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Preface

Spin–orbit coupling makes the spin degree of freedom respond to its orbital
environment. In solids this yields such fascinating phenomena as a spin split-
ting of electron states in inversion-asymmetric systems even at zero magnetic
field and a Zeeman splitting that is significantly enhanced in magnitude over
the Zeeman splitting of free electrons. In this book, we review spin–orbit
coupling effects in quasi-two-dimensional electron and hole systems. These
tailor-made systems are particularly suited to investigating these questions
because an appropriate design allows one to manipulate the orbital motion
of the electrons such that spin–orbit coupling becomes a “control knob” with
which one can steer the spin degree of freedom.

In the present book, we omit elaborate rigorous derivations of theoretical
concepts and formulas as much as possible. On the other hand, we aim at a
thorough discussion of the physical ideas that underlie the concepts we use,
as well as at a detailed interpretation of our results. In particular, we comple-
ment accurate numerical calculations by simple and transparent analytical
models that capture the important physics.

Throughout this book we focus on a direct comparison between experi-
ment and theory. The author thus deeply appreciates an extensive collabora-
tion with Mansour Shayegan, Stergios J. Papadakis, Etienne P. De Poortere,
and Emanuel Tutuc, in which many theoretical findings were developed to-
gether with the corresponding experimental results. The good agreement
achieved between experiment and theory represents an important confirma-
tion of the concepts and ideas presented in this book.

The author is grateful to many colleagues for stimulating discussions and
exchanges of views. In particular, he had numerous discussions with Ulrich
Rössler, not only about physics but also beyond. Finally, he thanks Springer-
Verlag for its kind cooperation.

Erlangen, July 2003 Roland Winkler

Roland Winkler: Spin–Orbit Coupling Effects
in Two-Dimensional Electron and Hole Systems, STMP 191, VII–IX (2003)
c© Springer-Verlag Berlin Heidelberg 2003
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1 Introduction

In atomic physics, spin–orbit (SO) interaction enters into the Hamiltonian
from a nonrelativistic approximation to the Dirac equation [1]. This approach
gives rise to the Pauli SO term

HSO = − �

4m2
0c2

σ · p × (∇V0) , (1.1)

where � is Planck’s constant, m0 is the mass of a free electron, c is the
velocity of light, p is the momentum operator, V0 is the Coulomb potential
of the atomic core, and σ = (σx, σy, σz) is the vector of Pauli spin matrices.
It is well known that atomic spectra are strongly affected by SO coupling [2].

1.1 Spin–Orbit Coupling in Solid-State Physics

In a crystalline solid, the motion of electrons is characterized by energy bands
En(k) with band index n and wave vector k. Here also, SO coupling has a
very profound effect on the energy band structure En(k). For example, in
semiconductors such as GaAs, SO interaction gives rise to a splitting of the
topmost valence band (Fig. 1.1). In a tight-binding picture without spin, the
electron states at the valence band edge are p-like (orbital angular momentum
l = 1). With SO coupling taken into account, we obtain electronic states with
total angular momentum j = 3/2 and j = 1/2. These j = 3/2 and j = 1/2
states are split in energy by a gap ∆0, which is referred to as the SO gap. This
example illustrates how the orbital motion of crystal electrons is affected by
SO coupling.1 It is less obvious in what sense the spin degree of freedom is
affected by the SO coupling in a solid. In the present work we shall analyze
both questions for quasi-two-dimensional semiconductors such as quantum
wells (QWs) and heterostructures.

It was first emphasized by Elliot [3] and by Dresselhaus et al. [4] that
the Pauli SO coupling (1.1) may have important consequences for the one-
electron energy levels in bulk semiconductors. Subsequently, SO coupling
effects in a bulk zinc blende structure were discussed in two classic papers by
1 We use the term “orbital motion” for Bloch electrons in order to emphasize the

close similarity we have here between atomic physics and solid-state physics.

Roland Winkler: Spin–Orbit Coupling Effects
in Two-Dimensional Electron and Hole Systems, STMP 191, 1–8 (2003)
c© Springer-Verlag Berlin Heidelberg 2003
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band structure of GaAs close to the
fundamental gap

Parmenter [5] and Dresselhaus [6]. Unlike the diamond structure of Si and
Ge, the zinc blende structure does not have a center of inversion, so that
we can have a spin splitting of the electron and hole states at nonzero wave
vectors k even for a magnetic field B = 0. In the inversion-symmetric Si and
Ge crystals we have, on the other hand, a twofold degeneracy of the Bloch
states for every wave vector k. Clearly, the spin splitting of the Bloch states
in the zinc blende structure must be a consequence of SO coupling, because
otherwise the spin degree of freedom of the Bloch electrons would not “know”
whether it was moving in an inversion-symmetric diamond structure or an
inversion-asymmetric zinc blende structure (see also Sect. 6.1).

In solid-state physics, it is a considerable task to analyze a microscopic
Schrödinger equation for the Bloch electrons in a lattice-periodic crystal po-
tential.2 Often, band structure calculations for electron states in the vicinity
of the fundamental gap are based on the k · p method and the envelope
function approximation. Here SO coupling enters solely in terms of matrix
elements of the operator (1.1) between bulk band-edge Bloch states, such
as the SO gap ∆0 in Fig. 1.1. These matrix elements provide a convenient
parameterization of SO coupling effects in semiconductor structures.

Besides the B = 0 spin splitting in inversion-asymmetric semiconductors,
a second important effect of SO coupling shows up in the Zeeman splitting
of electrons and holes. The Zeeman splitting is characterized by effective g
factors g∗ that can differ substantially from the free-electron g factor g0 = 2.
This was first noted by Roth et al. [7], who showed using the k · p method
that g∗ of electrons can be parameterized using the SO gap ∆0.
2 We note that in a solid (as in atomic physics) the dominant contribution to

the Pauli SO term (1.1) stems from the motion in the bare Coulomb potential
in the innermost region of the atomic cores, see Sect. 3.4. In a pseudopotential
approach the bare Coulomb potential in the core region is replaced by a smooth
pseudopotential.
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1.2 Spin–Orbit Coupling
in Quasi-Two-Dimensional Systems

Quasi-two-dimensional (2D) semiconductor structures such as QWs and
heterostructures are well suited for a systematic investigation of SO cou-
pling effects. Increasing perfection in crystal growth techniques such as
molecular-beam epitaxy (MBE) and metal-organic chemical vapor deposi-
tion (MOCVD) allows one to design and investigate tailor-made quantum
structures (“do-it-yourself quantum mechanics” [8]). Moreover, the size quan-
tization in these systems gives rise to many completely new phenomena that
do not exist in three-dimensional semiconductors. We remark here that when-
ever we talk about 2D systems, in fact we have in mind quasi-2D systems
with a finite spatial extension in the z direction, the growth direction of these
systems.

A detailed understanding of SO-related phenomena in 2D systems is im-
portant both in fundamental research and in applications of 2D systems in
electronic devices. For example, for many years it was accepted that no metal-
lic phase could exist in a disordered 2D carrier system. This was due to the
scaling arguments of Abrahams et al. [9] and the support of subsequent exper-
iments [10]. In the past few years, however, experiments on high-quality 2D
systems have provided us with reason to revisit the question of whether or not
a metallic phase can exist in 2D systems [11]. At present, these new findings
are controversial [12]. Following the observation that an in-plane magnetic
field suppresses the metallic behavior, it was suggested by Pudalov that the
metallic behavior could be a consequence of SO coupling [13]. Using samples
with tunable spin splitting, it could be shown that the metallic behavior of
the resistivity depends on the symmetry of the confinement potential and the
resulting spin splitting of the valence band [14].

Datta and Das [15] have proposed a new type of electronic device where
the current modulation arises from spin precession due to the SO coupling in
a narrow-gap semiconductor, while magnetized contacts are used to preferen-
tially inject and detect specific spin orientations. Recently, extensive research
aiming at the realization of such a device has been under way [16].

1.3 Overview

In Chap. 2, we start with a general discussion of the band structure of semi-
conductors and its description by means of the k · p method (Sect. 2.1) [17]
and its generalization, the envelope function approximation (EFA, Sect. 2.2)
[18, 19]. It is an important advantage of these methods that not only can
they cope with external electric and magnetic fields but they can also de-
scribe, for example, the modifications in the band structure due to strain
(Sect. 2.3) [20] or to the paramagnetic interaction in semimagnetic semicon-
ductors (Sect. 2.4) [21]. The “bare” k · p and EFA Hamiltonians are infinite-
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dimensional matrices. However, quasi-degenerate perturbation theory (Ap-
pendix B) and the theory of invariants (Sect. 2.5) [20] enable one to derive a
hierarchy of finite-dimensional k · p Hamiltonians for the accurate description
of the band structure En(k) close to an expansion point k = k0.

In Chap. 3, we introduce the extended Kane model [22] which is the k · p
model that will be used in the work described in this book. We start with
some general symmetry considerations using a simple tight-binding picture
(Sect. 3.1). On the basis of an invariant decomposition corresponding to the
irreducible representations of the point group Td (Sect. 3.2), we present in
Sect. 3.3 the invariant expansion for the extended Kane model. Owing to the
central importance of the SO gap ∆0 in the present work, Sect. 3.4 is devoted
to a discussion of this quantity. In Sect. 3.5 we discuss the relation between
the 14×14 extended Kane model and simplified k · p models of reduced size,
such as the 8 × 8 Kane model and the 4× 4 Luttinger Hamiltonian. Finally,
we discuss in Sect. 3.6 the symmetry hierarchies that can be obtained when
the Kane model is decomposed into terms with higher and lower symmetry
[23, 24]. They provide a natural language for our discussions in subsequent
chapters of the relative importance of different terms. All relevant tables for
the extended Kane model are summarized in Appendix C.

While Chap. 3 reviews the bulk band structure, Chap. 4 is devoted to elec-
tron and hole states in quasi-2D systems [25]. Section 4.1 discusses the EFA
for quasi-2D systems. Then we review, for later reference, the density of states
of a 2D system (Sect. 4.2) and the most elementary model within the EFA, the
effective-mass approximation (EMA), which assumes a simple nondegenerate,
isotropic band (Sect. 4.3). In subsequent chapters the EMA is often used as
a starting point for developing more elaborate models. An in-plane magnetic
field can be naturally included in the general concepts of Sect. 4.1, which are
based on plane wave states for the in-plane motion. On the other hand, a
perpendicular field leads to the formation of completely quantized Landau
levels to be discussed in Sect. 4.4. As an example of the concepts introduced
in Chap. 3 we discuss next the subband dispersion of quasi-2D hole systems
with different crystallographic growth directions (Sect. 4.5). The numerical
schemes are complemented by an approximate, fully analytical solution of
the EFA multiband Hamiltonian based on Löwdin partitioning (Sect. 4.6).
In subsequent chapters we see that this approach provides many insights that
are difficult to obtain by means of numerical calculations.

In Chap. 5, we give a general overview of the origin of SO coupling effects
in quasi-2D systems. In Sect. 5.1 we recapitulate, from relativistic quantum
mechanics, the derivation of the Pauli equation from the Dirac equation [1]. In
Sect. 5.2 we compare these well-known results with the effective Hamiltonians
we obtain from a decoupling of conduction and valence band states starting
from a simplified 8×8 Kane Hamiltonian. In analogy with the Pauli equation,
we obtain a conduction band Hamiltonian that contains both an effective
Zeeman term and an SO term for B = 0 spin splitting.
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In Chap. 6, we analyze the zero-magnetic-field spin splitting in inversion-
asymmetric 2D systems. The general connection between B = 0 spin splitting
and SO interaction is discussed in Sect. 6.1. Usually we have two contributions
to B = 0 spin splitting. The first one originates from the bulk inversion
asymmetry (BIA) of the zinc blende structure (Sect. 6.2) [6]. The second
one is the Rashba spin splitting due to the structure inversion asymmetry
(SIA) of semiconductor quantum structures (Sect. 6.3) [26, 27]. It turns out
that the Rashba spin splitting of 2D hole systems is very different from the
more familiar case of Rashba spin splitting in 2D electron systems [28]. In
Sect. 6.4 we focus on the interplay between BIA and SIA, as well as on
the density dependence of B = 0 spin splitting. A third contribution to
B = 0 spin splitting is discussed in Sect. 6.5, which can be traced back to
the particular properties of the heterointerfaces in quasi-2D systems [29].
The B = 0 spin splitting does not lead to a magnetic moment of the 2D
system. Nevertheless, we obtain a spin orientation of the single-particle states
that varies as a function of the in-plane wave vector (Sect. 6.6). In Sect. 6.7
we give a brief overview of common experimental techniques for measuring
B = 0 spin splitting. As an example, in Sect. 6.8 we compare calculated spin
splittings [30] with Raman experiments by Jusserand et al. [31].

In Chap. 7, we review the anisotropic Zeeman splitting in 2D systems.
First we discuss 2D electron systems (Sect. 7.1), where size quantization
yields a significant difference between the effective g factor for a perpendicular
and an in-plane magnetic field [32]. In inversion-asymmetric systems (growth
direction [001]), we can even have an anisotropy of the Zeeman splitting with
respect to different in-plane directions of the magnetic field (Sect. 7.2) [33].
Next we focus on 2D hole systems with low-symmetry growth directions
(Sect. 7.3). It is shown both theoretically and experimentally that coupling
the spin degree of freedom to the anisotropic orbital motion of a 2D hole
system gives rise to a highly anisotropic Zeeman splitting with respect to
different orientations of an in-plane magnetic field B relative to the crystal
axes [34]. Finally, Sect. 7.4 is devoted to 2D hole systems with a growth
direction [001] where the Zeeman splitting in an in-plane magnetic field is
suppressed [35].

In Chap. 8, we analyze cyclotron spectra in 2D electron and hole sys-
tems. These spectra reveal the complex nature of the Landau levels in these
systems, as well as the high level of accuracy that can be achieved in the
theoretical description and interpretation of the Landau-level structure of
2D systems. We start with a general introduction to cyclotron resonance in
quasi-2D systems (Sect. 8.1) [23]. In Sect. 8.2 we discuss the spin splitting of
the cyclotron resonance due to the energy dependence of the effective g factor
g∗ in narrow-gap InAs QWs [36,37,38]. In Sect. 8.3 we present the calculated
absorption spectra for 2D hole systems in strained Ge–SixGe1−x QWs [39]
which are in good agreement with the experimental data of Engelhardt et
al. [40]. Finally, we discuss Landau levels in inversion-asymmetric systems,
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where the interplay between the Zeeman term and the Dresselhaus term can
give rise to zero spin splitting at a finite magnetic field [41].

In Chap. 9, we discuss magneto-oscillations such as the Shubnikov–de
Haas effect. The frequencies of these oscillations have long been used to
measure the unequal population of spin-split 2D subbands in inversion-
asymmetric systems [42]. In Sect. 9.1 we briefly explain the origin of magneto-
oscillations periodic in 1/B. Next we present some surprising results of both
experimental and theoretical investigations [14, 43] demonstrating that, in
general, the magneto-oscillations are not simply related to the B = 0 spin
splitting (Sect. 9.2). It is shown in Sect. 9.3 that these anomalous oscillations
reflect the nonadiabatic spin precession of a classical spin vector along the
cyclotron orbit [44].

Our conclusions are presented in Chap. 10. Some notations and symbols
used frequently in this book are summarized in Appendix A.

Throughout, this work we make extensive use of group-theoretical argu-
ments. An introduction to group theory in solid-state physics can be found,
for example, in [45]. A very thorough discussion of group theory and its ap-
plication to semiconductor band structure is given in [20]. We denote the
irreducible representations of the crystallographic point groups in the same
way as Koster et al. [46]; see also Chap. 2 of [47].
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2 Band Structure of Semiconductors

Because of its central importance for fundamental physics as well as for
technological applications, the electronic structure of layered semiconduc-
tor structures has attracted much interest over the last two decades [1,2]. In
theoretical studies, methods based on the envelope function approximation
are predominant [3], the reason being that the EFA allows a comprehen-
sive description of electron- and hole-like states. It can cope with periodic
or aperiodic geometries of quantum structures, as well as perturbations such
as a magnetic field, strain, or a built-in or external potential. Details of the
underlying crystal potential are included in terms of bulk band structure
parameters.

The simplest approach within the EFA is the effective-mass approxima-
tion [3] which assumes a single, isotropic, parabolic band. It provides a ba-
sic insight into the electronic structure of inversion layers, heterojunctions,
QWs and superlattices, but it fails to account for the subtleties which oc-
cur in semiconductor band structures such as nonparabolicity, spin splitting,
and the coupling between heavy holes and light holes. All these details of
bulk band structure can be described within the framework of k · p theory
(Sect. 2.1) and its generalization in terms of the EFA (Sect. 2.2). It is an
important advantage of these methods that not only can they cope with ex-
ternal electric and magnetic fields but also they can describe, for example,
the modifications in the band structure due to strain (Sect. 2.3) or to the
paramagnetic interaction in semimagnetic semiconductors (Sect. 2.4). The
“bare” k · p and EFA Hamiltonians are infinite-dimensional matrices. How-
ever, quasi-degenerate perturbation theory (Appendix B) and the theory of
invariants (Sect. 2.5) enable one to derive a hierarchy of finite-dimensional
k · p Hamiltonians for the accurate description of the band structure En(k)
close to an expansion point k = k0.

2.1 Bulk Band Structure and k · p Method

The most elementary model for the band structure of a direct semiconductor
close to the fundamental energy gap is an isotropic parabolic dispersion for
the conduction band (Ec(k)) and for the valence band (Ev(k))
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Ec/v(k) = ±
(
Eg

2
+

�
2k2

2m∗
c/v

)
, (2.1)

where k is the wave vector, Eg is the band gap, and m∗
c and m∗

v are the
effective masses for the conduction and the valence band, respectively. In a
more accurate and realistic model for the dispersion E(k), we have to take
into account details such as nonparabolicity, anisotropy, and the coupling
between heavy holes (HH) and light holes (LH). A powerful and flexible ap-
proach for the investigation of these questions is the k · p method [4, 5, 6].
This method enables one to calculate with arbitrary precision the semicon-
ductor band structure Eν(k) in the vicinity of a given point k0 in reciprocal
space.

The derivation of the k · p method is based on the Schrödinger equation
for the Bloch functions eik·ruνk(r) ≡ eik·r〈r|νk〉 in the microscopic lattice-
periodic crystal potential V0(r)[

p2

2m0
+ V0(r)

]
eik·ruνk(r) = Eν(k) eik·ruνk(r) . (2.2)

Here m0 denotes the free-electron mass and ν is the band index. We can
easily evaluate the effect of the kinetic-energy operator on the plane-wave
part of the Bloch functions. In this way we obtain a Schrödinger equation for
only the lattice-periodic parts |νk〉 of the Bloch functions,[

p2

2m0
+ V0 +

�
2k2

2m0
+

�

m0
k · p

]
|νk〉 = Eν(k) |νk〉 . (2.3)

If we include the Pauli spin–orbit interaction (1.1) in (2.2), the lattice-
periodic parts of the Bloch functions are two-component spinors |nk〉 and
the Schrödinger equation reads[

p2

2m0
+ V0 +

�
2k2

2m0
+

�

m0
k · π +

�

4m2
0c

2
p · σ × (∇V0)

]
|nk〉

= En(k) |nk〉 , (2.4)

where

π := p +
�

4m0c2
σ ×∇V0 , (2.5)

and σ = (σx, σy, σz) is the vector of Pauli spin matrices. Note that in the
presence of SO interaction the spin quantum number σ is, by itself, not a good
quantum number. We have only a common index n for the orbital motion
and the spin degree of freedom, which classifies the bands according to the
irreducible representations of the double group.

For a fixed wave vector k0, the sets of lattice-periodic functions {|νk0〉}
and {|nk0〉} provide a complete and orthonormal basis [7] for (2.3) and (2.4),
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respectively. Therefore we can expand the kets {|nk〉} in terms of band edge1

Bloch functions {|ν0〉} times spin eigenstates |σ〉:

|nk〉 =
∑
ν′

σ′=↑,↓

cnν′σ′(k) |ν′σ′〉 , (2.6a)

where

|ν′σ′〉 := |ν′0〉 ⊗ |σ′〉 . (2.6b)

Here we have deliberately chosen as a basis the eigenfunctions of (2.3) without
SO interaction, because it is often helpful to treat the SO interaction as a
small perturbation (see (2.7) below). Now we multiply (2.4) from the left
by 〈νσ|. By using the eigenvalue equation for |νσ〉, we obtain an algebraic
eigenvalue problem for the dispersion En(k), which depends only explicitly
on the wave vector k:∑

ν′, σ′

{[
Eν′(0) +

�
2k2

2m0

]
δνν′ δσσ′ +

�

m0
k · P νν′

σσ′ +∆νν′
σσ′

}
cnν′σ′(k)

= En(k) cnνσ(k) , (2.7)

where

P νν′
σσ′ := 〈νσ |π| ν′σ′〉 , (2.8a)

∆νν′
σσ′ :=

�

4m2
0c

2
〈νσ | [p · σ × (∇V0)] | ν′σ′〉 . (2.8b)

In the coupled equations (2.7), the off-diagonal terms (�/m0)k·P νν′
σσ′ result in

a mixing of the band edge states |ν0〉 that becomes stronger the larger k is and
the closer in energy the band edges Eν(0) are. Often we can neglect the SO
interaction in (2.5) and (2.8a) so that we have π = p and P νν′

σσ′ = δσσ′ Pνν′ .
In general, the matrix elements of the SO interaction ∆νν′

σσ′ result in a
splitting of the degenerate energy levels Eν(k) even at k = 0. However, a
more careful analysis requires that we take into account the symmetries of
the bands (see Chap. 3). For example, without spin the p-like states at the
valence band edge of a semiconductor such as GaAs are threefold degenerate
(orbital angular momentum l = 1). Including spin, the SO interaction splits
the sixfold degenerate states into a fourfold degenerate subspace, with total
angular momentum j = 3/2 for the HH and LH states (Γ v

8 ) and j = 1/2 for
the spin-orbit split-off states (Γ v

7 ). For the s-like conduction band (Γ c
6 ), we

have ∆ cc′
σσ′ = 0.

A diagonalization of (2.7) yields the exact dispersion relation En(k) and
expansion coefficients cnν′σ′ (k) for all values of k and all band indices n.
1 In many semiconductors, the valence band maximum and the conduction band

minimum are at the Γ point k0 = 0. Therefore it is advantageous to expand the
band structure about this extremal point. However, it is straightforward to apply
the method to any other expansion point k0 �= 0.
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However, in many applications of the k · p method we are interested only
in a few adjacent bands (n = 1, . . . , N), for which we want to know the
dispersion relation En(k) only in the close vicinity of the expansion point
k0 = 0 (i.e. |k| � 2π/a where a is the lattice constant). Therefore, the k · p
interaction and SO interaction are fully taken into account only for those
N bands, whereas the contributions of the remote bands are considered by
means of Löwdin perturbation theory (see Appendix B) with the off-diagonal
terms (�/m0)k ·P νν′

σσ′ taken as small perturbations. This approach results in
an N -dimensional k · p Hamiltonian which contains extra terms of higher
order in k.

If we restrict ourselves to a diagonalization of (2.7) by means of second-
order perturbation theory we obtain (neglecting spin)

Eν(k) = Eν(0) +
�

2k2

2m∗
ν

, (2.9)

where
m0

m∗
ν

= 1 +
2
m0

∑
ν′

P 2
νν′

Eν(0) − Eν′(0)
. (2.10)

The dominant contribution in the sum stems from the coupling Pνν′ of the
band ν to nearby bands ν′. Thus, for the effective masses m∗

c/v in (2.1), it is
often a good approximation to use

m0

m∗
c/v

≈ 2
m0

P 2
cv

Eg
, (2.11)

i.e. the effective masses m∗
c ≈ m∗

v are proportional to the fundamental band
gap Eg = Ec − Ev. Here Ec denotes the minimum of the conduction band
and Ev is the maximum of the valence band.2

2.2 The Envelope Function Approximation

The envelope function approximation allows one to describe electron and hole
states in the presence of electric and magnetic fields that vary slowly on the
length scale of the lattice constant (see, however, Sect. 4.1.2). These fields
can be internal, such as the fields of crystal defects [8], or the fields can be
applied externally, by means of gates and external magnets, for example.

By analogy with (2.2), we consider the Schrödinger equation[
(−i�∇ + eA)2

2m0
+ V0(r) +

�

4m2
0c

2
(−i�∇ + eA) · σ × (∇V0)

+ V (r) +
g0
2
µB σ · B

]
Ψ(r) = E Ψ(r) , (2.12)

2 Within the Kane model discussed in Chap. 3, (2.11) can be a useful approxima-
tion for the Γ c

6 conduction band and for the LH valence band. See also (4.39a).
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Fig. 2.1. Qualitative sketch of
a wave function (2.13) in the
envelope function approximation.
The lower part shows the crys-
tal potential V0(r). The upper
part shows the slowly varying
envelope function ψνσ(r) that
modulates the quickly oscillating
lattice-periodic part uν0(r) of the
Bloch function

with a microscopic lattice-periodic crystal potential V0(r), an additional,
slowly varying potential V (r), and a vector potential A = A(r), which gives
rise to a magnetic field B = ∇ × A. The symbol µB = e�/(2m0) denotes
the Bohr magneton, e is the electron charge, and g0 = 2 is the g factor of
a free electron. Note that the dominant contribution to the SO interaction
originates in the strong Coulomb potential V0(r) of the atomic core regions
(see Sect. 3.4). Therefore, we need not include V (r) in the SO interaction
in (2.12).

Similarly to the derivation of the k · p method in the preceding section,
we expand the wave function Ψ(r) in terms of band-edge Bloch functions
uν′0(r) ≡ 〈r|ν′0〉 times spin eigenstates |σ′〉:

Ψ(r) =
∑
ν′, σ′

ψν′σ′(r)uν′0(r) |σ′〉 . (2.13)

The position-dependent expansion coefficients ψν′σ′(r) modulate the quickly
oscillating Bloch functions uν′0(r). As this modulation is slowly varying on
the length scale of the lattice constant, the expansion coefficients ψν′σ′(r)
are called envelope functions [3]. We insert (2.13) into (2.12), multiply from
the left by 〈σ|u ∗

ν0(r), and integrate over one unit cell of the lattice. If V (r),
A(r), and ψν′σ′(r) are slowly varying within one unit cell, we can take them
out of the integral as constant factors. We obtain

∑
ν′, σ′

{[
Eν′ (0) +

(−i�∇ + eA)2

2m0
+ V (r)

]
δνν′ δσσ′

+
1
m0

(−i�∇ + eA) · P νν′
σσ′

+∆νν′
σσ′ +

g0
2
µB σ · B δνν′

}
ψν′σ′ (r) = E ψνσ(r) . (2.14)

This multiband (or EFA) Hamiltonian is a system of coupled differential equa-
tions, the eigenfunctions of which are the multicomponent envelope functions
or spinors Ψ (r) = (ψνσ(r)). A wave function (2.13) is sketched in Fig. 2.1.

Once again, we can use quasi-degenerate perturbation theory (Appendix B)
to convert the infinite-dimensional eigenvalue problem (2.14) into a tractable
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finite-dimensional eigenvalue problem. Apparently, we have here a close sim-
ilarity between the k · p Hamiltonian (2.7) and the multiband Hamiltonian
(2.14), because both Hamiltonians depend on the same set of parameters
P νν′

σσ′ and ∆νν′
σσ′ . It is often argued that one can obtain the EFA Hamiltonian

from the corresponding k · p Hamiltonian by setting3

�k = p = −i�∇ + eA (2.15)

and adding the potential V (r) and the Zeeman term (g0/2)µB σ · B to the
diagonal. Here, �k = p is the operator of kinetic momentum. It must be
distinguished from the operator of canonical momentum

�k = p = −i�∇ . (2.16)

If A = 0 we have, of course, k = k. If also V (r) = 0, the operator k is
equivalent to the vector k in Sect. 2.1.

It is important to note that in the presence of a magnetic field B the
components of the operator k no longer commute, i.e. we have

k × k =
e

i�
B , (2.17)

independent of any particular gauge for the magnetic field B. Likewise, the
operator k and the potential V (r) do not commute:

[k, V (r)] = [k, V (r)] = −i∇V (r) = −ieE(r) , (2.18)

where E(r) is the electric field.4 In the finite-dimensional EFA Hamiltonian
obtained by Löwdin partitioning, we thus have to distinguish between terms
that are symmetric and antisymmetric in the noncommuting quantities k and
V (r). While the former are present in both the finite-dimensional k · p Hamil-
tonian and the finite-dimensional EFA Hamiltonian, the latter are present
only in the EFA Hamiltonian. The effective masses (2.10) that can be de-
fined for the k · p Hamiltonian (2.7) become (the inverse of) the prefactors of
the second-order terms symmetric in k. In agreement with (2.17), the second-
order terms antisymmetric in k are proportional to the magnetic field B like
a Zeeman term, so that the corresponding prefactor can be identified with
an effective g factor g∗ [11]. Similarly, higher-order terms antisymmetric in
the wave vector k and in the potential V (r) give rise to the Rashba term; see
Sect. 6.3. Obviously, the antisymmetric terms are not present in a decomposi-
tion of the k · p Hamiltonian (2.7). Therefore, the simple substitution (2.15)
is valid only for the infinite-dimensional EFA Hamiltonian (2.14). A detailed
discussion of the new terms that emerge from the noncommutativity of k and
V (r) will be given in subsequent chapters.

3 We follow the common practice whereby k denotes both the wave vector and
(apart from �) the operator of kinetic momentum.

4 In layered structures, the effective mass m∗ and the other band parameters be-
come position-dependent (cf. Sect. 4.1.2), so that k and m∗ do not commute
either; see [9,10].
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In second-order Löwdin perturbation theory a nondegenerate, isotropic,
parabolic band (2.9) gives rise to the effective-mass Hamiltonian [3]

H =
(−i�∇ + eA)2

2m∗
n

+ V (r) +
g∗n
2
µB σ · B , (2.19)

i.e. we treat the crystal electrons in the nth band like free particles with
an effective mass m∗

n and an effective g factor g∗n, which are moving in an
external potential V (r). We note that a justification of the effective-mass
Hamiltonian (2.19) from a many-particle standpoint is given in [12].

In general, (2.8) provides only a formal definition of the momentum matrix
elements P νν′

σσ′ and SO energies ∆νν′
σσ′ . In real applications these parameters,

as well as the band gaps Eν(0), are usually chosen such that they give the
best agreement with experimental data such as optical spectra, cyclotron
resonance data [13], and the hydrogenic spectra of shallow acceptor and donor
states [14]. The energy gaps Eν(0) and spin–orbit gaps ∆νν′

σσ′ can often be
extracted directly from the experimental data. The appropriate numerical
values of the momentum matrix elements P νν′

σσ′ can be derived from relations
such as (2.11) by using the measured values ofm∗

n and g∗n, which are tabulated
for all important semiconductors [15]. When the Hamiltonian (2.14) is applied
to semiconductor quantum structures it can be regarded as parameter-free
once these quantities are known, e.g. by fitting the parameters to independent
experimental data obtained for the bulk material.5

2.3 Band Structure in the Presence of Strain

When stress is applied to a semiconductor, the deformation of the crystal
results in shifts and splittings of the energy levels. External pressure and
strain are thus powerful tools to study the band structure of semiconductors
[16, 17]. Another example is provided by lattice-mismatched semiconductor
heterostructures, where the internal biaxial strain results in a characteristic
modification of the subband levels. Here we discuss how pressure and strain
can be included in k · p theory in a systematic way [18].

Application of stress to a crystal lowers the symmetry of the crystal po-
tential V0. But the space group G′ of the strained crystal is, in general, not
a subgroup of the space group G of the unperturbed system. Therefore, a
simple perturbation expansion is not possible [18]. However, it is possible to
introduce a “deformed” coordinate system

r′i =
∑

j (δij − εij) rj , (2.20a)

which implies
5 Strictly speaking, in semiconductor quantum structures new parameters, which

characterize the heterointerfaces, enter the multiband Hamiltonian. The most
important new parameter is the band offset (see also Sect. 6.5 and [9,10]).
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p′i =
∑

j (δij + εij) pj , (2.20b)

k′i =
∑

j (δij + εij) kj . (2.20c)

Here ε denotes the strain tensor. The Bravais lattice of the strained crystal
in the new coordinate system then coincides with that of the unstrained
crystal in the old coordinate system. Therefore G′ is a subgroup of G. We
obtain a splitting of energy levels, which follows from the decomposition of
the irreducible representations of G in terms of the irreducible representations
of the subgroup G′ [18].

Returning to the old notation, i.e. making the change r′ → r, the de-
formed crystal potential Vε[(1 + ε)r] has the same periodicity as the unper-
turbed potential V0(r). Therefore, we can expand Vε(r) in a series in terms
of ε,

Vε[(1 + ε)r] = V0(r) +
∑
ij

Vij(r)εij + . . . , (2.21a)

where

Vij :=
1

2 − δij
lim
ε→0

Vε[(1 + ε)r] − V0(r)
εij

. (2.21b)

Restricting ourselves to the terms linear in the strain ε, we obtain, instead
of (2.4){

p2

2m0
+ V0 +

�
2k2

2m0
+

�

m0
k · π +

�

4m2
0c

2
(∇V0) × p · σ

+
∑
ij

(
− pipj

m0
+ Vij

)
εij −

�
2

m0
k ε k − 2�

m0
k ε π

+
�

4m2
0c

2

[∑
ij εij(∇Vij) × (p + �k) · σ

− (ε∇V0) × p · σ − (∇V0) × (εp) · σ
]}

|nk〉ε
= En(ε,k) |nk〉ε . (2.22)

We can solve this equation analogously to (2.4). The most important new
matrix elements proportional to ε are

Vij νν′
σσ′ =

〈
νσ

∣∣∣ − pipj

m0
+ Vij

∣∣∣ ν′σ′
〉
, (2.23)

they are called deformation potentials. The elements of the strain tensor εij

are c-numbers (not operators). Accordingly, we can express the matrix ele-
ments 〈νσ|(2�/m0)k ε π|ν′σ′〉 and (�/4m2

0c
2)〈νσ|(ε∇V0) × p · σ + (∇V0) ×

(εp) · σ|ν′σ′〉 in terms of the matrix elements (2.8a) and (2.8b), thus ap-
parently reducing the number of independent parameters in the k · p model
(2.22) [19, 20]. However, we would like to note that such an approach must
be used with caution. First, little can be said concerning the magnitude of
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the remaining strain-dependent term in the SO interaction. Second, Löwdin
partitioning results in additional terms proportional to k ·ε, the magnitude of
which can be estimated only unsatisfactorily [16]. In general, it is necessary
to evaluate the weight factors of the strain-induced terms independently from
the terms present in the absence of strain.

2.4 The Paramagnetic Interaction
in Semimagnetic Semiconductors

If manganese ions Mn2+ are introduced into II–VI or III–V semiconductors a
huge Zeeman splitting is observed for conduction and valence band electrons
that cannot be explained by conventional k · p theory (g∗ 	 100; as a lowest-
order approximation we can often neglect the Landau-level splitting here).
The enhanced Zeeman splitting stems from the exchange interaction between
the extended electronic states in the conduction and valence bands and the
magnetic moments of the localized Mn 3d5 electrons. It can be described by
a Kondo-like Hamiltonian [21]

Hex = −
∑
m

J(r − Rm)Sm · σ . (2.24)

Here σ is the spin operator of the electrons in the conduction and valence
bands, Sm is the operator for the total spin of an Mn 3d shell at the po-
sition Rm, the function J(r − Rm) describes the exchange interaction, and
the sum runs over all Mn atoms m. Such systems are called semimagnetic
semiconductors or diluted magnetic semiconductors (DMS).

In the framework of the k · p method we can take (2.24) into account as
an additional term in (2.4). Similarly to the case of (2.8), we must evaluate
the matrix elements of Hex with respect to band-edge Bloch functions |νσ〉.
These wave functions extend over the whole crystal, so that we can assume
approximately that they feel the mean magnetic moment of all Mn 3d shells
(the mean-field approximation), oriented parallel to the external magnetic
field B:

〈νσ|Hex|ν′σ′〉 ≈ − 〈νσ |
∑

mJ(r − Rm)| ν′σ′〉 〈S〉 〈νσ |σ| ν′σ′〉 (2.25a)

≈ − 〈νσ |J | ν′σ′〉 N0x 〈S〉 〈νσ |σ| ν′σ′〉 (2.25b)

= − δνν′ 〈ν |J | ν〉 N0x 〈S〉 〈σ |σ|σ′〉 . (2.25c)

The exchange integrals 〈ν |J | ν〉 are material-specific parameters, N0 is the
number of unit cells per unit volume, and x is the mole fraction of Mn2+

ions.
The expectation value 〈S〉 of the spin of the Mn 3d shells can be described

by a modified Brillouin function [22] for a spin j = 5/2:
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〈S〉 = êS0B5/2

(
5
2
g0µBB

kBTeff

)
. (2.26)

Here µB is the Bohr magneton, g0 = 2, kB is Boltzmann’s constant, and ê
is a unit vector parallel to the direction of the external magnetic field B.
The effective spin S0 and the effective temperature Teff := T + T0 take into
account the antiferromagnetic interaction between the Mn2+ ions. For higher
Mn concentrations x, the antiferromagnetic coupling results in a saturation
of the Zeeman splitting [22]. In the paramagnetic limit of small x, we have
T0 = 0 and S0 = 5/2. The Brillouin function Bj(y) is defined as

Bj(y) =
j + 1/2

j
coth

(
j + 1/2

j
y

)
− 1

2j
coth

(
y

2j

)
. (2.27)

2.5 Theory of Invariants

Using Löwdin perturbation theory, described in Appendix B, the infinite-
dimensional eigenvalue problems (2.7) and (2.14) can be transformed into
finite-dimensional eigenvalue problems. The k · p interaction with the remote
bands that are not taken exactly into account will then result in new terms
of higher order in k.

A second, very systematic approach to the construction of the finite-
dimensional k · p Hamiltonian is based on the theory of invariants [18, 23].
This approach utilizes the fact that, independent of microscopic details, the
Hamiltonian must be invariant under all symmetry operations of the problem.
(For example, for an unperturbed zinc blende structure, we have the point
group Td.) Solely on the basis of this rather general symmetry argument,
the theory of invariants allows one to decide which terms may appear in the
Hamiltonian and which terms must vanish. Moreover, we can take additional
terms into account that, for example, describe the effect of strain and exter-
nal electric and magnetic fields. Here we shall summarize the main results of
the theory of invariants, which are important in the present context.

In the following, H(K) denotes an N -dimensional multiband Hamilto-
nian, where K represents a general tensor operator, which can depend on the
components of the wave vector k, the external electric and magnetic fields
E and B, and the strain tensor ε. The symmetry of the Hamiltonian H(K)
is characterized by a point group G. Assuming that the basis functions of
H transform according to an N -dimensional (irreducible or reducible) ma-
trix representation {D(g) : g ∈ G}, the invariance of H under the symmetry
operations g reads

D(g) H(g−1K) D−1(g) = H(K) ∀g ∈ G . (2.28)

Obviously, the matrix equation (2.28) represents N2 equations for the el-
ements Hij(K) of H(K). Indeed, these constraints allow one to construct
H(K) [18].
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First, the general tensor operator K can be decomposed into irreducible
tensor operators K(δ,µ) that transform according to the irreducible represen-
tation Γδ of G. The index µ distinguishes between different irreducible tensor
operators that transform according to the same irreducible representations
Γδ. Furthermore, H(K) can be decomposed into blocks Hαβ(K), where α and
β denote the spaces of the nα- and nβ-fold degenerate band-edge Bloch func-
tions, which transform according to the irreducible representations Γα and
Γβ , respectively, of G. For each block Hαβ(K), one can find a complete set
of linearly independent nα × nβ-dimensional matrices X(κ,λ)

l that transform
according to those irreducible representations Γκ (of dimension Lκ) which are
contained in the product representation Γα × Γ ∗

β . The index λ distinguishes
between different subsets of matrices that transform according to the same
irreducible representations Γκ. Then each block Hαβ(K) can be expressed in
terms of invariants

Iκλµ =
Lκ∑
l=1

X
(κ,λ)
l K(κ,µ) ∗

l , (2.29)

consisting of products of matrices X (κ,λ)
l and irreducible tensor components

K(κ,µ) ∗
l . One can easily show that each invariant Iκλµ indeed satisfies (2.28)

for all g ∈ G. Equation (2.29) reflects the well-known fact that the unit repre-
sentation occurs only in a product of mutually conjugate representations Γκ

and Γ ∗
κ [18]. Finally, we can expand Hαβ(K) in terms of the invariants Iκλµ:

Hαβ(K) =
∑

κ, λ, µ

a
αβ
κλµ Iκλµ (2.30a)

=
∑

κ, λ, µ

a
αβ
κλµ

Lκ∑
l=1

X
(κ,λ)
l K(κ,µ) ∗

l , (2.30b)

where the expansion coefficients a
αβ
κλµ are material-specific parameters.6 In

the diagonal blocks Hαα(K), only those invariants Iκλµ are allowed that
are also invariant under time reversal. No such restriction exists for the off-
diagonal blocks Hαβ(K), α �= β [18].

If H̃ denotes the finite-dimensional multiband Hamiltonian derived by
means of Löwdin partitioning, obviously we must have H̃ = H(K), so that
in H̃ we have the same dependence on the general tensor operator K as in
the invariant expansion (2.30). Therefore, we can obtain explicit formulas
for the coefficients a

αβ
κλµ in the following way. First we derive the invariant

expansion (2.30) with undetermined coefficients a
αβ
κλµ. Then we carry out the

Löwdin partitioning, so that we can match H̃ against (2.30): when we collect

6 In the language of group theory, the coefficients a
αβ
κλµ are closely related to re-

duced matrix elements as defined by the Wigner–Eckart theorem.
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all terms in H̃ that have the structure of an invariant Iκλµ, the common
prefactor of these terms is the coefficient a

αβ
κλµ. We would like to note that

the important advantage of the invariant expansion (2.30) lies in the fact that
often it is easier to derive (2.30) than to evaluate explicitly the perturbation
theory (B.15). Nevertheless, solely on the basis of the invariant expansion
(2.30), it is possible to predict many qualitative features of the Hamiltonian,
and numerous examples of this can be found in subsequent chapters.
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3 The Extended Kane Model

In the present work we are interested in quantum structures made of direct
semiconductors with an inversion-asymmetric zinc blende structure (point
group Td). All important semiconductors in this category, such as GaAs, InSb,
and CdTe, have qualitatively a very similar band structure with the smallest
gap between the valence and conduction bands occurring at the Γ point
k = 0. A detailed description of the band structure of these semiconductors
is possible by means of the extended Kane model [1, 2, 3].1

We start in Sect. 3.1 with some general symmetry considerations. Next we
discuss in Sect. 3.2 the invariant decomposition for the point group Td which
allows us to give in Sect. 3.3 the invariant expansion for the extended Kane
model. Section 3.4 is devoted to a brief discussion of the spin–orbit gap ∆0.
In Sect. 3.5 we discuss the relation between the extended Kane model and
smaller k · p models such as the Kane model and the Luttinger Hamiltonian.
Finally, we establish in Sect. 3.6 a symmetry hierarchy for the various terms
in the Kane Hamiltonian.

3.1 General Symmetry Considerations

In a tight-binding picture, the extended Kane model takes into account the
topmost bonding p-like valence band states (X , Y , Z) and the antibonding
s-like (S) and p-like (X ′, Y ′, and Z ′) states in the lowest conduction bands.
In the language of group theory,2 the s-like states (orbital angular momen-
tum l = 0, representation D−

0 of the full rotation group R = SU(2) × Ci)
transform according to the irreducible representation Γ1 of the point group
Td (conduction band Γ c

1 ), and the p-like states (l = 1) transform according
to Γ5 (valence band Γ v

5 and conduction band Γ c
5 ). Note, however, that in

a diamond structure the bonding p-like states in the valence band are even
(D+

1 of R, Γ+
5 of Oh), whereas the antibonding p-like states in the conduc-

1 The valence band block of this model is also appropriate for calculating hole
states in Si and Ge (diamond lattice, point group Oh); see Sect. 8.3.

2 We denote the irreducible representations of the crystallographic point groups
in the same way as Koster et al. [4]; see also Chap. 2 of [5]. Superscripts “±”
denote whether the representation is even or odd with respect to parity.

Roland Winkler: Spin–Orbit Coupling Effects
in Two-Dimensional Electron and Hole Systems, STMP 191, 21–33 (2003)
c© Springer-Verlag Berlin Heidelberg 2003
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Table 3.1. Symmetry classification of the bands in the extended Kane model

Single group Double group

Oh/Td Full rotation group R Oh/Td

j = 3/2 (D−
3/2)

� Γ−
8

Γ−
5

� l = 1 (D−
1 )

p antibonding
���
��� j = 1/2 (D−

1/2)
� Γ−

7

Γ−
1

� l = 0 (D−
0 )

s antibonding
� j = 1/2 (D−

1/2)
� Γ−

6

j = 3/2 (D+
3/2)

� Γ+
8

Γ+
5

� l = 1 (D+
1 )

p bonding
���
��� j = 1/2 (D+

1/2)
� Γ+

7

tion band are odd (D−
1 of R, Γ−

5 of Oh). The symmetries of the bands are
summarized in Table 3.1.

When SO coupling is taken into account, l = 0 becomes the total angular
momentum j = 1/2 so that the states transform according to Γ6 of Td (D−

1/2 of
R). The Γ5 bands split into fourfold degenerate j = 3/2 states, transforming
according to Γ8 of Td (D±

3/2 of R), and j = 1/2 states, transforming according
to Γ7 of Td (D±

1/2 of R). As the splitting between the valence bands Γ v
8 and

Γ v
7 is a direct consequence of SO coupling, the band Γ v

7 is sometimes called
the spin–orbit split-off valence band [6]. The resulting 14 basis functions are
listed in Table C.1.

3.2 Invariant Decomposition for the Point Group Td

Before discussing the details of the extended Kane model, we shall study the
general features of a multiband Hamiltonian for the point group Td according
to the theory of invariants.

For the point group Td, there are three double-group representations, de-
noted Γ6, Γ7, and Γ8. They provide the building blocks for any spin-dependent
multiband Hamiltonian for Td. For the two-dimensional representations Γ6

and Γ7, we need four basis matrices. Here we can use the unit matrix �2×2

and the Pauli spin matrices σi. For the four-dimensional representation Γ8,
we need 16 matrices, which can be constructed from the three angular-
momentum matrices Jx, Jy, and Jz for j = 3/2 and properly symmetrized
powers thereof. The construction of basis matrices for the off-diagonal sub-
spaces between Γ6, Γ7, and Γ8 is described in [7]. All basis matrices are listed
in Table C.3.
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The wave vector k and electric field E transform according to the irre-
ducible representation Γ5 of Td, whereas the magnetic field B transforms
according to Γ4. We remark that the wave vector k and the magnetic field
B are odd with respect to time-reversal symmetry, while the electric field
E is even. We can construct irreducible tensor components K(δ,µ)

l of higher
order in k, B, and E by using the Clebsch–Gordan coefficients 〈δl|αi, βj〉 for
the point group Td, which are tabulated in [4]. More explicitly, from tensor
components K(α,µ)

i and K(β,ν)
j that transform according to the irreducible rep-

resentations Γα and Γβ we obtain new irreducible tensor components K(δ,λ)
l

given by

K(δ,λ)
l sym =

∑
i,j

〈δl|αi, βj〉
{
K(α,µ)

i ,K(β,ν)
j

}
, (3.1a)

K(δ,λ)
l asym =

∑
i,j

〈δl|αi, βj〉
[
K(α,µ)

i ,K(β,ν)
j

]
, (3.1b)

where {. . .} and [. . .] denote the symmetrized and antisymmetrized products,
respectively, of their arguments. Up to fourth order in the wave vector k and
second order in B and E, we obtain the irreducible tensor components listed
in Table C.4. Note, however, that the definition of these tensor operators is
not unique, because any linear combination of sets of tensor operators that
transforms according to the irreducible representation Γδ also transforms
according to Γδ. As remarked at the end of Sect. 2.5, using Tables C.3 and C.4
we can derive many important features of the Hamiltonian without the need
to explicitly carry out the cumbersome perturbation theory which is necessary
to determine the prefactors of the invariants.

3.3 Invariant Expansion for the Extended Kane Model

The extended Kane model takes exactly into account (up to infinite order
in k) all k · p and SO interactions between the bands Γ c

8 , Γ c
7 , Γ c

6 , Γ v
8 , and Γ v

7 .
The k · p interactions with the other bands are taken into account by second-
order perturbation theory (see Fig. 3.1). The 14× 14 matrix Hamiltonian of
the extended Kane model falls into blocks with respect to the five bands
under consideration:

H14×14 =




H8c8c H8c7c H8c6c H8c8v H8c7v

H7c8c H7c7c H7c6c H7c8v H7c7v

H6c8c H6c7c H6c6c H6c8v H6c7v

H8v8c H8v7c H8v6c H8v8v H8v7v

H7v8c H7v7c H7v6c H7v8v H7v7v


 . (3.2)

The invariant expansion for these blocks is given in Table C.5.
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Fig. 3.1. Schematic band structure for the
14 × 14 extended Kane model. Besides the
energy separations at the Γ point, the cou-
plings within the model are indicated. Taken
form [2]. c© (1991) by the American Physical
Society

The irreducible matrix elements of the momentum and the SO interaction
occurring in the extended Kane model are defined as follows (see Fig. 3.1):

P =
�

m0
〈S |px|X〉 , (3.3a)

P ′ =
�

m0
〈S |px|X ′〉 , (3.3b)

Q =
�

m0
〈X |py|Z ′〉 , (3.3c)

∆0 = − 3i�
4m2

0c
2
〈X | [(∇V0) × p]y |Z〉 , (3.3d)

∆′
0 = − 3i�

4m2
0c

2
〈X ′ | [(∇V0) × p]y |Z ′〉 , (3.3e)

∆− = − 3i�
4m2

0c
2
〈X | [(∇V0) × p]y |Z ′〉 . (3.3f)

Using the phase conventions listed in Table C.1, the matrix elements P , Q,
∆0, and ∆′

0 are real, whereas the matrix elements P ′ and ∆− are purely
imaginary. Furthermore, the SO interaction is diagonal between the p-like
valence and conduction band states. Thus, ∆0 and ∆′

0 can be interpreted as
the SO splittings between Γ v

8 and Γ v
7 and between Γ c

8 and Γ c
7 , respectively; see

Fig. 3.1. Other phase conventions yielding off-diagonal SO matrix elements
between the p-like valence band states are discussed in [8].

In subsequent chapters we shall focus on the effects of SO interaction.
For this reason, we wish to point out that besides the matrix elements ∆0,
∆′

0, and ∆−, the prefactor Ck of the terms linear in k in the valence band
block H8v8v is also a direct consequence of SO interaction [9]. The main
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contribution to Ck stems from the bilinear terms consisting of k · p and SO
interactions, with remote Γ3-like intermediate states [10]. Unlike the higher-
order terms for spin splitting induced by bulk inversion asymmetry (BIA, see
Sect. 6.2) that can be expressed in terms of the momentum matrix elements
and energy gaps (3.3), the coefficient Ck is an “elementary” parameter of
the extended Kane model. In semiconductors with a diamond lattice (point
group Oh) we have P ′ = ∆− = Ck = 0, consistent with the symmetry of the
bands with respect to parity listed in Table 3.1.

The remaining parameters m∗, g∗, Bi, D, γi, κ, and q describe remote-
band contributions of second order in k. However, the classification of valence
and conduction bands in terms of “near” and “remote” bands depends on the
particular k · p model. Usually, the above parameters refer to smaller k · p
models that comprise only a subspace of the five bands of the extended Kane
model. Accordingly, these parameters contain the k · p interactions between
this subset and the other bands of the extended Kane model in second-order
perturbation theory. Therefore, in order to take these interactions into ac-
count only once, we use reduced band parameters m′, g′, B′

i, D
′, γ′i, κ

′, and
q′, where we subtract the second-order contributions from those interactions
that are taken exactly into account [11,12]; see also Sect. 3.5. The definition
of the reduced band parameters is given in Table C.9.

In Table C.5 we have included in the off-diagonal blocks H6c8v and H6c7v

the terms proportional to Kane’s parameter B [13] (following [14], we dis-
tinguish B±

8v and B7v). These terms contribute to the inversion-asymmetry-
induced spin splitting in the conduction and valence bands (Sect. 6.2). A
treatment of Zeeman splitting at the same level of accuracy requires that
we take into account also the analogous terms antisymmetric in k, which
contribute to the anisotropic Zeeman splitting in the conduction and valence
bands [14]. The prefactor of these terms has been denoted by D.

We have included in Table C.5 also the strain-induced terms that will
be used in Sect. 8.3. The deformation potentials Ci, Dd, Du, and D′

u are
explained in [7]. Several common alternative notations for deformation po-
tentials are listed in Table C.6. The paramagnetic interaction is characterized
by the s-d and p-d exchange integrals

α = −〈S |J |S〉 and β = −〈X |J |X〉 . (3.4)

As an example, we show in Fig. 3.2 the (spin-split) dispersion E(k) of
electrons in the lowest conduction band [1] and of holes in the highest valence
bands in bulk GaAs, calculated by means of the 14 × 14 extended Kane
model. The dispersion in the valence bands is strongly nonparabolic and
anisotropic. Even for electrons we have significant nonparabolic corrections,
but the anisotropic terms are fairly small (see Sect. 3.6). BIA spin splitting
in bulk semiconductors will be discussed in detail in Sect. 6.2.1.
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(a) (b)

Fig. 3.2. Spin-split dispersion E(k) (a) of electrons in the lowest conduction band
and (b) of holes in the highest valence bands in bulk GaAs. The calculation was
based on the 14 × 14 extended Kane model. Different line styles correspond to
different directions in k space as indicated. The solid line in (a) indicates the
parabolic dispersion based on the effective mass at the band edge. (a) taken form [1].
c© (1984), with permission by Elsevier

3.4 The Spin–Orbit Gap ∆0

The SO gap ∆0 (and ∆′
0) defined in (3.3) is of fundamental importance for

the discussion of SO-related phenomena in subsequent chapters. Therefore,
the present section is devoted to a discussion of this quantity.

The matrix element ∆0 reflects the Pauli SO interaction (1.1) caused by
the strong Coulomb potential in the innermost region of the atomic cores.
Theoretical values of ∆0 in a binary semiconductor AB can be estimated
from [15]

∆0(AB) = 1
2
(1 − fi)∆A + 1

2
(1 + fi)∆B , (3.5)

where ∆j is the atomic SO splitting of constituent j = A,B. The symbol fi
denotes the ionicity of the semiconductor AB, and we have assumed that A
is the cation and B is the anion. Similar formulas have been derived by other
authors [16]. In (3.5), the anions are weighted more than the cations. This
reflects the general trend that the anions in a binary semiconductor contribute
more strongly to the topmost valence band states than do the cations. Atomic
SO splittings∆j are listed in Table 3.2. We see that in each row of the periodic
table, the splittings ∆j increase from left to right in much the same way.
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Table 3.2. Contribution ∆j of atom j to the SO splitting ∆0 (in eV). Taken
from [15]

Be B C N O F

0.002 0.004 0.006 0.009 0.010 0.010

Mg Al Si P S Cl
0.01 0.024 0.044 0.08 0.09 0.09

Zn Ga Ge As Se Br

0.10 0.18 0.29 0.43 0.48 0.49

Cd In Sn Sb Te I
0.10 0.36 0.80 1.05 1.10 1.11

Hg Tl Pb
0.5 0.9 2.0

Likewise, they increase in each column from top to bottom.3 A comparison
of experimental SO gaps ∆exp

0 with theoretical SO gaps ∆theo
0 estimated

by means of (3.5) is given in Table 3.3. In the present context, it might
appear trivial to achieve good agreement between experimental SO gaps and
theoretical estimates based on (3.5) because, for every binary semiconductor
AB, we could choose the ionicity fi appropriately. However, in early models
of semiconductor band structure the ionicity fi was a fundamental parameter
that was used to explain many different properties of binary semiconductors
[15]. We see in Table 3.3 that for Si we have ∆0 = 44 meV, whereas for Ge we
have ∆0 = 290 meV. Therefore, we can readily understand why SO effects in
Si quantum structures are rather small [18, 19].

