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Preface

Solving practical problems often requires the integration of information and
knowledge from many different sources, taking into account uncertainty and
impreciseness. Typical situations are, for instance, when we need to simul-
taneously process both measurement data and expert knowledge, where the
former may be uncertain and inaccurate due to randomness or error in mea-
surements whilst the latter are often vague and imprecise due to a lack of
information or human’s subjective judgements. This gives rise to the de-
mand for methods and techniques of managing and integrating various types
of uncertainty within a coherent framework, so as to ultimately improve the
solution to any such complex problem in practice.

The 2010 International Symposium on Integrated Uncertainty Manage-
ment and Applications (IUM’2010), which takes place at the Japan Advanced
Institute of Science and Technology (JAIST), Ishikawa, Japan, between 9th–
11th April, is therefore conceived as a forum for the discussion and exchange
of research results, ideas for and experience of application among researchers
and practitioners involved with all aspects of uncertainty modelling and man-
agement.

The Symposium contains a “special event” for celebrating the 20th an-
niversary of JAIST, founded on October 1st, 1990, and for honoring Profes-
sor Michio Sugeno and Professor Hideo Tanaka for their pioneering work on
fuzzy measures and integrals and in field of fuzzy operational research. In hon-
our of this work IUM’2010 featured three special sessions focusing on these
research topics and also on logical approaches to uncertainty. The kind coop-
eration of Prof. Toshiaki Murofushi, Dr. Yasuo Narukawa, Prof. Katsushige
Fujimoto, Prof. Junzo Watada, Dr. Yasuo Kudo, Prof. Tetsuya Murai, and
Prof. Mayuka F. Kawaguchi in this project is highly appreciated.

This volume contains papers presented at the IUM’2010 symposium. The
papers included in this volume were carefully evaluated and recommended
for publication by the reviewers. We appreciate the efforts of all the authors
who submitted papers and regret that not all of them can be included. The
volume begins with papers or extended abstracts from keynote and invited
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speakers and is followed by the contributed papers. These are arranged into
seven parts as follows:

• Fuzzy Measures and Integrals
• Integrated Uncertainty and Operations Research
• Aggregation Operators and Decision Making
• Logical Approaches to Uncertainty
• Reasoning with Uncertainty
• Data Mining
• Applications

As a follow-up of the Symposium, a special issue of the journal “Annals of
Operations Research” is anticipated to include a small number of extended
papers selected from the Symposium as well as other relevant contributions
received in response to subsequent open calls. These journal submissions
will go through a fresh round of reviews in accordance with the journal’s
guidelines.

The IUM 2010 symposium is organized by JAIST and partially supported
by JSPS Grant-in-Aid for Scientific Research [KAKENHI(C) #20500202].
We are very thankful to JAIST for all the help.

We wish to express our appreciation to all the members of Advisory Board,
the Program Committee and the external referees for their great help and
support. We would also like to thank Prof. Janusz Kacprzyk (Series Editor)
and Dr. Thomas Ditzinger (Senior Editor, Engineering/Applied Sciences) for
their support and cooperation in this publication.

Last, but not the least, we wish to thank all the authors and participants
for their contributions and fruitful discussions that made this conference pos-
sible and success.

We hope that you the reader will find in reading this volume helpful and
motivating.

JAIST, Japan
April 2010 Van-Nam Huynh

Yoshiteru Nakamori
Jonathan Lawry

Masahiro Inuiguchi
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1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
2 Decision Rule Generation and Apriori Algorithm . . . . . . . . . . . . . . 396
3 Decision Rule Generation in NISs . . . . . . . . . . . . . . . . . . . . . . . . . . 397
4 Decision Rule Generation from Tables with Numerical Values . . . 399

4.1 Mumerical Patterns for Numerical Values . . . . . . . . . . . . 399
4.2 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
4.3 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
4.4 A Problem Related to Numerical Patterns . . . . . . . . . . . . 402

5 Decision Rule Generation with Intervals from Tables with
Numerical Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
5.1 Rules with Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
5.2 An Example: Rules with Intervals from Tables with

Numerical Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
5.3 Decision Rule Generation and Apriori

Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
6 Decision Rule Generation with Intervals from Tables with

Uncertain Numerical Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Acquiring Knowledge from Decision Tables for Evidential Reasoning . . . 407
Koichi Yamada, Vilany Kimala

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
2 Acquiring Rules from Decision Tables . . . . . . . . . . . . . . . . . . . . . . . 408
3 Generating Rules for Evidential Reasoning . . . . . . . . . . . . . . . . . . . 410
4 Evaluation of Generated CEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

Part VII: Data Mining

Scalable Methods in Rough Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Sinh Hoa Nguyen, Hung Son Nguyen

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
2 Basic Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

2.1 Rough Sets and Classification Problem . . . . . . . . . . . . . . 421
2.2 Eager vs. Lazy Classification Approaches . . . . . . . . . . . . 423

3 Scalable Rough Set Methods for Classification Problem . . . . . . . . 424
3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426



Contents XXIII

4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

Comparison of Various Evolutionary and Memetic Algorithms . . . . . . . . 431
Krisztián Balázs, János Botzheim, László T. Kóczy

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
2 Overview of the Algorithms and Techniques Discussed in

This Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
2.1 Numerical Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
2.2 Supervised Machine Learning . . . . . . . . . . . . . . . . . . . . . . 435

3 Benchmark Functions and Machine Learning Problems . . . . . . . . 436
3.1 Benchmark Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
3.2 Machine Learning Problems . . . . . . . . . . . . . . . . . . . . . . . 436

4 Results and Observed Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
4.1 Results for Ackley’s Benchmark Function . . . . . . . . . . . . 437
4.2 Results in Case of Applying Mamdani-Inference

Based Learning for the ICT Problem . . . . . . . . . . . . . . . . 438
4.3 Results in Case of Applying Stabilized KH-

Interpolation Based Learning for the Six
Dimensional Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

4.4 Observed Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

On the Selection of Parameter m in Fuzzy c-Means: A Computational
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Luis Gabriel Jaimes, Vicenç Torra

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
2 Preliminaries: Fuzzy c-Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
3 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
4 Analysis and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

Dissimilarity Based Principal Component Analysis Using Fuzzy
Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
Mika Sato-Ilic

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
2 Principal Component Analysis (PCA) for Metric

Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
3 Fuzzy Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
4 Fuzzy Cluster Based Covariance for Single-Valued Data . . . . . . . . 457
5 Fuzzy Cluster Based Covariance for Interval-Valued

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
6 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460



XXIV Contents

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

Fuzzy and Semi-hard c-Means Clustering with Application to
Classifier Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
Hidetomo Ichihashi, Akira Notsu, Katsuhiro Honda

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
2 Fuzzy and Semi-hard c-Means Clustering . . . . . . . . . . . . . . . . . . . . 466

2.1 Entropy Regularized Fuzzy c-Means . . . . . . . . . . . . . . . . 466
2.2 Generalized Fuzzy c-Means . . . . . . . . . . . . . . . . . . . . . . . . 468
2.3 Semi-hard c-Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

3 FCM Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
4 Performance on Vehicle Detection at an Outdoor Parking Lot . . . 474
5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

Part VIII: Applications

On the Applications of Aggregation Operators in Data Privacy . . . . . . . . 479
Vicenç Torra, Guillermo Navarro-Arribas, Daniel Abril

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
2 Microaggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

2.1 Numerical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
2.2 Categorical Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
2.3 Heterogeneous Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
2.4 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
2.5 Other Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

3 Record Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
3.1 Learning Parameters for Aggregation Operators in

Record Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

Rough Analysis for Knowledge Discovery in a Simplified Earthquake
Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
Yaxin Bi, Shengli Wu, Xuhui Shen, Jiwen Guan

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
2 An Overview of Rough Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . 491
3 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
4 Rough Subsets and Support Subsets . . . . . . . . . . . . . . . . . . . . . . . . . 494
5 Significance and Maxima of Attributes . . . . . . . . . . . . . . . . . . . . . . 497
6 Discussion and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500



Contents XXV

User Authentication via Keystroke Dynamics Using Bio-matrix and
Fuzzy Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
Thanh Tran Nguyen, Bac Le, Thai Hoang Le, Nghia Hoai Le

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
2 The Keystroke Dynamics Bio-matrix . . . . . . . . . . . . . . . . . . . . . . . . 502

2.1 Indirect Method to Measure Keystroke
Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

2.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
2.3 Keystroke Dynamics Bio-matrix . . . . . . . . . . . . . . . . . . . . 504

3 Fuzzy Neural Network for Authentication User by Keystroke
Dynamics Bio-matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
3.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
3.2 Authenticating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

How to Activate a Collaboration Network via a Core Employee’s
Communication? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
Hiroyasu Yuhashi, Junichi Iijima

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
2 Review of the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
3 Analysis of Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

3.1 Research Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
3.2 Company D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
3.3 Key Employees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
3.4 Factors in Communication . . . . . . . . . . . . . . . . . . . . . . . . . 518
3.5 Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
4.1 Suggestions for Management . . . . . . . . . . . . . . . . . . . . . . . 520
4.2 Future Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

Restructuring of Rough Sets for Fuzzy Random Data of Creative City
Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
Lee-Chuan Lin, Junzo Watada

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
3 Overview of Rough Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

3.1 Lower and Upper Approximations . . . . . . . . . . . . . . . . . . 527
4 Fuzzy Random Variables and the Expected-Value

Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
5 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
6 Restructuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530



XXVI Contents

7 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

A Novel Idea of Real-Time Fuzzy Switching Regression Analysis: A
Nuclear Power Plants Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
Azizul Azhar Ramli, Junzo Watada

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
2 Related Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

2.1 Intelligent Data Analysis (IDA) for Nuclear Power
Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

2.2 Fuzzy Switching Regression Models . . . . . . . . . . . . . . . . 537
2.3 Convex Hull Approach and Beneath-Beyond Algorithm 539

3 Proposed Real-Time Fuzzy Switching Regression
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
3.1 Solution of a Problem with a Convex Hull

Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
4 Nuclear Power Plants Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

Consideration on Sensitivity for Correspondence Analysis and
Curriculum Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
Masaaki Ida

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
2 Correspondence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

2.1 Formulation of Correspondence Analysis . . . . . . . . . . . . . 548
2.2 Sensitivity of Correspondence Analysis . . . . . . . . . . . . . . 550

3 Comparative Analysis of Curricula and Sensitivity
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
3.1 Syllabus Sets and Cross Table . . . . . . . . . . . . . . . . . . . . . . 553
3.2 Data Variation in Cross Tab . . . . . . . . . . . . . . . . . . . . . . . . 556

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559



 
 

Part I 
Keynote and Invited Talks 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Interval-Based Models for Decision Problems

Hideo Tanaka

Abstract. Uncertainty in decision problems has been handled by probabilities with
respect to unknown state of nature such as demands in market having several sce-
narios. Standard decision theory can not deal with non-stochastic uncertainty, inde-
terminacy and ignorance of the given phenomenon. Also, probability needs many
data under the same situation. Recently, economical situation changes rapidly so
that it is hard to collect many data under the same situation. Therefore instead of
conventional ways, interval-based models for decision problems are explained as
dual models in this paper. First, interval regression models are described as a kind
of decision problems. Then, using interval regression analysis, interval weights in
AHP (Analytic Hierarchy Process) can be obtained to reflect intuitive judgments
given by an estimator. This approach is called interval AHP where the normality
condition of interval weights is used. This normality condition can be regarded as
interval probabilities. Thus, finally some basic definitions of interval probability in
decision problems are shown in this paper.

1 Introduction

There is vagueness such as non-stochastic uncertainty, interdeterminacy and igno-
rance in real situations. In order to deal with vague situations, fuzzy sets [17], rough
sets [7] and interval analysis [6] have been proposed. Uncertainty in decision prob-
lems has been handled by probabilities with respect to unknown state of nature such
as demands in market, which are several scenarios. Standard decision theory can
not deal with non-stochastic uncertainty, indeterminacy and ignorance of the given
phenomenon. Also, probability needs many data under the same situation. Recently,
economical situation changes rapidly so that it is hard to collect many data under
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the same situation. Therefore instead of conventional ways, interval-based models
for decision problems are explained in this paper. First, interval regression models
[13, 14] are described as a kind of decision problems. Then, using interval regression
analysis, interval weights in AHP (Analytic Hierarchy Process) [8] can be obtained
to reflect intuitive judgments given by the estimator. This approach is called interval
AHP [10, 11] where the normality condition of interval weights is used. This nor-
mality condition can be regarded as interval probabilities [2, 9, 15, 16]. Thus, finally
some basic definitions of interval probability in decision problems [5] are shown in
this paper. This paper emphasizes that interval evaluations by dual models [3, 12]
in decision problems are necessary for decision makers to make their preferable
decisions.

2 Interval Regression Models

The standard regression analysis is based on the stochastic model handling obser-
vation errors. Thus, we need a lot of sample data to obtain the stochastic model. As
a contrast to this model, let us first consider interval regression based on possibility
approaches [12]. The interval regression model is expressed as

Y = A1x1 + · · ·+ Anxn = Ax, (1)

where xi is an input variable, Ai is an interval denoted as Ai = (ai,ci)I , ai, and ci are
a center and radius, Y is an estimated interval, x = [x1, · · · ,xn]t is an input vector and
A = [A1, · · · ,An]t is an interval coefficient vector.

The interval output in eq. (1) can be obtained by the interval operation as follows:

Y (x) = (atx,ct |x|)I (2)

where a = [a1, · · · ,an]t , c = [c1, · · · ,cn]t , and |x|= [|x1|, · · · , |xn|]t .
The following assumptions are given in order to formulate interval regression for

crisp data.

1. The data are given as (yi,xi), j = 1, · · · ,m.
2. The data can be represented by the interval model as shown in eq. (1).
3. The given output yi should be included in the estimated interval Y (x j) =

(atx j,ct |x j|)I , that is,

atx j− ct|x j| ≤ y j ≤ atx j + ct |x j| (3)

4. The fitness of the interval model to the given data is defined as the objective
function by

J = ∑
j=1,··· ,m

ct |x j| (4)

Interval regression analysis determines the interval coefficients Ai (i = 1, · · ·,n)
which minimize J subject to eq. (3). This leads to the LP problem. Since interval
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regression analysis can be reduced to the LP problem, other constraint conditions
for the coefficients can be introduced. By introducing expert knowledge suggesting
that the interval coefficient Ai should lie in some interval Bi = (bi,di)I , the interval
Ai can be estimated within the limit of that knowledge Bi.

When the given outputs are intervals but the given inputs are crisp, we can con-
sider two regression models, namely, an upper estimation model and a lower esti-
mation model. The given data are denoted as (Yj,x j1, ...,x jn) = (Yj,x j) where Yj is
an interval output denoted as (y j,e j)I .

The upper and lower estimation models are denoted respectively as follows:

Y ∗j = A∗1x j1 + · · ·+ A∗nx jn (Upper model) (5)

Y∗ j = A∗1x j1 + · · ·+ A∗nx jn (Lower model) (6)

Two regression models are described as follows:

Upper Regression Model: The problem here is to satisfy

Yj ⊆ Y ∗j , j = 1, · · · ,m (7)

and to find the interval coefficients A∗i = (a∗i ,c∗i )I that minimize the sum of the
spreads of the estimation intervals J defined by eq. (4).

Lower Regression Model: The problem here is to satisfy

Y∗ j ⊆ Yj, i = 1, · · · ,m (8)

and to find the interval coefficients A∗i = (a∗i,c∗i)I that maximize the sum of the
spreads of the estimation intervals J.

This formulation means that uncertain phenomenon should be explained by dual
models.

The interval regression model formulated above includes the following
features.

1. The upper and lower regression models for the interval data are similar to the
concepts of upper and lower approximation of rough sets [7]. When the output
data are intervals, the upper and lower intervals are obtained in the context of
incompleteness of data.

2. The range of the estimated interval widens as the number of data increases. This
is due to the fact that the increased analytical data result in more information
and wider possibilities for decision making. In contrast, an estimation interval
in conventional regression analysis diminishes as the number of data increases.
Since conventional regression analysis is based on a probability model, objective
analysis is done for a large number of data, but interval regression analysis is
based on a possibility model and is useful for the problem of deciding what is
possible.
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3. Since interval regression models can be reduced to LP problems, constraint con-
ditions for the coefficients can be introduced easily. For instance, it is advanta-
geous to constrain coefficients to be positive if the variables corresponding to
those coefficients have a positive correlation with the output. In addition, gen-
erally speaking, by introducing expert knowledge, interval coefficients can be
estimated within the limits of that knowledge. Since it is constrained by expert
knowledge, the obtained interval regression model appears to be acceptable.

4. In general, since the interval represents partial ignorance, this should also be
reflected in the analytical results.

Numerical Example 1: The data of crisp inputs and interval outputs are shown in
Table 1.

Table 1 Numerical data

No. ( j) 1 2 3 4 5 6 7 8

Input(x) 1 2 3 4 5 6 7 8

Output(y) [14,16] [16,19] [18,21] [19,21] [17,20] [17,19] [18,20] [20,25]

Fig. 1 The upper and lower regression models based on eqs. (10) and (11) where the vertical
lines are the interval outputs

If we assume a linear function with respect to the input x as a regression model,
we can not find its lower model. Then, assume the following polynomial model

Y = A0 + A1x + A2x2 + A3x3. (9)

We solve the LP problems with the constraint conditions of the upper and lower
models defined by eqs. (7) and (8). Then we obtain the upper regression model
Y ∗(x) and the lower regression model Y∗(x) as follows.

Y ∗ = (6.9150,1.8850)I+(9.2274,0)Ix−(2.1884,0)Ix
2 +(0.1598,0.0012)x3 (10)
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Y∗= (7.4894,0.5356)I+(9.2274,0)Ix−(2.1884,0)Ix
2 +(0.1589,0.0003)x3. (11)

The upper and lower models are depicted in Fig. 1. Eqs. (10) and (11) satisfy
Y ∗(x) ⊇ Y∗(x). These models with this inclusion relation are called dual models
by which fuzzy phenomena can be represented.

This example shows that the given input-output data are explained by the upper
and lower regression models which are possibility and necessity, respectively. In
other words, uncertainty of interval data should be represented by the dual models.

3 Interval AHP

AHP (Analytic Hierarchy Process) is a useful method in multi-criteria decision mak-
ing problems. The priority weights of the items are obtained from a comparison
matrix by eigenvector method [8]. The elements of the comparison matrix called
pairwise comparisons are relative measurements and given by a decision maker.

The elements from the matrix reflect his/her attitude in the actual decision prob-
lem. The weights obtained by the conventional AHP lead to a linear order of items.
Uncertainty of an order of items in AHP is discussed in some aspects. However,
inconsistency of pairwise comparisons is not discussed, even though they are based
on human intuition. The approach for dealing with interval comparisons has been
proposed in [1]. It is easier for a decision maker to give interval comparisons than
crisp ones. This approach is rather complex comparing to our approach shown in
this paper in view of solving problems on all vertices for obtaining interval weights.

It is assumed that the estimated weights are intervals to reflect inconsistency of
pairwise comparisons. Since the decision maker’s judgments are usually inconsis-
tent with each other, it is rational to give the weights as intervals. We have formu-
lated Interval AHP [10, 11] as LP problems. This formulation is similar to interval
regression analysis [14].

First, let us describe Interval AHP [4] briefly. When there are n items, a decision
maker compares a pair of items for all possible pairs and we can obtain a comparison
matrix A as follows.

A = [ai j] =

⎛⎜⎝ 1 · · · a1n
... ai j

...
an1 · · · 1

⎞⎟⎠ (12)

The given pairwise comparison ai j is approximated by the ratio of priority weights,
wi and wj, symbolically written as ai j ≈ wi/wj. Assuming the priority weight wi

as an interval, we obtain the interval priority weights denoted as Wi = [w∗i,w∗i ] =
[ci−di,ci +di], where ci and di are the center and width of weight. Then, the approx-
imated pairwise comparison with the interval weights is defined as the following
interval.

Wi

Wj
=

[
w∗i
w∗j

,
w∗i
w∗ j

]
=
[

ci−di

c j + d j
,

ci + di

c j−d j

]
(13)



8 H. Tanaka

where the upper and lower bounds of the approximated comparison are defined as
the maximum range.

It is noted that the sum of weights obtained by the standard AHP is normalized
to be one. By the interval probability the interval weights are normalized. Then,
interval probabilities are defined as follows.

Definition 1. Interval weight vector (W1, · · · ,Wn) is called interval probability [16]
if and only if

1) w∗i ≤ w∗i for all i = 1, ...,n
2) w∗1 +...+ w∗i−1 +w∗i+1 ...w∗n +w∗i ≤ 1 for all i
3) w∗1 +...+ w∗i−1 +w∗i+1 +...+ w∗i ≥ 1 for all i

It can be said that the conventional normalization is extended to the interval nor-
malization by using the above conditions. This is effective for interval probabilities
under the condition that the sum of crisp weights in the interval weights is equal to
one.

The interval model is determined so as to include the given comparisons. Thus,
the obtained interval weights satisfy the following inclusion relations.

ai j ∈ Wi

Wj
=

[
w∗i
w∗j

,
w∗i
w∗ j

]
=
[

ci−di

c j + d j
,

ci + di

c j−d j

]
∀(i, j) (14)

It is denoted as the following two inequalities.

w∗i
w∗j
≤ ai j ≤ w∗i

w∗ j
⇔
{

ci−di ≤ ai j (c j + d j) ∀(i, j)
ci + di ≥ ai j (c j−d j) ∀(i, j) (15)

In order to obtain the least upper approximation, the width of each weight must be
minimized. The upper approximations include the given inconsistent comparisons.
The width represents uncertainty of each weight and the least uncertain weights
are obtained by the following LP problem called interval AHP model for crisp
comparisons where the object function is assumed to be the sum of widths of all
weights.

[U-model 1]
min∑i di

s.t. ∑i ci +∑i di−2d j ≥ 1 ∀ j
∑i ci−∑i di + 2d j ≤ 1 ∀ j
ci−di ≤ ai j (c j + d j) ∀(i, j)
ci + di ≥ ai j (c j−d j) ∀(i, j)
c j−d j ≥ 0 ∀ j
ci,di ≥ 0 ∀i

(16)

where the first two conditions show the conditions of interval probability and the
next two conditions show inclusion relations.
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The width of each item represents the allocated inconsistency in the given matrix
to the item. By solving eq. (16), the widths of some items are quite large, while
others are small because of LP problem. The variance of widths tends to be large.
The linear objective function is replaced with the quadratic function as follows.

[U-Model 2]

min∑i d2
i

s.t. conditions in eq. (16)
(17)

Considering the sum of the squared widths as in eq. (17), the variance of widths
becomes smaller than those by (16). In giving the comparison matrix in real situ-
ations, all items are related to each other. Therefore, it is difficult to estimate the
special items which cause inconsistency of comparisons. The obtained weights by
eq. (17) seem to be more natural than those by eq. (16).

Based on the idea that inconsistency in the given matrix should be shared by all
items, we formulate the following LP problem.

[U-Model 3]
minλ
s.t. constraint conditions in eq. (16)
di ≤ λ ∀i

(18)

The maximum of all widths is minimized. All items have at most uncertainty degree
denoted as the optimal value λ ∗ by eq. (18).

When the comparison data are given as interval Ai j, we have upper and lower
models for interval comparisons. The upper model is constructed with the following
inclusion relation.

Ai j =
[
a∗i j,a

∗
i j

]⊆ Wi

Wj
=

[
w∗i
w∗j

,
w∗i
w∗ j

]
∀(i, j) (19)

Similarly, the lower model is constructed with the following inclusion relation.

Wi

Wj
=

[
w∗i
w∗j

,
w∗i
w∗ j

]
⊆ [

a∗i j,a
∗
i j

]
= Ai j ∀(i, j) (20)

The upper and lower models can be formulated in the same way as the above
interval AHP model with crisp comparisons, replacing the inclusion relations eq.
(15), which is the constraint conditions in interval AHP model for cris comparisons,
with eq. (19) for the upper model or with eq. (20) for the lower model.

Numerical Example 2: The following pairwise comparison matrix with five items
is given by a decision maker.
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A = [ai j] =

⎛⎜⎜⎜⎜⎝
1 2 3 5 7

1 2 2 4
1 1 1

1 1
1

⎞⎟⎟⎟⎟⎠
The interval weights obtained by three upper approximation models are shown in
Table 2. The interval weights obtained by [U-Model 1] and [U-Model 2] are similar,
since their difference is the linear or quadratic objective function.

The obtained weights of items 1 and 2 by [U-Model 1] are crisp value, while
other three items are uncertain. By [U-Model 2] and [U-Model 3], all weights are
intervals. Thus, it is shown that they are all uncertain to some extent. Since the
decision maker gives comparisons of all pairs of items intuitively, it is natural to
consider that all items are uncertain.

From the given comparison matrix, it is estimated that item 1 is prior to item 2
and both of them are apparently prior to items 3, 4 and 5. However, the relations
among items 3, 4 and 5 are not easily estimated, since the comparisons over them
are contradicted each other. [U-Model 1] and [U-Model 2] reflect this feature. By
[U-Model 2], the obtained widths of items 1 and 2 are smaller than those of the
others. Applying [U-Model 2], the uncertain degree of each item can be considered.
On the other hand, by [U-Model 3], all the widths of the obtained weights are the
same, that is, they are uncertain as the same degree.

Table 2 Upper approximation with crisp comparison matrix

Item [U-Model 1] width [U-Model 2] width [U-Model 3] width

1 0.453 0 [0.433,0.446] 0.013 [0.397,0.432] 0.035

2 0.226 0 [0.223,0.239] 0.016 [0.216,0.252] 0.035

3 [0.104,0.151] 0.047 [0.102,0.144] 0.042 [0.097,0.132] 0.035

4 [0.091,0.113] 0.023 [0.089,0.111] 0.022 [0.086,0.122] 0.035

5 [0.057,0.104] 0.047 [0.060,0.102] 0.042 [0.062,0.097] 0.035

4 Interval Probability and Its Application to Decision
Problems

Let us consider a variable x taking its values in a finite set X = {x1, · · ·xn} and the
probability is denoted as the interval Wi = [w∗i,w∗i], i = 1, ...,n satisfied with Def-
inition 1. Let us describe necessary definitions for decision problems with interval
probabilities [5].

First, it should be noted that if there are only two interval probabilities [w∗1,w∗1]
and [w∗2,w∗2] then
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w∗1 + w∗2 = 1, w∗1 + w∗2 = 1, (21)

and if we have completely no knowledge on X , we can express such kind of com-
plete ignorance as

W1 = W2 = · · ·= Wn = [0,1], (22)

which satisfies Definition 1.

Definition 2. Given interval probabilities {Wi = [w∗i,w∗i], i = 1, ...,n}, its ignorance
denoted as I, is defined by the sum of widths of intervals as follows:

I = ∑
i=1,...,n

(w∗i −wi∗)/n. (23)

Clearly, 0 ≤ I ≤ 1 holds. I = 1 holds only for eq. (22) and I = 0 only for the
point-valued probabilities.

Definition 3. Given interval probabilities {Wi = [w∗i,w∗i], i = 1, · · · ,n}, the interval
entropy is defined as R = [r∗,r∗], where the upper bound r∗ and the lower bound r∗
are obtained by the following optimization problems.

r∗ = max
wi
∑

i=1,··· ,n
(−wi logwi) s.t. w∗i ≤ wi ≤ w∗i ∑

i=1,··· ,n
wi = 1 (24)

r∗ = min
wi
∑

i=1,··· ,n
(−wi logwi) s.t. w∗i ≤ wi ≤ w∗i ∑

i=1,··· ,n
wi = 1 (25)

It should be noted that the uncertainty of the probabilities can be characterized by
ignorance and entropy of interval probabilities which are necessary for decision
making with partially known information. The lack of information for determining
probabilities can be reflected by the ignorance of interval probabilities.

Definition 4. For X = {x1, · · · ,xn} with its interval probabilities L = {Wi =
[w∗i,w∗i], i = 1, ...,n}, the interval expected value is defined as follows:

E(X) = [e∗(X),e∗(X)] (26)

where
e∗(X) = min

w(xi)
∑

xi∈X

xiw(xi), (27)

s.t. w∗(xi)≤ w(xi)≤ w∗(xi) ∀i, ∑
xi∈X

w(xi) = 1,

e∗(X) = max
w(xi)
∑

xi∈X
xiw(xi), (28)
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s.t. w∗(xi)≤ w(xi)≤ w∗(xi) ∀i, ∑
xi∈X

w(xi) = 1.

In order to estimate interval probabilities from subjective judgment we can use in-
terval AHP described in the section 3. The meanings of comparisons are changed as
the followings. For a finite set X = {x1, · · · ,xn}, a decision maker is asked to make
a pairwise comparison on which element of X is more likely to occur in the future.
The answer is denoted as ai j with the following meanings:

1) ai j = 1: xi and x j have the same chance to occur,
2) ai j = 3: xi is fairly likely to occur than x j,
3) ai j = 5: xi is a little more likely to occur than x j,
4) ai j = 7: xi is much more likely to occur than x j,
5) ai j = 9: xi is most likely to occur than x j.

The problem for obtaining the interval probabilities is formalized as the
following optimization problem which is just the same as eq. (16).

[Model for Finding Interval Probabilities]

min
w∗i ,w∗i

I1(L) = ∑
i=1,...,n

w∗i −w∗i (29)

s. t. w∗i + w∗1 + · · ·+ w∗i−1 + w∗i+1 + · · ·+ w∗n ≤ 1 ∀i,

w∗i + w∗1 + · · ·+ w∗i−1 + w∗i+1 + · · ·+ w∗n ≥ 1 ∀i,

w∗i ≤ ai jw
∗
j ∀(i, j > i),

w∗i ≥ ai jw∗ j ∀(i, j > i),

w∗i ≥ 0 ∀i,

w∗i −w∗i ≥ 0 ∀i.

This approach will be used to identify intervals of subjective probabilities that are
very useful information for decision problems. Using interval subject probabilities
of states of nature, we can evaluate each interval profit with respect to each
alternative. Then we can choose the best alternative by interval order relation
defined as the following definition.

Definition 5. Given two intervals A = [a∗,a∗] and B = [b∗,b∗], A≥ B if and only if
a∗ ≥ b∗and a∗ ≥ b∗.

This definition is obtained by the extension principle [18]. It can be said that this
relation is a kind of extension of real numbers order. Due to the interval order we
can obtain a partial order relation of alternatives.
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5 Conclusions

In this paper, it is shown that the interval approach can be extended into a field
of mathematical models when the given data are intervals. In other words, interval
data structure can be approximated by the dual models with the inclusion relation
like Lower Model ⊆Interval Data Structure ⊆Upper Model. This approach can be
regarded as the greatest lower and least upper concept, although it is similar to the
rough set approach. In decision problems we have probabilistic uncertainty and also
partial ignorance of the future event. Therefore, we need to handle two types of
uncertainty by interval probabilities.
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16. Weichselberger, K., Pöhlmann, S. (eds.): A Methodology for Uncertainty in Knowledge-

Based Systems. LNCS (LNAI), vol. 419. Springer, Heidelberg (1990)
17. Zadeh, L.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)
18. Zadeh, L.: The concept of linguistic variable and its approximate resoning, part 1 and

part 2. Information Science 8, 199–249 (1975)



On Choquet Integral Risk Measures

Hung T. Nguyen and Songsak Sriboonchitta

Abstract. This paper aims at presenting the state-of-the-art of Choquet integral in
quantifying the uncertainty in financial economics. Not only Choquet integral be-
comes a suitable model for defining financial coherent risk measures in the invest-
ment context, it seems also possible to use Choquet integral calculations as a means
for asset pricing. We address also utility aspect of Choquet integral risk measures.

1 Introduction

Non-additive set functions appear in many contexts as models for quantifying un-
certainty. In statistics, the need to consider neighborhoods of an unknown true distri-
bution of interest is essential for applications due to the fact that we never know the
true distribution under consideration and assumptions are always approximate. As
such, the robust view of statistics, starting with Huber in 1964 (see e.g. [7]), contains
an addition to probability measures, namely (Choquet) capacities, in its analysis.

Originated from potential theory, capacities ([4]) are invented to address prob-
lems in this theory, see e.g. [2]. Since then, the concepts of capacities and associated
integral have found applications in many application areas such as decision-making,
statistics, engineering, see e.g. [9, 12].

As problems in economics can be formulated in terms of uncertain dynamical
systems, it is not surprising that, in one hand, almost all tools from engineering have
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entered the economic analysis, and on the other hand, as far as finance is concerned,
Choquet capacity and integral surfaced as well.

In this talk, we focus on this last appearance of Choquet integral, noting that other
integral transforms also made their appearance in economics, see e.g. [10, 11].

2 Risk Measures

As stated above, in robust statistics, neighborhoods of probability measures are nec-
essary to formulate robust statistical inference procedures. The set-up is this. Let
(Ω ,F ) be a measurable space on which random variables of interest are defined.
Let P be the class of all probability measures defined on F . Neighborhoods (in the
weak topology on P) are subsets of P containing the true but unknown probability
law Po under consideration. Let M be a neighborhood of interest. Without knowing
Po, we are forced to model the uncertainty by considering bounds, i.e. set functions
ν∗,ν∗ : F → [0,1] where

ν∗(A) = sup{P(A) : P ∈M },ν∗(A) = inf{P(A) : P ∈M }

as well as

E∗(X) = sup{EP(X) : P ∈M },E∗(X) = inf{EP(X) : P ∈M }.

noting that E∗(X) =−E∗(−X), and υ∗(.) = 1−υ∗(.).
The functional E∗, operating on a class X of random variables (called risks in

financial context), satisfies the following:

(i) Monotonicity: X ≤ Y a.s.=⇒ E∗(X)≤ E∗(Y )
(ii) Positively affine homogeneity : For a≥ 0 and b∈R , E∗(aX +b)= aE∗(X)+b
(iii) Subadditivity: E∗(X +Y )≤ E∗(X)+ E∗(Y )

Moreover, for finite Ω (or more general spaces with appropriate conditions), such
functionals are representable by subsets of M , namely by

M = {P ∈ P : EP(X)≤ E∗(X) for all X}

These properties of the upper expectation operator E∗ are precisely the desir-
able properties for risk measures in financial economics! In addition, the property
EP(X)≤ E∗(X) corresponds to insurance premium principle !

The connection between E∗ and υ∗ is this. If the capacity υ∗ is 2-alternating, i.e.

υ∗(A∪B)+υ∗(A∩B)≤ υ∗(A)+υ∗(B)

then
E∗(X) =

∫ ∞

0
υ∗(X > t)dt

i.e. the Choquet integral of X with respect to the (2-alternating) capacity υ∗.
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The context of finance is this. Elements of X are (nonnegative) random losses,
say, in investment portfolios, called risks. We are talking about risk of losing money
in investments, and not “risk” of using an estimator (of a population parameter) in
statistics! The problem is how to quantify the risk X . Since the well-known Value-
at-Risk VaRα(X) = F−1

X (α), as a quantile of the distribution function FX of X , does
not respect the diversification principle in portfolio selection theory, economists for-
mulated a general theory of coherent risk measures [3]. Unlike the nice situation for
quantifying laws of randomness where Kolmogorov’s axioms suffice to describe
them, the problem of risk quantification is much more delicate, partly due to the
subjectivity aspect of investors: a risk quantification depends not only on the risk
X itself, but also on decision-makers’ attitude toward risk (which can be formu-
lated within von Neumann’s utility function theory). At present, the best we can
come up with is a list of desirable properties for something to be called a reasonable
(coherent) risk measure.

The desirable properties for a reasonable risk measure (called a coherent risk
measure) proposed in [3], motivated by economic considerations, are precisely those
of Huber’s upper expectation functional. As such, when the underlying (upper) ca-
pacity υ∗is 2-alternating, the corresponding coherent risk measure is a Choquet in-
tegral. Note that the Choquet integral can be defined for any capacity (not necessary
2-alternating) υ , i.e. for set function υ : F → [0,1] such that υ(Ω) = 1,υ(∅) = 0,
A⊆ B =⇒ υ(A)≤ υ(B).

Clearly VaRα(.) as well as the Tail-Value-at-Risk

TVaRα(X) =
1

1−α
∫ 1

α
F−1

X (t)dt

are Choquet integrals, but VaRα(.) is not subadditive. The situation is clear when
we spell out basic properties of the Choquet integral as well as its characterization
via Schmeidler’s theorem, see e.g. [13].

For the Choquet integral (for simplicity, of nonnegative random variables)

Cυ(X) =
∫ ∞

0
υ(X > t)dt

we have
(i) Monotonicity: X ≤ Y, a.s. =⇒Cυ(X)≤Cυ(Y )
(ii) Positive affine homogeneity (which follows from the comonotonic additivity

of the Choquet integral): Cυ(aX + b) = aCυ(X)+ b for a≥ 0,b ∈ R
(iii) Cυ(.) is subadditive if and only if υ is 2-alternating.
(iv) If H(.) is a functional defined on the space B of bounded real-valued random

variables, defined on (Ω ,F ), such that:
a) H(1Ω ) = 1
b) H(.) is monotone increasing
c) H(.) is comonotonic additive

then H(.) is a Choquet integral operator, i.e. H(.) = Cυ(.) where υ(A) = H(1A).
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3 Distorted Probabilities

Essentially, the modern theory of coherent risk measures in financial economics
is based of the Choquet integral. Typical examples of capacities giving raise to
Choquet integrals as popular risk measures are the so-called distorted probabilities.
These are capacities obtained by composing appropriate functions with probability
measures. Specifically, a distortion is a fonction g : [0,1]→ [0,1] such that g(0) = 0,
g(1) = 1, and g is nondecreasing. The probability measure P is distorted by g to be-
come a capacity υg(.) = g ◦P(.). It is easy to verify that VaRα(.) and TVaRα(.)
correspond to g(t) = 1(1−α ,1](t) and g(t) = min{1, x

1−α }, respectively. VaRα(.) is
not subadditive since the underlying capacity υg(.) is not 2-alternating (since the
distortion is not concave), whereas, TVaRα(.) is subadditive (and hence coherent)
since the underlying distortion g is concave. To respect insurance premium princi-
ple, the distortion g should be required to be above the diagonal, i.e. g(t)≥ t for all
t ∈ [0,1], so that EP(X)≤ ∫ ∞0 g(P > x)dx.

Now observe that, under mild conditions on distortions, g(P > x) = g(1−FX(x))
is the “survival function” of some distribution function G, i.e. G(x) = 1− g(1−
F(x)) is a distribution function. The transformation from F to G is a change of
measure of the same random variable X . In other words, the loss variable X can
be viewed under two different probability laws. This reminds us of course of the
now standard practice in option pricing in mathematical finance, namely in order
to price fairly (i.e. avoiding arbitrage) in a complete market, we change the actual
probability measure P (governing the random dynamics of the risky asset price un-
der considerations) to a risk neutral Q (which is a martingale probability measure
for the discounted asset price process), and then take the fair price as the expectation
of the discounted derivative security value, under this new probability measure Q,
see e.g. [5].

In the fundamental Black-Scholes’s model, the change from P to the martingale
measure Q is performed in the context of Brownian motion, or Ito processes. The
Girsanov’s theorem is an extension of the simple problem of changing a normal
distribution to another normal distribution to modify the mean while keeping intact
the variance of the variable.

By analogy, we ask: If we change F to G by G(x) = 1− g(1− F(x)), what
should be g(.) so that if F is the distribution function of N(μ ,σ2), G will be that of
N(a,σ2)?

Let Φ denote the distribution of the standard normal N(0,1), then

1−Φ(
x−a
σ

) = g(1−Φ(
x− μ
σ

))

or
Φ(

a− x
σ

) = g(Φ(
μ− x
σ

))

Let u =Φ( μ−x
σ ) then x = μ−σΦ−1(u) so that

g(u) =Φ[Φ−1(u)+
a− μ
σ

]
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Thus, if we let
gλ (x) =Φ[Φ−1(x)+λ ],λ ∈R

then we get a family of distortion functions preserving normal distributions. For
given λ , a = μ+λσ , i.e. we modify N(μ ,σ2) to N(μ+λσ ,σ2). For each λ > 0,
gλ is strictly concave (and hence its associated Choquet integral risk measure is
consistent with stochastic dominance rules, see e.g. [13]) and gλ (x) ≥ x for every
x ∈ [0,1]. See also [8].

This is the family of distortions introduced by S.S. Wang [15] for insurance pre-
mium calculations, known as Wang’s transforms in actuarial science. In view of the
motivation leading to their forms, it is expected that there should be some connec-
tion with option pricing in financial economics. It is indeed the case (see [6, 16]):
the Black-Scholes’ formula for pricing European call option, under the assump-
tion that the stock price follows a geometric Brownian motion (with constant

volatility), corresponds precisely to λ = (μ−r)
√

T
σ where r is the (constant) inter-

est rate of the riskless asset and T is the exercise time of the call option. Thus, one
can price European call option using a Choquet integral with an appropriate Wang’s
distortion function. The question is: can Wang’s transforms be used to price other
models different than Black-Scholes’ model?

4 Choquet Integral Risk Measures and Utility

Note that the derivation of the classic Black-Scholes’ formula is based on the as-
sumption of no arbitrage, and the required martingale measure is interpreted as a
risk neutral probability measure. For distorted probabilities, and more generally,
for Choquet integral coherent risk measures, we need to relate such risk measures
with utilities to bring out risk attitude of investors. One way to accomplish this is
to transform Choquet integral risk measures to the so-called spectral risk measures
(introduced in [1]) as follows.

Another way of generalizing risk measures such as VaRα and other risk measures
which are based on quantile functions is viewing them as weighted averages of
quantile functions. Specifically, a weighting function is a function ϕ : [0,1]→ R+,
nondecreasing and

∫ 1
0 ϕ(t)dt = 1. A spectral risk measure, with weighting function

ϕ , is defined as

ρϕ(X) =
∫ 1

0
ϕ(t)F−1

X (t)dt

Clearly ρϕ(1Ω ) = 1.

X ≤ Y =⇒ FX ≥ FY ⇐⇒ F−1
X ≤ F−1

Y =⇒ ρϕ(X)≤ ρϕ(Y ).

If X and Y are comonotonic, then

F−1
X+Y = F−1

X + F−1
Y =⇒ ρϕ(X +Y ) = ρϕ(X)+ρϕ(Y ).
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Thus, by Schmeidler’s characterization theorem of Choquet integral, there exists a
capacity υ = g ◦P such that Cυ(X) = ρϕ(X) where the concave distortion function
g is given by g(t) = 1− ∫ 1−t

0 ϕ(s)ds. Conversely, the associated weighting function
corresponding to υ = g◦P is given as ϕ(s) = g′(1−s). As such, at least for Choquet
risk integral in the form of distorted probabilities, one can extract utility aspect from
distortions, such as Wang’s transforms, by investigating the relationship between
spectral risk measures and utilities.

A recent analysis of the question “how to relate spectral risk measures to risk
attitude?” was carried out in [14] and can be summarized as follows.

Both utility functions and spectral risk measures are used to make decisions, but
on different “scales” (monetary and utility values). Thus, in order to compare these
approaches, or, as far as we are concerned, to find an equivalence between them, it
is necessary to put them on the same common scale. An empirical setting could be
used to accomplish that objective. The value of an action can be described as the
money amount x that a person is willing to pay in order to participate in that ac-
tion rather than just her utility value. Suppose there are alternatives xi, i = 1,2, ...,n
where the gain in each alternative is x−xi. Since utility functions are defined modulo
a linear transformation, the empirical expected utility can be written as

n

∑
i=1

u(x− xi) = 0 (1)

On the other hand, as a spectral risk measure is a function of order statistics, it can
be written empirically as

1
n

n

∑
i=1

ϕ(
i
n
)x(i) (2)

Thus, the relation between utilities and spectral risk measures reduces to: Given u,
find ϕ which makes the estimator (2) close to the estimator obtained from (1) and
vice versa.

Formulating the problem this way, we recognize that we are actually trying to
compare an M - estimator with an L - estimator in robust statistics (see [7])! The
performance of each estimator (of θ ) can be judged, say, by their mean-squared
errors. Thus, we seek u and ϕ such that

E(θn(u)−θ )2

E(θn(ϕ)−θ )2 → 1 as n→ ∞

Mathematically, M - estimators correspond to utility estimators while L - estimators
correspond to spectral risk measures. With this view, we apply results from robust
statistics to exhibit the correspondence between utilities and spectral risk measures
as follows.

Recall that in robust statistics, for reasonable classes D of distributions (neigh-
borhoods), one can find the optimal (minimax) u (i.e. the u minimizing sup{E f (θn(u)
− θ )2 : f ∈ D}) as well as the optimal ϕ (minimizing sup{E f (θn(ϕ)− θ )2 : f ∈
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D}). Indeed, for given F , first let fo be the element in F minimizing the Fisher
information quantity

I( f ) =
∫

(
f ′(x)
f (x)

)2 f (x)dx

Then we look for M - estimator and L - estimator optimal for fo.
The correspondence between u and ϕ is then described as follows. Given u, find

D such that u leads to the optimal M - estimator, then find ϕ which leads to the
optimal L - estimator for D . Conversely, given ϕ , find D such that ϕ leads to an
optimal L - estimator, then find u which leads to an optimal M - estimator for D .

Specifically, for a given utility function u, compute

fo(x) = exp{−
∫ x

−∞
u(t)dt}

Let

Fo(x) =
∫ x

−∞
fo(t)dt

and
m(α) = u′(F−1

o (α))

then take

ϕ(α) = m(α)/
∫ 1

0
m(t)dt

If we know ϕ , to find u, we first find Fo and the value I by solving the equation

Iϕ(Fo(x)) =−(logF ′o(x))
′′

then take

u(x) =− f ′o(x)
f ′o(x)

where f ′o(x) = F ′o(x).

References

1. Acerbi, C.: Spectral risk measures of risk: a coherent representation of subjective risk
aversion. J. Banking and Finance (7), 1505–1518 (2002)

2. Adams, D.A.: Choquet integrals in potential theory. Publications Matematiques (42),
3–66 (1998)

3. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risks. Mathematical
Finance 9(3), 203–228 (1999)

4. Choquet, G.: Theory of capacities. Ann. Inst. Fourier (5), 131–292 (1953/1954)
5. Etheridge, A.: A Course in Financial Calculus. Cambridge University Press, Cambridge

(2002)
6. Hadama, M., Sherris, M.: Contingent claim pricing using probability distortion oper-

ators: methods from insurance risk pricing and their relationship to financial theory.
Applied Mathematical Finance 10(1), 19–47 (2003)

7. Huber, P.J., Ronchetti, E.M.: Robust Statistics, 2nd edn. J. Wiley, Chichester (2009)



22 H.T. Nguyen and S. Sriboonchitta

8. Kreinovich, V., Nguyen, H.T., Sriboonchitta, S.: A new justification of Wang transform
operator in financial risk analysis. Intern. Journ. Intell. Tech. and Applied Statist. 2(1),
45–57 (2009)

9. Labreuche, C., Grabisch, M.: Generalized Choquet-like aggregation functions for han-
dling bipolar scales. European Journal of Operational Research 172(3), 931–955 (2006)

10. Linetsky, V.: The Path integral approach to finanial modeling and option pricing. Com-
putational Economics (11), 129–163 (1998)

11. Mancino, M., Malliavin, P.: Fourier series method for measurement of multivariate
volatilities. Finance and Stochastics 6(1), 49–61 (2002)

12. Nguyen, H.T.: An Introduction to Random Sets. Chapman and Hall/CRC Press (2006)
13. Sriboonchitta, S., Wong, W.K., Dhompogsa, S., Nguyen, H.T.: Stochastic Dominance

and Applications to Finance, Risk and Economics. Chapman and Hall/CRC Press (2009)
14. Sriboonchitta, S., Nguyen, H.T., Kreinovich, V.: How to relate spectral risk measures

and utilities. In: Proceedings of the Third Econometric Society of Thailand Conference,
January 2010. Chiang Mai University, Thailand (2010) (to appear)

15. Wang, S.S.: Premium calculations by transforming the layer premium density. Astin Bul-
letin (26), 71–92 (1996)

16. Wang, S.S.: A universal framework for pricing financial and insurance risks. Astin Bul-
letin (33), 213–234 (2002)



Computing with Words and Systemic Functional
Linguistics: Linguistic Data Summaries and
Natural Language Generation

Janusz Kacprzyk and Sławomir Zadrożny

Abstract. We briefly consider systemic functional linguistics, notably in its natural
language generation perspective. We analyze our recent works (notably Kacprzyk
and Zadrożny [18]) in which a new relation between our recent works on linguistic
data summaries, based on fuzzy logic an computing with words, was indicated. We
advocate the use of the philosophy and some more constructive and implementable
core elements of systemic functional linguistics to an automatic generation of
protoform based linguistic data summaries, and indicate main challenges and
opportunities.

1 Introduction

This paper is dedicated to Professor Michio Sugeno on the occasion of his anniver-
sary. We wish to pay a tribute to his insight and seminal works he has pursued for
the last decade or more (cf. Change, Kobayashi and Sugeno [2], Kobayashi and
Sugeno [21], Kobayashi et al. [23]). These works have been related to natural lan-
guage, notably viewed from the perspective of Halliday’s systemic functional lin-
guistics (SFU) [5], aimed at attaining an ambitious goal of developing some sort
of an effective and efficient apparatus that would make it possible to successfully
use natural language in many tasks related to the cooperation and collaboration of
human beings and computers.

We will briefly discuss the very essence of the systemic functional linguistics,
both from the perspective of the original Halliday’s ideas, and also those by his
numerous followers in Australia, Canada, Europe, etc. concentrating on the very
basic issues that will be of use for our particular purpose.
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A real motivation for our interest in the topic of this paper have been numerous
reports in the literature on systemic functional linguistics that its tools and tech-
niques are very well suited for natural language generation (NLG) – cf. Reiter and
Dale [29].

Natural language generation is one of areas of our interest in the recent period.
Namely, over the last decade or more we have been developing tools and tech-
niques for linguistic summarization of sets of numeric data using elements of the
fuzzy logic based Zadeh’s computing with words (CWW) paradigm – cf. Zadeh
and Kacprzyk [41]. These works have resulted in many theoretical de-velopments
and also business applications. In a recent paper (cf. Kacprzyk and Zadrożny [18])
we have indicated an intrinsic relation between the linguistic summarization and
natural language generation (NLG), and advocated that this new perspective can
provide a boost to both the areas by providing computing with words with tools,
techniques and software available in natural language generation, and-on the other
hand-providing natural language generation with simple and efficient fuzzy logic
based tools for the representation and processing of imprecision that is inherent in
natural language.

In this work, and the presentation, we will try to explore some possible links
between the approach to natural language generation based on systemic func-
tional linguistic, and our approach to linguistic data summarization that is based on
computing with words and related to (traditional) natural language generation.

First, we will briefly discuss the essence of systemic functional linguistics, no-
tably in the context of natural language generation. Next, we will discuss our ap-
proach to linguistic summarization based on fuzzy logic and computing with words.
Then, we will indicate possible contribution of systemic functional linguistics to
natural language generation oriented linguistic summarization.

2 Systemic Functional Linguistics and Natural Language
Generation

Basically, the concept of systemic functional linguistics developed in the 1960s by
Halliday [5] takes as a point of departure that language should be studied in a spec-
ified context and with respect to a purpose as, for instance, in business world to
communicate financial matters to interested parties. This is clearly a pragmatic per-
spective that emphasized a view of language as a resource used by people to ac-
complish their tasks and purposes by expressing and communicating meanings in
context.

Halliday [5] identified some fundamental characteristics of a systemic functional
linguistic theory or approach. First, as already stated, language is a resource or
medium for expressing meaning in a context, and linguistics is the study of how
people exchange meanings through the use of language. This perspective implies
that language must be studied in contexts whose particular aspects, exemplified by
the topics discussed or considered, users and means of communication define the
very meaning and the language to express those meanings.
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Since language is defined as a systematic resource, the organizing principle in
linguistic description is of a system, rather than just structure type. The description
of language is a description of choice, and the possible choices depend on aspects of
the context in question, and can considered on different levels, or strata, of language:
the context, the semantic, lexicogrammar, and phonological. This implies clearly
flexibility.

Texts contain linguistic structures which, from the above perspective, are con-
sidered natural because they express meanings “understandable” and relevant in a
particular context. Text as the object of analysis because, for practical reasons, the
text is what conveys the very meaning. However, the analysis of the text may involve
analyses of smaller units too.

A crucial aspect is interaction of agents/actors, support of which is one of the
most important purposes of language, and as interacting aspects of a context, so
called field, tenor, and mode are used. Basically, the field refers to the topics and
actions which language is used to express, the tenor denotes the language users,
their relationships to each other, and their purposes, and the mode concerns the
various aspects of the channel of communication.

This is a very brief account of basic notions and issues used in systemic func-
tional linguistics, and some of them will have relevance for our next considera-
tions. For more information on the topic, cf. Halliday [5], Ravelli and Davies [30] or
Ravelli [31].

For our purposes, the most important are indications, that already appeared some
two decades ago or more, of relevance of systemic functional linguistics for natural
language generation (NLG). Basically, natural language generation is a computa-
tional process that is aimed at producing a (quasi) natural language text (summary!)
to express the very meaning of some other source of data, exemplified by another
(e.g. longer text) or-which is much more relevant for us-numerical data. The text
produced should be in the form of some sentence(s) so that a sentence generator
program should be developed. In natural language generation a very close influence
of and input from systemic functional linguistics have occurred because, as we shall
see, it is the generation perspective on linguistic resources that is related to the sys-
temic functional linguistic core purpose as a computationally oriented user would
rather think of generation than analysis.

The first attempt to employ a systemic functional linguistic specification for au-
tomatic generation was Henrici [7] who basically showed that the computational
application of systemic grammars for generation purposes was in principle possi-
ble. Another significant attempt of using a systemic functional linguistics approach
to natural language generation was due to Fawcett [3]. The role of systemic func-
tional linguistics in natural language generation changed dramatically with the ad-
vent of the Penman text generation system (cf. Matthiessen [24]) based on the Nigel
grammar. Teich’s book [33] is a great source of information in this respect.

