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Foreword

It is a great pleasure to present Introduction to Dynamics of Structures and Earth-
quake Engineering by Gian Paolo Cimellaro and Sebastiano Marasco. The book
locates itself between elementary books and books for advanced graduate studies.
The book is divided into three parts: “Part I — Dynamics of Structures” introduces
the main concepts of dynamics of structures. ‘“Part II — Introduction to Earthquake
Engineering” introduces the basic concepts of seismology, seismic hazard analysis,
and different analysis methods. “Part III — Seismic Design of Buildings” describes
how to model structures in seismic zones and the basic concepts of capacity design
as well as new innovative techniques for the design of new and retrofit of existing
buildings. The typical coverage of “Dynamics of Structures” starts properly with
an introduction of the fundamental concepts of structural dynamics, with emphasis
on the application of energy methods, analysis on the frequency domain, and signal
processing, which are essentials necessary for the study of earthquake engineering.
Part II introduces the main concepts of seismology, and probabilistic seismic hazard
analysis, and provides a chapter dedicated to earthquake prediction methods. Part I1I
introduces the basic concepts of capacity design within the context of Italian seismic
design standards and highlights new and innovative techniques to improve structural
performance, such as base isolation, tuned mass dampers, and supplemental viscous
dampers. An entire chapter is also dedicated to the modeling of infill walls and the
seismic behavior of masonry structures. The book presents also illustrative examples
that help in understanding the subject and the link between theory and finite element
programs, such as SAP2000. The information presented in this book can be used
not only by students but also by those engineers engaged in the seismic design and
retrofit of buildings who want to improve their understanding on the subject.

Berkeley, USA Prof. Stephen Mahin
September 2017
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Preface

The aim of this new book is to provide an elementary, but comprehensive, textbook
which can be adopted for the courses of earthquake engineering at both the School of
Engineering and the School of Architecture of the Politecnico di Torino, providing
in an easy and accessible way the latest updates in the field. No previous knowledge
of structural dynamics is assumed, making this book suitable for the reader that
is learning the subject for the first time. However, the following background is
required:

» Static analysis of structures including statistically indeterminate structures and
matrix formulation

* Rigid body dynamics

*  Mathematics: linear algebra and ordinary and partial differential equation

With respect to other classical books on dynamics of structures, this book
emphasizes the application of energy methods and the analysis in the frequency
domain with the corresponding visualization in the Gauss-Argant plan. Emphasis is
also given to the applications of numerical methods for the solution of the equation
of motion and to the ground motion selection to be used in time history analysis of
structures which are more frequently used in current practice due to the increasing
computational power of computers in the last decade.

The book is organized in three main parts:

1. “Dynamics of Structures”
II. “Introduction to Earthquake Engineering”
M. “Seismic Design of Buildings”

Part I introduces the main concepts of dynamics of structures. Part II introduces
the basic concepts of seismology, the seismic hazard analysis, and the different
analysis methods. Part III describes how to model structures in a seismic zone
and the basic concepts of capacity design (Chap. 15) as well as the new innovative
techniques for the retrofit of new and existing buildings, such as passive energy
dissipating systems (Chap. 17), tuned mass dampers (Chap. 18), and base isolation
(Chap. 19). Chapter 20 focuses on the seismic behavior of masonry structures,

ix



X Preface

while Chap. 21 provides a brief introduction to a structural analysis program called
SAP2000. An appendix has also been included with some basic concepts of
probability.

Several figures have been carefully designed and executed to be pedagogically
effective. Many of them involve the use of computer simulations. Most of the
references have been omitted in the book to avoid distracting the reader; however,
a selected list of publications has been added at the end of each book chapter for
further reading.

Torino, Italy Gian Paolo Cimellaro
July, 2017
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Abstract This chapter formulates the structural dynamics problem for structures
that can be idealized as systems with a massless supporting element, a lamped mass
and an equivalent viscous damping element. The equations of motion are formulated
for a single-degree-of-freedom system.

1.1 Idealization of the Structures

Dynamic analysis of structures is used to evaluate the behavior of systems subjected
to vibrations. Such systems in civil engineering are usually complex structures that
can be simplified and idealized as discrete models.

The main goal of dynamics of structures is to determine the stress and strain
levels caused by vibrations employing the extended methods of static analysis.

As shown in Sect. 1.3, an immediate advantage of using discrete models is that
the system equations become ordinary differential equations.

Figure 1.1 illustrates a typical example of structural idealization to perform
dynamic analysis.

From the actual configuration of the structure, the total mass m can be assumed
concentrated at the top (lumped mass) while the lateral displacement u is controlled
by the vertical element by means of its stiffness k. In any case, the idealization
of the structure can be suggested by its simple geometry. According to this
consideration, the multi-story buildings can be idealized in a 2D frame where the
mass is concentrated at the roof level and the elastic inextensible massless elements
provide stiffness to the system. Furthermore, the dissipative capacity of the structure
is modeled using a viscous damper (dashpot) element for each elementary frame
(Fig. 1.2).

Each structural member of the model contributes to inertial (mass), elastic
(stiffness) and energy dissipation (viscous damping) properties of the structure.
Each of these terms is separated from one another, and the sum of them all gives
information about the dynamic response of the structure (Friswell and Mottershead
2013).
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Fig. 1.1 Idealization of a /|:|\
tank with thin column

k

A
Massless
element

Mass(m)

Viscous
damper

jL £ F(t)

Fig. 1.2 Idealization of one-story frame

1.2 Degrees of Freedom

In classical mechanics, the number of independent parameters that define the
configuration of a system is referred to as the degrees of freedom (DOFs). In
dynamic analysis, this value represents the number of independent displacements
required to define the displaced positions of all the masses relative to their original
position. Naturally, the DOFs depend on the body stiffness distribution and on the
reference system in which the body is described. Figure 1.3 shows an example of
DOFs definition for a rigid 3D body with diffused mass.

In the dynamic analyses, the idealization of the structures can lead to a
simplification of the problem. Considering the generic elastic frame illustrated in
Fig. 1.4 subjected to a lateral force, with mass applied in the middle of the beam
and with rigid columns, only the lateral displacement is permitted. This type of
idealized structure is called Single Degree Of Freedom (SDOF) since it has only
one DOF (Humar 2012).
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Linear in x direction Linear in y direction Linear in z direction

Rotation around x-axis Rotation around y-axis Rotation around z-axis

Fig. 1.3 Degrees of freedom of a 3D rigid element

Fig. 1.4 Idealized one-story
buildings for dynamic

analysis
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AZ

Reinforced Dol Y

concrete slab
o >

Fig. 1.5 3D structure (a) and its idealization (b). Identification of DOFs of the structures (c)

This represents the typical flexural system considered in the structural analyses
of frames (bending type frame). The following example (Fig. 1.5) shows a practical
case of DOFs identification in a 3D structure.
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Steel beam
S ﬁ Steel column

Reinforced concrete slab

Fig. 1.6 3D view of a one story steel frame (a) and its 2D idealization for section S-S (b)

Each column can be assumed to be fixed at the basement level, while the mass
is assumed concentrated at the roof level. This assumption is always valid for
reinforced concrete or steel buildings, since the horizontal deck can be assumed
more rigid and heavy than the column system (shear type frame).

Considering columns as inextensible elastic elements, the structure has three
DOFs, which are the following:

¢ linear shifting in x direction (u,);
* linear shifting in y direction (u,);
* rotation around z-axis (¢,);

Figure 1.6 shows a 3D one story steel frame composed of a double “7”” beam
and columns. A steel grid defines the roof of the system, in which two diagonal
elements are inserted to improve the horizontal stiffness. All the elements can be
assumed inextensible while the stiffness of the horizontal deck is assumed infinite.
In addition, the total mass of the frame is assumed concentrated at the connections
between beams and columns.

The static DOFs of the system are identified by the rotation around the nodes
B and C and by the linear translation in the x direction. The assumption that the
masses are lumped has led to neglect the rotational degrees of freedom, since the
inertia associated with the rotation of concentrated mass with respect to its mass
center can be assumed equal to zero. This last observation is very important to
understand the difference between the DOFs required for static analyses and the
ones for the dynamic case. For this reason, only one DOF can be assumed in the
dynamic analysis since the rotation DOF is much smaller than the linear DOFs.
On the other hand, in the dynamic analysis only the shift in x direction has to
be considered (u,). This example focuses on the reduction of DOFs due to the
idealization of lumped mass structure.
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Consider the simple frame shown in Fig. 1.7 subjected to a static external lateral
force F(¢) causing a displacement u. Assuming that the columns at the top are cut,
the sum of the resulting elastic reactions Fs must be equal to the external force (static
equilibrium) (Clough and Penzien 1993).

The resisting force F; depends on the displacement u and on the mechanical
behavior of the frame elements. To illustrate this, Fig. 1.8 shows the classical force-
displacement relationship for structural materials.

One can notice how the relationship is linear for small value of displacements,
while it becomes nonlinear for displacements greater than a given value. The first
case is representative of the linear elastic field in which the F; — u relationship is
expressed in Eq. 1.1

Fo=k-u (1.1)

where k represents the elastic modulus of the material. When the displacement
on the structure exceeds the yielding threshold ((u,)), the force-displacement

b
—>
~L ~L F(t)
;. e—
i Fy i
i Elastic resisting force i
N\ SN SN \Q@

Fig. 1.7 Deformed shape of elastic SDOF system (a) and static equilibrium (b)

Fig. 1.8 Generic Fs
force-displacement
relationship

Fyl------ z

k
—ui / 1

uy ui
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Fig. 1.9 SDOF elastic frame
whit rigid beam

F(t) = Fs

relationship cannot be described by a linear expression, but it will be evaluated by
referring to the real deformations history (Eq. 1.2).

Fy = Fy(u,u) (1.2)

where u is the deformation gradient. Equation refers to all inelastic behavior of
elements, since it is able to describe the hysteretic curve for any given material. The
following considerations will be referred to in the linear elastic case only.

The definition of the elastic modulus leads to the definition of the elastic force
in terms of displacements. Consider the frame shown in Fig. 1.9, with inextensible
columns and rigid beam.

In general, it is clear that the elastic parameter k;; represents the force that should
be applied at the location i to produce a unit displacement at location j.

The lateral displacement u represents the unique DOF of the system. In this
simple case, the stiffness coefficient k can be expressed as the sum of the elastic
coefficients of the two columns (Eq. 1.3)

2

12EI, 12(El,);  24El.
k= Z h3 ZZ (h3)i = W3 (1.3)

columns i=1

where EI. and EI, are the flexural stiffnesses of the columns and the beams,
respectively, where El, — o0o. The geometric parameters L and h refer to the bay
width and height of the frame.

Thus the equilibrium equation can be written as shown in Eq. 1.4.

24El,
— ‘u

Fo="3 (1.4)

It can be observed that the elastic coefficient is expressed as force over length
[FL™']. This unit measurement is valid for linear displacement, while the elastic
coefficients associated with the rotational DOFs are expressed as force [F].
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The inertia of a physical system represents the resistance to motion changes. So,
when a stress perturbation F,, is applied to a mass m, an acceleration u will arise
according to Newtons second law (Eq. 1.5).

F,.=m-u (1.5)

The acceleration term is expressed as the second derivative of displacement with
respect to time (x). The identification of the mass coefficients for a lumped mass
system is easy, since they are equal to the mass values. For a generic system, the
mass parameter my;; represents what force should be applied at the location i to
produce a unit of acceleration at location j. Figure 1.10 shows the same frame as
in Fig. 1.9, but considering the inertial characteristics.

If p; is the linear density of the frame materials, the mass M calculation can be
assumed as expressed in Eq. 1.6.

szlg +P1L+Plg = pi(h + L) (1.6)
Since only one lumped mass is used to describe the inertia properties of the
frame, the coefficient m will be equal to M. As observed in Sect. 1.2, assuming
the mass is concentrated at the roof level, will lead to neglect the rotational
inertia terms associated with the corresponding rotational DOFs. A numerical
example is proposed to validate this assumption. Consider a circular mass with very
small radius (Fig. 1.11). For this mass, the polar inertia moment (mass coefficient
associated with a rotational DOF) is calculated and compared with the total mass
that is representative of the linear shifting DOF.
The inertia moment referred to its center O is expressed in Eq. 1.7.

R R
Ip = / r2dm = PA/ P22 - r-dr (1.7)
0 0

Fig. 1.10 SDOF elastic
frame whit rigid beam and
mass concentrated at roof
level

F(t) = Fn
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Fig. 1.11 Elementary mass of a circular body (a), rotational DOF (b) and linear shifting DOF (c)

where p4 represents the density per unit surface. The total mass of the system can
be evaluated as the product of the density and the total area (Eq. 1.8).

m=ps-m-R? (1.8)

Since for lumped mass system, the radius R is a small value, one will notice that
the coefficient m is much larger than the I, parameter. Thus, the polar inertia of a
concentrated mass can be assumed equal to zero.

1.5 Damping

The vibrational energy is dissipated by various mechanisms, such as the thermal
effects caused by the repetition of stress cycles and from the internal friction of
a deformed element. In the structural applications, the dissipative mechanisms
depend on the materials and on their interactions (friction between structural and
nonstructural elements). The mathematical description of dissipated energy in a
structure can be very difficult to estimate. In practice, all the dissipative processes
that arise on a structure can be idealized with an equivalent viscous damping model.
The generic dissipative force-displacement relationship for a structural element
is plotted in Fig. 1.12. The dissipative force-displacement curve will enclose an
irregular area, referred to as the “hysteresis loop”, that is proportional to the energy
lost per cycle (Ikhouane et al 2007). Considering an equivalent regular elliptical
area, the energy dissipation W can be evaluated as shown in Eq. 1.9.

Wp = /F(t)du =m-a-b=f(Fy, Unax) (1.9)



1.5 Damping 11

Hpysteresis loop

Upmax u

Equivalent hysteresis loop

Fig. 1.12 Equivalent hysteresis loop and associated dissipated energy

where a and b represent the semi axis length of the elliptical hysteresis loop, while
Wp and Wi are the dissipated energy in a single load-unload cycle and the associated
strain energy, respectively. The equivalent damping capacity can be expressed as
the ratio between the two aforementioned energy values. It was observed from
experimental data that the strain energy depends on the frequency of excitation
. Considering the resonance conditions (Sect.2.2.1) the energy dissipated in a
vibration cycle of the actual structure and an equivalent viscous system can be
supposed equal to the following expression (Eq. 1.10).

4.7 -Ey Ws=Wp (1.10)

where &, defines the equivalent viscous damping ratio and it can be evaluated from
the energy balance as shown in Eq. 1.11.

1 Wp

S0 = 4 W

(1.11)

Experiments indicate that the energy dissipated per cycle (and the corresponding
force) is independent of frequency and is proportional to the square of the amplitude
of vibration (unlike viscous damping in which the energy loss per cycle is propor-
tional to the square of the amplitude and directly proportional to the frequency of
motion). This is because damping forces are not viscous in nature, but instead arise
from internal friction. In the viscous damping formulation, the dissipated energy
is dependent upon the frequency of excitation, since the damping ratio will as a
result be defined in reference to the frequency of the dynamic force. It has been
observed that the number of the load-unload cycles per units of time controls the
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Fig. 1.13 Comparison
between three different F-u
functions referencing loads (F-u):
with different values of / )
frequency and amplitude (F-u): =7

N~ (F-u):

inclination of the elastic part of the hysteretic cycle. On the other hand, the width
of the hysteretic loop depends on the amplitude of the dynamic force applied on the
system (Fig. 1.13).

Figure 1.13 clearly shows the effects of the load frequency variation. In fact,
with the increasing frequency of the dynamic load, the gradient of the equivalent
elastic line decreases. Nevertheless, the equivalent damping ratio, evaluated from a
dynamic test at exciting frequency equal the resonant frequency (Chap. 7) results a
satisfactory approximation.

In the structural applications, the equivalent linear viscous damping approach
leads to evaluation of the damping force F; as a linear relation of the velocity
(Eq. 1.12).

Fs=c-u (1.12)

where c is the viscous damping coefficient and it has units of force per time/length
[FTL™']. One will notice that the generic coefficient c;; represents the damping force
that should be applied at the location i to produce a unit velocity at location j. This
coefficient is strongly related to the equivalent viscous damping by means of the
expression reported in Eq. 1.13.

c=§&-2-w-m (1.13)

The viscous damping coefficient is directly proportional to the equivalent viscous
damping ratio and to the vibrational frequency of the system. This characteristic will
be discussed in detail in the next paragraph.

Figure 1.14 illustrates the dashpot model and the damping force in a SDOF
frame.
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Fig. 1.14 Dashpot model (a) and damping resisting force for a SDOF frame (b)

1.6 Equations of Motion

The equations of motion are the mathematical expressions of the dynamic equilib-
rium of a physical system (Hertz 1894). They can be derived from Newton’s second
law or from D’ Alembert principle. Considering the system response at a given time
t;, the applied load F(t;) generates the elastic force F(#;) and the damping force
F4(2;) in the opposite direction. From Newton’s second law, the algebraic sum of
these three forces should balance the inertial force, proportional to the mass system
(Eq. 1.14).

F(t;) — F(t;) — Fa(t;) =m-u (1.14)

The same result can be obtained using D’Alembert principle based on the
dynamic equilibrium at a given time ¢#; (d’Alembert 1743). In any time instant, a
dynamic system can be evaluated as an equilibrated system if a fictitious inertia
force (proportional to the mass system) is applied in the opposite direction of the
dynamic load F(z;). Considering the elastic F,(t;) and damping F(z;) contribution
at a given time #;, the equation of motion will assume the same expression as the
previous one.

By applying the contributions due to stiffness and damping discussed previously,
the equations of motion can be modified as shown in Eq. 1.15.

m-u+c-u+k-u=F() (1.15)

Equation 1.15 shows that the external applied force in a structural system is
equilibrated from three different force contributions schematically outlined in the
Fig. 1.15.

The main goal of earthquake engineering is to predict the dynamic response
of a structure subjected to a seismic excitation, which can be seen as a ground
displacement u,. The ground shaking will induce a perturbation u on a generic
structure rigidly constrained at the base (Fig. 1.16).
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F(1)

Fig. 1.16 Displacements components induced by the ground shaking

Thus, the absolute displacement U at given time can be expressed as the sum of
the two aforementioned parameters (Eq. 1.16).

U(t) = u(t) + ug(1) (1.16)

The inertia force is expressed in terms of absolute accelerations, while the elastic
and damping actions can be evaluated from the relative displacement and velocity,
respectively. Thus, the equation of motion can be rewritten (Eq. 1.17) in terms of
absolute accelerations.

m-(u(@) +u(t) +cut+k-u=0->m-u+cut+k-u=-m-u, (1.17)
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where the product between the mass and the ground acceleration represents the
seismic excitation on the structure and it is also referred to as effective earthquake
force. This result highlights the importance of the earthquake’s effects on structures
with large mass values.

The equation of motion can be characterized for two different cases, discussed
below.

1.6.1 Free Vibrations

When a physical system is disturbed from its static equilibrium configuration, it
will tend to return to its equilibrium position without external excitation. This
mechanism is called free vibration and from the dynamic motion, some information
about the intrinsic vibrational characteristics of the system can be extrapolated
(e.g. natural vibration period). In this case, the external perturbation is defined
by variation of the motion parameters. The classic case of free vibration can be
observed from a system in which its mass is subjected to a given displacement at
time zero u(t = 0) (Fig. 1.17).
The equation of motion can be expressed as illustrated in the Eq. 1.18.

m-u+c-u+k-u=0 (1.18)

The solution to the problem is obtained by setting up the initial conditions which
include the displacement and velocity at time zero.

Fig. 1.17 Perturbed SDOF u(t=0)
system at time t=0 —
[y

Initial configuration
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Fig. 1.18 Harmonic excitation (a), impulsive excitation (b) and irregular excitation (c)

1.6.2 External Excitations

If the static equilibrium condition of a system is changed by an external periodic
force, the system dynamic response is governed by the natural vibration character-
istics and from the external applied force. Thus, the total response of the system can
be separated into the permanent response (due to the external force) and temporary
response (due to the free vibration). The mathematical solution of the equations of
motion depends on the type of the external force applied. It can be considered as
impulsive, harmonic or irregular. Figure 1.18 illustrates a comparison between the
real situation’s dynamic system and the relative periodic force which arises.
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Chapter 2 )
SDOF Systems et

Abstract This chapter analyzes linear single-degree-of-freedom systems and their
response to harmonic, impulsive and periodic excitations. The response to such
excitations is important because it provides insight into how the system will
respond to other types of forces. Finally also the response to earthquake records
is considered. The chapter ends with some considerations about the nonlinear
response.

2.1 Linear SDOF Systems

The dynamic analyses performed in this chapter assume that the inertial contri-
butions (mass) are lumped as a finite number of discrete elements. Such models
are defined lumped mass systems, in which all of the mass elements move in
the same direction (SDOF systems) (Chopra 2001). The undamped and damped
systems will be discussed with reference to the free vibrations case and external
force applications case. Damping in structures is assumed according to the linear
equivalent viscous damping and its contribution is assumed a discrete element.
Some examples of simplified idealization of SDOF systems are shown in Fig. 2.1.

The case (a) represents the simplest idealization of a system, in which every
property is assumed as a lumped characteristic (discrete system). This will be the
assumed schematization in this chapter for solving the associated equations of
motion.

2.1.1 Free Vibrations

A discrete SDOF system subjected to free vibrations is assumed in order to explain
the analytical results for undamped and damped systems (Rao 2007).
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(a) (b) ()

Fig. 2.1 Lumped mass-stiffness-damping system (a), lumped mass—damping system (b), lumped
mass system (c)

Fig. 2.2 Discrete undamped u(t=0)
SDOF system

2.1.1.1 Elastic Undamped Systems

Figure 2.2 shows the reference system in which a given displacement at time zero
has been applied to the lumped mass m.
The equation of motion is reported in Eq. 2.1.

m-ii+k-u=0 2.1

Only the inertia and stiffness contributions are considered. Introducing the term w,
which represents the angular frequency of the system defined as square of the ratio
between the stiffness coefficient and the mass (w = /k/m), the equation of motion
can be rewritten as following (Eq. 2.2).

i+wu=0 (2.2)

Setting z = u, the differential equation can be expressed in the characteristic
polynomial form (Eq. 2.3).

P+’ =0->z,=4+V/(0?) =%+i-© 2.3)

Since the complex solutions values z; and z; are different, the generic solution can
be expressed in the following exponential form (Eq. 2.4).

u(t) = Cp- e + Cy- e (2.4)
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Remembering the Eulerian relation reported in Eq. 2.5.
e = cos (w - 1) £ i - sin (w - 1) (2.5)
The solution of the equation of motion can be rewritten as illustrated in Eq. 2.6
u(t) =A; -sin(w-t) + Ay - cos (w - 1) (2.6)
in which the constants A; and A, can be evaluated from the initial conditions of the
system. Alternatively, the solution u(z) can be expressed in terms of the amplitude
A and phase ¢ (Eq.2.7).
u(t) = A-sin(w -t + ¢) 2.7)

Equation 2.8 illustrates the relationship between the amplitude and the phase.

A= VAP + 47
il (2.8)
¢ =18 (A—z)

Assuming the initial conditions given in the Eqgs. 2.9,

u(0) = up: u(0) = itg (2.9)

from these conditions, the solution of the equation of motion can be calculated as
shown below (Eq. 2.10).

u(t) = % -sin(w - 1) + up - cos (w - 1) (2.10)

Figure 2.3 illustrates the u(t) —t relationship for the analyzed case and the associated
conditions of the system in four different configurations.

® 0y @ Up=A Up=A®.

g = | Ug|= max U, :0

v

Fig. 2.3 Displacement response of a SDOF undamped system
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In particular Fig. 2.3 shows several interesting aspects of the dynamic response
of an SDOF undamped system. First, it can be observed that the amplitude of
the motion is unchanged (IAl=const) over time, since the system was considered
without damping. In addition, some dynamic information can be extrapolated from
the u(t)-t relationship, such as the natural vibrational period of the system (Eq. 2.11).

2 m
T,=—=2m,/— 2.11)
Wy k

This represents the time required for the undamped system to complete one cycle of
free vibration. The inverse of the period defines the natural frequency and is reported
in Eq.2.12.

Wy 1 k

Jn= 2 27 \m @12)
The natural characteristics (represented by the n index) of a generic system are
independent from the attenuation phenomena (damping) and are referred to as the
free vibration mechanism. It is interesting to express the solution given in Eq. 2.10 in
terms of velocity and accelerations, in order to compare all of the trends in the time
domain. For this purpose, Eq.2.13 illustrates the generic mathematical expression
of velocity and acceleration in terms of amplitude and phase, obtained from the u(?)
function by derivation.

wt) =w-A-cos(w-t+ @)
.. . (2.13)

i) = —0?-A-sin(w-t+ ¢) = —w? - u(?)
In Fig. 2.4 a comparison between displacement, velocity and acceleration is reported
over time.

It is possible to observe that the acceleration response is in-phase with the
displacement response, while the velocity trend is shifted by /2 with respect to
the other ones. This information can be obtained from the Fig.2.3 in which the
four different configurations clearly show that when velocity response achieves its
maximum value, the displacement value is equal to zero and vice versa. Thus, the
time period between u(f) = 0 and u(f) = max = |A| represents the offset between
velocity and displacement and its value is equal to /2.

2.1.1.2 Elastic Viscously Damped Systems

Figure 2.5 shows the referenced damped system, in which a given displacement at
time zero has been applied to the lumped mass m.
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In this case, the equation of motion can be expressed as (Eq. 2.14).
m-ii+c-u+k-u=0 (2.14)

Now, introducing the angular frequency w of the system the equation of motion can
be rewritten (Eq. 2.15).

i+ S it etu=0 (2.15)
m

It is also useful to express the viscous coefficient ¢ as function of the damping ratio &
(Eq. 2.16), which represents the ratio between the viscous coefficient and its critical
value c,.

b= = —— (2.16)

The equation of motion becomes the one shown below (Eq.2.17).
i+2-fw-i+wu=0 (2.17)

The damping ratio is a dimensionless term and it depends on the natural frequency
of the system. Setting z = u, the differential equation can be expressed in the
characteristic polynomial form (Eq. 2.18).

z2+2-g-w-z+a)2=0—>z1,2=w-[—$i~/§2—1] (2.18)
The solution of the above equations depends on the damping ratio value. As a result,

three different cases can be analyzed.

e Case I: Underdamped system (§ < 1 — ¢ < ¢.). This is the more realistic case,
since most of the structural systems (e.g. buildings, etc.) have a viscous damping
coefficient that is less than the critical one. Two different and complex solutions
can be evaluated from the characteristic polynomial (Eq.2.19).

7212 = —§-w tiwp (2.19)

In the equation above, wp represents the natural damped angular frequency and
is evaluated as shown in the Eq. 2.20.

wp =w-+/1—§2 (2.20)

From this value, it is possible to evaluate the natural damped period Tp (Eq. 2.21).

1
Tp= ——— 2.21)

i
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The general solution illustrated in Eq. 2.22 can be obtained.
u(t) = e 7. [C1 ceEert 4, e_i'f"”“'t] (2.22)

Using Euleros relation, the above equation can be replaced with the following
(Eq.2.23).

u(t) = Ay -e 59" cos (wp - 1) + Ay - e 5" - sin (wp - 1) (2.23)
It can then be expressed in terms of amplitude and phase contributions (Eq. 2.24).
w(ty =A-e 5 sin(wp - 1 + ¢) (2.24)

The similarity between this expression and the function reported in the Eq. 2.7
can now be observed. Only the exponential term is added in the response of the
damped system, while the damped angular frequency is not significantly different
from the undamped one. Considering a reinforced concrete SDOF system for
which the damping ratio is assumed to equal 5%, the difference between the two
mentioned angular frequencies can be neglected (Eq. 2.25).

wop=w-yV1-E=w-/1-(0.05*~w (2.25)

The exponential term provides information about the attenuation of motion. In
fact, its value increases with the time, causing a reduction in the amplitude of
motion. The generic initial conditions given in Eq. 2.26 are assumed.

M(O) = U, u(O) = ito (226)

The solution to the problem, in terms of system displacement, is given in
Eq.2.27.

uo—l—é-w-uo

u(@) = e " Lug - cos (wp - 1) + -sin (wp - 1) (2.27)

wp

Figure 2.6 shows the trend of the displacement system response in the time
domain.

The dashed lines represent the exponential functions that control the reduction
of the displacement amplitude (u#;; < u; < uy). In addition, the ratio between
two adjacent positive displacement amplitudes is always approximately constant
(Eq.2.28).

A~ (2.28)
Un+1
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Fig. 2.6 Displacement response of a SDOF underdamped system

This observation is commonly used to estimate the damping ratio of a specific
structure with given displacement response. In fact, the logarithm of the ratio
reported above (logarithmic decrement) is assumed as a viscous damping index

(Eq.2.29).
5= n (_)
Up+1

As observed previously, the damped frequency and the natural frequency can be
assumed to be equal. From this hypothesis, the logarithmic decrement can be
evaluated as shown in Eq. 2.30.

0]
~2mE—
wp

(2.29)

8~ 2 (2.30)
Thus, by using this relation it is possible to estimate the damping ratio of the
system. In order to emphasize the effects of the damping on the dynamic response
of a system, vector motion representation is proposed. The dynamic response
u(t) can be efficiently illustrated in the Argand-Gauss plane , in which the x-axis
represents the real contributions and the y-axis the imaginary ones (Fig. 2.7).
Naturally, if the damping is equal to zero the dashed circular line coincides
with the external circular line(e " = 0)
Case 2: Critical damping system (§ = 1 — ¢ = c¢.). In this case, the two
solutions are real, coincident and they can be evaluated from the characteristic
polynomial (Eq.2.31).

o =—£- (2.31)
So, the general solution shown in Eq. 2.32 can be obtained.
u(ty =Cy-e 5" 4 Cy-t-e750! (2.32)
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Fig. 2.7 Vector representation of a dynamic response of SDOF underdamped system

U(t) A -

vo

A

Fig. 2.8 Displacement response of a SDOF system with critical damping

Assuming the generic initial conditions given in Eq. 2.33,
u(0) = up; u(0) = i (2.33)
the solution of the problem in terms of system displacement is given in Eq. 2.34
uy=e " Hug-1+w-t)+ip-t} (2.34)

A solution of this type is not periodic and it presents an exponential attenuation.
Figure 2.8 shows the trend of the displacement system response in the time
domain.

e Case 3: Overdamped system (§ > 1 — ¢ > c.). The characteristic polynomial
has two distinct and real solutions (Eq. 2.35).

o= [—s + e 1] (2.35)
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The general solutions shown in Eq. 2.36 can be obtained,

u(t) = C _e—w~(§—\/ 1) +C,- e“‘"(“*’ 1) (2.36)

while the Eq.2.37 represents the solution of the equation of motion associated
with the generic initial conditions (1(0) = uy; 1(0) = up).

=T o (VT ) i)

T N% D o (VE S T-6) — ]

u(t) =

(2.37)

Even in this case, the dynamic response of the system is not described by a
periodic function and therefore it will not be a pure oscillation of the system.
Figure 2.9 compares the dynamic response of the system with different values of
damping ratio, including the case of critical damping (¢ = 1).

For increasing values of damping ratio (§ > 1), the equilibrium condition
is achieved after a long period of time. Naturally, the overdamped case is not
realistic in structural applications. Figure 2.10 illustrates the three different cases
of damped SDOF system, focusing on the dynamic response over several time
steps.

2.1.1.3 Energetic Considerations

The dynamic configuration of a free vibrational SDOF system can be expressed in
terms of energy. The input energy Ej;, shown in Eq.2.38 is evaluated as the sum

u(t) §

Y

T 2T, t

Fig. 2.9 Comparison between displacement response of a SDOF system with critical damping
and with £ > 1
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() (b)

Fig. 2.10 Sequence of dynamic response for a SDOF underdamped system (a), with critical
damping system (b) and for an overdamped system (c)

of the kinetic energy and potential energy due to velocity (it(f) ) and displacement
(u(1)), respectively.

By = 5k O + 5 -me ) (2.38)

Considering the most important case of an underdamped system with the generic
initial conditions, the previous energy balance equation can be expressed as follows
(Eq.2.39):

E;, = l LA2 . Ee,
2

k - [sin (wp - t—}—q})]z—i—% -m-[—E-w-sin(wp - t4+¢) + wp - cos (wp - t4+¢)]°
(2.39)

It is possible to observe how the square amplitude of the motion is directly
proportional to the energy of the system and represents the greatest contribution. In
addition, the exponential terms represent the viscous dissipated energy. Replacing
E, for the energy contribution associated with conservative terms, the previous
equation can be rewritten as expressed in Eq. 2.40.

Ey = e 597 E, (2.40)

In order to evaluate the energy variation due to the damping, the first derivative of
the conservative energy Ey with respect to the time has to be performed together
with the normalization with respect to the total input energy (Eq.2.41).

dEi,

S _ g,
i £ 2.41)
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The parameter (£ - ) ~! represents the decay time that is the lost energy rate referred
to in the system. It is possible to see that this coefficient depends on the vibrational
property of the system and on the damping ratio (material characteristics).

2.2 Response to Harmonic Excitations

The evaluation of the dynamic response of a SDOF system is one of most important
goals in structural earthquake engineering. Clearly, the dynamic response of a
system depends on the nature of the applied force. In order to obtain a simple
solution, the harmonic excitation will be considered as external force. The harmonic
excitation is characterized by a constant value of angular frequency wy, also called
exciting frequency, and also by a given value of amplitude. Usually the time
variation of the external force has a sinusoidal trend. In the following paragraphs,
the dynamic solution of the equation of motion will be derived for undamped and
damped elastic SDOF systems (Meirovitch 2010).

2.2.1 Undamped Systems

Figure 2.11 illustrates the typical scheme of an undamped system subjected to an
external periodic force.

Considering the external force variable with sinusoidal law (F(f) = Fo-sin(wy-t)),
the equation of motion can be expressed as shown below (Eq. 2.42).

m~1',i+k'u:F0~sin(a)f~t) (2.42)

This represents a second order nonhomogeneous differential equation with con-
stant coefficients, and therefore the solutions can be evaluated as the sum of a
homogeneous associated solution (u) and a particular solution (u,). The first one
represents the free vibration response, while the second term refers to the dynamic
response due to the external force. The u, solution has been evaluated in the previous

v

Fig. 2.11 Discrete undamped SDOF system subjected to an external force
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paragraph and the particular solution can be expressed as shown in a simple form,
since the external force is a sinusoidal function (Eq. 2.43).

ug(t) = Ay - sin (w - t) + Ay -cos(w-1) (2.43)

up() = C-sin (a)f . t)
The constant C can be evaluated by substituting the particular solution into the
equation of motion (Eq. 2.44).

—C-wf* -m-sin(wy-t) + C-k-sin (wy - 1) = Fy - sin (wy - ) (2.44)
Simplifying the sinusoidal and dividing the two members by the mass, Eq.2.45 is
obtained.

F
C- (0 —w?) = ;0 (2.45)

Introducing the ratio between the exciting force frequency and the natural frequency
(B = wy/w) also called frequency ratio , the value of the constant C can be evaluated
as shown in the Eq. 2.46.

c= T (2.46)
S k(18 '
Thus the particular solution is defined below (Eq.2.47).
Fy .
Mp(t) = m - S1n (a)f . f) 2.47)

The dynamic response of the system will assume the following form (Eq. 2.48).

- sin (a)f . t)
(2.48)

u(t) = uo(r) + up(1) = Ay - sin (@ - 1) + Az - cos (- 1) + ﬁ

The free vibration coefficients (A; and A,) can be evaluated by imposing the initial
conditions. The generic initial conditions with velocity and displacement not equal
to zero are considered (Eq. 2.49).

u(0) = up; (0) = iy (2.49)
Thus, the dynamic response of the SDOF undamped system is given in Eq. 2.50.

u(t) =uo(t) + up(t) = up - cos (w - 1)
Fo

+|:%—m~ﬁj|'sin(w-t)+k_

Fo
(1-8%)

-sin (e - 1)
(2.50)
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u(t)

t[s]

Fig. 2.12 Different contributions to the dynamic response of an undamped SDOF system
subjected to a harmonic excitation with 8 = 0.3 and uyp = 1y = 0

The response associated with the free vibrations is called the transient contribution
because in the realistic case (damped system) it tends to zero as time increases.
Instead, the term due to the external force is permanent and it defines a steady
state of vibration. In other words, the dynamic response of the system is the sum
of two oscillations having different frequencies. In addition, one can notice that
the dynamic response due to the external force contribution is not dependent upon
the initial conditions. In order to understand the aspects previously discussed, the
Fig.2.12 shows the dynamic response of a forced SDOF undamped system with
B = 0.3 and uy = iy = 0, distinguishing between the permanent and transient
contributions.

It is interesting to observe the dynamic coefficient —-0

k(1-p2
between the external amplitude and the elastic coefﬁci(entﬁ r)epresents the elastic
displacement that arises under static conditions. Thus the parameter (1—8%)~! tends
to amplify the static response of the system and it is called the dynamic amplification
coefficient. This value assumes high values if 8 is approximately equal to one. For
this reason, according to the values assumed by B, two particular conditions can
occur:

for which the ratio

* Resonance phenomenon: when the exciting force frequency is equal to the
natural frequency of the system. This condition causes an infinite amplification
of the dynamic response, since the denominator of the u(z) function is equal
to zero. Naturally, this condition cannot occur in real systems because they
have an intrinsic energy dissipation during the motion. In the resonance case
(w = wy), the dynamic response shown in Eq.2.50 loses significance, since it
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tends to infinity for any time value. In this case, the particular solution has to be
substituted from the following form (Eq.2.51).

up(t) = C-t-cos(w-t) = for:w = wy (2.51)

Substituting this expression into the equation of motion, the following value of
the constant C is found (Eq. 2.52).

c=_to (2.52)

Considering the generic free vibrational solution, the dynamic response of the
system is given by Eq. 2.53.

F
u(t) = A -sin(w-r) + A, - cos (w - t)—ﬁ w-t-cos(w-1) (2.53)

For the sake of simplicity, the initial conditions u(f) = 0 and iy(r) = 0 are
considered and the total dynamic response in terms of displacements can be
expressed as shown in Eq. 2.54.

ut) = — [sm(a) 1) —w-t-cos(w-1)] (2.54)

The amplitude dynamic response increases linearly and it tends to infinity for an
infinitely long time (Fig. 2.13).

e A T /\ /\ /\
ALY \/ \/
) = 55 [sin(0: 1)~ 01 cos(w1)]

u(t)

Fig. 2.13 Resonance phenomenon in terms of displacement response



32 2 SDOF Systems

Fig. 2.14 Beat phenomenon in terms of displacement response

* Beats phenomenon: when the exciting force frequency value is very close to
the natural frequency. In this case the dynamic response of the system is
characterized by sudden amplitude variations. This leads to obtaining an increase
and decrease of the signal amplitude, depending on the phase concordance
or discordance, respectively. Figure 2.14 shows an example of the beats phe-
nomenon in terms of displacement response. The dynamic response is described

|or+o|
2

by a harmonic function with given frequency w;, = whose amplitude is

. . . . _ lor—ol
modulated by a sinusoidal function having frequency w,, = fT

2.2.2 Viscously Damped Systems

When the damping force is also considered in the SDOF system (Fig.2.15), the
equation of motion becomes as shown in Eq. 2.55.

m‘ﬁ+C‘ii+k‘u:FO'Sin(wf't) (255)

Substituting the angular natural frequency (ratio between the stiffness and mass)
and the damping ratio coefficient, the equation of motion can be rewritten (Eq. 2.56).

F
20 E-i+ o u=—sin (1) (2.56)
— )
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Fig. 2.15 Discrete damped SDOF system subjected to an external force

The particular solution assumes the mathematical form given in Eq. 2.57.
up(r) = Cy - sin (wy - 1) + C5 - cos (wy - 1) (2.57)

As obtained previously, the associated homogeneous solution for underdamped
SDOF system is given by Eq. 2.58.

up(t) = Ay - e 5" cos (wp - 1) + Ay - e 5" - sin (wp - 1) (2.58)
Substituting the particular solution and its first derivative into the equation of motion

in terms of displacement and velocity, the constants C; and C, can be evaluated
(Eq.2.59)

_Fy 1-p82
=—. 5
k=g +@&-p (2.59)
R 2
ko (1=p)"+2-§-p)
The complete solution assumes the following form (Eq. 2.60).
u(t) = e 5" [A; - cos (wp - 1) + A, - sin (wp - 1)]
F 1 .
e gy [0 B D =28 costor 0]
(2.60)

In this case, the first part of the equation represents the transient contribution and
is evaluated from the initial conditions. The second part of the equation defines the
steady state of the system and it depends on the exciting force frequency. It can
be observed that the last contribution is out of phase compared to the sinusoidal
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external force. The parameters expressed in the Eq.2.61 can be considered in order
to clarify the last claim.

ho, !

k
up(1) = Apax-sin(wy-1—¢) — \/(1 - /232); ‘; (2-§- 18)2 (2.61)
o= (757)

This mathematical representation focuses the out of phase of the permanent contri-
bution of motion, compared to the external applied force. In addition, the dynamic
amplification parameter can be evaluated from the amplitude A,,,,. Remembering
that it represents the ratio between the steady state amplitude contribution (A,.x)
and the static one (F/k), it can be expressed as shown in Eq. 2.62.

Apax =

Al = : (2.62)

Ja—pr+ @587

Differing from the undamped system cases, the dynamic amplification is never
equal to infinity since the damping has been considered. Naturally, the resonance
case can be achieved for the w = wy, for which the aforementioned coefficient
assumes the following value (Eq. 2.63).

1
Al vesonance = = 2.63
A o .63

One of the most common mathematical representations of the dynamic response of
an SDOF forced system is the function |A| — B, which provides some information
about the amplification response for a given frequency ratio. In Fig. 2.16 different
trends of dynamic amplification coefficients with their damping ratio are compared.
Each of them is characterized by a given value of damping ratio.

It can be observed that the dynamic response for an undamped SDOF system
tends to infinity for 8 = 1. Generally, the maximum response for a damped system
takes place when the frequency ratio is equal to one (resonance phenomenon).
Specifically, the resonance condition is slightly influenced by the damping ratio of
the system (dashed line in Fig. 2.16). It can be observed that over a given damping
ratio value, the peak of the curve |A| — B no longer exists. In order to evaluate this
level of damping ratio(§,,), the first derivative of the amplification function with
respect to frequency ratio is evaluated and is assumed to equal zero (Eq. 2.64).

‘;|—2|=0—>/3=,/1—2.52 (2.64)
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1 %é\\§§\0§\

0 1 2 3

Fig. 2.16 Dynamic amplification functions for different values of damping ratio

The resonance frequency ratio can be evaluated by substituting the damping ratio
value. As observed previously, the peak values refer to the resonance phenomena
and therefore the frequency ratio can be assumed approximately equal to one
for every value of damping ratio. From this assumption the &, parameter can be
evaluated in Eq. (2.65).

1
WA — ~ 0.70 2.65
13 7 (2.65)

Thus, for damping ratio values less than the level £,, the dynamic amplification
function has a peak. In addition, for these cases one can observe values of dynamic
amplification coefficients less than the one for the entire frequency ratio domain. In
these particular cases the applied force on the system leads to a dynamic response
with smaller amplitude than the static case. The same consideration can be made
in order to study the variation of the phase angle with the frequency ratio. For this
purpose, Fig.2.17 compares some trends of ¢ — S function with different values of
damping ratio.

Returning to the general dynamic response of a damped SDOF system (Eq. 2.60),
the particular solution can be written in terms of dynamic amplitude coefficient
(Eq.2.66).

u(t) = e 5" [A; - cos (wp - 1) + A, - sin (wp - 1)]

n % (AP [(1 = B?) sin(wy 1) —2-£ - B-cos(ay - D] (2.66)



36 2 SDOF Systems

180

140

/) T

\

100

1) 4

60 — /7
//’ /
L — -

20

0 1 2
B

Fig. 2.17 Phase angle for different values of damping ratio and frequency ratio

Imposing @ = wp and considering the simple initial conditions referring to a
configuration at rest u(0) = 0;i(0) = O the free vibration constants A; and A,
can be evaluated (Eq.2.67).

Fy

Al =2- 3

F
(AD*-6-B Ar=—2 (A B[22 = (1-p)]  @67)
The dynamic response is given in Eq. 2.68.

F

u(t) = 70 ~(JA*- (1= B?) - [sin (wy - 1) —e ¥ - B - sin (- 1)

- % “(JA])*-2-& - B-[cos (wf - 1) —e ¥ - cos (w - 1)
+e 2. E2. B sin(w - 1) (2.68)

Figure 2.18 illustrates the trend of the total dynamic response compared with the
exciting force and free vibrations ones for a system damped at 5% with 8 = 0.3.

Since the free vibrations are damped, the dynamic response of the system is equal
to the particular solution (steady state) after a given amount of time. Furthermore,
if the resonance condition is taken into account (w = wy —> B = 1), the dynamic
response of the system can be written as follows (Eq. 2.69).

F, 1
u(t) = 70 . n . {e_g"‘” - [€ - sin(w - 1) + cos (w - )] — cos (a)f . t)} (2.69)
It can be observed that for large values of time the maximum amplitude of the
dynamic response is equal to the resonance dynamic amplification coefficient ( 2%)
(Fig.2.19). Thus, the dynamic response of the system tends to an amplified steady
state, apart from infinity.
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u(t)

u(t)

t[s]

Fig. 2.18 Different contributions in the dynamic response of a SDOF system at 5% damping,
subjected to a harmonic excitation with = 0.3 and uy = 11y = 0

u(t)

Fig. 2.19 Resonance dynamic response for a SDOF system damped at 5% with initial condition
Uy = l:t() =0

The grey curve represents the boundary of the response and it is possible to
observe how it tends to the maximum amplitude value (JA|esonance = %) over time.

2.2.2.1 Representation of Dynamic Response in the Argand-Gauss Plane
The identification of the system response in the Argand-Gauss Plan is very useful,

since some information can be evaluated (Burton 1988). In order to introduce the
problem, a brief description of complex algebra is shown in Fig. 2.20.
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Fig. 2.20 Complex I A
representation of a vector

Assuming the angle ¢ as linear function of the time(¢ = w - ) the Eq.2.70
collects all the mathematical information about the vector c represented in Fig. 2.20.

c=a+ib
lc] = Va? +b* = c=|c|-(cos(w - 1) + i-sin(w - 1)) (2.70)
1g(p) = 2

In addition, the first and second derivative of ¢ with respect to the phase angle is
expressed in Eq. 2.71.

dc dc

— =|c]-w-(—sin(w-1) +i-cos(w-1) = — =i-c-w

do dg ,
d*c 2 (2.71)
7k |C|‘wz.(_COS(a).[)_i.Sin(w.t)):d_¢2:_c'w2

The complex trigonometric parameters can be expressed in terms of an exponential
function, using Euleros relations (Eq. 2.72).

ei~w~t + e—i~w~t
gt 2 i 2.72)
21

cos(w-t) =

sin(w - 1) =

These relationships can be applied to the equation of motion for a SDOF damped
system subjected to a harmonic external load (Eq. 2.73).

F i~wp-t —iwft
2w £t o= —O-cos(wf-t)=2-Ao-% (2.73)
. )



2.2 Response to Harmonic Excitations 39

Iy

Fig. 2.21 Vector composition of external force

For the sake of simplicity, the constant Fiy/m was substituted by the other constant
expressed as 2A,. Observing the equation reported above, the solution of the
problem can be obtained as the sum of two solutions separated further (Eq. 2.74).

i +2-w- £y + @ u = Ay e (2.74)
i't2+2~w~§~1'42+a)2~u2:Ao-e_i""«f" '
Figure 2.21 illustrates the vector components associated with the two contributions
of the external exciting force.
Considering the first equation, the particular solution can be expressed as shown
in Eq.2.75.

i =i-wp-C-er!

irwp-t
up =C-e"" - L
i) = —w?’ - C- et

(2.75)

Substituting these expressions and simplifying the equation of motion gives
(Eq.2.76):

—wf? C+i-kwp-w-C+a* C=A (2.76)

Dividing all the terms by w? and replacing with 8 = wy/w, the constant C can be
evaluated from the previous equation (Eq. 2.77).

_ 4o - 2-¢-8

T (=g + 687 [a-p+@ 58 o




40 2 SDOF Systems

The constant C represents the amplitude of the response due to the exciting force
and is defined as the sum of a real (a) and an imaginary (b) part (Eq.2.78).

. )
A [a-pr g py]
czw_g.(a+i.b)_> ) 2.6 (2.78)

(-8 + 8]

Equation 2.79 shows the absolute value of C.

A A A 1
Cl = =5 -lati-bl = =5 Va +12 = = (2.79)
Ja—pr g py

Coherently with the symbols used in the previous paragraph, the two last equations
can be expressed below (Eq. 2.80)

Z (2.80)
0
|IC| = 2 |A]

where |A| is the dynamic amplification coefficient. It can be observed that the term
A can be broken down into in its real and imaginary parts as shown in the Eq. 2.81.

. a = Re(A)
A= -b 2.81
@HED =0 ) — mga) (28D
The phase angle of the response is evaluated in Eq. 2.82.
A() A() IIIl(A) 2. E . ,B
hase(C) = — -phase(A) = — - t = — = 2.82
phase(C) = "5 -phase(4) = 7391 — 1g(g0) = —pon = g 282)

After these considerations, the steady dynamic response can be expressed in terms
of |A| and B4 (Eq.2.83).

o _ A0 (Re@) | Im(a)

. . . plort 2.83
2 a)2|| TR e (2.83)
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Referring to the Fig. 2.20, the ratio of real and imaginary part of A with respect to
its absolute value can be expressed as shown in Eq. 2.84.

Re(A)
Al cos(¢a)
2.84
Im(A) in(¢n) ( )
——— =sin(¢,
Al
Thus, the u; function can be simplified (Eq. 2.85).
A . o
L= 5 AL {eos () + i sin (g} - €
A , . A )
= _g JJA] e et = _g - |A] - e riton) (2.85)
w w

Figure 2.22 illustrates the vector representation of the response u;. Using the same
procedure, the u, solution can be evaluated (Eq. 2.86).

A .
Uy = w—g A - eEertEon (2.86)

Equation 2.87 shows the sum of the two aforementioned functions, which provides
the total dynamic permanent response of the system.

A . . F
up(l‘) =u+u = QTZ . |A| . [el~(“)_f't+¢A) + e—z-(“’f‘t+¢A)] — ?O . |A| 'cos(a)f t+ ¢A)
(2.87)

A —
NEI

o, -t
!

\ (,Of't+¢A

R
¢,
t=0

Fig. 2.22 Vector representation of the response u;
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Fig. 2.23 Vector representation of displacement, velocity and acceleration permanent response at
given time

The above mathematical formula contains some information about the permanent
response of a damped SDOF system. It is a harmonic function with angular
frequency equal to the external force’s and with amplitude expressed by |A|
coefficient. Furthermore, it is generated with a time delay evaluated as ¢, /wy with
respect to the external exciting force. If the external force is applied statically
(wf = 0; B = 0), the previous equation becomes equal to the ratio between
amplitude Fy and the stiffness k (static displacement u,,static). Thus, the dynamic
amplification coefficient is the ratio between the dynamic response of the system
and the static one (Eq. 2.88).

U
Al = —*

(2.88)

Up static

The representation of the dynamic response of a SDOF damped system in the
complex plan can be very useful for explaining all the forces that arise in the
dynamic system for a given time instant. For the sake of simplicity, the partial
permanent dynamic response u; at a given time is considered coincident with the
real axis. Figure 2.23 illustrates the displacement, velocity and acceleration response
in the condition previously mentioned.

In order to respect to the dynamic equilibrium, the elastic, damping and
inertial force will arise in the opposite direction of the displacement, velocity and
acceleration, respectively. Figure 2.24 shows the vector representation of the three
reactions.

Naturally, the three forces will equilibrate the external exciting force which will
be represented as a vector having a slope of (wf) with respect to the real axis. All
these components can be used to clearly explain the dynamic behavior of the forced
system in terms of amplitude. For this purpose, the dynamic amplitude function
is proposed again (Fig.2.25) in order to identify the three characteristic ranges of
frequency ratio discussed below.

e Zone I: B << 1 (small B values). The dynamic response of the system is not
influenced by the damping and all the amplification values are equal to one. This
result means that the dynamic response of the system is essentially equal to the
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Fig. 2.24 Vector l.
representation of elastic,
damping and inertial force at
given time
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Fig. 2.25 Individuation of three characteristic zones in the dynamic amplification function
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Fig. 2.26 Forces equilibrium in the complex plan for 8 << 1 system

static one. This is accurate because the exciting force frequency tends to zero. In
other words the external force is applied in a quasi-static way. Since wy assumes
very small values, the external force has a very low inclination with respect to
the real axis (Fig. 2.26).
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Fig. 2.28 Forces equilibrium in the complex plane for 8 >> 1 system

The damping and inertial forces are much smaller than the elastic and external
ones. This demonstrates how the response of the system is largely static. In
addition, the displacement u; results in phase coincidence with external applied
force (phase lag—> ¢,1—r0).

Zone 2: B ~ 1 (resonance). As discussed, in these cases the dynamic response of
the system is at maximum (for £ < &,,) and the amplification strongly depends
on the damping. In the Fig. 2.27 the vector dynamic equilibrium is shown.

In this case, the inertial force provides the main contribution that equilibrates
with the external dynamic force. It is possible to observe how the displacement
has a discordant phase with respect to the external force (phase lag—> A, 1_rm).
Zone 3: B >> 1 (high § values). The dynamic response of the system tends to
zero. Figure 2.28 shows the dynamic equilibrium in the complex number plane.

The damping force is equal to the external one, while elastic force is equal
to the inertial force. If the action due to the dissipative processes is neglected,
the equilibrium is not achieved. In addition, the phase difference between
displacement ul and external dynamic force is equal to 90° (phase lag—>
A@,—r &~ 1/2). The phase lags evaluated for the three cases can be observed in
the ¢ — B function (Fig. 2.29).