The SO gap ∆′
0 is typically smaller than ∆0. Lawaetz [20] estimates ∆′

0 ≈
0.64∆0.

3.5 Kane Model and Luttinger Hamiltonian

The 14 × 14 matrix of the extended Kane Hamiltonian provides an accurate
description of the band structure of semiconductors close to the fundamental
gap [1]. Nevertheless, it is often convenient to consider smaller k · p models
such as the 8 × 8 Kane model [21],

H8×8 =


 H6c6c H6c8v H6c7v

H8v6c H8v8v H8v7v

H7v6c H7v8v H7v7v


 . (3.6)

3 The atomic SO splittings ∆j are effective quantities that should not be con-
fused with splittings of atomic energy levels. Nevertheless, the trends of ∆j are
qualitatively consistent with the results of atomic physics, where it is known
that the SO coupling varies roughly as the fourth power of the (effective) atomic
number [17].
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Table 3.3. Comparison between experimental SO gaps ∆exp
0 and theoretical SO

gaps ∆theo
0 estimated by means of (3.5) using the ionicities fi. Taken from [15]

Compound ∆exp
0 (eV) ∆theo

0 (eV) fi
C 0.006 0.006 0
Si 0.044 0.044 0
Ge 0.29 0.29 0
α-Sn 0.80 0
AlN 0.012 0.449
AlP 0.060 0.307
AlAs 0.29 0.274
AlSb 0.75 0.80 0.250
GaN 0.011 0.095 0.500
GaP 0.127 0.11 0.327
GaAs 0.34 0.34 0.310
GaSb 0.80 0.98 0.261
InN 0.08 0.578
InP 0.11 0.16 0.421
InAs 0.38 0.40 0.357
InSb 0.82 0.80 0.321
ZnO −0.005 0.03 0.616
ZnS 0.07 0.09 0.623
ZnSe 0.43 0.42 0.630
ZnTe 0.93 0.86 0.609
CdS 0.066 0.09 0.685
CdSe 0.42 0.699
CdTe 0.92 0.94 0.717
HgS 0.13 0.79
HgSe 0.48 0.68
HgTe 0.99 0.65

In subsequent chapters we shall often describe hole states by means of the 4×4
Luttinger Hamiltonian H8v8v, which is the simplest model for the fourfold
degenerate topmost valence band [22].4 We would like to remark that even
though H8v8v does not depend on the SO gap ∆0, it corresponds to the limit
of strong SO interaction ∆0 → ∞.

In fact, we can establish a hierarchy of k · p models, starting from the full
14 × 14 extended Kane Hamiltonian and going down through models with a
successively reduced size. These smaller models can be derived from H14×14

by means of Löwdin partitioning so that they contain terms of higher order in
k. Here, our definition of the reduced band parameters in Table C.9 ensures
that, to leading order in k, the smaller models yield the same results as the
14×14 extended Kane model. Only higher-order terms in a Taylor expansion
of the dispersion En(k) differ from each other if a larger or smaller model

4 Often the 6 × 6 valence band Hamiltonian containing the bands Γ v
8 and Γ v

7 is
also called the Luttinger Hamiltonian [23,24].
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is used. Therefore, the higher-order terms of En(k) provide a direct measure
of the accuracy of different k · p models [1]. For example, the effective-mass
approximation (2.9) is sometimes called parabolic approximation, because it
yields the correct second-order term in a Taylor expansion of En(k), but it
neglects all higher-order terms. Obviously, such simplified models are most
accurate if only small wave vectors k are relevant.

Strictly speaking we must distinguish between, for example, the 4 × 4
Luttinger Hamiltonian for the Γ v

8 valence band and the block H8v8v in the
extended Kane model (3.2) or H8v8v in the Kane model (3.6) because the
blocks of the latter kind contain reduced band parameters as given in Ta-
ble C.9; see Sect. 3.3. However, for brevity of notation we shall use the same
symbols Hαβ , and we assume that each block contains the appropriate re-
duced band parameters as given in Table C.9.

3.6 Symmetry Hierarchies

For the interpretation of the band structure of both bulk semiconductors and
quasi-2D systems, it is very helpful to decompose the full Hamiltonian H
into terms with higher and lower symmetry. Typically, the terms with higher
symmetry have larger prefactors than have the terms with lower symmetry,
so that we have a symmetry hierarchy for the terms in H.

Bulk semiconductors with a diamond structure have the point group Oh,
which is the point group of a cube. Bulk semiconductors with a zinc blende
structure have the point group Td, which is the point group of a tetrahedron.
We obtain Oh from Td by adding the inversion to the latter group, i.e. Td is
a subgroup of Oh = Td ⊗ Ci, where Ci is the point group that contains only
the identity and the inversion. It has long been known that the additional
terms in the band structure of a semiconductor with a zinc blende structure
are rather small when compared with the terms that are present also in
semiconductors with a diamond structure [22]. (Obviously, the latter terms
are symmetry-allowed also in zinc blende structures because Td ⊂ Oh.)

Lipari and Baldareschi [25] generalized this idea by noting that Oh is a
subgroup of the full rotation group R:

R ⊃ Oh ⊃ Td . (3.7)

Thus one can write H in the form

H = Hspher + Hcub + Htetra , (3.8)

where Hspher is the spherical part of H that transforms according to R,
Hcub is the cubic part that transforms according to Oh, and Htetra denotes
the remaining terms with tetrahedral symmetry that transform according
to Td only. In the spherical approximation, we replace the full Hamiltonian
H by Hspher. This implies that the eigenstates of the Hamiltonian are also
eigenstates of the angular-momentum operator Ĵ (both Ĵ2 and Ĵz). Similarly,
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we can define the cubic approximation, where the second term in (3.8) is
also taken into account. It is a general property of the cubic approximation
that H (i.e. the operator for the kinetic energy) commutes with the parity
operator.5 The cubic and tetrahedral terms in (3.8) reflect the fact that in a
crystal structure, angular momentum is merely an “almost good” quantum
number.

The symmetry hierarchy (3.7) is very general. In particular, it does not
distinguish between electrons and holes. On the other hand, we saw in Fig. 3.2
that anisotropic corrections are significantly more important for holes than
for electrons. The reason for this is that the dispersion of electrons basically
depends on the off-diagonal k · p coupling between the lowest conduction
band Γ c

6 and the topmost valence bands Γ v
8 and Γ v

7 (proportional to Kane’s
momentum matrix element P ) [21]. These terms have spherical symmetry.
Therefore they contribute only to nonparabolicity and not to the anisotropy
of E(k). Cubic contributions to the dispersion E(k) result from k · p coupling
to the higher conduction bands Γ c

8 and Γ c
7 and to remote bands. For holes,

they are proportional to δ = γ3 − γ2 [25] and give an important contribution
to Eh(k). If Γ c

8 and Γ c
7 , as well as remote-band contributions, are neglected,

both Ec(k) and Eh(k) become isotropic. From Tables C.3 and C.4, we find
that to lowest order in k the anisotropy of the conduction band Γ c

6 is caused
by terms of fourth order in k (Fig. 3.2a and [26]), while for the valence band
Γ v

8 these terms are of second order in k (Fig. 3.2b and [25]).
In semiconductor QWs the growth direction is a predefined symmetry

axis, so that the point group of these systems is given by the subgroup of
Oh or Td that keeps this symmetry axis fixed. The resulting point groups for
different crystallographic growth directions are listed in Table 3.4. In general,
the symmetry reduction due to the subband quantization is the most impor-
tant effect, i.e., instead of the full rotation group R, we start the symmetry
hierarchy from the axial point group D∞h (if the confining potential V (z)
is inversion-symmetric) or from the group C∞v (if the confining potential
V (z) is inversion-asymmetric). We obtain D∞h from C∞v by adding the in-
version to the latter group.6 Analogously to (3.8), we can decompose the full
Hamiltonian H into

H = Hax + Hcub + Htetra , (3.9)

5 The part Htetra contains the effect of bulk inversion asymmetry to be discussed
in Sect. 6.2. The cubic approximation to H thus allows us to analyze the effect
of structure inversion asymmetry (i.e. the broken inversion symmetry of the
confining potential V (z)) independently of BIA.

6 The axial point group C∞ contains all rotations about an axis n̂. The point
group C∞v contains C∞ plus a mirror plane that includes n̂. This is the point
group of an electric field. The point group C∞h contains C∞ plus a mirror plane
perpendicular to n̂. This is the point group of a magnetic field. The point group
D∞h contains C∞ plus both a mirror plane that includes n̂ and a mirror plane
perpendicular to n̂. We have D∞h = C∞h ⊗ Ci = C∞v ⊗ Ci.
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Table 3.4. The point group of a QW for different growth directions, starting
from a bulk semiconductor with a diamond structure (point group Oh) or zinc
blende structure (point group Td), for B = 0 and B = Bz > 0. The upper and
lower values correspond to a QW the geometry of which is inversion-symmetric or
inversion-asymmetric, respectively. See also Sect. 6.5

[001] [111] [110] [mmn] [0mn] [lmn] Axial
approx.

Oh
D4h D3d D2h C2h C2h Ci D∞h

C4v C3v C2v Cs Cs C1 C∞v

Td
D2d C3v C2v Cs C2 C1 D∞h

B = 0

C2v C3v Cs Cs C1 C1 C∞v

Oh
C4h C3i C2h Ci Ci Ci C∞h

C4 C3 C2 C1 C1 C1 C∞

Td
S4 C3 Cs C1 C1 C1 C∞h

Bz > 0

C2 C3 C1 C1 C1 C1 C∞

where Hax contains the terms with axial symmetry (point group D∞h or
C∞v), Hcub contains the terms with cubic symmetry (invariant under inver-
sion), and Htetra contains the remaining terms with tetrahedral symmetry
(not invariant under inversion).7

In the axial approximation we replace the full Hamiltonian H by Hax. The
eigenstates of Hax are also eigenstates of the angular-momentum operator Ĵz

with the quantization axis of angular momentum parallel to the symmetry
axis of the axial point group. Indeed, we can use [Hax, Ĵz] = 0 as an alterna-
tive definition of the axial approximation, consistent with the fact that the
irreducible representations of the axial point groups are commonly labeled
by the quantum numbers of Ĵz.

We can use the symmetry properties of Hax in order to perform the de-
composition (3.9). We start by making a unitary transformation of the basis
functions {|jm〉} in Table C.1, such that the quantization axis of angular mo-
mentum is parallel to the growth axis (see e.g. (3.5.42) in [27]). In addition,
we make a transformation of the wave vector k such that the transformed
component kz is parallel to the quantization axis (see Sect. 4.1.5). We ex-
press the components kx and ky of the transformed wave vector in terms
of k± = kx ± iky . As we can identify k+ and k− with raising and lowering
operators for angular momentum, we can readily decide which terms in the
transformed Hamiltonian have axial symmetry:8 if the matrix element Hnn′

of the multiband Hamiltonian H connects the basis function |n〉 = |jnmn〉
with |n′〉 = |jn′mn′〉, only those terms which contain products kµnn′

+ k
νnn′
− are

allowed in Hax
nn′ , where the exponents µnn′ and νnn′ obey the condition

7 The symmetry hierarchy (3.9) was developed first for bulk semiconductors in the
presence of an external magnetic field and uniaxial strain [8,7].

8 This decomposition is not unique. We follow footnote 35 in [8], here.
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µnn′ − νnn′ = mn −mn′ . (3.10)

More explicitly, if we specify the direction of the symmetry axis by means
of the polar angle φ and azimuthal angle θ with respect to the direction
[001] (see Fig. C.1), we can write the axial approximation for the 8× 8 Kane
model as a function of φ and θ only. The results are given in Table C.10.
Only the prefactors, not the functional form of Hax, change as a function of
φ and θ, because the terms in Table C.10 represent the invariant expansion
H(K) for the point groups D∞h and C∞v. Note that the k-linear coupling
between Γ c

6 and Γ v
8 , as well as the terms proportional to m∗, g∗, γ1, and κ,

has spherical symmetry, so that these terms remain unaffected by a rotation
of the coordinate system. We have restricted ourselves to a magnetic field
in the z direction because any other direction of B would break the axial
symmetry [8,7]. Our general formulas in Table C.10 include the results listed
in Table VI of [7] for the particular cases of a growth direction parallel to
[001] (φ = θ = 0), [111] (φ = π/4, θ = arccos(1/

√
3)), and [110] (φ = π/4,

θ = π/2).
For the calculation of Landau levels described in Sect. 4.4.4, we also need a

complete decomposition of Hcub(φ, θ) and Htetra(φ, θ) with respect to powers
of k+, k−, and kz , which we obtain likewise from the above analysis. The
cubic part Hcub(φ, θ) for the most frequently needed case φ = π/4 is given
in Table C.11. However, we omit here the rather lengthy expressions for the
tetrahedral terms. Note that all cubic terms in Hk

8v8v and Hk
8v7v depend

only on the parameter δ = γ3 − γ2 [25]. We see from Table C.11 that the
axial approximation is most accurate for the high-symmetry growth directions
[001] (φ = θ = 0) and [111] (φ = π/4, θ = arccos(1/

√
3)), as we have here

Hcub(k‖ = 0) = 0, i.e. we obtain the correct subband edges from using Hax

only.9 On the other hand, the cubic corrections in Hcub are very important
for low-symmetry growth directions such as [113] and [110].

The reader might ask why we present in Tables C.10 and C.11 the sym-
metry hierarchy for the 8 × 8 Hamiltonian but not for the more complete
14 × 14 Hamiltonian. This is because for the 14 × 14 extended Kane model
a symmetry hierarchy is less meaningful than for the 8× 8 Hamiltonian, be-
cause in the smaller model Löwdin partitioning results in a sequence of terms
we can interpret and classify individually,10 whereas in the larger, more accu-
rate model such a separation of qualitatively different terms is not possible.
For example, the k · p coupling between the lowest conduction band Γ c

6 and
the higher conduction bands Γ c

7 and Γ c
8 has tetrahedral symmetry, consis-

tent with P ′ = 0 in semiconductors with a diamond structure. Accordingly,
a cubic 14 × 14 Hamiltonian must neglect the k · p coupling between these
bands. On the other hand, in the smaller Hamiltonians we can distinguish
9 The effect of Htetra on the subband edges is rather small.

10 The same holds for even smaller models, such as the 2 × 2 Hamiltonian for
electrons in the Γ c

6 conduction band, which contains terms up to fourth order in
k [26].
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between the contribution of P ′ to the isotropic effective mass (Table C.9) and
the contribution of P ′ to the tetrahedral terms of third order in k (Sect. 6.2).
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4 Electron and Hole States

in Quasi-Two-Dimensional Systems

In Chaps. 2 and 3 we introduced the general concepts for characterizing the
semiconductor band structure and a model for calculating it. In the present
chapter we shall discuss the applications of this model to quasi-2D semicon-
ductor quantum structures.

In Sect. 4.1 we present a general, numerical approach for solving the EFA
Hamiltonian based on a quadrature method. We then review for later refer-
ence the density of states of a 2D system (Sect. 4.2) and the most elementary
model within the EFA, the effective-mass approximation, which assumes a
simple nondegenerate, isotropic band (Sect. 4.3). In subsequent chapters the
EMA is often used as a starting point for developing more elaborate models.
The case of a perpendicular magnetic field differs conceptually from the case
of B = 0 or of an in-plane B, so it will be discussed separately in Sect. 4.4.
As an example of the concepts introduced in this chapter, we discuss next the
subband dispersion of quasi-2D hole systems with different crystallographic
growth directions (Sect. 4.5). The results obtained by numerical calculations
are usually very accurate, but sometimes less intuitive. In Sect. 4.6 we there-
fore complement the numerical schemes by a fully analytic approach based
on Löwdin partitioning.

4.1 The Envelope Function Approximation
for Quasi-Two-Dimensional Systems

The application of the EFA to semiconductor quantum structures has been
discussed extensively in the literature [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16].
In [15, 16], a general approach for the numerical solution of multiband enve-
lope function problems for a magnetic field B = 0 was presented which was
based on a quadrature method. Here we rederive the formulas in a way that
shows that this approach can include also an in-plane or perpendicular mag-
netic field B. In Sect. 4.1.1 we make some preliminary remarks concerning
the solution of an EFA Hamiltonian for the case of B = 0 or of an in-plane B.
In Sect. 4.1.3 we briefly discuss the general concepts and the technical prob-
lems related to a numerical solution of arbitrary multiband Hamiltonians.
In Sect. 4.1.4 we show how a general solution of these eigenvalue problems,
including the case of an in-plane magnetic field, can be obtained by means
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of a quadrature method. Finally, we discuss in Sect. 4.1.5 how we can de-
scribe electron and hole states in QWs with different crystallographic growth
directions.

4.1.1 Envelope Functions

In semiconductor heterostructures and QWs we have V (r) = V (z), with the
z axis in the growth direction, so that for B = 0 the in-plane wave vector
k‖ = (kx, ky, 0) is a good quantum number. Therefore, we can write the
eigenfunctions (2.13) of the multiband Hamiltonian in the form

Ψαk‖(r) =
eik‖·r‖

2π

∑
n′
ξn′
αk‖(z) un′0(r) , (4.1)

where α is the subband index and r‖ = (x, y, 0). In the following, we need
not consider explicitly the spin index σ of the band-edge Bloch functions.
Thus for brevity, we have included the index σ in the band index n′. The
energy eigenvalues that correspond to the eigenfunctions (4.1) represent the
subband dispersion Eα(k‖).

In order to take into account a homogeneous, in-plane magnetic field
B‖ = (Bx, By, 0), we choose the asymmetric gauge

A(z) = (zBy,−zBx, 0) . (4.2)

The advantage of this gauge lies in the fact that the multiband Hamiltonian
H depends only on the z component of the position vector r and not on x
and y. Thus, even for B‖ > 0, we have a strictly one-dimensional eigenvalue
problem. The kinetic wave vector k reads (see (2.15))

k =




kx + (e/�) zBy

ky − (e/�) zBx

−i∂z


 , (4.3)

where the c-numbers kx and ky are the eigenvalues of the in-plane canonical
wave vector k‖. Therefore the eigenfunctions of H are still of the form (4.1),
with k‖ replaced by k‖. Note that the eigenvalues (kx, ky) depend on the
gauge that is used. If we were to choose, for example, the symmetric gauge
A = (1/2)B × r, we would not be able to factorize the wave functions as
in (4.1), anymore.

4.1.2 Boundary Conditions

For layered semiconductor structures, we need to take into account the inho-
mogeneity of the system. In the EFA, this is commonly achieved by consid-
ering bulk band parameters which vary discontinuously at the interfaces [1].1

1 This implies that we neglect any microscopic effects of the interfaces (see, how-
ever, Sect. 6.5).



4.1 The Envelope Function Approximation for Quasi-2D Systems 37

In particular, the position-dependent band edges act like effective step-like
potentials for the electrons and holes. According to Sect. 2.2, discontinuous
band parameters go beyond the range of validity of the EFA. Nevertheless, it
has been observed that such an ansatz is capable of describing electron and
hole states in QWs in very good agreement with experiment [1]. Recently,
several authors have established elaborate derivations of the EFA showing
that it is indeed justified to apply the EFA in cases where the potential is
not slowly varying [14, 17].

In (2.14), the off-diagonal k · p coupling results in terms linear in kz =
−i∂z while the effective-mass-like terms are of second order in kz . The step-
like position dependence of the band parameters implies that the prefactors
of these differential operators vary discontinuously. Therefore, we have to use
matching conditions at the interfaces for the envelope functions and their
first derivatives which ensure hermiticity of the kinetic-energy operator. The
question of finding the proper Hermitian formulation has been discussed in
the literature [14,18] but remains a controversial problem [19]. In the present
work we use the Hermitian forms that are most frequently found in the lit-
erature [18],

kzf → − i
2

[∂z f(z) + f(z)∂z] (4.4a)

k2
zg → −∂z g(z)∂z . (4.4b)

Here, the term kzf corresponds to, e.g., an off-diagonal k · p term or a second-
order term proportional to kxkz , whereas k2

zg always represents a second-
order term.

4.1.3 Unphysical Solutions

Obtaining a general solution to the multicomponent envelope function prob-
lem is a difficult problem. Several methods have been suggested, each of them
suited to certain problems but always requiring additional simplifications.
Hence this section is devoted to a short review of the existing approaches,
outlining their underlying physical approximations, their limitations of valid-
ity, and the numerical difficulties which they entail. In the past these aspects
have been mixed up to some extent.

In the bulk conduction band, the effect of nonparabolicity has been taken
into account by explicitly considering terms up to fourth order in k [20,21,22].
This yields a simple model that has proved its worth for the conduction
band in large-gap semiconductors. Furthermore, it can easily be applied to
the subband problem. Commonly this is done by calculating the envelope
functions from a standard effective-mass Hamiltonian, and then nonparabolic
corrections are taken into account by first-order perturbation theory [13, 23,
24]. However difficulties may arise when dealing with expectation values of
higher order in kz = −i∂z. In numerical calculations, these quantities can
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be rather large. Using generalized Fang–Howard trial functions, appropriate
for MOS structures and heterostructures, one can show analytically that the
expectation values of all higher orders in kz diverge [15]. In these cases a
perturbative treatment is not possible.

Frequently, a simplified multiband k · p model is used which neglects
remote-band contributions and the free-electron term [11, 1, 2, 3, 12, 25, 26].
Thus this model is mainly justified for narrow-gap systems. The correspond-
ing subband problem is a set of coupled first-order differential equations.
By eliminating the valence band envelope functions, it can be reduced to
two second-order equations solely for the conduction band envelope func-
tions (spin up and down). However, the price to be paid is a kinetic-energy
operator that has singularities due to zeros of the effective mass as a function
of energy and position (cf. Sect. 5.2).

White and Sham [27] and Schuurmans and ’t Hooft [10] examined the so-
lution k2(E) of the secular equation for a multiband Hamiltonian at a fixed
energy. They showed that, if the Hamiltonian contains both the conduction
and the valence band, unphysical “wing band” or “spurious” solutions may
occur. These are large imaginary or real k vectors which, in k space, lie
far beyond the range of validity of the corresponding Hamiltonian. Likewise,
they occur in the case of single-band Hamiltonians if the Hamiltonian con-
tains terms of higher than second order in k. In contrast to many physical
problems that are characterized by differential equations we have to exclude
these solutions independently of boundary conditions. However, the problem
is that, owing to numerical instabilities, these unphysical branches prevail in
the standard numerical integration schemes (e.g. the Runge-Kutta method).
This makes it impossible to solve multiband Hamiltonians along these lines.

In the case of hole subbands, the degeneracy of the topmost valence band
Γ v

8 must be taken into account by a multicomponent formalism. When we
restrict ourselves to the Luttinger Hamiltonian [28], spurious solutions do not
occur. But it is still a considerable task to solve the corresponding subband
problem for the four-component spinor function Ψ (z) by means of a numerical
integration scheme [29], since we have to fix the energy E and the initial
values for Ψ (z0), ∂zΨ (z)|z=z0 in order to determine a bound state.2 Most
often, variational procedures have been used with differently chosen trial
functions [5, 30, 6, 7, 9].

By using the analytical solution of the bulk secular equation, Andreani
et al. [31] showed that the eigenvalue problem for the 4× 4 Luttinger Hamil-
tonian (Γ v

8 ) can be solved exactly in the flat-band case. Valadares [32] and
Chao and Chuang [33] extended the approach to the 6 × 6 valence band
Hamiltonian (Γ v

8 , Γ
v
7 ). However, besides the restriction to a piecewise con-

stant potential, these Hamiltonians do not include nonparabolicities beyond
2 A posteriori, one of the initial values can be fixed by means of the normalization

condition for the envelope functions.
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the valence band mixing. These effects can be substantial even for subbands
in a large-gap material [15].

A general approach to the numerical solution of multiband envelope func-
tion problems is provided by a quadrature method in reciprocal space [15].
The central idea is that a plane wave expansion in reciprocal space gives pre-
cise control over the desired, physical, and undesired, unphysical, solutions of
a multiband Hamiltonian. Simultaneously, one can incorporate the Hermitian
boundary conditions (4.4) in a natural way. The authors of [15] considered
the case B = 0. Here we rederive the formulas in a way that shows that this
approach can include also an in-plane or perpendicular (Sect. 4.4) magnetic
field B.

4.1.4 General Solution of the EFA Hamiltonian
Based on a Quadrature Method

We begin by establishing a compact notation for the coupled differential equa-
tions that is more appropriate for the numerical solution of this eigenvalue
problem. We write the Schrödinger equation in the form

Ĥ(z)Ψ (z) = EΨ (z) , (4.5)

where an N×N matrix Hamiltonian Ĥ acts on the N -component spinor Ψ . If
we use (4.3), the symmetrized expressions (4.4) in the matrix elements ĥnn′

of Ĥ can be decomposed in terms of subexpressions with equal powers of z
(due to the vector potential (4.2)) and kz = −i∂z:

ĥnn′ = ĥ
(0,0)
nn′ + ĥ

(0,1)
nn′ + ĥ

(0,2)
nn′ + . . .

+ ĥ
(1,0)
nn′ + ĥ

(1,1)
nn′ + . . .

+ ĥ
(2,0)
nn′ + . . . , (4.6)

where

ĥ
(0,ν)
nn′ := zν g

(0,ν)
nn′ (z) , (4.7a)

ĥ
(1,ν)
nn′ := − i

2

[
∂zz

ν g
(1,ν)
nn′ (z) + zν g

(1,ν)
nn′ (z)∂z

]
, (4.7b)

ĥ
(2,ν)
nn′ := −∂z z

ν g
(2,ν)
nn′ (z)∂z , (4.7c)

i.e. the superscript µ in ĥ(µ,ν)
nn′ counts the powers of kz = −i∂z, and ν counts

the powers of z. In the above equations, g(µ,ν)
nn′ (z) = [g(µ,ν)

n′n (z)]∗ are complex
functions which describe the position dependence of the band parameters.
In general, ĥ(0,0)

nn′ contains terms which result from the in-plane dispersion;
in addition we have band edge energies and the potential V (z) in the diago-
nal elements ĥ(0,0)

nn . The matrix elements ĥ(0,ν)
nn′ with ν ≥ 1 stem from terms
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proportional to the vector potential due to the in-plane B. The matrix ele-
ments ĥ(1,0)

nn′ represent off-diagonal terms proportional to momentum matrix
elements multiplied by kz = −i∂z, and ĥ

(2,0)
nn′ results from remote-band con-

tributions of second order in kz . Note that in a k · p multiband Hamiltonian
with terms up to second order in k, we can restrict ourselves in (4.6) to terms
ĥ

(µ,ν)
nn′ with µ+ ν ≤ 2 because, according to (4.3), the operators z and −i∂z

occur only in different Cartesian components of k. It is straightforward to
include in (4.6) higher orders ĥ(µ,ν)

nn′ , µ, ν > 2, which occur, for example, in the
2× 2 Hamiltonian of [20]. Equation (4.7) corresponds to the most commonly
used Hermitian formulation (4.4) of the operator Ĥ, other formulations are
given in Table I of [15].

For the numerical solution of the eigenvalue problem (4.5), we use the fact
that the differential operator −i∂z in (4.7) becomes a simple, multiplicative
operator kz in reciprocal space [15]. Therefore, a Fourier transform leads to
the set of coupled integral equations

Ĥ(k)Ψ (k) =
∫ ∞

−∞
dk′

∑
ν

{
G(0,ν)(k − k′) + 1

2(k + k′) G(1,ν)(k − k′)

+ kk′G(2,ν)(k − k′)
}

Ψ (k′)

= E Ψ (k) , (4.8)

where for brevity we have used k ≡ kz . The symbol G(µ,ν)(k) denotes the ma-
trix of the Fourier transforms of zνg

(µ,ν)
nn′ (z); the prefactors of these matrices

G(µ,ν)(k), which depend on k and k′, result from transferring the differential
operators in (4.7) into reciprocal space. Strictly speaking, a Fourier transform
of (4.7) turns all terms proportional to zν , ν > 0, into differential operators
in reciprocal space. However, if the Fourier transform of zν is implemented by
means of a discrete Fourier transform on a finite, discrete mesh, this provides
a sufficiently accurate approximation to the differential operator in recipro-
cal space. The integral kernel in (4.8) is obviously Hermitian. Integral kernels
corresponding to other Hermitian formulations of Ĥ are given in Table I
of [15].

Equation (4.8) can be readily solved by means of a quadrature method
[34], i.e. by discretizing the integral kernel Ĥ(k, k′) in (4.8) and diagonalizing
the resulting finite-dimensional matrix. This approach yields eigenfunctions
Ψ (k) in reciprocal space, which must be Fourier transformed into real space
individually. Therefore, it turns out to be efficient to perform another discrete
Fourier transform of the integral kernel Ĥ(k, k′) back into real space so that a
diagonalization of the resulting matrix provides the multicomponent envelope
functions on a discrete mesh in real space (see [35] and the Appendix in [15]).
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4.1.5 Electron and Hole States
for Different Crystallographic Growth Directions

The extended Kane model described in Chap. 3 was given for a coordinate
system where kx, ky, and kz correspond to the principal crystallographic axes
[100], [010] and [001], respectively. In order to calculate subband states for
an arbitrary growth direction, it is convenient to use a symmetry-adapted ro-
tated coordinate system k′ = (k′x, k

′
y, k

′
z), where k′z = −i∂z′ (z′ is the growth

direction). We have k′ = R k, where R is an orthogonal matrix. Therefore we
can express the components of k in terms of those of k′ using

k = R−1 k′ . (4.9)

As we want to insert (4.9) into the general ansatz (4.6), we see that we have
to evaluate this coordinate transformation separately for the components k′x,
k′y, and k′z = −i∂z′ , as well as for the vector potential (4.2).

4.2 Density of States of a Two-Dimensional System

For use in the discussion in subsequent chapters, we shall summarize in this
short section several formulas concerning the density of states of a 2D system.
We consider a finite system with area L2 and a subband dispersion Eασ(k‖).
In reciprocal space, every state occupies an area (2π/L)2. Accordingly, the
number N of states below the energy E is

N (E) =
∑
α, σ

∫
d2k‖(
2π/L

)
2
θ
[
±(E − Eασ(k‖))

]
, (4.10)

where the upper and lower signs stand for electrons and holes, respectively,
α is the subband index, and σ = ± is the spin index. The density of states
(DOS) D(E) is the number of states per unit energy range dE and unit area
L2,

D(E) =
1
L2

d
dE

N (E) =
∑
α, σ

∫
d2k‖
(2π)2

δ
[
± (E − Eασ(k‖))

]
. (4.11)

For an isotropic dispersion Eασ(k‖), we can easily evaluate the angular part
of the integration. We obtain

D(E) =
1
2π

∑
α, σ

k‖(E)∣∣ dEασ(k‖)/dk‖
∣∣ . (4.12)

We define (as a generalization of (4.18) below) the DOS effective mass,

m∗
ασ(E)
m0

= 4π
�

2

2m0
Dασ(E) =

1
π

�
2

2m0

∫
d2k‖ δ

[
±(E − Eασ(k‖))

]
. (4.13)
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We shall see in subsequent chapters that m∗(E) shows clearly the influence of
band structure effects. Our definition of m∗(E) corresponds to the cyclotron
effective mass (8.5) in the limit B → 0.

Finally, we note that it follows from (4.10) that the charge density Nασ

in the spin subband ασ is given by (assuming temperature T = 0)

Nασ =
∫

d2k‖
(2π)2

θ
[
±(EF − Eασ(k‖))

]
, (4.14)

where EF is the Fermi energy. For an arbitrary nonparabolic and anisotropic
subband dispersion Eασ(k‖), one can evaluate (4.11) and (4.14) by means
of analytic quadratic Brillouin zone integration [36]. The advantage of this
scheme is that it fully takes into account the anisotropy of Eασ(k‖) as well
as van Hove singularities of D(E).

4.3 Effective-Mass Approximation

The simplest model for the subband structure of a quasi-2D system is
based on the effective-mass Hamiltonian (2.19) for a nondegenerate, isotropic,
parabolic bulk band n which becomes3[

− �
2

2m∗
n

∂2

∂2
z

+
�

2k2
‖

2m∗
n

+ En(z) + V (z)

]
ψαk‖(r) = Eαψαk‖(r) , (4.15)

where En(z) is the position-dependent band edge of the bulk band n. The
envelope functions (4.1) are fully factorized, i.e.

ψαk‖(r) =
eik‖·r‖

2π
ξα(z) , (4.16)

and we obtain a strictly parabolic subband dispersion,

Eα(k‖) = Eα +
�

2k2
‖

2m∗
n

. (4.17)

The density of states for every (spin-degenerate) subband is a step function

Dα(E) =
m∗

n

π�2
θ(E − Eα) . (4.18)

The effective-mass approximation provides basic insight into the electronic
structure of inversion layers, heterojunctions, QWs, and superlattices. For
a more quantitative interpretation of experiments, we must take into ac-
count the subtleties which occur in semiconductor band structure, such as
3 In (4.15) we have neglected the position dependence of the effective mass m∗

n =
m∗

n(z) because, strictly speaking, this effect results in a weak coupling between
the in-plane and perpendicular components of the motion so that (4.16) and
(4.17) are no longer valid.
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nonparabolicity, anisotropy, spin splitting, and heavy–light-hole coupling. In
subsequent chapters we compare the EMA with results based on the more
accurate multiband Hamiltonians introduced in Chap. 3.

4.4 Electron and Hole States
in a Perpendicular Magnetic Field: Landau Levels

Electron and hole states in the presence of a perpendicular magnetic field
B = (0, 0, B) differ conceptually from the eigenstates at B = 0 or for an
in-plane field B‖, because the motion is fully quantized into Landau levels.
Most publications on the calculation of Landau levels in 2D hole systems have
restricted themselves to the axial approximation (see Sect. 3.6) to Luttinger’s
4×4 k · p model [7,8,37]. In [38], the split-off valence band Γ v

7 was taken into
account with a 6×6 k · p model. For undoped rectangular QWs, calculations
of Landau levels and matrix elements for interband optical transitions have
been performed using a 6 × 6 k · p model, which includes the lowest con-
duction band [39,40]. Few publications [38, 41, 42, 23] have analyzed Landau
levels beyond the axial approximation. Here, we present a general scheme
for calculating Landau levels, assuming an arbitrary growth direction and
taking into account all cubic and tetrahedral corrections beyond the axial
approximation.

4.4.1 Creation and Annihilation Operators

We want to describe Landau levels by means of an algebraic approach be-
cause this type of approach is the easiest to apply to an arbitrary multiband
Hamiltonian [43, 44]. For the perpendicular field B = (0, 0, B), we use the
symmetric gauge

A(x, y) =
B

2
(−y, x, 0) . (4.19)

We define the operators

P± = −i�∇± eA . (4.20)

Obviously, we have P+ = p = �k. In generalization of (2.17), the operators
P± obey the commutator relations

[P±,P±] = ∓ie�B , (4.21a)

[P±
j ,P∓

k ] = 0 , j, k ∈ {x, y, z} . (4.21b)

Next we define the creation and annihilation operators
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a† =
λc√
2�

(
P+

x + iP+
y

)
=

λc√
2
k+ , (4.22a)

a =
λc√
2�

(
P+

x − iP+
y

)
=

λc√
2
k− , (4.22b)

b† =
λc√
2�

(
P−

x − iP−
y

)
, (4.22c)

b =
λc√
2�

(
P−

x + iP−
y

)
, (4.22d)

where the magnetic length is

λc =

√
�

eB
. (4.23)

These operators obey the usual commutator relations

[a, a†] = [b, b†] = 1 , (4.24a)

[a, b] = [a, b†] = [a†, b] = [a†, b†] = 0 . (4.24b)

These relations show that the sets {a, a†} and {b, b†} define two decoupled
oscillators. The operators a, a†, b, and b† form a set of four conjugate vari-
ables, just as x, y, px, and py do, so that we can express the EFA Hamiltonian
H in terms of the new variables. However, (4.22a) and (4.22b) show that H
depends on a and a† only, and not on b or b†. It follows from (4.24b) that
H commutes with the number operator b†b. Therefore, we can choose the
eigenfunctions of H such that they are also eigenfunctions of the oscillator
associated with b (the “b oscillator”).

As H does not depend on b or b†, the b oscillator behaves like an oscillator
with zero frequency. The quantum number nb of the b oscillator can take inte-
ger values 0, 1, 2, . . . , so that the Landau levels must be infinitely degenerate.
The degeneracy per unit area of the spin-split Landau levels amounts to [45]

G =
eB

2π�
. (4.25)

Using the asymmetric gauge of the classic paper by Landau [45], it can readily
be shown that (4.25) holds for an arbitrary multiband Hamiltonian. Amaz-
ingly, we are not aware of a general proof of (4.25) based on the symmetric
gauge (4.19) underlying the operator formalism outlined in this section.

The operator for the component of angular momentum along the magnetic
field L̂z = xpy − ypx can be expressed in terms of the operators a and b as

L̂z = �
(
a†a− b†b

)
. (4.26)

As discussed by Suzuki and Hensel [43], we can visualize the system as an
assembly of two types of harmonic oscillators. Each oscillator in the a system
has a frequency ωc and an angular momentum � along B. Each b oscillator
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has zero frequency and an angular momentum −� along B. For a system with
opposite charge (holes instead of electrons), it follows readily that the role
of the a and b operators must be interchanged, i.e. the a oscillators become
oscillators with zero frequency, while the b oscillators have a frequency ωc.4

4.4.2 Landau Levels in the Effective-Mass Approximation

Similarly to (4.15), the effective-mass Hamiltonian (2.19) for the nth bulk
band acquires a particularly simple form,

Hσ = − �
2

2m∗
n

∂2

∂2
z

+ En(z) + V (z) + �ω∗
c

(
a†a+ 1

2

)
+
g∗n
2
σµBB , (4.27)

where the cyclotron frequency is

ω∗
c =

eB

m∗
n

(4.28)

and the spin index is σ = ±1. The perpendicular, in-plane, and spin compo-
nents of the motion are completely decoupled, so that the eigenfunctions can
be written in a factorized form

ψαLσ = |L〉 |σ〉 ξα(z) . (4.29)

The kets |L〉 are eigenstates of the number operator a†a, where a†a |L〉 =
L |L〉 and the Landau quantum number is L = 0, 1, . . . , so that the eigen-
energies of (4.27) read

E(α,L, σ) = Eα + �ω∗
c

(
L+ 1

2

)
+
g∗

2
σµBB . (4.30)

Here α is the subband index for the perpendicular motion with subband
edge Eα.

The general solution for the multiband EFA Hamiltonian in the presence
of a perpendicular field is significantly more difficult to obtain owing to the
coupling between the quantized perpendicular motion and the quantized in-
plane motion. We shall achieve this goal in three steps. First, we decompose
the multiband Hamiltonian H into a dominant part Hax with axial symmetry
and a second, smaller part H′ containing the terms of lower symmetry (see
Sect. 3.6). Then we solve the problem for Hax. Finally, we can solve the
problem for the full Hamiltonian by expanding its eigenfunctions in terms of
the eigenfunctions of Hax.
4 Multiband Hamiltonians such as the extended Kane Hamiltonian yield electron

and hole states simultaneously. We thus use here only the a operators and not the
b operators. Strictly speaking, the states below the fundamental gap are valence
band states for electrons. The corresponding hole states are obtained by complex
conjugation [46].
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4.4.3 Landau Levels in the Axial Approximation

In the axial approximation (Sect. 3.6), the total Hamiltonian Hax commutes
with F̂ ≡ � (a†a− b†b) + Ĵz, which corresponds to the conservation of the z
component of the total angular momentum [44,47]. Here, Ĵz is the operator
for the z component of the angular momentum of the basis functions un0(r)
in (2.13). Therefore we can write the eigenfunctions of Hax in the form

ψαNσ(r) =
∑

n

∣∣Ln = N −mn + 3
2

〉
ξαNσ
mn

(z)un0(r) (4.31)

which contains the subband index α, the Landau quantum number N =
0, 1, . . . , the spin index σ = ±, and Landau oscillators |L〉. The symbol mn

denotes the z component of the angular momentum of un0(r), i.e. Ĵzun0(r) =
mnun0(r). From a group-theoretical point of view, the index N labels the
irreducible representation of the axial point group. We have no rigorous rule
for choosing the quantum numbers α and σ. In general, they reflect the
dominant character of the wave function (4.31) which can change as a function
of B. Strictly speaking, α and σ must be replaced by one common index.

In the basis (4.31), the Schrödinger equation falls into blocks correspond-
ing to fixed Landau quantum numbers N , for which we can readily specify
the effect of a and a†. Therefore, each block can be treated in the same way
as the subband problem for B = 0; see Sect. 4.1.4. In (4.31), we have the
restriction that Ln ≥ 0. This implies that for small Landau quantum num-
bers N , not all spinor components n contribute to the multicomponent wave
functions (4.31) [7]. For electron systems the N = 0 Landau levels vanish
completely, i.e., in our notation, electron Landau levels have N ≥ 1.

4.4.4 Landau Levels Beyond the Axial Approximation

The calculation of Landau levels with inclusion of the cubic and tetrahedral
terms is more difficult, in particular for low-symmetry growth directions such
as [113] and [110], the reason being that the explicit expressions for Hcub and
Htetra are very complicated for these cases. On the other hand, such a refined
model is most urgently needed for the proper characterization of these low-
symmetry growth directions, as here the axial model is a particularly poor
approximation; see the end of Sect. 3.6.

The cubic and tetrahedral parts of the multiband Hamiltonian result in
a coupling between different Landau levels ψαNσ(r). Thus we expand the
eigenfunctions of the full Hamiltonian H in terms of the eigenfunctions (4.31)
of Hax:

ΨαNσ(r) =
∑

α′, N, σ′
cα

′Nσ′
αNσ ψα′Nσ′(r) (4.32a)

=
∑

α′, N, σ′
cα

′Nσ′
αNσ

∑
n

∣∣N −mn + 3
2

〉
ξα′Nσ′
mn

(z)un0(r) . (4.32b)
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Here α, N , and σ denote the new subband, the Landau level, and the spin
index, respectively. In order to increase the variational freedom, we sum also
over different subbands α′.

Strictly speaking, we should use instead of the indices α, N , and σ an in-
dex β that labels the irreducible representation Γβ according to which |αNσ〉
transforms, and a second index that counts the Landau levels that transform
according to Γβ. For pairs of Landau levels |αNσ〉 and |α′N ′σ′〉 that trans-
form according to different irreducible representations Γβ and Γβ′ we obtain
crossings between these levels, whereas for pairs that transform according to
the same irreducible representation Γβ we obtain anticrossings (irrespective
of the subband indices α and α′). According to Table 3.4, for the growth
direction [001] we have (at least) the point group C2, with two double-group
representations Γ3 and Γ4 [48], so that pairs of Landau levels with one level
that transforms according to Γ3 and another level that transforms according
to Γ4 cross each other. On the other hand, for low-symmetry growth direc-
tions such as [110] and [113] we obtain the trivial point group C1, with only
one irreducible double-group representation, so that all pairs of Landau lev-
els show anticrossings. Owing to these anticrossings between Landau levels
originating in different subbands, the proper interpretation of the indices α,
N , and σ requires a careful analysis of the eigenfunctions |αNσ〉 with respect
to the dominant expansion coefficients cα

′Nσ′
αNσ as a function of the magnetic

field B.

4.5 Example: Two-Dimensional Hole Systems

Electrons in bulk semiconductors (conduction band Γ c
6 ) have an almost

isotropic and parabolic dispersion E(k) (Fig. 3.2a) that is passed on to
the electrons in quasi-2D systems. For quasi-2D electron systems, the EMA
(4.17) is thus often a useful starting point. Higher-order corrections beyond
the EMA can be incorporated in a perturbative scheme [13]. The dispersion
E(k) of holes in the bulk valence band Γ v

8 , on the other hand, is highly
anisotropic and nonparabolic (Fig. 3.2b). Accordingly, it is not possible to
describe quasi-2D hole systems by a simple effective-mass Hamiltonian. As
an example of the general concepts introduced in the previous sections, we
shall therefore discuss the anisotropic and nonparabolic dispersion E(k‖) of
quasi-2D hole systems.

4.5.1 Heavy-Hole and Light-Hole States

Electrons in the Γ c
6 conduction band have a spin j = 1/2 that is not affected

by subband quantization. Hole systems in the Γ v
8 valence band, on the other

hand, have an effective spin j = 3/2. Size quantization in quasi-2D systems
lifts the fourfold degeneracy of the j = 3/2 states. We obtain heavy-hole (HH)
states with a z component of angular momentum m = ±3/2 and light-hole
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||kHH

LH

E

Fig. 4.1. Qualitative sketch of an HH–LH anti-
crossing

(LH) states with m = ±1/2, separated in energy by the HH–LH splitting.
The terms “heavy hole” and “light hole” refer to the large and small effective
masses, respectively, of these states for the bound motion in the growth di-
rection. However, for the in-plane motion the “heavy hole” and “light hole”
characters of the HH (m = ±3/2) and LH (m = ±1/2) states is reversed, i.e.
the HH states have a smaller effective mass characterizing the in-plane motion
than the LH states have. If we neglect all off-diagonal terms in the Luttinger
Hamiltonian, then the HH and LH states are characterized by the following
effective masses for the perpendicular and in-plane motions (see Table C.10):

m0

mHH
z

= γ1 − 2γ̃ ,
m0

mLH
z

= γ1 + 2γ̃ , (4.33a)

m0

mHH
‖

= γ1 + γ̃ ,
m0

mLH
‖

= γ1 − γ̃ , (4.33b)

where

γ̃ = (1 − ζ) γ2 + ζγ3 , (4.33c)

ζ = sin2 θ
{
3 − 3

8 sin2 θ [7 + cos(4φ)]
}
. (4.33d)

The angles θ and φ are defined in Fig. C.1. Equation (4.33) includes the
well-known results γ̃ = γ2 for the growth direction [001] and γ̃ = γ3 for [111]
(Ref. [44]). According to (4.33), we obtain a steep subband dispersion E(k‖)
for the strongly bound HH states, whereas we have a flat dispersion for the
weakly bound LH states. The off-diagonal HH–LH mixing in the Luttinger
Hamiltonian thus gives rise to HH–LH anticrossings as sketched in Fig. 4.1.

4.5.2 Numerical Results

In Fig. 4.2 we show the hole subband dispersions E(k‖) for symmetric 150 Å
wide GaAs–Al0.3Ga0.7As QWs with growth directions [001], [113], [111], and
[110]. For comparison, we also show E(k‖) in the axial approximation (dotted
lines), i.e. when the in-plane anisotropy is neglected in the Hamiltonian. The
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(a) (b)

(c) (d)

Fig. 4.2. Anisotropic hole subband dispersion E(k‖) for 150 Å wide GaAs–
Al0.3Ga0.7As QWs with growth directions (a) [001], (b) [113], (c) [111], and
(d) [110], calculated by means of an 8 × 8 Hamiltonian (Γ c

6 , Γ v
8 , and Γ v

7 ). Dot-
ted lines correspond to the axial approximation

DOS effective mass (4.13) for the topmost subbands is displayed in Fig. 4.3.
The calculations were based on the 8 × 8 k · p Hamiltonian (3.6) using the
cubic approximation. We have neglected the tetrahedral terms, which will be
discussed in detail in Sect. 6.2.
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(a) (b)

(c) (d)

Fig. 4.3. DOS effective mass as a function of energy E for the topmost hole
subbands of 150 Å wide GaAs–Al0.3Ga0.7As QWs with growth directions (a) [001],
(b) [113], (c) [111], and (d) [110], calculated by means of an 8×8 Hamiltonian (Γ c

6 ,
Γ v

8 , and Γ v
7 ). Note the different scale of the vertical axis in (a) as compared with

(b), (c), and (d)

In Fig. 4.2 we have labeled the subband states as HH-like (h) or LH-like
(l) according to their dominant spinor component at k‖ = 0. This is an accu-
rate scheme for the growth directions [001] and [111], where the off-diagonal
coupling between HH and LH states vanishes for k‖ = 0 (see Tables C.10
and C.11).5 For nonzero in-plane wave vectors, the off-diagonal terms yield
a mixing of HH and LH states. This is illustrated in Fig. 4.4, where we show
5 For k‖ = 0, we have a weak coupling of HH and LH states even for the growth

directions [001] and [111] due to the terms with tetrahedral symmetry that we
are neglecting in this section. For a discussion of this aspect, see Sect. 6.5.
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the HH character6 as a function of k‖ of the four topmost hole subbands for
the same QWs as in Fig. 4.2. Obviously, the relevance of HH–LH mixing de-
pends on the magnitude of the Fermi wave vector. Although the calculations
were based on the 8 × 8 Hamiltonian (3.6), the contribution of Γ c

6 and Γ v
7

bulk band-edge states to the multicomponent wave function (4.1) is smaller
than 1% for the subband states analyzed in Fig. 4.4. HH–LH anticrossings
are clearly visible in Fig. 4.2. They can also be recognized in the two lowest
panels of Figs. 4.4c,d, where the character of the subbands l1 and h3 changes
abruptly at k‖ ∼ 0.007 Å and k‖ ∼ 0.01 Å, respectively.

In the EMA, the density of states is a simple step function (4.18) for each
subband. On the other hand, we see from Fig. 4.3 that the DOS effective mass
m∗(E) of a 2D hole system is a complicated function of energy, where HH–LH
coupling gives rise to pronounced van Hove singularities. Furthermore,m∗(E)
depends sensitively on system parameters such as the crystallographic growth
direction. Therefore, an effective-mass-like model such as that suggested by
(4.33) is not appropriate for a quantitative interpretation of quasi-2D hole
systems. Nevertheless, it can be useful for estimating qualitative trends, in
particular for the h1 subband close to the subband edge.

There are significant differences between the subband dispersion curves
for the various growth directions shown in Fig. 4.2. For the growth direction
[110], the anisotropy of E(k‖) is the most pronounced. Moreover, the average
spacing between the HH subbands is considerably smaller than for [001] and
[113]. This is related to the bulk dispersion shown in Fig. 3.2b, which for
the HH branch of the Γ v

8 valence band is the flattest in the [110] direction.
The LH subbands depend less sensitively on the growth direction than do
the HH subbands, which is again consistent with the bulk dispersion shown
in Fig. 3.2b. The total number of hole subband states in a QW must be
independent of the growth direction. Therefore the density of states of the
few subbands in the [001] and [113] QWs is larger than the density of states
of the many subbands in the [110] QW. Thus, on average, the dispersion in
the [001] and [113] QWs is flatter and frequently even has a positive slope.
The reciprocity between the effective masses for the perpendicular motion
and for the in-plane motion can be seen also in the ζ dependence of m∗ in
(4.33). The axial approximation (dotted lines in Fig. 4.2) is most accurate
for the high-symmetry directions [001] and [111], where at k‖ = 0 it yields
exactly the same results as does the cubic model.

Finally, we show in Fig. 4.5 the Landau-level structure for the QWs with
growth directions [001] and [113]. The left panels are based on the axial
approximation. In the calculations for the right panels, both cubic and tetra-
hedral terms were taken into account. For the [001]-grown QW, the cubic

6 For the calculation of Fig. 4.4, the multicomponent envelope functions (4.1)
have been expressed in a basis of band-edge Bloch functions un0(r) that are
eigenstates of the z component of the angular momentum, with Ĵz in the growth
direction.
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(a) (b)

(c) (d)

Fig. 4.4. Heavy-hole character as a function of the in-plane wave vector k‖ of the
four topmost hole subbands of 150 Å wide GaAs–Al0.3Ga0.7As QWs with growth
directions (a) [001], (b) [113], (c) [111], and (d) [110], calculated by means of an
8 × 8 Hamiltonian (Γ c

6 , Γ v
8 , and Γ v

7 ). The line styles have the same meaning as in
Fig. 4.2

and tetrahedral terms are far less important than for the [113]-grown QW.
Likewise, these terms are very important for the hole Landau levels in QWs
grown in the [111] and [110] crystallographic directions (not shown).
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(a)

(b)

Fig. 4.5. Landau levels as a function of magnetic field B for the topmost hole
subbands in 150 Å wide GaAs–Al0.3Ga0.7As QWs with growth directions (a) [001]
and (b) [113], obtained by means of an 8 × 8 Hamiltonian (Γ c

6 , Γ v
8 , and Γ v

7 ). The
left panels are based on the axial approximation. In the calculations for the right
panels, cubic and tetrahedral terms were taken into account

4.5.3 HH–LH Splitting and Spin–Orbit Coupling

In subsequent chapters, we shall discuss subtle SO coupling effects such as
the B = 0 spin splitting in inversion-asymmetric systems and the Zeeman
splitting at B > 0. In this brief section, we point out that in 2D hole systems
these SO coupling effects are always competing with HH–LH splitting.

Electrons in the Γ c
6 conduction band have a spin j = 1/2 that is not

affected by subband quantization. Therefore, the spin dynamics of electrons
are primarily controlled by the SO terms for the B = 0 spin splitting and
the Zeeman term. Hole systems in the Γ v

8 valence band, on the other hand,
have an effective spin j = 3/2. Size quantization in quasi-2D systems lifts
the fourfold degeneracy of the j = 3/2 states. As discussed above, we obtain
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HH states with a z component of angular momentum m = ±3/2 and LH
states with m = ±1/2, separated in energy by the HH–LH splitting. The
quantization axis of angular momentum that is enforced by HH–LH splitting
points in the growth direction of the quasi-2D system, even though at finite in-
plane wave vectors we obtain a mixing of HH and LH states. The quantization
axis perpendicular to the 2D plane is a direct consequence of the symmetry
hierarchy (3.9) discussed in Sect. 3.6.

In general, the effective Hamiltonians for B = 0 spin splitting and Zeeman
splitting tend to orient the spin vector in a direction not parallel to the
growth axis of the quasi-2D system. But, of course, it is not possible to have a
“second quantization axis of angular momentum” on top of the perpendicular
quantization axis due to HH–LH splitting.7 This is the common reason why,
in Chaps. 6 and 7, we shall find that in 2D HH systems both the B = 0 spin
splitting and the Zeeman splitting for an in-plane B are essentially higher-
order effects.8 In order to overcome the quantization of angular momentum
in the direction perpendicular to the 2D plane, we would need B = 0 spin
splittings or Zeeman energies of the order of the HH–LH splitting. Note that
these arguments apply only to HH states (m = ±3/2) but not to LH states
(m = ±1/2). For arbitrary orientations of the quantization axis, the two LH
states can always be combined such that they form eigenstates of angular
momentum.

It is illuminating to discuss HH–LH splitting in a language where the
bulk SO coupling is introduced as a small perturbation. Without bulk SO
coupling, holes in the valence band have an orbital angular momentum l = 1.
Size quantization splits the threefold degeneracy of the l = 1 states. We obtain
twofold degenerate (fourfold degenerate with spin) HH states with m = ±1
and a nondegenerate (twofold degenerate with spin) LH state with m = 0.
The quantization axis of the orbital angular momentum is perpendicular to
the plane of the 2D system. The SO interaction couples the s = 1/2 spin
vector to the quantized (“frozen”) orbital angular momentum of the 2D hole
states. B = 0 spin splitting and Zeeman splitting of HH states are thus always
competing with HH–LH splitting. They are largest in those 2D hole systems
where HH–LH splitting is small [49].

4.6 Approximate Diagonalization
of the Subband Hamiltonian: The Subband k · p Method

In the preceding sections, we have outlined the elaborate scheme which was
used for the numerical analysis of the physical questions investigated in the
7 The effective Hamiltonians for B = 0 spin splitting can be interpreted as a

Zeeman term with an effective magnetic field B; see Sect. 6.6. No such effective
magnetic field can be defined that would characterize HH–LH splitting.

