer = true;

 public EntityField(String name, String nativeName, int type, int size,int ordinal)
 {
 super(name, nativeName);

 // set...
 _type = type;
 _size = size;
 _ordinal = ordinal;
 }

 public int getOrdinal()
 {
 return _ordinal;
 }

 public int getDataType()
 {
 return _type;
 }

 public int getSize()
 {
 return _size;
 }

 public boolean getIsKey()
 {
 return _isKey;
 }

 public void setIsKey(boolean value)
 {
 _isKey = value;
 }
}

Next, we’ll look at the EntityType class. This has a number of different functions. I won’t go through
them all here; rather, I will concentrate on the basics for keeping a register of the available entity types
and the fields against each one.

So that we can effectively work with entities, we need EntityType to be able to instantiate instances
of individual entities and collections of entities. In this example, we’re going to have only one entity—
Bookmark. In any real-world application, you’re likely to have many entity types. We’ll hold references to
the relevant Java types so that we can create the object instances that we want programmatically. (A Java
type is synonymous to a .NET type. Both provide runtime access to the type metadata system.) Our
motivation for this arrangement is so that we can say to framework code “give me a list of bookmarks,”

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

247

and the framework code itself will be able to create an appropriate collection type and individual
entities.

In addition, we’re going to add a method to EntityType called AddField. This will be used to
programmatically define the fields available on an entity type. This AddField method will look at the size
of the fields collection and use this size as the ordinal for the field. Thus, when we add fields, the first will
have ordinal 0, the second ordinal 1, and so on. Having field ordinals will come in handy when getting or
setting in-memory values against the entity.

Here’s the listing for EntityType that looks after storing the instance and collection types, and
storing the list of fields. It, too, extends EntityItem—note that when we create an instance, we’ll call the
base class and set the programmatic name to the name of the Java class, and the native name to
whatever the user specifies.

package com.amxmobile.SixBookmarks.Entities;

import java.util.Enumeration;
import java.util.Hashtable;
import java.util.Vector;

import javax.microedition.global.Formatter;

public class EntityType extends EntityItem
{
 private static Hashtable _entityTypes = new Hashtable();

 private Vector _fields = new Vector();
 private Class _instanceType = null;
 private Class _collectionType = null;

 public EntityType(Class instanceType, Class collectionType, String nativeName)
 {
 super(instanceType.getName(), nativeName);
 _instanceType = instanceType;
 _collectionType = collectionType;
 }

 public Vector getFields()
 {
 return _fields;
 }

 public EntityField AddField(String name, String nativeName, int type, int size)
 {
 EntityField field = new EntityField(name, nativeName, type, size,�
 _fields.size());
 _fields.addElement(field);

 // return...
 return field;
 }

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

248

 public Class getInstanceType()
 {
 return _instanceType;
 }

 public Class getCollectionType()
 {
 return _collectionType;
 }

 public Entity CreateInstance() throws Exception
 {
 return (Entity)getInstanceType().newInstance();
 }

 public Vector CreateCollectionInstance() throws Exception
 {
 return (Vector)getCollectionType().newInstance();
 }
}

We’ve assumed that entities will always have a base class of Entity (which we’ll build shortly) and
also be of type Vector. (For the uninitiated, a Vector is a dynamic array, a la ArrayList in more modern
Java implementations. Entity is going to hold an instance of a row in a table in the database.)

Also on an entity type, we’re going to need to be able to find a field with a specific name, find the key
fields, or determine whether a field with a specified name actually exists. (This latter one is used for
populating entities from data received over XML where the XML may reference fields that we don’t know
about.) Here are the three methods that also need to be added to EntityType:

// Add to EntityType.java

 public EntityField GetField(String name, boolean throwIfNotFound) throws Exception
 {
 name = name.toLowerCase();
 for(int index = 0; index < _fields.size(); index++)
 {
 EntityField field = (EntityField)_fields.elementAt(index);
 if(field.getLowerName().compareTo(name) == 0)
 return field;
 }

 // throw...
 if(throwIfNotFound)
 throw new Exception(Formatter.formatMessage("Failed to find a field�
 with name '{0}'.", new String[] { name }));
 else
 return null;
 }

 public EntityField GetKeyField() throws Exception
 {
 for(int index = 0; index < _fields.size(); index++)

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

249

 {
 EntityField field = (EntityField)_fields.elementAt(index);
 if(field.getIsKey())
 return field;
 }

 // throw...
 throw new Exception("Failed to find a key field.");
 }

 public boolean IsField(String name) throws Exception
 {
 EntityField field = this.GetField(name, false);
 if(field != null)
 return true;
 else
 return false;
 }

Another method that we’ll need on EntityType is one that returns the short name of a class. The
getName method on a regular Java Class type returns a fully qualified name, including the package, e.g.,
com.AmxMobile.SixBookmarks.Database.Bookmark. This method—which needs to be added to
EntityType—returns just the last part:

// Add to EntityType.java

 public String getShortName()
 {
 String name = getName();
 int index = name.lastIndexOf((char)'.');
 return name.substring(index + 1);
 }

Next, recall that the other function EntityType needs is the ability to hold a register of the available
entity types. We’ll do this by creating a static hashtable on EntityType and methods called
RegisterEntityType and GetEntityType.

Here’s the code to hold and query the register:

public class EntityType extends EntityItem
{
 private static Hashtable _entityTypes = new Hashtable();

 // code omitted for brevity…

 public static void RegisterEntityType(EntityType entityType)
 {
 _entityTypes.put(entityType.getInstanceType().getName(), entityType);
 }

 public static EntityType GetEntityType(Class type) throws Exception
 {

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

250

 String name = type.getName();
 Enumeration keys = _entityTypes.keys();
 while(keys.hasMoreElements())
 {
 String key = (String)keys.nextElement();
 if(key.compareTo(name) == 0)
 return (EntityType)_entityTypes.get(key);
 }

 // throw...
 throw new Exception(Formatter.formatMessage("Failed to get entity type for�
 '{0}'.", new String[] { type.getName() }));
 }

 // code omitted for brevity…
}

Creating the Basic Entity Class
We need a way of programmatically registering the entity type for the bookmark entity. One way to do
this is to create a global “runtime” class that is used to boot up and tear down the application. We’ll add
one of these to our project, called SixBookmarksRuntime; however, we won’t build this until a little later.

Before we do that, we need to create our Bookmark and BookmarkCollection objects.
BookmarkCollection is the easy one, as all we’re going to do with this is create a new class that

inherits from Vector. Here’s the listing:

package com.amxmobile.SixBookmarks.Database;

import java.util.Vector;

public class BookmarkCollection extends Vector
{
}

Bookmark is a little more complicated, as we need to have an Entity class to inherit from. Entity is
quite a lengthy class, and we’re going to add to this as we go. For now we’ll stub the basics.

The basic functionality of an entity is to store a dynamic list of data that represents the columns in
the underlying database table. An entity will be created manually either by the developer or by
framework code that retrieves the data from some source. At some point during the entity’s life, the data
stored within will either be read for display on a screen, or be used to make some sort of change request
to the underlying store.

In our entity, we are going to hold three sets of values. Firstly, we’re going to store a reference to our
related EntityType instance. Secondly, we’re going to store an array of values that map 1:1 with the
columns defined as being in the underlying store. (The entity type is going to tell us which columns are
defined.) Thirdly and finally, we’re going to store a bunch of flags and other fields that will help the entity
keep track of its internal state.

Storage of data within the entity will be done in “slots.” You will notice that on our EntityField
instance we have a property called Ordinal and that we calculated this ordinal in the AddField method
on EntityType. This ordinal value is the index of the slot in the entity. Thus, if we have five fields, we’ll
have five slots numbered from zero to four inclusive.

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

251

■ Note Recall that in Chapter 3 we spoke about the BootFX application framework and its ORM functionality.
Internally within BootFX, this functionality is known as “storage.”

Here’s the listing for this basic “storage” functionality in Entity:

package com.amxMobile.SixBookmarks.Entities;

import java.util.*;
import com.amxMobile.SixBookmarks.Runtime.*;

package com.amxmobile.SixBookmarks.Entities;

import java.util.Enumeration;
import java.util.Hashtable;

import javax.microedition.global.Formatter;

public abstract class Entity
{
 private EntityType _entityType;

 private Object[] _values;
 private int[] _flags;

 private static final int FIELDFLAGS_NOTLOADED = 0;
 private static final int FIELDFLAGS_LOADED = 1;
 private static final int FIELDFLAGS_MODIFIED = 2;

 protected Entity() throws Exception
 {
 _entityType = EntityType.GetEntityType(this.getClass());

 // slots...
 int count = _entityType.getFields().size();
 _values = new Object[count];
 _flags = new int[count];
 }

 public EntityType getEntityType()
 {
 return _entityType;
 }
}

Note in that listing that within the constructor, we ask EntityType to provide an entity type instance
back to us that represents the entity itself via the GetEntityType static method. Caching this within the
class allows us quick access to the entity’s metadata directly from within the class. Also worthy of note is

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

252

the fact that we define the size of the _values and _flags arrays to be equal to the number of available
fields.

Being able to store data isn’t much use without a set of methods that can retrieve and set the values
in them. We’ll start by looking at the methods that set values.

Setting Values in an Entity
Whenever we set a value within an entity, we’ll be doing one of two things—we’ll be plugging in a value
that either the user has provided through some form of input, or we have retrieved from a database or
service. It’s important that we can distinguish between these two operations—if the user has done
something to invoke the change (e.g., keyed a value into a form), we probably need to update the
underlying store with that value. Conversely, if the user has not changed something, we do not want to
be issuing unnecessary update requests back to the underlying store.

In the last section, we added constants to indicate the state of the field’s storage slot, specifically
FIELDFLAGS_NOTLOADED, FIELDFLAGS_LOADED, and FIELDFLAGS_MODIFIED. In addition, we need some
constants that will be used to tell the entity what sort of set operation has occurred. Here are the
SETREASON_LOAD and SETREASON_USER constants in place within the Entity class:

public abstract class Entity
{
 private EntityType _entityType;

 private Object[] _values;
 private int[] _flags;

 private static final int FIELDFLAGS_NOTLOADED = 0;
 private static final int FIELDFLAGS_LOADED = 1;
 private static final int FIELDFLAGS_MODIFIED = 2;

 public static final int SETREASON_LOAD = 0;
 public static final int SETREASON_USER = 1;

 // code omitted for brevity...
}

As we add methods to the entity, we’ll find that oftentimes we need to add overloads for each of the
methods that take either the name of a field as a string or an actual instance of an EntityField. This is
going to create additional code, but there is a substantially higher level of utility in not requiring the
caller to dig out an EntityField instance every time he or she wishes to access field data. Whenever one
of the string-based “name” overloads is used, we’ll defer to the entity type instance for the field name.
Here’s additional code for the Entity class that will allow values to be set within the slots.

// Add to Entity.java

 protected void SetValue(String name, Object value, int setReason) throws Exception
 {
 EntityField field = getEntityType().GetField(name, true);
 SetValue(field, value, setReason);
 }

 public void SetValue(EntityField field, Object value, int setReason) throws Exception

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

253

 {
 int ordinal = field.getOrdinal();
 SetValue(ordinal, value, setReason);
 }

 private void SetValue(int ordinal, Object value, int setReason) throws Exception
 {
 _values[ordinal] = value;

 // if...
 SetFlag(ordinal, FIELDFLAGS_LOADED);
 if(setReason == SETREASON_USER)
 SetFlag(ordinal, FIELDFLAGS_MODIFIED);
 }

 private void SetFlag(int ordinal, int flag)
 {
 _flags[ordinal] = _flags[ordinal] | flag;
 }

You’ll also see that there is a third, private overload that takes the ordinal of the field. This isn’t
strictly required here, but this pattern of a private overload that takes the ordinal makes for easier work
when getting values out.

Also note the if statement toward the end of the third overload. This will set a flag to indicate that a
value is available, and if the reason for calling the method was that the user asked us to (e.g., by keying in
a new value into a text box), we’ll also indicate that the field is modified by deferring to the SetFlag
method.

Retrieving the values is—perhaps oddly—a little trickier, as we have to deal with the different data
types. In the first instance, we need to be able to behave differently depending on the state of the data.
For example, if we’re trying to retrieve the value for a field, and we have not loaded it, we need to throw
an error indicating that the value is not available. (Some implementations, including BootFX, will
demand load data in this situation. However, for simplicity, we’re not doing this here.)

Here are some helper methods to be placed into the Entity class that let us understand the state of
field slots in the entity:

// Add to Entity.java

 public boolean getIsLoaded(EntityField field)
 {
 return getIsLoaded(field.getOrdinal());
 }

 private boolean getIsLoaded(int index)
 {
 return IsFlagSet(index, FIELDFLAGS_LOADED);
 }

 public boolean getIsModified(EntityField field)
 {
 return getIsModified(field.getOrdinal());
 }

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

254

 private boolean getIsModified(int index)
 {
 return IsFlagSet(index, FIELDFLAGS_MODIFIED);
 }

 private boolean IsFlagSet(int index, int flag)
 {
 if((_flags[index] & flag) == flag)
 return true;
 else
 return false;
 }

These work on individual fields, and you can see how we’ve tried to keep it neat. The public
modifier on the getIsLoaded and getIsModified overloads is required, as later on we’ll need to access
these from another class.

Now that we can do that, we can add methods to tell whether the entity is new, or whether it has
been modified. The rules here are as follows:

• In order to tell if the entity is new: If we do not have a key value defined, then it’s
new.

• In order to tell if the entity is modified: If we walk the fields and discovered that at
least one is modified, then the entity is modified.

• In order to tell if the entity is deleted: We’ll maintain a flag, but we won’t
implement this now.

Here’s the code:

// Add to Entity.java

 public boolean getIsNew() throws Exception
 {
 EntityField key = getEntityType().GetKeyField();

 // state...
 if(!(getIsLoaded(key)) && !(getIsModified(key)))
 return true;
 else
 return false;
 }

 public boolean getIsDeleted()
 {
 return false;
 }

 public boolean getIsModified()
 {
 for(int index = 0; index < _flags.length; index++)
 {

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

255

 if(getIsModified(index))
 return true;
 }

 // nope...
 return false;
 }

Those methods lay the groundwork for the GetValue methods that we implied must exist when we
created our SetValue methods earlier. The only difference in the rule is that if we ask for a value, if we’re
not new and we don’t have it, we have to throw an error, as we can’t demand-load the value. Here’s the
code:

// Add to Entity.java

 public Object GetValue(String name) throws Exception
 {
 EntityField field = getEntityType().GetField(name, true);
 return GetValue(field.getOrdinal());
 }

 public Object GetValue(EntityField field) throws Exception
 {
 return GetValue(field.getOrdinal());
 }

 private Object GetValue(int index) throws Exception
 {
 // do we need to demand load?
 if(!(getIsLoaded(index)) && !(getIsNew()))
 throw new Exception("Demand loading is not implemented.");

 // return...
 return _values[index];
 }

Recall that before, I said that we were going to have limited support for data types in this
implementation. Here’s why: in order to give the entity a higher level of utility, we need to create
versions of GetValue that are strongly typed. These will deal with the mucking around with trying to get
data out of the entity coerced into the type of data that the caller is expecting (especially tricky with the
JRE 1.5, as we have to do all of the boxing of value-types manually). Here’s the implementation of
GetValue equivalents that provide for strongly typed string and integer values:

// Add to Entity.java

 public String GetStringValue(String name) throws Exception
 {
 EntityField field = getEntityType().GetField(name, true);
 return GetStringValue(field);
 }

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

256

 public String GetStringValue(EntityField field) throws Exception
 {
 Object value = GetValue(field);
 if(value != null)
 return value.toString();
 else
 return null;
 }

 public int GetInt32Value(String name) throws Exception
 {
 EntityField field = getEntityType().GetField(name, true);
 return GetInt32Value(field);
 }

 public int GetInt32Value(EntityField field) throws Exception
 {
 Object value = GetValue(field);
 if(value == null)
 return 0;
 else if(value instanceof Integer)
 return ((Integer)value).intValue();
 else if(value instanceof Long)
 return (int)((Long)value).longValue();
 else
 throw new Exception(Formatter.formatMessage("Cannot handle '{0}'.",�
 new String[] { value.getClass().getName() }));
 }

 public boolean GetBooleanValue(String name) throws Exception
 {
 EntityField field = getEntityType().GetField(name, true);
 return GetBooleanValue(field);
 }

 public boolean GetBooleanValue(EntityField field) throws Exception
 {
 Object value = GetValue(field);
 if(value == null)
 return false;
 else if(value instanceof Integer)
 {
 int asInt = ((Integer)value).intValue();
 if(asInt == 0)
 return false;
 else
 return true;
 }
 else
 throw new Exception(Formatter.formatMessage("Cannot handle '{0}'.",�
 new String[] { value.getClass().getName() }));
 }

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

257

Now that we can get data into and out of our base entity, let’s look at creating a strongly typed
Bookmark class.

Building Bookmark
The point of ORM is that you’re looking to get the entity layer to do most of the hard work of managing
the data for you—the principle being that it is easier to call a property called Name and know you’re
getting a string value back than it is to request an item with the name “name” out of a bucket of values
returned over a SQL interface. Thus, we need to add a bunch of properties to Bookmark that abstract calls
to GetValue and SetValue.

The fields that we’re going to store locally, as a minimum, are a local unique ID, the ordinal, the
name, and the URL.

However, there’s one thing to consider. In order for our database to support the synchronization
functionality that we’ll build in the next chapter, we also need to store flags to indicate whether the item
has been modified or deleted locally. We’ll add two additional columns called LocalModified and
LocalDeleted to achieve this.

Here’s the code for the new Bookmark class that extends entities and provides getters and setters for
our six columns.

package com.amxmobile.SixBookmarks.Database;

import java.util.*;

import com.amxmobile.SixBookmarks.Entities.*;

public class Bookmark extends Entity
{
 public final static String BookmarkIdKey = "BookmarkId";
 public final static String OrdinalKey = "Ordinal";
 public final static String NameKey = "Name";
 public final static String UrlKey = "Url";
 public final static String LocalModifiedKey = "LocalModified";
 public final static String LocalDeletedKey = "LocalDeleted";

 public Bookmark() throws Exception
 {
 }

 public Bookmark(Hashtable values) throws Exception
 {
 super(values);
 }

 public int getBookmarkId() throws Exception
 {
 return GetInt32Value(BookmarkIdKey);
 }

 public void setBookmarkId(int value) throws Exception
 {

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

258

 SetValue(BookmarkIdKey, new Integer(value), Entity.SETREASON_USER);
 }

 public int getOrdinal() throws Exception
 {
 return GetInt32Value(OrdinalKey);
 }

 public void setOrdinal(int value) throws Exception
 {
 SetValue(OrdinalKey, new Integer(value), Entity.SETREASON_USER);
 }

 public String getName() throws Exception
 {
 return GetStringValue(NameKey);
 }

 public void setName(String value) throws Exception
 {
 SetValue(NameKey, value, Entity.SETREASON_USER);
 }

 public String getUrl() throws Exception
 {
 return GetStringValue(UrlKey);
 }

 public void setUrl(String value) throws Exception
 {
 SetValue(UrlKey, value, Entity.SETREASON_USER);
 }

 public boolean getLocalModified() throws Exception
 {
 return GetBooleanValue(LocalModifiedKey);
 }

 public void setLocalModified(boolean value) throws Exception
 {
 SetValue(LocalModifiedKey, new Boolean(value), Entity.SETREASON_USER);
 }

 public boolean getLocalDeleted() throws Exception
 {
 return GetBooleanValue(LocalDeletedKey);
 }

 public void setLocalDeleted(boolean b) throws Exception
 {

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

259

 SetValue(LocalDeletedKey, new Boolean(b), Entity.SETREASON_USER);
 }
}

You can see there that I have created a set of constants at the top of the class that define the names
of the fields. This approach makes working with the data much easier and stops errors resulting from
typos.

■ Note ORM layers usually have code generation so that you do not have to scaffold up all of these classes
manually—which is good, because, frankly, setting them up manually is a pain.

Registering the EntityType
Now that we have a functional Bookmark class defined, we can build the SixBookmarksRuntime class that
we mentioned earlier. This class’s sole function will be to boot up the application, a key aspect of which
is defining the entity type for the Bookmark entity. (If we had more than one entity, we’d obviously
initialize types for the other types here also.)