To summarize, the use of systemic functional linguistic type approaches have
certainly found their place in natural language generation, and seem to be of a con-
siderable relevance for our considerations. Maybe the most important limiting fac-
tor is the necessity to maintain a large-scale grammar of a language used which is
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expensive and time-consuming. However, in our application this is not an obsta-
cle as we have protoforms (or their families) of linguistic summaries whose variety
and diversity is limited. Moreover, one of important features of systemic functional
linguistic approaches may be its ability to generate varying natural language texts
according to the tenor relationships involved (expert-novice, patient-doctor,
customer-client, etc.) which may be relevant for our business implementations of
linguistic data summaries in which different types of summaries may be needed for
people at different management levels.

This concludes our brief account of the very essence of systemic functional lin-
guistics, and its relations to natural language generation, that will be needed later
on. Due to lack of space, an interested reader is referred to the references given.

3 Computing with Words and Linguistic Summaries of
Numerical Data

The paradigm of CWW [40], introduced by Zadeh in the mid-1990s, is a logical
consequence of the following line of reasoning. Numbers are used in all traditional
“precise” models of systems, reasoning schemes, algorithms, etc. but for the humans
the only fully natural means of articulation and communication is natural language.
Therefore, maybe we could develop models, tools, techniques, algorithms, etc. that
could operate on natural language (words) and can serve the same (or similar) pur-
pose as their numerical counterparts. That is, maybe instead of traditional computing
with numbers (from measurements) it would be better to compute with words (from
perceptions). So, we may skip an “artificial” interface and try to operate on natural
language.

The essence of CWW is: we have a collection of propositions expressed in a
natural language and from that set we wish to infer an answer to a query expressed
in a natural language. For the implementation of CWW, first, we need tools for a
formal representation of linguistic terms, relations, etc. and this is provided by a
precisiated natural language (PNL). A generalized constraint, which represents the
meaning of a proposition, p, in a natural language is written as: “X isr R” where:
X is a constrained variable which, in general, is implicit in p; R is the constraining
relation which, in general, is implicit in p; r is an indexing variable whose value
identifies how R constrains X . The role of r is to add a fine shade of meaning to a
basic constraint. This is the essence of modality in natural language.

For instance, the usuality constraint “X isu R”, i.e. “usually(X is R)”, means that
“Prob{X is R} is usually”. The usuality constraint is crucial because in most cases
we seek some “regularities”, “normal/typical” relations, i.e. those which usually
happen (occur). However, one can notice that the semantics of usuality calls for the
use of linguistic quantifiers like “most”, “almost all”, etc. Fuzzy logic based calculi
of linguistically quantified propositions are intuitively appealing and computation-
ally efficient.

One of most obvious and illustrative examples of applications of CWW are lin-
guistic summaries. Data summarization is one of basic capabilities needed by any
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“intelligent” system meant to operate in real life with an abundance of data that
is beyond human cognition and comprehension. Since for a human being the only
fully natural means of communication is natural language, a linguistic [by some
sentence(s) in a natural language] data summarization would be very desirable. Un-
fortunately, data summarization is still in general unsolved a problem in spite of vast
research efforts.

We operate on linguistic data(base) summaries introduced by Yager [36],
and then advanced by Kacprzyk and Yager [13], and Kacprzyk, Yager and
Zadrożny [14], and implemented in Kacprzyk and Zadrożny [20, 16]. We will derive
linguistic data summaries as linguistically quantified propositions as, e.g., “most of
the employees are young and well paid”, with a degree of validity (truth), and some
other validity (quality) indicators.

In Yager’s approach [36], we have (we use here the source terminology): (1) V ,
a quality (attribute) of interest, e.g. salary in a database of workers, (2) a set of
objects (records) that manifest quality V , e.g. the set of workers; hence V (yi) are
values of quality V for objects yi, and (3) D = {V(y1), · · · ,V (yn)} is a set of data
(the “database” in question).

A linguistic summary of a data set consists of: a summarizer S (e.g. “young”),
a quantity in agreement Q (e.g. “most”), and a truth degree T -e.g. 0.7, and may be
exemplified by “T (most of employees are young) = 0.7”.

The summarizer S is a linguistic expression semantically represented by a fuzzy
set. The meaning of S, i.e. its corresponding fuzzy set is in practice subjective, and
may be either predefined or elicited from the user (as shown later). The quantity in
agreement, Q, is a proposed indication of the extent to which the data satisfy the
summary, and a linguistic term represented by a fuzzy set is employed. Basically,
the quantity in agreement is equated with the so-called fuzzy linguistic quantifiers
(cf. Zadeh [39]) that can be handled by fuzzy logic.

The calculation of the truth degree is equivalent to the calculation of the truth
value (from [0.1]) of a linguistically quantified statement which may be done
by using Zadeh’s calculus of linguistically quantified propositions (cf. Zadeh and
Kacprzyk [41]); cf. also Yager’s OWA operators [37].

A linguistically quantified proposition, like “most experts are convinced”, is writ-
ten as “Qy’s are F” where Q is a linguistic quantifier (e.g., most), Y = {y} is a set
of objects (e.g., experts), and F is a property (e.g., convinced). Importance B may
be added yielding ‘QBy’s are F” , e.g., “most (Q) of the important (B) experts (y’s)
are convinced (F)”. The problem is to find truth(Qy’s are F) or truth(QBy’s are F),
respectively, knowing truth(y is F), ∀y ∈ Y , which is done, using Zadeh’s calculus
of linguistically quantified propositions, in the following way.

Property F and importance B are fuzzy sets in Y , and a (proportional,
nondecreasing) linguistic quantifier Q is a fuzzy set in [0,1] as, e.g.

μQ(x) =

⎧⎨⎩ 1, for x≥ 0.8
2x−0.6, for 0.3 < x < 0.8
0, for x≤ 0.3

(1)
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Then, due to Zadeh [39]:

truth(Qy′s are F) = μQ

[
1
n

n

∑
i=1

μF(yi)

]
(2)

truth(QBy′s are F) = μQ

[
n

∑
i=1

(μB(yi)∧μF(yi))/
n

∑
i=1

μB(yi)

]
(3)

where “∧” denotes the minimum operator; other operations, notably t-norms can
clearly be used.

Zadeh’s calculus of linguistically quantified propositions makes it possible to
formalize more complex linguistic summaries, exemplified by “Most (Q) newly
hired (K) employees are young (S)”, i.e. a linguistic summary may also contain a
qualifier K.

The basic validity criterion, i.e. the truth of (2) and (3), is certainly the most
important but does not grasp all aspects of a linguistic summary. As to some other
quality (validity) criteria, cf. Kacprzyk and Yager [13] and Kacprzyk, Yager and
Zadrożny [14].

An obvious problem is how to generate the best summary (or summaries). An
exhaustive search can obviously be computationally prohibitive. We deal with this
question in the next section.

The above approach to linguistic data summaries was implemented for support-
ing decision making in a computer retailer (Kacprzyk and Zadrożny [20, 16, 17,
18]), summarization of Web server logs (Zadrożny and Kacprzyk [42]), and linguis-
tic summarization of an investment (mutual) fund quotations (Kacprzyk, Wilbik and
Zadrożny [10]).

As a promising attempt to operationally generate the linguistic data summaries,
Kacprzyk and Zadrożny [20] proposed interactivity, i.e. user assistance, in the defi-
nition of summarizers (indication of attributes and their combinations) via a user
interface of a fuzzy querying add-on. The roots of this approach are our previ-
ous papers on the use of fuzzy logic in querying databases (cf. Kacprzyk and
Ziółkowski [15], Kacprzyk and Zadrożny [11, 20]) via imprecise requests. This
has motivated the development of the whole family of fuzzy querying interfaces,
notably our FQUERY for Access package.

FQUERY for Access is an add-in that makes it possible to use fuzzy linguis-
tic terms in queries, notably: (1) fuzzy values, exemplified by “low” in “profitabil-
ity is low”, (2) fuzzy relations, exemplified by “much greater than” in “income is
much greater than spending”, and (3) linguistic quantifiers, exemplified by “most”
in “most conditions have to be met”.

Linguistic quantifiers provide for a flexible aggregation of simple conditions. In
FQUERY for Access the fuzzy linguistic quantifiers are defined as in Zadeh’s calcu-
lus of linguistically quantified propositions; cf. Kacprzyk and Zadrożny [11, 19, 20].

The concept of a protoform in the sense of Zadeh is highly relevant in this context.
First of all, a protoform is treated as an abstract prototype of a linguistic summary:
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“Q Y ′s are S” (4)

“Q KY ′s are S” (5)

where Y is a set of objects, K is a qualifier and S is a summarizer.
Basically, the more abstract forms of protoforms correspond to cases in which we

assume less about the summaries sought. There are two limit cases, where we: (1)
assume a totally abstract top protoform or (2) assume that all elements of a proto-
form are given on the lowest level of abstraction, i.e., all attributes and all linguistic
terms expressing their values are fixed. In case 1 data summarization using a naı̈ve
full search algorithm would be extremely time-consuming, but might produce in-
teresting, unexpected view on data. In case 2 the user is in fact guessing a good
candidate summary but the evaluation is fairly simple, equivalent to the answering
of a (fuzzy) query. Thus, case 2 refers to ad hoc queries. This may be shown as in
Table 1 in which 5 basic types of linguistic summaries are shown, corresponding to
protoforms of a more and more abstract form.

Table 1 Classification of linguistic summaries

Type Given Sought Remarks
1 S Q Simple summaries through ad-hoc queries
2 S B Q Conditional summaries through ad-hoc queries
3 Q Sstructure Svalue Simple value oriented summaries
4 Q Sstructure B Svalue Conditional value oriented summaries
5 Nothing S B Q General fuzzy rules

where Sstructure denotes that attributes and their connection in a summary are known, while
Svalue denotes the values of the attributes sought.

Zadeh’s protoforms are therefore a powerful conceptual tool because we can for-
mulate many different types of linguistic summaries in a uniform way, and devise
a uniform and universal way to handle different linguistic summaries. However,
from the point of view of the very purpose of this paper, there occurs an immediate
question. Namely, it is easy to see that such generality and uniformity is some-how
contradictive to the richness and variety of natural language. This important issue is
discussed in the next section where we indicate that though Zadeh’s protoforms are
extremely powerful, they somehow set an unnecessary limit on the sophistication
of possible NLG architectures and tools. This is even true for hierarchies of proto-
forms, and most probably a further research is needed to devise “meta-protoforms”
which we advocate in the next section.

The linguistic database summaries may immediately be viewed to have a strong
resemblance to the concepts relevant to natural language generation (NLG) but for
unknown reasons this was not considered explicitly in more detail until the recent
Kacprzyk and Zadrożny’s paper [18].

Basically, NLG is concerned with how one can automatically produce high qual-
ity natural language text from computer representations of information which is not
in natural language. We follow here therefore the “numbers-to-words” path.
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NLG may be viewed from many perspectives (cf. Reiter and Dale [29]), and in
our context it may be expedient to consider independently the tasks of generation
and the process of generation. One can identify three types of tasks:

• text planning,
• sentence planning, and
• surface realization.

In our works on linguistic summarization, we have been so far mainly con-
cerned with the text planning since our approach is explicitly protoform based. We
literally consider a protoform of a linguistic summary as fixed and specified
(structurally), and the purpose of a protoform based linguistic summarization is
to determine appropriate linguistic values of the linguistic quantifier, qualifier and
summarizer. However, if the protoform is considered in a “meta-sense”, i.e. when
the summarizer concerns the linguistically defined values of a compound concept,
like “productivity” in a personnel database, with productivity described by an or-
dered (e.g. through importance assignment) list of criteria, then we have to do with
some sort of sentence planning. The same concerns hierarchies of Zadeh’s proto-
forms. Finally, the use of protoform based linguistic summaries precludes the use of
surface planning in the strict sense. This is an example that Zadeh’s protoforms are
very powerful and convenient in CWW but may be a limiting factor in many real
world applications as their structure is too restricted, notably as compared to the
richness of natural language. A solution may be clearly to develop different kinds
of protoforms, notably those which are not explicitly related to usuality but to other
modalities. This is however not trivial. To subsume, the use of the sentence plan-
ning and surface realization would presumably produce more advanced linguistic
summaries which could capture more of fine shades of meaning but it is not clear
how to accommodate these tasks within the simple and efficient, yet somewhat
strict Yager’s concept of a linguistic summary, and our heavily protoform based
approach.

Other authors use different classifications of generation tasks, but they do not
essentially change the relations between CWW (specifically, linguistic summariza-
tion) and NLG. Due to the use of protoforms, almost all tasks are simple due to a
predefined structure of summaries but, to make a full use of the power of NLG tools,
which can do the above tasks, one should maybe again think about different types
of protoforms. Another viable alternative is to use an interactive human-computer
interface, as we have actually employed in our implementation of linguistic sum-
maries. Generator processes can be classified along two dimensions: sophistication
and expressive power, starting with inflexible canned methods and ending with max-
imally flexible feature combination methods. The canned text systems, used in many
applications, notably simpler software systems which just print a string of words
without any change (error messages, warnings, letters, etc.), are not interesting for
us, and maybe neither for CWW in general.

More sophisticated are template based systems used when a text (e.g. a message)
must be produced several times with slight alterations. The template approach is
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used mainly for multiple sentence generation, particularly when texts are regu-
lar in structure such as stock market reports. In principle, our approach is similar
in spirit to template based systems. One can say that Zadeh’s protoforms can be
viewed as playing a similar role to templates. However, there is an enormous dif-
ference as the protoforms are much more general and may represent such a wide
array of various “templates” that maybe it would be more proper to call them
“meta-templates”.

Phrase based systems employ what can be seen as generalized templates. In such
systems, a phrasal pattern is first selected to match the top level of the input and
then each part of the pattern is expanded into a more specific phrasal pattern that
matches some subpart of the input, etc. with the phrasal pattern replaced by one or
more words. The phrase based systems can be powerful and robust, but are very hard
to build beyond a certain size. It seems that our approach to linguistic summarization
can be viewed, from some perspective, as a simple phrase based system. It should be
also noted that since protoforms may form hierarchies, we can imagine that both the
phrase and its subphrases can be properly chosen protoforms. The calculi of linguis-
tically quantified statements can be extended to handle such a hierarchic structure of
phrases (statements) though, at the semantic level, the same difficulties remain as in
the NLG approach, i.e. an inherent difficulty to grasp the essence of multisentence
summaries with their interrelations. We think that Zadeh’s protoforms, but meant in
a more general sense, for instance as hierarchical protoforms or “meta-protoforms”
can make the implementation of a phrase based NLG system in the context of CWW
viable. However, those more general types of protoforms have to be developed
first.

Feature-based systems represent some extreme of the generalization of phrases.
Each possible minimal alternative of expression is represented by a single feature.
Generation proceeds by the incremental collection of features appropriate for each
part of the input until the sentence is fully determined. The feature based systems
are the most sophisticated generators. Their idea is very simple as any distinction
in language is defined as a feature, analyzed, and added to the system, but unfortu-
nately there is a tremendous difficulty in maintaining feature interrelationships and
in the control of feature selection. It is not at all clear how we could merge the idea
of feature based systems and our approach to linguistic data summarization, and
CWW in general. But, if this were done, CWW would be able to deal with more
elements of natural language, for instance with an extended list of modalities.

To summarize, it seems that if we use NLG tools to implement linguistic sum-
maries, one can fairly easily build a single purpose generator for any specific
application, or with some difficulty adapt an existing sentence generator to the appli-
cation, with acceptable results. This would correspond to a simple protoform based
linguistic summary. However, we do not think that one could easily build a gen-
eral purpose sentence generator or a text planner. But, first, some research on richer
families of protoforms would be needed.

An extremely relevant issue, maybe a prerequisite for implementability, is
domain modeling. The main difficulty is that it is very difficult to link a generation
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system to a knowledge base or data base originally developed for some nonlin-
guistic purpose due to a possible considerable mismatch. The construction of ap-
propriate taxonomies or ontologies can be of much help. So far, in our approach,
domain knowledge is-at the conceptual level-in the specification of appropriate
protoforms which are comprehensible or traditionally used (e.g. as structures of
business reports) in a specific domain.

Our approach to the linguistic summarization is not fully automatic as an interac-
tion with the human being is employed. A natural desire would be to attain an even
higher functionality of an automated summarization. This is a very difficult problem
which involves many aspects. In an NLG generation module, we often distinguish
two components. First, we determine what should be said, and this is done by a
planning component which may produce an expression representing the content of
the proposed utterance. On the basis of this representation the syntactic generation
component produces the actual output sentence(s).

Syntactic generation can be described as the problem to find the correspond-
ing string for an input logical form. In our present version of linguistic summaries
these syntactic generation problems do not play a significant role as the structure of
our summaries, based on protoforms, is quite fixed, and related to (meta)templates.
However, templates may often be unavailable as we may not know exactly which
types of protoforms are comprehensible in a given domain. Then, some syntactic
generator might be a solution. We think that syntactic generation should play an
important role in all kinds of linguistic summaries, in particular in view of a struc-
tural strictness of Zadeh’s protoform so that more sophisticated and complex types
of protoforms may be needed.

Another topic in NLG is the so called deep generation. Basically, it is usually
viewed as involving, at a conceptual level: selecting the text content, and imposing a
linear order on that content. In this direction still unsolved a problem is the selection
of an appropriate granularity for the presentation of information. In our linguistic
summaries this problem has been solved in an ad hoc manner by using a structural
granulation attained by the use of some specific protoforms, and the granulation
of linguistic values used throughout the summarization process by following the
“golden rule” of using 72 values (the Miller magic number!), with very good results
in practical applications.

To summarize, we can state that, on the one hand, we can find much inspiration
from recent developments in NLG, notably in the adjusting of protoforms to what
is comprehensible and/or commonly used in a specific domain by employing some
sentence and text planning tools. Moreover, one can very clearly find a deep justi-
fication for the power of Zadeh’s protoforms by showing their intrinsic relation to
templates, maybe rather meta-templates, or even simple phrase based systems.

Clearly, the above conclusions have been drawn for linguistic summaries, be-
cause we focused on them for clarity and illustrativeness, and because they are one
of key examples of powerful and intuitively appealing applications of CWW, and
have been theoretically and algorithmically developed, and implemented. However,
these conclusions seem to also be valid to a large extent for CWW in general.
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4 Brief Remarks on Some Relations of Linguistic Summaries to
Natural Language Generation on the Context of Systemic
Functional Linguistics

Our main interest in this respect will be a study of which new quality and inspitation
can systemic functional linguistic tools, dealt with from the point of view of natural
language generation, can give us to further develop our protoform based approach
to linguistic data summarization.

The following concepts and solutions developed within the systemic functional
linguistic approach should be of relevance for this purpose:

• The development of more complex, and domain specific protoforms using more
sophisticated sentence generator programs viewed in terms of stratification,

• A more pronounced emphasis on the purpose and context that can again enrich
the set of protoforms,

• A possible inspiration of systemic grammars for the development of new types
of protoforms,

• An extension of single protoforms as linguistic summaries to chunks of texts
(structured sets of protoforms) as linguistic summaries,

• An attempt at making linguistic summaries more domain and user specific by
using tools for choosing grammatical features,

• An attempt to make the natural language generation system producing proto-
form based linguistic summaries to be modular and reusable across differ-
ent contexts, computational systems, knowledge representation, text planning
components, etc.

• An attempt to develop a multilingual protoform based linguistic summarization,
etc.

These are some of solutions to our linguistic summarization approach based on
protoforms and strongly related to natural language generation that can benefit for
elements of functional systemic linguistics. Of course, we should be aware that the
use of those systemically based generation systems experience the same problems
as all natural generation systems, that is, a high cost of an additional functionality.
However, such advantages of systemic theory in this context as an ability to rela-
tively easy vary texts according to the tenor relationships involved (expert-novice,
patient-doctor, customer-client, etc.) can be very useful.

5 Concluding Remarks

We considered systemic functional linguistics, notably in its natural language
generation perspective. We analyzed our recent works (notably Kacprzyk and
Zadrożny [18]) in which a new relation between our recent works on linguistic data
summaries, based on fuzzy logic an computing with words, was indicated. We advo-
cated the use of the philosophy and some more constructive and implementable core
elements of systemic functional linguistics to an automatic generation of protoform
based linguistic data summaries, and indicate main challenges and opportunities.
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We hope that this work will open some new vistas and inspire a scientific discus-
sion on how to enrich computing with words, linguistic summarization, etc. with
elements of computational linguistics.
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Managing Granular Information in the
Development of Human-Centric Systems

Witold Pedrycz

Information granules and their processing giving rise to the framework of Granu-
lar Computing offer opportunities to endow computing with an important facet of
human-centricity. This facet means that the underlying processing supports non-
numeric data inherently associated with perception of humans and generates results
being seamlessly comprehended by users. Given systems that are distributed and
hierarchical in their nature become quite common, managing granular information
in hierarchical and distributed architectures is of growing interest, especially when
invoking mechanisms of knowledge generation and knowledge sharing.

The feature of human centricity of Granular Computing and fuzzy set-based con-
structs is the underlying focus of our investigations. More specifically, we concen-
trate on some new directions of knowledge elicitation and knowledge quantification
realized in the setting of fuzzy sets. With this regard, we elaborate on an idea of
knowledge-based clustering, which aims at the seamless realization of the data-
expertise design of information granules. We emphasize the need for this unified
treatment in the context of knowledge sharing where fuzzy sets are developed not
only on the basis of numeric evidence available locally but in their construction we
also actively engage the domain knowledge being shared by others. It is also em-
phasized that collaboration and reconciliation of locally available knowledge give
rise to the concept of higher type information granules, and fuzzy sets, in particu-
lar, along with the principle of justifiable granularity supporting their construction.
This principle helps manage the diversity of numeric and non-numeric entities and
encapsulate them in the form of information granules where the level of granular-
ity is carefully adjusted to address the level of existing diversity of data and per-
ceptions. The other interesting direction enhancing human centricity of computing
with fuzzy sets, deals with non-numeric, semi-qualitative characterization of
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information granules (fuzzy sets). We discuss a suite of algorithms facilitating a
qualitative assessment of fuzzy sets, formulate a series of associated optimization
tasks guided by well-formulated performance indexes, and discuss the essence of
the resulting solutions.



Dempster-Shafer Reasoning in Large Partially
Ordered Sets: Applications in Machine Learning

Thierry Denœux and Marie-Hélène Masson

Abstract. The Dempster-Shafer theory of belief functions has proved to be a pow-
erful formalism for uncertain reasoning. However, belief functions on a finite frame
of discernment Ω are usually defined in the power set 2Ω , resulting in exponential
complexity of the operations involved in this framework, such as combination rules.
WhenΩ is linearly ordered, a usual trick is to work only with intervals, which dras-
tically reduces the complexity of calculations. In this paper, we show that this trick
can be extrapolated to frames endowed with an arbitrary lattice structure, not neces-
sarily a linear order. This principle makes it possible to apply the Dempster-Shafer
framework to very large frames such as, for instance, the power set of a finite set Ω ,
or the set of partitions of a finite set. Applications to multi-label classification and
ensemble clustering are demonstrated.

1 Introduction

The theory of belief functions originates from the pioneering work of Dempster
[1, 2] and Shafer [16]. In the 1990’s, the theory was further developed by Smets
[19, 22], who proposed a non probabilistic interpretation (referred to as the “Trans-
ferable Belief Model”) and introduced several new tools for information fusion
and decision making. Big steps towards the application of belief functions to real-
world problems involving many variables have been made with the introduction of
efficient algorithms for computing marginals in valuation-based systems [17, 18].

Although there has been some work on belief functions on continuous frames
(see, e.g., [12, 21]), the theory of belief functions has been mainly applied in the
discrete setting. In this case, all functions introduced in the theory as representations
of evidence (including mass, belief, plausibility and commonality functions) are
defined from the Boolean lattice (2Ω ,⊆) to the interval [0,1]. Consequently, all
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operations involved in the theory (such as the conversion of one form of evidence to
another, or the combination of two items of evidence using Dempster’s rule) have
exponential complexity with respect to the cardinality K of the frame Ω , which
makes it difficult to use the Dempster-Shafer formalism in very large frames.

When the frame Ω is linearly ordered, a usual trick is to constrain the focal ele-
ments (i.e., the subsets of Ω such that m(A) > 0) to be intervals (see, for instance,
[5]). The complexity of manipulating and combining mass functions is then dras-
tically reduced from 2K to K2. As we will show, most formula of belief function
theory work for intervals, because the set of intervals equipped with the inclusion
relation has a lattice structure. As shown recently in [10], belief functions can be
defined on any lattice, not necessarily Boolean. In this paper, this trick will be ex-
tended to the case of frames endowed with a lattice structure, not necessarily a linear
order. As will be shown, a lattice of intervals can be constructed, on which belief
functions can be defined. This approach makes it possible to define belief functions
on very large frames (such as the power set of a finite set Ω , or the set of partitions
of a finite set) with manageable complexity.

The rest of this paper is organized as follows. The necessary background on
belief functions and on lattices will first be recalled in Sections 2 and 3, respec-
tively. Our main idea will then be exposed in Section 4. It will be applied to define
belief functions on set-valued variables, with application to multi-label classifica-
tion, in Section 5. The second example, presented in Section 6, will concern be-
lief functions on the set of partitions of a finite set, with application to ensemble
clustering. Section 7 will then conclude this paper.

2 Belief Functions: Basic Notions

Let Ω be a finite set. A (standard) mass function on Ω is a function m : 2Ω → [0,1]
such that

∑
A⊆Ω

m(A) = 1. (1)

The subsets A of Ω such that m(A) > 0 are called the focal elements of m. Function
m is said to be normalized if /0 is not a focal element. A mass function m is often
used to model an agent’s beliefs about a variable X taking a single but ill-known
value ω0 in Ω [22]. The quantity m(A) is then interpreted as the measure of the
belief that is committed exactly to the hypothesisω0 ∈ A. Full certainty corresponds
to the case where m({ωk}) = 1 for some ωk ∈Ω , while total ignorance is modelled
by the vacuous mass function verifying m(Ω) = 1.

To each mass function m can be associated an implicability function b and a belief
function bel defined as follows:

b(A) = ∑
B⊆A

m(B) (2)

bel(A) = ∑
B⊆A,B �⊆A

m(B) = b(A)−m( /0). (3)
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These two functions are equal when m is normalized. However, they need to be distin-
guished when considering non normalized mass functions. Function bel has easier
interpretation, as bel(A) corresponds to a degree of belief in the proposition “The
true value ω0 of X belongs to A”. However, function b has simpler mathematical
properties. For instance, m can be recovered from b as

m(A) = ∑
B⊆A

(−1)|A\B|b(B), (4)

where | · | denotes cardinality. Function m is said to be the Möbius transform of b.
For any function f from 2Ω to [0,1] such that f (Ω) = 1, f is totally monotone if
and only if its Möbius transform m is positive and verifies (1) [16]. Hence, b (and
bel) are totally monotone.

Other functions related to m are the plausibility function, defined as

pl(A) = ∑
B∩A �= /0

m(B) = 1−b(A) (5)

and the commonality function (or co-Möbius transform of b) defined as

q(A) = ∑
B⊇A

m(B). (6)

m can be recovered from q using the following relation:

m(A) = ∑
B⊇A

(−1)|B\A|q(B). (7)

Functions m, bel, b, pl and q are thus in one-to-one correspondence and can be
regarded as different facets of the same information.

Let us now assume that we receive two mass functions m1 and m2 from two
distinct sources of information assumed to be reliable. Then m1 and m2 can be com-
bined using the conjunctive sum (or unnormalized Dempster’s rule of combination)
defined as follows:

(m1 ∩©m2)(A) = ∑
B∩C=A

m1(B)m2(C). (8)

This rule is commutative, associative, and admits the vacuous mass function as neu-
tral element. Let q1 ∩©2 denote the commonality function corresponding to m1 ∩©m2.
It can be computed from q1 and q2, the commonality functions associated to m1 and
m2, as follows:

q1 ∩©2(A) = q1(A) ·q2(A), ∀A⊆Ω . (9)

The conjunctive sum has a dual disjunctive rule [20], obtained by substituting union
for intersection in (8):
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(m1 ∪©m2)(A) = ∑
B∪C=A

m1(B)m2(C). (10)

It can be shown that

b1 ∪©2(A) = b1(A) ·b2(A), ∀A⊆Ω , (11)

which is the counterpart of (9).

3 Belief Functions on General Lattices

As shown by Grabisch [10], the theory of belief function can be defined not only
on Boolean lattices, but on any lattice, not necessarily Boolean. We will first recall
some basic definitions about lattices. Grabisch’s results used in this work will then
be summarized.

3.1 Lattices

A review of lattice theory can be found in [15]. The following presentation follows
[10].

Let L be a finite set and ≤ a partial ordering (i.e., a reflexive, antisymmetric and
transitive relation) on L. The structure (L,≤) is called a poset. We say that (L,≤)
is a lattice if, for every x,y ∈ L, there is a unique greatest lower bound (denoted
x∧y) and a unique least upper bound (denoted x∨y). Operations ∧ and ∨ are called
the meet and join operations, respectively. For finite lattices, the greatest element
(denoted�) and the least element (denoted⊥) always exist. A strict partial ordering
< is defined from ≤ as x < y if x≤ y and x �= y. We say that x covers y if y < x and
there is no z such that y < z < x. An element x of L is an atom if it covers only one
element and this element is ⊥. It is a co-atom if it is covered by a single element
and this element is �.

Two lattices L and L′ are isomorphic if there exists a bijective mapping f from
L to L′ such that x≤ y⇔ f (x) ≤ f (y). For any poset (L,≤), we can define its dual
(L,≥) by inverting the order relation. A lattice is autodual if it is isomorphic to its
dual.

A lattice is distributive if (x∨ y)∧ z = (x∧ z)∨ (y∧ z) holds for all x,y,z ∈ L.
For any x ∈ L, we say that x has a complement in L if there exists x′ ∈ L such
that x∧ x′ = ⊥ and x∨ x′ = �. L is said to be complemented if any element has
a complement. Boolean lattices are distributive and complemented lattices. Every
Boolean lattice is isomorphic to (2Ω ,⊆) for some set Ω . For the lattice (2Ω ,⊆), we
have ∧= ∩, ∨= ∪, ⊥= /0 and �=Ω .

A closure system on a set Θ is a family C of subsets of Θ containing Θ , and
closed under inclusion. As shown in [15], any closure system (C ,⊆) is a lattice
with ∧= ∩ and ∨= � defined by
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A�B =
⋂
{C ∈ C |A∪B⊆C}, ∀(A,B) ∈ C 2. (12)

3.2 Belief Functions on Lattices

Let (L,≤) be a finite poset having a least element, and let f be a function from L
to R. The Möbius transform of f is the function m : L → R defined as the unique
solution of the equation:

f (x) = ∑
y≤x

m(y), ∀x ∈ L. (13)

Function m can be expressed as:

m(x) = ∑
y≤x
μ(y,x) f (y), (14)

where μ(x,y) : L2 → R is the Möbius function, which is uniquely defined for each
poset (L,≤). The co-Möbius transform of f is defined as:

q(x) = ∑
y≥x

m(y), (15)

and m can be recovered from q as:

m(x) = ∑
y≥x
μ(x,y)q(y). (16)

Let us now assume that (L,≤) is a lattice. Following Grabisch [10], a function
b : L → [0,1] will be called an implicability function on L if b(�) = 1, and its
Möbius transform is non negative. The corresponding belief function bel can then be
defined as:

bel(x) = b(x)−m(⊥), ∀x ∈ L.

Note that Grabisch [10] considered only normal belief functions, in which case b =
bel. As shown in [10], any implicability function on (L,≤) is totally monotone.
However, the converse does not hold in general: a totally monotone function may
not have a non negative Möbius transform.

As shown in [10], most results of Dempster-Shafer theory can be transposed
in the general lattice setting. For instance, the conjunctive sum can be extended
by replacing ∩© by ∧ in (8), and relation (9) between commonality functions is
preserved. Similarly, we can extend the disjunctive rule (10) by substituting ∨ for ∪
in (10), and relation (11) still holds.

The extension of other notions from classical Dempster-Shafer theory may re-
quire additional assumptions on (L,≤). For instance, the definition of the plausibil-
ity function pl as the dual of b using (5) can only be extended to autodual lattices
[10].
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4 Belief Functions with Lattice Intervals as Focal Elements

LetΩ be a finite frame of discernment. If the cardinality ofΩ is very large, working
in the Boolean lattice (2Ω ,⊆) may become intractable. This problem can be circum-
vented by selecting as events only a strict subset of 2Ω . As shown in Section 3, the
Dempster-Shafer calculus can be applied in this restricted set of events as long as it
has a lattice structure. To be meaningful, the definition of events should be based on
some underlying structure of the frame of discernment.

When the frame Ω is linearly ordered, then a usual trick consists in assigning
non zero masses only to intervals. Here, we propose to extend and formalize this
approach, by considering the more general case where Ω has a lattice structure for
some partial ordering ≤. The set of events is then defined as the set I of lattice
intervals in (Ω ,≤). We will show that (I ,⊆) is then itself a lattice, in which the
Dempster-Shafer calculus can be applied.

This lattice (I ,⊆) of intervals of a lattice (Ω ,≤) will first be introduced more
precisely in Section 4.1. The definition of belief functions on (I ,⊆) will then be
dealt with in Section 4.2.

4.1 The Lattice (I ,⊆)

Let Ω be a finite frame of discernment, and let ≤ be a partial ordering of Ω such
that (Ω ,≤) is a lattice, with greatest element � and least element ⊥. A subset I of
Ω is a (lattice) interval if there exists elements a and b of Ω such that

I = {x ∈Ω |a≤ x≤ b}.

We then denote I as [a,b]. Obviously, Ω is the interval [⊥,�] and /0 is the empty
interval represented by [a,b] for any a and b such that a ≤ b does not hold. Let
I ⊆ 2Ω be the set of intervals, including the empty set /0:

I = {[a,b]|a,b∈Ω ,a≤ b}∪{ /0}.

The intersection of two intervals is an interval:

[a,b]∩ [c,d] =

{
[a∨ c,b∧d] if a∨ c≤ b∧d,

/0 otherwise.

Consequently, I is a closure system, and (I ,⊆) is a lattice, with least element
/0 and greatest element Ω . The meet operation is the intersection, and the join
operation � is defined by

[a,b]� [c,d] = [a∧ c,b∨d]. (17)

Clearly, [a,b]⊆ [a,b]� [c,d] and [c,d]⊆ [a,b]� [c,d], hence [a,b]∪ [c,d]⊆ [a,b]�
[c,d]. We note that (I ,⊆) is a subposet, but not a sublattice of (2Ω ,⊆), because
they do not share the same join operation.
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The atoms of (I ,⊆) are the singletons of Ω , while the co-atoms are intervals
of the form [⊥,x], where x is a co-atom of (Ω ,≤), or [x,�], where x is an atom of
(Ω ,≤). The lattice (I ,⊆) is usually neither autodual, nor Boolean.

4.2 Belief Functions on (I ,⊆)

Let m be a mass function from I to [0,1]. Implicability, belief and commonality
functions can be defined on (I ,⊆) as explained in Section 3. Conversely, m can
be recovered from b and q using (14) and (16), where the Möbius function μ de-
pends on the lattice (I ,⊆). As the cardinality of I is at most proportional to K2,
where K is the cardinality of Ω , all these operations, as well as the conjunctive and
disjunctive sums can be performed in polynomial time.

Given a mass function m on (I ,⊆), we may define a function m∗ on (2Ω ,⊆) as

m∗(A) =

{
m(A) if A ∈I ,

0 otherwise.

Let b∗ and q∗ be the implicability and commonality functions associated to m∗. It
is obvious that b∗(I) = b(I) and q∗(I) = q(I) for all I ∈I . Let m1 and m2 be two
mass functions on (I ,⊆), and let m∗1 and m∗2 be their “images” in (2Ω ,⊆). Because
the meet operations are identical in (I ,⊆) and (2Ω ,⊆), computing the conjunctive
sum in any of these two lattices yields the same result, as we have

(m∗1 ∩©m∗2)(A) =

{
(m1 ∩©m2)(A) if A ∈I ,

0 otherwise.

However, computing the disjunctive sum in (2Ω ,⊆) or (I ,⊆) is not equivalent,
because the join operation in (I ,⊆), defined by (17), is not identical to the union
operation in 2Ω . Consequently, when computing the disjunctive sum of m∗1 and m∗2,
the product m∗1(A)m∗2(B) is transferred to A∪B, whereas the product m1(A)m2(B)
is transferred to A�B when combining m1 and m2. Let (m1 ∪©m2)∗ be the image
of m1 ∪©m2 in (2Ω ,⊆). As A�B ⊇ A∪B, (m1 ∪©m2)∗ is thus an outer approxima-
tion [7, 4] of m∗1 ∪©m∗2. When masses are assigned to intervals of the lattice (Ω ,≤),
doing the calculations in (I ,⊆) can thus be see an approximation of the calcula-
tions in (2Ω ,⊆), with a loss of information only when a disjunctive combination is
performed.

5 Reasoning with Set-Valued Variables

In this section, we present a first application of the above scheme to the represen-
tation of knowledge regarding set-valued variables. The general framework will
be presented in Section 5.1, and it will be applied to multi-label classification in
Section 5.2.
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5.1 Evidence on Set-Valued Variables

LetΘ be a finite set, and let X be a variable taking values in the power set 2Θ . Such
a variable is said to be set-valued, or conjunctive [7, 24]. For instance, in diagnosis
problems, Θ may denote the set of faults that can possibly occur in a system, and
X the set of faults actually occurring at a given time, under the assumption that
multiple faults can occur. In text classification,Θ may be a set of topics, and X the
list of topics dealt with in a given text, etc.

Defining belief functions on the lattice (22Θ ,⊆) is practically intractable, because
of the double exponential complexity involved. However, we may exploit the lattice
structure induced by the ordering⊆ inΩ = 2Θ , using the general approach outlined
in Section 4 [6].

For any two subsets A and B of Θ such that A ⊆ B, the interval [A,B] is defined
as

[A,B] = {C ⊆Θ |A⊆C ⊆ B}.
The set of intervals of the lattice (Ω ,⊆) is thus

I = {[A,B]|A,B ∈Ω ,A⊆ B}∪ /0Ω ,

where /0Ω denotes the empty sets of Ω (as opposed to the empty ste ofΘ ). Clearly,
I ⊆ 2Ω = 22Θ . The interval [A,B] can be seen as the specification of an unknown
subset C ofΘ that surely contains all elements of A, and possibly contains elements
of B. Alternatively, C surely contains no element of B.

5.2 Multi-label Classification

In this section, we present an application of the framework developed in this paper
to multi-label classification [23, 25, 26]. In this kind of problems, each object may
belong simultaneously to several classes, contrary to standard single-label problems
where objects belong to only one class. For instance, in image retrieval, each image
may belong to several semantic classes such as “beach” or “urban”. In such prob-
lems, the learning task consists in predicting the value of the class variable for a new
instance, based on a training set. As the class variable is set-valued, the framework
developed in the previous section can be applied.

5.2.1 Training Data

In order to construct a multi-label classifier, we generally assume the existence of
a labeled training set, composed of n examples (xi,Yi), where xi is a feature vector
describing instance i, and Yi is a label set for that instance, defined as a subset of
the setΘ of classes. In practice, however, gathering such high quality information is
not always feasible at a reasonable cost. In many problems, there is no ground truth
for assigning unambiguously a label set to each instance, and the opinions of one or
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several experts have to be elicited. Typically, an expert will sometimes express lack
of confidence for assigning exactly one label set.

The formalism developed in this paper can easily be used to handle such situa-
tions. In the most general setting, the opinions of one or several experts regarding the
set of classes that pertain to a particular instance i may be modeled by a mass func-
tion mi in (I ,⊆). A less general, but arguably more operational option is to restrict
mi to be categorical, i.e., to have a single focal element [Ai,Bi], with Ai ⊆ Bi ⊆Θ .
The set Ai is then the set of classes that certainly apply to example i, while Bi is
the set of classes that possibly apply to that instance. The usual situation of precise
labeling is recovered in the special case where Ai = Bi.

5.2.2 Algorithm

The evidential k nearest neighbor rule introduced in [3] can be extended to the multi-
label framework as follows. LetΦk(x) denote the set of k nearest neighbors of a new
instance described by feature vector x, according to some distance measure d, and
xi an element of that set with label [Ai,Bi]. This item of evidence can be described
by the following mass function in (I ,⊆):

mi([Ai,Bi]) = α exp(−γd(x,xi)) ,

mi([ /0Θ ,Θ ]) = 1−α exp(−γd(x,xi)) ,

where α and γ are two parameters such that 0 < α < 1. These k mass functions are
then combined using the conjunctive sum.

For decision making, the following simple and computationally efficient rule can
be used. Let Ŷ be the predicted label set for instance x. To decide whether to include
each class θ ∈Θ or not, we compute the degree of belief bel([{θ},Θ ]) that the true
label set Y contains θ , and the degree of belief bel([ /0,{θ}]) that it does not contain
θ . We then define Ŷ as

Ŷ = {θ ∈Θ | bel([{θ},Θ ])≥ bel([ /0,{θ}])}.

5.2.3 Experiment

The emotion dataset1, presented in [23], consist of 593 songs annotated by experts
according to the emotions they generate. There are 6 classes, and each song was
labeled as belonging to one or several classes. Each song was also described by 8
rhythmic features and 64 timbre features, resulting in a total of 72 features. The data
was split into a training set of 391 examples and a test set of 202 examples.

This dataset was initially constructed in such a way that each instance i is as-
signed a single set of labels Yi. To assess the performances of our approach in learn-
ing from data with imprecise labels such as postulated in Section 5.2.1 above, we
randomly simulated an imperfect labeling process by proceeding as follows.

1 This dataset can be downloaded from
http://mlkd.csd.auth.gr/multilabel.html
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Let yi = (yi1, . . . ,yiK) be the vector of {−1,1}K such that yik = 1 if θk ∈ Yi and
yik =−1 otherwise. For each instance i and each class θk, we generated a probability
of error pik from a beta distribution with parameters a = b = 0.5 , and we changed
yik to −yik with probability pik, resulting in a noisy label vector y′i. We then defined
intervals [Ai,Bi] such that Ai = {θk ∈ Θ | y′ik = 1 and pik < 0.2} and Bi = {θk ∈
Θ | y′ik = 1 or pik ≥ 0.2}.

The intuition behind the above model may be described as follows. Each number
pik represents the probability that the membership of instance i to class θk will be
wrongly assessed by the expert. We assume that these numbers can be provided by
the expert as a way to describe the uncertainty of his/her assessments, which allows
us to label each instance i by a pair of sets [Ai,Bi].

Our method (hereafter referred to as EML-kNN) was applied both with noisy
labels y′i and with imprecise labels (Ai,Bi). The features were normalized so as to
have zero mean and unit variance. Parametersα and γ were fixed at 0.95 and 0.5, re-
spectively. As a reference method, we used the ML-kNN method introduced in [26],
which was shown to have good performances as compared to most existing multi-
label classification algorithms. The ML-kNN algorithm was applied to noisy labels
only, as it is not clear how imprecise labels could be handled using this method.

For evaluation, we used accuracy as a performance measure, defined as:

Accuracy =
1
n

n

∑
i=1

|Yi∩ Ŷi|
|Yi∪ Ŷi|

,

where n is the number of test examples, Yi is the true label set for examples i, and Ŷi

is the predicted label set for the same example.
Figure 1 shows the mean accuracy plus or minus one standard deviation over five

generations of noisy and imprecise labels, with the following methods: EML-kNN
with imprecise labels [Ai,Bi], EML-kNN with noisy labels and ML-kNN with noisy
labels. The EML-kNN method with noisy labels outperforms the ML-kNN trained
using the same data, while the EML-kNN algorithm with imprecise labels clearly
yields the best performances, which demonstrates the benefits of handling imprecise
labels using our approach.

6 Belief Functions on Partitions

Ensemble clustering methods [11, 9] aim at combining multiple clustering solutions
or partitions into a single one, offering a better description of the data. In this sec-
tion, we explain how to address this fusion problem using the general framework
developed in this paper. Each clustering algorithm (or clusterer) can be considered
as a partially reliable source, giving an opinion about the true, unknown, partition of
the objects. This opinion provides evidence in favor of a set of possible partitions.
Moreover, we suppose that the reliability of each source is described by a confi-
dence degree, either assessed by an external agent or evaluated using a class validity
index. Manipulating beliefs defined on sets of partitions is intractable in the usual
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Fig. 1 Mean accuracy (plus or minus one standard deviation) over 5 trials as a function
of k for the emotions dataset with the following methods: EML-kNN with imprecise labels
(Ai,Bi), EML-kNN with noisy labels and ML-kNN with noisy labels

case where the number of potential partitions is high (for example, a set composed
of 6 elements has 203 potential partitions!) but it can be manageable using the lat-
tice structure of partitions, as it will be explained below. Note that, due to space
limitations, only the main principles will be given. More details may be found in
[13, 14].

First, basic notions about the lattice of partitions of a set are recalled in
Section 6.1, then our approach is explained and illustrated in Section 6.2 using a
synthetic data set.

6.1 Lattice of Partitions

Let E denote a finite set of n objects. A partition p is a set of non empty, pairwise
disjoint subsets E1,...,Ek of E , such that their union is equal to E . Every partition p
can be associated to an equivalence relation (i.e., a reflexive, symmetric, and tran-
sitive binary relation) on E , denoted by Rp, and characterized, for all (x,y) ∈ E2,
by:

Rp(x,y) =
{

1 if x and y belong to the same cluster in p,
0 otherwise.

The set of all partitions of E , denotedΩ , can be partially ordered using the following
ordering relation: a partition p is said to be finer than a partition p′ on the same set E
(p� p′) if the clusters of p can be obtained by splitting those of p′ (or equivalently,
if each cluster of p′ is the union of some clusters of p). This partial ordering can be
alternatively defined using the equivalence relations associated to p and p′:
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p� p′ ⇔ Rp(x,y)≤ Rp′(x,y) ∀(x,y) ∈ E2.

The set Ω endowed with the �-order has a lattice structure [15]. In this lattice, the
meet p∧ p′ of two partitions p and p′, is defined as the coarsest partition among
all partitions finer than p and p′. The clusters of the meet p∧ p′ are obtained by
considering pairwise intersections between clusters of p and p′. The equivalence
relation Rp∧p′ is simply obtained as the minimum of Rp and Rp′ . The join p∨ p′ is
similarly defined as the finest partition among the ones that are coarser than p and p′.
The equivalence relation Rp∨p′ is given by the transitive closure of the maximum
of Rp and Rp′ . The least element of the lattice ⊥ is the finest partition, denoted
p0 = (1/2/.../n), in which each object is a cluster. The greatest element� of (Ω ,�)
is the coarsest partition denoted pE = (123..n), in which all objects are put in the
same cluster. In this order, each partition precedes every partition derived from it by
aggregating two of its clusters. Similarly, each partition covers all partitions derived
by subdividing one of its clusters in two clusters.

A closed interval of Ω is defined as:

[p, p] = {p ∈Ω | p� p � p}. (18)

It is a particular set of partitions, namely, the set of all partitions finer than p and
coarser than p.

6.2 Ensemble Clustering

6.2.1 Principle

We propose to use the following strategy for ensemble clustering:

1) Mass generation: Given r clusterers, build a collection of r mass functions m1,
m2,..., mr on the lattice of intervals; the way of choosing the focal elements and
allocating the masses from the results of several clusterers depends mainly on
the applicative context and on the nature of the clusterers in the ensemble. An
example will be given in Section 6.2.2.

2) Aggregation: Combine the r mass functions into a single one using the conjunc-
tive sum. The result of this combination is a mass function m with focal ele-
ments [p

k
, pk] and associated masses mk, k = 1, . . . ,s. The equivalence relations

corresponding to p
k

and pk will be denoted Rk and Rk, respectively.
3) Decision making: Let pi j denote the partition with (n−1) clusters, in which the

only objects which are clustered together are objects i and j (partition pi j is an
atom in the lattice (Ω ,�)). Then, the interval [pi j, pE ] represents the set of all
partitions in which objects i and j are put in the same cluster. Our belief in the
fact that i and j belongs to the same cluster can be characterized by the credibility
of [pi j, pE ], which can be computed as follows:

Beli j = bel([pi j, pE ]) = ∑
[pk,pk]⊆[pi j ,pE ]

mk = ∑
pk�pi j

mk =
s

∑
k=1

mkRk(i, j). (19)
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Matrix Bel = (Beli j) can be considered as a new similarity matrix and can be
in turn clustered using, e.g., a hierarchical clustering algorithm. If a partition is
needed, the classification tree (dendogram) can be cut at a specified level so as to
insure a user-defined number of clusters.

6.2.2 Example

The data set used to illustrate the method is the half-ring data set inspired from
[8]. It consists of two clusters of 100 points each in a two-dimensional space. To
build the ensemble, we used the fuzzy c-means algorithm with a varying number of
clusters (from 6 to 11). The six hard partitions computed from the soft partitions are
represented in Figure 2.

Each hard partition pl (l = 1,6) was characterized by a confidence degree 1−αl ,
which was computed using a validity index measuring the quality of the partition.
Considering that the true partition is coarser than each individual one, and taking
into account the uncertainty of the clustering process, the following mass functions
were defined:
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Fig. 2 Half-rings data set. Individual partitions.
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{
ml([pl , pE ]) = 1−αl

ml(Ω) = αl .
(20)

The six mass functions (with two focal elements each) were then combined using
the conjunctive rule of combination. A tree was computed from matrix Bel using
Ward’s linkage. This tree, represented in the left part of Figure 3, indicates a clear
separation in two clusters. Cutting the tree to obtain two clusters yields the partition
represented in the right part of Figure 3. We can see that the natural structure of the
data is perfectly recovered.

7 Conclusion

The exponential complexity of operations in the theory of belief functions has long
been seen as a shortcoming of this approach, and has prevented its application to
very large frames of discernment. We have shown in this paper that the complex-
ity of the Dempster-Shafer calculus can be drastically reduced if belief functions are
defined over a subset of the power set with a lattice structure. When the frame of
discernment forms itself a lattice for some partial ordering, the set of events may
be defined as the set of intervals in that lattice. Using this method, it is possible to
define and manipulate belief functions in very large frames such as the power set
of a finite set, or the set of partitions of a set of objects. This approach opens the
way to the application of Dempster-Shafer theory to computationally demanding Ma-
chine Learning tasks such as multi-label classification and ensemble clustering. Other
potential applications of this framework include uncertain reasoning about rankings.
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Quasi-copulas: A Bridge between Fuzzy Set
Theory and Probability Theory

Bernard De Baets

After their first life in the field of probabilistic metric spaces, triangular norms (t-
norms) have been living a quite successful second life in fuzzy set theory. For almost
30 years now, they have been playing the unquestioned role of model for the point-
wise intersection of fuzzy sets or for conjunction in fuzzy logic. There is a vast
literature on the topic, containing impressive results, as well as challenging open
problems.

However, do we really need t-norms? Are all of their properties required for any
application? Isn’t it possible that cancelling or replacing some of their properties
might lead to new applications?

The purpose of this lecture is to show that we should indeed take a step back. We
discuss in detail the related classes of conjunctors (increasing extensions of Boolean
conjunction), quasi-copulas and copulas. New properties such as 1-Lipschitz
continuity and 2-monotonicity play an important role. A blockwise view provides
additional insights into the similarities and differences of these classes of operations.

Of particular interest is the class of quasi-copulas, i.e. the class of 1-Lipschitz con-
tinuous conjunctors. It bridges the gap between the class of triangular norms and the
class of copulas, in the sense that associative quasi-copulas are 1-Lipschitz continuous
t-norms, whereas 1-Lipschitz continuous t-norms are associative copulas.

We illustrate by means of some examples from preference modelling and similar-
ity measurement where these classes arise. In the first case, we show how additivity
appears naturally in the study of fuzzy preference structures. In the second case, we
identify a remarkable role for the Bell inequalities in fuzzy set theory.

Bernard De Baets
Department of Applied Mathematics, Biometrics and Process Control, Ghent University,
Coupure links 653, B-9000 Gent, Belgium
e-mail: bernard.debaets@ugent.be

V.-N. Huynh et al. (Eds.): Integrated Uncertainty Management and Applications, AISC 68, p. 55, 2010.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

bernard.debaets@ugent.be


 
 

Part II 
Fuzzy Measures and Integrals 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A Survey of Fuzzy Integrals: Directions for
Extensions

Haruki Imaoka

Abstract. This study describes four directions for extension of various fuzzy inte-
grals based on the Sugeno integral and Choquet integral. Fuzzy theory as well as
utility theory is covered as a motivation for these extensions. Further, a new general
fuzzy integral is proposed.

1 Introduction

We have two objectives in surveying fuzzy integrals. First, we want to classify many
proposed fuzzy integrals into four types and map their possible extensions. We are
particularly interested in the Sugeno integral and the rediscovered Choquet integral,
the two prominent fuzzy integrals. Second, we want to propose a new general fuzzy
integral to combine three groups of fuzzy integrals into one type.

Theories and applications in various fields have produced a wide and rich stream
of fuzzy integrals. Some studies cover these fuzzy measures and fuzzy integrals.
For theoretical matters, a book by Grabisch, Murofushi, and Sugeno 2000a [13] and
more recently a paper by Mesiar and Mesiarová 2008 [34] are recommendable. As
for applications, the above book and more recently another paper by Grabisch and
Labreuche 2008 [17] are recommendable. In the field of economics specifically, a
book by Eichberger and Kelsey 2009 [8] is recommendable.

Here, we summarize many fuzzy integrals in literature into four types from the
viewpoint of their directions for extension.

Type 1: Union of the two prominent Sugeno and Choquet integrals. There are
three groups of fuzzy integrals. The first group contains integrals such as the Sugeno
and Choquet integrals. Two more integrals named the Shilkret integral and the
Opposite-Sugeno integral are touchstones to discern whether an integral in the

Haruki Imaoka
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second and third groups covers each of the integrals in the first group or not. In
this direction, a new general fuzzy integral, named the two-copulas integral, is
proposed. The next two directions for extension come from economics.

Type 2: Concave integrals for uncertainty aversion. Here are two ways to at-
tach concavity onto integrals. One method is changing integrals and another one is
restricting the fuzzy measures.

Type 3: Negative values for risk aversion. Here are two ways to treat negative
functions named the Choquet integral and S̆ipos̆ integral. They are combined and
extended.