8 See the introduction of Chap. 5, which compares the importance of SO coupling
effects for electron and hole states.
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work described in this book. In the subsequent chapters, we give several ex-
amples of the good agreement between theory and experimental data that has
been obtained along these lines. Nevertheless, it is often difficult to interpret
these numerical results correctly and to derive the qualitative trends which
underlie the numerically calculated results. In the context of k · p theory and
the EFA, the qualitative trends can be explained by means of Löwdin per-
turbation theory (Appendix B) applied to the subband problem, the subband
k · p method [7,41]. As we are interested here in subtleties such as Rashba spin
splitting at zero magnetic field and anisotropic Zeeman splitting at B > 0,
we have to evaluate the third, fourth, or even fifth order in the perturbative
expansion (B.15) in order to obtain the lowest nonvanishing term.

4.6.1 General Approach

Löwdin perturbation theory can be applied not only to the bulk k · p Hamil-
tonian but also to the subband problem [7, 41]. We note that one standard
approach to the approximate diagonalization of a Hamiltonian H is based
on an expansion of the eigenfunctions |µ〉 of H in terms of some finite set
of basis functions {|ν〉 : ν = 1, . . . , N}. Frequently, the functions {|ν〉} are
the exact eigenfunctions of some dominant part H0 of H . We obtain approx-
imate eigenfunctions {|µ̃〉} of the full Hamiltonian H by a numerical (exact)
or perturbative (approximate) diagonalization of the matrix H̃ , with matrix
elements

H̃νν′ = 〈ν|H |ν′〉 . (4.34)

The eigenvalues and eigenvectors of the (finite) matrix H̃ are approximate
eigenvalues and eigenvectors, respectively, of the full Hamiltonian H .

We can use this approach for an approximate, fully analytical diagonal-
ization of the EFA multiband Hamiltonian H. We choose for H0 the diagonal
terms of H that are proportional to k2

z = −∂2
z , plus the confining potential

V (z) and the band edge energies En(0):

(H0)nn′ = δnn′

[
−�

2∂2
z

2m∗′
n

+ V (z) + En(0)
]
. (4.35)

Here m∗′
n is the reduced effective mass for the nth bulk band of H. The

eigenfunctions of H0 are denoted |nα〉, with a bulk band index n and subband
index α. We expand the eigenfunctions of H in terms of {|nα〉}. We can then
use Löwdin perturbation theory to diagonalize the matrix with elements

H̃nα, n′α′ = 〈nα |H|n′α′〉 . (4.36)

Often, it is reasonable to assume that we can describe the electron and
hole subband states by the same set of mutually orthogonal subband wave
functions

〈nα|n′α′〉 = δαα′ , (4.37)
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independent of the bulk band indices n and n′. Equation (4.37) is exactly
fulfilled in a rectangular QW with infinitely deep barriers, where the subband
wave functions are independent of the effective mass m∗

n. We shall often
compare the analytical results for an infinitely deep rectangular QW with
those for a parabolic well. Here we assume that the “width” w of the QW is
given by the usual length scale of a harmonic oscillator,

w =

√
�

m∗ω
. (4.38)

For the calculation of electron states, it is often a good approximation to
neglect completely the diagonal remote-band contributions of second order in
k [50]. In this case one might ask in what sense the unperturbed Hamiltonian
H0 represents the dominant part of the total Hamiltonian H. When the
kinetic and potential energies in (4.35) are small, all subband states {|nα〉}
originating in one bulk band n must be treated as quasi-degenerate, i.e. they
are to be included either in Löwdin’s set A or in set B. But subband states
for different bulk bands n and n′ are separated by the bulk band edge energies
En(0) − En′(0), which are large when compared with the off-diagonal k · p
terms coupling the bands n and n′. Therefore, Löwdin partitioning is still
well defined even if H does not contain diagonal terms of second order in k.

We emphasize that it is not our goal to achieve the best quantitative
agreement between the numerical and analytical calculations. The main goal
of the subband k · p method is a qualitative and intuitive understanding of
the relative importance of competing effects and of the physical mechanisms
that give rise to these effects, which, on the other hand, we can quantify by
means of accurate numerical calculations.

4.6.2 Example: Effective Mass and g Factor
of a Two-Dimensional Electron System

As an example of the subband k · p method, we shall compare Kane’s well-
known expression for the effective mass m∗ [50] and Roth’s formula for the
effective g factor g∗ [51] at the bulk conduction band edge,9

m0

m∗ =
m0

m′ +
2m0

�2

P 2

3

(
2
E0

+
1

E0 +∆0

)
, (4.39a)

g∗

2
=
g′

2
− 2m0

�2

P 2

3

(
1
E0

− 1
E0 +∆0

)
, (4.39b)

9 For compactness of the formulas, we do not explicitly consider the higher conduc-
tion bands Γ c

8 and Γ c
7 here. Instead, we include these bands in the remote-band

contributions m′ and g′ (see Sect. 3.3 and Table C.9). If Γ c
8 and Γ c

7 are explicitly
taken into account, these bands give rise to expressions that are similar to the
contributions from the coupling to the valence bands Γ v

8 and Γ v
7 .
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with the corresponding results for m∗ and g∗ of 2D electron states at the
edge of the αth subband. We obtain the following for the in-plane effective
mass and the in-plane effective g factor:

m0

mα‖
=
m0

m′ +
2m0

�2

P 2

6

(
3
∑

β

|〈cα|hβ〉|2
Ec

α − Eh
β

+
∑

β

|〈cα|lβ〉|2
Ec

α − El
β

+ 2
∑
β

|〈cα|sβ〉|2
Ec

α − Es
β

)
, (4.40a)

gα‖
2

=
g′

2
− 2m0

�2

iP 2

3

(∑
β

〈cα|kz|lβ〉〈lβ |z|cα〉 − 〈cα|z|lβ〉〈lβ |kz|cα〉
Ec

α − El
β

−
∑
β

〈cα|kz |sβ〉〈sβ |z|cα〉 − 〈cα|z|sβ〉〈sβ |kz|cα〉
Ec

α − Es
β

)
.

(4.40b)

Here {|cα〉}, {|hβ〉}, {|lβ〉}, and {|sβ〉} are the unperturbed electron, HH, LH,
and SO subband wave functions, with eigenenergies Ec

α, Eh
β , El

β , and Es
β ,

respectively. We can see clearly from these equations that g∗ emerges from
terms antisymmetric in the components of k. Moreover, (4.40) shows that
subband confinement increases the effective mass and decreases the effective
g factor. We obtain (4.39) from (4.40) in the limiting case where the subband
confinement energies are small compared with the bulk band gaps E0 and∆0.

We refer to the modifications of m∗ and g∗ due to subband confine-
ment as nonparabolic corrections. This terminology stems from an alter-
native approach to the solution of the subband problem [13], where we
first diagonalize the multiband Hamiltonian to obtain the bulk dispersion
En(k) (including nonparabolic corrections of higher order in k). In a sec-
ond step, we obtain the subband states by solving the one-band Hamiltonian
Hn = En[k = (kx, ky,−i∂z)] + V (z). As the αth subband state is roughly
a standing wave with kz � απ/w, where w is the QW width, we can have
significant contributions from terms in En(k) of higher order in k. In the
subband k · p method, we perform these two steps in the opposite order:
first we evaluate the subband states, and then we diagonalize the multiband
Hamiltonian. Obviously, these two approaches are equivalent.

If we use the approximation (4.37), the resulting expression for the effec-
tive mass closely resembles (4.39a):

m0

mα‖
=
m0

m′ +
2m0

�2

P 2

6

(
3

Ec
α − Eh

α

+
1

Ec
α − El

α

+
2

Ec
α − Es

α

)
. (4.41)

In order to further simplify (4.40b), we must choose a particular set of basis
functions for which we can evaluate the matrix elements of z and kz = −i∂z.
Here the eigenfunctions of an infinitely deep rectangular well and also the
eigenfunctions of a harmonic oscillator have the advantage that matrix ele-
ments of z and kz = −i∂z couple only subband states |α〉 with |α± 1〉. We
obtain for the lowest subband (α = 1)
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g1‖
2

=
g′

2
− 2m0

�2
P 2a

(
1

Ec
1 − El

2

− 1
Ec

1 − Es
2

)
, (4.42a)

where a = 1/3 for the parabolic well and a = 256/(81π2) ≈ 0.320 for the
rectangular well.

A similar analysis for a perpendicular magnetic field shows that we obtain
an effective g factor

g1z

2
=
g′

2
− 2m0

�2

P 2

6

(
3

Ec
1 − Eh

1

− 1
Ec

1 − El
1

− 2
Ec

1 − Es
1

)
. (4.42b)

Note the different subband indices in (4.42a) and (4.42b). Equation (4.42)
implies not only that subband confinement reduces the magnitude of g∗, but
also that we obtain an in-plane/out-of-plane anisotropy of g∗, as first noted
by Ivchenko and Kiselev [52]. A more detailed discussion of the anisotropic
g factor of quasi-2D electron and hole systems will be given in Chap. 7.
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5 Origin of Spin–Orbit Coupling Effects

The microscopic driving force for spin–orbit coupling effects such as the B = 0
spin splitting in inversion-asymmetric systems and the Zeeman splitting at
B > 0 is the Pauli SO interaction (1.1) due to the strong Coulomb potential
of the atomic core regions, and it is illuminating to see how it affects the
dynamics of the spin degree of freedom within the k · p theory and the EFA.
In (2.7) and (2.14), we have expanded the eigenfunctions of the Hamiltonian
in terms of the eigenfunctions of the bulk Hamiltonian without SO interac-
tion. Therefore, we obtained in (2.7) and (2.14) the matrix elements ∆νν′

σσ′ of
the SO interaction explicitly. We can make a unitary transformation of the
Hamiltonian H so that the transformed Hamiltonian H′ has the 2 × 2 block
structure

H′ =

(
Hk·p 0

0 Hk·p

)
+

(
Hz

SO Hxy
SO

Hxy †
SO −Hz

SO

)
↑
↓
, (5.1)

where Hk·p is the k · p Hamiltonian without spin, i.e. the upper left block of
the first term in (5.1) corresponds to spin-up, and the lower-right block cor-
responds to spin-down. The SO blocks HSO coupling spin up and spin down
states contain the matrix elements ∆νν′

σσ′ , as well as those matrix elements of
π that are nonzero only because of the SO interaction in (2.5).

For the extended Kane model, we can derive the unitary transformation
H → H′ from the Clebsch–Gordan coefficients entering into the definition
of the basis functions in Table C.1. The blocks HSO contain the SO matrix
elements ∆0, ∆′

0, ∆−, as well as the k-linear terms proportional to Ck which
occur in the valence band blocks Hk

8v8v and Hk
8v7v. It follows from (5.1) that

only these SO-interaction-induced terms control the SO coupling effects.
In general, SO coupling effects are more important for holes than for elec-

trons. As shown in Fig. 3.1, the SO interaction acts via the gaps ∆0 and
∆′

0 within the valence band and the higher conduction bands, respectively
(subspaces of p-like atomic orbitals). But there are no matrix elements ∆νν′

σσ′
within the lowest (s-like) conduction band. Thus one might expect that SO
interaction would have a stronger effect on the hole states than on the elec-
trons in the lowest conduction band because the latter are affected by SO
interaction only as a result of the k · p coupling to neighboring bands, so that
spin phenomena in the conduction band are suppressed by energy denomina-
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tors of the order of the fundamental gap. The detailed analysis in subsequent
chapters shows, however, an astonishing symmetry in the analytical expres-
sions for the SO coupling terms for electrons and holes: for both electrons
and holes, we need to take into account the k · p coupling of the state to
its counterpart.1 Accordingly, SO coupling effects have the same order of
magnitude for electron and hole states. We must compare, however, the SO
coupling energies with the kinetic energies of the particles. As holes typically
have larger masses (i.e. smaller kinetic energies) than electrons, SO coupling
is more important for holes than for electrons.

5.1 Dirac Equation and Pauli Equation

Before we discuss SO coupling effects in semiconductors in detail, it is help-
ful to recapitulate, from relativistic quantum mechanics, the derivation of the
Pauli equation from the Dirac equation [1]. The Pauli equation emerges from
the Dirac equation in much the same way as we derive effective Hamiltonians
for the conduction or valence band from more complete multiband Hamilto-
nians. Furthermore, the well-known Pauli equation provides a good example
for demonstrating the concepts of the theory of invariants.

Assuming a time-independent problem, the Dirac equation can be written
in the form(

cα · p + βm0c
2 + V

)
ψ = Eψ , (5.2)

where

α =
(

0 σ
σ 0

)
, (5.3a)

β =
(
�2×2 0

0 −�2×2

)
, (5.3b)

and ψ denotes a four-component spinor. We rewrite the coupled equations
for the upper and lower pairs of components, ψA and ψB, as follows:

σ · pψB =
1
c

(
Ẽ − V

)
ψA , (5.4a)

σ · pψA =
1
c

(
Ẽ − V + 2m0c

2
)
ψB , (5.4b)

where Ẽ = E−m0c
2. Using the second equation, we can eliminate ψB in the

first equation to obtain
1 If we describe 2D holes by means of the 14× 14 extended Kane Hamiltonian the

energy gaps are explicitly visible in the expressions for the Zeeman and B = 0
spin splittings. If we use a smaller k · p Hamiltonian such as the 4 × 4 Luttinger
Hamiltonian, the energy gaps are hidden in the definition of the Luttinger coef-
ficients γi; see Table C.9.



5.1 Dirac Equation and Pauli Equation 63

σ · p
[

c2

Ẽ − V + 2m0c2

]
σ · pψA =

(
Ẽ − V

)
ψA . (5.5)

Up to now, we have made no approximation. Nevertheless, we do not say
that (5.5) is equivalent to (5.2), because, unlike the four-component spinors
ψ, the functions ψA are not normalized to unity. We still need (5.4b) to obtain
the solution ψ of the full problem. Furthermore, we note that (5.5) is not a
conventional eigenvalue problem, because the denominator on the left-hand
side of this equation depends on the energy eigenvalue Ẽ.

The Pauli equation emerges as a nonrelativistic approximation from the
Dirac equation in the sense that we make a power expansion in the small
quantity (Ẽ − V )/(2m0c

2) ≈ (v/c)2, where we keep only the lowest-order
terms. Moreover, we want to replace the four-component spinor ψ by a two-
component wave function ψ̃ that corresponds to the dominant part of ψ.

Equation (5.5) has already the two-component form we are looking for.
Two steps are required to convert it into the Pauli equation. First we expand
the energy denominator on the left-hand side of (5.5):

c2

Ẽ − V + 2m0c2
≈ 1

2m0

[
1 − Ẽ − V

2m0c2
+ . . .

]
, (5.6)

where we keep the zeroth- and first-order terms in (v/c)2. The probabilistic
interpretation of the Dirac theory requires that∫

d3r ψ†ψ =
∫

d3r (ψ†
AψA + ψ†

BψB) = 1 . (5.7)

So, even when we keep only the first and second term in (5.6), we cannot
identify ψA with the full wave function ψ anymore, because a fraction of the
probability density∫

d3r ψ†
A

(
p2 + e� σ · B

4m2
0c

2

)
ψA ∝ v2

c2
(5.8)

has “escaped” into ψ†
BψB. Therefore, in the second step we replace ψA in

(5.5) by a new two-component wave function

ψ̃ =
(

1 +
p2 + e� σ · B

8m2
0c

2

)
ψA , (5.9)

which is correctly normalized to unity. We then obtain from (5.5), up to order
(v/c)2, the Pauli equation [1][

p2

2m0
+ V +

e�

2m0
σ · B − e� σ · p × E

4m2
0c

2
− e�2

8m2
0c

2
∇ · E

− p4

8m3
0c

2
− e�p2

4m3
0c

2
σ · B − (e�B)2

8m3
0c

2

]
ψ̃ = Ẽψ̃, (5.10)

where E = (1/e)∇V is the electric field. The third term on the left-hand side
of (5.10) is the Zeeman term, the fourth term is the Pauli SO coupling (1.1),



64 5 Origin of Spin–Orbit Coupling Effects

Table 5.1. Tensor operators for the point group SU(2)

D0 : V ; p2; p4; B2; ∇ · E
D1 : Bx, By, Bz; p2Bx, p

2By, p
2Bz; Ezpy − Eypz, Expz − Ezpx, Eypx − Expy

Table 5.2. Invariants with prefactors pij for a Hamiltonian that transforms ac-
cording to the irreducible representation D1/2 of SU(2)

p01V + p02p
2 + p03p

4 + p04B
2 + p05 ∇ · E

+ p11σ · B + p12σ · (E × p) + p13p
2σ · B

and the fifth term is called the Darwin term. Finally, in the second line we
obtain higher-order corrections to both the kinetic energy p2/(2m0) and the
Zeeman term.

We can rederive (5.10) using Löwdin partitioning (in the present con-
text known as the Foldy–Wouthuysen transformation [2]) and the theory of
invariants. The wave function ψ̃ transforms according to the irreducible rep-
resentation D1/2 of SU(2). From the fact that D1/2×D1/2 = D0 +D1, we see
that we have two sets of basis matrices, the unit matrix �2×2, transforming
according to D0 and the Pauli spin matrices σj , transforming according to
D1. The tensor operators that can be formed from the components of p, B
and the gradient of V are listed in Table 5.1. The invariants that can be
formed by combining the basis matrices and tensor operators are given in
Table 5.2.

By applying fourth-order Löwdin perturbation theory to the Dirac equa-
tion (5.2), we obtain (5.10), so that we can readily identify the expansion co-
efficients pij appearing in Table 5.2 with the prefactors of the various terms
in (5.10). More specifically, we obtain the kinetic-energy term p2/(2m0) and
the Zeeman term in second-order perturbation theory. We see here the fact,
well known in k · p theory, that the terms symmetric in the components of p
are weighted by the inverse of the (effective) mass, whereas the Zeeman term
stems from the terms antisymmetric in the components of p, in accordance
with p × p = −ie�B. In third-order Löwdin perturbation theory, we obtain
the Pauli SO coupling and the Darwin term. These terms reflect the non-
commutativity of p and V , i.e. [p, V ] = −ie�E. In fourth-order perturbation
theory, we finally obtain higher-order corrections to the kinetic energy and
the Zeeman term (as well as corrections to the Pauli SO coupling and the
Darwin term which are of second order in (v/c)2).
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5.2 Invariant Expansion for the 8×8 Kane Hamiltonian

In the previous section, we discussed the derivation of the Pauli equation
from the Dirac equation. We shall compare these well-known results with
the effective Hamiltonians we obtain from a decoupling of conduction and
valence band states starting from an 8× 8 Kane Hamiltonian that takes into
account only the k · p coupling between the Γ c

6 conduction band and the Γ v
8

and Γ v
7 valence bands [3]. Although this is a rather simplified model for the

bulk band structure, the final results capture a large part of the physics that
we want to discuss in this work.

The EFA Hamiltonian reads (see Table C.5)

H8×8 =




(Ec+V )�2×2

√
3P T · k − 1√

3
P σ · k

√
3P T † · k (Ev+V )�4×4 0

− 1√
3
P σ · k 0 (Ev−∆0+V )�2×2


 (5.11a)

=




Ec+V 0 −1√
2
Pk+

√
2
3Pkz

1√
6
Pk− 0 −1√

3
Pkz

−1√
3
Pk−

0 Ec+V 0 −1√
6
Pk+

√
2
3
Pkz

1√
2
Pk−

−1√
3
Pk+

1√
3
Pkz

−1√
2
Pk− 0 Ev+V 0 0 0 0 0√

2
3
Pkz

−1√
6
Pk− 0 Ev+V 0 0 0 0

1√
6
Pk+

√
2
3
Pkz 0 0 Ev+V 0 0 0

0 1√
2
Pk+ 0 0 0 Ev+V 0 0

−1√
3
Pkz

−1√
3
Pk− 0 0 0 0 Ev−∆0+V 0

−1√
3
Pk+

1√
3
Pkz 0 0 0 0 0 Ev−∆0+V




.

(5.11b)

Here �k = −i�∇+eA denotes the kinetic momentum and we have introduced
the symbols Ev and Ec denoting the valence and conduction band edges,
respectively. In this section we ignore the position dependence of Ev and Ec.
For a detailed discussion of this aspect, see Sect. 6.3.2.

We shall transform (5.11) into an effective equation for electron states
that depends only on the conduction band spinor components ψc of the eight-
component envelope function ψ. By eliminating the valence band components
from the Schrödinger equation for ψ, we obtain [4, 5][

T · k 3P 2

Ẽ − V + E0

T † · k + σ · k P 2/3
Ẽ − V + E0 +∆0

σ · k
]
ψc

=
(
Ẽ − V

)
ψc , (5.12)
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where we have used Ẽ = E−Ec and E0 = Ec −Ev. Analogously to (5.5), no
approximation is involved here.

Next we expand the first and second denominators on the left-hand side
of (5.12) up to first order in terms of the small quantities (Ẽ − V )/E0 and
(Ẽ − V )/(E0 +∆0), respectively. Note, however, that as compared with the
expansion (5.6), we have no strict equivalent to the order parameter (v/c)2.
The speed of light, c, in the Dirac Hamiltonian corresponds roughly to the
quantity P/� in the Kane Hamiltonian (5.11), and m0 corresponds roughly
to �

2E0/(2P 2). However, unlike the parameters P and E0 (and ∆0) in the
Kane model, the velocity of light c appears both on the diagonal and off the
diagonal. In k · p theory, we usually label different terms by the order of the
energy denominators with which they appear in the decoupled Hamiltonian.
This terminology is equivalent to the order of Löwdin perturbation theory
that is necessary to derive a particular term.

As a second step, we choose new two-component conduction band enve-
lope functions

ψ̃c =
[
1 +

P 2

12

(
2k2 − (e/�) σ · B

E0
+
k2 + (e/�) σ · B

E0 +∆0

)]
ψc (5.13)

to ensure norm conservation. This step, which is similar to (5.9), has been
overlooked by several authors when deriving an effective 2 × 2 conduction
band Hamiltonian from (5.11). After some rearrangements, we obtain{

P 2

3

[
2
E0

+
1

E0 +∆0

]
k2 + V − P 2

3

[
1
E0

− 1
E0 +∆0

]
e

�
σ · B

+
eP 2

3

[
1
E2

0

− 1
(E0 +∆0)2

]
σ · k × E

−eP
2

6

[
2
E2

0

+
1

(E0 +∆0)2

]
∇ · E

}
ψ̃c = Ẽ ψ̃c . (5.14)

Here, the first term is the kinetic energy using Kane’s expression (4.39a) for
the effective mass, the third term is the Zeeman term using Roth’s formula
(4.39b) for the effective g factor, the fourth term is the Rashba term [6],
analogous to the Pauli SO coupling in (5.10), and the fifth term is analogous
to the Darwin term. In (5.14) we have neglected those terms that contain the
fundamental gapE0 more than twice. We shall give a more detailed discussion
of the Rashba term in Sect. 6.3. The Zeeman splitting will be discussed more
thoroughly in Chap. 7.

Alternatively, we can derive (5.14) using Löwdin partitioning and the the-
ory of invariants. Here, the kinetic energy and the Zeeman term stem from
second-order perturbation theory, while the SO coupling and the Darwin term
require third-order perturbation theory. We remark that (5.13) is “built-in”
in Löwdin perturbation theory because we have required that e−S in (B.2) is
a unitary operator. Note also that the invariant expansion in Table 5.2 applies
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to the Pauli equation (5.10) as well as to the conduction band Hamiltonian
(5.14) because the basis functions |↑〉 and |↓〉 of both 2 × 2 Hamiltonians
transform according to D1/2 of SU(2). In the latter case, this is due to the
fact that already the simplified Kane Hamiltonian (5.11) has spherical sym-
metry. All invariants in the conduction band Hamiltonian (5.14), including
the higher order terms not considered here, thus have a “partner” of the
same functional form in the Pauli equation (5.10) (with p = �k). Only the
prefactors differ in these equations.

Similarly to the Pauli equation (5.10), the Zeeman splitting in (5.14)
originates in the noncommutativity (2.17) of the components of k, while the
Rashba term can be traced back to the noncommutativity (2.18) of k and V .
We remark that the converse is not always correct: not every antisymmetric
term gives rise to spin splitting. The Zeeman and Rashba terms are merely the
lowest-order invariants that can be constructed from the antisymmetric vec-
tors B and k×E. The spin-diagonal Darwin term also originates from (2.18).
The higher-order terms include, for example, a diamagnetic shift ∝ B2

�2×2

(see Tables C.3 and C.4).
In this section, we have worked out the formal similarities between rel-

ativistic quantum mechanics and the simplified Kane model. Nevertheless,
there is an important difference: while the Pauli SO coupling (1.1) is an
intrinsic part of the Dirac–Pauli theory, SO coupling enters into the Kane
model (5.11) only via the SO gap ∆0 of the bulk band structure. We can see
in (5.14) that both the effective g factor and the Rashba term disappear in
the limit ∆0 → 0. This general result will be confirmed by the calculations
presented in subsequent chapters that are based on more realistic multiband
Hamiltonians. Consistently with our arguments in the preceding paragraph,
antisymmetric invariants that are diagonal in the spin degree of freedom can
“survive” even in the limit ∆0 → 0.
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5. T. Darnhofer, U. Rössler: Phys. Rev. B 47(23), 16 020–16 023 (1993) 65
6. Y.A. Bychkov, E.I. Rashba: J. Phys. C: Solid State Phys. 17, 6039–6045 (1984)

5, 69, 77, 78, 83, 165, 66



6 Inversion-Asymmetry-Induced

Spin Splitting

Spin degeneracy of electron and hole states in a semiconductor is the com-
bined effect of inversion symmetry in space and time [1]. Both symmetry
operations change the wave vector k into −k, but time inversion also flips
the spin, so that when we combine both we have a twofold degeneracy of the
single-particle energies, E+(k) = E−(k); see Table 6.1. When the potential
through which the carriers move is inversion-asymmetric, however, the spin
degeneracy is removed even in the absence of an external magnetic field B.
We then obtain two branches of the energy dispersion, E+(k) and E−(k).
In quasi-2D quantum wells (QWs) and heterostructures, this spin splitting
can be the consequence of a bulk inversion asymmetry (BIA) of the under-
lying crystal (e.g. a zinc blende structure [2]), and of a structure inversion
asymmetry (SIA) of the confinement potential [3,4]. A third contribution to
B = 0 spin splitting can be the low microscopic symmetry of the atoms at an
interface [5]. We emphasize that even in inversion-asymmetric systems with
B = 0 spin splitting we still have the Kramers degeneracy; see Table 6.1.

For a given wave vector k, we can always find a spin orientation axis S(k),
local in k space, such that we have spin-up and spin-down eigenstates with
respect to the axis S(k). But we do not call the branches E±(k) spin-up and
spin-down, because the direction of S varies as a function of k such that, when
averaged over all occupied states, the branches contain equal contributions of
up and down spinor components. This reflects the fact that in nonmagnetic
materials we have a vanishing magnetic moment at B = 0. While we shall
focus on the effect of B = 0 spin splitting on the energy dispersion E(k) and
the spin degree of freedom, it has been investigated in [6] how B = 0 spin
splitting affects also the orbital parts of the wave function.

In Sect. 6.1, we start with some general remarks on B = 0 spin splitting.
In Sect. 6.2 we discuss BIA spin splitting in zinc blende semiconductors.

Table 6.1. B = 0 spin degeneracy is due to the combined effect of inversion
symmetry in space and time [1]

Space inversion symmetry: E+(k) = E+(−k)

Time inversion symmetry: E+(k) = E−(−k)
(Kramers degeneracy)


 ⇒ B = 0 spin degeneracy:

E+(k) = E−(k)

Roland Winkler: Spin–Orbit Coupling Effects
in Two-Dimensional Electron and Hole Systems, STMP 191, 69–129 (2003)
c© Springer-Verlag Berlin Heidelberg 2003
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In Sect. 6.3 we present a detailed discussion of SIA spin splitting in the
conduction band Γ c

6 and in the valence bands. It turns out that Rashba spin
splitting of 2D hole systems is very different from the more familiar case of
Rashba spin splitting in 2D electron systems [7]. In Sect. 6.4 we focus on the
interplay between BIA and SIA and on the density dependence of B = 0 spin
splitting. A third contribution to B = 0 spin splitting is discussed in Sect. 6.5,
which can be traced back to the particular properties of the heterointerfaces
in quasi-2D systems. Next we analyze in more detail the spin orientation of
the single-particle states due to B = 0 spin splitting (Sect. 6.6). In Sect. 6.7
we give a brief overview of common experimental techniques for measuring
B = 0 spin splitting. As an example, we compare in Sect. 6.8 calculated spin
splittings [8] with Raman experiments by Jusserand et al. [9].

6.1 B = 0 Spin Splitting and Spin–Orbit Interaction

How can we visualize the fact that the electron spins are “feeling” the inver-
sion asymmetry of the spatial environment? In the EFA the full wave function
(2.13) is the product of the quickly oscillating lattice-periodic part un0(r) of
the Bloch functions times a slowly varying envelope function ψn(r). When
we have SIA spin splitting, the Bloch part “feels” the atomic fields that enter
into the Pauli SO term (1.1) and the envelope function “feels” the macro-
scopic environment, see Fig. 2.1. Therefore, we obtain SIA spin splitting only
if we have both a macroscopic electric field and a microscopic electric field
from the atomic cores. This is consistent with the explicit expressions for
SIA spin splitting derived in the sections below, where the splitting is always
proportional to the macroscopic field times a prefactor that depends on the
matrix elements ∆νν′

σσ′ of the microscopic SO interaction. BIA spin splitting is
independent of any macroscopic electric fields. It depends only on the matrix
elements ∆νν′

σσ′ of the microscopic SO interaction. Both SIA and BIA spin
splitting disappear in the limit of vanishing bulk SO gaps ∆νν′

σσ′ = 0.1

Several authors [11, 12, 13, 14] have suggested an intuitive picture for the
B = 0 spin splitting, which is based on the idea that, for the Rashba term
(6.10) discussed below, the electrons are moving with a velocity v‖ = �k‖/m

∗

perpendicular to the macroscopic electric field E = (0, 0, Ez). It was argued
that in the electron’s rest frame, E is Lorentz transformed into a magnetic
field B, so that the B = 0 spin splitting becomes a Zeeman splitting in the
electron’s rest frame. However, this magnetic field is given by B = (v‖/c2)Ez

(SI units) and for typical values of Ez and v‖ we have B ∼ 2 − 20 × 10−7 T,
which would result in a spin splitting of the order of 5×10−9−5×10−5 meV.
On the other hand, the experimentally observed spin splitting is of the order
1 The spin degree of freedom can be affected also by exchange–correlation effects

[10]. This can give rise to an exchange-induced enhancement of B = 0 spin
splitting; see Sect. 6.4.3.
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of 0.1 − 10 meV. It is clear from the discussion above that this discrepancy
is due to the fact that the idea of a Lorentz transformation neglects the
contribution of the atomic cores to the SO interaction felt by a Bloch electron
in a solid (see Sect. 3.4).

6.2 BIA Spin Splitting in Zinc Blende Semiconductors

Unlike Si and Ge, which have a diamond structure, the zinc blende structure
of III–V and II–VI compounds such as GaAs, InSb, and HgxCd1−xTe does
not have a center of inversion.2 Therefore, SO interaction gives rise to a spin
splitting of the bulk energy dispersion. This BIA spin splitting is well known
from early theoretical studies [2, 15, 16, 17]. It has been observed experimen-
tally by analyzing the Shubnikov–de Haas effect in uniaxially strained bulk
InSb [18] and by detecting the precession of the spin polarization of electrons
photoexcited from a GaAs (110) surface [19].

6.2.1 BIA Spin Splitting in Bulk Semiconductors

We can use the theory of invariants to identify the terms in the conduction
and valence band blocks of H(K) which give rise to a spin splitting of the
electron and hole states. We remark that both the wave vector k and the
electric field E are odd with respect to parity (while B is even). For the
symmetrized basis matrices, the transformation with respect to parity is listed
in Table C.3. Only those invariants that are odd with respect to parity can
contribute to BIA spin splitting. An invariant that contributes to SIA spin
splitting can be either even or odd with respect to parity. Those invariants
proportional to E that are odd with respect to parity reflect the combined
effect of BIA and SIA.

Up to third order in k, we obtain the invariants listed in Table 6.2 [20,21].
BIA spin splitting in the Γ c

6 conduction is characterized by the invariant
weighted by b6c6c

41 . Using an explicit matrix notation, we have

H b
6c 6c = b6c6c

41

(
1
2{k2

+ + k2
−, kz} 1

4{k2
+ − k2

−, k−} − {k2
z , k+}

1
4
{k2

− − k2
+, k+} − {k2

z , k−} − 1
2
{k2

+ + k2
−, kz}

)
,

(6.1)

2 Strictly speaking, the diamond structure does not have a center of inversion
either. It has a nonsymmorphic space group with point group Oh, i.e. the sym-
metry operations in Oh must be combined with a nonprimitive translation of
the translation subgroup of the diamond structure in order to map the diamond
structure onto itself. Nevertheless, from all points of view we are interested in
it is sufficient that the point group Oh of the diamond structure contains the
inversion as a symmetry element.
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Table 6.2. Invariants for the Kane model up to third order in k which give rise
to BIA spin splitting

H b
6c 6c = b6c6c

41

({kx, k
2
y − k2

z}σx + cp
)

H b
8v 8v = 2√

3
Ck

[
kx

{
Jx, J

2
y − J2

z

}
+ cp

]
+ b8v8v

41

({kx, k
2
y − k2

z}Jx + cp
)

+ b8v8v
42

({kx, k
2
y − k2

z}J3
x + cp

)
+ b8v8v

51

({kx, k
2
y + k2

z}
{
Jx, J

2
y − J2

z

}
+ cp

)
+ b8v8v

52

(
k3

x

{
Jx, J

2
y − J2

z

}
+ cp

)
H b

7v 7v = b7v7v
41

({kx, k
2
y − k2

z}σx + cp
)

H b
8v 7v = −i

√
3Ck (kxUyz + cp) + b8v7v

41

({kx, k
2
y − k2

z}Ux + cp
)

+ b8v7v
51

({kx, k
2
y + k2

z}Uyz + cp
)

+ b8v7v
52

(
k3

x Uyz + cp
)

H b
6c 8v = iB+

8v (Tx{kykz} + cp)

+ 1
2
B−

8v

[
(Txx − Tyy) (k2

z − 1
3
k2) − Tzz(k

2
x − k2

y)
]}

H b
6c 7v = − i√

3
B7v (σx{kykz} + cp)

where k± = kx ± iky. This invariant is often called the Dresselhaus term [2]
or the k3 term [22]. It is the lowest-order term that characterizes BIA spin
splitting in the Γ c

6 conduction band. For k parallel to [100], BIA spin splitting
vanishes for both electrons and holes in all orders of k (see Fig. 3.2), because
here the group of the wave vector is C2v, which has only one irreducible
double-group representation, Γ5, which is two-dimensional [23,24].3 When k
is parallel to [111], BIA spin splitting vanishes for electron and LH states, be-
cause these states transform according to the two-dimensional double-group
representation Γ4 of C3v, whereas HH states transform according to the one-
dimensional double-group representations Γ5 and Γ6 of C3v [23, 24].

As noted in Sect. 3.3, the main contribution to the prefactor Ck of the k-
linear spin splitting in the Γ v

8 valence band stems from the bilinear terms
consisting of k · p and SO interactions, with remote Γ3-like intermediate
states [17]. The coefficient Ck is thus an “elementary” parameter of the ex-
tended Kane model. We can express the remaining coefficients in Table 6.2
in terms of the parameters of the extended Kane model. We obtain, in third-
order perturbation theory,

b6c6c
41 = −4i

3
PP ′Q

[
1

(E0 +∆0)(E0 − E′
0 −∆′

0)
− 1
E0(E0 − E′

0)

]
, (6.2a)

b8v8v
41 =

i
6
PP ′Q

1
E0

[
13
E′

0

− 5
E′

0 +∆′
0

]
, (6.2b)

b8v8v
42 =

2i
3
PP ′Q

1
E0

[
1
E′

0

− 1
E′

0 +∆′
0

]
, (6.2c)

3 For the same reason we have no BIA spin splitting for k ‖ [001] in symmetric
QWs grown in the crystallographic direction [110].
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b8v8v
51 =

2i
9
PP ′Q

1
E0

[
1

E′
0 +∆′

0

− 1
E′

0

]
, (6.2d)

b8v8v
52 =

4i
9
PP ′Q

1
E0

[
1
E′

0

− 1
E′

0 +∆′
0

]
, (6.2e)

b7v7v
41 =

4i
3
PP ′Q

1
(E0 +∆0)(∆0 + E′

0 +∆′
0)
, (6.2f)

b8v7v
41 = iPP ′Q

[
1

E0(E′
0 +∆′

0)
+

1
(E0 +∆0)(∆0 + E′

0 +∆′
0)

]
, (6.2g)

b8v7v
51 = −1

3
PP ′Q

[
1

E0E′
0

− 1
E0(E′

0 +∆′
0)

+
1

(E0 +∆0)(E′
0 +∆0)

− 1
(E0 +∆0)(∆0 + E′

0 +∆′
0))

]
,

(6.2h)

b8v7v
52 = b8v7v

51 . (6.2i)

The formulas for Kane’s off-diagonal parameters Bi can be found in Ta-
ble C.9.4 In the extended Kane model, the prefactors characterizing the BIA
spin splitting are proportional to the product PP ′Q, i.e., for both electron
and hole states, BIA spin splitting originates in the k · p coupling between
the valence bands Γ v

8 and Γ v
7 , the conduction band Γ c

6 , and the conduction
bands Γ c

8 and Γ c
7 . Accordingly, BIA spin splitting has the same order of mag-

nitude for electron and hole states, consistent with our general remark at the
beginning of Chap. 5.

For the limiting case of zero SO splitting of the bulk bands, ∆0 = ∆′
0 = 0,

we still have nonzero coefficients b8v8v
41 , b7v7v

41 , and b8v7v
41 . This reflects the

fact that even for the valence band Γ v
5 without SO interaction we have one

invariant which is cubic in k, namely ({kx, k
2
y − k2

z}Lx + cp). Nevertheless,
∆0 = ∆′

0 = 0 implies that we have zero BIA spin splitting because the above
cubic invariant is then acting within the block Hk·p defined in (5.1). On the
other hand, we have no cubic terms at all in materials with an inversion-
symmetric diamond structure where parity conservation requires P ′ = 0.

Numerical values for the coefficients (6.2) are given in Table 6.3. The most
important coefficients are Ck, b8v8v

41 , b7v7v
41 , and b8v7v

41 , which are nonzero even
if we set ∆0 = ∆′

0 = 0. In the valence band block H8v8v, for typical values of
k, the cubic invariant proportional to b8v8v

41 has the same order of magnitude
as the k-linear term proportional to Ck. It was observed by Cardona et al. [17]
that when k is parallel to [110] the spin splitting of the HH states in bulk

4 The coefficients defined in (6.2) refer to a model which does not explicitly take
into account k · p coupling between the conduction and valence bands. In an
8 × 8 k · p Hamiltonian (3.6), Kane’s off-diagonal parameters Bi as defined in
Table C.9 supersede the coefficients in (6.2), i.e. we have to set the coefficients
(6.2) to zero if the parameters Bi are used; see the discussion of reduced band
parameters in Sect. 3.3.
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Table 6.3. Expansion coefficients for the invariants in Table 6.2 evaluated for var-
ious semiconductors using (6.2) and Table C.9 (all in eV Å3, except for Ck in eV Å
and Bi in eV Å2). Ck was taken from [17]. Band parameters were taken from [25,26]

GaAs AlAs InAs InSb CdTe ZnSe

b6c6c
41 27.58 18.53 27.18 760.1 43.88 14.29

Ck −0.0034 0.0020 −0.0112 −0.0082 −0.0234 −0.0138

b8v8v
41 −81.93 −33.51 −50.18 −934.8 −76.93 −62.33

b8v8v
42 1.47 0.526 1.26 41.73 1.668 0.375

b8v8v
51 0.49 0.175 0.42 13.91 0.556 0.125

b8v8v
52 −0.98 −0.35 −0.84 −27.82 −1.11 −0.250

b7v7v
41 −58.71 −27.27 −22.31 −146.8 −38.44 −50.71

b8v7v
41 −101.9 −44.30 −51.29 −709.5 −82.46 −83.86

b8v7v
51 −1.255 i −0.474 i −0.910 i −23.92 i −1.215 i −0.335 i

B+
8v −21.32 −34.81 −3.393 −32.20 −22.41 −32.05

B−
8v −0.5175 −1.468 −0.09511 −1.662 −0.6347 −0.2704

B7v −20.24 −32.84 −3.178 −27.77 −20.47 −31.15

GaAs changes its sign, see Fig. 6.1. By means of the invariant expansion in
Table 6.2 and the numerical values in Table 6.3, it can be understood that this
surprising behavior is due to the fact that for k ‖ [110] the prefactors b8v8v

41

and Ck contribute to the HH spin splitting with opposite signs so that they
cancel each other for some small value of k ‖ [110]. In AlAs, the coefficient
Ck is positive [17], so that there is no sign reversal of the HH spin splitting.
For the LH states, the dominant contribution to BIA spin splitting is given
by the invariant proportional to b8v8v

41 , i.e. the BIA spin splitting of LH states
is essentially proportional to k3.

In Fig. 6.1, we show the absolute value |∆E| of the BIA spin splitting of
hole states in GaAs for k parallel to [110]. We use a double-logarithmic plot,
as it allows us to distinguish between the k-linear and the cubic splittings.
The solid lines were obtained by means of a diagonalization of the extended
Kane model (3.2), whereas the dashed lines are the results obtained from the
4 × 4 Hamiltonian H8v8v with terms up to third order in k. The invariant
expansion is in good agreement with the more complete 14×14 Hamiltonian.

Finally, we note that the expressions (6.2) represent only the leading order
terms contributing to the coefficients in Table 6.2. We obtain (rather lengthy)
additional terms proportional to Ck and ∆−. Although these two parameters
are often known less accurately than the energy gaps and momentum matrix
elements entering (6.2), the new terms can be significant for a quantitative
analysis of BIA spin splitting. For example, the Dresselhaus coefficient b6c6c

41

of GaAs is reduced from 27.58 eVÅ3 [22] to 19.55 eVÅ3 [27] if the parameter
∆− (and Ck) is taken into account in fourth-order perturbation theory. For
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Fig. 6.1. Double-logarithmic plot of
the absolute value |∆E| of the BIA
spin splitting of hole states in GaAs
for k ‖ [110]. The solid lines were ob-
tained by means of a diagonalization
of the full 14 × 14 matrix of the ex-
tended Kane model, and the dashed
lines are the results obtained from
the 4 × 4 Hamiltonian H8v8v with
terms up to third order in k

consistency, all numerical values in Table 6.3 have been calculated using (6.2)
and Table C.9.

6.2.2 BIA Spin Splitting in Quasi-2D Systems

For quasi-2D systems, we can readily estimate the BIA-induced spin splitting.
In first-order perturbation theory, we replace the nth power of kz = −i∂z by
the expectation value 〈(−i∂z)n〉. (Note that for odd n we have 〈(−i∂z)n〉 = 0.)
For example, for a quasi-2D electron system in a QW grown in the crystal-
lographic direction [001], the Dresselhaus term (6.1) becomes [22, 28]

H b
6c 6c = b6c6c

41

(
0 1

4
k−(k2

+ − k2
−) − k+〈k2

z〉
1
4
k+(k2

− − k2
+) − k−〈k2

z〉 0

)
. (6.3)

This equation can easily be diagonalized. We obtain a spin splitting

Eb
6c6c(k‖) = ±〈b6c6c

41 〉 k‖
√

〈k2
z〉2 +

(
1
4
k2
‖ − 〈k2

z〉
)
k2
‖ sin2(2ϕ) (6.4a)

≈ ±〈b6c6c
41 〉

[
〈k2

z〉 k‖ − 1
2
k3
‖ sin2(2ϕ) + O(k5

‖)
]
, (6.4b)

where k‖ = k‖(cosϕ, sinϕ, 0). We have used angle brackets to indicate that
〈b6c6c

41 〉 corresponds to an average over the coefficient b6c6c
41 of the well and

barrier materials. For small k‖ the BIA spin splitting is linear in k‖ and
independent of the direction of k‖. For larger values of k‖ the BIA spin split-
ting becomes anisotropic, with energy surfaces that have a fourfold rotational
symmetry, consistent with the fact that the point group isD2d. Note also that
for ϕ = 0 (k‖ ‖ [100]) and ϕ = π/4 (k‖ ‖ [110]), (6.4b) is exact. Within the
Dresselhaus model (6.3) we thus have zero BIA spin splitting for ϕ = π/4
and k2

‖ = 2〈k2
z〉 independent of the material specific coefficient 〈b6c6c

41 〉 (see
also Sect. 6.6.2).

Strictly speaking, the invariant expansion for the BIA spin splitting of
quasi-2D electron systems in a QW grown in the crystallographic direction
[001] (point group D2d) yields
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H b
6c 6c = b6c6c

51 (k+σ+ + k−σ−)

+ 1
4
b6c6c

52

(
{k−, k2

+ − k2
−}σ+ + {k+, k

2
− − k2

+}σ−
)

+ 1
4
b6c6c

53

[(
k3
− + 3{k−, k2

+}
)
σ+ +

(
k3
+ + 3{k+, k

2
−}
)
σ−
]

(6.5)

(see Tables 6.7 and 6.8). In this equation, we have a third invariant, weighted
by b6c6c

53 , which goes beyond (6.3). We can evaluate the prefactors in (6.5) by
means of the subband k · p method. For the αth electron subband, we obtain

b6c6c
51 =

2i
3
PP ′Q

∑
β �=α

[
〈cα|kz|sβ〉
∆cs

αβ

(
〈sβ|kz |Hα〉

∆cH
αα

+
〈Lβ |kz|cα〉
∆cL

αβ

)

−〈cα|kz |Sβ〉
∆cS

αβ

(
〈Sβ |kz|hα〉
∆ch

αα

+
〈lβ |kz |cα〉
∆cl

αβ

)
(6.6a)

+
〈cα|kz |Lβ〉〈Lβ |kz |hα〉

∆cL
αβ∆

ch
αα

− 〈cα|kz |lβ〉〈lβ |kz |Hα〉
∆cl

αβ∆
cH
αα

]
,

b6c6c
52 = iPP ′Q

[
1

∆cS
αα

(
1

∆cl
αα

+
1

3∆ch
αα

)
− 1
∆cs

αα

(
1

∆cL
αα

+
1

3∆cH
αα

)

+
1

3∆cl
αα∆

cH
αα

− 1
3∆cL

αα∆
ch
αα

]
, (6.6b)

b6c6c
53 =

i
3
PP ′Q

[
1

∆cS
αα

(
1

∆ch
αα

− 1
∆cl

αα

)
+

1
∆cs

αα

(
1

∆cL
αα

− 1
∆cH

αα

)

+
1

∆cl
αα∆

cH
αα

− 1
∆cL

αα∆
ch
αα

]
. (6.6c)

Here we have used

∆nn′
αα′ ≡ En

α − En′
α′ (6.7)

with bulk band indices n, n′ and subband indices α, α′. In (6.6), we have
assumed that the subband wave functions are orthogonal, 〈nα|n′β〉 = δαβ ,
independent of the bulk band indices n, n′. The indices n = H , L, and S
denote subbands in the higher conduction bands Γ c

8 and Γ c
7 . In (6.6), we

have used kz = −i∂z, the operator of canonical momentum (2.16), in order
to emphasize that this equation is valid even for B > 0.

For the terms in (6.2a), we can readily identify the corresponding terms
in (6.6). The remaining terms in (6.6) (the last line of (6.6a) and (6.6b)
and all terms in (6.6c)) are a consequence of HH–LH splitting in the bands
Γ v

8 and Γ c
8 . This is the reason why the coefficient b6c6c

53 is usually rather
small, so that the corresponding invariant can be neglected [29]. Typically,
the fundamental gap E0 is smaller than the gap E′

0−E0 between the band Γ c
6

and the higher conduction bands Γ c
8 and Γ c

7 . Thus it follows from (6.6) that
subband confinement reduces the prefactors of BIA spin splitting as compared
with the bulk formula (6.2a). Finally, we remark that similar results can be
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obtained for other growth directions [20, 28] and for other systems such as
HH and LH systems.

6.3 SIA Spin Splitting

In semiconductor quantum structures, the spin degeneracy can be lifted not
only because of a bulk inversion asymmetry of the underlying crystal struc-
ture, but also because of a structure inversion asymmetry of the confining
potential V (r). This potential may contain a built-in or external potential,
as well as the effective potential from the position-dependent band edges. Re-
cent experiments have shown that the SIA spin splitting can even be tuned
continuously by means of external gates [12, 30].

We can perform a Taylor expansion of the potential V (r),

V (r) = V0 + eE · r + . . . , (6.8)

i.e. to lowest order the inversion asymmetry of V (r) can be characterized by
an electric field E . The importance of (6.8) lies in the fact that we can include
the electric field E in the invariant expansion (2.30), and examples will be
given below. We begin in Sect. 6.3.1 with a discussion of the Rashba model
for the Γ c

6 conduction band. Then we discuss the less familiar case of SIA
spin splitting in the Γ v

8 valence band. In Sect. 6.3.4 we discuss the similarities
between SIA spin splitting and Zeeman splitting.

6.3.1 SIA Spin Splitting in the Γ c
6 Conduction Band:

the Rashba Model

To lowest order in k and E , the SIA spin splitting5 in the Γ c
6 conduction

band is given by the Rashba term [4,31],

H r
6c 6c = r6c6c

41 σ · k × E , (6.9)

with a material-specific prefactor r6c6c
41 [32,33]. Both k and E are polar vectors

(transforming according to the irreducible representation Γ5 of Td), and k×E
is an axial vector (transforming according to the irreducible representation
Γ4 of Td) [33,34]. Likewise, the vector σ = (σx, σy, σz) of Pauli spin matrices
is an axial vector. The dot product (6.9) of k×E and σ therefore transforms
according to the unit representation Γ1, in accordance with the theory of
invariants described in Sect. 2.5. We see from Tables C.3 and C.4 that the
scalar triple product (6.9) is the only term of first order in k and E that is
compatible with the symmetry of the band.
5 It has become common practice to use the term “Rashba effect” both for the

Hamiltonian (6.9) and for SIA spin splitting in general, even though we can have
substantial quantitative differences between (6.9) and the SIA spin splitting as
determined by means of a more complete multiband Hamiltonian; see Figs. 6.3
and 6.4.
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SIA spin splitting of 2D electron states has been studied theoretically
for many years. Research has focused mainly on the prefactor of the Rashba
term [3,35,4,31,36,37,32,22,38,39,33,40,41,42,43,44,45,46,47,48,49,8,7]. Here
we shall show that an analysis of the Rashba model can be very illuminating
because this model can be completely solved analytically. We then present
two different approaches for calculating the prefactor of the Rashba term.

General Features of the Rashba Model. For E = (0, 0, Ez), (6.9) be-
comes (using an explicit matrix notation)

H r
6c 6c = r6c6c

41 Ezi (k−σ+ − k+σ−) , (6.10a)

= r6c6c
41 Ez

(
0 ik−

−ik+ 0

)
, (6.10b)

where k± = kx±iky and σ± = 1
2
(σx±iσy). In this section we shall assume that

in the subband dispersion E(k‖), we can neglect nonparabolic corrections of
higher order in k‖. Combining (6.10) with the kinetic energy µck

2
‖�2×2, where

µc (times 2/�2) is the reciprocal effective mass, we obtain for the spin-split
subband dispersion E±(k‖)

E±(k‖) = 〈µc〉k2
‖ ± 〈r6c6c

41 Ez〉k‖ . (6.11)

We use angle brackets to indicate that 〈r6c6c
41 Ez〉 corresponds to an average

of the Rashba coefficients of the well and barrier materials. Note, however,
that the details of any microscopic model for 〈r6c6c

41 Ez〉 are irrelevant for the
following discussion. Thus we shall use in this section the abbreviation

α := 〈r6c6c
41 Ez〉 . (6.12)

Equation (6.11) predicts an SIA spin splitting which is linear in k‖. For
small k‖, the Rashba term ±αk‖ thus becomes the dominant term in the
energy dispersion E±(k‖). In particular we obtain a ring of minima for the
lower branch E−(k‖) at finite wave vectors km where

|km| ≡ km =
α

2 〈µc〉
, (6.13)

from which we obtain

E−(km) = − α2

4 〈µc〉
. (6.14)

The ring of minima is sketched in Fig. 6.2. As a more quantitative example,
we show in Fig. 6.3 the subband dispersion E±(k‖) for an MOS inversion
layer on InSb according to (6.11). If the total density Ns is smaller than the
“quantum density”

Nm =
(2km)2

4π
=

1
4π

α2

〈µc〉2
, (6.15)
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k x

k yE(k)

Fig. 6.2. Qualitative sketch of the spin-split
dispersion E±(k‖) according to (6.11). We ob-
tain a ring of minima (dashed line at bottom) at
finite wave vectors km given by (6.13). Arrows
indicate the spin orientation of the eigenstates
(see Sect. 6.6.1)

Fig. 6.3. Subband dispersion E±(k‖) (lower right) and DOS effective mass m∗/m0

(lower left), spin splitting E+(k‖) −E−(k‖) (upper right), and subband dispersion
E±(k‖) in the vicinity of k‖ = 0 (upper left) for an MOS inversion layer on InSb
calculated by means of (6.11) and (6.20). We have used the same value of the electric
field Ez as that obtained from the self-consistent calculation shown in Fig. 6.4

only the lower spin subband is occupied. We remark that even for a large
electric field Ez = 50 kV/cm, the density Nm is fairly small. Using the nu-
merical values for r6c6c

41 given in Table 6.6, we find that Nm is of the order
2 × 106 cm−2 (GaAs) to 8 × 108 cm−2 (InSb). The corresponding energy
E−(km) is of the order −3 × 10−5 meV (GaAs) to −6 × 10−2 meV (InSb).

We can determine the unequal populationsN± of the two branchesE±(k‖)
from the conditions

Ns = N+ +N− , (6.16a)

N± =
1
4π

k2
F± , (6.16b)
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and
EF = E±(kF±) = 〈µc〉k2

F± ± αkF± . (6.16c)

Here Ns is the total 2D density in the system, kF± are the Fermi wave vectors
of the spin-split branches, and EF is the Fermi energy. We obtain the following
expression for the Fermi energy EF as a function of the total density Ns:

EF = 2πNs 〈µc〉 −
α2

2 〈µc〉
. (6.17)

From these equations, we can derive the populations N± of the spin-split
branches,

N± =
Ns

2
∓ α

8π〈µc〉2
√

8π〈µc〉2Ns − α2 . (6.18)

We can solve these equations for the Rashba coefficient α as a function of Ns

and ∆N ≡ |N+ −N−|

α =
√

2π 〈µc〉
(√

Ns + ∆N −
√
Ns − ∆N

)
(6.19a)

= 〈µc〉 |kF+ − kF−| , (6.19b)

where kF± are defined in (6.16b). This equation can be used directly for the
interpretation of Shubnikov–de Haas experiments [50,51,52,53,54,55,13,56,
57, 58, 59]; however, see also Chap. 9.

The density of states (4.12) of the spin-split branches is given by

D±(E) =
1

4π〈µc〉

(
1 ∓ α√

4〈µc〉E + α2

)
, E ≥ 0 , (6.20a)

D−(E) =
1

2π〈µc〉
α√

4〈µc〉E + α2
, E < 0 , (6.20b)

which becomes singular when E = E−(km); see Fig. 6.3. This divergent van
Hove singularity of the DOS at the bottom of the subband [60] is characteris-
tic of a k-linear spin splitting. The presence of this singularity indicates that
SIA spin splitting of electron states is most important for small 2D densities
(see also Sect. 6.4.2).