This operation is reasonably straightforward—we need to create an entity type that knows about
Bookmark and BookmarkCollection, add fields to it (remembering to set the BookmarkId field to be the key),
and then register the entity type in the static memory managed by EntityType. Here’s the code:

package com.amxmobile.SixBookmarks.Runtime;

import net.rim.blackberry.api.browser.*;

import com.amxmobile.SixBookmarks.Database.*;
import com.amxmobile.SixBookmarks.Entities.*;

public class SixBookmarksRuntime
{
 public static void Start()
 {
 // create the entity type...
 EntityType bookmark = new EntityType(Bookmark.class,�
 BookmarkCollection.class, "Bookmarks");
 bookmark.AddField(Bookmark.BookmarkIdKey, Bookmark.BookmarkIdKey,�
 EntityField.DATATYPE_INT32, -1).setIsKey(true);
 bookmark.AddField(Bookmark.OrdinalKey, Bookmark.OrdinalKey,�
 EntityField.DATATYPE_INT32, -1);
 bookmark.AddField(Bookmark.NameKey, Bookmark.NameKey,�
 EntityField.DATATYPE_STRING, 128);
 bookmark.AddField(Bookmark.UrlKey, Bookmark.UrlKey,�
 EntityField.DATATYPE_STRING, 256);
 bookmark.AddField(Bookmark.LocalModifiedKey, Bookmark.LocalModifiedKey,�
 EntityField.DATATYPE_INT32, -1).setIsOnServer(false);
 bookmark.AddField(Bookmark.LocalDeletedKey, Bookmark.LocalDeletedKey,�
 EntityField.DATATYPE_INT32, -1).setIsOnServer(false);

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

260

 // register it...
 EntityType.RegisterEntityType(bookmark);
 }

}

With the runtime class created, we can call the Start method. It doesn’t really matter where this
happens in the code, so long as it happens before we need to use the entities. An easy place to locate it in
our code is within the constructor in the LogonForm class activity that we went through in the last
chapter. Here’s the modification to the LogonForm class (some code has been removed for brevity):

// Modify Logon class…
package com.amxMobile.SixBookmarks;

public class Logon extends Activity implements OnClickListener, ILogonView
{
// code removed for brevity…

 public LogonForm()
 {
 super();

 // start...
 SixBookmarksRuntime.Start();

 // title...
 setTitle(new LabelField("Welcome to Six Bookmarks"));

 // controls...
 this.add(new LabelField("Username"));
 _usernameTextBox = new EditField();
 this.add(_usernameTextBox);

 this.add(new LabelField("Password"));
 _passwordTextBox = new PasswordEditField();
 this.add(_passwordTextBox);

 _rememberMeCheckBox = new CheckboxField("Remember me", true);
 this.add(_rememberMeCheckBox);

 _logonButton = new ButtonField("Logon", ButtonField.CONSUME_CLICK);
 _logonButton.setChangeListener(this);
 this.add(_logonButton);
 }

// code removed for brevity…
}

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

261

Displaying Some Fake Bookmarks
We’ve still got a long way to go until we can get some data out of the database and onto the screen, so
we’ll take a little diversion here and display some fake bookmarks. This will involve us creating the form
that will be used to show the bookmarks, and then we’ll manually create some Bookmark objects to
show on them. Later, we’ll replace the fake bookmarks with ones that we’ve loaded from the SQLite
database.

Creating the Form
We’ll now turn our attention to building the form that will display the bookmarks. This form will be quite
simple—it will display six buttons for each of the six available bookmarks, one button to open the
configuration window, another button to log off, and a final button to show an About message. (For our
application, the About message will open a web page.)

To get started, add a new class to the project called NavigatorForm. As you know by now, we have to
programmatically define the form. This involves creating fields for each of the buttons and manually
creating button controls. As we create new button controls, we’ll wire up their ChangeListener event
such that the form itself consumes and handles the event. For the “six bookmarks” buttons, we’ll create
and hold those in a dynamic array (a Vector instance). For the other buttons, we’ll create fields. Here’s
the framework of the form:

package com.amxmobile.SixBookmarks;

import java.util.*;

import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;

import com.amxmobile.SixBookmarks.Database.*;
import com.amxmobile.SixBookmarks.Runtime.*;

public class NavigatorForm extends MainScreen implements FieldChangeListener
{
 private BookmarkCollection _bookmarks = null;
 private Vector _buttons = new Vector();
 private ButtonField _configureButton;
 private ButtonField _logoffButton;
 private ButtonField _aboutButton;

 public NavigatorForm()
 {
 super();

 // title...
 setTitle(new LabelField("Six Bookmarks"));

 // buttons...
 for(int index = 0; index < 6; index++)
 AddButton(index);

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

262

 // configure button...
 _configureButton = new ButtonField("Configure", ButtonField.CONSUME_CLICK);
 _configureButton.setChangeListener(this);
 this.add(_configureButton);

 // about button...
 _aboutButton = new ButtonField("About", ButtonField.CONSUME_CLICK);
 _aboutButton.setChangeListener(this);
 this.add(_aboutButton);

 // about button...
 _logoffButton = new ButtonField("Logoff", ButtonField.CONSUME_CLICK);
 _logoffButton.setChangeListener(this);
 this.add(_logoffButton);

 // init...
 try
 {
 Initialize();
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex);
 }
 }

 private void Initialize() throws Exception
 {
 // we'll do this later...
 }

 private void AddButton(int index)
 {
 ButtonField button = new ButtonField("...", ButtonField.CONSUME_CLICK);
 button.setChangeListener(this);
 _buttons.addElement(button);
 this.add(button);
 }

 public void fieldChanged(Field field, int context)
 {
 try
 {
 // we'll do this later...
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex);
 }
 }
}

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

263

You’ll notice in that code that to make our lives a little easier we have created an AddButton helper
function. This removes at least some of the code duplication in this method. You’ll also notice that we
have not wired up the Initialize or the fieldChanged methods.

To get from the logon form to this form, we need go back and edit LogonForm. Previously we had this
show a message box. We now need to make it create and show NavigatorForm instead. Modify the code
in LogonForm as follows:

// Modify existing method in LogonForm...
 private void DoLogon(String username, String password, boolean rememberMe) throws
Exception
 {
 UsersService users = new UsersService();
 LogonResponse response = users.Logon(username, password);

 // now what?
 if(response.getResult() == LogonResponse.RESULT_OK)
 {
 // open...
 UiApplication.getUiApplication().pushScreen(new NavigatorForm());
 }
 else
 {
 MessageBox.Show(response.getMessage());
 }
 }

If you run this code now and log on, you’ll see something like Figure 11-1.

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

264

Figure 11-1. The Navigator form waiting for bookmark display to be implemented

Showing a Web Page
Central to the operation of this application is the ability to show a web page. We can implement this now
and have the device show this book’s home page at www.multimobiledevelopment.com/ by way of an
About message. Luckily for us, asking BlackBerry OS to show a web page is very easy. Here’s a static
helper method to add to SixBookmarksRuntime:

// Add method to SixBookmarksRuntime...
 public static void OpenUrl(String url)
 {
 BrowserSession browser = Browser.getDefaultSession();
 browser.displayPage(url);
 }

Back in NavigatorForm, wiring up the About button is simply a matter of adding handling code
within the fieldChanged method defined on FieldChangeListener. Here’s the code:
// Modify code in NavigatorForm...
 public void fieldChanged(Field field, int context)
 {
 try
 {
 if(field == _aboutButton)
 HandleAbout();

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

265

 }
 catch(Exception ex)
 {
 MessageBox.Show(ex);
 }
 }

 private void HandleAbout()
 {
 SixBookmarksRuntime.OpenUrl("http://www.multimobiledevelopment.com/");
 }

If you run the project now and click the About button, you’ll see the web page as per Figure 11-2.

Figure 11-2. The About screen

Creating Fake Bookmarks
Now that we know that we can display the page and navigator to a web page, we can quickly add in some
fake bookmarks and see what happens.

The first thing we need to do is change the behavior of the Initialize method to create some fake
bookmarks and then rattle those bookmarks through code that will update the buttons. Ultimately we’ll
change the collection of fake bookmarks to be real ones drawn from the local SQLite database. (These, of
course, will be populated from the cloud-based service.)

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

266

Here’s the code that is needed to create the fake bookmarks and show them on the screen:

// Modify Initialize method within and add methods to NavigatorForm...
private void Initialize() throws Exception
 {
 // show some fake bookmarks...
 _bookmarks = new BookmarkCollection();

 // one...
 Bookmark bookmark = new Bookmark();
 bookmark.setName(".NET 247");
 bookmark.setUrl("http://www.dotnet247.com/");
 bookmark.setOrdinal(0);
 _bookmarks.addElement(bookmark);

 // two...
 bookmark = new Bookmark();
 bookmark.setName("Apress");
 bookmark.setUrl("http://www.apress.com/");
 bookmark.setOrdinal(1);
 _bookmarks.addElement(bookmark);

 // walk the bookmarks and show them. (we'll keep this code
 // even though we'll replace the code that obtain the list of
 // bookmarks...)
 for(int index = 0; index < _bookmarks.size(); index++)
 Initialize((Bookmark)_bookmarks.elementAt(index));
 }

 private void Initialize(Bookmark bookmark) throws Exception
 {
 ButtonField button = GetBookmarkButton(bookmark.getOrdinal());
 button.setLabel(bookmark.getName());
 }

 private ButtonField GetBookmarkButton(int ordinal)
 {
 return (ButtonField)_buttons.elementAt(ordinal);
 }

As alluded to, the Initialize(Bookmark bookmark) and GetBookmarkButton methods will stay even
when we’re getting real bookmarks. The GetBookmarkButton method loads the button reference from the
array that we set up in the constructor. The Initialize method will find a button and set the name.

The ultimate purpose here is to show the URL related to the bookmark. This is why we keep the
bookmarks around in the _bookmarks field—when a button click is received, we need to de-reference the
Bookmark instance, find the URL, and show it using the OpenUrl method that we built previously. Here’s
the code:

// Modify fieldChanged method within and add methods to NavigatorForm...
 public void fieldChanged(Field field, int context)
 {
 try

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

267

 {
 if(field == _configureButton)
 HandleConfigure();
 else if(field == _aboutButton)
 HandleAbout();
 else
 HandleNavigationClick(field);
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex);
 }
 }

 private void HandleNavigationClick(Field field) throws Exception
 {
 int index = GetButtonIndex((ButtonField)field);

 // show...
 Bookmark bookmark = _bookmarks.GetByOrdinal(index);
 if(bookmark != null)
 SixBookmarksRuntime.OpenUrl(bookmark.getUrl());
 else
 HandleConfigure();
 }

 private void HandleConfigure()
 {
 // we'll implement this later...
 MessageBox.Show("TBD");
 }

The operation of the button is that if there isn’t a bookmark wired to it, we’ll show the configuration
form. We haven’t built this yet—and in fact will not do so until the next chapter—so we’ll add a stub
method.

If you run this code now, you’ll see two fake bookmarks, plus you’ll be able to click them. Figure
11-3 and Figure 11-4 illustrate.

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

268

Figure 11-3. Two fake bookmarks displayed on the Navigator form

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

269

Figure 11-4. The result of pressing the Apress button

Building the Sync Class
At this point, we’ve covered a lot of ground. We have the foundation of an ORM system in place, we can
create bookmark entities, and we can display them on the screen. In the remainder of this chapter, we’re
going to see how we can download bookmarks from the online service, store them in a local SQLite
database, and then read them back from the SQLite database for display on the screen. In the next
chapter, we’re going to look at how the bookmarks can be modified and how changes can be pushed
back up to the server.

Calling the Server’s Bookmarks OData Service
In the last chapter, we created a few classes, including ServiceProxy, ApiService, and LogonService, to
communicate with the restful services at http://services.multimobiledevelopment.com/. In this section,
we’re going to look at building BookmarksService, which is able to communicate with the Bookmarks
OData service. We’ll also build the base ODataServiceProxy class to support the operations of
BookmarksService.

As we know, the OData service returns XML, and by default, this XML is formatted using the ATOM
standard. All we have to do, then, is issue requests to the service and interpret the results. We can take
the ATOM-formatted list of bookmarks and turn them into Bookmark entities for later use.

The HTTP request is the easy part—we need to issue a request to the following URL, passing up the
special x-amx-apiusername and x-amx-token HTTP headers. We’ll be using this URL:

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

270

http://services.multimobiledevelopment.com/services/bookmarks.svc/Bookmark

To begin, familiarize yourself with the format of data to be returned by using the test tool presented
in Chapter 2. Here’s a sample XML response containing a single bookmark:

<feed xml:base="http://services.amxmobile.com/services/Bookmarks.svc/"�
 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"�
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"�
 xmlns="http://www.w3.org/2005/Atom">
 <title type="text">Bookmark</title>
 <id>http://services.amxmobile.com/services/bookmarks.svc/Bookmark</id>
 <updated>2010-05-15T06:22:09Z</updated>
 <link rel="self" title="Bookmark" href="Bookmark" />
 <entry>
 <id>http://services.amxmobile.com/services/Bookmarks.svc/Bookmark(1002)</id>
 <title type="text">
 </title>
 <updated>2010-05-15T06:22:09Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Bookmark" href="Bookmark(1002)" />
 <category term="AmxMobile.Services.Bookmark"�
 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:BookmarkId m:type="Edm.Int32">1002</d:BookmarkId>
 <d:UserId m:type="Edm.Int32">1001</d:UserId>
 <d:Name>.NET 247</d:Name>
 <d:Url>http://www.dotnet247.com/</d:Url>
 <d:Ordinal m:type="Edm.Int32">1</d:Ordinal>
 </m:properties>
 </content>
 </entry>
</feed>

The thing that I like about XML is that with a bit of common sense—providing the developer has not
created horrendously bad XML—it’s normally easy to understand what you need to do. There, we can
clearly see that the entry element contains the bookmark data and that the content/m:properties
element contains the fields we want. All we have to do now is walk the document, creating new Bookmark
instances for each entry that we discover.

Namespaces
If you haven’t done much XML before, you may not know how to work with XML namespaces, and
seeing as the foregoing document is littered with them, you’re going to need to know how!

Namespaces provide a way of managing naming collisions within XML. Imagine I am trying to
create a document that combines standards from two different protocols. If both standards call for me to
add an element called Name, I’m going to run into a problem—for example:

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

271

<MyDocument>
 <Name>I'm a value from Standard XYZ</Name>
 <Name>I'm a value from Standard ABC</Name>
</MyDocument>

The consumer is going to struggle with this document because there is no way of knowing which
Name element maps to which standard/protocol.

If the people defining the protocol insist that a namespace is used, the problem is easily solved.
Namespaces are (typically) defined within the root element of the document. They are in the form of

a URI, but there is no rule that the URI has to actually point to anything that can be downloaded. (But
those that define open standards often do work and redirect the caller to relevant information.)

Here’s our previous XML file modified to include namespaces:

<MyDocument xmlns:a="http://www.foo.com/" xmlns:b="http://www.bar.com/">
 <a:Name>I'm a value from Standard XYZ (www.foo.com)</a:Name>
 <b:Name>I'm a value from Standard ABC (www.bar.com)</b:Name>
</MyDocument>

In this case, when encountering the name elements, the name prefix de-references a namespace
URI, and you now know which is which.

The one final wrinkle with namespaces is that you can have a default namespace. This is defined
within the document by applying an attribute to the root element with the name xmlns but without a
suffix—for example:

<MyDocument xmlns="http://www.foo.com/" xmlns:b="http://www.bar.com/">
 <Name>I'm a value from Standard XYZ (www.foo.com)</Name>
 <b:Name>I'm a value from Standard ABC (www.bar.com)</b:Name>
</MyDocument>

Where this catches newcomers out is that both MyDocument and Name no longer can be accessed
without specifying the default namespace of http://www.foo.com/ as part of any requests to query
against the XML. This is important, as our ATOM-formatted OData response has a default namespace of
http://www.w3.org/2005/Atom, which you can see defined in the root feed element.

We’ll go through how to query the document and handle namespaces in the next section.

Adding Functionality to XmlHelper
XmlHelper needs some methods added to help parse the document that we’ll get back. Specifically, we
need to be able to query a given element for a sub-element with a given qualified name. By qualified, I
mean “we’ll need to provide the namespace.” Here’s the method in question that needs to be added to
XmlHelper:

// Add to XmlHelper.java
 public static Element GetElement(Element root, String namespaceUri, String name,�
 boolean throwIfNotFound) throws Exception
 {
 NodeList nodes = root.getElementsByTagNameNS(namespaceUri, name);
 if(nodes.getLength() > 0)
 return (Element)nodes.item(0);
 else

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

272

 {
 if(throwIfNotFound)
 {
 throw new Exception(Formatter.formatMessage("A node with�
 name '{0}' in namespace '{1}' was not found.",
 new String[] { name, namespaceUri }));
 }
 else
 return null;
 }
 }

Querying the Feed
Let’s look now at parsing the XML we got back from the server.

First of all, let’s stub our ODataServiceProxy class. This is going to extend ServiceProxy and will
implement some generic support of OData-based data. Although we work with only one OData service,
it’s not unusual to work with several in a production application, and therefore it’s worth breaking out
functionality into a base class by way of illustration. Here’s ODataServiceProxy. Core to this part is the
definition of constants for the various namespaces that we’ll be using, and forward-definition of
constants that define the kind of OData operation that we ultimately need to support (i.e., inserting,
updating, and deleting rows). These change operations are covered in the next chapter.

package com.amxMobile.SixBookmarks.Services;

import java.util.*;
import org.w3c.dom.*;
import com.amxMobile.SixBookmarks.Database.*;
import com.amxMobile.SixBookmarks.Entities.*;
import com.amxMobile.SixBookmarks.Runtime.*;

public class ODataServiceProxy extends ServiceProxy
{
 private final String AtomNamespace = "http://www.w3.org/2005/Atom";
 private final String MsMetadataNamespace =�
 "http://schemas.microsoft.com/ado/2007/08/dataservices/metadata";
 private final String MsDataNamespace =�
 "http://schemas.microsoft.com/ado/2007/08/dataservices";

 private final int ODATAOPERATION_INSERT = 0;
 private final int ODATAOPERATION_UPDATE = 1;
 private final int ODATAOPERATION_DELETE = 2;

 public ODataServiceProxy(String serviceName)
 {
 super(serviceName);
 }
}

This class is going to need a couple of methods to help build URLs for the requests. We need only
one now, which is the one that selects all entities for a given type. An example is

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

273

http://services.multimobiledevelopment.com/services/Bookmarks.svc/Bookmark. Here’s the method to
add to ODataServiceProxy:

// Add to ODataServiceProxy.java
 public String GetServiceUrl(EntityType et)
 {
 return getResolvedServiceUrl() + "/" + et.getShortName();
 }

We can then add our BookmarksService class, including a GetAll method whose (obvious) function
is to retrieve all of the bookmarks from the server. This method will to get the URL that returns all the
bookmarks, and then defer to a method called LoadEntities that we will build into the base
ODataServiceProxy class in a moment. Here’s the code:

package com.amxmobile.SixBookmarks.Services;

import org.w3c.dom.*;

import com.amxmobile.SixBookmarks.Database.*;
import com.amxmobile.SixBookmarks.Entities.*;
import com.amxmobile.SixBookmarks.Runtime.*;

public class BookmarksService extends ODataServiceProxy
{
 public BookmarksService()
 {
 super("Bookmarks.svc");
 }

 public BookmarkCollection GetAll() throws Exception
 {
 EntityType et = EntityType.GetEntityType(Bookmark.class);

 // run...
 String url = GetServiceUrl(et);
 Document doc = HttpHelper.DownloadXml(url, GetDownloadSettings());

 // load...
 return (BookmarkCollection)LoadEntities(doc, et);
 }
}

As you can see, the GetAll method will call up to the server to get some XML and then defer to a
method we’ll build now, called LoadEntities, to turn the entry elements within the XML into real
Bookmark instances.

Let’s look at LoadEntities now. I’ll present this listing in chunks and comment as we go, as it’s quite
long.

The first job is to get back a list of feed elements, determine we have one, and then work with the
first one we get.

// Add to ODataServiceProxy.java…

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

274

 protected Vector LoadEntities(Document doc, EntityType et) throws Exception
 {
 // parse...
 NodeList feedElements = doc.getElementsByTagNameNS(AtomNamespace, "feed");
 if(feedElements.getLength() == 0)
 throw new Exception("A 'feed' element was not found.");

 // feed...
 Element feed = (Element)feedElements.item(0);
 NodeList entryElements = feed.getElementsByTagNameNS(AtomNamespace, "entry");

Note that in the code, we’re using the getElementsByTagNameNS method on the XML Document DOM
class. This method allows us to pass in a namespace name to use so that we can do this strong matching
against a specific namespace.

Next, we’ll ask the entity type to create a collection instance for us, and then we’ll walk the elements
contained within the entryElements node list.

 // walk...
 Vector results = et.CreateCollectionInstance();
 for(int i = 0; i < entryElements.getLength(); i++)
 {
 Element entry = (Element)entryElements.item(i);

The fields we want are contained within a sub-element of entry called content/m:properties.
content is accessed through the default namespace, but properties requires a separate namespace. This
second namespace is defined in the MsMetadataNamespace constant defined at the top of the class.