2.3 Response to an Impulsive Excitation

If a generic SDOF damped system is subjected to a brief external excitation, the
damping effects are not strictly important for evaluating the maximum response of
the system. In fact, the peak of u(?) function will be reached before the dissipative
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Fig. 2.29 Individuation of the three characteristic zones in the dynamic response phase
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Fig. 2.30 Dirac function for a given generic time t

force is able to cause damping. Figure 2.30 illustrates the classic impulsive force
represented as a Dirac function.
The area of the rectangular elementary impulse is equal to one (Eq. 2.89)

+o00

I= | F()-dt=1—F(t) = Ait (2.89)

—

—00

where I represents the impulse and At is the small finite value of the time range
close to the given instant 7. Assuming the generic damped SDOF system on which
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an impulse / is applied at time t. The dynamic response of the system for 7 > t can
be evaluated according to the integrated equation of motion reported in Eq. 2.90.

t t t t

I= /F(t)-dt: /m-ii-dt+/c-1'4-dt+/k-u-dt (2.90)

—00 —0o0 —0o0 —00

Each of the integral terms can be expressed as sum of three different contributions
(Eq.2.91).

JF@)-dt= [ m-ii-dt+ [ c-iv-dt+ [ k-u-dt
0 —o0

—00 —00
o+ o o o
fF(t)-dt:fm-ift-dt+fc-it-dt+fk-u-dt 2.91)
T T T T

t t t t
[F@)-di= [m-ii-di+ [c-i-di+ [k-u-dt
ot o+ o+ ot

The first and third contributions of the external impulsive force are equal to zero by
definition. In addition, all the reaction forces can be assumed null for ¢ < t~ since
the impulse has not been applied yet. According to the momentum conservation
principle (or impulse theorem), the damping and elastic terms evaluated in the range
At = (z+ + 17) are equal to zero. Furthermore, the inertia, stiffness and damping
terms for + > t¥ have to be equilibrated with the external force which is null
(vibrations conditions). Equation 2.92 reflects the aforementioned claims.

'[+ T+

[F@)-dt= [m-ii-dt =1
ot T_z T_t ‘ (2.92)
JF@)-di= [m-ii-dt+ [c-i-dt+ [k-u-dt=0
T + o+ T+

Since the impulse is defined for a small range time At the second term of the first
equation can be expressed as shown in the Eq. 2.93.
o+

/F(t) dt=m-[u(zt) —a(x7)] =1 (2.93)

T

Assuming the system is at rest before the application of the impulse (it(z7) = 0),
the velocity immediately after the impulse can be evaluated (Eq. 2.94).

7t
J F(t)-dt :
)y ="—— = — (2.94)
m m
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Naturally, the displacement at time ™ is equal to zero since the system is at rest

when the impulse is applied. Therefore, the problem is represented by the evaluation
of the dynamic response of the system after the application of the impulsive external
force (u(r — t)). As observed previously, it can be integrated into a free vibrations
problem in which the initial conditions (u(z(+)) = 0; i(z(+)) = %) are deduced
according to the Eq.2.93 Remembering the solution found in Eq.2.24, the free
vibrations response of the damped SDOF system is given by (Eq. 2.95).
Yt
M(T ) 'e_g‘a).(z—r)‘sin [wD . (t _ ‘L’)]
(2.95)

In Eq.2.96 the displacement response can be expressed in terms of differential
value.

5 sin [wp - (1 —1)] =

u(t)Vt>‘[ =

F(r)-d
du(t)‘v't>r = % . e—Ew'(I—r) - sin [a)D . (l — ‘L')] (296)
@D

Equation 2.96 represents the response due to an elementary impulse applied on the
system at a given time t. Thus, this definition can be used in order to evaluate
the dynamic response of a SDOF system subjected to a generic time dependent
excitation F(t). In fact, an external force can be considered as sum of different
elementary impulses (Harris and Piersol 2002) as shown in Fig. 2.31.

F(1) A
AT
H -
F(7)
i -
T t

Fig. 2.31 Idealization of a generic external dynamic excitation in different elementary impulses
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Fig. 2.32 Dynamic response of a system subjected to two impulses

Equation 2.97 defines the total dynamic response of a system subjected to a
generic excitation.

"\ F(r) - dvi )
du(tvi-c = ) % re T sinfop - (1 = 7)) (2.97)
WD

i=1

In order to understand the mathematical approach proposed, an example is reported
in the Fig. 2.32 where the external excitation is expressed by two shifted impulses.

Therefore, the total dynamic response of a forced SDOF system at a specific time
t can be mathematically expressed by an integral between zero and the given time.
The resulting expression is named the Duhamel integral and it is represented in the
Eq.2.98 (Clough and Penzien 1993).

un = ——- 'le / F(z) e 5 sinfop - (t — 1)) - dt (2.98)
0

This dynamic response refers to the generic case in which the system is initially at
rest. In order to provide the dynamic response having different initial conditions, the
free vibration contribution has to be assumed (Eq. 2.99).

t
J 1
u(t) = @-sin(w-t)+uo-cos(a)-t)+— / F(7) - e 50 Csin[wp - (t — 1,)]-dt
w m- wp
0

(2.99)
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One can notice that the Duhamels integral represents the convolution between the
impulse and the free vibration response (Eq. 2.100).

f(@) =F(v)

h(t— 1) = e 0% .sin [wp - (t — 1;)]

(2.100)

ut) = | f(r)-h(t—1)-dr —
/

Since the mathematical procedure used for the Duhamel’s integral is based on the
superposition of effects, it is valid only for linear elastic systems. In addition, if the
external force is described by a simple function, the Duhamel integral can be solved
in closed form.

2.4 Response to a Periodic Excitation

When the external exciting force is periodic, it can be expressed as sum of
trigonometric harmonic functions. This approach is named Fourier series analysis
(Brigham 1988) and will be discussed in detail in the Sect. 3.3 (Brigham 1988).
Equation 2.101 shows the series decomposition of the periodic excitation according
to Fourier.

o0 o0
F(f) = ao - Z ay-cos (wp-n- 1) + Z by sin (y -1 - 1) (2.101)
n=1 n=1

Remembering that the period 7y of the external force can be expressed as ratio
between 27 and the frequency of the excitation wy, the coefficients of the Fourier
series are given by Eq. 2.102.

Iy
ap = Tlf'({F(l)dt

a, =2 }fF(t) cos (22 1) - di (2.102)
=7 7 '

Ty
b =lf/F(t)-sin(2'”—'"-t)-dt
n TfO Ty

Therefore, each of the harmonic functions produces a permanent dynamic response
of the system depending on its exciting frequency and amplitude (Eq.2.103).

(1) = thpay () + Y tpa, () + Yy, (1) (2.103)

n=1 n=1
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The terms illustrated in the above equation are referred to as ap, an and b,
components of the total periodic excitation, respectively. The first contribution is
a constant, while a, and b, vary with cosine and sinusoidal law. Naturally, the
total permanent response is the superposition of the three aforementioned particular
solutions (Eq. 2.104).

Up,ay (t) = %0

Upa,(t) = T

§

2+ Ba-sin(@, 0 + (1= 8, -cos(@, 1)

2 .
) m : [(1 —B,) -sin(w, - 1) —2-&- B, - cos(w, - t)]
(2.104)

S S
(1=B:) +25B2)°

by
Upp, () =

where the nth frequency is expressed as n times the frequency of the exciting force
(w, = n-wy). Since B, represents the ratio between w, and w, it can be also defined
as shown in Eq. 2.105.

pn=—=n-—=n-p (2.105)

Equation 2.106 illustrates the total dynamic response of the SDOF system.

u(t) = 5 [A, - cos(wp - 1) + Ay - sin(wp - )] + %

. ! ay - [2- &+ B sin(w, - 1) + (1 — B,2) - cos(w, - 1)]

+
=B 2B

1=
gk

n

1
. by [(1 = B,7) - sin(w, - 1) —2- & - B, - cos(w, - 1)
=B Q2B

+
1

M2

n

(2.106)

The coefficients A} and A, can be deduced by imposing the initial conditions.

2.5 Earthquake Response

The general definition of the problem is introduced in this paragraph, while all
the solution methods will be discussed in detail in the Chap.3. In Sect. 1.6 the
generic equation of motion has been particularized for the earthquake excitation
case (Eq.2.107).

m‘u+C'l;l+k‘u:_m'i/‘[g (2107)



2.6 Transmissibility Function 51

Fig. 2.33 Earthquake
excitation on a SDOF
damped system

Ut)= ii(®) + iis(0)

In this case, the external excitation is composed by the inertial force due to the
acceleration at the base (ii,) of the SDOF system (Eq. 2.108).

F(t) = —m - iiy (1) (2.108)

Figure 2.33 assumes the aforementioned characteristics for a generic SDOF system.

2.6 Transmissibility Function

It has been observed that the permanent dynamic response of a system subjected to
an harmonic excitation can be expressed as a sinusoidal function having a phase lag.
Equation 2.109 assumes the displacement and velocity response.

(1) = 72 - |A| - sin(wy -1 + )

) - i (2.109)
(1) = wp - 2 - |A| - sin(wy - t + @)

Figure 2.34 shows a discrete SDOF damped system for which the evaluation of the
action transmitted at its base (Frg) will be explained.
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Fig. 2.34 Discrete SDOF damped system (a) and associated equilibrated forces arise (b)

For the dynamic equilibrium, the transmitted force is equal to the elastic and
damping contribution. By substituting the value of displacement and velocity of the
previous equation, the Frg action can be evaluated (Eq. 2.110).

Frr(t) = % JAl - [c - wf - cos(wy -1+ ¢) + k- sin(wy - 1 + ¢)] (2.110)

Replacing ¢ and k with the associated values in terms of natural angular frequency,
the Eq.2.111 can be written.

Frr(t) = Fo - |A|-[2-& - B-cos(wy -1+ ¢) + sin(wy - 1 + §)] (2.111)

Equating the first derivative of the above force with respect to the time to zero, it
is possible to obtain the time in which the transmitted force achieves its maximum
value (Eq.2.112).

dFrg(t) _
dt

0 — trp=max = a)if -larctg (2-& - B) + ¢] (2.112)

Thus, the maximum transmissible force can be rewritten as a single harmonic
function with phase lag due to the ¢ and #pg=p,, contributions (Eq.2.113).

Frrmax(t) = Fo - |A] - yI+ 2-£-B)°- sin(wy -t + ¢ + trp=max) (2.113)

Since the equation reported above refers to a maximum value, the trigonometric
term will be equal to the unit. With reference to this consideration, the ratio between
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Fig. 2.35 Transmissibility functions for different values of damping ratios (Chopra 2001)

the maximum transmitted force at the base and the amplitude of the external force
defines the maximum portion of the external harmonic excitation at the base of the
system and is named the transmissibility function TF (Eq. 2.114).

2
TF=|A|-\/1+(2-§-;6)2=\/(1 1+@2-¢-p) 2.114)

B’ +(2-&-B)°

Figure 2.35 illustrates the trend of the TF — B function including different values of
damping ratio.

e B < V2: the transmissibility function is greater than one for every value of
damping ratio. Furthermore, damping tends to decrease the value of the force
transmitted to the base (amplification zone).

B > V2: the transmissibility function is less than one while an increase in
the damping ratio leads to values of transmissibility tending to one (attenuation
zone).

The last case represents the isolation region for which the action at the base of
the system is attenuated, compared with the external force. In this region small
values of damping are desirable, since they tend to amplify the transmitted force.
The concepts discussed represent the starting point for all the procedures and
methodologies used to isolate a structure subjected to an earthquake. In addition, as
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specified in Sect. 2.4, the irregular and periodic excitation due to an earthquake can
be decomposed as the sum of infinite harmonic contributions with given frequency
of excitation w,. In the case of earthquake excitation, the function TF indicates the
transmitted action at the mass system due to the earthquake.

2.7 Nonlinear System Response

The amplitude of the external excitation may be such that the displacements of the
system are greater than the elastic limit. In this case, the permanent deformations
of the system must be considered, since the dynamic response is governed by
the cyclic stress path. The stress-deformation function of the system component
material is not regular, but it can be assumed regular by using simplified models.
The elasto-plastic model is widely used in structural analyses since it is an idealized
and consistent representation of the material behavior. Figure 2.36 illustrates the
comparison between a real F-u function and the elasto-plastic model for it.

The dusted line in Fig. 2.36a illustrates the real complete hysteretic cycle while
the thick line shows its idealization with an elasto-plastic model. In Fig.2.36b the
main parameters describing the model are shown, while the list is indicated below:

* F, and u, represents the yielding force and displacement, respectively;

* u, is the reversible displacement at the end of the positive load-unload cycle
(elastic displacement);

* u, is the irreversible displacement at the end of the positive load-unload cycle
(plastic displacement);

* Uy, defines the maximum displacement tolerated by the system.

It can be observed that the maximum allowable displacement is an index of the
plastic dissipation. The total capacity of a system to dissipate energy as plastic
deformation energy can be evaluated by the ratio reported below (Eq. 2.115).

= e (2.115)
uy
F
F)’
u '/;nax
u => y % u _»u
Ue ! Up
'Fy
(a) (b)

Fig. 2.36 Idealization of the load cycle (a) and characteristics of the elasto-plastic model (b)
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This ratio is also called ductility factor. Naturally, other mechanical models are
proposed in literature in attempts to define the referenced problem with different
precision and complexity. In this case the equation of motion can be expressed as
below reported (Eq. 2.116).

m-it+c-u+k(u) -u=F() (2.116)

Different from the elastic case, the stiffness coefficient has to be evaluated according
to the stress path idealized with the mechanical model. Nonlinear dynamic problems
are solved using the numerical methods.
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Chapter 3 )
Methods of Solution of the Equation of e
Motion

Abstract The chapter analyzes different methods of solution of the equation of
motion. The equation of motion for a forced SDOF system can be solved in closed
form if the external excitation can be expressed as a harmonic function (analytical
solution). Moreover, the dynamic response of a system subjected to a generic
excitation can be evaluated using other approaches based on the decomposition of
the irregular external force (Fourier series or Duhamel integral application). In these
cases, the solution is achieved by the superposition property, so that they can be
applied for a linear system. Clearly, this represents a limit to of the dynamic response
of a real system in which the applied excitation causes irreversible deformation. In
order to bypass the intrinsic limit of the previously proposed solution approaches,
numerical methods are used. All the following examples and considerations are
related to a damped SDOF system subjected to an external excitation.

3.1 Analytical Methods

In previous sections, it was observed that the response of a SDOF system is easily
estimated in analytical form if the external force is expressed in a regular and
periodic function. Figure 3.1 shows an exciting sinusoidal force acting on a SDOF
system having an angular frequency wy = 2rad/s and an amplitude of Fy = 5N.

The SDOF system having the characteristics reported in the Table 3.1 is
considered as example.

In addition, the system is considered with initial displacement and velocity equal
to zero (ug = 0 and ity = 0). The equation of motion is expressed as follows
(Eq.3.1).
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Table 3.1 Characteristics of k [N/m] | £[%] | m [kg]

he SDOF
the SDOF system 150 5 20

u(t) = % . (|A|)2 -(1— ﬁz) . [sin (a)f . t) — e bwt, B - sin(w - t)] +
—% “(JAD*- (1= B*)-2-£- B -[cos (wf - 1) — 5. cos (- n]+ G.D
+e 5. 2. E2. B sin(w - 1)

The ratio between the elastic coefficient and mass gives information about the

natural frequency (Eq. 3.2).
k
w=4/— =2.74rad/s (3.2)
m

Thus, the frequency ratio and the dynamic amplification function can be evaluated
(Eq.3.3).

g= -073
w

(3.3)

Al = ————

V=2 +2Ep)
Substituting every calculated parameter, and supposing @ = wp, in the Eq. 3.1 the
dynamic response of the system is found and is shown in Fig. 3.2.

Furthermore, Fig. 3.2 shows the maximum dynamic response (u,,,,) and the static
one (uy). It is possible that the maximum response occurs initially because the
damping effects are not able to provide a sensible contribution yet. On the contrary,
after a long period, the dissipated energy has achieved its maximum value and the
free vibration term is equal to zero.

= 1.46
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Fig. 3.2 Dynamic response of the SDOF system

Fig. 3.3 Impulsive F(1) A
sinusoidal excitation
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The same system is considered with a sinusoidal force defined in the interval
[0, Ty /2] (Fig.3.3).

This case can be represented as a system subjected to a sinusoidal impulse with
amplitude Fy (Chopra 2001). The dynamic response of the system is defined with
reference to two different contributions:

— response of damped SDOF forced system for ¢ < fr ;
— response of damped SDOF system in free vibrations for # > #; and with initial
conditions coming from the previous response.

Since the load is applied impulsively, the maximum response of the system will be
achieved suddenly after the application of the load. This consideration leads to the
neglection of the damping effects in the response of the system because they are not
able to dissipate a significant quantity of energy. Thus, the consideration of a forced
response will be in reference to an undamped SDOF system. Equation 3.4 assumes
the partial solution in terms of displacement, considering the system initially in rest.
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Fo

t<triu(t) =

< [sin (o - 1) = B - sin (@ - 1) ]

i) Hewuly) .
W.Sm(wﬂ@_w}

3.4)
Imposing ¢ = f; in the first equation, the initial condition for the free vibrations can
be evaluated (Eq. 3.5).

1>t u(r) = e (t—tf) {u(tf) . cos (U)D N tf)) +

uly) = ﬁ [sin (e - 1) = B -sin (0 - 17)] s
it(ly) = o+ gy - [cos (@ - 1) = cos (- 17)]
Substituting #r = Tr the Eq. 3.6 is obtained.
Fo . m : m
) = g o (e 3) —osin (@ 3)] e

il(tf) = wr- k(lFf‘)ﬁz) . [cos (a)f . %) — cos (a) . %)]

It can be observed that the displacement and velocity response of the system at
time #; depends on the frequency ratio and on the time duration of the impulse.
Considering the studied case in which # = Ty = x/2, the Eq. 3.7 resumes the
dynamic response at time #;.

u(ty) = 4.78- 10—2_1211 37)

u(ty) = —8.58-107"m/s
Substituting the values in the free vibration equation for damped SDOF system
(Eq.3.4), it is possible to obtain the dynamic response for ¢+ > tr. Figure 3.4
illustrates the function u(f) — ¢ considering @ = wp in the free vibration
contributions.

Naturally, the response to an impulsive force depends on the time range over
which it is defined, on the frequency ratio and on the shape. For this purpose, in the
next part we will propose the case of a rectangular impulsive load (Fig. 3.5).

Even in this case, the dynamic response of the system can be decomposed into
the forced and free vibration contribution. For the first one, the equation of motion
can be expressed in the following way (Eq. 3.8).

m-ii+k-u="F (3.8)
The damping contribution has been neglected as explained above, while the

second term of the equation assumes a constant value. In this case, the particular
homogeneous associated solutions can be expressed as shown in the Eq. 3.9.
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Fig. 3.4 Dynamic response for a SDOF system subjected to a sinusoidal impulse

Fig. 3.5 Rectangular F(t) 4
impulse
Fo
0 I t
Fo
Up (l) = 7
(3.9)

up(t) = Ay cos(w - t) + Az sin(w - 1)

Imposing the initial conditions associated to a system at rest, the solution of the
equation of motion for the forced SDOF system is given as (Eq. 3.10).

t<triu(t) = % - [1 = cos(w - 1)] (3.10)

From this equation, the displacement and velocity at time #; can be evaluated to
define the free vibrations response for ¢ > #; (Eq. 3.11).

F
i) = 2 [1 = cos (01
(3.11)

() = - G- [1 +sin (0 - 17)]
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Fig. 3.6 Dynamic response
for a SDOF system subjected
to a rectangular impulse

Fig. 3.7 Comparison
between the responses of a
SDOF system subjected to
rectangular and sinusoidal
impulse
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Assuming also in this case that ; = 7/2, the Fig. 3.6 shows the dynamic response
of the system to the rectangular impulse.

In order to highlight the difference in the response between rectangular and
sinusoidal impulse, the Fig. 3.7 is proposed.

The dynamic responses for rectangular and sinusoidal impulses have the same
shape in the free vibration range, but different amplifications. In fact, it is possible
to observe that the rectangular impulse produces a greater amplification than the
sinusoidal one. As observed previously, the dynamic response of the system is a
function of the impulse duration and the frequency ratio. In reference to the first
aspect, a comparison of the |A| — (#r/7T;) function between different shapes of the
impulse is proposed in Fig. 3.8.
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Fig. 3.8 Dynamic amplification function depending on the duration of the impulse for rectangular,
sinusoidal and triangular shapes (Carpinteri 1998)

3.2 Duhamel’s Integral

In Sect.2.3 the Duhamel integral has been introduced to evaluate the dynamic
response of a linear SDOF system subjected to a generic excitation (Harris and
Piersol 2002). Equation 3.12 shows again the Duhamel’s integral which is valid for
a SDOF damped system initially at rest.

) =~ [Py il (- )] (3.12)
0

Usually the external force assumes a complex form that leads to a non-closed form
solution of the problem. In many cases, the Duhamel integral is expressed in discrete
form to obtain the solution numerically. At this purpose, the generic excitation is
expressed as the sum of several finite small rectangular force contributions. Thus, if
At is the sampling time interval, the previous relation can be expressed as shown in
Eq.3.13.

| 4
M(t)=m.—wDZF(j-At)-efs"‘"(’*J'A’)-sin[a)D-(t—j-At)]-At (3.13)
j=1

Consider the sinusoidal impulse problem observed in the previous section, divided
into four rectangular contributions (Fig. 3.9).

Assuming #; = /2, the sampling time chosen is equal to A7 = 7/8. In addition,
the force values associated with each rectangle is assumed to be a mean value
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Fig. 3.9 Discretization of F(t) +
half sinusoidal excitation At
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Fig. 3.10 Different dynamic response contributions due to the four discretized rectangular
impulses

deduced from the exciting function. Assuming @ = wp, the dynamic response
of the system is evaluated by the sum of the four discrete contributions. For this
purpose, Fig. 3.10 illustrates each of the dynamic responses.

The sum of all the contributions gives the total dynamic response of the SDOF
system (Fig. 3.11).

Typically, the accuracy of the method used depends on the sampling interval
chosen to discretize the exciting force. It is very interesting to compare the results
obtained with the analytical method and with the discretized Duhamel’s formulation
(Fig. 3.12).

The difference between the two functions is due to the different idealizations of
the exciting force. Clearly, if At — oo, then the Duhamel’s solution will be equal
to the analytical one.
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Fig. 3.12 Comparison between the dynamic response obtained using an analytical solution and

discrete Duhamel’s integral (dashed line)

3.3 Fourier Series

The irregular periodic excitation can be decomposed into several harmonic functions
with given frequency and phase (Brigham 1988). Equation 2.106 proposed in
Sect. 2.4 shows the total response of the system, in which the external excitation
has been expressed in Fourier series. The number of harmonic functions required to
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Fig. 3.13 Triangular periodic F(t) A
excitation
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achieve the convergence of the series is infinite, but in practice, a finite number is

sufficient for achieving an adequate convergence. For example, a periodic triangular

excitation with period 7; = m and amplitude Fy = 5N is used to evaluate the

dynamic response of the system according to the Fourier series approach (Fig. 3.13).
The definition of the periodic excitation in its period is reported in Eq. 3.14.

F
F(t)=8-F0-t—>for:Ost<Tf/2

f (3.14)
F(t)=—8-;—f-t—>for:7}/2§t<Tf

The triangular excitation can be defined as shown in Eq. 3.15 using Eq.2.102 of
Sect. 2.4 to evaluate the characteristic coefficients.

8- Fy — i te2-n+1
F(t) = nzo.g(_l)n.sm(‘”f(‘zfn: 1’;; ) (3.15)

In order to simplify the calculation procedure, only four harmonic contributions
will be considered. Figure 3.14 illustrates the comparison between the triangular
function and the associated series obtained with n = 1.

Summing all the harmonic contributions, we obtain the Fourier series (Fig. 3.15).

It can be observed that the number of harmonic contributions chosen to define the
triangular function results adequate. Therefore, the dynamic response of the system
can be evaluated by superposition of the effects due to every harmonic function.
Assuming the case of an undamped system, the dynamic response can be expressed
as shown in the Eq. 3.16.

1 .
8Fp | 1\, sin(wy-t-(2:n+1))
N

k- (1—p2)

n=0

u(t) = Ay - cos(w - 1) + A, - sin(w - 1) +
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Fig. 3.16 Total dynamic response (continuous line) and response due to the two harmonic
functions (dashed lines)

Imposing the initial conditions u(0) = 0 & = 0, the coefficient A; and A, can be
determined (Eq. 3.17).

A] =0
_ =1y (3.17)
A= —pm (1 kn2-(1—-B%) B Z @n+1)
Equation 3.18 illustrates the dynamic response of the undamped system.
8-F, L=
o - . .
u(t) = PEr=sT— 'g(z-n+ 7 [sin(wp 1+ @ n4+1)—Q2-n+1)-B-sin(w-1)]
(3.18)

In the Fig. 3.16 the response of the SDOF undamped system is compared to the two
solutions due to the harmonic function of the Fourier series.

3.4 Numerical Methods

An analytical solution of the equation of motion for SDOF system is not usually
possible, since the exciting force has an irregular trend in the time domain (e.g.
earthquake excitation). Additionally, the amplitude of the load can induce nonlinear
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mechanical effects on the system, so the method based on the superposition of the
effects (e.g. Duhamel’s integral and Fourier series) cannot be applied. Thus, the
numerical time-stepping methods based on the integration of differential equations
of motion are commonly used for the dynamic analysis. In the time stepping
approach, the solutions are achieved by discretization of the time domain with
constant or variable time interval At;. Therefore, the problem is expressed in terms
of evaluation of the dynamic response of the system at time step i+/, knowing its
conditions at the previous time step i. Figure 3.17 illustrates graphically the concepts
just explained.

Different time stepping procedures can be developed and each of them is
characterized by the following requirements:

— Stability: refers to the error propagation and a numerical method can be defined
stable if the round-off errors are not increasing in the calculation procedure;

— Accuracy: if the numerical method gives a solution closer to the real one;

— Convergence: if the absolute error tends to zero as the time step decreases.

The solution at generic time #;4; can be evaluated with reference to the solution at
previous time #;. In this case, the numerical method is named the explicit method,
while if the solution at instant #;1| is defined directly from the equation at the same
time step, the numerical method is called implicit (Chopra 2001). In the next part,
the main numerical methods used in the dynamic analysis will be discussed.
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Fig. 3.18 Forward difference (a), backward differences (b) and central difference (c)

3.4.1 Explicit Methods
3.4.1.1 Finite Differences Method

This method is based on the assumption that the displacement and its derivatives
are finite differences (df — At and du — Au) (Klaus-Jurgen and Wilson Edward
1976). The first and second finite derivatives of displacement with respect to the
time can be defined according to forward, backward or central difference approaches
(Fig. 3.18).

Equations 3.19 and 3.20 show the first and second finite derivatives of displace-
ment with respect to the time for the cases of forward and central differences,
respectively.

u(tivr) — u(t;)
I/t s~ —_—

At (3.19)
i A ultig1+A0=2-u(ti41)+u(t)
i~ A2
2- At (3.20)

o ultig)—2-u(ti)tulti—1)
uy ~ A2

The central difference method is more accurate than the forward or backward
ones. Thus, the central differences method is preferred in practical applications.
Substituting the expression of the first and second derivatives, obtained as finite
differences, into the generic equation of motion for a SDOF damped system
subjected to an exciting force F(¢), the Eq.3.21 can be found.

m c 2-m m c
[ G5+ ) wn [k_?} ot | 37— 3] e = P
(3.21)
The explicit solution of the equation is represented by the displacement of the
system at time #;4; using known displacement at previous steps (#; and #;—;). Using
the displacement solution, the velocity and acceleration responses at referenced time
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instant i can be evaluated using the Eq.3.20. The initial conditions of the system
(t; = 0) and at time #-/ are required for the evaluation of the first displacement
solution (u;). In this case the u-/ value is not known since it does not have a physical
meaning, but it can be mathematically evaluated by substitution of u; relation in the
i1; one obtained by the Eq. 3.22.

AP
u—1 :M()—At‘l:l()+ Tuo (322)

where the acceleration at time #y = 0 is evaluated according to the equation of
motion for the given time (Eq. 3.23).

m-ﬁo+C'l:t0+k-MQ=F(to) (3.23)

For a dynamic system, the stability of the central difference method is satisfied
according to the following equation (Eq. 3.24).

At 1
— < — (3.24)
T, b4

where T,, represents the fundamental period of the system. Let’s consider the case
of the elastic SDOF damped system subjected to a sinusoidal load proposed in
Sect. 3.1. Since the system is initially at rest, the value of displacement at instant
t_; is equal to zero. Assuming At = 0.1s and substituting the mass, spring and
damping coefficient, the equation of motion can be written again (Eq. 3.25).

2.03- Ui+1 — 3.85- u; + 1.97- Uuj—1 = F(li) . 10_3 (325)

Thus, the displacement at time step #+; can be evaluated. Figure 3.19 shows the
dynamic response of the system in terms of displacements, while in Table 3.2 the
numerical results are summarized.

3.4.1.2 Runge-Kutta Method

In the Runge-Kutta approach, the solution at time i+/ is obtained by an approximate
evaluation of the function values in a number of points (n) inside the interval
(Epperson 2013). The accuracy of this method is directly proportional to the number
of points that defines the order of the method. For a fourth order method, a balanced
equation is used to achieve a good approximation (Eq. 3.26).

Ui41 =Mi+(C1'k1+C2'k2+C3'k3+C4'k4)'At (326)

The term multiplied by the time interval defines the average slope of the function in
the considered interval. In addition, k; coefficients represent the increments obtained
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Fig. 3.19 Dynamic response of the system evaluated with central differences method for At =
0.1s

Table 3.2 Numerical i [l [FO N [u m] [ ve) [ms] | ac) [m/s’]
solutions obtained by the

central differences method -1 0 0 0.0000 0.0000 0.0000

(At =0.15) 0 0 0 0.0000 0.0000 0.0000

1 0.1 0.99| 0.0000 0.0024 0.0490

2 0.2 1.95| 0.0005 0.0095 0.0911

3 0.3 2.82| 0.0019 0.0201 0.1215

4 0.4 3.59| 0.0045 0.0330 0.1365

5 0.5 4.21| 0.0085 0.0465 0.1340

6 0.6 4.66| 0.0138 0.0589 0.1133

7 0.7 4.93| 0.0203 0.0683 0.0757

8 0.8 5.00| 0.0275 0.0733 0.0238

9 0.9 4.87| 0.0349 0.0726 | —0.0383

10 1.0 4.55| 0.0420 0.0654 | —0.1055

11 1.1 4.04| 0.0480 0.0515 | —0.1720

12 1.2 3.38| 0.0523 0.0313 | —0.2319

13 1.3 2.58| 0.0543 0.0057 | —0.2796

14 1.4 1.67| 0.0534 | —0.0238 | —0.3105

15 1.5 0.71] 0.0495 | —0.0553 | —0.3209

as the product between the indicated interval (e.g. Af) and an estimate of the
function slope (Butcher 1963). To be more precise, these increments are assumed as
described below:

— k;: based on the slope at time 7; by using fi = f(t;);
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Fig. 3.20 Coefficients k; identification and definition of the average slope

t; ti . . At
— ky: based on the slope at time fimth by using the estimate f, = f(;) + > -ki;

tiy1 T 1

At
by using the estimate f3 = f(¢;) + > -ky;
— ky: based on the slope at time ;4 by using fu = f(t;) + At - k3;

— kj3: based on the slope at time

According to this definitions, the Eq. 3.27 defines the mathematical expression of
the coefficient k;.

ky = f(tu) = [%])for :t = t; u = u,
ko = fti+ 5w+ k- ) =[G forit =1+ G u=ui+k -4

2
ks =fti+ 5 uit ko5 = [Gforit=ti+ 5 u=u+k- 5
ki =f(t; + Atoup + ks - At) = [L)for it = t; + At; u = u; + ks - At
(3.27)
The definitions of the coefficients above reported are shown in Fig. 3.20.
Furthermore, the coefficients c; are below reported (Eq. 3.28).
1 1
Cl = C4 = g; Cr =¢C3 = g (328)
Thus, the solution to the problem can be expressed as shown in Eq. 3.29.
1
ui+1:ui+g'(k1+2'k2+2-k3+k4)-At (3.29)

This method is explicit because the solution at time 7,41 depends on k; coefficients
that are based on the first derivative of the independent variable at time #;(it(t;)).
There is no specific method for choosing the time interval Ar. It must be not so
large as to cause stability problems (e.g. stiff equations) nor too small because
the numerical process could be impossible to solve. Since the dynamic motion is
described by a second order differential equation, the Runge-Kutta method can
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be applied by definition of an equivalent system of two linear ordinary first order
differential equations (Eq. 3.30).

w="v

(F®) —k-u—-c-v) (3:30)

m-ii+c-ut+k-u=F@t)—>13.

V=
The SDOF damped system used in the previous section is considered to evaluate
the dynamic response with fourth order Runge-Kutta method. Since the equation of
motion has to be decomposed into two ordinary differential equations, two sets of

coefficients k; have to be determined (Eq. 3.31).

ki(l) = v;
At
ko(I) = vi + k(1) - >
At
ks(I) = vi + ko (1) - >

k4(1) =v; + k3(1]) - At

B0 = - (F@) ko)

k(1) = ni’l . |:F (tl‘ + %) —k- (Ml‘ + k(1) - A?t) —cC- (U,‘ + ko (I) - A?[):|

ky(Il) = L [F (t; + At) — k- (u; + ks(I) - Ar) — ¢ - (v; + k3(II) - A1)]

(3.31)
where v; represents the velocity of the SDOF system mass at generic time t;(v; =
1;). According to Runge-Kutta method, the displacement and velocity response will
assume the following form (Eq. 3.32).

mﬂzm+éwmn+zbm+zhm+mmym

Uiy = i + é [ki (D) + 2 - ko (IT) + 2 - k3 (IT) + k4 (I1)] - At (3-32)

fip1 = & (F(ti 4+ A1) — k- wipy — ¢ - itiyr)

Figure 3.21 illustrates the displacements of the SDOF damped system analyzed.
In addition, some of the numerical values obtained are provided in the Table 3.3.
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Fig. 3.21 Dynamic response of the system evaluated with fourth order Runge-Kutta method for
At=0.1s

3.4.2 Implicit Methods
3.4.2.1 Newmark Method

The procedure proposed by Newmark in 1959 to evaluate the response of a system
is one of the most commonly used methods. It is based on the two parameters 8 and
y, which represent the variation of acceleration within the specified time interval.
The velocity and displacement of the system in step i+/ are given by the Eq. 3.33.

iy = i+ [(L—y) - At] ity + y - At - ibig (3.33)

u,'+1ZM[+A['I:£,'+[(O.S—,B)-Alz]'l'/'t,'-i-,B'Alz'l';t,'+1 '
The physical parameter B is introduced to establish the acceleration model between
two adjacent time intervals. At this purpose, if § = 1/6 the trend of the acceleration
in the time interval is linear (linear acceleration method), while for § = 1/4 the
acceleration is considered constant (average acceleration method). In addition, the
typical value assumed by the parameter y is //2. The time stepping solution of the
equation of motion can be obtained by substitution of the Eq. 3.33 in the equilibrium
equation at time i+/ (Eq. 3.34).

m'ﬁ[+1+C'(I;t,'+(l—y)'Al'l'/ii+)/'Al“ﬁi+1)+

34
—}—k(u,—}—Atu,—i—(OS—ﬂ)Aﬂu,—i—,BAt2u,+1) =F(l[+1) (3.34)
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Thus, the acceleration at time i+/ can be obtained from the known acceleration,

velocity and displacement (Eq. 3.35).

{F(tig1) —k-ui—(c+k-At)- ity —[c- (1 —y) + k- (0.5—B) - Af] - At - ii;}
[m+c-y-At+k-B-A]

iyl =
(3.35)

The problem can be expressed in an alternative way in a more simple form. For
this purpose, the problem is expressed in terms of increments of displacements,
velocities and accelerations (Eq. 3.36).

Al = iy — il
Ay = I:t,'_H —u = Al"il,‘-i-)/'Al"Aﬁi (3.36)
Auizui_,_l — U = Atu,-l—Athu,-l—ﬂAtzAu,

The incremental displacement can be expressed as illustrated below (Eq. 3.37).

1 1
= Auj— —— ity — —— - i; 3.37
B - A2 ! B - At . ! (3-37)

Aii;
Composing the incremental displacement and velocity, the Eq. 3.38 is given.

Au;

-7 Y, 1Y)
_,B-AtAul ﬁu,—i—At (1 2ﬂ) i; (3.38)

In addition, the equation of motion can be rewritten in the incremental form
(Eq.3.39).

Substituting Egs. 3.37 and 3.38 into the incremental equation of motion, Au; can be
evaluated as illustrated in Eq. 3.40.

(3.40)
From this value, the displacement at time #;4; can be calculated (¢#;+1 = u;+Au;). In
addition, by applying the Eq. 3.38 the incremental velocity can be found to evaluate
the velocity at time #,4| (i;+1 = i; + Ai;), while acceleration is usually evaluated
directly at time #;1, according to the equation of motion (Eq. 3.41).

Fl[ — '.,‘ —k- i
iyl = (tiv1) —c Z+1 Ui+1 (3.41)
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Fig. 3.22 Dynamic response of the system evaluated with Newmark (linear acceleration) method
for At =0.1s

The dynamic response can be lead directly for elastic system because the stiffness
term is independent from the displacement value (constant value). However, in the
case of an inelastic system, the solution will be obtained by several iterations. The
accuracy of the Newmark method is strictly related to the time interval, which also
gives information about the stability of the procedure. In order to avoid stability
problems, a maximum time interval value has to be fixed according to the vibrational
period of the system. Equation 3.42 shows the relationships to be respected to ensure
a stable mathematical procedure.

At

— < . 7
At 1 T, S oo for : average acceleration
— < — (3.42)
T, n-y2-(y—2-8) o

7, S 0.55 for : linear acceleration
Even in this case, the SDOF system proposed previously is considered to evaluate
its dynamic response according to the linear acceleration (l.a.) model (8 = 1/6).
Figure 3.22 illustrates the dynamic response of the system, evaluated using the
linear acceleration model.

Table 3.4 reports the numerical results obtained.

3.4.3 Comparison Between the Different Numerical Methods

In order to focus on the intrinsic errors of the numerical method proposed,
Figs. 3.23, 3.24, and 3.25 illustrate the dynamic responses comparison between ana-



3.4 Numerical Methods 79
Table 3.4 Numerical tls] [ u( [m] | v [ms] | a(t) [m/s]
solutions obtained by
Newmark method according 0 0 0 0
to linear acceleration model 0.1 | 0.0001 0.0024 0.0484
0.2 | 0.0006 0.0087 0.0904
0.3 | 0.0019 0.0180 0.1216
0.4 | 0.0043 0.0294 0.1388
0.5 | 0.0079 0.0414 0.1398
0.6 | 0.0126 0.0526 0.1237
0.7 | 0.0184 0.0617 0.0913
0.8 | 0.0249 0.0672 0.0445
0.9 | 0.0318 0.0682 | —0.0134
1 0.0384 0.0638 | —0.0782
1.1 | 0.0443 0.0537 | —0.1449
1.2 | 0.0489 0.0380 | —0.2084
1.3 | 0.0517 0.0173 | —0.2635
1.4 | 0.0522 | —0.0075 | —0.3053
1.5 | 0.0500 | —0.0350 | —0.3299
u(t)[mj A
0.15
0.1
0.05
0 >
1 os]
-0.05
-0.1
-0.15
4 order R
Runge-Kutta — Analytical
Newmark (La.) Central
differences

Fig. 3.23 Displacement responses evaluated according to analytical, central differences, 4th order
Runge-Kutta and Newmark (linear acceleration) method (Ar = 0.1s)
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Fig. 3.24 Velocity responses evaluated according to analytical, central differences, 4th order
Runge-Kutta and Newmark (linear acceleration) method (Ar = 0.1s)

Iytical, central differences 4th order Runge-Kutta and Newmark (linear acceleration)
methods.

The 4th order Runge-Kutta method is accurate for every type of response but it
has a greater computational charge, since it requires the definition of the average
slope of the function in the time interval Az for four points. The solutions obtained
by Newmark method application have a good fit with the analytical trends in the
initial part, but the errors increase with the time. Thus, Newmark’s method can
be affected by the propagation of round-off errors, depending on the time interval
chosen. Observing the figure above, the central method results are perfectly in line
with the analytical solution. This is not always a valid definition, since the results
obtained by the central method are strongly dependent on the time interval. For
this reason, every numerical method has been applied using a time interval of 0.5s
and considering the difference in terms of displacement. Figure 3.26 illustrates the
comparison between the three new sets of solutions and the analytical one.

Comparing this figure with the Fig. 3.23 it is possible to observe that the central
differences solution is strongly affected when the Newmark one has been slightly
modified. Furthermore, the solution obtained by 4th order Runge-Kutta method has
a trend almost equal to the first one. Thus, the Runge-Kutta method is less affected
by the sampling interval than the other two methods. In addition, the Runge-Kutta
method leads to an accurate response in terms of accelerations and velocity since it
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Fig. 3.25 Acceleration responses evaluated according to analytical, central differences, 4th order
Runge-Kutta and Newmark (linear acceleration) method (Az = 0.1s)

has been developed to decrease the round-off errors for the derivatives of the main
ODE. Table 3.5 resumes the main stability and accuracy aspects of each method
explained.

3.4.4 Numerical Methods for Nonlinear Problems

The numerical methods represent an alternative way to solve any dynamic problem,
especially for nonlinear systems (Kelley 2003). In these cases the analytical
solutions can be challenging to obtain, while the simplified integral methods cannot
be used since they are based on the superposition of the effects. Therefore, each of
the previous numerical methods can be adapted to the nonlinear dynamic systems
by modifying the stiffness coefficient in the equation of motion (Eq. 3.43).

m-it+c-u+ k(u)-u=F(t) (3.43)

The stiffness coefficient is not a constant, but it depends on the displacement of the
system at the previous time step.
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Fig. 3.26 Displacement responses evaluated according to analytical, central differences, 4th order
Runge-Kutta and Newmark (linear acceleration) method (Ar = 0.5s)

Table 3.5 Main characteristics of the numerical methods

Numerical method Stability Accuracy Computational effort
Central differences At/T<1/m Low-medium [f(At)]| Low

4th order Runge-Kutta Atyin < At < Aty Good Medium

Newmark (linear acceleration)| At/T<0.551 Medium [f(At)] Low

3.4.4.1 Central Difference Method

Starting from the considerations in Sect.3.4.1.1, the equation of motion can be
expressed as illustrated in Eq. 3.44.

2-m m c

m C
I Folu)) — o [___
[ +2~A;] iy + Fiew) = Zo5 w4 | 75— 5T

A2 ] cuiy = F(t)

(3.44)

The stiffness force has been expressed in terms of the displacement at the
previous step (u;). This is a simplification of the problem that can lead to big
round-off errors if the sampling time is not sufficiently small. In addition, when
the velocity at time i+ has an opposite sign of the velocity at time i, the systems
is subjected to an unloading cycle starting in a generic instant of time within the
specified interval. In other words, the chosen time interval is not capable of giving
information about the actual point in which an elastic force with opposite sign of
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the previous one arises in the system. Naturally, the numerical phenomenon just
explained causes a propagation of errors especially if the external loads are very
jagged. These aspects will be discussed in detail in the next paragraph, but for now
it is sufficient to say that this type of error can be minimized using a variable Az. The
central difference method is not widely used in the dynamic applications because it
is not very accurate.

3.4.4.2 Newmark Method

The application of Newmark method for nonlinear systems is common in the
dynamic analysis since it is accurate and, at the same time, the requested computa-
tional effort is greater than the central differences method. As indicated in Sect. 2.5
for inelastic systems, Eqgs. 3.40 and 3.41 are modified to obtain Eqs. 3.45 and 3.46.

FeAF 4 (ot )i+ (. o) o)
_ AR G =art (g mt o)t (g om+ (5 -1) <) o

k= k() + 5 e+ ghzom
(3.45)

F(tip1) — ¢ ity — k(u;) - u;
gy = (ti+1) — ¢ u’—;l (i) - Uit (3.46)

It is possible to observe that for nonlinear systems, the stiffness contribution is not
constant but instead depends on the displacement according to the Fj—_, relation.
The main problem is represented by the impossibility of using the real value of
stiffness at time step i+/ since the displacement at this instant is the unknown of the
equation. The problem can be solved according to two different ways, summarized
below.

(a) The secant stiffness can be assumed equal to the tangent one. Figure 3.27
illustrates the difference between the displacement evaluated with secant and
tangent stiffness.

Fig. 3.27 Differences of
displacements obtained with
tangent and secant stiffness

[ 4
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If the time interval is small enough, the displacement calculated according to
tangent stiffness is no different from the displacement obtained by the use of secant
stiffness. This is a simple approach for inelastic systems since the displacement
increment can be found according to the responses and the tangent stiffness refer-
enced at previous time step (no iterative procedure). The errors accumulated in the
time domain with the approach based on the tangent stiffness can became significant
and produce an inaccurate solution. An additional problem with this method is the
incapability to adapt the real trend of Fj_, relation to a constant time interval. Sup-
pose we have a displacement at time step i identified by “a”, and Auy; is the displace-
ment increment leading to point “b”. In addition, a negative velocity is assumed at
time step i+ /. This last aspect means that there will be a point between “a” and “b”
for which the velocity is equal to zero. In other words, if the velocity is zero, the
trend of F;_, will be subjected to an unloading cycle in a point “br”. Applying the
Newmark method again from the point “b” a further Au; is obtained by considering
a negative stiffness coefficient that leads to the point “c”. If the numerical methods
are applied from the real point “br”, the solution will lead to the point “cr” in the
Fj_, diagram. Each consideration just discussed is represented in Fig. 3.28.

The term &(Au) represents the incremental displacement error due to the constant
time interval chosen. Thus, the assumption of a constant Af can lead to the overpass
of an unloading branch of the force-displacement diagram with a decrease in the
accuracy. This type of error can be eliminated through an iterative procedure based
on the adjustment of the Az such that leads to a velocity equal to zero at the time
step i+1.

(b) The tangent stiffness is assumed after it is compared with the secant one through
an iterative procedure.
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Fig. 3.29 Identification of fix) &
the solution of the function
f{x) =0 by means of different
tangents

3.4.4.3 Newton Raphson Method

One of the most common iterative procedures is the Newton-Raphson method that
is applied to evaluate the approximated solution of a generic function f{x)=0. In a
given interval [x,,x;] the function is expressed in terms of the first derivatives of
different points that represent the intersection between the tangents and the x-axis
(Fig. 3.29).

Observing the figure above, the zero of the function can be found by tracing
the tangents to the function for particular x* values. Equation 3.47 illustrates the
relationship between two adjacent x-coordinates for which the function has a zero
value.

—1
x“lzﬁ—[ﬂgﬁ} FEE for i k=1,2,... (3.47)

The zero of the function (x*) can be approximately evaluated by means of an
iterative process that leads to the following conditions (Eq. 3.48).

Ko a0 =y (3.48)

It is possible to demonstrate that an iterative sequence x*) converging to the value
x* in quadratic way. Naturally, the iteration procedure is based on the assumption
of an adequate initial point with value xy. In the dynamic applications, the modified
Newton-Raphson method is applied to minimize the errors due to the variation of
the stiffness by means of an iteration procedure that leads to have an incremental
displacement equal to the real one minus a tolerance factor. Every ordinate step of
the modified Newton-Raphson methods are described below.

(I The incremental dynamic response Au; is defined by using of the tangent
stiffness at time step i (k; = k) (Fig. 3.30).
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Fig. 3.30 First step of the
iterative procedure (Adapted
from Chopra 2001)

Fig. 3.31 Second step of the
iterative procedure (Adapted
from Chopra 2001)
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The real elastic force is different from the force found by multiplying the
incremental displacement obtained and the tangent stiffness. This residual value is
expressed by the term AR'™!, where j=1. Generically, the residual elastic force is

given by the Eq. 3.49.

ARj+1 = kl‘ . Aui - AFk.i

where j indicates the iterative step.

(3.49)

(Il) A further incremental displacement due to the residual force is evaluated

(Fig.3.31).
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Fig. 3.32 Last step of the Fx 4
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Equation 3.50 illustrates the additional incremental displacement.

ARV

Al/li(j) =
ki

(3.50)

(II) The iterative process will be stopped when the condition expressed in Eq. 3.51
is achieved.

Au;(”)
< &l
n (3.51)
Z AM,'(])
J=1

where ¢,,; indicates the allowable error and Fig.3.32 shows all the iterations
required to obtain the results reported in the equation above.

The value of the incremental displacement evaluated with the iterative approach
of Newton-Raphson results are more accurate than the increment evaluated with
no iterative method. Naturally, the same procedure will be applied for every time
step in which the system exhibits nonlinear behavior. The proposed method is based
on the definition of the displacement according to the initial tangent stiffness k;.
Alternatively, the iteration procedure can be applied by considering the tangent
stiffness at each iterative step. This procedure leads to a faster convergence than
the other one (Fig. 3.33).
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Fig. 3.33 Comparison between modified Newton-Raphson method for constant initial tangent
stiffness and variable tangent stiffness (Adapted from Chopra 2001)
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Fig. 3.34 F-u with medium hardening (a), with high hardening (b) and elasto-perfectly plastic
mode (¢)

The modified Newton-Raphson method quickly converges after a few iterations
especially for the elasto-plastic model with moderate hardening. Its application
can be inaccurate or impossible to achieve the convergence for high hardening
behavior. Finally, the maximum tolerance &,,; influences the iterative process when
the function F — u is not monotonically increasing (elasto-perfectly plastic model).
The three aspects just discussed above are illustrated in Fig. 3.34.

Let’s consider the same SDOF system subjected to the same sinusoidal load
studied used in the previous paragraphs. The force-displacement relationship shown
in Fig. 3.35 is assumed.

The figure above shows an elastic perfectly plastic model in which the dashed
line represents the hypothetical unload path. The yielding point is characterized by
the values reported in the Table 3.6.

The dynamic response has been evaluated by using a MATLAB code based on the
adjustment of the time interval to take into account the signs of velocity and stiffness
coefficient variations. Figure 3.36 illustrates the u-f graph and also compares the
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Fig. 3.35 Fj-u relation for S.0000 -
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Table 3.6 Yielding force and displacement for the element composing the SDOF system

F, [N] uy [m]
4 0.027
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Fig. 3.36 Displacement response of SDOF system for elastic and elasto-perfectly plastic model
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Fig. 3.37 Velocity response of SDOF system for elastic and elasto-perfectly plastic model

elastic and elasto-plastic response obtained according to the Newmark method and
linear acceleration model with time step At = 0.1 s.

It is possible to observe how the plastic displacement (irreversible contribution)
increases with the time causing the shifting of the mean displacement values line.
At the same time, the amplitude of the displacement response decreases because
the plastic dissipation is considered. In addition, considering the nonlinearity of the
system, the dynamic response becomes more spread out over the time domain. In
other words, the natural period of the SDOF system increases. Moreover, Figs. 3.37
and 3.38 illustrate the comparison between the velocity and acceleration responses
of elastic and elasto-plastic models.

From the figure above, one can notice how the acceleration values for inelastic
system decrease with respect to the elastic ones. This phenomenon is due to the
further energy dissipation in the form of plastic deformation that leads to a decrease
in the inertia force. Finally, Table 3.7 reports the obtained numerical values.

The differential equations describing the dynamic systems are each characterized
by unique time constants. It is known that when the variability of these time
constants is highly emphasized, the numerical evaluation of the differential equation
becomes inaccurate. Mathematical problems affected by these phenomena are called
stiff systems. Since in the nonlinear dynamic systems the stiffness parameter can
assume a wide variety of values, the “mathematical stiffness” of the dynamic
nonlinear systems is bigger than that of the elastic ones. In other words, the dynamic
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Fig. 3.38 Acceleration response of SDOF system for elastic and elasto-perfectly plastic model

response of an inelastic system evaluated numerically is strongly dependent on the
chosen time step. In order to explain this aspect, Fig.3.39 shows a comparison
between the function u-t obtained by to the Newmark method for Ar = 0.1 s and
At = 0.025s.

Even with a smaller time step, the plastic deformations tend to shift the dynamic
response leading to a mean displacement other than zero.