Type 4: Nonmonotonic measure for welfare preference. This direction for exten-
sion comes from the welfare field. Some preferences in this field showed impartial-
ity, i.e., the same incomes are better than bigger incomes but not the same. This
extension requests studying nonmonotonic measures.

2 Theory

2.1 Fuzzy Integrals

A triplet (X ,2X ,μ) is a fuzzy measure space. A set function μ : 2X → [0,1] is called a
fuzzy measure (Sugeno 1974 [55] a.k.a. capacity by Choquet 1953 [4] or nonadditive
measure by Shackle 1949 [49]) if μ satisfies the following properties:

• On the boundary of μ , μ(φ) = 0,μ(X) = 1.
• The monotonicity condition is A⊆ B⇒ μ(A)≤ μ(B). [See Extension Type 4]

Some special fuzzy measures are as follows:

• additive: μ(A∪B)+ μ(A∩B) = μ(A)+ μ(B).
• superadditive: μ(A∪B)+ μ(A∩B)≥ μ(A)+ μ(B). [See Extension Type 2]
• subadditive: μ(A∪B)+ μ(A∩B)≤ μ(A)+ μ(B).
• conjugate: μ̂(A) = μ(X)− μ(AC). [See Extension Type 3]

Definition 2.1. A functional of f : X → [0,1] w.r.t. a fuzzy measure μ is called a
fuzzy integral Iμ( f ). [See Extension Type 1]

Here we define a distribution function of a function f . A distribution function F :
[0,1]→ [0,1] is defined by F(α) := μ({x | f (x) > α }). [See Extension Type 3]

Two prominent fuzzy integrals are defined by

Sugeno : Sμ( f ) := Sup
α∈[0,1]

[α ∧F(α)] (Sugeno 1974 [55])

Choquet : Cμ( f ) :=
∫ 1

0
F(α)dα (Vitali 1925 [59], Choquet 1953 [4])

The Choquet integral was rediscovered independently in different fields (Höhle
1982 [18], Schmeidler 1986 [46], Murofushi and Sugeno 1989 [38]) and has been
widely used. [See Extension Type 1]
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2.2 Binary Operations

Two symbols ⊗ and ⊕ are binary operations to make more general fuzzy integrals.
Two important multiplication-like binary operations from [0,1]2 to [0,1] are as

follows:

• T-norm (Schweizer and Sklar 1961 [48]) satisfies:

– Boundary conditions: x⊗0 = 0⊗ x = 0, x⊗1 = 1⊗ x = x.
– Nondecreasing: x⊗ y≤ u⊗ v, whenever x≤ u,y≤ v.
– Commutative: x⊗ y = y⊗ x.
– Associative: (x⊗ y)⊗ z = x⊗ (y⊗ z).

• Copula (Sklar 1959 [53]) satisfies:

– Boundary conditions: x⊗0 = 0⊗ x = 0, x⊗1 = 1⊗ x = x.
– 2-increasing: x⊗ y−u⊗ y− x⊗ v+u⊗ v≥ 0, whenever x≤ u,y≤ v.

If both t-norm and copula have a generator, which is an increasing function φ :
[0,1]→ [0,1] and φ(0) = 0,φ(1) = 1 (here we show a product-type generator), the
following equation holds: x⊗ y = φ−1(φ(x) ·φ(y)).

To compare the two binary operations, the following theorem is useful.

Theorem 2.1. A t-norm is a copula if and only if it satisfies the Lipschitz condition
u⊗ y− x⊗ y≤ u− x, whenever x≤ u (Moynihan, Schweizer, and Sklar 1978 [37]).

Here, we introduce three important binary operations, which are both copulas and
t-norms.

1. Minimum copula (a.k.a. logical product); x∧ y := minimum{x,y}.
2. Product copula (a.k.a. arithmetic product); x · y := xy.
3. Łukasiewicz copula (a.k.a. bounded product); x◦ y := maximum{x + y−1,0}.
As for copulas, the following relation is known as the Fréchet-Hoeffding bounds:
x◦y≤ x⊗y≤ x∧y. Frank’s generator φ(t) = eqt−1

eq−1 (Frank 1979 [10]) encompasses
minimum, product, and Łukasiewicz copulas.

An addition-like binary operation named t-conorm (a.k.a. s-norm), denoted by⊕,
is defined by replacing only the boundary condition of t-norm as follows: Boundary
conditions: x⊕0 = 0⊕ x = x, x⊕1 = 1⊕ x = 1. Sometimes a binary operation⊕ is
defined using the corresponding binary operation ⊗: x⊕ y := 1− (1− x)⊗ (1− y).
The following equality is called the conjugate condition: x⊕ y = x + y− x⊗ y.

Using t-conorm, another important binary operation called a pseudo difference
(Weber 1984 [64]) is defined as follows: u−⊕v := inf{t ∈ [0,1] |v⊕ t ≥ u}.

As for the maximum, u−∨v := inf{t ∈ |v∨ t ≥ u} = u, whenever u ≥ v is
satisfied.

A special function denoted by 1A, which satisfies x ∈ A⇒ f (x) = 1 and x /∈ A⇒
f (x) = 0, is called a characteristic function of a subset A. There are two important
relationships considered as inspectors used for binary operations: (Lower edge):
Iμ(a ·1A) = a⊗μ(A),a∈ [0,1]; (Upper edge): Iμ(1B +a ·1Bc) = a⊕μ(B),a∈ [0,1].
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2.3 Extended Fuzzy Integrals

There are various fuzzy integrals, which are classified into three groups. The first
group contains fixed fuzzy integrals such as the Sugeno integral and Choquet in-
tegral. The second one contains wider fuzzy integrals, which have one free binary
operation. The third group contains the widest fuzzy integrals, which have two or
more free binary operations.

• The first group:

– Sugeno: Sup
α∈[0,1]

[α ∧F(α)] (Sugeno 1974 [55]).

– Choquet:
∫ 1

0 F(α)dα (Choquet 1953 [4]).
– Shilkret: Sup

α∈[0,1]
[α ·F(α)] (Shilkret 1971 [51]).

– Opposite-Sugeno: See Imaoka in the next second group.

• The second group:

– Weber: Sup
α∈[0,1]

[α⊗F(α)] (Weber 1984 [64]).

– Mesiar: ζ−1
[∫ 1

0 ζ ◦F(α)dζ (α)
]
, where an increasing function ζ : [0,1]→

[0,∞] is used and ζ (0) = 0 (Mesiar 1995 [33]).
– Imaoka:

∫ 1
0 Cx(α,F(α))dα , where Cx(x,y) := ∂

∂xC(x,y) is a partial derivative
of a copula (Imaoka 1997 [19]). Vivona and Divari 2002 [60] studied this
integral deeply. If the Łukasiewicz copula is used, it is called an Opposite-
Sugeno integral, and the integral is a member of the first group. The Opposite-
Sugeno integral does not follow the law of large numbers (Imaoka 2000 [20]).

Before explaining the third group, we introduce how to make a fuzzy integral. In
the first step, a simple function is defined on X with range Rn = {x1,x2, · · · ,xn},
where 0 < x1 < x2 · · · < xn < 1 are satisfied. μi is defined by μi := F(xi− 0) for a
simple function. In the second step, an integral is defined by a supremum of simple
functions.

• The third group:

– Murofushi and Sugeno: Sup

{
n⊕

i=1
(xi� xi−1)⊗ μi

⏐⏐∀n,∀Rn,μi ≤ F(xi−0)
}

(Murofushi and Sugeno 1991 [39]). Benvenuti and Mesiar 2000 [2] proposed
a similar pseudoadditive integral. The integral has three independent binary
operations and covers both Weber and Mesiar integrals.

Note that Imaoka integral can be written by:

Sup

{
n
∑

i=1
(xi⊗ μi− xi−1⊗ μi) |∀n,∀Rn,μi ≤ F(xi−0)

}
.

The Weber integral covers Sugeno and Shilkret. The Mesiar integral covers Cho-
quet. The Imaoka integral covers Sugeno, Choquet, and Opposite-Sugeno. The
Murofushi and Sugeno integral covers Sugeno, Choquet, and Shilkret.
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A new fuzzy integral, named a two-copulas integral, which is a member of the
third group is defined in two ways as follows, where � ≥ ⊗ means x� y ≥ x⊗
y,∀(x,y) ∈ [0,1]2:

�≥⊗ : Sup

{
n
∑

i=1
(xi⊗ μi− xi−1� μi) |∀n,∀Rn,μi ≤ F(xi−0)

}
,

�≤⊗ : In f

{
n
∑

i=1
(xi⊗ μi−1− xi−1� μi−1) |∀n,∀Rn,μi ≥ F(xi + 0)

}
.

2.4 Discrete Fuzzy Integrals

If a function f is represented by a vector X = (x1,x2, . . . ,xn), a fuzzy integral Iμ(X) :
[0,1]n → [0,1] is called a discrete fuzzy integral w.r.t. a (discrete) fuzzy measure μ ,
where a universal set X is defined as X = {1,2, · · · ,n}.

Let π(i) be a permutation so that xπ(1) ≤ xπ(2) ≤ ·· · ≤ xπ(n) is satisfied. A fuzzy
measure is defined by μπ(i) := μ({π(i),π(i+1), · · · ,π(n)}). However, the succeed-
ing calculation is not the same as the case of a simple function in general.

The integral is considered an aggregation function from n variables and 2n pa-
rameters to one output. The Choquet integral produces an output, and the value is
not selected from the input values and parameters in general. In contrast, the Sugeno
integral produces an output selected from the input values and parameters. This fact
is easily understood from Kandel’s expression (Kandel and Byatt 1978 [21]) that the
Sugeno integral is a weighted median (WM). The Choquet and Sugeno integrals are
said to be quantitative and qualitative, or a ratio scale and ordinal scale, respectively.
Here, we want to show some properties of the fuzzy integrals including the Choquet
and Sugeno integrals.

1. Fuzzy integral Iμ(X) is continuous w.r.t. X and μ .
2. Nondecreasing: Iμ(X)≤ Iν(Y), whenever X≤ Y and μ ≤ ν are satisfied.
3. Idempotent: Iμ(a · 1X) = a,a ∈ [0,1]. Note that this relation is equivalent to

min
i∈X

xi ≤ Iμ(X)≤max
i∈X

xi if property (2) is satisfied.

4. Indicating: Iμ(1A) = μ(A). A discrete fuzzy integral can be considered a function
from n-dimensional unit hypercube [0,1]n to [0,1]. From this relation, we can
distinguish between the role of a fuzzy measure and a fuzzy integral. A fuzzy
measure determines the output values of vertices before integration and a fuzzy
integral plays an interpolation role (Grabisch 2004 [15]).

5. Coincidence regardless of the model when a fuzzy measure is logical: If a fuzzy
measure satisfies a condition μ(A)∈ {0,1}, it is said to be a logical measure, and
every fuzzy integral coincides with every other.

2.5 Characterization of Fuzzy Integrals

Instead of operational definitions of fuzzy integrals, definitions by characteriza-
tions have been studied. Two vectors X,Y are called comonotonic if the following
conditions are satisfied: xi ≥ x j ⇒ yi ≥ y j,∀(i, j) ∈ {1, · · · ,n}2.
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Some special fuzzy integrals are as follows:

comonotone additive : Iμ(X+ Y) = Iμ(X)+ Iμ(Y).
comonotone maxtive : Iμ(X∨Y) = Iμ(X)∨ Iμ(Y).
comonotone minitive : Iμ(X∧Y) = Iμ(X)∧ Iμ(Y).

Comonotone additivity and maxtivity (minitivity) are local characteristics of the
Choquet and Sugeno integrals, respectively. Here we consider a restricted do-
main called the hypercorn, which contains n + 1 strictly increasing sequential
vertices such as characteristic vectors of φ ⊂ A1 ⊂ . . .⊂ An = X . The word comono-
tone is interpreted as “as for a limited hypercorn.” Dellacherie 1970 [6] showed
that the Choquet integral satisfies comonotone additivity. Inversely, Schmeidler
1986 [46] showed that comonotone additivity characterizes the Choquet integral,
which is known as Schmeidler’s representation theorem. This representational ap-
proach has been deeply studied (Denneberg 1997 [7], Narukawa, Murofushi, and
Sugeno 2000 [41], Marichal 2000b [31]). Additivity Iμ(X+ Y) = Iμ(X)+ Iμ(Y) is
called Cauchy’s functional equation and the solution is Iμ(X) =∑cixi, where ci is an
arbitrary constant if Iμ(X) satisfies one of the mild regularity conditions (continu-
ity at a single point or monotonicity, etc.) (Alisina, Frank, and Schweizer 2006 [1]).
Roughly speaking, additivity means linear interpolation. Marichal 2002 [32] pointed
toward and Grabisch 2004 [15] showed that the Choquet integral is considered a
parsimonious linear interpolation.

The Möbious transform is one of the most exciting transforms in both theoretical
and practical studies on fuzzy measures and the Choquet integral. The Choquet in-
tegral w.r.t. Möbious transform (a.k.a. Lovász extension) can be considered a global
expression (Lovász 1983 [29], Rota 1964 [45] ).

In contrast, DeCampos and Bolanos 1992 [5] showed that maxtivity and minitiv-
ity are characterizations of the Sugeno integral. Some axiomatic characterization of
the Sugeno integral have been deeply studied (Marichal 2000a [30]).

If we are interested in uncertainty aversion (Knight 1921 [25], Schmeidler
1989 [47]), there are other useful global properties of the fuzzy integrals:

0≤ λ ≤ 1,
concave : Iμ(λX+(1−λ )Y)≥ λ Iμ(X)+ (1−λ )Iμ(Y).
convex : Iμ(λX+(1−λ )Y)≤ λ Iμ(X)+ (1−λ )Iμ(Y).

In the Choquet integral, there is a deep relationship between the properties of the
fuzzy measure and the concave or convex properties.

Theorem 2.2. A Choquet integral is concave if and only if a fuzzy measure is
superadditive (Lovász 1983 [29], Schmeidler 1989 [47]).

If a fuzzy measure satisfies the additivity, it is called a probability measure and is
denoted by P instead of μ .

Theorem 2.3. When a fuzzy measure μ is superadditive (its conjugate fuzzy
measureμ̂ is subadditive), its core is nonempty and the Choquet integral of any
random variable f is given by
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Cμ( f ) = min
P∈core(μ)

CP( f ),

core(μ) := {P |μ(A)≤ P(A)≤ μ̂(A),∀A⊆ X }
(Shapley 1971 [50], Schmeidler 1986 [46]).

When f is modified by a utility function, this formulation is called the Max-Min
Expected Utility (MMEU) (Gilboa and Schmeidler 1989 [11]).

3 Fuzzy Integrals and Utility Theory

3.1 The Choquet Integral in Economics

In the field of fuzzy theory, idempotency of the fuzzy integral is usually assumed
since aggregation must be between a minimum and a maximum value. On the other
hand, in the field of expected utility, it is natural to deny idempotency. Narukawa’s
Choquet-Stieltjes integral does not satisfy idempotency and is defined as follows:∫ 1

0
F(α)dψ(α) (Narukawa and Murofushi 2008 [43])

When a nondecreasing function ψ : [0,1]→ [0,1] is considered a utility function,
it is called the Choquet Expected Utility (CEU) (Schmeidler 1989 [63], Wakker
2001 [63]).

Furthermore, if fuzzy measures are distorted from probability measures by a
nondecreasing function ξ : [0,1]→ [0,1] as follows:

F(α) = ξ ◦P({x| f (x) > α}),

they are called the Rank-Dependent Expected Utility (RDEU) ( Quiggin 1982 [44],
Yaari 1987 [66]). CEU and RDEU were born from different streams, namely uncer-
tainty aversion and risk aversion, but the formulation is almost the same (Wakker
1990 [62]).

3.2 Fuzzy Integrals for Negative Inputs

Negative functions and positive/negative functions have been studied. The S̆ipos̆
integral (S̆ipos̆ 1970 [52]) from [−1,1]n to [−1,1] states:

X+ := X∨0
X− :=−X∨0
SIθ (X) := Cθ (X+)−Cθ (X−).

As for the Choquet integral from [−1,1]n to [−1,1], the fuzzy integral for the
negative part is a conjugate one:

Cθ (X) := Cθ (X+)−Cθ̂ (X
−).
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The Choquet and S̆ipos̆ integrals were named asymmetric and symmetric integrals,
respectively (Denneberg 1997 [7]). Note that the rule “Coincidence regardless of the
model when a fuzzy measure is logical,” is only a rule when positive functions are
considered, but is violated between the Choquet and S̆ipos̆ integrals. In the S̆ipos̆ in-
tegral, minimum :[−1,1]2→ [−1,1] makes a big roof similar to the Sugeno integral,
and maximum :[−1,1]2 → [−1,1] makes a big roof similar to the Opposite-Sugeno
integral.

Both integrals from [−1,1]n to [−1,1] were extended using two independent
fuzzy measures in the context of risk aversion, one for positive and another for
negative, and were called the Cumulative Prospect Theory (CPT) (Kahneman and
Tversky 1979 [22], Tversky and Kahneman 1992 [58]):

Cθ (X) := Cθ (X+)−Cσ(X−).

As for the Sugeno integral, the negative function has been studied by Grabisch
2000b [14].

4 Further Four Directions for Extension

There are many new fuzzy integrals or related integrals. Here we list the integrals
with direction types and short comments.

• Type 1: Union of two prominent integrals

– Fuzzy measure-based fuzzy integral (Klement, Mesiar, and Pap 2004 [23]).
Extension of Imaoka’s extension.

– Extremal fuzzy integral (Struk 2006 [54]). If the generalization is done from
the viewpoint that fuzzy measures are also considered as input instead of
parameters, the extremal integral appears.

– Universal integral (Klement, Mesiar, and Pap 2007 [24]). To exclude the
extremal integral, a universal integral is defined.

– Two-fold integral (Torra 2003 [57], Narukawa and Torra 2003 [42]). This
unites two prominent integrals, but the formulation and motivation are quite
different from the above mentioned extensions.

• Type 2: Concave integrals for uncertainty aversion

– Max-Min Expected Utility (MMEU)
· Concave integral (Lehrer [28], Teper 2009 [56]). This integral always pro-

duces a concave shape. If the fuzzy measure is superadditive, this integral
coincides with the Choquet integral; otherwise, it produces higher roofs.

· Set-system Choquet integral (Faigle and Grabisch2009 [9]). This is an-
other approach to make concave shapes. Fuzzy measures are restricted and
discussed theoretically.

• Type 3: Negative values for risk aversion

– Rank-Dependent Expected Utility (RDEU)
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· Two-fold integral (Torra 2003 [57], Narukawa and Torra 2003 [42]). In
this Choquet extended integral, integrands are distorted by the Sugeno or
Choquet integral.

· The following two integrals extend a distribution function from F(α) to
μα({x | f (x) > α }).
Level dependent Choquet integral (Giove, Greco, and Matarazzo
2007 [12]).
Level dependent Sugeno integral (Mesiar, Mesiarova, and Ahmad
2009 [35]).

– Cumulative Prospect Theory (CPT)
· Bi-capacities Choquet integral (Grabisch and Labreuche 2005 [16]). A

negative fuzzy measure is defined in this study.
· Bipolar Choquet-like integral (Labreuche and Grabisch 2006 [27]). Nega-

tive fuzzy measures are used in the Choquet integral. Partially bipolar Cho-
quet integral (Kojadinovic and Labreuche 2009 [26]). A modified version
of the above integral.

· Asymmetric general Choquet integral (Mihailovic and Pap 2009 [36]). This
integral is considered an extension of Mesiar integral.

• Type 4: Nonmonotonic measure for welfare preference
There are some works where monotonicity of fuzzy measures is not required.

– Murofushi, Sugeno, and Machida 1994 [40]
– Waegenaere and Wakker 2001 [61]
– Cardin and Giove 2008 [3]

5 Conclusions

Fuzzy integrals have been modified and extended by many researchers. The origins
are the Sugeno and Choquet integrals. Since the adoption of the Choquet integral
in expected utility theory has had significant influence, we surveyed many fuzzy
integrals in order to make a map of directions for extending these integrals. From
a theoretical point of view, two main streams exist. One is an extension to nega-
tive values of both integrands and fuzzy measures. Another stream is uniting the
Sugeno and Choquet integrals. In this latter stream, a new general fuzzy integral
was proposed.
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Choquet Integral on Locally Compact Space:
A Survey

Yasuo Narukawa and Vicenç Torra

Abstract. The outer regular fuzzy measure and the regular fuzzy measure are in-
troduced. The monotone convergence theorem and the representation theorem are
presented. The relation of the regular fuzzy measure and Choquet capacity are dis-
cussed. Formulas for calculation of a Choquet integral of a function on the real line
are shown.

1 Introduction

The Choquet integral with respect to a fuzzy measure proposed by Murofushi and
Sugeno [10] is a basic tool for Multicriteria Decision Making, Image Processing and
Recognition [5, 6, 30]. Most of these applications are restricted on a finite set, and
we need the theory which can also treat an infinite set.

Generally, considering an infinite set, if nothing is assumed, it is too general
and is sometimes inconvenient. Then we assume the universal set X to be a locally
compact Hausdorff space, whose example is the set R of the real number.

Considering the topology, various regularities are proposed [7, 21, 22, 24, 29, 31].
The notion of regular fuzzy measure is extended to a set valued fuzzy measure [2]
or a Riesz space valued fuzzy measure [8].

Narukawa et al. [29, 14, 15, 16, 17, 19, 20] propose the notion of a regular fuzzy
measure, that is a extension of classical regular measure, and show the usefulness in
the point of representation of some functional.

Further representation by Choquet and related issue integral are studied by
Masiha and Rahmati [9] and Rebille [25, 26]. The representation theorem by Sugeno
integral is presented by Pap and Mihailovic [23].
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In this paper, we present several properties of the regular fuzzy measure focused
on the relation with Choquet integral. We show some basic results concerning to
the representation of functional on the class of continuous functions with compact
support.

This paper is organized as follows.
Basic properties of the fuzzy measure and the Choquet integral are shown in

Section 2.
In Section 3, we define an outer regular fuzzy measure and show its properties.

We have one of the monotone convergence theorem. We also define a regular fuzzy
measure, and show its properties.

The Choquet capacity in [1] is a set function on the class of compact subsets, with
right continuity. The relation of the Choquet capacity and regular fuzzy measure are
discussed in Section 4.

The real line is one of the special cases of locally compact space. Some results
for the Choquet integral of a function on the real line are shown in Section 5.

The paper finishes with some concluding remarks.

2 Preliminaries

In this section, we define a fuzzy measure and the Choquet integral, and show their
basic properties.

Throughout this paper, we assume that X is a locally compact Hausdorff space,
B is the class of Borel sets, C is the class of compact sets, and O is the class of
open sets.

Definition 2.1 [28] . A fuzzy measure μ is an extended real valued set function,
μ : B −→ R+ with the following properties.

(i) μ( /0) = 0
(ii) μ(A)≤ μ(B) whenever A⊂ B, A,B ∈B

where R+ = [0,∞] is the set of extended nonnegative real numbers.
When μ(X) < ∞, we define the conjugate μc of μ by μc(A) = μ(X)− μ(AC)

for A ∈B.

The class of measurable functions is denoted by M and the class of non-negative
measurable functions is denoted by M +.

Definition 2.2 [1, 10]. Let μ be a fuzzy measure on (X ,B).

(i) The Choquet integral of f ∈M + with respect to μ is defined by

(C)
∫

f dμ :=
∫ ∞

0
μ f (r)dr,

where μ f (r) = μ({x| f (x) ≥ r}).
(ii) Suppose μ(X)<∞. The Choquet integral of f ∈M with respect to μ is defined

by
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(C)
∫

f dμ := (C)
∫

f +dμ− (C)
∫

f−dμc,

where f + = f ∨ 0 and f− = −( f ∧ 0). When the right hand side is ∞−∞, the
Choquet integral is not defined.

(iii) Let A ∈B. the Choquet integral restricted to A is defined by

(C)
∫

A
f dμ := (C)

∫
f ·1Adμ .

Definition 2.3 [4]. Let f ,g ∈M .
We say that f and g are comonotonic if f (x) < f (x′)⇒ g(x)≤ g(x′) for x,x′ ∈X .
We denote f ∼ g, when f and g are comonotonic.

The Choquet integral of f ∈M with respect to a fuzzy measure has the next basic
properties.

Theorem 2.1 [3, 11]. Let f ,g ∈M .

(i) If f ≤ g, then

(C)
∫

f dμ ≤ (C)
∫

gdμ

(ii) If a is a nonnegative real number, then

(C)
∫

a f dμ = a (C)
∫

f dμ .

(iii) If f ∼ g, then

(C)
∫

( f + g)dμ = (C)
∫

f dμ+(C)
∫

gdμ .

The class of continuous functions with compact support is denoted by K and the
class of non-negative continuous functions with compact support is denoted by K +.

Next, we define upper and lower semi-continuity of functions.

Definition 2.4. We say that the function f : X −→ R is upper semi-continuous
if {x| f ≥ a} is closed for all a ∈ R, and the function f : X −→ R is lower
semi-continuous if {x| f > a} is open for all a ∈ R.

The class of non-negative upper semi-continuous functions with compact support is
denoted by USCC+ and the class of non-negative lower semi-continuous functions
is denoted by LSC+. It is obvious from the definitions that, in general,

K + � USCC+ � M +

and
K + � LSC+ � M +.

We define some continuity of fuzzy measures.
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Definition 2.5. Let μ be a fuzzy measure on the measurable space (X ,B).
μ is said to be o-continuous from below if

On ↑ O =⇒ μ(On) ↑ μ(O)

where n = 1,2,3, . . . and both On and O are open sets. μ is said to be c-continuous
from above if

Cn ↓C =⇒ μ(Cn) ↓ μ(C)

where n = 1,2,3, . . . and both Cn and C are compact sets.

3 Outer Regular Fuzzy Measures and Regular Fuzzy
Measure

First, we define the outer regular fuzzy measure, and show its properties.

Definition 3.1. Let μ be a fuzzy measure on the measurable space (X ,B). μ is said
to be outer regular if

μ(B) = inf{μ(O)|O ∈ O,O⊃ B}

for all B ∈B.

The next proposition is shown in [14].

Proposition 3.1. Let μ be an outer regular fuzzy measure. μ is c-continuous from
above.

Let fn ∈USCC+ for n = 1,2,3, · · · and fn ↓ f . Since

∩∞n=1{x| fn(x)≥ a}= {x| f (x)≥ a},

we have the next theorem from Proposition 3.1.

Theorem 3.1. [18] Let μ be an outer regular fuzzy measure. Suppose that fn ∈
USCC+ for n = 1,2,3, · · · and fn ↓ f . Then we have

lim
n→∞(C)

∫
fndμ = (C)

∫
f dμ .

Let C ∈ C . It follows from Definition 3.1 that

μ(C) = inf{μ(O)|C ⊂ O,O ∈ O}.

Suppose that C ⊂ O. Since X is a locally compact Hausdorff space, there exists an
open set U such that its closure cl(U) is compact, satisfying

C ⊂U ⊂ cl(U)⊂ O.
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Applying Urysohn’s lemma, there exists f ∈ K+ such that

f (x) =

{
1 if x ∈C

0 if x �∈ cl(U).

Therefore we have the next theorem.

Theorem 3.2. [18] Let μ be an outer regular fuzzy measure and C be a compact
set. Then we have

μ(C) = inf{(C)
∫

f dμ |1C ≤ f , f ∈K +}.

We define the regular fuzzy measure by adding a condition to the outer regular fuzzy
measure.

Definition 3.2. Let μ be an outer regular fuzzy measure. μ is said to be regular, if
for all O ∈O

μ(O) = sup{μ(C)|C ∈ C ,C ⊂ O}.
The next proposition is obvious from the definition.

Proposition 3.2. Let μ be a regular fuzzy measure. μ is o-continuous from below.

The next monotone convergence theorem follows immediately from Proposition 3.2.

Theorem 3.3. [18] Let μ be a regular fuzzy measure. Suppose that fn ∈ LSC+ for
n = 1,2,3, · · · and fn ↑ f . Then we have

lim
n→∞(C)

∫
fndμ = (C)

∫
f dμ .

Applying Theorem 3.2 and Theorem 3.3, we have the next theorem.

Theorem 3.4. [14] Let μ1 and μ2 be regular fuzzy measures. If

(C)
∫

f dμ1 = (C)
∫

f dμ2

for all f ∈K +, then
μ1(A) = μ2(A)

for all A ∈B.

This theorem means that any two regular fuzzy measures which assign the same
Choquet integral to each f ∈K + are necessarily identical.

4 Representation of Functional and Capacity

In this section, we show that a comonotonically additive and monotone functional
(for short c.m. functional) can be represented by the difference of the Choquet
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integrals. Proofs are shown in [14, 29]. Next, using this representation theorem,
we show that Choquet capacity can be extend to regular fuzzy measure.

Definition 4.1. Let I be a real valued functional on K .
We say I is comonotonically additive iff f ∼ g ⇒ I( f + g) = I( f ) + I(g) for

f ,g ∈K +, and I is comonotonically monotone iff f ∼ g and f ≤ g⇒ I( f )≤ I(g)
for f ,g ∈K +.

If a functional I is comonotonically additive and monotone, we say that I is a
c.m. functional.

Suppose that I is a c.m. functional, then we have I(a f ) = aI( f ) for a ≥ 0 and f ∈
K +, that is, I is positively homogeneous.

Definition 4.2. Let I be a real valued functional on K . I is said to be a rank- and
sign-dependent functional (for short a r.s.d. functional ) on K , if there exist two
fuzzy measures μ+,μ− such that for every f ∈K

I( f ) = (C)
∫

f +dμ+− (C)
∫

f−dμ−

where f + = f ∨0 and f− =−( f ∧0).

When μ+ = μ−, we say that the r.s.d. functional is the Šipoš functional [27]. If the
r.s.d. functional is the Šipoš functional, we have I(− f ) =−I( f ).

If μ+(X) < ∞ and μ− = (μ+)c, we say that the r.s.d. functional is the Choquet
functional.

Theorem 4.1. [12, 14] Let K +
1 := { f ∈K |0 ≤ f ≤ 1} and I be a c.m. functional

on K .

(i) We put
μ+(O) = sup{I( f )| f ∈K +

1 ,supp( f )⊂ O},
and

μ+(B) = inf{μ+(O)|O ∈O,O⊃ B}
for O ∈O and B ∈B.
Then μ+ is a regular fuzzy measure.

(ii) We put
μ−(O) = sup{−I(− f )| f ∈K +

1 ,supp( f )⊂ O},
and

μ−(B) = inf{μ−(O)|O ∈O,O⊃ B}
for O ∈O and B ∈B.
Then μ− is a regular fuzzy measure.

(iii) A c.m. functional is a r.s.d functional, that is,

I( f ) = (C)
∫

f +dμ+− (C)
∫

f−dμ−.

for every f ∈K .
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(iv) If X is compact, then a c.m. functional can be represented by one Choquet
integral.

(v) If X is locally compact but not compact, then a r.s.d functional is a c.m.
functional.

Definition 4.3. Let I be a c.m. functional on K . We say that μ+ defined in
Theorem 4.1 is the regular fuzzy measure induced by the positive part of I ,and
μ− the regular fuzzy measure induced by the negative part of I.

Corollary 4.1. Let I be a c.m. functional on K +. There exists a unique regular
fuzzy measure μ such that

I( f ) = (C)
∫

f dμ+

for every f ∈K +.

Example 4.1. Let X be a finite set with discrete topology. Then X is compact Haus-
dorff space and every function f : X −→ R is a continuous function with compact
support. Therefore it follows from Theorem 4.1(iv) that a c.m. functional can be
represented by a Choquet integral with respect to a regular fuzzy measure. This is
Schmeidler’s representation theorem in the case of X to be finite.

Definition 4.4. Choquet capacity is a set function ϕ : C −→ R+ satisfying the next
conditions.

(i) ϕ( /0) = 0
(ii) ϕ(C1)≤ ϕ(C2) if C1 ⊂C2

(iii) (right continuity) For every ε > 0,C ∈ C , there exists U ∈O(C⊂U) such that

ϕ(C′)−ϕ(C) < ε

for every C′ ∈ C with C ⊂C′ ⊂U .

The next proposition follows from the definition of the regular fuzzy measure.

Proposition 4.1. For every regular fuzzy measure μ on B, define the set function
φ : C −→ R+ by φ = μ|C (the restriction of μ ). Then φ is right continuous, that is,
φ is Choquet capacity.

Let f ∈K + and S f be a support of f . Conversely, for every Choquet capacity ϕ ,
define the functional I : K + −→ R+ by

I( f ) =
∫ ∞

0
ϕ({x| f (x)≥ α}∩S f )dα.

Then I is a c.m. functional on K +. Applying Corollary 4.1, there exists a regular
fuzzy measure μI which represents I. Using right continuity of ϕ and Theorem 3.2,
we have

μI(C) = ϕ(C)

for all C ∈ C . It follows from Theorem 3.4 that this extension is unique. Therefore
we have the next proposition.
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Proposition 4.2. Choquet capacity can be extend to a regular fuzzy measure
uniquely.

5 Choquet Integral of a Function on the Real Line

The real line is one of the examples of locally compact Hausdorff space. In the
following we consider fuzzy measure and Choquet integral on the real line. Let λ
be a Lebesgue measure on [0,1], that is, λ ([a,b]) = b−a for [a,b]⊂ [0,1]. Since a
Lebesgue measure is regular, then λ n for n > 0 is a regular fuzzy measure.

Let f : [0,1]→ R be monotone increasing with f (0) = 0 and differentiable. We
define the sequence of functions { fk} by f1 = f , fk+1 =

∫ x
0 fkdλ for x ∈ [0,1], k =

1,2, . . . . Then we have

(C)
∫

[0,x]
f dλ n =

∫ ∞

0
λ n( f ·1[0,x]≥α)dα

=
∫ f (x)

0
(x− f−1(α))ndα

Let t := x− f−1(α), Since we have dα = − f ′(x− t)dt, t = x if α = 0 and t = 0 if
α = f (x), then

(C)
∫

[0,x]
f dλ n =

∫ 0

x
tn · (− f ′(x− t))dt

=
∫ x

0
tn f ′(x− t)dt

Next let s := x− t, we have

(C)
∫

[0,x]
f dλ n =

∫ x

0
(x− s)n f ′(s)ds

= [(x− s)n f (s)]x0 + n
∫ x

0
(x− s)n−1 f1(s)ds

Since f (0) = 0, we have

(C)
∫

[0,x]
f dλ n = n

∫ x

0
(x− s)n−1 f1(s)ds.

It follows from integration by parts again that∫ x

0
(x− s)n−1 f1(s)ds = (n−1)

∫ x

0
(x− s)n−2 f2(s)ds.

Repeating above calculation, we have the next proposition.
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Proposition 5.1. Let f : [0,1]→ R be monotone increasing with f (0) = 0 and dif-
ferentiable. We define the sequence of functions { fk} by f1 = f , fk+1 =

∫ x
0 fkdλ for

x ∈ [0,1], k = 1,2, . . . . Then we have

(C)
∫

[0,x]
f dλ n = n! fn(x)

for x ∈ [0,1].

Example 5.1. Let f (t) = t, we have f1 = 1
2 x2, · · · , fn = 1

(n+1)!x
n+1.

(C)
∫

[0,x]
tdλ n(t) =

1
n + 1

xn+1

for x ∈ [0,1].

Let w be ∞-order differentiable function on R. Then we can express w by

w(x) :=
∞

∑
k=1

akxk.

Since the Choquet integral is linear with respect to the fuzzy measures, we have

(C)
∫

[0,x]
f dw◦λ =

∞

∑
k=1

k!ak fk(x)

for x ∈ [0,1]. Therefore we have the next theorem.

Theorem 5.1. Let f : [0,1]→ R be monotone increasing with f (0) = 0 and differ-
entiable. We define the sequence of functions { fk} by f1 = f , fk+1 =

∫ x
0 fkdλ for

x ∈ [0,1], k = 1,2, . . . . Then we have

(C)
∫

f[0,x]dw◦λ =
∞

∑
k=1

k!ak fk(x)

for x ∈ [0,1].

The Choquet integral with respect to w ◦ λ is regarded as a continuous version of
order weighted aggregation operator (OWA operator) by Yegar [32].

Let P be a probability measure on (R,B) with a continuous density function p,
that is,

P([a,b]) :=
∫

[a,b]
p(x)dλ ,

where λ is Lebesgue measure. Since P is regular, Pn is regular.
We have the next proposition by a similar calculation to Proposition 5.1.

Proposition 5.2. Let P be a probability measure on (R,B) with a density function p.
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Let f : [0,∞]→ R be monotone increasing with f (0) = 0 and differentiable. We
define the sequence of functions {Fk} by F1(x) =

∫ x
0 f pdλ , Fk+1(x) =

∫ x
0 Fk pdλ for

x ∈ [0,∞], k = 1,2, . . . . Then we have

(C)
∫

f dPn = n! lim
x→∞Fn(x).

6 Conclusion

We introduced the outer regular fuzzy measure and a regular fuzzy measure and
presented some properties concerning Choquet integral. We presented a basic rep-
resentation theorem of a comonotonically additive functional. As an application to
the representation theorem, we showed the relation between a Choquet capacity and
a regular fuzzy measure.

We showed some fundamental formulas for Choquet integral calculation. The
formulas are restricted to monotone increasing function as the integrand. We expect
to have the corresponding results for monotone decreasing functions.
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New Conditions for the Egoroff Theorem in
Non-additive Measure Theory

Masayuki Takahashi and Toshiaki Murofushi

Abstract. This paper gives a new necessary condition and a new sufficient condi-
tion for the Egoroff theorem in non-additive measure theory. The new necessary
condition is condition (M), which is newly defined in this paper, and the new suf-
ficient condition is the conjunction of null continuity and condition (M). The new
sufficient condition is strictly weaker than both of known two sufficient conditions:
continuity and the conjunction of strong order continuity and property (S). The new
necessary condition is strictly stronger than the known necessary condition: strong
order continuity.

1 Introduction

Since Sugeno [8] introduced the concept of non-additive measure, which he called
a fuzzy measure, non-additive measure theory has been constructed along the lines
of the classical measure theory [1, 7, 11]. Generally, theorems in the classical mea-
sure theory no longer hold in non-additive measure theory, so that to find necessary
and/or sufficient conditions for such theorems to hold is very important for the con-
struction of non-additive measure theory.

The Egoroff theorem, which asserts that almost everywhere convergence implies
almost uniform convergence, is one of the most important convergence theorems
in the classical measure theory. In non-additive measure theory, this theorem does
not hold without additional conditions. So far, it has been shown that each of the
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Egoroff condition [6] and condition (E) [3] is a necessary and sufficient condition for
the Egoroff theorem to hold in non-additive measure theory. Both of the conditions
are described by a doubly-indexed sequence of measurable sets, and no necessary
and sufficient condition described by single-indexed sequences has been given yet.
On the other hand, the Egoroff theorem has a necessary condition described by a
single-indexed sequence (strong order continuity [5, 6]) and sufficient conditions
described by single-indexed sequences (continuity from above and below [4], the
conjunction of strong order continuity and property (S) [5, 6]). In this paper we give
new conditions described by single-indexed sequences; condition (M) is a necessary
condition stronger than strong order continuity, and the conjunction of condition (M)
and null-continuity is a sufficient condition weaker than the above-mentioned two
sufficient conditions.

2 Definitions

Throughout the paper, (X ,S ) is assumed to be a measurable space. All subsets of
X and functions on X referred to are assumed to be measurable.

Definition 2.1. A non-additive measure on (X ,S ) is a set function μ : S → [0,∞]
satisfying the following two conditions:

• μ( /0) = 0,
• A,B ∈S , A⊂ B ⇒ μ(A)≤ μ(B).

Hereinafter, μ is assumed to be a non-additive measure on (X ,S ).
In the following definitions, each label in bold face stands for the corresponding

term; for example, “↓” means “continuity from above” (Definition 2-1).

Definition 2.2

(i) ↓↓↓: μ is said to be continuous from above if μ is continuous from above at every
measurable set.

(ii) ↓↓↓000: μ is said to be strongly order continuous if Nn ↓ N and μ(N) = 0 together
imply μ(Nn)→ 0. [2]

(iii) TTT↓↓↓000: μ is said to be strongly order totally continuous if, for every decreasing
net B of measurable sets such that

⋂
B is measurable and μ(

⋂
B) = 0, it

holds that infB∈Bμ(B) = 0. [6]
(iv) ↑↑↑: μ is said to be continuous from below if μ is continuous from below at every

measurable set.
(v) ↑↑↑000: μ is said to be null-continuous if Nn ↑N and μ(Nn) = 0 for every n together

imply μ(N) = 0. [10]
(vi) (S)(S)(S): μ said to have property (S) if μ(Nn)→ 0 implies that there exists a subse-

quence {Nni} of {Nn} such that μ (
⋂∞

k=1
⋃∞

i=k Nni) = 0. [9]
(vii) (Ec)(Ec)(Ec): μ is said to satisfy the Egoroff condition if, for every doubly-indexed

sequence Nm,n such that Nm,n⊃Nm′,n′ for m≥ m′ and n≤ n′ and
μ(
⋃∞

m=1
⋂∞

n=1 Nm,n) = 0, and for every positive number ε , there exists a se-
quence {nm} such that μ(

⋃∞
m=1Nm,nm) < ε . [6]
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(viii) (E)(E)(E): μ is said to satisfy condition (E) if Nm
n ↓Nm as n→∞ for every m and

μ(
⋃∞

m=1 Nm) = 0 together imply that there exist strictly increasing sequences
{ni} and {mi} such that μ

(⋃∞
i=k Nmi

ni

)→0 as k→ ∞. [3]

The Egoroff condition is equivalent to condition (E), and each is a necessary and
sufficient condition for the Egoroff theorem to hold in non-additive measure the-
ory [3, 6].

Condition (M) below is newly defined by this paper, and it is discussed in
Section 3.

Definition 2.3. (M): μ is said to satisfy condition (M) if μ(
⋃∞

n=1
⋂∞

i=n Ni) = 0
implies that for every positive number ε there exists a strictly increasing sequence
{mn} such that μ(

⋃∞
n=1

⋂mn
i=n Ni) < ε .

Definition 2.4. a.e.: { fn} is said to converge to f almost everywhere, written fn
a.e.−→

f , if there exists N such that μ(N) = 0 and { fn(x)} converges to f (x) for all x ∈
X \N.

a.u.: { fn} is said to converge to f almost uniformly, written fn
a.u.−→ f , if for every

ε > 0 there exists Nε such that μ(Nε ) < ε and { fn} converges to f uniformly on
X \Nε .

3 New Conditions for the Egoroff Theorem

In this section, we discuss conditions for the Egoroff theorem, which asserts that
almost every where convergence implies almost uniform convergence.

The following theorem gives known sufficient conditions for the Egoroff theorem
to hold in non-additive measure theory.

Theorem 3.1

(1) The conjunction of continuity from above and continuity from below implies
condition (E) [4].

(2) The conjunction of strong order continuity and property (S) implies condi-
tion (E) [3, 6].

(3) Strong order total continuity implies condition (E) [6].

In Theorem 3.1, the three sufficient conditions of condition (E) are independent of
each other, and furthermore, none of the converses holds [6].

The following theorem gives a new sufficient condition for the Egoroff theorem.

Theorem 3.2. The conjunction of condition (M) and null-continuity implies
condition (E).

Outline of proof. We show that fn
a.e.−−→ f implies fn

a.u.−−→ f . If fn
a.e.−−→ f , then we

have

μ

(
∞⋃

k=1

∞⋂
n=1

∞⋃
i=n

{
x

∣∣∣∣∣ | fi(x)− f (x)| ≥ 1/k

})
= 0.
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Since μ is monotone and strongly order continuous by Proposition 3.2 below, it fol-
lows that μ(

⋃∞
i=n {x | | fi(x)− f (x)| ≥ 1/k})→ 0 as n→ ∞. Therefore, there exists

an increasing sequence {nk} such that

μ

(
∞⋃

i=nk

{
x

∣∣∣∣∣ | fi(x)− f (x)| ≥ 1
k

})
<

1
k
.

Since μ is null-continuity, it holds that

μ

(
∞⋃

l=1

∞⋂
k=l

∞⋃
i=nk

{
x

∣∣∣∣∣ | fi(x)− f (x)| ≥ 1
k

})
= 0.

Condition (M) implies that for every positive number ε there exists {ml} such that

μ

(
∞⋃

l=1

ml⋂
k=l

∞⋃
i=nk

{
x

∣∣∣∣∣ | fi(x)− f (x)| ≥ 1
k

})
< ε.

Hence, this shows fn
a.u.−−→ f .

Example 3.1 below shows that the converse of Theorem 3.2 does not hold.

Example 3.1. [6, Example 2] Let X be an infinite set, and μ be the non-additive
measure on the power set 2X of X defined as

μ(A) =
{

1 if A = X ,
0 if A �= X .

Then, obviously μ is strongly order totally continuous. So, μ has condition (E). On
the other hand, μ is not null-continuous.

In Proposition 1 below, the converses of (1) and (2) do not hold [6]. So, our new
sufficient condition is strictly weaker than two known sufficient conditions for the
Egoroff theorem in Theorem 1.

Proposition 3.1

(1) The conjunction of continuity from above and continuity from below implies
condition (M) and null-continuity.

(2) The conjunction of strong order continuity and property (S) implies condi-
tion (M) and null-continuity.

Outline of proof. (1) By Theorems 3.1 (1) and 3.4 below, the conjunction of
continuity from above and continuity from below implies condition (M). On the
other hand, obviously continuity from below implies null-continuity.
(2) By Theorems 3.1 (2) and 3.4 below, the conjunction of strong order continuity
and property (S) implies condition (M). On the other hand, property (S) implies
null-continuity [10].
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The three sufficient condition in Theorem 1 are independent. So, from Example 3.1
and Proposition 3.1 our new sufficient condition is independent of strong order total
continuity, which is the third sufficient condition in Theorem 1.

The following theorem gives a known necessary condition for the Egoroff theo-
rem. The converse of Theorem 3.3 does not hold [6].

Theorem 3.3. Condition (E) implies strong order continuity [3, 6].

The following theorem gives a new necessary condition for the Egoroff theorem.

Theorem 3.4. Condition (E) implies condition (M).

Outline of proof. We prove that the Egoroff condition implies condition (M). Let
{Nn} satisfy μ(

⋃∞
m=1

⋂∞
i=m Ni) = 0. Then we only have to define a sequence

{
Nk,l
}

as

Nk,l =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k⋃

i=l

Ni if k > l,

l⋂
i=k

Ni if k≤ l.

By the definitions, the following proposition is easily proved.

Proposition 3.2. Condition (M) implies strong order continuity.

Example 3.2. [6, Example 6] Let X = {0,1}N, En = {(x1,x2, · · · ) ∈ X |xn = 1} for
every n ∈ N,

Am,n =
n⋂

k=m

Ek (m,n ∈ N),

where Am,n =
⋂n

k=m Ek = X for n < m,

E =

{
∞⋃

m=1

Am,ϕ(m)|ϕ ∈ NN

}
,

F be the family of subsets of X defined as

F =
{

F|
⋂

E ‘ ⊂ F ⊂ X for some countable subfamily E ‘ of E
}

,

and μ be the non-additive measure set function on the power set 2X defined as

μ(A) =
{

1 if A ∈F ,
0 otherwise.

Then μ is continuous from above. Thus μ has strong order continuous. On the other
hand, μ does not have condition(M).

From Example 3.2, the converse of Proposition 3.2 does not hold; so our new neces-
sary condition is strictly stronger than the known necessary condition in Theorem 3.
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In [6], the implications between condition (E), or the Egoroff theorem, and re-
lated conditions are summarized as Fig. 1. In this diagram, a directed path from
A to B means that condition A implies condition B, and the absence of such a di-
rected path means that A does not imply B. An addition of the results in this paper
to Fig. 1 yields Fig. 2. This diagram shows that the conjunction of condition (M)

Fig. 1 Implication relationship without condition (M) [6]

Fig. 2 Implication relationship with condition (M)
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and null-continuity is strictly weaker than continuity from above and below and the
conjunction of strong order continuity and property (S) each, and is independent of
strong order total continuity. Since there exists a non-additive measure space where
condition (E) is satisfied without strong order total continuity and null-continuity
[6, Example 5], condition (E) is strictly weaker than “T ↓ 0 or ‘(M) & ↑ 0’ ”. In
addition, condition (M) is strictly stronger than strong order continuity. The symbol
“?” indicates that the implication from condition (M) to condition (E) has not been
clear yet.

4 Concluding Remark

In this paper, for the Egoroff theorem in non-additive measure theory we give a
new sufficient condition, the conjunction of condition (M) and null-continuity, and
a new necessary condition, condition (M). The implication from condition (M) to
condition (E) has not been clear yet. So the investigation of this implication is an
important subject to future research.
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A Study of Riesz Space-Valued Non-additive
Measures

Jun Kawabe

Abstract. This paper gives a short survey of our recent developments in Riesz
space-valued non-additive measure theory and contains the following topics: the
Egoroff theorem, the Lebesgue theorem, the Riesz theorem, the Lusin theorem, and
the Alexandroff theorem.

1 Introduction

In 1974, Sugeno [30] introduced the notion of fuzzy measure and integral to eval-
uate non-additive or non-linear quality in systems engineering. In the same year,
Dobrakov [3] independently introduced the notion of submeasure from mathemati-
cal point of view to refine measure theory further. Fuzzy measures and submeasures
are both special kinds of non-additive measures, and their studies have stimulated
engineers’ and mathematicians’ interest in non-additive measure theory [2, 25, 33].

The study of non-additive measures deeply depends on the order in the range
space in which the measures take values. In fact, a non-additive measure is defined
as a monotone set function which vanishes at the empty set, and not a few features of
non-additive measures, such as the order continuity and the continuity from above
and below, concern the order on the range space. The Riesz space is a real vector
space with partial ordering compatible with the structure of the vector space, and at
the same time, it is a lattice. Therefore, it is a natural attempt to discuss the existing
theory of real-valued non-additive measures in a Riesz space. Typical examples of
Riesz spaces are the n-dimensional Euclidean space Rn, the functions space RΛ

with non-empty set Λ , the Lebesgue functions spaces Lp[0,1] (0 ≤ p ≤ ∞), and
their ideals.

When we try to develop non-additive measure theory in a Riesz space, along with
the non-additivity of measures, there is a tough technical hurdle to overcome, that

Jun Kawabe
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is, the ε-argument, which is useful in calculus, does not work in a general Riesz
space. Recently, it has been recognized that, as a substitute for the ε-argument, cer-
tain smoothness conditions, such as the weak σ -distributivity, the Egoroff property,
the weak asymptotic Egoroff property, and the multiple Egoroff property, should
be imposed on a Riesz space to succeed in extending fundamental and important
theorems in non-additive measure theory to Riesz space-valued measures. Thus, the
study of Riesz space-valued measures will go with some smoothness conditions on
the involved Riesz space.

This paper gives a short survey of our recent developments in Riesz space-valued
non-additive measure theory and contains the following topics: the Egoroff theorem,
the Lebesgue theorem, the Riesz theorem, the Lusin theorem, and the Alexandroff
theorem. All the results in this paper, together with their proofs and the related
problems, have been already appeared in [8, 9, 10, 11, 12, 13, 14, 15, 16], so that
herein there are no new contributions to Riesz space-valued non-additive measure
theory. The interested readers may obtain more information on the above topics and
their related problems, such as Riesz space-valued Choquet integration theory, from
the cited literatures in the reference of this paper. See [28] for some other ordering
structures on Riesz spaces and lattice ordered groups, and their relation to measure
and integration theory.

2 Notation and Preliminaries

In this section, we recall some basic definitions on Riesz spaces and Riesz space-
valued non-additive measures. Denote by R and N the set of all real numbers and
the set of all natural numbers, respectively.

2.1 Riesz Space

The real vector space V is called an ordered vector space if V is partially ordered in
such a manner that the partial ordering is compatible with the vector structure of V ,
that is, (i) u≤ v implies u+w≤ v+w for every w ∈V , and (ii) u≥ 0 implies cu≥ 0
for every c ∈ R with c ≥ 0. The ordered vector space V is called a Riesz space if
for every pair u and v in V , the supremum sup(u,v) and the infimum inf(u,v) with
respect to the partial ordering exist in V .

Let V be a Riesz space. Denote by V+ the set of all positive elements of V .
Let D := {ut}t∈T be a set of elements of V and u ∈ V . We write supD = u or
supt∈T ut = u to mean that there exists a supremum of D and equal to u. The mean-
ing of infD = u or inft∈T ut = u is analogous. We say that V is Dedekind complete
(respectively, Dedekind σ -complete) if every non-empty (respectively, countable,
non-empty) subset of V which is bounded from above has a supremum.

Let {un}n∈N ⊂ V be a sequence and u ∈ V . We write un ↓ u to mean that it is
decreasing and infn∈N un = u. The meaning of un ↑ u is analogous. We say that
{un}n∈N converges in order to u and write un→ u if there is a sequence {pn}n∈N⊂V
with pn ↓ 0 such that |un− u| ≤ pn for all n ∈ N. The order convergence can be
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defined for nets {uα}α∈Γ of elements of V in an obvious way. A Riesz space V is
said to be order separable if every set in V possessing a supremum contains an at
most countable subset having the same supremum.

The following smoothness conditions on a Riesz space have been already intro-
duced in [23] and [34]. Denote by Θ the set of all mappings from N into N, which
is ordered and directed upwards by pointwise partial ordering, that is, θ1 ≤ θ2 is
defined as θ1(i)≤ θ2(i) for all i ∈ N.

Definition 2.1. Let V be a Riesz space.

(i) A double sequence {ui, j}(i, j)∈N2 ⊂ V is called a regulator in V if it is order
bounded, and ui, j ↓ 0 for each i ∈ N, that is, ui, j ≥ ui, j+1 for each i, j ∈ N and
inf j∈N ui, j = 0 for each i ∈ N.

(ii) We say that V has the Egoroff property if, for any regulator {ui, j}(i, j)∈N2 in V ,

there is a sequence {pk}k∈N ⊂V with pk ↓ 0 such that, for each (k, i) ∈N2, one
can find j(k, i) ∈ N satisfying ui, j(k,i) ≤ pk [23].