We can compare the results obtained from (6.11) with a more accurate,
fully numerical diagonalization of an appropriate multiband Hamiltonian.
As an example, we present in Fig. 6.4 the self-consistently calculated [60]
subband dispersion E±(k‖), DOS effective mass m∗/m0, and spin splitting
∆E(k‖) = E+(k‖)−E−(k‖) for an MOS inversion layer on InSb, obtained by
means of the 8 × 8 Kane Hamiltonian (3.6). For small k‖, the spin splitting
increases linearly as a function of k‖, in agreement with (6.11). Owing to
nonparabolicity, the spin splitting ∆E(k‖) increases sublinearly for larger k‖
[60]. Note that in Fig. 6.3 we have used the same value of the electric field Ez as
that which was obtained from the self-consistent calculation shown in Fig. 6.4.
Therefore we can clearly see the limitations of the approximate model (6.11)
as compared with the more complete Kane multiband Hamiltonian H8×8.
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Fig. 6.4. Self-consistently calculated subband dispersion E±(k‖) (lower right),
DOS effective mass m∗/m0 (lower left), spin splitting E+(k‖) − E−(k‖) (upper
right), and subband dispersion E±(k‖) in the vicinity of k‖ = 0 (upper left) for an
MOS inversion layer on InSb with Ns = 2 × 1011 cm−2 and |NA −ND| = 2 × 1016

cm−2. The dotted line indicates the Fermi energy EF. Taken from [7]. c© (2000) by
the American Physical Society

Calculation of the Rashba Coefficient. In the following, we present two
methods for evaluating the Rashba coefficient in quasi-2D systems: (i) Löwdin
partitioning for the quasi-bulk Hamiltonian, and (ii) Löwdin partitioning for
the subband Hamiltonian.

Löwdin Partitioning for the Quasi-Bulk Hamiltonian. The Rashba term
H r

6c 6c in (6.9) is an effective Hamiltonian for the spin splitting of electron
subbands, which is implicitly contained in the full EFA multiband Hamilto-
nian for the subband problem [60,37]

HEFA = H(k → −i∇) + eE · r� . (6.21)

Here we have restricted ourselves to the lowest nontrivial order in the Taylor
expansion (6.8). The effective Hamiltonian (6.9) stems from the combined
effect of H(k) and the term eE · r�.

We can use Löwdin partitioning to separate the conduction band block
H6c6c from all other bands. While the k · p coupling appears in the off-
diagonal parts of H(k), the perturbation eE · r appears only on the diagonal
of HEFA. We see in (B.15) that second-order Löwdin perturbation theory
depends only on matrix elements that connects states from set A with states
from set B. We need at least third-order perturbation theory if we are in-
terested in effects due to matrix elements within set A or set B. It follows
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that, independently of the details of H(k), SIA spin splitting requires at least
third-order perturbation theory to describe it.

If we use the extended Kane model for H(k), third-order perturbation
theory for the block H6c6c yields the Rashba term (6.9), where [61]

r6c6c
41 =

eP 2

3

[
1
E2

0

− 1
(E0 +∆0)2

]

+
eP ′2

3

[
1

(E0 − E′
0)2

− 1
(E0 − E′

0 −∆′
0)2

]
. (6.22)

Here we have used the commutator relation [rµ, kν ] = iδµν . The present
approach to evaluating r6c6c

41 is similar to the derivation of Roth’s formula
(4.39b) for the effective g factor of electrons in a bulk semiconductor. There-
fore, we call the first approach to calculating r6c6c

41 “Löwdin partitioning for
the quasi-bulk Hamiltonian”.6

Numerical values for r6c6c
41 obtained according to (6.22) are given in Ta-

ble 6.6. Similarly to the effective g factor, the coefficient r6c6c
41 is largest

for narrow-gap semiconductors, as these materials also have a large SO gap
∆0 [39].

Rashba Coefficient for Quantum Wells. Next we calculate the Rashba coef-
ficient of a quantum structure using the subband k · p method. Using the
8 × 8 Kane model (3.6) for H(k),7 we obtain the following for the Rashba
coefficient of the αth electron subband:

r6c6c
41 =

2ieP 2

3

[∑
β

〈cα|z|lβ〉〈lβ |kz |cα〉 − 〈cα|kz|lβ〉〈lβ |z|cα〉
∆cl

αα∆
cl
αβ

−
∑

β

〈cα|z|sβ〉〈sβ |kz |cα〉 − 〈cα|kz|sβ〉〈sβ |z|cα〉
∆cs

αα∆
cs
αβ

]
,

(6.23)

where we have used (4.37) and (6.7). We can evaluate (6.23) further using the
eigenfunctions of an infinitely deep rectangular well and the eigenfunctions of
a harmonic oscillator. We obtain the following for the lowest electron subband
(α = 1):

r6c6c
41 = eP 2a

[
1

∆cl
11∆

cl
12

− 1
∆cs

11∆
cs
12

]
, (6.24)

where a = 1/3 for the parabolic well and a = 256/(81π2) ≈ 0.320 for the
rectangular well, in complete analogy with (4.42a).

6 It might appear problematic that we assume that the electric field E has an infi-
nite range. However, this does not cause problems, because we use the multiband
Hamiltonian in order to calculate bound states, the spatial dimensions of which
are small compared with the dimensions of the crystal.

7 We obtain similar terms from the k · p coupling to the higher conduction bands
Γ c

8 and Γ c
7 .
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Table 6.4. Tensor operators for the conduction and valence band Hamiltonian
when we explicitly take into account the position dependence of the band edges Ec

and Ev

Γ1 Vc; Vv; k2; {Vc − Vv, k
2}; ∇ · Ec; ∇ · Ev

Γ3

1√
3
(2k2

z − k2
x − k2

y), k2
x − k2

y;

1√
3
{Vc − Vv, 2k

2
z − k2

x − k2
y}, {Vc − Vv, k

2
x − k2

y};
1√
3
[2∂zEc

z − ∂xEc
x − ∂yEc

y ], ∂xEc
x + ∂yEc

y

Γ4

Bx, By, Bz ; (Vc − Vv)Bx, (Vc − Vv)By, (Vc − Vv)Bz;

Ec
zky − Ec

ykz, Ec
xkz − Ec

zkx, Ec
ykx − Ec

xky;

Ev
z ky − Ev

y kz, Ev
xkz − Ev

z kx, Ev
y kx − Ev

xky

Γ5

{ky , kz}, {kz, kx}, {kx, ky};
{Vc − Vv, ky, kz}, {Vc − Vv, kz, kx}, {Vc − Vv, kx, ky};
∂yEc

z , ∂zEc
x, ∂xEc

y ; ∂yEv
z , ∂zEv

x , ∂xEv
y

6.3.2 Rashba Coefficient and Ehrenfest’s Theorem

For many years, there has been an intense discussion in the literature concern-
ing the Rashba prefactor 〈r6c6c

41 Ez〉 [3,35,4,31,36,37,32,22,38,39,33,40,41,42,
43,44,45,46,47,48,49,8,7]. Ando et al. [35] argued that Rashba spin splitting
must be very small because, for a bound state, we have 〈Ez〉 = 0 (Ehrenfest’s
theorem: on average, there is no force acting on a bound state [62]).8 In fact,
this controversy was resolved by Lassnig [37], who pointed out that Rashba
spin splitting in the conduction band results from the electric field in the
valence band.

Löwdin Partitioning. We can understand most easily why Rashba spin
splitting of electrons is controlled by the field in the valence band by explicitly
taking into account the position dependence of the band edges Ec and Ev

in the simplified Kane Hamiltonian (5.11). It is convenient to define effective
potentials and effective fields for the conduction and valence band

Vc(r) = V (r) + Ec(r) − 〈Ec〉 and Ec = 1
e∇Vc = 1

e∇(Vc + Ec) , (6.25a)

Vv(r) = V (r) + Ev(r) − 〈Ev〉 and Ev = 1
e
∇Vv = 1

e
∇(Vv + Ev) . (6.25b)

Here 〈Ec〉 and 〈Ev〉 denote the mean values of the position dependent con-
duction band and valence band edges, respectively, such that

E0 = 〈Ec〉 − 〈Ev〉 (6.25c)

is independent of r. The relevant tensor operators are listed in Table 6.4.
8 Ehrenfest’s theorem applies to nondegenerate states only. This is the reason why

in (3.3) we have matrix elements of the Pauli SO coupling between p-like states,
but not between s-like states.
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We obtain, instead of (5.14), the following effective Schrödinger equation
for the electron states in the conduction band:{

P 2

3

[
2
E0

+
1

E0 +∆0

]
k2 + Vc −

P 2

3

[
1
E0

− 1
E0 +∆0

]
e

�
σ · B

+
eP 2

3

[
1
E2

0

− 1
(E0 +∆0)2

]
σ · k × Ev − eP 2

6

[
2
E2

0

+
1

(E0 +∆0)2

]
∇ · Ev

−P
2

3

[
2
E2

0

+
1

(E0 +∆0)2

] {
Vc − Vv, k

2
}

+
P 2

3

[
1
E2

0

− 1
(E0 +∆0)2

]
e

�
(Vc − Vv) σ · B

}
ψ̃c = Ẽ ψ̃c . (6.26)

We see here that both the Rashba SO coupling and the Darwin term depend
on the effective electric field Ev = (1/e)∇Vv in the valence band. We obtain
two additional terms in (6.26) that depend on the difference Vc −Vv between
the effective potentials in the conduction and valence bands. They have no
equivalent in (5.14), and they yield corrections to the kinetic energy and the
Zeeman term. We neglect these additional terms in the remaining discussion
in this work. We note, however, that these terms were always taken into
account in the numerical calculations presented in this work.

A similar analysis for the valence band states shows that the Rashba SO
coupling depends only on the electric field in the conduction band. We remark
that a similar analysis can also be performed for the Dirac equation. If we
assume that we have different potentials for the particles and antiparticles,
the Pauli SO coupling (1.1) and the Darwin term for the particles depend
only on the potential for the antiparticles.

Discussion. What is the difference between the electric fields in the con-
duction and valence band? To illustrate this point, we show in the central
part of Fig. 6.5 an electron wave function bound in a QW in the presence of
an external (or built-in) field Eext

z = (1/e)∂zV . Within the EFA, the effective
electric field Ec

z in the conduction band (upper part of Fig. 6.5) is the sum of
the electric field Eext

z and the contributions due to the position dependence
of the conduction band Ec(z),

Ec
z = (1/e)∂z(V + Ec) = Eext

z + (1/e)∂zEc(z) . (6.27)

At the left interface, we have a large negative contribution of (1/e)∂zEc(z)
to Ec

z . This contribution is weighted with the large probability amplitude
of the wave function at this interface, which cancels the remaining positive
contributions to Ec

z . Therefore, we indeed have

〈Ec
z〉 = 0 (Ehrenfest’s theorem) . (6.28)

Of course, we have the same electric field Eext
z acting in both the conduc-

tion and the valence band. However, the contributions from the interfaces to
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Fig. 6.5. Qualitative sketch of an elec-
tron wave function bound in a QW in the
presence of an external field (central part).
The upper and lower part show the effec-
tive electric fields E c

z and Ev
z in the conduc-

tion and valence bands, repectively. While
the expectation value of the wave function
with respect to Ec

z vanishes, i.e. 〈Ec
z〉 = 0

(Ehrenfest’s theorem), it is indeed the elec-
tric field Ev

z in the valence band that controls
the Rashba spin splitting of electron states.
Obviously, we have 〈Ev

z 〉c �= 0

(1/e)∂zEc(z) and (1/e)∂zEv(z) have opposite signs, compare the upper and
lower parts of Fig. 6.5. Thus we have

〈Ev
z 〉c �= 0 , (6.29)

where

Ev
z = (1/e)∂z(V + Ev) = Eext

z + (1/e)∂zEv(z) . (6.30)

In (6.29), the outer subscript c is used in order to emphasize that we evaluate
the expectation value using the wave function in the conduction band.

We can readily estimate the strength of the electric field Ev
z for a quasi-2D

system in the presence of an external (or built-in) field Eext
z . It follows from

(6.27) and (6.28) that we have

〈Eext
z 〉 = −〈(1/e)∂zEc〉 . (6.31)

If the conduction and valence band offsets are Σc and Σv, respectively, we
have

〈(1/e)∂zEv〉 = −Σv

Σc
〈(1/e)∂zEc〉 =

Σv

Σc
〈Eext

z 〉 . (6.32)

Combining (6.30) and (6.32), we obtain

〈Ev
z 〉c = 〈Eext

z 〉 + 〈(1/e)∂zEv〉 =
Σc +Σv

Σc
〈Eext

z 〉 . (6.33)
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Note that (6.26) and (6.33) imply that the SIA spin splitting is proportional
to the external electric field Eext

z .
In a single heterostructure or MOS inversion layer, the electric field Eext

z (z)
due to a Hartree potential VH(z) is given by

Eext
z (z) = (1/e)∂zVH(z) =

e

εε0

[
NA(zd − z) +Ns −

∫ z

−∞
dz′ ρ(z′)

]
, (6.34)

where NA is the acceptor concentration in the depletion layer, with depletion
length zd, and ρ(z) is the 2D charge density [63]. By partial integration, we
obtain [37]

〈Eext
z 〉 =

e

εε0

[
NA(zd − 〈z〉) +

Ns

2

]
, (6.35)

where the expectation values are evaluated using the charge density ρ(z).
Equations (6.33) and (6.35) are very convenient for estimating the electric
field 〈Ev

z 〉 in quasi-2D systems.9

6.3.3 The Rashba Model for the Γ v
8 Valence Band

The Rashba model (6.9) for SIA spin splitting of 2D electron systems is
well established in the literature. For 2D hole systems, on the other hand,
the situation is more complicated because of the fourfold degeneracy of the
topmost valence band Γ v

8 . Therefore, most often, hole spin splitting has been
evaluated only numerically [65,66,67,68,69,70,71]. In the following, we show
that the Rashba spin splitting of hole states is very different from the spin
splitting of electron states [7].

Symmetry Analysis of Rashba Spin Splitting of Hole Systems.
By inspection of Tables C.3 and C.4, we see that for a Γ8 band we have
two sets of matrices which transform like an axial vector (representation Γ4

of Td), namely J = (Jx, Jy, Jz) and J = (J3
x , J

3
y , J

3
z ). These matrices can

be combined with the axial vector k × E. We can construct a third invariant
from the symmetrized product of k and E, transforming according to Γ5, and
the third-order product of the angular-momentum matrices J , which is odd
with respect to time-reversal symmetry. Finally, we can obtain an invariant
proportional to E, but independent of the wave vector k, by combining the
components of E with the symmetrized products of the components of J . The
invariants for H r

8v 8v, together with those for H r
7v 7v and H r

8v 7v, are listed in
Table 6.5.10 Corresponding to these invariants, the numerical values of the
Rashba coefficients for various semiconductors are listed in Table 6.6.
9 Combined with the well-known analytical solution for the triangular-potential

approximation [63], (6.35) can be used also to obtain a simple self-consistent
estimate of the subband structure and 〈Eext

z 〉 in a single heterostructure [64].
10 We obtain similar expressions for the off-diagonal block H6c8v . However, they

contribute to SIA spin splitting in higher order, so we neglect them here.
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Table 6.5. Invariants for the Kane model which give rise to SIA spin splitting

H r
6c 6c = r6c6c

41 [(kyEz − kzEy)σx + cp]

H r
8v 8v = r8v8v

41 [(kyEz − kzEy)Jx + cp] + r8v8v
42

[
(kyEz − kzEy)J3

x + cp
]

+ r8v8v
51 [Ex{Jy, Jz} + cp] + r8v8v

52

[
(kyEz + kzEy){Jx, J

2
y − J2

z } + cp
]

H r
7v 7v = r7v7v

41 [(kyEz − kzEy)σx + cp]

H r
8v 7v = r8v7v

31 [(kxEx − kyEy)(Uxx − Uyy) + (2kzEz − kxEx − kyEy)Uzz]

+ r8v7v
41 [(kyEz − kzEy)Ux + cp]

+ r8v7v
51 [ExUyz + cp] + r8v7v

52 [(kyEz + kzEy)Uyz + cp]

Table 6.6. Rashba coefficients calculated according to (6.22) and (6.40) for the
invariants in Table 6.5, evaluated for various semiconductors (all in eÅ2, except for
r8v8v
51 and r8v7v

51 , which are in eÅ)

GaAs AlAs InAs InSb CdTe ZnSe

r6c6c
41 5.206 −0.243 117.1 523.0 6.930 1.057

r8v8v
41 −14.62 −1.501 −159.9 −548.5 −10.79 −4.099

r8v8v
42 −0.106 −0.0906 −0.162 −0.530 −0.0836 −0.0193

r8v8v
51 0.00418 0.0362

r8v8v
52 −0.00005 −0.0013

r7v7v
41 −9.720 −1.387 −43.35 −27.07 −4.124 −3.097

r8v7v
31 −3.87 i −0.255 i −87.7 i −392.0 i −5.16 i −0.788 i

r8v7v
41 −18.45 −2.336 −152.7 −432.6 −11.34 −5.433

r8v7v
51 −0.00807 −0.0967

r8v7v
52 −8.15 i −0.864 i −175.9 i −785.9 i −10.84 i −1.753 i

Similarly to the Rashba model for the conduction band Γ c
6 , the first term

in H r
8v 8v has axial symmetry, with the symmetry axis being the direction of

the electric field E. The second and fourth terms are anisotropic, i.e. they
depend on the crystallographic orientations of both E and k. Thus it follows,
without explicitly evaluating the perturbation theory, that the prefactors
r8v8v
42 and r8v8v

52 are always much smaller than r8v8v
41 . This is due to the fact that

the k · p coupling between Γ v
8 and Γ c

6 is isotropic, so that it can contribute to
r8v8v
41 but not to r8v8v

42 or r8v8v
52 . The latter prefactors stem from k · p coupling

to more remote bands, such as the higher conduction bands Γ c
8 and Γ c

7 of the
extended Kane model.

For the conduction band Γ c
6 , the Rashba Hamiltonian (6.9) is the lowest-

order invariant proportional to the electric field. It is linear in the wave vector
k. It is remarkable that, in the valence band, we have two invariants, propor-
tional to r8v8v

51 and r8v7v
51 , that are independent of the wave vector k. These

invariants have the same functional form as the so-called interface terms to
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be discussed in Sect. 6.5, so the discussion of r8v8v
51 and r8v7v

51 is postponed to
that section.

General Features of the Rashba Model for the Valence Band Γ v
8 .

For E = (0, 0, Ez), we obtain using an explicit matrix notation,

H r
8v 8v = r8v8v

41 Ez




0 i
√

3
2 k− 0 0

− i
√

3
2
k+ 0 ik− 0

0 −ik+ 0 i
√

3
2 k−

0 0 − i
√

3
2
k+ 0




+ r8v8v
42 Ez




0 7i
√

3
8

k− 0 − 3i
4
k+

− 7i
√

3
8 k+ 0 5i

2 k− 0

0 − 5i
2
k+ 0 7i

√
3

8
k−

3i
4
k− 0 − 7i
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4
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√
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 . (6.36)

Here the first term couples the two LH states (m = ±1/2) and the HH
states (m = ±3/2) to the LH states. But there is no k-linear splitting of the
HH states proportional to the dominant coefficient r8v8v

41 . Only the second
and third matrices, with the small prefactors r8v8v

42 and r8v8v
52 , contain a k-

linear coupling of the HH states. Assuming r8v8v
42 = r8v8v

52 = 0, we obtain the
following for the HH spin splitting to lowest order in k‖:

E r
HH(k‖) ∝ ±〈r8v8v

41 Ez〉k3
‖ . (6.37a)

In particular, we have no k-linear splitting (and r8v8v
42 = r8v8v

52 ≡ 0) if we
restrict ourselves to the Luttinger Hamiltonian [72], which includes Γ c

8 and
Γ c

7 by means of second-order perturbation theory. Accurate numerical com-
putations show that the dominant part of the k-linear splitting of the HH
states is due to BIA. However, for typical densities and typical values of Ez,
this k-linear splitting is rather small (see Fig. 6.6). For the LH states, we
have, to lowest order in k‖,

E r
LH(k‖) ∝ ±〈r8v8v

41 Ez〉k‖ . (6.37b)

But even in this case it turns out that the cubic splitting often dominates over
the linear term (6.37b). Thus we have a qualitative difference between the
spin splitting of electrons (and LH states), which is proportional to k‖, and
the splitting of HH states, which is essentially proportional to k3

‖. A linear
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splitting is most important in the low-density regime, whereas a splitting
proportional to k3

‖ becomes negligible for small densities. Note that for 2D
hole systems the first subband is usually HH-like so that the SIA spin splitting
is given by (6.37a) for low densities.

The cubic splitting of holes reflects the general fact that hole states (va-
lence band Γ v

8 ) have an angular momentum j = 3/2. In this case subband
quantization (which is usually the dominant effect) results in HH–LH split-
ting, where HH states have a z component of angular momentum m = ±3/2,
while LH states have m = ±1/2, with the z axis pointing in the growth direc-
tion; see Sect. 4.5.3. Therefore, subband quantization and HH–LH splitting
imply that we have a predefined quantization axis for angular momentum
independent of any B = 0 spin splitting. Similarly to the case of electrons
(see Sect. 6.6.1 and Fig. 6.2), the spin quantization axis implied by the first
term in (6.36) is an in-plane vector. But it is not possible to have an in-plane
quantization axis for angular momentum on top of the perpendicular quan-
tization axis due to HH–LH splitting; see Sect. 4.5.3. Therefore, Rashba spin
splitting of HH states is essentially a higher-order effect. On the other hand,
the small but nonzero k-linear spin splitting of HH states is due to the fact
that angular momentum is merely an “almost good” quantum number; see
Sect. 3.6. A more detailed discussion of the prefactors in (6.37) will be given
later in this section.

From (6.37a), we obtain an HH subband dispersion E±(k‖) = 〈µh〉k2
‖ ±

βk3
‖, where µh (times 2/�2) is the reciprocal effective mass and β is the

effective Rashba coefficient for the cubic splitting. This dispersion implies
that the densities N± in the spin-split subbands are given by

N± =
Ns

2
∓ βNs√

2 〈µh〉X
√
πNs(6 − 4/X) , (6.38a)

where

X = 1 +

√
1 − 4πNs

(
β

〈µh〉

)2

. (6.38b)

The spin-split densities according to (6.38) are substantially different from
(6.18) for a linear splitting. For electrons and a fixed electric field Ez but
a varying Ns the difference ∆N = |N+ − N−| increases like N1/2

s , whereas
for HH subbands it increases like N3/2

s (see also (6.51) and (6.54)). Using a
fixed density Ns but a varying Ez, it is more difficult to detect the difference
between (6.18) and (6.38). In both cases a power expansion of ∆N gives
∆N = a1|Ez | + a3|Ez|3 + O(|Ez|5), where a3 < 0 for electrons and a3 > 0 for
HH subbands.

Solving (6.38) for the Rashba coefficient β, we obtain

β =

√
2
π
〈µh〉

Ns(Ñ+ − Ñ−) + ∆N(Ñ+ + Ñ−)
6N2

s + 2 ∆N2
, (6.39)



90 6 Inversion-Asymmetry-Induced Spin Splitting

where Ñ± =
√
N ± ∆N . This result should be compared with (6.19) for a

linear splitting.

Löwdin Partitioning for the Quasi-Bulk Hamiltonian. Once again, we
can use Löwdin partitioning to evaluate the Rashba coefficients in Table 6.5.
For the quasi-bulk Hamiltonian, we obtain, in lowest order,

r8v8v
41 = − eP 2

3E2
0

+
eQ2

9

[
10
E

′2
0

− 7
(E′

0 +∆′
0)2

]
, (6.40a)

r8v8v
42 = −4eQ2

9

[
1
E

′2
0

− 1
(E′

0 +∆′
0)2

]
, (6.40b)

r8v8v
51 =

2i
9

eQ∆−

(E′
0 +∆′

0)2
, (6.40c)

r8v8v
52 =

2
√

3 i
9

eQ∆−Ck

(E′
0 +∆′

0)3
, (6.40d)

r7v7v
41 = −e

3

[
P 2

(E0 +∆0)2
− Q2

(∆0 + E′
0 +∆′

0)2

]
, (6.40e)

r8v7v
31 = − ieP 2

4

[
1
E2

0

− 1
(E0 +∆0)2

]

+
ieQ2

4

[
1

(E′
0 +∆′

0)2
− 1

(∆0 + E0 +∆0)2

]
, (6.40f)

r8v7v
41 = −eP

2

4

[
1
E2

0

+
1

(E0 +∆0)2

]
,

+
eQ2

4

[
1

(E′
0 +∆′

0)2
+

1
(∆0 + E0 +∆0)2

]
, (6.40g)

r8v7v
51 =

ieQ∆−

3

[
1

(∆0 + E′
0 +∆′

0)2
− 2
E

′2
0

]
, (6.40h)

r8v7v
52 = − ieP 2

2

[
1
E2

0

− 1
(E0 +∆0)2

]

− ieQ2

2

[
1

(E′
0 +∆′

0)2
− 1

(∆0 + E0 +∆0)2

]
. (6.40i)

These formulas have been evaluated in Table 6.6 for various semiconductors.
Similarly to BIA spin splitting, we obtain the largest numerical values for
those coefficients (r8v8v

41 , r7v7v
41 , and r8v7v

41 ) which are nonzero even if the SO
gaps of the bulk bands, ∆0, ∆′

0, and ∆−, are set to zero. But we obtain SIA
spin splitting only because of the nonzero matrix elements ∆0, ∆′

0, and ∆−

(and also Ck) of the SO interaction; see Sect. 6.1.
The formulas in (6.40) have been obtained by means of third-order per-

turbation theory, except for the coefficient r8v8v
52 , which requires fourth-order
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perturbation theory. We can see in Table 6.6 that r8v8v
52 is several orders of

magnitude smaller than all the other coefficients, so that often this term can
be neglected. Our expressions for the coefficients r8v8v

51 , r8v8v
52 , and r8v7v

51 van-
ish for systems with a diamond structure. While the invariants weighted by
r8v8v
51 and r8v7v

51 are due to the combined effect of BIA and SIA, the invari-
ant weighted by r8v8v

52 would be symmetry-allowed even in a system with a
diamond structure.

Rashba Spin Splitting of HH and LH States. Quantum confinement
in a quasi-2D system (or strain applied to a bulk crystal) gives rise to a
finite gap between HH and LH states. This HH–LH splitting corresponds to
a quantization of angular momentum j = 3/2 perpendicular to the plane of
the 2D system, with a z component of angular momentum m = ±3/2 for the
HH states and m = ±1/2 for the LH states. The point group of the system
is reduced from Td to a subgroup of Td that depends on the crystallographic
orientation of the quantization axis. In the following we shall focus on 2D
systems grown in the direction [001], so that the point group becomes D2d

(see Table 3.4). We remark that we obtain similar results for other growth
directions.

The theory of invariants provides a natural language to describe the HH–
LH splitting and the accompanying phenomena in quasi-2D systems. The 2×2
subspaces of LH states and electron states transform according to the double-
group representation Γ6 of D2d, whereas the HH states transform according
to Γ7. The symmetrized basis matrices for these bands are listed in Table 6.7.
In Table 6.8, we have listed the irreducible tensor components for the point
group D2d. Finally, we give in Table 6.9 the invariants that characterize SIA
spin splitting. Note that the invariants proportional to r6c6c

51 , r6c6c
52 , r6c6c

53 ,
r7h7h
54 , r6l6l

51 , r6l6l
52 , and r6l6l

53 have axial symmetry; see (3.10). As usual, we can
match the results of Löwdin perturbation theory against the invariants in
Table 6.9. However, it turns out that the results for the expansion coefficients
depend qualitatively on the model for the bulk k · p Hamiltonian.

Rashba Coefficients of 2D Holes in the Extended Kane Model. Starting from
the extended Kane Hamiltonian, we obtain the following in fifth-order pertur-
bation theory for the coefficients of the HH and LH states listed in Table 6.9:

r7h7h
51 =

eQ2

3

(
1

∆2
hL

− 1
∆2

hS

)
, (6.41a)

r7h7h
52 = 0 , (6.41b)

r7h7h
53 =

eP 2Q2

6∆hc

(
1

∆2
hs∆hL

− 1
∆2

hl∆hS

)
+
eQ4

6

(
1

∆2
hs∆

2
hL

− 1
∆2

hl∆
2
hS

)
,

(6.41c)
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Table 6.7. Symmetrized matrices for the matrix expansion of the blocks Hαβ for
the point group D2d

Block Representations Symmetrized matrices

H66 Γ6 × Γ ∗
6 Γ1 : �2×2

= Γ1 + Γ2 + Γ5 Γ2 : σz

Γ5 : σx,−σy

H77 Γ7 × Γ ∗
7 Γ1 : �2×2

= Γ1 + Γ2 + Γ5 Γ2 : σz

Γ5 : σx, σy

Table 6.8. Irreducible tensor components for the point group D2d

Γ1 1; k2
x + k2

y; k2
z ; Ez{kx, ky}

Γ2 {k2
x − k2

y, kz}; Ez{kx + ky , kx − ky}
Γ4 kz; Ez

Γ5

kx, ky; {k2
z , kx}, {k2

z , ky}; {k2
y, kx}, {k2

x, ky}; k3
x, k

3
y;

Ezky , Ezkx; Ez{k2
z , ky}, Ez{k2

z , kx};
Ez{k2

y + k2
x, ky}, Ez{k2

x + k2
y, kx}; Ez{k2

y − 3k2
x, ky}, Ez{k2

x − 3k2
y , kx}

Table 6.9. Invariants for the point group D2d which give rise to SIA spin splitting

H r
6c 6c = r6c6c

51 i (k−σ+ − k+σ−)Ez + r6c6c
52 i

({k2
z , k−}σ+ − {k2

z , k+}σ−
) Ez

+ r6c6c
53 i

({k+, k
2
−}σ+ − {k2

+, k−}σ−
) Ez + r6c6c

54 i
(
k3
+σ+ − k3

−σ−
) Ez

H r
7h 7h = r7h7h

51 i (k−σ− − k+σ+) Ez + r7h7h
52 i

({k2
z , k−}σ− − {k2

z , k+}σ+

) Ez

+ r7h7h
53 i

({k+, k
2
−}σ− − {k2

+, k−}σ+

) Ez + r7h7h
54 i

(
k3
+σ− − k3

−σ+

) Ez

H r
6l 6l = r6l6l

51 i (k−σ+ − k+σ−) Ez + r6l6l
52 i
({k2

z , k−}σ+ − {k2
z , k+}σ−

) Ez

+ r6l6l
53 i
({k+, k

2
−}σ+ − {k2

+, k−}σ−
) Ez + r6l6l

54 i
(
k3
+σ+ − k3

−σ−
) Ez

r7h7h
54 =

eP 4

6∆2
hc

(
1
∆2

hl

− 1
∆2

hs

)
+
eP 2Q2

6∆hc

(
1

∆2
hl∆hS

− 1
∆2

hs∆hL

)
, (6.41d)

r6l6l
51 =

e

3

(
Q2

∆2
lH

− P 2

∆2
lc

)
, (6.41e)

r6l6l
52 = − eP 4

3∆2
ls∆

2
lc

+
eQ4

3∆2
ls∆

2
lH

, (6.41f)

r6l6l
53 = − eP 4

6∆2
lc

(
1
∆2

lh

+
1
∆2

ls

)
− eP 2Q2

6∆2
lh∆lc∆lS

+
eQ4

6∆2
ls∆

2
lH

, (6.41g)

r6l6l
54 =

eQ2

6∆2
lh∆lS

(
P 2

∆lc
+

Q2

∆lS

)
, (6.41h)
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where we have omitted those terms that contain the fundamental gap more
than twice. We can clearly see that the SIA spin splitting of HH states is
mediated by the k · p coupling to the LH (and split-off) states, as for each
term of the dominant coefficient r7h7h

54 two of the energy denominators are
∆hl or ∆hs.

Rashba Coefficients of 2D Holes in the Luttinger Model. Frequently, subband
calculations for 2D hole systems are based on the simpler 4× 4 or 6× 6 Lut-
tinger Hamiltonian (see Sect. 3.5) instead of the more complete extended
Kane model [65, 73, 66]. Even though the Luttinger Hamiltonian is able to
describe many important features of 2D hole systems, it is known that sub-
stantial differences can occur between calculations based on H8v8v and on
the Kane model [69]. Therefore we shall investigate the question of to what
extent the Luttinger Hamiltonian can describe SIA spin splitting of 2D hole
systems. We obtain the following for the Rashba coefficients in third-order
perturbation theory:

r7h7h
51 = 0 , (6.42a)

r7h7h
52 = 0 , (6.42b)

r7h7h
53 =

3
4
e�4

m2
0

γ3 (γ2 − γ3)
(

1
∆2

hl

− 1
∆2

hs

)
, (6.42c)

r7h7h
54 =

3
4
e�4

m2
0

γ3 (γ2 + γ3)
(

1
∆2

hl

− 1
∆2

hs

)
, (6.42d)

r6l6l
51 = 0 , (6.42e)

r6l6l
52 = −3

e�4

m2
0

γ2γ3

∆2
ls

, (6.42f)

r6l6l
53 =

3
2
e�4

m2
0

γ3

[(
1

2∆2
lh

+
1
∆ls

)
γ2 +

γ3

2∆2
lh

]
, (6.42g)

r6l6l
54 = −3

4
e�4

m2
0

γ3 (γ2 − γ3)
∆2

lh

. (6.42h)

In r7h7h
51 and r6l6l

51 , we have neglected some very small k-linear terms due to
the combined effect of BIA and SIA, which are proportional to C2

k . These
terms exist for both HH and LH states. Note that the Luttinger parameters
γ2 and γ3 do not distinguish between H , L, and S (see Table C.9). If we
subsume under E′

0 the energy gaps between h and l states on the one hand
and H , L, and S states on the other hand then the coefficients (6.41) derived
from the extended Kane Hamiltonian are exactly equal to those in (6.42)
derived from the 6 × 6 Luttinger Hamiltonian. While we have r6l6l

51 = 0, the
invariant weighted by r6l6l

52 gives rise to a k-linear spin splitting of the LH
states because kz is quantized. However, it is remarkable that, even for the
LH states, there is no SIA spin splitting linear in k (i.e. r6l6l

52 = 0) if we
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work with a 4× 4 Luttinger Hamiltonian that does not take into account the
split-off band Γ v

7 .

Subband-Dependent Rashba Coefficients of 2D Holes in the Luttinger Model.
A more detailed understanding of SIA spin splitting of hole states requires
that we explicitly take into account the subband states. In lowest-order per-
turbation theory, we obtain the following for the Rashba spin splitting of the
HH states in a QW grown in the [001] direction:

r7h7h
51 = 0 , (6.43a)

r7h7h
52 = 0 , (6.43b)

r7h7h
53 =

e�4

m2
0

γ3 (γ2 − γ3)Dh
α , (6.43c)

r7h7h
54 =

e�4

m2
0

γ3 (γ2 + γ3)Dh
α , (6.43d)

where

Dh
α =

3i
4

∑
β �=α

[
〈hα|z|hβ〉〈lβ |kz |hα〉 − 〈hα|kz |lβ〉〈hβ |z|hα〉

∆hh
αβ ∆

hl
αβ

− 〈hα|z|hβ〉〈hβ |kz|lα〉 − 〈lα|kz|hβ〉〈hβ |z|hα〉
∆hh

αβ ∆
hl
αα

+
〈lα|z|lβ〉〈lβ |kz|hα〉 − 〈hα|kz|lβ〉〈lβ |z|hα〉

∆hl
αα∆

hl
αβ

]
, (6.43e)

and we have assumed that 〈hα|lβ〉 = δαβ. For the lowest HH subband (α = 1),
we obtain

Dh
1 = −3a

4

[
1

∆hh
12 ∆

hl
12

− 1
∆hh

12 ∆
hl
11

+
1

∆hl
11∆

hl
12

]
, (6.44)

where a = 1 for a parabolic QW and a = 256/(27π2) ≈ 0.96 for an infinitely
deep rectangular well. More explicitly, we have

Dh
1 =




−m
2
0

�4

256w4

9π2 (γ1 + 2γ2) (3γ1 − 10γ2)
rectangular QW

−m
2
0

�4

6w4

(γ1 + 2γ2) (γ1 − 4γ2)
parabolic QW

, (6.45)

where w denotes the width of the QW.
For LH subbands, we obtain

r6l6l
51 = 0 , (6.46a)

r6l6l
52 = 0 , (6.46b)
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r6l6l
53 =

e�4

m2
0

γ3 (γ2 + γ3)Dl
α , (6.46c)

r6l6l
54 =

e�4

m2
0

γ3 (γ2 − γ3)Dl
α , (6.46d)

where Dl
α has the same structure as Dh

α in (6.43e) with the HH and LH
indices interchanged.

In (6.43) and (6.46), we have assumed that the crystallographic growth
direction is the high-symmetry direction [001]. For low-symmetry growth di-
rections such as [113], there is a weak, anisotropic k-linear spin splitting of
the HH states proportional to the small quantity δ = γ3 − γ2 (irrespective of
whether the split-off valence band Γ v

7 is taken into account or not). The LH
states then have a larger k-linear spin splitting.

Example: SIA Spin Splitting in a GaAs–Al0.5Ga0.5As Heterostruc-
ture. As an example, we show in Fig. 6.6 the self-consistently calculated [60]
anisotropic dispersion E±(k‖), DOS effective mass m∗/m0, and spin split-
ting E+(k‖) − E−(k‖) of the topmost HH subband of a GaAs–Al0.5Ga0.5As
heterostructure. The calculation shown in Fig. 6.6a was based on the 14× 14
extended Kane Hamiltonian (3.2). It took both SIA and BIA fully into ac-
count. For comparison, we have used in Fig. 6.6b the 4× 4 Luttinger Hamil-
tonian, which takes into account BIA spin splitting only via the k‖-linear
terms proportional to Ck. The weakly divergent van Hove singularity of the
DOS effective mass at the subband edge indicates that, basically, the spin
splitting is proportional to k3

‖, and the k‖ linear terms are rather small. This
is clearly visible also in the upper right parts of Figs. 6.6a,b, where we show
the spin splitting. As we observe essentially the same van Hove singularity in
Fig. 6.6a and Fig. 6.6b, the dominant part of the k‖-linear splitting must be
due to BIA (i.e. Ck). This was confirmed by numerical calculations based on
k · p models that take into account SIA but not BIA.

In the upper, right parts of Figs. 6.6a,b, the dotted lines show the spin
splitting of the first LH subband. In Fig. 6.6a, the splitting for small k‖ is a
linear function of k‖, but for larger k‖ it is dominated by terms of higher order
in k‖ owing to both HH–LH mixing and nonparabolicity. On the other hand,
for the calculation shown in Fig. 6.6b, which was based on the Luttinger
Hamiltonian, we obtain an LH splitting proportional to k3

‖.
Only for the crystallographic growth directions [001] and [111] are the hole

subband states at k‖ = 0 pure HH and LH states. For low-symmetry growth
directions such as [113] and [110], we have mixed HH–LH eigenstates even
at k‖ = 0, though often the eigenstates can be labeled by their dominant
spinor components (see Sect. 4.5.3).11 The HH–LH mixing adds a k-linear

11 In experiments with 2D hole systems, the low-symmetry growth direction [113]
has recently been preferred over the the high-symmetry direction [001] because of
the higher sample mobility that can be achieved with [113]-grown samples [74,75].
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Fig. 6.6. Growth direction [001]: self-consistently calculated anisotropic disper-
sion E±(k‖) (lower right), DOS effective mass m∗/m0 (lower left), spin splitting
E+(k‖) − E−(k‖) (upper right), and dispersion E±(k‖) in the vicinity of k‖ = 0
(upper left), of the topmost HH subband of a [001]-grown GaAs–Al0.5Ga0.5As het-
erostructure with Ns = 2×1011 cm−2 and |NA−ND| = 2×1016 cm−2: (a) calculated
by means of the 14× 14 extended Kane model, and (b) calculated by means of the
4× 4 Luttinger Hamiltonian. Different line styles correspond to different directions
of the in-plane wave vector k‖, as indicated. In the lower parts of the figures, the
dotted line indicates the Fermi energy EF. In the upper right parts, the dotted line
shows the spin splitting of the first LH subband for k‖ ‖ [100]. (a) taken from [7].
c© (2000) by the American Physical Society

term to the splitting (6.37a) of the states that are dominantly HH-like. Often
this term exceeds the contribution of 〈r8v8v

42 Ez〉 and 〈r8v8v
52 Ez〉 to the k-linear

splitting. However, for typical values of the Fermi wave vector, this effect
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Fig. 6.7. Growth direction [113]: self-consistently calculated anisotropic disper-
sion E±(k‖) (lower right), DOS effective mass m∗/m0 (lower left), spin splitting
E+(k‖) − E−(k‖) (upper right), and dispersion E±(k‖) in the vicinity of k‖ = 0
(upper left), of the topmost HH subband of a [113]-grown GaAs–Al0.5Ga0.5As het-
erostructure with Ns = 2×1011 cm−2 and |NA−ND| = 2×1016 cm−2: (a) calculated
by means of the 14× 14 extended Kane model, and (b) calculated by means of the
4× 4 Luttinger Hamiltonian. Different line styles correspond to different directions
of the in-plane wave vector k‖, as indicated. In the lower parts of the figures, the
dotted line indicates the Fermi energy EF. In the upper right parts, the dotted lines
show the spin splitting of the first LH subband for k‖ ‖ [332] and k‖ ‖ [110]

is still small when compared with the cubic splitting. This can be seen in
Fig. 6.7, where we show the spin splitting for a quasi-2D hole system in a
GaAs QW grown in the crystallographic direction [113]. Note that HH–LH
mixing [66] at nonzero k‖ does not affect our general conclusions concerning
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the HH spin splitting, because for larger k‖ the cubic term always dominates.
A significant spin splitting linear in k‖ can be obtained in 2D hole systems
in strained QWs, where the order of the topmost HH and LH subbands can
be reversed [76].

6.3.4 Conceptual Analogies Between SIA Spin Splitting
and Zeeman Splitting

Both the SIA spin splitting and the effective g factors in semiconductors
are a consequence of SO interaction. Lassnig [37] pointed out that, in fact,
the B = 0 spin splitting of electrons can be expressed in terms of a position-
dependent effective g factor g∗(z). A striking similarity between Zeeman split-
ting and Rashba spin splitting also became visible in our derivation of the
Rashba coefficient in Sect. 5, as we saw that the Rashba coefficient reflects
the noncommutativity of k and r, while the effective g factor reflects the
noncommutativity (2.17) of the components of k.

In the following we shall discuss the close relationship between Zeeman
splitting and B = 0 spin splitting from a different point of view, focusing
on the invariant expansion of these terms. Note that in the presence of an
external magnetic field B we have k × k = (−ie/�)B, and the Zeeman
splitting in the Γ c

6 conduction band can be expressed as

Hz
6c =

i�
e

g∗

2
µB σ · k × k =

g∗

2
µB σ · B , (6.47)

where µB is the Bohr magneton. Thus, apart from a prefactor, we can obtain
the Rashba term (6.9) from (6.47) by replacing one of the k’s with iE . In the
Γ v

8 valence band, we have two invariants for the Zeeman splitting [34, 72]:

Hz
8v = −2κµB J · B − 2qµB J · B , (6.48)

where J = (Jx, Jy, Jz) and J = (J3
x , J

3
y , J

3
z ). Once again, this equation has

the same structure as the Rashba Hamiltonian for the Γ v
8 valence band; see

Table 6.5. (We neglect here the third invariant, proportional to r8v8v
52 , because

this coefficient is much smaller than r8v8v
41 and r8v8v

42 ; see Table 6.6.) Using the
theory of invariants, we can understand that these formal similarities between
Zeeman splitting and SIA spin splitting reflect the fact that both the wave
vector k and the electric field E are polar vectors (transforming according
to the irreducible representation Γ5 of Td), so that the higher-order tensor
components of the wave vector k and the mixed components containing both
k and E must have the same structure. By inspection of Table C.4, we see
that the analogue of the invariant r8v8v

52 [(kyEz+kzEy){Jx, J
2
y−J2

z}+c.p] reads
[{ky, kz}{Jx, J

2
y −J2

z }+c.p]. However, in a diagonal block such as H8v8v , such
an invariant is forbidden by time-reversal symmetry [77].

Finally, we would like to note that in (6.48) the first term is the isotropic
part, and the second term is the anisotropic part. It is well known that
for all common semiconductors for which (6.48) is applicable, the dominant
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contribution to Hz
8v is given by the first term, proportional to κ, whereas

the second term is rather small [34, 72]. Analogously to r8v8v
41 and r8v8v

42 , the
isotropic k · p coupling between the bands Γ v

8 and Γ c
6 contributes to κ but

not to q. The latter stems from k · p coupling to more remote bands such as
Γ c

8 and Γ c
7 .

6.4 Cooperation of BIA and SIA

In the preceding two sections we discussed BIA and SIA spin splitting sepa-
rately. While BIA is essentially a fixed property of a given sample, SIA can
be changed, for example by external gates. However, the significance of the
two terms varies depending on the material, the density, and the particular
geometry of the sample under investigation. In Sect. 6.4.1 we discuss how the
interference of BIA and SIA changes the B = 0 spin splitting qualitatively
compared with the case where only BIA or SIA is present. Next we discuss
in Sect. 6.4.2 how B = 0 spin splitting changes when the asymmetry of the
sample is changed while keeping the density constant. Finally, we discuss in
Sect. 6.4.3 the density dependence of SIA spin splitting.

6.4.1 Interference of BIA and SIA

In quasi-2D systems lifting of the inversion symmetry due to either BIA or
SIA results in different point groups for a quantum structure; see Table 3.4.
A symmetric QW with a diamond structure and growth direction [001] has
the point group D4h. BIA reduces the point group to D2d, whereas SIA
reduces the point group to C4v. If we have both BIA and SIA we obtain
the point group C2v. These different point groups can manifest themselves
in different spin splitting patterns of B = 0 spin splitting. However, we need
to take into account the fact that the lowest-order invariants for BIA and
SIA spin splitting can have higher symmetries than those we expect from
Table 3.4. For example, the 2 × 2 Hamiltonian for a 2D electron system,
up to second order in k including the Rashba term, has axial symmetry
C∞v instead of, for example, C4v as predicted by Table 3.4 for the growth
direction [001].

More explicitly, the BIA and SIA spin splittings of a 2D electron system
are given by (6.4) and (6.11), respectively, and it was seen that, to leading
order in k‖, the spin splitting was independent of the direction of k‖. If we
have both BIA and SIA then the spin splitting becomes anisotropic even in
the linear term [47, 78]. Combining the Rashba term and the Dresselhaus
term, we obtain

Er,b
6c6c(k‖) = ± k‖

{
α2 + αη

(
k2
‖ − 2〈k2

z〉
)
sin(2ϕ)

+η2
[
〈k2

z〉2 +
(

1
4k

2
‖ − 〈k2

z〉
)
k2
‖ sin(2ϕ)2

]}1/2

(6.49a)
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≈ ± k‖
√
α2 − 2αη〈k2

z〉 sin(2ϕ) + η2〈k2
z〉2 ±O(k3

‖) , (6.49b)

where k‖ = k‖(cosϕ, sinϕ, 0), and we have used for brevity α = 〈r6c6c
41 Ez〉

and η = 〈b6c6c
41 〉. It will become even more explicit that the interference of

the Dresselhaus and Rashba terms reflects the different symmetries of these
terms when we study in Sect. 6.6.1 the spin orientation due to BIA and SIA.
Expressions similar to (6.49) can be derived for 2D hole systems also.

6.4.2 BIA Versus SIA: Tunability of B = 0 Spin Splitting

What is the relative importance of BIA and SIA for the B = 0 spin splitting
in quasi-2D systems from a quantitative point of view? A general answer to
this question is not possible, as we have to take into account both the band
structure parameters of the host materials and the detailed geometry of the
system under investigation.

BIA spin splitting is essentially a fixed material property, though its rele-
vance varies with the well width and Fermi wave vector; see Sect. 6.2.2. SIA
spin splitting, on the other hand, depends on the electric field Ez that charac-
terizes the inversion asymmetry of the sample. Therefore, SIA spin splitting
is tunable by means of external gates that change the field Ez in the sample.
This was first demonstrated by Nitta et al. [12], who put a gate on the top of
the sample. However, a single front or back gate changes both the asymmetry
of the sample and the 2D density in the well. We can separate these effects
by means of a QW with both a front and a back gate [30] so that the SIA
can be tuned continuously while keeping the total density and BIA constant
(Fig. 6.8).

Here we shall explore B = 0 spin splitting for various 2D systems assum-
ing that the asymmetry of the sample is tuned as depicted in Fig. 6.8 while
keeping the density constant. First we shall consider 2D electron systems.
In Fig. 6.9, we show the self-consistently calculated spin splitting ∆N/Ns as
a function of the external electric field Eext

z in several QWs (see caption for
details). The external electric field Eext

z is defined relative to the symmetric
configuration in Fig. 6.8. Different line styles in Fig. 6.9 correspond to differ-
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Fig. 6.8. In a QW with both a front and a
back gate one can continuously tune the in-
version asymmetry while keeping the total
density constant [30]



6.4 Cooperation of BIA and SIA 101

(a) (b)

(c) (d)

(e)

Fig. 6.9. Self-consistently calculated spin splitting ∆N/Ns of 2D electron systems
as a function of the external electric field Eext

z in (a) GaAs–Al0.3Ga0.7As, (b) InAs–
AlSb, (c) and (d) Ga0.47In0.53As–Al0.47In0.53As, and (e) InSb QWs with well width
w = 150 Å except for (d), where w = 200 Å. Different line styles correspond
to different densities Ns as indicated. Open circle indicate the spin splitting that
corresponds to the self-consistent field (6.50)
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ent densities Ns, as indicated. Only the lowest subband is occupied for the
densities and well widths considered here.

As expected, the spin splitting increases as a function of Eext
z . Further-

more, we see that both the BIA- and SIA-induced spin splittings decrease
when the density Ns is increased. This reflects the fact, discussed in Sect. 5,
that a k-linear spin splitting is most important at small densities. Note that
in Fig. 6.9 we have calculated ∆N/Ns up to fairly high electric fields Eext

z

in order to illustrate the general trends of the B = 0 spin splitting. In ex-
periments with QWs the values of Eext

z are typically of the order of several
kV/cm (see e.g. Fig. 9.6b).

We shall compare Fig. 6.9 with the typical electric fields that can be
achieved by means of asymmetric doping, which gives rise to an asymmetric
self-consistent Hartree potential. If a QW is doped in only one barrier, then
the Hartree potential is essentially flat in the other barrier. In this configu-
ration, the self-consistent mean electric field is given by (6.35) with NA = 0,
i.e. we have

〈Ez〉 ≈
e

εε0

Ns

2
. (6.50)

The spin splittings that correspond to the field (6.50) have been marked by
open circles in Fig. 6.9. These values are in good agreement with fully self-
consistent calculations for asymmetrically doped QWs. In single heterostruc-
tures with NA > 0, it is possible to achieve electric fields even larger than
those given by (6.50).

In GaAs electron systems (Fig. 6.9a), we have a significant contribution
to the B = 0 spin splitting from BIA. Only for large electric fields and high
densities is there a large contribution to the B = 0 spin splitting from SIA.
It was the latter regime that was explored by Pfeffer and Zawadzki [40] when
they concluded that B = 0 spin splitting is typically dominated by SIA. In
InAs, on the other hand (Fig. 6.9b), low densities and fairly small electric
fields are sufficient to enter the regime where the B = 0 spin splitting is
dominated by SIA. Ga0.47In0.53As (Figs. 6.9c,d) is an intermediate system
where, typically, both BIA and SIA must be taken into account. We see
also that BIA is more important in narrow wells (Fig. 6.9c) than in wide
wells (Fig. 6.9d), consistent with (6.4). For large electric fields � 30 kV/cm
the well width becomes irrelevant because the tilted QW behaves essentially
like a triangular single heterostructure. In Fig. 6.9e, finally, we present for
comparison the B = 0 spin splitting in an InSb QW. Up to now, only highly
strained InSb–AlxIn1−xSb QWs have been investigated experimentally [79,
80]. In Fig. 6.9e we have assumed that we have an InSb QW with infinite
barriers. It is remarkable that in the narrow-gap semiconductor InSb, up
to high electric fields, the dominant contribution to B = 0 spin splitting is
from BIA.

Next we shall discuss the interplay of BIA and SIA for quasi-2D hole
systems. In Fig. 6.10, we show the self-consistently calculated spin splitting
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(a) (b)

(c)

(d)

Fig. 6.10. Self-consistently calculated spin splitting ∆N/Ns of 2D hole systems
in GaAs–Al0.3Ga0.7As QWs as a function of the external electric field Eext

z . In
(a) and (b) we have considered QWs grown in the crystallographic direction [001];
in (c) and (d) we have assumed that the growth direction is [113]. In (a) and (c)
we have assumed a well width w = 150 Å, in (b) and (d) we have used w = 200 Å.
The different line styles have the same meaning as in Fig. 6.9. In (b) and (d), note
the different scales on the horizontal axes for small and large absolute values of
Eext

z . Open circles indicate the spin splitting that corresponds to the self-consistent
field (6.50)
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∆N/Ns in GaAs–Al0.3Ga0.7As QWs as a function of the electric field Eext
z .

In Figs. 6.10a,c, we have assumed a well width w = 150 Å; in Figs. 6.10b,d
we have used w = 200 Å. In Figs. 6.10a,b, we have considered QWs grown in
the crystallographic direction [001]; in Figs. 6.10c,d, we have assumed that
the growth direction is [113]. Note that in the latter case, positive and nega-
tive values of Eext

z are not equivalent. The different line styles have the same
meaning as in Fig. 6.9. For the larger well width w = 200 Å, we did not
consider Ns = 5 × 1011 cm−2, because here the second subband becomes
occupied. For the wide wells, we have also used different scales on the hor-
izontal axes for small and large absolute values of Eext

z . We emphasize that
∆N/Ns is a smooth function of Eext

z . The spin splitting that corresponds to
the self-consistent mean electric field (6.50) has again been marked by open
circles in Fig. 6.10.

Unlike the B = 0 spin splitting of electrons, both the BIA and the SIA spin
splittings of holes increase with density, which indicates that the dominant
contributions to spin splitting are cubic in k. While the BIA-induced spin
splitting increases with increasing well width, the SIA-induced spin splitting
decreases. For larger values of Eext

z , the spin splitting ∆N/Ns decreases when
the electric field Eext

z is increased. This negative differential Rashba effect has
the same origin as the anomalous density dependence of the Rashba effect in
2D hole systems discussed in more detail in Sect. 6.4.3: an increasing electric
field increases the HH–LH splitting so that the Rashba coefficient decreases;
see (6.43) and (6.44).

6.4.3 Density Dependence of SIA Spin Splitting

In the preceding section we discussed the tunability of the B = 0 spin splitting
for the conceptually simplest (but experimentally most demanding) case of
a QW where the asymmetry was changed while keeping the density constant
[30]. Next we shall discuss how the B = 0 spin splitting changes with density.
In particular, we shall study the experimentally relevant case where a single
gate changes both the density and the asymmetry of the sample. It turns out
that, while for a 2D electron system in a single heterostructure the Rashba
coefficient and SIA spin splitting decrease when Ns and Ez are reduced, a
2D hole systems can show the opposite behavior, i.e. the Rashba coefficient
increases when the density is reduced [81].

2D Electron Systems. In 2D electron systems, the energy denominators
in r6c6c

41 are always of the order of the fundamental gap, i.e. we have no
substantial difference between (6.22) and (6.23) and the Rashba coefficient is
essentially independent of the detailed geometry of the quasi-2D system. In
high-quality samples, the background acceptor concentration NA is small, so
that it follows from (6.35) that Ez ∝ Ns. In this case, we obtain from (6.18)

electron systems, Ez ∝ Ns:
∆N
Ns

∝ N1/2
s . (6.51a)
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Fig. 6.11. Enhancement factor λSO

of SIA spin splitting in a quasi-2D
system as a function of rs. Taken
from [10]. c© (1999) by the American
Physical Society

For comparison, we note that in electron systems where the electric field Ez

is independent of Ns (see Sect. 6.4.2), we have

electron systems, Ez = const:
∆N
Ns

∝ N−1/2
s . (6.51b)

In the latter case, the divergence of ∆N/Ns for Ns → 0 reflects the divergence
of the DOS (6.20) at the subband edge.