3.4.4.4 Runge-Kutta Method

The Runge-Kutta method can also be used for a nonlinear system in which the
stiffness has to be expressed as a function of the displacement at the time #;y.
Similar to the Newmark method, the problem can be solved iteratively taking into
account the variation of the stiffness value according to the Fy-u law. As previously
observed, the 4th order Runge-Kutta method is more stable than the other ones but it
has a medium computational charge. Considering the previous numerical example,
Fig. 3.40 illustrates the dynamic response evaluated by using the 4th order Runge-
Kutta method by assuming At = 0.025 s. In this case, the solution has been obtained
by applying a MATLAB code in which the time step value varies to take into account
the stiffness changes more accurately.
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Table 3.7 Numerical ts] | [m] | v [ms] | a( [m/s2]
solution according to 0 0 0 0

Newmark linear acceleration
method 0.10 0.0001 0.0024 0.0484

0.20 0.0006 0.0087 0.0904
0.30 0.0019 0.0180 0.1216
0.40 0.0043 0.0294 0.1388
0.50 0.0079 0.0414 0.1398
0.60 0.0126 0.0526 0.1237
0.70 0.0184 0.0617 0.0913
0.80 0.0249 0.0672 0.0445
0.83 0.0266 0.0680 0.0310
0.93 0.0335 0.0702 0.0211
1.03 0.0406 0.0711 0.0024
1.13 0.0477 0.0699| —0.0246
1.23 0.0545 0.0661| —0.0587
1.33 0.0608 0.0591| —0.0982
1.43 0.0662 0.0485| —0.1414
1.53 0.0703 0.0340| —0.1865

8.07 0.0128 0.0308 | —0.3151
8.17 0.0144 0.0019| —0.3500
8.27 0.0144 0.0000| —0.3520
8.28 0.0144 —0.0009, —0.3871
8.38 0.0126 —0.0346, —0.3931
8.48 0.0074 —0.0671 —0.3657
8.58 | —0.0009 —0.0957| —0.3069
8.68 | —0.0117 —0.1178| —0.2209
8.78 | —0.0243 —0.1315| —0.1138
8.88 | —0.0378 —0.1353 0.0066
8.89 | —0.0389 —0.1352 0.0165
8.99 | —0.0523 —0.1324 0.0438
9.09 | —0.0653 —0.1270 0.0779
9.19 | —0.0775 —0.1183 0.1173
9.29 | —0.0888 —0.1060 0.1603
9.39 | —0.0986 —0.0900 0.2050
9.49 | —0.1065 —0.0701 0.2495
9.59 | —0.1124 —0.0465 0.2917
9.69 | —0.1156 —0.0194 0.3299
9.79 | —0.1162 —0.0047 0.3468
9.89 | —0.1162 —0.0009 0.3700
9.89 | —0.1162 0.0001 0.4000
9.99 | —0.1144 0.0347 0.4027
10.09 | —0.1092 0.0678 0.3710
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Fig. 3.40 Comparison between linear and nonlinear solutions obtained by 4th order Runge-Kutta
method (At = 0.0255)
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Chapter 4 )
MDOF Systems e

Abstract The chapter introduces the structural dynamic problem for structures
discretized as systems with a finite number of degrees of freedom (Multi-Degree-of-
freedom: MDOF). Distinction between shear-type frame and bending-type frame is
provided. Modal analysis is introduced and the response of MDOF systems to both
harmonic and earthquake excitations for undamped and damped systems. Finally
the analysis of a 3D MDOF building is also provided.

4.1 Discretization

In many engineering applications, the real structures are considered discrete systems
with a finite number of degrees of freedom (Multi-Degree-of-freedom: MDOF).
This idealization is widely used for static problems (e.g. Finite Element Methods)
and especially for dynamic applications in which the mass of the system can
be associated to a few DOFs. Thus, the dynamic problem can be reduced to an
algebraic system of equations whose solution is closer to the real one for a dense
discretization. In dynamics of structures, the 2D multistory buildings are discretized
as an assemblage of beam and column elements interconnected at nodal points
where the DOFs are assumed located. In general, the weight of a multistory building
can be assumed concentrated on each story since the beams and columns have a
negligible mass with respect to the horizontal deck. Usually, the masses are lumped
and considered in the middle of the roof level or on the connections between beams
and columns. The discretization of the structure is carried out by individuating its
nodes in which the kinematic variables are referred.
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(a) (b)

Fig. 4.1 2D three-story building shear type (a) and bending type (b)

4.2 Shear Type and Bending Type Frames

From the stiffness distribution on multistory buildings, some information can be
detracted about the behavior of the structure towards to the dynamic excitation.
For this reason, a 2D three-story building with inextensible elements is considered
initially with infinitely rigid horizontal decks. Then the constraint of the horizontal
element is released, by allowing flexural deformations. The first case for example
applies to reinforced concrete buildings in which the horizontal decks are made
of thick reinforced concrete plates or by a concrete and masonry flooring system.
The large bending stiffness of the horizontal elements does not permit significant
rotations in the beam-column connections. Therefore, the horizontal strength of the
structure is described in terms of the lateral displacements only. In the dynamic
analysis, the structures having the aforementioned characteristics are called shear
type systems, since their global behavior is governed by the shear deformation.
On the contrary, if the flooring system does not have a negligible flexibility, the
rotational DOFs have to be considered in order to evaluate the global stiffness
contribution (bending type systems). In Fig. 4.1 is shown the difference in terms
of deformability between the shear and bending type buildings.

4.3 Mass, Stiffness and Damping Matrix

The inertia, stiffness and damping characteristics of MDOF systems are expressed
in matrix form, where the generic influence component a;; represents the jth force
due to the imposition of a dual kinematic variable describing the ith DOF. First of
all, the number of DOFs has to be evaluated according to the following expression
valid for 2D systems (Eq. 4.1).

DOF =3-N, (4.1)
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Fig. 4.3 Reduction of DOFs due to the inextensibility of the elements

where N, represents the number of independent points of a physical system and
the constant 3 defines its generic DOFs in a 2D X-Y plan (Fig.4.2). Since in
the structural analyses the axial stiffness is greater than the bending stiffness,
the element composing a structural system can be assumed as rigid axially. This
assumption leads to the reduction in the intrinsic DOF from three to two (Fig. 4.3).
Considering a generic multi-story building, the number of DOFs is equal to the
number of stories (Ny). In addition, for shear type systems the rotational DOFs in
the beam-column nodes can be neglected (¢, ~ 0) and the problem is simplified
further. Equations 4.2 give the number of DOFs for bending and shear type systems
with external full restraint.

DOF,; = Ny — shear type

. 4.2)
DOFy, = Ny + N, — bending type

For example, in Fig. 4.1, the number of DOFs for bending and shear type system are
given by Eq. 4.3.

{ DOFy = 4.3)

DOFy, =9
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Fig. 4.4 Reduction of DOFs due to the internal rigid constraints of the element

In Fig.4.4 is shown a generic bending moment frame in order to describe the
reduction of the number of DOFs due to the axial rigidity of the beam (b) and
column (c) elements. From Fig. 4.4, one can notice that all the vertical DOFs are
equal to zero by effect of the infinite axial stiffness of the columns ((EA). — 00),
while the inextensibility of the beams ((EA), — o0) causes an equal lateral
displacement for every node located in the same story. After individuating the DOFs
for the referenced structure, the mass, stiffness and damping matrix have to be
evaluated.
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Fig. 4.5 Different contributions to the dynamic equilibrium for a three-story bending type system

4.3.1 Bending Type Frames

As discussed for SDOF systems, Fig. 4.5 graphically explains the generic dynamic
problem for a bending type MDOF frame.

4.3.1.1 Stiffness Matrix

The stiffness matrix can be obtained according to the classical static methodologies.
Each component k;; represents the elastic force associated to the jth DOF that arises
as an effect of the imposition of a unitary displacement expressed as ith DOF, while
the displacement in all other DOFs are kept zero (Chopra 2017). Figure 4.6 describes
all the elementary schemes assumed to define the elastic contributions associated to
three-story systems.
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A

Fig. 4.6 Imposition of unitary displacements representing the DOFs of the system

When the unitary DOF is imposed, the remaining ones are kept at zero (fully
restraint conditions). As known from the mechanics, from the imposition of a
displacement in a node of the system (composed by a finite number of fully restraint
elements) the elastic nodal reactions arise (McGuire et al. 2000). As example,
Fig. 4.7 illustrates the elastic actions due to the DOFs referred to the third story.
By imposition of the dual nodal equilibrium equations, the stiffness coefficients can
be evaluated according to superposition of effects (Eq. 4.4).
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Fig. 4.7 Elastic forces arise from the DOFs associated to the third flooring system
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The previous system can be rewritten in matrix form as shown in the Eq. 4.5.
[k] - {8} = {Fi} (4.5)

where [k] represents the stiffness matrix. The complete formulation for the analyzed
three-story building is given in Eq. 4.6.

f(mam) m o, om 0o wm o 0]
mo () o 0w w oo
0 . oo
o mmm(mgwy o o w @
o _um 0 so. e _e _m
2 " W 7 ” " G
0 o0 o= 0w (miwm) o«
0 o0 o moo_mwm (mywm) w

$c Mck
(23 Mpk
ucp Fep
73 M
or =1 Mpy |- (4.6)
UEF Frrx
%4 Mg i
727 My
uGH Fonk

The stiffness matrix is squared and symmetric and the diagonal terms represent the
main elastic contributions of each DOFs (k;; with i =j).

4.3.1.2 Damping Matrix

Similar to the stiffness matrix, the damping influence coefficient c; is evaluated by
imposing a unit velocity along DOF I, while the velocity in all other DOFs are equal
to zero. The compact matrix form of the damping forces is expressed in Eq. 4.7.

(el {8} = tF) A7

Assuming damping coefficients ¢, for the rotational DOFs and ¢, for the linear

DOFs, the damping matrix expression of the three-story bending type frame is given
in Eq.4.8.
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c, 0 0 00 0 00 O oc M..c

0Oc, 0 OO0 O OO0 O D M.p

00 Cy 00 —Cy 00 O ’:{CD FC,CD

00 0 ¢, O 0 00 O Yk M. g

000 0c, 000 0 GF ¢ =14 Mer (4.8)
00—,00 ¢ 00— iR Feer

00 0 00 0 ¢, 0 O 0] M. c

00 0 00 0 O¢, O Ou M. n
_0 0O 0 0O —Cy 00 Cy | I;LGH Fc,GH

Since the damping in the structure has been modeled with discrete dashpots, a
unit rotational velocity imposed in a node does not lead a damping force in the
other nodes. Different considerations can be made for the linear velocities since the
associated dashpots are disposed as a continuous system, but even in this case, the
damping matrix is symmetric.

4.3.1.3 Mass Matrix

The components of the mass matrix are defined by imposition of a unitary
acceleration dual to the ith DOF and keeping the accelerations of the masses
associated to the other DOFs at zero. Since the mass is considered concentrated
in the middle of each story, the imposition of an acceleration on a mass cannot
influence the motion of the other ones. For example, Fig. 4.8 illustrates the definition
of the three components m;; for the case in which the lateral acceleration is applied
to the mass located to the third story.

Fig. 4.8 Definition of the ms; .
mass matrix components uz; =1
— Frys
G - @— =
| ms :H
i i
I I
| F |
: m2 :
E ;- @ —F
| n, |
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X En] !
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m
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In this case, the mass components associated with the linear DOFs are given in
the Eq. 4.9.

m3 =Fy, =0
msy = sz = 0 (49)
my3 = Fp = m3 -1

Even for the other two masses, the relative contributions can be simply evaluated by
the imposition of a unitary acceleration on the first and second story, respectively.
Since the DOF of the bending type frame is equal to nine, even the null inertia
contributions due to rotations must be expressed. For this reason, the inertia forces
for the MDOF system can be expressed as shown in the Eq. 4.10.

00 0000000 bc My, c

000000000 én My

00m 000000 iico Fucp = Fu
000000000 P My g

000000000 G ¢ = My F (4.10)
000 00m00 0 ligp Foer = Fup
000000000 @6 M,

000000000 én M u

000000 00ms | liigy Fuon = Fu3

Only the direct components associated with the lateral displacement DOF are non-
zero (diagonal matrix). The matrix form of the previous expression is given in
Eq.4.11.

[m] - {8} = {Fu} 4.11)

4.3.2 Shear Type Frames

In practical engineering applications, the multi-story buildings are considered a
shear type system since the flooring systems are more rigid than the beams-columns
system. As previously mentioned, the dynamic problem will be reduced because
the rotational DOFs can be neglected. Considering the same three-story buildings,
the inertia, stiffness and damping components can be deduced from the following
scheme (Fig. 4.9) and the dynamic problem is reduced to a three DOFs system.

4.3.2.1 Stiffness Matrix

The influence stiffness components are evaluated in reference to the three elemen-
tary schemes illustrated in Fig. 4.10.
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Fig. 4.10 Imposition of unitary displacements representing the DOFs of the system
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Each DOF can be expressed as #; notation, where i is the index of the story level
(Eq.4.12).

Ucp = Uy
UpF = Uy “4.12)
UGH = U3

Thus, the generic stiffness matrix of the MDOF system is given in Eq. 4.13.

ki + k)  —k 0 up Fr1
—k2 (kz + k3) —k3 uy = Fk,2 (413)
0 —ks k3 u3 Fis

where the generic influence stiffness coefficient k; represents the direct elastic
contribution associated with the ith DOF (Eq. 4.14)
12EI,
ki =k; =n,- i (4.14)
In which n, is the number of columns for the ith level (e.g. n.=2 for each story in
the MDOF analyzed). Finally, the elastic forces can be rewritten in Eq.4.15

24EIC 2 —-10 up Fk,l
| 12 -l ym = Fe (4.15)
0 —-11 us Fk,3

4.3.2.2 Damping Matrix

Assuming the same index notation used in the previous paragraph, the matrix form
of damping forces is given by Eq. 4.16.

(c1+k) —c 0 it F.;
- (c2+c3) —c3 iy ¢ =3 Fep (4.16)
0 —C3 C3 l;t3 Fc,3

4.3.2.3 Mass Matrix

Finally, the mass matrix is evaluated by remembering that each mass does not
influence the other ones (lumped mass model). The inertia forces are expressed in
the matrix Equation 4.17.

m 0 0 ill FW,J
0 m 0 i ¢ = Fuo 4.17)
0 0 nms ﬁg, Fm.3
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The diagonal mass matrix is composed as represented in the Eq. 4.18.

my =0 — for:i#j “.18)

my =m; — for:i=j

4.4 Reduction of DOFs

The computational load required by a bending type frame is greater than the shear
type frame. On the other hand, the DOF necessary for characterizing the dynamic
behavior of a structure is generally less than the DOFs used to evaluate the static
stresses and deformations. For example, for multi-story buildings, the predominant
DOFs are the lateral displacements at each story. It is logical that the reduction
in DOFs is for the case of the bending type systems for which the “static” DOFs
include lateral displacement and nodal rotations. Generically, the total DOFs of
the system can be reduced by applying the condensation method. At this purpose,
one of the most commonly used approaches is the Guyan reduction (Guyan 1965)
according to which the DOFs are divided into master DOFs and slave DOF's. For
structural dynamic systems, the first ones are the lateral roof displacements, while
the second ones include the nodal rotations. For the sake of simplicity, an undamped
MDOF system is considered. The matrix form of the equation of motion has to be
adjusted in order to divide the master DOFs (m) from the slave DOFs (s) (Eq. 4.19).

()}
% ()3 } @19

[[Mmm1 [Mms]] W, [[Kmm] [Km]} { {8m}§

[Mgn] [M] {;s;} (K K] || {85}

This equation can be simplified by assuming that the inertial contributions associ-
ated with the slave DOFs are equal to zero.

[Ms] = [Mn] = [My] = [0]
In addition, the external forces applied to the slave DOFs can be assumed negligible

({F(t);} ={0}). The system of the equations of motion can be rewritten in matrix
format (Eq. 4.20).

P Il -y e

The vector of the slave DOFs §; can be obtained from the second row of the matrix
given in Eq.4.21.

o [Ksn] {0m} + [Kss] {05} = {0} — {65} = _[K.YS]_I [Ksm] 18m} (4.21)
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Substituting the expression found in the first equation of motion, the Eq.4.22 is
given.

W] {80} + (K] = o) I ™ (Kol ) (80} = (F (0,1} (4.22)

The equation of motion has been rewritten by referencing only the master DOFs and
the Eq. 4.23 defines the reduced or condensed stiffness matrix [Kg].

[KR] = ([Kmm] - [Kms] [Kss]_l [Ksm]) (4.23)

The dimension of this matrix is equal to the master DOFs. For the symmetry of
the stiffness matrix, one can notice that [K,]=[K»]”. In addition, the master mass
matrix is represented by a diagonal matrix in which the non-zero contributions are
equal to the masses concentrated at each story. As an example of a Guyan reduction
application, let’s consider the three-story bending type frame seen previously.
Equation 4.24 represents the stiffness matrix reshaped in order to divide the master
components (icp, Ugr, Ugy) from the slave ones (¢c, ¢p, Ck, OF. O, PH)-

L 24EL 6L 6L 7
”» w 0 0 0 = w” 0 0
MBI MSEL.  _ 24F 6EL 6EL 0 0 __GEL 6L
" Do 2ein I »” 6EL 6L A s
c c OLI, c c OLI
0 " » 0 0 [ 2 2 =2
6EL SEL 4El 261 2E1,
0 Z 0 (L 4 ) 2 : 0 0 0
6EL 2E1, SEL 4EI 261
2 2El, SEl. y 4El,
0 W 0 T W+ 0 7 0 0
_6FL 6L 2E1, SEL, 4E1, 2E1, 2E1,
W7 0 W2 0 0 ( Wt T ) L 0 0
6L 6L 2E1 261, SEL. | 4EI 2E1
” 0 ” 0 h L ( h + L ) 0 h
_ 6Bl GEL 2E1, 4EL 4El 2E1
0 2 2 0 0 h 0 ( W T ) L
_GEL GEL 261 2E1, 4EL 4El
L 0 2 2 0 0 0 0 L ( Wt L )
ucp Fepk
UgF Ferx
uGH Fen x
9c Mc
vp (= Mpx (4 . 24)
(73 Mg g
(%3 Mg
G Mqk
PH Mp i

The partitioned matrices represented in the Egs. 4.25, 4.26 and 4.27 can be defined.

48l _24EL

h3 h3
24E1. 48EI. 24El,
[Kmm] = S ‘ w3 < = 3 < (425)
0 __24El. 24El
h3 h3

0 0 —%_8%L o 0
T 6El. O6El. 6FEl. 6El.
[Kms] = [Ksm] = h2L hzc 0 0 - ¢ — h2L (4-26)
0 0 Ok 6EI.  6El.  6El,
h? h? h? h?
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(% 4 by 2h e 0 0 0
B (e g ) 0 28 0 0
2Elc 8EI 4ElL 2Elp 2Elc
(K] = :) 21(:')Ip ( ! L ‘ ) (Miﬂ) :) 2[?[(7
h L h L h
0 0 2 0 (M 4 by 2
0 0 0 2L Lo (e 4 D

(4.27)
It can be observed that the master stiffness matrix is coincident with the total
stiffness matrix of the same MDOF system assumed as shear type. Anyway, the
[Kg] (3 x3) reduced stiffness matrix is defined according to Eq.4.23. Thus, the
equation of motion for the bending type three-story frame is given by Eq. 4.28.

) m 0 O iy up
[M,] {5m} F KRSy =] 0 my 0 | ity b+ (K] (4.28)
0 0 ms i3 us

4.5 Modal Analysis

The case of a MDOF system subjected to free vibration is analyzed here considering
the generic scheme shown in Fig.4.11. The dynamic problem is defined by means
of a system of n equations of motion, in which n indicates the number of DOF of
the system. In Eq. 4.29 the matrix form of the equation of motion for an undamped
discrete system is reported (Chopra 2017).

[M] - {ii(x. )} + [K] - {ulx, 0)} = {0} (4.29)

Since the stiffness matrix is not diagonal, the differential equations are not inde-
pendent from one another. In other words, each equation of motion contains more
than one kinematic unknown. From a mathematical point of view, the solution of the
dynamic differential system is complicated. In order to avoid a rigorous solution, a
coordinate transformation can be applied (Eq. 4.30) (Bathe and Wilson 1976).

{ulx,n} =[p@)]-{q(n)} (4.30)
ui(t=0) u2(t=0) uL(t:0)
¥y I
Ao A el o
ISTe) O X

v

Fig. 4.11 Discrete model of MDOF undamped system
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The independent variables of the system have been expressed as the multiplication
between a spatial function [¢(x)] and a time function {g(f)}. Substituting the
previous expression, Eq.4.31 is given.

[M] - [#] -{G(D)} + [K] - [#] - {q(D)} = {0} (431

Since ¢ is time-independent, it is considered as a constant within the differential
equations. The coordinate transformation approach has led to obtain an uncoupled
system of equations. In fact, Eq. 4.29 assumes the typical form of the equations of
motion for n independent SDOF systems for less than a constant ¢. In reference
to the characteristics just discussed, the main goal of the problem is to evaluate
the component of the matrix spatial function [¢]. Remembering the generic time
solution for an undamped SDOF system (Eq. 4.32).

q(t) = @~Sin(w-t)+uo-cos(a)-t)
1)

. (4.32)
§(1) = —w? (% -sin(w - t) + ugp - cos (w - t))

The equation of motion can be rewritten as given by the Eq. 4.33.
—a)z-[M]-[¢>]'(%"-sin(a)~t)+u0'cos(a)~t)>+ @33)
+[K1-[g]- (2 -sin (@ 1) + o cos (@ 1)) = {0} '

Thus, Eq. 4.34 is obtained.
(IK] — ? - [M]) - [¢] = {0} (4.34)

It is important to emphasize again, from a mathematical point of view, that the initial
equations of motion have been transformed into a homogeneous algebraic equation
for n independent SDOF systems such that each of them is characterized by the
scalar vector ¢;. The coefficients of the algebraic equations are given by the term
([K]-w?-[M]), while [¢] represents the unknown ones. In order to obtain a nontrivial
solution ([¢]=[0]), the coefficient must have a result that is exactly equal to zero
(Eq.4.35).

(K] — 0* [M]) = {0} (4.35)

This means setting the determinant of the coefficient matrix to zero. Thus, if the
square of the angular frequency is replaced with the generic constant A, the problem
can be expressed by Eq. 4.36.

det[[K] — A+ [M]] =0 (4.36)

This is a typical eigenvalue problem (Kuttler 2007) in which the A value represents
the eigenvalue and each vector ¢ is the associated eigenvector. Naturally, the total
number of eigenvalues and eigenvectors is equal to the number of DOF of the
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system (n). Therefore, the null determinant condition corresponds to an nth order
algebraic equation. In addition, since the stiffness and mass matrix are positive
and symmetric, all the eigenvalues will be real and different from one another.
The following steps define the procedure to be applied in order to evaluate all the
eigenvectors.

I. Definition of the eigenvalues. They represent the n roots of the algebraic
equation associated to the condition of determinant equal to zero (Eq. 4.37).

det[[K] — A - [M]] = det [[M]—1 K] — A - [1]] -0 (4.37)

Eq. 4.37 can be also expressed as
ataA+...+a-AMta A" +a, - A"=0 (4.38)
Thus the eigenvalues will be represented as given by the Eq. 4.39.
Aiwith:i=1,2,....n—>A <Ay <...<A, (4.39)

II. Evaluation of the ith eigenvector associated to the eigenvalue A; (Eq. 4.40).

o1
i

(K] =i~ [M]) - {¢i} = {0} — (i} = | . (4.40)
¢m’
When all the eigenvectors are defined, the scalar spatial matrix can be obtained
(Eq.4.41).

o1 b12 1n
¢ ¢ P

gl=[17 11 ) = lenis el @4
¢nl ¢n2 ¢nn

It represents the eigenspace of the problem. The uncoupling of the equation of
motions is due to the positivity and symmetry of the mass and stiffness matrix.
From these characteristics, it is possible to demonstrate the orthogonal property of
the eigenvectors. For this demonstration, a pair of different eigenvectors and their
associated eigenvalues are considered. From the dynamic equilibrium equation the
following system can be obtained (Eq. 4.42).

K] {¢1} = o [M] {1}
(K] (g} = o0 [M] () (42
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Multiplying both of the terms of the two equations by the transposed eigenvector
which is not associated with it, Eq. 4.43 is given.

% {on) [K1{gr} = o {en)” M1} 4.43)
(o (K1 {n} = on*{pi}" [M] {n} '

Transposing the second equation, for the symmetry of the mass and stiffness matrix
it is possible to obtain Eq. 4.44.

(1637 K1 t93) = 002 (100" M1 93) — (0 IKT (0} = ) ) ()
(4.44)
Thus the equation system can be rewritten (Eq. 4.45).

(n" (K] () = o {gn)” [M] g1} (4.45)
{0} K] L} = n{pn}" [M] {1}

Subtracting each term of the second equation from the related term of the first
expression, the Eq. 4.46 is obtained.

(w0 — o®) {n}" M1 i} = 0 (4.46)

Since all of the eigenvalues are real, positive and different from each other, the
previous expression can be particularized as given in Eq. 4.47.

{on}" M) i} =0 (4.47)

Substituting this expression into one of the equations reported before, the following
relationship can be deduced (Eq. 4.48).

{on}" [K]{g1} =0 (4.48)

The two last equations demonstrate the orthogonality of the eigenvectors with
respect to the mass and stiffness matrix. As given by the properties of algebra, if
a square matrix is symmetric and the number of the associated eigenvalues is equal
to the dimension of the matrix, it will be diagonalizable. The diagonalization of the
matrix is obtained by as generically expressed in the Eq. 4.49.

[D] = [v]" [A] [v] (4.49)

where D indicates the diagonal matrix of the original matrix A, while v represents
the eigenvectors matrix evaluated with referring to the matrix A. Using the same
definition for the mass and stiffness matrix and for the ith eigenvector, Eq.4.50 is
given.
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Fig. 4.12 Decomposition of the motion of a 3-DOF system for a given time instant

[¢:]" [K][¢] = [Kd]
[#" (M) [$:] = M) (4.50)

where the diagonal matrices [K,;] and [M,] are called generalized modal stiffness
matrix and generalized modal mass matrix, respectively. The diagonal mass and
stiffness matrices lead to obtain a decoupled dynamic equation system. Thus, the
dynamic motion of the n-DOF system for a given time instant can be assumed to be
the response of n independent system with equivalent mass Md;; and stiffness Kd,;.
Each of these dynamic responses are characterized by a spatial shape function {¢;}.
Figure 4.12 graphically focuses on this aspect for a generic 3-DOF system. In order
to simplify the problem, the eigenvectors are considered normalized with respect
to the mass. Naturally, the introduction of an arbitrary constant in a mathematical
expression does not modify its solution. Thus, the constant Q; associated with the
ith eigenvector is introduced (Eq.4.51).

Qi = S (4.51)

Vi Mg

The normalized ith eigenvector {¥;} is given by the Eq. 4.52.
(Wi} = Qi - {¢i} (4.52)

The mass and stiffness diagonal matrix can be rewritten by referring to the
normalized eigenvectors (Eq. 4.53).

(W] (K] [¥] = [Kaw)]
[wil" M) [¥] = [Maw)) (4.53)
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The normalization with respect to the mass leads to obtaining a diagonal normalized
mass matrix equal to the identity matrix (Eq. 4.54).

(o) M) {91}
(190" 011 t3)’

(! M) {w;) = =1 (4.54)

At the same time, it is easily demonstrated that the diagonal normalized stiffness
matrix is composed of all the eigenvalues of the problem (Eq. 4.55).

()" [K]{i}
GHED)

(W K1) = =1 =} (4.55)

This matrix obtained is called the spectral matrix. Generically, the normalized
diagonal matrix can be expressed as given by the Eqs. 4.56 and 4.57.

10---0
— 0r1---0 my;=1for:i=j
Ml=M=|... .|—=-7." . (4.56)
[] R {m,;/=0f0r:l7é]
00---1
®? 0 -+ 0

[K] = [A] = (4.57)

0 w?- 0 = IEij;éa),-zfor:izj
oo kij=0for:i#j

0 0 - w?
Finally, the matrix form of the equations of motion can be rewritten as given by the

Eq.4.58.

[M] G0} + [K] {a()} = {0} (4.58)

Substituting the matrices with their components the Eq. 4.59 is obtained.

10---0 g1 (1) w12 0O --- 0 q:1(t) 0
01--0| | a0 0 @2 0 ||aq0 0
AR R Sl SN B Lo (4.59)
00---1] .0 0 0 -] g 0

It is important to point out some observations about the procedure just discussed.
First of all, the eigenvalues of the problem represent the square of the angular
natural frequencies (A; = a)l2 ) for each of the independent SDOF systems (Blevins
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2001). In addition, the generic eigenvector {¢;} is a linearly independent vector that
represents the natural modes of vibration of the MDOF system for a given natural
frequency w;. Therefore, the generic free vibration motion of an undamped n-DOF
system can be obtained by the superposition of n free oscillations with natural
frequency w; (i=1,2,...n) where each of them is associated with a given shape
of the oscillation defined by means of {¢;}. Moreover, the matrix containing the
natural mode of vibration is called the modal matrix where the generic component
¢;; represents the ith DOF of the system and j is the index associated with the natural
frequency w;. Since the mathematical problem shown for the MDOF systems is
based on the superposition of the effects, it is only valid for linear elastic models.
In order to focus on the practical aspects of the free vibration MDOF system, it
is important to characterize the problem in terms of vibrational modes response
(time independent) and of dynamic response of the system (time dependent). These
concepts will be discussed in detail in the following two paragraphs.

4.5.1 Vibrational Modes Response

The coordinate transformation imparted on the DOFs of the system has been used
to uncouple the dynamic equilibrium equations. This has led to the evaluation of
the dynamic response of the system for a given time instant by linear combination
of the response of n equivalent SDOF systems characterized with different natural
frequencies w; and spatial shapes {¢;}. These last ones represent the natural modes
of vibration that give information about the deformed configurations of the MDOF
system. Since the natural frequency of the system are increasing with the modes
(w; < wy < ... < w, ), it is possible to demonstrate that the associated
natural modes have a number of sign inversions equal to i-1, where i represents
the referenced mode. Figure 4.13 illustrates the aforementioned characteristics of a
generic three DOFs system. As observed previously, the orthogonality of the modes
means that each of them is independent of the others. Another physical implication
of this property can be carried out in reference to the energetic content of the
vibrational modes. For this reason, the mutual virtual work of /th and Ath vibrational
modes can be expressed by the Eq. 4.60.

8Lns = {8¢n}" - (IM1 {861} G + [K1 {861} q) (4.60)

From the orthogonality of the modes, the following results are obtained (Eq.4.61).

5Lis = (1590} M14891}) 4+ ({560} K] (8913) @1 = 0 (“.61)

This condition implies that the modes are energetically independent. The vibrational
modes analysis is able to provide a lot of information about the MDOF system
behavior. At the same time, it cannot represent the rigorous dynamic response of the
system because this last one is necessarily dependent on the time.
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Fig. 4.13 Vibrational modes of a three DOFs system

4.5.2 Modal Expansion of Displacements

The complete dynamic characterization of the MDOF system can be obtained from
the values of the DOFs (Fu and He 2001). Remembering the imposition carried out
at the initial part of the Sect. 4.5, the displacement associated with the mass of the
system can be evaluated (Eq. 4.62).

{u@®} = [p™)]-{q(n} (4.62)

Vector {g(t)} contains the time variable functions associated with each DOF. Thus,
the g;(¢) term represents a scalar factor of the given vibrational mode {¢;} and it is
called a modal coordinate . Since the modal coordinates are not space dependent, by
using the Eq. 4.62 the shape of the displacement vector associated with a given mode
i ({u;(x,t)} ) is proportional to the relative vibrational mode. Figure 4.14 illustrates
the definition of each vector displacement contribution for the three MDOF seen
before.

The dashed lines refer to the vibrational modes. Therefore, the linear combination
between the modal coordinates and the vibrational modes lead to the evaluation of
the dynamic response of the MDOF system (Eq. 4.63).

w@®} = {1} - q1(0) + {2} - () + {3} - q3(0) (4.63)

Figure 4.15 illustrates the time evolution of the deformed shape for the three
DOF system in reference to the three time steps. The dashed lines represent the
displacement contributions for the three modes in each time step while the bold
continuous lines are the dynamic displacement responses for each time step. If one
vibrational mode is more dominant than the other ones ({g;}»({qx}, {qi}....)) the
dynamic response of the system is almost entirely due to this vibrational mode.
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mz.

m1.

Fig. 4.15 Dynamic response of the three DOFs system for time step #;, ¢, and #3

Figure 4.16 shows a generic example for a three MDOF system. As will be discussed
in the next part of this chapter, the first modes are always predominant to the high
modes for regular multi-story buildings.
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Fig. 4.16 Predominant first
mode for a three DOF system

4.5.3 Energetic Considerations

The kinematic and potential energy for the ith mode of a MDOF system can be
defined as expressed in Eq. 4.64.

Ex = =i} M) G} = ~ )" M) {6} -

f 12 (4.64)
Ep = E{Mi}T (K] {u;} = E{¢i}T (K] {¢:} - g

One can notice how each of them is directly proportional to the product between
the vibrational modes. This implies that the total energy of the system is distributed
among each independent vibrational mode (Eq. 4.65).

(Ex + Ep) = Y _E({$}) (4.65)
i=1
4.6 Free Vibrations

4.6.1 Undamped Systems

As obtained in the previous part, the dynamic solution of the equation of motion is
defined by means of the vibrational modes and of the modal coordinates (Eq. 4.66)
(Chopra 2017).
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W} = [pW]- {90} =Y _{$}-a (4.66)
i=1

The vibrational modes are defined from the modal analysis of the system, while
the modal coordinates can be obtained from the typical solutions of the SDOF by
imposing the initial conditions. In reference to the case of SDOF undamped system
subjected to free vibrations, the time dependent solution can be expressed in matrix
form (Eq. 4.67).

qi(t) = Ay - sin (w; - t) + Ap; - cos (w; - 1) (4.67)

where the constants are expressed as vectors and can be evaluated by means of the
initial conditions. Similarly to the SDOF case, the initial conditions are defined by
means of the initial displacement and velocity values (Eq. 4.68).

@}y =Y {¢i} - (Ar; - sin (@; - 1) + A; - cos (w; - 1)
i=1

. (4.68)
(i)} =)o+ {gi} - (Ar; - cos (@; - 1) — Ag; - sin (i - 1)

i=1

The values of each component of the displacement and velocity vector are imposed
at time =0 (Eq. 4.69).

W0)} = {uoi} = Y_{pi}- A
i=1

- (4.69)
{io)} = {ioi} = ) wi- i} - Au;

i=1

In other words, the following modal coordinates can be deduced at time ¢ = 0
(Eq.4.69).

qi = Ay;
. A 4.70)
qi = w; *Ay;

Finally, in the Eq. 4.71 the dynamic displacement response of the system is given.

o} = 3 195 (qi cos(@y - 1) + j)— - sin(; - z)) @71
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Fig. 4.17 Three-story shear type frame
Table 4.1 Geometric and mechanical characteristics of the frame
E [MPa] b [m] h [m] L [m] m [kg]
30,000 0.30 3.00 5.00 40,000

This expression is similar to the dynamic response obtained for the undamped SDOF
system. In this case, the initial displacement and velocity are expressed in matrix
form.

4.6.1.1 Numerical Example for Undamped System
Let’s consider a three-story regular building illustrated in Fig.4.17 for which each
flooring system is considered infinitely rigid (shear type system). The geometric and

mechanical characteristics of the model shown in Fig. 4.17 are reported in Table 4.1

The column elements are assumed with the same area defined by the cross section
s-s. The mass and stiffness matrix are reported in the Eqs. 4.72 and 4.73.

100 100
Ml=m-{010|=40000-|010 | [kg] (4.72)
001 001
2 -10 2 -10
36EI.
K] = T -1 2 =1 |=27-10"-| =1 2 =1 | [N/m] (4.73)

0 -12 0 -12
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The eigenvalues are defined by referring to Eq. 4.74.

2 -1 0 100
det[[M]_l[K]—A-[I]]zdet 0.675-10°- | =1 2 =1 |=A-|010 || =
0 -1 1 001
13501 —675 0
=det| —675 1350—A —675 | =0
0 —675 675-1
4.74)

From the condition reported above, the characteristic polynomial expressed in
Eq.4.75 is given.

A3 —338-10°-A24+2.73-10°-1—031-10°=0 4.75)

The three roots of the polynomial are given by Eq. 4.76.

d d d
A= 133.69 5 A, = 1049.60 5 A3 = 2191.71 (4.76)
S S S
The natural frequency of the three modes can be evaluated (Eq. 4.77).
d d d
w1 = 1156 — 0y = 32.40— w; = 46.82— 4.77)
S s S
Thus, the natural periods can be defined (Eq. 4.78).
T, =0.54s T, = 0.19s T3 = 0.13s (4.78)

It is now possible to calculate the eigenvectors for each natural frequency as given
by the Eq.4.79.

(1350 — 133.69) —675 0 Pn
Model — —675 (1350 — 133.69)  —675 ¢ ¢t =
0 —675 (675 —133.69) | | ¢s;
121631 =675 0 P 0
=| —675 121631 —675 |3 ¢ + =10

0 —675 541.31 $31 0
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(1350 — 1049.60) —675 0 b1
Mode2 — —675 (1350 — 1049.60) —675 b0 ¢ =
0 —675 (675 — 1049.60) | | ¢
300.40 —675 0 P12 0
=| —675 300.40 —675 ¢ =10
0 —675 —374.60 | | ¢s 0
(1350 — 2191.71) —675 0 b13
Mode3 — —675 (1350 — 2191.71) —675 ¢ ¢ =
0 —675 (675 —=2191.71) | | ¢33
—841.71 —675 0 b13 0
=| —675 —841.71 —675 ¢ =10
0 —675 —1516.71 | | ¢33 0

(4.79)

Usually, the eigenvectors are evaluated by setting the values of the referenced
components to the top DOF of the frame equal to one. In other words, each
eigenvectors is expressed as normalized to the top modal displacement. In the case
study, the free vibrational modes are given by Eq. 4.80.

0.45 —1.25 1.80
¢ = 0.80 —0.55 —2.25 (4.80)
1 1 1

It can be noticed that the second and third eigenvectors have one and two sign
inversions, respectively. Figure 4.18 illustrates the vibrational modes, normalized
with respect to the top modal displacement of the system. In addition, the mass
normalized vibrational modes are given in Eq.4.81.

Model — Q) = % = 0.0037
{91} M1 {1}
1 0.16 —0.37 0.30
Mode2 — 02 = —————===10.0030 _, y _ 19=2.| 030 —0.16 —0.37
(923" M1 {2} 0.37 030 0.16
Mode3 — Q3 = % = 0.0016
{93} M) {gs}
4.81)
Thus, the matrix form of the equation of motion is given by the Eq. 4.82.
1007 (4100 133.69 0 0 g1 (1) 0
010|130+ 0 1049.60 0 o@) =10 (4.82)
001 ] (g0 0 0 219171 | {g500) 0

The solution of the dynamic equilibrium equations in terms of displacements at each
story is evaluated as given by the Eq. 4.83.
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Fig. 4.18 Vibrational modes of the shear type frame normalized with respect to the top modal
displacements

(@)} = Z{¢i}' (Qi -cos(w; - 1) + &, sin(w; - f)) (4.83)
i=1 @i
Rewriting the above expression in the form of a system, the Eq. 4.84 is given.

1 .

@y = ¢ ¢+ (a0 -cos(or -0 + L -sin(ey 1))
$31
b2 '

@} ={ gn { - (g2-cos@r 1) + 2 -sin(@r 1) - (W)} = (O} + w0} + w0}
(o2
$13 '

s} = { a3 ¢+ (a3 - cos(s - 1)+ £ - sin(es 1))
¢33

(4.84)
Next, let’s consider the initial displacement and velocity vector reported in the
Eq.4.85.

{uo;}" ={0.10.51} [m]
{itg;}" =

(4.85)
{000} [m/s]

The modal coordinates at time ¢t = O can be evaluated from the initial conditions
(Eq. 4.86).
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3
{uoi} = ; {i} - qi

3 (4.86)
{ing.i} = ; ¢} - qi
Multiplying both sides by {¢;}"[M], Eq. 4.87 is obtained.
3
63" M) o} = Y- {8} M1} ai
=l (4.87)

3
(it M) (i1} = ;1 {0t M4} - i

where {¢;}T[M]{¢;} is a diagonal matrix and the modal coordinates can be deduced
as given by Eq. 4.88.

P .l LR
L e M) (o)
o= {oi}" M {ing 1}
L e M) (e}

From this definition, the modal coordinates for the case study are evaluated and
expressed in Eq. 4.89

(4.88)

0.7851 0
{gi} = 102088 ¢ {gi}=140 (4.89)
0.0061 0

Thus, the displacements are given by the Eq. 4.90.

045
{u1 (1)} = 5 0.80 ; - 0.7851 - cos(11.56 - 1)
1
—1.258
() ={ —0.55 ¢ -0.2088 - cos(32.40 - £) (4.90)
1
1.8
{us(1)} = 3 —2.25 ; - 0.0061 - cos(46.82 - 1)
1

It is possible to observe how the modal became very small for higher modes. In
other words, the amplitude contribution of the first mode is greater than the other
ones (g1 > ¢ > ¢3). Itis important to remember that the displacement values found
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Fig. 4.19 Dynamic response of first mode, second mode, third mode and total of the three DOFs
frame fort = 0.1s,7r =0.5sandt = 0.1s

are in reference to the relative displacement for each DOF. Figure 4.19 illustrates
the absolute displacements for each mode obtained for three different time instants.
Then, Eq. 4.90 defines the total dynamic response.

{u@®} = {m @} + {wa @)} + {uz ()} (4.91)

Since the modal coordinates associated with the third mode are much smaller than
the other ones, its contribution can be considered as null. In addition, one will notice
that the first mode is the predominant one because the total dynamic response is
very close to the first mode response. Even the second mode has little influence in
the dynamic response. The dynamic response of the MDOF system is expressed
as a linear combination of three periodic responses associated to its modes. This
observation leads to evaluate the total displacement at a generic time as reported
below (Eq.4.92).

3
w(t) =Y uilt) = Aoy - c0S(@eq + eg) (4.92)

i=1

where “e” identifies the equivalent characteristics of the periodic response. Thus,
Eq. 4.92 can be rewritten as shown below (Eq.4.93).

AegCOS(Weq 1+ Peg) X q1-cos(wi-t+P1) 4 qr-cos(wy - t+¢2) +q3-cos(ws -t +¢3)

(4.93)
For this case study, the phase lag is equal to zero. In addition, since the energy of a
periodic signal is proportional to the square of its amplitude, the following energy
balance equation can be written (Eq. 4.94).

Ao X 1> + @2 + g3 (4.94)
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Substituting Eq. 4.94 in Eq. 4.93, the following Eq. 4.95 is given.

q1 - cos(wy 1) + g2 - cos(wy - 1) + g3 - cos(ws - 1)
V@& + 6+ a4

Substituting the trigonometric terms with the associated 2nd order Taylor series
terms centered in x = 0, Eq. 4.96 is given.

COS(Weq * 1) ~ (4.95)

2 12 )2 2?2
- (0q-1)"  @1+a@+aqs N o | g, 2 4 g, la
3 =
V& + 6+ a3 V& + 6+ a3
(4.96)
Deriving twice with respect to the time variable, Eq. 4.97 is obtained.
0] ‘Wt g3

Weg = q1 w1+ g2 w2+ g3 - w3 (4.97)

V@ + 3+ 3

Substituting the associated numerical values, the following result is obtained
(Eq.4.98).

0.7851 - 11.56 + 0.2088 - 32.40 + 0.0061 - 46.82
Wog =
! V0.7851% + 0.20882 + 0.00612

= 19.85rad/s (4.98)

This result confirms that the first mode is predominant in the dynamic response of
the three DOF, but the second mode contributes as well.

4.6.2 Damped Systems

If the damping is considered, the equation of motion is rewritten in the following
matrix form (Eq.4.99).

[ M) [91{G(0)} + [9]" [ClIgi] 1a(0} + [" (K] [ {q()} = {0} (4.99)

As previously observed, the matrices [¢;]"[M][¢;] and are diagonalizable, but the
term is not diagonal. The MDOF system cannot be solved as the superposition of
n independent SDOF systems since the equations of motion are not uncoupled.
When the damping matrix is diagonalizable, then it is called “classical damping
matrix” and according to Rayleigh (Liu and Gorman 1995) it is obtained as the
linear combination of stiffness and mass property of the system (Eq. 4.100).
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Fig. 4.20 Definition of the two control frequencies in the Rayleigh damping formulation (Chopra
2017)

[C] =« [M] + BIK] (4.100)

Multiplying both terms by the inverse mass matrix, the Eq.4.101 is obtained.

2-5,~-w,-=a+ﬂ-a),~2—>“§,~=%-(%—i—ﬂ-a)i) (4101)
The coefficients « and B depend on the damping ratio and on the natural frequency
associated to the modes of the system. In practice, the damping ratio is assumed
constant for every mode, while the maximum and minimum natural frequencies
of interest are chosen. This damping evaluation depends on the pair of natural
frequencies used. Figure 4.20 explains graphically the problem.

The control frequency values w,,;, and w,,,, must be chosen in order to consider
all the predominant modes and to obtain reasonable damping ratio values. Usually,
these parameters are defined as the predominant frequency (w,,;;=w;) and the last
frequency of interest for the system. According to this definition, the Eq.4.102
shows the evaluation of the o and § coefficients.

o = 2. Wmax @1
§ (Wmax+®1) (4.102)

— 2:¢
ﬁ T (omaxto1)

where .. is the referenced damping ratio experimentally deduced for the MDOF
system. Thus, the classical damping matrix (or Rayleigh damping matrix) can be
rewritten as given by Eq.4.103.

2-£

B (wmax + a)l)

[C] - (Wmax - @1 - [M] + [K]) (4.103)
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Substituting this matrix in the Eq. 4.99 the dynamic equilibrium equations will be
uncoupled and the solution can be easily obtained (Eq. 4.102).

Mal {40} + [Cal {g(D)} + [Kal{q()} = {0} (4.104)

where [Cy]=[¢;]1"[C][¢;] is the diagonal damping matrix. According to this damping
formulation, if the vibrational modes are normalized with respect to the mass, the
equation of motion can be rewritten as given by Eq. 4.105.

114G} +2- & - i U] {40} + [A]{g()} = {0} (4.105)

4.6.2.1 Numerical Example for Damped System

For the case study described in Sect.4.6.1.1, the first and second frequencies can
be used as two control frequencies, assuming {,.r equal to 5%. Then, the following
values of @ and 8 are deduced (Eq.4.106).

. (32.40-11.56) __
o =2-0.05- e = 0.8520 (4.106)

_ 2005 _
B = s = 0.0023

Thus, the diagonal damping matrix is given by Eq. 4.107.

100 2 -10
[C] = 0.8520-40,000- | 010 | +0.0023-2.7-107-| —=1 2 —1
001 0 —1 1
255 -1 0
=6.14-10*- | —1 2.55 —1 (4.107)
0 —1 1.5

Equation 4.108 reports the diagonal damping matrix.

851 0 0
[Cd =8 [Cl[¢] =10*| 0 37.10 © (4.108)
0 0 217.07

while the diagonal damping matrix normalized with respect to the mass is given by
Eq.4.109.

116 0 0
[Ca="[Cl¥w]=| 0 334 0 (4.109)
0 0 556
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Fig. 4.21 Numerical errors in the definition of damping matrix coefficients

Comparing the results found with the ideal damping matrix composed by the terms

Ci = 2-& - w;, it is possible to evaluate the following percentage differences
(Eq.4.110).
(1.16 — 1.15)
C) = ———— =0.87%
#(Cn) 115 ’
(3.34 - 3.24)
Cp)=———"=3.08% 4.110
e(Cy) 324 0 ( )
(5.56 — 4.68)
Cy3) = —— = 18.80%
= 4.68 ’

From this observation, one can find that the assumption of a constant damping
ratio of 5% and control frequency lead to consistent result for the two first modes
(Fig.4.21). The evaluation of the modal coordinates will be dependent on the
damping. In reference to the generic solution of a damped SDOF system, the
Eq.4.111 is given.

qi + & - w; - qo;

qi(t) = e 5t %Cb -cos (wp; - 1) +
Di

-sin(a)D,--t)} 4.111)

In the Eq. 4.112 the dynamic displacement response of the system is given.

wu@®} = Z 1¢i} - (e_glw’“t : {%‘ - cos (wp; - 1) + % - sin (wp; - t)})
i=1

Di

(4.112)
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Fig. 4.22 Numerical errors in the definition of damping matrix coefficients
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Considering the same structure and initial conditions of the previous paragraph and
assuming § = 5% — w; ~ wp,, the three components of dynamic response are
expressed in the Eq.4.113.

{ur()} = {1} - e 5" qy - {-cos (wy - 1) + & - sin (w; - 1)}
{ur(t)} = {o} - €52 - gy - {-cos (wy - 1) + & - sin (w2 - 1)} (4.113)
{uz(1)} = {¢3} - €753 - g3 - {-cos (w3 - 1) + £ - sin (w3 - 1)}

Substituting the numerical values, Eq. 4.114 is obtained.

045
{u (1)} = 000511567, { 0.80 } -0.7851 - (cos(11.56 - ) + 0.05 - sin(11.56 - £))
1
—1.258
{ur (1)} = 00053240, { —0.55 } -0.2088 - (c0s(32.40 - 1) + 0.05 - sin(32.40 - £))
1
1.8
{us (1)} = 00054682, { —2.25 } -0.0061 - (cos(46.82 - £) + 0.05 - sin(46.82 - 1))
1

(4.114)
Then, Eq. 4.115 shows the total dynamic response in terms of displacements.

@} = {0} + w2 (D} + {us (0} (4.115)

Since the decrease in the amplitude response is proportional to the terms £ - w; -
t the damping effects tend to further reduce the dynamic response of the higher
modes (w; < wy < w3) Fig.4.22 illustrates the absolute displacements for each
mode obtained for three different time instants. We can see that the contributions of
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Fig. 4.23 Undamped and damped dynamic response of first and second mode of the three DOFs
frame fort = 0.1s,7 =0.5sandt = 0.1s

Table 4.2 Absolute percentage reduction of the dynamic response between undamped and
damped case for the first and second modes

t=0.1s t=0.5s t=1s

u [%] u [%] u [%]

MODE 1 MODE 2 MODE 1 MODE 2 MODE 1 MODE 2
5.10 14.54 27.16 54.32 48.33 78.72

the second and third mode for = /5's is essentially equal to zero. The presence of
damping in a MDOF system leads to a major predominance of the first mode over
the undamped system case. In order to focus on the aforementioned issue, Fig. 4.23
is proposed referring to the total dynamic response of the system (Table 4.2).

4.7 Response to Harmonic Excitation

4.7.1 Undamped Systems

The dynamic response of an MDOF system to an external harmonic force can be
derived by applying the procedure based on the modal analysis and on evaluations of
the modal coordinates as explained in Sect. 4.6.1 with reference to the SDOF forced
system. Suppose we consider the same 3-DOF shear type frame seen previously, in
which the external forces are applied on the masses (Fig. 4.24).

The equation of motion can be expressed as reported in Eq.4.116.

[6" M1 [ (G0} + [pi]" [K] (1] ()} = [ {F (1)} (4.116)

The external harmonic force vector is given by Eq.4.117.
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Fig. 4.24 Three DOFs shear type frame forced by harmonic excitations

Fi (l) F()'] . sin(wf,I . l)
{F(l‘)} = k0 = F()!z . sin(a)f,z - 1) 4.117)
F3(f) F()q3 . sin(a)fj . t)

Similarly, to the free vibration case, the equations of motion can be interpreted as n
uncoupled equations of SDOF systems in which [M,] = [¢:]" [M] [¢:] and [K,] =
[#:]" [K] [¢i] represent the equivalent independent mass and stiffness parameters for
each SDOF system. In addition, [¢;]” {F(r)} indicates the force applied to the n
SDOF equivalent systems. The dynamic response is governed by the steady state and
free vibration solution. Since the external force is a harmonic function, the steady
state response can be evaluated as expressed in Eq.4.118.

Fo,i
Kaii - (1 - /31'2)

Then, the modal coordinates are given by Eq.4.119.

(i)} = {i} - -sin (wy,i - 1) 4.118)

Fo,;
dpi =

= ————— .5sin (a)f,i . f) (4.119)
Ky - (1 - ,3i2)
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4.7.1.1 Numerical Example for Undamped System with Harmonic
Excitation

For the case study, the dynamic steady state solution is evaluated as expressed by
the Eq. 4.120.

up1por (1) = ¢11.m-%-sm(wﬂ )+

1 Fo,
+¢12'W'ﬁ'sm(wf1 )+¢13'(1—ﬁ§)'ﬁ;}'sm(wfl f)

Fo,

up 2p0F (1) = ¢21.m-ﬁ-sm(wf2 1)+ 4.120)

1 Fo. ’
+¢22'W'm'sm(a)f2 t)+¢23'(1—ﬁ)'ﬁ323'5m(“)f2 1)
Uy 3por(t) = ¢31 - W : % -sin (wr3 - 1) +

Fos Fos .

+¢32'm'm'sm(a)f.3‘t)+¢>33'm‘m‘sm(a’f&'t)

The previous equations can be rewritten in order to define the dynamic amplification
factor for each DOF by extrapolating the stiffness associated to the first mode (K 1;)
(Eq.4.121).

1

c—————.sin(wrg - t
. 5 (wr.1-1)
};'01 1 Kd,ll .
)=—— 4 +P- ——5--——sin(wpa -1
Up 100F (1) Koo P12 (1-83) Kin (f.z )
1 Kinn .
+¢i3 ———  —— -sin (wp3 - ¢
(1-p3) Kas (o)
1

Foo 1 K

up2por(t) = m -9 tén- m : @ - sin (a)f,z . l) 4.121)
+¢o3 - (l—l—ﬁg) . % -sin (wy3 - 1)
¢31 a _lﬂ%) -sin (wy,1 - 7)

up 3por (1) = % -y T @ : % -sin (wy - 1)
+33 - ———s - @-sin(a)ﬁ 1)
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For the sake of simplicity, the following relations are considered (Eq. 4.122).

FO = FO,l = F0.2 = F0'3 = 5000 kN
(4.122)
W = Wf| = Wry = Wf3 = 9rad/s

According to these conditions, Eq.4.121 can be rewritten as expressed in Eq. 4.123.