(iii) Let V be Dedekind σ -complete. We say that V is weakly σ -distributive if, for
any regulator {ui, j}(i, j)∈N2 in V , it holds that infθ∈Θ supi∈N ui,θ(i) = 0 [34].

See [23] for unexplained terminology and more information on Riesz spaces.

2.2 Riesz Space-Valued Non-additive Measures

Throughout the paper, we assume that V is a Riesz space and (X ,F ) is a measurable
space, that is, F is a σ -field of subsets of a non-empty set X .

Definition 2.2. A set function μ : F →V is called a non-additive measure if μ( /0)=
0 and μ(A)≤ μ(B) whenever A,B ∈F and A⊂ B.

We collect some continuity conditions of non-additive measures.

Definition 2.3. Let μ : F →V be a non-additive measure.

(i) μ is said to be continuous from above if μ(An) ↓ μ(A) whenever {An}n∈N ⊂F
and A ∈F satisfy An ↓ A.

(ii) μ is said to be continuous from below if μ(An) ↑ μ(A) whenever {An}n∈N ⊂F
and A ∈F satisfy An ↑ A.

(iii) μ is said to be continuous if it is continuous from above and below.
(iv) μ is said to be strongly order continuous if it is continuous from above at

measurable sets of measure zero, that is, μ(An) ↓ 0 whenever {An}n∈N ⊂ F
and A ∈F satisfy An ↓ A and μ(A) = 0 [17].

(v) μ is said to be order continuous if it is continuous from above at the empty set,
that is, μ(An) ↓ 0 whenever {An}n∈N ⊂F satisfies An ↓ /0.

(vi) μ is said to be strongly order totally continuous if infα∈Γ μ(Aα) = 0 whenever
a net {Aα}α∈Γ ⊂F and A ∈F satisfy Aα ↓ A and μ(A) = 0 [24].

The following are some quasi-additivity conditions of non-additive measures.

Definition 2.4. Let μ : F →V be a non-additive measure.
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(i) μ is said to be subadditive if μ(A∪B)≤ μ(A)+ μ(B) for all A,B ∈F .
(ii) μ is said to be null-additive if μ(A∪ B) = μ(A) whenever A,B ∈ F and

μ(B) = 0.
(iii) μ is said to be weakly null-additive if μ(A∪B) = 0 whenever A,B ∈F and

μ(A) = μ(B) = 0.
(iv) μ is said to be autocontinuous from above if μ(A∪Bn) → μ(A) whenever

A ∈F , and {Bn}n∈N ⊂F is a sequence with μ(Bn)→ 0.
(v) μ is said to be autocontinuous from below if μ(A \Bn) → μ(A) whenever

A ∈F , and {Bn}n∈N ⊂F is a sequence with μ(Bn)→ 0.
(vi) μ is said to be autocontinuous if it is autocontinuous from above and below.

(vii) μ is said to be uniformly autocontinuous from above if, for any sequence
{Bn}n∈N ⊂F with μ(Bn)→ 0, there is a sequence {pn}n∈N ⊂V with pn ↓ 0
such that μ(A∪Bn)≤ μ(A)+ pn for all A ∈F and n ∈ N.

(viii) μ is said to be uniformly autocontinuous from below if, for any sequence
{Bn}n∈N ⊂F with μ(Bn)→ 0, there is a sequence {pn}n∈N ⊂V with pn ↓ 0
such that μ(A)≤ μ(A\Bn)+ pn for all A ∈F and n ∈ N.

(ix) μ is said to be uniformly autocontinuous if it is uniformly autocontinuous
from above and below.

3 The Egoroff Theorem

The classical theorem of Egoroff [4] is one of the most fundamental and important
theorems in measure theory. This asserts that almost everywhere convergence im-
plies almost uniform convergence (and hence convergence in measure) and gives a
key to handle a sequence of measurable functions. However, it is known that the
Egoroff theorem does not valid in general for non-additive measures.

Recently, Murofushi et al. [24] discovered a necessary and sufficient condition,
called the Egoroff condition, which assures that the Egoroff theorem is still valid for
non-additive measures, and indicated that the continuity of a non-additive measure is
one of the sufficient conditions for the Egoroff condition; see also [18, 19, 21, 22].
Those conditions can be naturally described for Riesz space-valued non-additive
measures.

Definition 3.1. Let μ : F →V be a non-additive measure.

(i) A double sequence {Am,n}(m,n)∈N2 ⊂F is called a μ-regulator in F if it satis-
fies the following two conditions:

(i) Am,n ⊃ Am,n′ whenever m,n,n′ ∈ N and n≤ n′.
(ii) μ (

⋃∞
m=1

⋂∞
n=1Am,n) = 0.

(ii) We say that μ satisfies the Egoroff condition if infθ∈Θ μ
(⋃∞

m=1Am,θ(m)
)
= 0 for

any μ-regulator {Am,n}(m,n)∈N2 in F .

Definition 3.2. Let μ : F → V be a non-additive measure. Let { fn}n∈N be a se-
quence of F -measurable, real-valued functions on X and f also such a function.
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(i) { fn}n∈N is said to converge μ-almost everywhere to f if there is a set E ∈F
with μ(E) = 0 such that fn(x) converges to f (x) for all x ∈ X−E .

(ii) { fn}n∈N is said to converge μ-almost uniformly to f if there is a decreasing net
{Eα}α∈Γ ⊂F with μ(Eα) ↓ 0 such that fn converges to f uniformly on each
set X−Eα .

(iii) { fn}n∈N is said to converge in μ-measure to f if, for any ε > 0, there is a
sequence {pn}n∈N⊂V with pn ↓ 0 such that μ ({x ∈ X : | fn(x)− f (x)| ≥ ε})≤
pn for all n ∈ N.

(iv) We say that the Egoroff theorem holds for μ if, for any sequence { fn}n∈N of
F -measurable, real-valued functions on X converging μ-almost everywhere to
such a function f on X , it converges μ-almost uniformly to the same limit f .

The following theorem gives a Riesz space version of [24, Proposition 1].

Theorem 3.1. Let μ : F →V be a non-additive measure. Then, μ satisfies the Ego-
roff condition if and only if the Egoroff theorem holds for μ .

Li [21, Theorem 1] proved that the Egoroff theorem holds for any continuous real-
valued non-additive measure. Its proof is essentially based on the ε-argument which
does not work in a general Riesz space. Therefore, it seems that, as a substitute
for the ε-argument, some smoothness conditions should be introduced and im-
posed on a Riesz space to obtain successful analogues of the Egoroff theorem for
Riesz space-valued non-additive measures. The following is one of our new smooth-
ness conditions on a Riesz space by which we will develop Riesz space-valued
non-additive measure theory.

Definition 3.3. Consider a multiple sequence u(m) := {un1,...,nm}(n1,...,nm)∈Nm of
elements of V for each m ∈ N. Let u ∈V+.

(i) A sequence {u(m)}m∈N of the multiple sequences is called a u-multiple regula-
tor in V if, for each m ∈N and (n1, . . . ,nm) ∈ Nm, the multiple sequence u(m)

satisfies the following two conditions:

(i) 0≤ un1 ≤ un1,n2 ≤ ·· · ≤ un1,...,nm ≤ u.
(ii) Letting n→ ∞, then un ↓ 0, un1,n ↓ un1 , . . . , and un1,...,nm,n ↓ un1,...,nm .

(ii) A u-multiple regulator {u(m)}m∈N in V is said to be strict if, for each m ∈N and
each (n1, . . . ,nm),(n′1, . . . ,n

′
m) ∈ Nm, it holds that un1,...,nm ≥ un′1,...,n′m whenever

ni ≤ n′i for all i = 1,2, . . . ,m.
(iii) We say that V has the weak asymptotic Egoroff property if, for each u∈V+ and

each strict u-multiple regulator {u(m)}m∈N, the following two conditions hold:

(i) uθ := supm∈N uθ(1),...,θ(m) exists for each θ ∈Θ .
(ii) infθ∈Θ uθ = 0.

We are now ready to give a Riesz space version of [18, Theorem 1].

Theorem 3.2. Let μ : F → V be a non-additive measure. Assume that V has the
weak asymptotic Egoroff property. Then, μ satisfies the Egoroff condition whenever
it is continuous.



96 J. Kawabe

In [24], Murofushi et al. gave two sufficient conditions and one necessary condition
for the validity of the Egoroff theorem for real-valued non-additive measures. One
of the two sufficient conditions is strong order total continuity, and the necessary
condition is strong order continuity. Further, they proved that, if X is countable,
the Egoroff condition, strong order continuity, and strong order total continuity are
all equivalent for any real-valued non-additive measure. These results can be eas-
ily extended to Riesz space-valued non-additive measures without assuming any
smoothness conditions on the Riesz space by almost the same proof in [24]; see [9]
for the precise statements of the above results.

To the contrary, it is not obvious to verify that another condition, that is, strong
order continuity, together with property (S), remains sufficient for the validity of
the Egoroff theorem for Riesz space-valued non-additive measures. We can give
an affirmative answer for this problem by assuming that the Riesz space has the
Egoroff property. Recall that a non-additive measure μ : F →V has property (S) if
any sequence {An}n∈N ⊂F with μ(An)→ 0 has a subsequence {Ank}k∈N such that
μ (
⋂∞

k=1
⋃∞

i=k Ani) = 0 [31].

Theorem 3.3. Let μ : F →V be a non-additive measure. Assume that V is Dedekind
σ -complete and has the Egoroff property. Then, μ has the Egoroff condition when-
ever it is strongly order continuous and has property (S).

When the Riesz space V is assumed to be weakly σ -distributive, which is a weaker
smoothness than having the Egoroff property, the following version of the Egoroff
theorem holds.

Theorem 3.4. Let μ : F →V be a non-additive measure. Assume that V is Dedekind
σ -complete and weakly σ -distributive. Then, μ satisfies the Egoroff condition when-
ever it is uniformly autocontinuous from above, strongly order continuous, and con-
tinuous from below.

4 The Lebesgue and the Riesz Theorem

Other important theorems concerning the convergence of measurable functions,
such as the Lebesgue theorem and the Riesz theorem, can be also extended to Riesz
space-valued non-additive measures.

Theorem 4.1. Let μ : F → V be a non-additive measure. Then, μ is strongly or-
der continuous if and only if the Lebesgue theorem holds for μ , that is, for any
sequence { fn}n∈N of F -measurable, real-valued functions on X converging almost
everywhere to such a function f on X, it converges in μ-measure to f .

Theorem 4.2. Let μ : F → V be a non-additive measure. Assume that V has the
Egoroff property. Then, μ has property (S) if and only if the Riesz theorem holds for
μ , that is, for any sequence { fn}n∈N of F -measurable, real-valued functions on X
converging in μ-measure to such a function f on X, it has a subsequence converging
almost everywhere to f .
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5 The Lusin Theorem

The regularity of measures on topological spaces serves as a bridge between mea-
sure theory and topology. It gives a tool to approximate general Borel sets by more
tractable sets such as closed or compact sets. The well-known Lusin theorem, which
is useful for handling the continuity and the approximation of measurable functions,
was proved by the help of the regularity of measures.

In non-additive measure theory, Li and Yasuda [20] recently proved that every
weakly null-additive, continuous Borel non-additive measure on a metric space is
regular, and the Lusin theorem is still valid for such measures. In this section, we ex-
tend those results to Riesz space-valued non-additive measures. To this end, we will
introduce another new smoothness condition on a Riesz space, called the multiple
Egoroff property, that strengthen the weak asymptotic Egoroff property.

Definition 5.1. Consider a multiple sequence u(m) := {un1,...,nm}(n1,...,nm)∈Nm of el-
ements of V for each m ∈ N. We say that V has the multiple Egoroff property if,
for each u ∈ V + and each strict u-multiple regulator {u(m)}m∈N, the following two
conditions hold:

(i) uθ := supm∈N uθ(1),...,θ(m) exists for each θ ∈Θ .
(ii) There is a sequence {θk}k∈N of elements ofΘ such that uθk → 0.

The multiple Egoroff property and the weak asymptotic Egoroff property are vari-
ants of the Egoroff property that was thoroughly studied in [23, Chapter 10].

We now go back to the regularity of non-additive measures. Throughout this
section, we assume that S is a Hausdorff space. Denote by B(S) the σ -field of all
Borel subsets of S, that is, the σ -field generated by the open subsets of S. A non-
additive measure defined on B(S) is called a Borel non-additive measure on S.

Definition 5.2. Let μ be a V -valued Borel non-additive measure on S. We say that
μ is regular if, for each A ∈B(S), there are sequences {Fn}n∈N of closed sets and
{Gn}n∈N of open sets such that Fn ⊂ A ⊂ Gn for all n ∈ N and μ(Gn \Fn)→ 0 as
n→ ∞.

Theorem 5.1. Let S be a metric space. Assume that V has the multiple Egoroff prop-
erty. Every weakly null-additive, continuous V-valued Borel non-additive measure
on S is regular.

The Lusin theorem in non-additive measure theory was given by [20, Theorem 4].
The following is its Riesz space-valued counterpart.

Theorem 5.2. Let S be a metric space. Let μ be a weakly null-additive, continuous
V-valued Borel non-additive measure on S. Assume that V has the multiple Egoroff
property and is order separable. Let f be a Borel measurable, real-valued function
on S. Then, there is an increasing sequence {Fn}n∈N of closed sets such that μ(S \
Fn) ↓ 0 as n→ ∞ and f is continuous on each set Fn.
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6 The Alexandroff Theorem

A classical theorem of A.D. Alexandroff [1] states that every finitely additive, regu-
lar measure on a field of subsets of a compact Hausdorff space is countably additive.
This result was extended in Riečan [27] and Hrachovina [6] for Riesz space-valued
compact measures, and in Volauf [32] for lattice group-valued compact measures.
The counterpart of the Alexandroff theorem in non-additive measure theory can be
found in Wu and Ha [35, Theorem 3.2], which asserts that every uniformly auto-
continuous, Radon non-additive measure on a complete separable metric space is
continuous (unfortunately, Theorem 2.1 of [35] was proved incorrectly; see [36]).
The purpose of this section is to give successful analogues of those results for Riesz
space-valued non-additive measures. Recall that (X ,F ) is a measurable space.

Definition 6.1. Let μ : F →V be a non-additive measure.

(i) A non-empty family K of subsets of X is called a compact system if, for any
sequence {Kn}n∈N⊂K with

⋂∞
n=1Kn = /0, there is n0 ∈N such that

⋂n0
i=1 Ki = /0.

(ii) We say that μ is compact if there is a compact system K such that, for each
A ∈F , there are sequences {Kn}n∈N ⊂K and {Bn}n∈N ⊂F such that Bn ⊂
Kn ⊂ A for all n ∈ N and μ(A\Bn)→ 0.

Remark 6.1. Our definition of the compactness of a measure is stronger than that
of [6, Definition 1]. In fact, they coincide if V is Dedekind σ -complete, weakly
σ -distributive, and order separable.

Theorem 6.1. Let μ : F → V be a non-additive measure. Assume that V has the
weak asymptotic Egoroff property. Then, μ is continuous whenever it is compact
and autocontinuous.

We also have the following version if we assume the weak σ -distributivity on the
Riesz space V , which is a weaker smoothness than the weak asymptotic Egoroff
property, and assume the uniform autocontinuity of the measure μ , which is a
stronger quasi-additivity than the autocontinuity.

Theorem 6.2. Let V be Dedekind σ -complete. Let μ : F → V be a non-additive
measure. Assume that V is weakly σ -distributive. Then, μ is continuous whenever it
is compact and uniformly autocontinuous.

7 Radon Non-additive Measures

In this section, we establish some properties of Radon non-additive measures and
the close connection to their continuity. Recall that S is a Hausdorff space and B(S)
is the σ -field of all Borel subsets of S.

Definition 7.1. Let μ be a V -valued Borel non-additive measure on S. We say that
μ is Radon if, for each A ∈B(S), there are sequences {Kn}n∈N of compact sets and
{Gn}n∈N of open sets such that Kn ⊂ A ⊂ Gn for all n ∈N and μ(Gn \Kn)→ 0 as
n→ ∞. We also say that μ is tight if there is a sequence {Kn}n∈N of compact sets
such that μ(S \Kn)→ 0 as n→ ∞.
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Proposition 7.1. Let μ be a V-valued Borel non-additive measure on S. Assume that
μ is weakly null-additive and continuous from above. Then, μ is Radon if and only
if it is regular and tight.

Since the family of all compact subsets of a Hausdorff space is a compact system,
the compactness of a non-additive measure follows from its Radonness. Thus, by
Theorems 6.1 and 6.2 we have

Theorem 7.1. Let μ be a V-valued Borel non-additive measure on S.

1. Assume that V has the weak asymptotic Egoroff property. Then, μ is continuous
whenever it is Radon and autocontinuous.

2. Assume that V is Dedekind σ -complete and weakly σ -distributive. Then, μ is
continuous whenever it is Radon and uniformly autocontinuous.

Recently, Li and Yasuda [20, Theorem 1] proved that every weakly null-additive,
continuous real-valued non-additive measure on a metric space is regular. The fol-
lowing is its Riesz space version.

Theorem 7.2. Let S be a metric space. Assume that V has the multiple Egoroff prop-
erty. Every weakly null-additive, continuous V-valued Borel non-additive measure
on S is regular.

It is known that every finite Borel measure on a complete or locally compact, sep-
arable metric space is Radon; see [26, Theorem 3.2] and [29, Theorems 6 and 9,
Chapter II, Part I]. Its counterpart in non-additive measure theory can be found
in [35, Theorem 2.3], which states that every uniformly autocontinuous, continuous
Borel non-additive measure on a complete separable metric space is Radon. The
following theorem contains those previous results; see also [7, Theorem 12].

Theorem 7.3. Let S be a complete or locally compact, separable metric space. As-
sume that V has the multiple Egoroff property. Every weakly null-additive, continu-
ous V-valued Borel non-additive measure on S is Radon.

We end this section by establishing a close connection between Radonness and con-
tinuity of a non-additive measure. The following generalizes Theorems 2.3 and 3.2
of [35].

Theorem 7.4. Let S be a complete or locally compact, separable metric space. Let
μ be an autocontinuous V-valued Borel non-additive measure on S. Assume that V
has the multiple Egoroff property. Then, μ is Radon if and only if it is continuous.

8 Examples

We first give a typical and useful example of Riesz space-valued non-additive
measures satisfying some specific properties.
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Example 8.1. Denote by L0[0,1] the Dedekind complete Riesz space of all equiv-
alence classes of Lebesgue measurable, real-valued functions on [0,1]. Let K be
a Lebesgue integrable, real-valued function on [0,1]2 with K(s,t) ≥ 0 for almost
all (s,t) ∈ [0,1]2. Define a vector-valued set function by λ (A)(s) :=

∫
A K(s, t)dt

for every Borel subset A of [0,1] and almost all s ∈ [0,1]. Then λ is an L0[0,1]-
valued order countably additive Borel measure on [0,1], that is, it holds that
∑n

k=1λ (Ak) → λ (A) whenever {An}n∈N is a sequence of mutually disjoint Borel
subsets of [0,1] with A =

⋃∞
n=1 An. Let Φ : L0[0,1]→ L0[0,1] be an increasing

mapping with Φ(0) = 0. Put μ(A) := Φ(λ (A)) for every Borel subset A of [0,1].

1. The L0[0,1]-valued Borel measure μ may be non-additive whenever Φ is not
additive. A typical example of such Φ can be defined by Φ( f ) :=

√
f + f 2 for

all f ∈L0[0,1].
2. We say that the Φ is σ -continuous from above if Φ(un) ↓ Φ(u) whenever a se-

quence {un}n∈N and u in L0[0,1] satisfy un ↓ u. The σ -continuity of Φ from
below can be defined analogously. Then, μ is continuous from above (respec-
tively, from below) whenever Φ is σ -continuous from above (respectively, from
below). We can also give some examples of L0[0,1]-valued Borel non-additive
measures that do not have the above continuity.

Next we give some examples of Riesz spaces having our smoothness conditions.
Let (T,T ,ν) be a σ -finite measure space. Denote by L0(ν) the Riesz space of all
equivalence classes of ν-measurable, real-valued functions on T . Let 0 < p < ∞.
Denote by Lp(ν) the ideal of all elements f ∈L0(ν) such that

∫
T | f |pdν <∞, and

by L∞(ν) the ideal of all elements f ∈L0(ν) that are ν-essentially bounded.

Example 8.2

(i) The following Riesz spaces have the multiple Egoroff property, so that they
have the weak asymptotic Egoroff property, the Egoroff property, and are
weakly σ -distributive.

(i) Every Banach lattice having order continuous norm.
(ii) The Dedekind complete Riesz space s of all real sequences with coordinate

wise ordering and its ideals �p (0 < p≤ ∞).
(iii) The Dedekind complete Riesz spaces Lp(ν) (0≤ p ≤ ∞).

(ii) Let Λ be a non-empty set. The Dedekind complete Riesz space RΛ of all real-
valued functions on Λ has the weak asymptotic Egoroff property. However,
there is an uncountable set Λ such that RΛ does not have the Egoroff prop-
erty [5, Example 4.2], and hence does not have the multiple Egoroff property.

(iii) Let V and W be Riesz spaces with W Dedekind complete. Assume that W has
the weak asymptotic Egoroff property. The Dedekind complete Riesz space
Lb(V,W ) of all order bounded, linear operators from V into W has the weak
asymptotic Egoroff property.

(iv) The Riesz space C[0,1] of all continuous, real-valued functions on [0,1] has
neither the weak asymptotic Egoroff property nor the Egoroff property. On the
other hand, the Riesz space R2 with lexicographical order does not have the
weak asymptotic Egoroff property, but has the Egoroff property.
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9 Conclusion

A short survey of our recent developments in Riesz space-valued non-additive mea-
sure theory has been carried out. Such a study goes with smoothness conditions on
the involved Riesz space, because the ε-argument, which is useful in the existing
theory of real-valued non-additive measures, does not work well in a general Riesz
space. Typical examples of Riesz spaces satisfying our smoothness conditions are
the Lebesgue function spaces Lp[0,1] (0 < p ≤ ∞), so that the established results
could be instrumental when developing non-additive extension of the theory of p-th
order stochastic processes and fuzzy number-valued measure theory.
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27. Riečan, J.: On the Kolmogorov consistency theorem for Riesz space valued measures.

Acta Math. Univ. Comenian. 48-49, 173–180 (1986)
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Entropy of Fuzzy Measure

Aoi Honda and Michel Grabisch

Abstract. A definition for the entropy of fuzzy measures defined on set systems is
proposed. The underlying set is not necessarily the whole power set, but satisfy a
condition of regularity. This definition encompasses the classical definition of Shan-
non for probability measures, as well as the definition of Marichal et al. for classical
fuzzy measures, and may have applicability to most fuzzy measures which appear
in applications. We give several characterizations of this entropy which are natural
and understandable as the entropy.

1 Introduction

Fuzzy measure [12, 13], which is also called capacity [1] or monotone measure,
are nonadditive set function. Since they can be used to express interactions between
items that are not expressible by regular measures, which have additivity, studies
are being done on their application in fields such as subjective evaluation problems,
decision-making support, and pattern recognition. On the other hand, the Shannon
entropy [11] for probability measures has played a most important role in the infor-
mation theory. Therefore, many attempts for defining an entropy for set functions
more general than classical probability measures have been done, that is, for fuzzy
measures.

The first attempt seems to be by Wenxiu [14] in 1992, after that, Yager [15],
Marichal and Roubens [10, 9], Dukhovny [2], and so on, proposed definitions having
suitable properties respectively, which can be considered as the generalization of the
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Shannon entropy. All these works considered a finite universal set, and the power
set as underlying set system.

In this paper, we consider a yet more general case of set functions, which we
call fuzzy measures on set systems. A set system is merely a collection of subsets
of some universal set, containing the empty set and the universal set itself. The dif-
ference with classical fuzzy measures on finite sets is that the fuzzy measure is not
defined for every subset (or coalition, in a game theoretical perspective). We define
the entropy for such fuzzy measures on set systems, provided that the set system sat-
isfies some regularity condition, i.e., that all maximal chains have the same length.
Moreover, using join-irreducible elements, there is a close connection between set
systems and lattices, so that our definition can be applied to fuzzy measures on lat-
tices as well. Our definition encompasses the classical definition of Shannon for
probability measures and also the definition of Marichal et al. for classical fuzzy
measures.

We give also an axiomatic characterization of our new definition of entropy,
which is done in the spirit of Faddeev, which is the simplest and understandable
for the classical Shannon entropy.

In the last part, we give relations between set systems and lattices, and give some
practical examples of fuzzy measures on lattices, such as bi-capacities and multi-
choice games.

2 Preliminaries

Throughout this paper, we consider a finite universal set N := {1,2, . . . ,n}, and 2N

denotes the power set of N. Let us consider N a subcollection of 2N . Then we call
(N,N) (or simply N if no confusion occurs) a set system if N contains /0 and N. In
the following, (N,N) will always denote a set system.

A set system endowed with inclusion is a particular case of a partially ordered
set (P,≤), i.e., a set P endowed with a partial order, that is, reflexive, antisymmetric
and transitive,≤.

Let A,B ∈N. We say that A is covered by B, and write A≺ B or B% A, if A � B
and A⊆C � B implies C = A.

Definition 2.1 (maximal chain of set system). Let N be a set system. We call C a
maximal chain of N if C = (c0,c1, . . . ,cm) satisfies /0 = c0 ≺ c1 ≺ ·· · ≺ cm = N,ci ∈
N, i = 0, . . . ,m, 1≤ m≤ n.

We denote the set of all maximal chains of N by M (N).

Definition 2.2 (totally ordered set system). We say that (N,N) is a totally ordered
set system if for any A,B ∈N, either A⊆ B or B � A.

If (N,N) is a totally ordered set system, then |M (N)|= 1.

Definition 2.3 (regular set system [6]). We say that (N,N) is a regular set system
if for any C ∈M (N), the length of C is n, i.e., |C |= n + 1.

N is a regular set system if and only if |A\B|= 1 for any A,B ∈N such that A% B.
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3 Entropy of a Fuzzy Measure

Definition 3.1 (fuzzy measure on a set system). Let (N,N) be a set system. A
function v : N→ [0,1] is a fuzzy measure on (N,N) if it satisfies v( /0) = 0,v(N) = 1
and for any A,B ∈N, v(A)≤ v(B) whenever A⊆ B.

We introduce further concepts about fuzzy measures, which will be useful for
axioms.

Definition 3.2 (dual measure). For v be a fuzzy measure on (N,N), the dual mea-
sure of v is defined on Nd := {A ∈ 2N | Ac ∈ N} by vd(A) := 1− v(Ac) for any
A ∈Nd , where Ac := N \A.

The dual of a fuzzy measure is also a fuzzy measure, and a Hasse diagram for Nd is
obtained by turning upside down a Hasse diagram for N.

Let us consider a chain of length 2 as set system, denoted by 2 (e.g.,
{ /0,{1},{1,2}}), and a fuzzy measure v2 on it. We denote by the triplet (0,u,1)
the values of v2 along the chain.

Definition 3.3 (embedding of v2). Let (N,C) be a totally ordered regular set system
such that C := {C0, . . . ,Cn}, Ci−1 ≺Ci, i = 1, . . . ,n. For a fuzzy measures v defind
on (N,C), v2 = (0,u,1) and Ck ∈ C, vCk is called the embedding of v2 into v at Ck

and defined on the totally ordered regular set system (NCk ,CCk ) by

vCk(A) :=

⎧⎨⎩
v(A), if A = Cj, j < k,
v(Ck−1)+ u · (v(Ck)− v(Ck−1)

)
, if A = C′k,

v(Cj−1), if A = C′j, j > k,

where {k} := Ck \ Ck−1,NCk := (N \ {k}) ∪ {k′,k′′},(N \ {k}) ∩ {k′,k′′} = /0,
k′ := (Ck \ {k})∪{k′},C′j := (Cj−1 \ {k})∪{k′,k′′} for j > k, and CCk := {C0, . . . ,
Ck−1,C′k,C

′
k+1, . . . ,C′n+1}.

In other words, {k} has simply been “split” into {k′,k′′}.

Definition 3.4 (permutation of v). Let π be a permutation on N. Then the permuta-
tion of v by π is defined on π(N) := {π(A)∈ 2N | A∈N} by π ◦v(A) := v(π−1(A)).

As it is usual for functions, we denote the restriction of domain of v to N′ ⊂N by
v|N′ , i.e., v|N′(A) := v(A) for any A ∈N′.

We turn now to the definition of entropy. We first recall the classical definition of
Shannon.

Definition 3.5 (Shannon Entropy [11]). Let p be a probability measure on (N,2N).
The Shannon entropy of p is defined by

HS(p) = HS(p1, . . . , pn) := −
n

∑
i=1

pi log pi,



106 A. Honda and M. Grabisch

where pi := p({i}) and log denoting the base 2 logarithm, and by convention
0 log0 := 0.

We generalize the Shannon entropy for more general fuzzy measures which are
defined on regular set systems. Let v be a fuzzy measure on (N,N). For any C :=
(c0,c1, . . . ,cm) ∈M (N), we define pv,C by

pv,C := (pv,C
1 , pv,C

2 , . . . , pv,C
m )

= (v(c1)− v(c0),v(c2)− v(c1), . . . ,v(cm)− v(cm−1)).

Note that pv,C is a probability distribution, i.e. pv,C
i ≥ 0, i = 1, . . . ,m and∑m

i=1 pv,C
i =1.

Definition 3.6 (entropy of fuzzy measures on regular set systems [6]). Let v be a
fuzzy measure on a regular set system (N,N). The entropy of v is defined by

HHG(v) :=
1

|M (N)| ∑
C∈M (N)

HS(pv,C ).

This definition encompasses the Shannon entropy and also Marical and Roubens’s
entropy.

We introduce Marichal and Roubens’s entropy and several entropies.

Definition 3.7 (Marichal and Roubens’s entropy [10, 9]). Let v be a fuzzy mea-
sure on (N,2N). Marichal and Roubens’s entropy of v is defined by

HMR(v) :=
n

∑
i=1
∑

A⊆N\{i}
γ n
|A|h[v(A∪{i})− v(A)],

where h(x) :=−x logx and

γn
k :=

(n− k−1)!k!
n!

.

Definition 3.8 (Yager’s entropy [15]). Let v be a fuzzy measure on (N,2N). Yager’s
entropy of v is defined by

HY (v) :=
n

∑
i=1

h

(
∑

A⊆N\{i}
γ n
|A|v(A∪{i})− v(A)

)
.

Dukhovny’s entropy which is called minimum entropy is also for fuzzy measure
defined on the power set. Here we extend it to our framework.

Definition 3.9 (minimum entropy, Dukhovny [2]). Let v be a fuzzy measure on a
regular set system (N,N). The minimum entropy of v is defined by

Hmin(v) := min
C∈M (N)

HS(pv,C ).
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When fuzzy measure is additive, all three entropies above are equivalent to the Shan-
non entropy HS, so that we can regard all of them generalizations of the original
Shannon entropy. For the fuzzy measure

vmax(A) =
{

0, A = /0,
1, otherwise

HMR(vmax) takes 0, and HY (vmax) and Hmin(vmax) take 1. As it is clear from the
definition, Hmin is not differentiable. We should choose from various entropies to
suit the situation or meaning of entropy.

4 Axiomatization of the Entropy of Fuzzy Measures

First, we show Faddeev’s axiomatization, which will serve as a basis for our ax-
iomatization. A probability measure p({1}) = x, p({2}) = 1− x on N = {1,2} is
denoted by pair (x,1− x) and the entropy of it is denoted by H(x,1− x) instead of
H((x,1− x)).

(F1) f (x) := H(x,1− x) is continuous on 0 ≤ x ≤ 1, and there exists x0 ∈ [0,1]
such that f (x0) > 0.

(F2) For any permutation π on {1, . . . ,n},

H(pπ(1), . . . , pπ(n)) = H(p1, . . . , pn).

(F3) If pn = q + r,q > 0,r > 0, then

H(p1, . . . , pn−1,q,r) = H(p1, . . . , pn)+ pnH(q/pn,r/pn).

Theorem 4.1 ([3]). Under the condition H(1/2, 1/2) = 1, there exists the unique
function H : Δ → [0,1] satisfying (F1), (F2) and (F3), and it is given by HS.

Before introducing axioms for the entropy of fuzzy measures, we discuss about
the domains of HS and HHG. Let p := (p1, . . . , pn) be a probability measure on
N := {1,2, . . . ,n}. Then (N, p) is called a probability space. Let Δn be the set of all
probability measure on N. HS is a function defined on Δ :=

⋃∞
n=1Δn to [0,∞). It may

as properly that HS(p) are denoted HS(N, p), with the underlying space. However
we denote HS(N, p) as simply HS(p) as far as no confusion occurs. Similarly, let
v be a fuzzy measure on (N,N). Then we call (N,N,v) a fuzzy measure space.
Let Σn be the set of all regular set system of N := {1,2, . . . ,n} and let Δ ′N be the
set of all fuzzy measure space defined on regular set systems (N,N). The domain
of HHG is Δ ′ :=

⋃∞
n=1

⋃
N∈Σn

Δ ′N and HHG is a function defined on Δ ′ to [0,∞).
We denote simply HHG(v) instead of HHG(N,N,v) as far as no ambiguity occurs.
More properly, the dual fuzzy measure of v is the dual fuzzy measure space of the
fuzzy measure space (N,N,v) which is defined by (N,N,v)d := (N,Nd ,vd) with
Nd := {Ac ∈ 2N | A ∈ N}, the permutation of v is the permutation of the fuzzy
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measure space (N,N,v) which is defined by (N,N,v)π := (N,π(N),π ◦ v), and the
embedding of v2 is the embedding of the fuzzy measure space (N,2,v2) which is
defined by (N,N,v)ck := (Nck ,Nck ,vck ).

Now we introduce five axioms for the entropy of fuzzy measures.

(A1) (continuity) The function f (u) := H({1,2},2,(0,u,1)) = H(0,u,1) is con-
tinuous on 0≤ u≤ 1, and there exists u0 ∈ [0,1] such that f (u0) > 0.

(A2) (dual invariance) For any fuzzy measures (0,u,1) on 2,

H(0,u,1) = H(0,1−u,1).

(A3) (increase by embedding) Let v be a fuzzy measure on a totally ordered set
system (N,N). For any ck ∈N, for any v2 := (0,u,1), the entropy of vck is

H(N,N,v)ck ) = H(N,N,v)+ (v(ck)− v(ck−1)) ·H({1,2},2,v2)
= H(v)+ (v(ck)− v(ck−1)) ·H(v2).

(A4) (convexity) Let (N,N), (N,N1),(N,N2) and (N,Nm) be regular set systems
satisfying M (N) = M (N1)∪·· ·∪M (Nm), and M (Ni)∩M (N j) = /0, i �= j. Then
there exists an α1,α2, . . . ,αm ∈]0,1[,α1 + · · ·+αm = 1 such that for any fuzzy mea-
sures v on (N,N),

H(N,N,v) = α1H(N,N1,v|N1)+ · · ·+(αm)H(N,Nm,v|Nm)
= α1H(v|N1)+ · · ·+(αm)H(v|Nm).

(A5) (permutation invariance) Let v be a fuzzy measure on (N,2N). Then for any
permutation π on N, it holds that

H(N,2N ,v) = H(N,2N ,v◦π).

The following can be shown.

Theorem 4.2 ([7]). Under the condition H({1,2},2,(0, 1
2 ,1)) = H(0, 1

2 , 1) = 1,
there exists the unique function H : Δ ′ → [0,1] satisfying (A1), (A2), (A3), (A4)
and (A5), and it is given by HHG.

We discuss in detail our axioms, in the light of Faddeev’s axioms.

• continuity
We have

f (u) = HHG(0,u,1) = HS(p(0,u,1),C 2
) = HS(u,1−u),

where C 2 := ( /0,{1},{1,2}). Therefore (A1) corresponds to (F1).

• dual invariance
HHG(v) is dual invariant, when v is not only a fuzzy measure on 2 but also on general
regular set systems.
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Proposition 4.1. Let v be a fuzzy measure on a regular set system (N,N), and vd its
dual on (N,Nd). Then we have HHG(v) = HHG(vd).

The Shannon entropy of the probability measure satisfies dual invariance, as a matter
of fact, the probability measure and its dual measure are identical.

• increase by embedding
Let v be a fuzzy measure on a totally ordered set system N = { /0 = c0,c1, . . . ,cn =
N}, where ci ⊂ c j for i < j, and consider the embedding into v with v2 := (0,u,1)
at ck. Then

HHG(vck ) = HS(pvck ,C ′),

where C ′ := (c0, . . . ,ck−1,ck′ ,ck′′ ,ck+1, . . . , cn), and by (F3), we have

HS(pvck ,C ′) = HS(pv,C )+ (v(ck)− v(ck−1)) ·HS(u,1−u)

which can be rewritten as

HHG(vck) = HHG(v)+ (v(ck)− v(ck−1)) ·HHG(v2).

This is exactly (A3).

• permutation invariance
Let N := (1,2,3) and N := { /0,{1},{3},{1,2},{1,3},{2,3},N} and let

π =
(

1 2 3
2 3 1

)
. Then, for instance

v◦π({2,3}) = v(π−1({2,3})) = v({1,2})

(cf. Fig. 1).

N

{1} {3}

{1,2} {1,3} {2,3}

/0

N

π(N)

{2} {1}

{2,3} {2,1} {3,1}

/0

π(N)

Fig. 1 Permutation of set system

When N = 2N , all permutations satisfy π(A) ∈N for any A ∈N. In other words,
(A5) can be regarded as a generalization of (F2).

To finish this section, we consider a modification of our axiomatization so as to
recover the minimum entropy defined by Dukhovny [2]. We modify (A4) as follows:
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(A4′) Let (N,N), (N,N1) and (N,N2) be regular set systems satisfying
M (N) = M (N1)∪M (N2). Then for any fuzzy measures v on N,

H(v) = min
{

H(v|N1),H(v|N2)
}

.

Theorem 4.3 ([7]). Under the condition Hmin(N,2,(0, 1
2 ,1)) = Hmin(0, 1

2 ,1) = 1,
there exists the unique function H :Δ ′ → [0,1] satisfying (A1), (A2), (A3) and (A4′),
and it is given by HD.

5 Relative Entropy

Using the same idea of HHG(v), we can define the relative entropy of fuzzy measure
as well as Shannon’s relative entropy.

Definition 5.1 ([6]). Let v and u be fuzzy measures on N. The relative entropy of v
to u is defined by

HHG(v;u) :=
1

|M (N)| ∑
C∈M (N)

HS(pv,C ; pu,C ),

where HS(p;q) is Shannon’s relative entropy, i.e.

HS(p;q) :=
n

∑
i=1

pi log
pi

qi
.

Following two propositions are important properties of this relative entropy.

Proposition 5.1. HHG(v;u) � 0, and HHG(v;u) = 0 if and only if v≡ u.

v≡ u denotes that v identically equals u.

Proposition 5.2. Let v �≡ u and vu
λ := λu +(1−λ )v,λ ∈ [0,1]. Then HHG(vu

λ ;u)
is a strictly decreasing function of λ .

6 Relation between Lattice and Set System

In this section, we discuss the relation between lattices and set systems.

Definition 6.1 (lattice). Let (L,≤) be a partially ordered set, i.e. ≤ is a binary re-
lation on L being reflexive, antisymmetric and transitive. (L,≤) is called a lattice if
for all x,y ∈ L, the least upper bound x∨ y and the greatest lower bound x∧ y of x
and y exist.

Let L be a lattice. If
∨

S and
∧

S exist for all S ⊆ L, then L is called a complete
lattice.

∨
L and

∧
L are called the top element and the bottom element of L and

written � and ⊥, respectively. We denote a complete lattice by (L,≤,∨,∧,⊥,�). If
L is a finite set, then (L,≤) is a complete lattice.
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Definition 6.2 (∨-irreducible element). An element x ∈ (L,≤) is ∨-irreducible if
for all a,b ∈ L, x �=⊥ and x = a∨b implies x = a or x = b.

We denote the set of all ∨-irreducible elements of L by J (L).
The mapping η for any a ∈ L, defined by

η(a) := {x ∈J (L) | x≤ a}

is a lattice-isomorphism of L onto η(L) := {η(a) | a ∈ L}, that is, (L,≤) ∼= (η(L),
⊆). Obviously (J (L),η(L)) is a set system. (See Section 7)

Lemma 6.1. If (L,≤) satisfies the following property:

(∨-minimal regular) for any C ∈M (L), the length of C is |J (L)|, i.e. |C | =
|J (L)|+ 1,

then (J (L),η(L)) is a regular set system.

The maximal chain C = (c0,c1, . . . ,cm) of lattices is also defined by ⊥= c0 ≺ c1 ≺
·· · ≺ cm = �,ci ∈ N, i = 0, . . . ,m. in the same way of set systems, where A ≺ B
denotes that A≤ B and A≤C < B implies C = A.

Most lattices which underlie fuzzy measures appearing in practice, such as bi-
capacities, and multi-choice games are ∨-minimal regular; therefore our entropy is
applicable to these cases. (See Section 7).

7 Examples

In this section, we show several pratical examples of fuzzy measures.

• Regular lattice and its translation to set system
L1 in Figure 2 is a ∨-minimal regular lattice (Lemma 1), and η(L1) in Figure 2 is
the translation of a lattice L1 to a set system.

a

d e f

b c

g

L1

{d,e, f }

{d} {e} { f }

{d,e} {e, f }

/0

η(L1)

Fig. 2 Translation of lattice

In fact, J (L1) = {d,e, f}, and L1 is also represented by η(L1). M (η(L1)) =
{( /0,{d},{d,e},{d,e, f}),( /0,{e},{d,e},{d,e, f}), ( /0,{e},{e, f},{d,e, f}),( /0,{f},
{e, f},{d,e, f})}. Let v be a fuzzy measure on L1. Then the entropy of v on L1 is
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H(v) =
1
4

h[v(d)− v(g)]+
1
2

h[v(e)− v(g)]+
1
4

h[v( f )− v(g)]+
1
4

h[v(b)− v(d)]

+
1
4

h[v(b)− v(e)]+
1
4

h[v(c)− v(e)]+
1
4

h[v(c)− v( f )]+
1
2

h[v(a)− v(b)]

+
1
2

h[v(a)− v(c)],

where h(x) :=−x logx.

• Bi-capacity [4][5]
A bi-capacity is a monotone function on Q(N) := {(A,B) ∈ 2N × 2N | A∩B = /0}
which satisfies v( /0,N) =−1, v( /0, /0) = 0 and v(N, /0) = 1. For any (A1,A2),(B1,B2)
∈Q(N), (A1,A2)' (B1,B2) iff A1 ⊆ B1 and A2 ⊇ B2. Q(N)∼= 3N . It can be shown
that (Q(N),') is a finite distributive lattice. Sup and inf are given by (A1,A2)∨
(B1,B2) = (A1 ∪B1,A2 ∩B2) and (A1,A2)∧ (B1,B2) = (A1 ∩B1,A2 ∪B2), and we
have

J (Q(N)) = {( /0,N \ {i}), i ∈ N}∪{({i},N \ {i}), i ∈ N},
where i ∈ N. Normalizing v by v′ : Q(N)→ [0,1] such that

v′ :=
1
2

v +
1
2
,

we can regard v as a fuzzy measure on Q(N). Then, we have

H(v′) =
n

∑
i=1
∑

A⊂N\xi
B⊂N\(A∪{i})

γ n
|A|,|B|

(
h
[
v′(A∪{i},B)− v′(A,B)

]
+h
[
v′(B,A)− v′(B,A∪{i})]) .

where γ n
k,� := (n−k+�−1)! (n+k−�)! 2n−k−�

(2n)! .

•Multi-choice game
Let N := {0,1, . . . .n} be a set of players, and let L := L1×·· ·×Ln, where (Li,≤i) is a
totally ordered set Li = {0,1, . . . ,�i} such that 0≤i 1≤i · · · ≤i �i. Each Li is the set of
choices of player i. (L,≤) is a regular lattice. For any (a1,a2, . . . ,an),(b1,b2, . . . ,bn)
∈ L, (a1,a2, . . . ,an)≤ (b1,b2, . . . ,bn) iff ai ≤i bi for all i = 1, . . . ,n. We have

J (L) = {(0, . . . ,0,ai,0, . . . ,0) | ai ∈J (Li) = Li \ {0}}

and |J (L)|=∑n
i=1 �i. The lattice in Fig. 3 is an example of a product lattice, which

represents a 2-player game. Players 1 and 2 can choose among 3 and 4 choices,
respectively. Let v be a fuzzy measure on L, that is, v(0, . . . ,0) = 0, v(�1, . . . ,�n) = 1
and , for any a,b ∈ L, v(a) � v(b) whenever a≤ b. In this case, we have

H(v) = ∑
i∈N
j∈Li

∑
a∈L/Li

ξ (a, j)
i h [v(a, j)− v(a, j−1)],
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(0,0)
(1,0) (0,1)

(1,1)
(2,0)

(0,2)

(2,1)
(1,2)

(2,2)

(0,3)
(1,3)

(2,3)

Fig. 3 2-players game

where L/Li :=L1×·· ·×Li−1×Li+1×·· ·×Ln, (a,ai):=(a1, . . . ,ai−1,ai,ai+1, . . . ,an)
∈ L such that a ∈ L/Li and ai ∈ Li,

ξ (a,ai)
i :=

(
n

∏
k=1

(
�k

ak

))
·
(
∑n

k=1 �k

∑n
k=1 ak

)−1

· ai

∑n
k=1 ak

.
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Representations of Importance and Interaction
of Fuzzy Measures, Capacities, Games and Its
Extensions: A Survey�

Katsushige Fujimoto

Abstract. This paper gives a survey of the theory and results on representation of
importance and interaction of fuzzy measures, capacities, games and its extensions:
games on convex geometries, bi-capacities, bi-cooperative games, and multi-choice
games, etc. All these games are regarded as games on products of distributive lattices
or on regular set systems.

1 Introduction

The measure is one of the most important concepts in mathematics and so is the
integral with respect to the measure. They have many applications in economics,
engineering, and many other fields, and their main characteristics is additivity. This
is very effective and convenient, but often too inflexible or too rigid. As an solution
to the rigidness problem the fuzzy measure has been proposed [28]. It is an exten-
sion of the measure in the sense that the additivity of the measure is replaced with
weaker condition, the monotonicity. The non-additivity is the main characteristic of
the fuzzy measure, and can represent interaction phenomena among elements to be
measured.

Definition 1.1 (Fuzzy Measures). Let N be a non-empty finite set. A fuzzy mea-
sure, also called a capacity, on N is a function v : 2N → R such that v( /0) = 0, and
v(A) ≤ v(B) whenever A ⊆ B ⊆ N. A fuzzy measure is normalized if v(N) = 1. A
transferable utility game in characteristic form [5], or simplicity game, is a function
v : 2N →R such that v( /0) = 0.

Given a subset S⊆ N, the precise meaning of the quantity v(S) depends on the kind
of intended application or domain [10]:
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• N is the set of states of nature. Then S ⊆ N is an event in decision under
uncertainty or under risk, and v(S) represents the degree of certainty, belief, etc.

• N is a the set of criteria, or attributes. Then S ⊆ N is a group of criteria
(or attributes) in multi-criteria (or multi-attributes) decision making, and v(S)
represents the degree of importance of S for making decision.

• N is the set of voters, political parties. Then S⊆N is called a coalition in voting
situations, and v(S) = 1 iff bill passes when coalition S votes in favor of the bill,
and v(S) = 0 else.

• N is the set of players, agents, companies, etc. Then S ⊆ N is also called a
coalition in cooperative game theory, and v(S) is the worth (or payoff, or income,
etc.) won by S if all members in S agree to cooperate, and the other ones do not.

As mentioned above, fuzzy measures (or capacities) are a special type of games (i.e.,
monotone games). Throughout this paper, we will use the term “games” on behalf of
fuzzy measures, capacities, and games unless monotonicity is essential in situations
to be considered, and “players” on behalf of events, voters, criteria, attributes, etc.

1.1 Intuitive Representations of Importance and
Interaction [8]

In order to intuitively approach the concept of importance of player and of interaction
among players, consider two players i, j ∈ N. Clearly, v(i) is one of representations
of importance of player i ∈ N. An inequality

v({i, j}) > v({i})+ v({ j}) (resp. <)

seems to model a positive (resp. negative) interaction or complementary (resp. sub-
stitutive) effect between i and j. However, as discussed in Grabisch and Roubens
[13], the intuitive concept of interaction requires a more elaborate definition. We
should not only compare v({i}), v({ j}), and v({i, j}) but also see what happens
when i, j, and {i, j} join coalitions. That is, we should take into account all coali-
tions of the form T ∪{i}, T ∪{ j}, and T ∪{i, j}. For a play i and a coalition T �( i,

Δ{i}v(T ) := v(T ∪{i})− v(T) (1)

seems to represent an index of importance of i in T ∪{i}. The equation (1) is called
the marginal contribution of a player i to a coalition T in cooperative game theory.
Then it seems natural to consider that if for T not containing i and j

Δ{i}v(T ∪{ j}) > Δ{i}v(T ) (resp. <)

then i and j interact positively (resp. negatively) in the presence of T since the
presence of player j increases (resp. decreases) the marginal contribution of i to
coalition T . Then

Δ{i, j}v(T ) := Δ{i}v(T ∪{ j})−Δ{i}v(T ) (2)
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is called the marginal interaction [12] between i and j in the presence of T . Note
that

Δ{i}v(T ∪{ j})−Δ{i}v(T ) = Δ{ j}v(T ∪{i})−Δ{ j}v(T ).

For three players i, j,k ∈ N and a coalition T not containing i, j and k, Δ{i, j,k}v(T )
can be naturally defined as

Δ{i, j,k}v(T ) := Δ{i, j}v(T ∪{k})−Δ{i, j}v(T ).

Then we have Δ{i, j}v(T ∪ {k})− Δ{i, j}v(T ) = Δ{i,k}v(T ∪ { j})− Δ{i,k}v(T ) =
Δ{ j,k}v(T ∪{i})−Δ{ j,k}v(T ). Moreover, for two distinct coalitions S and T ⊆N \S,

ΔSv(T ) := ΔS\{i}v(T ∪{i})−ΔS\{i}v(T ) (3)

for i∈ S. Similarly, when, for example, ΔSv(T ) > 0 (resp. <), we shall consider that
players among S interact positively (resp. negatively) in the presence of T.

1.2 Generalizations of Domains of Games [10]

In ordinary cooperative game theory, and decision problems described through the
use of fuzzy measures and/or capacities, it is implicitly assumed that all subsets S
of N can be formed; however, this is generally not the case. Let us elaborate on this,
and distinguish several cases.

• Some Subsets of N may be not Meaningful. When N is the set of political
parties, it means that some coalitions of parties are unlikely to occur, or even
impossible (coalition mixing left and right parties). When N is the set of players,
for players in order to coordinate their actions, they must be able to communicate
[27].

• Subsets of N may be not “Black and White”, which means that the member-
ship of an element to N may be not simply resume to a matter of member or
nonmember. This is the case with multi-criteria decision making when under-
lying scales are bipolar, which is a demarcation between values considered as
“good”, and as “bad”, the central value being neutral [11]. In voting situation,
it is convenient to consider that players may also abstain, hence each voter has
three possibilities [7]. When N is the set of players, one may consider that each
player can play at different level of participation [16].

2 Fuzzy Measures, Capacities, Games and Its Extensions

Definition 2.1 (Lattices). Let L be a non empty set and ≤ a partial order on L (i.e.,
(L,≤) is a poset). (L,≤) is said to be a lattice if for x,y ∈ L, the supremum x∨y and
the infimum x∧ y always exist. � and ⊥ are the greatest and least elements of L, if
they exists. An element j ∈ L is join-irreducible if it is not⊥ and cannot be express
as a supremum of other elements (i.e., there are no i,k < j such that j = i∨ k). The
set of all join-irreducible elements of L is denoted by J(L).
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Proposition 2.1. [3] Let L be a distributive lattice. Any element x∈L can be written
as an irredundant supremum of join-irreducible elements in a unique way. That is,
for any x ∈ L there uniquely exists { j1, . . . , jm} ⊆ J(L) such that

x =
m∨

i=1

ji (4)

and that if there exists M ⊆ J(L) such that x =
∨

j∈M j, then { j1, . . . , jm} ⊆M. The
equation (4) is called minimal decomposition of x and the { j1, . . . , jm} is denoted by
η∗(x). For any x, we denote by η(x) := { j ∈ J(L) | j ≤ x}, then x =

∨
j∈η(x) j. For

example, in Fig. 1 (b), η(23,1) = {( /0,13),(2,13),( /0,12),(3,12)} and η∗(23,1) =
{(2,13),(3,12)}.
Definition 2.2 (Fuzzy Measures and Games on Lattices). A game on a lattice L
is a function v : L→R such that v(⊥) = 0. A fuzzy measure, also called a capacity,
on a lattice L is a function ν : L→R such that ν(⊥) = 0, and ν(A)≤ ν(B) whenever
A≤ B≤�. A fuzzy measure on a lattice is normalized if ν(�) = 1.

2N can be coincided with the Boolean lattice B(|N|). Therefore, ordinary fuzzy
measures and games on N are regarded as fuzzy measures and games on lattices.

2.1 Examples of Generalizations of Games [10]

Definition 2.3 (Games on Convex Geometries [2]). Let N be a set of players. A
collection C of subsets of N is a convex geometry if (i) it contains the empty set,
(ii) is closed under intersection, and S ∈ C , S �= N implies that it exists j ∈ N \ S
such that S∪{ j} ∈ C . A game on a convex geometry C is a function v : C → R
such that v( /0) = 0. Similar approaches on other restricted domains, games on union
stable systems and on matroids, also have been studied by Bilbao [2].

Definition 2.4 (Bi-cooperative Games and Bi-capacities [11]). Let Q(N) :=
{(S1,S2) | S1,S2 ⊆ N, S1 ∩ S2 = /0}. A bi-cooperative game on N is a function
ν : Q(N) → R such that ν( /0, /0) = 0 and a bi-capacity on N is a bi-cooperative
game on N such that ν(A, ·)≤ ν(B, ·) and ν(·,A)≥ ν(·,B) whenever A⊆ B⊆ N. A
bi-capacity is normalized if ν(N, /0) = 1 and ν( /0,N) =−1.