 // get the content item...
 Element content = XmlHelper.GetElement(entry, AtomNamespace,�
 "content", false);
 if(content == null)
 throw new Exception(Formatter.formatMessage("A content�
 element not found on item '{0}'.", new String[] { new Integer(i).toString() }));

 // then get the properties element...
 Element properties = XmlHelper.GetElement(content,�
 MsMetadataNamespace, "properties", false);
 if(properties == null)
 throw new Exception(Formatter.formatMessage("A properties
element not found on item '{0}'.", new String[] { new Integer(i).toString() }));

The m:properties element then contains the field values we want prefixed with d:, which, in this
case, maps to another namespace defined in the MsDataNamespace constant.

We need to walk each of these child elements and see whether the name maps to a field on the
entity type related to the Bookmark class. In order to be less brittle, we want to allow the service (of which
we may not have any direct control in the case of consuming third-party data) to pass through data that
we are not interested in. Hence, for each field we encounter, we see if it is a field, and if so, we add it to a
bucket of values.

Also in this code snippet, you’ll see a reference to GetValue. We’ll build this shortly.

 // then get the fields...

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

275

 NodeList fields = properties.getElementsByTagName("*");
 Hashtable values = new Hashtable();
 for(int j = 0; j < fields.getLength(); j++)
 {
 Element field = (Element)fields.item(j);

 // value...
 Object value = GetValue(field);

 // is it a field?
 if(et.IsField(field.getLocalName()))
 values.put(field.getLocalName(), value);
 }

We’re almost there at this point. We have a collection of name/value items that we can use to
populate the initial data for an entity. Here’s the code that calls a constructor on Bookmark that does not
exist yet – we’ll add the new constructor in a moment.

 // create...
 Bookmark bookmark = new Bookmark(values);
 results.addElement(bookmark);
 }

At this point, we’re finished. We can close the loop that walks the entry element and return our
collection back to the caller.

 // return...
 return results;
 }

Actually, though, we’re not quite finished because we need to implement the GetValue method. This
value will take an element instance and extract from it the value. It will use the type attribute of the
element to determine the type and convert the represented-as-a-string-in-XML value back to the caller
as a value of the correct type. Here’s the code:

// Add to ODataServiceProxy.java…
 private Object GetValue(Element field) throws Exception
 {
 // fields are provided with a data element, like this....
 // <d:BookmarkId m:type="Edm.Int32">1002</d:BookmarkId>
 String asString = field.getAttribute("m:type");

 // nothing?
 if(asString == null || asString.length() == 0)
 return XmlHelper.GetStringValue(field);
 else if(asString.compareTo("Edm.Int32") == 0)
 return new Integer(XmlHelper.GetInt32Value(field));
 else
 throw new Exception(Formatter.formatMessage("Cannot handle '{0}'.",�
 new String[] { asString }));
 }

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

276

Creating Entities from Name/Value Collections
At the moment, we don’t have a way of creating an entity from a collection of name/value items (and
we’ve made a class within LoadEntities that assumes that we do), so we need to add this to Bookmark and
to Entity. To Bookmark we need to add this additional constructor:

// Add to Bookmark.java…
 public Bookmark() throws Exception
 {
 }

 public Bookmark(Hashtable values) throws Exception
 {
 super(values);
 }

That method defers to a constructor on the base Entity class that we also need to add. Here’s the
listing for that:

 // Add to Entity.java…
 protected Entity() throws Exception
 {
 _entityType = EntityType.GetEntityType(this.getClass());

 // slots...
 int count = _entityType.getFields().size();
 _values = new Object[count];
 _flags = new int[count];
 }

 protected Entity(Hashtable values) throws Exception
 {
 // make sure the original initialization code runs – v. important to call�
 the base constructor…
 this();

 // set...
 Enumeration keys = values.keys();
 while(keys.hasMoreElements())
 {
 String key = (String)keys.nextElement();
 EntityField field = getEntityType().GetField(key, true);
 SetValue(field, values.get(key), SETREASON_LOAD);
 }
 }

Note that when we call SetValue, we are specifying the SetReason.Load. This tells the entity that it
has a value for a given field but does not update the internal state to mark the item as modified.

That’s it as far as calling the service is concerned; however, we won’t physically call the service until
quite a bit later in this chapter.

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

277

Managing the Database
BlackBerry OS, like all of the smartphone implementations apart from Windows Phone, comes with the
open source SQLite database baked in. We’re going to use this database for storing the bookmarks
locally, which we will do via a new class called DatabaseHelper that extends SQLiteOpenHelper. Whenever
we need to access the database, we’ll create an instance of DatabaseHelper.

The database that we use requires a name. What we want to do with the database name is give it the
same name as the logged-on user. The reason we do this is that if User A logs on and changes some
bookmarks, these will be saved in the local database. If User B logs on, his bookmarks will be
downloaded and overwrite User A’s. This is, on a mobile device, very unlikely, but it is an obvious logic
problem, and thus it’s better to fix it rather than leave in what most would classify as a bug.

To solve this problem, we’ll set the database name when the user logs in. In LogonForm, modify
DoLogon so that it will set the database name in the shortly-to-be-built DatabaseHelper class:

// Modify method in LogonForm.java
 private void DoLogon(String username, String password, boolean rememberMe)�
 throws Exception
 {
 UsersService users = new UsersService();
 LogonResponse response = users.Logon(username, password);

 // now what?
 if(response.getResult() == LogonResponse.RESULT_OK)
 {
 // store the credentials?
 if(rememberMe)
 StoreCredentials(username, password);
 else
 ClearCredentials();

 // set the user...
 DatabaseHelper.setUser(username);

 // open...
 UiApplication.getUiApplication().pushScreen(new NavigatorForm());
 }
 else
 {
 MessageBox.Show(response.getMessage());
 }
 }

We can now build DatabaseHelper. Here’s the listing:

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

278

package com.amxmobile.SixBookmarks.Database;

import java.util.*;
import javax.microedition.global.*;
import net.rim.device.api.database.*;
import com.amxmobile.SixBookmarks.Entities.*;

public class DatabaseHelper
{
 private static Vector _loadMap = new Vector();

 private static String DatabaseName = null;

 public DatabaseHelper()
 {
 }

 public static void setUser(String username)
 {
 DatabaseName = "SixBookmarks-" + username;
 }
}

That doesn’t get us very far through the process of writing to the database! However, now whenever
we need access anywhere in the application to a database, all we have to do is create an instance of
DatabaseHelper and call methods that we’re about to build.

The SqlStatement Class and ISqlStatementSource Interface
When building an ORM layer, the thing I have found most helpful is adding a metadata system as we’ve
described previously in the book. A close second to this is making sure that any statements you wish to
issue to the database are wrapped up in an object instance that you control. This gives you more control
and flexibility as to how statements are passed over to the base data access layer within the ORM
framework. (Most newcomers to the field when building data access layers pass around strings that are
either dynamic SQL statements or names of stored procedures. This approach tends to be very brittle.)

To that end, we’re going to create a class called SqlStatement. This will hold the command text that’s
to be sent to the database engine and a list of parameter values. SQLite does not support named
parameters, and so we’re going to just keep a simple list.

In addition to SqlStatement, we’re also going to create an ISqlStatementSource interface. This adds
another layer of flexibility to the data access layer (DAL) by allowing us to pass objects directly into the
DAL that are not necessarily fully formed SQL statements but do have the capability to turn into them.
(We’re going to see this later when we build a class called SqlFilter, which will create a SqlStatement
instance immediately before the point of execution.)

Here’s ISqlStatementSource—it has only a single method:

package com.amxMobile.SixBookmarks.Runtime;

public interface ISqlStatementSource
{
 SqlStatement GetSqlStatement();
}

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

279

When we implement ISqlStatementSource on SqlStatement, we’re just going to return a reference to
this, as we don’t have to do any additional processing to build the query string once we have a
SqlStatement instance.

Here’s the implementation of SqlStatement:

package com.amxmobile.SixBookmarks.Database;

import java.util.*;

public class SqlStatement implements ISqlStatementSource
{
 private String _commandText;
 private Vector _parameterValues = new Vector();

 public SqlStatement()
 {
 }

 public SqlStatement(String commandText)
 {
 _commandText = commandText;
 }

 public String getCommandText()
 {
 return _commandText;
 }

 public void setCommandText(String commandText)
 {
 _commandText = commandText;
 }

 public SqlStatement GetSqlStatement()
 {
 return this;
 }

 public void AddParameterValue(Object value)
 {
 _parameterValues.addElement(value);
 }

 public Object[] getParameterValues()
 {
 Object[] results = new Object[_parameterValues.size()];
 for(int index = 0; index < _parameterValues.size(); index++)
 results[index] = _parameterValues.elementAt(index);

 // return...
 return results;

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

280

 }
}

That’s the base classes done. Let’s have a look now at creating concrete instances of statements that
have some function.

Creating Tables
Job one with regards to our new database is to create new tables to store data in. We’re going to do this
by examining at runtime the structure of the entity that we need to create a table for, and we’ll do this by
walking the fields defined against the entity type. This is where the power of a good metadata system
starts to shine through—this relatively complex operation of dynamically creating a SQL table is a
doddle to do.

As we know, SQLite uses a regular ANSI-92 SQL syntax; therefore we want to issue a statement that
looks something like this:

CREATE TABLE IF NOT EXISTS Bookmarks
 (BookmarkId integer primary key autoincrement,
 Ordinal integer,
 Name varchar(128),
 Url varchar(256))

We’re going to add two methods to DatabaseHelper. One is called GetCreateScript, and this method
will be responsible for returning a script like the previous one. This will defer during processing to a
method called AppendCreateSnippet. This second method’s job will be to write into the SQL string the
snippet that defines the field, e.g., Ordinal integer or Name varchar(128). Here’s the code:

// Add to DatabaseHelper.java…
 private SqlStatement GetCreateScript(EntityType et) throws Exception
 {
 StringBuffer builder = new StringBuffer();
 builder.append("CREATE TABLE IF NOT EXISTS ");
 builder.append(et.getNativeName()); // now the columns...
 builder.append(" (");
 Vector fields = et.getFields();
 for(int index = 0; index < fields.size(); index++)
 {
 if(index > 0)
 builder.append(", ");

 // defer...
 AppendCreateSnippet(builder, (EntityField)fields.elementAt(index));
 }
 builder.append(")");

 // return...
 return new SqlStatement(builder.toString());
 }

 private void AppendCreateSnippet(StringBuffer builder, EntityField field) throws�
 Exception

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

281

 {
 builder.append(field.getNativeName());
 builder.append(" ");

 // switch...
 int type = field.getDataType();
 if(type == EntityField.DATATYPE_STRING)
 {
 builder.append("varchar(");
 builder.append(field.getSize());
 builder.append(")");
 }
 else if(type == EntityField.DATATYPE_INT32)
 {
 builder.append("integer");

 // key?
 if(field.getIsKey())
 builder.append(" primary key autoincrement");
 }
 else
 throw new Exception(Formatter.formatMessage("Cannot handle '{0}'.",�
 new String[] { new Integer(field.getDataType()).toString() }));
 }

■ Note Recall that we support only two data types in this implementation—strings and 32-bit integers. Here’s
another reason I’ve chosen that for this book—the AppendCreateSnippet method would be huge if we supported
all available data types.

We obviously need to call that method somehow. One way to do this is to create a method that
ensures the table for a given entity type exists prior to use. In fact, this is exactly what we’ll do by adding
a method called EnsureTableExists to the DatabaseHelper class. We’ll also then rig our code so that
EnsureTableExists is called at relevant points during the statement execution cycle.

You’ll notice in our create script that we’re using the special SQLite IF TABLE EXISTS directive to tell
SQLite to ignore the create call if the table is already there. It would be acceptable, therefore, to issue a
call to create the table every time we received a call into EnsureTableExists. However, for efficiency—
especially important as we’re on a low-horsepower device—we’ll make EnsureTableExists keep track of
whether a create call has been called in the running session. We’ll do this by adding a static field to the
DatabaseHelper class that keeps a list of the names of the entities that have been “ensured.” If we get
asked to ensure the table for an entity that we think we’ve already done, we’ll quit the method early and
save processor cycles. Here’s the code:

public class DatabaseHelper extends SQLiteOpenHelper
{
 private static Vector _loadMap = new Vector();

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

282

 // code removed for brevity...

 public void EnsureTableExists(EntityType et) throws Exception
 {
 // have we already called it?
 String name = et.getName();
 if(_loadMap.contains(name))
 return;

 // create...
 SqlStatement sql = GetCreateScript(et);
 ExecuteNonQuery(sql);

 // add...
 _loadMap.addElement(name);
 }
}

You’ll note that EnsureTableExists calls ExecuteNonQuery. This is the first of the data access methods
that execute SQL statements against the SQLite database. Note that GetCreateScript returns a
SqlStatement instance, and also recall that we said that our data access methods were going to work with
ISqlStatementSource instances. Our ExecuteNonQuery method is going to take an ISqlStatementSource
and use the GetStatement method defined on it to de-reference an actual statement to execute. (In fact,
though, when passing in a concrete SqlStatement instance, the call on the interface will result in a
reference to the concrete SqlStatement being returned.)

Here’s the implementation of ExecuteNonQuery:

// Add to DatabaseHelper.java
 public void ExecuteNonQuery(ISqlStatementSource sql) throws Exception
 {
 // open...
 Database db = GetDatabase();
 Statement statement = null;
 try
 {
 statement = GetRealSqlStatement(db, sql);
 statement.execute();
 }
 finally
 {
 if(statement != null)
 statement.close();
 if(db != null)
 db.close();
 }
 }

Of note in that listing is that we use a try…finally construct to close the database, regardless of
whether execution succeeded or failed. This is (obviously) to keep resource usage to a minimum.

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

283

Examining the Database with Sqliteman
At this point, we can take an entity type and create a database for it. We might as well do this now, as we
have quite a long way to go before we can get some real data into it!

We haven’t yet built the Sync class, but we can start to do this now. We’ll start it off by asking it to
ensure the database exists, but we won’t add the logic to do anything other than that.

Here’s the code:

package com.amxmobile.SixBookmarks.Database;

import java.util.*;

import com.amxmobile.SixBookmarks.Entities.*;
import com.amxmobile.SixBookmarks.Services.*;

public class Sync
{
 private DatabaseHelper _database;
 private EntityType _entityType;

 public void DoSync() throws Exception
 {
 _database = new DatabaseHelper();

 // make sure we have a table...
 _entityType = EntityType.GetEntityType(Bookmark.class);
 _database.EnsureTableExists(_entityType);

 // we'll add more code here later...
 }

 private EntityType getEntityType()
 {
 return _entityType;
 }

 private DatabaseHelper getDatabase()
 {
 return _database;
 }
}

Recall the code that we added to the LogonForm to start the navigator activity. We’re going to change
the DoLogon method again to call the sync code prior to launching the navigator. Here’s the listing:

// Modify code in LogonForm.java…
 private boolean DoLogon(String username, String password, boolean rememberMe)�
 throws Exception
 {
 UsersService users = new UsersService();
 LogonResponse response = users.Logon(username, password);

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

284

 // now what?
 if(response.getResult() == LogonResult.LogonOk)
 {
 // store the credentials?
 if(rememberMe)
 StoreCredentials(username, password);
 else
 ClearCredentials();

 // set the user...
 DatabaseHelper.setUser(username);

 // do a sync...
 Sync sync = new Sync();
 sync.DoSync(this);

 // open...
 UiApplication.getUiApplication().pushScreen(new NavigatorForm());
 }
 else
 {
 MessageBox.Show(this, response.getMessage());
 return false;
 }
 }

One wrinkle when working with SQLite and the BlackBerry emulator is that you need to nominate a
folder on the host machine’s disk as a fake SD card. This is done via the Simulate–Change SD Card
option on the emulator application. Figure 11-5 shows my D:\Temp\BBSD folder mapped as a fake SD
card.

Figure 11-5. The BlackBerry emulator’s SD card “mount” screen

Now if you run the application and log on, a Sync instance will be created and DoSync will be called.
The database and table will (one hopes) have been created. However, being engineers, we probably need
to see it to believe it.

If you navigate into the folder you used as your fake SD card, you can drill in and find a database file
called SixBookmarks-<username>. You can then use a utility called Sqliteman (http://sqliteman.com) to

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

285

examine the database. Figure 11-6 shows the Bookmarks table in situ, although obviously we have not
added any data to it yet.

Figure 11-6. Sqliteman showing the “bookmarks” table

Let’s look in the next section at how we can write bookmarks to the database.

Writing Bookmarks to the Database
What we’ll do in this section is start developing the synchronization routine. In this chapter, we’ll look at
downloading the server bookmarks and storing them locally. In the next chapter, we’ll look at passing
the changes back up to the server.

Earlier in this section, we built the BookmarksService class. We defined a method on this called
GetAll, which returned a set of bookmarks from the server. We’re going to use this to get the list of
bookmarks to insert.

When using an ORM layer, what we want to be able to do is ask the entity itself to commit in-
memory changes to the database. Further, we want to be able to use the metadata system to build the
query that we wish to use. We’re going to use a “unit of work” pattern to do this by implementing a class
called EntityChangeProcessor, passing this an entity, and having the processor work out whether it’s to
do nothing with it or whether it needs to issue an insert, update, or delete operation to the database.

On the Entity class, we have already defined methods called IsNew, IsModified, and IsDeleted.
IsNew and IsModified have been implemented to work in this chapter, whereas IsDeleted is a stub
implementation that just returns false. In this chapter, we’re going to make the processor understand
insert operations only and look at update and delete in the next chapter.

Building the Change Processor
First off, let’s add a SaveChanges method to Entity. This is very easy—it’s going to create a “change
processor” passing in the entity type related to the entity.

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

286

// Add to Entity.java…
 public void SaveChanges() throws Exception
 {
 EntityChangeProcessor processor = new�
 EntityChangeProcessor(this.getEntityType());
 processor.SaveChanges(this);
 }

The basics of the EntityChangeProcessor include storing the entity type in an instance field and
deciding whether to call an Insert, Update, or Delete method based on the change that has occurred.
Here’s the code:

package com.amxmobile.SixBookmarks.Entities;

import com.amxmobile.SixBookmarks.Database.*;

public class EntityChangeProcessor
{
 private EntityType _entityType;

 public EntityChangeProcessor(EntityType et)
 {
 _entityType = et;
 }

 public EntityType getEntityType()
 {
 return _entityType;
 }

 public void SaveChanges(Entity entity) throws Exception
 {
 // do we need to do anything?
 if(entity.getIsNew())
 this.Insert(entity);
 else if(entity.getIsModified())
 throw new Exception("Not implemented.");
 else if(entity.getIsDeleted())
 throw new Exception("Not implemented.");

 // nothing to do...
 }

 private void Delete(Entity entity) throws Exception
 {
 // get the statement...
 SqlStatement sql = this.GetDeleteStatement(entity);

 // run the statement...
 DatabaseHelper db = new DatabaseHelper();
 db.EnsureTableExists(getEntityType());

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

287

 db.ExecuteNonQuery(sql);
 }

As mentioned previously, in this chapter, we’re going to look only at inserting entities, so let’s look
now at the Insert method.

Inserting Entities
The Insert method simply has to build a SQL statement that can insert the entity and then execute it
against the database.

The SQL statement that we wish to issue looks like the one called out here. Note that in this
statement we’re not specifying a value for BookmarkId—this will be allocated for us by the database. Also,
just a reminder that the ? characters in the statement are placeholders for parameters.

INSERT INTO Bookmarks (Ordinal, Name, Url) VALUES (?, ?, ?)

■ Note For simplicity, the implementation here does not select back from the database the ID that was allocated
as part of the statement. If you need to do this, issuing the select last_insert_rowid() statement on the same
connection will return back the ID. The version of the code available from the web site does include this
functionality.