1
d1 =
(1=
F . Kan
tpapor(®) = g0 sin ey 1)y F g R
K
3 L
: (1-p3) Kazs
é 1
2
1-89
F : Kan
tpapor (1) = Kdou -sim (wf ) t) "y T m ' Kin» (@.123)
1 Kin
+¢23 . —_
(1- ) Kq33
é 1
3
(1-pD
Fo . 1 Kai
p3por(1) = Kot sin(ay 1) -+ m Kin
1 Kan
F3z——  ——
(1—p3) Kazs

The terms in the brackets correspond to the dynamic amplification factor if the
Kg 11 stiffness can be assumed as representative of the MDOF system stiffness.
This assumption is accurate for regular MDOF structure for which the first mode
is always predominant. Thus, from the Eq. 4.123, the following equivalent dynamic
amplification factor can be deduced (Eq. 4.124).

|A1D0F|:{¢11 +¢12.;.@+¢13.;.@}
(1-8) ﬂ ) (1-p3) Kaix (1—p3) Kazs

1 Kdll 1 Kdll

A = [  —_—
|A2por| {¢21 -5 ﬁ ) + ¢ 0=F) Kin + ¢23 e Kd.33}

|A3D0F|={¢31‘;+¢32-;.@+¢33, ! @}
(1-87) (1-83) Kix (1-B2) Kuim
(4.124)
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Remembering that |A;| = u—IT the previous relations can be rewritten and given
by Eq.4.125. '
Ky, Ky,
|A]D0F|={¢11'|Al|+¢12‘|A2|' Lt iy |As] - ”}
Kix K33
Kin Kin
|Azpor| = § @21 - |AL] + @22 - 1Az ] - + ¢z - |Az| - — (4.125)
Ki2 K33
K, Kin
|Aspor| = {¢31'|A1|+¢32'|A2|' 1Lt - A - 22 }
Ky K33

In reference to the case study, the diagonal stiffness matrix is obtained in Eq. 4.126.

098 0 0
K =[¢]" [K][¢] =107 | 0 12.02 0 |[N/m] (4.126)
0 0 81.50

Therefore, the amplification factors for each of the masses of the system given by
Eq.4.127 are obtained.

|A1por| = 1.23
lAspor| = 3.21 (4.127)
|Aspor| = 4.38

The dynamic amplification for the masses located on the higher story of the frame
is greater than the lower ones. In addition, it is noted that the resonance of the
system can be achieved for the three cases with §; = 1i = 1,2, 3. Generally,
the amplification function for a MDOF system has a number of peaks equal to
the number of DOFs, since each of them is associated with a vibrational mode.
Observing Eq. 4.123, it is possible to observe that three resonance conditions can be
reached (w = w;, ® = w; and @ = w;3). Since the MDOF system is undamped,
the displacements associated with the resonance conditions tend to be infinite
(Fig. 4.25). The total dynamic response of the MDOF system is evaluated by means
of the sum between the free vibrational and the steady state effects (Eq. 4.128).

, Ay;-sin(w; - t) + Ay, - cos (w; - )

@y = {o3-| . Foi
=t Ko - (1 - ,31'2)
Ay -cos(w;-t) — Ay -sin(w; - 1)

3
W= oo | L. Foi
=1 Kyi - (1 - ﬂiz)

- sin (C{)f"i . t)

(4.128)

- cos (a)f‘,» . t)
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Fig. 4.25 Amplification function for the first DOF (u/) of a three story shear type undamped
building
Thus, the associated modal coordinates are given below (Eq. 4.129).

Fo, sin (wpi-1)  (4.129)

qi(t) = Ay ;-sin (w; - 1) + Az i-cos (w; - 1) + ——F——
Kai - (1 - ,Bi2>

Imposing the values of each component of the displacement and velocity vector at

time ¢ =0 (Eq. 4.130).

w0} = {uo;} = Y _{¢i}- Ay

i:] - (4.130)
. . 0.i
(o)} = {ioi} = ;a)i Adiy - | A + Bi- m
The Eq.4.131 is given.
qi(t) = Ay;
4.131)

S [Kaii] - (1 - /31‘2)

The same initial conditions of the MDOF system of the previous paragraph are

assumed (Eq. 4.132).
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{uo;}" ={0.10.51} [m]
. (4.132)

{io i {000} [m/s]

Multiplying both sides of the Eq.4.129 by {¢;}" [M], the following relations are
obtained (Eq. 4.133).

3
(i} M) {uo, i} = ; (i} M1 (i} i

3 (4.133)
0 Moy = A" M1(@3 - &
From which the modal coordinates given by the Eq. 4.134 can be found.
0.7851 0
{gi} =120.2088 ¢} {g:}=140 (4.134)
0.0061 0
The values of the constants are given in Eqs. (4.135) and (4.136).
A5V A {pi}Fo.i —
{Alz} = {‘Iz} ,31 —[Kd,i[]'(l_ﬂiz)
0 5.4038 5.4038 (4.135)
={0;—-1072-0.1315 = —1073-{ 0.1315
0 0.0132 0.0132
0.7851
{Az} = {qi} = { 0.2088 (4.136)
0.0061
The frequency ratios are given by Eq.4.137.
B1 =0.7785
B> =0.2778 (4.137)
B3 = 0.1922

Thus, dynamic response of the MDOF system can be rewritten as expressed below
(Eq.4.138).
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Fig. 4.26 Dynamic response of first mode, second mode, third mode and total of the three DOFs
forced frame fort = 0.1s,t = 0.5sandr = 0.1s

L 2

L 2

25

0.7851 - cos(11.56 - 1)
045 —107%.5.4038-0.7785 - sin(11.56 - 1)
{ur (1)} = { 0.80 ' ) '
1 5000000
0.98-107 - (1 —0.7785%)
0.2088 - cos(32.40 - 1)
—1.258 —107%.0.1315-0.2778 - sin(32.40 - 1)
{ur ()} = { —0.55 ' ' ’
1 5000000
+ 7 2
12.02-107 - (1 — 0.2778%)
0.0061 - cos(46.82 - 1)
1.8 5 .
—1072-0.0133-0.1922 - 5in(46.82 -
@) = 4 —2.25 073.0.0133-0.1922 - sin(46.82 - 1)
1 5000000
+ 7 2
81.50- 107 - (1 —0.1922%)

-sin(9-1)

-sin(9-1)

-sin(9-1)

(4.138)

Figure 4.26 shows the dynamic response evaluated at three different time instants.
The presence of the external forces on the masses of the system leads to the
modification of percentage contributions of the vibrational modes to the dynamic
response. As seen in the previous paragraph, the dynamic response of the MDOF
system can be expressed by the Eq. 4.139.

3
u(t) =) ui(t) = Agy - COS(weq - 1 + eg) (4.139)

i=1

The total dynamic response of the case study frame can be written as given by
Eq.4.140.
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Acg - COS(Weq + 1 + Peg) X q1 - cOs(wy -1+ P1) + g - cos(wr - 1 + ¢o)+
+q3 - cos(ws -t + ¢3) + (%)eq “|Aeyl - sin(wy.eq - 1)
(4.140)
Introducing the constant C = (%)eq - |A¢q| and since the energy of a periodic signal
is proportional to the square of its amplitude, the following energy balance equation
can be written (Eq. 4.141).

Ao % g% + @2° + g3° + C* (4.141)

Substituting this expression into the previous relation, Eq. 4.142 is given.

q1 - cos(wy - 1) + g2 - cos(wy - 1) + g3 - cos(w3 - 1) + C - sin(wf.eq - 1)
V@ +a+a3+C?
(4.142)

Substituting the trigonometric terms with the associated 2nd order Taylor series
centered in x = 0, Eq. 4.143 is given.

COS(Weq - 1) &

£)? wyt)? w31)?
1_(weq't)2: atrata (a5 e B 4 0 ‘e (©req 1)
: Vi +d g+ Vi + B g+ Vi +a+a+e
“4.143)
Deriving twice with respect to the time variable, Eq. 4.144 is obtained.
1w+ g0+ g3
Wy = 2 4 4325 (4.144)

i+ +a+C

It is possible to see that the constant C at denominator tends to reduce the natural
equivalent frequency of the MDOF system subjected to external forces. This leads to
obtaining a result closer to the first mode frequency (w; = min(w;) ) and therefore
its contribution for the total dynamic response is still more representative.

4.7.2 Viscously Damped Systems

Similar to previous case, Eq. 4.145 represents the dynamic equilibrium equation for
a damped MDOF system.

(¢ M1 (] (GO} + [i]” [CTIi {a(0)} + [p]" [K[pi] {q(0)} = [l {F (D)}
(4.145)

System of equations can be uncoupled only for classic damping matrix formulation.
In this case, according to the results found for SDOF systems, the steady state



140 4 MDOF Systems
solution assumes the form reported in Eq. 4.146.

Fo,i 1
Up t = iV
{ P, ()} {¢} Kaii (l_ﬂi2)2+(2-5'ﬁi)z (4146)
[0 =) -sint@pi 02 B - costwy 1)
where the modal coordinates are given by Eq. 4.147.
= K_,, -
“(1-p2) + @B’

i [(1=B2) - siner; -0 =28 B - cos(ay, 1)

(4.147)
In order to simplify the following dissertation, the terms reported in Eq. 4.148 are
considered.

1
(1 — ﬁﬂ)z +@2-&-B) (4.148)

B = (1= B2 sinwyi-1)—=2-§ - B cos(ey.i 1)

A;)* =

For the case study, the dynamic steady state solution is evaluated as expressed by
the Eq. 4.149.

F F F
up 1por(t) = ¢11 LA Bi4 o - — - |Ay* By + i3 - —= - |A3]> - Bs
Ka 1 Kaon K33
Fo» Fop Fo»
Up200r (1) = ¢a1 - —— + |A1]* - Bi+ ¢ - JAsl* By + o3 - —— - |A3]* - Bs
Kin Ky Ki33
Fos Fo3 Fos
Up3por(t) = ¢31 - —— - |A1]* - Bi+ ¢ - JAsl* By + 33 - —— - |A3]* - Bs
Kan Kixn Ka33
(4.149)

Since the damping ratio assumes a very small value, for the sake of simplicity the
B; coefficients can be assumed as reported in Eq. 4.150.

B ~ (1 —B7) -sin(wy,; - 1) (4.150)

The previous equations can be rewritten in order to define the dynamic amplification
factor for each DOF by explicating the stiffness associated to the first mode (K1 )
(Eq.4.151).
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2
2
2
1
2
3
2

Thus, the three dynamic amplification factors reported in Eq. 4.152 can be evaluated.

|Aipor| = (1—B7) -
|Azpor| = (1— 1) -
|A3D0F| = (1 - l312) :

- |As* -

b11 - |1A1)? + di
Ka
+¢i3- —— |
K33
$o1 - |AL]* + o
Kan
+¢3 =
K33
AL+ i -
+¢33 -
Kd,33

ant e L
(1-83)
(1-51)
a1 | |2(
(1-53)
(1-51)

| |2.(1
(1-8)
(1-8)

For the analyzed case, the following values have been found (Eq. 4.153).

(4.152)
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B

Fig. 4.27 Amplification function for the first DOF (u;) of a three story shear type damped building

lAwpor| = 1.18
lAspor| = 3.09 (4.153)
|Aspor| = 4.21

It can be observed that these values are less than the other ones evaluated for an
undamped MDOF system. As we know, the damping on the structure leads to the
dissipation of the free vibration response in a brief amount of time. For this reason,
the total dynamic response of the system is practically governed by the steady state
response.

Generally, according to the considerations made for the amplification function
of an undamped system, the introduction of damping in the system leads to obtain
the resonance conditions, while the amplification factor is not infinite. Figure 4.27
refers to the amplification function for a generic 3-DOF damped system.

4.8 Earthquake Response

When the external forces applied on the masses of the MDOF system are due
to the earthquake excitation, the vector F(t) of equilibrium equations assumes the
following form (Eq. 4.154).

m 0 - 0 ) m 0 - 0 1

0 my-- 0 itg (1) 0 my-- 0 1
F@)=— Coo Y EO == g (1)

. . . . I‘/‘tg(t) . . . . .

00 my 0 0 my 1

(4.154)
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Fig. 4.28 Composition of - .
lateral displacement { 1 }Ug u
components ——

v
A4

The ground acceleration induces the inertial forces for each DOF of the system.
As discussed in the paragraph for SDOF systems, the seismic excitation causes
an acceleration at the base of the structure (ii,(f)) and a relative acceleration ii(f)
that produces deformation on the structure. The first one causes a rigid motion
of the system (Fig. 4.28). For a generic MDOF system the lateral components are
expressed in a matrix called Influence coefficient matrix, composed of a number of
columns equal to the base motion components and a number of rows equal to the
DOFs.

Since only lateral displacements are usually generated by earthquake excitation
the Influence coefficient matrix reduces to an influence coefficient vector of dimen-
sion n x 1, where n is the number of DOFs. Thus, the equation of motion for a
MDOF system classical damped subjected to earthquake excitation can be expressed
as shown in Eq. 4.155.

[B" M1 [pi] (G0} + [l [C B {a (D)} + (9" [K] [pi] ta(0)} = —lei]" M] {1} i

(4.155)
where {1} represents the Influence coefficient vector and the right and left sides of
the equation have been previously multiplied by [¢]”. Normalizing with respect to
the mass, the equation of motion can be rewritten as shown in Eq. 4.156.

[N{a()} + [CH{a®} + [Al{q()} = —{g} i (4.156)

where the damping is defined according to Rayleighs formulation (Eq. 4.157).

n . T .

= (108" M1 19)

Vector {g} contains the coefficients expressed by Eq. 4.158.

[C] = a[M] + BIK] — > _{w" [Cl{w} =
i=1

(4.157)
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Vi
gi = g ML} = (@ M) {1} (4.158)

(i} [M] (i}

It represents the ith modal participation factor that indicates the contribution of
the associated mode to the vibration of the system. This parameter is expressed
in [kg]'/? unit measure and is very important since it provides information about
the representativeness of the mode. As observed in the previous paragraph, the
contribution of each mode decreases as the frequency of the modes increases. In
other words, the absolute values of the modal participation factors are sorted as
shown (Eq. 4.159).

1811 > |g2| > ... > [gu] (4.159)
This leads to have a low external seismic excitation for higher modes (Eq. 4.160).
[F(@®)1] > |[F(t)2] > ... > |F(®),] (4.160)

Similarly, the square of ith the modal participation factor g; is called modal mass
associated to the respective mode (Eq.4.161).

2
o}’ M (13) )
mm.=?=L—————= w T M {1 4.161
o= = = (v ) (“.161)

It represents the energetic contribution of the ith mode to the total dynamic response
of the system. In other words, m,,,4,; is the mass contribution of mode i and its unit
of measure is [kg]. From this definition, its found that the sum of the n-DOFs modal
masses are equal to the total mass of the MDOF system (Eq. 4.162).

meod,,':zmi (4.162)
i=1 i=1

Thus the percentage contribution of each mode can be deduced according Eq. 4.163.

M mod ,;

%o (M mod ;) = ——— (4.163)
> m

i=1

Usually, when the accumulated percentage modal mass is greater than 90% it is
possible to neglect the remaining vibrational modes. Different from the harmonic
excitation case, the solution of the problem cannot be obtained in closed form. For
this reason, the dynamic response of the MDOF system can be evaluated by means
of two different approaches outlined below:
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I. numerical methods application;
II. combinations of the modal displacements obtained from the elastic spectrum

The second approach is widely used because it uses a simple method to obtain
the maximum dynamic response of a MDOF system subjected to a seismic
excitation. It is based on the elastic acceleration spectrum definition in Sect. 12.3
that represents the maximum earthquake response of different SDOF systems.
Usually, the acceleration responses of the system are evaluated for each vibrational
mode (S,(w;)). In addition, the pseudo-velocity (PS,(w;)) and pseudo-displacement
(PS,(w;)) response can be obtained from the acceleration responses (Eq. 4.164).

PSv ((1),') = Sac(:;)i)
PSy(w;) = 4

@;

Sa(w;) — (4.164)

Since this analysis is not capable of evaluating the time dependent dynamic response
but only its maximum values, the modal coordinates can be expressed as given by
Eq.4.165.

Sa(w;)
dimax = 8m,; * Sd(wi) = 8m,; % (4165)
i
where the modal coordinates are dependent on the modal participation factor
because it can be seen as a scale factor of the dynamic response for the considered
mode. According to the coordinate transformation and with the mass normalization,
the maximum displacements for the ith mode are given by the Eq. 4.166.

Sa i
{ui.max} = {qu} *{imax = {¢z} *8m,;* % (4166)

i

Applying the same consideration for every vibrational mode, the following total
maximum displacement matrix is evaluated (Eq.4.167).

[umax] = [q/z] “AGmax} = [{Ml,max} {uz.max} cees {un,max}] (4.167)

Each column vector represents the maximum dynamic displacement associated to
every masses of the system for the vibrational mode i. The maximum total dynamic
displacements have to be evaluated by means of modal combinations. For this
purpose, three different modal combination approaches are proposed:

(a) Square Root of Sum of Squares (SRSS)

Ujmax = \/(ll/ll ‘ ql,max)2 + (lI/IZ * q2.max)2 + ...+ (l[/in . qnﬁmax)z (4168)

This approach is used when the natural periods are clearly different from one
another.
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Fig. 4.29 Maximum elastic story forces for the first mode
(b) Complete Quadratic Combination (CQC)
n n
Ui max — Z Z Pij (lpil : ql,max) : (lpij : ‘Ij,max) (4.169)

j=1 I1=1

where p; represents the correlation coefficient between mode i and j and is
defined by Eq.4.170.

86 (1+0i/w) - (wi/w)"?
(1= @/ep?) +4-8 - @/ (1 + @fo))’

pij = (4.170)

In addition, the elastic internal actions can be evaluated for each mode by referring
to the maximum displacement matrix.

4.8.1 Numerical Example

In Fig. 4.29 are shown the values of shear and bending moment for the first mode of
a generic three DOFs shear type frame.

Thus, similarly to the maximum displacement, the maximum shear (V; ) and
bending moment (M ,,,,,) for each mode can be defined (Eq.4.171).

[Vmax] = [{Vl,max} {VZ,max} CIRIEIN {Vn,max}]

4.171)
[Mmax] = [{Ml,max} {MZ,max} e {Mn,max}]
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Fig. 4.30 Elastic acceleration response spectrum and modal accelerations

The total maximum shear and bending moment at each story is evaluated by SRSS
(Eq.4.172) or CQC (Eq. 4.173) combination

Vi,max = \/Vil,max2 + ViZ,max2 +...+ Vin,max2
(4.172)

— 2 2 2
Mi,max - Mil.max + Mi2,max +...+ Min,max

Vismax = Z Z Pij * (Vi.max) : (Vj,max)

j=1 i=1

(4.173)

Mmax = Z Z Pij * (Mi,max) : (leﬁmax)

j=1 i=1

Suppose we consider the three DOF shear type frame analyzed previously, for which
the vibrational modes and the natural period have been calculated (Eq. 4.174).

T1 =054s T, =0.195s T35 = 0.13s (4.174)
Figure 4.30 illustrates the considered elastic response spectra with the definition

of the three values of acceleration S,(7;). The modal participation factor of the
normalized modes are evaluated in Eq. 4.175.
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1007 (1
{0.450.801}-40,000- | 010 |41
001 (1
Gny = = 331.19 [kg'/%]
1007 (045
{0.450.80 1}-40,000- | 010 | 4 0.80
001 1
1007 (1
{—1.25-0.551}-40,000-| 010 |11
001] (1
8mo = = —94.79 [kg'/?]
1007 (—1.25
{—1.25-0.551}-40,000- | 010 | 3 —0.55
001 1
100
{—2.251.80 1}-40,000- | 010
001] |1
Gmy = = 36.40 [kg'/?]
1007 (—2.25
{—2.251.80 1}-40,000- | 010 1.80
001 1
(4.175)
Then the modal masses reported in Eq.4.176 can be determined.
Mood,| = gmi = 109690 [ke]
Mmod , = &m3 = 8985 [kg] (4.176)

M mod ,3 = gm,% = 1325 [kg]

The sum of the three modal masses is equal to the total mass of the frame. In
addition, the following percentage mass contributions for each mode are evaluated
(Eq.4.177).

% (M mod 1) = 91.4%
% (M mod ) = 1.5% (4.177)
% (Mmod 3) = 1.1%

It is evident that the first mode is predominant in the dynamic response of the
system. However, in this example, all of the three modes will be considered.
According to the modal participation factors calculated, the maximum modal
coordinates are evaluated and expressed by Eq.4.178.
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Dme = 33119 27298 g sy
' (11.56)*
’ (32.40)>

G3max = 36.40 - 0-67-981 _ 1,
e (46.82)°

Now, the three maximum modal displacement vectors can be obtained (Eq.4.179).

0.45

0.80
| 2.870
{1 max} = 1751 = 1072 4 5.170
10 0:| { 0.45 } 6.450

{0.450.80 1} -40,000- [ 010 | 1 0.80
001 1

-1.25
—0.55
1

1007 (-1.25
{—1.25-0.551}-40,000- | 010 | 4 —0.55

{MZ,max} =

0.260
- (—0.69) = 1072-{ 0.110

-0.210

001 1

—2.25
1.80
{ ) } {—0.041 }
{u3max} = 2011 =10"%2-{ 0.032
100} {—2.25} 0018

{—2.251.801}-40,000-| 010 |{ 1.80
001 1

(4.179)
Inputting the just evaluated terms into the maximum displacement matrix, Eq. 4.180
is given.

2.870 0.260 —0.041
[Umax] = 10723 5170 0.110  0.032 (4.180)
6.450 —0.210 0.018

The maximum shear and bending moments at each story are expressed by Eq. 4.181.
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. 12EL . 6EL
Vi3,max =3- 3 : (”3i,max - u2i,max) M max =3+ 2 . (u3i,max - u2i,max)
. 12EL . 6EL
V[Z.max =3- h3 : (M2i,max - uli,max) Mi2,max =3- 7 . (u2i.max - uli.max)
. 12EL . 6EIL
Vil.max =3 ]’l_3 * U1i,max Mil,max =3- 7 * U1j max
(4.181)
Thus the following numerical value can be found (Eq. 4.182).
581.20 52.65 —8.30
[Max] = | 465.75 —30.40 14.80 | [kN-m]
259.20 —64.80 —2.85
(4.182)

1162.4 1053 —16.6
[Vmax] = 3 931.5 —60.8 29.6 ¢ [kN]
5184 —129.6 —5.7

In order to obtain a single solution in terms of maximum displacements and internal
actions, the SRSS modal combination is used. Thus, the kinematic and static
solutions are reported in Eq. 4.183.

{Umar}” = 1072 {2.88 5.17 6.45 } [m]
{Minax}” = {538.60 466.95 267.20 } [kN - m] (4.183)
(Vi) = {1167.2 933.9 534.4 } [kN]

It is possible to see that the total dynamic response in terms of internal actions and
displacements is very close to the first mode results. In addition, the sum of the
internal action represents the total base reaction. For this reason, the base shear is
given by Eq. 4.184.

Vpmax = 2635.60 kN (4.184)

Figure 4.31 illustrates the deformed shape and internal actions diagrams for the three
DOFs shear type frame analyzed.

4.9 3D MDOF Multistory Buildings

Since the DOFs of the spatial structure are greater than the associated 2D one, the
computational effort is increased. In this paragraph, the stiffness and mass assembly
methodologies will be discussed for typical regular multistory buildings having
three DOFs (Fig. 4.32).
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Fig. 4.31 Deformed shape (a), total shear diagram (b) and total bending moment (c) in terms of
maximum values
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Fig. 4.32 3D three-story buildings

Assuming that every beam and column has respectively the same cross section
sb-sb and sc-sc indicated on the figure reported above, it is possible to define the
following inertia moments (Eq. 4.185).

beam — I, = baby
b= | (4.185)

Cc2C
column — [, = 221

In addition, an elastic modulus is assumed for every frame element. According to
the lumped masses model, each mass is supposed concentrated in the gravitational
center of the associated flooring system. For the case study, the masses of the MDOF
frame are evaluated as expressed in Eq. 4.186.
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Fig. 4.33 DOFs for each
flooring system

mi = pe-[(16- h 3.1,
my; = p¢+ [(16'h'01 -cy) + by (3'Lx'3'Ly)] (4.186)
my =p.-[(16-% 3-L

where p, is the mass per unit volume of the elements. In practical applications, the
mass contribution associated with the columns is neglected since it is less than the
flooring system (Eq. 4.187).

mi =m2=m3=9-pc-hf-Lx-Ly (4187)

According to the assumption of rigid flooring system and axially rigid elements,
the DOFs of the system are reported in Eq. 4.188.

DOFs=3.n,=3-3=9 (4.188)

where 7y represents the number of flooring system of the MDOS structure, while 3
indicates the generic DOFs for each mass that are illustrated in Fig. 4.33.

The generic motion of the point P located on the rigid deck can be described by
Eq.4.189.

uxP:ux+¢AyP (4 189)

Uyp =ty — @ - Axp
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Therefore, the dynamic equilibrium equations have been expressed for the x
and y direction and for the rotation ¢. Equation 4.190 is formed to represent
the equilibrium system of equations for the undamped three-story frame in free
vibrations conditions.

(x) = M i) + M- A9} + [Kd{ue} + [Kx - Dl{e} = {0}
() = [M,uy} — My - Ax{o} + [K ]y} — [Ky - Axl{g} = {0}

(‘P) — [M, - A)’]{“'x} + M, - Ax]{“',v} + [Mrﬁ]{(P} + [K¢]{‘p} {0}
(4.190)
Defining the DOFs vectors expressed by Eq.4.191, the three system equations
can be condensed in matrix format as shown by Eq. 4.192.

)" = () o} (4.191)

[Mx] [O] [Mx : Ay] {ux}
[0] [My]  —[M, - Ax] {”y} +
[My- Ay] =M, - Ax] - [M,] {9}
[Kx] [0] [Kx . Ay] {ux} {0}
+| [0] K, —[Ky-Ax] | {u) ¢ = 110} (4.192)
(Ko AV] —[K, - Ax] (K] {o} {0}

The reduced mass and stiffness matrix can be rewritten as given by Eq.4.193.

[Mxx] = [Mx]; [Myy] = [My]; [ngo] = [Mx'Ay]; [Mygo] = _[My'Ax]; [Mgo(ﬂ] = [Mw]

[Ku] = [K]: [Ky] = [K)]; [Kip] = [Ky - AY]; [Kyp] = —[K, - Ax]; [Kyy] = [K,]
(4.193)

This notation is more applicable than the first one since the principal mass and
stiffness contribution (diagonal terms) are expressed with a double equal index. It is
important to observe that each submatrix has n, xn, dimensions, where ny represents
the number of flooring systems, while the compact matrix dimension is n X n where
n is the total number of DOFs.

The stiffness and mass components denoted with index “p¢” describe the pure
torsional property of the frame that provides the torsional moment to the columns
of the frame. Generally, the torsional moments are lower than the bending moment
due to the {u,} and {u,} DOFs. Another interesting observation can be made related
to the components of the mass and stiffness submatrices expressed by the indices
“x¢” and “yp”. They cause additional shear forces on the columns and are called
torsional effects. It can be observed that these effects increase with the terms Ay;
and Ax; that represent the offset between the gravitational center and the referenced
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center of the ith story in the y and x direction, respectively. In structural engineering
applications, the stiffness center is considered as a reference point for each flooring
system. In Eq. 4.194 every mass submatrix is defined for the analyzed frame.

my 0 0 I,y 0 0
M,] = [M_vy] = 0mmO ;[M(pw] =|(01Ly O
0 0 m 0 0 I3
my - Ay, 0 0 —my - Axy 0
M) = 0 m-Ay, 0 i [My,] = 0 —-m-Ax; 0
0 0 ms - Ays 0 0 —m3 + Axz

(4.194)

In the previous equation the terms I, ; represent the polar inertia moment with the
pole corresponding to the gravitational center of the ith story. For the case study, the
three inertial moments are given by Eq. 4.195.

Io.l = 10,2 = 10,3 = (Ix(,—x{, + Iy(,—y(;) =

3L(3L)3 3L(3L)3
=po [+ = = e i [Le (L)Y + Ly (L]

(4.195)

Since the mass and the stiffness are uniformly distributed over each story, the
offset in the x and y direction is always equal to zero ({Ay} = {Ax} = {O}) This
property leads to the following associated matrices (Eq.4.196).

000
M) = [My,] = [Kyy] = [Kyy] = 000 (4.196)
000

Regarding the [K,,] and [K,,] stiffness submatrices, Eq.4.197 is given,

24EI, REL
h3 R
Kl = (K] = 16+ | 20 20 o @197
0 __12EI.  12EI
h3 h3

where 16 is the number of columns that contributes to the lateral stiffness. The
components due to the pure torsional effects are based on the torsional stiffness of
the columns (Fig. 4.34), where G defines the shear elastic modulus and /; represents
the torsional inertia of the element. For a full section of mono-dimensional elements
the inertial moment can be expressed as reported in Eq.4.198.
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Fig. 4.34 Torsional effects
on a generic
mono-dimensional element

I, = / W +y)-dA =1, =1L, + 1, (4.198)

The inertial moment is equal to the polar inertia of the cross section, in which
the referenced pole is coincident with the mass center. According to the previous
properties, the pure torsional stiffness submatrix is given by Eq. 4.199.

W6l _Ghe

h h
Kiu] = 16- | G 20 Gl (4199
Glie 26l
0 == =

[TPR1]

In which the index “c” of the torsional inertia indicates the columns.
Therefore, the equation of motion for the 3D three-story building can be rewritten
(Eq. 4.200).

S Y M M. mg 0 17
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Fig. 4.35 3D view (a) and plan (b) of the three-story building with four shear walls
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(4.200)

Now, the same structure is considered but with additional shear walls that cause
an offset between stiffness and mass center in each story (Fig. 4.35).

For the sake of simplicity, the columns are assumed to have a square shape
(c1 = ¢ = ¢). Every shear wall is extended for the whole height of the building,
thus the offset between stiffness and mass center will be equal at each story. The
stiffness center of a flooring system is evaluated according to the static model shown
in Fig. 4.36.
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Fig. 4.36 Equivalent simplified flooring system

Fig. 4.37 Simplified model Ix
of shear wall \‘,\ \',\
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where the generic elastic reaction is given by Eq. 4.201.
Fk,i = kl' - Uuj (4201)

Thus, the absorbed action of a shear wall is proportional to its stiffness. For this
reason, it is useful to define a physical model in order to evaluate the stiffness of
each shear wall.

First, the x-y reference system has its origin coincident with the mass center (C,,).
The generic shear wall provides a stiffness contribution along its axis that is in the
direction along which the associated inertia moment is prevalent (Fig. 4.37).

Considering a flexural behavior for a shear wall and imposing the associated
unitary displacement at given story (Fig.4.38), the stiffness contribution can be
evaluated with respect to the geometric characteristics of the walls.

Thus, Eq. 4.202 specifies the three stiffness components,

e (Em) ,

P El,, _E 2 _E ¢+ (Lmy)

=3 o = N2 o 2 )
H}  H} 4 3 32

3

Elyyy ¢+ (Liny)
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—>

Fig. 4.38 Static scheme for a bending resisting wall

(4.202)
where the index “i” refers to the ith story. Since the dimensions of the cross section
of the columns are smaller than the shear walls, they are neglected in the stiffness
center definition.

From the stiffness of each component, it is possible to define the center of
stiffness of the flooring systems (Eq. 4.203) using the scheme shown in Fig. 4.39.

£ M 0+ £ M .3L
H> 4 H> 32 !
Y Sk, : : Ly
k= = e
> Ky 9 E 3 3
3_% . }Tf .c- (Lm.y)
E c- (Lm,x)
— - ———— |- 3L
PO K : =3L
¢ > K, £ c- (L,,M)3 )
H? 4
(4.203)

The terms Ax and Ay represent the offsets between the mass and stiffness center.
In the analyzed case they are given by Eq. 4.204.
3 3
Ax=3L,— L, = =L,
2 2

Ay=—ZL,+-L,=——L, (4.204)
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Fig. 4.39 Definition of the stiffness center

Now it is possible to evaluate the components of the mass (Eq.4.205) and
stiffness (Eq. 4.206) submatrices associated to the mixed index “px” and “py”.

7 m 00 3 -m; 0 O
[MX(/J] = —gLy . 0 my 0 [ [Myw] = ELX . 0 —my 0 (4205)
00 ms 0 0 —m;
[ 24E1,  12EI ]
3 0
n s
7
K] = ——L,- | _12EL 24EL.12EL |.
h3 h3 3
12EI. 12El,
0 —— —
T o (4.206)
24El.  12EI,
- 0
h3 W3
3
[Ky(p] = +_Lx | 12EIL 24EI¢ _ 12E'IC
h3 W3 JE
12EI. 12El,
L T B
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Chapter 5 ®
Energy Dissipation Qs

Abstract The chapter introduces the energy balance equation of a generic system.
Attention is given to damping energy and plastic energy (Vakakis et al., Nonlinear
targeted energy transfer in mechanical and structural systems, vol 156. Springer,
Dordrecht, 2008). Two methods are introduced to estimate the damping on the
structural systems through experimental techniques: the Logarithmic Decrement
Analysis (LDA) and the Half-Power Method (HPM). The ductility factor and the
equal displacement criteria is also introduced.

5.1 Energy Balance Equation

The input energy of a generic inelastic system is mainly dissipated by damping
and plastic deformation phenomena, while the remaining part is transformed in
kinematic and potential energy. Equation 5.1 defines the integral expression of the
dynamic equilibrium of a generic system.

u u u u

/m-u(t)-dH/c-u(z)-du+/k(u,u)-u(r)-du=/F(z)-du (5.1)

0 0 0 0

The term on the right side is the input energy E;. The first integral on the left
associated to the inertia force defines the kinetic energy Ex associated with the mass
of the system. The second integral associated with the damping coefficient gives
information about the energy dissipated by the viscous damping phenomena (Ep).
Finally, the third term on the left side represents the deformation energy that can
be decomposed into the elastic component Er (conservative contribution) and the
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Fig. 5.1 Elastic and plastic Fr g
deformation energy
contributions

u(t) u

plastic component Ep (irreversible contribution). The recoverable and irreversible
deformation energy contributions are explicitly expressed in Eq. 5.2.

Ep = /ke-u(t)-du
0 (5.2)

MI;

Ep = [ky-u(r)-du
0

Figure 5.1 illustrates the two forms of energy just discussed for a generic elastic
model with hardening.

Accounting for the previous considerations, the energy balance equation can be
rewritten (Eq. 5.3).

Ex +Ep+Ep+Ep =E; (5.3)

Assuming an undamped elastic system and expressing the energy equilibrium in
incremental form, the equation reported above assumes the same expression as that
of the conservation energy law (Eq. 5.4).

AEx + AEp = AE; (5.4)

When an earthquake excitation is considered, the input energy can be evaluated as
shown in the Eq. 5.5.

u u

E = /F(t)-du = —/m-iig(t)-du (5.5)

0 0

In this case, it is important to notice that the damping, kinetic and deformation
energy values depend on the relative displacement of the system from the ground,
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while the input energy relates to the ground acceleration (Uang and Bertero 1990).
The energy balance equation during an earthquake excitation is useful to understand
the dynamic effects on the system through the energy interaction. Considering
the input energy a constant value, the amplitude of the motion (in terms of
displacements) increases if the dissipation phenomena are negligible (Eq. 5.6).

O/m-il(t)-du—l—o/ke-u(t)-du—i-ofc-id(t)-du +0/kp-u(t)-du=0/F(t)-du

(5.6)

Remembering that the recoverable energy of a periodic excitation is directly
proportional to the square of amplitude response (A), the equation above can be
rewritten in the following form (Eq.5.7).

u

/ F(t) - du o< A (5.7

0

Thus, for a conservative system the amplitude of the response is maximized. If
the dissipation phenomena are considered, the previous expression can be rewritten
(Eq.5.8).

u up u

/F(z)-du—/k,,-u(r)-du—/c-u(z)-duo<A2 (5.8)

0 0 0

In this case, the amplitude of the dynamic response decreases. This result is very
important since it is the basis of the active provisions used for the structures in order
to limit their amplitude response. On the other hand, the reduction of the response
amplitude due to the dissipation phenomena can lead to an excessive amount of
plastic deformation, causing the damage or even the collapse of the structure.

5.2 Damping Energy

As mentioned in Sect. 1.5, the energy dissipated by means of hysteretic process
is approximately described by the viscous damping ratio £. It has been observed
that this term depends on the frequency excitation and on the strain energy
(elastic characteristics) (Zahrah and Hall 1984). Experimental tests are conducted
to measure the damping property of a system by considering a frequency harmonic
excitation equal to the natural frequency (8 = 1). This approach leads to obtaining
an exact measure of damping for the resonance conditions and overestimated
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damping ratio values for the other conditions. Thus, the energy dissipated by
equivalent viscous damping for a generic load path is reported in Eq. 5.9.

Mf
Ep = /2-§(ﬁ=1)-m-a)-i4(t)-du (5.9)
0

Please note that the damping ratio is a constant in the integral expression since it
is experimentally defined. In addition, by observing Eq. 5.9 one can notice that the
dissipated energy is evaluated as a percentage (£) of the total hysteretic energy for
the load path.

5.2.1 Logarithmic Decrement Analysis (LDA)

Mass and stiffness of a dynamic system can be determined by its physical charac-
teristics, while an estimate of damping resistance can be obtained by experimental
measurements of the response of the structure to a given excitation. For this reason,
the experimental techniques used to estimate damping ratio are based on the free
vibration or on forced vibration response.

According to the first technique, damping effects for the free vibration decay of
underdamped systems (Sect.2.1.1.2) can be defined by means of the Logarithmic
Decrement Analysis (LDA) (Inman 2014) of the displacement response (Helmholtz
1962) given by Eq. 5.10.

R (5.10)
®p

Generally, the natural damped frequency wp = w - /1 — &2 can be assumed
equal to the natural frequency, leading to the following expression of the logarithmic
decrement (Eq.5.11).

§ =2k (.11

Figure 5.2 illustrates the different values assumed by logarithmic decrement by
referring to Eqs. 5.10 and 5.11.

For a damping ratio greater than 0.4-0.5 the differences between the two
decrement values cannot be neglected. In these cases, the damped natural period is
evaluated from the free vibration record by measuring the time required to complete
one cycle of vibration. In the practical applications, since the accelerations are
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Fig. 5.2 Comparison 10 | |
between logarithmic 3
decrement for wp = @ 62

8 [_z2
andwp = w - /i — &2 1-¢" |/
(Chopra 2017)

4 pd
/ 5=2r¢ |

easier to measure than the displacement, the decrement can be expressed in terms
of accelerations (Eq. 5.12).

5=1n(,it" )-27153 (5.12)

Un+1 wp

Thus, the decrement, together with the damped and the natural periods are
estimated experimentally from the acceleration response of the system. Starting
from these values, the damping ratio can be evaluated (Eq. 5.13).

]
e

As stated above, the damping ratio can even be estimated from the experimental
tests on forced systems. Usually, the experimental methods used are based on the
definition of the maximum applied force in resonance conditions or on the detection
of the specific representative bandwidth for the amplification phenomena. In the first
methodology, the system is subjected to a harmonic excitation having a frequency
equal to the natural frequency of the system (8 = 1). As known, the dynamic
response of the system is maximum and it is detected by Eq. 5.14.

£ = (5.13)

Fo 1
ko Va-p2+@ & By
By experimental testing, it is possible to measure the maximum dynamic

displacement u,,,,, while F represents the amplitude of the external excitation. For
resonance conditions, Eq. 5.15 is given.

(5.14)

Umax =

1 Fy
T2k Upnax

3 (5.15)
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Fig. 5.3 Half power method
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5.2.2 Half-Power Method (HPM)

The damping ratio on a structure can be estimated using the Half-Power Method
(HPM) (Badsar et al. 2010) based on the definition of the frequency ratio values for
an amplification factor equal to |Auq|/+/2 (Fig.5.3).

The experimental method is called half power since the square of the referenced
amplitude is equal to 50% of the maximum power. According to the amplitude factor
definition, Eq. 5.16 represents the values of 8; and ;.

Bl=2-(1-2-8% - p7+1- =0 Bl =(1-2-) %26 V1

(5.16)
For small values of damping, the previous expression can be rewritten (Eq. 5.17).

Bio=+1£2-& (5.17)

Since the dynamic response of the system is measured in the frequency domain,
the damping ratio is defined by means of the previous expression (Eq. 5.18).

|Amax|?

E= 2 (BB (5.18)

5.3 Plastic Energy

The capacity of a structural system to dissipate energy in the form of plastic energy
is described by the ductility factor (Lee et al. 1999) given by Eq. 5.19.

=2

u

L=y (5.19)
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Fig. 5.4 Comparison between resistant and ductile system

It represents the ratio between the maximum tolerable displacement §, and the
yielding displacement d,. Naturally, systems with high values of ductility factor are
able to dissipate plastic energy leading to a decrease of the action absorbed. This
concept is focused by Fig. 5.4 where a comparison between a resistant and ductile
system is given.

The maximum displacement of the resistant system is less than the ductile one.
At the same time, since the stiffness of the first system does not decrease, the action
applied to the mass is greater than the ductile element. In reference to the ductile
system, the energetic equilibrium at a generic state in which u > u,, is given by
Eq.5.20.

u u

W2
E(t)y=Ey+ Eg+ Ep = /m-ii(t)-du+ke-?y ~|—/k(u(t))-(u(t)—uy) -du
0 0
(5.20)
The two last terms of the right side of the equation represent the deformation energy
that has been divided into the elastic and plastic components. Suppose we compare
the response of the system with the infinitely elastic and elasto-plastic models
(Fig.5.5).
The following parameter is introduced (Eq.5.21).

q=— (5.21)

where Fe identifies the generic elastic action, while F, is the yielding force.
Coefficient q is called over strength factor or strength reduction factor . It is used in
the design application in order to reduce the elastic action on a structure due to the
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Fig. 5.5 Infinitely elastic and F o
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Fig. 5.6 Limit analysis of a fully restrained beam

plastic dissipation. The over strength factor is influenced by the ductility property of
the structure (Baker et al. 1980). In order to address more thoroughly the problem,
the fully restrained beam is considered subjected to a uniformly distributed static
load (Fig. 5.6).

Referencing the Figure reported above, it is possible to observe that after reaching
the elastic limit the internal actions are redistributed. The collapse conditions of
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a structural system reported in Fig. 5.4 is evaluated according to the upper bound
theorem, considering an elastic perfectly plastic model (Eq. 5.22).

16 M,

he=h

(5.22)

Thus, the collapse load for elastic perfectly plastic model (pep () is given by
Eq.5.23,

16 - M,
Peno) = — 3

(5.23)

where M, is the bending moment value causing the plasticization of the cross
section. Considering a constant rectangular section of the beam with dimensions
b x h, the M, value is given by Eq. 5.24,

£
My =625 (5.24)

where f, represents the yielding tension of the material constituting the beam.
Generally the structural system is able to carry a greater load than the yielding
load of the external cross sections (py). Figure 5.7 graphically explains this aspect
through a comparison between the elasto-plastic model and the infinitely elastic one.

Fig. 5.7 Comparison

between the elasto-plastic and p A
infinitely elastic load
evolution ,
l'
1
P ———
I
I
I
I
Pep, ()= ——/—+ —=
- I
by | I |
oy
oy
oy
oy
|
Uy  Ue  Uep(o) >u
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By imposing the two deformation works, it is possible to obtain the relationship
between the two load values (Eq. 5.25).

2
P_; — (pqu(C) (w=1)+ M) (5.25)
Dy Dy

Remembering that the ratio between p, and p, is the structure factor, Eq.5.26 is

given.
q:\/(’M.(M_nﬂL) (5.26)
Dy
- . . 12-M,
Substituting the value of p,, () obtained before and assuming p, 1

(according to the static equilibrium in the external cross sections), the over strength
factor assumes the expression reported in Eq. 5.27.

4 1
— [ 5.27
g (3 p 3) (5.27)

From this equation it is possible to observe how the over strength factor depends on
ductility of the element. Suppose we have a concrete element and according to the
elastic perfectly plastic model proposed by NTCOS8 (Fig. 5.8) it is possible to specify
the ductility factor (Eq. 5.28).

o 3.50
= fa 350 5.8
M= =175 (5-28)

Equation 5.29 provides the value of the over strength factor in the static case.
qg=1.29 (5.29)
Fig. 5.8 Stress-deformation '}

model for concrete (Adapted o
from Fig.4.1.1 — NTCO08)

E03 8cu €

£a=0,175% €0, = 0,35%
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Naturally, for assembled elements, the definition of the collapse load becomes very
difficult since the interaction between the systems has to be considered. In dynamic
cases, the procedure used to determine the over strength factor cannot be defined
with incremental static analysis since the response of the system is not governed by
a quasi-static loading process. For a generic system, the over strength factor will
be defined as maximum acceleration reduction, since the applied force is variable
over time. For this purpose, the maximum elastic dynamic response of a structural
system is described by means of the elastic spectra in which for every natural period
the maximum acceleration acting on the system is reported. In Sect. 12.2, the elastic
spectrum for a generic dynamic excitation will be discussed in detail. Now it is
generically introduced in order to explain how the maximum dynamic response of
a system depends on it. In addition, the acceleration reduction on an elasto-plastic
system is defined according to three criteria based on the period value (Leelataviwat
et al. 2009). According to the results of numerical investigations, the following
criteria are proposed:

— Equal displacement criterion. It is valid for high value of vibrational period (T >
0.55s).
According to Fig. 5.9a, the structure period is defined by Eq. 5.30.

Umax
q= =K (5.30)

iy

— Equal energy criterion. It describes the acceleration reduction for medium period
0.1s < T < 0.559).
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Fig. 5.9 Equal displacement criterion (a) and equal energy criterion (b)
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Referencing Fig.5.9b, the following energy equilibrium expression is
obtained (Eq.5.31).

E,=EFE,— (Fe—Fy)~(M;2My) :Fy'(umax_ue) (5.31)

Equation 5.32 reports the structure factor deduced from the previous expression.

g=+2-p—1 (5.32)

— Equal acceleration criterion. It is valid for low value of vibrational period (T <
0.15s).
For equal acceleration criterion there is no a reduction, then the over strength
factor is equal to one (Eq. 5.33).

g=1 (5.33)

It is possible to observe how the structure factor depends on the ductility property
of the system.
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Chapter 6 ®
Distributed Mass and Elasticity Systems Qs

Abstract Typical problems of discretized systems (e.g. lumped mass systems) have
been analyzed in the previous chapters. In some real cases, the simplified approach
of lumped masses is not feasible, then an infinite number of DOFs have to be
considered in the analyses. The dynamic problem of systems with distributed mass
and elasticity are formulated in this chapter. A Simple structure is considered in
order to provide the closed form solution for both free vibrations and forced system
analyses.

6.1 Introduction

Many structural systems can be discretized as lumped mass physical models (e.g.
multistory buildings) since they are composed of massless flexible elements and
infinite rigid diaphragms in which the mass is concentrated. When a structure has an
almost uniform distributed mass and stiffness (Stokey 1988), the idealization of the
lumped masses cannot be used. In these cases, the problem becomes more complex
because the DOFs are infinite. In the following section, the generic undamped beam
element with distributed mass and elasticity will be studied (Fig. 6.1).

In order to write the dynamic equilibrium with respect to the vertical direction
(Eq. 6.1), let’s consider the differential element of the beam in Fig. 6.1.

av d*u
T -dx = p(x,t) —m(x) - el (6.1)

If the rotational inertia contribution is neglected, the rotational equilibrium

equation is similar to the static equilibrium equation and the following relation can
be deduced (Eq. 6.2).

aMm
V=_" 6.2
o (6.2)
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p(x,t)-dx

e — C 1| D"

dx dv

y I/
U L /

Fig. 6.1 Elementary scheme of distributed mass and elasticity beam

In addition, if the shear deformation is assumed equal to zero (Bernoulli beam
element) and the flexural stiffness is constant, it is possible to define Eq. 6.3.

2
M= El. j_;‘ (6.3)
X

According to Egs. 6.2 and 6.3, the equilibrium dynamic equation can be rewritten
as given by Eq. 6.4 (Truesdell 1984).

2 4

d“u d'u
LRI = 6.4
m(x) i + e plx, 1) 6.4)

6.2 Vibrational Modes Analysis

Starting from Eq. 6.4, in the free vibration case (¢(x,) = 0) it is possible to apply
the coordinate transformation similarly to the MDOFs systems case. In this case the
equilibrium equation can be expressed as shown in Eq. 6.5.

m(x) - ¢(x) - §(t) + EI- ¢" (x) - q(t) = 0 (6.5)

Dividing by the term m(x) - ¢(x), the ratio between ¢(f) and ¢(1) is defined
(Eq. 6.6).

a0 E-V0
a0 mm e ©0

Thus, the equation of motion can be rewritten in the form given by Eq. 6.7.

El-¢" (x) —w? - m(x) - ¢p(x) =0 6.7)
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It is noticeable that the system is characterized by an infinite number of natural
vibrations and modal deformed shape. Supposing the mass as the constant (m(x) =
m), the equation becomes as expressed below (Eq. 6.8).

m

¢V () =B d() =0 p =0 (6.8)

Since it is a 4th order differential equation with constant coefficients, the general
solution can be given by Eq. 6.9.

¢(x) = C; -sin(B - x) + Co - cos(B - x) + C3sinh(B - x) + C4cosh(B -x)  (6.9)
Thus, the complete dynamic solution is given by Eq. 6.10

u(x,r) = q(t) - [Cy - sin(B - x) + C5 - cos(B - x) + Cssinh(B - x) + C4 cosh(B - x)]

(6.10)

The application of the boundary conditions leads to evaluation of the four

constants (Cy, Cy, C3 and Cy4). The parameters are obtained as the nontrivial solution

of the equation reported above. Finally, the natural frequencies are calculated and

from their values, the modal deformed shape will be obtained. Lets consider the

simple cantilever element shown in Fig.6.2 for which the boundary conditions
expressed in Eq. 6.11 are defined.

0 $0) =0
u(0) =0
" Tor=o
Hoy=0 dx
dx( =\ P (6.11)
V(L) =0 %(L) =0
M(L)=0 d*¢ B
e D=0
)
/ —>
‘El
y
I /1
vy

Fig. 6.2 Cantilever beam with distributed mass and elasticity
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By including the boundary conditions reported above, the Eq. 6.12 is obtained.

C,+C4=0

B-(Ci+C3) =0

Cy - (sin(B - L) +sinh(B - L)) + C, - (cos(B - L) + cosh(f-L)) =0
Ci-(cos(B - L)+ cosh(B-L)) —C,-(sin(B - L) —sinh(B - L)) =0

(6.12)

The two first equations define simple relations between the constants, while the
last two equations can be written in the following system form (Eq. 6.13).

sin(B - L) + sinh(B - L) cos(pB - L) + cosh(B - L) G|l _|o 6.13)
cos(B - L) 4+ cosh(B - L) —sin(B-L) +sinh(B-L) | | C,f |0 '
Naturally, the problem is solved as nontrivial solution by imposing the deter-
minant of the coefficients matrix to be equal to zero, whence the following
characteristic equation is obtained (Eq. 6.14).

1 4cos(B-L)-cosh(f-L)=0 (6.14)

Since it is not possible to find a simple mathematical solution from Eq. 6.14, the
Eq. 6.15 represents the first three numerical solution values.

1875, 4694 ,  7.855

Bi=—T"iho= = Bi= (6.15)

Thus, the natural frequencies can be evaluated (Eq. 6.16).

EI EI EI
W =352\ —— @y =22.03-/ w3 = 6170/ —— ... (6.16)
m-L* m- L* m-L*

Substituting the generic ith—f coefficient in the Eq. 6.9 and imposing the two
boundary conditions, Eq. 6.17 depending on the arbitrary coefficient C; (or C3) is
obtained.

cosh(B; - x) + cos(fB; - x)
sinh(B; - x) + sin(B; - x)

¢i(x) = C, - I:cosh(ﬂi -+ x) —cos(B; - x) — - (sinh(B; - x) — sin(B; -x)):| (6 17)
Figure 6.3 illustrates the first three vibrational modes of the cantilever beam
considered.
Similar to the case of the lumped mass system, the dynamic response of the beam
can be obtained as a linear combination of the modes (Eq. 6.18),

w(x t) =y ¢i(x) - qi(t) (6.18)

i=1
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§|| 4(%) ;] Py %L/\

o, o, o,

Fig. 6.3 First three vibrational modes of the cantilever beam

where ¢;(7) represents the modal coordinates associated with the vibrational mode
i. From this definition, according to the force-displacement relations, the bending
moment and shear functions can be evaluated (Eq. 6.19).

M(x,1) = — f EL- ¢! (x) - qi(t)
i=1 (6.19)

V(x,t) = — Y EI- ¢ (x) - ¢:(r)
i=1

6.3 Vibrational Modes Analysis of Forced Systems

For a generic forced system, the dynamic equilibrium equation can be expressed by
Eq. 6.20.

o0 o0

> m(x) - ¢i(x) - §i(t) + EI - ; ¢1' (x) - qi(t) = F(x, 1) (6.20)

i=1

Multiplying both terms in Eq.6.20 by the generic modal function and then
integrating over the total length of the element, the following equation is obtained.

L L L
OR { m(x) - (¢i(x))* - dx + EI - g;(t) - {dn(x) ¢l (x) - dx = { F(x,0)-¢i(x) -dx  (6.21)

All the terms where ¢, (x) and ¢;(x) appear with & # i are equal to zero according
to the orthogonality of the modes. Thus, the dynamic equilibrium equation can be
rewritten in terms of generalized characteristics in Eq. 6.22,

gi(t) -M; + qi(t) - K; = F; (6.22)
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where the coefficients expressed with n index represent the generalized mass,
stiffness and force for the generic mode i of the system. Equation 6.23 defines their
mathematical expressions,

L

M; = Of m(x) - (¢i(x)) - dx

K = fLEI(x) (P () - dx (6.23)
0

F; = fF(x, 1) - ¢i(x) - dx
0

where the term K; has been rewritten by applying the integration by part. The
associated natural frequency is obtained by the ratio between the generalized
stiffness and mass (Eq. 6.24).

L= o (6.24)

The expression of the equation of motion in terms of generalized characteristics
defines a generic formulation of the problem. Thus, the dynamic solution (in terms
of displacements and internal actions) will be evaluated by means of the linear
combination of infinite modes. It is important to remember that each of them
represents a generalized and independent SDOF system. In addition, if the external
excitation is due to an earthquake, the generalized force is given by Eq. 6.25.