Chen and Raikh [10] discussed the enhancement of the Rashba spin split-
ting ∆E due to exchange–correlation effects,

∆E∗

∆E
= 1 + λSO . (6.52)

Here ∆E∗ denotes the renormalized spin splitting and λSO is the renormal-
ization factor defined via (6.52). In Fig. 6.11, we show λSO as a function of
the dimensionless density parameter

rs =
e2

4πεε0
m∗

�2

1√
πNs

, (6.53)

which is the radius of a circle (in 2D) containing one electron, measured in
units of the effective Bohr radius. One can see a significant increase in the
Rashba coefficient for rs � 8. We remark that in 2D electron systems, we
have the largest Rashba spin splitting for semiconductors such as InAs that
have a small effective mass (i.e. small rs). For typical densities we have rs � 3,
so that many-particle corrections to the B = 0 spin splitting can usually be
neglected in 2D electron systems.12

2D Hole Systems. The density dependence of SIA spin splitting in 2D HH
systems is qualitatively different from that for 2D electron systems because in
2D HH systems the Rashba coefficient depends on the separation between the
HH and LH subbands; see (6.43) and (6.44). A decreasing separation gives

12 For 2D electrons in GaAs, rs = 8 corresponds to Ns ≈ 5.1 × 109 cm−2; in InSb,
this value of rs = 8 corresponds to Ns ≈ 1.1 × 108 cm−2.
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rise to an increasing Rashba coefficient. The HH–LH splitting depends on
the geometry of the system. We shall show now that the subband structure
in accumulation-layer-like single heterostructures behaves rather differently
with respect to changes of the charge density [81].

In a rectangular QW, a small density Ns and a small asymmetry imply
that the properties of the system are controlled by the effective potential
steps at the interfaces, i.e. changes in Ns or Ez have a minor effect in such
systems. In an inversion-layer-like heterostructure, we always have a band
bending of the order of the fundamental gap so that, for small densities, the
Hartree potential and Ez are determined by the space charges due to the
given concentration of ionized majority impurities in the system. For accu-
mulation layer-like systems, on the other hand, it was shown by Stern [82]
that the space charge layer is controlled by the much smaller concentration
of minority impurities in the system. Thus, even for a small 2D density, the
dominant contribution to the Hartree potential stems from the charges in
the 2D system itself. Therefore, over a wide range of density Ns, the elec-
tric field Ez is proportional to Ns. In a single heterostructure, the subband
separations are approximately proportional to Ez. Using the triangular-well
approximation [63], we have, for the subband energies En

α measured from the
corresponding bulk band edge, En

α ∝ E2/3
z , which implies En

α ∝ N
2/3
s . It then

follows from (6.43) and (6.44) that in accumulation-layer-like 2D HH systems
the most important HH Rashba coefficient r7h7h

54 (like r7h7h
53 ) is proportional

to N−4/3
s . The effective HH Rashba coefficient β ≈ 〈r7h7h

54 Ez〉 thus increases
in proportion to N−1/3

s when Ns and Ez are reduced. According to (6.38), we
thus have

HH accumulation layers, Ez ∝ Ns:
∆N
Ns

∝ N1/6
s . (6.54a)

That is, in spite of the cubic spin splitting of the HH subband dispersion as
compared with the linear spin splitting of the electron subbands, ∆N/Ns de-
creases much more slowly for HH accumulation layers than for similar quasi-
2D electron systems. On the other hand, in a QW the subband separation is
essentially independent of Ez, so that we obtain

HH QWs, Ez ∝ Ns:
∆N
Ns

∝ N3/2
s . (6.54b)

For comparison, we note that in HH systems where the electric field Ez is
independent of Ns (see Sect. 6.4.2), we have

HH systems, Ez = const:
∆N
Ns

∝ N1/2
s . (6.54c)

The exponents in these equations should be compared with those in (6.51).
In order to validate these qualitative arguments, we present next the re-

sults of realistic, fully self-consistent subband calculations [69]. We have used
the 8 × 8 multiband Hamiltonian (3.6). The simpler 4 × 4 Luttinger Hamil-
tonian [72], taking into account only the band Γ v

8 , gives essentially the same
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Fig. 6.12. (a) Spin splitting ∆N/Ns

and (b) effective spin splitting coeffi-
cient β/〈µh〉, as a function of Ns, for
a 2D HH system in the accumulation
layer of a GaAs–Al0.5Ga0.5As single
heterostructure on a (001) GaAs sub-
strate, calculated including exchange–
correlation (EXC, solid lines) and ne-
glecting exchange–correlation (dashed
lines). For the dotted lines see text.
Taken from [81]. c© (2002) by the
American Physical Society

results. We have checked that the coupling to higher conduction bands has
a minor influence. Many-particle effects have been taken into account on the
basis of a density-functional approach [83]. From these calculations, we ob-
tain the difference ∆N = |N+ −N−| between the spin subband densities N±
as a function of the total density Ns = N+ +N−.

In Fig. 6.12a we show ∆N/Ns calculated as a function of Ns for a 2D HH
system in the accumulation layer of a GaAs–Al0.5Ga0.5As single heterostruc-
ture on a (001) GaAs substrate.13 As Ns is reduced from 5 × 1011 cm−2 to
1× 1010 cm−2, the parameter rs increases from 4.3 to 17. Therefore, one can
expect that many-particle effects will be quite important in this regime of
densities Ns. Indeed, we find that taking exchange–correlation into account
(solid lines) reduces ∆N/Ns compared with a calculation without exchange–
correlation (dashed lines). This behavior, which is opposite to that of 2D
electron systems (Fig. 6.11), can be traced back to the fact that exchange–
correlation increases the subband spacings [83] so that the dominant Rashba
coefficient r7h7h

54 is reduced, in agreement with (6.44).
It is convenient to characterize the numerical results in terms of the ef-

fective Rashba coefficient β ≈ 〈r7h7h
54 Ez〉 using (6.39). Figure 6.12b shows

that β/〈µh〉 increases when Ns is reduced. For comparison, we have also
calculated ∆N/Ns for a 2D electron system in the accumulation layer of a
Ga0.47In0.53As–Al0.47In0.53As single heterostructure (Fig. 6.13a). Here the
spin splitting is given by (6.11), so that we can analyze the results in terms
of the effective Rashba coefficient α ≈ 〈r6c6c

41 Ez〉 using (6.19). In Fig. 6.13b
it can be seen that, in contrast to Fig. 6.12b, the spin splitting coefficient
α/〈µc〉 decreases rapidly with decreasing Ns. We remark that, unlike the HH

13 For a concentration of charged minority impurities Nmin � 5× 1013 cm−3, these
results are essentially independent of Nmin.
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Fig. 6.13. (a) Spin splitting ∆N/Ns

and (b) effective spin splitting coeffi-
cient α/〈µc〉 as a function of Ns for
a 2D electron system in the accu-
mulation layer of a Ga0.47In0.53As–
Al0.47In0.53As single heterostructure
(solid lines). For the dotted lines see
text. Taken from [81]. c© (2002) by the
American Physical Society

system in Fig. 6.12, exchange–correlation has only a weak influence on the
electron system in Fig. 6.13, consistent with Fig. 6.11.

To further analyze the numerical results, we need to estimate the mean
electric field 〈Ez〉. In the present context, the difference between 〈Ez〉 and
〈Eext

z 〉 is unimportant because both quantities differ by a constant factor of
order unity so that we can use (6.35). We note that in an accumulation layer,
the contribution of the space charge layer to the Hartree potential VH(z) is
very small [82]. Therefore, we can approximate (6.35) further by the mean
self-consistent field (6.50). Using these values for 〈Ez〉 and 〈µc〉 = 89 eV Å2, we
obtain 〈r6c6c

41 〉 ≈ 34.3 eÅ2, independent of Ns, consistent with (6.24). This im-
plies that in Fig. 6.13b the drastic change of α/〈µc〉 merely reflects the change
of the electric field 〈Ez〉. On the other hand, the weak variation of β/〈µh〉 in
Fig. 6.12b indicates that the “bare” Rashba coefficient 〈r7h7h

54 〉 increases by
a factor of 250 when Ns is lowered from 5 × 1011 to 1 × 1010 cm−2.14 This
is in good qualitative agreement with the analytical model discussed above,
which predicts an increase of r7h7h

54 by a factor of 504/3 ≈ 184. Note that
for very low densities the third-order perturbation approach, which under-
lies (6.24) and (6.44), breaks down because the subbands merge together so
that higher-order corrections become important. These higher-order terms
were fully taken into account in the numerical calculations [7,69]. We remark
that for an accumulation layer, the limit of a vanishing electric field implies
also that the HH and LH states become degenerate. Therefore, in this limit
one must go back from (6.43) to the more complex (6.36). However, for very
low densities below 1010 cm−2, the Hartree potential and spin splitting are
ultimately controlled by the fixed concentration of minority impurities [82].

14 According to the present numerical calculations, 〈µh〉 decreases from 19.1 to
10.7 eV Å as Ns increases from 1 × 1010 to 5 × 1011 cm−2.
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It is interesting to compare the spin splittings in accumulation layers with
those in QWs where Ez is tuned externally, for example by means of gates [30].
The dotted lines in Figs. 6.12 and 6.13 show the calculated results for a 200 Å
wide rectangular QW where the external electric field Eext

z was chosen accord-
ing to Eext

z (Ns) = e/(2εε0)Ns (see (6.50)). In an electron system (Fig. 6.13),
we obtain spin splittings very close to the results for the accumulation layer.
In particular, we have 〈r6c6c

41 〉 ≈ 30.6 eÅ2, independent of Ns. Similarly, for
a 2D HH system in a QW (Fig. 6.12) and Ns � 1 × 1011 cm−2, we obtain
〈r7h7h

54 〉 ≈ 7.54 × 106 eÅ4. (For larger densities, higher-order corrections in
Eh

±(k‖) become important [7].) Since the subband spacings in a QW are es-
sentially determined by the QW width (i.e. they are independent of Ns),
this is consistent with (6.44). These calculations also indicate that for a 2D
HH system in a QW, spin splitting becomes negligible in the regime of low
density [7], which is due to the fact that the spin splitting of Eh

±(k‖) is pro-
portional to k3

‖. However, for 2D HH systems in single heterostructures, spin
splitting can be very important in the low-density regime. A least-squares fit
to the calculated ∆N/Ns for densities Ns ≤ 1011 cm−2 gives ∆N/Ns ∝ Nx

s

with an exponent x = 0.48 for electrons, x = 0.14 and x = 0.33 for the HH
accumulation layer without and with exchange–correlation, respectively, and
x = 1.6 for the HH QW, in good qualitative agreement with (6.51a) and
(6.54). We note that inversion layers give results similar to those for QWs,
but the specific numbers depend on the details of the doping profile.

Comparison Between Experiment and Theory. In order to reinforce our con-
clusions, we present next a comparison between measured and calculated
spin splittings in a GaAs–Al0.3Ga0.7As single heterostructure grown on a
nominally undoped (311)A GaAs substrate with a weak p-type background
doping. A back gate was used to tune the density Ns from 1.8 × 1010 to
4.2× 1010 cm−2. To measure the spin subband densities N±, the Shubnikov–
de Haas (SdH) oscillations at low magnetic fields B were examined [12,30] at
a temperature T � 50 mK (Figs. 6.14c,d). The frequencies fSdH of these oscil-
lations are a measure of the zero-B spin splitting.15 In Fig. 6.14a we present
the measured and calculated spin subband densities, which exhibit remark-
ably close agreement. Figure 6.14b shows β/〈µh〉, determined by means of
(6.39). On average, β/〈µh〉 increases as the density is reduced. Taking into
account the orders-of-magnitude varriations that occur for β/〈µh〉 in QWs
and for α/〈µc〉 in electron systems, the agreement between experiment and
theory is quite satisfactory.16 We wish to emphasize that it is the anomalous
enhancement of the Rashba coefficient in 2D HH systems in accumulation-
layer-like single heterostructures that allows us to experimentally resolve the
15 This association may not be exact, i.e. fSdH multiplied by (e/h) can deviate

slightly from the spin subband densities; see Chap. 9.
16 We estimate that the experimental error in N± is of the order of ±4%, giving an

error in ∆N and β/〈µh〉 of the order of ±20%. The apparent increase of β/〈µh〉
at Ns = 4.2 × 1010 cm−2 might be a result of experimental uncertainty.
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Fig. 6.14. Measured (circles) and calculated (solid lines) spin subband densities
N± (a) and effective spin splitting coefficient β/〈µh〉 (b) as a function of density
Ns = N+ +N− for a 2D HH system in a GaAs–Al0.3Ga0.7As single heterostructure
on a nominally undoped (311)A GaAs substrate with a weak p-type background
doping. In (c) we show the measured magnetoresistance Rxx as a function of mag-
netic field B, and (d) the Fourier transform (FT) of Rxx for Ns = 2.75×1010 cm−2

spin splitting in this density regime. Data on QW samples with comparable
densities reveal no measurable spin splitting [84], consistent with the solid
and dotted lines in Fig. 6.12.

6.5 Interface Contributions to B = 0 Spin Splitting

In Sects. 6.2 and 6.3, we discussed the contributions to B = 0 spin splitting
due to BIA and SIA. Recently, a third mechanism for spin splitting in semi-
conductor quantum structures has been discussed in the literature, which can
be traced back to the particular properties of the heterointerfaces in quasi-
2D systems [85, 86, 87, 88, 89, 90, 91, 92, 5, 93, 94, 95]. In Table 3.4 we listed
the point groups of a quasi-2D system for various crystallographic growth
directions. However, a microscopic analysis of the crystal structure reveals
that, at the heterointerfaces, the local symmetry can be reduced compared
with that given in Table 3.4.

An ideal symmetric QW grown in the crystallographic direction [001] has
the point group D2d (see Table 3.4). In a quasi-2D system with this point
group, the optical absorption must be independent of the crystallographic
orientation of the in-plane polarization vector (Ref. [96]). The reason is that
symmetry requires that two of the principal values of the tensor of the optical
susceptibility must be equal and that the principal axis, which corresponds to
the third value, is parallel to the growth direction of the QW. Using optically



6.5 Interface Contributions to B=0 Spin Splitting 111

detected magnetic resonance, van Kesteren et al. [97] observed an unexpected
in-plane anisotropy in the optical absorption of [001]-grown GaAs–AlAs QWs
(see also Ref. [98]). Such an optical anisotropy is compatible with the point
group C2v . A particularly large optical anisotropy was observed by Krebs
et al. in systems without common atoms in the well and barrier materials
[88, 89, 90].

In order to explain the experimental findings of van Kesteren et al. [97],
it was noted by Alĕıner and Ivchenko [85] that an ideal [001] heterointerface
of a GaAs–AlAs system has the microscopic point group C2v; see Fig. 6.15.
To lowest order in k, the point group C2v is compatible with the follow-
ing phenomenological interface term in the valence band block of the Kane
Hamiltonian [85, 87]:

H = ±hx-y δ(z − zi)

(
1
3{Jx, Jy} Uxy

U†
xy 0

)
(6.55a)

= ±hx-y δ(z − zi)
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. (6.55b)

Here the upper and lower signs refer to a GaAs–AlAs and an AlAs–GaAs
interface, respectively, and zi is the position of the interface on the z axis. In
the notation of [87] we have hx-y = �

2tx-y/(m0a) =
√

3 �
2tl-h/(m0a), where a

is the lattice constant. By comparing their calculations with the experimental
data of van Kesteren et al. [97], Alĕıner and Ivchenko [85] estimated that
hx-y = 3.3 eV Å for a GaAs–AlAs interface.

The single heterointerface in Fig. 6.15 has the point group C2v. If we
have a QW with two such interfaces, we must distinguish between common-
atom and no-common-atom interfaces (Ref. [100]). If the interfaces share a
common atom, such as the As layer in a GaAs–AlAs interface, then the point
group of the QW is D2d, consistent with our earlier results in Table 3.4
that did not take into account the details of the atomic structure at the
interfaces. Note also that the presence of two interface terms of the form
(6.55) for opposite interfaces preserves the D2d symmetry. If, on the other
hand, the heterointerfaces do not share a common atom, as in an InAs–
GaSb interface, then the microscopic atomic structure of a symmetric QW
has the point group C2v . Van Kesteren et al. [97] measured the in-plane
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AlGa As

(110)

(110)
(001)

Fig. 6.15. Nearest neighbors of the
As atoms at a GaAs–AlAs interface. The
point group C2v of a single heterojunction
contains a twofold rotation axis C2 paral-
lel to the growth direction [001] and two
mirror planes (110) and (110) [87,99]

optical anisotropy of GaAs–AlAs QWs. In order to explain the experimental
data of these authors, we thus need an additional mechanism that gives rise
to a reduction in symmetry from D2d to C2v, e.g. an electric field. To the
best of our knowledge, the experiments of van Kesteren et al. have not been
analyzed along these lines.17 Experiments by Kwok et al. (Ref. [101]) have
shown explicitly that the optical anisotropy can be tuned by means of an
external electric field Ez (the Pockels effect).

The phenomenological interface term (6.55) describes a coupling between
HH states (m = ±3/2) and LH and SO states (m = ∓1/2). Such a mixing
of HH and LH states that exists even for an in-plane wave vector k‖ = 0
was observed earlier in tight-binding calculations by Chang and Schulman
[102, 103, 104]; see also the pseudopotential calculations in [105, 100]. Equa-
tion (6.55) allows us to incorporate these tight-binding results into the k · p
method. In particular, we can estimate the magnitude of the weight factor
hx-y in (6.55) by comparing with tight-binding calculations. The results pre-
sented in Fig. 6 of [103] and Fig. 2 of [104] can be reproduced by assuming
hx-y = 0.2 eV Å, see Fig. 6.16 in the present book. Note that the value of
hx-y used here is significantly smaller than the value derived in [87]. An even
smaller value is required to reproduce the results of the pseudopotential cal-
culations in Ref. [100].

Obviously, the coupling of HH and LH states is strongest when the states
are close in energy. If the QW is symmetric, only subband states of opposite
parity are coupled to each other [86]. As the h1 subband is always lowest in
energy (unless the order of the subbands is reversed, for example by means of
strain [76]), this subband is only weakly affected by HH–LH mixing. On the
other hand, we can have a stronger mixing of the (usually unoccupied) l1 and
h2 subbands, which is important for optical interband transitions [85,97], for

17 We are talking here about ideal interfaces. From an experimental point of view,
an important additional aspect is the morphology of the interfaces in real sys-
tems.
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Fig. 6.16. Squared optical matrix elements at k‖ = 0 for a GaAs–Al0.3Ga0.7As
superlattice with an alloy layer width of 56.5 Å, plotted as a function of the width
w of the GaAs layer. The dashed lines are taken from Fig. 2 of [104]. The solid
lines were calculated by means of (6.55). The dotted lines show the squared optical
matrix elements without any HH–LH mixing. The symbols x, y, and z denote the
direction of the polarization vector. In order to reproduce the results presented in
Fig. 6 of [103] and Fig. 2 of [104] we have used γ1 = 7.97, γ2 = 2.88, valence band
offset Σv = 66.7 meV, and hx-y = 0.2 eV Å

example. We remark that the existence of a crossing of the unperturbed h2

and l1 states as a function of well width depends rather sensitively on the
effective masses of the HH and LH states. Using the Luttinger coefficients
listed in Appendix D, we do not obtain a crossing of the h2 and l1 subbands
in a GaAs–AlAs QW. We note also that, to the best of our knowledge, we
are not aware of experiments with (unstrained) GaAs–AlGaAs QWs showing
the existence of a parameter regime that yields an (anti-)crossing of the h2

and l1 subbands. On the basis of tight-binding calculations for superlattices,
it was observed in Ref. [103] that a crossing of the unperturbed HH and LH
states can occur as a function of the superlattice miniband wave vector; see
also the pseudopotential calculations in Ref. [100].

Equation (6.55) has the same structure as the lowest-order invariant for
the SIA spin splitting of the valence band states in a zinc blende structure,

H = Ez

(
r8v8v
51 {Jx, Jy} r8v7v

51 Uxy

r
8v7v†
51 U†

xy 0

)
(6.56)

(see Table 6.5). Clearly, (6.56) applies only if the confining potential is asym-
metric (Ez �= 0). However, it is possible that an allegedly symmetric QW has
a built-in electric field; see also Ref. [101]. We obtain a third contribution to
HH–LH mixing (even for k‖ = 0) from the k-linear terms in the Luttinger
Hamiltonian,
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H =
√

3Ck

(
2
3

[
kx

{
Jx, J

2
y − J2

z

}
+ cp
]

−i (kxUyz + cp)

i (kxU
†
yz + cp) 0

)
(6.57)

(see Tables 6.2).
In a symmetric QW, (6.56) couples HH and LH subband states of the

same parity. Like (6.55), the k-linear terms (6.57) couple subband states
of opposite parity. Therefore, we can expect different trends in the HH–LH
mixings described by (6.55), (6.56), and (6.57) if the separation of the HH
and LH subbands is varied, for example by means of strain. The Rashba effect
and BIA, but not (6.55), were taken into account in the numerical calculation
of Zhu and Chang [78]. However, the results were not analyzed with respect
to the importance of the different terms. To the best of our knowledge, a
detailed investigation of the interplay of (6.55), (6.56), and (6.57) has not
been performed so far [95]. Concerning the experimentally observed optical
anisotropy [97, 98], we remark that exciton states can be decomposed into
electron and hole states with in-plane wave vector k‖ ≥ 0 [106], so that a
proper analysis of optical anisotropy should take into account HH–LH mixing
at both k‖ = 0 and k‖ > 0.

Equation (6.55) refers to the valence band only. In the zeroth order of k,
the electron states are not affected by the lowering of the symmetry at the in-
terfaces. In third-order perturbation theory, the k · p coupling of the electron
states to HH and LH states gives rise to the following mixed terms [5]:

H6c6c = ± hx-y
P 2

3

(
1
E2

0

+
2

E0(E0 +∆0)

)
δ(z − zi) kxky�2×2

± hx-y
iP 2

6

(
1
E2

0

− 1
E0(E0 +∆0)

)
[kz, δ(z − zi)] (kxσx − kyσy) .

(6.58)

The first term in (6.58) results in a spin-independent correction to the sub-
band dispersion E(k‖). The second term contributes to the spin splitting of
the subband states in a way similar to BIA. We obtain similar expressions
that are quadratic and linear in the in-plane wave vector k‖, which describe
spin-independent and spin-dependent contributions, respectively, to the dis-
persions of the HH and LH states. Recently, several authors have discussed
the interface term in the context of spin relaxation [93, 94, 5].

6.6 Spin Orientation of Electron States

We have pointed out in the introductory remarks of this chapter that the
B = 0 spin splitting in an inversion-asymmetric quasi-2D system does not
give rise to a net magnetic moment. In this section we shall explore in more
detail the spin orientation of electron states in the presence of B = 0 spin
splitting.
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6.6.1 General Discussion

We can always choose a suitably rotated coordinate system with basis vectors
ê1, ê2, and ê3 such that a given spin-1/2 state |ψ〉 is oriented in the direction
ê3 of this coordinate system. The unit vector ê3 is given by the expectation
value

ê3 = 〈ψ|σ|ψ〉 , (6.59)

where σ = (σx, σy, σz) is the vector of Pauli spin matrices. Using (6.59) we
can readily determine the spin orientation of the spin eigenstates in the pres-
ence of BIA and SIA spin splitting. The quasi-2D eigenstates of a multiband
Hamiltonian can be labeled by the in-plane wave vector k‖, see (4.1). It is
important to note here that the spin orientation axis of an eigenstate |ψ〉 de-
pends on k‖. This can be seen most easily for the Rashba Hamiltonian (6.10),
for which we can evaluate (6.59) analytically. For k‖ = k‖(cosϕ, sinϕ, 0), the
eigenstates are

|ψSIA
± (k‖)〉 =

eik‖·r‖

2π
ξk‖(z)

1√
2

∣∣∣∣ 1
∓ieiϕ

〉
, (6.60)

so that〈
σ(k‖)

〉
± =

〈
ψSIA
± (k‖)

∣∣σ ∣∣ψSIA
± (k‖)

〉
(6.61a)

=




± sinϕ

∓ cosϕ

0


 = ±




cos (ϕ− π/2)

sin (ϕ− π/2)

0


 , (6.61b)

where the upper and lower signs refer to the upper and lower spin subbands,
respectively, (assuming that the effective Rashba coefficient α = 〈r6c6c

41 Ez〉 is
positive). Note that (6.61) is independent of the envelope function ξk‖(z) and
the magnitude k‖ of the in-plane wave vector. The spin orientation (6.61) of
the eigenfunctions (6.60) as a function of the direction of the in-plane wave
vector is indicated by arrows in Fig. 6.2.

We showed in (6.4) and (6.11) that both the Dresselhaus term (in the
leading order of k‖) and the Rashba term give rise to apparently the same spin
splitting. Nevertheless, the corresponding wave functions are qualitatively
different owing to the different symmetries of the Rashba and Dresselhaus
terms. If we neglect the terms cubic in k‖, the eigenfunctions in the presence
of Dresselhaus spin splitting are

|ψBIA
± (k‖)〉 =

eik‖·r‖

2π
ξk‖(z)

1√
2

∣∣∣∣ 1
∓e−iϕ

〉
, (6.62)

so that

〈
σ(k‖)

〉
± = ∓


 cos (−ϕ)

sin (−ϕ)
0


 . (6.63)
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Fig. 6.17. Lowest-order spin orientation 〈σ〉
of the eigenstates |ψBIA

± (k‖)〉 in the presence
of BIA. The inner and outer circles show 〈σ〉
along contours of constant energy for the upper
and lower branches E+ and E−, respectively, of
the spin-split dispersion

The spin orientation (6.63) of the eigenfunctions (6.62) as a function of the
direction of the in-plane wave vector is indicated by arrows in Fig. 6.17. For
the Rashba spin splitting, we see in Fig. 6.2 that if we move clockwise on a
contour of constant energy E(k‖), the spin vector rotates in the same direc-
tion, consistent with the axial symmetry of the Rashba term. On the other
hand, (6.63) and Fig. 6.17 show that in the presence of BIA, the spin vector
rotates counterclockwise for a clockwise motion in k‖ space. The different
symmetries of the Hamiltonians for BIA and SIA, which become visible in
the quantity 〈σ〉, is also the reason for the anisotropy of the B = 0 spin
splitting even in the leading order of k‖ that was obtained in Sect. 6.4.1 for
the case where both BIA and SIA are present.

In the above discussion we have assumed that the wave functions are two-
component spinors. When the eigenstates |ψ〉 are multicomponent envelope
functions (4.1), we must evaluate the expectation value of S = σ⊗�orb where
the identity operator �orb refers to the orbital part of |ψ〉. For the transformed
Hamiltonian H′ in (5.1), the spin operator S′ has the block form

S ′
x =
(

0 �orb

�orb 0

)
, S′

y =
(

0 −i�orb

i�orb 0

)
, S′

z =
(
�orb 0
0 −�orb

)
. (6.64)

The inverse unitary transformation that relates H′ to H gives the spin oper-
ator in the unprimed basis. For the extended Kane model, we obtain

Si =




2
3Ji −2Ui 0 0 0

−2U†
i − 1

3
σi 0 0 0

0 0 σi 0 0
0 0 0 2

3
Ji −2Ui

0 0 0 −2U †
i − 1

3σi



, i = x, y, z (6.65)

where the matrices Ji, Ui, and σi are defined in Table C.2. Once again, the
expectation value 〈ψ|S|ψ〉 is a three-component vector that can be iden-
tified with the spin orientation of the multicomponent wave function |ψ〉.
We remark that while the vector 〈σ〉 of a spin-1/2 system is always strictly
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normalized to unity, this condition is in general not fulfilled for the spin ex-
pectation value 〈S〉 of a multicomponent single-particle state (4.1). This is
due to the fact that in the presence of SO interaction we cannot factorize the
multicomponent wave function into an orbital part and a spin part. However,
for electrons, the deviation of |〈S〉| from unity is rather small (typically less
than 1%), so it is neglected here.

For free electrons in the presence of an external magnetic field B, the unit
vector 〈σ〉 is parallel to the vector B. Following this picture, we can attribute
the B = 0 spin splitting in quasi-2D systems to an effective magnetic field
B(k‖) parallel to 〈S(k‖)〉. Obviously, the magnitude of this effective magnetic
field should be related to the magnitude of the B = 0 spin splitting. However,
depending on the particular problem of interest, it can be convenient to define
the magnitude of the spin splitting in two different ways: the energy difference
∆E = E+(k‖)−E−(k‖) characterizes the magnitude of the spin splitting for
a given wave vector k‖, whereas the wave vector difference ∆k characterizes
the magnitude of the spin splitting at a fixed energy E. While the former
is relevant for Raman experiments, for example (see Sect. 6.8), the latter
quantity is an important parameter in other situations, for example for spin
relaxation [107] and for the spin transistor proposed by Datta and Das [108].

In the following, we shall explore the second definition, where the effec-
tive magnetic field is given by B = 〈S〉∆k. Our precise definition of ∆k is
illustrated in Fig. 6.18. For a given energy E and a fixed direction ϕ of the
in-plane wave vector k‖ = k‖(cosϕ, sinϕ, 0), we determine k‖ ∓ ∆k/2 such
that E = E+(k‖ − ∆k/2) = E−(k‖ + ∆k/2). Here E+ and E− denote the
upper and lower branches, respectively, of the spin-split dispersion. We then
define

B = 〈S〉+ ∆k = −〈S〉− ∆k , (6.66)

with the sign convention that the field B is parallel to the effective field felt
by the electrons in the upper branch E+(k‖). We have used the shorthand
notation

〈S〉± =
〈
ψ±(k‖ ∓ ∆k/2)

∣∣S ∣∣ψ±(k‖ ∓ ∆k/2)
〉
. (6.67)

We remark that for a parabolic band with an effective mass m∗ plus Rashba
term (6.10), the wave vector difference ∆k can be evaluated analytically. It
follows from (6.19) that [108]

∆kRashba =
2m∗α

�2
, (6.68)

independent of the magnitude of k‖. From an experimental point of view, it
should be kept in mind that spin splitting is often measured by analyzing
Shubnikov–de Haas oscillations. Such experiments yield spin subband densi-
ties N± which are directly related to ∆k by

∆k =
√

4π
(√

N− −
√
N+

)
, (6.69)
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Fig. 6.18. For a given energy E and a fixed
direction of the in-plane wave vector k‖, we de-
termine k‖ ∓ ∆k/2 such that E = E+(k‖ −
∆k/2) = E−(k‖ + ∆k/2). Here E+ and E−
denotes the upper and lower branches, respec-
tively, of the spin-split dispersion

provided we can ignore anisotropic contributions to B = 0 spin splitting.
However, see also Chap. 9.

The definition (6.66) presupposes that the spin expectation values 〈S〉+
and 〈S〉− are strictly antiparallel to each other. In (6.61) we saw that for the
Rashba Hamiltonian, this condition is fulfilled exactly. This is closely related
to the fact that for the Rashba Hamiltonian, the spin subband eigenstates
|ψSIA

+ (k‖)〉 and |ψSIA
− (k′

‖)〉 are orthogonal, independent of the magnitude of
k‖ and k′

‖ as long as the wave vectors k‖ and k′
‖ are parallel to each other.18

In general, |ψ+(k‖ − ∆k/2)〉 and |ψ−(k‖ + ∆k/2)〉 are only approximately
orthogonal, so that 〈S〉+ and 〈S〉− are only approximately antiparallel. How-
ever, we find that the angle between the vectors 〈S〉+ and 〈S〉− is always very
close to 180◦, with an error � 1◦, so we neglect this point in the remaining
discussion.

Even though we can evaluate the spin expectation value 〈S〉 for each spin
subband separately, we do not attempt to define an effective magnetic field
B for each spin subband. This is due to the fact that B is commonly used
to discuss phenomena such as spin precession [108] and spin relaxation [107],
which cannot be analyzed for each spin subband individually.

The allowed directions of the effective magnetic field B can be deduced
from the symmetry of the QW (Table 3.4). The spin-split states for a fixed
wave vector k‖ are orthogonal to each other, i.e. the spin vectors of these
states are antiparallel. The spin orientation of eigenstates for different wave
vectors in the star of k‖ are connected by the symmetry operations of the sys-
tem [77]. Accordingly, only those spin orientations of the spin-split eigenstates
are permissible for which every symmetry operation maps orthogonal states
onto orthogonal states. In a QW grown in the crystallographic direction [001],
the effective field B is parallel to the plane of the quasi-2D system. Indeed,
the field B due to SIA is always in the plane of the well. For growth directions
18 From a group-theoretical point of view, this can be traced back to the fact that

|ψ+(k‖)〉 and |ψ−(k‖)〉 transform according to different irreducible representa-
tions of the group of the wave vector k‖.
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other than [001], the effective field due to BIA has also an out-of-plane compo-
nent. In particular, a symmetric QW grown in the crystallographic direction
[110] has the point group C2v.19 Here the BIA induced field B(k‖) must be
perpendicular to the plane of the QW (to all orders in k‖). This situation
is remarkable because D’yakonov-Perel’ spin relaxation is suppressed if the
spins are oriented perpendicular to the 2D plane (Refs. [109,110]). Note also
that in [110] grown QWs B vanishes for k‖ ‖ [001] because here the group
of k‖ is C2v, which has only one irreducible double-group representation, Γ5,
which is two-dimensional [23].

6.6.2 Numerical Results

The analytically solvable models discussed in the preceding section allow one
to study the qualitative trends of BIA and SIA spin splitting in quasi 2D
systems. The largest spin splitting can be achieved in narrow-gap semicon-
ductors where the subband dispersion is highly nonparabolic. Therefore, we
present next numerically calculated results for B(k‖) obtained by means of
the 8× 8 Kane Hamiltonian. First we analyze the BIA spin splitting, that is
always present in zinc blende QWs. In Fig. 6.19a we show the effective field
(6.66) along contours of constant energy for a symmetric GaAs QW grown
in the crystallographic direction [001], with a well width of 100 Å. The di-
mensions of the arrows in Fig. 6.19 are proportional to |B| = ∆k. We remark
that typical Fermi wave vectors of quasi 2D systems are of the order of the
in-plane wave vectors covered in Fig. 6.19.

For small in-plane wave vectors k‖, the effective field in Fig. 6.19a is
well described by (6.63). For larger wave vectors, the effective field becomes
strongly dependent on the direction of k‖. In particular, we see that for k‖ ‖
[110] the effective field reverses its direction when we increase k‖. This reversal
reflects the breakdown of the linear approximation in (6.4). For wider wells,
this breakdown occurs at even smaller wave vectors k‖, consistent with (6.4).

More specifically, (6.4) predicts for k‖ ‖ [110] a reversal of the direction
of B(k‖) when k2

‖ = 2〈k2
z〉, independent of the material specific coefficient

η that characterizes the strength of BIA spin splitting. Note, however, that
〈k2

z〉 depends on the material specific band offset at the interfaces. For the
system in Fig. 6.19a, we find in good agreement with (6.4) that the reversal
of B(k‖) occurs for k‖ ≈

√
2〈k2

z〉 ≈ 0.029 Å−1. For comparison, we show
in Fig. 6.19b the effective field B(k‖) for a symmetric Ga0.47In0.53As QW
with the same well width 100 Å as for Fig. 6.19a. Even though the BIA spin
splitting is smaller in Ga0.47In0.53As than in GaAs, higher-order corrections
are more important in Ga0.47In0.53As owing to the smaller fundamental gap
of this material. Here we have 〈k2

z〉 ≈ 3.6 × 10−4 Å−2, so that
√

2〈k2
z〉 ≈

19 Note that for a symmetric QW grown in the crystallographic direction [110], the
symmetry axis of the point group C2v is parallel to the axis [001] in the plane of
the QW.
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Fig. 6.19. Effective magnetic field B(k‖) for a GaAs–Al0.3Ga0.7As QW (a) and a
Ga0.47In0.53As–InP QW ((b), (c), and (c)), both with a well width of 100 Å. In (a)
and (b) we have assumed that we have a symmetric well with BIA spin splitting
only. (c) shows B(k‖) due to an external field of Ez = 20 kV/cm but neglecting BIA.
Finally, (d) shows B(k‖) when we have both BIA and SIA spin splitting (again for
Ez = 20 kV/cm). The dimensions of the arrows are proportional to |B| = ∆k. For
Ga0.47In0.53As, we have amplified B(k‖) by a factor of 100, for GaAs the factor
is 50. All calculations were based on an 8 × 8 Kane Hamiltonian (Γ c

6 , Γ v
8 , and Γ v

7 )
including off-diagonal remote-band contributions of second order in k

0.027 Å−1. On the other hand, the reversal of the direction of B(k‖) occurs
for k‖ ≈ 0.021 Å−1. This illustrates the effect of the higher orders in the BIA
spin splitting that were neglected in (6.3) but were fully taken into account
in the numerical calculations shown in Fig. 6.19. (Note that in Fig. 6.19a the
effective field B has been amplified by a factor of 50, whereas in Fig. 6.19b
it has been amplified by a factor of 100.)
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Fig. 6.20. Effective magnetic field B(k‖) for a symmetric Ga0.47In0.53As–InP
QW with a well width of 100 Å, grown in the [110] direction. The dimensions of
the arrows are proportional to |B| = ∆k, amplified by a factor of 100

Ga0.47In0.53As QWs can have a significant Rashba spin splitting [12], so
that these systems are of interest for realizing the spin transistor proposed
by Datta and Das [108]. In Fig. 6.19c we show the effective field B(k‖) for
the same well as in Fig. 6.19b assuming that we have SIA spin splitting due
to an electric field E = 20 kV/cm, but here all tetrahedral terms that give
rise to BIA spin splitting have been neglected. The numerical results are in
good agreement with what one would expect according to (6.61) and (6.68).
Finally, Figure 6.19d shows the effective field B(k‖) for a Ga0.47In0.53As
QW when we have both BIA and SIA spin splitting. Owing to the vectorial
character of B, we have regions in k‖ space where the contributions of BIA
and SIA are additive, whereas in other regions the spin splitting decreases
because of the interplay of BIA and SIA, consistent with (6.49).

In Fig. 6.19 we have considered QWs grown in the crystallographic di-
rection [001], so that the effective field B(k‖) is always parallel to the plane
of the QW. For comparison, we show in Fig. 6.20 the effective field B(k‖)
for a symmetric Ga0.47In0.53As QW grown in the crystallographic direction
[110] with kx ‖ [001] and ky ‖ [110]. Here B(k‖) is perpendicular to the plane
of the QW (Ref. [109]). For asymmetric QWs grown in the crystallographic
direction [110], the effective field B(k‖) is given by a superposition of an
in-plane field as in Fig. 6.19c and a perpendicular field as in Fig. 6.20.

6.7 Measuring B = 0 Spin Splitting

Spin splitting has been studied by many different experimental techniques.
A detailed discussion of these techniques is beyond the scope of the present
work.
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In an early experimental investigation, Därr et al. [35] analyzed the elec-
tron spin resonance of an electron inversion layer on InSb in a perpendic-
ular and a tilted magnetic field (see Sect. 8.4). Wieck et al. [111] studied
2D holes in an MOS structure on Si(110). In an all-optical experiment at
B = 0 they observed a splitting of the intersubband resonance transition that
was attributed to B = 0 spin splitting. Gauer et al. [112, 113] studied spin-
conserving and spin-flip intersubband transitions in InAs QWs. Jusserand et
al. [114, 9, 115] used spin-flip Raman scattering at zero magnetic field to in-
vestigate spin splitting of 2D electrons in GaAs QWs. These experiments will
be discussed in more detail in the next section. In a more indirect approach,
Dresselhaus et al. [116] studied the spin precession of 2D electrons in a GaAs
heterostructure using antilocalization.

Most often, spin splitting has been analyzed by measuring the longitu-
dinal magnetoresistance oscillations in small magnetic fields perpendicular
to the plane of the system, known as Shubnikov–de Haas (SdH) oscilla-
tions [50, 51, 52, 53, 54, 55, 12, 13, 56, 57, 58, 59, 117, 14, 118, 30]. The classical
experiments by Störmer et al. [117] and Eisenstein et al. [14] focused on 2D
hole systems in GaAs–AlGaAs heterostructures. Luo et al. [50, 53] studied
SdH oscillations of 2D electrons in asymmetric InAs–GaSb QWs. Wollrab
et al. [51] measured the spin splitting of electron subbands in an inversion
layer on narrow-gap HgCdTe. Das et al. [52] studied the spin splitting in
InGaAs–InAlAs heterostructures. In Chap. 9, we shall present a more de-
tailed discussion of SdH oscillations in the presence of SO interaction.

6.8 Comparison with Raman Spectroscopy

Direct evidence of spin splitting of the electron subbands in QW structures
comes from the detection of single-particle spin-flip transitions at the Fermi
energy, which can be probed by inelastic light-scattering experiments with
crossed polarizations of the incident and scattered light. Such experiments
have been performed by Jusserand and coworkers [114,9,115] on asymmetri-
cally n-doped GaAs–AlxGa1−xAs QWs with a growth direction [001]. These
experiments provide clear information about the spin splitting ∆E of the
electron subbands at the Fermi energy as a function of the carrier density
and about its anisotropy in k‖ space. For the growth direction [001], we have
the interesting situation that a symmetric QW with a diamond structure
has the point group D4h (see Table 3.4). BIA reduces the symmetry to C4v ,
whereas SIA reduces the symmetry to D2d. Combining both BIA and SIA,
we obtain the point group C2v. While for C4v and D2d we obtain the same
splittings for k‖ ‖ [110] and k‖ ‖ [110], for the point group C2v these two in-
plane directions are no longer equivalent (see Sect. 6.4.1). Here we compare
the experimental data of Jusserand et al. [114, 9, 115] with calculated spin
splittings [8] based on 8 × 8 and 14 × 14 k · p Hamiltonians and find good
quantitative agreement with the Raman data.
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A quantitative calculation of the subband dispersion in a QW has to
take into account both the bulk band structure of the semiconductor and
the geometry of the quantum structure, including the doping profile. The
bulk band structure of GaAs is one of the best-known single-particle spectra
in solid-state physics and is well described by the 14×14 extended Kane
model introduced in Chap. 3. For GaAs, the band parameters of this model
have been determined to high precision by a large number of independent
experiments. An almost as accurate knowledge exists of the parameters for
the barrier material AlxGa1−xAs (x � 0.3) [119]. All band parameters used
in the work described here are listed in Appendix D.

The spin-splitting data obtained from inelastic light scattering [114, 115]
provide sufficiently accurate and detailed information to test the different
models. Here we present results from self-consistent subband calculations
based on the 8×8 and 14×14 k · p models. The sample parameters were those
given in Table 2 of [115]. In the experiments of [114,9,115], the spin splitting
of the lowest electron subband at the Fermi energy and its dependence on
the direction of the in-plane wave vector k‖ were detected for several samples
with the same nominal width of the QW of 180 Å but for different carrier
concentrations.

In Fig. 6.21, we show the conduction band profile obtained from a self-con-
sistent calculation for a 180 Å wide asymmetrically doped GaAs–AlxGa1−xAs
QW with a carrier concentrationNs = 8×1011 cm−2, together with the lowest
bound subband levels and the Fermi energy. The self-consistent potential does
not depend on whether the 8 × 8 or 14 × 14 model is used. With increasing
carrier density the potential asymmetry increases. According to the present
self-consistent calculations, all carriers can be accommodated in the lowest
subband up to Ns = 1.2 × 1012 cm−2. These results do not change when we
consider a weak unintentional acceptor concentration in the GaAs layer. (In
the present calculations the depletion charge density was about 1010 cm−2,
almost independent of Ns.) The spin degeneracy of this subband is lifted at
finite in-plane wave vectors owing to BIA and SIA. In Fig. 6.22, we compare
the calculated spin splittings ∆E(k‖) for different in-plane directions with
the available experimental data. It should be noted that the experimental
data points in Fig. 6.22 are those of Fig. 2 of [115] (converted from cm−1 to
meV) divided by a factor of 2, because the latter data points are Raman spin
splittings, which equal twice the subband spin splitting.

In the experiments, the electron densities were determined via the Fermi
velocities vF = dE(k‖)/� dk‖ obtained from the dispersion of the Raman
single-particle excitation spectrum. The high-energy cutoff frequency for a
Raman single-particle excitation of wave vector q varies as vFq and was taken
as the half-maximum point of the high-energy edge of the non-spin-flip single-
particle excitation line shape, measured with the polarizations of the incident
and scattered light parallel to each other. In [9, 115], the Fermi velocity was
converted into kF (and the charge carrier density) using an energy-dependent
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Fig. 6.21. Conduction band profile (solid line) of a 180 Å wide asymmet-
rically doped GaAs–Ga0.65Al0.35As QW with a carrier concentration of Ns =
8×1011 cm−2. The bottom of the bound subbands (dashed lines) and the Fermi en-
ergy (dotted line) are indicated. Taken from [8]. c© (1998) by the American Physical
Society

Fig. 6.22. Calculated spin splittings at the Fermi energy vs. carrier concentra-
tion for a 180 Å wide asymmetrically doped GaAs–Ga0.7Al0.3As QW for different
directions of the in-plane wave vector, obtained from the 8 × 8 (dotted lines) and
14 × 14 (solid lines) models. Experimental data from [9, 115] are shown for com-
parison. For the experimental data points indicated by the asterisks, the direction
of the in-plane wave vector was not determined. Taken from [8]. c© (1998) by the
American Physical Society
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mass from a 2 × 2 model. The estimated error in the determination of these
Fermi velocities of about 2.5% corresponds to an error in the densities of
about 5%. Owing to the shortcomings of the 2 × 2 model, these densities
turn out to be too large compared with those obtained from the multiband
approach. Therefore, the experimental data points in Fig. 6.22 were shifted
to lower density values, which, according to the present calculation, corre-
spond to the experimentally determined Fermi velocities. The accuracy of
the measured Raman spin splitting (±0.8 cm−1) gives an error in the sub-
band splittings of ±0.05 meV (see Fig. 6.22).

Considering the fact that the calculations are parameter-free, the overall
agreement with the measured spin splittings is striking. While for the [110]
direction the results from both models (curves 2) coincide with each other and
with the experimental data, there is some model dependence and deviation
from the data points for the [100] (curves 1) and [11̄0] (curves 3) directions,
with the results from the 14 × 14 model (solid lines) being closer to the
experiment than the results from the 8×8 model (dotted lines). For the data
points denoted by the asterisks, the in-plane wave vector was not determined
in the experiment. By comparison with the present calculation, they can be
assigned to the [110] direction. The calculated spin splittings turned out to be
insensitive to changes in the Al content of the barrier in the range x = 0.30
to x = 0.35, i.e. they would be the same for x = 0.33, the Al content of the
samples in [114,9, 115].

Pfeffer [41] compared the Raman data [114,9,115] with calculations based
on a 2 × 2 model for a single heterojunction. He used the depletion charge
density Nd (which is usually not known from experimental data) as a free
parameter. By changing Nd from 1.5 to 3.5 × 1011 cm−2, he increased the
calculated spin splitting, for example for the [110] direction by almost a factor
of 2. Pfeffer compared his calculated subband splittings with the experimental
data shown in Fig. 2 of [115], which are identified as the measured Raman
spin splittings and thus twice the subband splittings.
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7 Anisotropic Zeeman Splitting

in Quasi-2D Systems

An external magnetic field lifts time inversion symmetry so that we can obtain
a finite Zeeman energy splitting ∆E = g∗µBB, where g∗ is the effective g
factor and µB the Bohr magneton of the electron or hole states. It was first
shown by Roth et al. [1] that electrons can have an effective g factor g∗

that differs substantially from the free-electron value g0 = 2. Similarly to
the B = 0 spin splitting discussed in the preceding chapter, the effective g
factor g∗ �= 2 results from the spin–orbit interaction, which couples the orbital
motion with the spin degree of freedom. This can be understood once again by
means of (5.1): without SO interaction, the motion of spin-up electrons would
be completely decoupled from the motion of spin-down electrons, and there
would be identical Hamiltonians Hk·p for spin-up and spin-down electrons
except for the trivial Zeeman term ±(g0/2)µBB, so that in this case Zeeman
splitting would be controlled by the g factor g0 = 2 of free electrons.1

In semiconductors, the orbital motion and the effective Zeeman splitting
of the electrons are closely related to each other. The inverse effective-mass
tensor (times �

2/2) is the prefactor of the quadratic terms in the disper-
sion E(k) that are symmetric in the components of the wave vector k. On
the other hand, g∗ (times i�µB/(2e)) is the prefactor of the antisymmetric
quadratic terms in E(k) [3, 1]. These antisymmetric terms reflect the non-
commutativity of the components of k for B > 0, which is expressed by the
commutator relations (2.17).

Since the early days of 2D carrier systems in semiconductors, it has been
commonly assumed that the Zeeman splitting is independent of the direction
of the external magnetic field B [4]. Recently, however, calculations and ex-
periments have shown that g∗ can have different values for B applied in the
direction normal to the plane of the 2D system and for B in the plane of the
QW [5,6, 7, 8, 9, 10].

1 It was first noted by Janak [2] that exchange interactions among the carriers in
a (quasi)-2D system can also modify the g factor of the particles. As we want
to focus on anisotropies of g∗ reflecting the anisotropy of the crystal structure,
we assume that the isotropic exchange–correlation interaction is less important
in this context. However, for a quantitative agreement with experimental data it
can be important that the exchange–correlation interaction is taken into account,
see the discussion at the end of Sect. 7.3.2.

Roland Winkler: Spin–Orbit Coupling Effects
in Two-Dimensional Electron and Hole Systems, STMP 191, 131–149 (2003)
c© Springer-Verlag Berlin Heidelberg 2003
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In Sect. 7.1, we discuss the anisotropic Zeeman splitting in 2D electron sys-
tems. Next we discuss, in Sect. 7.2, Zeeman splitting in inversion-asymmetric
systems. Zeeman splitting in hole systems depends strongly on the crystal-
lographic direction in which the sample is grown. In Sect. 7.3 we discuss
Zeeman splitting in 2D hole systems that have been grown in low-symmetry
directions such as [113]. In Sect. 7.4 we discuss the Zeeman splitting of 2D
hole systems with a growth direction [001]. For this high-symmetry direction,
the results differ qualitatively from the general case discussed in Sect. 7.3.

7.1 Zeeman Splitting in 2D Electron Systems

For electrons in the conduction band Γ c
6 of a bulk semiconductor the Zeeman

splitting ∆E = g∗µBB is independent of the direction of the magnetic field B.
This can be traced back to the fact that to linear order in B, the invariant
expansion for the Γ c

6 band contains only one term (see Table C.5),

H z
6c 6c =

g∗

2
µB B · σ . (7.1)

In quasi-2D systems, the reduced symmetry gives rise to different invariants
for the in-plane and perpendicular components B‖ = (Bx, By, 0) and Bz . We
obtain

H z
6c 6c =

g‖
2
µB (Bxσx +Byσy) +

gz

2
µBBzσz , (7.2)

with effective g factors g‖ and gz. This equation is fully consistent with the
results in Sect. 4.6.2, where we used Löwdin partitioning to obtain the explicit
analytical expressions (4.42a) and (4.42b) for g‖ and gz, respectively.

We have noted already that (4.42) implies that the effective g factor in
a quasi-2D system is reduced in magnitude owing to subband confinement
[11,5]. More specifically, we can see in these equations that g‖ for the lowest
electron subband stems from k · p coupling to the l2 and s2 subbands, whereas
gz originates from the k · p coupling to the h1, l1, and s1 subbands. The latter
subbands are usually significantly more strongly bound than the l2 and s2
subbands. Therefore it follows from (4.42a) and (4.42b) that, in general,
|g‖| < |gz|.2 In order to check these qualitative arguments, we shall compare
them with the results of accurate numerical calculations. In Fig. 7.1 we show
the effective g factors g‖ and gz, calculated as a function of the well width
w, for 2D electron systems in the lowest subband of QWs made of different
materials. For comparison, the effective g factor g∗bulk of the corresponding
bulk material is marked by arrows. The numerical calculation was based on
an 8 × 8 multiband Hamiltonian (Γ c

6 , Γ v
8 , and Γ v

7 ). This model contains g∗

only implicitly. Therefore, we extracted g‖ from the Zeeman splitting ∆E
calculated at B = 1 T using g‖ = ∆E/(µBB). For gz, we evaluated the
Zeeman splitting of the lowest Landau level.
2 We can have |g‖| > |gz| if the order of the HH and LH states is reversed.
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Fig. 7.1. Effective g factors g‖ and
gz as a function of well width w for
a 2D electron system in the lowest
subband (the results for gz also refer
to the lowest Landau level) of sym-
metric GaAs–Al0.3Ga0.7As, GaAs–AlAs,
Ga0.47In0.53As–Al0.47In0.53As, and InSb
QWs calculated numerically by means of
an 8×8 multiband Hamiltonian (Γ c

6 , Γ v
8 ,

and Γ v
7 ). The effective g factor g∗bulk of

the bulk material is marked by arrows

We see in Fig. 7.1 that we have a substantial decrease of |g∗|, which is
strongest in narrow QWs. Moreover, the effective g factor g‖ is significantly
smaller in magnitude than gz, in good agreement with the above qualitative
arguments. In GaAs, the effective g factor of the bulk material is rather small
(g∗ = −0.44). Here we have the interesting situation that nonparabolicity can
give rise to a sign reversal of g∗ in sufficiently narrow QWs. We remark that
bulk AlAs has a positive g factor so that one can expect to find a sign reversal
of g∗ in sufficiently narrow QWs even without higher-order band structure
effects being taken into account [12].3 However, the probability of finding
an electron in the barriers is much smaller than the probability of finding
an electron in the well, so that the g factor of the barrier material is less
important. This can be seen in the upper part of Fig. 7.1, where we compare
g∗ for a GaAs–Al0.3Ga0.7As and a GaAs–AlAs QW. The curves for the two
systems are not far from each other. Note also that an increasing Al content
x in the AlxGa1−x barriers reduces g∗ both because of the larger contribution
from g∗ in the barriers and because of the stronger confinement of the electron
and hole subband states.3 The latter implies that with increasing x, the band
structure effects become more important, too.
3 Both effects originate in the fact that g∗ − g′ is inversely proportional to the

(effective) energy gap; see (4.39b) and (4.42).
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7.2 Zeeman Splitting in Inversion-Asymmetric Systems

A symmetric QW grown in the crystallographic direction [001] has the point
group D2d (see Table 3.4), so that for an in-plane magnetic field B‖ the
effective g factor of electrons must be independent of the crystallographic
direction of B‖. If the confining potential of the QW is inversion-asymmetric,
however, the point group is reduced to C2v and it is no longer required by
symmetry that the effective g factor is independent of the direction of B‖ [13].
By inspection of Tables C.3 and C.4, we can see that, for the Γ c

6 conduction
band, we have one new invariant that will describe this effect in the lowest
order in the electric field E and magnetic field B,

Hz,r,b
6c6c = z6c6c

41 [(EyBz + EzBy)σx + cp] . (7.3)

For E = (0, 0, Ez), this becomes

Hz,r,b
6c6c = z6c6c

41 Ez (Byσx +Bxσy) . (7.4)

Fourth-order Löwdin perturbation theory gives the following for the coeffi-
cient z6c6c

41 :

z6c6c
41 =

ie2

3�
PP ′Q

[
1

E0 − E′
0 −∆′

0

(
1

(E0 +∆0)2
− 1
E2

0

)

+
1
E0

(
1

(E0 − E′
0 −∆′

0)2
− 1

(E0 − E′
0)2

)]
. (7.5)

The Zeeman term (7.4) emerges from the combined effect of bulk inversion
asymmetry (BIA), an electric field Ez due to structure inversion asymmetry
(SIA), and an in-plane magnetic field B‖ = (Bx, By, 0). An anisotropic effec-
tive g factor in inversion-asymmetric QWs has been observed experimentally
by Oestreich et al. [14] using spin quantum beat spectroscopy.