Definition 2.5 (Multi-choice Games [16]). Let N be a set of players. Each player
i ∈ N has a finite number of feasible participation levels whose set we denote by
Mi = {0,1, . . . ,mi} and M =∏i∈N Mi. Each element s = (s1,s2, . . . ,sn)∈M specifies
a participation profile for players and is referred to as a multi-choice coalition. So, a
multi-choice coalition indicates the participation level of each player. A multi-choice
game is a function v : M→ R such that v(0) = 0, where 0 = (0,0, . . . ,0) ∈M.

Definition 2.6 (Games on Product Lattices [18]). Let L := L1×·· ·×Ln be a prod-
uct of distributive lattices (i.e., L is also a distributive lattice with product order),
where L1, . . . ,Ln are finite distributive lattices. A game on a product lattice L is a
function v : L→ R such that v(⊥) = 0, where⊥= (⊥1, . . . ,⊥n).
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Here, we consider some examples of games on L. If Li := {⊥,�} for all players
i ∈ N, then we get ordinary games on 2N . If Li := {⊥,x,�}, ⊥ < x < � (e.g.,
{−1,0,1}) ∀i∈N, then we have bi-cooperative games. If Li := {0,1, . . . ,mi} ∀i∈N,
we obtain multi-choice games.

0,0,0
1,0,0

0,0,13,0,0
2,0,0

0,0,2

0,1,0

0,3,0
0,2,0

0,4,0

3,4,2

3,0,2

φ

123 φ

φ,123

φ,23

,23

φ,13

3,1

φ,12

3,2

2,13

3,12

Fig. 1 Examples of games on lattices: elements indicated by black circles are join-irreducible

3 The Möbius Transforms and Derivatives

Definition 3.1 (The Möbius Transform [24]). The Möbius transform of a game
v : 2N → R is a game on N denoted by Δ v : 2N →R and is defined by

Δ v(S) := ∑
T⊆S

(−1)|S\T |v(T ) for each S ∈ 2N .

Equivalently, we have that

v(S) = ∑
T⊆S

Δ v(T ) ∀S ∈ 2N .

Thus, the worth v(S) of a coalition S is equal to the sum of the Möbius transforms
of all its subcoalitions. This gives a recursive definition of the Möbius transform.
The Möbius transform of every singleton is equal to its worth, while recursively,
the Möbius transform of every coalition of at least two players is equal to its worth
minus the sum of the Möbius transforms of all its proper subcoalitions. In this sense,
the Möbius transform of a coalition S can be interpreted as the extra contribution of
the cooperation among the players in S that they did not already achieve by smaller
coalitions. The Möbius transform is also called the Harsanyi dividends [14].

Definition 3.2 (The Möbius Transforms on Posets). Let P := (P,≤) be a poset.
For a function f : P→ R, the Möbius transform Δ f of f is the unique solution of
the equation:

f (x) = ∑
y≤x
Δ f (y) ∀x ∈ P,

given by
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Δ f (x) = ∑
y≤x
μ(y,x) f (y), x ∈ P,

where μ is the so-called Möbius function on P and given by

μ(y,x) =

⎧⎪⎨⎪⎩
1 if x = y,

−∑y≤z≤x μ(y,z) if y < x,

0 otherwise.

As noted in section 2.1, any bi-cooperative game on N is regarded as a game on a
lattice (i.e., a poset). Therefore, the Möbius transform of a bi-cooperative game is
obtained as follows:

Definition 3.3 (The Möbius Transforms of Bi-cooperative Games). The Möbius
transform of a bi-cooperative game ν : Q(N)→ R is defined by

Δν (A1,A2) := ∑
(B1, B2)'(A1 , A2)

B2∩A1= /0

(−1)|A1\B1|+|B2\A2|ν(B1,B2) for each (A1,A2)∈Q(N),

where (B1,B2) ' (A1,A2) means that B1 ⊆ A1 and A2 ⊆ B2. Equivalently, we have
that

ν(A1,A2) = ∑
(B1,B2)'(A1,A2)

Δν(B1,B2).

Definition 3.4 (Derivatives). The first order derivative of v : 2N →R w.r.t. i ∈ N at
S ⊆ N \ {i} is given by

Δ{i}v(S) := v(S∪{i})− v(S).

It is also called the marginal contribution of i to S∪{i} in cooperative game theory.
The derivative of v w.r.t. T ⊆ N at S⊆ N \T is iteratively defined by

ΔT v(S) := Δ{i}[ΔT\{i}v(S)] i ∈ T

with convention Δ /0v(S) = v(S). It is the marginal interaction, discussed in section
1.1, among players in S in the presence of T . The explicit formula is:

ΔT v(S) = ∑
U⊆T

(−1)|T\U|v(S∪U).

Equivalently, we have that

ΔT v(S) = ∑
U⊆S

Δ v(T ∪U).

In particular, the Möbius transform Δ v(T ) can be represented as follows:

Δ v(T ) = ΔT v( /0) ∀T ⊆ N.

Definition 3.5 (k-monotonicity of Games (Capacities)). Let k ≥ 2 be an integer.
A game v on N is said to be k-monotone (see e.g., [4, §2]) if, for any k coalitions
A1,A2, . . . ,Ak ⊆ N, we have
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v
( k⋃

i=1

Ai

)
≥ ∑

J⊆{1,...,k}
J �=∅

(−1) j+1v
(⋂

i∈J

Ai

)
. (5)

It is easy to verify [4, §2] that k-monotonicity, with any k ≥ 2, implies l-
monotonicity for all l ∈ {2, . . . ,k}. By extension, 1-monotonicity (which does not
correspond to k = 1 in Eq. (5)) is defined as standard monotonicity, i.e.,

v(S)≤ v(T ) whenever S⊆ T.

The notion of derivatives and of k-monotonicity are closely linked to each other.

Proposition 3.1. [8] Let k ≥ 1. A game v is k-monotone if and only if, for all S ⊆ N
such that 1≤ |S| ≤ k and all T ⊆ N \ S, we have ΔSv(T )≥ 0.

Definition 3.6 (Derivatives on Distributive Lattices). Let L be a distributive
lattice. The first order derivative of f : L → R w.r.t. i ∈ J(L) at x ∈ L is given by

Δi f (x) := f (x∨ i)− f (x).
The derivative of f w.r.t. y ∈ L at x ∈ L is iteratively defined by

Δy f (x) := Δ j1 [Δ j2 [· · ·Δ jm−1 [Δ jm f (x)] · · · ]] ∀x ∈ L,

where η∗(y) = { j1, j2, . . . , jm}. Note that if jk ≤ x for some k, the derivative is null.
Also, Δy f (x) does not depend on the order of the jk’s. The explicit formula is:

Δy f (x) = ∑
S⊆{1,...,m}

(−1)m−|S| f (x∨
∨
k∈S

jk)

Equivalently,
Δy f (x) = ∑

y≤z≤x∨y
Δ f (z).

In particular,
Δy f (⊥) = Δ f (y) ∀y ∈ L.

Similarly, the derivative of a bi-cooperative game is obtained as follows.

Definition 3.7 (Derivatives of Bi-cooperative Games). The first order derivative
of bi-cooperative game ν : Q → R w.r.t. ({i}, /0) at (S1,S2) ∈ Q(N \ {i}) (resp.
( /0,{i}) at (S1,S2) ∈Q(N),S2 ( i ) is given by

Δ({i}, /0)(S1,S2) := ν(S1∪{i},S2)− v(S1,S2)

(resp. Δ( /0,{i})(S1,S2) := ν(S1,S2 \ {i})− v(S1,S2) )

The derivative of ν w.r.t. (S1,S2) at (T1,T2) ∈Q(N \ S1), T2 ⊇ S2 is defined by

Δ(S1,S2)ν(T1,T2) := ∑
L1⊆S1
L2⊆S2

(−1)|S1\L1|+|S2\L2|ν(T1∪L1,T2 \L2).
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4 Importance and Interaction Indices

The study of the notion of importance of each player has been one of the most im-
portant topics in cooperative game theory and been studied as values, or allocation
rules, or power indices in a game [1, 6, 14, 26, 29].

Definition 4.1 (The Shapley Value). The Shapley value φ v(i) w.r.t. any player i∈N
in a game v is defined by

φ v(i) := ∑
T⊆N\{i}

(|N|− |T |−1)! |T |!
|N|! Δ{i}v(T ).

Equivalently, we have that

φ v(i) =∑
T(i

1
|T |Δ

v(T ).

On the other hand, the study of the notion of interaction among players is relatively
recent in the framework of cooperative game theory. The first attempt is due to Owen
[23, §5] for superadditive games. More recent developments are due to Murofushi
and Soneda [21], Roubens [25], Marichal and Roubens [20], and Fujimoto et.al. [8]
and led successively to the concepts of interaction index. The concept of interaction
index, which can be seen as an extension of the notion of value, is fundamental for
it enables to measure the interaction phenomena modelled by a game on a set of
players.

4.1 Interaction Indices for Ordinary Games

Grabisch and Roubens have proposed an axiomatic characterization of the interac-
tion index I(v,S) [13, §3] as the unique index satisfying the following axioms1:

• Linearity axiom (L) : I is a linear function with respect to its first argument.
• Dummy player axiom (D) : If i ∈ N is a dummy player in a game v (i.e., v(S∪
{i}) = v(S) ∀S⊆ N), then
(i) I(v,{i}) = v({i}),
(ii) I(v,S∪{i}) = 0 ∀S ⊆ N \ i, S �= ∅.

• Symmetry axiom (S) : For any permutation π on N, and any v,
I(v,S) = I(πv,π(S)) ∀S⊆ N,S �= ∅.

• Recursive axiom (R) : For all finite N, |N| ≥ 2, for all v on N,

I(v,S) = I(vN\{ j}
∪ j , S \ { j})− I(vN\{ j}, S \ { j}), ∀S ⊆ N, |S| ≥ 2,∀ j ∈ S,

where vN\{ j} is the restriction of v to N \{ j} and vN\{ j}
∪ j (S) := v(S∪{ j})−v({ j})

∀S⊆ N \ { j}.
• Efficiency (E) : ∑i∈N I(v,{i}) = v(N).

Definition 4.2 (Interaction Indices). The interaction index w.r.t. S ⊆ N of v is
defined by

1 Lately, Fujimoto et.al. [8] have provided more intuitive axioms.
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I(v,S) := ∑
T⊆N\S

(|N|− |T |− |S|)! |T |!
(|N|− |S|+ 1)!

ΔSv(T ). (6)

Equivalently,
I(v,S) = ∑

T⊇S

1
|T |− |S|+ 1

Δ v(T ).

This index is an extension of the Shapley value in the sense that I(v,{i}) coincides
with the Shapley value φ v(i) of any player i.

4.2 Interaction Indices for Games on Product Lattices

From now on, we discuss on a specific type of game on lattice, where the lattice is
a product of distributive lattices. Let N := {1, . . . ,n} and L := L1×·· ·×Ln, where
L1, . . . ,Ln are finite distributive lattices. Then, L is also a distributive lattice and all
join-irreducible elements of L are of the form (⊥1, . . . ,⊥i−1, ji,⊥i+1, . . . ,⊥n) for
some i∈N and some ji ∈ J(Li). A vertex of L is any element whose components are
either top or bottom. Vertices of L will be denoted by�Y , Y ⊆N, whose coordinates
are �k if k ∈ Y , ⊥k otherwise. Each lattice Li represents the poset of action, choice,
participation level of player i ∈ N to the game.

Definition 4.3 (Antecessors). The antecessor x of x ∈ L is defined as

x =
∨
{ j ∈ η(x) | j �∈ η∗(x)}

with convention⊥=⊥.

Definition 4.4 (Interaction Indices on Product Lattices [18]). Let f be a game
on a product lattice L, x∈ L, and X := {i∈N | xi �=⊥i}. The interaction index w.r.t.
x of f is defined by

I f (x) := ∑
Y⊆N\X

α |X ||Y | Δx f (x
¯
∨�Y ), (7)

where α j
k :=

k!(n− j− k)!
(n− j + 1)!

, for all j = 0, . . . ,n and k = 0, . . . ,n− j. Equivalently,

I f (x) := ∑
z∈[x,x⊥]

1
k(z)− k(x)+ 1

Δ f (z), (8)

where x⊥ :=�i if xi =⊥i and x⊥ := xi if xi �=⊥i, and k(y) = |{i ∈ N | yi �=⊥i}|.
Each interaction index of ordinary games, bi-cooperative games, and multi-choice
games is obtained as a special case of this interaction index.

Definition 4.5 (Interaction Indices of Bi-cooperative Games). The interaction
index Iν(S1,S2) w.r.t. (S1,S2) ∈ Q(N) of a bi-cooperative game ν is defined by

Iν(S1,S2) := ∑
T⊆N\(S1∪S2)

(|N|− |S1∪S2|− |T |)! |T |!
(|N|− |S1∪S2|+ 1)!

Δ(S1,S2)(T,N \ (T ∪S1)).
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5 Concluding Remarks

This paper gave a survey of representations of importance and interaction of fuzzy
measures and adjacent fields. However, this survey shows only indices based on
the Shapley values on products of distributive lattices. Some indices based on other
values and the Shapley values on non-distributive lattices can be seen in [8, 9].

References

1. Banzhaf, J.F.: Weighted voting doesn’t work: A mathematical analysis. Rutgers Law
Review 19, 317–343 (1965)

2. Bilbao, J.M.: Cooperative games on combinatorial structures. Kluwer Acadmic Publ.,
Boston (2000)

3. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence
(1967)

4. Chateauneuf, A., Jaffray, J.Y.: Some characterizations of lower probabilities and other
monotone capacities through the use of Möbius inversion. Mathematical social sci-
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Appendix

Another Interaction Index of Bi-cooperative Games

A probabilistic interpretation of the Shapley value in the framework of aggregation
by the Choquet integral Cv w.r.t. v is due to Marichal [19]. Given a vector x ∈ R|N|
and a ∈ R, we denote by (x | xi = a) the vector of R|N| that differ from x only in its
i-th component which is equal to a. Furthermore, let

δiCv(x) := Cv(x | xi = 1)−Cv(x | xi = 0).

Marichal [19] then showed that∫
[0,1]|N|

δiCv(x) dx = φ v(i). (9)

Kojadinovic [17] has proposed another interaction index of a bi-cooperative
game as a generalization of the equation (9) through the Choquet integral w.r.t.
bi-capacities and the recursive axiom (R).

Definition 5.1 (Kojadinovic’s Interaction Indices of Bi-cooperative Games). Ko-
jadinovic’s interaction index I ν(S1,S2) w.r.t. (S1,S2) ∈Q(N) of a bi-cooperative
game ν on N is defined by
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I ν(S1,S2) := ∑
(T1,T2)∈Q(N\(S1∪S2))

1

2|T |
(|N|− |S|− |T |+ 1)! |T |!

(|N|− |S|+ 1)!
Δ(S1,S2)(T1,T2∪S2),

where T := T1∪T2 and S := S1∪S2.

Importance Indices of Games on Regular Set Systems

Honda and Fujimoto [15] have proposed another importance index of a game on a
regular set system as a generalization of importance indices of all ordinary games,
games on convex geometries, bi-cooperative games, and multi-choice games.

Definition 5.2 (Regular Set Systems). Let N ⊆ 2N and A,B ∈N. We say that A is
covered by B if A � B and that there is no C ∈ N such that A � C � B. Then we
denote A≺ B. We say that N is a regular set system if the following conditions hold:

(i) /0, N ∈N,
(ii) A,B ∈N, A≺ B =⇒ |B\A|= 1.

Definition 5.3 (Games on Regular Set Systems). A game on a regular set
system N is a function v : N→ R such that v( /0) = 0.

Definition 5.4 (Maximal Chains of Regular Set Systems). Let N⊆ 2N be a reg-
ular set system. If C = (C0, . . . ,Cn) satisfies that {Ci}i∈{0,...,n} ⊆ N and /0 = C0 ≺
C1 ≺ ·· · ≺Cn = N, then C is called a maximal chain of N. The set of all maximal
chains of N is denoted by M(N).

Definition 5.5 (Importance Indices on Regular Set Systems). The importance
indexΨ v(i) w.r.t. i ∈ N of a game v on a regular set system N is defined by

Ψ v(i) :=
1

|M(N)| ∑
C∈M(N)

[v(CC
i∗ ∪{i})− v(CC

i∗ )], (10)

where CC
i∗ is the component Ck of C such that i �∈Ck and i ∈Ck+1.

Let (L,≤,∨,∧,�,⊥) be a distributive lattice. Then (L,≤,∨,∧,�,⊥) ∼= (η(L),
⊆,∪,∩,J(L), /0) with lattice-isomorphism η [3].

Definition 5.6 (Set Systems Induced by Lattices). Let (L,≤) be a distributive lat-
tice. Then (J(L),η(L)) is called the set system induced by (L,≤).

As discussed in section 2.1, all ordinary games, bi-cooperative games, and multi-
choice games are regarded as games on lattices. All the set systems induced by
these lattices become regular. Therefore, we have another importance index of these
games via lattice-isomorphism η :

I f ({i}) :=Ψ fη−1
(η(i)) ∀i ∈ J(L).



Capacities, Set-Valued Random Variables and
Laws of Large Numbers for Capacities

Shoumei Li and Wenjuan Yang

Abstract. In this paper, we shall survey some connections between the theory of
set-valued random variables and Choquet theory. We shall focus on investigating
some results of the relationships between the distributions of set-valued random
variables and capacities, and also some connections between the Aumann integral
and the Choquet integral. Then we shall review some results on laws of large num-
bers (LLN’s) for set-valued random variables and for capacities, and point out some
relations between these two kinds of LLN’s. Finally we shall give a new strong LLN
of exchangeable random variables for capacities.

1 Introduction

It is well known that classical probability measures and linear mathematical expec-
tations are powerful tools for dealing with stochastic phenomena. However, there
are uncertain phenomena which can not be easily modeled by using additive mea-
sure and linear mathematical expectations in many applied areas. For example,
economists have found the Allais paradox and the Ellsberg paradox (cf. [1, 15])
of the expected utility theory based on classical probability theory in financial
economics. So it is necessary to examine non-additive measures and nonlinear
expectations with their applications.

In 1953, Choquet [10] introduced concepts of capacities and the Choquet inte-
gral. Capacities are non-additive measures and the Choquet integral can be consid-
ered as one kind of nonlinear expectations with respect to capacities. Many papers
developed the Choquet theory and its applications, for examples, see [9, 14, 18, 34,
37, 38, 45, 46]. In 1973, Sugeno [41] defined another nonlinear expectation with re-
spect to non-additive measures, called Sugeno integral in literature. For more results
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about Sugeno integral, including connections between Choquet integral and Sugeno
integral, one may refer to [19].

There is also another way to deal with uncertain phenomena, i.e., set-valued ran-
dom variables (also called random sets, multifunctions, correspondences in litera-
ture) and the Aumann integral (cf. [4]). The start of the theory of random sets may be
when Aumann used it to discuss the competitive equilibria problem [5]. The theory
of set-valued random variables and set-valued stochastic processes and its applica-
tions were developed very deeply and extensively in the past 40 years. For instance,
see [3, 7, 23, 24, 28, 30, 44, 48].

It is necessary to investigate further the connections between the theory of set-
valued random variables and Choquet theory. In 1967, Dempster [13] introduced
the concepts of upper and lower probabilities induced by a random set. Both of
upper and lower probabilities are special capacities with good properties. The lower
probability was called belief function by Nguyen in [33, 34]. Actually the lower
and upper probabilities can be considered as lower and upper distributions of the
random set. And also lower and upper distributions can be axiomatized as that we
have done in classical probabilities. On the other hand, if given a capacity satisfying
the axioms of lower or upper distribution, we can find a set-valued random variable
such that its distribution is just equal to the given capacity. This result is called
Choquet Theorem. It is one of bridges between the theory of random sets and the
theory of Choquet theory (see Section 3, for details).

In this paper we focus on surveying some results of the relationships between the
distributions of set-valued random variables and capacities, and also some connec-
tions between the Aumann integral and the Choquet integral. More interpretation of
our motivation about why should we do such work can be seen at the beginning of
Section 3.

The organization of the paper is as follows. In Section 2, we shall recall some
basic concepts and results of capacities and the Choquet integral. In Section 3,
we shall give definitions about set-valued random variables and the Aumann inte-
gral, discuss the relationships between totally monotone capacities and random sets,
and then survey some connections between the Aumann integral and the Choquet
integral.

On the other hand, as we know, laws of large numbers are the foundation for sta-
tistical inferences. In Section 4, we shall review some literature about laws of large
numbers for random sets and also for capacities, and we shall point out their some
connection. Finally we give a new strong law of large numbers of exchangeable
random variable for capacities.

2 Preliminaries for Capacities and Choquet Integral

Assume that (X,d) is a Polish space, B is its Borel σ -algebra and P is the set of all
probabilities on B, R is the set of all natural numbers.

Definition 2.1. A set function ν : B → [0,1] is called a (Choquet) capacity if it
satisfies the following two conditions
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(c1) ν( /0) = 0, ν(X) = 1;
(c2) ν(A) ≤ ν(B) whenever A⊆ B and A,B ∈B.

The conjugate ν : B→ [0,1] of ν is defined by ν(A) = 1−ν(Ac).

A capacity ν is convex if ν(A
⋃

B) ≥ ν(A)+ ν(B)− ν(A⋂B) for all A,B ∈B. A
capacity ν on B is totally monotone if for any n≥ 2, and any {A1, · · · ,An} ⊆B,

ν
( n⋃

i=1

Ai

)
≥ ∑

/0 �=I⊆{1,··· ,n}
(−1)|I|+1ν

(⋂
i∈I

Ai

)
, (1)

where |I| is the cardinality of the set I. Obviously, a totally monotone capacity is
convex.

A capacity ν on B is infinitely alternating if for any n≥ 2, and any {A1, · · · ,An}
⊆B,

ν
( n⋂

i=1

Ai

)
≤ ∑

/0 �=I⊆{1,··· ,n}
(−1)|I|+1ν

(⋃
i∈I

Ai

)
, (2)

It is easy to show that a capacity ν is infinitely alternating if and only if its conjugate
ν is totally monotone. Any probability on B are both totally monotone and infinitely
alternating.

A capacity ν on B is continuous from below if ν(Bn) ↑ ν(B) for all sequences
Bn ∈B, Bn ↑ B. ν is continuous from above if ν(Bn) ↓ ν(B) for all sequences Bn ∈
B, Bn ↓ B. A capacity with both below and above continuous is called continuous.

A capacity ν is a mass if ν(A
⋃

B) = ν(A)+ν(B) for any A,B∈B with A
⋂

B = /0.
A capacity ν is null-additive if ν(A

⋃
B) = ν(A) for any A,B ∈ B such that

A
⋂

B = /0 and ν(B) = 0. Notice that a convex capacity is null-additive if and only if
ν(A) = 0 implies ν(Ac) = 1 for every A ∈B.

The core C(ν) of the capacity ν is defined as

C(ν) = {μ ∈ P : μ(A)≥ ν(A) for all A ∈B};

and the anti-core AC(ν) of ν is given by

AC(ν) = {μ ∈ P : μ(A)≤ ν(A) for all A ∈B}.

We have the following properties:

1) If ν is a convex capacity, we always have C(ν) �= /0;
2) AC(ν) = C(ν).

In some literature (e.g. [36]), a capacity ν is called a balanced game if C(ν) �= /0.
A random variable X on Ω is a (Borel) measurable function X : (Ω ,B) →

(R,B(R)), where B(R) is the Borel σ -field of R.
The Choquet integral of a bounded random variable X with respect to the capacity

ν is defined by

(C)
∫

Xdν =
∫ +∞

0
ν(X > t)dt +

∫ 0

−∞
[ν(X > t)−1]dt.
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If ν is a probability measure, (C)
∫

Xdν coincides with standard notion of inte-
gral. Notice that the Choquet integral is an asymmetric integral since the inte-
gral (C)

∫
Xdν is not equal to −(C)

∫ −Xdν , so they are called lower and upper
Choquet integrals respectively. In general, (C)

∫
Xdν ≤−(C)

∫ −Xdν .
If C(ν) �= /0, we can introduce the upper and lower integrals of a random variable

X given by

Jν (X) = sup
P∈C(ν)

∫
XdP, Iν(X) = inf

P∈C(ν)

∫
XdP.

Then we have
(C)

∫
Xdν ≤ Iν(X)≤ Jν (X)≤ (C)

∫
Xdν,

since Jν(X) =−Iν(−X) and (C)
∫

Xdν =−(C)
∫ −Xdν .

Sugeno introduced the concepts of fuzzy measure and fuzzy integral in [41].
Concerning the relationship between the Sugeno fuzzy integral and the Choquet
integral, refer to [19]. Fuzzy measures and Choquet capacities are also called non-
additive measures. For more general concepts and results, readers may refer to [14].

3 Some Connections between Theory of Set-Valued Random
Variables and Choquet Theory

In this section, we shall discuss the relationships between the distributions of set-
valued random variables and capacities. We shall also survey some connections be-
tween the Aumann integral and the Choquet integral. Assume that (Ω ,A ,P) is a
complete probability space. Firstly let us explain our motivation.

In classical statistics, all possible outcomes of a random experiment can be de-
scribed by some random variable X or its probability distribution PX . In practice,
however, we often face the situation that we can not measure exactly the values of
X , we can only get coarse data, that is, a multi-valued random variable F (we call it
random set or set-valued random variable) such that P(X ∈ F) = 1 (X is an almost
surely selection of F).

Let A⊆Ω be an event. A is said to occur if X(ω) ∈ A. But if we can not observe
X(ω), but only F(ω) is observed, then clearly we are even uncertainty about the
occurrence of A. If F(ω) ⊆ A, then clearly A occurs. So we quantify our degree
of belief in occurrence of A by PF(A) = P(F ⊆ A), which is less than the actual
probability that A occurs, i.e. PF(A) ≤ P(X ∈ A), since X is an almost sure selec-
tion of F . This fact is a starting point of well-known Dempster-Shafer theory of evi-
dence (cf. [13], [39]). PF is also related with another concept called a belief function
(cf. [33]), which is popular in the field of artificial intelligence.

On the other hand, if F(ω)∩A �= /0, then it is possible that A occurs. Since P(X ∈
F) = 1, we have almost sure {X ∈ A} ⊆ {F ∩A �= /0} and hence P(X ∈ A)≤ P(F ∩
A �= /0). Thus, to quantify this possibility is to take PF(A) = P(F ∩A �= /0). It seems
to be consistent with the common sense that the possibilities are always larger than
the probabilities since the possibilities tend to represent the optimistic assessments
as opposed to beliefs.
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From mathematical point of view, it relates to the lower distribution PF and up-
per distribution PF of the set-valued random variable F . For each B ∈B, we have
PF(B) = 1−PF(Bc). Thus we only need to consider one of both upper and lower
distributions. We notice that PF is a special totally monotone capacity and PF is a
special infinitely alternating capacity. Thus, the Choquet integral with respect to PF
and PF have some connection with the theory of set-valued random variables. Now
we discuss this problem in details. We first review some notations and basic results
about set-valued random variables and the Aumann integral.

3.1 Set-Valued Random Variables and the Aumann Integral

Assume that P0(X) is the family of all nonempty subsets of X, G (X) is the class
of all open sets of X, K(X) (reps., Kb(X),Kk(X), Kkc(X)) is the family of all
nonempty closed (reps., bounded closed, compact, compact convex) subsets of X,
The Hausdorff metric on K(X) is defined by

dH(A,B) = max{sup
a∈A

inf
b∈B
‖a−b‖, sup

b∈B
inf
a∈A
‖a−b‖}. (3)

The metric space (Kb(X),dH) is complete but not separable in general. However,
Kk(X) and Kkc(X) are complete and separable with respect to dH (cf. [30]). For an A
in Kb(X), let ‖A‖K = dH({0},A), BdH (Kk(X)) be the Borel σ -field of (Kk(X),dH)
and similar notation for BdH (Kb(X)), and so on.

On the other hand, let F L = {I∗(G)∩Kk(X) : G ∈ G (X)} and FU = {I∗(G)∩
Kk(X) : G ∈ G (X)}, where I∗(G) = {A ∈P0(X) : A⊆G}, I∗(G) = {A ∈P0(X) :
A ∩ G �= /0}. And let σ(F L),σ(FU) be the σ -fields induced by F L,FU

respectively. We have the following result (cf. [48]).

Theorem 3.1. BdH (Kk(X)) = σ(F L) = σ(FU).

Let F :Ω →K(X). For any A ∈B, write

F−1(A) = {ω ∈Ω : F(ω)∩A �= /0},

F−1(A) = {ω ∈Ω : F(ω)⊆ A},
and the graph of F

G(F) = {(ω ,x) ∈Ω ×X : x ∈ F(ω)}.

A set-valued mapping F :Ω →K(X) is called a set-valued random variable (or ran-
dom set) if, for each open subset O of X, F−1(O) ∈A . In [30], authors summarized
the following equivalent definitions of random sets.

Theorem 3.2. The following statements are equivalent:

(i) F is a set-valued random variable;
(ii) for each C ∈K(X), F−1(C) ∈A ;
(iii) for each B ∈B, F−1(B) ∈A ;
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(iv) ω *→ d(x,F(ω)) is a measurable function for each x ∈ X, where d(x,C) =
inf{d(x,y) : y ∈C} for C ⊆X;

(v) G(F) is A ×B-measurable.

Furthermore, if F takes values in Kk(X), then F is a set-valued random variable if
and only if F is A -BdH (Kk(X)) measurable.

Now we give the concepts of selections of set-valued random variables.

Definition 3.1. An X-valued measurable function f :Ω →X is called a selection of
a set-valued mapping F : Ω →K(X) if f (ω) ∈ F(ω) for all ω ∈ Ω . A measurable
function f : Ω →X is called an almost surely selection of F if P{ω ∈ Ω : f (ω) ∈
F(ω)}= 1.

Let L1[Ω ;X] be the class of integrable X-valued random variables, S(F) be the class
of all selections of F and S1

F the class of almost surely and integrable selections of
F , i.e.

S1
F = { f ∈ L1[Ω ;X] : f (ω) ∈ F(ω),a.e.}.

Then we have the following result.

Theorem 3.3. Under our assumptions in this paper, S(F) �= /0 for any set-valued
random variable; S1

F �= /0 if and only if d(0,F(ω)) ∈ L1[Ω ; [0,∞)].

For a set-valued random variable F , the expectation of F , denoted by (A)
∫

FdP, is
defined by

(A)
∫

FdP =
{∫

Ω
f dP : f ∈ S1

F

}
, (4)

This integral was first introduced by Aumann [4], called the Aumann integral in
literature.

Remark 1. (1) In general, (A)
∫

FdP is not closed when F takes closed set values.
But if X= R

d , the d-dimensional Euclidean space and F takes compact set values,
(A)

∫
FdP is compact.

(2) If P is nonatomic, then cl((A)
∫

FdP) is convex.
The above results can be found in [23, 30].

3.2 Capacities, Upper and Lower Distributions of Set-Valued
Random Variables

In the classical probability, an X-valued random variable (or X-valued element) f :
Ω →X induces a probability distribution Pf on B defined by

Pf (B) = P( f−1(B)), B ∈B.

In a similar way, for a random set F , we have the concepts of upper distribution PF

and lower distribution PF , defined as

PF(B) = P(F−1(B)), PF(B) = P(F−1(B)), B ∈B. (5)
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In the special case of a random variable, i.e. F = f :Ω →X, we have that PF(B) =
PF(B) for each B ∈B. Thus, PF reduces to the standard probability distribution Pf .
Dempster called PF ,PF upper probability, lower probability respectively in [13].
Nguyen called PF the distribution function of F in [34].

Obviously, PF and PF , in general, are non-additive, they are capacities, and PF

is the conjugate of PF . Thus we only need to state the properties of PF . We have the
following theorems (cf. [7, 8, 34]).

Theorem 3.4. PF have the following properties

(i) PF( /0) = 0, PF(X) = 1;
(ii) If Bn ↓ B with Bn,B ∈B, then PF(Bn) ↓ PF(B);
(iii) PF is totally monotone.
If, in addition, F takes values in Kk(X), then
(iv) PF is regular, i.e.

PF(B) = sup{PF(C) : C ⊆ B,C ∈K(X)}

= inf{PF(G) : B⊆ G,G ∈ G (X)}
for any B ∈B.

(v) PF is tight, i.e.

PF(B) = sup{PF(K) : K ⊆ B,K ∈Kk(X)}

for any B ∈B.

From the above discussion, we know that for any given random set F , the lower dis-
tribution PF induced by F is a totally monotone and continuous from above capacity.
On the other hand, for any given totally monotone and continuous from above ca-
pacity ν on (X,B), dose there exist a probability space (Ω ,A ,P) and a set-valued
random variable F on Ω such that ν = PF ? The answer is positive and it is called
the Choquet Theorem.

Theorem 3.5. If ν is a totally monotone and continuous from above capacity on B,
there exists a set-valued random variable F : [0,1]→K(X) such that ν = PF, where
[0,1] is endowed with the Lebesgue σ -algebra and the Lebesgue measure.

3.3 Some Connections between Aumann Integral and Choquet
Integral

For any given set-valued random variable F , its selection set S(F) is a family of X-
valued random variables. For each f ∈ S(F), we can get the probability distribution
Pf . Thus, we obtain a set of probabilities PF =: {Pf : f ∈ S(F)} and PF ⊆ P.

Theorem 3.6. [12] If F is A -BdH (K(X))-measurable set-valued random
variable, then PF is attainable on G (X)∪K(X), i.e.
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PF(A) = min{Pf (A) : f ∈ S(F)}, A ∈ G (X)∪K(X). (6)

Next we have the connection theorem between the selection set PF and core of PF
(cf. [8]).

Theorem 3.7. If F is a compact set-valued random variable, then

C(PF) = co(PF) (7)

where co means the weak∗-closed convex hull in P.
Furthermore, if P is nonatomic, then

C(PF) = cl(PF) (8)

Theorem 3.8. Assume that X : X→ R is Borel measurable and bounded, F :Ω →
Kk(X) is a set-valued random variable, the composition X ◦F is given by (X ◦F) =
X(F(ω)) for any ω ∈Ω . Then

(A)
∫

(X ◦F)dP =
{∫

XdPf : f ∈ S(F)
}
. (9)

In particular,

inf(A)
∫

(X ◦F)dP = (C)
∫

XdPF , sup(A)
∫

(X ◦F)dP = (C)
∫

XdPF , (10)

and moreover the inf ( resp., sup) is attained if X is lower (resp., upper) Weierstrass.

Remark 2. (1) A Borel function X : X→ R is lower (resp., upper) Weierstrass if
it attains infimum (resp., supermum) on each K ∈ Kk(X). All simple Borel func-
tions and all lower (resp., upper) semicontinuous functions are lower (resp., upper)
Weierstrass.

(2) If P is nonatomic, from Remark 1 and the above theorem, we have

(A)
∫

(X ◦F)dP =
[
(C)

∫
XdPF ,(C)

∫
XdPF

]
, (11)

when X is both lower and upper Weierstrass.

4 Laws of Large Numbers for Random Sets and for
Capacities

In this Section, we shall firstly survey some results on laws of large numbers (LLN’s)
for set-valued random variables and for capacities, and point out some connections
between these two kinds of LLN’s. Then we shall give a new strong law of large
numbers of exchangeable random variables for capacities.

There are many different kinds of LLN’s for random sets. Here we only list some
of them. The first LLN was proved in [3] for independent identically distributed
(i.i.d.) compact random variables in the sense of Hausdorff metric dH , where the
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basic space is the d-dimensional Euclidean space R
d . After this work, LLN’s were

obtained for i.i.d. compact random sets in a separable Banach space in [26, 35].
Taylor and his coauthors contributed a lot in the area of LLN’s. We mention here
that in 1985, Taylor and Inoue proved Chung’s type LLN’s and weighted sums type
LLN’s for compact set-valued random sets in [42, 43]. For more results, refer to
their summary paper in [44].

For general closed set-valued random variables, Artstein and Hart [2] proved
LLN’s in R

d and Hiai obtained LLN’s in a separable Banach space in Kuratowski-
Mosco sense. In some papers, Kuratowski-Mosco convergence is called Painlevé-
Kuratowsk convergence in the special case of R

d . Fu and Zhang [17] obtained
LLN’s for set-valued random variables with slowly varying weights in the sense
of dH . There are also some extension results of LLN’s from set-valued to fuzzy
set-valued random variables [11, 17, 20, 21, 25, 27, 29].

Now we cite some results of LLN’s for real-valued random variables X : X→ R

with respect to capacities. In [32], Marinacci proved a strong LLN for i.i.d. contin-
uous random sequences with respect to a totally monotone and continuous capac-
ity, and a weak LLN but with respect to a convex and continuous capacity under
the assumption that X is a compact space. In his proofs, he mainly used some very
good properties and techniques of capacities and the Choquet integral. In [31], Mac-
cheroni and Marinacci obtained a strong LLN for under weaker conditions in a sep-
arable Banach space X. The proof is quite short by using the Choquet Theorem and
the result of strong LLN for set-valued random variables. In [36], Rebille obtained
a Markov type LLN and a Bienayme-Tchebichev type LLN for a balanced game
under some other conditions of variances, where he used the core of ν to define
variance and covariance of random variables.

Now we state a new strong LLN of exchangeable random variables for capacities.
To do it, we firstly introduce the concept of exchangeable random variables.

Definition 4.1. Random variables Xi : X→ R, i = 1,2, · · · ,n, are called exchange-
able with respect to a capacity ν if (Xπ1 , · · · ,Xπn) has the same joint distribution as
(X1, · · · ,Xn) for every permutation π = (π1, · · · ,πn) of (1, · · · ,n), i.e.,

ν(X1 ∈ B1, · · · ,Xn ∈ Bn) = ν(Xπ1 ∈ B1, · · · ,Xπn ∈ Bn)

for any B1, · · · ,Bn ⊆B. An infinite sequence of random variables {Xn : n ≥ 1} is
said to be exchangeable if every finite subset of {Xn : n≥ 1} consists of exchangeable
random variables.

Theorem 4.1. Assume that ν is a totally monotone and continuous capacity on B,
and {Xn : n ≥ 1} a sequence of bounded, exchangeable and identically distributed
random variables, it is parwise incorrected, and for each random variable Xi is
either continuous or simple, then

ν
({
ω ∈Ω : E[X1]≤ liminf

n→∞
1
n

n

∑
j=1

Xj(ω)≤ limsup
n→∞

1
n

n

∑
j=1

Xj(ω)≤−E[−X1]
})

= 1,

where E[X1] = (C)
∫

X1dν .
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Remark 3. (1) If ν is null-additive, under the assumptions of theorem we also have

ν
({
ω ∈Ω : liminf

n→∞
1
n

n

∑
j=1

Xj(ω) < E[X1]
})

= 0,

and

ν
({
ω ∈Ω : limsup

n→∞
1
n

n

∑
j=1

Xj(ω) >−E[−X1]
})

= 0

(2) When ν is a probability measure we have E[X ] =−E[−X ] = E[X ]. Thus, in this
case our result reduces to the classical LLN for exchangeable real-valued random
variables

ν
({
ω ∈Ω : lim

n→∞
1
n

n

∑
j=1

Xj(ω) = E[X ]
})

= 1.
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Symmetries: A General Approach to Integrated
Uncertainty Management

Vladik Kreinovich, Hung T. Nguyen, and Songsak Sriboonchitta

Abstract. We propose to use symmetries as a general approach to maintaining dif-
ferent types of uncertainty, and we show how the symmetry approach can help,
especially in economics-related applications.

1 Why Symmetries

Formulation of the Problem. Our knowledge is rarely complete, we rarely have
absolutely certainty. Uncertainty is present in different areas of knowledge. As a re-
sult, in many different areas of knowledge, different techniques and approaches have
been developed to describe and process uncertainty. For example, in logical-type
descriptions of knowledge typical for expert systems and Artificial Intelligence, for-
malisms like probabilistic logic and fuzzy logic have been developed to process un-
certainty. In engineering-oriented probability-type descriptions, probability-related
approaches have been developed such as the Dempster-Shafer approach, imprecise
probabilities approach, etc.
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To solve complex real-life problems, we must takes into account knowledge form
different areas. Since these different pieces of knowledge come with uncertainty, we
must therefore jointly manage different types of uncertainty. We therefore need a
general approach that would take care of different types of uncertainty.

Symmetry: A Fundamental Property of the Physical World. The reason why we
are gaining and processing knowledge is that we want to predict the processes of the
physical world, predict the results of different possible actions – and thus, select the
action whose results are most beneficial.

On the fundamental level, the very possibility to predict the processes and the
results of different actions comes from the fact that we have observed similar situa-
tions, we remember the outcomes of these similar situations, and we expect that the
outcomes will be similar.

For example, if in the past, we dropped a ball several times and every time, it fell
down, then in a new situation we expect the ball to fall down as well. In the past,
we may have been at different locations, at different moments of time, oriented
differently, but the results were the same. Thus, we conclude that the outcome of
this simple drop-the-ball experiment will be the same.

In mathematical terms, the similarity between different situations corresponds to
symmetry, and the fact that the result is the same for similar situations is usually
described as invariance.

In these terms, we can say, e.g., that the results of the “drop-the-ball” gravita-
tional experiment are invariant relative to shifting the location, rotating (= changing
orientation), and shifting in time.

The notion of symmetry is not only methodologically fundamental: symmetries
are one of the main tools of modern physics; see, e.g., [4].

Because of the fundamental nature of symmetries in describing the physical
world, it is reasonable to try to use symmetries for describing uncertainty as well.

In this paper, we describe the basic symmetries, explain how they explain the
basic uncertainty-related formulas, and show they symmetries also help in explain-
ing and designing uncertainty-related algorithms – thus providing a reasonable
foundation for integrated uncertainty measurement.

Basic Symmetries: Scaling and Shift. In applied computations, we deal with the
numerical values of a physical quantity. For most quantity, however, the numeri-
cal values depend not only on the quantity itself, but also on the unit in which we
measure this quantity. For example, we can measure length in feet or in cm.

Since the choice of a measuring unit is usually an arbitrary convention, it is rea-
sonable to require that all the formulas remain invariant when we change these ar-
bitrary units. How can we describe this invariance in precise terms? If we replace
a measuring unit by another unit which is λ times smaller, then the corresponding
numerical values are multiplied by λ : x → λ · x. For example, when we replace a
meter with a 100 times smaller unit (cm), all numerical values are multiplied by
100: 1.7 m becomes 170 cm. This transformation is called scaling.

For many units such as time (and temperature), there is another arbitrariness: in
selecting the starting point. It is well known that in different calendars, the starting
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date is different. If we replace the original starting point with a new one which is
s units smaller, then the original numerical value increases by s: x → x + s. This
transformation is called shift.

Together, scaling and shifts form linear transformations x→ a · x + b.

Basic Nonlinear Symmetries. Sometimes, in addition to linear symmetries, a sys-
tem also has nonlinear symmetries. In this case, the class of all possible symmetries
contains all linear functions and some nonlinear functions as well.

If a system is invariant under transformations f and g, then we can conclude
that it is invariant also under their composition f ◦ g, and also invariant under the
inverse transformation f−1. In mathematical terms, this means that symmetries form
a group.

To describe a generic linear transformation, we need 2 parameters: a and b. To
describe a more general nonlinear transformation, we may need more parameters. In
practice, at any given moment of time, we can only store and describe finitely many
parameters. Thus, it is reasonable to restrict ourselves to finite-dimensional groups,
i.e., groups all elements of which can be characterized by finitely many parameters.
It is also reasonable to assume that the group is connected (i.e., there is a continu-
ous transition between every two transformations) and that the dependence on the
parameters is smooth (differentiable) – i.e., in mathematical terms, that we have a
Lie group. How can we describe all finite-dimensional Lie groups of transforma-
tions of the set of real numbers R onto itself that contain all linear transformations?
Norbert Wiener asked [19] to classify such groups for an n-dimensional space with
arbitrary n, and this classification was obtained in [16]. In our case (when n = 1)
the only possible groups are the group of all linear transformations and the group of
all fractionally-linear transformations x → (a · x + b)/(c · x + d). In both cases the
group consists only of fractionally linear transformations.

Symmetries Explain the Basic Formulas of Different Uncertainty Formalisms.
Let us show that the above basic symmetries provide a unified basis for explaining
many uncertainty-related heuristic formulas. These results are described, in detail,
in [11].

Let us start with neural networks, in which the main heuristic (empirically justi-
fied) formula is the formula for the nonlinear activation function f (x) = 1/(1+e−x).
As we have mentioned, a change in the starting point of a measuring scale replaces
the numerical value x with a new value x+ s. It is reasonable to require that the new
output f (x + s) be equivalent to the original one f (x) modulo an appropriate trans-
formation. Since, as we mentioned, all appropriate transformations are fractionally
linear, we thus conclude that f (x+ s) must be related to f (x) by a fractionally linear
transformation, i.e., that f (x+ s) = (a(s) · f (x)+b(s))/(c(s) · f (x)+d(s)) for some
values a(s), . . . , d(s). Differentiating both sides by s and equating s to 0, we get
a differential equation for the unknown function f (x) whose solution is the above
activation function – which can thus be explained by symmetries.

If, instead of a shift, we consider scaling of x, we get a different activation
function – which has also been successfully used in neural networks.
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Similarly, symmetries can help explain heuristic formulas of fuzzy logic. Indeed,
in fuzzy logic, the main quantity is the certainty (membership) degree a. One way
to define the certainty degree a of a statement S is by polling n experts and taking,
as a = m/n, the fraction of those who believe S to be true. To make this estimate
more accurate, we can go beyond top experts and ask n′ other experts as well. In
the presence of top experts, however, other experts may either remain shyly silent
or shyly confirm the majority’s opinion. In the first case, the degree reduces from
a = m/n to a′ = m/(n + n′), i.e., to a′ = λ ·a, where λ = n/(n + n′). In the second
case, a changes to a′ = (m+ m′)/(n + m′) – a linear transformation. In general, we
get all linear transformations.

We can describe the degree of certainty d(S) in a statement S by its own de-
gree of certainty, or, alternatively, by a degree of certainty in, say, S &S0 for some
statement S0. It is reasonable to require that the corresponding transformation
d(S)→ d(S &S0) belong to the finite-dimensional transformation group that con-
tains all linear transformations – thus, that it is fractionally linear. This requirement
explains many empirically efficient t-norms and t-conorms.

Other uncertainty-related formulas can also be similarly explained [11].

What We Do in This Paper. In this paper, on two detailed examples, we show that
not only the basic formulas, but many other aspects of uncertainty can be explained
in terms of symmetries: heuristic and semi-heuristic approaches can be justified
by appropriate natural symmetries, and symmetries can help in designing optimal
algorithms.

2 Symmetries Help in Explaining Existing Algorithms: Case
Study

Practical Need for Uncertainty Propagation. In many practical situations, we are
interested in the value of a quantity y which is difficult or even impossible to mea-
sure directly. To estimate this difficult-to-measure quantity y, we measure or esti-
mate related easier-to-measure quantities x1, . . . ,xn which are related to the desired
quantity y by a known relation y = f (x1, . . . ,xn). Then, we apply the relation f to the
estimates x̃1, . . . , x̃n for xi and produce an estimate ỹ = f (x̃1, . . . , x̃n) for the desired
quantity y.

In the simplest cases, the relation f (x1, . . . ,xn) may be an explicit expression:
e.g., if we know the current x1 and the resistance x2, then we can measure the voltage
y by using Ohm’s law y = x1 ·x2. In many practical situations, the relation between xi

and y is much more complicated: the corresponding algorithm f (x1, . . . ,xn) is not an
explicit expression, but a complex algorithm for solving an appropriate non-linear
equation (or system of equations).

Estimates are never absolutely accurate:

• measurements are never absolutely precise, and
• expert estimates can only provide approximate values of the directly measured

quantities x1, . . . ,xn.
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In both cases, the resulting estimates x̃i are, in general, different from the actual

(unknown) values xi. Due to these estimation errorsΔxi
def= x̃i−xi, even if the relation

f (x1, . . . ,xn) is exact, the estimate ỹ = f (x̃1, . . . , x̃n) is different from the actual value

y = f (x1, . . . ,xn): Δy
def= ỹ− y �= 0.

(In many situations, when the relation f (x1, . . . ,xn) is only known approxi-
mately, there is an additional source of the approximation error in y caused by the
uncertainty in knowing this relation.)

It is therefore desirable to find out how the uncertaintyΔxi in estimating xi affects
the uncertainty Δy in the desired quantity, i.e., how the uncertainties Δxi propagate
via the algorithm f (x1, . . . ,xn).

Propagation of Probabilistic Uncertainty. Often, we know the probabilities of
different values of Δxi. For example, in many cases, we know that the approximation
errors Δxi are independent normally distributed with zero mean and known standard
deviations σi; see, e.g., [14].

In this case, we can use known statistical techniques to estimate the resulting
uncertainty Δy in y. For example, since we know the probability distributions, we
can simulate them in the computer, i.e., use the Monte-Carlo simulation techniques
to get a sample population Δy(1), . . . ,Δy(N) of the corresponding errors Δy. Based
on this sample, we can then estimate the desired statistical characteristics of the
desired approximation error Δy.

Propagation of Interval Uncertainty. In many other practical situations, we do not
know these probabilities, we only know the upper bounds Δi on the (absolute values
of) the corresponding measurement errors Δxi: |Δxi| ≤ Δ .

In this case, based on the known approximation x̃i, we can conclude that the
actual (unknown) value of i-th auxiliary quantity xi can take any value from the
interval

xi = [x̃i−Δi, x̃i +Δi]. (1)

To find the resulting uncertainty in y, we must therefore find the range y = [y,y] of
possible values of y when xi ∈ xi:

y = f (x1, . . . ,xn)
def= { f (x1, . . . ,xn) |x1 ∈ x1, . . . ,xn ∈ xn}.

Computations of this range under interval uncertainty is called interval computa-
tions; see, e.g., [6].

Comment. It is well known that processing fuzzy uncertainty can be reduced to
processing interval uncertainty: namely, the α-cut y(α) for y = f (x1, . . . ,xn) is equal
to the range f (x1(α), . . . ,xn(α)); see, e.g., [13].

Linearization. In many practical situations, the approximation errors Δxi = x̃i− xi

are small. In such situations, we can expand the expression for Δy = ỹ− y in Taylor
series in Δxi and keep only the linear terms in this expansion. In this case, we get

Δy = c1 · Δx1 + . . . + cn · Δxn, where ci
def=
∂ f
∂xi

(x̃1, . . . , x̃n). So if |Δxi| ≤ Δ , then

|Δy| ≤ Δ , where
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Δ = |c1| ·Δ1 + . . .+ |cn| ·Δn. (2)

For complex f , we can find ci by numerical differentiation. To estimate n par-
tial derivatives, we need n calls to f . For large n and complex f , this is too
time-consuming.

Cauchy Deviate Method. For large n, we can further reduce the number of calls to
f if we use a special technique of Cauchy-based Monte-Carlo simulations, which
enables us to use a fixed number of calls to f (≈ 200) for all possible values n;
see, e.g., [7]. This method uses Cauchy distribution – i.e., probability distributions

with the probability density ρ(z) =
Δ

π · (z2 +Δ2)
; the value Δ is called the (scale)

parameter of this distribution.
Cauchy distribution has the following property that we will use: if z1, . . . ,zn are

independent random variables, and each of zi is distributed according to the Cauchy
law with parameter Δi, then their linear combination

z = c1 · z1 + . . .+ cn · zn (3)

is also distributed according to a Cauchy law, with a scale parameter Δ = |c1| ·Δ1 +
. . .+ |cn| ·Δn.

Therefore, if we take random variables δi which are Cauchy distributed with
parameters Δi, then the value

δ def= f (x̃1, . . . , x̃n)− f (x̃1− δ1, . . . , x̃n− δn) =

c1 ·δ1 + . . .+ cn ·δn (4)

is Cauchy distributed with the desired parameter Δ =
n
∑

i=1
|ci| ·Δi.

Need for Intuitive Explanation. The Cauchy deviate method is one of the most
efficient techniques for processing interval and fuzzy data. However, this method
has a serious drawback: while the corresponding technique is mathematically valid,
it is somewhat counterintuitive – we want to analyze errors which are located instead
a given interval [−Δ ,Δ ], but this analysis use Cauchy simulated errors which are
located, with a high probability, outside this interval.

It is therefore desirable to come up with an intuitive explanation for this
technique.

Our Main Idea: Use Neurons. Our explanation comes from the idea promoted
by Paul Werbos, the author of the backpropagation algorithm for training neural
networks. Traditionally, neural networks are used to simulate a deterministic depen-
dence; Paul Werbos suggested that the same neural networks can be used to describe
stochastic dependencies as well – if as one of the inputs, we take a standard random
number r uniformly distributed on the interval [0,1]; see, e.g., [18] and references
therein.
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In view of this idea, as a natural probability distribution, we can take the result
of applying a neural network to this random number. The simplest case is when we
have a single neuron. In this case, we apply the activation (input-output) function
f (y) corresponding to this neuron to the random number r.

Using Appropriate Symmetries. In [11], we described all activation functions f (x)
which are optimal with respect to reasonable symmetry-based criteria. It turns out
that all such functions have the form a + b · f0(K · y + l), where f0(y) is either a
linear function, or a fractional-linear function, or f0(y) = exp(y), or the logistic
(sigmoid) function f0(y)= 1/(1+exp(−y)), or f0(y)= tan(y). The logistic function
is indeed the most popular activation function for actual neural networks, but others
are also used. For our purpose, we will use the tangent function: its application of
the tangent function to the standard random number r indeed leads to the desired
Cauchy distribution.

3 Symmetries Help in Designing Optimal Algorithms: Case
Study

Symmetries not only help to find the appropriate representations of uncertainty and
appropriate formulas for processing uncertainty: symmetries also help to select the
optimal algorithms for implementing the corresponding mathematical formulas.

Fixed Points: A Practical Problem. In many real-life situations, we have dynami-
cal situations which eventually reach an equilibrium.