The GetInsertStatement will create a SqlStatement instance that can be used to insert the provided
Entity instance. Here’s the code:

// Add to EntityChangeProcessor.java…
 private SqlStatement GetInsertStatement(Entity entity) throws Exception
 {
 StringBuffer builder = new StringBuffer();
 SqlStatement sql = new SqlStatement();

 // et...
 EntityType et = getEntityType();

 // create...
 builder.append("INSERT INTO ");
 builder.append(et.getNativeName());
 builder.append(" (");
 boolean first = true;
 for(int index = 0; index < et.getFields().size(); index++)
 {
 EntityField field = (EntityField)et.getFields().elementAt(index);
 if(entity.getIsModified(field))
 {
 if(first)
 first = false;

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

288

 else
 builder.append(", ");
 builder.append(field.getNativeName());
 }
 }
 builder.append(") VALUES (");
 first = true;
 for(int index = 0; index < et.getFields().size(); index++)
 {
 EntityField field = (EntityField)et.getFields().elementAt(index);
 if(entity.getIsModified(field))
 {
 if(first)
 first = false;
 else
 builder.append(", ");
 builder.append("?");

 // add in the parameter....
 sql.AddParameterValue(entity.GetValue(field));
 }
 }
 builder.append(")");

 // return...
 sql.setCommandText(builder.toString());
 return sql;
 }

Once we have the statement, we can run it like so:

// Add to EntityChangeProcessor.java…
 protected void Insert(Entity entity) throws Exception
 {
 // get the statement...
 SqlStatement sql = this.GetInsertStatement(entity);

 // run the statement...
 DatabaseHelper db = new DatabaseHelper();
 db.EnsureTableExists(getEntityType());
 db.ExecuteNonQuery(sql);
 }

Now we just need to run it.
Our DoSync routine on the Sync class is stubbed out with some basic code, but it does not do

anything yet. We need to make this call a method we’ll build, called GetLatest. Here’s the code:

// Modify DoSync method in Sync.java…
 public void DoSync(IContextSource source) throws Exception
 {
 _contextSource = source;
 _database = new DatabaseHelper(source);

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

289

 // make sure we have a table...
 _entityType = EntityType.GetEntityType(Bookmark.class);
 _database.EnsureTableExists(_entityType);

 // get the latest...
 GetLatest();
 }

We’ll build GetLatest in the next section.

Downloading Bookmarks
The code we’re about to look at is a little strange. I’ll explain…

When we created the OData service proxy method to return all the bookmarks, we made this return
Bookmark entities. I chose to do that because I felt it was unnecessarily complicated to have a separate set
of classes representing bookmarks that go over the wire, compared to bookmarks that live in the local
database. It’s not unusual to have this separation, and in many cases, it is desirable. (Google “data
transfer object” for more information.)

Where this gets a little strange is that the OData service returns back the entities with the BookmarkId
property populated with values that represent the internal, private IDs in the server’s database. Our
change processor is configured to treat entities that do not have a loaded ID as new, and entities that do
have a loaded ID as potentially modified and deleted. Thus, if we pass our change processor an entity
that we have downloaded, it will look at it and assume it has been modified because the ID value is set. It
will attempt to issue an UPDATE rather than an INSERT statement, and the process will create incorrect
results.

What we, therefore, have to do is walk each downloaded bookmark and create a new Bookmark
instance for each. We’ll walk the fields described in the metadata and patch all of the fields that are not
key fields into the new entity. We can then pass this entity over to the change processor—it will detect an
unloaded ID value and assume it is to be inserted. Thus, the operation will work properly. Here’s the
code to go into the Sync class:

// Add to Sync.java…
 private void GetLatest() throws Exception
 {
 // clear the bookmarks table...
 getDatabase().ExecuteNonQuery(new SqlStatement("delete from bookmarks"));

 // get the bookmarks from the server...
 BookmarksService service = new BookmarksService();
 BookmarkCollection bookmarks = service.GetAll();
 for(int i = 0; i < bookmarks.size(); i++)
 {
 Bookmark bookmark = (Bookmark)bookmarks.elementAt(i);

 // the bookmarks we get from the server have server IDs populated.�
 we need to
 // remove the server ID and save locally by creating a new item...

 // create and copy all of the fields except the key field...
 Bookmark newBookmark = new Bookmark();

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

290

 Vector fields = getEntityType().getFields();
 for(int j = 0; j < fields.size(); j++)
 {
 EntityField field = (EntityField)fields.elementAt(j);
 if(!(field.getIsKey()) && bookmark.getIsLoaded(field))
 newBookmark.SetValue(field,�
 bookmark.GetValue(field), Entity.SETREASON_USER);
 }

 // set local modified and deleted...
 newBookmark.setLocalModified(false);
 newBookmark.setLocalDeleted(false);

 // save...
 newBookmark.SaveChanges();
 }
 }

■ Note This is another good example of how helpful a metadata system is. Should we add new fields to the entity,
this code will automatically adapt its operation and continue to work without us having to remember to do it.

Now if we run the project, the sync routine will run and the local database will be populated. You
won’t see different results yet—we’ll do that in the next section. However, if you open up the database in
Sqliteman, you’ll see the bookmarks downloaded from the server. Figure 11-7 illustrates.

Figure 11-7. Sqliteman showing the data within the “bookmarks” table

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

291

Reading Bookmarks and Displaying Them on the Navigator
Now that we know we have bookmarks in our local database, we can replace the code that displays the
mock bookmarks with code that retrieves the entities from the database. The code we’ve written to
display the bookmarks on the screen remains unchanged—we need to modify only the retrieval code.

We already have a database method that will execute a query without expecting a result
(ExecuteNonQuery). We now need to write a method that will return a collection of entities—
ExecuteEntityCollection. To do this, we’re going to create a class called SqlFilter.

The purpose of SqlFilter is to retrieve values from the database based on the principle of
constraining data down from the maximum possible set (all rows in a table) to the set that you want. It
could be that the set you want is the maximum possible set (“get all”), a single row represented by a key
value (“get by ID”), or any other set that you fancy.

Recall that we created ISqlStatementSource earlier, and also recall that we created our
ExecuteNonQuery method to accept an ISqlStatementSource and then ultimately de-reference a real
SqlStatement instance to run. We’ll do the same thing with our ExecuteEntityCollection, and we’ll also
make SqlFilter implement ISqlStatementSource, but this time the behavior will be to dynamically build
a new SQL statement to execute.

The SQL statement that SqlFilter needs to generate is straightforward—it’ll look something like
this:

SELECT BookmarkId, Name, Value, Ordinal from Bookmarks

Here’s the code, including a helper method also called ExecuteEntityCollection that will defer to a
DatabaseHelper instance for execution:

package com.amxmobile.SixBookmarks.Database;

import java.util.*;
import com.amxmobile.SixBookmarks.Entities.*;

public class SqlFilter implements ISqlStatementSource
{
 public static final int OPERATOR_EQUALTO = 0;
 public static final int OPERATOR_NOTEQUALTO = 1;

 private EntityType _entityType;

 private Vector _constraints = new Vector();

 public SqlFilter(Class type) throws Exception
 {
 this(EntityType.GetEntityType(type));
 }

 public SqlFilter(EntityType et)
 {
 _entityType = et;
 }

 private EntityType getEntityType()
 {

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

292

 return _entityType;
 }

 public SqlStatement GetSqlStatement() throws Exception
 {
 SqlStatement sql = new SqlStatement();
 StringBuffer builder = new StringBuffer();

 // et...
 EntityType et = getEntityType();

 // columns...
 builder.append("SELECT ");
 Vector fields = et.getFields();
 for(int index = 0; index < fields.size(); index++)
 {
 if(index > 0)
 builder.append(", ");
 builder.append(((EntityField)fields.elementAt(index))�
.getNativeName());
 }

 // from...
 builder.append(" FROM ");
 builder.append(et.getNativeName());

 // where...
 Vector constraints = getConstraints();
 if(constraints.size() > 0)
 {
 builder.append(" WHERE ");
 for(int index = 0; index < constraints.size(); index++)
 {
 if(index > 0)
 builder.append(" AND ");
 ((SqlConstraint)constraints.elementAt(index))�
.Append(sql, builder);
 }
 }

 // return...
 sql.setCommandText(builder.toString());
 return sql;
 }

 public Vector ExecuteEntityCollection() throws Exception
 {
 // shortcut method - defer to the helper...
 DatabaseHelper db = new DatabaseHelper();
 return db.ExecuteEntityCollection(this, getEntityType());
 }
}

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

293

Executing the Entity Collection
Now that we have a statement to run, we need to connect to the database and execute it. This will return
back a forward-only cursor that we can iterate through creating entities as we go.

Here’s the base ExecuteEntityCollection method that needs to be on DatabaseHelper:

// Add to DatabaseHelper.java
public Vector ExecuteEntityCollection(ISqlStatementSource sql, EntityType et) throws Exception
 {
 EnsureTableExists(et);

 // get...
 Database db = GetDatabase();
 Statement statement = null;
 Cursor cursor = null;
 try
 {
 // set...
 statement = GetRealSqlStatement(db, sql);
 cursor = statement.getCursor();

 // execute a cursor...
 Vector results = et.CreateCollectionInstance();

 // cursor...
 while(cursor.next())
 {
 // load...
 Entity entity = LoadEntity(cursor, et);
 results.addElement(entity);
 }

 // return...
 return results;
 }
 finally
 {
 if(cursor != null)
 cursor.close();
 if(statement != null)
 statement.close();
 if(db != null)
 db.close();
 }
 }

You can see there how this gets a real statement from the source object and opens a connection to
the database. We can ask the entity type to return a collection instance, and once we have that, we can
run the statement and return a cursor. Each iteration of the loop defers to LoadEntity, which we’ll build
now.

LoadEntity has to create an entity instance and then populate it with values from the database.
There is an assumption here that the columns defined in the filter’s statement include every field

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

294

available on the entity type. On a more sophisticated ORM implementation, this may not be the case,
but in our case it is. Thus, we need to walk the entity type fields, retrieve the value from the row, and set
the value on the entity. When we do this, we need to mark the call as having SetReason.Load. This flag
tells the entity that the value has been loaded but not modified. If we were to call SaveChanges, nothing
would happen—the ID field would be loaded, and hence it would not be new, no column would be
modified, and hence the whole entity would be unchanged. (The entity has obviously not been deleted
either, but we have not implemented that check yet.)

Here’s the code for LoadEntity:

// Add to DatabaseHelper.java…
 private Entity LoadEntity(Cursor c, EntityType et) throws Exception
 {
 // create a new instance...
 Entity entity = et.CreateInstance();

 // row...
 Row row = c.getRow();

 // load data...
 for(int index = 0; index < et.getFields().size(); index++)
 {
 Object value = row.getObject(index);

 // field...
 EntityField field = (EntityField)et.getFields().elementAt(index);
 int type = field.getDataType();
 if(type == EntityField.DATATYPE_STRING)
 entity.SetValue(field, (String)value, Entity.SETREASON_LOAD);
 else if(type == EntityField.DATATYPE_INT32)
 {
 if(value == null)
 value = new Integer(0);

 // set...
 entity.SetValue(field, value, Entity.SETREASON_LOAD);
 }
 else
 {
 throw new Exception(Formatter.formatMessage("Cannot handle�
 '{0}'.",
 new String[] { new�
 Integer(field.getDataType()).toString() }));
 }
 }

 // return...
 return entity;
 }

 CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

295

Asking the Navigator Controller to Load the Real Bookmarks
All that remains now is to modify the Initialize method of the navigator form so that it loads the real
bookmarks from the database rather than the fake ones we’ve been using up until now. Here’s the code:

// Modify method in NavigatorForm.java…
 private void Initialize() throws Exception
 {
 SqlFilter filter = new SqlFilter(Bookmark.class);
 _bookmarks = (BookmarkCollection)filter.ExecuteEntityCollection();
 for(int index = 0; index < _bookmarks.size(); index++)
 Initialize((Bookmark)_bookmarks.elementAt(index));
 }

If we run the project, we now go end to end, and we’ll see the bookmarks get synchronized from the
server and shown on the navigator. Figure 11-8 shows some sample results.

Figure 11-8. Success! The application shows the bookmarks selected from the database after downloading

from the server.

CHAPTER 11 � BLACKBERRY: AN ORM LAYER ON SQLITE

296

■ Note The filter created in the Load method will return all bookmarks, even ones with the LocalDeleted value
set to true. In the next chapter, we’ll change this method to exclude ones that have been deleted via
configuration.

Conclusion
In this chapter, we have covered considerable ground in that we can now join activities together, call up
to the OData service, store entities in our local database, and read them back. We also built a fully
functional (albeit slightly limited) object-relational mapping system complete with metadata subsystem.
In the next chapter, we’ll look to extend this by adding code to update entities locally when changed and
pass the updates back to the server.

C H A P T E R 12

� � �

297

BlackBerry: Pushing Changes
to the Server

This is the last of the BlackBerry chapters, and it’s where we pull the functionality of the application
together. As of this point, we have a synchronization class that will pull the latest version of the
bookmarks from the server and an ORM layer that will put them in the database. We also have forms for
logging on and showing the bookmarks implemented. What we’re going to do in this chapter is create
two new forms—one for asking the user which bookmark needs to be edited and one that actually edits
the bookmark. We’ll then complete the synchronization routine by making it send inserts, updates, or
deletes back to the server. This is going to include modifying the SqlFilter functionality to allow it to
constrain data and doing more work with classes that handle HTTP communications.

� Note In this chapter, although we have an entity type that relates only to bookmarks, the code has been
designed to be generic enough to be easily adapted to work with multiple types of entities.

Capturing Local Changes
We’ll start by creating the UI to capture the changes, and in the second part of this chapter, we will look
at how those changes can be streamed up to the server. Firstly, we’ll look at modifying our SqlFilter
class to make it more sophisticated.

Constraining SQL Filters
When we built SqlFilter in the last chapter, we used it only to return all items. We’re going to need
more sophistication in this chapter, and so we’ll add the ability to add constraints to the query.

In BootFX, the open source ORM tool that the database work in this book is based on, which we
discussed in Chapter 3, there are two kinds of constraints, field constraints and free constraints. A field
constraint is bound to a single field and is used to say things like “I want this field to be equal to this
value.” A free constraint allows you to patch in a snippet of SQL if you need more sophistication. The
advantage of field constraints is that they’re really easy to code up, but they are limited. The
disadvantage of free constraints—when working with traditional database servers that run on server
hardware—is that they are SQL dialect–specific, i.e., if you write one that works on SQL Server, you’re
not guaranteed it will run on MySQL, Oracle, etc. Here, just to illustrate the point and for consistency
with BootFX, we’re going to build a base class called SqlConstraint and a field constraint
implementation in SqlFieldConstraint, but we will not build SqlFreeConstraint.

CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

298

When we come to build our query (recall we do this in the GetStatement method on SqlFilter), we’ll
walk the list of constraints that we have and call a method on the constraint called Append, which will be
responsible for actually modifying the query. SqlConstraint will be an abstract class with an abstract
Append method, like so:

package com.amxMobile.SixBookmarks.Runtime;

package com.amxmobile.SixBookmarks.Database;

public abstract class SqlConstraint
{
 public SqlConstraint()
 {
 }

 public abstract void Append(SqlStatement sql, StringBuffer builder) throws Exception;
}

The field constraints will need to know three things: the field that they’re binding to, the value to
match, and the operator to use for the matching. In this book, I’ve created just two operators—equal to
or not equal to. In a real-world implementation, you’d likely need more operators. We defined these
constants when we built the SqlFilter class originally.

When we’re building our SQL statement, the constraint just has to add the small portion of the WHERE
clause that contains the expression to match. Here’s a sample statement with the constraint’s area of
responsibility underlined:

SELECT * FROM BOOKMARKS WHERE LocalDeleted=0

In other words, it’s just a small part of the statement that the constraint cares about.
Here’s the implementation of SqlFieldConstraint that holds the field, the operator, and the value:

package com.amxmobile.SixBookmarks.Database;

import javax.microedition.global.*;

import com.amxmobile.SixBookmarks.Entities.*;

public class SqlFieldConstraint extends SqlConstraint
{
 private EntityField _field;
 private Object _value;
 private int _operator;

 public SqlFieldConstraint(EntityField field, Object value)
 {
 this(field, SqlFilter.OPERATOR_EQUALTO, value);
 }

 public SqlFieldConstraint(EntityField field, int op, Object value)

 CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

299

 {
 _field = field;
 _value = value;
 _operator = op;
 }

 public EntityField getField()
 {
 return _field;
 }

 public Object getValue()
 {
 return _value;
 }

 public int getOperator()
 {
 return _operator;
 }

 public void Append(SqlStatement sql, StringBuffer builder) throws Exception
 {
 // add the snippet...
 EntityField field = getField();
 builder.append(field.getNativeName());

 // what operator?
 if(_operator == SqlFilter.OPERATOR_EQUALTO)
 builder.append("=");
 else if(_operator == SqlFilter.OPERATOR_NOTEQUALTO)
 builder.append(" <> ");
 else
 throw new Exception(Formatter.formatMessage("Cannot handle '{0}'.",
new String[] { new Integer(_operator).toString() }));

 // add the parameter and its value value...
 builder.append("?");
 sql.AddParameterValue(getValue());
 }
}

All that remains is to make SqlFilter aware of the constraints.
I’ve found in the past that it’s more practical to design these classes by hiding the physical

SqlConstraint objects away from the caller and adding methods to SqlFilter that actually add the
constraints in. I’ve also found that it’s generally a good idea that when working with items that map
down to the entity metadata subsystem, creating one method overload that takes the item’s name and a
second overload that takes the related EntityField instance itself is also a good idea. Thus, we create one
method that takes a field name and another that takes an EntityField instance. In addition, we also
need to optionally provide the operator, assuming “equal to” in situations where an operator is not
provided. Here’s the code:

CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

300

// Add field and methods to SqlFilter…
package com.amxMobile.SixBookmarks.Runtime;

public class SqlFilter implements ISqlStatementSource
{
 private EntityType _entityType;
 private Vector _constraints = new Vector();

 // code omitted for brevity...
 private Vector getConstraints()
 {
 return _constraints;
 }

 public void AddConstraint(String name, int value) throws Exception
 {
 AddConstraint(name, new Integer(value));
 }

 public void AddConstraint(String name, boolean value) throws Exception
 {
 AddConstraint(name, new Boolean(value));
 }

 public void AddConstraint(String name, Object value) throws Exception
 {
 EntityField field = getEntityType().GetField(name, true);
 AddConstraint(field, value);
 }

 public void AddConstraint(EntityField field, Object value)
 {
 getConstraints().addElement(new SqlFieldConstraint(field, value));
 }

 public void AddConstraint(String name, int operator, Object value) throws Exception
 {
 EntityField field = getEntityType().GetField(name, true);
 AddConstraint(field, operator, value);
 }

 public void AddConstraint(EntityField field, int operator, Object value)
 {
 getConstraints().addElement(new SqlFieldConstraint(field, operator, value));
 }
}

Now that we can create and store constraints, we just need to modify the GetSqlStatement method
to detect the existence of constraints and apply them. Here’s the modified version of GetSqlStatement:

 CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

301

// Modify GetSqlStatement method within SqlFilter… public SqlStatement GetSqlStatement()
throws Exception
 {
 SqlStatement sql = new SqlStatement();
 StringBuilder builder = new StringBuilder();

 // et...
 EntityType et = getEntityType();

 // columns...
 builder.append("SELECT ");
 ArrayList<EntityField> fields = et.getFields();
 for(int index = 0; index < fields.size(); index++)
 {
 if(index > 0)
 builder.append(", ");
 builder.append(fields.get(index).getNativeName());
 }

 // from...
 builder.append(" FROM ");
 builder.append(et.getNativeName());

 // where...
 Vector constraints = getConstraints();
 if(constraints.size() > 0)
 {
 builder.append(" WHERE ");
 for(int index = 0; index < constraints.size(); index++)
 {
 if(index > 0)
 builder.append(" AND ");
 ((SqlConstraint)constraints.elementAt(index)).Append(sql,
builder);
 }
 }

 // return...
 sql.setCommandText(builder.toString());
 return sql;
 }

In the last chapter, when we created our GetRealSqlStatement method, we didn’t have any
constraints; hence we did not have any parameters to pass in. What we need to do now is revisit
GetRealSqlStatement, and in the part where we set up the query to run, we need to package up and pass
in the variables. (Slightly sinisterly, if we forget to do this and have a query string that defines
parameters, but do not pass in any parameters, SQLite quietly accepts the query and assumes the
parameter values are all null. It would be more defensive of it to throw an exception.)

CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

302

Here are the modifications to GetRealSqlStatement:

 private Statement GetRealSqlStatement(Database db, ISqlStatementSource sql) throws
Exception
 {
 SqlStatement wrapped = sql.GetSqlStatement();
 return GetRealSqlStatement(db, wrapped);
 }

 private Statement GetRealSqlStatement(Database db, SqlStatement sql) throws Exception
 {
 Statement real = db.createStatement(sql.getCommandText());

 // prep...
 real.prepare();

 // populate params...
 Object[] params = sql.getParameterValues();
 for(int index = 0; index < params.length; index++)
 {
 Object param = params[index];
 if(param instanceof String)
 real.bind(index + 1, (String)param);
 else if(param instanceof Integer)
 real.bind(index + 1, ((Integer)param).intValue());

 else if(param instanceof Long)
 real.bind(index + 1, ((Long)param).longValue());

 else if(param instanceof Boolean)
 real.bind(index + 1, ((Boolean)param).booleanValue());

 else
 throw new Exception(Formatter.formatMessage("Cannot handle
'{0}'.", new String[] { param.getClass().getName() }));
 }

 // return..
 return real;
 }

That’s it! Now we can make our SQL queries more sophisticated.