In Chap. 6, we discussed the SO terms symmetric in the components of
the wave vector k that give rise to a spin splitting at B = 0. But these
terms also affect the spin splitting of electrons and holes at B > 0, and these
terms complement the Zeeman term (7.4). Before discussing these matters in
detail, we recall the effect of B‖ in the framework of a simple effective-mass
Hamiltonian (4.15). Using the gauge (4.2), this Hamiltonian can be evaluated
perturbatively [15]. Up to second order in B‖, we obtain for the αth subband

Eα(k‖) = Eα +
�
2k̃2‖

2m∗ +
e2B2

‖
2m∗

(
〈z2〉 − 〈z〉2

)
+
e2�

2

m∗2 (kxBy − kyBx)2
∑
β �=α

| 〈α |z|β〉 |2
Eα − Eβ

± g∗

2
µBB‖ , (7.6)

where
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k̃‖ =




kx + (e/�) 〈z〉By

ky − (e/�) 〈z〉Bx

0


 (7.7)

and 〈. . .〉 ≡ 〈α|. . .|α〉. Equation (7.6) allows a simple interpretation of the
effect of B‖. The magnetic field shifts the energy parabolas in k‖ space by
(e/�)〈z〉B‖. The third term gives rise to a diamagnetic shift of the subband
edge proportional to 〈z2〉 − 〈z〉2. The fourth term results in an increased
effective mass in a quasi-2D system in the presence of an in-plane magnetic
field [15]. The mass increase reflects the fact that, ultimately, for large B‖
(i.e. λc � w), the electron states become dispersionless Landau levels. Note
that this term, which has sometimes been overlooked, depends on k‖ and
not on k̃‖. In a QW symmetric with respect to z = 0, we have 〈z〉 = 0 but
〈z2〉 �= 0 and 〈α|z|β〉 �= 0 for α �= β.4

The intuitive picture underlying the above interpretation of (7.6) should
be used with caution, however, because the c-numbers k‖ and k̃‖ are not
gauge-invariant quantities.5 This can be seen if we choose, for example, the
symmetric gauge A = (1/2)B‖ × r, for which we cannot factorize the wave
functions as in (4.1), anymore.

Similarly to (7.6), we obtain the following from first-order perturbation
theory applied to the Dresselhaus term (neglecting the terms of third order
in k‖) [13]:

Hb
6c6c = b6c6c

41 〈k2
z〉
(
− k̃xσx + k̃yσy

)
+ b6c6c

41

(
〈k2

z〉〈z〉 − 〈{k2
z , z}〉

) e
�

(Byσx +Bxσy) (7.8a)

= b6c6c
41,1

(
− k̃xσx + k̃yσy

)
+ b6c6c

41,2 (Byσx +Bxσy) , (7.8b)

where the second equation defines the symbols b6c6c
41,1 and b6c6c

41,2 . In (7.8a), the
factor 〈k2

z〉〈z〉 − 〈{k2
z , z}〉 in the second term vanishes in a symmetric QW,

but it can be nonzero in an asymmetric QW. Therefore the second term
emerges from the combined effect of BIA and SIA. Apparently, we have de-
composed the Dresselhaus term into an “orbital” part depending on k̃‖ plus
an anisotropic Zeeman-like term similar to (7.4). However, while in a proper
Zeeman term (including (7.4)) the spin degree of freedom is decoupled from
the orbital motion, no such separation of the spin and orbital degrees of
freedom is possible for (7.8). We note that for any invariant I(k), gauge
invariance is only achieved if a gauge transformation is applied to the full
4 It is illuminating to compare the approximate expression (7.6) with the exact

analytical results for a parabolic QW in the presence of an in-plane magnetic
field; see, for example, Sect. 1.6 of [16].

5 In a perturbative treatment of E and B, gauge invariance can be a rather tricky
issue that is not automatically fulfilled; see, for example, [17,18,19] and references
therein.
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invariant. Accordingly, it is not possible to decompose the Dresselhaus term,
which is symmetric in the components of k, into a Zeeman term antisymmet-
ric in the components of k plus a “reduced” symmetric invariant. Instead we
must always consider both terms in (7.8).

To illustrate the meaning of (7.8) we can include it in the effective-mass
model (7.6). For simplicity, we shall ignore the component of k‖ parallel to
B‖ because it remains unaffected by the magnetic field. Diagonalization of
the resulting expression yields (neglecting for simplicity the coupling to other
subbands)

Eα±(k‖) = Eα +
�

2k̃2‖
2m∗ +

e2B2
‖

2m∗
(
〈z2〉 − 〈z〉2

)
±
[
ζb6c6c

41,1 k̃‖ +
(
g∗

2
µB − b6c6c

41,2

)
B‖

]
. (7.9)

Here the upper and lower signs refer to the spin-split energy branches. We
have ζ = +1 for k‖ ‖ [110] and B ‖ [110], whereas ζ = −1 refers to k‖ ‖ [110]
and B ‖ [110]. While in (7.6) the spin-split parabolas were shifted in k‖ space
by the same amount (e/�) 〈z〉B‖ we now obtain two parabolas, the minima
of which are at different points k± in k‖ space,

k± = − e

�
〈z〉B‖ ∓ ζb6c6c

41,1

m∗

�2
. (7.10)

Inserting (7.10) into (7.9) yields

Eα±(k±) = Eα − b6c6c
41,1

2 m∗

2�2
±
(
g∗

2
µB − ζb6c6c

41,2

)
B‖ , (7.11)

i.e. the “Zeeman” splitting ±
(
g∗µB/2 − ζb6c6c

41,2

)
B‖ refers to the difference

between the energies of eigenstates at different points in k‖ space. This can be
seen in Fig. 7.2, where we show the dispersion E±(k‖) of the lowest electron
subband in a 100 Å wide GaAs–AlAs QW in the presence of an in-plane
magnetic field B‖ = 1 T and an electric field Ez = 20 kV/cm. The solid
and dashed lines refer to B ‖ [110] and B ‖ [110], respectively, and we
have assumed k‖ ⊥ B‖. The upper part was calculated by means of a 14 ×
14 Hamiltonian (Γ c

8 , Γ c
7 , Γ c

6 , Γ v
8 , and Γ v

7 ). The lower part was based on a
simplified 2×2 Hamiltonian (Γ c

6 ).6 The latter calculation results in a splitting
∆E that is substantially larger than the splitting based on the more accurate
6 When comparing the upper and lower parts of Fig. 7.2, the reader might won-

der why nonparabolicity increases the subband energy while it is known that,
for the bulk dispersion, nonparabolicity always lowers the energy of conduction
band states. This can be traced back to a competition between the effect of non-
parabolicity on the conduction band states inside the well – they lie above the
band edge, so that nonparabolicity increases the effective mass – and the effect
of nonparabolicity on the states in the barriers – they lie below the band edge,
so that nonparabolicity decreases the effective mass [20].
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Fig. 7.2. Dispersion E±(k‖) of the
lowest electron subband in a 100 Å
wide GaAs–AlAs QW in the presence
of an in-plane magnetic field B‖ = 1 T
and an electric field Ez = 20 kV/cm.
The solid and dashed lines refer to
B ‖ [110] and B ‖ [110], respectively,
and we have assumed k‖ ⊥ B‖. The
upper part was calculated by means of
a 14×14 Hamiltonian (Γ c

8 , Γ c
7 , Γ c

6 , Γ v
8 ,

and Γ v
7 ). The lower part was based on

a simplified 2 × 2 Hamiltonian (Γ c
6 )

14 × 14 Hamiltonian, consistent with the results in Sect. 7.1. The minima
of E±(k‖) occur at finite in-plane wave vectors k+ �= k−, in agreement with
(7.10). For B ‖ [110], the splitting E+(k+)−E−(k−) is roughly 10% smaller
than the splitting for B ‖ [110], in agreement with (7.11). The contribution
of the higher-order Zeeman term (7.4) can hardly be resolved on the scale of
Fig. 7.2. The dominant effect is from the Dresselhaus term (7.8).

Figure 7.2 illustrates that in an in-plane magnetic field, the physics in the
presence of the Dresselhaus term (7.8) is qualitatively different from the sit-
uation without such a term. For example, in (7.6), containing only a Zeeman
term, the lowest states in the spin-split branches are connected by vertical
spin-flip transitions. This does not hold anymore for spin-flip transitions in
the presence of the Dresselhaus term (7.8). We remark that, similarly to
(7.10) and (7.11), the Rashba term in the presence of an in-plane magnetic
field also gives rise to shifted minima of the spin-split branches of the sub-
band dispersion Eα±(k‖). Here a nontrivial, albeit isotropic, splitting similar
to (7.11) requires that we take into account the fourth term in (7.6).

Finally, we note that we derived (7.8) by first-order perturbation theory. In
higher-order perturbation theory, invariants symmetric in the components of
k can give rise to both symmetric and antisymmetric higher-order invariants,
consistent with (3.1). An example will be given in the next section.
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7.3 Zeeman Splitting in 2D Hole Systems:
Low-Symmetry Growth Directions

In this section, we discuss the Zeeman splitting in 2D hole systems that have
been grown in low-symmetry crystallographic directions such as [113]. We
shall show that the Zeeman splitting for an in-plane magnetic field in different
crystallographic directions can be highly anisotropic. In Sect. 7.3.1 we present
the general theoretical results, which will be compared in Sect. 7.3.2 with the
results of magnetotransport experiments.

7.3.1 Theory

In Table C.5, we have two invariants in the valence band block Hz
8v8v that

give rise to a Zeeman splitting of holes. The isotropic invariant −2κµBB ·J ,
with an effective g factor κ, is always the dominant term. The prefactor q
of the anisotropic invariant −2qµBB · J with J = (J3

x , J
3
y , J

3
z ), is typically

two orders of magnitude smaller than κ and, in the present discussion, is
neglected completely. The smallness of q is in sharp contrast to the orbital
motion of holes, for which we have highly anisotropic effective masses m∗

reflecting the spatial anisotropy of the crystal structure (see Sect. 4.5.2).
For the Γ v

8 valence band block, the Zeeman Hamiltonian reads as follows,
using an explicit matrix notation:

Hz
8v8v = −2κµB




3
2
Bz

√
3

2
B− 0 0

√
3

2
B+

1
2
Bz B− 0

0 B+ − 1
2
Bz

√
3

2
B−

0 0
√

3
2 B+ − 3

2Bz




−2qµB




27
8 Bz

7
√

3
8 B− 0 3

4B+

7
√

3
8
B+

1
8
Bz

5
2
B− 0

0 5
2B+ − 1

8Bz
7
√

3
8 B−

3
4B− 0 7

√
3

8 B+ − 27
8 Bz


 , (7.12)

where B± = Bx ± iBy. Note that the first term is correct for any growth
direction because it has spherical symmetry. The second term refers to the
growth direction [001]. We see from (7.12) that, in the presence of an in-plane
magnetic field B‖ = (Bx, By, 0), the g factor κ couples the two LH states
(m = ±1/2). Furthermore it couples the HH states (m = ±3/2) to the LH
states [7]. But there is no direct coupling between the HH states proportional
to κ, so that the authors of [6, 7, 8, 9] concluded that the Zeeman splitting
of HH states in an in-plane magnetic field is suppressed. This illustrates the
general result in Sect. 4.5.3 that HH–LH splitting corresponds to a predefined
quantization axis of angular momentum that points in the growth direction of
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[nn(2m)]

[110]

[100]

[010]

[001]

y

[mmn]
z

x

θ

Fig. 7.3. Coordinate system for QWs grown
in the [mmn] direction (z direction). Here θ is
the angle between [mmn] and [001], i.e. θ =
arccos(n/

√
2m2 + n2). The axes for the in-

plane motion are [nn(2m)] (x) and [110] (y)

the QW. An in-plane magnetic field cannot give rise to a second quantization
axis of angular momentum; see also (7.19).

However, owing to the anisotropic orbital motion of holes in a crystal
structure, angular momentum is merely an “almost good” quantum number.
Thus, for crystallographic directions other than the high-symmetry directions
[001] and [111] (neglecting any broken inversion symmetry) and nonzero SO
interaction, it follows that g∗‖ can have significant values. In the following
we show that, in agreement with these symmetry considerations, we obtain
a large and highly anisotropic Zeeman splitting with respect to different
orientations of the in-plane magnetic field B‖ relative to the crystal axes
(Ref. [10]).

We shall discuss QWs grown in the crystallographic [mmn] direction
(where m, n are integers). Hence we use the coordinate system shown in
Fig. 7.3, where θ denotes the angle between [mmn] and [001]. For growth
directions other than [001] and [111], the point group of these QWs is C2h

(neglecting terms due to any broken inversion symmetry). We remark that
QWs for 2D hole systems have often been grown in the [113] direction re-
cently, as this yields particularly high hole mobilities (Ref. [21, 22]).

In general, the dynamics of 2D holes are rather complicated owing to the
nonparabolic and anisotropic terms in the Hamiltonian. Therefore, a quanti-
tative understanding of phenomena such as the anisotropic Zeeman splitting
can be obtained only by means of accurate numerical computations [23]. In
particular, the Zeeman splitting of 2D hole states depends on higher orders
both of the in-plane wave vector k‖ and of B‖. As we shall show next, it is
nevertheless very helpful for a qualitative understanding to identify analyti-
cally the relevant lowest-order terms.

We describe the hole subband states by means of the 4 × 4 Luttinger
Hamiltonian H8v8v . The anisotropy of the orbital motion can be characterized
by a single parameter δ ≡ γ3−γ2; see Table C.11. For growth directions other
than [001] and [111], the anisotropic motion results in an off-diagonal HH–LH
coupling proportional to δk2 (see Table C.11), which complements the HH–
LH coupling proportional to κB. Treating these terms by means of Löwdin
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perturbation theory, we obtain the following to second order for the Zeeman
term of the topmost HH subband:

HHH
[mmn]

= − 3
[
K − G2

(
2 − sin2 θ

)
+ G3 cos2 θ

] (
2 − 3 sin2 θ

)
sin2 θ µBBxσx

+ 3
[
2K − G2 sin2 θ − G3

(
2 − sin2 θ

)] (
2 − 3 sin2 θ

)
sin θ cos θ µBBxσz

− 3 [K − G3]
(
2 − 3 sin2 θ

)
sin2 θ µBByσy , (7.13)

where

K =
�

2

2m0

κδ

i

∑
α

〈h1|[kz , z]|lα〉 〈lα|k2z |h1〉 + 〈h1|[kz , z]|lα〉 〈lα|k2z|h1〉
Eh

1 − El
α

,

(7.14a)

Gj =
�

2

2m0

γjδ

i

∑
α

〈h1|{kz, z}|lα〉 〈lα|k2z |h1〉 − 〈h1|k2z |lα〉 〈lα|{kz, z}|h1〉
Eh

1 − El
α

.

(7.14b)

Equation (7.13) is in full agreement with an invariant expansion of the Zee-
man splitting for a system with the point group C2h.7 In (7.14), we did not
evaluate the commutator according to [kz, z] = i, in order to show that both
K and Gj have the antisymmetric structure we expect for a Zeeman term.
Nevertheless, we have here two qualitatively very different contributions to
the Zeeman spin splitting, both of which are quite remarkable. The coeffi-
cient K originates from the combined effect of the bulk g factor κ and the
anisotropic orbital motion characterized by δ = γ3 − γ2. Typically we have
〈h1|lα〉 ≈ δ1α. It follows that the dominant contribution to K stems from the
coupling between the subband states |h1〉 and |l1〉. The coefficients Gj rep-
resent a contribution to the Zeeman term that is independent of the bulk g
factor κ. This contribution is solely an effect of subband quantization. Using
〈h1|lα〉 ≈ δ1α, it follows that we have 〈h1|{kz, z}|l1〉 ≈ 0, i.e. we obtain the
most important contributions to Gj from a coupling to LH subbands |hα〉
with α > 1. As these subbands are further away in energy, we can conclude
that, typically, the dominant term in (7.14) is K (with α = 1). Note also that
the coefficients K and Gj disappear in the axial limit δ = 0.

It is convenient to diagonalize (7.13) so that we can summarize our results
by an anisotropic effective g factor. We obtain

gHH
[nn(2m)]

= 3
(
2 − 3 sin2 θ

)
sin θ

√
4 − 3 sin2 θ

×
√

(K− G2)
2 sin2 θ + (K− G3)

2 cos2 θ , (7.15a)

gHH
[110]

= −3
(
2 − 3 sin2 θ

)
sin2 θ |K − G3| . (7.15b)

7 Note that the mirror plane of C2h is the (110) plane; see Fig. 7.3.
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Our sign convention for g∗ corresponds to the dominant spinor component of
the multicomponent eigenstates (using a basis of angular-momentum eigen-
functions with a quantization axis in the direction of B‖).

We see here that the behavior of g∗ in (7.15) is fundamentally different
from the in-plane/out-of-plane anisotropy of g∗ of 2D hole systems visible in
(7.12) (see [6, 7, 8, 9]). It is also very different from the in-plane/out-of-plane
anisotropy of g∗ of 2D electron systems (see Sect. 7.1), which emerges in a
natural way from Roth’s formula (4.39b) for the bulk electron g factor. In
fact, (7.15) is a clear consequence of subband quantization.8

It is remarkable that though the first term in (7.14) is the dominant one,
we can have a nonzero effective g factor (7.15) even in the limit κ = 0. We
have stated above that the effective g factor is a consequence of SO interac-
tion. Therefore, one might ask how it is possible to have a nonzero g∗ which
apparently depends only on the Luttinger parameters γi for the orbital mo-
tion. This can be understood as follows. The 4 × 4 Luttinger Hamiltonian
H8v8v which underlies the present calculations corresponds to an infinitely
large SO splitting ∆0 between the topmost valence band Γ v

8 and the split-off
band Γ v

7 . Therefore the SO interaction is not explicitly visible even though,
similarly to Zeeman splitting in bulk semiconductors [1], (7.15) is a conse-
quence of SO interaction. Equation (7.15) shows that in 2D systems, SO
interaction can give rise to a Zeeman splitting even without a bulk g∗.

We can evaluate (7.14) analytically, using as unperturbed states the eigen-
functions of an infinitely deep rectangular QW and the eigenfunctions of a
parabolic QW. We obtain

K =
κδu1

γHH
z − γLH

z

, (7.16a)

Gj =
2γjδu2

γHH
z − 5γLH

z

, (7.16b)

where

γHH
z = −γ1 + 2 [(1 − ζ) γ2 + ζγ3] (7.17a)

γLH
z = −γ1 − 2 [(1 − ζ) γ2 + ζγ3] (7.17b)

ζ = sin2 θ
[
3 − 9

4 sin2 θ
]
. (7.17c)

8 In a biaxially strained bulk crystal we have a lifting of the HH–LH degeneracy,
so that in an invariant expansion for the bulk Hamiltonian including strain, we
find terms similar to (7.15). But in this case the resulting g∗ is much smaller for
the following reason: for a QW, both the numerators and the denominators in
(7.14) are proportional to k2

z so that the kz dependence of g∗ drops out (see the
discussion following (7.16)). In a biaxially strained bulk material, on the other
hand, the corresponding energy denominators are proportional to the strain in
the system and independent of kz . In this case it would be difficult to probe
g∗(kz) at sufficiently large values of kz .
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Here γHH
z and γLH

z are the reciprocal band-edge effective masses in the z
direction in the axial approximation for the HH and LH subbands, respec-
tively (see Table C.10). In (7.16), we have used the weights ui to distinguish
between our two model systems. The values u1 = u2 = 1 correspond to a
parabolic QW. For the rectangular QW we have u1 = 2 and u2 = 0, i.e.
for the latter geometry the coefficients Gj disappear. For the parabolic well,
the coefficients Gj stem from a coupling to the l3 subband. They are small
corrections with respect to K.

Equation (7.16) is independent of the well width w, the reason being that
in (7.14) both the numerators and the energy denominators are proportional
to k2

z ∝ 1/w2, so that the w dependences cancel out. However, similarly to
the case of optical anisotropy in QWs [24], the effective g∗ depends on w if
the split-off valence band Γ v

7 is explicitly taken into account. Here, we omit
the rather lengthy modifications to (7.15). They become relevant for narrow
QWs with w � 50 Å.

Equations (7.15) and (7.16) are quite important because, in unstrained
QWs, the topmost subband is an HH subband so that often only this sub-
band is occupied. For LH subbands in an in-plane B and for HH and LH
subbands in a perpendicular B, g∗ contains terms similar to (7.15). How-
ever, the dominant contribution is given by the bulk g factor κ. We see in
(7.12) that for LH subbands in an in-plane B we have basically gLH

‖ = 4κ,
while for a perpendicular B we have gHH

z = 6κ and gLH
z = 2κ [9, 3].

In Fig. 7.4a we show the anisotropic g∗ of the h1 subband for a 200 Å
wide GaAs–Al0.3Ga0.7As QW as a function of the angle θ. The analytical ex-
pressions (7.16) (dotted and dashed–dotted lines) are in very good agreement
with the more accurate results obtained by means of a numerical diagonaliza-
tion [7, 25] of the Luttinger Hamiltonian (solid and dashed lines). Figure 7.4
demonstrates that g∗ can be very anisotropic. For example, for the growth
direction [113], g∗ is about a factor of four larger when B ‖ [332] than when
B ‖ [110]. Moreover, the sign of gHH

[nn(2m)]
is opposite to the sign of gHH

[110]
. For

comparison, we remark that for the GaAs system considered in Fig. 7.4 we
have gHH

z = 6κ ≈ 7.2.
Equations (7.15) and (7.16) are applicable to a wide range of cubic semi-

conductors with results qualitatively very similar to Fig. 7.4. For rectangular
QWs (u1 = 2 and u2 = 0), the relative anisotropy

gHH
[nn(2m)]

gHH
[110]

= −
√

4 − 3 sin2 θ

sin θ
(7.18)

is independent of the material-specific parameters γi and κ (Fig. 7.4b). This
result can be traced back to the fact that the anisotropy for different di-
rections θ in k-space is always characterized by the single parameter δ; see
Table C.11. Note that for QWs based on narrow-gap semiconductors, we have
a larger κ and smaller effective masses. Thus the absolute values of g∗ are
significantly larger here than the g∗ of GaAs shown in Fig. 7.4a, but the
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Fig. 7.4. (a) Anisotropic effective
g factor g∗ and (b) relative g factor
anisotropy (7.18) of the h1 subband for a
200 Å wide GaAs–Al0.3Ga0.7As QW as
a function of θ, the angle between [001]
and the growth direction. The results in
(a) are shown for an in-plane B along
the [nn(2m)] and [110] directions. The
solid and dashed lines were obtained by
means of a numerical diagonalization of
the Luttinger Hamiltonian. The dotted
and dashed–dotted lines were obtained
by means of (7.16). (a) taken from [10].
c© (2000) by the American Physical So-
ciety

g∗ anisotropy is still given by (7.18) and depends only on θ. The Zeeman
splitting can be enhanced even further if one uses semimagnetic semiconduc-
tors containing, for example, Mn. For these materials, the structure of the
Hamiltonian is identical to that of the conventional Luttinger Hamiltonian
in the presence of a magnetic field, with κ replaced by the effective g fac-
tor due to the paramagnetic exchange interaction; see Table C.5 and [8, 9].
Therefore (7.15), (7.16), and the g∗ anisotropy (7.18) are readily applicable
to semimagnetic materials too.

7.3.2 Comparison with Magnetotransport Experiments

It has been demonstrated [10] that the in-plane anisotropy of g∗ of a 2D hole
systems can be probed experimentally by measuring the magnetoresistance
of a high-mobility 2D hole system as a function of B‖. The samples used
were 200 Å wide Si-modulation-doped GaAs QWs grown on (113)A GaAs
substrates. These samples exhibit a mobility anisotropy, believed to be due
to an anisotropic surface morphology [22]. They were patterned with an L-
shaped Hall bar to allow simultaneous measurements of the resistivity along
the [332] and [110] directions. Front and back gates were used to control the
2D density in the QW and the perpendicular electric field, which characterizes
the asymmetry of the sample [26].

The left two panels of Fig. 7.5 show the resistivity ρ measured as a func-
tion of B‖ for three different densities and for different relative orientations of
B‖ and the current I. For easier comparison, we have plotted the fractional
change ρ(B)/ρ(B = 0). Apart from an overall positive magnetoresistance,
log(ρ) shows a change in slope at a particular value of B‖, which we call
B∗. In Fig. 7.5, B∗ has been marked by arrows. Similar, though sharper
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Fig. 7.5. Left and central panels: fractional change in resistivity ρ(B)/ρ(0) due to
an in-plane magnetic field B‖, measured at T = 0.3 K for a GaAs 2D hole system
grown on a (113) substrate, for different 2D densities as indicated. The arrows mark
B∗, defined in the text. The resistivities at B‖ = 0 in the left panels are from top
to bottom, 7.2, 2.2, and 0.55 kΩ/square. The corresponding values for the central
panels are 4.9, 1.6, and 0.45 kΩ/square. Right panels: calculated density N+ in the
upper spin subband as a function of B. Note that the horizontal axes in the left
and central panels have different scales from the right panels. Taken from [27]

features have been observed in systems with several occupied confinement
subbands when a subband is depopulated by means of B‖ [28]. It has been
proposed that the magnetoresistance feature at B∗ in Fig. 7.5 is related to
a spin-subband depopulation and the resulting changes in subband mobility
and intersubband scattering as B‖ is increased. This mechanism is sketched
in Fig. 7.6. At B‖ = 0, we have approximately equal populations of the spin
subbands. Small differences are caused by the inversion-asymmetry-induced
spin splitting discussed in Chap. 6. The Zeeman splitting due to an in-plane
magnetic field lowers the energy of the eigenstates in one spin subband, while
the energy of the eigenstates in the other subband is increased. Thus we ob-
tain unequal populations of these subbands. For the low-density samples in
Fig. 7.5, moderate magnetic fields are sufficient to completely depopulate one
Zeeman-split subband. Note that in each panel of Fig. 7.5, B∗ is the same
for both current directions, even though the magnetoresistance is very dif-
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k || k ||k || k ||

FE

= 0 > 0

g* Bµ

FE

(a) (b)

spin down spin up spin down spin up
E E

B B

Fig. 7.6. Depopulation of one spin subband due to an in-plane magnetic field:
(a) At B‖ = 0, we have approximately equal populations of the spin subbands.
(b) Zeeman splitting at B‖ > 0 gives rise to a depopulation of one spin subband.
We have neglected the possibility of a spin splitting at B‖ = 0 caused by an inversion
asymmetry of the system

ferent. This implies that B∗ depends on parameters which do not depend on
the current direction. This supports our hypothesis, as spin-subband depop-
ulation should not depend on the direction of the current in the sample.

Our interpretation ofB∗ is obviously consistent withB∗ in Fig. 7.5 becom-
ing larger with increasing density. It is remarkable that B∗ for the B‖ ‖ [332]
traces is about 4 T smaller than for the [110] traces, regardless of the direc-
tion of I. We associate this with the anisotropy of the in-plane g∗ discussed in
the preceding section. This interpretation is validated by the self-consistently
calculated results for the density N+ of the upper spin subband as a function
of B‖, shown in the right panels of Fig. 7.5. The density N+ decreases much
faster for B‖ ‖ [332] than for B‖ ‖ [110], in agreement with Fig. 7.4a. We
have further support for our interpretation of B∗ from experiments where
the asymmetry of the confining potential was increased by means of the front
and back gates while keeping the 2D density fixed. We observe an increase
in B∗, in agreement with the results of the self-consistent calculations.

One might ask whether the data in Fig. 7.5 could be summarized by a
single value of g∗ for each trace. Unfortunately, this is not possible, because,
owing to the complicated band structure of holes, g∗ depends on the in-plane
wave vector k‖, and we are averaging over g∗(k‖) for k‖ up to the Fermi wave
vector kF. (For clarity, we have not included in (7.16) the lengthy additional
terms due to the k‖ dependence of g∗.) Note also that m∗ depends on B; see
(7.6). The significance of these effects can be readily deduced from the right
panels of Fig. 7.5, as we would have straight lines for N+(B) if g∗ and the
effective mass m∗ were not dependent on k‖ or B.

In Fig. 7.5, the measured B∗ is significantly smaller than the calculated
B‖ for a complete depopulation of the upper spin subband. We note that
for the low-density samples used in the experiments [10], it can be expected
that g∗ will be enhanced in magnitude owing to the exchange interaction and
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the spin polarization caused by B‖ [4, 29, 30]. This effect was not taken into
account in the self-consistent calculations. The overall agreement between the
experimental data and the calculations, however, implies that these many-
particle effects do not qualitatively affect the anisotropy of g∗. We suggest
that the anisotropic g∗ given in (7.16) for an in-plane wave vector k‖ = 0
without many-body effects could be measured using optical and microwave
experiments such as those described in [14].

7.4 Zeeman Splitting in 2D Hole Systems:
Growth Direction [001]

In a Taylor expansion of the Zeeman splitting ∆E(B), the g factor g∗ (times
µB) is the prefactor of the term linear in B. Often terms of higher order in B
are neglected because of their relative insignificance. An interesting feature
of Fig. 7.4a is the vanishing of g∗(θ) for the high-symmetry growth directions
[001] and [111] (Ref. [7]).9 For the 2D hole system considered in Fig. 7.4, this
results in a splitting ∆E which, at B‖ = 1 T, is more than two orders of
magnitude smaller than the value of ∆E for the growth directions [113] and
[110]. For the high-symmetry directions [001] and [111], the dominant contri-
bution to ∆E is proportional to B3

‖ . In second-order perturbation theory, we
obtain the following for the h1 subband in a QW grown in the [001] direction:

HHH
[001] = 3

2
qµB (Bxσx −Byσy)

+ ZHH
[001] µ

3
B

{
γ2

[
(B3

x −BxB
2
y)σx + (B3

y −ByB
2
x)σy

]
+ 2γ3

[
BxB

2
yσx +ByB

2
xσy

]}
, (7.19a)

where

ZHH
[001] = 6

(
κ
∑
α

〈h1|z2|lα〉〈lα|[kz, z]|h1〉 + 〈h1|[kz , z]|lα〉〈lα|z2|h1〉
Eh

1 − El
α

+ γ3

∑
α

〈h1|z2|lα〉〈lα|{kz, z}|h1〉 − 〈h1|{kz, z}|lα〉〈lα|z2|h1〉
Eh

1 − El
α

)
.

(7.19b)

These results are fully consistent with an invariant expansion for the point
groupD4h. For an infinitely deep rectangular QW of width w we can evaluate
ZHH

[001] further (neglecting the coupling to LH subbands with α > 3 in the
second sum):

9 The small B-linear Zeeman splitting proportional to q was discussed in [6, 31].
Note that for a 200 Å wide GaAs QW and a magnetic field B‖ � 4 T the cubic
splitting in (7.19) dominates over the linear splitting due to q.
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ZHH
[001] =

(
w2m0

π2�2

)2 [
κ

2γ2
(6 − π2) +

27γ3

10γ2 − 4γ1

]
. (7.20)

The first term stems from a coupling between the subbands h1 and l1, and
the second term is due to a coupling between h1 and l3. We can readily
diagonalize (7.19) (neglecting the small q-dependent term)

∆EHH
[001] = 2

(
µBB‖

)3√
γ2
2 cos2(2ϕ) + γ2

3 sin2(2ϕ)
∣∣ZHH

[001]

∣∣ . (7.21)

Here ϕ is the angle between B‖ and the [100] axis. Unlike (7.16), ∆EHH
[001]

increases in proportion to w4, i.e. the Zeeman splitting is most efficiently
suppressed in narrow QWs. The cubic dependence of ∆EHH

[001] on B‖ in the
approximate analytical expressions (7.19) and (7.21) is in very good agree-
ment with more accurate numerical calculations. We obtain similar, though
somewhat longer, expressions for the growth direction [111]. The Zeeman
splitting of HH states in a tilted magnetic field was recently discussed with
the use of similar methods by Dorozhkin [32].

Equation (7.19) characterizes the Zeeman splitting for the subband edge
k‖ = 0. For a nonzero in-plane wave vector k‖, it is possible to achieve a sig-
nificant Zeeman splitting of HH states linear in B‖. The important invariants
are (point group D2d)

HHH
[001] = z7h7h

51

(
Bxk

2
xσx −Byk

2
yσy

)
+ z7h7h

52

(
Bxk

2
yσx −Byk

2
xσy

)
+ z7h7h

53 {kx, ky} (Byσx −Bxσy) , (7.22)

where

z7h7h
51 = − 3

2κγ2Z1 + 3γ2
3Z2 , (7.23a)

z7h7h
52 = 3

2κγ2Z1 − 3γ2γ3Z2 , (7.23b)

z7h7h
53 = 3

2κγ3Z1 − 3γ3 (γ2 + γ3)Z2 , (7.23c)

and

Z1 = i
〈h1|[kz , z]|l1〉 〈l1|h1〉

Eh
1 − El

1

, (7.24a)

Z2 = i
∑
α

〈h1|kz|lα〉〈lα|z|h1〉 − 〈h1|z|lα〉〈lα|kz|h1〉
Eh

1 − El
α

. (7.24b)

Similarly to Gj in (7.13), the terms weighted by Z2 represent contributions
to the Zeeman splitting that are independent of the bulk g factor κ. For an
infinitely deep rectangular QW of width w, we can evaluate Zj further:

Z1 =
w2m0

2π2�2γ2
, (7.25a)

Z2 = − 512w2m0

27π2�2 (3γ1 + 10γ2)
. (7.25b)
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It can be seen that we obtain the largest Zeeman splitting for wide QWs
where the energy denominators in (7.24) are small.
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8 Landau Levels and Cyclotron Resonance

Magneto-optical spectroscopy has proven to be a valuable tool for analyz-
ing the subband structure of electrons and holes in semiconductor quantum
wells [1]. We begin this chapter with a brief general discussion of cyclotron
resonance in semiconductor QWs (Sect. 8.1). In Sect. 8.2 we discuss the spin-
split cyclotron resonance of 2D electron systems in InAs QWs that was mea-
sured by Yang et al. [2] and Scriba et al. [3]. In Sect. 8.3 we present a detailed
comparison between calculated and measured spectra of 2D hole systems in
strained asymmetric Ge–SiGe QWs grown in the [001] direction. Finally, in
Sect. 8.4 we discuss Landau levels in inversion-asymmetric systems.

8.1 Cyclotron Resonance in Quasi-2D Systems

Cyclotron resonance denotes the resonant absorption of light due to optical
transitions between Landau levels in the presence of a quantizing magnetic
field. In semiconductors, the typical frequencies of the absorbed light are in
the far infrared (FIR) range. In this section we shall discuss the selection rules
and the absorption coefficient for cyclotron resonance in 2D systems. We fol-
low closely [4,5], where these quantities were derived for bulk semiconductors
(see also Sect. 5.7 of [6]).

We consider the absorption of FIR radiation with an electric dipole field
E = E0êeiωt, where ê = (ex, ey, ez) denotes the polarization vector. We can
associate the vector potential A = [E0/(iω)] êeiωt with E so that E = ∂tA. If
the vector potential A is included in the multiband Hamiltonian H, it gives
rise to a perturbation

H′ = H(�k + eA) −H(�k) ≈ eA · ∂H/� ∂k ≡ eA · v , (8.1)

where we have omitted terms of order O(A2) and the last expression defines
the velocity operator v with matrix-valued components.

In the following, we shall use the symbols |s〉 and |t〉 as a shorthand no-
tation for the Landau levels |αNσ〉 with subband index α, Landau quantum
number N , and spin index σ. The transition probability between levels |s〉

Roland Winkler: Spin–Orbit Coupling Effects
in Two-Dimensional Electron and Hole Systems, STMP 191, 151–170 (2003)
c© Springer-Verlag Berlin Heidelberg 2003
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and |t〉, with eigenenergies Es and Et, due to the perturbation H′ is given by
Fermi’s golden rule1 [4, 6],

Wst(ω) =
πe2E2

0

2�ω2
| 〈s | ê · v | t〉 |2 [δ(Est − �ω) + δ(Est + �ω)] . (8.2)

Here Est = Es−Et is the cyclotron resonance energy. Following [4], we obtain
the following for the matrix elements in (8.2):

〈s | ê · v | t〉 =
λcEts

�

〈
s
∣∣ e+a− e−a

† + ezλckz

∣∣ t〉 , (8.3)

where a† and a are the creation and annihilation operators for Landau har-
monic oscillators (see (4.22)), and e± = (ex ± iey)/

√
2. Equation (8.3) yields

the selection rules

∆N = ±1 , (8.4a)

∆σ = 0 (8.4b)

for the ± polarizations. The first selection rule (8.4a) is rigorously valid only
within the axial approximation, when N = N . The second selection rule
(8.4b) is strictly fulfilled only within the EMA, when the orbital motion is
fully decoupled from the spin degree of freedom. When we take cubic and
tetrahedral corrections into account we obtain weak additional transitions
between the generalized Landau levels ΨαNσ (see (4.32)). The hierarchy of
optical transitions in bulk systems with diamond and zinc blende structures
has been developed in [4] and [5], respectively. We obtain similar results for
2D systems. Note that (8.3) remains valid even in such a generalized scheme.

In accordance with (8.4a), the cyclotron effective mass is defined by

m∗
c =

�eB

|EαN±1σ − EαNσ |
. (8.5)

For the effective-mass Hamiltonian (4.27) we havem∗
c = m∗; see (8.10) below.

In the limit B → 0, the cyclotron mass equals the DOS effective mass (4.13)
evaluated at the Fermi edge E = EF [8].

The 2D absorption coefficient α(ω) is defined as the energy absorbed per
unit time and area divided by the energy flux of the radiation field, and hence
it is dimensionless. If we denote the energy density of the radiation field by
U = E0

2/(8π) and the index of refraction by n, the energy flux is ncU . Thus
we obtain

α(ω) =
�ωG

ncU

∑
s,t

fs(1 − ft)Wst(ω) , (8.6)

1 Previously, intraband and interband transitions were discussed separately in the
literature [7]. In a multiband approach, the matrix-valued velocity operator in-
cludes both the intraband and interband components of the dipole operator.
Thus we can treat these two contributions on the same footing [4].
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where G is the degeneracy of the Landau levels (4.25), and fs and ft are the
occupation factors, which depend on the 2D electron or hole concentration,
on the temperature, and on the magnetic field. Finally, we obtain

α(ω) =
2π
n

e2

4π�c

∑
s,t

(fs − ft)Etsδ(Ets − �ω)

×
∣∣〈s ∣∣e+a− e−a

† + ezλckz

∣∣ t〉∣∣2 . (8.7)

In the calculations presented in this chapter, the δ-function in (8.7) has
been replaced by a Lorentzian broadening with the same phenomenologi-
cal linewidth for all transitions. As we show below, the absorption coefficient
α(ω) obtained can be compared directly with experimental data.

8.2 Spin Splitting in the Cyclotron Resonance
of 2D Electron Systems

Within the effective-mass Hamiltonian (4.27) the energies of the Landau lev-
els are given by the following (neglecting the subband index):

EEMA(N, σ) = �ω∗
c

(
N + 1

2

)
+
g∗

2
σµBB (8.8)

where the Landau2 quantum number is N = 0, 1, . . . , the spin index is σ =
±1, the cyclotron frequency is ω∗

c = eB/m∗ and the effective g factor is g∗.
Thus we find that the cyclotron resonance energy3

∆E(N, σ) = E(N + 1, σ) − E(N, σ) (8.9)

is independent of the quantum numbers N and σ:

∆EEMA(N, σ) = �ω∗
c =

�eB

m∗ . (8.10)

The EMA is most appropriate for electrons in the conduction band. But
even for electrons, (8.10) is only approximately correct. Owing to nonparabol-
icity, both the effective mass m∗ and the g factor g∗ depend on energy, so that
the Landau levels as a function of B are not straight lines, but are typically
bent downwards (see Fig. 8.1). For a given value of B, we usually have three
transitions that contribute simultaneously to the absorption coefficient α(ω).
In Fig. 8.1, these transitions are marked by arrows. Nonparabolicity thus im-
plies that, even for electrons, the transition energies ∆E depend on both N
and σ. The N dependence reflects the energy dependence of m∗. It results
2 We use here the more general Landau quantum number N and not the quantum

number L of a Landau harmonic oscillator (4.29) because, in order to take into
account band structure effects beyond the EMA, we work with (4.31).

3 In an effective-mass-like system at a temperature T = 0 we have absorption for
only the + polarization.
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Fig. 8.1. Qualitative drawing of the Landau-
level fan chart of a 2D electron system with
a nonparabolic dispersion E(k‖). The bold line
marks the Fermi energy. The arrows indicate the
three cyclotron transitions that are simultane-
ously possible at a given value of B (assuming a
temperature T = 0)

in the Landau splitting of the cyclotron resonance [3]. The σ dependence, on
the other hand, reflects the energy dependence of g∗. It gives rise to the spin
splitting of the cyclotron resonance [3].

For a long time, attempts to observe the spin splitting of the cyclotron res-
onance in a nonparabolic 2D electron gas failed and various arguments were
put forward to explain its suppression; see [2,3,9] and references therein. Here
we show that the spin splitting of the cyclotron resonance spectra observed
by Yang et al. [2] and Scriba et al. [3] can be reproduced quantitatively by
using the k · p parameters known for the corresponding bulk materials. The
samples investigated by Yang et al. and Scriba et al. were InAs–AlSb QWs
with well widths of 149 Å and 125 Å and 2D electron densities Ns of 6.5×1011

cm−2 and 1.41×1012 cm−2, respectively. The measured cyclotron masses are
reproduced in the lower right panels of Figs. 8.2a,b. We see clearly both the
Landau splitting and the spin splitting of the cyclotron masses. We note that
the InAs samples used by Yang et al. and Scriba et al. were good candidates
for observing the spin splitting of the cyclotron resonance because InAs is
a narrow-gap semiconductor with a strongly nonparabolic dispersion in the
conduction band, even for moderate wave vectors k.

In Fig. 8.3, we show the self-consistently calculated DOS effective mass
(4.13) for the samples investigated by Yang et al. and Scriba et al. The bulk
band parameters used in the calculation are listed in Appendix D. In Fig. 8.3,
we see van Hove singularities of m∗(E) at the subband edges that originate
from the k-linear terms in Eα(k‖) due to Rashba B = 0 spin splitting (see
(6.20)). The k-linear terms are most important close to the subband edge. For
larger wave vectors (higher energies), we have a strictly linear dependence of
m∗ on the energy E. This is due to the fact that the numerical calculations
yield highly nonparabolic subband dispersion curves Eα(k‖), which, basically,
can be parameterized by the Kane formula

Eα(k‖) = Eα(0) +
√
a2

α + bαk2
‖ − aα , (8.11)
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Fig. 8.2. Landau fan chart (upper panels) and cyclotron masses (lower left panels)
calculated for the samples (a) of Yang et al. [2] and (b) of Scriba et al. [3]. The
measured cyclotron masses are reproduced in the lower right panels of (a) and (b).
The bold lines in the upper panels represent the Fermi energy. The dashed lines
in the lower left panels indicate integer filling factors. Left panels taken from [10].
c© (1996), with permission by Elsevier. Lower right panel of (a) taken form [2]. c©
(1993) by the American Physical Society. Lower right panel of (b) taken form [3].
c© (1993), with permission by Elsevier
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Fig. 8.3. DOS effective mass and subband dispersion calculated (a) for the 149 Å
wide InAs–AlSb QW and (b) for the 125 Å wide InAs–AlSb QW, with 2D charge
densities Ns = 6.5 × 1011 cm−2 and 1.41 × 1012 cm−2, respectively, which were
investigated experimentally by Yang et al. [2] and Scriba et al. [3]

where aα and bα are constants. Such a dispersion relation is well known for
narrow-gap bulk semiconductors [11]. For a 2D dispersion (8.11), we can solve
(4.13) analytically, to obtain

m∗
α(E)
m0

=
�

2

m0

1
bα

[E − Eα(0) + aα] θ[E − Eα(0)] , (8.12)

which is indeed a linear function of E.
For the calculation of Landau levels, we have used the Hartree potential

obtained at B = 0. In Figs. 8.2a,b (upper panels), we show the nonparabolic
and spin-split Landau levels calculated for the samples of Yang et al. [2]
and Scriba et al. [3]. The calculated cyclotron masses are displayed in the
lower left panels of the same figure. The parameter-free calculations are in
excellent agreement with the experimental data. In particular, we would like
to note that the samples investigated by Yang et al. and Scriba et al. have
very different well widths and very different 2D densities Ns. Accordingly,
these samples also have very dissimilar cyclotron masses, which differ by
approximately 20%. This feature is clearly reproduced by the parameter-
free calculations. An FIR spectrum measured by Scriba et al. is displayed in
Fig. 8.4a. The calculated absorption coefficient α(ω) shown in Fig. 8.4b is in
very good agreement with the measured spectrum.

8.3 Cyclotron Resonance of Holes
in Strained Asymmetric Ge–SiGe Quantum Wells

Since the first successful growth of SixGe1−x layers on a Si substrate us-
ing molecular-beam epitaxy (MBE) [12], this technique has been developed
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(a) (b)

Fig. 8.4. (a) FIR spectrum measured by Scriba et al. (b) FIR spectrum calculated
for the sample of Scriba et al. (a) taken from [3]. c© (1993), with permission by
Elsevier. (b) taken from [10]. c© (1996), with permission by Elsevier

with the objective of making band structure engineering in Si-based tech-
nology possible [13, 14]. This endeavor is motivated by the fact that, com-
pared with the metal–oxide–semiconductor (MOS) structures of the standard
Si–SiO2 technology, MBE-grown interfaces have higher perfection, allowing
much higher mobilities of the confined carriers, i.e. faster devices. The price
for this advantage is the lattice mismatch between Si and Ge, which lim-
its the pseudomorphic growth of strained layers to a critical thickness of a
few atomic layers for the pure materials. Using SixGe1−x alloys, however,
the critical thickness can be increased to several hundred Å [15]. The high
quality of recently grown heterostructures, QWs, and superlattices using Si,
Ge, and SixGe1−x has been demonstrated in a series of optical and transport
experiments [13, 16, 17, 18, 19, 20, 21].

The starting point of the present investigations is the experiments by
Engelhardt et al. [18] on cyclotron resonance of holes in strained Ge layers
confined between SixGe1−x barriers of various compositions x. The lower bar-
rier was a graded SixGe1−x buffer layer [14] grown on a Si substrate, with a
final Ge content of (1 − x) = 0.7. The upper SixGe1−x barrier was δ-doped,
with a spacer between the doping layer and the 2D hole gas in the Ge well.
The structures were overgrown with a Si cap layer. All relevant parameters
for the two samples C1072 and C1116 of [18] are given in Table 8.1. The
experimental cyclotron resonance spectra for the two samples, measured at
T = 4.2 K with a Fourier spectrometer, are reproduced in Fig. 8.5. From these
spectra, one can extract the cyclotron resonance energies �ω∗

c or cyclotron
masses (8.5), which uncover the complex structure of the Landau-level spec-
trum of holes in strained QWs. The different Si contents in the two barriers
and the δ-doping layer in the upper barrier result in an inversion asymmetry
of the QW, which removes the spin degeneracy. Thus, even the single peak
observed in the “classical” limit of low magnetic fields consists of a spin-split
doublet [18]. With increasing magnetic field, the doublet splits into several



158 8 Landau Levels and Cyclotron Resonance

Table 8.1. Parameters of the two samples C1072 and C1116 of [18]

Sample C1072 C1116

Upper SiGe barrier Ge content 0.5 0.6

δ-doping (1012 cm−2) 5 5

spacer width (Å) 75 100

Ge well width (Å) 75 168a

Ns (1012 cm−2) 1.78 1.10

Lower SiGe barrier Ge content 0.7 0.7

aThe well width of sample C1116 of 168 Å was obtained by TEM measurements.
It deviates from the nominal width of 125 Å [18].
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Fig. 8.5. Experimental cyclotron resonance spectra at different magnetic fields for
the two samples (a) C1072 and (b) C1116, as specified in Table 8.1. Taken from [8].
c© (1996) by the American Physical Society

components, whose evolution is characteristic of the sample (depending on
the hole concentration and the geometry of the QW) as the Fermi energy is
moved to Landau levels with lower quantum numbers. In bulk p-type semi-
conductors with uniaxial stress applied in the direction of B, these Landau
levels are known to be quite irregularly spaced as a consequence of the com-
plex valence band structure [22,4,5]. The corresponding cyclotron transitions
have been called “quantum resonances” [4]. The experimental data of [18]
provide evidence of such quantum resonances in strained 2D hole systems.

8.3.1 Self-Consistent Subband Calculations for B = 0

Unlike many III–V and II–VI semiconductors, Si and Ge are indirect semi-
conductors, with their conduction band minima at the ∆ point and L point,
respectively. But the valence band maxima are located at the Γ point, so that
for the description of holes in Si and Ge we can use the 6 × 6 Hamiltonian



8.3 Cyclotron Resonance of Holes in Ge–SiGe QWs 159

H6×6 =
(

H8v8v H8v7v

H7v8v H7v7v

)
, (8.13)

with the blocks Hαβ taken from Table C.5. However, owing to the inversion
symmetry of the diamond lattice, we do not have terms linear in k that are
proportional to Ck. We apply the axial approximation given in Table 3.6.
The lattice mismatch between Si and Ge results in a biaxial strain in the
plane of the QW. Therefore, H6×6 is augmented by the strain Hamiltonian
listed in the lower part of Table C.5.

For k‖ = 0 and biaxial strain, the total Hamiltonian H6×6 is diagonal in
the 4×4 block H8v8v of the j = 3/2 states and in the 2×2 block H7v7v of the
j = 1/2 states. But the LH and the spin–orbit split-off states have the same
z component of angular momentum (m = ±1/2), so that they are coupled to
each other. The z dependence of Ev and ∆0 and the strain-induced offsets
define the carrier-free potential profiles of the layered structures; these profiles
are different for LH, HH and spin–orbit split-off states. The hole subbands
were calculated for zero magnetic field by self-consistently solving H6×6 and
the Poisson equation to obtain the Hartree potential, which was superimposed
on the z-dependent band edge energies.

The samples of [18] were δ-doped in the upper barrier, with a spacer
between the doping layer and the 2D hole gas. Investigations on δ-doped
GaAs:Si have shown that during the growth process the impurity atoms will
diffuse, and widths of the actual doping layer of up to 200 Å have been
reported [23]. This has been considered in the self-consistent hole subband
calculations by assuming several different widths of the doping layer. It turns
out that the calculated FIR spectra do not depend sensitively on this param-
eter.

For the hole densities of the samples in [18], only the topmost HH subband
is occupied. In Fig. 8.6, we show the self-consistently calculated potential
profiles for the two samples, together with the subband energies at k‖ = 0.
We remark that for the topmost subband in the wider sample, C1116, the
probability of finding a hole in the lower barrier (the barrier on the left-hand
side in Fig. 8.6) is negligible. Therefore the calculations are rather insensitive
to the exact value of the width of the QW, which was somewhat uncertain
for sample C1116 [18]. The hole subband dispersion E(k‖) is displayed in
Fig. 8.7. Note the spin splitting of the subbands due to the asymmetry of the
potential profile [24]. In Fig. 8.8, we show the DOS effective mass (4.13) of
the topmost subband.

In the experimental work [18], it was not well known whether the well ma-
terial was fully strained in accordance with the lattice mismatch between the
well and the barrier material or whether the well had relaxed to some extent.
We found that the calculations depended rather sensitively on this effect;
the relaxation tends to increase the calculated cyclotron masses. Therefore,
we have used the strain as a fitting parameter. The best agreement was ob-
tained when the strain had 90% (sample C1072) and 80% (sample C1116) of
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Fig. 8.6. Self-consistent potential profiles and hole subband energies at k‖ = 0 for
the two samples (a) C1072 and (b) C1116. Owing to the biaxial strain in the QW
and in the upper barrier, different potential profiles result for heavy holes (solid
lines) and light holes (dashed lines). Taken from [8]. c© (1996) by the American
Physical Society

Fig. 8.7. Hole subband dispersion E(k‖) for the two samples (a) C1072 and
(b) C1116. Taken from [8]. c© (1996) by the American Physical Society

its value in a fully strained system. We note that it is reasonable to have the
larger relaxation in the wider sample.
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Fig. 8.8. DOS effective mass of the topmost subband for the two samples (a) C1072
and (b) C1116. Taken from [8]. c© (1996) by the American Physical Society

8.3.2 Landau Levels and Cyclotron Masses

In the upper parts of Fig. 8.9, we show the fan chart of Landau levels evolving
from the topmost HH subbands, together with the Fermi energy EF obtained
from the hole density, calculated for the samples C1072 and C1116. From top
to bottom, the Landau levels have increasing Landau quantum numbers N ,
and m = ±3/2 (according to the dominant component of the eigenvectors),
with m = −3/2 being the higher level at small magnetic fields. With in-
creasing magnetic field, the spin-split states tend to change their order. The
spin splitting of the Landau levels is a consequence of the Zeeman splitting
and the Rashba SO coupling due to the asymmetry of the Hartree poten-
tial [25, 26, 27, 28]. The nonlinear dependence of the Landau levels on B cor-
responds to the nonparabolic dispersion E(k‖) of the topmost HH subband
(see Fig. 8.7).

From the fan chart in Fig. 8.9, we can obtain cyclotron masses by con-
sidering pairs of Landau levels between which dipole transitions are possible,
taking account of the occupation factors and the selection rule ∆N = +1 for
the + polarization of the circularly polarized FIR radiation. The cyclotron
mass (8.5) refers to different pairs of Landau levels as the magnetic field is
varied, as visualized in the lower parts of Fig. 8.9. For small magnetic fields
(large filling factors), we obtain two spin-split cyclotron masses. As expected,
for B → 0 these masses are close to the values of m∗, which, in the classical
limit of large Landau-level quantum numbers, can be read from the DOS ef-
fective mass at EF (see Fig. 8.8). With increasing magnetic field (decreasing
filling factor), the transitions take place between Landau levels with smaller
N . These Landau levels show irregularities that are inherent in the top of the
valence band.



162 8 Landau Levels and Cyclotron Resonance

Fig. 8.9. Fan chart of Landau levels evolving from the two topmost heavy-hole sub-
bands (upper parts) together with the Fermi energy (bold line), and the correspond-
ing cyclotron masses (lower parts) for the two samples (a) C1072 and (b) C1116.
Taken from [8]. c© (1996) by the American Physical Society

8.3.3 Absorption Spectra

For the present case of an electric dipole field with a circular polarization
in the + direction, we have e− = ez = 0 in (8.3). In the calculation, the
δ-function in (8.7) was replaced by a Lorentzian broadening with the same
phenomenological linewidth for all transitions. The best agreement with the
experimental data was obtained for a linewidth of 0.7 meV.

The calculated spectra for the two samples C1072 and C1116 are shown
in Fig. 8.10 and allow direct comparison with the experimental spectra in
Fig. 8.5. All essential features of the experimental data are reproduced by
the calculation: the wavelength and magnetic-field dependence of the res-
onances, the intensities of the absorption lines, and the characteristic dif-
ferences between the two samples. A striking difference between the two
samples is that at high magnetic fields up to 18 T the cyclotron transition
(N = 0) → (N = 1) at wavenumbers between 140 and 180 cm−1 becomes
possible only for the sample C1116, with the lower 2D charge density. These
results are in close agreement with the experimental data (see Fig. 8.5 in the
present work and Fig. 4 of [18]), although the interpretation in [18] in terms
of Landau levels of bulk Ge is not correct.
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Fig. 8.10. Cyclotron absorption spectra calculated from the Landau levels of
Fig. 8.9 for the two samples (a) C1072 and (b) C1116. A phenomenological broad-
ening of 0.7 meV has been assumed for all transitions. Taken from [8]. c© (1996)
by the American Physical Society

As already mentioned in Section 8.3.1, the calculated FIR spectra of
Fig. 8.10 are not sensitive to the position and profile of the δ-doping for
a given hole concentration, and for the sample C1116 the spectra do not de-
pend on the assumed well width either. However, as shown in Fig. 8.11, for
both samples the results change dramatically if calculated on the basis of the
4 × 4 Luttinger Hamiltonian H8v8v, which neglects the spin–orbit split-off
valence band Γ v

7 : the cyclotron masses decrease, the crossing of the spin-split
Landau levels shifts to higher magnetic fields, and the FIR resonances move
by up to 20 cm−1 towards higher energies. Thus, taking the coupling to the
band Γ v

7 into account is essential for the agreement with the experimental
data.