For example, in economics, when a situation changes, prices start changing (often
fluctuating) until they reach an equilibrium between supply and demand.

In transportation, when a new road is built, some traffic moves to this road to
avoid congestion on the other roads; this causes congestion on the new road, which,
in its turn, leads drivers to go back to their previous routes, etc. [15].

To describe the problem of finding the equilibrium state(s), we must first be able
to describe all possible states. In this paper, we assume that we already have such a
description, i.e., that we know the set X of all possible states.

We must also be able to describe the fact that many states x ∈ X are not equilib-
rium states. For example, if the price of some commodity (like oil) is set up too high,
it will become profitable to explore difficult-to-extract oil fields; as a new result, the
supply of oil will increase, and the prices will drop.

Similarly, as we have mentioned in the main text, if too many cars move to a new
road, this road may become even more congested than the old roads initially were,
and so the traffic situation will actually decrease – prompting people to abandon this
new road.

To describe this instability, we must be able to describe how, due to this instabil-
ity, the original state x gets transformed in the next moment of time. In other words,
we assume that for every state x ∈ X , we know the corresponding state f (x) at the
next moment of time.

For non-equilibrium states x, the change is inevitable, so we have f (x) �= x. The
equilibrium state x is the state which does not change, i.e., for which f (x) = x. Thus,
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we arrive at the following problem: We are given a set X and a function f : X → X ;
we need to find an element x for which f (x) = x.

In mathematical terms, an element x for which f (x) = x is called a fixed point of
the mapping f . So, there is a practical need to find fixed points.

The Problem of Computing Fixed Points. Since there is a practical need to com-
pute the fixed points, let us give a brief description of the existing algorithms for
computing these fixed points; see, e.g., [1].

Straightforward Algorithm: Picard Iterations. At first glance, the situation seems
very simple and straightforward. We know that if we start with a state x at some
moment of time, then in the next moment of time, we will get a state f (x). We
also know that eventually, we will get an equilibrium. So, a natural thing to do is to
simulate how the actual equilibrium will be reached.

In other words, we start with an arbitrary (reasonable) state x0. After we know
the state xk at the moment k, we predict the state xk+1 at the next moment of time as
xk+1 = f (xk). This algorithm is called Picard iterations after a mathematician who
started efficiently using it in the 19 century.

If the equilibrium is eventually achieved, i.e., if in real life the process converges
to an equilibrium point x, then Picard’s iterations are guaranteed to converge. Their
convergence may be somewhat slow – since they simulate all the fluctuations of the
actual convergence – but eventually, we get convergence.

Situations When Picard’s Iterations do not Converge: Economics. In some
important practical situations, Picard iterations do not converge.

The main reason is that in practice, we can have panicky fluctuations which pre-
vent convergence. Of course, one expects fluctuations. For example, if the price
of oil is high, then it will become profitable for companies to explore and exploit
new oil fields. As a result, the supply of oil will drastically increase, and the price
of oil will go down. Since this is all done in a unplanned way, with different compa-
nies making very rough predictions, it is highly probable that the resulting oil supply
will exceed the demand. As a result, prices will go down, oil production in
difficult-to-produce oil areas will become unprofitable, supply will go down, etc.

Such fluctuations have happened in economics in the past, and sometimes, not
only they did not lead to an equilibrium, they actually led to deep economic crises.

How Can We Handle these Situation: A Natural Practical Solution. If the natural
Picard iterations do not converge, this means that in practice, there is too much of a
fluctuation. When at some moment k, the state xk is not an equilibrium, then at the
next moment of time, we have a state xk+1 = f (xk) �= xk. However, this new state
xk+1 is an not necessarily closer to the equilibrium: it “over-compensates” by going
too far to the other side of the desired equilibrium.

For example, we started with a price xk which was too high. At the next mo-
ment of time, instead of having a price which is closer to the equilibrium, we may
get a new price xk+1 which is too low – and may even be further away from the
equilibrium than the previous price.

In practical situations, such things do happen. In this case, to avoid such weird
fluctuations and to guarantee that we eventually converge to the equilibrium point,



Symmetries: A General Approach to Integrated Uncertainty Management 149

a natural thing is to “dampen” these fluctuations: we know that a transition from xk

to xk+1 has gone too far, so we should only go “halfway” (or even smaller piece of
the way) towards xk+1.

How can we describe it in natural terms? In many practical situations, there is a
reasonable linear structure on the set X on all the states, i.e., X is a linear space. In
this case, going from xk to f (xk) means adding, to the original state xk, a displace-
ment f (xk)− xk. Going halfway would then mean that we are only adding a half of

this displacement, i.e., that we go from xk to xk+1 = xk +
1
2
· ( f (xk)− xk), i.e., to

xk+1 =
1
2
· xk +

1
2
· f (xk). (5)

The corresponding iteration process is called Krasnoselskii iterations. In general,
we can use a different portions α �= 1/2, and we can also use different portions αk

on different moments of time. In general, we thus go from xk to xk+1 = xk +αk ·
( f (xk)− xk), i.e., to

xk+1 = (1−αk) · xk +αk · f (xk). (6)

These iterations are called Krasnoselski-Mann iterations.

Practical Problem: The Rate of Convergence Drastically Depends on αi. The
above convergence results show that under certain conditions on the parameters αi,
there is a convergence. From the viewpoint of guaranteeing this convergence, we
can select any sequence αi which satisfies these conditions. However, in practice,
different choice of αi often result in drastically different rate of convergence.

To illustrate this difference, let us consider the simplest situation when already
Picard iterations xn+1 = f (xn) converge, and converge monotonically. Then, in prin-
ciple, we can have the same convergence if instead we use Krasnoselski-Mann iter-
ations with αn = 0.01. Crudely speaking, this means that we replace each original
step xn→ xn+1 = f (xn), which bring xn directly into xn+1, by a hundred new smaller
steps. Thus, while we still have convergence, we will need 100 times more iterations
than before – and thus, we require a hundred times more computation time.

Since different values αi lead to different rates of convergence, ranging from
reasonably efficient to very inefficient, it is important to make sure that we select
optimal values of the parametersαi, values which guarantee the fastest convergence.

Idea: From the Discrete Iterations to the Continuous Dynamical System. In this
section, we will describe the values αi which are optimal in some reasonable sense.
To describe this sense, let us go back to our description of the dynamical situation.
In the above text, we considered observations made at discrete moments of time;
this is why we talked about current moment of time, next moment of time, etc. In
precise terms, we considered moments t0, t1 = t0 +Δ t, t2 = t0 + 2Δ t, etc.

In principle, the selection ofΔ t is rather arbitrary. For example, in terms of prices,
we can consider weekly prices (for which Δ t is one week), monthly prices, yearly
prices, etc. Similarly, for transportation, we can consider daily, hourly, etc. descrip-
tions. The above discrete-time description is, in effect, a discrete approximation to
an actual continuous-time system.
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Similarly, Krasnoselski-Mann iterations xk+1 − xk = αk · ( f (xk)− xk) can be
viewed as a discrete-time approximations to a continuous dynamical system which
leads to the desired equilibrium. Specifically, the difference xk+1− xk is a natural

discrete analogue of the derivative
dx
dt

, the values αk can be viewed as discretized

values of an unknown function α(t), and so the corresponding continuous system
takes the form

dx
dt

= α(t) · ( f (x)− x). (7)

A discrete-time system is usually a good approximation to the corresponding
continuous-time system. Thus, we can assume that, vice versa, the above contin-
uous system is a good approximation for Krasnoselski-Mann iterations.

In view of this fact, in the following text, we will look for an appropriate (optimal)
continuous-time system (7).

Scale Invariance: Natural Requirement on a Continuous-Time System. In de-
riving the continuous system (7) from the formula for Krasnoselski-Mann iterations,
we assumed that the original time interval Δ t between the two consecutive iterations
is 1. This means, in effect, that to measure time, we use a scale in which this interval
Δ t is a unit interval.

As we have mentioned earlier, the choice of the time intervalΔ t is rather arbitrary.
If we make a different choice of this discretization time interval Δ t ′ �= Δ t, then we
would get a similar dynamical system, but described in a different time scale, with a
different time interval Δ t ′ taken as a measuring unit. As a result of “de-discretizing”
this new system, we would get a different continuous system of type (7) – a system
which differs from the original one by a change in scale.

In the original scale, we identified the time interval Δ t with 1. Thus, the time
t in the original scale means physical time T = t ·Δ t. In the new scale, this same

physical time corresponds to the time t ′ =
T
Δ t ′

= t · Δ t
Δ t ′

.

If we denote by λ =
Δ t ′

Δ t
the ratio of the corresponding units, then we conclude

that the time t in the original scale corresponds to the time t ′ = t/λ in the new scale.
Let us describe the system (7) in terms of this new time coordinate t ′. From the
above formula, we conclude that t = λ · t ′; substituting t = λ · t ′ and dt = λ ·dt ′ into

the formula (7), we conclude that
1
λ
· dx

dt ′
= α(λ · t ′) · ( f (x)− x), i.e., that

dx
dt ′

= (λ ·α(λ · t ′)) · ( f (x)− x). (8)

It is reasonable to require that the optimal system of type (7) should not
depend on what exactly time interval Δ t we used for discretization.

Conclusion: Optimal Krasnoselski-Mann Iterations Correspond to αk = c/k.
Since a change of the time interval corresponds to re-scaling, this means the
system (7) must be scale-invariant, i.e., to be more precise, the system (8) must have
exactly the same form as the system (7) but with t ′ instead of t, i.e., the form
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dx
dt ′

= α(t ′) · ( f (x)− x). (9)

By comparing the systems (8) and (9), we conclude that we must have λ ·α(λ ·t ′) =

a(t ′) for all t ′ and λ . In particular, if we take λ = 1/t ′, then we get α(t ′) =
α(1)

t ′
,

i.e., α(t ′) = c/t ′ for some constant c (= α(1)).
With respect to the corresponding discretized system, this means that we take

αk = α(k) = c/k.

This Selection Works Well. Our experiments on transportation problems confirmed
that this procedure converges [2, 3].

The choice ak = 1/k have been successfully used in other applications as well;
see, e.g., [17] and references therein.

4 Other Economics-Related Examples: In Brief

In economics, scale-invariance explains empirical formulas for economic fluctua-
tions [9] and for risk analysis [12], and the use of Choquet integrals [10]. A com-
bination of scale- and shift-invariance explains Hurwicz’s empirical formula for
decision making under interval uncertainty [5].

Nonlinear transformation groups explain heuristic formulas describing volatility
and financial risk [12].

5 Conclusion

One of the main objectives of science is to predict future events, in particular, the
results of different actions. Many such predictions are based on the notion of invari-
ance: we already know how similar situations evolved, so we can conclude that the
current situation will evolve in a similar way. As a result, the ideas based on invari-
ance and symmetry are among the main tools of modern physics: these ideas provide
a precise justification for empirically justified heuristic formulas, these ideas lead to
efficient algorithms for solving physical problems.

In this paper, we show that similar invariance ideas can explain heuristic for-
mulas and algorithms related to processing different types of uncertainty, and that
these ideas lead to efficient algorithms for solving problems under uncertainty. The
efficiency of invariance ideas is illustrated on two detailed examples; several other
applications of these ideas are overviewed. The variety of these applications make
us conjecture that the symmetry ideas can form a basis for integrated uncertainty
management.
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On Interval Probabilities

Peijun Guo and Hideo Tanaka

Abstract. In recent years, dealing with uncertainty using interval probabilities, such
as combination, marginalization, condition, Bayesian inferences, is receiving con-
siderable attention by researchers. However, how to elicit interval probabilities from
subjective judgment is a basic problem for the applications of interval probabilities.
In this paper, interval-valued pair-wise comparison of possible outcomes is con-
sidered to know which one is more likely to occur. LP-based and QP-based mod-
els proposed for estimating interval probabilities. Expectation and decision criteria
under interval probabilities are given. As an application, newsvendor problem is
considered.

1 Introduction

Subjective probabilities are used to reflect a decision-maker’s belief, which are tradi-
tionally analyzed in terms of betting behavior with presumption that there is exactly
one such price for the bet [5]. This presupposition could be problematic, if consider-
ing such situations that the individual is not allowed to say “I don’t know enough”.
Moreover, the price that the individual is willing to take the bet may be different
from the price that the individual may find attractive to offer such a bet. Clearly, it
is better if the price stated has some range that reflects the judgment indifference
of a person. In fact, Camerer and Weber suggest that a person may not be uncom-
fortable giving such precise bounds [2]. Moreover, Cano and Moral assert that very
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often, an expert is more comfortable giving interval-valued probabilities rather than
point-valued probabilities, especially in the following cases [3]:

• When little information to evaluate probabilities is available.
• When available information is not specific enough.
• In robust Bayesian inference, to model uncertainty about a prior distribution.
• To model the conflict situation where several information sources are available.

There are many researches for imprecision probabilities [4, 6, 9, 12, 13, 14, 20, 21,
22, 25]. Most of researches related to interval probabilities, such as combination,
marginalization, condition, Bayesian inferences and decision assume that interval
probabilities are known. Smithson [19] suggests lower and upper probability models
based the anchoring-and-adjustment process for obtaining subjective probabilities
that is initiated by Einhorn and Hogarth [8]. Imprecise Dirichelet (ID) model pro-
posed by Walley gives posterior upper and lower probabilities satisfying invariance
principle for making inference from multinomial data [22]. Dempster and Shafer de-
fine upper and lower probabilities, called plausibility and belief, respectively, based
on a basic probability assignment [7, 17]. Yager and Kreinovich suggest a formula
to estimate the upper and lower bounds of interval probabilities from a statistical
viewpoint [26]. However, eliciting interval-valued probabilities from subject still
pose a computational challenge [1]. Guo and Tanaka propose a method for estimat-
ing interval-valued probabilities based on the pair-wise subjective comparison of
the likelihood of the events. The pair-wise comparison is point-valued [10]. As its
extension, the interval-valued comparison is considered in this paper. Based on the
obtained interval-valued comparison matrix, the interval probabilities are obtained
by LP and QP problems. Based on the proposed interval expectation and the deci-
sion criteria with interval probabilities, the newsvendor problem for a new product
is employed to illustrate our approach. Due to lack of market information on a new
product, it is difficult to estimate the point-valued subjective probabilities of market
demands. Using the proposed method, the interval probabilities of demands are ob-
tained. The optimal order is obtained based on the partially ordered set of interval
expected profits.

This paper is organized as follows: Section 2 introduces some basic concepts and
operations related to interval probabilities. In section 3, the methods for estimating
interval probabilities based on interval-valued pair-wise comparison are presented.
In section 4, as a numerical example, the newsvendor problem is considered. Finally,
concluding remarks for this research are made in Section 5.

2 Interval Probabilities

Let us consider a variable x taking its values in a finite set X = {x1, · · · ,xn} and
a set of intervals L = {Wi = [w∗i,w∗i ], i = 1, . . . ,n} satisfying w∗i ≤ w∗i ,∀i. We can
interpret these intervals as interval probabilities as follows.

Definition 2.1. The intervals Wi = [w∗i,w∗i ], i = 1, . . . ,n, are called interval probabil-
ities of X if ∀wi ∈ [w∗i,w∗i ], there are w1 ∈ [w∗1,w∗1], . . . ,wi−1 ∈ [w∗i−1,w∗i−1],wi+1 ∈
[w∗i+1,w∗i+1], . . . ,wn ∈ [w∗n,w∗n] such that
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n

∑
i=1

wi = 1. (1)

It can be seen that the point-valued probability mass function is extended into the
interval-valued function.

Theorem 2.1. The set of intervals L satisfies (1) if and only if the following condi-
tions hold [24].

1.
∀i w∗i + w∗1 + · · ·+ w∗i−1 + w∗i+1 + · · ·+ w∗n ≤ 1 (2)

2.
∀i w∗i + w∗1 + · · ·+ w∗i−1 + w∗i+1 + · · ·+ w∗n ≥ 1 (3)

It is clear that if there are only two interval probabilities [w∗1,w∗1] and [w∗2,w∗2] then

w∗1 + w∗2 = 1, w∗1 + w∗2 = 1, (4)

and if we have no knowledge on X , we can express such kind of complete ignorance
as

w1 = w2 = · · ·= wn = [0,1], (5)

which satisfies (2) and (3).

Definition 2.2. Given interval probabilities L = {Wi = [w∗i,w∗i ], i = 1, . . . ,n}, the
m-th ignorance of L, denoted as Im(L), is defined by the sum of m-th powers of the
widths of intervals as follows:

Im(L) =
n

∑
i=1

(w∗i −w∗i)m /n (6)

Clearly, 0≤ Im(L) ≤ 1 holds. I(L) = 1 holds only for (5) and I(L) = 0 only for the
point-valued probabilities.

Definition 2.3. For X = {x1, . . . ,xn} with its interval probabilities L = {Wi =
[w∗i,w∗i ], i = 1, . . . ,n}, the interval expected value is defined as follows:

E(X) = [E∗(X),E∗(X)] (7)

where

E∗(X) = min
w(xi)
∑

xi∈X
xiw(xi) (8)

s.t. w∗(xi)≤ w(xi)≤ w∗(xi),∀i,

∑
xi∈X

w(xi) = 1.

and
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E∗(X) = max
w(xi)
∑

xi∈X
xiw(xi), (9)

s.t. w∗(xi)≤ w(xi)≤ w∗(xi) ∀i,

∑
xi∈X

w(xi) = 1.

where w(xi) is the probability for X being xi, w∗(xi) and w∗(xi) are its lower and
upper bounds, respectively. (8) and (9) are linear programming problems.

Label the elements of X as xi ≤ xi+1, E∗(X) and E∗(X) can be obtained as
follows:

E∗(X) =
n

∑
i=1

xiw∗(xi)+

n

∑
j=1

x j

[
{(1−

n

∑
i=1

w∗(xi)−∑
i< j

(w∗(xi)−w∗(xi)))∨0}∧ (w∗(x j)−w∗(x j))

]
,

(10)

E∗(X) =
n

∑
i=1

xiw∗(xi)+

n

∑
j=1

x j

[
{(1−

n

∑
i=1

w∗(xi)−∑
i> j

(w∗(xi)−w∗(xi)))∨0}∧ (w∗(x j)−w∗(x j))

]
.

(11)

In the following, let us consider decision analysis under interval probabilities. The
first step in the decision analysis is the problem formulation. The set of alternatives
ai is denoted as A = {ai}. The uncertain future event is referred to as a chance
event and its outcomes are referred to as the states of nature. The set of the states
of nature xi is X = {xi}. The consequence resulting from a specific combination
of an alternative ai and a state of nature xi is refereed to as a payoff, denoted as
r(xi,ai). L is the interval probabilities of X . Generally, decision problems under
interval probabilities can be characterized by such a quadruple (A,X ,r,L).

Given (A,X ,r,L), the interval expected value for an alternative ak is denoted
as E(r(ak)) = [E∗(r(ak)),E∗(r(ak))]. Set r(xi,ak) ≤ r(xi+1,ak), E∗(r(ak)) and
E∗(r(ak)) are calculated as follows.

E∗(r(ak)) =
n

∑
i=1

r(xi,ak)w∗(xi)+

n

∑
j=1

r(x j,ak)

[
{(1−

n

∑
i=1

w∗(xi)−∑
i< j

(w∗(xi)−w∗(xi)))∨0}∧ (w∗(x j)−w∗(x j))

]
,

(12)
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E∗(r(ak)) =
n

∑
i=1

r(xi,ak)w∗(xi)+

n

∑
j=1

r(x j,ak)

[
{(1−

n

∑
i=1

w∗(xi)−∑
i> j

(w∗(xi)−w∗(xi)))∨0}∧ (w∗(x j)−w∗(x j))

]
.

(13)

The optimal alternative can be selected according to the following criteria.

Criterion 1. ap = argmax
ak∈A

E∗(r(ak)), (14)

Criterion 2. ao = argmax
ak∈A

E∗(r(ak)), (15)

Criterion 3. aα = argmax
ak∈A

(αE∗(r(ak))+ (1−α)E∗(r(ak))) , (16)

where ap, ao,and aα are pessimistic, optimistic and comprised solution and 0≤α ≤
1 is called optimistic coefficient. It is obvious that aα(α = 1) = ao and aα(α = 0) =
ap hold.

3 How to Elicit Interval Probabilities

Suppose that an expert provides interval judgments for a pairwise comparison ma-
trix. For example, it could be judged that the probability of the ith element’s oc-
currence is between a∗i j and a∗i j times as likely as the one of the jth element
with a∗i j and a∗i j being non-negative real numbers and a∗i j ≤ a∗i j. Then, an interval
comparison matrix can be expressed as

A =

⎡⎢⎢⎢⎣
1 [a∗12,a∗12] · · · [a∗1n,a∗1n]

[a∗21,a∗21] 1 · · · [a∗2n,a∗2n]
...

...
...

...
[a∗n1,a∗n1] [a∗n2,a∗n2] · · · 1

⎤⎥⎥⎥⎦ (17)

where a∗i j = 1/a∗i j for all i, j = 1, · · · ,n; i �= j. For reflecting the inherent inconsis-
tency in the judgment on subjective probabilities, we assume

wi ∈Wi = [w∗i,w∗i ], (18)

where w∗i and w∗i are the lower and the upper bounds of interval probability Wi. The
interval ratio Wi/Wj can be calculated by interval arithmetic as follows:

Wi/Wj = [w∗i/w∗j ,w
∗
i /w∗ j] (19)

Let us consider an inclusion relation between the given interval pairwise
comparison [a∗i j,a∗i j] and Wi/Wj, that is,

[a∗i j,a
∗
i j]⊆Wi/Wj. (20)
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The above inclusion relation can be rewritten as follows.

w∗i ≤ a∗i jw
∗
j ,

w∗i ≥ a∗i jw∗ j,

w∗i ≥ ε, (21)

where ε is a very small positive real number. The problem for obtaining the interval
probabilities is formalized as the following optimization problems.

Model I

minw∗i ,w∗i I
1(L) =

n

∑
i=1

(w∗i −w∗i) (22)

s.t. w∗i + w∗1 + · · ·+ w∗i−1 + w∗i+1 + . . .+ w∗n ≤ 1 ∀i,

w∗i + w∗1 + · · ·+ w∗i−1 + w∗i+1 + . . .+ w∗n ≥ 1 ∀i,

w∗i ≤ a∗i jw
∗
j ∀(i, j > i),

w∗i ≥ a∗i jw∗ j ∀(i, j > i),
w∗i −w∗i ≥ 0 ∀i,

w∗i ≥ ε ∀i.

Model II

minw∗i ,w∗i I
2(L) =

n

∑
i=1

(w∗i −w∗i)2 (23)

s.t. w∗i + w∗1 + · · ·+ w∗i−1 + w∗i+1 + . . .+ w∗n ≤ 1 ∀i,

w∗i + w∗1 + · · ·+ w∗i−1 + w∗i+1 + . . .+ w∗n ≥ 1 ∀i,

w∗i ≤ a∗i jw
∗
j ∀(i, j > i),

w∗i ≥ a∗i jw∗ j ∀(i, j > i),
w∗i −w∗i ≥ 0 ∀i,

w∗i ≥ ε ∀i.

The objective functions in (22) and (23) are the first power and the second power of
ignorance, respectively, defined in Definition 2. The first two constraints in Model I
and Model II are from (2) and (3) showing the sufficient and necessary conditions
of interval probabilities and the next three constraints show inclusion relations (21).
a∗i j = 1/a∗i j and aii = 1 make only the cases of j > i (or j < i) need to be consid-
ered. (22) and (23) are linear programming(LP) problem and quadratic program-
ming (QP) problem, respectively. It is clear that (22) and (23) are used to find out
intervals [w∗i,w∗i ], i = 1, · · · ,n, which make Wi/Wj approach [a∗i j,a∗i j] from outside
as much as possible.
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4 Newsvendor Problem with Interval Probabilities

The newsvendor problem, also known as newsboy or single-period problem is a
common inventory management problem. In general, the newsvendor problem has
the following characteristics. Prior to the season, the buyer must decide the quan-
tity of the goods to purchase/produce. The procurement lead-time tends to be quite
long relative to the selling season, so the buyer can not observe demand prior to
placing the order. Due to the long lead-time, often there is no opportunity to replen-
ish inventory once the season has begun. Excess stock can only be salvaged at loss
once the season is over. As well known that newsvendor problem derives its name
from a common problem faced by a person selling newspapers on the street, inter-
est in such a problem has increased over the past 40 years partially because of the
increased dominance of service industries for which newsvendor problem is very
applicable in both retailing and service organizations. Also, the reduction in product
life cycles makes newsvendor problem more relevant. Many extensions have been
made in the last decade, such as different objects and utility functions, different sup-
plier pricing policies, different newsvendor pricing policies [11,15-16,18]. Almost
all of extensions have been made in the probabilistic framework; that is, the uncer-
tainty of demand and supply is characterized by the probability distribution, and
the objective function is expressed as maximizing the expected profit or probability
measure of achieving a target profit. In this section, interval probabilities are used
for characterizing the uncertainty of demand.

Now consider a retailer who sells a short life cycle, or single-period new product.
The demand in the future is one element of X = {x1, · · · ,xn}. The order quantity q
should be selected from X . The payoff function of retailer is as follows:

r(x,q) =
{

Rx + So(q− x)−Wq, if x < q
(R−W)q−Su(x−q), if x≥ q

(24)

where the retailer orders q units before the season at the unit wholesale price W .
When the demand x is observed, the retailer sell units (limited by the order q and
the demand x) at the unit revenue R with R > W . Any excess units can be salvaged
at the unit salvage price So with W > So. If shortage, the lost chance price is Su.

Because the product is new, there is no statistical data. For predicting the demand,
the retailer is asked to make a pairwise comparison among X to know which demand
is more likely to occur based on his considerable experience. Using Model I (22) or
Model II (23), interval probabilities can be obtained for representing the uncertainty
of demand. Using (12), (13) and (24), the interval expected profit for each order
quantity can be calculated. According to decision criteria (14), (15) and (16), the
optimal order quantity can be obtained.

In what follows, we give a numerical example. Assume that the retailer consults
one expert for predicting the demand. The possible demands are {5,6,7,8,9}. The
expert expresses his judgments on the uncertainty of demand by pair-wise compari-
son among {5,6,7,8,9}. The results are summarized as matrix A (25). Using Model
I and II, the interval probabilities are obtained and shown in Tables 1 and 2.
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A =

⎡⎢⎢⎢⎢⎣
1 [1,3] [3,5] [5,7] [5,9]

[1/3,1] 1 [1,4] [1,5] [1,4]
[1/5,1/3] [1/4,1] 1 [2,5] [2,4]
[1/7,1/5] [1/5,1] [1/5,1/2] 1 [1,2]
[1/9,1/5] [1/4,1] [1/4,1/2] [1/2,1] 1

⎤⎥⎥⎥⎥⎦ (25)

The unit wholesale price W , the unit revenue R, the unit salvage price So and the
lost chance price Su are 60$, 100$, 10$ and 20$, respectively. According to (24),
the profits can be calculated and shown in Table 6. According to (12) and (13)
and considering the interval probabilities shown in Tables 1 and 2, the interval
expected profit for each order quantity (supply) is obtained and listed in Tables 4
and 5, respectively. According to decision criteria (14), (15) and (16), the optimal
order quantities are determined as shown in Table 6.

Table 1 The interval probabilities obtained by Model I

W1 W2 W3 W4 W5

[0.3681,0.4091] [0.1364,0.3681] [0.0818,0.1818] [0.0364,0.1364] [0.0455,0.1364]

Table 2 The interval probabilities obtained by Model II

W1 W2 W3 W4 W5
[0.2865,0.4091] [0.1364,0.2865] [0.0716,0.1818] [0.0364,0.1364] [0.0455,0.1364]

Table 3 The profit matrix

supply
demand

5 6 7 8 9
5 200 180 160 140 120
6 150 240 220 200 180
7 100 190 280 260 240
8 50 140 230 320 300
9 0 90 180 270 360

Table 4 Interval expected profits based on the interval probabilities from Model I

Supply 5 6 7 8 9
Expectation [170.09,181.18] [185.91,199.05] [168.32,189.60] [129.69,169.61] [84.70,134.61]

Table 5 Interval expected profits based on the interval probabilities from Model II

Supply 5 6 7 8 9
Expectation [168.45,178.73] [185.91,198.60] [173.19,196.95] [139.89,176.95] [95.71,141.96]
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Table 6 Optimal order quantities based on Criteria 1, 2 and 3

Criteria 1 2 3
Supply 6 6 6

5 Conclusions

This paper mainly focuses on how to estimate interval probabilities and how to make
a decision under interval probabilities. The judgment on which outcome is more
likely to occur is presented by the interval-valued pair-wise comparison amongst all
of possibility outcomes. Based on such comparison, LP-based and QP-based mod-
els are used to obtain the interval probabilities. Based on the interval expected value,
the decision criteria are given for decision analysis under interval probabilities. As
an application, newsvendor problem is investigated. The proposed methods are con-
siderable answers to how to elicit interval probabilities from subject and how to use
interval probabilities for making a decision, which is a fundamental problem for the
applications of interval probability theory.
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Qualitative and Quantitative Data Envelopment
Analysis with Interval Data

Masahiro Inuiguchi and Fumiki Mizoshita

Abstract. Twenty-five qualitatively different efficiencies under interval input-output
data have been proposed. By such multiple efficiencies, DMUs can be evaluated qual-
itatively. Moreover, SBM models based on those efficiencies and the inverted mod-
els have also been proposed. From those models, we obtain efficiency-inefficiency
scores for each DMU. Therefore, DMUs can be evaluated quantitatively. In this
paper, we demonstrate the analysis using Japanese bank data.

1 Introduction

In order to evaluate the efficiency of DMUs with multiple inputs and outputs, data
envelopment analysis (DEA) [1] was proposed. In DEA, the efficiency of a DMU
is evaluated in comparison with many DMUs having same kinds of inputs and
outputs. Because of its usefulness and tractability, a lot of applications as well as
methodological developments of DEA were performed.

Because data are sometimes observed with a noise and/or with the inaccuracy,
DEA with uncertain data is required. To this end, sensitivity analysis [2, 3] was de-
veloped. This analysis usually works well in data fluctuations of only one DMU.
Chance constrained models [4, 14] of DEA were proposed in which input-output
data are treated as random variable vectors. In this approach, we need to assume
special types of probability distributions and the reduced problems for evaluating
efficiency generally becomes nonlinear programming problems. The interval ap-
proach [6, 11] and fuzzy set approach [7, 10, 12] were also proposed. In those ap-
proaches, imprecise data are represented by intervals or fuzzy numbers and the range
or fuzzy set of efficiency scores are calculated. Inuiguchi and Tanino [10] proposed
possible and necessity efficiencies and showed the relation with fuzzy efficiency
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scores. Moreover, imprecise DEA [5] was also developed in order to treat impre-
cise knowledge about input-output data in DEA. The model allows interval data and
ordinal data, where ordinal data specifies only the order of data values but not real
data values. It is shown in [5] that the efficiency evaluation problem with imprecise
data is reduced to a linear programming.

Recently, the authors [8, 13] proposed an approach to DEA with interval data.
Dominance relation between DMUs are variously defined based on the combina-
tions of four kinds of inequality relations between intervals. They proposed 25 ef-
ficiencies and showed that any efficiencies defined by logical combinations of four
inequalities between intervals can be obtained by logical combinations of the 25
efficiencies. The strong-weak relations among those 25 efficiencies are shown. This
implies that owing to the imprecision of data, the efficiency of DMU can be eval-
uated qualitatively. In order to evaluate the efficiencies quantitatively, they [9] pro-
posed a method to evaluate efficiency scores by SBM model [16]. It is shown that
SBM models for 14 efficiencies can be reduced to linear programming problems.
Moreover, they [9] proposed the inverted DEA model [17] to moderate a positive
overassessment sometimes obtained by the optimistic evaluation in DEA model. By
those model, by the uncertainty, we may evaluate DMUs quantitatively from many
qualitatively different points of view. In this paper, we demonstrate the advantages
of the analysis using Japanese bank data.

In next section, we review the SBM model and the inverted SBM model for
interval input-output data. In Section 3, we apply those SBM models to the analysis
of Japanese bank data. In Section 4, some conclusions are described.

2 Bipolar Data Envelopment Analysis with Interval Data

Data envelopment analysis (DEA) [1] is a tool to evaluate Decision Making Units
(DMUs) based on the comparison among input-output data. If there is no possible
activity outperforming the o-th DMU under given input-output data, the o-th DMU
is regarded as efficient. In this paper, we evaluate DMUs when input-output data are
given as intervals. It was shown that 25 kinds of efficiencies are obtained and that
DMUs can be qualified by the 25 efficiencies [8].

We assume the i-th input data of the j-th DMU is given by interval Xi j = [xL
i j,x

R
i j]

and the k-th output data of the j-th DMU by interval Yk j = [yL
k j,y

R
k j]. For the sake

of the simplicity, we use an interval input data matrix X having Xi j as its (i, j)-
component and an interval output matrix Y having Yk j as its (k, j)-component. The
interval input-output data of j-th DMU is given by (X· j,Y· j), where X· j and Y· j are
j-th column of interval matrices X and Y . Moreover, we use matrices XL = (xL

i j),
XR = (xR

i j), Y L = (yL
k j) and Y R = (yL

k j) showing lower and upper bounds of interval

matrices X and Y . The j-th columns of XL, XR, Y L and Y R are denoted by XL· j ,
XR· j , Y L· j and Y R· j , respectively.

In order to define efficiencies, we need to introduce dominance relations and a
set of possible activities which is called a production possibility set. The following
dominance relations �Q (Q ∈ {Π ,N,L,R,LR,L|R}) between two interval input-
output data (Γ1,Δ1) and (Γ2,Δ2) are defined:
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Fig. 1 Strong-weak relation among 25 efficiencies
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(Γ1,Δ1) �N (Γ2,Δ2) ⇔ xR
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2 , (2)

(Γ1,Δ1) �L (Γ2,Δ2) ⇔ xR
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2 , (3)

(Γ1,Δ1) �R (Γ2,Δ2) ⇔ xL
1 ≤ xL

2 and yR
1 ≥ yR

2 , (4)

(Γ1,Δ1) �LR (Γ2,Δ2) ⇔ (Γ1,Δ1) �L (Γ2,Δ2) and (Γ1,Δ1) �R (Γ2,Δ2), (5)

(Γ1,Δ1) �L|R (Γ2,Δ2) ⇔ (Γ1,Δ1) �L (Γ2,Δ2) or (Γ1,Δ1) �R (Γ2,Δ2). (6)

Using dominance relations �Q, Q ∈ {Π ,N,L,R,LR,L|R}, we define 25 strong
dominance relations by

(Γ1,Δ1) �Q1−Q2 (Γ2,Δ2) ⇔ (Γ1,Δ1) �Q1 (Γ2,Δ2) and (Γ2,Δ2)��Q2(Γ1,Δ1),
Q1 ∈ Q1, Q2 ∈ Q2, (7)

where Q1 = {Π ,N,L,R,LR} and Q2 = {Π ,N,L,R,L|R}. In (7), we do not con-
sider the cases when Q1 = L|R or Q2 = LR because they are evaluated by the effi-
ciencies defined by using the 25 strong dominance relations [8].

Let e = (1,1, . . . ,1)T. The possible activities are uniquely defined by

P = {(γγγ,δδδ ) | (X λ ,Y λ)�L (γγγ,δδδ ),(X λ ,Y λ )�R (γγγ,δδδ ), eeeTλ = 1,λ ≥ 0}. (8)

Then we can define 25 kinds of (Q1-Q2)-efficiencies as follows:

the j-th DMU is (Q1-Q2)-efficient ⇔ �∃(γγγ,δδδ ) ∈ P : (γγγ,δδδ ) �Q1-Q2 (X· j,Y· j), (9)

where Q1 ∈ Q1 and Q2 ∈ Q2.
These 25 (Q1-Q2)-efficiencies are qualitatively different. It should be noted that,

owing to the uncertainty of input-output data, we can evaluate efficiencies of DMUs
qualitatively. Considering the combinations of those (Q1-Q2)-efficiencies by logical
connectives, we have much more efficiencies.
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The strong-weak relation among 25 (Q1-Q2)-efficiencies is shown as in
Figure 2. In this figure,Π -N efficiency is the strongest. AΠ -N efficient DMU stays
efficient even if input-out data fluctuate in the given intervals. On the contrary, N-Π
efficiency is the weakest. An N-Π efficient DMU is efficient only for a combina-
tion of input-output values in the given intervals. The others are between them but
there are many kinds. As shown in Figure 2, we have qualitatively different many
efficiencies.

Considering the definition of (Q1-Q2)-efficiency, the influence of dominance re-
lation �Q1 would be stronger than that of dominance relation �Q2 . In this sense,
we may use only five (Q1-Q2)-efficiencies whose Q1’s are different one another in
order to reduce the complexity of the analysis.

Inuiguchi and Mizoshita [8] showed that each of 25 (Q1-Q2)-efficiencies of a
DMU is tested by solving a mathematical programming problem. Moreover, they [9]
introduced a slack-based measure SBM model [16] which has desirable proper-
ties of efficiency scores, i.e., unit invariant, monotone, translation invariant and
reference-set dependent. The SBM model corresponding to a (Q1-Q2)-efficiency
of the o-th DMU is formulated as (see [9])

minimize ρo =

1− 1
2m

m

∑
i=1

(
d−

i

xR
iq

+
s−i
xR

iq

)

1 +
1

2p

p

∑
k=1

(
d+

k

yR
kq

+
s+

k

yR
kq

) ,

subject to
if Q1 �= LR,{

XQ11
i· λ + d−

i = xQ12
iq , i = 1, . . . ,m,

Y Q13
k· λ −d+

k = yQ14
kq , k = 1, . . . , p,

if Q1 = LR,{
XL

i· λ + d−
i ≤ xL

iq, XR
i· λ + d−

i ≤ xR
iq, i = 1, . . . ,m,

Y L
k·λ −d+

k ≥ yL
kq, Y R

k· λ −d+
k ≥ yR

kq, k = 1, . . . , p,

if Q2 �= L|R,{
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i· λ z1−
i + s−i = xQ22

iq z1−
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Y Q23
k· λ z1+

k − s+
k = yQ24

kq z1+
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if Q2 = L|R,{
XL

i· λ z1−
i + s−i ≤ xL

iqz1−
i , XR

i· λz2−
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iqz2−
i , i = 1, . . . ,m,

Y L
k·λ z2+
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k ≥ yL
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k , Y R
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k − s+
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m

∑
i=1
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p
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k=1

s−k ≥ ε, eTλ = 1, λ ≥ 0, λo = 0, d−, d+, s−, s+ ≥ 0,

z1−
i ,z2−

i ,z1+
k ,z2+

k ∈ {0,1}, i = 1,2, . . . ,m, k = 1,2, . . . , p.

(10)

where the correspondence between Qi and Qi j, j = 1,2,3,4 is shown in Table 1.
If there is no feasible solution, the o-th DMU is (Q1-Q2)-efficient. If ∑m

i=1 s+
i +

∑p
k=1 s−j = ε holds at the obtained optimal solution, the o-th DMU is regarded as
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Table 1 The correspondence between Qi and (Qi1,Qi2,Qi3,Qi4), i = 1,2

Q1 Q11 Q12 Q13 Q14 Q2 Q21 Q22 Q23 Q24

Π L R R L Π R L L R
N R L L R N L R R L
L L L R R L L L R R
R R R L L R R R L L

(Q1-Q2)-efficient. Otherwise, the o-th DMU is not (Q1-Q2)-efficient and the optimal
value is the score called the (Q1-Q2)-efficiency score.

It is shown that if Q1-Q2 isΠ-N, N-Π, N-N, N-L, N-R, N-L|R, L-N, L-L, R-N, R-
R, LR-N, LR-L, LR-R or LR-L|R, Problem (10) is reduced to a linear programming
problem (see [9]).

DEA gives an optimistic evaluation because it chooses the most favorable pa-
rameters for the evaluated DEA. Therefore DMUs may sometimes be positively
overrated. To moderate such a positive overassessment, we may add a negative as-
sessment. The inverted DEA model [17] has been proposed to evaluate the ineffi-
ciency of a DMU. Then DMUs can be evaluated by the bipolar scale, efficiency vs.
inefficiency. The inverted DEA model has also introduced to the case of interval
input-output data (see [9]). The inverted SBM model under interval input-output
data is formulated as

minimize ηo =
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Fig. 2 Peculiar versus uncertain DMU
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If no feasible solution exists, the o-th DMU is (Q1-Q2)-inefficient. If ∑m
i=1 s+

i +
∑p

k=1 s−j = ε holds at the obtained optimal solution, the o-th DMU is regarded as
(Q1-Q2)-inefficient. Otherwise, the o-th DMU is not (Q1-Q2)-inefficient and the op-
timal value is the score called the (Q1-Q2)-inefficiency score. Similar to (10), four-
teen of them can be reduced to linear programming problems (see [9]). As we have
25 (Q1-Q2)-efficiencies, we have 25 (Q1-Q2)-inefficiencies. Combining those, we
can analyze the efficiency-inefficiency of a DMU in various ways.

Using (Q1-Q2)-efficiency and inefficiency scores, we can classify DMUs into the
following five categories:

High-class: DMUs which are (Q1-Q2)-efficient for some Q1 ∈ Q1 and Q2 ∈ Q2

and not (Q1-Q2)-inefficient for all Q1 ∈ Q1 and Q2 ∈ Q2. Among them, (Π -N)-
efficient DMUs are the first-class.

Commonplace: DMUs which are neither (Q1-Q2)-efficient nor (Q1-Q2)-inefficient
for all Q1 ∈ Q1 and Q2 ∈ Q2.

Low-class: DMUs which are not (Q1-Q2)-efficient for any Q1 ∈Q1 and Q2 ∈Q2

and (Q1-Q2)-inefficient for some Q1 ∈ Q1 and Q2 ∈ Q2. Among them, (Π -N)-
inefficient DMUs are the lowest.

Peculiar: DMUs which are (Π -N)-efficient and at the same time (Π -N)-inefficient.
Uncertain: DMUs which are (R-R)-efficient and at the same time (R-R)-inefficient

but neither (Π -N)-efficient nor (Π -N)-inefficient.

The difference between peculiar DMU and uncertain DMU can be illustrated in
Figure 2. Figure 2 shows a case of one input and two outputs. The production possi-
ble set obtained from all DMUs except the o-th DMU are shown by four polygonal
lines on (output 1/input)-(output 2/input) coordinate. If the activity of the o-th DMU
is represented by box A, the o-th DMU becomes Π -N efficient since two concave
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polygonal lines are passing under box A. In this case, because two convex polygonal
lines are passing right side of box A, the o-th DMU becomes Π -N inefficient, too.
Thus, the o-th DMU located at box A is peculiar. On the other hand, if the activity
of the o-th DMU is represented by box B, the o-th DMU becomes R-R efficient
since two concave polygonal lines are passing under the upper right corner point of
box B. In this case, because two convex polygonal lines are passing over lower left
corner point of box B, the o-th DMU becomes R-R inefficient, too. Thus, the o-th
DMU located at box B is uncertain. As shown in Figure 2, peculiarity indicates that
DMU locates at the edge of production possibility set while uncertainty indicates
that the input-output data of DMU is very wide.

3 Application to Japanese Bank Data

Using 30 Bank data obtained through their annual reports and employment offer
data, we apply the proposed Bipolar DEA to know the efficiency of their activities.
Using data in 2005 and those in 2006, we obtained interval data as shown in Table 2.
Those interval data are obtained by using numerical values of those two years as the
lower and upper bounds. Namely, we assume each input/output data may fluctuate
in the given interval. As shown in Table 2, capital, number of employees and number
of branches can be seen as inputs while the sum of savings in the bank, the revenue
and the ordinal profit can be seen as outputs.

We can calculate 25 kinds of (Q1-Q2)-efficiency scores as well as 25 kinds of (Q1-
Q2)-inefficiency scores. However, this variety would be too huge. We may restrict
ourselves within efficiencies and inefficiencies whose Q1-Q2 are Π -N, L-L, R-R,
LR-L|R and N-Π .

The obtained (Q1-Q2)-efficiency scores are shown in Table 3 and the obtained
(Q1-Q2)-inefficiency scores are shown in Table 4. In these calculations, we use
ε = 1.0×10−6. Moreover, we calculated efficiency and inefficiency scores of SBM
models for crisp input-output data using Japanese bank data independently in 2005
and in 2006 and the data composed of mean values of 2005 and 2006 data. The
results are shown in Tables 5, 6 and 7.

First, let us see the difference between the proposed approach and the conven-
tional approach using crisp input-output data. From Tables 5, 6 and 7, Banks 1, 11,
19 and 20 take full efficiency score 1 and relatively small inefficiency scores. There-
fore, the activities of those banks are classified into “High-class”. On the contrary,
From Tables 3 and 4, i.e., from results of the analysis with interval data, Bank 11
does not take the full score in Π -N efficiency while the other three banks, Banks 1,
19 and 20 take full scores even inΠ -N efficiency. In the inefficiency scores, they are
not very different and all of their inefficiency scores are not very high. From these
facts, the activity of Bank 11 can be ranked into a little lower class than the class of
Banks 1, 19 and 20. In other words, we may say the activity of Bank 11 is very good
but its stability would be lower than Banks 1, 19 and 20 supposing the fluctuations
between data in 2005 and in 2006. Then, by the proposed approach, we may find
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Table 2 The input-output data of 30 Japanese banks

DMU 1 2 3 4 5
capital (bln) [137.6,164.0] [84.67,89.02] [135.7,141.1] [302.9,343.1] [203.5,235.5]
employees [1724,1743] [1466,1484] [1489,1503] [1015,1051] [833,890]
branches 134 111 104 [84,88] [56,57]

savings (bln) [3380,3517] [1916,1927] [1958,1994] [1036,1038] [580.6,590.2]
revenue (bln) [88.28,88.43] [46.39,47.60] [44.49,46.31] [27.66,29.53] [14.69,15.40]
profit (bln) [23.83,31.95] [7.887,8.746] [9.493,10.54] [0.459,2.859] [1.496,1.721]

DMU 6 7 8 9 10
capital (bln) [358.5,373.8] [121.1,128.3] [373.1,382.4] [519.2,568.9] [112.0,123.5]
employees [2690,2716] [1915,1916] [3009,3038] [3733,3833] [1250,1272]
branches [140,141] [113,114] [144,145] [167,168] [71,72]

savings (bln) [4723,4734] [2483,2567] [5169,5245] [8009,8372] [1857,1875]
revenue (bln) [99.47,109.3] [59.25,62.52] [118.2,139.4] [197.3,228.0] [46.32,46.61]
profit (bln) [16.03,18.17] [11.05,11.36] [33.55,41.93] [68.83,71.32] [7.141,8.400]

DMU 11 12 13 14 15
capital (bln) [92.99,97.08] [680.5,716.5] [172.9,183.9] [184.1,194.5] [88.02,98.58]
employees [1600,1665] [3418,4044] [1612,1688] [2199,2255] [1115,1200]
branches [78,79] [561,575] 91 142 75

savings (bln) [2180,2242] [9436,9827] [2169,2205] [3152,3237] [1278,1332]
revenue (bln) [58.51,62.96] [240.2,255.4] [54.58,55.36] [73.03,82.07] [30.84,33.72]
profit (bln) [9.844,12.96] [101.2,106.9] [16.62,16.66] [12.27,16.07] [9.482,10.73]

DMU 16 17 18 19 20
capital (bln) [242.9,258.0] [246.6,260.3] [401.6,478.3] [88.37,99.10] [98.79,109.3]
employees [2276,2310] [2186,2217] [2685,2783] [1062,1083] [1248,1309]
branches 128 134 [133,134] 64 [72,75]

savings (bln) [3318,3459] [3505,3590] [4531,4953] [1623,1701] [2027,2137]
revenue (bln) [76.06,79.02] [83.60,84.69] [105.7,117.2] [46.30,49.98] [75.81,85.52]
profit (bln) [16.11,19.09] [14.95,18.66] [31.77,32.57] [9.379,9.808] [8.713,9.851]

DMU 21 22 23 24 25
capital (bln) [193.8,201.3] [91.40,136.5] [335.4,353.4] [227.3,248.1] [120.2,120.9]
employees [2650,2690] [1686,1993] [2609,2686] [2169,2170] [1637,1756]
branches [126,129] [100,102] [153,156] [118,119] [120,121]

savings (bln) [3873,3945] [2583,2996] [3801,3943] [2911,2992] [2222,224]
revenue (bln) [104.9,111.5] [68.66,68.70] [91.32,103.5] [68.41,71.48] [57.86,64.59]
profit (bln) [11.17,15.17] [1.873,9.644] [17.61,26.27] [15.90,16.07] [5.403,8.586]

DMU 26 27 28 29 30
capital (bln) [398.8,447.2] [261.8,287.5] [220.9,228.2] [142.0,150.1] [92.12,98.06]
employees [3031,3537] [4216,4365] [1987,2039] [1445,1529] [1238,1279]
branches [167,167] [210,247] 124 [93,94] [89,96]

savings (bln) [6562,6779] [5693,5699] [3138,3199] [2194,2262] [1501,1559]
revenue (bln) [166.3,177.8] [163.7,183.7] [67.39,76.46] [51.80,53.84] [39.63,40.51]
profit (bln) [54.27,56.35] [30.25,43.13] [13.45,16.41] [11.73,13.19] [5.012,6.656]
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Table 3 Efficiency scores

DMU 1 2 3 4 5 6 7 8 9 10
Π -N 1 0.593 0.517 1 1 0.513 0.571 0.707 1 0.645
L-L 1 0.785 0.622 1 1 0.575 0.723 0.795 1 0.752
R-R 1 0.635 0.542 1 1 0.545 0.604 0.789 1 0.712

LR-L|R 1 0.787 0.622 1 1 0.577 0.723 0.831 1 0.765
N-Π 1 0.891 0.656 1 1 0.617 0.791 0.902 1 0.836

DMU 11 12 13 14 15 16 17 18 19 20
Π -N 0.787 1 0.615 0.534 0.588 0.554 0.565 0.624 1 1
L-L 1 1 0.715 0.638 0.720 0.636 0.649 0.703 1 1
R-R 1 1 0.648 0.593 0.736 0.597 0.607 0.710 1 1

LR-L|R 1 1 0.717 0.643 0.750 0.639 0.652 0.734 1 1
N-Π 1 1 0.759 0.722 1 0.697 0.711 0.804 1 1

DMU 21 22 23 24 25 26 27 28 29 30
Π -N 0.578 0.493 0.526 0.529 0.466 0.826 1 0.553 0.617 0.507
L-L 1 0.589 0.592 0.612 0.599 0.953 1 0.640 0.726 0.625
R-R 0.646 1 0.602 0.558 0.521 1 1 0.603 0.678 0.583

LR-L|R 1 1 0.623 0.612 0.620 1 1 0.641 0.732 0.640
N-Π 1 1 0.688 0.654 0.690 1 1 0.707 0.809 0.728

Table 4 Inefficiency scores

DMU 1 2 3 4 5 6 7 8 9 10
Π -N 0.509 0.749 0.823 1 1 1 0.743 0.671 0.583 0.659
R-R 0.609 0.807 1 1 1 1 0.800 0.794 1 0.744
L-L 0.611 1 1 1 1 1 1 0.827 1 0.795

LR-L|R 0.644 1 1 1 1 1 1 0.964 1 0.823
N-Π 0.716 1 1 1 1 1 1 1 1 0.897

DMU 11 12 13 14 15 16 17 18 19 20
Π -N 0.545 1 0.737 0.786 0.711 0.796 0.766 0.752 0.525 0.463
R-R 0.650 1 0.782 1 1 0.894 0.865 1 0.599 0.581
L-L 0.659 1 1 1 0.866 1 0.944 1 0.622 0.563

LR-L|R 0.687 1 1 1 1 1 0.952 1 0.658 0.628
N-Π 0.790 1 1 1 1 1 1 1 0.714 0.705

DMU 21 22 23 24 25 26 27 28 29 30
Π -N 0.735 0.604 0.943 0.843 0.814 0.574 1 0.762 0.685 0.777
R-R 0.902 1 1 1 1 0.708 1 0.886 0.773 0.967
L-L 1 0.744 1 1 1 0.695 1 0.932 0.818 1

LR-L|R 1 1 1 1 1 0.762 1 0.956 0.839 1
N-Π 1 1 1 1 1 1 1 1 0.919 1

such a qualitative difference of the efficiencies between Bank 11 and the other three
banks.

Let us consider Banks 10, 13, 28 and 29. From Tables 5, 6 and 7, the effi-
ciency and inefficiency scores of those banks are not very high. Those banks can be
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Table 5 SBM and Inverted SBM scores by data in 2005

DMU 1 2 3 4 5 6 7 8 9 10
SBM 1 0.707 0.636 1 1 0.545 0.688 0.750 1 0.735

I-SBM 0.605 0.937 1 1 1 1 1 1 1 0.786

DMU 11 12 13 14 15 16 17 18 19 20
SBM 1 1 0.851 0.649 0.712 0.652 0.666 0.721 1 1

I-SBM 0.673 1 0.868 1 1 0.927 0.870 1 0.629 0.579

DMU 21 22 23 24 25 26 27 28 29 30
SBM 0.711 1 0.628 0.614 0.511 1 1 0.630 0.700 0.609

I-SBM 0.860 1 1 1 1 0.715 1 0.943 0.826 1

Table 6 SBM and Inverted SBM scores by data in 2006

DMU 1 2 3 4 5 6 7 8 9 10
SBM 1 0.705 0.639 1 1 0.580 0.663 0.840 1 0.776

I-SBM 0.590 1 1 1 1 1 1 0.784 1 0.786

DMU 11 12 13 14 15 16 17 18 19 20
SBM 1 1 0.783 0.552 0.712 0.592 0.579 0.708 1 1

I-SBM 0.610 1 0.852 1 1 1 0.980 1 0.610 0.587

DMU 21 22 23 24 25 26 27 28 29 30
SBM 1 1 0.550 0.613 0.611 0.909 1 0.595 0.761 0.699

I-SBM 1 1 1 1 0.973 0.754 1 0.949 0.798 0.873

Table 7 SBM and Inverted SBM scores by the mean data

DMU 1 2 3 4 5 6 7 8 9 10
SBM 1 0.714 0.637 1 1 0.566 0.675 0.795 1 0.760

I-SBM 0.600 1 1 1 1 1 1 0.817 1 0.794

DMU 11 12 13 14 15 16 17 18 19 20
SBM 1 1 0.830 0.635 0.715 0.630 0.638 0.715 1 1

I-SBM 0.664 1 0.844 1 1 1 0.927 1 0.634 0.601

DMU 21 22 23 24 25 26 27 28 29 30
SBM 1 1 0.604 0.617 0.569 0.947 1 0.632 0.732 0.663

I-SBM 1 1 1 1 1 0.727 1 0.959 0.817 0.975

classified into Commonplace. On the other hand, in the results of the proposed ap-
proach, i.e., from Tables 3 and 4, we find that only Banks 10 and 29 do not take very
high scores in N-Π efficiency and N-Π inefficiency. Their activities can be most typ-
ical commonplace activities among all 30 banks. However, Bank 28 does not take
very high score in N-Π efficiency but the full score in N-Π inefficiency. Thus, its ac-
tivity will be more or less Low-class in comparison with Banks 10 and 29. Moreover,
Bank 13 does not take very high score in N-Π efficiency but full scores up to L-L in-
efficiency. The activity of Bank 13 can be classified into Low-class. As demonstrated
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these four banks, by the proposed approach, we may find the qualitative difference
among similarly evaluated DMUs by the conventional approach.