L
Fi= it [ m0) 4160 - ds (6.25)
0

References

Stokey WF (1988) Vibration of systems having distributed mass and elasticity. In: Harris CM (ed)
Shock and vibration handbook, chapter 7. McGraw-Hill, New York
Truesdell C (1984) Timoshenko’s history of strength of materials (1953). Springer, New York



Chapter 7 )
Generalized SDOF Systems e

Abstract The chapter introduces the concept of generalized systems. A brief intro-
duction of the Lagrangian approach applied to the mechanical systems is provided.
Furthermore, some numerical examples are reported (system with distributed mass
and elasticity, system with distributed elasticity and lumped mass, and general
systems).

7.1 Lagrangian Approach

In the previous chapter, the generalized characteristics of a system have been
introduced. They represent the parameters (mass, stiffness and force) associated
with a specific vibrational mode of the system. The name generalized comes from
the Lagrangian mechanics (Lagrange 1811) where the univocal state of a physical
system is expressed by the generalized coordinates (Batchelor 2000). Consider
a mechanical system having n DOFs described in a generic reference system
with order m and coordinates x. Every variable x can be expressed in terms of a
generalized variable ¢; (Eq.7.1).

Xl :f(QI»CIZ»---»CIn)

Xo =f(q1,92, -+ qn) (7.1)

X :f(qlquv'-"qn)

The number of generalized coordinates is equal to the number of DOFs of the
system. In addition, it can be observed that each generalized coordinate is linearly
independent from the others, therefore they only depend on the time (¢ = ¢(?)).
From this property, Eq. 7.2 can be obtained.
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- . . - m-g-sin(0)

Xm r
v m-g-cos(6) ;_(' \ &
I"(f};m-g
Fig. 7.1 Pendulum system
de(l) " de dq, " dxj .
T dg; dr 2 dg, ¥ (7.2)

i=1 i=1

As an example, let’s consider the pendulum illustrated in Fig. 7.1, for which the
generic position is defined by means of the coordinates x,, and y,, of the mass.

The motion of the mass is described by the variable 6 that is the generalized
coordinate of the system (DOFs = 1). Equation 7.3 can be derived.

X = L - sin(0)

7.3
Ym = L+ cos(0) 73

The first equation is identically satisfied while the second one is reported below
(Eq.7.4),

Mm-m+m-g-cos’(0) =m-g (7.4)

where, the acceleration y, can be expressed as given by Eq.7.5.

W d (dym ;) dym ) .
Y= (dQ 9) =0 0 =—L-sin(9)-0 (7.5)

Thus, the equilibrium dynamic equation is expressed as given by Eq. 7.6,

—m-L-sin(0)-6 +m-g-cos*(®) =m-g (7.6)
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while the angular acceleration is given by Eq. 7.7.

g-(I—cos’(9)) g

6 =
The same result can be obtained if the equation of motion is written directly in
terms of (Eq.7.8).

Io-é+m-g-00s2(9)=m-g (7.8)
Where I, represents the polar inertia mass with respect to the pole O (Eq.7.9).
I=mL? (7.9)
Thus, Eq. 7.10 is obtained.

m-L2-§+m-g-sin(9)-L=0—>é=—%-sin(9) (7.10)

7.2 Approximated Solution

For a complex system with distributed mass, the dynamic solution can be obtained as
a linear combination of infinite vibrational modes. In order to simplify the problem,
it is possible to pass from an infinite DOFs system to a generalized SDOF system.
This procedure comes from the possibility of describing a generic body motion
through few simplified generalized coordinates. Even the shape functions have to be
defined in order to obtain the dynamic response. These shape functions have to be
evaluated by modal analysis, but they can be approximatively assumed according
to some considerations. Naturally this approach gives exact results for systems
composed by rigid bodies (univocal shape function), but it is approximate for
flexible systems. As an example, let’s consider the following rigid body (Fig. 7.2).

The generalized coordinate has been expressed as ¢,(¢). The displacement
function v(x) is expressed as reported in Eq.7.11.

v(x) = ¢(x) - g (1) (7.11)
The definition of the shape function ¢ (x) is required to obtain the dynamic solution

for the considered system. Since the body is a rigid bar, it is possible to select the
following exact expression of the shape function (Eq.7.12).

¢®={ (7.12)
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Fig. 7.2 Rigid body subjected to an external dynamic force (a) and the imposition of the
generalized coordinate (b)

The dynamic response of the rigid body is given by Eq.7.13.
X
V) = 7 a0 (7.13)
The associated equation of motion can be derived (Eq. 7.14).
x . X
me) 7 “qu(1) + k@) - I “qu(t) = F(t)w) (7.14)

The mass, stiffness and external force coefficients have to be defined. Since the
equation of motion has been written with reference to the generalized coordinate
assumed for the point B, according to the definition of the mass and stiffness
property the following values are deduced (Eq.7.15).

kpy =k

m (7.15)
me) = 3
Figure 7.3 graphically explains the definitions of the previous coefficients.
Therefore, the equation of motion is given below (Eq.7.16).

-m -

G0 + k- { - qu() = F(1) (7.16)

W | =
=

7.2.1 Example 1: System with Distributed Mass and Elasticity

Let’s consider the cantilever beam analyzed in Chap. 8 for which the gener-
alized coordinate is applied at the free point of the element (Fig. 7.4). In this
case, the definition of a shape function is not exact, because it depends on

(continued)



7.2 Approximated Solution 183

Fig. 7.3 Definition of the
stiffness (a) and mass (b)
coefficients for the
generalized system

m(x) = m\]- T L3
L)L —
———— . Jer
A \| 2 B
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Eras;=§-nri3

(b)

an infinite number of modes. Since it is known that the first mode is always
predominant for uniformly distributed mass and stiffness systems, the shape
function can be assumed equal to the first vibrational mode. For the cantilever
beam, it was observed that the mathematical expression of the vibrational
modes is complex and has to be solved numerically.

Generally, the shape function is chosen in order to respect the boundary
conditions and the real elastic behavior. For this purpose, the shape function
of the cantilever beam can be deduced as flexural deformed shape due to a
unitary force applied to the free node (Eq. 7.17).

2

212

G-1 (7.17)

9 = :

This expression is externally and internally compatible since it is defined from
the static analysis by imposing the given boundary conditions. According

(continued)
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F(1)

,

Fig. 7.4 Generalized cantilever system

to the Eq. 7.22, the equation of motion is expressed in terms of generalized
characteristics (Eq. 7.18).

- (1) + k- q(t) = F(r) (7.18)

Thus, the generalized mass, stiffness and force can be evaluated (Eq. 7.19).

im=024-m

. _EI

k=37 (7.19)
F=0.38-F(1)

A uniformly distributed load was assumed and thus Eq. 7.20 is given.
- EI
0.24-m-q(t) +3- i3 -q(t) =038-p(t)-L (7.20)

In addition, the natural frequency of the generalized system can be deduced
(Eq.7.21).
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Table 7.1 Geometric and mechanical properties for the cantilever beam

E[MPa] L[m] b[m] h[m] p[kg/m3]
20,000 5.00 0.2 0.5 2500

k353 [EI
===, (7.21)
m L m-L
According to Eq. 7.19, the internal moment and shear are shown in Eq. (7.22).

M) = ~E1- 909 g() = 3+ 3 - (1= 7) q(0)
- (7.22)
V0) = ~E1- 4709 () = =3+ 73 -4()

Let’s consider a numerical example. In Table 7.1 the geometric and mechani-
cal characteristics are summarized.

Moreover b and h represent the dimensions of the cross section for the
cantilever beam. Thus, with respect to the main central axis for which the
inertia moment is maximum, the generalized properties can be evaluated as
given by Eq. 7.23.

m=024-p-L-h-b=240Kg
- pbid (7.23)
k=3-

=3. .L‘ = 512,000 N/m

Natural frequency and period are calculated and reported in Eq. 7.24.

» = 46.19rad/s — T = 0.14s (7.24)
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7.2.2 Example 2: System with Distributed Elasticity and
Lumped Mass

Let’s consider now the three DOF system studied in Sect. 4.6.1 (Fig. 4.17).
The three multistory shear type buildings are considered as a lumped mass
system, but in this case it will be treated as a generalized system. The
top displacement is chosen as generalized coordinate (g(?)=¢3(t)). Since the
system has an almost regular uniformly distributed mass and stiffness, the first
mode will be predominant. For this reason, it can be used as shape function
(Eq. 7.25).

¢T = ¢TI = (0.45,0.80, 1) (7.25)

In this case, the integral expressions are substituted by the series relations
(Eq.7.26).

=5 mi- @
E="5 ko — o (7126)
i: = i F(t) ¢11

Thus, the generalized mass, stiffness and force are evaluated for the case study
(Eq.7.27).

= m-(0.452 4+ 0.352 + 1) = 1.84 -m = 73,700 kg
=362 .(0.457 +0.352 +0.2%) = 13.14- ££ = 9.86- 10°N/m
=F(t) (O45+080+1)—225 F(t)

PV'I

(7.27)

The natural frequency can be calculated (Eq. 7.28).

& = 11.56rad/s > T = 0.54s (7.28)
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Obviously, the same natural frequency and period that is associated with
the first mode has been obtained. Suppose we consider the same structure
subjected to an earthquake excitation: now the generalized problem will be
solved considering as shape function a linear combination of the three modes
with participating mass normalized with respect to the maximum value as
coefficients (Eq. 7.29).

P=¢1- g1+ g+ ¢34 (7.29)

Normalizing with respect to the component associated to the top DOF,
Eq. 7.30 is obtained.

P=¢1- g1+ g+ ¢3-83 (7.30)

Thus, the generalized properties can be evaluated (Eq. 7.31).

= 3.42-m = 738,000kg
k=36-% =67.26- % =505-10' N/m (7.31)
F=-316-U,-m

The natural generalized frequency and period are given by Eq.7.32.

& = 19.20rad/s — T = 0.33s (7.32)

In this case the generalized problem gives the exact solution since the shape
function has been evaluated with respect to the real contribution of each mode.
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Fig. 7.5 Dynamic complex F(r)
system

7.2.3 Example 3: General Systems

In this paragraph a complex MDOF system will be analyzed with the
generalized approach (Fig. 7.5).

The problem is solved by assuming the vertical time displacement of point
B as a generalized coordinate. The first problem is represented by the shape
functions for the rigid and flexible body

Figure 7.6 illustrates a compatible deformed configuration for the system, in
which the term represents the mass per surface of the square element.

The unknown generalized coordinates g; and g,/ are defined by the imposition
of equilibrium equations for the two bodies (Eq. 7.33).
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(a) (b)

Fig. 7.6 Compatible deformation (a) and internal actions (b)

(DEMp=0—>c-L—k-(qg—qu)-L+%-m-G-L—F(t)-L=0

(INZF, =0—>k-(q—qun) + £5 -qu =0
(7.33)

From the second equation, it is possible to evaluate the following relationships
(Eq.7.34).

EI
qr = qu (1 — m) (7.34)

Substituting this definition into the first equation, the following result is
obtained (Eq. 7.35).

S2 (BN (0 EL Y B s
iz m 3.k-03) T 3.k-02) T3 T
(7.35)

From this equation, it is possible to define the generalized mass, stiffness and
damping (Eq. 7.36).
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i=3-m- (1= 50n)
¢= - (1= 55 (1.36)
f=

3.3

Finally, the equation of motion is given (Eq.7.37).

-G + ¢ g + k- gy = F(2) (7.37)

References

Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, Cambridge
Lagrange JL (1811) Mécanique analytique, nouvelle édition, orig. 1788 (Paris: Courcier)



Part I1
Introduction to Earthquake Engineering



Chapter 8 ®
Seismology and Earthquakes Qs

Abstract The chapter provides a large overview on seismology. The earthquake
genesis, waves propagation and attenuation relationships are discussed. From the
engineering point of view, the characterization of an earthquake is a key point.
Thus, a detailed description of the ground motion and seismological parameters
is provided.

8.1 Basic Concepts of Seismology

8.1.1 Earthquake Genesis
8.1.1.1 Internal Structure of the Earth

The earth’s structure is composed of five layers with different mechanical and
physical characteristics. The outermost layer is called the crust and has a thickness
of 25-40 km below the continents and of 5 km beneath the oceans. The earth’s crust
is composed of resistant material such as basaltic and granitic rock. Under the crust,
the mantle layer is extended for 2850 km and can be divided into upper mantle and
lower mantle. In this layer, high temperatures are achieved (2250 °C in average)
and the materials have a viscous semi-molten behavior. Thus, the mantle’s materials
behave like a solid if they are subjected to impulsive stress and like a fluid when
they are subjected to static stress. A further internal layer with 2260 km of thickness
is called the outer core and it is at liquid state. The innermost layer is the inner
core (solid core), which is dense and subjected to very high pressure at 2760 °C.
Figure 8.1 illustrates the internal composition of the earth.

8.1.1.2 Plate Tectonics

In 1915 Wegener introduced the continental drift theory according to which the
continents were places with respect to each other. Wegener believed that over
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Fig. 8.1 Internal structure of the earth

Fig. 8.2 Pangea continent (Wegener’s theory of continental drift)

200 million years ago the earth had only one large continent called Pangea
(Fig. 8.2). This region broke into different pieces that slowly drifted until the current
continental configuration.

The theory of continental drift was widely accepted after 1960 when the current
seismographs and new techniques were used in order to investigate the ocean
floor. These searches lead to evidence of historical movement of the continents
according to the Wegener’s theory that suggested images of massive continents
pushing through the seas and across the ocean floor. From this scientific background,
a modern theory of plate tectonics evolved, according to which the earth’s surface is
divided into a number of large and massive blocks called plates that are subjected to
relative movements. Figure 8.3 shows the six major tectonic plates and the fourteen
subcontinental plates.
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Fig. 8.3 Major tectonic plates (Fowler 1990)

Smaller micro-plates are individuated near to the major plate boundaries. Since
the tectonic plates move relatively to one another, the quite slow deformation
between plates occurs only in narrow zones in proximity of their boundaries. The
result of a rapid relative deformation (called seismic deformation) is the earthquake,
while if it occurs slowly and continuously it is called aseismic deformation. The
earthquake epicenter map representative of the worldwide seismicity confirms the
hypothesis of tectonic deformation located close to its boundary (Fig. 8.4).

The cause of the movement can be found in a thermo-mechanical equilibrium
of the earth’s materials. In fact, the upper part of the mantle is in contact with the
cooler portion of the crust while the lower portion is located near to the hot outer
core. The temperature differences inside the mantle produce a variation of material’s
density that leads to an unstable situation in which the denser material sinks under
the action of gravity, while the less dense material tends to rise up. This movement
continuously occurs since the cooler material gradually becomes less dense and vice
versa for the warmer materials. Thus, convection currents occur inside the mantle
(Fig. 8.5) and they lead to the movement of the plate tectonics.



196 8 Seismology and Earthquakes

Fig. 8.4 Worldwide seismic activity (Bolt 1988)

Fig. 8.5 Convection currents

in the mantle (Noson et al.

1988)

Convection
currents

Since the masses of the movable block are extremely wide, the plate’s movement
produces a very large driving force. The nature of the earthquakes depends on the
plate boundaries, which can be divided into three different types:

- Spreading ridges
When two adjacent plates move in opposite directions, the molten rock
(magma) coming from the upper mantle rises to the surface becoming solid
because of the temperature reduction. Thus, the accumulated solidified mantle
material grows over the years and it shapes the spreading ridge. This type of
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Fig. 8.6 Spreading ridge boundary in an earth’s cross section (a) and in a 3D view (b)

boundary plate is located in the oceanic zone, where the crust is not very thick.
Thus, usually these are called oceanic spreading ridge. Another phenomenon
termed ridge push or slab pull contributes to the movement of plates. It is
caused by the fact that the density of the oceanic crust is greater than the one of
lower mantle, which is capable of creating a traction force downward. Figure 8.6
illustrates the spreading ridge with referring to slab pull phenomenon. The thin
crust located in the vicinity of the spreading ridge is formed by the slow upward
movement of magma or by means of the quick ejection of magma during the
seismic activity.

Subduction zones

According to the constancy of the earth’s mass, the creation of new plate
material at spreading ridges must be balanced by the consumption of plate
material at other locations that are called subduction zones. In this part of
the earth, one plate moves downward, under the other one. Since the oceanic
crust is colder and denser than the continental one, generally it sinks under the
continental crust (Fig. 8.7).

Transform faults (strike-slip)

When the plates move each other without creating or consuming crust
portion, the associated plate boundary is called a transform fault. The tangential
movement along the transform fault is the main cause of earthquakes. Generally
they are located orthogonally to two oceanic ridges and they are characterized by
scarps or depressions (Fig. 8.8).

The arrows on Fig. 8.8 represent the movement direction along the transform
fault (grey arrows) and along the ridge crests (black arrows). From these
movements, it is possible to identify two crust zones that move between one
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Fig. 8.7 Subduction zone
between oceanic and
continental crust
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Fig. 8.8 Transform fault (strike-slip)

another (Area 1 and Area 2). The main example of a transform fault (strike-slip)
is San Andreas fault that connects the East Pacific ridge (Mexico) with the Juan
de Fuca ridge (Washington State).

8.1.1.3 Faults

In some regions, plate boundaries are not easily distinguishable since they are spread
out with the edges of the plates broken to form micro-plates inside the main larger
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plates. The local fractured portion of the crust is called the fault and along it is where
movement occurs. The length of a fault varies from several meters to hundreds of
kilometers and its depth can extend up to ten kilometers. In many cases, the fault
rupture does not reach the earth’s surface or is otherwise extended along a notable
length on the surface. The presence of a depth or superficial fault does not means
that in that region an earthquake will occur. In other words, it is important to detect
if a fault can be considered active or inactive. For this purpose, the most common
criterion is the one proposed by Slemmons (1977), which determines an active fault
by referencing the elapsed period of time since the most recent fault movement.
According to this definition, some scientific authorities use different time periods
ranging between 35,000 years and 100,000 years. The active faults confined within
the earth’s crust are generically called seismogenic faults. In addition, the fault
generating movement near or on the topographic surface are called capable faults.
A generic fault is described by means of geometric and kinematic parameters that
will be discussed in Sect. 8.1.2.

8.1.1.4 Elastic Rebound Theory

As discussed in the previous paragraphs, in most cases the relative plate movements
occur near the boundary zones. During the movement process, elastic strain energy
is stored in the materials as shear stresses on the fault plane that separates the
plates. When shear stress reaches the shear strength of the fault material, the
accumulated strain energy is released, leading to the material failure, following the
elastic rebound theory (Reid 1911). Of course, the mechanical characteristics of
the rock materials affect the failure process. For ductile and weak rocks, only little
strain energy is stored and when it is released slowly it causes aseismic movement.
On the contrary, a sudden failure process is activated for strong and brittle materials
(Fig. 8.9). In this case, part of the released energy is dissipated thermally, while the
remaining part generates stress waves that are felt as earthquakes.

After the release of energy, a fault dislocation occurs since one portion moves
relatively to the other. The three representative steps describing the elastic rebound
theory are shown in Fig. 8.10.

Faults are not uniform and therefore both strong and weak zones can exist over
the surface. In fact, the rupture surface manifests some irregular strong zones due
to the asperity that influences the total contact area between the two surfaces of the
faults. Obviously, if a surface has a wide presence of asperities, the shear stress is
concentrated on a large area, but in the opposite case the shear stress is applied to a
small amount of asperities (Fig. 8.11).

From Fig. 8.11a it is possible to notice how the shear stress is almost uniformly
distributed since the asperity is widely located on the rupture surface. The asperity
model was proposed by Kanamori (1977) to explain the earthquake genesis mecha-
nism. According to this model, the release of energy is governed by the distribution
of the asperities. The shear strength can be achieved only for one asperity or for a set
of them, causing its failure and a redistribution of the stress on the weak zones. This
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process produces feeble wave propagation on the surface, called fore-shocks. When
the shear strength is reached for the resistant part of the rupture surface, the sudden
release of energy occurs in terms of main-shock. Another model complementary to
the previous one was proposed by Aki (1984) (Barriers model) and it is based on
the assumption of an inhomogeneous stress distribution along the fault surface. The
failure phenomenon is governed by particular zones called barriers, in which stress
intensification can occur. Thus, the fracture process starts from the weakest zones
and propagates towards the barriers. When shear resistance is reached on the weak
zones, the release of energy leads to the main shock. Progressively the stress on the
fault surface adjusts to the new uniform distribution, causing the aftershocks.

8.1.1.5 Seismic Gap

According to the elastic rebound theory, the occurrence of an earthquake depends on
the energy heap process. Thus, the probability of the occurrence of an earthquake on
a particular fault segment is related to the elapsed period, since the last earthquake
has occurred. In addition, the released energy is another important parameter in the
prediction of the earthquake occurrence. By considering the fault movement and the
historical earthquakes along a fault, it is possible to estimate gaps in seismic activity
for the analyzed fault segment. It is also possible not having a gap for a zone in
which wide earthquakes have occurred, because the considered segment fault has
been affected by an aseismic motion.

8.1.2 Seismological Parameters

A seismic event is described by means of three acceleration history components
(NS, WE and UD) which define the accelerations trend in the time domain for
a seismic station. The acceleration history on the earth’s surface is recorded by a
seismograph. It is composed by a simple pendulum joined with a recording system
(Fig. 8.12).

When a seismic event occurs, the associated wave causes the movement of the
support system. The different stiffness and mass characteristics between pendulum
and support causes a relative motion (ground motion) recorded on the rotating
drum by means of a little pen installed on the pendulum. Figure 8.13 illustrates
a generic ground motion record on a seismic station. The figure shows the different
waves contributions to the motion (P-waves, S-waves and surface waves). The wave
characteristics will be discussed in detail in Sect. 8.1.3.

From this figure, it can be observed that the first part of the acceleration time
history is caused by the P-waves. After a time interval, the S-waves and surface
waves occur. This aspect is related to the different velocity values of accelerations
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pendulum seismograph

 Spring

Weight
Pen
/ Rotating
f - - um

SN

gy
4

fiw -l - e
Horizontal Motion

surface waves
1

Fig. 8.13 Typical seismic accelerations record

(Eq. 8.1), while the delay between arrival of S-waves (AT,,) depends on the distance
between the seismic station and the hypocenter.

VP > Vs > VR (81)
where Vp, Vg and Vg represent the velocity of P-waves, S-waves and Rayleigh

waves, respectively. The time interval ATpg can be used to estimate the epicentral
distance (R,pi) with respect to the seismic station (Eq. 8.2).

ATps (8.2)
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Fig. 8.14 Example of evaluation of approximated epicenter

The localization of the epicenter allows the evaluation of the epicentral distance
for three different seismic stations and defines the intersection among the three
respective circles with radius equal to its own value of distance (Fig. 8.14).

The acceleration time histories give local information on the earthquake, but
they cannot characterize the seismic source. One of the most important parameters
describing a seismic event is its intensity. It can be based on the seismic effects
(qualitative approach) or on the instrumental measures (quantitative approach). In
the first case, the seismic intensity is deduced by referring to the building damages,
loss of human life, geomorphological variations and so on. One of the most used
macro-seismic scales was proposed by Mercalli, Cancani, and Sieberg in 1930. It is
based on the definition of 12 intensity degrees describing a typical recorded effect
(Fig. 8.15).

However, this scale is not objective and cannot be used as a source parameter. A
quantitative approach is preferred for defining the earthquake scenario. Taking into
account the geometric and energetic characteristics of the earthquake source, it is
possible to define the seismic intensity by means of a parameter called magnitude
(M). In 1930 Richter et al. (1990) proposed a parameter called local magnitude (M)
based on the instrumental measures on the ground surface. Analytically, the local
magnitude is defined as the logarithmic difference between a reference amplitude
(Ap) and a measured peak amplitude (A) for a specific distance (Eq. 8.3).

M = log(A) — log(4y) (8.3)

The term (A) represents the maximum amplitude for a Wood-Anderson seismo-
grapher 100 km far from the epicenter. Moreover, the moment magnitude (My) is
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Fig. 8.15
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used to describe the energy release during the seismic event by means of the seismic
moment (Mj) and is expressed in Eq. 8.4

2
My = 3 log(My) — cost. (8.4)

where cost. is a constant equal to 6 for moment magnitude expressed in N - m or
10.7 for moment magnitude expressed in dyne - cm. The energy release in the event
is defined by means of M and is proportional to the crustal characteristics for the
rupture plane as shown in the Eq. 8.5.

My, = GAuA (8.5)

where G is the shear modulus of the crustal material, A represents the rupture area
and Au is the mean value of the coseismic sliding along the rupture plane (Fig. 8.16).
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Fig. 8.16 Area of the rupture Au
plane (A) and coseismic
sliding (Au) in a normal-fault

Two other magnitude scales are used to provide information about the body
wave magnitude (M}) and the surface wave magnitude (Ms). The expression of the
aforementioned parameters (Eqs. 8.6 and 8.7) are reported and discussed below

A
M, = log (Th) + corr(D, h) (8.6)

A
Mg = log (TS) + corr(D, h) (8.7)

where A represents the amplitude of the ground motion and 7}, and T are the period
of the body-wave and of the surface-wave, respectively. It can be observed that
the first term of the two equations is proportional to the energy of an oscillator by
means of the ratio between amplitude and period. The term indicated with corr(D,h)
is a correction to be applied in order to take into account the waves attenuation
phenomena proportionally to the fault depth (#) and to the distance (D) between
station and epicenter. In Fig.8.17 the comparisons between the above discussed
types of magnitude scales and the moment magnitude are reported to emphasize
the differences in the range of high values of magnitude. In fact, it is possible to
observe that the moment magnitude is the unique parameter that does not suffer
from saturation, while the other ones reach the saturation for values of magnitude
greater than 5-6. This problem is due to the incapability of the seismographs to
record the long period fluctuations generated by the earthquakes with high energy.

The release energy during a seismic event is one of the interesting parameters
to be estimated. It considers a generic particle subjected to a harmonic excitation
with amplitude A and period 7. For a particle with distance d from the source of the
excitation, its total energy (E) can be written as in the Eq. 8.8.

log (E) = log (F(d. p, V) + log(5) (8.8)
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where the function F(d, p, V) depends on the distance (d), the density of the
perturbed element (p) and on the propagation velocity (V). Since the amplitude
A is strongly dependent on the seismic intensity, a correlation between energy and
magnitude of the seismic event has been observed experimentally. Gutenberg and
Richter proposed an empirical relationship between magnitude Mg and energy E
(Eq.8.9).

log (E) = 11.8 + 1.5M, (8.9)

This relationship suggests that for a unitary magnitude, there is a corresponding
release of energy equal to 30. Thus, the seismic energy increases exponentially with
the magnitude. Furthermore, Gutenberg and Richter also provided a relationship
between the magnitude of a seismic event and its frequency of occurrence A
(Eq. 8.10).

log(A) =a—bM (8.10)

where the parameters a and b have to be calibrated for the available seismic data of
the region of interest. The term A defines the number of events with magnitude
greater than M for a given time interval. The complete characterization of the
expected effects in a surface site depends on the intensity and geometric parameters
expressed in terms of distances. For this reason, several distance parameters can be
considered and they are illustrated in Fig. 8.18 in the case of normal-fault.

where Rj, is the horizontal distance on the surface projection of the rupture plane
(Joyner-Boore distance or fault-distance), R, defines the epicentral distance and
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Fig. 8.19 Fault-plane parameters (Courtesy of the INGV 2013)

Ry, represents the hypocentral distance. The R,,, distance parameter is the closest
distance to the rupture plane and it describes the radiation of seismic waves better
than the other ones. According to the theory of the elastic rebound, earthquake
generation is due to a sudden release of the elastic energy through a sliding surface
called fault. The geometric parameters that describe the fault are the orientation
(strike) and the slope (dip) of the fault-plane and the direction of the sliding through
the fault (slip) and they define the focal mechanism, also called fault-plane solution
(Fig. 8.19).

The type of movement occurring on a fault is determined by the direction of the
strike and dip. Even if the bidirectional movement occurs, one component of it is
always predominant. For this reason, the fault movements are divided into:

- Dip slip movement

The primary movement occurs in the direction of the dip. This type of
movement is further divided by a function of the direction of the movement and
dip angle. Usually this classification is led by referring to the relative movement
between the hanging wall and foot wall (Fig. 8.20).

The first one is the rock portion above the fault plane, while the second one
represents the rock part located under the fault plane. A Normal fault is detected
when the foot wall moves over the hanging wall and a tensile stress is generated
in the crust. On the contrary, when the foot wall moves under the hanging wall a
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Fig. 8.21 Normal fault (a) and reverse fault (b)

Fig. 8.22 Thrust Fault (dip Thrust Fault
angle less than 30°)

reverse fault is identified. If the fault plane has a small dip angle, a special type
of reverse fault is identified with the name of trust fault. Figure 8.21 illustrates
an example of normal and reverse fault.
- Strike slip movement

The movement occurs parallel to the strike and the associated strike-slip fault
plane is usually close to being vertical (Fig.8.23). Depending on the relative
direction of movement, it is possible to have a right lateral and left strike-slip
fault. The individuation of the movement direction is led by observing the other
side displacement direction of the fault (Fig. 8.23).
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Fig. 8.23 Left lateral (a) and right lateral strike-slip (b)
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Fig. 8.24 Focal mechanism and related fault types (USGS 2008)

In addition, oblique fault movement occurs when it is characterized by both
dip-slip and strike-slip components.

Furthermore, the focal mechanisms are represented by means of white and
grey geographic oriented spheres (“beach balls”) containing the hypocenter, in
which the fault plane and the auxiliary plane (orthogonal to the fault plane) are
used in order to define the compressed (white zones) and tied zones (grey zones).
The focal mechanism is provided to understand the fault movement which is
often used in the attenuation models as the source-site parameter. For this reason,
four different fault mechanisms can be identified: strike slip (left-lateral or right-
lateral), normal, reverse and oblique reverse (Fig. 8.24).

8.1.3 Waves Propagation

The motion on the earth’s surface due to sudden release of energy from the seismic
source is controlled by the elastic wave propagation in the soil. This type of physical
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mechanism is such that only the energy is transferred by the waves through the
elastic body (mass or volume waves). The waves are divided into two types:

*  P-waves (compression waves)
e S-waves (distortion waves)

The wave propagation causes the particle oscillation in the same direction
through compression and expansion steps. The P-waves lead to volume variation
but not shape modification of the elastic body. For the S-waves the fluctuation of
the body’s particles occurs perpendicularly to the wave direction. In this case the
volume of the body became constant but the shape change (distortion) (Fig. 8.25).

The wave length is one of the characteristics of the propagation in the time
domain and it defines the distance between two deformed zones next to each
other. D’Alembert was the first scientist who studied the problem of the elastic
wave propagation in a mono-dimensional body. In reference to a generic P-
waves propagation, Equation describes the equilibrium, kinematic compatibility and
elastic relationship for the bar shown in Fig. 8.26.
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where p is the density of the element and g is its weight expressed in reference
to the unitary length. Neglecting the own weight of the element, setting the ratio

\/g and considering the Eq. 8.11, the following equation of motion can be obtained
(Eq.8.12)

%u 1 0%u 8.12)
e V2o '

where the term V represents the propagation wave velocity, and u is the displacement
of the material point of the elastic element. V defines the velocity of the perturbation,
while % is the velocity of the actual particle of the body. The equation of motion
obtained can be particularized for P-waves or S-waves by fixing the corrected quan-
tity and boundary conditions. In Eq. 8.13 the expressions of the wave propagation
velocities are reported for three significant theoretical cases.

Ve = /%

Vs = % (8.13)
— [m

VP,C - )

Vp and Vg refer to the propagation of P-waves and S-waves, respectively. The
Vp term represents the perturbation velocity for P-waves in the case of lateral
constraints applied in the bar. In the last case, the elastic coefficient M can be defined
asin Eq. 8.14.

1—v

The volume waves propagation occurs in the different soil layers of the earth’s
crust and are controlled by the geometric optics laws. The different stiffness
characteristics of two adjacent soil layers leads to refraction and reflection of the
waves. Since the stiffness of the soil is increasing with the depth, in the real cases
the local direction of propagation (seismic ray) is represented by a curve having its
tangent vertical for the soil surface (vertical seismic rays) as shown in Fig. 8.27.

This phenomenon leads to the direction of attention only to S-waves on the
surface, since they produce the horizontal shaking on the structures. The earth’s
surface can be seen as an irregularity in the wave propagation. When the elastic
waves achieve the surface they are transformed into surface waves. The two main
types of surface waves are:

- Rayleigh waves
- Love waves
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In the first case, the particle oscillation occurs in a vertical plane containing
the direction of propagation. Each particle of the elastic element is subjected to
an elliptical motion as shown in the Fig. 8.28.

For the Love wave the oscillation of the particles occurs in the plane parallel to
the surface plane (Fig. 8.29). The perturbation velocity depends on the frequency of
excitation, but its value can be assumed equal to 90% of the S-waves velocity.

One of the most interesting phenomena of wave propagation is represented
by the geometric attenuation of motion with the distance due to the energy
dispersion in the space. Naturally, this aspect is inversely proportional to the distance
between the seismic source and the local surface point. Furthermore, the attenuation
phenomenon is also related to the shape of the wavefront which defines the envelope
of the perturbed points at the same time. This characteristic depends on the waves
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Fig. 8.29 Love waves (Bolt Length wave
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Fig. 8.30 Wavefronts for Rayleigh waves and volume waves generated by the impulsive load on
surface (Woods 1968)

type. For this reason, Fig. 8.30 illustrates the typical wavefront of volume waves and
Rayleigh waves induced by an impulse applied on the soil surface.

The wavefront of the Rayleigh waves is described by a cylinder shape, while a
spherical shape is observed for wavefront volume. Thus, considering r as distance
between the source of the perturbation and the generic point, the geometric

attenuation proportional factor is given by the ratio ri As observed about the

wavefront shape, the exponent 7 is equal to % for Rayleigh waves and is equal to
1 for volume waves. Furthermore, it was observed that the transported energy of
the Rayleigh waves is about 67% of the total energy, while the remaining part is
associated with volume waves (26% for S-waves and 7% for P-waves). The inelastic
behavior of the soil causes dissipation with consequentially further attenuation of
the motion on the surface (intrinsic attenuation). In the practical soil dynamic
applications, the soil behavior is approximated by means of a viscous-elastic model
in which the original elastic characteristics are modified in the complex associated
parameters. Since the ground motion due to earthquakes can be described by an
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exponential equation, the generic dynamic displacement on the surface can be
expressed as in Eq. 8.15.

u(x,t) = uy - e~ - el (8.15)

where the first exponential term indicates the intrinsic attenuation by means of the
a, term (Eq. 8.16) which is related to the soil thickness and the rupture depth (R,,,).
Both exponential parameters are inversely proportional to the distance x, so that
these contributions give information about the geometric attenuation.

wD
Vs

(8.16)

oy =

where D measures the soil viscous damping. For shallow earthquakes, the attenua-
tion phenomenon is predominant with respect to the attenuation due to the energy
dissipation in the perturbed soil.

8.1.4 Attenuation Relationship

One of the goals of seismology is to predict the ground motion in a specific site at
a given epicentral distance (R,,;) for a given earthquake. At this purpose, different
mathematical attenuation laws are proposed to estimate a specific ground motion
parameter, considering a wide set of seismic events characterizing the seismic zone.
The attenuation relationships define the exceedance probability for a given ground
motion parameter (¥) with respect to a parameter y* for a given magnitude (M) and
distance (R) (Eq.8.17)

PlY >y* | M,R] = 1 — Fy(y*) (8.17)

Figure 8.31 illustrates a generic attenuation curve for the parameter Y with the
related probability distribution.

Many attenuation models have been proposed to predict the value of the
considered ground motion parameter and each of them is calibrated with respect
to a specific geographic zone. However, modern GMPE mainly uses the moment
magnitude (My) and the closest distance to the rupture plane (Rgyp) as magnitude
and distance parameter in equation.

The main GMPEs will be discussed next. A common engineering application
of the GMPE focuses on the spectral acceleration prediction at different periods.
For this purpose, many attenuation models have been developed such as Ambraseys
et al. (1996) GMPE which is valid for European sites.

IOgSa(T,) = C]/ + CoM + C4logR + C4Sp + CsSs (8.18)
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Fig. 8.31 Attenuation curve for Y parameter

where C|’, C, C4, C4 and Cg are the site-dependent coefficients, determined using
416 records in Europe and adjacent regions, while M and R are the magnitude and
fault distance, respectively. The parameters Sy and Sy refer to the site conditions
(stiff or soft soil). The equation is recommended for a magnitude range between 4.0
and 7.5 and for source distances of up to 200 km (Ambraseys et al. 1996). The output
are the spectral ordinates (S,(7;)), damped at 5%, in a period range of 0.1-2s. The
Campbell and Bozorgnia (2008) and Boore and Atkinson (2008) GMPEs (Egs. 8.19
and 8.20) have been derived by empirical regression of part of PEER database and
they define the spectral ordinates with 5% of damping for periods from 0.01 to 10s.

In(Se(T7)) = Fu(M) + Fp(Rjp, M) + Fs(Vs30, Ryp, M) (8.19)

The attenuation relationship of Boore-Atkinson is obtained as the sum of three
contributions: Fy, is the magnitude scaling, Fp represents the distance function
and Fy is the site amplification coefficient. The main input parameters are the
Joiner-Boore distance(R;g), the moment magnitude (M) and the average shear
wave velocity in a depth of 30 m (Vs30). The site amplification term is obtained
by summing a linear contribution (Fy;y) and a nonlinear contribution (Fy). The
Boore-Atkinson attenuation model is applicable for a magnitude range 5-8 and
Joyner-Boore distance less than 200 km.

In Sa(Tl) = (fmag +fdis +f]“lt +fhng +fsite ‘I'fsed) + ln(Sa(Ti)Comp/GM) (820)

The last term of the Campbell and Bozorgnia predictive equation is the adjust-
ment to the median model represented by the sum of the six terms: magnitude
term (f,,4¢), distance term (fy;,), style of faulting term (f3), hanging wall term (fj,,, ),
shallow site response term ( fj;.) and deep site response term ( fiq). This model can
be applied for a magnitude greater than 4 and less than 8 and for a distance ranging
from 0 to 200 km. In addition, the Campbell-Bozorgnia model can be assumed valid
for western United States sites and in other similarly tectonically active regions. For
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each GMPE discussed, the total aleatory standard deviation is defined as the sum of
two terms (Eq. 8.21).

o, = Vol + 12 (8.21)

where the o2 term represents the intra-event variance and t? parameter is the inter-
event variance. The intra-event component describes the dispersion degree for a
single ground motion, instead the dispersion between an event and the mean of all
the events is called inter-event term.

8.2 Ground Motion Parameters

The ground motion parameters describe the motion on the ground, so they assumed
a certain importance in the engineering applications. Since these parameters char-
acterize the motion trend, they are also called waveform parameters. They can be
divided into three different categories based on the given information:

1. peak parameters;
2. frequency content and energetic parameters;
3. time parameters.

It is important to define each of them to obtain a complete characterization of the
ground motion.

8.2.1 Peak Parameters

The peak parameters refer to the maximum values of the ground motion time history.
The most common peak value is the Peak Ground Acceleration (PGA), which
identifies the maximum value of the recorded acceleration time history. From this
peak value, the Peak Ground Velocity (PGV) and the Peak Ground Displacement
(PGD) can be obtained by a single and a double integration of the acceleration
in the time domain, respectively. Figure 8.32 illustrates the three aforementioned
parameters for a record of Northridge earthquake (1/17/1994).

8.2.2 Frequency and Energetic Content
8.2.2.1 Theoretical Background

Every ground motion recorded is represented as an irregular acceleration history in
the time domain. Anyway, it is possible to decompose any periodic function into
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Fig. 8.32 PGA (a) PGV (b) and PGD (c) for the Northridge earthquake (1/17/94, 12:31, Canyon
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a linear combination of infinite harmonic functions with given frequency (f) and
phase (¢). This approach was proposed by Fourier in early nineteenth century and
it provides the generic time contribution of the periodic function as shown in the
Eq.8.22

F(t) = %ao + Z ¢y sin (wut + ¢y) (8.22)

n=1

where ay is the constant of the series (Eq. 8.23), while ¢, represents the amplitude
associated to the harmonic part of the previous expression.

1 T
ag = — + / F(t)dt (8.23)
T; 0

where T; indicates the characteristic period of the function F(t). Introducing the
following expressions reported in the Eq. 8.24, the Fourier series can be rewritten as
indicated in the Eq. 8.25.

Ch =V a112 + bn2

¢, = arctan (b_) (8.24)

F(t) ! +i cos 27 t) + b, sin 2men t 8.25
= —a a . St . .
20 T, T, (8.29)

1 1

Instead Eq. 8.26 defines the values of the coefficients a and b.

2 .1 2.
a,,:FifO'F(t)-cos( ;n-t-dt)

l

8.26)
2 2.7 (
7 OT'F(t)-sin( ; n-t-dt)

S
B
Il

l
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Let’s consider the case of square wave with absolute value of amplitude equal
to 1 (Fig. 8.33). Only four harmonic contributions will be considered (n=4).

The approximation of the method improves as the number of selected harmonic
functions increases. It has been shown that, for a unique representation of the signal
in the frequency domain, both amplitude and phase information should be provided
for each frequency component. The first one give information about the energy
contribution, while the second part represents the shift of the regular function in
the time. The representation of the periodic functions in the frequency domain
is very useful for many engineering applications. For this purpose, the Fourier
transform is used to obtain the periodic function in terms of amplitude (A) or
phase (¢) with referring to the frequency contributions. Equation 8.27 shows the
mathematical expression of the Fourier transform, while the Fig. 8.34 illustrates the
general scheme used to switch from the periodic function in the time domain to the
frequency domain.

F(w) = / ” F(t)-e ™'dt (8.27)

[e.]

In order to use Eq. 8.27 with sampled digital data, it is necessary to convert the
Fourier transform in discrete form. The Fast Fourier Transform (FFT) is the most
efficient algorithm used in the engineering applications that can be applied for a
periodic function sampled in N points at fixed time range Az (Eq. 8.28).

N—1
F(ko) = At F (nAf) - ¢~ *40% (8.28)
n=0

As for the Fourier transform, the second half of the results obtained with the
FFT are symmetrically equal to the first half one. One immediate advantage of the
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Fig. 8.34 From time domain to frequency domain

Fourier transform is that complex differential operations in the time domain are
converted into simpler algebraic operations in the frequency domain. This permits
the reduction of the computational load. Similarly, the inverse operation applied
by the Fourier transform makes it very easy to return to the time domain, starting
from the frequency domain. The mathematical instrument allowing the operation
just discussed is called the Inverse Fourier Transform. Equations 8.29 and 8.30
illustrate the inverse Fourier transform in the continuum and in the discrete domain,
respectively.

400

F(o) = / F(0) - 2™ doy (8.29)
N—1

F(kt) = Aw Y F (ndw) - e (8.30)
n=0

The following Table 8.1 summarizes the main Fourier transform properties.

Table 8.1 Main Fourier Symmetry |F(—w)| = |F*(w)]

ransform properties T incarity KL F1 (1) + kaFa () < ki Fy(@) + kaFa (@)
Scaling Z(t) = F(kt) < Z(w) = F%)
Shifting F(t — o) < e~ F(w)
Differentiability % < iwF(w)

Integration /ioo F(t)dt < iF(w) 4+ nF(0)é(w)
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Fig. 8.36 Aliasing distortion observed in the amplitude Fourier spectrum

Recalling that the primary purpose of digital Fourier analysis is to obtain a
discrete approximation of the continuum periodic function, the signal sampling
operation is essential in order to obtain consistent results. In Fig.8.35 the real
periodic signal is compared with the same sampled signal.

The figure above shows an incorrect sampling procedure because the sampling
interval (Ar) is very high with respect to the frequency of the real signal. This
phenomenon is called Aliasing distortion in the frequency domain and it can be
explained by referencing a generic case shown in Fig. 8.36. In the time interval [0,
T], the sampled function F() can be assumed equal to the real signal F(t). However,
F,(n-Aw) is only approximately equal to the real function F(n- Aw) in the frequency
interval [0, F].

In order to avoid the aliasing phenomenon, the minimum sampling frequency
(Af) has to be equal to two times the maximum frequency deduced from the Fourier
spectrum (F/2 in the previous example). This last parameter is called Nyquist
frequency and is expressed in the Eq. 8.31.

= lAf = (8.31)

If a filter is applied before signal sampling in order to remove all the contributions
associated with a frequency greater than the Nyquist one, the aliasing phenomenon
would not occur (anti-aliasing filter). One of the advantages of the frequency domain
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Fig. 8.37 Response to a elementary impulse (a) and to two elementary impulses (b)

approach is to remove fixed contributions of the decomposed harmonic signals or, in
other words, it is possible to remove the unwanted frequencies. The procedure just
discussed is called signal filtering and is based on the modification of the frequency
content of the input signal by application of filters. They are considered as dynamic
systems capable of transmitting only the energy contained in a specific bandwidth.
In order to understand the filtering signal concepts, the dynamic response of a
physical system is discussed below. Considering a physical system in which an
impulsive signal §(¢) is applied, the response of the system A(f) can be assumed
as a periodic function. If the given system is linear and time-invariant, by applying
several elementary impulses, the response is given by the sum of each elementary
response (Fig. 8.37).

The terms /(r) and O(¢) refer to the system input and output, respectively. The
time 7; refers to the instant in which the jth elementary impulse is applied. Each
generic periodic input function (/(f)) can be seen as sum of several elementary
impulses occurring in different time instants (t). Thus, the dynamic response of
the system (O(¢)) can be assumed as expressed in Eq. 8.32.

+oo
o) = /_ I()h(t — t)dT (8.32)

(o]
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Fig. 8.39 Band-pass filter (a) and band-eliminate filter (b)

This expression is called the convolution product between the function /(f) and
h(z). Using the Fourier transform leads to the estimation of the output response in
the frequency domain (Eq. 8.33).

+o0 +o0
Oo(w) = /_ I(v) [n(t — 1) - €"dt] dT = H(w) /; I(7) - ¢“'dt = H(w)I(w)

> (8.33)
The dynamic response in the frequency domain (O(w)) is given by the product
between the input I (w) and the parameter H(w), called transfer function. For a linear
system, it represents the algebraic relationship between the input and output of the
system (Fig. 8.38).
The transfer function H(w) depends on the dynamic characteristics of the system.
In other words, the transfer function can be compared to a special filter that modifies
the frequency content of the input signal. Generally, the filter used to modify the
signal characteristics is capable of eliminating a given band-frequency and leaving
another one unchanged. Thus, the filter used in signal processing can be divided into
two different types:

1. band-pass filter;
2. band-eliminate filter.

In the first case all the contributions due to the frequencies outside the band are
eliminated, while in the second case, they remain constant (Fig. 8.39).

If the passing band is associated with a high frequency value, the associated filter
is called high-pass. On the contrary, when the low frequency remains constant, the
filter is called low-pass.
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8.2.2.2 Filtering

Many engineering applications are based on seismic signals such as acceleration
time history. However, often the respective velocity and displacement time histories
obtained by integration methods might be affected by some errors (e.g. permanent
drifts) due to low frequencies components in the signal. In this case, filtering
operations became the primary means for correcting the ground motion records.
The Butterworth filter is one of the most used filters in the seismic applications
and it is a band-pass filter that passes frequencies within a certain range and rejects
frequencies outside that range.

IH ()] = > (8.34)
1+ (2) N

Equation 8.34 shows the amplitude response of a Butterworth filter, where w
is the generic angular frequency, o, represents the cutoff frequency and » is the
order of the filter. Low frequency operation can cause the loss of important physical
information related to the soil permanent displacement. In addition, the cut of
the high frequency field is necessary for removing the pseudo-horizontal part of
the associated elastic spectrum. For the reasons just mentioned, setting the three
Butterworth parameters case by case is reasonable and guarantees more adaptability
in the signal analysis operations. The accuracy of band-pass filtering is proportional
to the order of the filter (n; < ny < n3), in fact, as shown in the Fig. 8.40, with the
increase of the filter order, the filter shape becomes very close to the ideal band-pass
filter.

The application of the specific filtering process for uncorrected records is
necessary for removing the linear drift in the displacement histories, obtained by
means of the double integration of the acceleration recorded history. This process is
called baseline correction and consists of reporting the mean value of the recorded
acceleration to the null value (Fig. 8.41).

In Fig.8.42 the differences between the baseline uncorrected and corrected
displacement histories for the Emilia earthquake (station of Modena and North-
South component, 2012) are shown.

1’1_3/ (23] Wc

Fig. 8.40 Three different orders of Butterworth filter and ideal band-pass filter
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It can be observed that the baseline correction is an essential process for
removing the displacement and velocity drifts.

8.2.2.3 Frequency Content

The frequency content of a seismic record gives information about its predominant
frequency band (Af,) and the distribution of amplitude or phase contributions
in the frequency interval [f,,in,f,ax]. In the practice of earthquake engineering
applications, the frequency content of a record is expressed only in terms of
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amplitude Fourier spectrum, because it is directly related to the energy of the record.
For example, in the Fig. 8.43 the Fourier amplitude spectrum of Kozani mainshock
earthquake is reported.

From Fig. 8.43 it is possible to see that the maximum amplitude contribution is
given by the frequency of 3 Hz, while after 5 Hz the frequency content became very
poor. The individuation of the predominant frequency band is a simple procedure
and it is essential to identify the possible resonance phenomena with respect to a
given structure.

8.2.2.4 Energy Content

An efficient measure of a seismic event in terms of dissipated energy of a structure
subjected to the earthquake excitation has been given by Arias in 1970. The Arias
Intensity (4) is an integral parameter based on the accumulated energy in a SDOF
system with damping and vibrational frequency w (Eq. 8.35).

T [l
Iy = — / a(t)’dt (8.35)
2g Jo

The Arias intensity is expressed as a velocity (cm/s), it is defined in the
direction of the motion and it’s proportional to the square of the accelerations in
the interval [0, #.], where ¢, indicates the duration of the recorded earthquake record.
The definition of I for each time instant of the referring interval represents the
cumulative energy trend in the time domain (Fig. 8.44).

Figure 8.44 can provide information about the real duration of the earthquake
(see also Sect. 8.2.3). It can be noted that the greatest intensity gradient is located in
the interval [5, 10] Hz.
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8.2.3 Duration

As discussed in the previous paragraph, the Arias intensity provides information
about the real duration of the earthquake. This parameter is very important, because
it controls the damage level of a structure excited in the horizontal plan. In fact, it
has been experimentally observed that a seismic event with high value of PGA and
short duration leads to less level of damage than an event with low value of PGA
and long duration. The duration of an earthquake can be defined from the recorded
acceleration time history by means of two proposed methods:

1. significant duration approach;
2. bracketed duration approach.

The first one is the most used in the practical applications and it considers the
duration as time range in which 90% of the total energy is registered (Trifunac and
Brady 1975). Thus, this definition shows the direct link between the Arias intensity
(energy content) and the duration of the seismic event. Figure 8.45 highlights the
definition of effective duration.

The significant duration is defined for the time value associated with Arias
intensity greater than 5% and lesser than 90%. Page et al. (1972) proposed the
definition of bracketed duration as the time range between the first and last peak
acceleration value greater than 0.05 g (Fig. 8.46).

Another parameter is represented by the peak acceleration time (T,) which
defines the time instant related to the peak acceleration.
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Fig. 8.46 Bracketed duration definition for Kozani-Prefecture record (Kozani mainshock,
13/05/1999)

8.2.4 Other Parameters

In structural and geotechnical engineering the parameters providing information
about the frequency content, the duration and the peak values simultaneously are
widely used. The most important set of data is the set of Root Mean Square (RMS)
parameters, that provide information about both the frequency content and the
amplitude characteristics related to the accelerations, velocities and displacements
(arms, Vrus and dgys). The expressions of RMS parameters are mathematically
similar and the acceleration RMS is reported in Eq. 8.36.

- (8.36)

where T, is the duration of the motion, while af) represents the acceleration
corrected history. In Table 8.2 all the main properties of the ground motion
(waveform parameters) are summarized.
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Table 8.2 Waveform parameters

Amplitude Time RMS Energy and

paramaters paramaters paramaters frequency paramaters
PGA Duration [Ty] agms Arias intensity [/,]

PGV Peak acceleration time [7},] vrMS Fourier transform [ F(w)]
PGD drMS
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Chapter 9 ®
Major Seismic Events That Occurred in e
Italy and in the World

Abstract The chapter introduces the major historical seismic events occurred in
Italy and in the world. The main seismological and general information are listed
for each seismic event (e.g. magnitude, fault type, etc.).

9.1 Introduction

In this chapter is presented a classification of the 10 strongest earthquakes that
occurred in Italy in the past 150 years (INGV 2013) and in the World from 1960
until today (USGS 2008, Oceanic and Administration 2015). Each earthquake is
described with a table reporting the following information:

¢ date and location of the event;

* magnitude;

o fault type;

 fault rupture length;

» estimated damages;

* peak ground acceleration (PGA);
e comments;
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9.2 Earthquakes Occurred in Italy in the Past 150 Years

(1) 1908/12/28 Messina and Reggio Calabria

Magnitude: 7.2.
Fault type: normal fault.
Breaking fault length: 40 km.
Estimated damages: 120,000 victims, more than 40,000 collapsed buildings.
Peak ground acceleration: 0.27g.

A tsunami with wave height of 10 m caused thousands of
victims, completing and aggravating the devastation and
destruction of the earthquake (Farrell et al. 2015). In about
80 towns of the provinces of Messina and Reggio
Calabria, extensive damages hit from 70 to 100% of
Comments: buildings. The earthquake with the following tsunami and
fire destroyed completely the building stock of Messina.
In Calabria the earthquake had destructive effects in a
wider area than in Sicily. After this event, in Italy started
the study of the effects of earthquakes and a seismic zones
classification was issued.