Excluding Deleted Entities from the View
The reason I wanted to walk through adding the constraints to SqlFilter first was that we need to
modify the code that gets the bookmarks from the local database to display in the navigator view.
Specifically, we need to exclude deleted items.

We’re about to start building our Configuration window. One of the things this will allow the user to
do is delete bookmarks. However, we cannot delete bookmarks from our local database because if we do
not have an item locally, we don’t know that the server version is not in sync and needs to be deleted.

 CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

303

Thus, when we delete locally, we’ll “soft delete” rather than “hard delete” the item. We’ll do this by
setting the LocalDeleted field of the bookmark to 1.

This, then, begs the question that for our user interface, we need to not show soft deleted
bookmarks—hence the need for the changes to SqlFilter that ultimately allow for a WHERE clause to be
added to our query.

We’ll define a convention whereby we add business methods that return bookmarks back to us as
static methods on the Bookmark class. We’ll add GetBookmarksForDisplay now (which will bring back all
bookmarks where LocalDeleted is 0), and we’ll add some more methods later. Here’s the listing:

// Add method to Bookmark…
 public static BookmarkCollection GetBookmarksForDisplay() throws Exception
 {
 // get those that are flagged as modified and deleted...
 SqlFilter filter = new SqlFilter(Bookmark.class);
 filter.AddConstraint("LocalDeleted", 0);

 // return...
 return (BookmarkCollection)filter.ExecuteEntityCollection();
 }

In the last chapter, we modified the Initialize method to the NavigatorForm, which looked like this:
// Existing HandleLoad method in NavigatorController…
 private void Initialize() throws Exception
 {
 SqlFilter filter = new SqlFilter(Bookmark.class);
 _bookmarks = (BookmarkCollection)filter.ExecuteEntityCollection();
 for(int index = 0; index < _bookmarks.size(); index++)
 Initialize((Bookmark)_bookmarks.elementAt(index));
 }

We can now change this to defer to GetBookmarksForDisplay, rather than creating a SqlFilter
directly. Here’s the code:

// Modify HandleLoad method in NavigatorController…
 private void Initialize() throws Exception
 {
 _bookmarks = Bookmark.GetBookmarksForDisplay();
 for(int index = 0; index < _bookmarks.size(); index++)
 Initialize((Bookmark)_bookmarks.elementAt(index));
 }

If you run the application now, you won’t see any difference, but behind the scenes we are limiting
the display items. Now that we’ve got that out of the way, we can build our configuration form.

Getting a Bookmark by Ordinal
Later on, we’re going to need to retrieve a bookmark that has a specific ordinal. While we have our head
into creating these filters, we’ll add this now. Essentially, all we need is a filter that is configured to
constrain by a specific ordinal value and to exclude items that have been deleted. Here’s the method to
add to Bookmark:

CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

304

// Add method to Bookmark…
 public static Bookmark GetByOrdinal(int ordinal) throws Exception
 {
 SqlFilter filter = new SqlFilter(Bookmark.class);
 filter.AddConstraint("Ordinal", ordinal);
 filter.AddConstraint("LocalDeleted", 0);

 // return...
 return (Bookmark)filter.ExecuteEntity();

 }

This method uses ExecuteEntity on SqlFilter. We haven’t built that yet, so let’s add it now. Here’s

the code:

// Add method to SqlFilter…
 public Entity ExecuteEntity() throws Exception
 {
 Vector items = ExecuteEntityCollection();
 if(items.size() > 0)
 return (Entity)items.elementAt(0);
 else
 return null;

 }

Building the Configuration Form
We’re going to build two forms for the configuration part of the application. One of the forms will display
a list of bookmarks to configure. The second form will display the details of a single bookmark. This is a
standard pattern of mobile applications. Figures 12-1 and 12-2 show a typical “list and singleton” from
the iPhone’s iPod application.

 CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

305

Figure 12-1. A “list” view in the iPhone’s iPod application

CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

306

Figure 12-2. A “singleton” view of an item in the iPhone’s iPod application

The modern device platforms (Android, iOS, and Windows Phone) have support for lists and
singletons built in. BlackBerry does not have the same level of particular support that iOS and Windows
Phone do, but the implementation is not going to be difficult.

As you know by now, building the user interface on BlackBerry is a matter of programmatically
adding controls to the form. For our form, we’re going to need a list and two buttons—one to add a new
bookmark and one to edit the selected bookmark. We’ll also use a HorizontalFieldManager control to
give us more control over how the buttons are displayed—specifically we’ll use this to lay them out side
by side.

Here’s the code for ConfigureForm.

package com.amxmobile.SixBookmarks;

import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;

 CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

307

import com.amxmobile.SixBookmarks.Database.*;
import com.amxmobile.SixBookmarks.Runtime.*;

public class ConfigureForm extends MainScreen implements FieldChangeListener
{
 private BookmarkCollection _bookmarks;
 private ObjectListField _list;
 private ButtonField _addButton;
 private ButtonField _backButton;

 public ConfigureForm()
 {
 super();

 // title...
 setTitle(new LabelField("Configure"));

 // list...
 _list = new ObjectListField() {
 protected boolean navigationClick(int status, int time)
 {
 try
 {
 HandleConfigure();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex);
 }
 return true;
 };
 };
 this.add(_list);

 // horizontal layout...
 HorizontalFieldManager horiz = new HorizontalFieldManager();
 this.add(horiz);

 // add...
 _addButton = new ButtonField("Add", ButtonField.CONSUME_CLICK);
 _addButton.setChangeListener(this);
 horiz.add(_addButton);

 // back...
 _backButton = new ButtonField("Back", ButtonField.CONSUME_CLICK);
 _backButton.setChangeListener(this);
 horiz.add(_backButton);

 // init...
 try
 {
 Initialize();

CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

308

 }
 catch(Exception ex)
 {
 MessageBox.Show(ex);
 }

 }

One aspect to call out there is the anonymous method related to the avigationClick event of the list.

We’ll build this later, but essentially what this is doing is opening up the configuration dialog for the
selected bookmark.

We’ll stub out the HandleConfigure and Initialize methods here so that we can run the form and
see what it does. Here’s the code:

// Add to ConfigureForm.java…
 private void Initialize() throws Exception
 {
 // TBD...
 }

 private void HandleConfigure() throws Exception
 {
 // TBD...
 }

In order to run the form, we need to show it. We can do this by going back into the NavigatorForm
class and modifying the behavior for HandleConfigure. Specifically, the code needs to look like this:

// Modify method in NavigatorForm.java…
 private void HandleConfigure()
 {
 ConfigureForm form = new ConfigureForm();
 UiApplication.getUiApplication().pushScreen(form);

 }

Run the application now, and you can access the configuration form, although it won’t do much yet.

Figure 12-3 illustrates.

 CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

309

Figure 12-3. The configuration screen without any bookmarks

Displaying the Bookmarks
Displaying the bookmarks requires a little bit of legwork, hence the reason I wanted to show the form
presentation prior to the work. We need to do two things. Firstly we need to sort the bookmarks by
ordinal (so that they appear in the same order as per the main navigation view). Secondly, we need to
add the items to the list. This is a matter of copying the Bookmark instances from the Vector-based
BookmarkCollection instances into a regular Object[] array and then passing them into the control.
Here’s the code:

// Add method to ConfigureForm…
 private void Initialize() throws Exception
 {
 _bookmarks = Bookmark.GetBookmarksForDisplay();

CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

310

 // sort...
 _bookmarks.SortByOrdinal();

 // add..
 Object[] values = new Object[_bookmarks.size()];
 for(int index = 0; index < _bookmarks.size(); index++)
 values[index] = _bookmarks.elementAt(index);
 _list.set(values);
 }

Now, those of you new to BlackBerry will be surprised to hear that BlackBerry/J2ME does not have a
built-in sort function! You are expected to write your own! (Apparently the year is 1911, not 2011…) To
shortcut this, I am proposing writing a frankly rubbish sort algorithm, but, seeing as we have only six
possible bookmarks to display, I hope you will forgive me and instead appreciate the fact I am giving you
less to read! Here’s the “code”:

// Add to BookmarkCollection.java…
 public void SortByOrdinal() throws Exception
 {
 // mmm... no sort in j2me...
 Object[] byOrdinal = new Object[6];
 for(int index = 0; index < size(); index++)
 {
 Bookmark bookmark = (Bookmark)elementAt(index);
 byOrdinal[bookmark.getOrdinal()] = bookmark;
 }

 // rebuild the array, removing the null values...
 removeAllElements();
 for(int index = 0; index < 6; index++)
 {
 if(byOrdinal[index] != null)
 addElement(byOrdinal[index]);
 }

 }

Figure 12-4 shows the results.

 CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

311

Figure 12-4. The configuration screen displaying the bookmarks

Going Back and Adding New
While we’re here, this is a good place to implement the Back and Add buttons. The Back button is easy—
all we have to do is reload the navigator form and put it back on the stack. The Add button is a tad
harder. We have to go through the bookmarks that we have and identify the next available ordinal. When
we find that, we’ll open the to-be-built singleton configuration screen with that new to-be-inserted
ordinal. Here’s the code for both:

// Modify and add methods in ConfigureForm.java…

public void fieldChanged(Field field, int context)
 {
 try
 {
 if(field == _backButton)

CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

312

 UiApplication.getUiApplication().pushScreen(new
NavigatorForm());
 else if(field == _addButton)
 HandleAdd();
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex);
 }
 }

 private void HandleAdd() throws Exception
 {
 // how many?
 if(_bookmarks.size() < 6)
 {
 // find the next ordinal...
 boolean[] used = new boolean[6];
 for(int index = 0; index < 6; index++)
 used[index] = false;
 for(int index = 0; index < _bookmarks.size(); index++)
 {
 Bookmark bookmark = (Bookmark)_bookmarks.elementAt(index);
 used[bookmark.getOrdinal()] = true;
 }

 // find the first gap...
 for(int index = 0; index < 6; index++)
 {
 if(!(used[index]))
 {
 HandleConfigure(index);
 return;
 }
 }
 }
 else
 MessageBox.Show("You already have the maximum number of bookmarks.");

 }

In terms of showing the configuration singleton form, we’ll need to support two ways of opening it.

We’ll need one method that accepts an ordinal and opens the form, and we’ll need another method that
de-references the selected ordinal from the list and defers to the first method. Here they both are:

// Modify and add methods in ConfigureForm.java…
 private void HandleConfigure() throws Exception
 {
 Bookmark bookmark = (Bookmark)_bookmarks.elementAt(_list.getSelectedIndex());
 HandleConfigure(bookmark.getOrdinal());

 }

 CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

313

 private void HandleConfigure(int ordinal)
 {
 ConfigureSingletonForm form = new ConfigureSingletonForm(ordinal);
 UiApplication.getUiApplication().pushScreen(form);

 }

We can now look at building the configuration form proper.

Configuring Singletons
The ConfigureSingletonForm class is nothing particularly special—it has to load or create a bookmark
and then populate two fields, one for the name and one for the URL. Here’s the listing:

package com.amxmobile.SixBookmarks;

import com.amxmobile.SixBookmarks.Database.*;
import com.amxmobile.SixBookmarks.Runtime.*;

import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;

public class ConfigureSingletonForm extends MainScreen implements FieldChangeListener
{
 private EditField _nameTextBox;
 private EditField _urlTextBox;
 private ButtonField _saveButton;
 private ButtonField _deleteButton;
 private ButtonField _backButton;
 private Bookmark _bookmark;

 public ConfigureSingletonForm(int ordinal)
 {
 super();

 // title...
 setTitle(new LabelField("Configure"));

 // set...
 // controls...
 this.add(new LabelField("Name"));
 _nameTextBox = new EditField();
 this.add(_nameTextBox);

 this.add(new LabelField("URL"));
 _urlTextBox = new EditField();
 this.add(_urlTextBox);

 // horiz...
 HorizontalFieldManager horiz = new HorizontalFieldManager();
 this.add(horiz);

CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

314

 // buttons...
 _saveButton = new ButtonField("Save", ButtonField.CONSUME_CLICK);
 _saveButton.setChangeListener(this);
 horiz.add(_saveButton);

 // buttons...
 _deleteButton = new ButtonField("Delete", ButtonField.CONSUME_CLICK);
 _deleteButton.setChangeListener(this);
 horiz.add(_deleteButton);

 // buttons...
 _backButton = new ButtonField("Back", ButtonField.CONSUME_CLICK);
 _backButton.setChangeListener(this);
 horiz.add(_backButton);

 // init...
 try
 {
 Initialize(ordinal);
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex);
 }
 }

 private void Initialize(int ordinal) throws Exception
 {
 _bookmark = Bookmark.GetByOrdinal(ordinal);
 if(_bookmark == null)
 {
 // set...
 _bookmark = new Bookmark();
 _bookmark.setOrdinal(ordinal);
 }
 else
 {
 _nameTextBox.setText(_bookmark.getName());
 _urlTextBox.setText(_bookmark.getUrl());
 }
 }

 public void fieldChanged(Field field, int context)
 {
 // TBD…
 }
}

If you run that, you’ll see something that looks like Figure 12-5.

 CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

315

Figure 12-5. Editing a bookmark

We’re almost finished—all we have to do is implement the ability to save changes to the bookmark.
All this method has to do is get the values back off of the view, validate them, populate the values in the
stored bookmark instance, and save the changes to the database. Here’s the code:

// Modify methods and add new methods in ConfigureSingletonForm…
 public void fieldChanged(Field field, int context)
 {
 try
 {
 if(field == _saveButton)
 HandleSave();
 else if(field == _backButton)
 HandleBack();
 }

CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

316

 catch(Exception ex)
 {
 MessageBox.Show(ex);
 }
 }

 private void HandleDelete()
 {
 MessageBox.Show("TBD.");
 }

 private void HandleBack()
 {
 ConfigureForm form = new ConfigureForm();
 UiApplication.getUiApplication().pushScreen(form);
 }

 private void HandleSave() throws Exception
 {
 // check...
 ErrorBucket errors = new ErrorBucket();
 String name = _nameTextBox.getText();
 if(name.length() == 0)
 errors.AddError("Name is required.");
 String url = _urlTextBox.getText();
 if(url.length() == 0)
 errors.AddError("URL is required.");

 // errors?
 if(!(errors.getHasErrors()))
 {
 // set...
 _bookmark.setName(name);
 _bookmark.setUrl(url);

 // flag that we've changed it...
 _bookmark.setLocalModified(true);

 // save...
 _bookmark.SaveChanges();

 // sync and back...
 HandleSync();
 }
 else
 MessageBox.Show(errors.GetAllErrors());

 }

 private void HandleSync() throws Exception
 {
 // we won't do this yet! see below…

 CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

317

 // go...
 HandleBack();

 }

Perhaps the most non-obvious call here is the one to HandleSync at the end. The intention here is

that when we have committed changes to the local database, we should go through a process of
pumping those up to the server straightaway. However, since we have not written the code that sends
the changes up, the operation of the sync operation as currently implemented will be to reset any local
changes with those from the server. Therefore we’ll leave HandleSync “neutered” for now and add this
back in when we’re done.

Handling Deletes and Updates
In the last chapter, we built EntityChangeProcessor so that it could insert bookmarks into the local
database. We need to change this so that it can update pre-existing bookmarks and “delete” those that
are no longer needed. I say “delete” in quotation marks because a delete operation for us in this context
is actually an update to mark the LocalDeleted field as true.

We’ll start by adding the HandleDelete method to ConfigureSingletonForm, like so:

// Modify methods and add new methods in ConfigureSingletonForm…
 public void fieldChanged(Field field, int context)
 {
 try
 {
 if(field == _saveButton)
 HandleSave();
 else if(field == _backButton)
 HandleBack();
 else if(field == _deleteButton)
 HandleDelete();
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex);
 }
 }

private void HandleDelete() throws Exception
 {
 // flag it...
 _bookmark.setLocalDeleted(true);
 _bookmark.SaveChanges();

 // sync and quit...
 HandleSync();
 }

Next, recall that in the last chapter, when we built the EntityChangeProcessor, we gave it the ability
to insert entities, but we didn’t add the ability to update or delete them. Also recall that when we did this,
we built up an INSERT SQL statement and executed it after we detected that we had a new entity. All we

CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

318

have to do here is create an UPDATE statement as appropriate. For completeness, we’ll also add support
for deletions too, although we’re not going to directly use this. Here are the methods to add to
EntityChangeProcessor:

// Add methods to EntityChangeProcessor…
 private void Update(Entity entity) throws Exception
 {
 // get the statement...
 SqlStatement sql = this.GetUpdateStatement(entity);

 // run the statement...
 DatabaseHelper db = new DatabaseHelper();
 db.EnsureTableExists(getEntityType());
 db.ExecuteNonQuery(sql);
 }

 private SqlStatement GetUpdateStatement(Entity entity) throws Exception
 {
 StringBuffer builder = new StringBuffer();
 SqlStatement sql = new SqlStatement();

 // et...
 EntityType et = getEntityType();

 // update...
 builder.append("UPDATE ");
 builder.append(et.getNativeName());
 builder.append(" SET ");

 // walk...
 boolean first = true;
 EntityField key = null;
 for(int index = 0; index < et.getFields().size(); index++)
 {
 EntityField field = (EntityField)et.getFields().elementAt(index);
 if(field.getIsKey())
 key = field;
 else if(entity.getIsModified(field))
 {
 if(first)
 first = false;
 else
 builder.append(", ");

 // add the snippet...
 builder.append(field.getNativeName());
 builder.append("=?");

 // add the parameter...
 Object value = entity.GetValue(field);
 sql.AddParameterValue(value);

 CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

319

 }
 }

 // append...
 AppendIdConstraint(builder, sql, key, entity);

 // return...
 sql.setCommandText(builder.toString());
 return sql;
 }

 private void AppendIdConstraint(StringBuffer builder, SqlStatement sql, EntityField
key, Entity entity) throws Exception
 {
 // constraint by ID...
 builder.append(" WHERE ");
 builder.append(key.getNativeName());
 builder.append("=?");
 sql.AddParameterValue(entity.GetValue(key));
 }

 private void Delete(Entity entity) throws Exception
 {
 // get the statement...
 SqlStatement sql = this.GetDeleteStatement(entity);

 // run the statement...
 DatabaseHelper db = new DatabaseHelper();
 db.EnsureTableExists(getEntityType());
 db.ExecuteNonQuery(sql);
 }

 private SqlStatement GetDeleteStatement(Entity entity) throws Exception
 {
 StringBuffer builder = new StringBuffer();
 SqlStatement sql = new SqlStatement();

 // et...
 EntityType et = getEntityType();

 // update...
 builder.append("DELETE FROM ");
 builder.append(et.getNativeName());

 // key...
 EntityField key = et.GetKeyField();
 AppendIdConstraint(builder, sql, key, entity);

 // return...
 sql.setCommandText(builder.toString());
 return sql;
 }

CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

320

With those methods in place, we just have to change the SaveChanges method to call Update and
Delete, in addition to it being able to call Insert. Here’s the revised listing for SaveChanges:

// Modify SaveChanges method within EntityChangeRegister…
 public void SaveChanges(Entity entity) throws Exception
 {
 // do we need to do anything?
 if(entity.getIsNew())
 this.Insert(entity);
 else if(entity.getIsModified())
 this.Update(entity);
 else if(entity.getIsDeleted())
 this.Delete(entity);

 // nothing to do...
 }

Now if you run the application, you can do everything but push changes back to the server. We’ll
look at this now. Remember that if you restart the application, your local changes will be lost as the sync
operation brings down the server-side bookmarks to your local database.

Pushing Changes to the Server
In this section of the chapter, and the last of our work on BlackBerry, we’re going to look at pushing the
changes back up to the server by adding more functionality to our Sync class.

We’ll split this section into two halves. The first half will look at the algorithm to detect changes
between the server and local versions. The second half will look at building and sending the HTTP
requests to the server. Before that, however, I need to take you through some of the issues surrounding
developing for BlackBerry.

My “Facepalm” Moment
As mentioned in the first chapter of this section, I did the BlackBerry code last and found it by a huge
margin to be the most frustrating and difficult of all of the platforms to do. The pending last few pages of
our journey into Six Bookmarks for BlackBerry is going to illustrate why.

The structure I chose for this book when I started to design it was to look at the things that all mobile
devices need to do. Fundamentally, we need to do only two things—we need to be able to read and write
XML files and send them over the Internet, and we need to be able to store them locally. Really, anyone
who puts out a smartphone in 2011 that is limited in either of these regards needs to be <deleted> and
<also deleted>! Microsoft messed this up by not including a database. RIM has messed this up by not
providing a standard way to generate XML files and also by breaking a fundamental rule of HTTP
communication—that it’s the server’s job to decide what’s valid, and not the client’s.