Next, let us see the advantage of bipolar evaluation. From Table 3, we find that
Banks 1, 4, 5, 9, 12, 19, 20 and 27 take full scores in all efficiencies. As is in the
conventional approach, we have many DMUs (banks) which take similar efficiency
scores. Thus, it is not easy to evaluate DMUs precisely only from the efficiency
view. Then we introduce the inefficiency view. From Table 4, Banks 1, 19 and 20
do not take full scores in all inefficiencies while the others. Banks 4, 5, 12 and 47
take full scores in all inefficiencies and Bank 9 takes full scores up to L-L and R-R
inefficiencies. By using bipolar evaluations, we find that the activities of Banks 1,
19 and 20 are excellent and those of Banks 4, 5, 9, 12 and 27 are peculiar.

Moreover, let us see Banks 22 and 26. From Table 3, both of them take full
scores up to R-R efficiencies. Thus the quality of the efficiencies of those two banks
are similar. However, from Table 4, we find the qualitative difference between those
two banks. Namely, Bank 22 takes full scores up to R-R inefficiencies while Bank
26 takes the full score only for N-Π inefficiency. From this, the activity of Bank
22 is classified into uncertain while the activity of Bank 26 is classified into the 3rd
high-class. Indeed, the widths of interval data of Bank 22 are relatively large.

From explanations above, by the bipolar evaluations (efficiency and inefficiency
evaluations), we may analyze the activity more precisely.

4 Conclusions

In this paper, we have reviewed SBM models and inverted SBM models with in-
terval input-output data. We demonstrated the usefulness and meaningfulness of the
proposed approach in the analysis of actual Japanese bank data. By this bipolar eval-
uation approach considering the data fluctuation, the efficiencies and inefficiencies
of DMUs can be evaluated qualitatively and quantitatively, and moreover we may
analyze the quality of activities more precisely.

Moreover, we have also proposed inverted DEA models with interval input-
output data. With these models, bipolar evaluations of the efficiencies of DMUs are
available. By the proposed approach, the robustness and possibility of the efficiency
can be analyzed. The results are very different from the conventional approach using
the center values of intervals.

The further applications and modifications of the proposed approach would be
the future research topic.
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Kolmogorov-Smirnov Two Sample Test with
Continuous Fuzzy Data

Pei-Chun Lin, Berlin Wu, and Junzo Watada

Abstract. The Kolmogorov-Smirnov two-sample test (K-S two sample test) is
a goodness-of-fit test which is used to determine whether two underlying one-
dimensional probability distributions differ. In order to find the statistic pivot of
a K-S two-sample test, we calculate the cumulative function by means of empirical
distribution function. When we deal with fuzzy data, it is essential to know how to
find the empirical distribution function for continuous fuzzy data. In our paper, we
define a new function, the weight function that can be used to deal with continuous
fuzzy data. Moreover we can divide samples into different classes. The cumulative
function can be calculated with those divided data. The paper explains that the K-S
two sample test for continuous fuzzy data can make it possible to judge whether two
independent samples of continuous fuzzy data come from the same population. The
results show that it is realistic and reasonable in social science research to use the
K-S two-sample test for continuous fuzzy data.

1 Introduction

The Kolmogorov-Smirnov two sample test (K-S two-sample test) is a goodness-of-
fit test, which is used to determine whether the two underlying distributions differ. It
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is usual to call the Kolmogorov-Smirnov two-sample test as Smirnov test (Smirnov,
1939) while the Kolmogorov test is sometimes called the Kolmogorov-Smirnovone-
sample test. In our paper, we discuss only Kolmogorov-Smirnov two-sample test, as
our purpose here is to test whether two independent samples have been drawn from
the same population. The two-sample test is one of the most useful nonparametric
methods for comparing two samples, as it is sensitive to differences in both the lo-
cation and the shape of the empirical cumulative distribution functions of the two
samples. Other tests, such as the median test, the Mann-Whitney test, or the para-
metric t test, may also be appropriate (Conover, 1971). However, while these tests
are sensitive to differences between the two means or medians, they may not detect
other types of differences, such as differences in variances. One of the advantages of
two-tailed tests is that such tests consistently reflect all types of differences between
two distribution functions. Although many papers have discussed the powerful K-S
two-sample test (see discussion in Dixon, 1954; Epstein, 1955; Schroer and Tren-
kler, 1995), they all simulated them under known distributions. However, sometimes
vague information is given when describing data in natural language. When we want
to deal with fuzzy data, the underlying distribution of the fuzzy data is not known.
It is not easy to put such information into statistical terms. Therefore, we must
establish techniques to handle such information and knowledge.

In this paper, we propose a method to judge whether two continuous fuzzy data
samples have been draw from the same population. We use the K-S two-sample
test to deal with this problem. However, the K-S two-sample test is concerned with
real numbers. In order to manipulate continuous fuzzy data by means of the K-S
two-sample test, we must find a method to classify all the continuous fuzzy data.
Accordingly, we propose some new rules to classify and rank continuous fuzzy
data. Several ranking methods have previously been proposed for fuzzy numbers;
for instance, Chen (Cheng, 1998) used the distance between fuzzy numbers and
compared data to find the largest distance. Moreover, in such the same way as Kauf-
mann and Gupta (Kaufmann and Gupta, 1988), Liou and Wang (Liou and Wang,
1992) use a membership function to rank fuzzy numbers. Yager (Yager, 1981) pro-
poses a method of ranking fuzzy numbers using a centroid index. Although there are
many ways to rank fuzzy numbers, all the methods are based on the central point.
Any such method will lose some information about continuous fuzzy data. Given
this consideration, we use a weight function to rank fuzzy numbers. The weight
function includes both central point and radius, which can be used to classify all
continuous fuzzy data. When we use this information, the K-S two-sample test with
continuous fuzzy data can be found out.

2 Literature Review

2.1 Kolmogorov-Smirnov Two-Sample Test

To apply the Kolmogorov-Smirnov two-sample test (Siegel, 1988), we determine
the cumulative frequency distribution for each sample of observations. We use
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the same intervals for each distribution and we subtract one step function from
the other for each interval. The test focuses on the largest of these observed
deviations.

Let Sm(X) be the observed cumulative distribution for one sample (of size m),
that is, Sm(X) = K

m , where K is the number of data equal to or less than X . And let
Sn(X) be the observed cumulative distribution for the other sample (of size n), that
is, Sn(X) = K

n . Now, the Kolmogorov-Smirnov two-sample test statistic is

Dm,n = max[Sm(X)−Sn(X)], (1)

for a one-tailed test, and

Dm,n = max|Sm(X)−Sn(X)|, (2)

for a two-tailed test. Note that equation (2) uses the absolute value.
In each case, the sampling distribution of Dm,n is known. The probabilities asso-

ciated with the occurrence of values as large as an observed Dm,n under the null hy-
pothesis H0 (that the two samples have come from the same distribution) have been
tabled in (Siegel, 1988). Actually, there are two sampling distributions, depending
upon whether the test is one-tailed or two-tailed. Notice that for a one-tailed test we
find the Dm,n in the predicted direction (using eq. (1)), and for a two-tailed test we
find the maximum absolute difference Dm,n (using eq. (2)) irrespective of direction.
This is because in the one-tailed test, H1 means that population values from which
one of the samples was drawn are stochastically larger than the population values
from which the other sample was drawn, whereas in the two-tailed test, H1 means
simply that the two samples are from different populations.

Now, we show the steps in the use of the Kolmogorov-Smirnov two-sample test
as follows. Here, we consider the situation of small samples.

(i) Arrange each of two groups of scores in a cumulative frequency distribution
using the same intervals (or classifications) for both distributions. Use as many
intervals as possible.

(ii) By subtraction, determine the difference between the two-sample cumulative
distributions at each listed point.

(iii) Determine the largest of these differences, Dm,n. For a one-tailed test, Dm,n is
the largest difference in the predicted direction. For a two-tailed test, Dm,n is the
largest difference in either direction.

(iv) Determine the significance of the observed Dm,n depending on the sample sizes
and the nature of H1. When m and n are both ≤ 25, Appendix Table LI in (Siegel,
1988) is used for one-tailed test and Appendix Table LII in (Siegel, 1988) is used
for two-tailed test. In either table, the entry m∗ n ∗Dm,n is used.

(v) If the observed value is equal to or larger than that given in the appropriate table
for a particular level of significance, H0 may be rejected in favor of H1.

In the following subsection, we give definitions we will use in the next section.
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2.2 Definitions

We can use the following definition to determine the central point and radiaus.

Definition 2.1. Moments and Center of Mass of a Planar Lamina (Larson, 2008)
Let f and g be continuous functions such that f (x) ≥ g(x) on [a,b], and consider the
planar lamina of uniform density ρ bounded by the graphs of y = f (x), y = g(x),
and a ≤ x ≤ b.

(i) The moments about the x−axis and y−axis are

Mx = ρ
∫ b

a
[
( f (x)+ g(x))

2
][ f (x)−g(x)]dx (3)

My = ρ
∫ b

a
x[ f (x)−g(x)]dx. (4)

(ii) The center of mass (x,y) is given by x =
My

m
and y =

Mx

m
,

where m = ρ
∫ b

a
[ f (x)−g(x)]dx is the mass of the lamina.

In the common use, we always take ρ = 1.

3 Kolmogorov-Smirnov Two-Sample Test with Continuous
Fuzzy Data

3.1 Empirical Distribution Function with Continuous Fuzzy
Data

In order to provide the empirical distribution function for continuous fuzzy data, we
must classify the continuous fuzzy data. We first define a weight function for contin-
uous fuzzy data, and then use it to pursue a new classification. Thus, the empirical
distribution function for the continuous fuzzy data can be found.

In order to correct the data accurately, we use the continuous revising to define
the weight function as follows.

Definition 3.1. Weight function for continuous fuzzy data
The weight function of continuous fuzzy data Xi ≡ (oi, li) is defined as follows:

Wi ≡W (oi, li) = oi[1 + ke−2li],∀i = 1,2,3, . . . (5)

where oi is the central point, li is the radius with respect to oi, and k = maxi(oi +
li)−min j(o j − l j),∀i, j = 1,2,3 . . . . We name k as weight constant.

Proposition 3.1. Let Xi = [ai,bi] be an interval value, then oi =
ai + bi

2
, li =

bi −ai

2
,

and k = maxibi −min ja j,∀i, j = 1,2,3 . . . .



Kolmogorov-Smirnov Two Sample Test with Continuous Fuzzy Data 179

Proof: It is trivial that oi =
ai + bi

2
and li =

bi −ai

2
.

Therefore, we have

k = maxi(oi + li)−min j(o j − l j)

= maxi(
ai + bi

2
+

bi −ai

2
)−min j(

a j + b j

2
− b j −a j

2
)

= maxibi −min ja j,∀i, j = 1,2,3 . . . .

Proposition 3.2. Let Xi = [ai,bi,ci] be triangular fuzzy numbers, then

oi =
ai + bi + ci

3
, li =

ci −ai

4
, and k = maxi(

ai + 4bi + 7ci

12
)−min j(

7a j + 4b j + ci

12
),

∀i, j = 1,2,3 . . . .

Proof: By Definition 1, we let ρ = 1 and we can find that oi =
My

m
.

When Xi is a triangular fuzzy number, its membership function is denoted as
follows:

f (x) =

⎧⎪⎪⎨⎪⎪⎩
0, x < a and x > c
x−a
b−a

, a ≤ x ≤ b
c− x
c−b

, b ≤ x ≤ c

.

Therefore, My = 1
∫ b

a
x

x−a
b−a

dx + 1
∫ c

b
x

c− x
c−b

dx =
1
6
(c−a)(a + b + c) and

m = 1
∫ b

a

x−a
b−a

dx + 1
∫ c

b

c− x
c−b

dx =
c−a

2
.

Hence,

oi =
My

m
=

1
6
(ci −ai)(ai + bi + ci)

ci −ai

2

=
ai + bi + ci

3
.

Moreover, the mean value theorem for definite integrals (George, 2005) enables us
to find some points t in [a,c] such that

(c−a) f (t) =
∫ c

a
f (x)dx =

c−a
2

.

Therefore, f (t) =
1
2
,∀t ∈ [a,c].

In the case where there are two points, say t1 and t2, such that

f (t1) = f (t2) =
1
2
,∀t1,t2 ∈ [a,c].
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This results in t1 =
a + b

2
and t2 =

b + c
2

.

There also exists a rectangle with the same area as
c−a

2
. Hence 2l = t2 − t1 =

c−a
2

, l =
c−a

4
.

When we have oi and li, the weight constant k is

k = maxi(oi + li)−min j(o j − l j)

= maxi(
ai + bi + ci

3
+

ci −ai

4
)−min j(

ai + bi + ci

3
− ci −ai

4
)

= maxi(
ai + 4bi + 7ci

12
)−min j(

7a j + 4b j + ci

12
),∀i, j = 1,2,3 . . .

Proposition 3.3. Let Xi = [ai,bi,ci,di] be trapezoidal fuzzy numbers, then oi =
(ci + di)2 − (ai + bi)2 + aibi − cidi

3[(ci + di)− (ai + bi)]
, li =

(ci + di)− (ai + bi)
4

, and k = maxi(oi +

li)−min j(o j − l j),∀i, j = 1,2,3 . . . .

Proof: By Definition 1, we let l = 1 and we can find that oi =
My

m
.

When Xi is a trapezoidal fuzzy number, its membership function is denoted as
follows:

f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, x < aandx > d
x−a
b−a

, a ≤ x ≤ b

1, b ≤ x ≤ c
d − x
d − c

, c ≤ x ≤ d

.

Therefore, My = 1
∫ b

a
x

x−a
b−a

dx + 1
∫ c

b
x1dx + 1

∫ d

c
x

d − x
d − c

dx =
1
6
[(c + d)2 − (a +

b)2 + (ab− cd)] and m = 1
∫ b

a

x−a
b−a

dx + 1
∫ c

b
1dx + 1

∫ d

c

d − x
d − c

dx =
1
2
[(c + d)−

(a + b)].
Hence,

oi =
My

m
=

1
6 [(c + d)2 − (a + b)2 +(ab− cd)]

1
2 [(c + d)− (a + b)]

=
[(c + d)2 − (a + b)2 +(ab− cd)]

3[(c + d)− (a + b)]
.

Moreover, the mean balue theorem for fefinite integrals (George, 2005) enables us
to find some points t in [a,d] such that

(d −a) f (t) =
∫ d

a
f (x)dx =

(c + d)− (a + b)
2

.

Therefore, f (t) =
(c + d)(a + b)

2(d−a)
,∀t ∈ [a,d].
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In the case where there are two points, say t1 and t2, such that

f (t1) = f (t2) =
(c + d)(a + b)

2(d−a)
,∀t1, t2 ∈ [a,d].

We can also find a rectangle with the same area as
(c + d)(a + b)

2
.

Hence, 2l = t2 − t1 =
(c + d)(a + b)

2
and l =

(c + d)(a + b)
4

.

When we have oi and li, the weight constant k is

k = maxi(oi + li)−min j(o j − l j),∀i, j = 1,2,3 . . .

Definition 3.2. Fuzzy classification
If Wi < Wj,∀i �= j, we say that Xi and Xj are in different classes. In particular, Xi

is the class before Xj. Moreover, if Wi = Wj,∀i �= j, we say that Xi and Xj are in the
same class.

Definition 3.3. Identical independence of continuous fuzzy data
If Wi �= Wj,∀i �= j, we say that Xi and Xj are identical independent by the choose

of k (weight constant). Otherwise, Xi and Xj are dependent.

Definition 3.4. Empirical distribution function with continuous fuzzy data
Let X1,X2, . . . ,Xn be n continuous fuzzy data. We can use the weight function to

separate Xi into different class Ci, which are called Glivenko-Cantelli classes (see
discussion in Gaenssler and Stute, 1979; Gine and Zinn, 1984; Serfling, 1980). If Xi

and Xj are in different classes, then we say that Xi and Xj are identically independent
for i �= j. Moreover, we have the order statistic of Xi (assume that they are in different
classes), denoted as

X(1) < X(2) < ... < X(n) (6)

Hence, the empirical distribution function can be generalized to a set C to obtain an
empirical measure indexed by c.

Sn(c) =
1
n

n

∑
i=1

Ic(Xi),c ∈ C , (7)

where Ic is the indicator function denoted by

Ic(xi) =
{

1, xi ∈ C ,
0, xi /∈ C

,∀i = 1,2, . . .n. (8)

Now, when we have those definitions, we can proceed to study the Kolmogorov-
Smirnov two-sample test with continuous fuzzy data.
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3.2 Kolmogorov-Smirnov Two-Sample Test with Continuous
Fuzzy Data

Procedure for using K-S two-sample test for continuous fuzzy data (Two-tailed
test) in small samples:

(i) Samples: Let Xmand Yn be two samples with continuous fuzzy data. Xi has size
m and Yj has size n. Combining all observations, we have N = m + n pieces of
data. A value of the weight function Wi can be found that will let us distribute Xm

and Yn into different classes Ci (maybe in the same class). The number of classes
is less than or equal to N. Moreover, the two empirical distribution functions of
Xm and Yn can be found individually.

(ii) Hypothesis: Two samples have the same distribution H0.
(iii) Statistics: Dm,n = max|Sm(X)−Sn(X)|.
(iv) Decision rule: Under significance level α . Appendix Table LII (Siegel, 1988) is

used.

4 Empirical Studies

Example 1. A Japanese dining hall manager planned to introduce new boxed lunch
services and decided to take a survey to investigate what price for a boxed lunch
would be acceptable to male and female customers. A sample was randomly selected
of 20 customers (10 males and 10 females) who resided around this dining hall in
the city of Taipei. The investigator asked them, how many dollars they would be
willing to spend (can answer with interval) for a boxed lunch in a Japanese dining
hall. The answers are shown in Table 1.

Table 1 The Price Which will be Acceptable by Males and Females

Males [60,70] [70,90] [50,80] [50,60] [80,100] [70,90] [50,80] [50,70] [65,95] [50,100]
Females [50,60] [60,70] [80,100] [90,120] [90,100] [55,75] [70,90] [100,120] [80,120] [90,120]

First, we distributed male answers and female answers into different classes. We
had to find the weight values and compare them. Moreover, we had to determine
which class they belong to. The calculation was done as Table 2.

Comparison among Wi, results in the following inequality:

W (X4)=W(Y1)<W(X8)<W(X3)=W(X7)<W (Y6)<W(X1)=W (Y2)<W(X10)<
W (X9)<W (X2)=W (X6)=W(Y7)<W (X5)=W (Y3)<W (Y5)<W(Y9)<W (Y4)=
W (Y10) < W (Y8).

Here, we take k = maxibi −min ja j = 120−50 = 70,∀i, j = 1,2, . . . ,20.
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Table 2 The Weight Values and Classes

[ai,bi] oi li Wi Ci

X1 [60,70] 65 5 65[1+ke−10] 5
X2 [70,90] 80 10 80[1+ke−20] 8
X3 [50,80] 65 15 65[1+ke−30] 3
X4 [50,60] 55 5 55[1+ke−10] 1
X5 [80,100] 90 10 90[1+ke−20] 9
X6 [70,90] 80 10 80[1+ke−20] 8
X7 [50,80] 65 15 65[1+ke−30] 3
X8 [50,70] 60 10 60[1+ke−20] 2
X9 [65,95] 80 15 80[1+ke−30] 7
X10 [50,100] 75 25 75[1+ke−50] 6
Y1 [50,60] 55 5 55[1+ke−10] 1
Y2 [60,70] 65 5 65[1+ke−10] 5
Y3 [80,100] 90 10 90[1+ke−20] 9
Y4 [90,120] 105 15 105[1+ke−30] 12
Y5 [90,100] 95 5 95[1+ke−10] 10
Y6 [55,75] 65 15 65[1+ke−30] 4
Y7 [70,90] 80 15 80[1+ke−30] 8
Y8 [100,120] 110 15 110[1+ke−30] 13
Y9 [80,120] 100 20 100[1+ke−40] 11
Y10 [90,120] 105 15 105[1+ke−30] 12

From the above, we have 13 classes. Now, we went on to find the cumulative
distributions of Xi and Yj.

Table 3 The cumulative distributions of Xi and Yj

Ci 1 2 3 4 5 6 7 8 9 10 11 12 13
S10(X) .1 .2 .4 .4 .5 .6 .7 .9 1 1 1 1 1
S10(Y ) .1 .1 .1 .2 .3 .3 .3 .4 .5 .6 .7 .9 1
|S10(X)−S10(Y )| 0 .1 .3 .2 .2 .3 .4 .5 .5 .4 .3 .1 0

From Table 3, the test statistic was obtained:

D = max|S10(X)−S10(Y )| = 0.5.

at a significance level α = 0.05, mnD = 10∗10∗ (0.5)= 50 < 60 ( Appendix Table
LII (Siegel, 1988)). Since the observed value did not exceeds the critical value, we
did not reject H0. We conclude that males and females have the same interval of the
acceptable price of a boxed lunch.

Example 2. With the rest of the procedure as illustrated in Example 1. The inves-
tigator asked them in the following questions: 1. In which price range (an interval)
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would they be willing to spend for a lunch box in a Japanese dining hall? 2. In which
price range (real numbers) will not they buy it? We can collect those data and get
trapezoidal fuzzy numbers. The answers are shown in Table 4.

Table 4 The Price which will be Acceptable by Males and Females

Males [0,60,90,100] [60,60,90,100] [30,60,90,100] [50,60,80,80] [50,50,80,100]
[50,50,80,80] [55,65,75,80] [50,60,80,80] [50,70,160,160] [40,60,120,150]

Females [40,50,70,70] [50,50,70,100] [50,50,100,100] [150,150,250,300] [50,50,70,70]
[50,70,80,80] [40,40,90,150] [50,50,70,80] [50,60,150,200] [50,70,150,200]

First, we classified male answers and female answers into different classes. We
had to find the weight values and compare them. Moreover, we had to determine
which class they belong to. The calculation was done as shown in Table 5.

Table 5 The Weight Values and Classes

[ai,bi] oi li Wi Ci

X1 [0,60,90,100] (2350/39) 32.5 (2350/39)[1+ke−65 ] 3
X2 [60,60,90,100] (1630/21) 17.5 (1630/21)[1+ke−35 ] 13
X3 [30,60,90,100] (208/3) 25.0 (208/3)[1+ke−50 ] 9
X4 [50,60,80,80] (202/3) 12.5 (202/3)[1+ke−25 ] 6
X5 [50,50,80,100] (845/12) 20.0 (845/12)[1+ke−40 ] 11
X6 [50,50,80,80] 65 15.0 65[1+ke−30] 5
X7 [55,65,75,80] (480/7) 8.75 (480/7)[1+ke−17.5 ] 7
X8 [50,60,80,80] (202/3) 12.5 (202/3)[1+ke−25 ] 6
X9 [50,70,160,160] 104 50.0 104[1+ke−100 ] 16
X10 [40,60,120,150] (4730/51) 42.5 (4730/51)[1+ke−85 ] 15
Y1 [40,50,70,70] (172/3) 12.5 (172/3)[1+ke−25 ] 2
Y2 [50,50,70,100] (480/7) 17.6 (480/7)[1+ke−35 ] 8
Y3 [50,50,100,100] 75 25.0 75[1+ke−50] 12
Y4 [150,150,250,300] (640/3) 62.5 (640/3)[1+ke−125 ] 19
Y5 [50,50,70,70] (235/6) 10.0 (235/6)[1+ke−20 ] 1
Y6 [50,70,80,80] (415/6) 10.0 (415/6)[1+ke−20 ] 10
Y7 [40,40,90,150] (655/8) 40.0 (655/8)[1+ke−80 ] 14
Y8 [50,50,70,80] (188/3) 12.5 (188/3)[1+ke−25 ] 4
Y9 [50,60,150,200] (695/6) 60.0 (695/6)[1+ke−120 ] 17
Y10 [50,70,150,200] (2720/23) 57.5 (2720/23)[1+ke−115 ] 18

Comparison among Wi results in the following inequality:

W (Y5)<W (Y1)<W (X1)<W(Y8)<W(X6) < W (X4)=W(X8)<W(X7)<W(Y2)<
W (X3)<W (Y6)<W (X5)<W (Y3)<W (X2) <W (Y7) <W (X10) <W (X9) <W (Y9) <
W (Y10) < W (Y4)

Here, we take k = maxi(oi + li)−min j(o j − l j)= (
640
3

+ 62.5)− (
2350
39

−32.5) ≈
248.0769 . . .,∀i, j = 1,2, . . . ,20.
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From the above, we have 19 classes. Now, we went on to find the cumulative
distributions of Xi and Yj.

Table 6 The cumulative distributions of Xi and Yj

Ci 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
S10(X) 0 0 .1 .1 .2 .4 .5 .5 .6 .6 .7 .7 .8 .8 .9 1 1 1 1
S10(Y ) .1 .2 .2 .3 .3 .3 .3 .4 .4 .5 .5 .6 .6 .7 .7 .7 .8 .9 1
|S10(X)−S10(Y )| .1 .2 .1 .2 .1 .1 .2 .1 .2 .1 .2 .1 .2 .1 .2 .3 .2 .1 0

From Table 6, the test statistic was obtained in the following:

D = max|S10(X)−S10(Y )| = 0.3.

At a significance level α = 0.05, mnD = 10∗10∗ (0.3)= 30 < 60 ( Appendix Table
LII (Siegel, 1988)). Since the observed value did not exceeds the critical value, we
did not reject H0. We conclude that males and females have the same interval of the
acceptable price of a boxed lunch.

5 Conclusions

In this paper, we studied the use of the K-S two-sample test with small samples of
continuous fuzzy data. In order to identify the statistical pivot, we defined a new
function, the weight function, which includes both central point and radius. The
weight function can be used to classify all continuous fuzzy data. Moreover, we
could divide fuzzy data samples into different classes. With this rule, the cumulative
distribution function can be found out. Therefore, we could obtain the statistical
pivot of K-S test with continuous fuzzy data. We also give an example of empirical
studies, which showed that fuzzy hypothesis testing with soft computing is a realistic
and reasonable approach to deal with continuous fuzzy data in the social science
research.

However, we still can identify some open problems that require future
investigation:

(i) How should we verify that the continuous fuzzy data are really separated each
other? Moreover, can we say that they are independent?

(ii) For large samples, is this weight function still useful?
(iii) How is the sensitivity of the hypothesis test known with continuous fuzzy data?
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Hybrid Fuzzy Least-Squares Regression Model
for Qualitative Characteristics

O. Poleshchuk and E. Komarov

Abstract. A method for hybrid fuzzy least-squares regression is developed in
this paper. Input and output information is presented in the form of linguistic
meanings of qualitative characteristics. A method of formalization of these
meanings as (L − R) fuzzy numbers is developed by the authors. The method
of regression’s creation is based on the transformation of the input and output
fuzzy numbers into intervals, which are called weighted intervals. The proposed
method extends a group of initial data membership functions as it can be applied
not only to normalized triangular fuzzy numbers, but also to (L−R) fuzzy num-
bers. The numerical example has demonstrated that the developed hybrid regression
model can be used for analysis of relations among qualitative characteristics with
success.

1 Introduction

The methods of fuzzy regression have received a lot of developing in the past years
[4,10,11, 14-16,20-22,26]. A major difference between fuzzy regression and or-
dinary regression is in dealing with errors as fuzzy variables in fuzzy regression
modeling, and in dealing with errors as random residuals in ordinary regression
modeling. The researchers have tried to integrate both fuzziness and randomness
into regression model. As a result of this the hybrid fuzzy least-squares regressions
were developed [1-3,5-6,8,9,12,18]. However, the methods of hybrid regression
analysis are limited by consideration of a slender group of membership functions
(as a rule normalized triangular fuzzy numbers are considered). Moreover, the hy-
brid regression analysis must provide a way to model the observed fuzzy data, such
as linguistic descriptions of the type: “good”, “very good”, “excellent”, which may
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



188 O. Poleshchuk and E. Komarov

be (L−R) fuzzy numbers. In order to include (L−R) fuzzy numbers into a hybrid
regression, a need for developing a new method exists. Therefore, a new concept of
multiple hybrid regression is proposed and developed in this paper. The developed
method allows to construct relations among qualitative characteristics and to predict
their meanings.

2 Formalization

The aim of this section is to present the method that allows to transform the elements
of a verbal (order-type) scale not into scores but into fuzzy numbers.

As well known, a semantic space is a linguistic variable with a fixed term-set
[24]. The theoretic research of semantic spaces’ properties aimed at adequacy im-
provement of the expert assessment models and their utility for practical tasks so-
lution has made it possible to formulate the valid requirements to the membership
functions μl(x), l = 1,m of their term sets T (X) = {Xl, l = 1,m} [12]: for every
Xl, l = 1,m there is Ûl �= Ø, where Ûl = {x ∈U : μl(x) = 1} is a point or an interval;
μl(x), l = 1,m does not decrease to the left of Ûl and does not increase to the right
of Ûl; μl(x), l = 1,m have maximum two points of discontinuity of the first type; for
every x ∈U ∑m

l=1 μl(x) = 1.
The semantic spaces, whose membership functions meet the mentioned

requirements were named complete orthogonal semantic spaces (COSS) [12].
Let Ã ≡ (a1,a2,aL,aR) be a (L − R) fuzzy number with a tolerance interval

[a1,a2], whose membership function μÃ(x) is generally given by:

μÃ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L
(

a1−x
aL

)
, 0 ≤ a1−x

aL
≤ 1,aL > 0

R
(

x−a2
aR

)
, 0 ≤ x−a2

aR
≤ 1,aR > 0

1, a1−x
aL

< 0 and x−a2
aR

< 0
0, a1−x

aL
> 1 or x−a2

aR
> 1

Function L is such that: L(0) = 1,L(1) = 0, L is decreasing in [0,1], and function

R is similar to function L, L
(

a1−x
aL

)
= 0 with aL = 0, R

(
x−a2

aR

)
= 0 with aR = 0. If

L(x),R(x) are nonlinear functions, then they have central symmetry with respect to
the inflection point.

Let us consider a group of N objects which are being assessed for the qualitative
characteristic X in the verbal scale with the levels Xl, l = 1,m,m ≥ 2. The levels of
the applied verbal scale uniquely specify term-set T (X) = {X1,X2, · · · ,Xm}. For a
universal set COSS U = [0,1] is selected. We shall designate membership functions
of terms Xl, l = 1,m by μl(x), l = 1,m,m correspondingly. We shall designate the
number of objects which were assessed by the level of Xl, l = 1,m by nl, l = 1,m
and nl

N , l = 1,m by al, l = 1,m,∑m
l=1 al = 1. We shall designate min(al,al+1), l = 1,m

by bl, l = 1,m.
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Then

μ1(x) ≡
(

0,a1 − b1

2
,0,b1

)
,

μl(x) ≡
(

l−1

∑
i=1

ai +
bl−1

2
,

l

∑
i=1

ai − bl

2
,bl−1,bl

)
, l = 2,m−1

μm(x) ≡
(

1−am− bm−1

2
,1−am +

bm−1

2
,bm−1,0

)
.

Thus, the authors offer the method of formalization of the qualitative characteristic’s
meanings, which allows to transform them not into scores, but into fuzzy numbers.
The membership functions of these numbers depend on a group of objects or to be
more exact they depend on the results of qualitative characteristic assessment of this
group of objects. So we can make a linguistic scale that can be adjusted for a specific
group of objects. All fuzzy numbers are defined on a uniform universal set. Such a
formalization allows to present dissimilar data in a common abstract form and to
operate correctly with them.

3 Weighted Intervals

An α-level set Ã ≡ (a1,a2,aL,aR) is defined as the ordinary set Aα , such as

Aα = {x ∈ R : μÃ(x) ≥ α}
= [A1

α ,A2
α ]

=
[
a1 −L−1(α)aL,a2 + R−1(α)aR

]
,α ∈ [0,1]

(1)

Let us consider two unimodal (L−R) numbers B̃1 ≡ (a1,aL,0), B̃2 ≡ (a2,0,aR),
that belong to the number Ã ≡ (a1,a2,aL,aR). α-level sets B̃1, B̃2 are designated
accordingly as B1α = [B1

1α ,a1],B2α = [a2,B2
2α ]. In [12] the definition of weighted

interval [A1,A2] for fuzzy number Ã ≡ (a1,a2,aL,aR) was given:

A1 =
∫ 1

0
(B1

1α + a1)αdα

=
∫ 1

0
(2a1 −L−1(α)aL)αdα

= a1 −
∫ 1

0
L−1(α)aLαdα

= a1 − laL,

(2)
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A2 =
∫ 1

0
(a2 + B2

2α)αdα

=
∫ 1

0
(2a2 + R−1(α)aR)αdα

= a2 +
∫ 1

0
R−1(α)aRαdα

= a2 + raR,

(3)

where ∫ 1

0
L−1(α)αdα = l,

∫ 1

0
R−1(α)αdα = r. (4)

In [12] it is proved that the weighted interval for number Ã+B̃, Ã≡ (a1,a2,aL1 ,aR1),
B̃ ≡ (b1,b2,bL2 ,bR2) can be obtained as [A1 + B1,A2 + B2], where [A1,A2], [B1,B2]
are weighted intervals for numbers Ã, B̃.

The method for the defuzzification of fuzzy numbers based on the weighted in-
tervals is suggested to be used in situations where it is necessary to accumulate
more information about fuzzy numbers than aggregative point crisp indexes contain
when there is no requirement to get only aggregative numbers. Other defuzzification
methods and their discussions can be found in [17,19,23,25]. Developed method can
be used in regression analysis, decision-making problem and many other tasks.

4 Hybrid Fuzzy Least-Squares Regression

The linear hybrid regression model relates Ỹ to X̃ j, j = 1,m, as follows:

Ỹ = ã0 + ã1X̃1 + . . .+ ãmX̃m

Let Ỹ =

⎛⎝Ỹ1

· · ·
Ỹn

⎞⎠, Ỹi ≡
(
yi

1,y
i
2,y

i
L,yi

R

)
,yi

1 − yi
L ≥ 0, i = 1,n - be output (L − R)

fuzzy numbers, X̃ j =

⎛⎝X̃1
j

· · ·
X̃n

j

⎞⎠, X̃ i
j ≡

(
x ji

1 ,x ji
2 ,x ji

L ,x ji
R

)
,x ji

1 − x ji
L ≥ 0, j = 1,m, i =

1,n - input (L − R) fuzzy numbers, ã j ≡
(

b j,b j
L,b

j
R

)
j = 0,m - unknown coeffi-

cients, which are defined as unimodal (L−R) fuzzy numbers. Ỹi ≡
(
yi

1,y
i
2,y

i
L,y

i
R

)
,

X̃ i
j ≡
(

x ji
1 ,x ji

2 ,x ji
L ,x ji

R

)
, j = 1,m, i = 1,n - linguistic meanings of qualitative charac-

teristics Y,X1, · · · ,Xm accordingly, which are formalized with the help of the method
from Section 2.

According to the definition of operations for (L − R) fuzzy numbers in [13],

we obtain (L − R) fuzzy numbers for multiplication of X̃ i
j ≡

(
x ji

1 ,x ji
2 ,x ji

L ,x ji
R

)
,
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j = 1,m, i = 1,n and ã j ≡
(

b j,b j
L,b j

R

)
, j = 0,m. For example, at b j − b j

L > 0 we

obtain (L−R) numbers

X̃ i
j × ã j ≡

(
x ji

1 b j,x ji
2 b j,x ji

1 b j
L + x ji

L b j − x ji
L b j

L,x
ji
2 b j

R + x ji
R b j − x ji

R b j
R

)
,

j = 1,m, i = 1,n

According to the definitions (2), (3), weighted intervals [ui
1 − lyi

L,y
i
2 + ryi

R], i = 1,n
for observed Ỹi ≡

(
yi

1,y
i
2,y

i
L,yi

R

)
, i = 1,n can be obtained, where l,r are given in (4).

We shall call weighted intervals for numbers X̃ i
j × ã j, j = 1,m, i = 1,n as[

θ 1

Ã j X̃ i
j

(
b j,b j

L,b
j
R

)
,θ 2

Ã j X̃ i
j

(
b j,b j

L,b
j
R

)]
, j = 1,m, i = 1,n

For example, if b j + b j
R < 0, then

θ 1

Ã jX̃ i
j

(
b j,b j

L,b j
R

)
= b j

(
x ji

2 + rx ji
R

)
−b j

L

(
lx ji

2 + mx ji
R

)
,

θ 2

Ã jX̃ i
j

(
b j,b j

L,b j
R

)
= b j

(
x ji

1 − lx ji
L

)
+ b j

R

(
rx ji

1 −mx ji
L

)
,

l =
∫ 1

0
L−1(α)αdα,r =

∫ 1

0
R−1(α)αdα,m =

∫ 1

0
L−1(α)R−1(α)αdα.

The boundaries of weighted intervals for other numbers X̃ i
j × ã j, j = 1,m, i = 1,n

can be obtained and the weighted intervals[
b0 − lb0

L +
m

∑
j=1

θ 1

ã j X̃ i
j

(
b j,b j

L,b j
R

)
,b0 + rb0

R +
m

∑
j=1

θ 2

ã j X̃ i
j

(
b j,b j

L,b
j
R

)]
, i = 1,n

for predicted Ỹi = ã0 + ã1X̃ i
1 + · · ·+ ãmX̃ i

m.
We shall define the function for two (L−R) numbers Ã, B̃ with weighted intervals

[A1,A2], [B1,B2] as following:

f (Ã, B̃) =
√

(A1 −B1)2 +(A2 −B2)2

We shall consider the function F =
n
∑

i=1
f 2(Ŷi,Ỹi). It is easy to obtain that

F =
n

∑
i=1

[
b0 − lb0

L − yi
1 + lyi

L +
m

∑
j=1
θ 1

ã j X̃ i
j

(
b j,b j

L,b
j
R

)]2

+

n

∑
i=1

[
b0 + rb0

R − yi
2 − ryi

R +
m

∑
j=1

θ 2

ã j X̃ i
j

(
b j,b j

L,b j
R

)]2
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Optimizational problem is the following:

F(
(

b j,b j
L,b

j
R

)
) =

n

∑
i=1

f 2(Ŷi,Ỹi) → min,b j
L ≥ 0,b j

R ≥ 0, j = 0,m

Since θ 1

ã j X̃ i
j

(
b j,b j

L,b
j
R

)
,θ 2

ã j X̃ i
j

(
b j,b j

L,b
j
R

)
are piecewise linear functions in the do-

main b j
L ≥ 0,b j

R ≥ 0, j = 0,m, then F is piecewise differentiable function. The prob-
lem can will be solved by the known methods [7].

After obtaining the regression coefficients, it is of interest to evaluate the hybrid
regression equation. For reliability evaluation, the standard deviation (Sỹ), a hybrid
correlation coefficient (HR), a hybrid standard error of estimates (HSe) are defined
as follows:

SỸ =

√
1

n−1

n

∑
i=1

f 2(Ỹi,Ỹ ),Ỹ =
1
n

n

∑
i=1

Ỹi,

HR2 = ∑n
i=1 f 2(Ŷi,Ỹ )

∑n
i=1 f 2(Ỹi,Ỹ )

,

HSe =

√
1

n−m−1
f 2(Ŷi,Ỹi).

Let Ỹi ≡
(
yi

1,y
i
2,y

i
L,y

i
R

)
, i = 1,n be output (L−R) fuzzy numbers, which are for-

malizations ˜̃Yk ≡
(
yk

1,y
k
2,y

k
L,yk

R

)
,k = 1, p of linguistic meanings Yk,k = 1, p of some

characteristic Y . After obtaining predicted Ŷi, i = 1,n a problem of identifying them

with ˜̃Yk,k = 1, p appears.
The weighted intervals[

b0 − lb0
L +

m

∑
j=1

θ 1

ã j X̃ i
j

(
b j,b j

L,b j
R

)
,b0 + rb0

R +
m

∑
j=1

θ 2

ã j X̃ i
j

(
b j,b j

L,b
j
R

)]
, i = 1,n

for predicted Ŷi, i = 1,n are designated as [Ai
1,A

i
2] accordingly. The weighted inter-

vals
[
yk

1 − lyk
L,y

k
2 + ryk

R

]
,k = 1, p for fuzzy numbers ˜̃Yk ≡

(
yk

1,y
k
2,y

k
L,yk

R

)
,k = 1, p are

designated as [Bk
1,B

k
2],k = 1, p accordingly.

Let f 2
(

Ŷi,
˜̃Yk

)
= (Ai

1 −Bk
1)

2 + (Ai
2 −Bk

2)
2, i = 1,n,k = 1, p. The predicted Ŷi is

identified to linguistic meaning Ys, if

f 2
(

Ŷi,
˜̃Ys

)
= min

k
f 2
(

Ŷi,
˜̃Yk

)
,k = 1, p (5)
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5 Numerical Example

Data of triangular and trapezoidal fuzzy numbers are used to illustrate the solutions
for hybrid fuzzy linear regression. These fuzzy numbers are students’ grades for-
malizations, which are represented in Table 1.

Table 1 Students’ grades

i X1 X2 X3 Y
1 2 3 3 2
2 3 4 3 3
3 3 2 2 2
4 4 4 3 4
5 5 4 5 5
6 4 3 3 3
7 5 5 4 4
8 5 3 4 3
9 4 2 4 3
10 4 4 4 4

Since the grades “2”, “3”, “4” and “5” are symbolic designations of the linguis-
tic variables “unsatisfactory”, “satisfactory”, “good”, “excellent”, we shall replace
them with membership functions (using the method from the section 2), which are
presented in Table 2.

Table 2 Fuzzy numbers-formalisations of grades X1,X2,X3,Y

i X1 X2 X3 Y
2 (0,0.10,0,0.10) (0,0.05,0,0.10) (0,0.15,0,0.20) (0,0.10,0,0.15)
3 (0.20,0.40,0.10,0.30) (0.15,0.45,0.10,0.30) (0.35,0.20,0.30) (0.25,0.60,0.15,0.10)
4 (0.70,0.80,0.30,0.15) (0.75,0.85,0.30,0.10) (0.65,0.85,0.30,0.05) (0.70,0.90,0.10,0.05)
5 (0.95,1.00,0.15,0) (0.95,1.00,0.10,0) (0.90,1.00,0.05,0) (0.95,1.00,0.05,0)

The same set of data was applied to hybrid regression with crisp coeffi-
cients, hybrid regression with fuzzy coefficients and ordinary regression. Therefore,
comparisons among different results can be made.

The hybrid regressions with crisp coefficients and fuzzy coefficients are listed
below.

Ỹ = 0.352X̃1 + 0.466X̃2 + 0.133X̃3, (6)

SỸ = 0.454,HR = 0.805,HSe = 0.239,

Ỹ = (0,0.566,0)+ (0.412,0.104,0)X̃1+(0.466,0,0)X̃2 +(0.133,0,0)X̃3, (7)

SỸ = 0.454,HR = 0.827,HSe = 0.213.
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The results of Eq. (6) was compared to the results of Eq. (7). It can be observed
that HR of hybrid regression with fuzzy coefficients is greater than HR of hybrid
regression with crisp coefficients and HSe of hybrid regression with fuzzy coeffi-
cients is less than HSe of hybrid regression with crisp coefficients. The ordinary
least-squares regression model (data was presented in Table 1) is listed below.

Ỹ = 0.708 + 0.301X̃1+ 0.428X̃2 + 0.394X̃3, (8)

SY = 0.949,HR = 0.808,HSe = 0.509.
The of Eqs. (6) and (7) were compared to the of Eq. (8). It can be observed that

of hybrid regressions are greater than of ordinary least-squares regression model.
Moreover authors believe that the ordinary least-squares regression model is not al-
together correct for students’ grades as all arithmetic operations are incorrect in the
order scale. Eq. (5) was used to identify the predicted data with the linguistic mean-
ings “unsatisfactory”, “satisfactory”, “good”, “excellent”. The results are presented
in Table 3.

Table 3 Predicted and observed data

i Ŷ Eqs. (6) Ŷ Eqs. (7) Ŷ Eqs. (8) Y
1 2 3 2 2
2 3 3 3 3
3 2 2 2 2
4 4 4 3 4
5 4 4 4 5
6 3 3 3 3
7 4 4 5 4
8 3 3 4 3
9 4 4 4 3
10 4 4 4 4

It can be observed that true predictions for hybrid regression with fuzzy coeffi-
cients, hybrid regression with crisp coefficients and ordinary least-squares regres-
sion are the following: 90%, 80% and 60%. Thus the developed hybrid regression
model can be used in practice with success.

6 Conclusions

A method for multiple hybrid fuzzy least-squares regression based on the weighted
intervals was developed in this paper. The method allows to fit a model to linguis-
tic meanings of qualitative characteristics, which are (L−R) fuzzy numbers. The
proposed method extends a group of initial data membership functions, as it can
be applied not only to normalized triangular fuzzy numbers, but also to (L − R)
fuzzy numbers. For reliability evaluation, the standard deviation, the hybrid corre-
lation coefficient, the hybrid standard error of estimates are defined. The numerical
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example has demonstrated that the developed hybrid regression model can be used
for analysis relations among qualitative characteristics with success.
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Single-Period Inventory Models with Fuzzy
Shortage Costs Dependent on Random Demands

Takashi Hasuike and Hiroaki Ishii

Abstract. This paper considers single-period inventory models with fuzzy short-
age costs dependent on discrete and continuous random demands considering the
close relation between consumer’s demands and shortage costs. Since these inven-
tory models include randomness and fuzziness, they are formulated as fuzzy random
programming problems. Then, in order to deal with the uncertainty and find the op-
timal order quantity analytically, the solution approach is proposed using Yager’s
ranking method with respect to the total expected future profit, and the strict solu-
tion is obtained. Furthermore, in order to compare with previous inventory models,
basic random variables and fuzzy numbers are introduced, and differences between
our proposed models and previous models are discussed.

1 Introduction

Inventory problems are generally common and important in production processes,
maintenance services and business operations. Uncertainties such as randomness
and fuzziness in inventory problems may be associated with demand, supply or var-
ious relevant costs. In the inventory models described in many previous literatures
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(e.g. [7, 13]), randomness has been the main subject of study. The single-period
inventory model with randomness, called the newsboy problem, is one of these
standard models, and is widely used in production management systems.

In a single-period inventory model, if we order too large a quantity and fail to
sell it all, we pay the cost of storing the stocks, and if we order too little a quantity
that some customers are not satisfied, we pay a penalty. Thus, we need to find an
optimal order quantity for an item by considering the customer’s demands, which
are basically assumed to be random. However, in reality, due to the lack of reli-
able information regarding new commodities and the decision maker’s subjectivity,
some uncertainties may be treated as fuzziness, based on the fuzzy set theory intro-
duced by Zadeh [17]. The fuzzy set theory has been applied to inventory problems
in many studies [5, 10, 12, 14, 18]. In recent times, there has been a growing in-
terest in the study of several single-period inventory models in fuzzy environments.
Particularly, Ishii and Konno [4] applied fuzziness to shortage cost in the classical
newsboy problem where the shortage cost is given by an L-shape fuzzy number
while the demand is a discrete random distribution, and obtained the optimal order
quantity using the fuzzy min order. Then, Li et al. [8] considered fuzzy models for
the single-period inventory problem with a continuous random demand and analyti-
cally obtained the optimal order quantity using Yager’s ranking method [16] revised
by Liou and Wang [9]. This solution approach is one of the most analytical and
strict approaches in fuzzy ranking methods. Furthermore, some researchers consid-
ered single-period inventory models in the mixed environment where randomness
and fuzziness both appear simultaneously, called fuzzy random inventory problems
[2, 6, 11, 15].

In previous fuzzy single-period inventory problems, each shortage cost is the
same for all customers’ demands. However, if a commodity is highly in demand
and is sold out, it is definitely more disappointing for the customers than if it was
not in demand, and vice versa. Therefore, considering these customer expectations,
it is natural that the shortage cost of commodity be highly dependent on the cus-
tomers’ demands. Therefore, by extending studies [4] and [8], we consider single-
period inventory models with the fuzzy shortage cost dependency on discrete and
continuous random demands, and analytically obtain the optimal order quantity.
Furthermore, using a basic random distribution such as the uniform distribution and
a fuzzy number such as the triangle fuzzy number, we consider the relation between
our proposed models, and previous standard models.

This paper is organized as follows. In Section 2, we focus on standard single-
inventory problems based on the newsboy problem, and present each optimal pur-
chasing quantity. In Section 3, we introduce a single-period inventory model with
fuzzy shortage cost dependent on a discrete continuous random demand extending
Ishii and Konno [4], and obtain the optimal order quantity. In Section 4, in a way
similar to Section 3, we introduce a single-period inventory model with fuzzy short-
age cost dependent on a continuous random demand extending Li et al. [8]. Finally,
in Section 5, we conclude this paper.
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2 Standard Single-Period Inventory Models with Discrete and
Continuous Random Demands

In this section, we review the simple classical newsboy problem, which includes
both discrete and continuous random demand. Generally, the single-period inven-
tory model maximizing the total profit can be presented as the classical newsboy
problem. We assume that a commodity can be procured either at the beginning of a
period or after the end of the period. The notation of parameters in this paper is as
follows:

b:unit purchasing price of an item
p:unit selling price of an item (p > b)
h:holding cost per each item after the end of the period (h < p)
s:unit shortage cost per item
Y :daily demand of the selling item
x:total purchasing quantity (decision variable)

First, we consider a standard inventory model with discrete random demand. In the
classical newsboy problem, the daily demand of the selling item is assumed to be a
random variable. We assume that he purchases x newspapers and the actual demand
is y. If x is larger than y, he can sell y newspapers, but x− y newspapers remain as
the inventory. Therefore, he needs to pay the holding cost. On the other hand, if x is
smaller than y, he can sell x newspapers but there is a shortage of y− x newspapers.
Therefore, he needs to pay the shortage cost for customers. Consequently, his total
profit e(x,y) is given as follows:

e(x,y) =
{

py−bx−h(x− y) , y ≤ x
px−bx− s(y− x) , y ≥ x

(1)

Then, if p(y) denotes the probability that Y = y, the total expected profit E (x)
becomes as follows:

E (x) =
∞
∑

y=0
e(x,y) p(y)

=
x
∑

y=0
(py−bx−h(x− y)) p(y)+

∞
∑

y=x+1
(px−bx− s(y− x)) p(y)

(2)

It is important for a seller to consider the maximization of the total profit e(x,y), and
so, taking into account the customer’s random demand, we consider maximizing the
expected total profit. In this discrete case, maximizing the expected total profit is
equivalent to satisfying the following inequalities [4, 8]:⎧⎪⎪⎨⎪⎪⎩

E (x)−E (x−1) = (p−b + s)− (p + s+ h)
x−1
∑

y=0
p(y) ≥ 0

E (x + 1)−E (x) = (p−b + s)− (p + s+ h)
x
∑

y=0
p(y) ≤ 0

(3)
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Therefore, an unique optimal purchasing quantity x∗ is determined as follows:

x∗−1

∑
y=0

p(y) ≤ p−b + s
p + s+ h

≤
x∗

∑
y=0

p(y) (4)

In a way similar to the case of discrete random demand, we also consider the inven-
tory model with a continuous random demand as follows:

E (x) =
∫ ∞

0 e(x,y)φ (y)dy
=
∫ x

0 (py−bx−h(x− y))φ (y)dy+
∫ ∞

x (px−bx− s(y− x))φ (y)dy
(5)

where φ (y) is the probability density function of random variable y. With respect to
the optimal order quantity for this continuous random demad, it is also determined
as follows by using the first derivative of x and solving ∂E(x)

∂x = 0 [7, 13]:

Φ (x) =
p−b + s
p + s+ h

(6)

where Φ (x) is the value of probability distribution function at x.

3 Inventory Model with Fuzzy Shortage Cost for a Discrete
Random Demand

In reality, by investigating production-goods markets and production processes, the
decision maker obtains effective statistical data for the demand of the commodity
and its selling price, and sets random distributions. However, with respect to in-
visible factors such as the shortage cost, for which it is difficult to obtain reliable
numerical data, random distribution derived from the statistical analysis may have
many errors and may lack reliability. Furthermore, predicted values of these fac-
tors collected from the experiences of veteran sellers are often more valuable than
historical data. Here, each experience is his or her own, but affirmatively undeter-
mined and flexible. Therefore, it is natural to set a fuzzy number rather than random
distribution. Furthermore, the customer psychology is such that, they are more dis-
appointed when a commodity highly in demand is sold out, than when a commodity
lower in demand is, and vice versa. Therefore, considering these practical conditions
and customer expectations, we consider single-period inventory models with fuzzy
shortage costs dependent on random demands. In this section, we first consider the
case of discrete random demand.