231

9.2 Earthquakes Occurred in Italy in the Past 150 Years

(2) 1905/09/08 Nicastro, Calabria

Magnitude:

7.1.

Fault type:

normal fault.

Breaking fault length:

30km.

Estimated damages:

557 victims, serious damages to the surrounding towns.

Peak ground acceleration:

about 0.3 g.

Comments:

The earthquake struck with destructive effects the region
of the Gulf of St. Eufemia. 13 towns were almost
completely destroyed and more than 100 were seriously
damaged in the provinces of Cosenza, Catanzaro, Vibo
Valentia (Stanley et al. 2014) and Reggio Calabria. These
effects were worsened by the state of the building stock,
characterized by poor construction techniques. The shock
was followed by a tsunami which raised the sea level of
1,3 meters, submerging the coast that goes from Vibo
Marina to Tropea.
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(3) 1915/01/13 Avezzano, Abruzzo

Magnitude: 7.0.
Fault type: normal fault.
Breaking fault length: about 30 km.
Estimated damages: more than 30,000 victims.
Peak ground acceleration: about 0.4 g.

The town of Avezzano was literally toppled from the
shaking: 96% of its population died and it lost its most
important monuments. Only one high-rise building
remained standing. These damages were attributed to the
Comments: length of the shock, over 1 min, and the enormous amount
of power released during the tremor. Damage of the
earthquake was distributed throughout a wide area in
central and southern Italy. The main shock was felt in
Rome where light damages to historic building occurred.

P

Fig. 9.3
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(4) 1980/11/23 Irpinia, Campania e Basilicata

Magnitude: 6.9.
Fault type: normal fault.
Breaking fault length: about 30 km.

almost 3000 victims and 300,000 buildings seriously

Estimated damages: damaged.

Peak ground acceleration: 0.38 g.

The quake had devastating effects in a wide area of the
Southern Apennines, especially in the region called Irpinia
and in the adjacent areas in the provinces of Salerno and
Potenza. 14,000 houses at least were seriously damaged in
the epicentral area alone (Valensise 1993). Many collapses
occurred in Naples affecting many old houses made in tuff
and many damaged or decaying buildings. 506 towns in
the eight affected provinces were damaged.

Comments:

Fig. 9.4
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(5) 1930/07/23 Irpinia, Campania and Basilicata

Magnitude: 6.7.
Fault type: normal fault.
Breaking fault length: about 30 km.
Estimated damages: 1400 victims, 3000 collapsed buildings.
Peak ground acceleration: about 0.27 g.

The earthquake was especially destructive in Aquilonia
and Lacedonia, where about 70% of buildings collapsed
completely. Most of these were built with river stones and
poor quality mortar. The quake was affected in a wide
territory between Campania, Apulia and Basilicata for an
estimated total area of 36,000 km?. Collapses and deep
lesions were found in 68 countries of the provinces of
Avellino, Potenza, Foggia, Benevento and Salerno. Many
of historical value buildings such as churches and old
castles were destroyed.

Comments:




9.2 Earthquakes Occurred in Italy in the Past 150 Years

235

(6) 1920/09/07 Garfagnana, Tuscany

Magnitude: 6.5.
Fault type: inverse fault.
Breaking fault length: not found.

Estimated damages:

171 victims, 650 injured people.

Peak ground acceleration:

0.2 ¢g.

Comments:

Fivizzano was destroyed, and with it part of the regions of
Lunigiana and Garfagnana. The area of damage was
extensive, including the coasts of Liguria, the Versilia, the
mountainous areas of Parma, Modena, the provinces of
Pistoia and Pisa. The quake was felt from the French
Riviera to the Friuli and, on the south, in the whole of
Tuscany, Umbria and Marche. According to surveys, most
of the damages was due to the poor quality of the mortars
used in the masonry houses.
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(7) 2016/10/30 Norcia, Umbria

Magnitude: 6.5.
Fault type: normal fault.
Breaking fault length: 15km
Estimated damages: several collapsed buildings.
Peak ground acceleration: 048¢

the earthquake was felt in almost all the Italian country
and even in some parts of Austria. It was a shallow quake
as its depth was between 5 and 9 km, and was the
mainshock of a seismic sequence started on August 24th.
It did not cause casualties but the buildings suffered huge
damages. More than half of the houses of Castelluccio di
Norcia were destroyed. Also important historical
monuments collapsed,such as the San Benedetto basilica
and the Santa Maria Argentea cathedral in Norcia.
Significant hydro-geological effects were also generated
and the two edges of the fault are clearly visible as there is
a difference in level up to 70 cm.

Comments:
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(8) 1976/05/06 Tolmezzo, Friuli Venezia Giulia

Magnitude: 6.4.
Fault type: normal fault.
Breaking fault length: about 20 km.
Estimated damages: 989 victims, more than 45,000 homeless.
Peak ground acceleration: 0.35¢.

The earthquake lasted 50 s. The seismic event, combined

with the morphology of the ground, generated numerous

landslides which damaged many roads hampering rescue

efforts. The towns affected by the greatest losses were 41;
those seriously damaged were 45. Collapses occurred
across the border with Austria and in the territory of

Slovenia. After the main event, the most violent
aftershocks occurred more than 4 months later, on 11 and
15 September.

Comments:
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(9) 1968/01/15 Belice, Sicily

Magnitude: 6.4.
Fault type: normla fault.
Breaking fault length: 40 km.
Estimated damages: about 300 victims, 70,000 homeless.
Peak ground acceleration: 0.12 ¢g.

Belice’s valley was considered, until the earthquake of
1968, one of the so-called “non-seismic areas’ and
consequently built with crumbling structures, consisting
Comments: of caves and huts used as houses. Several settlements in
Trapani’s province were totally destroyed by the shaking
and different roads suffered disruptions hampering rescue
efforts.

Fig. 9.9
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(10) 2009/04/06 Laquila, Abruzzo

Magnitude: 6.3.
Fault type: normal fault.
Breaking fault length: 25km.

308 victims, 1500 injured people, 10,000 million euros in

Estimated damages:
damages.

Peak ground acceleration: 0.3g.

The fault located near the settlement of Paganica was the
one considered responsible for the earthquake (Chiarabba
et al. 2009). It was clearly felt throughout central Italy
down to Naples and the main shock was followed by
Comments: dozens of aftershocks. In this event public, private, artistic
and architectural building stock was damaged as well as
many infrastructures. In the only city of L’ Aquila lived
over 55% of the population directly affected by the
earthquake.
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9.3 Earthquakes Occurred in the World from 1960 to the

Present Day
(1) 1960/05/22 Valdivia, Chile
Magnitude: 9.5.
Fault type: thrust fault (subduction of the Nazca plate beneath the
South American plate).
Breaking fault length: 1000 km.

5700 victims, 2 million homeless, about 1000 million

Estimated damages: dollars in damages.

Peak ground acceleration: 0.29¢g.

The earthquake generated one of the most destructive
Pacific tsunamis with waves high up to 25 m. It reached
the coastline of Chile within 10 to 15 min killing at least

200 people, sinking all the boats, and inundating half a
kilometer inland (Cifuentes 1989). It was particularly

Comments: destructive even in the Hawaiian Islands and in Japan,

where it arrived about 15 h later. In addition to the tsunami

there were other geologic phenomena like extensive
subsidence, alteration of the shoreline and of local
flooding. After the main shock, the Cordon Caulle volcano
erupted for 47 h.
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(2) 1964/03/28 Prince William Sound, Alaska

Magnitude: 9.2.
Fault type: thrust fault (subduction of the Pacific plate beneath the
ype: North American plate).
Breaking fault length: 700 km.

Estimated damages:

about 130 victims, more than 310 million dollars in
damages.

Peak ground acceleration:

044g.

Comments:

The earthquake caused vertical displacements which
ranged from about 12 m of uplift to 2,3 meters of
subsidence relative to sea level (Platker 1965). The zone
of subsidence covered about approximately 285.000 km?.
A Pacific-wide tsunami was generated which was
destructive in Western Canada, Oregon, California and the
Hawaiian islands, killing about 110 people. There were 52
larger aftershocks, the first 11 of which, with magnitude
greater than 6,0 on the Richter scale, occurred in the first
day.
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(3) 2004/12/26 Off the west coast of Northern Sumatra, Indonesia

Magnitude: 9.1.
Thrust fault (subduction of the Indian plate beneath the
Fault type:
Burma plate).
Breaking fault length: about 1500 km.
Estimated damages: about 230,000 victims.
Peak ground acceleration: 0.25¢.

The hypocentre of the main earthquake was in the Indian

Ocean, just north of Simeulue Island, at a depth of 50 km
below the mean sea level. The earthquake generated the

greatest fault rupture of any recorded earthquake,

spanning a distance of about 1500 km. The whole rupture

lasted 10 min (Lay et al. 2005). Along the plate boundary
there were displacements up to 20 m that generated a

devastating tsunami. It struck Sumatra in 15 min, Thailand
in half an hour, India in two hours with no possibility to

alert the people since there were no sensors able to predict

the propagation of the tsunami.

Comments:

Fig. 9.13
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(4) 2010/02/27 Offshore Maule, Chile

Magnitude: 8.8.
Fault type: thrust fault (subduction of the Nazca plate beneath the
ype: South American plate).
Breaking fault length: more than 500 km.
Estimated damages: 500 victims at least, 500,000 seriously damaged buildings.
Peak ground acceleration: about 0.3 g.
This earthquake occurred at the boundary between the
Nazca and South American tectonic plates. The two plates
are converging at a rate of 70 mm per year. From 1973 in
Comments:

this area there were at least 13 quakes with a magnitude
higher than 7,0. A tsunami was generated but it caused
few damages.
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(5) 2005/03/28 Northern Sumatra, Indonesia

Magnitude: 8.7.
thrust fault (subduction of the Indian plate beneath the
Fault type:
Burma plate).
Breaking fault length: 300 km.
Estimated damages: 1300 victims.
Peak ground acceleration: about 0.3 g.

The Indian plate is moving in a northeastward direction at
about 5 to 5,5 cm per year relative to the Burma plate. The
rupture started off the western coast of North Sumatra
near Nias Island and progressed in a southeast direction

Comments: along a preexisting major fault. Nias Island had the
hardest losses both in terms of deaths and damages to the
buildings. A tsunami with wave height up to 3 m occurred
along the Indonesian coast but the population was
informed and had time to escape.
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(6) 1965/02/04 Rat Islands, Alaska

Magnitude: 8.7.
Fault type: thrust fault (subduction of the Pacific plate beneath the
ype: North American plate).
Breaking fault length: 600 km.

Estimated damages:

130 victims.

Peak ground acceleration:

not found.

Comments:

This region, where the Pacific and North American plates
are forced directly into one another, is one of the world’s
most active seismic zones. Only 9 deaths were due to the
earthquake, the others were caused by the tsunami
generated after the main shock.
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(7) 2007/09/12 Southern Sumatra, Indonesia

Magnitude: 8.5.
Fault type: thrust fault (subduction of the Australian Plate beneath
ype: and the Sunda plate).
Breaking fault length: 350 km.

25 victims, 160 injured people, 50,000 seriously damaged

Estimated damages: buildings.

Peak ground acceleration: 0.2g.

At the location of these earthquakes, the Australia plate
moves northeast with respect to the Sunda plate at a
velocity of about 60 mm/year. After the first, and largest,

Comments: shock, the Pacific Tsunami Warning Centre issued a
tsunami alert for the Indian Ocean basin. A tsunami
approximately 1 m high was reported at Padang,
Indonesia.
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(8) 1963/10/13 Kuril Islands, Russia

Magnitude: 8.5.
Fault type: thrust fault.
Breaking fault length: 245 km.

Estimated damages:

1 injured person, 2 destroyed docks.

Peak ground acceleration:

about 0.1 g.

Comments:

In the region of the earthquake’s epicenter, the Pacific
plate moves northwest with respect to the Okhotsk plate
with a velocity of about 90 mm/year, and becomes
progressively deeper to the northwest, remaining
seismically active to a depth of 680 km. The earthquake
generated a tsunami with a maximum wave height of 5 m.

g 7

e
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(9) 2001/06/23 Off the coast of Peru

Magnitude: 8.4.
Fault type: thrust fault(subduction of the Nazca plate beneath the
ype: South American plate).
Breaking fault length: 150 km.

about 100 victims, 2600 injured people, more than 25,000

Estimated damages: collapsed buildings.

Peak ground acceleration: 044 ¢.

The epicenter of the quake was off the coast, just north of
the town of Ocona in Southern Peru. The motions were so
strong that even in Peru’s capital, Lima (600 km away),
homes collapsed and injured several people. 25 people at
least died because of the tsunami generated by the
earthquake.

Comments:
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(10) 2003/09/25 Hokkaido, Japan

Magnitude: 8.3.
Fault type: thrust fault.
Breaking fault length: about 100 km.
Estimated damages: about 700 injured people, 90 million dollars in damages.
Peak ground acceleration: about 0.2 g.

The hypocenter of the earthquake was off the coast at a
depth of about 30 km. Damages were restricted to the
coastal area and nobody died. However the quake
generated landslides and a tsunami with 4 m wave height.

Comments:
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Chapter 10 ®
Seismic Hazard Analysis e

Abstract The chapter introduces the analyses used to estimate the seismic hazard at
a specific site. A brief introduction and definition of risk is given. The Deterministic
Seismic Hazard Analysis (DSHA) and the Probabilistic Seismic Hazard Analysis
(DSHA) are discussed.

10.1 Introduction

All the seismological considerations given in Chap. 8 can be used to produce the
models used for the seismic hazard estimation at a specific site. This procedure
represents the first step in earthquake engineering, because each hazard level is asso-
ciated with a seismic action to be considered for the structures. The seismological
models are based on the macro-division of the region of interest. The fundamental
equation of seismic risk is the following (Eq. 10.1).

R=HxDxL (10.1)

where (H) is the hazard, (D) is the vulnerability and (L) is the exposure. The seismic
hazard H represents the probability of occurrence of a given seismic event. The
vulnerability D represents the probability of being in a given damage state. The
exposure L is a parameter related to the density of the population and the built
environment in general. In Fig. 10.1 are shown some examples of the Italian maps
referred to the hazard, the vulnerability and the exposure.

In general, the hazard H is defined as the probability of having a certain ground
motion parameter value in a given observation period. The methodologies used to
evaluate the seismic hazard can be grouped in deterministic-based or probabilistic-
based and they are described in detail in the following paragraphs.
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Fig. 10.1 Hazard map (a), vulnerability map (b) and exposure map (c) for Italy

10.2 Deterministic Seismic Hazard Analysis (DSHA)

This is the first approach used in earthquake engineering and it is structured into 5
different steps reported below.

» Step I: identification of all the seismic sources capable of producing an effect on
the site of interest.

In order to identify all the possible potential sources, the seismogenetic-source
map is defined. It contains the seismogenetic zones identified in the region of
interest. For the Italian sites, the ZS9 map (Fig. 10.2) has been defined and thus
provides information about the expected seismic source mechanism for each
uniform zone in which the Italian territory is divided (macro-seismic division).

The seismo-genetic map can be found online at the link:

http://www.arcgis.com/home/webmap/viewer.html?webmap=8c5d55e0d3b
34ea78346e802fd4f6d73

In addition, the INGV provides the Database of Individual Seismogenic
Sources (DISS), available to the link:

http://diss.rm.ingv.it/diss/KML-HTMLoptions.html (Basili et al. 2008). Each
of the zones is characterized by the effective depth (Z.), the maximum mag-
nitude (M,,q,) and the fault type. As an example, let’s consider the zone 929
(Tirrenic Calabria) (Fig. 10.3).

Figure 10.4 shows a screenshot of DISS for the North-Calabrian sites from
which it is possible to notice the different geometric fault contributions.

e Step 2: Evaluation of the maximum expected magnitude from the seismological
and historical data.

The mean number of possible seismic events with magnitude greater than
a given limit m in a given period (A,,) are estimated by using the recurrence
law (Gutenberg-Richter law) (Eq. 10.2). As seen in Sect. 10.2, this relationship


http://www.arcgis.com/home/webmap/viewer.html?webmap=8c5d55e0d3b34ea78346e802fd4f6d73
http://diss.rm.ingv.it/diss/KML-HTMLoptions.html
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Fig. 10.2 ZS9 map (Meletti and Valensise 2004)

is expressed in semi-logarithmic scale by a linear function, where the two
parameters have to be calibrated by referring to the historical data. In the Fig. 10.5
two examples are reported.

log(A,,) = a—bM (10.2)
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Fig. 10.5 Gutenberg-Richter Am
laws for two different sites
with data coming from
Esteva, 1970 (Kramer 1996) 100
10
1
0.1 Alpide belt |
0.01
0.001

Fig. 10.6 Example of
source-site distance definition

The inverse of the A,, parameter represents the mean return period (g m)-
After estimating the parameters a and b, it is possible to define the maximum
magnitude associated with a given return period, or, in other words, for a given
exceedance probability.

¢ Step 3: Definition of the source-site distances (R) (Fig. 10.6).

» Step 4: Estimation of the expected effect on the site by means of a given
attenuation model. The main parameters characterizing the attenuation phenom-
ena are the magnitude M, (defined in Step 2) and the source-site distance
Rrep) (defined in Step 3). A large variety of attenuation laws based on other
seismogenetic parameters are proposed in the Sect. 8.1.4.
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Fig. 10.7 Example of motion Y
parameter estimation from the
attenuation curves

» Step 5: Selection of the control earthquake in terms of ground motion parameters.
Starting from the given attenuation model, the parameter M,.s) and Ry it is
possible to evaluate the ground motion parameter controlling the hazard at the
site.

Figure 10.7 represents the estimation process of the motion parameter (¥r)
starting from the attenuation curves.
Figure 10.8 displays all the discussed steps to be followed in the DSHA.

The main limitations of the DSHA are listed below:

(a) Uncertainty of the recurrence model and attenuation model. The consistency
of the parameters defined by the two models depends on the number of past
seismic events considered in the analysis.

(b) Overestimation of the expected ground motion parameter coming from the
choice of the source-site distances. Since the seismo-genetic zones are wide,
if the site is inside a specific zone, it is suggested to consider it a null distance.
This leads to obtain the estimated effects greater than the real ones.

10.3 Probabilistic Seismic Hazard Analysis (PSHA)

The Probabilistic Seismic Hazard Analysis (PSHA) was proposed by Cornell
(1968), who recognized the need for seismic hazard to be based on a method which
properly accounted for the intrinsic uncertainties associated with the earthquake.
The hazard parameter P(Y > Y) defines the exceedance probability of a given
parameter Y with respect to the corresponding threshold value. The model for the
occurrence of ground motions at a specific site for specified level of magnitude is
assumed to be that of a Poisson process. One of the property of the Poisson process
is that it’s memoryless, so every event is independent from the other within a given
period range. In addition, this is a stationary approach because the probability is the
same for any constant time interval. Considering a time interval VR, the probability
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Fig. 10.9 Exceedance log(¥) 1
probability conditioned by
the magnitude m and

source-site distance r i P(Y>Y/m.r)

R log(r)

of having at least one seismic event with magnitude greater than the limit m, is
reported in Eq. 10.3.

PIN>1)=1—¢*% (10.3)

where A is the mean annual seismic frequency with a given magnitude, while its
inverse value represents the return period 7. In addition, the natural uncertainty
associated with the variability of the parameters of the model (source-site distance,
magnitude and other seismological parameters) is accounted for by considering
the parameters as random variables, whose discrete values are assigned weights
reflecting their likelihood. Thus, the referenced magnitude (M) and source-site
distance of interest (R(.s)) are expressed in terms of probability density function
fu(m) and fz(r) respectively. Then, the probability defining the seismic hazard at
the site is defined in Eq. 10.4.

P(Y>Y)= // P(Y > Y/m,r) - fu(m) - fo(r) - dm - dr (10.4)

where P(Y > 7Y) is the conditional probability of having a hazard parameter Y
greater than the limit Y, for an event with a magnitude m and source-site distance
r. In other words, the attenuation effects are considered as stochastic variables
normally distributed. Thus, if Y,, indicates the mean hazard parameter and o is the
standard deviation of the normal distribution, the given seismological parameters
are used to estimate the desired probability (Fig. 10.9).
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Fig. 10.10 Definition of the probability density function of source-site distance

The probability density functions (pdf) associated with the magnitude and
distance definitions take into account the power and the spatial uncertainty, respec-
tively. The impossibility of defining the geometry of a spatial seismic source with
high-quality accuracy leads to consider the distance R as a stochastic variable. The
pdf of source-site distance fz(r) can be defined by considering a uniform seismic
event distribution on the source zone. This assumption leads to the definition of the
frequency histograms and the corresponding pdf (Fig. 10.10).

As shown in the previous paragraph, in order to take into account the variability
of the intensity of the seismic events in the given period of interest, the Gutenberg-
Richter law is used. In this case, the pdf associated with the magnitude can be
evaluated using Eq. 10.5,

my
b . e_h(m_mo)

Ju(m) = / T e b M (10.5)

mg

where my and m; define the minimum and maximum magnitude thresholds, while
b is the coefficient obtained from the regression of the historic data. The steps
followed in the PSHA are the same of the DSHA, only the parameters definition
is different. Figure 10.11 illustrates all the ordered steps used in the PSHA.
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Chapter 11 )
Earthquake Prediction Qs

Abstract The chapter introduces some of seismic prediction methods proposed in
the last 50 years. Having in mind the physical and statistical limits in earthquake
predictability, the earthquake prediction methods are impartially reported in this
chapter.

11.1 Introduction

Although many researchers still concentrate their efforts on assigning probability
values, it is well known that making quantitative probabilistic claims, particularly
for large and sporadic events, requires a long series of recurrences, which cannot be
obtained at local scale from the existing earthquakes catalogs.

The operational and decision-making problems related to earthquake forecast/
prediction and seismic hazard assessment are nowadays a matter of significant
debate, due to the unsatisfactory global performance of Probabilistic Seismic
Hazard Assessment at the occurrence of most of the recent destructive earthquakes.
Based on the available data and current knowledge of seismic process, earthquakes
cannot be predicted precisely. There are, in fact, several elements that limit the
accuracy of the predictions. From a physical point of view, an earthquake involves
a fault segment with finite dimensions; therefore, location uncertainty will be at
least equal to the seismic source size (e.g. several hundred km in the case of 2011
Tohoku earthquake). Moreover, although many researchers still concentrate their
efforts on assigning probability values, it is well known that making quantitative
probabilistic claims, particularly for large and sporadic events, requires a long series
of recurrences, which cannot be obtained at local scale from the existing catalogs
of earthquakes. Having in mind the physical and statistical limits in earthquake
predictability, it still appears a reasonable task to provide improving space-time
constraints about impending strong earthquakes.
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11.2 General Aspects

The United States National Research Council, Panel on Earthquake Prediction of
the Committee on Seismology suggested the following consensus definition (1976,
p. 7): “An earthquake prediction must specify the expected magnitude range, the
geographical area within which it will occur, and the time interval when it will
happen with sufficient precision so that the ultimate success or failure of the
prediction can readily be judged. Only by careful recording and analysis of failures
as well as successes can the eventual success of the total effort be evaluated and
future directions charted.”

The ICEF Report (IR) attempts to enrich this definition with the following
distinction of prediction and forecast: “A prediction is defined as a deterministic
statement that a future earthquake will or will not occur in a particular geographic
region, time window, and magnitude range, whereas a forecast gives a probability
(greater than zero but less than one) that such an event will occur.” (IR, p. 319).

Earthquake prediction is a branch of seismology and it is usually defined
as the specification of the time, location, and magnitude of future earthquakes
within stated limits (Geller 1997). Prediction procedures have to be reliable and
accurate in order to justify the costs of actions to be done. The possibility to
establish scientific methods for predicting seismic events has been always a hot
topic. While some scientists still believe that prediction might be possible, many
others now claim that earthquake prediction is inherently impossible. In 1997,
Geller claimed that the results in non-linear dynamics are consistent with the
idea that earthquakes are inherently (or effectively) unpredictable due to highly
sensitive non-linear dependence on the initial conditions. Nowadays, the systematic
instrumentation of large regions allows the acquisition of large data sets. Thus,
some scientists are confident that earthquake prediction will be possible in the near
future. In 1980, Aki said: I believe it is possible to develop in the next decade a
quantitative scale which measures the gradation of concerns about the earthquake
occurrence on the basis of observed data on precursory phenomena. In the
1980s, the scientific research was focusing on empirical analysis trying to identify
distinctive precursors for earthquakes or some geophysical trends or patterns in
seismicity that might have preceded an earthquake. The basic idea of the empirical
methods is the observation of a precursor that would allow alarms to be issued with
high reliability and accuracy. Earthquake precursors can be defined as anomalous
phenomena (seismological, geodetic, hydrological, geochemical, electromagnetic,
animal behavior and so on). The main problem is that there are not objective
definitions and quantitative physical mechanisms associated to these anomalies.
In 1982, Raleigh et al. claim that reliance on empirically established precursory
phenomena will still be necessary until a better formulation of a theoretical model
is possible. Both as a means of developing the observational basis for better models
and collecting data which will have value as precursory signals, an extensive
network for closely monitoring and for analyzing strain and seismicity data in
real time is imperative. In 2011, the International Commission on Earthquake
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Forecasting for Civil Protection (ICEF) reviewed some precursor methods including
changes in strain rates, seismic wave speeds, and electrical conductivity; variations
of radon concentrations in groundwater, soil, and air; fluctuations in groundwater
levels; electromagnetic variations near and above Earth’s surface; thermal anoma-
lies; anomalous animal behavior; and seismicity patterns. The conclusions of the
Commission are summarized in the next paragraphs.

11.3 Prediction Methods

The ICEF has reviewed the knowledge about earthquake predictability and its
current implementation in prediction and forecasting methods. Since any infor-
mation about the future occurrence of earthquakes contains large uncertainties, it
can be evaluated and provided in terms of probabilities on various time scales and
ranges (long or short terms). Obviously, the capabilities of earthquake forecasting
will benefit from investments in observational technologies and data collection
programs. The most widely-used long-term (years to decades) models used in
seismic hazard assessment assume earthquakes happen randomly in time, while
short-term (month or lesser) models are not able to predict large earthquakes. The
most promising approach seems nowadays related to predictions at the intermediate
term time scale (months to years). According to the last aspect, the search for
diagnostic precursors has not yet produced a successful short-term prediction
scheme.
The four main precursors used in prediction models are:

* animal behavior

* changes in Vp/Vs

* radon emission

 electromagnetic variation

* anomalous variations in seismic activity

11.3.1 Animal Behavior

Abnormal animal behavior is the oldest and most consistently reported short-term
earthquake pre-cursor (Lott et al. 1981). When animals showed an unusual behavior
before a seismic event, it has been suggested they are sensitive to the P-wave. Thus,
they are not able to predict the earthquake at long-term, but only the imminent arrival
of S-waves. From the same study, it has also been suggested that unusual animal
behaviors can be displayed some hours or days before the main seismic shock
(fore-shock activity) even for imperceptible magnitude by humans. Statistically,
an unusual animal behavior before the earthquake has been observed in one case
over 5 for the case of similar earthquakes. This trend can be explained by the
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Fig. 11.1 Anomalous
behavior of toads in China
before Sichuan earthquake
(2008)

flashbulb memoriesi that are memories for the circumstances in which one first
learned of a very surprising and consequential (or emotionally arousing) event
(Brown and Kulik 1977). An example of this anomalous behavior has been observed
in China (Mianzhu) just few hours before Sichuan earthquake (2008, May 12th)
when thousands of toads appeared in the streets (Fig. 11.1).

11.3.2 Changes in VP/VS

Small-scale laboratory experiments have shown that the ratio between the P-wave
and the S-wave velocity changes when the rock is near the point of fracturing. This
breakthrough was made by Russian seismologists observing such changes in the
region of a subsequent earthquake (Hammond 1973) as effect of dilatancy. In 1973,
Whitcomb studied a velocity anomaly beneath the Transverse Ranges in southern
California (Fig. 11.2).

After the first coherent and positive results, additional studies on quarry blasts
observed no variation in the velocity ratio. Later in 1997, Lindh et al. (1978)
claimed an alternative explanation for the velocity anomalies which were caused
by differences in the depth and magnitude of the source earthquakes during the
“anomalous” periods and were unrelated to any premonitory material property
changes.
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Fig. 11.3 Daily radon concentration in the Marmara region (Turkey, 2003)

11.3.3 Radon Emission

Small amounts of radon, different from the atmospheric gases, are contained into
uranium-bearing rocks. This gas is a product of radioactive decay of radio and it
is not uniformly distributed on the Earth. Radon is almost no soluble in water,
is highly volatile and it diffuses through soils and rocks. Some researches on
radon concentration in ground water claimed that this gas could be considered
as an earthquake precursor. After Taskent earthquake (1966-1967), large radon
concentrations were recorded in wells located in the region near the epicenter. Right
before the 2003 earthquakes in Turkey, radon flux variations were observed right
before the main shocks with peaks of radon concentrations just right before the
shake followed by a rapid decrease (Fig. 11.3).

Furthermore, laboratory experiments showed that radon emission increases sig-
nificantly during rock fracturing, since the pre-seismic stresses fracture the rock and
cause the release of the gas in the atmosphere and in the ground water. Even for soft
soils, the vertical raising (up and down) of the soil during a foreshock can produce
variations of the radon concentration. Recently Cicerone et al. (2009) collected up
to 125 variations of radon concentration, associated with 86 earthquakes. According
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to ICEF, these anomalies have been rarely recorded by more than one or two
instruments, and often at distant sites but not at sites closer to the epicenter, therefore
the correlation is not really significant.

11.3.4 Electromagnetic Variations

Several measurements of the electro magnetic signal (Seismic Electrical Signals,
SES) caused by stress and strain variation due to pre-seismic activities have been
observed in the past (Park 1996). So, the collected data has allowed researchers to
do statistical analysis in order to consider these variations as earthquake precursors.

In 1981, professors P. Varotsos, K. Alexopoulos and K. Nomicos (VAN group)
(Varotsos et al. 1981) claimed that by measuring geoelectric voltage it is possible
to predict earthquakes of magnitude larger than 2.8 within the Greece territory
at least 7h before the main shock. In 1986, the same research group downsized
the dimensions of the predicted parameters. An interesting result was observed in
2006, when a SES variation was recorded almost simultaneously with East Kythira
earthquake (Fig. 11.4).

The analysis of the wave propagation of SES in the Earth’s crust (Bernard and
Le Mouel 1996) proofed the physical impossibility for signals with the amplitude
reported by the VAN method to be transmitted over several hundred kilometers from
the epicenter to the monitoring station. Later, the VAN method was criticized as
statistically inconsistent because 74% of the seismic events in the considered catalog
were false while 14% had uncertain correlation.

In the same year, the Journal Geophysical Research Letters presented a debate
on the statistical significance of the VAN method. The largest part of reviewers

5.88
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Fig. 11.4 Seismic Electrical Signals recorded in Greece almost concurrently with East Kythira
earthquake (2006)
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claimed that VAN method was statistically insignificant. Following this debate, the
VAN method has been further modified in 2001 to take into account the time series
analysis.

11.3.5 Precursory Seismicity Patterns

Currently the catalogues of earthquakes represent the most widely available geo-
physical data, collected systematically for quite a prolonged period of time; that is
why most of the proposed methods for earthquake prediction are based on specific
changes of background seismicity. Even if the ultimate validation of precursors
may come only from the tests in forward predictions, the availability of earthquake
catalogues allows for a formal analysis of possible anomalies in seismic activity,
which may precede the strong events. Several possible scenarios of precursory
seismic activity have been proposed; nevertheless, only a few formally defined algo-
rithms allow for a systematic monitoring of seismicity, as well as for a widespread
testing of their performances. Nowadays, one of the most promising approaches is
represented by the intermediate-term middle-range earthquake predictions (i.e. with
a characteristic alarm-time from a few months to a few years and a space uncertainty
of hundreds of kilometers) based on the detection of formally defined variations
in the background seismicity that precedes large earthquakes in a predefined area.
In fact, the formal analysis of the seismic flow evidenced that specific patterns in
the events below some magnitude threshold, MO, may prelude to an incumbent
strong event, with magnitude above the same threshold M0. An essential step, when
analyzing premonitory seismicity patterns, consists in the definition of the area
where precursors have to be searched, the area of investigation, which increases
with the size of the events to be predicted.

11.4 Earthquake Prediction and Time-Dependent Seismic
Hazard Scenarios

Recently the research group from the University of Trieste (http://www.geoscienze.
units.it/) developed an integrated neo-deterministic approach for seismic hazard
assessment that combine different pattern recognition techniques, designed for the
space-time identification of strong earthquakes, with algorithms for the realistic
modeling of seismic ground motion. The integrated approach allows for time
dependent definition of the seismic input through the routine updating of earthquake
predictions.


http://www.geoscienze.units.it/
http://www.geoscienze.units.it/
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11.4.1 Algorithms for Intermediate-Term Middle Range
Earthquake Prediction

Different methods have been developed during the last decades, which permit to
identify the areas characterized by an increased probability of strong earthquakes
occurrence, based on a quantitative analysis of seismicity at the middle-range
intermediate-term space-time scale. In this section we consider two algorithms,
namely CN (Keilis-Borok and Rotwain 1990) and M8 algorithms (Keilis-Borok and
Rotwain 1990), that are based on a multiple set of premonitory patterns and have
been designed following the general concepts of pattern recognition. Quantification
of the seismicity patterns is obtained through a set of empirical functions of
seismicity, each representing a reproducible precursor, whose definition has been
guided by the theory of complex system and laboratory experiments on rocks
fracturing. Specifically, the functions, which are evaluated on the sequence of the
main shocks occurred within the analyzed region, account for increased space-time
clustering of moderate size earthquakes, as well as for specific changes in seismic
activity, including anomalous activation and quiescence.

The results of the global real-time experimental testing of M8 and CN algorithms
allowed for a statistical assessment of their predictive capability (e.g. Kossobokov
2013), as confirmed by ICEF Report (Jordan et al. 2011). These indicate the
possibility of practical earthquake forecasting, although with limited accuracy (i.e.
with a characteristic alarm-time ranging from a few months to a few years and a
space uncertainty of hundred kilometers). The recent M8.3 earthquake, which struck
Chile on September 16 2015 (Fig. 11.5), scores amongst the successful predictions
in the M8 on-going real-time experiment for the great (M8.0+) and major (M7.5+)
earthquakes worldwide (see http://mitp.ru/en/default.html).

These methodologies are applied and routinely tested (since 2003) also in the
Italian region and its surroundings (Peresan et al. 2011). Actually, Italy is the only
region of moderate seismic activity where the two algorithms CN and MSS (i.e. a
stabilized variant of M8) are applied simultaneously for the routine intermediate-
term middle-range earthquake prediction of earthquakes with magnitude larger
than a given threshold (namely 5.4 and 5.6 for CN algorithm, and 5.5 for M8S
algorithm). The routinely updated results and a complete archive of predictions are
made available on-line via the following website: (http://www.geoscienze.units.it/
esperimento-di-previsione-dei-terremoti-mt.html).

The results obtained so far evidenced the high confidence level (above 97%) of
the issued predictions by real-time monitoring (Peresan et al. 2005). The probability
gain associated with CN and M8S predictions for the Italian territory can be grossly
estimated between 2 and 4, in good agreement with the independent estimates by
ICEF (Jordan et al. 2011). Noticeably, these conclusions are based rigorously on the
results from real-time prospective testing of the considered prediction algorithms,
and thus reflect their effective predictive capability.


http://mitp.ru/en/default.html
http://www.geoscienze.units.it/esperimento-di-previsione-dei-terremoti-mt.html
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Fig. 11.5 Prediction of the M8.3 Chile earthquake (a) Map of the epicenter as reported by
USGS (http://earthquake.usgs.gov) and (b) map of ongoing alarms at the time of the earthquake
occurrence, as identified by M8 algorithm (yellow circles) and, in second approximation, by MSc
algorithm (red area), (http://www.mitp.ru/en/index.html)

11.4.2 Neo-Deterministic Time-Dependent Seismic Hazard
Scenarios for the Italian Territory

An operational integrated procedure for seismic hazard assessment has been devel-
oped that allows for the definition of time-dependent scenarios of ground shaking,
through the routine updating of earthquake predictions, performed by means of CN
and MSS algorithms. Accordingly, a set of neo-deterministic scenarios of ground
motion at bedrock, proper for the time interval when a strong event is likely to
occur within the alerted areas, can be defined based on the calculation of realistic
synthetic seismograms, as described in detail in Peresan et al. (2005).

Following the procedure for the neo-deterministic seismic zoning, NDSHA
(Panza et al. 2014), ground motion is defined by full waveforms modeling, starting
from the available information on the Earth structure, seismic sources, and the
level of seismicity of the investigated area. Seismic sources considered for ground
motion modeling are defined based on the largest events reported in the earthquake
catalogue, as well as incorporating the additional information about the possible
location of strong earthquakes provided by the morphostructural analysis, active
fault studies and other geophysical indicators (including Earth Observations, like
GPS), thus filling in gaps in known seismicity.

The time-dependent ground motion scenarios for the Italian territory are rou-
tinely updated every two months since 2006. A strong earthquake (Mw =6.1)


http://earthquake.usgs.gov
http://www.mitp.ru/en/index.html
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Fig. 11.6 Time-dependent scenarios of ground shaking, associated to an alarm declared by CN
algorithm for the period 1 March 1 May 2012: (a) Peak Ground Acceleration map, computed
considering simultaneously all of the possible sources within the alarmed area and for frequencies
up to 10Hz; (b) same as map (a), but for A>0.2 g. The circle evidences the area within 30 km
distance from the epicenter of the Emilia earthquake (After Peresan et al. 2012).

hit the Emilia region, Northern Italy, on 20th May 2012. The time-dependent
ground shaking scenario associated to CN Northern region defined for the period
1 March 2012 1 May 2012, correctly predicted the ground shaking, as large as
0.25 g, recorded for this earthquake (Fig. 11.6). Notably, the ground shaking for
this earthquake systematically exceeded the values expected at the bedrock in the
area according to current Italian seismic regulation (i.e. PGA<0.175 g), which is
based on a classical PSHA map (Gruppo di Lavoro 2004). Since the time NDSHA
time-dependent scenarios are regularly computed, namely starting on 2006, this is
the second large earthquake that struck the Italian territory, along with L’ Aquila
earthquake (M =6.3, 2009). In both cases the method correctly predicted the
observed ground motion, although L’ Aquila earthquake scores as a failure in the
earthquake prediction experiment, because the epicenter was located about 10km
outside the alarmed territory (Peresan et al. 2005).

The provided examples of the existing operational practice in predicting seismic
ground shaking are perfectly in line, or even anticipating, the guidelines and
recommendations given in the Report of the International Commission on Earth-
quake Forecasting (Jordan et al. 2011). The results acquired in the prospective
application of the time-dependent NDSHA approach provide information that
can be useful to assign unbiased priorities for timely mitigation actions. As an
example, for sites were large ground shaking values (e.g. greater than 0.2 g) are
estimated at bedrock (Fig.11.6), further investigations can be performed taking
into account the local soil conditions, to assess the performances of relevant
structures, such as historical and strategic buildings (e.g. following the procedures
described at: www.provincia.trieste.it/opencms/opencms/it/attivita-servizi/cantieri-
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della-provincia/immobili/Programma_verifiche_sismiche/ in addition to natural low
key actions as described in Kantorovich and Keilis-Borok 1991).

11.5 Notable Predictions

The scientific or quasi-scientific basis for earthquake prediction methods derived
from important studies carried out before some earthquakes. In the following part,
they are discussed in order to explain the statistical and scientific observations
based-on some precursors.

11.5.1 Haicheng (China, 1975)

On 4 Febraury 1975 a 7.3 magnitude earthquakes occurred in China. Its epicenter
was located near to the small town of Haicheng (Fig. 11.7).

120 121 122 123 124 125
I 1 T T

LIAONJNG PROVYNCE

4 Ha2
i 7 SHENYANG,
y / /> FUXUN
b O
/s S/ LIAOYANG
\J’u/ / 7 & BENXI

JINZHOU e ” P /
7 S /// AN 4 a1
HAICHENG
e e -

N :

Gulf of Epicenter <
Liacdong
ak ' DANDONG 440
s KOREA
L A
=3 17
£ Korea Bay
9 s 3g
2 LUDA { Dairen ) [’
1 ] 1 1 | "o
121 122 123 124 125

Fig. 11.7 Haicheng area and major faults in Liaoning Province
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The fore-shock sequence recorded in the days before the main shock was
recurring. The first seismic activity was on February 1 with a magnitude of about
0.5, while 2 days later more than eight tiny shocks were detected. Twenty four
hours before the earthquake the fore-shock sequence began more intense and the
number of recorded shocks were about 20. Few hours before the earthquake the fore-
shock activity continued with a frequency of five shocks/hour (the largest one was
with M =4.7). The intense and repetitive fore-shock activity had led to successfully
predict the mains hock which occurred at 19:36 CST. Local politicians ordered the
evacuation the day before the earthquake took place, and saved many lives. Since
1971, vertical fault creep measurements had been conducted across the right-lateral
Jinzhou fault. The measurements showed that the elevation offset was constant in
the first 20 months, then increased in the second half of 1973 and finally reversed
the direction on October 1974. This trend was opposite with respect to the usual
observations in the region (geodetically measured in 1971), so this phenomenon
was considered an anomaly. In December 1974, a group of seismologists developed
a synthetic short-term prediction for small earthquakes in the region according to
the studies conducted in the Dandong zone. Two days after, an earthquake swarm
with maximum magnitude of 4.8 occurred between the north zone of Dandong and
Haicheng. Later on, the earthquake swarm was recognized as correlated with the
water movements in Qinwo Reservoir.

Haicheng earthquake was also a notable case of animal anomalous behavior.
It was shown experimentally an increase of 2 in the ground temperature that has
interrupted the hibernation of the snakes. More than 20 snakes were found frozen
to death in the evening because they have been fooled by the warm weather. Also
other types of anomalous animal behavior was observed continuously especially in
the rural areas (Fig. 11.8).

11.5.2 Parkfield (USA, 1985-1993)

Various earthquakes occurred near the town of Parkfield in California and they have
been studied by geologists who installed an elaborate array of seismometers, creep
meters, strain meters, and other instruments since 1985. Already since 1857, five
moderate earthquakes occurred in the Parkfield section of the San Andreas Fault. In
Fig. 11.9 is shown the epicenter distribution of the earthquakes in the period 1975-
1984.

The typical earthquakes in the region have similar faulting mechanism, magni-
tude, rupture length, location, and, in some cases, the same epicenter and direction of
rupture propagation as earlier shocks. The earthquakes in 1979 at Coyote Lake and
in 1984 at Morgan Hill (magnitude 6) are examples of characteristic earthquakes,
apparently repeating the shocks in 1897 and 1911.

In 1985, Bakun and Lindh (1985) Lindh proposed to model the process of the
characteristic earthquakes on Parkfield region, assuming a deterministic recurrence
law for the earthquakes. Later Bakun (1988) observed a recurrence of shocks
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Fig. 11.9 Map of earthquake epicenters (1975-1984) relative to the trace of the San Andreas fault
(bold line) and the epicenters of the fore-shock (ML 5.1) and the main shock in 1966 (small and
large stars, respectively, near the center of the map) (Courtesy of USGS 2008)

with magnitude 6 every 21-22 years, having the same epicenter and rupture area.
Figure 11.10 illustrates the Parkfield recurrence model considering the earthquake
sequences in 1881, 1901,1922,1934, and 1966.

According to this model the prediction (with 95% of confidence) of the next
earthquake (with magnitude 6) would hit around 1988, or 1993 but this prediction
was unsuccessful. Only on October 20th 1992, an earthquake of magnitude 4.7
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Fig. 11.10 The Parkfield recurrence model (Courtesy of USGS 2008)

occurred near Parkfield (California) and an alert was broadcast in five different
counties. After this shock, none of the earthquakes predicted by the model hap-
pened.

11.5.3 Loma Prieta (USA, 1989)

On October 17th 1989, a 6.9 moment magnitude earthquake with epicenter in the
Santa Cruz Mountains caused significant damage in the San Francisco Bay area.
One year later, in 1990 USGS claimed that this earthquake was an anticipated event.
According to USGS, the Loma Prieta earthquake demonstrated that meaningful
predictions can be made of potential damage patterns and that, at least in well-
studied areas, long-term forecasts can be made for future earthquake locations and
magnitudes. Such forecasts can serve as a basis for action to reduce the threat major
earthquakes pose to the United States.

Lindh et al. (1978) claimed that the southernmost part of the rupture zone of
the 1906 San Francisco earthquake had slipped much less than the points to the
north, and thus had a high probability of rupturing within the next few decades.
In addition, some anomalous not quantitative phenomena were observed but not
strictly correlated to the earthquake. For example, Silver and Valettesilver (1992)
observed variations in the period of eruption of a geyser. Harris (1998) reviewed
some scientific forecasts, but none of these could be rigorously tested.
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Fig. 11.11 Trend of radon level from May 2nd to May 6th in L’ Aquila region (2009)

11.5.4 L’Aquila (Italy, 2009)

On April 6th 2009, an earthquake with magnitude 6.3 occurred in the Abruzzo
region of Central Italy. Many damages have been recorded in the city of L’ Aquila
and its surrounding area. On December 2008, low-level swarm earthquakes occurred
in the Abruzzo region and on March 30th, L’ Aquila was struck by a shock with
magnitude 4. Three days before, the seismologist Giampaolo Giuliani predicted
an earthquake within 24h and a day later he made a second prediction about a
catastrophic earthquake in the range of 6-24 h. The city of Sulmona was evacuated,
but the earthquake did not occur. These predictions were based-on the anomalies in
the radon emission, that Giuliani monitored using instruments designed and built in
the Physic Lab under the Gran Sasso Mountain.

Some hours before LAquila seismic event of April 6th, Giuliani recorded an
increase of radon level (Fig. 11.11).

He tried to alert the public, but he was unsuccessful. After the main seismic shock
of April 6th, the debate about the radon emission as earthquake precursor started. Dr.
Marzocchi (Chief scientist of INGV) examined two documents containing examples
of radon concentrations measured by Giuliani. He focused on the problem of having
many peaks in the radon measurements in a very short time period. In addition,
there was no correlation between the size of the peaks and the magnitudes of the
subsequent quakes. For the mentioned reasons, the recorded radon levels used by
Giuliani as earthquake precursors were not considered scientifically significant.
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Other scientists also claimed that there is no connection between the radon
emission and the earthquakes, thus the radon emission cannot be considered as an
earthquake precursor.

Recently in 2013, Pitari et al. (2014) concluded that no evidence has been
found on the deterministic character of the observed radon emission changes to
forecast the location and timing of the earthquakes, or that seismic activity before a
major event does necessarily produce significant radon increases in the atmosphere
boundary layer.
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Chapter 12 )
Seismic Input et

Abstract The chapter introduces the main concepts of the seismic input definition
according to the seismic codes. In particular, the Italian (NTC-08, Nuove Norme
Tecniche per le Costruzioni. Gazzetta Ufficiale della Repubblica Italiana, 2008)
and European (1998-1 E, Design of structures for earthquake resistance Part 1:
general rules, seismic actions and rules for buildings. European Committee for
Standardization, 2004) standards are discussed in detail. Furthermore, the Response
Spectrum method and the use of time histories as seismic input are analyzed.

12.1 Introduction

Nowadays, all the main seismic standards are structural and performance based.
This aspect can be observed in the definition of different particular conditions
(LS). Each of them is characterized by different hazard levels, or rather, several
exceedance probabilities Py in a given reference period V. This approach leads to
approximately removing the time unpredictability of the seismic excitation, but its
spatial and quantity prediction remains the main problem.

In practice, the seismic action at a given limit state can be evaluated with
simplified methods or according to more rigorous methodologies, depending on the
type and importance of the structure to be designed.

For ordinary structures like residential multistory buildings, the seismic action
can be defined using a given response spectra. If T, is the period of interest of
the structure, the Sa (' = T,,r) will be the spectral acceleration to be used in the
analyses. This simplified method is based on the response of a SDOF system to a
seismic excitation, so it can be used for regular and small size structures.

In the remaining cases, the seismic input has to be defined by referring to the
complete acceleration histories expected on the structures.
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12.2 Brief History of Italian Seismic Standards

The first European seismic standards were released after the Calabrian earthquake
in 1783 during the Bourbon Kingdom of Naples. They included design rules
for reconstructions which were valid in the Reggio Calabria region. After 1859
Norcia earthquake, the Pontificial seismic standards were released and they included
obligatory technical rules aimed at the reconstruction of the civil buildings and
factories. Nevertheless, the first seismic standards of the Italian Reign were released
with the R.D.(Royal Decree) n® 193/1908 after the catastrophic Reggio Calabria
and Messina earthquake of 1908. Since the seismic engineering knowledge was
not yet developed, these rules included some empirical prescriptions for both
existing and new buildings. Additional new rules were released after the earthquakes
which occurred in Marsica (1915/01/13 and 1930/11/01), Irpinia (1930/07/24 and
1962/08/21) and Belice (1968/01/15), to modify and integrate the existing ones. All
of these regulations are considered to be the first generation seismic standards. It is
interesting to notice the evolution of the seismic zonation of the Italian territory
after the occurrence of the catastrophic events. In 1909 only the Calabrian and
Messina zones were considered to be seismic regions. After Marsica earthquake
(1915), Abruzzo and nearby areas were added as Italian seismic zones. In 1927 two
categories of seismic zones (I and II) were introduced and they were modified again
after the Irpinia and Belice events.

The second generation seismic standards were released in 1974 with the law n°
64 of 1974/02/02 in which the first earthquake engineering concepts and knowledge
were adopted. This standard was valid for different types of structures, such
as masonry buildings, bridges etc., and they followed the first seismic analyses
developed in the United States. The technical standards mainly refer to the
maximum height, the minimum distances between two buildings and the vertical
and horizontal actions to be considered in the design of the structural elements
(using an equivalent static model). After the Friuli earthquake (1975/05/06), a
new provision was released to add part of Friuli Region as a seismic zone. Only
after the Irpinia earthquake (1980/11/23) two D.M.(Decrees of the Ministry) were
issued that introduced an additional seismic zone III (low seismicity zone) and
also included other Italian areas in the seismic classification. One of the most
important regulations is D.M. 1996/01/16 (“Norme tecniche per le costruzioni in
zona sismica”) in which structural analysis, execution and inspection standards
for reinforced concrete, pre-stressed concrete and steel structures are contained. In
addition, for the first time the Limit State (LS) was proposed even if the procedures
are essentially based on the Allowable Stress Design method (ASD). The D.M. 1996
was important because the prescriptive approach used before was switched into a
performance based approach.

The following standards are considered as third generation rules. The O.P.C.M.
3274/2003 was promulgated after the seismic event of San Giuliano di Puglia,
which had a broad impact on the media. In this decree, the standardization task
passed from the Ministry of Public Works (LL.MM.) to the Civil Protection
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(National Emergency Authority of Italy). The general criteria for classifying the
whole national territory according to seismic hazard was decided. The entire Italian
geographical area was divided into four seismic zones. The complete and definitive
version of the O.P.C.M. was published on May 10, 2005 according to the European
Community prescriptions contained in Eurocode 8 (ECS8). Furthermore, in 2005 the
D.M. “Norme tecniche per le costruzioni” was issued in which all the prescriptions
in terms of safety (including the seismic standards of the previous O.P.C.M.) are
contained. Finally, in 2008/01/14 the latest D.M. with the title “Applicazione delle
nuove norme tecniche per le costruzioni (NTC2008)” was published on the G.U.
replacing the previous D.M. of 2005. In 2009, the Circolare esplicativa n° 617 was
added to the 2008/01/14 D.M.. In addition, with NTC2008, the technical standards
pass from the Allowable-Stress Design method (ASD) to the Limit State Design
method (LSD).

12.3 Elastic Response Spectra

The time-response of a structure for a generic earthquake is difficult to determine, as
a high computational charge is requested and, at the same time, it identifies an ineffi-
cient engineering representation. The prediction of the maximum seismic action on
the structure is obtained with more simple calculation procedures giving the most
unfavorable structural response. In order to apply these concepts to any structure,
the response spectra methodology is applied, in which the relationship between
the maximum response of the structure (in terms of accelerations, velocities and
displacements) and its fundamental period is calculated for a given strong motion.
In fact, a generic structure can be described by stiffness and mass characteristics,
which give information about the fundamental vibration frequency (w0) and then the
fundamental period (TO). Figure 12.1 schematically illustrates the elastic response
spectra definition.

Fig. 12.1 Scheme of the
definition of the elastic
acceleration response spectra
for a given strong motion
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Figure 12.1 shows a series of structures approximately represented by a number
of oscillators characterized by their own natural period (7;). For each of them the
maximum acceleration due to the strong motion (a, (7)) is calculated and reported in
the ordinates axis. The first oscillator is characterized by an infinite stiffness, or, in
other words, it identifies the soil response. Thus, the maximum value of acceleration
corresponding to the first oscillator (ag a4x) represents the peak ground acceleration,
since it is defined as the maximum acceleration of the ground motion. The procedure
just discussed can be carried out by numerical integration of the dynamic equation
for each oscillator in the elastic field (Eq. 12.1).

mii + cit + ku = —mi, (12.1)

where m, ¢ and k represent the mass, the viscous damping and the stiffness of the
oscillator, respectively, while u is the displacement at a generic time instant and ii,
is the seismic acceleration applied at the base of the SDOF element. This procedure
leads to building the elastic displacement response spectra (S;), but observing
the dynamic equation it is possible to deduce a simple relationship between the
accelerations and the displacements in the ideal case of undamped system (Eq. 12.2).

m

where U is the absolute acceleration and w is the angular frequency. Similarly, the
expression reported above can be adopted in terms of maximum values (Eq. 12.3).