Lack of Support for REST Services
We’ve already used the Connector class in J2ME to send and receive HTTP communications.
Unbelievably, whoever designed this decided that it is the client that would reject unknown HTTP
methods. The two basic HTTP methods are GET and POST. REST interfaces, like our proprietary one and
OData, use other methods. Specifically, OData uses MERGE and DELETE. If you try to issue a MERGE or DELETE
call using the Connector class, you will get an exception. Our OData interface on the server uses the verb

 CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

321

to decide what action to take; hence we cannot send change requests to our OData interface from the
BlackBerry code.

If this were a dedicated BlackBerry book, a) I hope I would have noticed this before putting a lot of
work in about using OData, and b) I would not have used OData. But it’s not—this book (and its sister
book) is about Android, iOS, Windows Phone, Windows Mobile, and BlackBerry. To get around the
problem, I have installed a “shim” on the server that BlackBerry alone can talk to that forwards the
requests to the proper OData interface. This means that BlackBerry can still work, albeit with modified
code, but the server can still expose the lovely, modern, REST-based OData interface that it needs. We’ll
see this later when we build it.

To clarify, everything you see in terms of forming the OData target XML and building the document
to go back to the server is proper OData “stuff”—it’s only that we need to send the request through a
proxy URL to get around the fact that we can’t directly call the URL.

Creating XML Files
My other rant relates to the fact that we are missing classes on BlackBerry that allow us to generate XML
files!

There are two ways to do this—one is “proper and good” and one is “a bit dodgy.” For simplicity,
I’ve decided to show you the “a bit dodgy” way in this chapter so that you can make up your mind!

The prevailing thinking is that the proper way to do this is to use the kXML library
(http://kxml.sourceforge.net) for XML document generation. There are two reasons this adds
complexity in the context of this book. Firstly, using third-party libraries on BlackBerry is non-trivial, and
I’ve deemed it out of scope for this book. Secondly, I want to try to keep as much consistency between
the different platforms as possible. We know that we can’t just have one lump of source code that works,
but seeing as BlackBerry and Android are both Java-based, it would be good to try to keep those similar.
In the Android chapter (not in this volume), we used the XmlSerializer in the XmlPull library
(www.xmlpull.org). What I am going to do here is roll my own XmlSerializer-compatible class based on
the interface for the full XmlPull version. This allows us to keep the code for Android and BlackBerry
closely aligned while allowing us to avoid using a third-party library.

Without further ado, let’s move on to building the “push” capability.

Detecting Local Changes
The code for detecting local changes is relatively easy to understand—once we know that we have
changes, we can run some code to synchronize the data. We first update the server set, and when the
pre-existing GetChanges method is executed, this will delete all of the local bookmarks and replace them
with server versions again. Thus, we can be confident that by the time we get through this process, not
only have our changes been merged, but also our local database contains an up-to-date set of what is on
the server.

Building the PushUpdates Method
We’ll start by building the PushUpdates method. There’s going to be quite a lot of work here. In this
section, we’ll first look at the algorithm for detecting changes, and then we’ll look at how we physically
send changes up.

The algorithm for detecting changes looks like this:

• Download the latest set of bookmarks from the server.

CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

322

• Walk each change detected on the client, and find the matching server item based
on the ordinal of the item.

• If a local change is found and that change can be mapped to a server item, issue an
update to the server.

• If a local change is found and that change cannot be mapped to a server item,
issue an insert to the server.

• If we delete a bookmark locally and a bookmark with that ordinal is in the server’s
set, issue a delete to the server.

To support this operation, we’ll need a method that updates a server bookmark, a second that
inserts a server bookmark, and a third that deletes a server bookmark. If none of those applies, nothing
will happen. We’ll add these stub methods to the ODataServiceProxy class now—recall that we built this
class in the last chapter.

� Note Although this implementation is going to be used only with bookmarks in this book, this approach will
work with any sort of OData entity (with the caveat that for BlackBerry we’re going to send the requests through a
shim).

Here are the stub methods that we’ll add to ODataServiceProxy to help us along:

// Add methods to ODataServiceProxy…
 public void PushUpdate(IContextSource context, Entity entity, int serverId) throws
Exception
 {
 throw new Exception("TBD.");
}

 public void PushInsert(IContextSource context, Entity entity) throws Exception
 {
 throw new Exception("TBD.");
}

 public void PushDelete(IContextSource context, Entity entity, int serverId) throws
Exception
 {
 throw new Exception("TBD.");
}

Moving back onto the PushChanges method in Sync, one thing it’s going to need to be able to do is
get back the changed local bookmarks and the local deleted (i.e., “soft deleted”) bookmarks. I’m going to
propose building these as separate methods. Although it’s easy enough to build them as a single method,
the discussion is easier to follow if they are separate. To do this, we’ll add static methods to the Bookmark
class itself.

 CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

323

The code for GetBookmarksForServerUpdate will return a list of the bookmarks that have been flagged
as having local changes but not flagged as having been deleted. Here’s the code:

// Add method to Bookmark…
 public static BookmarkCollection GetBookmarksForServerUpdate() throws Exception
 {
 // get those that are flagged as modified and deleted...
 SqlFilter filter = new SqlFilter(Bookmark.class);
 filter.AddConstraint("LocalModified", 1);
 filter.AddConstraint("LocalDeleted", 0);

 // return...
 return (BookmarkCollection)filter.ExecuteEntityCollection();
 }

Likewise, the code for GetBookmarksForServerDelete will return a list of only those bookmarks that
have been specifically flagged for deletion. Here’s the code:

// Add method to Bookmark…
 public static BookmarkCollection GetBookmarksForServerDelete() throws Exception
 {
 // get those that are flagged as modified and deleted...
 SqlFilter filter = new SqlFilter(Bookmark.class);
 filter.AddConstraint("LocalDeleted", 1);

 // return...
 return (BookmarkCollection)filter.ExecuteEntityCollection();
 }

We now have everything that we need to build PushChanges. As it’s quite a long method, we’ll go
through it in chunks.

The first thing we’ll do is call our GetBookmarksForServerUpdate and GetBookmarksForServerDelete
methods. If we don’t get back any updates or deletes, we’ll give up.

// Add method to Sync…
 private void PushChanges() throws Exception
 {
 BookmarkCollection updates = Bookmark.GetBookmarksForServerUpdate();
 BookmarkCollection deletes = Bookmark.GetBookmarksForServerDelete();
 if(updates.size() == 0 && deletes.size() == 0)
 return;

Next, for neatness later, we’ll get and store the EntityType instance that maps to our Bookmark class.

Then we’ll reuse our BookmarksService class to grab a list of the bookmarks from the server.

 // et...
 EntityType et = EntityType.GetEntityType(Bookmark.class);

 // get the server ones...
 BookmarksService service = new BookmarksService();
 BookmarkCollection fromServer = service.GetAll();

CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

324

Now we can get into the change detection code proper. We’ll set up one loop that walks each local
change, and for each local change, we’ll first find a matching server change:

 // walk the locally updated items…
 for(int i = 0; i < updates.size(); i++)
 {
 Bookmark local = (Bookmark)updates.elementAt(i);

 // find it in our server set...
 Bookmark toUpdate = null;
 for(int j = 0; j < fromServer.size(); j++)
 {
 Bookmark server = (Bookmark)fromServer.elementAt(j);

 // what happened?
 if(local.getOrdinal() == server.getOrdinal())
 {
 toUpdate = server;
 break;
 }
 }

If we do detect a change (i.e., toUpdate is not null), we need to create a new Bookmark instance and
populate every field on it, bar the key. When we encounter the key, we’ll set the ID to be the ID of the
server’s copy instead of the local copy. This doesn’t matter too much, as when we issue the update
request, we won’t send up the ID, but it feels appropriate. If we do not detect a change (i.e., toUpdate is
null), we’ll call insert as opposed to update. Here’s the code that makes that choice and also closes off
the local bookmark loop.

 // did we have one to change?
 if(toUpdate != null)
 {
 // walk the fields...
 int serverId = 0;
 Vector fields = et.getFields();
 for(int k = 0; k < fields.size(); k++)
 {
 EntityField field = (EntityField)fields.elementAt(k);

 // what now?
 if(!(field.getIsKey()))
 toUpdate.SetValue(field,
local.GetValue(field), Entity.SETREASON_USER);
 else
 serverId = toUpdate.getBookmarkId();
 }

 // send that up...
 service.PushUpdate(toUpdate, serverId);
 }
 else

 CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

325

 {
 // we need to insert it...
 service.PushInsert(local);
 }
 }

Once we’ve done that work, we can look at the deletes, which is the last thing we need to do on the
method. The rule here is that if we have marked a bookmark as deleted and we can find a bookmark with
a matching ordinal on the server, we’ll delete it from the server. This code could be improved by deleting
it only if no changes were detected; however, I’ve chosen to keep it simple. Here’s the code.

 // what about ones to delete?
 for(int i = 0; i < deletes.size(); i++)
 {
 Bookmark local = (Bookmark)deletes.elementAt(i);

 // find a matching ordinal on the server...
 for(int j = 0; j < fromServer.size(); j++)
 {
 Bookmark server = (Bookmark)fromServer.elementAt(j);

 // delete?
 if(local.getOrdinal() == server.getOrdinal())
 service.PushDelete(server, server.getBookmarkId());
 }
 }
 }

That’s all of the changes that we need to make to make the sync run. All that we have to do now is
replace the stubs for PushInsert, PushUpdate, and PushDelete with real logic. We’ll do this now.

Issuing Server Requests to Insert, Update, and Delete
In the last chapter, we requested XML data from the server that described our server-side entities in
OData format. When we send insert and update requests back to the server, we need to create XML
documents that adhere to that format. (Delete does not have a payload, so you do not need to send an
XML document.)

As discussed, we will be building our own XML serialization class compatible with XmlSerializer in
the XMLPull library.

The three operations we need to fire can be described thus:

• For insert operations, we issue an HTTP POST to the base URL of the entity’s service
and supply XML that describes the initial value of the fields, e.g.,
http://services.multimobiledevelopment.com/services/Bookmarks.svc/Bookmark
.

• For update operations, we issue an HTTP MERGE to the URL of the item in question
and supply XML that describes the changed fields, e.g.,
http://services.multimobiledevelopment.com/services/Bookmarks.svc/Bookmark
(1000).

CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

326

• For delete operations, we issue an HTTP DELETE to the URL of the item in question
and provide no payload, e.g.,
http://services.multimobiledevelopment.com/services/Bookmarks.svc/Bookmark
(1001).

Or, rather, those would be the URLs if we would address them directly! What we need to do is
formulate the proper URL as per the foregoing and then send them to the shim that can be found at
http://services.multimobiledevelopment.com/services/BookmarksBBShim.aspx. Rather than having the
method passed up through the HTTP method, the method will be passed up through a query string
parameter.

The OData standard allows us to issue an HTTP MERGE or an HTTP PUT to send an “update”
instruction. MERGE is better (in this case at least) because it will update the provided fields but leave the
remaining fields. PUT requires all of the fields to be sent, as any missing fields are reset to their default
values. As a general principle of designing systems that have this kind of intraconnected messaging, it’s
always a good idea to try to keep things loosely coupled, and MERGE feels looser to me.

We’ve already stubbed in methods for each of the three operations, so let’s build them now.

Update via HTTP MERGE and Insert via HTTP POST
We’re going to create one main method for doing updates and tweak its operation so that it also works
for inserts.

Marking Fields As Being Available on the Server
We’re now going to have to make a change to the application to get around an aspect of the OData
protocol, namely, that if we try to update a field on the server that does not exist, we’ll get an error back.
The LocalModified and LocalDeleted columns that we added do not exist on the server, so any update or
insert server operations that mention those will fail. (I’m not a fan of this—it seems wrong. It would
seem better to me to ignore this situation much as the old SOAP protocol would. It implies it’s possible
to keep all of the clients that use the service in sync, or makes deprecation of server-side functionality
harder than it should be.)

To do this, we’ll add a property to EntityField that indicates whether the property is on the server.

� Note This is one of those application design aspects that end up in a messy design. It’s not brilliant to have a
metadata layer and the application have this “special” behavior in it—it would be better if this flag did not exist.
But as a corollary, I’m not keen on having two classes do roughly the same thing—e.g., a server representation of
a bookmark and a local representation. Essentially, there has to be a compromise somewhere…

Firstly, we’ll add an IsOnServer property to EntityField (default true), like so:

// Add IsOnServer property and field to EntityField…
public class EntityField extends EntityItem
{
 private DataType _type;
 private int _size;
 private boolean _isKey;

 CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

327

 private int _ordinal;
 private boolean _isOnServer = true;

 public EntityField(String name, String nativeName, DataType type, int size, int
ordinal)
 {
 // code omitted for brevity...
 }

 // code omitted for brevity...

 public boolean getIsOnServer()
 {
 return _isOnServer;
 }

 public void setIsOnServer(boolean value)
 {
 _isOnServer = value;
 }
}

And when we come to define the fields on Bookmark in our Start method on SixBookmarksRuntime,

we’ll set the flag for the two applicable fields:

// Modify Start method on SixBookmarksRuntime…
 public static void Start()
 {
 // create the entity type...
 EntityType bookmark = new EntityType(Bookmark.class, BookmarkCollection.class,
"Bookmarks");
 bookmark.AddField(Bookmark.BookmarkIdKey, Bookmark.BookmarkIdKey,
DataType.Int32, -1).setIsKey(true);
 bookmark.AddField(Bookmark.OrdinalKey, Bookmark.OrdinalKey, DataType.Int32, -
1);
 bookmark.AddField(Bookmark.NameKey, Bookmark.NameKey, DataType.String, 128);
 bookmark.AddField(Bookmark.UrlKey, Bookmark.UrlKey, DataType.String, 256);
 bookmark.AddField(Bookmark.LocalModifiedKey, Bookmark.LocalModifiedKey,
DataType.Int32, -1).setIsOnServer(false);
 bookmark.AddField(Bookmark.LocalDeletedKey, Bookmark.LocalDeletedKey,
DataType.Int32, -1).setIsOnServer(false);

 // register it...
 EntityType.RegisterEntityType(bookmark);
 }

Now we can use this property when building the messages to send to the server.

CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

328

Building the XML
The documentation on the OData web site gives an example of an insert as the following listing:

POST /OData/OData.svc/Categories HTTP/1.1
Host: services.odata.org
DataServiceVersion: 1.0
MaxDataServiceVersion: 2.0
accept: application/atom+xml
content-type: application/atom+xml
Content-Length: 634

<?xml version="1.0" encoding="utf-8"?>
<entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
 xmlns="http://www.w3.org/2005/Atom">
 <title type="text"></title>
 <updated>2010-02-27T21:36:47Z</updated>
 <author>
 <name />
 </author>
 <category term="DataServiceProviderDemo.Category"
 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:ID>10</d:ID>
 <d:Name>Clothing</d:Name>
 </m:properties>
 </content>
</entry>

If you refer back to the XML retrieved from the server in the last chapter, you can see that this is
basically just a rehash of the data that we provided. Our job, then, is to replicate this request.

� Note As of the time of writing, the site at www.odata.org/ is showing the entry elements in the preceding
listing as having an uppercase “E,” e.g., Entry. The interface will not work with Entry compared to entry; hence I
have edited it here, assuming a typo on the OData site.

In our request, we’re going to trim it down slightly and omit the title, updated, author, and
category elements. These are not required to make the request work. We’ll also omit the
DataServiceVersion and MaxDataServiceVersion headers, but we’ll add in our special x-amx-apiusername
and x-amx-token headers. If we patch in bookmark data rather than the sample data from the OData site,
we’ll have something like this:

POST /services/bookmarks.svc/Bookmark HTTP/1.1
Host: services.multimobiledevelopment.com

 CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

329

accept: application/atom+xml
content-type: application/atom+xml
content-encoding: UTF-8
content-length: 384
x-amx-apiusername: amxmobile
x-amx-token: 961c8c1b9d4ddd5799e7f0a7b4a5ee8b

<entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
 xmlns="http://www.w3.org/2005/Atom">
 <content type="application/xml">
 <m:properties>
 <d:Name>Apress</d:Name>
 <d:Url>http://www.apress.com/</d:Url>
 <d:Ordinal>0</d:Ordinal>
 </m:properties>
 </content>
</entry>

� Note The foregoing is ignoring that we are going to address a shim URL—I’m trying to illustrate the OData
communication on the assumption we’ll deal with reality later!

The XmlSerializer class is easy enough to use in its design. The approach is that you call a method
called startTag to start an element within the document and endTag to close it. For error checking—
because this approach is highly error-prone—the endTag method is provided with the same arguments
used to open it. This ensures that the resulting XML is well formed. There are also methods to add
attributes.

As you know, we’re going to build XmlSerializer ourselves later on—so for now go through this
code that defines the interface, and then we’ll build the back end in a minute.

The slight complexity with using the XmlSerializer is that it needs to be namespace-aware. We set
up the namespaces used in the document via setPrefix calls. One of the calls—the first one that will
specify the ATOM namespace—is set to have no prefix and becomes the default namespace.

Here’s the listing for the ODataServiceProxy class:

// Replace stub method on ODataServiceProxy…
 public void PushUpdate(Entity entity, int serverId) throws Exception
 {
 // update...
 XmlSerializer xml = new XmlSerializer();

 // start...
 xml.startDocument("UTF-8", true);
 xml.setPrefix("", AtomNamespace);
 xml.setPrefix("m", MsMetadataNamespace);
 xml.setPrefix("d", MsDataNamespace);

 // start entry and content and properties...

CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

330

 xml.startTag(AtomNamespace, "entry");
 xml.startTag(AtomNamespace, "content");
 xml.attribute("", "type", "application/xml");
 xml.startTag(MsMetadataNamespace, "properties");

 // fields...
 EntityType et = entity.getEntityType();
 for(int index = 0; index < et.getFields().size(); index++)
 {
 EntityField field = (EntityField)et.getFields().elementAt(index);
 if(!(field.getIsKey()) && field.getIsOnServer())
 {
 xml.startTag(MsDataNamespace, field.getName());
 xml.text(entity.GetValue(field).toString());
 xml.endTag(MsDataNamespace, field.getName());
 }
 }

 // end content and entry...
 xml.endTag(MsMetadataNamespace, "properties");
 xml.endTag(AtomNamespace, "content");
 xml.endTag(AtomNamespace, "entry");

 // end...
 xml.endDocument();

 // run...
 String url = null;
 int op = ODATAOPERATION_UPDATE;
 String xmlAsString = xml.toString();
 if(serverId != 0)
 url = GetEntityUrlForPush(entity, serverId);
 else
 {
 url = this.GetServiceUrl(et);
 op = ODATAOPERATION_INSERT;
 }

 // run...
 ExecuteODataOperation(op, url, xmlAsString);
 }

 private String GetEntityUrlForPush(Entity entity, int serverId)
 {
 return Formatter.formatMessage("{0}({1})", new String[] {
GetServiceUrl(entity.getEntityType()),
 new Integer(serverId).toString() });
 }

 CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

331

The code at the bottom of the PushUpdate defers to ExecuteODataOperation, which we will build a
moment. Notice as well that we have sneaked in a helper method—GetEntityUrlForPush. This builds the
URL for the item.

The final argument to PushUpdate is the ID of the item on the server. If this is non-zero, we’ll assume
that we’re updating and format the URL and set the operation as appropriate. Conversely, if it is, we’ll
use the base service URL and specify a different value in op.