8.4 Landau Levels in Inversion-Asymmetric Systems

If the B = 0 spin splitting is dominated either by the Dresselhaus term or
by the Rashba term, an analytical approach to the Landau-level structure at
B > 0 is possible. We discuss these two cases separately. Finally, we discuss
the more general and realistic case where both terms are present. Throughout
this section, we assume that the crystallographic growth direction of the
quasi-2D system is [001].
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Fig. 8.11. Fan chart of Landau levels evolving from the two topmost heavy-hole
subbands (upper parts) together with the Fermi energy (bold line), and correspond-
ing cyclotron masses (lower parts) for the two samples (a) C1072 and (b) C1116
calculated by means of the 4×4 Luttinger Hamiltonian. Use of this simplified model
results in substantial discrepancies compared with the results shown in Fig. 8.9,
which were obtained by means of the more complete 6 × 6 Hamiltonian

8.4.1 Landau Levels and the Rashba Term

In the presence of a perpendicular magnetic field B, we replace k± by the
Landau raising and lowering operators a†, a defined in (4.22). We add the
Rashba term to the EMA Hamiltonian (4.27), so that we obtain the following
2 × 2 Hamiltonian for the in-plane motion:

H = �ω∗
c

(
a†a+ 1

2

)
�2×2 +

g∗

2
µBBσz +

√
2eB

�
α

(
0 ia

−ia† 0

)
, (8.14)

where ω∗
c = eB/m∗, g∗ is the effective g factor, µB is the Bohr magneton,

and α = 〈r6c6c
41 Ez〉. We can solve the problem for H by expanding the eigen-

functions4 |N±〉 in terms of Landau oscillator states |L〉 and spin eigenstates
|σ〉. For the Hamiltonian (8.14), the eigenstates |N±〉 contain only two states
|L〉 ⊗ |σ〉:

|N±〉 = c1± |L = N〉 ⊗ |σ±〉 + c2± |L = N ± 1〉 ⊗ |σ∓〉 , (8.15)

4 The Rashba Hamiltonian (8.14) (but not the Dresselhaus Hamiltonian (8.18))
has axial symmetry, so that here we have N = N ; see (4.31) and (4.32).
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where σ+ = ↑, σ− = ↓, and ci± are expansion coefficients. Equation (8.15)
illustrates that in the presence of SO coupling, the eigenstates of the Hamil-
tonian H are not simultaneously eigenstates of the spin operator (unlike the
Landau levels of a simple EMA Hamiltonian (4.27)). The energies of the
Landau levels are [29]

EN± = �ω∗
c

(
N + 1

2
± 1

2

)
∓ 1

2

√(
�ω∗

c − g∗µBB
)2 + 8α2

eB

�

(
N + 1

2
± 1

2

)
,

(8.16)

where N = 0, 1, 2, . . . We can explore (8.16) in the limit of small and large
magnetic fields at a fixed Fermi energy, i.e. we vary both B and N such that
the density Ns � [e/(π�)]BN is kept constant. In the limit of large magnetic
fields, we obtain the following for the spin splitting at the Fermi energy:

∆E = EN+ − EN− = g∗µBB . (8.17a)

In the opposite limit B → 0 we have, consistent with (6.11),

∆E = −2 |α| kF , (8.17b)

where kF =
√

2πNs is the Fermi wave vector. We see here that, within the
model (8.14), we have a smooth transition from the Rashba spin splitting
(8.17b), which dominates in the limit B → 0, to the opposite limit (8.17a),
where the spin splitting ∆E is controlled by the Zeeman term. It can be
shown that, consistent with (8.17), the eigenvectors (8.15) converge to (6.60)
for B → 0 and to |L = N〉 ⊗ |σ±〉 at large B.

8.4.2 Landau Levels and the Dresselhaus Term

In the preceding section, the Rashba model could be solved exactly in the
presence of a quantizing magnetic fieldB. An analytical model for the Landau
levels in the presence of the Dresselhaus term is possible only if we neglect
the terms cubic in the in-plane wave vector k‖ (see (6.3)).5 This results in a
Hamiltonian similar to (8.14),

H = �ω∗
c

(
a†a+ 1

2

)
�2×2 +

g∗

2
µBBσz +

√
2eB

�
η̃

(
0 a†

a 0

)
, (8.18)

where η̃ = 〈b6c6c
41 k2

z〉. The energies of the Landau levels are

EN± = �ω∗
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2
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2
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2

)
,

(8.19)

where N = 0, 1, 2, . . . In the limit of large magnetic fields, we again obtain
5 For the anomalous Shubnikov–de Haas oscillations discussed in Chap. 9, the

higher-order terms are of crucial importance.



166 8 Landau Levels and Cyclotron Resonance

∆E = g∗µBB , (8.20a)

whereas in the opposite limit B → 0, we now have

∆E = 2 |η̃| kF . (8.20b)

Similarly to (8.17), we obtain a smooth transition from the pure Dressel-
haus spin splitting (8.20b), which dominates (8.18) in the limit B → 0, to
the opposite limit (8.20a), where the spin splitting ∆E is controlled by the
Zeeman term. However, as the effective g factor g∗ is often negative, (8.20)
implies that we can have a zero of the spin splitting ∆E at some intermediate
magnetic field B0 [30,31]. For a 2D system with a Fermi wave vector kF and
g∗ < 0, the spin splitting at the Fermi energy vanishes at

B0 ≈ m∗

e�

2η̃kF√
1 −

(
1 +

g∗m∗

2m0

)2
. (8.21)

8.4.3 Landau Levels in the Presence of Both BIA and SIA

We can understand the different results in the two preceding sections by
means of Fig. 8.12, where we have sketched the off-diagonal couplings between
spin-split Landau oscillators |L〉 ⊗ |σ〉 due to the Dresselhaus term (D) and
the Rashba term (R). In Fig. 8.12, we have assumed a negative effective g
factor, consistent with many common semiconductors. In this case, because of
level repulsion, the off-diagonal Rashba term increases the splitting between
levels |L〉⊗ |↓〉 and |L〉⊗ |↑〉, whereas the Dresselhaus term competes against
the Zeeman splitting. As the Zeeman term dominates the spin splitting for
large B, whereas (without the Rashba term) the Dresselhaus term dominates
for B → 0, we obtain a zero of the spin splitting ∆E at some intermediate
value of B [30, 31].

In a typical experiment with, for example, a GaAs–AlGaAs QW, we
have contributions to ∆E from both the Rashba and Dresselhaus terms (see
Sect. 6.4.1). Nevertheless, it is possible to have a true zero of ∆E at some
finite value of B even with a more realistic multiband Hamiltonian [5, 32]
that includes both BIA- and SIA-induced higher-order couplings, not shown
in Fig. 8.12. This is due to the fact that for the growth direction [001] and
B > 0, the point group of the system is C2 (see Table 3.4), which has two
irreducible double-group representations [5, 33], and for fixed N the Landau
levels |N+〉 and |N−〉 transform according to different irreducible represen-
tations. Accordingly, we have no mixing between |L〉 ⊗ |↓〉 and |L〉 ⊗ |↑〉 for
fixed L.

As an example, we show in Fig. 8.13 the Landau levels EN± and the
positive energy difference ∆E = |EN+ − EN−| between the Landau levels
at the Fermi energy in a 150 Å wide GaAs–Al0.3Ga0.7As QW with Ns =
2 × 1011 cm−2 in the presence of an external electric field Ez = 50 kV/cm.
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L +1

L −1
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R

D

D

R

R

D

D

Fig. 8.12. Off-diagonal couplings between spin-split Landau harmonic oscillators
|L〉 ⊗ |σ〉 (σ = ↑, ↓) in an inversion-asymmetric electron system. Matrix elements
due to the Dresselhaus and Rashba terms are marked by the letters D and R,
respectively

Fig. 8.13. (a) Landau levels EN± and
(b) positive energy difference ∆E =
|EN+−EN−| between the Landau lev-
els at the Fermi energy in a 150 Å wide
GaAs–Al0.3Ga0.7As QW with Ns =
2 × 1011 cm−2 in the presence of an
external electric field Ez = 50 kV/cm,
calculated by means of an 8×8 Hamil-
tonian. In (a), the highest filled Lan-
dau level is marked by a bold line

For this calculation, we used an 8 × 8 Hamiltonian that takes BIA and SIA
into account fully. We see that the spin splitting vanishes at about B = 0.8 T,
consistent with the results in Sect. 6.4.1, where it was shown that in GaAs
QWs the spin splitting is usually dominated by the Dresselhaus term.
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Table 8.2. Selection rules at temperature T = 0 for the spin-flip transition
|N−〉 ↔ |N+〉 due to the Dresselhaus and Rashba terms. The entries ± indi-
cate that the transitions induced by the Dresselhaus or the Rashba term are visible
in the ± polarization

Dresselhaus Rashba

EN− > EN+ + −
EN− < EN+ − +

In the presence of the Rashba or Dresselhaus term, the dipole operator can
probe the spin-flip transition |N−〉 ↔ |N+〉 because the mixing sketched in
Fig. 8.12 gives rise to a finite transition amplitude (8.3) between these eigen-
states [34].6 Indeed, it follows from (8.3) and Fig. 8.12 that, for the spin-flip
transition |N−〉 ↔ |N+〉, we have the selection rules listed in Table 8.2. As
we usually have g∗ < 0, the spin-flip transitions for large B are characterized
by the selection rules in the upper row of Table 8.2. For small B, the lower
row is relevant if the B = 0 spin splitting is dominated by the Dresselhaus
term, and the upper row is relevant if it is dominated by the Rashba term.
In general, both the Dresselhaus and the Rashba term contribute to the spin
splitting at B > 0, so that the ratio between the oscillator strengths for +
and − polarizations reflects the relative importance of these terms.

For the system considered in Fig. 8.13, we show in Fig. 8.14 the calculated
6 These transitions are often called electric-dipole spin resonances [34].

Fig. 8.14. Absorption spectrum for the spin-flip transitions due to BIA and SIA in
a 150 Å wide GaAs–Al0.3Ga0.7As QW with Ns = 2×1011 cm−2 in the presence of an
external electric field Ez = 50 kV/cm, calculated by means of an 8×8 Hamiltonian.
The left and right parts show the absorption of − and + polarized light, respectively
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absorption spectrum for the spin-flip transitions. We see that above B =
0.8 T the dominant absorption line has the + polarization, whereas below
B = 0.8 T the dominant line has the − polarization, in agreement with the
above arguments. Note that the peak positions are the same for the two
polarizations; only the intensities change.
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32. M. Braun, U. Rössler: J. Phys. C: Solid State Phys. 18, 3365 (1985) 30, 32,
37, 40, 71, 77, 166

33. G.F. Koster, J.O. Dimmock, R.G. Wheeler, H. Statz: Properties of the Thirty-
Two Point Groups (MIT, Cambridge, MA, 1963) 6, 21, 23, 47, 72, 199, 166

34. E.I. Rashba, V.I. Sheka: “Electric-dipole spin resonance”, in Landau Level
Spectroscopy , ed. by G. Landwehr, E.I. Rashba (Elsevier, Amsterdam, 1991),
pp. 131–206 168



9 Anomalous Magneto-Oscillations

In the year 1930, an oscillatory magnetic-field dependence was first observed
in the electrical resistance of bismuth (the Shubnikov–de Haas effect [1])
and in the magnetization (the de Haas–van Alphen effect [2]). Since then,
magneto-oscillations have been found in a large number of other observables,
including the sample temperature, the velocity of sound, and the thermoelec-
tric power [3]. These phenomena became of great interest and importance
when Onsager showed, by means of a semiclassical argument [4], that the
frequencies of the magneto-oscillations for B > 0 are related to extremal
cross sections of the Fermi surface at B = 0. Since then, magneto-oscillations
have proven to be a powerful tool for analyzing the Fermi surface of various
materials, for example metals, semiconductors, and heavy-fermion systems.

For 2D systems, Onsager’s argument predicts a simple relation between
the frequency fSdH of magneto-oscillations and the 2D charge density Ns in
the system,1

Ns =
e

π�
fSdH . (9.1)

Here e is the electron charge and � is Planck’s constant. Following (9.1),
longitudinal magnetoresistance oscillations in small magnetic fields perpen-
dicular to the plane of the system are frequently used to measure the charge
density Ns in 2D systems [5].

In Chap. 6, we have discussed the fact that inversion-asymmetry-induced
spin splitting results in unequal populations N± of the spin subbands at
zero magnetic field, so that Ns = N+ + N−. For such systems, it has been
observed by many groups studying different materials [6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21] that the SdH oscillations exhibit a pronounced
beating pattern, indicating that we have a superposition of two frequencies
f SdH
± . One can assume [7] that the Landau levels at B > 0 can be partitioned

into two independent sets that correspond to the two spin subbands at B = 0.
1 In this chapter, we shall always assume that only the lowest confinement subband

is occupied. Otherwise we obtain a superposition of SdH frequencies according
to the occupation of each confinement subband. We use the term “confinement
subband” in order to distinguish it from the spin subbands discussed in this
chapter.

Roland Winkler: Spin–Orbit Coupling Effects
in Two-Dimensional Electron and Hole Systems, STMP 191, 171–194 (2003)
c© Springer-Verlag Berlin Heidelberg 2003
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Fig. 9.1. Magnetoresistance oscillations of a 2D electron system in an asymmetric
In0.52Ga0.48As–In0.52Al0.48As QW measured by Das et al. [10]. Node positions in
the SdH oscillations are marked by arrows. The magnetoresistance oscillations for
B < 0.25 T are shown in the inset. The total 2D density according to Hall exper-
iments was Ns = 16.5 × 1011 cm−2. Taken form [10]. c© (1989) by the American
Physical Society

Each set gives rise to SdH oscillations so that, by analogy with (9.1), the spin
subband densities N± are given by

N± =
e

2π�
f SdH
± . (9.2)

This relation has often been used to analyze B = 0 spin splitting in 2D
systems [6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]. As an example, we show
in Fig. 9.1 the SdH oscillations measured by Das et al. [10] for a 2D electron
system in an asymmetric In0.52Ga0.48As–In0.52Al0.48As QW. From (9.2), we
obtain N+ = 8.9× 1011 cm−2 and N− = 7.6× 1011 cm−2, in good agreement
with Ns = 16.5 × 1011 cm−2 obtained from independent Hall experiments.

In this chapter, we shall present the results of a detailed analysis, where
we have tested both theoretically and experimentally the validity of (9.2). We
obtain good agreement between the experimental and calculated SdH oscilla-
tions. On the other hand, the calculated B = 0 spin splitting differs substan-
tially from the predictions of (9.2) [22]. Using a semiclassical trace formula for
particles with spin, we shall show that the anomalous magneto-oscillations
reflect the nonadiabatic spin precession along the cyclotron orbits [23].
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EF

DOS

E

B

E

Fig. 9.2. Qualitative sketch of
the Landau levels (left) and DOS
(right) in the presence of a mag-
netic field B. The bold line indi-
cates the Fermi energy EF

9.1 Origin of Magneto-Oscillations

In this section, we shall briefly review the origin of magneto-oscillations peri-
odic in 1/B. First we shall use a quantum mechanical approach. Then we shall
use a semiclassical point of view. Note that the two approaches complement
each other by focusing on different aspects of this phenomenon.

We saw in Sect. 4.4 that in the presence of a magnetic field perpendicular
to the plane of a 2D system, the electrons or holes condense into highly
degenerate Landau levels, i.e. each Landau level corresponds to a peak in
the density of states, as sketched in Fig. 9.2. The degeneracy G of each
Landau level is proportional to the magnetic field B (see (4.25)), so that
with increasing field B, the Landau levels are pushed through the Fermi
surface. Magneto-oscillations thus reflect the oscillating DOS at the Fermi
energy EF. As many observables, such as the conductance, are proportional
to the DOS at EF, we can examine magneto-oscillations by measuring the
magnetoresistance of the sample, for example.

While the above approach gives us, in general, a precise explanation of
the origin of magneto-oscillations, the intuitive semiclassical approach due
to Onsager [4] allows us to relate the frequencies of the magneto-oscillations
to the Fermi surface at B = 0. This approach is based on the semiclassical
model of the dynamics of Bloch electrons in a solid [24]. In the presence of a
perpendicular magnetic field, the 2D electrons move on (classical) cyclotron
orbits. In k‖ space, these orbits follow contours of constant energy, consistent
with the fact that the Lorentz force does not change the energy of a parti-
cle. Semiclassically, the electrons are forced onto quantized orbits given by
the Bohr–Sommerfeld quantization condition (Fig. 9.3). The area enclosed
by the Fermi contour is proportional to the 2D density Ns of electrons. As
discussed above, with increasing magnetic field, the quantized cyclotron or-
bits are pushed one by one through the Fermi contour, which gives rise to
magneto-oscillations. Thus it can be shown [4] that, semiclassically, we ob-
tain the relation (9.1) between the density Ns and the frequency fSdH of the
magneto-oscillations irrespective of the detailed shape of the Fermi contour.
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EF
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B

Fig. 9.3. Qualitative sketch of the quantized cy-
clotron orbits (thin lines) in the presence of a per-
pendicular magnetic field B. The bold line indicates
the Fermi contour. The shaded area enclosed by the
Fermi contour is proportional to the density Ns

9.2 SdH Oscillations and B = 0 Spin Splitting
in 2D Hole Systems

The subject of our investigation was 2D hole systems in modulation-doped
GaAs QWs. We have used GaAs because the band-structure parameters are
well known [25,26], so that accurate numerical calculations can be performed,
and because high-quality samples can be grown which allow the observation
of many SdH oscillations [15]. As discussed in Chap. 6, the crystal structure
of GaAs is zinc blende, which is inversion-asymmetric. This bulk inversion
asymmetry provides a fixed contribution to spin splitting that cannot be
altered in the experiments. In the classic experiment by Das et al. [10], the
results of which are reproduced in Fig. 9.1, the structure inversion asymmetry
of the sample was determined by an asymmetrically grown sequence of layers.
Therefore the SIA spin splitting was fixed too. Recently, it has been shown
that one can tune SIA spin splitting by means of one [21] or two [16] external
gates. The B = 0 spin splitting in these systems thus has a fixed part due to
BIA, and a tunable part due to SIA.

A single front or back gate changes both the asymmetry of the sample and
the 2D density in the well. Such an experiment will be discussed in Sect. 9.2.4.
First we shall focus on the conceptually simpler (but experimentally more
demanding) case of a sample with both a front and a back gate so that
one can continuously tune the inversion asymmetry while keeping the total
density constant. The setup of such a system was sketched in Fig. 6.8.

9.2.1 Theoretical Model

Our calculations of magneto-oscillations were based on the methods discussed
in Chap. 4. First, the 8 × 8 Kane Hamiltonian containing the bands Γ c

6 , Γ v
8 ,

and Γ v
7 was used to self-consistently calculate hole states in the QW at zero

magnetic field. The Hamiltonian fully takes into account the spin splitting
due to BIA and SIA. From this calculation, we obtained the spin subband
densities (4.14) at B = 0.
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We compare these results for the B = 0 spin splitting with a fully quan-
tum mechanical calculation of magneto-oscillations at B > 0. For (9.2), we
are interested only in the frequencies of these magneto-oscillations. There-
fore we have analyzed directly the oscillatory DOS at EF as a function of
the magnetic field, instead of, for example, the magnetoresistance in a 2D
system, which could be obtained from Kubo’s formula. In [27] it was explic-
itly shown that the magnetoresistance in a 2D system is directly related to
the oscillatory DOS at EF. We assume that the positions of the peaks in
the Fourier spectrum of the SdH oscillations are not affected by details of
magnetotransport that go beyond the scope of the present work.

For the calculations at B > 0, we used the very same Hamiltonian as
that discussed above, so that the results for B = 0 and B > 0 are directly
comparable. In particular, for B > 0 we used the Hartree potential that
was calculated self-consistently for B = 0. We introduced the magnetic field
by replacing the in-plane wave-vector components with Landau raising and
lowering operators (see Sect. 4.4). From the Landau levels ENσ(B), we ob-
tained the Fermi energy EF(B) by an iterative solution of the equation for
the (fixed) total density Ns of the system

Ns =
∫

dE D(E,B)
1

1 + exp [(E − EF(B))/(kBT )]
, (9.3)

where D(E,B) is the DOS, for which we assumed a phenomenological Gaus-
sian broadening

D(E,B) = G
∑
N , σ

1√
2π Γ

exp
(

[E − ENσ(B)]2

2Γ 2

)
(9.4)

with linewidth Γ . The prefactor G in (9.4) is the degeneracy per unit area
(4.25). From the Fermi energy EF(B), we obtained the DOS at EF, for which
we shall use the shorthand notation DF(B) ≡ D[EF(B), B]. Finally, we ob-
tained the frequency fSdH by means of a Fourier transform of DF(B) as a
function of the reciprocal magnetic field.

As we were interested only in the frequencies of DF(B), we usually as-
sumed temperature T = 0 in (9.3), because in the present context a finite,
phenomenological broadening Γ and a finite temperature T have essentially
the same effect [3]. The results depend neither on the width Γ nor on the
functional form of the broadening in (9.4) (a Gaussian versus a Lorentzian,
for example).

9.2.2 Calculated Results

We have considered a 200 Å wide GaAs–Al0.3Ga0.7As QW grown in the
crystallographic direction [113] with a 2D hole density Ns = 3.3×1011 cm−2.
In Fig. 9.4, we show the self-consistently calculated B = 0 spin splitting
∆N = |N+−N−| as a function of the electric field Ez in the growth direction.
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Fig. 9.4. Self-consistently calculated B = 0
spin splitting ∆N = |N+−N−| as a function
of the electric field Ez in the growth direction
for a 200 Å wide GaAs–Al0.3Ga0.7As QW
grown in the crystallographic direction [113]
with a 2D hole density Ns = 3.3×1011 cm−2

Even around Ez = 0, we have a significant spin splitting due to BIA. We
obtain slightly different spin splittings for Ez < 0 and Ez > 0 because these
directions of Ez are not equivalent for a QW grown in the low-symmetry
direction [113].

As an example, we present in Fig. 9.5 the Landau fan chart for the sym-
metric configuration (Ez = 0). In Fig. 9.5a we show the fan chart obtained
by means of the axial approximation; in Fig. 9.5b we show the fan chart ob-
tained by including cubic corrections and BIA. We see that these terms are
very important for a proper calculation of Landau levels for the low-symmetry
growth direction [113].

Fig. 9.5. Landau fan chart of a symmetric, 200 Å wide GaAs–Al0.3Ga0.7As QW
grown in the crystallographic direction [113] with Ns = 3.3 × 1011 cm−2: (a) cal-
culated by means of the axial approximation, and (b) calculated using the full
Hamiltonian, including cubic corrections and BIA. The bold lines indicate the Fermi
energy
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Fig. 9.6. Fourier spectra of the (a) calculated and (b) measured magneto-
oscillations versus magnetic field B for different values of the electric field Ez for a
200 Å wide GaAs–Al0.3Ga0.7As QW with growth direction [113] and 2D hole den-
sity Ns = 3.3 × 1011 cm−2. The open circles show the expected Fourier transform
peak positions (2π�/e)N± according to the calculated spin splitting N± at B = 0.
In (c) we show several measured magnetoresistance traces [16]. (a) and (b) taken
form [22]. c© (2000) by the American Physical Society

In Fig. 9.6a, we show the Fourier spectra ofDF(B), the oscillating DOS at
EF. In order to match the experimental situation discussed below, the Fourier
spectra were calculated for B between 0.20 and 0.85 T (B−1 between 1.17
and 5.0 T−1). The expected peak positions according to the calculated B = 0
spin splittings (Fig. 9.4) are marked by open circles. It is very surprising that
the calculated splittings of the magneto-oscillations are significantly smaller
than the splittings expected from the calculation for B = 0. In particular,
we obtain only one peak for the symmetric case Ez = 0, whereas we would
expect two peaks from Fig. 9.4 owing to the BIA spin splitting that is present
even for Ez = 0. We would like to emphasize once again that the calculations
for B = 0 and B > 0 were based on the very same Hamiltonian.

So far, we have neglected completely in our discussion the Zeeman split-
ting of the Landau levels (though it is present in the numerical calcula-
tions). In fact, Zeeman splitting affects only the amplitude and phase, but
not the frequency, of the oscillating DOS, because (in a perpendicular field)
both the Landau-level splitting �ω∗

c and the Zeeman splitting g∗µBB de-
pend linearly on the magnetic field B. Accordingly, Zeeman splitting mod-
ifies the height but not the position of the peaks in the Fourier spectra in
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Fig. 9.6.2 On the other hand, an amplitude- and phase-sensitive modeling of
the magneto-oscillations allows one to extract both the B = 0 spin splitting
and the Zeeman splitting from the measured magneto-oscillations. However,
the magneto-oscillations measured in most experiments are magnetoresis-
tance oscillations. The amplitude and phase of these oscillations depend not
only on the oscillating DOS but also on the details of the magnetotrans-
port [27].

9.2.3 Experimental Findings

Shubnikov–de Haas oscillations for the system investigated theoretically in
Figs. 9.4 and 9.6a were measured by Papadakis et al. [16]. These authors
used Si-modulation-doped GaAs QWs grown by MBE on the (113)A surface
of an undoped GaAs substrate. The well width was 200 Å. Photolithography
was used to pattern Hall bars for resistivity measurements. The samples had
metal front and back gates, which controlled both the 2D hole density and Ez

(see Fig. 6.8). Measurements were done at a temperature of 25 mK. In order
to vary Ez while maintaining a constant density, Papadakis et al. first set the
front-gate (Vfg) and back-gate (Vbg) biases and measured the resistivity as a
function of B. The total 2D hole density Ns was then deduced from the Hall
coefficient. Then, at small B, Vfg was increased and the change in the hole
density was measured. Vbg was then reduced to recover the original density.
This procedure changes Ez while maintaining the same density to within 3%,
and allows calculation of the change in Ez from the way the gates affect the
density. These steps were repeated until the whole range of Vfg and Vbg that
was accessible without causing gate leakage had been probed.

The Fourier spectra of the measured SdH oscillations are shown in
Fig. 9.6b. Several measured magnetoresistance traces are reproduced in
Fig. 9.6c. Keeping in mind that we may not expect a strict one-to-one corre-
spondence between the oscillatory DOS at the Fermi energy (Fig. 9.6a) and
the magnetoresistance oscillations (Fig. 9.6b), the agreement is quite satis-
factory. However, the measured peaks confirm the result that the peaks in the
spectra of the magneto-oscillations deviate substantially from the expected
peak positions according to the zero-B spin splitting: for nearly all values of
Ez the splitting (2π�/e)∆N is significantly larger than ∆f = f SdH

+ − f SdH
− .

In particular, near Ez = 0 only one SdH frequency is visible in both the
measured and the calculated spectra, whereas we would expect to obtain two
frequencies. Note that the calculated values of ∆N near Ez = 0 would imply a
beating pattern of the SdH oscillations with two nodes within the range of B
investigated. No indication of a beating pattern was observed near Ez = 0,
neither in the calculated nor in the measured SdH oscillations.
2 In the particular case where the Zeeman splitting equals half the Landau-level

splitting, all intensity in the Fourier spectra is shifted to the total-density peak
at f = (2π�/e)Ns.
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It is interesting that, in spite of this anomalous behavior of the magneto-
oscillations, we always find, in both the calculations and the experiments,
that the sum of the two SdH frequencies correctly gives the total density,
i.e. Ns = [e/(2π�)] (f SdH

+ + f SdH
− ). We remark that, experimentally, the total

density can be measured independently by means of the quantum Hall effect.

9.2.4 Anomalous Magneto-Oscillations in Other 2D Systems

We have performed extensive calculations and further experiments which
have confirmed that the results in Fig. 9.6 are typical for 2D hole systems.
In Fig. 9.7, we show the results for 150 Å wide QWs which have only a front
gate [15]. Here the gate voltage changes both the total density Ns = N++N−
in the well and the asymmetry in the sample. Therefore we have plotted ∆f
and ∆N versus Ns. For Ns = 3.8× 1011 cm−2, the QW becomes symmetric,
which corresponds to a minimum of ∆N . Again we have good agreement
between the measured and calculated differences ∆f . However, there is a
significant difference between ∆f and the predicted splittings based on ∆N .

For different crystallographic growth directions, the spin splitting and
SdH oscillations behave rather differently. Moreover, these quantities depend

Fig. 9.7. The difference ∆f between the two frequencies of the magneto-oscilla-
tions (left) and the difference ∆N between the two spin-subband densities (right),
plotted against the total hole density Ns. The symbols represent experimental data
and the curves the results of calculations. The frequencies f = (π�/e)Ns used to
determine the values of ∆f , marked by squares and triangles were measured by
means of the quantum Hall effect observed at higher fields [15]. The samples were
two 150 Å wide GaAs–Al0.3Ga0.7As QWs whose charge distribution was symmetric
at Ns = 3.8 × 1011 cm−2. The right and left vertical axes are scaled according to
∆N = [e/(2π�)]∆f , so that ∆N and ∆f can be directly compared. Taken from [28].
c© (2001), with permission by Elsevier
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Fig. 9.8. Calculated Fourier spectra of magneto-oscillations versus magnetic
field B for different values of the electric field Ez for a 150 Å wide GaAs–
Al0.5Ga0.5As QW with crystallographic growth direction [110] and 2D hole den-
sities (a) Ns = 3.0 × 1011 cm−2 and (b) Ns = 3.3 × 1011 cm−2. The open circles
show the expected Fourier transform peak positions (2π�/e)N± according to the
calculated spin splitting N± at B = 0. Taken from [22]. c© (2000) by the American
Physical Society

sensitively on the total 2D hole density Ns = N++N− in the well. In Fig. 9.8,
we have plotted the calculated SdH Fourier spectra versus Ez for a GaAs
QW with a growth direction [110] and Ns = 3.0 × 1011 cm−2 (Fig. 9.8a)
and Ns = 3.3 × 1011 cm−2 (Fig. 9.8b). Open circles mark the expected peak
positions (2π�/e)N± according to the spin splitting N± at B = 0. Again, the
peak positions in the Fourier spectra differ considerably from the expected
positions (2π�/e)N±. Close to Ez = 0, there is only one peak at (π�/e)Ns.
Around Ez = 1.0 kV/cm we have two peaks, but at even larger fields Ez the
central peak at (π�/e)Ns shows up again. At Ez ≈ 2.25 kV/cm we have a
triple-peak structure, consisting of a broad central peak at (π�/e)Ns and two
side peaks at approximately (2π�/e)N±. In Fig. 9.8, we have a significantly
smaller linewidth than in Fig. 9.6. Basically, this is due to the fact that for
the Fourier transforms shown in Fig. 9.8 we used a significantly larger interval
of B−1 (10.0 T−1 as compared with 3.83 T−1) in order to resolve the much
smaller splitting for the growth direction [110]. We note that for Ez = 0 the
SdH oscillations are perfectly regular over this large range of B−1, with just
one frequency, which makes it rather unlikely that the discrepancies between
∆f and (2π�/e)∆N could be caused by a B-dependent rearrangement of
holes between the Landau levels.
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Fig. 9.9. Calculated Fourier spectra of magneto-
oscillations versus magnetic field B for different val-
ues of the electric field Ez for a 200 Å wide GaAs–
Al0.3Ga0.3As QW with crystallographic growth di-
rection [001] and 2D hole density Ns = 3.0 ×
1011 cm−2. The open circles show the expected
peak positions (2π�/e)N± according to the calcu-
lated spin splitting N± at B = 0. Taken from [28].
c© (2001), with permission by Elsevier

In Fig. 9.9, we have plotted the calculated SdH Fourier spectra versus Ez

for a GaAs QW with a growth direction [001] and Ns = 3.0 × 1011 cm−2.
Open circles mark the expected peak positions (2π�/e)N± according to the
spin splitting N± at B = 0.3 For Ez = 0, we have two peaks in the Fourier
spectra that match exactly the positions expected according to the B = 0
spin splitting. However, for small Ez > 0 the B = 0 spin splitting increases
continuously, whereas the separation of the SdH frequencies stays constant.
For larger Ez, the separation of the side peaks is significantly smaller than
(2π�/e)∆N . Around Ez = 3 kV/cm we have a triple-peak structure, consist-
ing of a dominant central peak at (π�/e)Ns and two smaller side peaks at
approximately (2π�/e)N±. For larger Ez, the central peak disappears again.

Our calculations for holes were based on the fairly complex multiband
Hamiltonian H8×8. In Sect. 9.3.2 below, we show that qualitatively the same
results can be obtained by analyzing the simpler 2×2 conduction band Hamil-
tonian of [29] that contains nonparabolic corrections up to fourth order in k.
However, this model is appropriate for electrons in large-gap semiconductors,
where the spin splitting is rather small, so that it is more difficult to observe
these effects experimentally.

9.3 Discussion

The common interpretation [7] of SdH oscillations in the presence of inver-
sion asymmetry is based on the intuitive idea that for small B, the Landau
3 In Fig. 9.6 (growth direction [113]), we have distinguished between Ez < 0 and
Ez > 0. For the growth directions [110] (Fig. 9.8) and [001] (Fig. 9.9,) Ez < 0
and Ez > 0 are equivalent.
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levels can be partitioned into two sets which can be labeled by the two spin
subbands. Each set gives rise to an SdH frequency which is related to the
population of the respective spin subband according to (9.2). However, a
comparison between the (partially) spin-polarized eigenstates at B > 0 and
the unpolarized eigenstates at B = 0 shows that in general such a partition-
ing of the Landau levels is not possible. This reflects the fact that the orbital
motions of the up and down spinor components are coupled in the presence
of SO interaction, i.e. they cannot be analyzed separately.

9.3.1 Magnetic Breakdown

For many years, anomalous magneto-oscillations have been explained by
means of magnetic breakdown [3]. In a sufficiently strong magnetic field B
electrons can tunnel from an orbit on one part of the Fermi surface to an orbit
on another, separated from the first by a small energy gap. The tunneling
probability was found to be proportional to exp(−B0/B), with a breakdown
field B0, similar to Zener tunneling [3]. This brings into existence new orbits
which, when quantized, correspond to additional peaks in the Fourier spec-
trum of the SdH oscillations. However, if the anomaly in the SdH oscillations
reported in Fig. 9.6 were due to magnetic breakdown, for Ez = 0 we would ex-
pect several frequencies f SdH with different values rather than the observed
single frequency. In a simple, semiclassical picture a single frequency could be
explained by two equivalent orbits in k‖ space, as sketched in Fig. 9.10. This
would imply that the tunneling probabilities at the junctions j1 and j2 were
equal to one (and thus independent of B). We remark that de Andrada e Silva
et al. [30] studied anomalous magneto-oscillations for spin-split electrons in a
2D system. Their semiclassical analysis based on magnetic breakdown could
not predict the breakdown field B0 satisfactorily (see Table III in [30]).

In order to understand the deviation from (9.2) visible in Fig. 9.6, we
need to look more closely at Onsager’s semiclassical argument [4], which un-
derlies (9.2). This argument is based on Bohr–Sommerfeld quantization of
the semiclassical motion of Bloch electrons, which is valid for large quan-
tum numbers. However, spin is an inherently quantum mechanical effect, for
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Fig. 9.10. Qualitative sketch of the spin-split
Fermi contours in k‖ space for a QW with
growth direction [113] (solid lines). In a simple
semiclassical picture, the observation of a sin-
gle peak near Ez = 0 in the Fourier spectra of
Fig. 9.6 can be explained by two equivalent tra-
jectories in k‖ space, a left one and a right one,
which follow the dashed lines at the breakdown
junctions j1 and j2. Taken from [22]. c© (2000)
by the American Physical Society
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which the semiclassical regime of large quantum numbers is not meaningful.
Therefore Bohr–Sommerfeld quantization cannot be carried through in the
usual way for systems with SO interaction. In a semiclassical analysis of such
a system, we have to keep spin as a discrete degree of freedom so that the
motion in phase space becomes a multicomponent vector field [31], i.e. the
motions along the spin-split branches of the energy surface are coupled to
each other and cannot be analyzed separately.

One may ask whether we can combine the older idea of magnetic break-
down with the more recent ideas on Bohr–Sommerfeld quantization in the
presence of SO interaction. Within the semiclassical theory of [31], spin-flip
transitions may occur at the so-called mode-conversion points, which are
points of spin degeneracy in phase space. Clearly, these points are related to
magnetic breakdown. However, mode-conversion points introduce additional
complications into the theory of [31], so that it was noted by the authors of
that paper that their theory is not applicable in the vicinity of such points.
Nevertheless, a semiclassical analysis of a particular model has shown [32]
that spin flips are possible at these points for certain trajectories. However, we
cannot expect that the probability for spin-flip transitions can be expressed
as a conventional tunneling probability which does not take into account the
spin degree of freedom for the two bands participating in the breakdown
process. In the following section we shall discuss an alternative semiclassical
approach based on a trace formula for particles with SO interaction.

9.3.2 Anomalous Magneto-Oscillations and Spin Precession

In this section, we shall use a semiclassical trace formula for particles with
spin, which has only recently been developed [33,34] in the context of quan-
tum chaos, in order to show that the anomalous magneto-oscillations reflect
the nonadiabatic spin precession along the cyclotron orbits [23]. While spin
is a purely quantum mechanical property with no immediate analogue in
classical physics, the present analysis reveals that our understanding of spin
phenomena can be greatly improved by investigating equations of motion for
a classical spin vector.

General Theory. Onsager’s semiclassical analysis of magneto-oscillations
was based on a Bohr–Sommerfeld quantization of cyclotron orbits [4]. How-
ever, for systems with spin, there is no straightforward generalization of Bohr–
Sommerfeld quantization [35, 36]. The Gutzwiller trace formula [37, 38] pro-
vides an alternative and particularly transparent semiclassical interpretation
of magneto-oscillations that is applicable even in the presence of SO inter-
action. Rather than giving individual quantum energies, the trace formula
relates the DOS D(E) of a quantum mechanical system to a sum over all
topologically distinct primitive periodic orbits Γ of the corresponding classi-
cal system. We decompose D(E) into a smooth average DOS D̄(E) and an
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oscillating part δD(E). We then have, in the semiclassical (SC) asymptotic
limit � → 0,

D(E) = D̄(E) + δD(E) (9.5a)

(SC)
� D̄(E) +

∑
Γ

∞∑
k=1

AΓk(E) cos
[
k

�
SΓ (E) − π

2
ϕΓk

]
. (9.5b)

Here SΓ (E) is the classical action of the orbit Γ , k counts the number of
revolutions around Γ , and the Maslov index ϕΓk is a phase that depends
on the topology of Γ . The amplitudes AΓk(E) depend on the energy, time
period and stability of the orbit, as well as on whether the orbit is isolated
or nonisolated.

We now briefly reformulate the theory of magneto-oscillations of 2D elec-
trons without SO interaction using the language of periodic-orbit theory [38].
Here, the sum over k-fold repetitions of the classical periodic cyclotron or-
bits corresponds to a Fourier decomposition of the DOS as a function of the
energy E. Within the EMA, we have (see (4.30))

D(E) = G

{ ∞∑
L=0

δ
[
E − �ω∗

c

(
L+ 1

2

)]}
(9.6a)

= G

{
1

�ω∗
c

+
2

�ω∗
c

∞∑
k=1

(−1)k cos
(
k

�

2πE
ω∗

c

)}
, (9.6b)

where G denotes the degeneracy per unit area (4.25) and ω∗
c = eB/m∗ is the

cyclotron frequency. The first term in (9.6b) is the average DOS, and the sec-
ond term is the oscillating part. Equation (9.6b) can be derived in two ways.
Starting from (9.6a), it can be obtained by purely algebraic transformations
using the Poisson summation formula. Alternatively, we can evaluate (9.5b)
for the periodic cyclotron orbits. Both methods yield identical results, i.e.,
in the particular case of a harmonic oscillator, the trace formula (9.5) is an
identity.

We see in (9.6) that the action of a k-fold revolution corresponds to the
kth harmonic (k/�) 2πE/ω∗

c = 2πkm∗E/(�eB) of the DOS. The DOS, for a
fixed energy E, thus oscillates as a function of the reciprocal magnetic field
1/B, which is the origin of magneto-oscillations. In an SdH experiment we
have E = EF � �

2k2
F/(2m

∗), where k2
F = 2πNs. Thus we obtain Onsager’s

formula (9.1) from the first harmonic k = 1. Longer orbits k > 1, which give
rise to higher harmonics in the oscillating DOS, are exponentially damped
for small but nonzero temperatures [39], so that in the present analysis it
suffices to consider k = 1.

Trace Formula for Systems with SO Interaction. In order to incor-
porate the effect of SO interaction into the trace formula (9.5), we follow
the recent analysis by Bolte and Keppeler [33, 34]. We decompose the full
Hamiltonian H into an orbital part Horb plus the SO interaction HSO:
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H = Horb +HSO . (9.7)

For simplicity, we shall restrict ourselves to spin-1/2 systems so that HSO is a
2×2 matrix. The orbital part Horb yields the classical orbits Γ that enter into
the trace formula (9.5). Bolte and Keppeler showed that, to leading order in
�, the SO interaction HSO results in weight factors

tr dΓ (kT ) (9.8)

for the orbits in the trace formula (9.5). These factors can be determined by
integrating the spin transport equation

i�ḋΓ (t) = HSO(r,p) dΓ (t) (9.9)

using the initial condition dΓ (0) = �. Here dΓ (t) is a 2× 2 matrix in SU(2),
tr d denotes the trace of d, T denotes the period of Γ , k counts the number
of revolutions around Γ , ḋ is the time derivative of d, and HSO(r,p) is the
SO interaction along the orbit Γ = [r(t),p(t)]. Combining (9.5) and (9.8) we
obtain

δDSC(E) =
∑
Γ

∞∑
k=1

AΓk(E) tr dΓ (kT ) cos
[
k

�
SΓ (E) − π

2
ϕΓk

]
. (9.10)

It follows that the spin degree of freedom is determined by the orbital motion.
On the other hand, in the lowest order of �, the orbital motion remains
unaffected by the motion of the spin [33, 34].

The weight factors tr dΓ (kT ) allow an intuitive, classical interpretation.
We write the SO interaction in the form

HSO(r,p) =
�

2
σ · B(r,p) , (9.11)

where B(r,p) is an effective magnetic field. Here we use the same symbol
as for the effective field B in Sect. 6.6 because, in the present analysis, B
represents a classical analogue of the previously defined B. The spin transport
equation (9.9) for the matrix d ∈ SU(2) is locally isomorphic to the motion
of a trihedron T ∈ SO(3) attached to a classical spin vector s, where s obeys
the equation of motion of a classical precessing spin,

ṡ = s × B(r,p) , (9.12)

and B(r,p) is the effective field along the orbit Γ = [r(t),p(t)]. After k
periods of the orbital motion, the spin vector s has been rotated by an angle
kρ about an axis n; see Fig. 9.11. We remark that the axis n (but not ρ)
depends on the starting point of the periodic orbit. The angle ρ contains
both a dynamical phase and a geometric phase similar to Berry’s phase [40].
Finally we have (see e.g. (3.2.45) in [41])4

tr dΓ (kT ) = 2 cos(kρ/2) , (9.13)
4 The relation between the angle ρ and the previously [34] defined angles θ and η

is given by cos(ρ/2) = cos(θ/2) cos η.
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n

ρ

Fig. 9.11. Classical spin precession (bold green line) about the effective field
B (bold red line) along a cyclotron orbit (black) for a GaAs QW. The thin lines
represent the momentary vectors of the effective field B (red) and the spin s (green)
along the cyclotron orbit. The momentary vectors for B are normalized with respect
to the maximum of |B| along the orbit. At the starting point, we have chosen s ‖ B.
After one cycle the motion of the spin vector can be identified with a rotation by an
angle ρ about an axis n, as shown in the blow-up on the left. The initial and final
directions of the spin vector s are marked in blue. The system considered is a 100 Å
wide GaAs–Al0.5Ga0.5As QW grown in the crystallographic direction [113] with a
2D density Ns = 5× 1011 cm−2 in the presence of an electric field Ez = 100 kV/cm
and a magnetic field B = 0.05 T. Taken from [23]. c© (2002) by the American
Physical Society

Fig. 9.12. Classical spin precession
for the same system as in Fig. 9.11 but
assuming an external magnetic field
B = 0.004 T. Here the spin precession
is adiabatic

i.e. for evaluating the trace, the two-to-one correspondence between d ∈
SU(2) and T ∈ SO(3) is unimportant.

Example: 2D Electrons in a GaAs QW. We have analyzed magneto-
oscillations for quasi-2D electron systems in semiconductors such as GaAs
where we have two contributions to the SO coupling. The Dresselhaus term
(6.1) reflects the bulk inversion asymmetry of the zinc blende structure of
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GaAs. If the inversion symmetry of the confining potential of the quasi-2D
system is broken, we obtain an additional SO coupling given by the Rashba
term (6.10). While the Dresselhaus term is fixed, the Rashba SO coupling
can be tuned by applying an electric field Ez perpendicular to the plane of
the quasi-2D system (Fig. 6.8).

We shall investigate a 2D system grown in the crystallographic direction
[113] where the effective field B has an out-of-plane component Bz. Using
the rotated coordinate system defined in Fig 7.3, the Dresselhaus term (6.1)
reads

H b
6c 6c = b6c6c

41

(
Hb

z Hb
−

Hb †
− −Hb

z

)
, (9.14a)

where
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√
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, (9.14b)
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2s
(
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)
({k−k+k−} − {k+k−k+})

]
, (9.14c)

where s ≡ sin θ and c ≡ cos θ. For the growth direction [113], we have θ =
arccos(3/

√
11). Note that we have neglected all terms containing odd powers

of kz because we have 〈kn
z 〉 = 0 for n odd. The Rashba term (6.10) remains

unaffected by the change of the coordinate system.
In the quantum mechanical calculation, we added the Dresselhaus term

(9.14) and the Rashba term (6.10) to the EMA Hamiltonian (4.27), which
then was diagonalized numerically. In the semiclassical calculation, we in-
serted the Dresselhaus term (9.14) and the Rashba term (6.10) into the spin
transport equation (9.9). The operator of the in-plane momentum �k‖ was
replaced by the classical kinetic momentum p(t) along the cyclotron orbit:

�k‖ → p(t) =
√

2m∗E


 cosω∗

c t
sinω∗

c t
0


 , (9.15)

where E is the energy of the classical orbit. We then integrated the classical
equations of motion (9.9) in order to evaluate (9.13). It follows from (9.6) and
(9.13) that in the semiclassical calculation, apart from higher harmonics k >
1, the oscillating part of the DOS at the Fermi energy EF is proportional to

cos(ρ/2) cos [2πm∗EF/(�eB)] . (9.16)

Both in the quantum mechanical calculation and in the semiclassical calcula-
tion, we replaced k2

z by its expectation value 〈k2
z〉, i.e. we have assumed that

the perpendicular component of the motion is completely decoupled from the
in-plane component.

In Fig. 9.13, we compare the Fourier spectra of the magneto-oscillations
of the DOS calculated quantum mechanically and semiclassically as outlined
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Fig. 9.13. (a) Quantum mechanical and (b) semiclassical Fourier spectra for dif-
ferent values of the electric field Ez for a 2D electron system in a 100 Å wide GaAs–
Al0.5Ga0.5As QW grown in the crystallographic direction [113] with constant total
density Ns = 5× 1011 cm−2. The open circles show the expected Fourier transform
peak positions (2π�/e)N± according to the calculated spin subband densities N±
at B = 0. Taken from [23]. c© (2002) by the American Physical Society

above, assuming a 2D electron system in a 100 Å wide GaAs–Al0.5Ga0.5As
QW grown in the crystallographic direction [113] with a constant total density
Ns = N++N− = 5×1011 cm−2 and a varying Ez . For comparison, the circles
mark the peak positions which one would expect according to (9.2) for the
spin subband densities N± calculated quantum mechanically at B = 0. The
Fourier spectra in Fig. 9.13a,b are in strikingly good agreement. On the other
hand, the peak positions deviate substantially from the positions expected
according to the B = 0 spin splitting. In particular, the semiclassical analysis
based on (9.16) reproduces the central peak, which is not predicted by (9.2).
The asymmetry in Fig. 9.13 with respect to positive and negative values of
Ez reflects the low-symmetry growth direction [113] (Ref. [22]).

Adiabatic and Nonadiabatic Motion. An analysis of the classical spin
precession along the cyclotron orbit reveals the origin of the anomalous
magneto-oscillations. The spin-split states at B = 0 correspond to fixing
the direction of the spin parallel and antiparallel to the effective field B(p)
along the cyclotron orbit. However, in general, the precessing spin cannot
adiabatically follow the momentary field B(p). This can be seen in Fig. 9.11,
where we have plotted the momentary field B(p) and the precessing spin s
along a cyclotron orbit. Both the direction and the magnitude of B change
along the orbit. In particular, the Dresselhaus term reverses the direction
of B when |B| has a minimum. A spin vector that is no longer parallel or
antiparallel to B implies that the system is in a superposition of states from
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both spin subbands, so that the magneto-oscillations are not directly related
to the B = 0 spin splitting.

For the spin, in order to be able to follow the momentary field B(p) adi-
abatically, the orbital motion must be slow compared with the motion of the
precessing spin, i.e. we must have (e/m0)B 	 |B(p)| for all points p along
the cyclotron orbit. Therefore, it is the smallest value Bmin = min |B(p)|
along the cyclotron orbit which determines whether or not the spin evolves
adiabatically. This is illustrated in Fig. 9.11, where the parameters were cho-
sen such that initially the spin is parallel to the effective field B. First s can
follow B, but after a quarter period of the cyclotron orbit the effective field
B reaches its minimum Bmin and s starts to “escape” from B. Subsequently,
the spin vector s is no longer parallel to B, even in those regions where B
becomes large again. For comparison, a completely adiabatic motion is shown
in Fig. 9.12. We remark that adiabatic spin precession does not imply ρ = 0,
but only that the rotation axis n is approximately parallel to the initial (and
final) direction of the effective field B. At t = 0 and t = T , a trihedron
attached to s can be oriented differently.

We noted in Sect. 9.3.1 that for many years, anomalous magneto-oscil-
lations have been explained by means of magnetic breakdown [42, 30]. Un-
derlying this approach is a rather different semiclassical picture, where each
spin-split subband is associated with an energy surface with separate clas-
sical dynamics. In the present treatment, on the other hand, there is only
one energy surface, complemented by the dynamics of a classical spin vector.
It is the essential idea within the concept of magnetic breakdown that, in
a sufficiently strong external magnetic field B, electrons can tunnel from a
cyclotron orbit on the energy surface of one band to an orbit on the energy
surface of a neighboring band separated from the first one by a small energy
gap. For spin-split bands, the separation of these bands is proportional to the
effective field B, i.e. magnetic breakdown is most likely to occur in regions of
a small effective field B. This approach implies that the anomalous magneto-
oscillations are essentially determined by the breakdown regions only. (These
breakdown regions can be identified with mode-conversion points [35].) Here
the present approach differs fundamentally from these earlier models: in the
present ansatz, the spin precesses continuously along the cyclotron orbit, i.e.
the angle ρ in (9.16) is affected by the nonadiabatic motion of s in the regions
of both small and large B (see Fig. 9.11).

In the adiabatic regime, where the spin precession is fast compared with
the orbital motion, we can readily evaluate the angle ρ. First we shall derive
two-component vectors ψ(t) that are adiabatic solutions of

iψ̇(t) = σ · Bψ(t) . (9.17)

Then we shall combine the vectors ψ(t) to form a matrix d(t) that is an
adiabatic solution of (9.9). We write B using polar coordinates θ and φ:
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B = |B|


 sin θ cosφ

sin θ sinφ
cos θ


 . (9.18)

The momentary eigenvalues λ± and eigenvectors χ± of σ · B are

λ+ = |B| : χ+ =
(

cos(θ/2)
eiφ sin(θ/2)

)
, (9.19a)

λ− = −|B| : χ− =
(
−e−iφ sin(θ/2)

cos(θ/2)

)
. (9.19b)

In the adiabatic limit, we can use the ansatz

ψ±(t) = exp
[
∓ i
∫ t

0

|B(t′)| dt′ + iγ±(t)
]
χ±(t) , (9.20)

i..e we assume that the solutions ψ±(t) of (9.17) stay in the subspaces defined
by χ±(t). By inserting (9.20) into (9.17), we find that the Berry phase γ±(t)
amounts to

γ±(t) = ∓1
2

∫ t

0

[1 − cos θ(t′)] φ̇(t′) dt′ . (9.21)

Finally, we use ψ±(t) to construct an adiabatic solution d(t) of (9.9),

d(t) =

(
ψ†

+(0)

ψ†
−(0)

)(
ψ+(t), ψ−(t)

)
, (9.22)

which obeys the correct boundary condition d(0) = �. Evaluating the trace
yields tr d(T ) = 2 cos(ρ/2), where

ρ/2 =
∫ T

0

|B(t′)| dt′ + 1
2

∫ T

0

[1 − cos θ(t′)] φ̇(t′) dt′ (9.23)

and T = 2π/ω∗
c is the period of the cyclotron motion.

In the limit of small external fields (B → 0), the Berry phase in (9.23)
converges towards a constant. In addition, the integrand |B(t′)| can be ex-
panded with respect to a small Zeeman term, i.e. |B| ≈ B0 +B1B, where the
coefficients B0 and B1 are T -periodic in time. Note that neither the Dressel-
haus nor the Rashba term depends explicitly on the external field B. Thus,
in the limit of small external fields, we obtain ρ(B) ≈ ρ0/B+ρ1 where ρ0 and
ρ1 are constants, independent of B. Inserting the last relation into (9.16), we
obtain

δDad(E) ∝ 1
2

∑
±

cos
[(

2πm∗EF

e�
± ρ0

2

)
1
B

± ρ1

2

]
, (9.24)

i.e. only in the limit of adiabatic spin precession are magneto-oscillations
directly related to the B = 0 spin splitting.
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By varying the crystallographic growth direction of the QW, it is possible
to tune the value of Bmin. In particular, for a QW grown in the crystallo-
graphic direction [110], the Dresselhaus term vanishes when p is parallel to
the in-plane directions [001] and [001]; see Fig. 6.20. Thus, for a symmetric
QW without Rashba SO coupling, we have |B(p)| = (e/m0)B for these values
of p, which implies that there is no adiabatic regime and one always observes
anomalous magneto-oscillations.

Analytical Treatment of the Rashba Model. For a system with Rashba
SO coupling but no Dresselhaus term, we can estimate the accuracy of the
approximate semiclassical approach by comparing with the exact eigenvalue
spectrum (8.16). Using the Poisson summation formula, we obtain from (8.16)
the exact trace formula [43]

δDSC(E) =
2G
�ω∗

c

∑
±


1 ±Ξ

/√
1
4

(
1 − g∗

2
m∗

m0

)2

+
2E
�ω∗

c

Ξ +Ξ2




×
∞∑

k=1

cos


2kπ


 E

�ω∗
c

+Ξ ±

√
1
4

(
1 − g∗

2
m∗

m0

)2

+
2E
�ω∗

c

Ξ +Ξ2




 ,

(9.25)

where

Ξ ≡ α2

�ω∗
c

m∗

�2
. (9.26)

On the other hand, we can also evaluate analytically the spin transport
equation (9.9), which yields

tr d(kT ) = (−1)k 2 cos


2kπ

√
1
4

(
1 − g∗

2
m∗

m0

)2

+
2E
�ω∗

c

Ξ


 . (9.27)

Using (9.10), we then obtain the following for the oscillating part of the DOS:

δDSC(E) =
2G
�ω∗

c

∑
±

∞∑
k=1

cos


2kπ


 E

�ω∗
c

±

√
1
4

(
1 − g∗

2
m∗

m0

)2

+
2E
�ω∗

c

Ξ




.