Sa(w) = 0*Sy(w) (12.3)

where S,(w) defines the generic spectral ordinates of the acceleration response. This
formulation is correct for undamped structures, but, since this is only an ideal case, it
is commonly called pseudo-acceleration response spectrum. In addition, the pseudo-
velocity response spectrum can be obtained by referring to the Duhamel integral
(Eq. 12.4) which can be used in order to solve the dynamic problem.

1

1
u(t) = — / ity (T)e 507 sin wp (t — T)dt (12.4)
wp
0

For an under-damped system, the natural angular frequency w can be assumed
equal to the damped angular frequency wp, then the argument of the integral is
almost coincident with the velocity at time t. In terms of maximum values, the
relationship between the displacements and velocities can be written as shown in
Eq. 12.5.

Sy(w) = wSy(w) (12.5)
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Fig. 12.2 Acceleration (a), velocity (b) and displacement (c) response spectra for Kozani-
Prefecture record (Kozani mainshock, 13/05/1999)

where S,(w) represents the pseudo-velocity spectral ordinate. The accuracy
of the S, and S, expression is inversely proportional to the damping of the
structure. Figure 12.2 shows all the spectra obtained from OPENSIGNAL 4.0
(Cimellaro and Marasco 2015) for the corrected record of Kozani-Prefecture
(Fminy = 0.25Hz, finar) = 25Hz,n = 4).

Alternatively, the acceleration, velocity and displacement spectra can be evalu-
ated with classical methods of solution of equations of motion.

12.4 Uniform Hazard Spectrum (UHS)

The UHS is a response spectrum in which every spectral acceleration has the same
return period. UHS is always associated to a given hazard level and exceedance
probability. It is determined by enveloping the results of the PSHA. The interactive
hazard maps provide the spectral accelerations in ten period values for ten different
exceedance probability (from 2% to 81%). In Fig. 12.3 the uniform hazard spectra,
related to the median level (50 percentile), is obtained by the interactive maps for
the southern Italian site of Soveria Mannelli (16.3859 longitude, 39.0969 latitude,
close to Lamezia Terme).

The UHS is evaluated by enveloping the response spectrum associated to
different earthquakes scenario at a given site that provide distinct contributions to
the UHS as it was observed by Reiter (1991). According to him the contribution
to the hazard can be classified into two categories of earthquakes: the small nearby
earthquakes influence mainly the small periods of the spectrum, while large distant
earthquakes have a greater contribution in the hazard definition for large periods
(Fig. 12.4).

The idea behind the UHS is to design a building with the same risk level, which
means considering ground motions parameters with equal exceedance probability
independent from the period of the structure and from the specific seismic event.

For this reason, the Uniform Hazard Spectrum is an efficient way of representing
the seismic hazards at a given site, but at the same time, the spectral values at each
period cannot occur in a single ground motion record. In other words, the amplitude
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Istituto Nazionale di Geofisica e Vulcanologia
Spettri di risposta a pericolosita”™ uniforme
50° percentile (Coordinate del punto lat: 39.0969, lon: 16.3859, ID: 40782)
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Fig. 12.3 Uniform hazard spectra for a southern Italy site of Soveria Mannelli
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Fig. 12.4 Scheme of UHS with the two earthquake contributions

of a single ground motion is not equally spaced-out from the UHS over all periods.
Thus, the uniform hazard spectrum is not very representative as a target spectrum
for a single individual ground motion. The lack of correlation between the UHS and
a single seismic event with given magnitude M and epicentral distance R,,; can be
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solved using the hazard deaggregation. This process leads to the evaluation of the
effective contribution in the hazard analysis of each pair M — R,,,; (Eq. 12.6).

Ns
An(mj. 1) & P(mj = M) - P(r; = Repi) - Y _vi- P(Y > Y /mj. 1)) (12.6)
i=j

where A, is the contribution of the M — R,,,; pair for a given mean annual exceedance
probability A,,. The expression reported above represents the inverse process used
for evaluating the hazard in the PSHA. Thus, from the all magnitude and epicentral
distance values found, the preponderant pair can be defined in the hazard analysis.
The S1 project of INGV (Barani et al. 2009) also provides the deaggregation study
for every grid point and in Fig. 12.5 is shown an example of the deaggregation results
for a specific site. The deaggregation parameters can be used for several purposes
including the ground motion selection (Cimellaro et al. 2011; Cimellaro 2013).

Istituto Nazionale di Geofisica e Vulcanologia
Disaggregazione del valore di a(g) con probabilita” di eccedenza
del 10% in 50 anni

(Coordinate del punto lat: 39.0969, lon: 16.3859, ID: 40782)

gnitudo
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Contributo percentuale alla pericolosita’

Fig. 12.5 Deaggregation hazard contributions for a southern Italy site of Soveria Mannelli
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12.5 Design Response Spectrum (DS)

The Design Response Spectra (DS) change worldwide according to the codes (e.g.
Uniform Building Code, Eurocode 8, and International Building Code, Italian code
etc). This section will focus on the description of the Italian Design Spectrum
according to NTCO08 (2008) and ECS8 (1998-1 2004).

12.5.1 Design Response Spectrum According to NTC08
and EC8

In all the International, European and National standards, the hazard definition
refers to the PSHA, because this approach is capable of providing the seismic
design parameters for different measures of performance level of the structures
(Limit States (LS)) (Cimellaro and Reinhorn 2011). Each of them is defined through
the exceedance probability Pyg in a given period Vg. The choice of the period of
interest is associated to the requested structural durability and to its importance. In
other words, the Vi parameter represents the period (expressed in years) in which
the structure maintains its functionality (design life of the structure). In the Italian
standards, this parameter is expressed (Eq. 12.7) by the product between the design
life of the structure (V) and a coefficient depending on the importance class defined
in the section 2.4.2 of NTC 2008 reported in Table 12.1.

Vi = Vy-Cy (12.7)

In the European standards the classes of importance are summarized in
Table 12.2.

As discussed, the probabilistic approach refers to a Poissonian model, in which
the parameters above are expressed as shown in the Eq. 12.8.

Vr

Tp=—— "
k 111(1 _PVR)

(12.8)

where Ty is the return period. In all the technique standards, two different
categories of LS are identified: Serviceability Limit State (SLS) and Ultimate Limit
State (ULS). SLS indicates the particular conditions after which there is loss of
functionality for the structure, while the ULS are those associated with collapse

Table 12.1 Classes of importance and related coefficients for the European standards (EN1
1998-1)

Importance class 1 II I v
Coefficient C, 0.7 1.0 1.5 2.0
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Table 12.2 Classes of importance and related coefficients for the European standards (EN1
1998-1)

Importance Important
class Buildings factor y,
I Buildings of minor importance for public safety, e.g. 0.8

agricultural buildings, etc.

1T Ordinary buildings, not belonging in the other categories 1.0
Buildings whose seismic resistance is of importance in view

1T or the consequences associated with a collapse, e.g., schools, 1.2
assembly halls, cultural institutions etc.
Importance for civil protection, e.g. hospital, fire stations,

v power plants, etc. 1.4

importance for civil protection, e.g. hospital, fire stations,

Table 12.3 Limit states and related exceedance probabilities in 50 years according to the Italian
seismic standard

Limit state (LS) Exceedance probability
Serviceability limit state OLS (SLO) 81%

DLS (SLD) 63%
Ultimate limit state SLS (SLV) 10%

CLS (SLC) 5%

or with other forms of structural failure which might endanger the safety of the
people (Cimellaro and Reinhorn 2011). In the NTC 2008, four different LS are fixed:
Operational Limit State (OLS), Damage Limit State (DLS), life Safety Limit State
(SLS) and Collapse prevention Limit State (CLS), which are reported in Table 12.3
for a period of 50 years.

The described approach is performance — based, since the new constructions
must be designed according to different structural behavioral conditions occurring
over its entire life. The seismic actions to be used for a given LS are defined with
respect to the hazard at the referenced site. The seismic hazard is expressed in
terms of maximum expected ground acceleration (ag) in free field condition on
horizontal and rigid site surface, and in terms of elastic horizontal and vertical
spectral acceleration for the same conditions. INGV provides the hazard map of
Italy, in which the maximum ground accelerations corresponding to a exceedance
probability of 10% in 50 years are defined with respect to 50th percentile (Fig. 12.6).
Furthermore, the trends of the maximum ground accelerations with the exceedance
probability are called hazard curves. They are provided for different values of
accuracy (16th, 50th and 84th) in order to understand the dispersion measure. Four
different seismic zones are identified depending on the a, value. (Table 12.4).
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Table 12.4 Italian seismic ag [g]
zone Seismic zone | PVR =10% in 50 years
1 a, > 0.25

0.15 < a, < 0.25

0.05 < a, <0.15

2
3
4

a, < 0.05
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On the other hand, the spectral shapes are defined in terms of:

* Maximum ground acceleration ag
e Maximum amplitude factor for horizontal acceleration spectrum F
* Initial period value of constant velocity range T

The parameters mentioned above have been evaluated for nine different values
of return period (30, 50, 72, 101, 140, 201, 475, 975 and 2475 years), or rather for
nine values of exceedance probability. These parameters are reported in the Annex
B of the NTCOS for all the points of the national grid. Furthermore, for different
Ty values than the ones proposed, the referenced a,, Fy and T; coefficients can
be evaluated with a logarithmic interpolation. In addition, if the site is not located
in the referenced grid point, the associated hazard parameters have to be assumed
according to bilinear interpolation of the coefficients associated to the four closer
grid points. The interactive hazard data are provided by the INGV in the S1 project
and they are available at the link: http://essel-gis.mi.ingv.it.

12.5.1.1 How to Build the Design Response Spectrum According
to NTC08

The mathematical expressions of the DS proposed in NTCO8 is calibrated using
three coefficients ag, Fo and TC, that modify the shape and the amplitude of the
spectrum at a given site.

Since the three coefficients refer to the condition of flat and rigid surface,
additional parameters are used to take into account the amplification phenomena due
to the stratigraphy effects and topographic effects. The real soil stiffness induces
an amplification of the ground motion that depends on the shear wave velocity
measured 30m deep (Vs30). This coefficient is assumed to be equivalent to the
stiffness index of the soil. For this reason, the NTCO8 proposes to group five
different soil categories (Table 12.2.I1 NTCOS). Seed et al. (1976) observed from
more than 100 acceleration spectra that the real stratigraphy of the soil leads to the
two effects discussed below:

e amplification of the maximum accelerations;
e shifting towards greater periods.

Figure 12.7 shows the mean elastic acceleration response spectra analyzed
by Seed et al. (1976) for four soil categories normalized to the peak ground
accelerations.

The above discussed effects and observations should be included using two
coefficients Sg and Sg related to the soil categories. The first one represents the
accelerations amplifications, while the second term refers to the spectrum shifting.
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Fig. 12.7 Mean elastic acceleration spectra normalized to the PGA for four soil categories

Table 12.5 Stratigraphy amplification coefficients (Table 3.2. V NTCO08).

Soil category Ss Cc
A 1.00 1.00
B 1.00<1.40—040-F,- % <1.20 1.10 - (T&)—020
‘i ) —0.33
C 1.00<1.70—0.60-F, - — < 1.50 1.05-(T¢) "7
£
D 090 <240—1.50-F,- & < 1.80 1.25 - (TF)—00
d, P
E 1.00 <2.00—1.10-F, - = < 1.60 1.15 - (TZ)—040
g
Table.: 12'§ Topogrqphy Topographic category | Structure location St
amplification coefficient T L0
(Table 12.2. VI NTCO08) - :
T2 At the top of the cliff 1.2
T3 At the ridge of the relief | 1.2
T4 At the ridge of the relief | 1.4

12.5.1.2 Horizontal Design Spectrum

For the horizontal spectral acceleration components the Ss and C¢ coefficients are
reported in Table 12.5.

Furthermore, the European and National standards define two categories S1 and
S2 referring to liquefaction susceptible soils.

The amplification phenomena due to the site topography is considered by means
of a coefficient ST shown in Table 12.6.

Thus, the total amplification is expressed with the coefficient S = Sg - S7. The
definition of the design horizontal response spectrum is carried out considering four
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Table 12.7 Referring Tgls) | Tcls] | Tols] (%]
periods and damping ratio for
the NTCO8 ag 10
Tc/3 | CcTE 4—= 416 — >0.55
C/ clc g 2+ i__ -

Table .12.8 Coefficients for Soil category | S T(s) | T(s) | T(s)
T horizontal spectrum

(Table 3.2 EC8) A 1.0 |0.15 |04 |20
12 |0.15 |05 2.0
1.15 /0.20 [0.6 |2.0
1.35 /0.20 [0.8 |2.0
1.4 1015 |05 |20

mgQw

Table 12.9 Coefficients for
T, horizontal spectrum
(Table 3.3 EC8)

Soil category | S T(s) | T(s) | T(s)
A 1.0 0.05 025 1.2
1.35 10.05 025 | 1.2
1.5 010 1025 |1.2
1.8 0.10 1030 |1.2
1.6 [0.05 025 1.2

moQw

period ranges identified by the period Ty (initial value of constant acceleration
range), T¢ (initial value of constant velocity range), and Tp (initial value of
constant displacement range) with a fixed damping ratio (). Table 12.7 reports the
aforementioned period parameters and the damping ratio expression.

where £ is the equivalent viscous damping ratio of the structure expressed in
percentage. The equations of the Italian design horizontal spectrum (Eq.12.9),
expressed for different period ranges, are reported below.

T 1 T
0<T<Ts:SuT)=a,-S-n-Fo-| — |- —
<T<Tos =apS 0o | (1o

Tp <T<Tc:8,T)=a,-S-n-Fop

Tc (12.9)
chT<TDZSa(T)=(1g‘S'T]'F0' 7
TcTp
TDST:S‘,(T)zag-S-n-FO-[ 7 :|

The same methodology is suggested by the European standards (ECS), except
for the set of hazard parameters. In fact in the EC8, only the maximum horizontal
acceleration for a ground type A(a,) must be taken into account for the design
spectrum evaluation. The three period values must be assumed according to the
National standards, but if the real stratigraphy of the soil is not known it is possible
to consider two types of spectra (77 and T3) for which the soil coefficient and the
referenced period values are indicated (Tables 12.8 and 12.9).
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Table 12.10 Topography amplification coefficient (Annex A EN-5:2004)

Topographic conditions (average slope,angle 15)

Ridges with crest width signif-
icantly less than the base width | Presence of a loose surface

Isolated cliffs and slopes (a) | (b) layer (c)
Sr>1.2 12<8Sr<1.4 St = 0.2min(St(a)Sr (b))
Sa/agu Sa/agu
2580 | snF,
’ \ SUH]FO) \
L [ P BRI L [ 1

Sl
Sy

T T, T,

Sl

Ts Te

Fig. 12.8 Comparison between DS according to NTC08 and EC8

The importance class of the building is considered increasing or decreasing the
ground acceleration value (agr) as expressed in Eq. 12.10.

ag, = agryr (12.10)
In addition, for important structures (y;) the topographic amplification effects
should be taken into account as suggested in the EN-5:2004 (Table 12.10).

The complete formulation of the design horizontal spectrum according to EC8 is
expressed in the Eqgs. 12.11.

T
O§T§TB:SG(T)=ag-S-|:1+T—(n-2.5—1)]
B

TBETST(;IS,I(T)zag.S.n.z_S

Te (12.11)
TC§T§TD:Sa(T)=ag-S-17-2.5-[7]

TcTp
TDST:S,I(T)zag-S-n-Z.S-[ = }

Finally, a comparison between the horizontal DS obtained according to Italian
and European rules is reported in the Fig. 12.8.
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Table 12.11 Period
coefficients for NTCO8
(Table 12.2. VII)

Soil category | Ss | Tp Tc Tp
A,B,C,D,E 1.0 |0.05s |0.15s |1.0s

Table 12.12 Period
Spet ) T, T T,
coefficients for EC8 petrum_| dyg /dg 5(5) c®) b(s)

(Table 12.4.) Tipo 1 0.90 005 015 |1.0
Tipo 2 0.45 005 |0.15 |10

12.5.1.3 Vertical Design Spectrum

The vertical spectral components are also defined in three period ranges. In this
case the suggested values of characteristic periods and amplification coefficients are
defined independently from the soil categories. Tables 12.11 and 12.12 show the T},
T¢ and T, values proposed by NTC08 and EC8, respectively.

NTCO8 defines a coefficient FV as maximum amplitude factor for vertical
acceleration (Eq. 12.12), while EC8 indicate the acceleration ratio avg/ag. For both
of them the stratigraphic amplification coefficient is equal to the unit (SS=1) but
for NTCO8 the topography amplification coefficient ST is the same of the horizontal
components.

0.5
Fy=135-Fp- (“_g) (12.12)
g

By means of Eqs. 12.13 and 12.14 the vertical DS can be defined according to
NTCO08 and EC8, respectively.

0<T<Ts:S8.(T)=a,-S-n-F r, 1 (_I
= B - Pve —ag T] |4 TB nFV TB

TB§T<TC:SW(T)=61g'S'T)'FV

Tc (12.13)
Tc§T<TD:Sve(T)=ag-S-n-FV.|:?:|
TcT,
TDST:Sue(T)=ag-S-n-FV.[ ;ZD:|

T
0§T§TB:SW(T)=aUg-[1+T—(n-3—1)}
B

Tp =T <Tc:S80(T) =ay-S-n-3

Te (12.14)
TCfTfTD3Sve(T)=avg'S'n'3' 7
TcT,
TDST:Sve(T)Zavg'S'n'?"I: ;ZD:|
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Both the European and National standards provide some limitations in the use of
the horizontal and the vertical DS as target for the seismic input:

* DS can be evaluated with Sa(T) mathematical expressions for period range lesser
than 4 s;

* For S1 and S2 soil categories the S, T, T¢ and Tp coefficients must be defined
by means of specific researches;

* For ULS the DS can be reduced proportionally to a parameters g considering the
dissipation capacity of structures. The EC8 defines this parameter as behavior
coefficient, while in the NTCO8 it is called structural factor. Moreover, the
minimum design acceleration threshold must be equal to 0.2 g. Naturally, for
SLS g must be set equal to 1 since the structure is in the elastic field.

12.5.2 Conditional Mean Spectrum (CMS)

The shape of a uniform hazard spectrum (UHS) has been criticized to be unrealistic
for a site where the spectral ordinates of the UHS at different periods are governed
by different scenario events and conservative for long-return-period earthquake
shaking. This limitation has led to the development of the Conditional Mean
Spectrum (CMS) which is obtained by conditioning on a spectral acceleration
related to one period. The deaggregation parameters (M, R and ¢), obtained from
the PSHA as mean values are depending on the period of interest and are used
to calculate the predicted mean and standard deviation of the logarithmic spectral
acceleration values using the selected ground motion prediction equation (GMPE).

Knowing the GMPE, the CMS can be calculated as the sum of two contributions:
the first one is the logarithmic spectral acceleration (log(Sa(T.r))) and the second
part is obtained as the product between the conditional mean ¢ value, for the period
of interest (T}), the standard deviation of logarithmic distribution (0e,(s,)) and the
correlation coefficient (o(T;, Tyr)) (Eq. 12.15).Analytically the logarithmic spectral
acceleration is given by

10g(Sa(T1)) /10g(Su(Tre)) = 108(Sa(Trer)) + 0(Tis Trep)€(Tref)Otog(s,y (Ti)  (12.15)

The parameter ¢ is a measure of the difference between the logarithmic spectral
acceleration of a record and the mean or median logarithmic spectral demand
predicted, while the correlation coefficient defines the linear correlation between
a pair of ¢ associated to two different periods. Figure 12.9a shows an example of
e-defined for a period of interest of 1 s, while Fig. 12.9b illustrates the line of best fit
for e(T; = 25) and referring e(T,,; = 1s) = 2, obtained for a large suite of ground
motions in the NGA database (Baker 2011). The slope of the previously mentioned
line represents the correlation coefficient for the two & values (o(7}, Tr.r)).

Recently this method starts to be adopted also in Europe, therefore a new
correlation equation has been developed for the European sites analyzing 595 strong
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Fig. 12.9 Example of & — definition for period of 1 s (a) and correlation coefficient for (7 = 15)
and (T = 25s) (b).

motion records and considering the Ambraseys Ground-Motion Prediction Equation
(GMPE) to evaluate the ¢ (Cimellaro 2013) (Eq. 12.16).

Ao + AzlogTyin + A4 (log(Tmax))2 Tin
Pe(riye(ry) = 1= = | in (12.16)
1+ AllongwC + A3 (log(Tmin)) Tmax

where Ty, = min(Ty,T3), Tpee = min(Ty, Ty), while Ag,A1,A;, Az, Ay are the
model parameters. Similar analytical predictive equations were proposed by Chiou
and Youngs (2008) (Equation) in which the parameters of the model have been
modified to adjust to European strong motion.

Cz — if Tax < A1

C] — if Tonin < A1
Pe(Ty)e(Ty) = . . (12.17)
min(Cy, Cy) if Tpax < As

Cy — else

where T,y = min(Ty, T2), Tyuax = min(Ty, T;) while A, A,, A4 are the coefficients
and they are determined as a function of seven model parameters (Ao, A1, Az, A3,
A4, A5, A6 and A7)

Previously Baker and Cornell (2006) proposed a correlation model for the
California sites valid for a low period range of 0.05-5s (Eq. 12.18), while later
Baker and Jayaram (2008) have proposed a redefined correlation model suitable
over the 0.01-10 s period range.

T Tmin Tmin
Pe(Ty)e(ry) = 1 — cos 77 Ag— A 'ITml-,,<A2lnA—2 In T (12.18)
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Fig. 12.10 Contours of the predicted horizontal correlation coefficients of response spectra versus
natural vibration periods T1 and T2 for Ambraseys (2005) GMPE, using Baker and Cornell (a),
Chiou and Youngs (b) and Cimellaro (c)

where T, = min(Ty, T2), Typax = min(Ty, T2), (Tin < Az) is a step function equal
to 1 if 7,,;, < A, and equal to O otherwise and Ap, A; and A, are the parameters of
the model.

Figure 12.10 shows the contours of the predicted horizontal correlation coeffi-
cients of the response spectra discussed above versus natural vibration periods 7;
and 7; for the 2005 Ambraseys GMPE (Cimellaro and De Stefano 2010).

Contours of the predicted horizontal correlation coefficients of response spectra
versus natural vibration periods T1 and T2 for Ambraseys (2005) GMPE, using
Baker and Cornell (a), Chiou and Youngs (b) and Cimellaro (c).

12.6 Use of Acceleration Time Histories

According to NTCS, the use of acceleration time histories is allowed for particular
structural and geotechnical systems. Each of them must be applied simultaneously
in the two horizontal directions (X and Y) and in the vertical direction (Z). The three
acceleration timel histories in the three directions define an acceleration group. EC8
fixes the minimum number of acceleration groups to three, but for detailed analyses
it is suggested to use seven groups of acceleration histories. The seismic standards
allow the use of three types of accelerograms:

* real ground motions (from strong motion databases);
* real ground motions (from strong motion databases);
* synthetic ground motions (generated from theoretical seismological models).

Only the first category can be used in dynamic geotechnical applications. A
common goal of the artificial and real accelerograms is the compatibility with the
target spectra in the given period of interest. EC8 and NTCO8 do not establish
any rigid range of period for real ground motions. On the contrary, the maximum
and minimum values of period are given for artificial accelerograms (Tables 12.13
and 12.14).
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Table 12.13 Referring period intervals for NTCO8

Ultimate Limit State (ULS) Service Limit State (SLS)
max[(0.15s — 2.0s); (0.155 — 2.07 )] max[(0.15s — 2.0s); (0.155 — 1.5T )]
Table 12.14 Reference 0.2T 0 — 20T,

period interval for EC8

The accelerograms can be selected to be spectrum compatible with the target
spectrum, so that the mean acceleration response spectrum of the set has a dispersion
of 10% in the period range of interest.

In addition, the set of accelerograms to be selected must be consistent with the
geological characteristics of the site. The simulated synthetic ground motions can be
evaluated from theoretical seismological models of seismic fault rupture by means
of dynamic or kinematic models. Using this procedure it is not possible to have
consistent results for frequency values greater than 5 Hz. On the other hand, the
artificial accelerograms do not have a reasonable amplitude, frequency content and
duration, since they are estimated from stochastic approaches.

These observations led to prefer the real ground motion records because they
are realistic and they have the best correlation between the spatial components.
Furthermore, nowadays the availability of a wide strong motion databases has led
to prefer real ground motion records in the analysis using advanced ground motion
selection methods.

12.6.1 Ground Motion Selection and Modification

It is important to mention that the general characteristics of the earthquake ground
motion set depends on the specific goals of the analyses to be performed. In fact
the Performance Assessment of Buildings (Applied_Technology_Council 2011)
define three selection methodologies depending on the performance assessment of
buildings:

o [Intensity-based assessment;
e Scenario-based assessment;
e Time-based assessment.

These methodologies include the development of a target response spectrum,
the selection of an appropriate suite of earthquake ground motions and the scaling
procedure for consistency with the target spectrum. The scaling procedure is
necessary for modifying the record and match the target spectrum for the period
of interest.

The first step in the ground motion selection procedure is defining the target
spectrum according to the type of assessment (Table 12.15).
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Table 12.15 Target spectrum used in the performance analyses (ATC-58-1, 2012)

Intensity-based assessment | Scenario-based assessment | Time-based assessment

Any spectrum consistent Spectrum deriving with an One spectrum for each
with site geologic appropriate GMPE seismic hazard interval used
characteristics in the analysis

Once the target spectrum has been defined, the ground motion selection is carried
out to obtain a set of ground motions that will produce unbiased estimates of
median structural response with non linear response history analyses (NRHA) or
other specific analyses. In other words, the ground motion selection is applied to
obtain an estimate of the structural dynamic response as accurate as possible. In
order to simplify the spectral matching procedure, three different approaches are
proposed:

e scaling in time domain (simple amplitude scaling for a specific period value);
» Frequency content modification;
* Adding wavelets functions in the record in the time domain..

The frequency content modification is the basic procedure for generating artificial
accelerograms matching the target spectrum, but also the third approach is used to
obtain artificial time histories which are spectrum compatible.

12.6.1.1 Real Ground Motion Records

In this paragraph specific selection and modification procedures won’t be discussed,
but instead the focus will be on the general characteristics of all methodologies
currently available. First of all, it is suggested to select real acceleration time
histories coming from different seismic stations and for different events. As dis-
cussed previously, the consistency with a target spectrum and with the seismological
characteristics of the site are the first steps in the selection and scaling procedure.

Thus, the ground motions are selected by means of several matching target
spectrum shape-based criteria and source and waveform-based criteria from the
available database. In literature are available several ground motion selection and
modification procedures. Each of them is based on the same logical steps to be
followed (Fig. 12.11).

The amplitude-based modification procedures in the time domain are based on
the definition of a scale factor SF which depends on the spectral acceleration of the
target spectrum (S, target(Tyf)) (Eq. 12.19).

Sa.,target (Tref)

SF =
Sa.gm (Tref)

(12.19)

where Sa, gm(T,.r) represents the spectral acceleration at the same period of the
considered ground motion. Usually, for building structures the period of interest
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Fig. 12.11 Overview of the options available for selecting and scaling real accelerograms
(Adapted from Bommer and Acevedo 2004)

T, is assumed equal to the fundamental period of the structure (first vibrational
mode) (Fig. 12.12a). For geotechnical systems the period of interest 7.,y = 0 which
means to use the PGA as target acceleration (Fig. 12.12b).

Despite the large availability of strong motion databases, finding real ground
motions with similar seismological characteristics (fault mechanism, epicentral
distance, rupture depth etc.), site category (depending on Vi30) and adequate mean
spectral compatibility, might not be enough. This observation has led proposing new
approaches based on the generation of artificial or synthetic ground motion records.

12.6.1.2 Artificial Seismic Records

Artificial accelerograms are obtained through numerical simulations starting from a
target spectrum. A commonly used method adjusts the Fourier amplitude spectrum
iteratively, based on the ratio of the target response spectrum to the time history
response spectrum, while keeping the Fourier phase of the reference time history
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(b)

Fig. 12.12 Scaling procedure to match spectral acceleration at some period (a) or at PGA (b)
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fixed (code BELFAGOR and SIMQKE, Gasparini and Vanmarcke (1976)). In other
words this is an iterative procedure through which the frequency content of the
record is modified step by step (Fig. 12.13).

The thick black spectrum defines the target spectrum, while the other lines rep-
resent all the compatible modified records (artificial accelerograms). This approach
can alter the non-stationary character of the time history, if the shape of the Fourier
amplitude spectrum is changed significantly.

An alternative approach for spectral matching adjusts the time history in the
time domain by adding wavelets to the selected ground motion record (Lilhanand
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and Tseng 1988; code RSPMATCH Abrahamson 1998). While this procedure is
more complicated than the frequency domain approach, it has good convergence
properties and in most cases preserves the nonstationary characteristics of the
ground motion. The ground motion records developed with this procedure are often
referred to as intelligent artificial accelerograms.

12.6.1.3 Synthetic Seismic Records

The synthetic procedures are based on the empirical or physical methods for the
generation of the ground motions. The empirical methods can be carried out using
the attenuation relationships, while the physical methods include dynamic and
kinematic models.

Dynamic models rigorously take into account the causative forces resulting in
earthquakes and are based on the dynamics of the fault rupture, which involves
specifying the forces (tectonic stresses) that drive the process and the forces (such
as friction and asperities on the fault) that resist the rupture propagation. Mechanics
and equations of motion are then used to define the rupture process and the
resulting ground motion. Such techniques are highly complex, require very intensive
calculations and also require the specification of many geophysical parameters that
are generally unavailable and unpredictable for future earthquakes. Hence, they have
been very infrequently used to generate motions for engineering purposes. The main
application of dynamic fault models has been to interpret the rupture history of
previous earthquakes in order to better understand the processes of generation and
propagation.

Kinematic fault models (Hartzell et al. 1976) are more widely used to generate
synthetic ground motions. The model characterizes the rupture process in terms
of the displacement (slip function) of the fault as a function of time and location.
The response at a site can then be calculated using mathematical forms called
Greens functionsi that represent the ground motion at the site deriving from an
instantaneous unit pulse displacement at a particular point on the fault. They
simulate the propagation of seismic waves from the fault to the observation point,
taking into account the effect of the intervening geologic structure. Calculating
Greens functions represents the largest portion of kinematics modeling computa-
tions. A common practice that has come into use, to overcome the lack of strong
motion recordings, is the use of weak motion recordings from small earthquakes as
empirical Greens functions. The two components necessary for fully defining the
motion are, therefore, the Greens functions and the distribution in time and space
of the individual point ruptures that make up the complete fault rupture. Of course,
it is impossible to predict in both time and space the rupture propagation for future
earthquakes, so a degree of randomness is usually introduced into the summation of
the sub-events in order to represent the heterogeneity of real fault ruptures typical
of large earthquakes.
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12.6.2 Available Databases for Signal Processing and Ground
Motion Selection

All the ground motions are recorded and collected in the database in order to be
available for any seismic analysis. Three of the most useful strong motion databases
are the ITalian ACcelerometric Archive (ITACA), the European Strong Motion
Database (ESMD) and the Pacific Earthquake Engineering Research database
(PEER) for Italian sites, European sites and world sites, respectively. From ITACA
and from ESMD one can obtain the acceleration time histories (corrected and
uncorrected) and additional information about any recorded ground motion in zip
files after registration in the official site (http://itaca.mi.ingv.it/ItacaNet/ for ITACA
and www.isesd.hi.is/ for ESMD). The PEER ground motions are freely available
at the link: http://ngawest2.berkeley.edu/. Figures 12.14, 12.15 and 12.16 show
the screenshots related the databases just mentioned and they also illustrate the
differences between the internet graphical user interfaces.

For a single event the East-West (E-W), the North-South (N-S) and the Vertical
(V) components are given for the three databases. In addition, Fault-Normal (FN)
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Fig. 12.15 Screenshot of the ESMD internet GUI
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Fig. 12.16 Screenshot of the PEER internet GUI

Fig. 12.17 Format of the Event time
output uncorrected record
name (ITACA)

Uncorrected

[E[BUILJHNZ.D19760911163501.X.ACC.ASC

Network

Station code Stream [Event date

and Fault-Parallel (FP) components of the shaking are available for the latest version
of the PEER database. The Italian and European strong motion database provide
uncorrected and corrected (with default Butterworth filter and baseline correction)
acceleration histories. In order to explain the main differences between the output
file formats, a Friuli earthquake record was selected from the three database and the
main format name differences are summarized in Figs. 12.17, 12.18 and 12.19.

In each database it is possible to perform any research using the station criteria
or the waveform criteria.
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Fig. 12.18 Format of the Uncorrected

output uncorrected record
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Fig. 12.19 Format of the FRIUL -
output record name (PEER) Location Component
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Chapter 13 )
Opensignal et

Abstract The chapter illustrates the capabilities of the OPENSIGNAL computer-
based platform environment (Cimellaro GP, Marasco S, Frontiers in Built Environ-
ment 1:17, 2015) for processing and selecting the seismic input to be used in the
seismic analyses. All the features and the software components are explained in
detail and an illustrative application is reported.

13.1 Introduction

The use of ground motion data has been growing worldwide due to the large
availability of ground motion records and increased interest from the earthquake
engineering community in using nonlinear response history analysis in seismic
analysis and design. In particular, the selection and processing of earthquake records
plays a key role in seismic risk assessment of buildings and structures in general.
A computer-based platform OPENSIGNALI has been developed (Cimellaro and
Marasco 2015) for the analysis, processing and selection of ground motion records
from the main international databases (ESMD, PEER, ITACA, Chilean database)
using different search criteria. The main advantage and unique quality of the
platform is that it allows spectral matching selection using different target spectra
rather than the UHS such as the Conditional Mean Spectra (CMS) or any other
user-defined target spectra (Cimellaro et al. 2011). In particular, the computer
environment allows building the Conditional Mean Spectra on the Italian national
territory. Furthermore, the proposed platform combines the functionalities of differ-
ent software, such as multi record processing and also allows exporting the selected
records in different formats (e.g. excel, txt) using a simple graphical interface. The
computer-based platform is freely available for the general public at the following
website: http://areeweb.polito.it/ricerca/I[CRED/Software/OpenSignal.php
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13.2 State of Art

Nowadays, the state-of-practice in earthquake engineering design has progressively
moved toward the use of dynamic elastic and even nonlinear time history analysis
with respect to response spectrum analysis, because of the exponential increment of
computational power. All these methods require the selection of a proper suite of
earthquake ground motions as prerequisite in order to be reliable. In fact, among
all possible sources of uncertainty (e.g. structural material properties, modeling
approximations, design and analysis assumptions etc.) the selection of earthquake
ground motion has the highest effect on the variability of the structural response.
The selection of earthquake records in most seismic design codes are based on
parameters obtained by disaggregated seismic hazard maps at a specific site such
as the magnitude, M, and the source-to-site distance, R, but other parameters
can also be used such as the soil type, the source mechanism, the duration etc.
Other parameters can also be used based on intensity measures such as the peak
ground acceleration (pga), the spectral acceleration at the fundamental period of
the structure S,(7) etc. Other selection criteria are based on spectral matching to
a specific target spectrum, such as a design code spectrum evaluated by referring
to seismic scenario determined by a ground motion prediction equation (GMPE), a
uniform hazard spectrum (UHS), a conditional mean spectrum (CMS), etc. Using
design code spectrum and UHS might cause over-softening and over-damping
during the analysis; therefore, a matching procedure based on the conditional mean
spectrum leads to more consistent results. Several alternatives and more advanced
methods are available in literature (see review in Cimellaro and De Stefano 2010).
A large number of computer programs, public and commercial, are available
at the ORFEUS (Observatories and Research Facilities for European Seismology)
data center (http://www.orfeus-eu.org/software.html). Most existing public signal
processing software are developed to analyze single seismic earthquake records at a
time (e.g. Seismosignal — available at http://www.seismosoft.com/en/seismosignal.
aspx). For multiple records analysis commercial software such as BISPEC (Hachem
2008) (http://www.ce.memphis.edu/7137/PDFs/BispecHelpManual.pdf) is needed,
but they have the inconvenience that they are not freely available in the market.
Furthermore, most of these programs can be used after the earthquake records are
selected, but they are not able to guide you through the ground motion selection
process from a given database, thus is one example of how they do not provide
users with the ability to perform all of these functions in an integrated fashion.
Recently Katsanos and Sextos (2013) developed a Matlab-based software envi-
ronment which integrates finite element analysis with earthquake records selection
which works with the PEER database. However signal processing, soil response
analysis and the possibility of using new target spectra such as the Conditional Mean
Spectra is not included in the program. Consequently, there is a need for a specific
platform that combines all of these functionalities together. The computer-based
platform OPENSIGNAL, which can read data in a large variety of file formats from
the most common ground motion databases, is freely available for the general public
(available at http://areeweb.polito.it/ricerca/ICRED/Software/OpenSignal.php). In
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fact, the platform can be used to automatically select seismic records from several
databases such as the PEER-NGA strong motion database (PEER — http://ngawest2.
berkeley.edu/), the European Strong-Motion database (ESMD — http://www.isesd.
hi.is/ESD_Local/frameset.htm) and from ITalian ACcelerometric Archive (ITACA
— http://itaca.mi.ingv.it), but it also allows manual reading of seismic records by
selecting the free format. It is composed of several interactive graphical interfaces
that integrate the most common signal-processing and selection criteria techniques
used in earthquake engineering. For example, it allows processing multiple ground
motion records simultaneously, filtering the unwanted frequency contents, carrying
out spectral analysis, soil response analyses etc. Finally, all processed data and
records can be exported into other common formats such as MS Excel, txt, etc.
The goal of OPENSIGNAL is to provide users with the latest techniques on
ground motion selection and processing, while simultaneously providing utilities
for file management, import and export of data, unit conversion, and other time-
consuming tasks for earthquake engineering professionals, students and researchers.

13.3 Structure of the Software

The software architecture of OPENSIGNAL is based on three main windows that
provide tools, which corresponds to the same logical process that is usually followed
by each designer to select “reliable” earthquake records:

1. Signal processing analysis;
2. Seismic record selection;
3. Site response analysis.

(i) Signal Processing is designed for a user who has his own input data and
needs to process it; (ii) Seismic records selection window supplies the instruments
for obtaining both response spectra and time-histories; (iii) Site Response Analysis
concerns the analysis of the amplification effects at a given site due to the soil
stratigraphy.

The main graphical interface of the program is shown in Fig. 13.1.

Each part of the computer environment has been implemented in MATLAB and
has a graphical user interface that is simple and intuitive to be used. Each toolbox
can be used following the sequence shown in Fig. 13.1 or independently. In the next
paragraphs, each part of the platform is described in detail.

13.4 Strong Motion Databases

The proposed framework retrieves records from the PEER-NGA strong motion
database (PEER - available at http://ngawest2.berkeley.edu/ ), the European
strong motion database (ESMD - available at http://goo.gl/hkUKDG), the ITalian
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Fig. 13.1 Main graphical interface of the software

ACcelerometric Archive (ITACA available at http://itaca.mi.ingv.it), and the
Chilean ground motion database (records from 1994 to 2010 are available at http://
terremotos.ing.uchile.cl/). Additional Chilean records related to the 1985 earthquake
are available at http://goo.gl/JeowCW, while the raw data (uncorrected) of the
records of the 2014 Iquique earthquake are available at http://www.sismologia.
cl/. Furthermore, the software also allows manual reading of the seismic records
selecting the free format, if the file format is different from the three databases
mentioned above.

13.5 Signal Processing and Filtering

Figure 13.2 shows the main user dialog window of ““signal processing” tool. Signal
processing allows the user to open raw data obtained from the main source databases
from all over the world and calculate the principal seismic parameters, such as Arias
Intensity, Fourier Transform as well as the file information (i.e event description,
sampling interval, etc.). In the Input Data (upper left), the records are uploaded
and read automatically for the selected ground motion databases (PEER, ESMD,
ITACA and UCHILE) or using the option free format. The signal processing module
(Fig. 13.2) allows the correction of the ground motion records with the Butterworth
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Fig. 13.2 User dialog window for “Signal Processing”

filter by modifying the default set up values (f,,;, = 0.25Hz, f,,,, = 25Hz, n = 4)
if needed. It is also possible to scale the acceleration history selected by setting
the scale factor. The effect of the filter is shown in the Time Histories visualization
panel in which the accelerations, velocities and displacements records, both filtered
and unfiltered are displayed. In the Signal Processing window (Fig. 13.2) the main
parameters of the earthquake records (e.g. peak ground acceleration, velocity and
displacement, duration, etc.) both peak and root mean square values are calculated
and saved for both filtered and unfiltered data. The Arias Intensity and the Fourier
Transform graph are plotted as well. All processed data and records can be saved in
bothxls and #xt format using the saving input data block (bottom-left in Fig. 13.2).
Then the set of records created can be processed in the spectral analysis dialog
window (Fig. 13.3).

13.5.1 Response Spectra Analysis

Signal Processing tool contains a powerful tool, the Response Spectrum Analysis,
which permits simultaneous Spectrum Analysis of different time-histories. Starting
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Fig. 13.3 User dialog window for Spectral analysis

from the set of ground motions selected and filtered, the Elastic Response Spectra
(acceleration, velocity, displacement etc.) can be computed for a given value of
damping ratio. Furthermore, the mean and median acceleration response spectra
of the uploaded set of records with the associated range of dispersion (o) can also
be evaluated and plotted using log and semi-log scales.

Different types of target spectrum can be defined in the framework. The Design
Spectrum (DS) can be evaluated according to the Italian seismic standards, the NTC
2008 for any point in the Italian territory, once the parameters are defined (e.g.
nominal life, soil category, damping ratio, over strength factor ¢ to describe the
inelastic behavior, etc.). Additionally the DS according to the European seismic
standard, EC8, and to the US standards can be evaluated inserting the proper
parameters. Furthermore, the platform allows the evaluation for a given probability
of exceedance of the Uniform Hazard Spectrum (UHS), and the Predicted Mean
Spectrum (PMS) using four different ground motion prediction equations (GMPE)
which are currently available: Ambraseys et al. (1996), Campbell and Bozorgnia
(2008), Boore and Atkinson (2008), Iyengar et al. (2010) and Contreras and
Boroschek (2012). However, the real novelty of the proposed system architecture
is that it allows evaluation of the Conditional Mean Spectrum (CMS) on the entire
Italian territory (Cimellaro 2013).
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13.6 Seismic Records Selection

Ground motion selection is applied in order to obtain a set of motions that are
usually used in dynamic elastic and even nonlinear response history analysis. The
Seismic Records Selection module is shown in Fig. 13.4 where after selecting the
ground motion database to be used for the search (e.g. PEER or ESMD), the
waveform (left in Fig. 13.4) or spectral criteria (right on Fig. 13.4) can be used.
The Seismic Records Selection tool shown in Fig. 13.4 has a layout perceived in
two main panels, Spectrum panel and Time-History panel. The first one provides
the computation of the most used Spectra (i.e Design Spectrum, Conditional Mean
Spectrum, Predicted Mean Spectrum, Uniform Hazard Spectrum). The second
one is subdivided in three sections: Real, Artificial and Synthetic Time-History.
In particular, Artificial and Synthetic Time-history panels allow generating new
input data using the SMSIM code (Boore 2003) and a wavelet-based stochastic
model (Yamamoto 2011). The Real Time-History panel allows finding earthquake
records in the main databases (e.g. PEER or ESMD) by peak values, magni-
tude and soil category (waveform matching), by spectrum matching or energetic
methods.

13.6.1 Real Time History Selection
13.6.1.1 Waveform and Spectral Matching
The waveform matching can be obtained selecting some specific parameters

obtained by the disaggregated seismic hazard maps at a specific site such as the
moment magnitude, M,,, the fault distance or Joyner-Boore distance (R or Ry,
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Fig. 13.4 User dialog window for Seismic Records Selection
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expressed in km), the fault mechanism, the soil type according to EC8 and US
standards and the waveform parameters (e.g. Peak Ground Acceleration, Peak
Ground Velocity, Peak Ground Displacement). In the search with the Spectral
Matching block, the first step is the definition of the type of matching to be carried
out. There are three currently available options: (i) Single period, (ii) Multi periods
(up to three values) and (iii) Mean Deviation. A selected percentage error is defined
in all cases to vary the number of earthquakes selected. The second step is the
selection of the Target Spectrum among the CMS, the DS, the UHS, the PMS or any
User Defined (UDS) response spectrum. After the selection of the target spectrum,
the search of the records between the ground motion databases available in the
computer environment is performed. Both horizontal and vertical components of
ground motion can be considered for ESMD, while the geometric mean components
are used for PEER. Then the records found can be preselected in a table and visually
inspected comparing both response spectra and other data (e.g. location) and only
after this further check the records can be downloaded and saved.

13.6.1.2 Energetic Method

A novel Ground Motion Selection and Modification (GMSM) procedure is also
implemented in the software for minimizing the dispersion of the Engineering
Demand Parameters (EDP) and enhancing the accuracy in the prediction of dynamic
structural response (energetic method). The new selection and scaling procedure
emerges from comparing a set of horizontal ground motions at various ranges of
frequency and then obtaining a set of ground motions with similar seismic severity
by matching the target spectrum at the period of interest T,,r. Furthermore, the
selected motions are scaled in order to have an equivalent Housner intensity in
the period range 0.27,,; — 2T,,; comparable withe the target spectrum one. The
horizontal components for every band of frequency is obtained using a specific
index that depends on the energy-frequency trend’s shape as well as on its scattering
degree around the mean value (Marasco and Cimellaro 2017). This allows obtaining
a set of spectrum-compatible records with almost identical severity and low
dispersion of the structural response parameters. The methodology has been tested
showing a significant effectiveness in terms of low variability of parameters and
accuracy in preserving the median demand for a given hazard scenario. This new
software component is able to select and modify ground motion records coming
from PEER and ESMD database and setting magnitude and epicenter distance
ranges, by imposition af a given reference period. Then, seven groups of records
(in both horizontal direction) can be derived and used in the time history analyses.
The proposed GMSM procedure is available both for structural and geotechnical
applications. The Energetic method dialog box is shown on Fig. 13.5.

As aresult, this new energetic proposed approach allows to select a representative
set of ground motion according to the spectrum-compatibility criterion, to the fre-
quency content representativeness and to the consistency of the expected structural
damage for the given hazard scenario.
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13.6.2 Artificial Time-History Selection

The decomposition of ground motion time-histories into wavelet packets and the
reconstruction of time-histories from wavelet packets has been applied in the
creation of a stochastic ground-motion model (Yamamoto and Baker 2013). The
wavelet packet is defined as in the Eq. 13.1.

dy= S xO v 0di (13.1)

Exploiting two groups of wavelet packets, 13 parameters quantify time and
frequency characteristics of the acceleration time histories. Such parameters are
predicted as a function of four predictor variables: the moment magnitude (M,,), the
hypocentral distance (Ry,,), rupture distance (R,,,), and average shear-wave velocity
within 30 m depth (V3). In turn, the predictor variables are obtained by a two-stage
regression analysis. In Yamamoto and Baker (2013) it has been proposed a range
of values that provides a good match from the GMPEs; those values are reported
and recommended inside the code. As in synthetic time-histories, the generation
of independent time-histories is unlimited and the signal processing is analogous
(Fig. 13.6).

13.6.3 Synthetic Time-History Selection

OPENSIGNAL allows the creation of synthetic time-histories exploiting the physic
concepts implemented in SMSIM code (Boore 2003) where the total spectrum of the
motion at a site can be divided into contributions from earthquake source, path (P),
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Fig. 13.6 Window of generation of artificial time-histories. Synthetic time-histories share a
coincident layout with few differences in the INPUT DATA panel

and site. The shape and amplitude of the source spectrum are function of earthquake
size; it is overall defined by three elements: a constant value (C), the seismic moment
(M) and the displacement source spectrum (S(My, f)). The constant C is computed
(Eq. 13.2) according to the radiation pattern (R,,), the partition of total shear-wave
energy into horizontal components (V), a reference distance (Ry), the effect of the
free surface (F), the soil density (p,) and the shear wave velocity (8;) in the vicinity
of source. The soil density and the shear wave velocity are set by the user; R,, is set
t0 0.55,Vto1/2, Ryto 1, and F to 2.

R,,VF
C=—2—t (13.2)
4nIOSﬂsR0

Different formulations of displacement source spectrum exist in literature; in
OPENSIGNAL is possible to choose between a singular corner frequency or a
double corner frequency. In the first case the only input is the stress drop (§o') while
the user selects the ratio of both corner frequencies as well as the stress drop in the
second case. The variability of the stress drop can be formulated by the reference
magnitude of the stress drop and the derivative of it in the log space. The path
contribution is split in the geometric spreading (Z(R)) and attenuation (Q(f)) as
given in Eq. 13.3.

PR.f) = Z (R) exp ( (13.3)

)
0N
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where ¢, is the seismic velocity used in the determination of Q(f). The geometric
spreading in OPENSIGNAL is defined by means of five parameters, in order to
create a series of three linear straight lines with slope (p;, p», p3) with in the
range among (R}, R,). The attenuation contribute is represented by three piecewise-
continuous line segments specified by 8 parameters: the slopes of first (s;) and third
lines (s,) that have values (Q,) and (Q,») at frequencies (f;;) and (f;»), the transition
frequencies (f;;) and (f;»). The site effect is generally formulated as the product of an
amplification effect and diminution effect. OPENSIGNAL provides a formulation
for a generic rock site amplification, by recommending a proper local site analysis
to take into account the amplification of soil. The diminution factor describes the
path-independent loss of high frequency by applying two filters (Eq. 13.4).

D(f) = oxp (k). (13.4)

8
f
1 + (f”lll)[)

The user defines a proper value of (ko) and (f;,.x). All the parameters are set in a
proper window (Fig. 13.7) where the user can choose the time envelope shape.

An arbitrary number of independent time-histories can be generated by multiply-
ing the normalized amplitude spectrum of white-noise with the computed spectrum.
The total duration of the white-noise is set according as Eq. 13.5.
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a

Dy =2 (0.0SR + %) (13.5)

The time envelope shape is scaled according to the source duration weight
(wg4,wp). For each time-history, several parameters are computed and displayed (e.g.
velocity, displacement, Fourier amplitude, Arias intensity).

13.7 Approximated Site Response Analysis

The CMS and the UHS are usually used as target spectra in order to perform the
selection procedure discussed previously. Since the two spectra just mentioned are
obtained for the condition of rigid and flat surface, the selection procedure does
not lead to a representative set of acceleration histories. In real cases, the soil
parameters affect the seismic response of a geotechnical system, because the soil
filters the seismic input, so specific frequencies may be amplified while others may
not. Thus, the soil surface seismic response is not coincident with the assumption
of rigid and flat surface (bedrock). In order to take into account the local site
effects of the ground motion propagation a special OPENSIGNAL component is
implemented (Fig. 13.8). A new set of accelerograms or an existing one can be used
as input motion at bedrock. For this reason, it is possible to select the acceleration
histories selected in the Matching procedure (Import set in Fig. 13.8). This software
component performs the soil response analysis by using a time domain solution of
the dynamic equations with the implicit method of Newmark based on the Eqs. 13.6
and 13.7.
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Fig. 13.8 User dialog window for site response analysis
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Uip1 = i + [(1 — ) At]it; + (YAt (13.6)

it =+ (A0 + (G5~ B)APYi + (AR (13.7)

where At defines the time step, u, & and it represent the displacement, velocity and
acceleration of the system, respectively. These ones are determined at the time i+/
starting from the known values at time i. The parameters 8 and y define the variation
of the acceleration over a time step and in the present work they have been set equal
to B = }‘ and y = % (average acceleration method). The layered soil column
is idealized as a multi-degree of freedom system with lumped parameters (spring-
dashpot system Fig. 13.9) and the seismic excitation is imposed at the base of the
physical model (bedrock) as an acceleration history. The equations of motion can
be expressed in the following matrix form Eq. 13.8.

[M] (i} + [C] {iey + [K]{uj = — [M] 1] i, (13.8)

where [M], [C] and [K] are the mass matrix, viscous damping matrix and stiffness
matrix respectively, while i , # and u define the vectors of the absolute nodal
accelerations, velocities and displacements respectively. The term { I} ii, represents
the earthquake load, where each component of the vector [ is equal to the unit
value. In a nonlinear formulation the energy of the system is dissipated through
the hysteretic loading-unloading cycle, thus, the viscous damping matrix may be
defined in order to simulate the mentioned process of dissipation. In addition, in
the time domain analyses, the damping depends on the frequencies. One of the
most common and simplified methods used to compute the damping matrix is the
Rayleigh formulation (RF), where the damping is assumed to be proportional to

m
G, P56 kysc,
m,
Gy, 0,55, ‘ k¢
1 m L
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Fig. 13.9 Multi degree of freedom system with excitation at the base
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the mass matrix and to the stiffness matrix (Eq. 13.9) by means of two coefficients
apand a; frequency dependent (Eq. 13.10 and 13.11).

[C] = ao [M] + a1 [K] (13.9)
4z (fof)
= 13.10
“ Jo+ 1 ( )
1
a; = ém (13.11)

where £ is the damping ratio of the soil system and f; and f; are the two control
frequencies. The main approximation of this procedure consists in the underestima-
tion of the damping at frequencies between f; and f, and the overestimation of the
damping at frequencies lower than f; and higher than f;. Thus, the selection of the
two control frequencies is very important in order to obtain good results. For this
purpose, OPENSIGNAL performs the dynamic analysis calculating the damping
matrix according to Hudson et al. (1994) in which f; is the fundamental frequency of
the soil column and f] represents the predominant frequency of the ground motion.
In addition, OPENSIGNAL takes into account the variation of damping ratio among
the layers of soil calculating the damping matrix as an ensemble of damping element
matrices (Eq. 13.12).