Now that we have our PushUpdate method, we’ll quickly add PushInsert and PushDelete so that we
have a complete set. Here’s the listing:

// Replace stub methods on ODataServiceProxy…
 public void PushInsert(Entity entity) throws Exception
 {
 // an insert is an update but with a different url...
 PushUpdate(entity, 0);
 }

 public void PushDelete(Entity entity, int serverId) throws Exception
 {
 // get the entity URL...
 String url = GetEntityUrlForPush(entity, serverId);
 ExecuteODataOperation(ODATAOPERATION_DELETE, url, null);
 }

Building XmlSerializer
I’m not going to go into too much detail about how to build XmlSerializer, as really it’s a bit of a
diversion away from what we’re supposed to be doing. Effectively it’s just a “state machine” that keeps
adding to a string until you get an XML document out of the end. This implementation is not supposed
to be complete or bullet-proof—it’s designed to be good enough to push through the data to our server.
Here’s the code:

package com.amxmobile.SixBookmarks.Runtime;

import java.util.*;

import net.rim.device.api.i18n.*;

public class XmlSerializer
{
 private StringBuffer _builder = new StringBuffer();
 private boolean _firstElement = true;
 private boolean _inElementHeader = false;
 private Hashtable _namespaces = new Hashtable();
 private String _defaultNamespace = null;

 public void startDocument(String string, boolean b)
 {
 // no-op this - we don't need a header...
 }

 public void setPrefix(String prefix, String nsUri)

CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

332

 {
 if(prefix == null || prefix.length() == 0)
 _defaultNamespace = nsUri;
 else
 _namespaces.put(nsUri, prefix);
 }

 public void startTag(String nsUri, String name) throws Exception
 {
 // close?
 closeElement();

 // create...
 String qualifiedName = getQualifiedName(nsUri, name);
 _builder.append("<");
 _builder.append(qualifiedName);

 // set...
 _inElementHeader = true;

 // first...
 if(_firstElement)
 {
 // reset...
 _firstElement = false;

 // add...
 if(hasDefaultNamespace())
 namespaceAttribute(null, _defaultNamespace);

 // the other namespaces...
 Enumeration uris = _namespaces.keys();
 while(uris.hasMoreElements())
 {
 String uri = (String)uris.nextElement();
 if(uri == null)
 break;

 // append...
 String prefix = (String)_namespaces.get(uri);
 namespaceAttribute(prefix, uri);
 }
 }
 }

 private boolean hasDefaultNamespace()
 {
 if(_defaultNamespace != null && _defaultNamespace.length() > 0)
 return true;
 else
 return false;
 }

 CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

333

 private void namespaceAttribute(String prefix, String uri)
 {
 if(prefix == null || prefix.length() == 0)
 {
 _builder.append(" xmlns=\"");
 _builder.append(uri);
 _builder.append("\"");
 }
 else
 {
 _builder.append(" xmlns:");
 _builder.append(prefix);
 _builder.append("=\"");
 _builder.append(uri);
 _builder.append("\"");
 }
 }

 private void closeElement()
 {
 // are we in an element header?
 if(_inElementHeader)
 {
 // close...
 _builder.append(">");

 // reset...
 _inElementHeader = false;
 }
 }

 public void attribute(String nsUri, String name, String value)
 {
 // space...
 _builder.append(" ");

 // do we have a namespace?
 if(nsUri != null && nsUri.length() > 0)
 {
 // not needed for this implementation...
 }

 // the rest...
 _builder.append(name);
 _builder.append("=\"");
 _builder.append(value);
 _builder.append("\"");
 }

 public void endTag(String nsUri, String name) throws Exception
 {

CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

334

 // close the header...
 closeElement();

 // close the tag...
 String qualifiedName = getQualifiedName(nsUri, name);
 _builder.append("</");
 _builder.append(qualifiedName);
 _builder.append(">");
 }

 private String getQualifiedName(String nsUri, String name) throws Exception
 {
 // default... or no default?
 if(_defaultNamespace == null || _defaultNamespace.compareTo(nsUri) == 0)
 return name;
 else
 {
 // find...
 if(_namespaces.containsKey(nsUri))
 {
 String prefix = (String)_namespaces.get(nsUri);
 return prefix + ":" + name;
 }
 else
 throw new Exception(MessageFormat.format("Namespace {0} not
found.", new String[] { nsUri }));
 }
 }

 public void endDocument()
 {
 // no-op...
 }

 public void text(String buf)
 {
 // close...
 closeElement();

 // append... this needs more science to escape out or handle invalid
 // characters...
 _builder.append(buf);
 }

 public String toString()
 {
 return _builder.toString();
 }
}

 CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

335

Building ExecuteODataOperation
ExecuteODataOperation will take all of that information and build a request to issue to the server. This is
where we need to address the shim URL rather than the OData URL directly.

Here’s what ExecuteODataOperation needs to do:

• We’ll ensure that the API has been set up by calling EnsureApiAuthenticated.

• We’ll choose the type of HTTP Client operation we want to run, depending on
what we’re looking to achieve.

• To make the request, we need to pass up our special x-amx-apiusername and x-
amx-token headers. We’ll obtain these from the GetDownloadSettings method that
we built earlier and pass those on.

• If we have anything other than a DELETE request, we’ll add the XML to the request.

• We’ll then execute the request.

Here’s the first part of the code that formulates the request to our shim URL:

// Modify stub method in ODataServiceProxy…
 private String ExecuteODataOperation(int opType, String url, String xml) throws
Exception
 {
 // make sure we're authenticated...
 EnsureApiAuthenticated();

 // send up a post to the shim address...
 String shimUrl =
"http://services.multimobiledevelopment.com/services/bookmarksbbshim.aspx?method=";
 if(opType == ODATAOPERATION_INSERT)
 shimUrl += "POST";
 else if(opType == ODATAOPERATION_UPDATE)
 shimUrl += "MERGE";
 else if(opType == ODATAOPERATION_DELETE)
 shimUrl += "DELETE";
 else
 throw new Exception(MessageFormat.format("Cannot handle {0}.", new
String[] { new Integer(opType).toString() }));
 shimUrl += "&url=";
 shimUrl += url;

And here’s the remaining code that sends the request to the server. Remember, if we didn’t have to
use the shim (i.e., if J2ME supported the interface properly), we could just use this code with a different
HTTP method.

 // prep it...
 HttpConnection conn = null;
 InputStream stream = null;
 try
 {
 conn = (HttpConnection)Connector.open(shimUrl);

CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

336

 conn.setRequestMethod("POST");

 // headers...
 Hashtable headers = GetDownloadSettings().getExtraHeaders();
 Enumeration keys = headers.keys();
 while(keys.hasMoreElements())
 {
 String key = (String)keys.nextElement();
 conn.setRequestProperty(key, (String)headers.get(key));
 }

 // send up the XML...
 if(xml != null && xml.length() > 0)
 SendXml(conn, xml);

 // open...
 stream = conn.openInputStream();

 // walk...
 final int bufLen = 10240;
 byte[] buf = new byte[bufLen];
 StringBuffer raw = new StringBuffer();
 while(true)
 {
 int len = stream.read(buf, 0, bufLen);
 if(len == -1)
 break;

 // append...
 raw.append(new String(buf, 0, len));
 }

 // return...
 String html = raw.toString();
 return html;
 }
 finally
 {
 if(stream != null)
 stream.close();
 if(conn != null)
 conn.close();
 }
 }

And that’s it as far as sending up the data is concerned.

To test the code, you’ll need to go in and make changes to the bookmarks on the device. It’s worth
pulling the database off of the device to have a look. Figure 12-6 illustrates the Sqliteman application
showing the database with some local changes.

 CHAPTER 12 � BLACKBERRY: PUSHING CHANGES TO THE SERVER

337

Figure 12-6. Sqliteman showing the state of the LocalModified and LocalDeleted flags

The changes we made to the Sync class earlier will run when the logon operation succeeds, or when
the user manually chooses to sync from the configuration screen. When the code runs, the changes will
be sent up and new versions downloaded. You can see the results by examining the database directly, by
managing the appropriate user at http://services.multimobiledevelopment.com/.

Conclusion
In this chapter, we have covered a lot of ground. We have looked at how to modify the ORM functionality
to bring back selections of data. We have also looked at building a comprehensive user interface for
editing the bookmarks, including how to handle standard UI elements such as lists and menus. Finally,
we completed our synchronization routine so that we can send back updates to the server using the
OData protocol.

339

Index

� Special Characters
& Numbers
$metadata directive, 19
~/Properties folder, 53
32-bit integers, 84

� A
AccountInactive, 13
Action<T> tag, 56
activated handler, 129
ActiveX controls, 171
Add button, 311–313
add button handler, 141
AddButton, 263
AddConstraint method, 187
AddField method, 86, 247, 250
Add.png image, 138
Alert class, 59–61
AmxResponse element, 170, 232
android.database.sqlite.SQLiteOpenHelper, 36
API (Application Programming Interface)

account, 7–10
authenticating account, 224–235

Logon method on API service, 231–234
LogonResponse class, 226–227
wiring up EnsureApiAuthenticated

method, 235
XmlHelper class, 227–231

building out, 63–82
Authenticate method, 70–73
implementing "remember me" feature,

77–82
logon button, 73–76

API service, 11
API username header, 11–12
ApiKeys table, 9
ApiService class, 33, 55, 72–73, 168, 220, 224,

231, 233, 235

Append constraint, 298
Append method, 298
AppendCreateSnippet method, 280
AppendSelectConstraint method,

185
AppForm class, 208
application architecture, 27–37

approach, 27–28
ORM, 28–32

change processors, 32
entities, 29–30
metadata, 28–29
SQL statements, 31

server communication, 33–34
tablets, 21
technical approach, 34–37

issuing HTTP requests, 34
maintaining local store, 36–37
toolsets, 34
XML documents, 35–36

application bar, configuring, 137–142
Application Programming Interface. See API
application/atom-xml format data, 197
ApplicationBarIconButton instances, 139
applications, test, 40–47
AppMain, 208
architecture, of applications. See application

architecture
Arrow.png image, 138
assemblies, downloading custom

bootstrappers, 199–200
asynchronous programming, 166
Authenticate method, 66, 70–73
authenticating

API account, 224–235
Logon method on API service, 231–234
LogonResponse class, 226–227
wiring up EnsureApiAuthenticated

method, 235
XmlHelper class, 227–231

user via UsersService class, 235–236

� INDEX

340

autonumbering scheme, 107
avigationClick event, 308

� B
Back button, 311–313
BeginGetRequestStream method, 160
BeginGetResponse method, 56
{Binding <name>} declarations, 145
binding lists, 134–136
{Binding Name} expression, 133
BlackBerry, 201–217, 242–296

bookmarks, creating fake, 261–267
calling RESTful services, 220–236

authenticating, 224–236
issuing web requests, 220–224

conventions for presenting code, 219–220
creating logon form, 236–242
creating project, 218–219
entities, 243–260

basic class, 250–252
Bookmark class, 257–259
EntityType class, 244–250, 259–260
setting values in, 252–257

Hello World application, 206–215
installing toolset, 201–206

device simulator, 202–203
Eclipse IDE, 201
Email and MDS Simulator, 204–206
Java SDK, 201
plug-in, 202

issues with development, 217–218
SQLite database engine on, 243
Sync class, 269–296

calling server Bookmarks OData service,
269–276

databases, 277–278, 283–290
reading bookmarks and displaying on

navigator, 291–296
SqlStatement class and

ISqlStatementSource interface, 278–
280

tables, 280–282
versions, 201

BlackBerry platform, changes, 297–337
capturing local, 297–320
pushing to server, 320–337

BlackBerry Storm2 9550 simulator, 203
BlackBerry_App_Descriptor.xml file, 207

Bookmark class, 94–96, 152, 257–259, 274, 303,
324

_bookmark field, 144
Bookmark property, 144
BookmarkCollection object, 250
bookmarks

configuring, 193–195
overview, 24–25
single, 25–26

creating fake, 261–267
form to display, 261–263
showing web pages, 264–265

displaying, 309–311
downloading, 171–175

fetching latest with Sync class, 175
object-relational mapping, 172
retrieving entities, 172–175

persisting locally, for Windows Phone 7, 83–
130

reading and displaying on navigator, 291–
296

asking navigator controller to load real
bookmarks, 295–296

executing entity collection, 293–294
retrieving by ordinal, 303–304
writing to databases, 285–290

building change processor, 285–287
downloading, 289–290
inserting entities, 287–289

Bookmarks OData service, calling, 269–276
adding functionality to XmlHelper class,

271–272
creating entities from name/value

collections, 276
namespaces, 270–271
querying feed, 272–275

Bookmarks property, 101, 104
Bookmarks service, 14–20

constraining data to logged-on user, 20
OData standard, 15–20

issuing updates over, 20
queries, 19–20

test data, 14–15
Bookmarks table, 9, 285
BookmarksService class, 33, 55, 114, 220, 269,

273, 323
BootFX project, 28
bootstrappers, custom, 199–200
Build Action value, 133

 � INDEX

341

BuildQueryString, 224
BuildUrl, 224
button selection handler, 141–142
buttonAbout property, 97
buttonConfigure property, 97
ButtonField, 236
buttonLogoff property, 97
buttonNavigate1 property, 97
buttonNavigate2 property, 97
buttons, implementing clicks, 104–105
buttonSayHello, 45

� C
calls, testing, 10–11
change processors

building, 285–287
entity, 111–113
ORM, 32

ChangeListener event, 261
changes

capturing local, 297–320
configuration form, 304–313
constraining SQL filters, 297–302
excluding deleted entities from view,

302–303
retrieving bookmarks by ordinal, 303–

304
singletons, 313–320

pushing to server, 320–337
creating XML files, 321
detecting local changes, 321–325
lack of support for REST services, 320–

321
marking fields as available on server,

326–331
server requests for insert, update and

delete operations, 325–326
updating via HTTP MERGE method and

inserting via HTTP POST method,
326

XmlSerializer class, 331–337
CheckBoxField, 236
class declaration, 220
cleaning up services, 13–14
Click attribute, 104
collections, entities, 293–294
com.AmxMobile.SixBookmarks.Database.Book

mark, 249

configuration form, 304–313
Back and Add buttons, 311–313
displaying bookmarks, 309–311

configuration screen, 24–25
displaying the bookmarks, 311
without any bookmarks, 309

configuration UI, 131–147
binding lists, 134–136
ConfigurePage.xaml page, 131–133
configureSingletonPage page, 142–147
configuring application bar, 137–142

"configure singleton" screen, 26
ConfigureBookmark method, 141
ConfigurePageViewModel project, 134
ConfigurePage.xaml page, 131–133
ConfigureSingletonForm, 317
configureSingletonPage page, 142–147
Connector class, 320
constraining

data to logged-on user, 20
SQL filters, 297–302

content/m:properties element, 270
conventions, for presenting code, for

Blackberry, 219–220
CREATE TABLE statement, 181
CreateCollectionInstance method, 120,

189
CreateCommand method, 179–180
CreateConnection method, 176
CreateInstance method, 189
CreateTable method, 182
CTP bits, 113
Customer class, 30
Customer element, 229
CustomerId property, 30

� D
DAL (data access layers), 177
data, constraining to logged-on user, 20
data access layers (DAL), 177
data boxes, storing entities in, 107–126
data service, Bookmarks, 88
data test, 14–15
DatabaseHelper class, 277, 280–281
databases

examining with Sqliteman utility, 283–
285

managing, 277–278

� INDEX

342

databases (cont.)
writing bookmarks to, 285–290

building change processor, 285–287
downloading, 289–290
inserting entities, 287–289

databinding, 131, 133, 146
DataBoxEntityChangeProcessor class, 112, 183
DataBoxFilter class, 119–120
DataContext property, 135, 145
DataServiceVersion header, 157, 328
datatypes schema, 11
deactivated event handler, 129
DefaultValue property, 85, 109
Defensive coding, 27
DELETE ("deleted") statement, 32
Delete All method, on Sync class, 126
Delete method, 111, 186
delete operations, server requests for, 325–326
DELETE request, 160, 335
delete requests, 154
DeleteAll method, 126
Delete.png image, 138
deletes, to bookmarks, 317–320
demand-loading, 92
Deployment/Task/DefaultTask, 53
developer tools setup wizard, 40
device simulators, BlackBerry, 202–203
Dialog class, 213
Dispatcher class, 60, 119
DoLogon method, 283
DoRequest method, 73
DoSync method, 117
Download method, 56, 221–223
downloading

assemblies, custom bootstrappers, 199–200
bookmarks, 289–290

DownloadSettings class, 56, 63, 221–222, 225
DownloadXml method, 221–223

� E
Eclipse IDE, 201
edit mode, 146
Edit User page, 10
EditField, 236
editing bookmarkS, 315
Email and MDS Simulator, BlackBerry, 204–206
Email property, 30
endTag method, 329

EnsureApiAuthenticated method, 160, 226, 233,
235, 335

EnsureInitialized method, 129
EnsureTableExists property, 181, 281
enterEventDispatcher, 208
entities, 83–97, 243–260

basic class, 250–252
Bookmark class, 94–96, 257–259
creating from name/value collections, 276
ensuring tables exist to support, 181–183
Entity class, 88–89
EntityType class, 84–88, 244–250, 259–260
excluding deleted from view, 302–303
executing collection, 293–294
inserting, 287–289
ORM, 29–30
retrieving, 172–175
SBEntityType class instances, 96–97
selecting, 186–191
setting values in, 89–94, 252–257
storing in data box, 107–126

entity change processor, 111–113
selecting entities, 119–126
Sync class, 113–119, 126

Entities folder, 107
Entity class, 30, 88–89, 175, 183, 250, 252–253,

276
EntityChangeProcessor class, 112, 183–186, 285,

317
EntityField class, 29, 90, 252, 299, 326
EntityFieldFlags enumeration, 88
EntityFromXml method, 120–121
EntityItem class, 29
EntityToXml method, 110
EntityType class, 29, 84–88, 96, 244–250, 259–

260, 323
entry elements, 270
entryElement, 274
Error element, 11
ErrorBucket class, 239
ExecuteEntityCollection method, 122, 124, 189,

291
ExecuteNonQuery method, 282, 291
ExecuteNonQuery value, 179
ExecuteODataOperation method, 160–162,

334–337
ExecuteScalar value, 179
executing entity collections, 293–294
Extensible Markup Language. See XML
ExtraHeaders property, 222

 � INDEX

343

� F
Failed delegate, 56, 61, 113
feed element, 271
feed/entry elements, 18, 174
feeds, querying, 272–275
fieldChanged event, 213
fieldChanged methods, 263–264
FieldChangeListener, 238, 264
fields, marking as available on server, 155–162,

326–331
ExecuteODataOperation method, 160–162
XML, 156–159, 328–331

files, access to, 171
filters, constraining SQL, 297–302
Finish.png image, 138
FirstName property, 30
_flags array, 252
foreach statements, 217
forms, to display bookmarks, 261–263
framework code, 86
functional specification, 21–26

configuring bookmarks
overview, 24–25
single, 25–26

logging on, 22
missing functionality, 26
navigator screen, 23–24
synchronizing, 23
tablets, 21

� G
GetAll method, 114, 117–120, 273
GetBookmarkButton methods, 266
GetBookmarksForDisplay method, 99, 124, 303
GetBookmarksForServerDelete method, 150,

323
GetBookmarksForServerUpdate method, 323
GetBooleanValue method, 230
GetByOrdinal method, 144
GetChanges method, 321
GetCreateScript method, 282
GetDownloadSettings method, 160, 335
GetElementValue method, 230
GetEntityType method, 87, 251
GetEntityUrlForPush method, 159, 330
GetFilePath method, 108
GetInsertStatement, 287
GetInt32Value method, 230

getIsLoaded, 254
getIsModified, 254
GetLatest method, 117, 126, 151, 288
getName method, 249
GetNextId method, 108
GetRealSqlStatement method, 301–302
GetRequest method, 166
GetSqlStatement method, 300
GetStatement method, 180, 188, 282, 298
GetStringValue method, 230
GetTombstoneItem method, 128
GetValue methods, 92, 94, 117, 255
Google home page, BlackBerry simulator, 205
greater than operator, 122

� H
HandleConfigure method, 136, 308
HandleDownloadException method, 58
HandleDownloadResult, 56
HandleException method, 180
HandleOutboundXmlRequest callback, 161
handlers, button and list selection, 141–142
HandleSync, 317
HasException element, 11
Hashtable class, 221, 232
Hello World application

for BlackBerry, 206–215
on Windows Mobile, 164

HelloWorld SOAP web service, 33
help, 5
home page, Google, 205
HorizontalFieldManager control, 306
HTTP Client operation, 160
HTTP DELETE operation, 154
HTTP GET command, 222
HTTP GET operation, 172
HTTP MERGE method, updating via, 155–326
HTTP POST method, inserting via, 155–326
HTTP PUT, 326
HTTP requests, issuing, 34
HttpContext.Current.Items collection, 20
HttpHelper class, 55–56, 59–64, 166, 221–222
HttpHelper methods, 224
HttpWebRequest class, 56, 160

� I
IContextSource interface, 59–60
ID element, 18

� INDEX

344

Image element, 133
Images folder, 133
INFORMATION_SCHEMA.TABLES view, 181
Initialize method, 265–266, 295, 308
INSERT ("new") statement, 32
Insert method, 112, 287
insert operations, server requests for, 325–326
INSERT SQL statement, 317
insert statement, 183
INSERT statement, 289
inserting

insert requests, 154
via HTTP POST method, 155–326

intraconnected messaging, 154
InvalidPassword, 12–13
InvalidUsername, 13
IsDeleted method, 285
IsLocalDeleted property, 94, 145, 195
IsLocalModified property, 94, 145, 195
IsModified method, 285
IsNew method, 285
isolated storage file model, 171
IsOnServer property, 156, 326
ISqlStatementSource instance, 31, 179, 291
ISqlStatementSource interface, SqlStatement

class and, 278–280
Items property, 135
ItemSource attribute, 135
ItemSource value, 135

� J, K
Java JDK 1.5, 204
Java main method, 208
Java SDK, 201
javax.microedition.io namespace, 221
javax.microedition.io.Connector class, 35