(9.28)

Equation (9.28) is a good approximation to (9.25) if

E

�ω∗
c

� Ξ . (9.29)

In an SdH experiment, we have E � �
2k2

F/(2m
∗), where k2

F = 2πNs. Thus
(9.29) is equivalent to
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Ns � Nm , (9.30)

where Nm is the “quantum density” (6.15) below which only the lower spin
subband is occupied at B = 0. We have seen in Sect. 5 that for realistic
parameter values (9.30) is always fulfilled in quasi-2D systems. This justifies
the approach based on (9.9) which in the present context of an � expansion
corresponds to the regime of weak SO coupling.5 For k = 1, and using the
above approximate expression for EF, (9.28) yields the SdH frequencies

f SdH
± =

2π�

e

(
Ns

2
± α

4π
2m∗

�2

√
2πNs

)
, (9.31)

which represent the leading order in α of the exact B = 0 spin subband
densities (6.18). We remark that a similar calculation based on the k = 1
component of the exact level density (9.25) and using the exact Fermi energy
(6.17) yields the exact B = 0 spin subband densities (6.18). The above anal-
ysis also illustrates that Onsager’s interpretation of SdH oscillations is not
affected by Zeeman splitting.

Other Systems. We note that the concepts developed here are rather gen-
eral and, in particular, are not restricted to spin-1/2 systems. Indeed, an anal-
ogous semiclassical analysis can be carried out for any system with (nearly)
degenerate subbands. These bands can be identified with a single band with
an SO coupling acting on an effective spin degree of freedom, similarly to Li-
pari and Baldareschi’s treatment [44] of the multiply degenerate valence band
edge in a semiconductor with a diamond or zinc blende structure. In particu-
lar, we expect that the present approach can be applied to the interpretation
of de Haas–van Alphen experiments on ultrahigh-purity samples [45] that
had called into question the established concepts of magnetic breakdown.

9.4 Outlook

Few approaches allow realistic, fully quantum mechanical calculations of
magneto-oscillations that can be compared with band structure calculations
at B = 0. This is due to the fact that, unlike the k · p method and the enve-
lope function approximation, other methods for band structure calculations
are often unsuitable for taking a quantizing magnetic field into account. In
particular, the semiclassical concept of magnetic breakdown introduced in the
early 1960s in order to explain anomalous SdH oscillations in metals, in spite
of its wide use, has rarely been compared with fully quantum mechanical
calculations. More recent experiments with metal samples of extremely high
purity revealed unresolved discrepancies between these semiclassical concepts
5 A semiclassical treatment of the Rashba model in the limit of strong SO coupling

has been given in [43].
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and experimental data [45]. Later, the experiments and the semiclassical con-
cepts were critically assessed by Pippard [46]. We expect that the present
surprising results on anomalous magneto-oscillations in 2D electron and hole
systems represent merely a starting point for more detailed investigations of
these questions.
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10 Conclusions

Spin–orbit interaction gives rise to fascinating phenomena in quasi-2D sys-
tems, such as a spin splitting of the single-particle states in inversion-
asymmetric systems even at a magnetic field B = 0 and a Zeeman split-
ting characterized by an effective g factor that is significantly enhanced in
magnitude over the g factor g0 = 2 of free electrons. The analysis presented
in this book has focused on a systematic picture of these spin phenomena
in quasi-2D systems using the theory of invariants and Löwdin partitioning.
Often, the present approach allows one to discuss different SO coupling phe-
nomena individually by adding the appropriate invariants on top of a simple
effective-mass model. These analytical models that capture the important
physics have been complemented by accurate numerical calculations.

We have seen that SO coupling effects in 2D electron systems differ qual-
itatively from those in 2D hole systems. Electrons have a spin j = 1/2 that
is not affected by size quantization. Therefore, the spin dynamics of elec-
trons are primarily controlled by the SO term for B = 0 spin splitting and
the Zeeman term. Hole systems, on the other hand, have an effective spin
j = 3/2. Size quantization in a quasi-2D system yields a quantization of an-
gular momentum with a z component of angular momentum m = ±3/2 for
the HH states and m = ±1/2 for the LH states (“HH–LH splitting”). The
quantization axis of angular momentum that is enforced by HH–LH splitting
points perpendicular to the plane of the quasi-2D system. On the other hand,
in general the effective Hamiltonians for B = 0 spin splitting and Zeeman
splitting in an in-plane magnetic field B > 0 tend to orient the spin vector
parallel to the plane of the quasi-2D system. However, it is not possible to
have a “second quantization axis for angular momentum” on top of the per-
pendicular quantization axis due to HH–LH splitting. Therefore, both the
B = 0 spin splitting and the Zeeman splitting in an in-plane field B > 0
represent higher-order effects in 2D HH systems.

It is interesting to trace back the origin of SO coupling in quasi-2D systems
by comparing it with the Dirac equation in relativistic quantum mechanics.
Indeed, in k · p theory, we describe the Bloch electrons in a crystal by means
of matrix-valued multiband Hamiltonians that possess remarkable analogies
to, as well as noteworthy differences from the Dirac equation in relativistic
quantum mechanics. The Pauli equation, including the Zeeman term and the
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SO coupling, is obtained from a nonrelativistic approximation to the Dirac
equation where we decouple the particles from the antiparticles. In k · p the-
ory, the effective Hamiltonians for electrons and holes, including the effective
Zeeman term and the Rashba SO term, are obtained from a Kane multiband
Hamiltonian that includes both the conduction and the valence band. In both
cases, the mass is the inverse prefactor of the terms symmetric in the com-
ponents of the momentum p = �k, while the g factor is the prefactor of the
terms antisymmetric in the components of p. Finally, the SO coupling (the
Rashba SO term) corresponds to the terms antisymmetric in the components
of p and the potential V . However, in the Pauli equation, the SO interaction
is automatically built in. In k · p theory, it is parameterized by the bulk SO
gap ∆0.



A Notation and Symbols

a lattice constant, inter-Landau-level ladder operator
A vector potential
b intra-Landau-level ladder operator
B magnetic field
B effective magnetic field
c index for conduction band state (Γ c

6 ), speed of light
D density of states
e > 0 elementary charge
ê unit vector, polarization vector
E energy
E electric field
f frequency, occupation factor
g group element
g0 = 2 g factor of free electrons
g∗ effective g factor
G = eB/(2π�) areal degeneracy of spin-split Landau levels
G (point) group
h index for heavy-hole state (m = ±3/2, Γ v

8 )
� Planck’s constant
H Hamiltonian, index for “heavy-hole state” (m = ±3/2, Γ c

8 )
H multiband k · p Hamiltonian
i imaginary unit
j total angular momentum
k (kinetic) wave vector
k canonical wave vector
kB Boltzmann’s constant
K tensor operator
l orbital angular momentum,

index for light-hole state (m = ±1/2, Γ v
8 )

L Landau-oscillator index,
index for “light-hole state” (m = ±1/2, Γ c

8 )
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m z component of angular momentum
m0 free-electron mass
m∗ effective mass
n bulk band index (including spin), index of refraction
N number of bands in multiband Hamiltonian,

Landau-level index (axial approximation)
N Landau-level index (beyond axial approximation)
NA acceptor charge density
ND donator charge density
Nd depletion charge density
Ns 2D charge density
N± spin subband density
p = �k kinetic momentum
p = �k canonical momentum
rs density parameter (6.53)
r = (x, y, z) position vector
R full rotation group
s index for spin split-off state (Γ v

7 )
S index for spin split-off state (Γ c

7 )
S generalized spin operator (6.65)
T temperature
unk lattice-periodic part of Bloch function
V confining potential
v velocity operator
w quantum well width
α absorption coefficient
α, β subband index, index for irreducible representations
Γ irreducible representation
ε dielectric constant
ε strain tensor
θ, φ (see Fig. C.1)
λc =

√
�/(eB) magnetic length (cyclotron radius)

µB = e�/(2m0) Bohr magneton
ν bulk band index (no spin)
ξ z component of subband wave function
σ spin index, Pauli spin matrices
Σ band offset
ϕ direction of in-plane vector
ψ 3D wave function
ω excitation frequency
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ωc = eB/m∗ cyclotron frequency
[A,B] = AB −BA commutator
{A,B} = 1

2
(AB +BA) symmetrized product

We denote the irreducible representations of the crystallographic point groups
in the same way as Koster et al. [1]. The band parameters and basis matrices
characterizing the extended Kane model are defined in Appendix C. Through-
out this work, we use a coordinate system for quasi-2D systems where the
x, y components correspond to the in-plane motion (represented by an index
“‖”) and the z component is perpendicular to the 2D plane. We use SI units
for electromagnetic quantities.

Abbreviations

2D two-dimensional
BIA bulk inversion asymmetry
cp cyclic permutation of the preceding term (in formulas)
DOS density of states
EFA envelope function approximation
EMA effective-mass approximation
FIR far infrared
HH heavy hole
LH light hole
MBE molecular-beam epitaxy
MOS metal-oxide-semiconductor
QW quantum well
SC semiclassical
SdH Shubnikov–de Haas
SIA structure inversion asymmetry
SO spin–orbit
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B Quasi-Degenerate Perturbation Theory

Quasi-degenerate perturbation theory (“Löwdin partitioning”, [1, 2, 3])1 is a
general and powerful method for the approximate diagonalization of time-
independent Hamiltonians H . It is particularly suited for the perturbative
diagonalization of k · p multiband Hamiltonians, but it can also be used for
many other problems in quantum mechanics. Quasi-degenerate perturbation
theory is closely related to conventional stationary perturbation theory. How-
ever, it is more powerful because we need not distinguish between nondegen-
erate and degenerate perturbation theory. As this method is not well known
in quantum mechanics, we include a more detailed description of it here.

The Hamiltonian H is expressed as the sum of two parts: a Hamiltonian
H0 with known eigenvalues En and eigenfunctions |ψn〉, and H ′, which is
treated as a perturbation:

H = H0 +H ′ . (B.1)

We assume that we can divide the set of eigenfunctions {|ψn〉} into weakly
interacting subsets A and B such that we are interested only in the set A and
not in B. Quasi-degenerate perturbation theory is based on the idea that we
construct a unitary operator e−S such that for the transformed Hamiltonian

H̃ = e−SH eS , (B.2)

the matrix elements 〈ψm|H̃ |ψl〉 between states |ψm〉 from set A and states
|ψl〉 from set B vanish up to the desired order of H ′. We can depict the
removal of the off-diagonal elements of H as shown in Fig. B.1.

We begin by writing H as

H = H0 +H ′ = H0 +H1 +H2 , (B.3)

where H1 has nonzero matrix elements only between the eigenfunctions |ψn〉
within the sets A and B, whereas H2 has nonzero matrix elements only
between the sets A and B as shown in Fig. B.2. Obviously, we must construct
1 Quasi-degenerate perturbation theory has been applied to various physical prob-

lems. It was used by Van Vleck to study the spectra of diatomic molecules [4].
Furthermore, it is essentially equivalent to the Foldy–Wouthuysen transfor-
mation [5] used in the context of relativistic quantum mechanics and to the
Schrieffer–Wolff transformation [6] used in the context of the Anderson and
Kondo models. A general discussion of unitary transformations is given in [7].
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H

e−S

H
~

0

0A

B

Fig. B.1. Removal of off-diagonal elements of H

1H 2H

0

0

0

0 0

0

0H

= + +

H

Fig. B.2. Representation of H as H0 + H1 + H2

S such that the transformation (B.2) converts H2 into a block-diagonal form
similar to H1 while keeping the desired block-diagonal form of H0 +H1. In
order to determine the operator S, we expand eS in a series

eS = 1 + S +
1
2!
S2 +

1
3!
S3 . . . (B.4)

and construct S by successive approximations. Substituting (B.4) into (B.2),
and noting that the operator S must be anti-Hermitian, i.e. S† = −S, we
obtain

H̃ =
∞∑

j=0

1
j!

[
H,S

](j) =
∞∑

j=0

1
j!

[
H0 +H1, S

](j) +
∞∑

j=0

1
j!

[
H2, S

](j)
, (B.5)

where the commutators
[
A,B

](j) are defined by[
A,B

](j) = [. . . [[A ,B], B], . . . B]︸ ︷︷ ︸
j times

. (B.6)

Since S must be non-block-diagonal like H2, the block-diagonal part H̃d of
H̃ contains the terms

[
H0 +H1, S

](j) with even j and
[
H2, S

](j) with odd j:

H̃d =
∞∑

j=0

1
(2j)!

[
H0 +H1, S

](2j) +
∞∑

j=0

1
(2j + 1)!

[
H2, S

](2j+1)
. (B.7)

Conversely, the non-block-diagonal part H̃n of H̃ must contain the terms[
H0 +H1, S

](j) with odd j and
[
H2, S

](j) with even j:

H̃n =
∞∑

j=0

1
(2j + 1)!

[
H0 +H1, S

](2j+1) +
∞∑

j=0

1
(2j)!

[
H2, S

](2j)
. (B.8)
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Now S is defined by the condition that the non-block-diagonal part H̃n of H̃
vanishes:

H̃n = 0 . (B.9)

Choosing the ansatz

S = S(1) + S(2) + S(3) + . . . , (B.10)

we can use (B.8) and (B.9) to derive the following equations for the successive
approximations S(j) to S:

[H0, S(1)] = −H2 , (B.11a)

[H0, S(2)] = −[H1, S(1)] , (B.11b)

[H0, S(3)] = −[H1, S(2)] − 1
3
[[H2, S(1)], S(1)] , (B.11c)

. . . = . . . .

Solving (B.11) for S(j) we obtain

S
(1)
ml = − H ′

ml

Em − El
, (B.12a)

S
(2)
ml =

1
Em − El

[∑
m′

Hmm′Hm′l

Em′ − El
−

∑
l′

Hml′Hl′l

Em − El′

]
, (B.12b)

S
(3)
ml =

1
Em − El

×
[
−

∑
m′, m′′

Hmm′′Hm′′m′Hm′l

(Em′′ − El)(Em′ − El)
−

∑
l′, l′′

Hml′Hl′l′′Hl′′l

(Em − El′′)(Em − El′)

+
∑
l′, m′

Hmm′Hm′l′Hl′l

(Em′ − El)(Em′ − El′)
+

∑
l′, m′

Hmm′Hm′l′Hl′l

(Em − El′)(Em′ − El′)

+
1
3

∑
l′, m′

Hml′Hl′m′Hm′l

(Em′ − El′)(Em′ − El)
+

1
3

∑
l′, m′

Hml′Hl′m′Hm′l

(Em − El′)(Em′ − El′)

+
2
3

∑
l′, m′

Hml′Hl′m′Hm′l

(Em − El′)(Em′ − El)

]
, (B.12c)

. . . = . . . .

Here the indices m,m′,m′′ correspond to states in set A, the indices l, l′, l′′

correspond to states in set B, and

Hml ≡ 〈ψm|H |ψl〉 . (B.13)

Inserting (B.12) into (B.7), we finally obtain the desired equations for the
successive approximations to H̃
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H̃ = H(0) +H(1) +H(2) +H(3) +H(4) + . . . , (B.14)

where H(j) up to j = 4 are given in (B.15). We would like to emphasize
that all the energy denominators in (B.15) refer to pairs of states with one
state from set A and the other state from set B. The sets A and B will
always be choosen such that they are separated in energy. Therefore, unlike
the situation for conventional stationary perturbation theory, we can apply
(B.15) to systems where the states in set A may contain arbitrary (possibly
unknown) exact or approximate degeneracies.2 It is thus particularly suited
to computer algebra systems such as Maple3 and Mathematica.4

It is important to note that the derivation of the final equation (B.15)
remains valid when the Hamiltonian H contains a matrix of operators H ′

nn′

plus some diagonal energies Enδnn′

Hnn′ = Enδnn′ +H ′
nn′ . (B.16)

In this case, S is also a matrix of operators the elements of which are still
defined by (B.12). Likewise, the unitary transformation (B.2) can still be
defined via (B.5). However, it becomes clear from (B.5) and (B.11) that
when H ′

nn′ are operators we must take into account the noncommutativity
of different matrix elements H ′

nn′ . Therefore, in (B.12) and (B.15), we have
to evaluate the products of matrix elements H ′

nn′ in the given order.
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H
(0)

mm′ = H0
mm′ , (B.15a)

H
(1)

mm′ = H ′
mm′ , (B.15b)

H
(2)

mm′ =
1

2

∑
l

H ′
mlH

′
lm′

[
1

Em − El
+

1

Em′ − El

]
, (B.15c)

H
(3)
mm′ = − 1

2

∑
l, m′′

[
H ′

mlH
′
lm′′ H ′

m′′m′

(Em′ − El)(Em′′ − El)
+

H ′
mm′′ H ′

m′′lH
′
lm′

(Em − El)(Em′′ − El)

]

+
1

2

∑
l, l′

H ′
mlH

′
ll′ H

′
l′m′

[
1

(Em − El)(Em − El′)
+

1

(Em′ − El)(Em′ − El′)

]
, (B.15d)

H
(4)
mm′ =

1

2

∑
l, m′′, m′′′

1

(Em′′ − El)(Em′′′ − El)

[
H ′

mm′′ H ′
m′′m′′′ H ′

m′′′lH
′
lm′

Em − El
+

H ′
mlH

′
lm′′ H ′

m′′m′′′ H ′
m′′′m′

Em′ − El

]

− 1

2

∑
l, l′, m′′

[
H ′

mlH
′
ll′ H

′
l′m′′ H ′

m′′m′

(Em′ − El)(Em′′ − El′)

(
1

Em′′ − El
+

1

Em′ − El′

)
+

H ′
mm′′ H ′

m′′lH
′
ll′ H

′
l′m′

(Em − El′)(Em′′ − El)

(
1

Em′′ − El′
+

1

Em − El

)]

− 1

24

∑
l, l′, m′′

H ′
mlH

′
lm′′ H ′

m′′l′ H
′
l′m′

[
8

(Em − El)(Em − El′)(Em′′ − El′)
+

8

(Em′ − El)(Em′ − El′ )(Em′′ − El)

+
4

(Em − El′)(Em′′ − El)

(
1

Em − El
+

1

Em′′ − El′

)
+

4

(Em′ − El)(Em′′ − El′)

(
1

Em′ − El′
+

1

Em′′ − El

)

− 1

(Em′′ − El)(Em′′ − El′)

(
1

Em − El
+

1

Em′ − El′

)
− 3

(Em − El)(Em′ − El′ )

(
1

Em′′ − El
+

1

Em′′ − El′

) ]

+
1

2

∑
l, l′, l′′

H ′
mlH

′
ll′ H

′
l′l′′ H

′
l′′m′

[
1

(Em − El)(Em − El′)(Em − El′′)
+

1

(Em′ − El)(Em′ − El′)(Em′ − El′′)

]
, (B.15e)

. . . = . . .



C The Extended Kane Model: Tables

In this appendix, we tabulate various quantities needed for the extended Kane
model. Table C.1 gives the basis functions. Consistent with the phase con-
ventions used in Table C.1, we list in Table C.2 the matrices that are used in
Table C.3 to construct symmetrized basis matrices for the matrix expansion
of the blocks Hαβ of the point group Td. The corresponding irreducible tensor
components are given in Table C.4. In Table C.5, we combine the basis ma-
trices and tensor operators in order to obtain the invariant expansion for the
extended Kane model. Table C.6 sets out the relations between commonly
used notations for deformations potentials. In Table C.7 we give the explicit
matrix form of those blocks in the extended Kane model, which describe the
coupling with the conduction bands Γ c

8 and Γ c
7 . The explicit matrix form of

the 8 × 8 Kane model is given in Table C.8. The reduced band parameters
for the extended Kane model are summarized in Table C.9. Finally, in Ta-
bles C.10 and C.11 we give the axial approximation and the cubic terms for
the 8 × 8 Kane model.

Roland Winkler: Spin–Orbit Coupling Effects
in Two-Dimensional Electron and Hole Systems, STMP 191, 207–219 (2003)
c© Springer-Verlag Berlin Heidelberg 2003
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Table C.1. Basis functions |jm〉 of the extended Kane model. The quantization
axis of angular momentum is the crystallographic direction [001]. In accordance
with time reversal symmetry, we have choosen the phase convention that |X〉, |Y 〉,
and |Z〉 are real and |S〉, |X′〉, |Y ′〉, and |Z′〉 are purely imaginary. Note that our
definition of the basis functions |jm〉 agrees with common definitions of angular-
momentum eigenfunctions (see e.g. [1])

∣∣∣∣32 3

2

〉
c′

= − 1√
2

∣∣∣∣X ′ + iY ′

0

〉 ∣∣∣∣32 1

2

〉
c′

=
1√
6

∣∣∣∣ 2Z′

−X ′ − iY ′

〉
Γ c

8 ∣∣∣∣32 −1

2

〉
c′

=
1√
6

∣∣∣∣X ′ − iY ′

2Z′

〉 ∣∣∣∣32 −3

2

〉
c′

=
1√
2

∣∣∣∣ 0
X ′ − iY

〉

Γ c
7

∣∣∣∣12 1

2

〉
c′

= − 1√
3

∣∣∣∣ Z′

X′ + iY ′

〉 ∣∣∣∣12 −1

2

〉
c′

= − 1√
3

∣∣∣∣X ′ − iY ′

−Z′

〉

Γ c
6

∣∣∣∣12 1

2

〉
c

=

∣∣∣∣ S0
〉 ∣∣∣∣12 −1

2

〉
c

=

∣∣∣∣ 0S
〉

∣∣∣∣32 3

2

〉
v

= − 1√
2

∣∣∣∣X + iY
0

〉 ∣∣∣∣32 1

2

〉
v

=
1√
6

∣∣∣∣ 2Z
−X − iY

〉
Γ v

8 ∣∣∣∣32 −1

2

〉
v

=
1√
6

∣∣∣∣X − iY
2Z

〉 ∣∣∣∣32 −3

2

〉
v

=
1√
2

∣∣∣∣ 0
X − iY

〉

Γ v
7

∣∣∣∣12 1

2

〉
v

= − 1√
3

∣∣∣∣ Z
X + iY

〉 ∣∣∣∣12 −1

2

〉
v

= − 1√
3

∣∣∣∣X − iY
−Z

〉
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Table C.2. Matrices for the invariant expansion of the extended Kane model.
The matrices σi are the well known Pauli matrices. The matrices Ji are angular-
momentum matrices for angular momentum j = 3/2 in the order m = +3/2, +1/2,
−1/2, and −3/2. The 2 × 4 matrices Ti and 4 × 2 matrices Ui are needed for the
off-diagonal blocks H68 and H87, respectively. The construction of these matrices is
discussed in [2]. As we have (Ui)mm′ = (Ti)

∗
m′m, we give here only the matrices Ti

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
�2×2 =

(
1 0
0 1

)

Jx =
1

2




0
√

3 0 0√
3 0 2 0

0 2 0
√

3

0 0
√

3 0


 Jy =

i

2




0 −√
3 0 0√

3 0 −2 0

0 2 0 −√
3

0 0
√

3 0




Jz =
1

2




3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3


 �4×4 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




Tx =
1

3
√

2

(−√
3 0 1 0

0 −1 0
√

3

)
Ty =

−i

3
√

2

(√
3 0 1 0

0 1 0
√

3

)

Tz =

√
2

3

(
0 1 0 0
0 0 1 0

)

Txx =
1

3
√

2

(
0 −1 0

√
3

−√
3 0 1 0

)
Tyy =

1

3
√

2

(
0 −1 0 −√

3√
3 0 1 0

)

Tzz =

√
2

3

(
0 1 0 0
0 0 −1 0

)

Tyz =
i

2
√

6

(−1 0 −√
3 0

0
√

3 0 −1

)
Tzx =

1

2
√

6

(−1 0
√

3 0

0
√

3 0 −1

)

Txy =
i√
6

(
0 0 0 −1
−1 0 0 0

)
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Table C.3. (a) Symmetrized matrices for the matrix expansion of the blocks Hαβ

for the point group Td [2]. The matrices σi, Ji, Ti, and Ui are given in Table C.2.
For the diagonal blocks, we also give the symmetry with respect to time reversal.
Notation: {A,B} = 1

2
(AB +BA)

Block Representations Symmetrized matrices Time
reversal

H66 Γ6 × Γ ∗
6 Γ1 : �2×2 +

= Γ1 + Γ4 Γ4 : σx, σy, σz −
H77 Γ7 × Γ ∗

7 Γ1 : �2×2 +

= Γ1 + Γ4 Γ4 : σx, σy, σz −
H88 Γ8 × Γ ∗

8 Γ1 : �4×4; J2 +

= Γ1 + Γ2 + Γ3 Γ2 : JxJyJz + JzJyJx −
+2Γ4 + 2Γ5 Γ3 : 1√

3
(2J2

z − J2
x − J2

y ), J2
x − J2

y +

Γ4 : Jx, Jy, Jz ; −
J3

x , J
3
y , J

3
z −

Γ5 : {Jy , Jz}, {Jz , Jx}, {Jx, Jy}; +

{Jx, J
2
y − J2

z }, {Jy , J
2
z − J2

x}, −
{Jz, J

2
x − J2

y}
H67 Γ6 × Γ ∗

7 Γ2 : �2×2

= Γ2 + Γ5 Γ5 : σx, σy, σz

H68 Γ6 × Γ ∗
8 Γ3 : Txx − Tyy,−

√
3Tzz

= Γ3 + Γ4 + Γ5 Γ4 : Tyz, Tzx, Txy

Γ5 : Tx, Ty, Tz

H87 Γ8 × Γ ∗
7 Γ3 :

√
3Uzz, Uxx − Uyy,

= Γ3 + Γ4 + Γ5 Γ4 : Ux, Uy, Uz

Γ5 : Uyz, Uzx, Uxy

(b) Abbreviations for
matrices

σ = (σx, σy , σz)

J = (Jx, Jy, Jz)

J = (J3
x , J

3
y , J

3
z )

T = (Tx, Ty, Tz)

U = (Ux, Uy , Uz)

(c) Symmetry of the matrices with respect
to parity (space inversion), where ‘+’ denotes
even and ‘−’ denotes odd (see also Table 3.1)

Γ c−
8 Γ c−

7 Γ c−
6 Γ v +

8 Γ v +
7

+ + + − − Γ c−
8

+ + − − Γ c−
7

+ − − Γ c−
6

+ + Γ v +
8

+ Γ v +
7
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Table C.4. Irreducible tensor components for the point group Td. Notation: {. . .}
denotes the symmetrized product of its arguments, e.g. {A,B} = 1

2
(AB +BA)

Γ1
1; k2; {kx, ky, kz}; k4; {kx, ky}2 + {ky, kz}2 + {kz, kx}2; −B2;

V ; E · k; Ex{ky, kz} + Ey{kz , kx} + Ez{kx, ky}; ∇ · E
Γ2 B · k; Bx{ky , kz} +By{kz, kx} +Bz{kx, ky}; E · B

Γ3

1√
3
(2k2

z − k2
x − k2

y), k2
x − k2

y; 1√
3
(2k4

z − k4
x − k4

y), k4
x − k4

y;

1√
3
(2{k2

x, k
2
y} − {k2

y, k
2
z} − {k2

z , k
2
x}), {k2

y, k
2
z} − {k2

z , k
2
x};

Bxkx −Byky,
1√
3
(−2Bzkz +Bxkx +Byky);

Bx{ky , kz} −By{kz, kx}, 1√
3
(−2Bz{kx, ky} +Bx{ky , kz} +By{kz, kx});

1√
3
(2B2

z −B2
x −B2

y), B2
x −B2

y ; 1√
3
(2Ezkz − Exkx − Eyky), Exkx − Eyky;

1√
3
(2Ez{kx, ky} − Ex{ky , kz} − Ey{kz, kx}), Ex{ky , kz} − Ey{kz, kx};

ExBx − EyBy,
1√
3
(−2EzBz + ExBx + EyBy)

Γ4

{kx, k
2
y − k2

z}, {ky , k
2
z − k2

x}, {kz , k
2
x − k2

y};
{k3

y, kz} − {ky , k
3
z}, {k3

z , kx} − {kz , k
3
x}, {k3

x, ky} − {kx, k
3
y};

Bx, By , Bz; Bykz +Bzky , Bzkx +Bxkz, Bxky +Bykx;

k2Bx, k
2By, k

2Bz; k2
xBx, k

2
yBy, k

2
zBz;

{kx, ky}By + {kx, kz}Bz , {ky , kz}Bz + {ky , kx}Bx, {kz, kx}Bx + {kz , ky}By ;

Ezky − Eykz , Exkz − Ezkx, Eykx − Exky;

Ex{k2
y − k2

z}, Ey{k2
z − k2

x}, Ez{k2
x − k2

y};
Ey{kx, ky} − Ez{kx, kz}, Ez{ky , kz} − Ex{ky, kx}, Ex{kz, kx} − Ey{kz , ky};
EyBz + EzBy , EzBx + ExBz, ExBy + EyBx

Γ5

kx, ky, kz; {ky , kz}, {kz, kx}, {kx, ky};
{kx, k

2
y + k2

z}, {ky , k
2
z + k2

x}, {kz , k
2
x + k2

y};
k3

x, k
3
y, k

3
z ; {k2

x, ky , kz}, {k2
y, kz, kx}, {k2

z , kx, ky};
{k3

y, kz} + {ky , k
3
z}, {k3

z , kx} + {kz , k
3
x}, {k3

x, ky} + {kx, k
3
y};

Bykz −Bzky , Bzkx −Bxkz, Bxky −Bykx;

Bx(k2
y − k2

z), By(k2
z − k2

x), Bz(k2
x − k2

y);

By{kx, ky} −Bz{kx, kz}, Bz{ky, kz} −Bx{ky, kx}, Bx{kz , kx} −By{kz , ky};
ByBz, BzBx, BxBy ; Ex, Ey, Ez; Ezky + Eykz , Exkz + Ezkx, Eykx + Exky;

Ey{kx, ky} + Ez{kx, kz}, Ez{ky , kz} + Ex{ky, kx}, Ex{kz, kx} + Ey{kz , ky};
Ex(k2

y + k2
z), Ey(k2

z + k2
x), Ez(k

2
x + k2

y); Exk
2
x, Eyk

2
y, Ezk

2
z ;

EyBz − EzBy , EzBx − ExBz, ExBy − EyBx



212 C The Extended Kane Model: Tables

Table C.5. Invariant expansion for the extended Kane model [2,3,4,5]. We have
{A,B} = 1

2
(AB + BA), and cp denotes the cyclic permutation of the preceding

terms. The matrices σi, Ji, Ti, and Ui are given in Table C.2

k · p interactions

H k
8c 8c = E′

0 +∆′
0

H k
7c 7c = E′

0

H k
6c 6c = E0 + �

2k2/(2m′)

H k
8v 8v = −(�2/2m0)

{
γ′
1k

2 − 2γ′
2[
(
J2

x − 1
3
J2
)
k2

x + cp]

− 4γ′3[{Jx, Jy} {kx, ky} + cp]
}

+ 2√
3
Ck

[{
Jx, J

2
y − J2

z

}
kx + cp

]
H k

7v 7v = −∆0 − (�2/2m0)γ
′
1k

2

H k
8c 7c = 0

H k
8c 6c = −√

3P ′(Uxkx + cp)

H k
8c 8v = − 2

3
Q ({Jy , Jz} kx + cp) + 1

3
∆−

H k
8c 7v = −2Q (Uyzkx + cp)

H k
7c 6c = 1√

3
P ′ (σxkx + cp)

H k
7c 8v = −2Q (Tyzkx + cp)

H k
7c 7v = − 2

3
∆−

H k
6c 8v =

√
3
{
P T · k + iB+

8v (Tx{ky , kz} + cp)

+ 1
2
B−

8v

[
(Txx − Tyy) (k2

z − 1
3
k2) − Tzz(k

2
x − k2

y)
]}

H k
6c 7v = − 1√

3
[P σ · k + iB7v (σx{ky , kz} + cp)]

H k
8v 7v = −(�2/2m0)

[−6γ′
2(Uxxk

2
x + cp) − 12γ′

3(Uxy{kx, ky} + cp)
]

− i
√

3Ck (Uyzkx + cp)

Magnetic interactions

H z
6c 6c = 1

2
g′µB σ · B H z

6c 8v = i√
3
µBD

′ (TyzBx + cp)

H z
8v 8v = −2µB [κ′ J · B + q′J · B] H z

8v 7v = −3µBκ
′U · B

H z
7v 7v = −2µBκ

′σ · B
Strain-induced interactions

H ε
6c 6c = C1 tr ε

H ε
8v 8v = Dd tr ε+ 2

3
Du

[(
J2

x − 1
3
J2
)
εxx + cp

]
+ 2

3
D′

u [2 {Jx, Jy} εxy + cp]

+ [C4 (εyy − εzz) kx + C ′
5 (εxyky − εxzkz)]Jx + cp

H ε
7v 7v = Dd tr ε

H ε
6c 8v =

√
3
[
iC2 (Txεyz + cp) − 2P

(
Tx

∑
j εxjkj + cp

)]
H ε

6c 7v = − 1√
3

[
iC2 (σxεyz + cp) − 2P

(
σx

∑
j εxjkj + cp

)]
H ε

8v 7v = 2Du (Uxxεxx + cp) + 2D′
u(2Uxyεxy + cp)

+ 3
2

[C4 (εyy − εzz) kx + C′
5 (εxyky − εxzkz)]Ux + cp

Paramagnetic interactions

H p
6c 6c = 1

2
N0αx (〈Sx〉σx + cp) H p

7v 7v = − 1
6
N0βx (〈Sx〉σx + cp)

H p
8v 8v = 1

3
N0βx (〈Sx〉 Jx + cp) H p

8v 7v = −N0βx (〈Sx〉Ux + cp)
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Table C.6. Relations between frequently used notations for deformation
potentialsa

Ref. [6] Ref. [2, 7] Ref. [8]

a′ = C1

a′′ =
l + 2m

3
= Dd =

1√
3
d1

b =
l −m

3
= −2

3
Du =

1√
3
d3

d =
n√
3

= − 2√
3
D′

u =
1√
2
d5

aIn [3] we have a′′ = −(l+ 2m)/3.

Table C.7. Explicit matrix form of those blocks in the extended Kane model, which
describe the coupling with the conduction bands Γ c

8 and Γ c
7 (see Table C.5) [2,5]




∣∣ 3
2

3
2

〉
c

∣∣ 3
2

1
2

〉
c

∣∣ 3
2
−1

2

〉
c

∣∣ 3
2

−3
2

〉
c

∣∣ 1
2

1
2

〉
c

∣∣ 1
2

−1
2

〉
c

Ev + E′
0 +∆′

0 0 0 0 0 0

0 Ev +E′
0 +∆′

0 0 0 0 0

0 0 Ev + E′
0 +∆′

0 0 0 0

0 0 0 Ev + E′
0 +∆′

0 0 0

0 0 0 0 Ev + E′
0 0

0 0 0 0 0 Ev +E′
0

1√
2
P ′∗k+ −

√
2
3
P ′∗kz − 1√

6
P ′∗k− 0 1√

3
P ′∗kz

1√
3
P ′∗k−

0 1√
6
P ′∗k+ −

√
2
3
P ′∗kz − 1√

2
P ′∗k−

1√
3
P ′∗k+ − 1√

3
P ′∗kz

1
3
∆−� i√

3
Qk+

i√
3
Qkz 0 − i√

6
Qk+ −i

√
2
3
Qkz

− i√
3
Qk−

1
3
∆−� 0 i√

3
Qkz 0 i√

2
Qk+

− i√
3
Qkz 0 1

3
∆−� − i√

3
Qk+ − i√

2
Qk− 0

0 − i√
3
Qkz

i√
3
Qk−

1
3
∆−� −i

√
2
3
Qkz

i√
6
Qk−

i√
6
Qk− 0 i√

2
Qk+ i

√
2
3
Qkz − 2

3
∆−� 0

i
√

2
3
Qkz − i√

2
Qk− 0 − i√

6
Qk+ 0 − 2

3
∆−�
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Table C.8. Explicit matrix form of the 8 × 8 Kane model (see Table C.5) [2, 5].
We have used

k2 = k2
x + k2

y + k2
z , k2

‖ = k2
x + k2

y , k± = kx ± iky , K̂ = k2
x − k2

y .




∣∣ 1
2

1
2

〉
c

∣∣ 1
2
−1

2

〉
c

∣∣ 3
2

3
2

〉
v

∣∣3
2

1
2

〉
v

Ev + E0

+
�
2k2

2m′

0
− 1√

2
Pk+

+ 1√
2
B

+

8vk−kz

√
2
3Pkz + 1√

6
B

−
8vK̂

+ i
√

2
3
B

+

8vkxky

0
Ev + E0

+
�2k2

2m′

− 1
3
√

2
B

−
8v(k

2
‖ − 2k2

z)
− 1√

6
Pk+

+ 1√
6
B

+

8vk−kz

− 1√
2
Pk−

+ 1√
2
B

+

8vk+kz

− 1
3
√

2
B

−
8v(k2

‖ − 2k2
z)

Ev − �
2

2m0
(γ′1 + γ′2)k

2
‖

− �
2

2m0
(γ′1 − 2γ′2)k

2
z

− 1
2
Ck+

+ 2
√

3
�2

2m0
γ′3k−kz

√
2
3
Pkz + 1√

6
B

−
8vK̂

− i
√

2
3
B

+

8vkxky

− 1√
6
Pk−

+ 1√
6
B

+

8vk+kz

− 1
2Ck−

+ 2
√

3
�

2

2m0
γ′3k+kz

Ev − �
2

2m0
(γ′1 − γ′2)k

2
‖

− �
2

2m0
(γ′1 + 2γ′2)k

2
z

1√
6
Pk+

+ 1√
6
B

+

8vk−kz

√
2
3Pkz − 1√

6
B

−
8vK̂

− i
√

2
3
B

+

8vkxky

√
3

�
2

2m0
γ′2K̂ + Ckz

+ 2i
√

3
�

2

2m0
γ′3kxky

√
3

2
Ck−

1
3
√

2
B

−
8v(k

2
‖ − 2k2

z)
1√
2
Pk+

+ 1√
2
B

+

8vk−kz

−
√

3
2
Ck+

√
3

�
2

2m0
γ′2K̂ − Ckz

+ 2i
√

3
�2

2m0
γ′3kxky

− 1√
3
Pkz

+ i√
3
B7vkxky

− 1√
3
Pk−

+ 1√
3
B7vk+kz

1
2
√

2
Ck−

−
√

6
�2

2m0
γ′3k+kz

−
√

2
�

2

2m0
γ′2

×(k2
‖ − 2k2

z)

− 1√
3
Pk+

− 1√
3
B7vk−kz

1√
3
Pkz

− i√
3
B7vkxky

−
√

6
�

2

2m0
γ′2K̂ + 1√

2
Ckz

− 2i
√

6
�

2

2m0
γ′3kxky

−
√

3
2
√

2
Ck−

+ 3
√

2
�

2

2m0
γ′3k+kz
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Table C.8 (continued).

∣∣ 3
2
−1

2

〉
v

∣∣3
2
−3

2

〉
v

∣∣ 1
2

1
2

〉
v

∣∣ 1
2
−1

2

〉
v

1√
6
Pk−

+ 1√
6
B

+

8vk+kz

1
3
√

2
B

−
8v(k2

‖ − 2k2
z)

− 1√
3
Pkz

− i√
3
B7vkxky

− 1√
3
Pk−

− 1√
3
B7vk+kz

√
2
3
Pkz − 1√

6
B

−
8vK̂

+ i
√

2
3B

+

8vkxky

1√
2
Pk−

+ 1√
2
B

+

8vk+kz

− 1√
3
Pk+

+ 1√
3
B7vk−kz

1√
3
Pkz

+ i√
3
B7vkxky

√
3

�
2

2m0
γ′2K̂ + Ckz

− 2i
√

3
�
2

2m0
γ′3kxky

−
√

3
2 Ck−

1
2
√

2
Ck+

−
√

6
�

2

2m0
γ′3k−kz

−
√

6
�

2

2m0
γ′2K̂ + 1√

2
Ckz

+ 2i
√

6
�

2

2m0
γ′3kxky

√
3

2 Ck+

√
3

�
2

2m0
γ′2K̂ − Ckz

− 2i
√

3
�

2

2m0
γ′3kxky

−
√

2
�

2

2m0
γ′2

×(k2
‖ − 2k2

z)

−
√

3
2
√

2
Ck+

+ 3
√

2
�

2

2m0
γ′3k−kz

Ev − �
2

2m0
(γ′1 − γ′2)k

2
‖

− �
2

2m0
(γ′1 + 2γ′2)k2

z

−1
2Ck+

− 2
√

3
�
2

2m0
γ′3k−kz

√
3

2
√

2
Ck−

+ 3
√

2
�

2

2m0
γ′3k+kz

√
2

�
2

2m0
γ′2

×(k2
‖ − 2k2

z)

− 1
2Ck−

− 2
√

3
�

2

2m0
γ′3k+kz

Ev − �
2

2m0
(γ′1 + γ′2)k

2
‖

− �
2

2m0
(γ′1 − 2γ′2)k

2
z

√
6

�
2

2m0
γ′2K̂ + 1√

2
Ckz

+ 2i
√

6
�

2

2m0
γ′3kxky

− 1
2
√

2
Ck−

−
√

6
�

2

2m0
γ′3k+kz

√
3

2
√

2
Ck+

+ 3
√

2
�

2

2m0
γ′3k−kz

√
6

�
2

2m0
γ′2K̂ + 1√

2
Ckz

− 2i
√

6
�

2

2m0
γ′3kxky

Ev − ∆0

− �
2

2m0
γ′1k

2 0

√
2

�
2

2m0
γ′2

×(k2
‖ − 2k2

z)

− 1
2
√

2
Ck+

−
√

6
�

2

2m0
γ′3k−kz

0
Ev − ∆0

− �
2

2m0
γ′1k

2
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Table C.9. Reduced band parameters in multiband k · p models: m∗, g∗, Bi, D, γi, κ, and q contain remote-band contributions of
second order in k. If we explicitly take into account the k · p interactions with a band Γi, we have to subtract the quantities listed in
the corresponding column of this table from the band parameters. We ignore higher-order terms proportional to Ck and ∆−

Γ c
8 Γ c

7 Γ c
6 Γ v

8 Γ v
7

m0

m∗
2

3

2m0

�2

|P ′|2
E0 − E′

0 −∆′
0

1

3

2m0

�2

|P ′|2
E0 −E′

0

2

3

2m0

�2

P 2

E0

1

3

2m0

�2

P 2

E0 +∆0Γ c
6

g∗

2
−1

3

2m0

�2

|P ′|2
E0 − E′

0 −∆′
0

1

3

2m0

�2

|P ′|2
E0 −E′

0

−1

3

2m0

�2

P 2

E0

1

3

2m0

�2

P 2

E0 +∆0

γ1
1

3

2m0

�2

Q2

E′
0 +∆′

0

1

3

2m0

�2

Q2

E′
0

1

3

2m0

�2

P 2

E0

γ2 −1

6

2m0

�2

Q2

E′
0

1

6

2m0

�2

P 2

E0

Γ v
8 γ3

1

6

2m0

�2

Q2

E′
0

1

6

2m0

�2

P 2

E0

κ
7

18

2m0

�2

Q2

E′
0 +∆′

0

−5

9

2m0

�2

Q2

E′
0

1

6

2m0

�2

P 2

E0

q −2

9

2m0

�2

Q2

E′
0 +∆′

0

2

9

2m0

�2

Q2

E′
0

B+
8v

P ′Q
2i

(
1

E0 − E′
0 −∆′

0

− 1

E′
0 +∆′

0

)
P ′Q
2i

(
1

E0 − E′
0

− 1

E′
0

)

Γ c
6 + Γ v

8 B−
8v

P ′Q
2i

(
1

E0 − E′
0 −∆′

0

− 1

E′
0 +∆′

0

)
−P

′Q
2i

(
1

E0 − E′
0

− 1

E′
0

)

D
2m0

�2

P ′Q
i

(
1

E0 − E′
0 −∆′

0

− 1

E′
0 +∆′

0

)
−2m0

�2

P ′Q
i

(
1

E0 − E′
0

− 1

E′
0

)

Γ c
6 + Γ v

7 B7v
P ′Q

i

(
1

E0 − E′
0 −∆′

0

− 1

∆0 +E′
0 +∆′

0

)
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Table C.10. Axial approximation for the 8 × 8 Kane model. We have used the
abbreviations

γ̃′1 = (1 − ζ)γ′
2 + ζγ′

3 , q̃′1 =
(

27
8
− 1

2
ζ
)
q′ ,

γ̃′
2 = 2

3
ζγ′2 + (1 − 2

3
ζ)γ′3 , q̃′2 =

(
1
8

+ 3
2
ζ
)
q′ ,

γ̃′3 = 1
6
(3 − ζ)γ′

2 + 1
6
(3 + ζ)γ′

3 ,

where ζ = sin2 θ
{
3 − 3

8
sin2 θ [7 + cos(4φ)]

}
. The angles θ and φ are defined in

Fig. C.1, and

J± = 1√
2
(Jx ± iJy) ; Uz± = 1√

2
(Uzx ± iUyz) ; U± = 1

2
(Uxx − Uyy ± 2iUxy) .

The matrices σi, Ji, Ti, and Ui are given in Table C.2 (see also [2])

k · p interactions

H k
6c 6c = E0 + �

2k2/(2m′)

H k
8v 8v = −(�2/2m0)

[
γ′
1k

2 + γ̃′
1(k

2
‖ − 2k2

z)(J2
z − 5/4)

−2γ̃′
2

({kz , k+}{Jz , J−} + {kz, k−}{Jz, J+}
)− γ̃′

3

(
k2
+J

2
− + k2

−J
2
+

)]
H k

7v 7v = −∆0 − (�2/2m0) γ
′
1k

2

H k
6c 8v =

√
3P T · k

H k
6c 7v = − 1√

3
P σ · k

H k
8v 7v = −(�2/2m0)

[
3γ̃′

1(k
2
‖ − 2k2

z)Uzz

−6γ̃′
2

({kz, k+}Uz− + {kz, k−}Uz+

)− 3γ̃′
3

(
k2
+U− + k2

−U+

)]
Magnetic interactions

H z
6c 6c = 1

2
g′µBσzBz

H z
8v 8v = −µB

[
2κ′Jz + 2

3
q̃′1
(
J3

z − Jz/4
)

+ 2q̃′2
(

9
4
Jz − J3

z

)]
Bz

H z
7v 7v = −2µBκ

′σzBz

H z
6c 8v = 0

H z
8v 7v = −3µBκ

′UzBz

[100]

[010]

y

z

θ

x

φ

[001]

Fig. C.1. Definition of the angles θ and φ
used in Tables C.10 and C.11
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Table C.11. Cubic terms in the 8× 8 Kane model as a function of θ for φ = π/4,
see Fig. C.1. Here, δ′ = γ′

3 − γ′
2,

J± = 1√
2
(Jx ± iJy) , Uz± = 1√

2
(Uzx ± iUyz) , U± = 1

2
(Uxx − Uyy ± 2iUxy) ,

and “adj” denotes the adjoint of the preceding term with indices + and − inter-
changed. The matrices σi, Ji, Ti, and Ui are defined in Table C.2

k · p interactions

H k
8v 8v = − 3

16
(�2/2m0) δ

′ (2 − 3 sin2 θ) sin θ

×[−4 cos θ kz(k+ + k−) + sin θ (k2
+ + k2

−)](J2
z − 5/4)

+ (�2/2m0) δ
′{ 1

8
sin θ[4kz(3 sin2 θ − 2)(k+ sin θ − kz cos θ)

+ cos θ(2k+k−(3 sin2 θ − 2) + k2
+(3 sin2 θ + 2)

+ k2
−(3 sin2 θ − 2))] {Jz, J+}

+ 1
32

[4kz sin θ cos θ((3 sin2 θ + 2)k+ + (3 sin2 θ − 2)k−)

+ 4k2
z sin2 θ(3 sin2 θ − 2)

− k+(3 sin2 θ − 2)(k+(sin2 θ + 2) + 2k− sin2 θ)]J2
+ + adj}

H k
8v 7v = − 9

16
(�2/2m0) δ

′ (2 − 3 sin2 θ) sin θ

×[−4 cos θ kz(k+ + k−) + sin θ (k2
+ + k2

−)]Uzz

+ (�2/2m0) δ
′{ 3

8

√
2 sin θ[4kz(3 sin2 θ − 2)(k+ sin θ − kz cos θ)

+ cos θ(2k+k−(3 sin2 θ − 2) + k2
+(3 sin2 θ + 2)

+ k2
−(3 sin2 θ − 2))]Uz+

+ 3
16

[4kz sin θ cos θ((3 sin2 θ + 2)k+ + (3 sin2 θ − 2)k−)

+ 4k2
z sin2 θ(3 sin2 θ − 2)

− k+(3 sin2 θ − 2)(k+(sin2 θ + 2) + 2k− sin2 θ)]U+ + adj}
magnetic interactions

H z
8v 8v = − sin θ µBq

′Bz { cos θ(3 sin2 θ − 2)( 7
80
J+JzJ+ − 17

20
JzJ+Jz)

+ 2 sin θ(3 sin2 θ − 2)J+JzJ+

+ 1
16

cos θ(3 sin2 θ + 2)J3
+ + adj}
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D Band Structure Parameters

We list here the k · p band structure parameters used in the present work
(Table D.1). Apart from the parameters for the “pure” materials, we often
need also the parameters of binary or ternary alloys. Only in few cases do
we have sufficiently detailed information available about the band structure
parameters that are appropriate for these alloys. When this information was
not available, we used a linear interpolation scheme for the reduced band
parameters of the extended Kane model (Table C.9).

GaAs–AlxGa1−xAs

For the interpolation of the energy gap of AlxGa1−xAs, we have used the
relation [1]

E0(x) = (1.519 + 1.087x + 0.438x2) eV . (D.1)

For the valence band offset, we have used a value of 35% [2].

Si1−xGex

The interpolation formulas for Si1−xGex were taken from [3]. These formulas
are in good agreement with a simpler scheme developed in [4]. The valence
band offset was likewise taken from [3].
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5. H. Mayer, U. Rössler: Phys. Rev. B 44, 9048 (1991) 21, 24, 37, 74, 174, 212,

213, 214, 220
6. M. Cardona, N.E. Christensen, G. Fasol: Phys. Rev. B 38(3), 1806–1827 (1988)

25, 71, 72, 73, 74, 220, 221

Roland Winkler: Spin–Orbit Coupling Effects
in Two-Dimensional Electron and Hole Systems, STMP 191, 219–222 (2003)
c© Springer-Verlag Berlin Heidelberg 2003
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Table D.1. Band structure parameters used in the present work

GaAs
[1,5,6]

AlAs
[1,6]

InSb
[7,1,6]

InAs
[1,8,6]

AlSb
[1,6]

E0 (eV) 1.519 3.13 0.237 0.418 2.384

E′
0 (eV) 4.488 4.540 3.160 4.390 3.5

∆0 (eV) 0.341 0.300 0.810 0.380 0.673

∆′
0 (eV) 0.171 0.150 0.330 0.240 0.3

∆− (eV) −0.050 i

P (eV Å) 10.493 8.97 9.641 9.197 8.463

P ′ (eV Å) 4.780 i 4.780 i 6.325 i 0.873 i

Q (eV Å) 8.165 8.165 8.130 8.331

Ck (eV Å) −0.0034 0.002 −0.0082 −0.0112 0.006

m� (m0) 0.0665 0.150 0.0139 0.0229 0.120

g� −0.44 1.52 −51.56 −14.9 0.843

γ1 6.85 3.25 37.10 20.40 4.15

γ2 2.10 0.65 16.50 8.30 1.01

γ3 2.90 1.21 17.70 9.10 1.71

κ 1.20 15.60 7.60 0.31

q 0.01 0.39 0.39 0.07

C1 (eV)

Dd (eV)

Du (eV) 3.0 2.7

D′
u (eV) 4.67 3.18

c11 (1011 dyn cm−2) 11.81 12.02 8.329

c12 (1011 dyn cm−2) 5.32 5.70 4.526

c44 (1011 dyn cm−2) 5.94 5.89 3.959

a (Å) 5.65325 5.660 6.47937 6.0583 6.1355

ε 12.4 10.06 17.9 14.6 12.04

7. F. Malcher: “Subbandzustände in III-V-Halbleiter-Heterostrukturen”, Ph.D.
thesis, University of Regensburg (1988) 220

8. R. Winkler, U. Kunze, U. Rössler: Surf. Sci. 263, 222 (1992) 37, 86, 220, 221
9. H. Mayer, U. Rössler: Solid State Commun. 87(2), 81–84 (1993) 221
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Table D.1 (continued).

Ga0.47In0.53As
[1,8,6]

Al0.47In0.53As
[1,8,6]

InP
[1,9,6]

CdTe
[1,9,6]

ZnSe
[1,9,6]

E0 (eV) 0.8166 1.693 1.423 1.606 2.820

E′
0 (eV) 4.436 4.461 4.720 5.360 7.330

∆0 (eV) 0.362 0.342 0.110 0.949 0.403

∆′
0 (eV) 0.208 0.198 0.070 0.250 0.090

∆− (eV) −0.130 i 0.0 0.0

P (eV Å) 9.81 9.09 8.850 9.496 10.628

P ′ (eV Å) 2.71 i 2.71 i 2.866 i 6.463 i 9.165 i

Q (eV Å) 8.25 8.25 7.216 7.873 9.845

Ck (eV Å) −0.0075 −0.0050 −0.0144 −0.0234 −0.0138

m� (m0) 0.0380 0.0779 0.0803 0.090 0.160

g� −4.38 0.600 1.26 −1.77 1.06

γ1 11.97 6.17 4.95 5.30 4.30

γ2 4.36 1.62 1.65 1.70 1.14

γ3 5.15 2.31 2.35 2.00 1.84

κ 3.56 0.88 0.97 0.61 0.20

q 0.21 0.21 0.0 0.04 0.0

C1 (eV) −3.7 −5.9

Dd (eV) −1.0 −1.0

Du (eV) 2.84 2.49 1.65 1.71

D′
u (eV) 3.88 3.07

c11 (1011 dyn cm−2) 9.97 10.06 5.33 8.10

c12 (1011 dyn cm−2) 4.90 5.08 3.64 4.88

c44 (1011 dyn cm−2) 4.90 4.87 2.04 4.41

a (Å) 5.86793 5.87110 5.8687 6.484 5.6596

ε 12.9 12.4662 12.4 10.125 9.14
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Table D.1 (continued).

Si [1] Ge [1]

E0 (eV)

E′
0 (eV)

∆0 (eV) 0.0441 0.296

∆′
0 (eV)

∆− (eV)

P (eV Å)

P ′ (eV Å)

Q (eV Å)

Ck (eV Å)

m� (m0)

g�

γ1 4.285 13.38

γ2 0.339 4.24

γ3 1.446 5.69

κ −0.42 3.41

q 0.01 0.06

C1 (eV)

Dd (eV)

Du (eV) 3.3 3.3195

D′
u (eV) 4.42 5.7158

c11 (1011 dyn cm−2) 16.0 12.40

c12 (1011 dyn cm−2) 6.0 4.13

c44 (1011 dyn cm−2) 7.9 6.83

a (Å) 5.430 5.65791

ε 12.1 16.5
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– 2D hole systems, 48
– effective-mass approximation, 42
– envelope function approximation, 36
– Rashba model, 78
subband k · p method, 54–58
subband quantization, 30, 89, 140, see

also subband confinement
symmetry hierarchy, see hierarchy,

symmetry hierarchy

tensor operators, 18
– extended Kane model, 23, 211
– higher-order operators, 23
theory of invariants, 18–20, 62
tight-binding approximation, 1, 11, 21
time inversion symmetry
– B = 0 spin splitting and, 69
– electric field and, 23
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– magnetic field and, 23, 131
– theory of invariants and, 19
trace formula, 183
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velocity operator, 151
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– hierarchy of optical transitions, 152
– point group of 2D systems, 31
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