Elml 0 ... 0
(€] = dr(foft)) | O &my 0 0
fo+hfi .o 0L
0 0 ... &m,
1k —&1ky 0
I 1 =&Eki Sk + &k 5k
7T(ﬁ) +fl) s _52k2 S _gn—lkn—l
0 s _Snflknfl Enflknfl + %-nkn

(13.12)

OPENSIGNAL uses a hybrid method in which the hysteretic behaviour of
the soil is approximated using the shear modulus degradation curve (G-y) and
the damping ratio curve (£-y). For this reason, the clay, the sand and the rock
degradation curves are available in OPENSIGNAL according with the default
curves available in EERA (Bardet et al. 2000).

This approach allows approximating the real soil behavior, by assuming that
the shear modulus and the damping ratio vary with the shear strain amplitude
(equivalent linear model). The nodal displacements and the shear deformations
related to the relative displacements are calculated for a generic time using the
Newmark method. These values will be considered to upload the shear modulus
and the damping ratio used in the following instant to define the new stiffness
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Table 13.1 OPENSIGNAL soil response analysis vs EERA

Feature OPENSIGNAL EERA

Discretization Lumped mass Continuous layers

Type of solution | Time domain Frequency domain

Type of analysis | Step by step integration Transfer function

Soil model G(y) and D(y) curves G(y) and D(y) curves

Damping model Rayleigh formulation (RF) Kelvin-Voigt model

Nonlinearity Solution with parameters Iterative approximation of equivalent
uploading at every step linear response

and damping matrix. The main approximation is due to the nonlinear behavior
of the soil and the inconsistency of the soil parameters determination in the large
shear strain range, because in this field the real stiffness and damping depend on
the number of loading-unloading cycles. Nevertheless, it was observed that in the
medium deformation range the nonlinear behavior of the soil is not significantly
influenced by the load path. The comparison between the method implemented in
OPENSIGNAL and the one implemented in EERA is shown in Table 13.1. The
proposed hybrid method can lead to inaccurate solutions for seismic records with
high amplitude, because they generate wide shear deformations in the soil column
and, as mentioned before, in the large strain range it is necessary to consider the
real (r — y) trend in order to appreciate the nonlinear soil phenomena. Thus, in this
case, it is necessary to adopt a specific nonlinear soil response analysis software.
In addition, since the proposed method carries out the RF to define the damping in
each step, the solution is strictly dependent upon the fy/f; ratio. For this reason, at
high values of the frequency ratio the RF leads to an underestimated damping, then
the calculated solution is greater than the real one.

13.8 Case Study

As an illustrative example to show the capabilities of the computer-based platform
environment, six ground motion records have been chosen to test the record
processing tool, while a set of deaggregation parameters has been identified to
test the record selection criteria tool. The first dialog window of the computer
environment focuses on the ground motion signal processing, using filters to process
the signals and evaluate the elastic response spectrum.

The platform allows automatic reading of the accelerograms from these databases
and plotting the main related information. In particular, the records can be selected
from the PEER strong motion database (PEER) , the European Strong Motion
Database (ESMD) , the Italian Accelerometric Archive version 2.0 (ITACA) and
the University of Chile database (UCHILE).

As an illustrative example, six records, from UCHILE, ESMD and PEER
database have been selected and listed in Table 13.2. The associated acceleration
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Table 13.2 Six ground motion records from UCHILE, ESMD and PEER database

Earthquake
Database | Station ID | Event ID | name Date PGA [cm/s2] | ML/W | R [km]
UCHILE | S/N 6735 | Matanzas | Maule 27/02/2010 | 311.15 8.8 -
UCHILE | S/N 935 Santiago | Maule 27/02/2010 | 186.87 8.8 -
Centro
ESMD 553 472 Izmit 17/08/1999 | 319.29 7.6 12.00
ESMD 54 87 Tabas 16/09/1978 | 319.85 7.3 12.00
Cape Men-
PEER 89324 P0810 docino 25/04/1922 | 360.22 7.1 18.50
PEER CHYO006 | P1120 Taiwan 20/09/1999 | 362.74 7.3 14.93
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Fig. 13.10 Elastic acceleration response spectra (a) and mean acceleration response spectrum (b)

elastic response spectra damped at 5% are shown in Fig. 13.10. The six uncor-
rected records have values of PGA between 186.87 cm/s* and 362.74 cm/s?
and local/moment magnitude between 7./ and 8.8. Every uncorrected record in
Table 13.2 has been filtered with a Butterworth filter having f,,;, = 0.25 Hz, fiuax =
25 Hz and n = 4. The filtered set of records is then used for the response spectral
analysis. In Fig. 13.13 the acceleration elastic response spectra of the ground motion
set in Table 13.2 with a damping ratio equal to 5% are shown. After uploading the
records, OPENSIGNAL allows the evaluation of main signal parameters divided
into three main categories:

e Peak values: PGA, PGV and PGD:;
* Time values: Arias intensity, Duration, Peak acceleration time;
* Root mean square values: agys, Vrus, drus-;

The parameters are calculated for both the unfiltered (Original) and filtered (Mod-
ified) records. As example, the time histories of Maulel earthquake are considered
and the relative signal parameters are summarized in Table 13.3. The selection
criteria of the ground motion records follow two different approaches: waveform
matching and spectral matching. OPENSIGNAL enables the selection procedure
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Table 13.3 Signal properties of the unfiltered vs. filtered records (Maule earthquake Matanzas

S/N 6736)
PGA |PGV | PGD Peak acc.
[em/s?] |[em/s] |[cm] I, [cm/s] | Duration [s] | Time [s] | agms | VRms | drus
Unfiltered |333.8 |48.0 - 707.8 33.85 41.3 64.1 | 144 |-
Filtered |311.2 |47.0 30.7 665.0 33.75 41.38 62.4 7.8 |88
25 T T r 25
20 H 1 20 —
T 15 Compatible spectra s 15 Compatible spectra ‘I
'% —— Average spectrum ’% — Average spectrum
w 1.0 w 1.0 1
0.5 1 05 | -
0.0 k - 0.0 I
0 2 4 L] 8 10 1 2 3 4

Period 3] Period [s]

(a) (b)

Fig. 13.11 Waveform matching for the PEER database (a) and ESMD (b)

to perform, starting from the European database (ESMD) and the international
database (PEER). The selection procedure can be carried out by choosing between
the horizontal and the vertical components of ground motion for the ESMD, while
the geometrical horizontal mean values are considered for the selection of the
acceleration history in the PEER database.

The selection procedure based on waveform matching is based on the source
and site characteristics such as the Moment Magnitude (M,,), the fault distance
or Joyner-Boore distance (R;B) and the soil category, or on the waveform char-
acteristics such as the peak ground acceleration (PGA), the peak ground velocity
(PGV) and the peak ground displacement (PGD). For example, in Fig. 13.11 the
response spectra of the ground motions selected from the PEER (Fig. 13.11a) and
the ESMD (Fig. 13.11b) respectively are shown, considering a range of moment
magnitude of 3-6.5 and the fault distance of /0—50 km. Several techniques have
been developed for selecting a reliable set of earthquake records to be used in the
dynamic structural analysis. One selection criteria is based on the spectral matching
for a specific target spectrum. Thus, the definition of a target spectrum represents
the preliminary phase of the spectral matching, and for this purpose, OPENSIGNAL
allows choosing between five different spectra:

1. Design Spectrum (DS) according to NTC2008, EC8 and FEMA 302;
2. Uniform Hazard Spectrum (UHS);
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3. Predicted Mean Spectrum (PMS) according to Ambraseys et al. (1996), Camp-
bell and Bozorgnia (2008), Boore and Atkinson (2008), Iyengar et al. (2010),
Contreras and Boroschek (2012), GMPE;

4. Conditional Mean Spectrum (CMS);

5. User Defined Spectrum (UDS).

As an example, the three deaggregation parameters have been chosen to define
the CMS which will be used as target spectrum in order to perform the spectral
matching (Table 13.4). The Conditional Mean Spectrum (CMS) has been defined
for the period of 0.2 s and for a probability of exceedance of 10% in 50 years. The
CMS has been built taking into account the deaggregation values associated with the
reference period using the Boore and Atkinson (2008) GMPE. In OPENSIGNAL
three different approaches for spectral matching are available:

» Single period approach;
*  Multi period approach;
*  Mean deviation approach.

OPENSIGNAL can use any of the matching procedures mentioned above, by
selecting the tolerance in term of percentage error for the first two approaches or
in term of mean deviation for the latter one. The search can be performed for the
X, Y or Z components for both the ESMD and PEER records. In Table 13.5 the
parameters used for the matching criteria for both the ESMD and PEER database
are summarized, while the results are shown in Fig. 13.12.

gable 13.4. Mealn . M R [km] |e V30 [m/s] | Fault
eaggregation values chosen
serce 785 3455 097 350 Normal
Table 13.5 Spectral matching parameters
Database Matching criteria Component % error Ti [s]
ESMD Single period Y-component 10 0.2
PEER Single period Y-component 10 0.2
T T . . : . . .
10} : 1 08| ) i 1
Fl Compatible Spectra | | Compatible Spectra
osf | Average Spectrum 1 v : Average Spectrum
- qs:b_ : ——— Target Spectrum ‘ o : ——— Target Spectrum
e I¥ ——— Target Period 1 E : ——— Target Period
& fh | & *m|
04| - |
Fl |
I 1 |
I I
0.0 L . O 1
1] 1 2 3 4
Period [s] Period [s]

(a) (b)

Fig. 13.12 Single period matching with conditional mean spectrum as target spectrum, for the (a)
PEER database and (b) ESMD
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Table 13.6 Ground motion characteristics

Station ID Event name Date ML
TLM1 Friuli 05/06/1976 4.5
CSC Val Nerina 09/19/1979 55

Table 13.7 Geotechnical soil characteristics

Thickness |Shear wave Initial shear Initial damping | Unit weight
Layer | Soil [m] velocity [m/s] | modulus [MPa] |ratio [%] [kg/m?3]
1 Sand |6.5 136.21 37.18 0.24 2004.08
2 Sand |5.0 176.15 62.19 0.24 2004.08
3 Clay [9.0 404.46 348.35 0.24 2129.46
4 Sand |8.0 225.52 101.93 0.24 2004.08
5 Clay |6.0 275.84 162.03 0.24 2129.46
6 Sand |8.0 207.46 86.26 0.24 2004.08
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log(7) log(y)
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Fig. 13.13 Shear modulus degradation curve and damping ratio curve for sand (a) and clay (b)

As a practical example of Soil response analysis, two different ground motions
with medium intensity have been considered and their main characteristics are
illustrated in Table 13.6. The stratigraphic characteristics of the soil column chosen
in the application are reported in Table 13.7 in which layer 1 defines the soil surface
while the layer 6 is located above the bedrock.

Figure 13.13 illustrates the (Go/G-y) and (§-y) curves used in the application.

The accuracy of the numerical solution depends on the number of sublayers,
or rather on the degree of freedom. Since the generic half earthquake wave length
should be described by at least 3—4 points for each layer, the thickness to be assigned
to the single layer should not be greater than the ratio between the shear wave
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Fig. 13.14 Val Nerina earthquake (a) and Friuli earthquake (b) comparisons between bedrock and
soil surface results
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Fig. 13.15 Val Nerina earthquake (a) and Friuli earthquake (b) comparisons between EERA and
OPENSIGNAL results

velocity (V) and six times the height of the predominant seismic frequency (fax)-
In order to satisfy the previous conditions (Eq. 13.13), OPENSIGNAL performs a
preliminary division of the soil column.

Nmax 22 Vs (13.13)
e 7fmax .

The amplification phenomena are emphasized in Fig. 13.14 in which the spec-
trum on bedrock is compared with the spectrum on the soil surface. Finally, the
results obtained with OPENSIGNAL and EERA are compared in Fig. 13.15.
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Chapter 14 )
Methods of Analysis e

Abstract The chapter analyzes the structural seismic analysis methods. The four
common analysis method are illustrated (Linear static, linear dynamic, nonlinear
static, and nonlinear dynamic analyses). Additionally, the direct displacement-based
seismic design procedure is discussed in detail.

14.1 Introduction

The methods of analysis for multistory buildings are based on static or dynamic
approaches. Since the earthquake excitation is a dynamic action, the second
procedure is more conservative and accurate than the first one. In addition, both
analysis procedures can be applied by including mechanical nonlinearities (nonlin-
ear methods) or by neglecting them (linear methods). The choice of the methodology
to be used depends on the degree of accuracy of the problem and on the geometric
configuration system. For this reason, static analyses can be applied for buildings
having a regular mass and stiffness distribution in elevation and in plan. In these
cases the dynamic action due to an earthquake is assumed to have a pseudo-static
force configuration. The dynamic analyses are able to take into account the time
variation of the system response but they request a higher computational effort.
The linear analyses can be used for both non-dissipative systems and dissipative
ones with low plasticity, however in this last case the results might be too
conservative. From this definition, it is clear that the reliability of the linear methods
depends on the distribution of the plastic dissipation elements (ductility request
distribution). In addition to that, if the stiffness and mass distribution of the elements
of the building is not uniform, the linear analyses lead to results which are not
comparable with the nonlinear ones. Either way, the linear analyses for dissipative
systems leads obtaining actions greater than the effective one. For this reason, when
the linear analysis is used for dissipative system, it is necessary to reduce the forces
deduced from the design elastic spectrum by means of the over-strength factor g
discussed in Sect.5.2. The NTCO8 (2008) approach is based on the definition of
a constant value of g for all period values of the design spectrum greater than
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Tp. The value of the over-strength factor needs to be selected as function of the
ductility characteristics of the system and it is used for the two directions of the
seismic excitation. NTCO8 proposes the expression given by Eq. 14.1 for over-
strength factor definition to be used for horizontal elastic seismic actions.

q = qo - Kg (14.1)

where g represents the maximum value of over-strength factor that depends on the
expected ductility, structural typology and on the «, /o ratio. The term «,, represents
the initial seismic action value causing the formation of a number of plastic hinges
that lead to an unstable configuration, while «; is the value associated with the
first flexural plasticization on the more heavily stressed elements. The coefficient
Kk takes into account the regularity and it assumes a value equal to 1 for regular
structures and 0.8 for structures with irregularity in elevation. The values assumed
for g¢ and o, /&y coefficients are reported in paragraph 7.4.3.2 of NTCO08.

Instead for vertical seismic actions, the suggested value of the over-strength
factor is 1.5. The reduction of the seismic design actions due to dissipative effects
has to be used only for Ultimate Limit State (ULS) design or verification methods.
Figure 14.1 illustrates an example of scale reduction for a generic elastic design
spectrum that defines the seismic input for the structure.

The linear analyses where the elastic forces are reduced due to the presence of
dissipative systems are not able to take into account the modifications in the struc-
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Fig. 14.1 Reduction of the design spectral accelerations
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Fig. 14.2 Comparison between nonlinear and linear with force reduction behavior

tural response due to the damage increments (progressive plastic hinges formation).
In other words, it is not possible to consider the redistribution of the internal forces
inside the structural elements of the system. Figure 14.2 schematically illustrates the
F-u relationship obtained for a generic dissipative structure assuming a linear (with
force reduction) or nonlinear behavior.

The values of u.ur) and u.r) represent the collapse displacement (ultimate
capacity) obtained for nonlinear solution and linear with force reduction solution,
respectively. It is possible to observe how the ultimate capacity of the system
evaluated with the two methods, can be significantly different.

In order to obtain a more accurate response at ULS, the nonlinear procedures
must be used. These methods request a wide computational effort, since they are
based on the redefinition of the stiffness characteristics after the formation of a
plastic hinge. NTCO08 does not give enough information about the applications of
nonlinear methodologies, while more information is given in Chapter 4 of the EC8
(1998-1 (2004)).

Usually, for new buildings the linear dynamic analysis is most commonly used
because it allows designing the structural elements. For existing buildings instead
it is necessary to assess the safety of the structures through a nonlinear dynamic
analysis since the nonlinear effects have to be necessarily considered to achieve an
accurate response. In the following paragraphs, the four analysis methods listed in
NTC2008 will be discussed in detail.
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14.2 Linear Static Analysis

As mentioned in Part I, the effects of the higher modes of a regular structure
can be neglected since the first mode is predominant. In these cases, both for the
dissipative and the non-dissipative systems, the seismic action can be modeled with
a pseudo-static equivalent distribution. Since the masses of a multistory building are
practically concentrated on the stories, the seismic action is composed of equivalent
inertia static forces applied on each flooring system. NTCO8 proposes the following
criteria to be satisfied in order to use the linear static analysis:

— regular mass and stiffness distribution along the vertical direction;
— the fundamental period of the structure (Ty) has to respect the condition given in
Eq. (14.2).
T < 1’1’111’1(25 -Te, TD) (14.2)

According to NTCOS, the fundamental period of the structure can be estimated
by referring to the height of the structure and structural typology (Eq. 14.3).

T, = C,-H* (14.3)

where the coefficient C; depends on the structural typology (Table 14.1) while
H represents the height of the structure expressed in meters (measured from the
foundation level).

The equivalent static inertial forces (F;) applied at each story mass are evaluated
according to Eq. 14.4, in which the distribution is assumed proportional to the first

vibrational mode.
F— Fp-zi- W,
r Yoz- W, (14.4)
J

where:

— W, and W, represent the ith and jth mass;

— z; and z; are the height of mass i and j measured from the foundation level;

— Fj, is the base shear deduced by the design spectral acceleration at period of
interest (Sd(T1)).

In Eq. 14.5 the base shear is given:

w
Fp = S.Th) - E <A (14.5)

Table 14.1 Coefficient C; according to NTC08

Steel structures Reinforced concrete structures Other type structures
0.085 0.075 0.05
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Fig. 14.3 Equivalent static forces distribution for a four story regular building

in which W indicates the total mass of the structure, g is the gravitational
acceleration and A represents a coefficient equal to 0.85 for structures with a number
of stories greater than 2 and with T} < 2T¢, or equal to 1 otherwise. Naturally,
the dissipative effects on the structure are taken into account by reducing the
elastic design spectrum with an over-strength factor. Figure 14.3 illustrates a generic
example of an equivalent static force distribution for a regular multistory building.

Considering the multistory building displayed in Fig. 14.3, the associated static
equivalent forces applied at each story are given by Eq. 14.6.

F =Sd(T1)'4'm'A'3é.er,;];.h =35 Sa(Ty) -m- A
Fy = Sq(Th) - 4-m- A~ g = g5 - Sa(Th) -m - A (146
F3 =Sd(T1)'4'm'k'3(&§1).§)'.hh =15 Sa(T) -m- A '

Due to the direction and center of the mass location (accidental eccentricity)
unpredictability, the NTC-08 (2008) prescribes the use of different seismic load
combinations to assess the response of the structure subjected to the earthquake
excitation.

1. Accidental eccentricity is introduced in order to take into account the uncertainty
in the location of the center of mass. The NTC-08 (2008) considers an accidental
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eccentricity of 5% of the orthogonal structure’s dimension in each direction. The
application of the static forces with a certain center of the mass offset induces
torque moments (moment in the X-Y plan) that have to be considered in the
analyses.

2. Seismic action direction is not known, then the horizontal forces have to be
applied considering both negative and positive direction.

3. Predominant direction of the earthquake unknown. At this purpose the NTC-
08 (2008) provides to evaluate the seismic response of the structure in both
horizontal directions as given by the Eq. 14.7

E.+03-E,+03-E; (14.7)
E,+03-E,+03-E;

where E,, E,, and E, represent the seismic actions in X, Y, and Z directions,
respectively. Since the simultaneous application of the maximum seismic actions in
the horizontal directions is unlikely, the coefficient 0.3 is considered to reduce the
maximum seismic action value in one of these directions. The Table 14.2 illustrates
the total number of combinations to be considered in the linear static analysis.

The evaluation of the internal stress and strain on the structure have to be carried
out considering the most critical seismic combination case which is given by the
envelope of the 32 combinations.

14.3 Linear Dynamic Analysis

The seismic effects on a multistory building can be defined by using the modal
analysis and the response spectrum that was discussed in detail in Part I. This
approach is widely used for its simplicity because it combines the responses
associated to the different modes. The design spectrum at a given site is used for the
definition of the seismic action. For ULS verification the dissipative effects are taken
into account by scaling the design spectrum by the over-strength factor. According
to NTCO8, the effects of the seismic actions can be obtained using the Complete
Quadratic Combination (CQC) approach (Kiureghian and Nakamura 1993). In this
case, the participating mass of the mode must be greater than 5% in order to be
considered representative. In addition, the total participating mass of the selected
modes must be greater than 85%. The modal combination produces a single, positive
result for each direction of acceleration. These values for a given response quantity
are combined to produce a single positive result. This allows to neglect the direction
uncertainty of the seismic excitation. Anyway, due to the bi-directionality of the
seismic excitation and the uncertainty in the center of the mass location 8 different
seismic combination (Table 14.3) have to be considered.

Also in the case of linear dynamic analysis, the results are assumed as envelope
of the 8 different seismic combinations.
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Table 14.2 Seismic load combinations for linear static analysis

Principal seismic action| Sign| Eccentricity| Secondary seismic action| Eccentricity| Combination

Ex + ey 0.3 Ey ex 1
ex 2
0.3 Ey ex 3
ex 4
ey 0.3 Ey ex 5
ex 6
0.3 Ey ex 7
ex 8
— ey 0.3 Ey ex 9
ex 10
0.3 Ey ex 11
ex 12
ey 0.3 Ey ex 13
ex 14
0.3 Ey ex 15
ex 16
Ey + lex 0.3 Ex ey 17
ey 18
0.3 Ex ey 19
ey 20
ex 0.3 Ex ey 21
ey 22
0.3 Ex ey 23
ey 24
— |ex 0.3 Ex ey 25
ey 26
0.3 Ex ey 27
ey 28
ex 0.3 Ex ey 29
ey 30
0.3 Ex ey 31
ey 32

14.4 Nonlinear Static Analysis: Pushover

This simplified nonlinear method is used to estimate the seismic vulnerability of
a structural system and is based on the concept of structural performance (Fajfar
2002). The analysis is also called pushover analysis since the structure is subjected
to horizontal loads of distributed static inertial forces that increase monotonically
leading to a plastic hinge formation and also to a stress redistribution. In other
words, the pushover analysis is a simplified tool that permits the estimation of the
capacity of a structure subjected to a given external lateral load (demand).
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Table 14.3 Seismic load combinations for linear dynamic analysis

Principal seismic action| Sign| Eccentricity| Secondary seismic action| Eccentricity| Combination

Ex + ey 0.3 Ey ex 1
ex 2

ey 0.3 Ey ex 3

ex 4

Ey + |ex 0.3 Ex ey 5
ey 6

ex 0.3 Ex ey 7

ey 8

The seismic demand is determined by means of the elastic design spectrum and
it represents the maximum acceleration expected on the structure according to the
hazard level of the considered site. The structural capacity is considered in terms
of displacements of a representative point of the structure called the control point.
Usually, the control point corresponds to the center of mass of the upper story of the
multistory building. Since a monotonic equivalent static distribution is applied to
the structure, the control displacement parameter (§) will vary with a control force
parameter that usually is the building base shear (F). Thus, the function Fj, — §
defines the capacity of the structure subjected to a given equivalent static distribution
and it is called capacity curve or pushover curve.

Figure 14.4 shows the evolution of the structural response when the intensity
vector of the static equivalent forces increase: the number of plastic hinges (Megson
2005) that are formed after the elastic threshold increase up to the collapse of
the element. This method can assess different parameters such as the total global
displacement, the interstory drift, the deformation and the stresses in the structural
elements considering the inelastic behavior of the different members. The main
problems of the method are due to the choice of the static force distribution shape
and to the typology of load application. Regarding the latter aspect, the pushover
analysis can be carried out in force or displacement control. The second procedure is
more efficient than the first one since it is possible to observe the softening portion of
the capacity curve. Nevertheless, the pushover procedure based on the application of
a monotonic force distribution is more useful, because it is based on the assumption
of a force distribution compatible with the inertia effects induced by the earthquake
excitation. For this reason, EC8 recommends the application of two different vertical
force distributions for multistory buildings:

— uniform distribution based on the lateral forces proportional to the mass neglect-
ing the height of the system (uniform acceleration response).

— distribution proportional to the first mode deduced from linear dynamic analysis
or proportional to the lateral inertia forces defined from the linear static analysis.

According to NTCOS, at least two lateral forces distributions must be considered.
One coming from the principal distribution (Group I) and the other from the
secondary distribution (Group 2). The definitions of the two mentioned distributions
are reported below:



14.4 Nonlinear Static Analysis: Pushover 339

Vi

Effective —

yieldingpoi’nt ' | Overstrength
! ; Collapse

Elastic 'Progressive ' Plastic ! Progressive )
yielding mechanism collapse

Fig. 14.4 Capacity curve or pushover curve (Adapted from Filiatrault and Christopoulos (2006))

(1) Group 1

— distribution proportional to the lateral inertia forces deduced by the linear
static analysis. The mass participating factor of the fundamental mode in the
considered direction should not be less than 75% [la];

— distribution proportional to the first vibrational mode in the considered
direction. The mass participating factor of the fundamental mode in the
considered direction should not be less than 75% [Ib];

— distribution proportional to the total shear at each story deduced by linear
dynamic analysis. The fundamental period of the structure must be greater
than T¢[lc];

(II) Group 2

— uniform distribution along the whole height of the structure [Ila];
— adaptive distribution changing with the increase of the control displacement
due to the hinges plasticization [IIb];

The generic mathematical form of the force distribution is given by Eq. 14.8:

{Fy = A0 - (¢} (14.8)
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Table 14.4 Lateral force distributions according to NTCO08

Group 1

I, 1, 1.

{F} =200 - {m} b1} | {F} =200 - {Fi}omm {F} = 200 Vot sy
Group 2

11, 11,

{F}y = A(0) - {m}" {I} {F} = A0 - {Fi(6)} norm

where A(7) is the scalar multiplier that identifies the time variability of the force
distribution and {¢} is the vector that represents the shape function assigned to the
distribution.

Table 14.4 reports the different forces distribution of Group 1 and 2 for a generic
regular multistory building.

The force distribution vectors { F'} have been expressed by using an initial shape
function normalized with respect to the force on top of the multistory building. The
terms used in the expressions are below explained:

— {m}T {¢,}: force distribution proportional to first vibrational mode {¢ };

— {F;}: lateral forces vector obtained according to Eq. 14.4;

— {Vp,i}: shear force vector deduced by the shear forces at each story;

— {m}T {I}: force distribution to the mass (constant accelerations);

— {F;(6;)}: adaptive lateral forces vector. It is expressed as function of the displace-
ment vector §;.

The pushover procedure can adopt a lateral force distribution proportional to the
first vibrational mode, called unimodal distribution when the structure is regular
both in plant and along the height, so the contribution of the higher modes on
the structural response can be neglected. Instead when the higher modes can not
be neglected a multimodal distribution can be applied by considering the lateral
force distribution as a linear combination of the predominant modes (Paraskeva and
Kappos 2010, Chopra and Goel 2002).

Some considerations need to be done about the evolution of the monotonic
force distribution. Usually the increments of the forces are independent from the
deformation level reached on the structure (non-adaptive method). On the contrary,
the force distribution can be applied to take into account the effective deformation
level of the structure that produces a redistribution of the forces, according to the
new values of stiffness (adaptive methods) (Kalkan and Kunnath 2006). These
methods are used for irregular structures, since the response is influenced by more
than one mode.

Table 14.5 summarizes all the possible approaches to be used for the pushover
analyses. The generic shape function has been expressed as {¢ }:

The term c; represents the combination mode coefficient. Different multimodal
models are proposed, but one of the most used ones is obtained by the SRSS
combination of the static equivalent forces corresponding to the selected modes
(Eq. 14.9).
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N

> (g ieh) (14.9)

J=1

9} =

where g; represents the modal participating factor associated to the mode {¢};.
Assuming the generic vector {¢} to be a shape function of the force distribution,
Fig. 14.5 illustrates a capacity curve of a multistory building.

According to the previous considerations, the generic force applied on story i at
time #; is given by Eq. 14.10:

Fi(ty) = A(t) * Fimiiat = Fik=1) + AFi (14.10)

When the pushover operates in force control, the variation AF; is constant for all
the time steps. From Fig. 14.5, it is possible to observe four different characteristic

Table 14.5 Different approaches for pushover analyses

Non-adaptive Adaptive
Unimodal {F} = cost Vt {F} ={F(5)} Vt
(o} =1{¢},j=1 o} =1{¢},j=1
Multimodal {F} = cost Vt {F} ={r@)} vt
N N
@)= Yo 9}, 0= Lo o),
j= j=
Fo A
P
LS
10
op
o L .
o

Fig. 14.5 Capacity curve for a multistory building subjected to a force distribution proportional to
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points of the capacity curve that refer to a specific seismic limit condition (318
2014):

— OP: Operational Performance;
— 10: Immediate Occupancy;
LS: Life Safety;,

CP: Collapse Prevention.

The main goal of a pushover analysis is to monitor the performance point (PP)
of the structure subjected to an earthquake excitation. This point is representative of
the pair F;, — § that is reached under seismic excitation. The performance point of
the structure is obtained by comparing the capacity curve with the demand curve.
The demand of the system is expressed in terms of design response spectrum that
represents the maximum response of an equivalent SDOF system. For consistency
with the problem, the capacity curve has to be adapted for an equivalent SDOF
system by means of the equivalent mass m* and the definition of the transformation
coefficient (Eq. 14.11).

DOFs
N Y my -
r=_—=_ -l 14.11
~ DOFs ~ DOFs (14.11)
hZ my gy X my - ¢
=1

h=1

Thus, the equivalent base shear (F, ) and the top displacement (§*) can be
obtained using Eq. 14.12.

F §
Ff = Fb §* = 7 (14.12)

Finally, the evaluation of the performance point can be determined with two
methods:

— Capacity Spectrum Method (CSM);
— N2 method.

It is important to specify some aspects of the pushover analysis. First of all,
the assumption of a non-adaptive force distribution can lead to inconsistent results
for irregular structures (e.g. predominance of higher modes) or for high dissipation
systems. In fact, the redistribution of the internal forces due to the plasticization of
some elements’ cross sections can vary the force applied at each story. In addition,
since the pushover analysis is applied to estimate the performance of a 2D structure
in a given horizontal direction, the torsional effects are not considered, or they are
evaluated by comparing the effects of two analyses in the two horizontal directions
(Cimellaro and Marasco 2014). Even in this case, the torsional effects are evaluated
with an inconsistent procedure. Naturally this limit is amplified for a system having
irregular plan in which the torsional effects cannot be neglected (Fajfar et al. 2005).
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14.4.1 Capacity Spectrum Analysis Method

Mahaney et al. (1993) were the first to propose and develop the capacity spectrum
analysis method (CSM), which is a graphic method that allows a visual evolution
of how the structure will perform when subject to earthquake ground motion. The
first thing to do is to convert the seismic demand curve and the capacity curve in the
respective spectra with the relationship between the spectral acceleration S, and the
spectral displacement S, as:

1

= FSaT2 (14.13)
T

Sa

To transform the capacity curve is important that the behavior of the structure is
equal as a single-degree-of-freedom system. To ensure the equality between the
kinetics energy of the structure and the one of the equivalent single-degree-of-
freedom system, the transformation coefficient I" and the mass coefficient o are
used:

- WOll

B
T

a

(14.14)
Sa

where F, is the base shear of the target displacement, W is the total mass of the
building, ¢ is the top displacement and ¢ is the modal shape. According to the
displacement rule, an initial estimate of the performance point is made as an elastic
structure displacement with the same initial stiffness:

4 =d, (14.15)

This establishes an equivalent bilinear capacity representation until the perfor-
mance point, which is necessary to estimate quickly the equivalent damping and
the consequent reduction of the spectral demand. When a structure enters in the
nonlinear range during a seismic event it is subjected to damping which is assumed
to be a combination of viscous damping and hysteretic damping. The equivalent
viscous damping is therefore associated with a specific maximum displacement and
is estimated using the equation:

Beq = Bo +0.05 (14.16)
where S is the hysteretic damping, bound to the energy dissipation of the structure,

while 0.05 is the viscous damping of the structure, considered equal to 5% for a
concrete building.
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Fig. 14.6 Estimation of equivalent viscous damping

Figure 14.6 shows this estimation; d,; and a,; are the coordinates of the maximum
displacement and the maximum acceleration expected, dy and a, are the yielding
displacements and accelerations. The hysteretic damping can be estimated as:

1 E
Bo= ——2 (14.17)
4 ES()

where Ep and E50 are respectively the dissipated hysterical and elastic energy that

is returned during the cycling.
dy)
(14.18)

Equation 14.19 describes the equivalent viscous damping and it’s calculated
using the 4 critical points of the bilinear representation of the capacity spectrum:

4 (aydpi — apidy) 45— 63.7 (aydpi — ap,-dy) p (14.19)
Clp,'dpi '

:Beq =
4%apidp,-
The hysteretic cycling tends to overlook the actual value of the equivalent viscous

damping because the effects like pinching are not considered; for this reason it’s

possible to use the & factor as:
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_ 63.7k (ayd,,i — apidy)
eq —

+5 (14.20)
apidpi

k depends on the structural behavior of the building and it’s function of the
resisting seismic system and of the duration of the seismic ground motion. In the
ATCA40 report, three types of structural behaviors are considered:

— type A: structure with hysterical cycling wide and stable;
— type B: structure with a moderate reduction of the hysterical cycling area;
— type C: structure with a considerable reduction of the hysterical cycling area.

The response spectrum is reduced using the equivalent damping as follows:

_ |10 (14.21)
"=\ 5+ B, '

The intersection point of the reduced demand spectrum with the capacity
spectrum is determined. The intersection stops when the nonlinear displacement d;
given by the intersection of the two curves converges at the value of the displacement
used to estimate the equivalent damping.

14.4.2 N2 Method

The N2 method is a variation of the CSM based on inelastic spectra (Fajfar and
Fischinger 1988). This methodology is based on the fact that the response of a
MDOF systems is equivalent to the one of a SDOF system with an appropriate
hysterical characteristic. The acronym N2 indicates that it is a nonlinear method
(N) that combines the pushover analysis of a MDOF model with the response
spectrum analysis of an equivalent SDOF system that has a capacity represented by
a bilinear curve (2). Furthermore, the methodology uses an inelastic spectrum for
the representation of the demand. The pushover analysis is performed to define the
capacity curve Fj, —§. Consequently, the structure is modeled as a SDOF system and
it is assumed that the displacement shape {¢} is constant. The modal participation
factor I" controls the transformation from MDOF to SDOF model and vice-versa

and it is defined as:
oTMr

where 7 is the dragging vector corresponding to the system direction. The maximum
resistance of the equivalent system F},, is identified as:
th
r

Ff = (14.23)
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Fig. 14.7 System and equivalent bilinear diagram (Mezzina et al. 2011)

The maximum resistance value of the real structure is V}, while the maximum
resistance of the equivalent system is Fy,. Thus it’s possible to identify the elastic
stretch to the point 0.6 - F};, as the Fig. 14.7 shows.

The plasticization force Fy* imposes the equality between the area under the
bilinear curve and the capacity curve, multiplying it to the maximum displacement
¢, that corresponds to a resistance reduction < 0.15F . The elastic period of the
idealized bilinear system 7™ can be determined as:

* m*
T =m (14.24)

If the period of the SDOF is T* < T¢, the maximum displacement d* _that the

max
inelastic system can obtain is equal to the one of an elastic system (rule of the equal

displacement).

Gmax = Penax = Spe(T™) (14.25)

If the period of the SDOF is T* < T, the response of the inelastic system is
higher than the response of the elastic system (Eq. 14.26).

1 Te
Brax = % [1 + R —1)- F} (14.26)

where R, represents the reduction factor, defined as

T,
RM=1+(M—1)-T—2 for: T* < Tc¢

R,=pn for:T*>T¢

(14.27)
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When the maximum displacement is defined, it is possible to compute the
effective displacement of the MDOF system as:

Gmax = T'd),, (14.28)

After the estimation of the control point, it is possible to know the deformation
configuration and, consequently, the verification of the building through the control
of the displacement of the ductile elements and the resistance of the fragile elements.
Overall, eight pushover analyses must be done: two towards the principal directions
(X and Y) for two verse and two different load distributions.

14.5 Direct Displacement-Based Seismic Design Procedure

The seismic design of a structure is based on a specific target displacement
for a specific seismic hazard level. This concept is at the base of the direct-
displacement method and it was introduced by Priestley and Kowalsky (2000). The
structure is modeled like a single-degree-of-freedom system and the global behavior
of the structure at the target displacement is represented to the total equivalent
viscous damping and the equivalent elastic lateral stiffness properties. Summing
the assumed internal viscous damping and the equivalent viscous damping provided
by the hysterical response of the structure it is possible to obtain the total viscous
damping. Figure 14.8 shows the flowchart of the process.

e Step 1 The first thing to do is to define the target displacement &, and relying on
the first mode response, so it is possible to obtain the relationship:

j— Ar
- (X]A}

8, (14.29)

A, is the maximum roof lateral displacement, «; is the first modal partic-
ipation factor and A, is the roof component of the fundamental mode shape.
It possible to define the seismic hazard associated at the target displacement in
terms of design relative displacement response; this can be obtained using the
code design spectral acceleration of the seismic zone Sscoq. and transform them
in the corresponding spectral displacement value such as:

2

SbCode = ﬁ;sAM (14.30)

where T,y is the effective elastic secant period of the building. Equation 14.30
is not accurate for structures with long period, so in this case the EC8 method is
suggested. When the design has a different performance level than the life safety
limit state, the spectral displacement, according with 356 (2000), is approximated
as follows:
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Fig. 14.8 Flowchart of direct-displacement seismic design adapted from Filiatrault and
Christopoulos (2006)
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T \"
Sprr = | === ) Sbcode 14.31
DTy (475) DCod ( )

where 7, is the mean return period of the ground motion and n is a power factor
that depends on the site.
» Step 2 The equivalent viscous damping ratio is obtained by:

Epa,

S0 = kg 2

(14.32)

where Ep,, is the energy dissipated per cycle at the target displacement A,
and k. is the effective secant lateral stiffness of the structure. In order to
model the nonstructural elements and/or the rest of the structure it is possible
to increment the value of £, with a small amount of damping. Figure 14.8a
shows the relationship between the equivalent damping value and the nonlinear
characteristics of the structure. It’s possible to define the characteristics of the
structure as the maximum displacement of the system with continuous nonlinear
hysteric relations.

e Step 3 The effective elastic period of the building £eff is determined as in
Fig. 14.8b after the calculation of the target displacement and the equivalent
viscous damping.

¢ Step 4 The computation of the effective lateral stiffness, considering the structure
as a SDOF, is given by:

42 W,
ke = ——5 2 (14.33)
gT(Jﬂ
where W,y is the effective seismic weight applied to the structure.
* Step 5 The computation of the design base shear is given by:
Vi, = ke A (14.34)

The structural elements are designed so that the capacity of the system is equal
to the base shear.

When the yield displacement of the structure is defined, the equivalent base
shear that is derived from the design base shear is used to provide a conventional
load and resistance design.

e Step 6 It is possible to calculate the correct value of the equivalent viscous
damping £, and compare this value with the assumed value &, to define the
actual force-deflection characteristic of the structure.

e Step7

Eeqg = &g (14.35)
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If the upper relationship in Eq. 14.35 is verified, the direct displacement-base
seismic design procedure is complete. If not, the value of the equivalent damping
is changed and the process restarts from Step 2.

If the relationship between the equivalent damping and the global inelastic
deformation of the system is known, it possible to avoid the complete assessment of
the cyclic nonlinear characteristics of the structure.

14.6 Nonlinear Dynamic Analysis

The most accurate response of a system subjected to a seismic excitation is obtained
through the integration of the nonlinear equations of motion. This method considers
the nonlinearities and the variation of the response in the time domain. It is used
in particular cases when the structures need to be designed with a high safety level
(strategic buildings) or in the cases in which the ductility request is very high. The
nonlinear dynamic analyses are also necessary for base-isolated or strongly irregular
structures. However, in these cases the seismic action is modeled using acceleration
time-history in the two horizontal (Fig. 14.9) and in the vertical direction.

a(y

Fig. 14.9 Horizontal base seismic excitations in X and Y directions
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According to EC8, if the groups of accelerations used in the analyses are less than
seven, the maximum response from the nonlinear response history analysis must be
considered. Instead when the earthquake records is equal or greater than seven, the
final response can be obtained as an average of the nonlinear dynamic responses.
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Chapter 15 )
Capacity Design Qs

Abstract This chapter introduces the basic concept of the Capacity Design. The
ordered steps to be followed in the seismic design of buildings are summarized
according to the European standards.

15.1 Introduction

The Capacity Design is the sum of rules that have to be followed when designing
structural elements exposed to seismic actions (Paulay and Priestley 1992). The
brittle failure of structural elements must be avoided to allow a global ductile
behavior for the construction, which is influenced by the behavior of the struc-
tural elements and their connections. In Capacity Design, bending mechanisms
(ductile mechanism) are prioritized over shear mechanisms (brittle mechanisms).
Figure 15.1 shows a bending failure mechanism (Fig. 15.1a) and a shear failure
mechanism (Fig. 15.1b) of a beam.

The main concept of the Capacity Design philosophy can be schematically
expressed by Fig. 15.2.

The chain is composed by some brittle links and a ductile link in the middle.
When a tensile force is applied in the chain, the ductile link stretches by yielding
before breaking while the brittle links do not yield. The failure will occur in the
chain system when the weakest link breaks. If the ductile link is the weakest one,
the global load capacity is less than the case in which the brittle links are the
weakest elements. Nevertheless, the chain will show larger final elongation than
the brittle failure case. In fact, when the global failure is brittle, the chain will
fail suddenly and show limited final elongation. In a structural system, the ductile
failure mechanism allows to have large deformations and therefore a greater energy
dissipation. According to the chain example, it is necessary to make the ductile
element the weakest one, to guarantee a ductile behaviour.
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(b)

Fig. 15.1 (a) Bending failure mechanism; (b) Shear failure mechanism of a beam

Ductile link

T

Brittle links
F F

- O-O-<-O-©Om)

Fig. 15.2 Capacity design philosophy explained by the chain scheme (George and Varghese 2012)

15.2 Capacity Design of a Multi-story Building

Several research on seismic resistance of structures has attracted increasing attention
worldwide due to the economic and social implications of inadequate seismic
design. In major earthquakes, the insufficient seismic resistance of columns has
been recognized as the most likely reason of collapse for concrete frame structures.
This can lead to both loss of life and economic losses (Liu 2013). The current
methodology focuses on the dissipation of the seismic energy through large inelastic
deformations of structures. Modern design codes (such as Committee et al. 2008,
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Fig. 15.3 Frame with strong columns and weak beams (a) and frame without strong columns and
weak beams (b)

NZS 2006, 1998-1 2004, and NTC-08 2008) aim to develop yielding in beams
rather than in columns by adopting the strong column-weak beam philosophy. The
global seismic capacity of a concrete frame system is strictly dependent on the
columns resistance which carry the lateral forces induced by the earthquake. The
beams carry the vertical load which distribute in the columns as axial load. the
seismic excitation induces additional internal actions on the beams. When collapse
occurs on a beam or on several beams, a residual resistance to lateral actions is
provided by the columns. Then, in structure with strong columns and weak beams,
the yielding occurs before in the beams and the global capacity is guaranteed by
the columns. This concept is similar to the chain scheme aforementioned, where the
beams represent the ductile links which allow to dissipate seismic energy primarily
in well-confined beam plastic hinges and the columns remain in the elastic field.
Figure 15.3a illustrates a common behaviour of a frame with strong columns and
weak beams, while Fig. 15.3b depicts the case of frame without strong columns and
weak beams.

The frame without strong columns and weak beams (Case B) has a top
displacement less than the one associated with the frame having strong columns
and weak beams (Case A). It is interesting to formulate the expression used to
calculate the collapse multiplier related to the two analyzed cases. According to
the limit analysis of structures, the value of collapse multiplier (1) identifies the
coefficient to be multiplied by the elastic limit force of the system (F). This values
is associated with the lateral resultant force which causes the plastic hinge formation
at the base of the column and at both extreme points of the column, respectively for
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Case A and Case B. Using the upper bound limit theorem two collapse multipliers
can be evaluated using the kinematic approach by normalizing the internal work
(work due to the internal stresses on the elements) with respect to the external work.
Equation 15.1 shows the mathematical expression of the collapse multipliers for the
two considered cases:

A] _ n('Mv,L'+2'”xp£m'n:tary'Mv.b

- Fy1zr

3, = 2neMye ’ (15.1)
2= Fow

where M, . and M, ; are the yield bending moment of the columns and the beams,
respectively, n. is the number of columns, while 74, and ngp,, are the number of
story and span of the frame, respectively. F, | and F) , identify the resultant lateral
forces causing the occurrence of the elastic limit shear force for Case A and Case
B, respectively. Finally, zg is the distance between the application of the resultant
force’s axis and the base level. It is possible to observe how the internal energy of
the system (dissipated energy) in Case A is larger than Case B. Considering the
columns with the same dimensions for both cases, the values F,, is greater than
Fy 1. In fact, in Case A the redistribution of the actions due to the formation of
plastic hinges in the beams, increase the internal stress in the column which reaches
the plastic deformation for load forces magnitude less than Case B. Figure 15.4
depicts a qualitative comparison between the global capacity curve obtained for the
two cases.

Capacity Design rules are applied to ensure an adequate energy dissipation within
the structural system subjected to a seismic excitation by designing a frame with
strong columns and weak beams. Furthermore, the damage caused by an earthquake
to a column should be limited to avoid any partial or total collapse. The beam-
column joint are crucial zones for transferring the loads between the connecting
elements. Past earthquakes have induced the collapse of many frame buildings due
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Fig. 15.4 Comparison of global capacity curves for Case A and Case B
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to the relevant shear stresses in the beam-column joints (Uma and Jain 2006).
The basic requirements is that the joint must be stronger than the other structural
members and should always keep an elastic behavior since the recovery can be
expensive and difficult.

15.3 Design Approach by Codes

The Capacity Design procedure is applied to establish the element hierarchy in the
structure, by ensuring that the strength of the columns is higher than the beams
while the beam-column joint is the stronger frame element. The global ductility
of a structure is also increased by avoiding brittle mechanisms induced by shear
stress and allowing the ductile mechanism due to bending. Similarly to the chains
example, the local failure bending mechanisms must occur before the shear failure
mechanisms. Figure 15.5 shows the schematic ordered strength hierarchy to be
followed in the Capacity Design approach.

According to the strength hierarchy above discussed, the Capacity Design rules
are listed below:

. Design the beams for bending;

. Design the beams for shear;

. Design the columns for bending;
. Design the columns for shear;

. Design the beam-column joint.

DN AW =

" Joints

Shear | Column
/ |
. |
s Bending | Column
i |
I
Shear | Beam
|
f
|
Bending | Beam
| \

INTERNAL STRESS i! STRUCTURAL MEMBER
|

Fig. 15.5 Strength hierarchy in the capacity design approach
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The Low Ductility Class (DCL) and the High Ductility Class (DCH) are provided
by EC8 (1998-1 (2004)) to ensure a certain ductility level to structures under seismic
actions. According to the Capacity Design rules, the design value of the seismic
action (A¢) is obtained by multiplying the actions derived from the analysis (Ag) by
a factor (ygs) (Eq. 15.2 ). This factor accounts for the over strength of the concrete
element due to the steel strain hardening and the concrete confinement. This factor
is 1.3 in case of DCH and 1.1 in case of DCL.

Ac = Yrp - AR (15.2)

15.3.1 Design of Beams for Bending

The design values of the bending moment of the beams are obtained from the
seismic analysis of the structure. The resisting bending moment for a beam (MC) is
given by Eq. 15.3.

M. = ygd-M, (15.3)

15.3.2 Design of Beams for Shear

The shear in the beam is calculated by imposing a static equilibrium. Since the
seismic action is a cyclic load, the sign of the bending moment at both ends of the
section can be positive or negative. In addition, the live vertical loads could increase
or decrease the shear reactions on the beam, thus the shear is calculated considering
the most critical load combination given by only the permanent loads (Gy) or the
permanent and the live loads (Qy) (Fig. 15.6).

The resisting shear (VC) of the beam is given by Eq. 15.4.

M,?AJFM;\,';in-L J/01_1\4,§EA+1\4;\,'33jEGk-l+o.3-Qk-1
] 2 R ! 2

Ve = max ()/Rd .

(15.4)
where Mgp4 and Mgp are the resisting bending moments at the ends of the beam
section (corresponding to the plastic hinge formation) and [ is the length of the
beam.

15.3.3 Design of Columns in Bending

Brittle failure in columns is prevented by increasing the design bending moment of
an over-strength factor. The design bending moment in the columns is determined



15.3 Design Approach by Codes 361

a

YoM RiA TeaMl RiB
| Gy |
le— i i

b

YeaM i Yol RiB

| Gk + 0.3 Qk |

Fig. 15.6 The seismic load combination with permanent loads (a) and with permanent and live
loads (b)
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Fig. 15.7 Beam-column joint actions

using the equilibrium relationships at the beam-column joint. The moments coming
from the beams are the plastic moments, which correspond to the formation of
plastic hinges in the beams. The only unknown will be the column design bending
moment. Figure 15.7 depicts the statical configuration of a generic beam-column
joint.

The resisting bending moment of the column (M, g;) should satisfy the expres-
sion below (Eq. 15.5).

Y Mega = vra Y Mpra (15.5)
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where M), gy represents the bending moments corresponding to the formation of
the plastic hinges in the beams. The resisting bending moment in the columns are
obtained by multiplying the design bending moment derived from the structural
analysis (M¢ gg4) by the amplification factor (o) given in Eq. 15.6.

> My ra

S Mo ra (15.6)

a:VRd"

15.3.4 Design of Columns in Shear

The design values of the shear force are determined following the Capacity Design
rules considering that the columns are subjected to end moments corresponding to
plastic hinge formation (Fig. 15.8). So the design shear of the column (V¢ gy) is
given by Eq. 15.7

s i
Mc,Rd + Mc,Rd

Vera = Vra+ ] (15.7)
c
Fig. 15.8 Column subjected Mp,
to plastic moments /C_(\‘
74
Column
le
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Fig. 15.10 Static configuration of the beam-column joint

15.3.5 Beam-Column Joint

The beam-column joint should prevent any failure of the adjacent beams and
columns. The joint is classified as fully confined (Fig. 15.9a) or partially confined
(Figs. 15.9b and c) depends on the numbers of adjacent beams.

The confinement of the column plays a key role for the resistance and the ductility
of the joint. Considering the static scheme illustrated in Fig. 15.10, the resisting
shear (Vjy,) is given by Eq. 15.8.

Viea = Vra * (As1 + As2) - fya — V internal joint (15.8)
ijd = Yra * As1 'fvd — Ve external joint ’
The shear strength of the beam-column joint can be evaluated according the
model proposed by Paulay et al. (1978) which considers the total shear within the
joint core as carried by:
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Fig. 15.11 Strut mechanism (a) and truss mechanism (b)

a [ Beam-column joint

Fig. 15.12 Transversal strain in transversal direction for 3D joint (a) and 2D joint (b)

1. Diagonal concrete strut;
2. idealized truss (consisting in horizontal hoops, inclined and vertical reinforce-
ment bars between the cracks).

Figure 15.11 shows the model proposed by Paulay et al. (1978) which illustrates
the two separated contributions of shear within the joint.

The joint has to support the strut mechanism providing adequate transversal
reinforcement which enhances the truss mechanism in the joint core. The main
key parameter is the compressive strength of the diagonal concrete strut. The
compressive strength of the concrete is affected by the tensile strains in the
transverse direction (both considering the 2D and 3D model of the joint as shown in
Fig. 15.12).

So the 1998-1 (2004) suggests a reduction factor 1 to be applied to the design
compressive strength of the concrete (15.9).

Jok

r)=0.6-1—ﬁ (15.9)
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Fig. 15.13 Effect of confinement on the concrete (Park and Paulay 1975)

Recent studies have also demonstrated that critical situations can occur when
the axial load acting on the column is large. In this case, the diagonal compression
failure of strut can occur before the diagonal tensile cracking in the joint. The 1998-1
(2004) provides the following coefficients to reduce the total shear capacity (15.10)

[ (15.10)
n
where the parameter v, represents the normalized axial load acting on the joint.

The presence of stirrups increases the confinement of the concrete (Mander et al.
1988) and therefore its compressive strength and ductility (Fig. 15.13).

The arrangement of the stirrups along the element and in the cross section
influences the local stress-strain capacity of concrete. Figure 15.14 illustrates the
effect of confinement in terms of confining forces considering different stirrups
arrangements.

Considering the beam-column joint,

The local tensile stress (0¢) in the beam-column joint should be less than the
tensile strength of concrete, to avoid a brittle failure of the joint. This result can be
obtained by adding stirrups in the columns (Fig. 15.15) that reduce the tensile stress
in the concrete.

The corresponding tensile stresses acting on the concrete with and without
stirrups are given by Eq. 15.11.

o = (9)2 + 2 — & without stirrups (15.11)

o = /(5= "<) + 72 — %5% with stirrups

where o¢ represents the confining stress induced by the stirrups.
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Fig. 15.14 Effect of confinement in terms of confining forces for a column along its height (a)
and cross section (b) (Park and Paulay 1975)
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Fig. 15.15 Comparison of the internal plane stress between a confined and an unconfined beam-
column joint
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Chapter 16 ®
Seismic Modeling of Infill Walls e

Abstract This chapter analyzes the seismic modeling of infill walls. the first part
of the chapter describes the main parameters of the infill walls which influences the
displacement capacity of a frame system. the failure mechanism are also discussed
considering the presence of the surrounding frame. a large variety of analytical
models which take into account the presence of infill walls are detailed listed and
explained. finally, the mechanisms of crisis of masonry panels (both in-plane and
out of plane) are summarized.

16.1 Introduction

Infill walls and dividers made with light masonry bricks and brick