� L
LastName property, 30
"list" view in the iPhone's iPod application, 305
List<Bookmark>, 101, 120
ListBox control, 131–132, 135, 193
lists

binding, 134–136
selection handler, 141–142

Load method, 79
Loaded event handler, 101
LoadEntities method, 115, 117, 273, 276

LoadEntity method, 293–294
LoadXml, 223
local stores, maintaining, 36–37
LocalDeleted column, 155, 257, 326
LocalDeleted field, 303, 317
LocalDeleted flag, 337
locally deleted, 134
LocalModified column, 155, 257, 326
LocalModified flag, 337
logging on

to Blackberry, 239–242
overview, 22

Logoff operation, 13
logon button, 73–76
logon form

building, 50–54
creating project, 49–50
running logon form, 53–54

creating for Blackberry, 236–242
Logon method, 12, 33, 72, 168, 231–234
logon operations, 11–14

cleaning up service, 13–14
obtaining token, 12
user, 12–13

logon screen, 22
LogonForm class, 165, 260, 263, 277, 283
LogonOk method, 81, 100, 118
LogonOk response, 13
LogonPage class, 61, 81, 100
LogonPage.xaml file, 50, 53, 59
LogonResponse class, 71, 226–227
LogonResult, 70

� M
MainPage.xaml page, 50, 53
MainScreen, 236
Manage Users link, 9
Manage Users page, 9
mapping, object-relational, 172
MaxDataServiceVersion header, 157, 328
MERGE, 326
MessageBox class, 59, 63
MessageBox.Show, 60
metadata, ORM, 28–29
Microsoft SQL Server Compact. See SQL CE
Microsoft Windows Phone 7

building logon form, 50–54
creating project, 49–50
running, 53–54

 � INDEX

345

consuming REST services
building out API and User Service

proxies, 63–82
calling services, 55–63

installing toolset, 39–47
Silverlight vs. XNA, 39
test application, 40–47
Visual Studio 2010, 39
Windows Phone Developer, 39

persisting bookmarks locally
approach, 83
entities, 83–97, 107–126
fake bookmarks, 97–105
tombstoning, 107, 126–130

sending changes to servers, 131–162
configuration UI, 131–147
insert, update, and delete requests, 154
inserting via HTTP POST method, 155
marking fields as available on server,

155–162
PushNextWorkItem method, 154–155
PushUpdates method, 149–153
updating via HTTP MERGE method, 155

Microsoft Windows Phone Developer, 39
migrating apps, 163–164
Model-View-ViewModel (MVVM), 134
MonoTouch, 164
m:properties element, 18, 274
MsDataNamespace constant, 274
MVVM (Model-View-ViewModel), 134

� N
Name element, 271
Name property, 94, 131
namespaces, 270–271
name/value collections, creating entities from,

276
NativeName property, 29
Navigation page, 98
NavigationPage attribute, 53
NavigationService class, 118, 193
navigator, 191–192

displaying bookmarks on, 291–296
asking navigator controller to load real

bookmarks, 295–296
executing entity collection, 293–294

form design, 191–192
navigator screen, 23–24
NavigatorForm class, 191, 308

NavigatorPage.xaml, 97
.NET Compact Framework, 171
net.rim.device.api.database.Database, 37
new project, 50
New user registration, 27
not equal to operator, 122
NSConnection class, 35
NSXMLParser, 35
NVARCHAR type, 182

� O
Object[] array, 309
object-relational mapping. See ORM
OData entity, 149
OData operations, 195–199
OData protocol, 27–28, 155
OData service, Bookmarks, 269–276
OData site, 328
OData standard, 15–19

issuing updates over, 20
queries, 19–20

ODataFetchState class, 114
ODataRequestState class, 160
ODataServiceProxy class, 33, 55, 113, 149, 269,

272–273, 322, 329
Offline support, 27
OnNavigatedTo method, 135, 145
OpenUrl method, 266
Ordinal property, 88, 250
ordinal variable, 141
ordinals, retrieving bookmarks by, 303–304
org.w3c.dom.*, 35
org.xmlpull.v1.XmlSerializer, 36
ORM (object-relational mapping), 28–32, 172

change processors, 32
entities, 29–30
metadata, 28–29
SQL statements, 31
subsystem, using to support tombstoning,

126–130

� P
package declarations, 219
Package Explorer state, 208
PasswordBox, 51
PasswordEditField, 236
Phone Developer, Microsoft Windows, 39
plug-ins, BlackBerry, 202

� INDEX

346

porting apps, 163–164
Properties window, 45
PushChanges method, 151
PushDelete method, 331
PushInsert method, 331
PushNextWorkItem method, 153–155
PushUpdate method, 330–331
PushUpdates method, 149–153, 321–325

� Q
queries, OData standard, 19–20
querying feed, 272–275

� R
RDBMS (relational database management

system), 108
reason parameter, 91
ReceiveXml method, 114–115
RegisterEntityType method, 87, 249
registering EntityType class, 259–260
relational database management system

(RDBMS), 108
relational stores, maintaining, 36–37
"remember me" feature, 77–82
REST (Representational State Transfer)

services, 220–236
authenticating

API account, 224–226, 235
user via UsersService class, 235–236

consuming
building out API and User Service

proxies, 63–82
calling services, 55–63

issuing web requests, 220–224
Download and DownloadXml methods,

221–223
DownloadSettings class, 221
HttpHelper methods, 224

lack of support for, 320–321
logging on and calling, 165–167, 171
RESTful web services, 10

RestRequestArgs, 64, 232
RestRequestProxy class, 66
RestServiceProxy class, 33, 55, 65, 73, 129, 168,

224, 232, 235
Result element, 12
run.bat file, 205

� S
Save Changes button, 142, 145
Save method, 79
SaveChanges method, 109, 113, 175, 183, 294,

320
SBDataType enumeration, 84
SBEntityType class, 96–97
select * from bookmarks statement, 20
SELECT statement, 29, 31, 187
SelectionChanged event, 141
SendRequest method, 65–66, 70, 168
servers

calling Bookmarks OData service, 269–276
adding functionality to XmlHelper class,

271–272
creating entities from name/value

collections, 276
namespaces, 270–271
querying feed, 272–275

communication with, 33–34
marking fields as available on, 326–331
pushing changes to, 320–337

creating XML files, 321
detecting local changes, 321–325
lack of support for REST services, 320–

321
marking fields as available on server,

326–331
server requests for insert, update, and

delete operations, 325–326
updating via HTTP MERGE method, 326
XmlSerializer class, 331–337

sending changes to, for Microsoft Windows
Phone 7, 131–162

service registration form, 8
ServiceProxy class, 33, 55, 63, 72, 224, 226, 235
services

calling, 55–63
MessageBox class, 63
testing HttpHelper class, 59–63

cleaning up, 13–14
setChangeListener method, 238
SetFlag method, 253
setPrefix method, 329
SetReason enumeration, 90
SETREASON_LOAD, 252
SETREASON_USER, 252
SetReason.Load, 276, 294
setTitle method, 236

 � INDEX

347

SetValue method, 92, 94, 255, 276
ShowUrl method, 105
Silverlight, vs. XNA, 39
SimpleXmlPropertyBag class, 78, 80
simulators, BlackBerry

device simulator, 202–203
Email and MDS Simulator, 204–206

singletons, 313–320
configuring, 25–26
handling deletes and updates, 317–320

Six Bookmarks application, on Windows
Mobile, 163–200
configuring bookmarks, 193–195
downloading assemblies, 199–200
Hello World application, 164
logging on and calling RESTful services,

165–167
migrating/porting, 163–164
navigator, 191–192
SQL CE, 176–191
synchronization, 171–175, 195–199
toolset, 164

Six Bookmarks server service, 7–20
API account, 7–10
Bookmarks service, 14–20

constraining data to logged-on user, 20
OData standard, 15–19
test data, 14–15

Users service, 10–14
logon operations, 11–14
RESTful web services, 10
testing calls, 10–11

SixBookmarks-<username> file, 284
SixBookmarksRuntime class, 80–81, 96, 128,

156, 259, 327
SixBookmarksRuntime project, 250
SOAP protocol, 155
soft-delete bookmarks, 99
Source attribute, 133
specifications, functional. See functional

specification
SQL (Structured Query Language)

filters, constraining, 297–302
statements, ORM, 31

SQL CE (Microsoft SQL Server Compact), 176–
191
entities

ensuring tables exist to support, 181–
183

selecting, 186–191
EntityChangeProcessor class, 183–186

SQL filter, 187
SQL Server Compact, Microsoft. See

SQL CE
SqlCeCommand instance, 179
SqlCeHelper class, 165, 176
SqlConstraint class, 120, 122, 298–299
SqlFieldConstraint, 298
SqlFilter class, 31, 83, 119, 187, 291, 297,

302
SQLite database engine, on BlackBerry,

243
Sqliteman utility, examining databases with,

283–285
SqlServerCe namespace, 176
SqlStatement class, and ISqlStatementSource

interface, 278–280
StackPanel control, 132
Start method, 260, 327
startTag method, 329
storage, maintaining local, 36–37
String.format method, 217
Structured Query Language. See SQL
success delegate, 168
support, 5
Support forums, 5
Sync class, 113–119, 269–296

calling server Bookmarks OData service,
269–276

adding functionality to XmlHelper class,
271–272

creating entities from name/value
collections, 276

namespaces, 270–271
querying feed, 272–275

databases
examining with Sqliteman utility, 283–

285
managing, 277–278
writing bookmarks to, 285–290

Delete All method on, 126
fetching latest bookmarks with, 175
GetAll method, 117–119
reading bookmarks and displaying on

navigator, 291–296
asking navigator controller to load real

bookmarks, 295–296
executing entity collection, 293–294

SqlStatement class and
ISqlStatementSource interface, 278–
280

tables, 280–282

� INDEX

348

synchronization, 23
downloading bookmarks, 171–175

fetching latest with Sync class, 175
object-relational mapping, 172
retrieving entities, 172–175

uploading changes, 195–199
synchronous calls, 166
SyncWorkItem, 151
System.Data.SqlServerCe namespace, 176
System.Data.SqlServerCe.SqlCeConnection, 37
System.Data.SqlServerCe.SqlCeEngine class,

176
System.Net.HttpWebRequest class, 35, 55–56,

167, 197
System.Type object, 29
System.Windows.Threading.Dispatcher class,

59
System.X ml.Linq.XDocument, 35–36
System.Xml.Linq namespace, 171
System.Xml.Linq.dll assembly, 50
System.Xml.Linq.XDocument class, 55
System.Xml.XmlDocument class, 35–36, 55,

171

� T
tables, 181–183, 280–282
tablets, application architecture and functional

specification, 21
TBL_CUST table, 84
testing

calls, 10–11
HttpHelper class, 59–63
test application, 40–47
test data, 14–15

Text attributes, 43
Text property, 143
TextBlock elements, 43
TextBox, 51
textName value, 143
Token header field, 11–13
Token property, 72
Token value, 12
tokens, 12
TombstoneItem class, 127
tombstoning

overview, 107
using ORM subsystem to support, 126–

130

toolsets
Microsoft Windows Phone 7, installing, 39–

47
overview, 34

Toolsets by Platform, 34
ToXmlDocument method, 78
try...catch block, 57

� U
UiApplication class, 208
UIs (user interfaces), configuration, 131–147

binding lists, 134–136
ConfigurePage.xaml page, 131–133
configureSingletonPage page, 142–147
configuring application bar, 137–142

UPDATE ("modified") statement, 32
Update method, 112
update operations, server requests for, 325–326
UPDATE statement, 185, 289, 318
updates

to bookmarks, handling, 317–320
issuing over OData standard, 20
update requests, 154
via HTTP MERGE method, 155–326

user interfaces, configuration. See UIs,
configuration

User Service proxies, building out, 63–82
Authenticate method, 70–73
implementing "remember me" feature, 77–

82
logon button, 73–76

users
authenticating via UsersService class, 235–

236
constraining data to logged-on, 20
creating API accounts, 8–10
logon operations, 12–13

Users service, 10–14
logon operations, 11–14

cleaning up service, 13–14
obtaining token, 12
user, 12–13

RESTful web services, 10
testing calls, 10–11

Users table, 9
UsersService class, 33, 55, 70, 73, 75, 220, 235–

236

 � INDEX

349

� V
values, setting in entities, 89–94, 252–257
Values array, 91
_values array, 252
VARCHAR SQL data type, 182
view model, 134
views

excluding deleted entities from, 302–303
showing and populating, 100–103

Visual Studio 2010, 39, 41

� W
web pages, showing, 264–265
web requests, 220–224

Download and DownloadXml methods,
221–223

DownloadSettings class, 221
HttpHelper methods, 224

WebBrowserTask class, 105
WebException, 58
WHERE clauses, 29, 32, 298, 303
Windows Mobile 6.0 SDK, 164
Windows Mobile, Six Bookmarks application

on, 163–200
configuring bookmarks, 193–195
downloading assemblies, 199–200
Hello World application, 164
logging on and calling RESTful services,

165–167
migrating/porting, 163–164
navigator, 191–192

SQL CE, 176–191
synchronization, 195–199
toolset, 164

Windows Phone 7, Microsoft. See Microsoft
Windows Phone 7

Windows Phone 7 project option, 42
Windows Phone Developer, 39
Windows Phone Portrait Page, 97
WMAppManifest.xml file, 53
WorkItemIndex, 153–154

� X, Y, Z
XAML code, 132
.xaml file, 100
x-amx-apiusername, 63
x-amx-apiusername header, 157, 160, 221, 269,

328, 335
x-amx-token header, 63, 157, 160, 221, 269, 328,

335
XDocument class, 78, 171–172
XML (Extensible Markup Language)

files, 321
marking fields as available on server with,

156–159
for marking fields as available on servers,

328–331
reading documents, 35
writing documents, 36

XmlDocument class, 158
XmlHelper class, 66, 68, 223, 227–231, 271–272
XmlSerializer class, 321, 325, 329, 331–337
XNA, Silverlight vs., 39

	Title Page

	Copyright Page

	Contents at a Glance
	Table of Contents

	About the Author
	About the Technical Reviewer
	Acknowledgments
	CHAPTER 1 Introduction

	What’s the Purpose of This Book?
	How Is This Book Structured?
	Where Can You Get Help and Support?
	Conclusion

	CHAPTER 2 The Six Bookmarks Server Service

	The Users Service
	RESTful Web Services
	Testing the Calls
	Examining Logon Operations
	Obtaining a Token
	Logging On the User
	Cleaning Up
	The Bookmarks Service
	Adding Some Test Data
	Working with OData
	OData Queries
	Issuing Updates over OData
	Constraining Data to the Logged-On User
	Conclusion

	CHAPTER 3 Application Architecture and Functional Specification

	A Word About Tablets
	Functional Specification
	Logging On
	Synchronizing
	Navigator
	Configuring Bookmarks
	Configuring a Single Bookmark (“Configure Singleton”)
	Missing Functionality
	Application Architecture and Technical Specification
	Approach
	Object-Relational Mapping
	Metadata
	Entities
	Generating Entities
	SQL Statements
	Change Processors
	Server Communication
	Technical Approach Broken Down by Platform
	Core Toolset
	Issue HTTP Requests
	Read XML Document (Including Reading OData Results)
	Write an XML Document
	Maintain a Local Store
	Conclusion

	CHAPTER 4 Windows Phone 7:
Installing the Toolset
	Silverlight vs. XNA
	Visual Studio 2010
	Installing the Windows Phone Developer Tools
	Creating a Test Application
	Conclusion

	CHAPTER 5 Windows Phone 7: Building
the Logon Form and Consuming
REST Services

	Creating the Project
	Building the Logon Form
	Running the Logon Form
	Calling the Services
	Testing HttpHelper
	Special Note on MessageBox
	Building Out the API and User Service Proxies
	Implementing the Authenticate Method
	Implementing “Remember Me”
	Conclusion

	CHAPTER 6 Windows Phone 7: Persisting
Bookmarks Locally

	Approach
	Entities
	The EntityType Class
	The Entity Class
	Setting Values in an Entity
	Building Bookmark
	Displaying Some Fake Bookmarks
	Creating Fake Bookmarks
	Showing and Populating the View
	Implementing Button Clicks
	Tombstoning—A Brief Word
	Storing Entities in the Data Box
	Data Box Basics
	Creating the Entity Change Processor
	Building the Sync Class
	Calling GetAll
	Selecting Entities
	Implementing Delete All on the Sync
	Using the ORM Subsystem to Support Tombstoning
	Conclusion

	CHAPTER 7 Windows Phone 7: PushingChanges Back to the Server

	The Configuration User Interface
	Building ConfigurePage.xaml
	Binding the List
	Configuring the Application Bar
	Implementing the Button and List Selection Handler

	Sending Changes to the Server
	Building the PushUpdates Method
	Issuing Server Requests to Insert, Update, and Delete
	Building PushNextWorkItem
	Update via HTTP MERGE and Insert via HTTP POST
	Marking Fields As Being Available on the Server
	Building ExecuteODataOperation

	Conclusion

	CHAPTER 8 Six Bookmarks on Windows Mobile

	Migrating/Porting
	The Toolset
	Hello, World
	Six Bookmarks
	How the Windows Mobile Application Was Built
	Logging On and Calling RESTful Services

	Making RESTful Calls
	File Access
	Synchronization 1: Downloading Bookmarks

	Object-Relational Mapping
	Retrieving Entities
	Fetching Latest with the Sync Class
	Using SQL CE

	Ensuring Tables Exist
	Selecting Entities
	Navigator

	Navigator Form Design
	Configuring Bookmarks
	Synchronization 2: Uploading Changes

	OData Operations
	Downloading Assemblies/Custom Bootstrappers
	Conclusion

	CHAPTER 9 BlackBerry: Installing the Toolset

	A Word About Versions
	Installing the Toolset
	Installing the Java SDK
	Installing Eclipse
	Installing the BlackBerry Plug-In
	Installing the BlackBerry Device Simulator
	Installing the BlackBerry Email and MDS Simulator
	“Hello, World”
	Handling the Button Click
	Conclusion

	CHAPTER 10 BlackBerry: Building theLogon Form and Consuming REST Services

	How This Project Was Built and Significant Issues with BlackBerry Development

	Creating the Project
	Conventions for Presenting Code
	Calling RESTful Services
	Issuing Web Requests
	The DownloadSettings Class
	The Download and DownloadXml Methods
	Extra Methods on HttpHelper
	Authenticating Our API Account
	The LogonResponse
	Building the XmlHelper Class
	Wiring Up EnsureApiAuthenticated
	Authenticating the User via UsersService
	Creating the Logon Form
	Logging On
	Conclusion

	CHAPTER 11 BlackBerry: An ORM Layer on SQLite

	SQLite on BlackBerry
	Entities
	EntityType
	Creating the Basic Entity Class
	Setting Values in an Entity
	Building Bookmark
	Registering the EntityType

	Displaying Some Fake Bookmarks
	Creating the Form
	Showing a Web Page
	Creating Fake Bookmarks

	Building the Sync Class
	Calling the Server’s Bookmarks OData Service

	Namespaces
	Querying the Feed
	Creating Entities from Name/Value Collections
	Managing the Database
	The SqlStatement Class and ISqlStatementSource Interface
	Examining the Database with Sqliteman
	Writing Bookmarks to the Database

	Building the Change Processor
	Downloading Bookmarks
	Reading Bookmarks and Displaying Them on the Navigator

	Executing the Entity Collection
	Asking the Navigator Controller to Load the Real Bookmarks
	Conclusion

	CHAPTER 12 BlackBerry: Pushing Changes to the
Server
	Capturing Local Changes
	Constraining SQL Filters
	Getting a Bookmark by Ordinal
	Building the Configuration Form

	Displaying the Bookmarks
	Going Back and Adding New
	Configuring Singletons

	Handling Deletes and Updates
	Pushing Changes to the Server
	My “Facepalm” Moment
	Lack of Support for REST Services

	Creating XML Files
	Detecting Local Changes

	Building the PushUpdates Method
	Issuing Server Requests to Insert, Update, and Delete
	Update via HTTP MERGE and Insert via HTTP POST
	Marking Fields As Being Available on the Server

	Building the XML
	Building XmlSerializer

	Building ExecuteODataOperation
	Conclusion

	Index

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Gray Gamma 2.2)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Off

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Perceptual

 /DetectBlends true

 /DetectCurves 0.1000

 /ColorConversionStrategy /sRGB

 /DoThumbnails true

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions false

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams true

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts false

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 150

 /ColorImageMinResolutionPolicy /Warning

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 150

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 150

 /GrayImageMinResolutionPolicy /Warning

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 150

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /Warning

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 600

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /PDFA1B:2005

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>

 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>

 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>

 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)

 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>

 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>

 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>

 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>

 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>

 >>

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [595.276 841.890]

>> setpagedevice