3.1 Fuzzy Numbers and Yager’s Ranking Method

In this paper, we assume that the shortage cost includes fuzziness and that it depends
on the customer demand of the commodity. Then, we introduce the following L-R
fuzzy number for the shortage cost:
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μs̃y (ω) =

⎧⎪⎪⎨⎪⎪⎩
L
(

s̄y−ω
αy

)
(s̄y −αy ≤ ω ≤ s̄y)

R
(
ω−s̄y
βy

)
(s̄y ≤ ω ≤ s̄y +βy)

0 (otherwise)

(7)

where s̄y is the center value of the fuzzy shortage cost dependent on each value of
actual demands, and αy and βy are left and right spreads dependent on the demand,
respectively. Then, L(ω) and R(ω) are reference functions and continuous strictly
decreasing, and L(0) = R(0) = 1, and L(1) = R(1) = 0. To simplify, we denote this
L-R fuzzy number μs̃y (ω) by μs̃y (ω) = (s̄y,αy,βy)LR. Then, the discrete random
demand y is introduced as follows:

y =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 Pr{y = 0} = p(0)
1 Pr{y = 1} = p(1)
...

...
j Pr{y = j} = p( j)
...

...
∞
∑

y=0
p(y) = 1

(8)

In this paper, considering the practical relation between shortage cost and demand
of the commodity, we assume that s̄y ≤ s̄y+1.

On the other hand, in previous literatures, a lot of ranking methods for fuzzy
numbers have been proposed [1, 3]. Particularly, Yager’s ranking method [16] is
popular because (a) this method has the advantage of not requiring the knowledge
of the explicit form of membership functions of the fuzzy numbers to be ranked and
(b) its application is simple. Therefore, Yager’s ranking method recently has been
applied in some studies for inventory problems (e.g. [8]), and effective decision
making has been proposed. This method calculates raking index I

(
C̃
)

for the fuzzy
number C̃ from its α-cut C (α) =

[
CL
α ,CU

α
]

according to the following formula:

I
(
C̃
)

=
∫ 1

0

1
2

(
CL
α +CU

α
)

dα (9)

Using the Yager’s ranking method, we discuss inventory models with the fuzzy
shortage cost for the discrete random demand.

3.2 Formulation of Our Proposed Inventory Model and the
Optimal Order Quantity

Using L-R fuzzy number (7), in the case that we set the total purchasing item to x,
the total profit e(x,y) including fuzzy numbers is as follows:

ẽ(x,y) =
{

py−bx−h(x− y) , y ≤ x
(p−b)x− s̃(y− x) , y ≥ x

(10)
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Therefore, the expected total future profit becomes the following fuzzy numbers:

Ẽ (x) =
x

∑
y=0

(py−bx−h(x− y)) p(y)+
∞

∑
y=x+1

((p−b)x− s̃(y− x)) p(y) (11)

Since fuzzy shortage cost s̃ is characterized by L-R fuzzy number (7), this fuzzy
expected future profit Ẽ (x) is also characterized by the following L-R fuzzy number:

μẼ(x) =

⎧⎨⎩R
(

s̄(x)+c(x)−ω
β (x)

)
, (s̄(x)+ c(x)−β (x) ≤ ω ≤ s̄(x)+ c(x))

L
(
ω−(s̄(x)+c(x))

α(x)

)
, (s̄ (x)+ c(x) ≤ ω ≤ s̄ (x)+ c(x)+α (x))⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α (x) =
∞
∑

y=x+1
(y− x) p(y)αy,β (x) =

∞
∑

y=x+1
(y− x) p(y)βy

s̄ (x) = −
∞
∑

y=x+1
(y− x) p(y) s̄y

c(x) =
x
∑

y=0
(py−bx−h(x− y)) p(y)+

∞
∑

y=x+1
(p−b)xp(y)

= (p−b)x +(p + h)

(
x
∑

y=0
yp(y)− x

x
∑

y=0
p(y)

)
(12)

Then, in order to deal with Yager’s ranking method, we introduce the following t-cut
of membership function μẼ(x):

μẼ(x) =
[
EL

t (x) ,EU
t (x)

]
=
[
s̄(x)+ c(x)−β (x)R−1 (t) , s̄ (x)+ c(x)+α (x)L−1 (t)

]
,0 ≤ t ≤ 1

(13)

where L−1 (t) and R−1 (t) are inverse function of L(ω) and R(ω), respectively.
Therefore, Yager’s raking index I

(
Ẽ (x)

)
is calculated as follows:

I
(
Ẽ (x)

)
=
∫ 1

0
1
2

(
EL

t (x)+ EU
t (x)

)
dt

= s̄(x)+ c(x)+ 1
2

(
α (x)

∫ 1
0 L−1 (t)dt −β (x)

∫ 1
0 R−1 (t)dt

) (14)

The optimal order quantity x∗ is obtained by maximizing I
(
Ẽ (x)

)
, and so we

consider the following conditions whose detail is shown in Appendix A:⎧⎪⎪⎨⎪⎪⎩
I
(
Ẽ (x)

)− I
(
Ẽ (x−1)

)
= (p−b + E (I (s̃y)))−

x−1
∑

y=0
(p + s+ I (s̃y)) p(y)

I
(
Ẽ (x + 1)

)− I
(
Ẽ (x)

)
= (p−b + E (I (s̃y)))−

x
∑

y=0
(p + h + I (s̃y)) p(y)

(15)

where I (s̃y) = s̄y + 1
2

(
βy
∫ 1

0 R−1 (α)dα−αy
∫ 1

0 L−1 (α)dα
)

is the Yager’s ranking

index for each fuzzy number s̃y and E (I (s̃)) =
∞
∑

y=0
I (s̃y) p(y) is the expected value of
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I (s̃y). In the case that I
(
Ẽ (x)

)− I
(
Ẽ (x−1)

)
> 0 and I

(
Ẽ (x + 1)

)− I
(
Ẽ (x)

)
< 0 ,

I
(
Ẽ (x)

)
is the maximum value of ranking index, and so we obtain the optimal order

quantity x∗. That is, x∗ satisfies the following condition:⎧⎪⎪⎨⎪⎪⎩
(p−b + E (I (s̃)))−

x∗−1
∑

y=0
(p + h + I (s̃y)) p(y) ≥ 0

(p−b + E (I (s̃)))−
x∗
∑

y=0
(p + h + I (s̃y)) p(y) ≤ 0

⇔
x∗−1
∑

y=0
(p + h + I(s̃y)) p(y) ≤ p−b + E (I (s̃)) ≤

x∗
∑

y=0
(p + h + I(s̃y)) p(y)

(16)

If each fuzzy shortage cost s̃y is independent of the demand, i.e., s̃y = s̃c, s̃c =
(s̄c,α,β )LR, this optimal condition is transformed into

x∗−1
∑

y=0
(p + h + I(s̃c)) p(y) ≤ p−b + E (I (s̃c)) ≤

x∗
∑

y=0
(p + h + I(s̃c)) p(y)

⇔ (p + h + I(s̃c))
x∗−1
∑

y=0
p(y) ≤ p−b + I(s̃c) ≤ (p + h + I (s̃c))

x∗
∑

y=0
p(y)

⇔
x∗−1
∑

y=0
p(y) ≤ p−b+I(s̃c)

(p+h+I(s̃c))
≤

x∗
∑

y=0
p(y)

(17)

and so it can be seen that it is almost the same as the standard inventory model.
Therefore, our proposed model is the more versatile model among all the others,
including standard classical inventory models with randomness.

Subsequently, in order to compare our proposed model with the previous models,
we consider a basic case where each discrete random demand occurs with the same
probability, and the relation between shortage cost and demand is linear and equally-
spaced, i.e., p(y) = 1

n , (1 ≤ y ≤ n) and s̃y = (s̄y,a,a,)LR , s̄y = ay where a is constant.
In this case, I (s̃y) and E (I (s̃)) are calculated as follows:

I (s̃y) = ay + a
2

(∫ 1
0 [a(y + 1)−aα]dα− ∫ 1

0 [aα+ a(y−1)]dα
)

= ay + a2

2

E (I (s̃)) = 1
n

n
∑

y=1
I (s̃y) = 1

n

(
a
2 n(n + 1)+ a2

2 n
)

= a
2 n + a(a+1)

2

(18)

Therefore, optimal condition (16) is the following condition:

1
n

x∗−1
∑

y=1

(
p + h + a2

2 + ay
)
≤ p−b + E (I (s̃)) ≤ 1

n

x∗
∑

y=1

(
p + h + a2

2 + ay
)

⇔
⎧⎨⎩
(

p + h + a2

2

)
(x∗ −1)+ a

2 x∗ (x∗ −1) ≤ n [p−b + E (I (s̃))]

n [p−b + E (I (s̃))] ≤
(

p + h + a2

2

)
x∗ + a

2 x∗ (x∗ + 1)

⇔ −D2+
√

D2
2+2anD1

a ≤ x∗ ≤ 1 + −D2+
√

D2
2+2anD1

a

(19)
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where D1 = D2 + a
2 n−(b + h) ,D2 = p+h+ a(a+1)

2 . From optimal conditions (4) and
(17), we also obtain the following conditions for optimal order quantities in cases of
only random demand and fuzzy shortage cost independent of demand, respectively:

(Only random demand)

x∗−1
∑

y=0

1
n ≤ p+s−b

p+s+h ≤
x∗
∑

y=0

1
n

⇔ 1
n (x∗ −1) ≤ p+s−b

p+s+h ≤ 1
n x∗

⇔ n(p+s−b)
p+s+h ≤ x∗ ≤ 1 + n(p+s−b)

p+s+h

(20)

(Fuzzy shortage cost independent of demand)

x∗−1
∑

y=0

1
n ≤ p−b+I(s̃c)

p+h+I(s̃c)
≤

x∗
∑

y=0

1
n

⇔ n(p−b+I(s̃c))
p+h+I(s̃c)

≤ x∗ ≤ 1 + n(p−b+I(s̃c))
p+h+I(s̃c)

(21)

Comparing these optimal conditions, we find that each optimal order quantity is
different from that derived in the other models by values of n(p+s−b)

p+s+h , n(p−b+I(s̃c))
p+h+I(s̃c)

,

and
−D2+

√
D2

2+2anD1
a . Consequently, even if the discrete random demand and the

fuzzy number are general distributions such as L-R fuzzy numbers, we can construct
an analytical solution approach to our proposed model in a manner similar to the
discussion of previous inventory models with only random demand and independent
fuzzy shortage cost.

4 Inventory Model with Fuzzy Shortage Cost for a Continuous
Random Demand

In this section, in a way similar to the discrete random demand in Section 3, we
focus on the case of continuous random demand. Using probability density function
φ (y) in Section 2 and its probability distribution function Φ (y), the fuzzy total
future profit is presented as follows:

Ẽ (x) =
∫ ∞

0 ẽ(x,y)φ (y)dy
=
∫ x

0 [py−bx−h(x− y)]φ (y)dy +
∫∞

x [(p−b)x− s̃y (y− x)]φ (y)dy
(22)

With respect to this fuzzy expected total profit derived from the continuous random
demad, the membership funtion is as follows:

μẼ(x) =

⎧⎨⎩R
(

s̄(x)+c(x)−ω
β (x)

)
, (s̄(x)+ c(x)−β (x) ≤ ω ≤ s̄(x)+ c(x))

L
(
ω−(s̄(x)+c(x))

α(x)

)
, (s̄ (x)+ c(x) ≤ ω ≤ s̄ (x)+ c(x)+α (x))⎧⎨⎩

α (x) =
∫ ∞

x (y− x)αyφ (y)dy,β (x) =
∫ ∞

x (y− x)βyφ (y)dy
s̄ (x) = −∫ ∞x (y− x) s̄yφ (y)dy
c(x) =

∫ x
0 (py−bx−h(x− y))φ (y)dy+

∫ ∞
x (p−b)xφ (y)dy

(23)
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Therefore, by considering α-cut (13), we calculate Yager’s ranking index I
(
Ẽ (x)

)
for the expected total profit as follows (The detail is shown in Appendix B.):

I
(
Ẽ (x)

)
=
∫ x

0
[py−bx−h(x− y)]φ (y)dy+

∫ ∞

x
[(p−b)x− I (s̃y) (y− x)]φ (y)dy

(24)
In order to obtain the optimal order quantity x∗, we need to consider the first deriva-

tive
∂ I(Ẽ(x))
∂x and solve equation

∂ I(Ẽ(x))
∂x = 0. Therefore, we calculate

∂ I(Ẽ(x))
∂x as the

following form whose detail is shown in Appendix B:

∂ I
(
Ẽ (x)

)
∂x

= [p−b + E (I (s̃y))]−
∫ x

0
[p + h + I (s̃y)]φ (y)dy (25)

In the case that we introduce functions f (y) = [p + h + I (s̃y)]φ (y) and F (y) =∫
f (y)dy, we obtain the following optimal order quantity derived from

∂ I(Ẽ(x))
∂x = 0:

[p−b + E (I (s̃y))]−
∫ x

0 [(p + h)+ I (s̃y)]φ (y)dy = 0
⇔ F (x)−F (0) = p−b + E (I (s̃y))
⇔ x∗ = F−1 (F (0)+ [p−b + E (I (s̃y))])

(26)

If each fuzzy shortage cost s̃y is independent of the demand, i.e., s̃y = s̃c, s̃c =
(s̄c,α,β )LR, this optimal condition is transformed into

[p−b + E (I (s̃c))]−
∫ x

0 (p + h + I(s̃c))φ (y)dy = 0
⇔ (p + h + I (s̃c))

∫ x
0 φ (y)dy = p−b + I(s̃c)

⇔ Φ (x∗) = p−b+I(s̃c)
p+h+I(s̃c)

(27)

and so it is almost the same as the standard inventory model with continuous random
demand. Therefore, we find that our proposed model is versatile due to including
some previous inventory models with fuzzy shortage cost such as Li et al. [8].

Subsequently, in a way similar to Section 3, we consider the special case where
the continuous random distribution becomes a uniform distribution and the relation
between shortage cost and demand is linear and equally-spaced, i.e.,

φ (y) = U (0,n) =
{

1
n (0 ≤ y ≤ n)
0 (otherwise)

, s̃y = (s̄y,a,a,)LR , s̄y = ay (28)

In this case, since the value of I (s̃y) and E (I (s̃)) are same as equation (18) in
Section 3, we obtain the following strict optimal order quantity:

[p−b + E (I (s̃y))]−
∫ x

0

(
p + h + a2

2 + ay
)( 1

n

)
dy = 0

⇔ ax2 + 2
(

p + h + a2

2

)
x−2n [p−b + E (I (s̃y))] = 0

⇔ x∗ =
−(D2− a

2)+
√

(D2− a
2 )

2+2anD1

a

(29)
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Consequently, we can also construct the analytical solution approach to our pro-
posed model in a manner similar to the discussion of previous inventory models
with only continuous random demand and independent fuzzy shortage cost.

5 Numerical Example

We provide a toy numerical example for a discrete random distribution in Section 3.
Let b = 200, p = 500, h = 60, and let the shortage cost not including fuzziness be s =
120. Furthermore, we assume that fuzzy shortage costs independent of or dependent
on the random demand in Section 3 are triangle fuzzy numbers (120,10,10)LR and
(10y,10,10)LR, respectively. In the case that the random demand is presented as

p(y) = 1
24 , (1 ≤ y ≤ 24), we obtain n(p+s−b)

p+s+h = 420×24
680 , n(p−b+I(s̃c))

p+h+I(s̃c)
= 470×24

730 , and

−D2+
√

D2
2+2anD1

a = −635+
√

635+480×495
10 . Therefore, optimal order quantities are x∗r =

15 (not fuzzy), x∗i = 16 (fuzzy, but independent of the demand), and x∗d = 17 (fuzzy,
and dependent on the demand), respectively. This result shows that we should order
more quantities when there exist ambiguity and dependency on the demand.

6 Conclusion

In this paper, we have considered single-period inventory problems with fuzzy short-
age cost dependent on discrete and continuous random demands, respectively. In
order to obtain these optimal order quantities analytically, we have introduced the
Yager’s ranking method for fuzzy expected future profits, and developed optimal
conditions including optimal order quantities. Furthermore, we have introduced
standard practical cases such that same probabilities for each occurrence discrete
demand, uniformed distributions as a continuous random demand, and linear rela-
tion between each center value of fuzzy shortage cost and the demand. Then, we
obtain the analytical optimal order quantity. Our proposed model includes some
previous inventory models with randomness and fuzziness, and so it becomes one
of the wider and more practical inventory models.

As future works, we will consider the more general cases of multi-commodity
inventory problems, general relation between fuzzy shortage cost and consumer’s
demand, and the other uncertain environments. Then, this solution approach is an-
alytical, but a little complex and not efficient. Therefore, we will develop not only
analytical but also more efficient solution approaches using approximate methods
and heuristics.
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Appendix A: Calculation of (15)

I
(
Ẽ (x)

)− I
(
Ẽ (x−1)

)
=

∞
∑

y=x
p(y) s̄y +(p−b)− (p + h)

x−1
∑

y=0
p(y)

+ 1
2

(
∞
∑

y=x
p(y)βy

∫ 1
0 R−1 (t)dt − ∞

∑
y=x

p(y)αy
∫ 1

0 L−1 (t)dt

)
= (p−b)− (p + h)

x−1
∑

y=0
p(y)+

∞
∑

y=x
I (s̃y) p(y)

= (p−b + E (I (s̃)))−
x−1
∑

y=0
(p + s+ I (s̃y)) p(y)

(30)

and similarly,
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I
(
Ẽ (x + 1)

)− I
(
Ẽ (x)

)
=

∞
∑

y=x+1
p(y) s̄y +(p−b)− (p + h)

x
∑

y=0
p(y)

+ 1
2

(
∞
∑

y=x+1
p(y)βy

∫ 1
0 R−1 (t)dt −

∞
∑

y=x+1
p(y)αy

∫ 1
0 L−1 (t)dt

)
= (p−b)− (p + h)

x
∑

y=0
p(y)+

∞
∑

y=x+1
I (s̃y) p(y)

= (p−b + E (I (s̃)))−
x
∑

y=0
(p + h + I (s̃y)) p(y)

(31)

Appendix B: Calculation of (24) and (25)

Yager’s ranking index I
(
Ẽ (x)

)
for fuzzy expected total profit (24) derived from the

continuous random demand is given as follows:

I
(
Ẽ (x)

)
= 1

2

∫ 1
0

{(
s̄(x)+ c(x)−β (x)R−1 (t)

)
+
(
s̄(x)+ c(x)+α (x)L−1 (t)

)}
dt

=
∫ x

0 (py−bx−h(x− y))φ (y)dy+
∫ ∞

x (p−b)xφ (y)dy− ∫ ∞x (y− x) s̄yφ (y)dy

+ 1
2

{
(
∫ ∞

x (y− x)αyφ (y)dy)
∫ 1

0 L−1 (t)dt − (
∫ ∞

x (y− x)βyφ (y)dy)
∫ 1

0 R−1 (t)dt
}

=
∫ x

0 [py−bx−h(x− y)]φ (y)dy+
∫ ∞

x [(p−b)x− I (s̃y) (y− x)]φ (y)dy
(32)

Using I
(
Ẽ (x)

)
, the first deviation

∂ I(Ẽ(x))
∂x is calculated as follows:

∂ I(Ẽ(x))
∂x = −(b + h)

∫ x
0 φ (y)dy− (b + h)xφ (x)+ (p + h)xφ (x)

+ (p−b)
∫ ∞

x φ (y)dy− (p−b)xφ (x)
+ I (s̃x)xφ (x)+

∫∞
x I (s̃y)φ (y)dy− xI (s̃x)φ (x)

= (p−b)− (p + h)
∫ x

0 φ (y)dy+
∫ ∞

x I (s̃y)φ (y)dy
= (p−b)− (p + h)

∫ x
0 φ (y)dy+(E (I (s̃y))− (

∫ x
0 I (s̃y)φ (y)dy))

= [p−b + E (I (s̃y))]−
∫ x

0 [p + h + I(s̃y)]φ (y)dy

(33)



A Variable-Capacity-Based Fuzzy Random
Facility Location Problem with VaR Objective

Shuming Wang, Junzo Watada, and Shamshul Bahar Yaakob

Abstract. In this paper, a Value-at-Risk (VaR) based fuzzy random facility location
model (VaR-FRFLM) is built in which both the costs and demands are assumed to
be fuzzy random variables, and the capacity of each facility is unfixed but a deci-
sion variable. A hybrid approach based on modified particle swarm optimization
(MPSO) is proposed to solve the VaR-FRFLM. In this hybrid mechanism, an ap-
proximation algorithm is utilized to compute the fuzzy random VaR, a continuous
Nbest-Gbest-based PSO and a genotype-phenotype-based binary PSO vehicles are
designed to deal with the continuous capacity decisions and the binary location de-
cisions, respectively, and two mutation operators are incorporated into the PSO to
further enlarge the search space. A numerical experiment illustrates the application
of the proposed hybrid MPSO algorithm and lays out its robustness to the parameter
settings when dealing with the VaR-FRFLM.

1 Introduction

Facility location selection is a kind of optimization problems which aim to max-
imize the return or minimize the costs via determining the locations of facilities
to open from a set of potential sites. Various kinds of facility location problems
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under uncertainty have been investigated in the literature. The first category of such
uncertain location is the stochastic facility location problems which deal with the
cases when the uncertain parameters, like customers’ demands and operating costs
of plants, are characterized by random variables. For the details on such facility
location problems, one may refer to [1, 11]. Another category of facility location
problems with uncertain parameters were developed based on fuzzy set theory [12]
and possibility theory [8, 19], which aims at dealing with cases of imprecise or
vague data. For this kind of location problems, one may refer to [4, 16].

In real-world applications, randomness and fuzziness may coexist in a facil-
ity location problem, there is a genuine need to deal with a hybrid uncertainty of
randomness and fuzziness. Making use of the expected value operator of a fuzzy
random variable (see [6, 9]) as the objective, Wang et al. [17] modeled a recourse-
based facility location problem with fuzzy random uncertainty and discussed its
binary particle swarm optimization (BPSO) approach. Wen and Iwamura [18] built
an (α,β ) -cost minimization model for random fuzzy facility location problems
under the Hurewicz criterion in hybrid uncertain environment, and designed a
genetic algorithm (GA) dealing with continuous decision variables for the location
model.

In both studies of [17] and [18], the capacity of each facility is assumed to be
fixed, however, in more practical situations, it should be variable and serve as a de-
cision to be made. In this paper, we allow the capacity to be a decision variable
and model fuzzy random facility location problems by using fuzzy random VaR
(see [15]) as an objective. Herewith, in contrast with the model in [17] whose de-
cisions are all binary variables, and the model in [18] where all the decisions are
continuous variables, the fuzzy random location model built in this paper contains
mixed decisions, that is the capacities are the continuous decisions while the loca-
tion decisions are binary ones. As a consequence, we design a hybrid approach to
the model which comprises an approximation algorithm to fuzzy random VaR and
a mechanism of modified continuous-binary PSO.

2 Preliminaries

Let the triplet (Γ ,P(Γ ),Pos) be a possibility space, where P(Γ ) is the power set
of Γ , X be a fuzzy variable defined on (Γ ,P(Γ ),Pos) whose membership function
is μX , and r be a real number. The possibility and credibility of an event X ≤ r are
expressed as follows:

Pos{X ≤ r} = sup
t≤r
μX(t),and

Cr{X ≤ r} = 1
2

(
sup
t≤r
μX(t)+ 1− sup

t>r
μX (t)

)
.

(1)

Suppose that (Ω ,A ,Pr) is a probability space, Fv is a collection of fuzzy variables
defined on possibility space (Γ ,P(Γ ),Pos). A fuzzy random variable is defined as
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a map ξ :Ω → Fv such that Pos{ξ (ω) ∈ B} is a measurable function of ω for any
Borel subset B of ℜ(see [9]).

Example 2.1. Let Y be a random variable defined on probability space (Ω ,A ,Pr).
If we define that for every ω ∈ Ω , ξ (ω) = (Y (ω),Y (ω)+ 2,Y(ω)+ 6) which is a
triangular fuzzy variable defined on some possibility space (Γ ,P(Γ ),Pos). Then,
ξ is a (triangular) fuzzy random variable.

To measure an event ξ ∈ B induced by a fuzzy random variable ξ , where B a Borel
subset of ℜ, the mean chance measure (see [10]) is given as

Ch{ξ ∈ B} =
∫
Ω

Cr{ξ (ω) ∈ B}Pr(dω). (2)

In the fuzzy random environment, let L be the loss variable with fuzzy random
parameters of some investment. The fuzzy random Value-at-Risk of the investment
with confidence 1−β is expressed in the following form (see [15]):

VaR1−β = sup{λ ∈ℜ | Ch{L ≥ λ} ≥ β} (3)

where β ∈ (0,1), and Ch is the mean chance measure in (2).

3 VaR-Based Fuzzy Random Facility Location Model

In this section, we formulate a VaR-based fuzzy random facility location model
(VaR-FRFLM) with variable capacity which is a task of two-stage mixed 0-1 integer
fuzzy random programming. We introduce the following notation for this two-stage
model:

Indices and constants

i index of facilities, 1 ≤ i ≤ n
j index of clients, 1 ≤ j ≤ m
rj unit price charged to client j
ci fixed cost for opening and operating facility i
Wi maximum capacity of each facility i
ti j unit transportation cost from i to j
1−β confidence level of the Value-at-Risk

Fuzzy random parameters

D j fuzzy random demand of client j
Vi fuzzy random unit variable operating cost of facility i
ξ fuzzy random demand-cost vector ξ = (D1, · · · ,Dm,V1, · · · ,Vn)
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Decision variables

xi location decision which is a binary variable
x location decision vector which is x = (x1,x2, · · · ,xn)
si capacity decision of facility i
s capacity decision vector which is s = (s1,s2, · · · ,sn)
y(ω,γ)

i j quantity supplied to client j from facility i at scenario (ω ,γ).

As usual, it is assumed that each customer’s demand cannot be over served, but it
is possible that not all demand is served. Furthermore, the total supply from one
facility to all clients cannot exceed the capacity of the facility. Lastly, we assume
that fuzzy random demand-cost vector ξ = (D1, · · · ,Dm,V1, · · · ,Vn) is defined from
a probability space (Ω ,A ,Pr) to a collection of fuzzy vectors on possibility space
(Γ ,P(Γ ),Pos).

Making use of the fuzzy random VaR in (3), a VaR-FRFLM at confidence level
1−β can be built as follows under the above notation and assumptions. The objec-
tive of this VaR-FRFLM is to minimize the VaR of the investment by determining
the optimal locations as well as the capacities of the new facilities to open.

Model
min VaR1−β (x,s)
subject to xi ∈ {0,1}, i = 1,2, · · · ,n,

0 ≤ si ≤Wixi, i = 1,2, · · · ,n,

⎫⎬⎭ (4)

where

VaR1−β (x,s) = sup

{
λ | Ch

{
n

∑
i=1

cixi −R(x,s,ξ ) ≥ λ
}

≥ β
}

, (5)

and the second-stage problem for each scenario (ω ,γ) is

R
(

x,s,ξ (ω ,γ)
)

= max
n
∑

i=1

m
∑
j=1

(
r j −Vi(ω ,γ)− ti j

)
y(ω,γ)

i j

subject to
n
∑

i=1
y(ω,γ)

i j ≤ D j(ω ,γ), j = 1,2, · · · ,m,

m
∑
j=1

y(ω,γ)
i j ≤ sixi, i = 1,2, · · · ,n,

y(ω,γ)
i j ≥ 0, i = 1,2, · · · ,n, j = 1,2, · · · ,m.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6)

In the VaR-FRFLM (4)-(6), the location-capacity decision (x,s) is called the first
stage decision in the theory of two-stage fuzzy random programming with VaR
criteria (see [15]), which should be made before the realizations D j(ω ,γ) and
Vi(ω ,γ) of the fuzzy random demand D j and cost Vi, respectively, are observed,
where the scenario (ω ,γ) ∈ Ω × Γ . Furthermore, we note that the objective
function is
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VaR1−β (x,s) =

sup

{
λ |
∫
Ω

Cr

{
γ ∈ Γ |

n

∑
i=1

cixi −R
(

x,s,ξ (ω ,γ)
)
≥λ
}

Pr(dω)≥β
}

, (7)

for each first stage decision (x,s), hence, in order to determine the value of objective
VaR1−β (x,s) we have to solve N second stage problems (6), where N is the number
of all the scenarios (ω ,γ)∈Ω×Γ . Given (x,s), for each scenario (ω ,γ), the quality

distribution pattern
(

y(ω,γ)
i j

)
n×m

is determined by solving the second stage problem

(6) at scenario (ω ,γ). Here, the y(ω,γ)
i j for i = 1,2, · · · ,n; j = 1,2, · · · ,m are referred

to as the second stage decisions (see [15]). From the model (4)-(6), we can see

the second stage decision y(ω,γ)
i j is up to the scenario (ω ,γ) ∈ Ω ×Γ , it does not

serve as the decision to all the scenarios but is determined for the calculation of the
value of VaR1−β (x,s). So the real decision in VaR-FRFLM is the first stage decision
(x,s).

In general, the fuzzy random parameterVi and D j for i = 1,2, · · · ,n; j = 1,2, · · · ,m
are continuous fuzzy random variables which has infinite numbers of realizations,
which follows from (7) that it requires to solve infinite second stage problems (6)
to determine the objective value VaR1−β (x,s). Hence, it cannot be calculated an-
alytically. As a consequence, the VaR-FRFLM (4)-(6) within this nature cannot be
solved analytically, we will design a hybrid metaheuristic approach to this two-stage
mixed 0-1 fuzzy random programming problem.

4 Hybrid MPSO Approach

Recall that in this paper the proposed VaR-FRFLM (4)-(6) is a two-stage mixed
0-1 integer fuzzy random programming problems. We design a hybrid mechanism,
which integrates the continuous PSO (see [13, 14, 15]), binary PSO (BPSO, see [5,
7, 16, 17] ), and Approximation Algorithm to fuzzy random VaR (see [15]), to solve
the model. Several modifications are made or implemented so as to enhance the
performance of the hybrid approach:

i) We employ a phenotype-genotype mechanism (see [7, 16]) in the BPSO to
further enhance the searching capability of the binary particles.

ii) To further improve the global search in the population-based optimization, it is
desirable to consider the individual’s neighborhood which is better than considering
the individual itself. From this point of view, we introduce a Nbest-Gbest-based
update rule (the ‘Nbest’ denotes the neighborhood-best particles) by adjusting the
velocity in the direction of the personal best particles in the neighborhood and the
global best particle.
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iii) Two mutation operators are applied to the binary location particles and capac-
ity particles, respectively, to further extend the search space of the hybrid algorithm
so as to decrease the probability of its getting trapped in a local optimum.

The proposed hybrid algorithm is referred to as a hybrid modified PSO (MPSO)
algorithm, which is elaborated as follows.

4.1 Approximation to Fuzzy Random VaR

An approximation algorithm for fuzzy random VaR has been proposed in the
VaR-based two-stage fuzzy stochastic programming (see [15]), and the conver-
gence of the approximation algorithm is also proved in [15]. In this paper, we
employ the approximation algorithm to estimate the objective value VaR1−β (x,s)
for each (x,s) in our VaR-FRFLM (4)-(6). The detailed Approximation Algorithm
(Algorithms 2-3) to fuzzy random VaR can be found in [15].

4.2 Solution Representation

A real number vector (x,s) �
(
〈x1,s1〉,〈x2,s2〉, · · · ,〈xn,sn〉

)
is used as a parti-

cle pair to represent a solution (location-capacity) of the two-stage VaR-FRFLM
(4)-(6), where xp,i ∈ {0,1},0 ≤ sp,i ≤Wixi, i = 1,2, · · · ,n.

4.3 Initialization

First of all, we randomly generate the initial binary phenotype location particle xp =
(xp,1,xp,2, · · · ,xp,n) as follows:

for(i = 1; i <= n; i++)
if(rand() > 0.5) then xp,i = 1; else xp,i = 0;

(8)

where rand() is a random number coming from the uniform distribution over the in-
terval [0,1], and initialize the genotype location particle xg = xp. Then, we generate
a capacity particle s = (s1,s2, · · · ,sn) by the following method:

for(i = 1; i <= n; i++)
if(xp,i = 1) then si = rand(0,Wi); else si = 0;

(9)

where rand(a,b) is a uniformly distributed random number over the interval [a,b].
Repeat the above process Psize times, we get Psize initial binary phenotype and geno-
type location particles xp,1,xp,2, · · · ,xp,Psize ;xg,1,xg,2, · · · ,xg,Psize , and Psize capacity
particles s1,s2, · · · ,sPsize , respectively.

4.4 Evaluation by Approximation Algorithm to VaR

Denote Fit(·) the fitness function, and let the fitness of each decision (x,s) be the
minus of the Value-at-Risk, i.e.,
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Fit(x,s) = −VaR1−β (x,s).

Therefore, the particles of smaller objective values are evaluated with higher fit-
ness. For each (x,s), the fitness value Fit(x,s) is calculated by the approximation
algorithm mentioned in Subsection 4.1.

4.5 Update Process

4.5.1 Update of Genotype-Location and Capacity Particles

In the update process, we first need to determine the global best particle pair
(xGbest ,sGbest) (with the highest fitness), where the xGbest is the best phenotype loca-
tion particle so far; and for each (xp,k,sk), find the (xPbest,k,sPbest,k) with the highest
previous fitness, where k = 1,2, · · · ,Psize. Then, for each k, we determine the veloc-
ity vector pair (vx,k,vs,k) through the following Nbest-Gbest-based update formula:

vx,k = W ∗ vx,k + c1 ∗ dN(xp,k)+ c2 ∗ rand()∗ (xGbest − xp,k
)
, (10)

vs,k = W ∗ vs,k + c1 ∗ dN(sk)+ c2 ∗ rand()∗ (sGbest − sk) . (11)

In the above formula, dN(xp,k),k = 1,2, · · · ,Psize are the average distance from xp,k

to the best positions in its neighborhood, which are defined as

dN(xp,1) =
2

∑
j=1

rand()∗
(

xPbest, j − xp,1

2

)
, (12)

dN(xp,k) =
k+1

∑
j=k−1

rand()∗
(

xPbest, j − xp,k

3

)
,k = 2,3, · · · ,Psize −1, (13)

dN
(
xp,Psize

)
=

Psize

∑
j=Psize−1

rand()∗
(

xPbest, j − xp,Psize

2

)
, (14)

respectively, and the dN(sk),k = 1,2, · · · ,Psize can be given similarly. Here, c1 and
c2 are learning rates, to well adjust the convergence of the particles, we employ the
time-varying learning rates (see [14]) as follows:

c1 = 2 ∗ Gmax −Gn

Gmax
+ 1, and c2 = 2 ∗ Gn

Gmax
+ 1, (15)

where Gmax and Gn are the indexes of the maximum and current generations,
respectively. W is the inertia weight which is set by the following expression [3]:

W =
2

|2−φ−
√
φ2 −4φ | ,

where φ = c1 + c2.
Next, each genotype location particle xg,k and capacity particle sk are updated by

the following operations
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xg,k = xg,k + vx,k (16)

sk = sk + vs,k (17)

respectively.

4.5.2 Update of Phenotype-Location Particles and Re-update of Capacity
Particles

All the phenotype location particles xp,k,k = 1,2, · · · ,Psize are updated according to
the following rule [7]:

for(i = 1; i <= n; i++)
if(rand() < S(xg,ki)) then xp,ki = 1;else xp,ki = 0;

(18)

where xg,ki and xp,ki are the components of the vectors xg,k and xp,k, respectively,
and S(·) is a sigmoid function with S(x) = 1/1 + e−x. Furthermore, we re-update
the capacity particles sk with the following constraint:

for(i = 1; i <= n; i++)
{ if(xp,ki = 0) then ski = 0;

else
if(ski = 0) then ski = rand(0,Wi);}

(19)

where ski is a component of capacity particle sk, for k = 1,2, · · · ,Psize.
Making use of formulas (10)-(19), we yield a new generation of phenotype-

location and capacity particle pairs
(

x′p,1,s
′
1

)
,
(

x′p,2,s
′
2

)
, · · · ,

(
x′p,Psize

,s′Psize

)
.

4.5.3 Mutation

We predetermine 2 parameters Pm,L,Pm,C ∈ (0,1) representing the probability of mu-
tation for the location and capacity particles, respectively. The following mutation
operation is applied to all velocity vectors of location particles after the update (16)
of the genotype location particles:

for(k = 1;k <= Psize;k ++)
if(rand() < Pm,L) then vx,k = −vx,k;

(20)

On the other hand, the mutation of capacity particles is implemented following
the update operation (19). For each capacity particle sk = (sk1,sk2, · · · ,skn),k =
1,2, · · · ,Psize, if rand() < Pm,C, then we generate a number Nm between 1 & n, and
mutate the capacity particle as follows

for(i = 1; i <= Nm; i++)
if(ski > 0) then ski = rand(0,Wi).

(21)
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4.6 Hybrid Algorithm Procedure

The hybrid MPSO algorithm to VaR-FRFLM (4)-(6) can be summarized as
follows.

(Hybrid MPSO Algorithm)

Step 1. Initialize a population of phenotype-genotype location particles xp,k,xg,k , and ca-
pacity particles sk, for k = 1,2, · · · ,Psize, by using (8)-(9).

Step 2. Calculate the fitness Fit(xp,s) for all particles through the Approximation Algo-
rithm to VaR, and evaluate each particle pair according to the fitness;

Step 3. Determine the dN(xp) and dN(s) for each phenotype location particle xp and ca-
pacity particle s, and find the global best particles xGbest and sGbestfor the population;

Step 4. Update all the genotype location and capacity particles by formulas (10)-(17);
Step 5. Run mutation operator (20) to each location velocity with probability Pm,L.
Step 6. Update each phenotype location particle by (18), and re-update each capacity par-

ticle with (19).
Step 7. Run mutation operator (21) to each capacity particle with probability Pm,C.
Step 8. Repeat Step 2 to Step 7 for a given number of generations;
Step 9. Return the particle pair (xGbest ,sGbest) as the optimal solution to the VaR-

FRFLM (4)-(6), and VaR1−β (xGbest ,sGbest) = −Fit(xGbest ,sGbest) the corresponding op-
timal value.

5 Numerical Experiments and Comparison

We consider a firm which plans to open new facilities in 10 potential sites, the ca-
pacity limits Wi, fixed costs ci and fuzzy random operating costs Vi of the sites
i, i = 1,2, · · · ,10 are given in Table 1. We suppose that there are 5 customers whose
fuzzy random demands D j, j = 1,2, · · · ,5 are given in Table 2, where U (a,b)

Table 1 Capacity limits, fixed and variable costs

Facility site i Capacity limit Wi Fixed cost ci Variable cost Vi Parameter Yi

1 250 8
(
7+Y1,9+Y1,10+Y1

)
U (1,2)

2 220 15
(
6+Y2,8+Y2,10+Y2

)
U (2,3)

3 300 16
(
8+Y3,10+Y3,11+Y3

)
U (1,2)

4 290 12
(
12+Y4,13+Y4,15+Y4

)
U (0,1)

5 260 6
(
13+Y5,15+Y5,16+Y5

)
U (1,2)

6 250 12
(
8+Y6,9+Y6,10+Y6

)
U (0,2)

7 320 17
(
6+Y7,7+Y7,8+Y7

)
U (2,4)

8 330 8
(
8+Y8,10+Y8,12+Y8

)
U (2,3)

9 280 9
(
13+Y9,15+Y9,16+Y9

)
U (3,4)

10 370 12
(
10+Y10,11+Y10,12+Y10

)
U (1,2)
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Table 2 Fuzzy random demands

Customer j t j Demand D j Parameter Z j

1 24
(
20+Z1,22+Z1,23+Z1

)
U (1,2)

2 22
(
18+Z2,20+Z2,21+Z2

)
U (1,3)

3 28
(
16+Z3,18+Z3,19+Z3

)
U (2,4)

4 26
(
22+Z4,23+Z4,24+Z4

)
U (2,3)

5 19
(
20+Z5,22+Z5,23+Z5

)
U (3,4)

Table 3 Results of hybrid MPSO algorithm with Different Parameters

System Parameters Results

No. 1−β Pm,L Pm,C Optimal solution Objective Error(%)

1 0.90 0.2 0.4
(〈0,0〉,〈1,220.0〉,〈0,0〉,〈1,67.4〉, -285.8 0.14
〈1,185.0〉, 〈0,0〉,〈0,0〉,〈0,0〉,〈1,200.3〉,〈0,0〉)

2 0.90 0.3 0.3
(〈0,0〉,〈1,97.7〉,〈0,0〉,〈1,119.1〉, -284.0 0.77
〈1,142.3〉, 〈0,0〉,〈0,0〉,〈0,0〉,〈1,51.3〉,〈0,0〉)

3 0.90 0.4 0.2
(〈0,0〉,〈1,127.0〉,〈0,0〉,〈1,204.0〉, -283.0 1.10
〈1,182.4〉, 〈0,0〉,〈0,0〉,〈0,0〉,〈1,234.3〉,〈0,0〉)

4 0.90 0.2 0.3
(〈0,0〉,〈1,148.8〉,〈0,0〉,〈1,95.6〉, -286.2 0.00
〈1,121.2〉, 〈0,0〉,〈0,0〉,〈0,0〉,〈1,49.5〉,〈0,0〉)

6 0.85 0.2 0.4
(〈0,0〉,〈1,92.8〉,〈0,0〉,〈1,100.9〉, -294.6 0.44
〈1,260.0〉, 〈0,0〉,〈0,0〉,〈0,0〉,〈1,247.8〉,〈0,0〉)

7 0.85 0.3 0.3
(〈0,0〉,〈1,91.7〉,〈0,0〉,〈1,46.7〉, -292.5 1.15
〈1,180.2〉, 〈0,0〉,〈0,0〉,〈0,0〉,〈1,147.4〉,〈0,0〉)

8 0.85 0.4 0.2
(〈0,0〉,〈1,111.7〉,〈0,0〉,〈1,208.8〉, -295.9 0.00
〈1,239.7〉, 〈0,0〉,〈0,0〉,〈0,0〉,〈1,177.6〉,〈0,0〉)

9 0.85 0.2 0.3
(〈0,0〉,〈1,138.4〉,〈0,0〉,〈1,175.3〉, -291.7 1.43
〈1,54.6〉, 〈0,0〉,〈0,0〉,〈0,0〉,〈1,91.8〉,〈0,0〉)

11 0.80 0.2 0.4
(〈0,0〉,〈1,172.7〉,〈0,0〉,〈1,144.0〉, -310.2 0.00
〈1,199.3〉, 〈0,0〉,〈0,0〉,〈0,0〉,〈1,105.4〉,〈0,0〉)

12 0.80 0.3 0.3
(〈0,0〉,〈1,215.7〉,〈0,0〉,〈1,167.1〉, -308.8 0.45
〈1,173.9〉, 〈0,0〉,〈0,0〉,〈0,0〉,〈1,54.6〉,〈0,0〉)

14 0.80 0.4 0.2
(〈0,0〉,〈1,49.3〉,〈0,0〉,〈1,266.0〉, -304.0 1.90
〈1,250.7〉, 〈0,0〉,〈0,0〉,〈0,0〉,〈1,241.5〉,〈0,0〉)

14 0.80 0.2 0.3
(〈0,0〉,〈1,160.3〉,〈0,0〉,〈1,183.1〉, -309.0 0.39
〈1,260.2〉, 〈0,0〉,〈0,0〉,〈0,0〉,〈1,260.0〉,〈0,0〉)
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represents a random variable with uniform distribution on [a,b], also the unit price
r j charged to each customer is also listed there. In addition, the unit transportation
costs ti j, i = 1,2, · · · ,10; j = 1,2, · · · ,5 are given by a matrix T as follows:

T =
(

ti j

)
5×10

=

⎛⎜⎜⎜⎜⎜⎜⎝

i = 1 2 3 4 5 6 7 8 9 10

j = 1 16 21 19 18 14 18 16 20 18 20
2 17 15 17 14 18 16 17 18 17 14
3 24 20 25 22 23 22 24 22 20 22
4 19 22 18 15 21 17 22 21 22 16
5 13 10 16 13 14 11 13 15 14 13

⎞⎟⎟⎟⎟⎟⎟⎠ .

The hybrid MPSO algorithm (Algorithm 1) which integrates the Approximation
Algorithm is run to solve this VaR-based fuzzy random facility location problem
with above settings. In the hybrid MPSO, we set the population size Psize = 20,
and run the hybrid algorithm (Algorithm 1) with 200 generations for different
confidence levels of 0.9, 0.85, and 0.8, respectively. The optimal location solu-
tions with different parameters is listed in Table 3, where the RelativeError =
(optimal value−ob jective value)/(optimal value) is given in the last column. It
follows from Table 3 that the relative error does not exceed 1.10%,1.43% and
1.90% for the different confidence levels 1−β = 0.9,1−β = 0.85, and 1−β =
0.8, respectively, when different parameters are selected. The performance implies
the hybrid MPSO algorithm is robust to the parameter settings when solving the
VaR-FRFLM.

6 Conclusions

This paper built a Value-at-Risk-based facility location model with variable ca-
pacity and fuzzy random demands and costs. The proposed model is inherently
a two-stage mixed 0-1 integer fuzzy random programming problem. To solve the
model, a hybrid MPSO algorithm is proposed, in which an Approximation Algo-
rithm is utilized to compute the fuzzy random VaR, a continuous Nbest-Gbest-based
PSO and a genotype-phenotype-based binary PSO vehicles are employed to deal
with the continuous capacity decisions and the binary location decisions, respec-
tively, and two mutation operators are implemented to enlarge the search space. The
numerical experiments show that the hybrid MPSO is robust to the parameter
settings.
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Double-Layered Hybrid Neural Network
Approach for Solving Mixed Integer Quadratic
Bilevel Problems

Shamshul Bahar Yaakob and Junzo Watada

Abstract. In this paper we build a double-layered hybrid neural network method to
solve mixed integer quadratic bilevel programming problems. Bilevel programming
problems arise when one optimization problem, the upper problem, is constrained
by another optimization, the lower problem. In this paper, mixed integer quadratic
bilevel programming problem is transformed into a double-layered hybrid neural
network. We propose an efficient method for solving bilevel programming prob-
lems which employs a double-layered hybrid neural network. A two-layered neural
network is formulate by comprising a Hopfield network, genetic algorithm, and a
Boltzmann machine in order to effectively and efficiently select the limited number
of units from those available. The Hopfield network and genetic algorithm are em-
ployed in the upper layer to select the limited number of units, and the Boltzmann
machine is employed in the lower layer to decide the optimal solution/units from the
limited number of units selected by the upper layer.The proposed method leads the
mixed integer quadratic bilevel programming problem to a global optimal solution.
To illustrate this approach, several numerical examples are solved and compared.

1 Introduction

Bilevel programming has increasingly been addressed in the literature, both from the
theoretical and computational points of view [1, 2]. This bilevel programming model
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has been widely applied to decentralized planning problems involving a decision
progress with a hierarchical organization. It is characterized by the existence of two
optimization problems in which the constraint region of the upper-level problem is
implicitly determined by another optimization problem. The bilevel programming
problem is hard to solve. In fact, the problem has been proved to be NP-hard [3].

The organization explicitly assigns each agent a unique objective and a set of de-
cision variables as well as a set of common constraints that affect all the agents [4].
The properties of bilevel programming problems are summarized as follows:

i. an interactive decision-making unit exist within a predominantly hierarchical
structure;

ii. the execution of decisions is sequential, from top level to bottom level;
iii. each unit independently maximizes its own net benefits, but is affected by

actions of other units through externalities; and
iv. the external effect on a decision maker’s (DM’s) problem can be reflected in

both the objective function and the set of feasible decision space.

The basic concept of the bilevel programming method is that an upper-level DM sets
his or her goal and/or decisions and then asks each subordinate level of the organiza-
tion for their optima which are calculated in isolation. Lower-level DM’s decisions
are then submitted and modified by the upper-level DM with consideration of the
overall benefits for the organization. The process is continued until a satisfactory
solution is reached [5]. This decision-making process is extremely useful to such
decentralized systems as agriculture, government policy, economic systems finance,
power systems, transportation, and network designs, and is particularly suitable for
conflict resolution [6, 7, 8].

A conventional solution approach to the bilevel programming problem is to trans-
form the original two level problems into a single level one by replacing the lower
level optimization problem with its Kuhn-Tucker optimization conditions. Branch-
and-bound method [9, 10, 11], descent algorithms [12, 13], and evolutionary method
[14, 15, 16] have been proposed for solving the bilevel programming problems
based on this reformulation. Compared with classical optimization approaches, the
prominent advantage of neural computing is that it can converge to the equilibrium
point (optimal solutin) rapidly, and this advantage has been attracting researches to
solve bilevel programming problem using neural network approach. Shih [17] and
Lan [18] recently proposed neural network for solving the linear bilevel program-
ming problem. But it deserves pointing out that there are no reports on solving mixed
integer quadratic bilevel programming problem using neural network approach.

In this study, we apply structural learning to a Boltzmann machine (BM). The
Hopfield network is an interconnected neural network originally proposed by J.J.
Hopfield in 1982 [19]. Now the Hopfield neural network used to easily terminate
at a local minimum of the describing energy function. The BM [20] is likewise an
interconnected neural network, which improves Hopfield network performance by
using probabilities to update both the state of a neuron and its energy function, such
that the latter rarely falls into a local minimum.
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We formulate a two-layered neural network comprising a Hopfield network, ge-
netic algorithm, and a BM in order to effectively and efficiently select a limited
number of units from those available. The Hopfield network and genetic algorithm
are employed in the upper layer to select the limited number of units, and the BM
is employed in the lower layer to decide the optimal solution/units from the lim-
ited number of units selected by the upper layer. The double-layered hybrid neural
network, whose two layers connect corresponding units in the upper and lower ma-
chines, constitutes an effective problem solving method.

The remainder of the paper is organized as follows. Section 2 contains an in-
troduction to bilevel programming problems. Sections 3 and 4 explain the double-
layered BM for the solving mixed integer quadratic programming problem. Results
of numerical examples are reported in Section 5. Finally, Section 6 concludes the
paper.

2 Bilevel Programming Problems

Bilevel programming is a case of multilevel mathematical programming that is de-
fined to solve decentralized planning problems with multiple decision makers in a
multilevel or hierarchical organization [14]. Among different levels, decision mak-
ers play a game called the Stackelberg game [15], in which the follower responds
to any decision made by the leader but is not controlled directly by the leader. Thus
the leader is able to adjust the performance of the overall multilevel system indi-
rectly by his decisions. Bilevel programming involves two optimization problems
where the constraint region of the first-level problem is implicitly determined by
the other second-level optimization problem. Bilevel programming problem, where
a top level DM has control over the vector x1 while a bottom level DM controls
the vector x2. Letting the performance functions of F(x1,x2) and f (x1,x2) for the
two planners be linear and bounded, then the bilevel programming problem can be
represented as

max
x1

F(x1,x2) = c11x1 + c12x2 (upper level) (1)

where x2 solves

max
x2

f (x1,x2) = c21x1 + c22x2 (lower level)

subject to (x1,x2) ∈ X = {(x1,x2) | A1x1 +A2x2 ≤ b,x1,x2 ≥ 0}, where c11,c12,c21,
c22 and b are vectors, A1 and A2 are matrices, and X represents the two-dimensional
constraint region.

Compared with multi-objective programming, bilevel programming is able to
overcome the aforementioned limitations. A bilevel model provides an interactive
platform for both the upper-and-lower level problems. The objectives of both levels
can also reach their utmost simultaneously. However, bilevel programming prob-
lems are generally difficult to solve because the lower level actually serves as a
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nonlinear constraint and the whole problem is intrinsically a non-convex program-
ming problem. Bilevel programming is workable only if efficient algorithm are
available for large actual cases. A number of attempts have been made to develop
efficient algorithms for the bilevel programming problem, such as the iterative op-
timization assignment algorithm by Asakura and Sasaki [20] and the sensitivity-
analysis-based (SAB) algorithm by Yanf et. al [21]. In this study, a neural network
(NN)-based method is employed to resolve the bilevel programming problems.

3 Hopfield and Boltzmann Machine

The Hopfield network is a fully connected, recurrent neural network, which uses
a form of the generalized Hebb rule to store Boolean vectors in its memory. Each
unit(neuron)-n has a state value denoted by sn, In any situation, combining the state
of all units leads to a global state for the network. For example, let us consider
a network comprising three units s1,s2 and s3. The global state at time step t is
denoted by a vector s, whose elements are s1,s2 and s3. When a user presents the
network with an input, the network will retrieve the item in its memory which most
closely resembles that particular input.

In general, the Hopfield network operates by taking an input, evaluating the out-
put (in other words the global status s). This global state is the input, providing
it works correctly, together with other prototypes, which are stored in the weight
matrix by Hebb’s postulate, formulated as

wi j =
1
N∑p

XipXjp (2)

where, p = 1 · · ·N,wi j is the weight of the connection from neuron j to neuron i,N
is the dimension of the vector, p the number of training patterns, and Xip the pth
input for the neuron i. In other words, using Hebb’s postulate, we create the weight
matrix, which stores the entire prototype that we want the network to remember.
Because of these features, it is sometimes referred to as an ”Auto-associative Mem-
ory”. However, it is worth noting that the maximum number of prototypes that a
Hopfield network can store is only 0.15 times the total number of units in the net-
work [19].

One application of the Hopfield network is to use it as an energy minimizer. This
application comes to life because of the ability of Hopfield networks to minimize an
energy function during its operation. The simplest form of energy function is given
by the following:

E =
1
2

n

∑
j=1

n

∑
i=1

wi jsis j (3)

Here wi j denotes the strength of the influence of neuron j on neuron i. The wi j are
created using Hebb’s postulate as mentioned above, and they belong to a symmetric
matrix with the main diagonal line containing only zeroes (which means there are
no self-feedback connections). Because of this useful property, the Hopfield network
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can also be used to solve combinatorial optimization problems. However, Hopfield
networks suffer from a major disadvantage in that they sometimes converge to a
local rather than to the global minima, which usually happens when dealing with
noisy inputs. In order to straigten out this problem, a modification was made to the
BM.

The BM is an interconnected neural network, and is a modification of the Hop-
field network which helps it to escape from local minima. The main idea is to em-
ploy simulated annealing, a technique derived from the metallurgy industry. It works
by first relaxing all the unites (in other words, causing them to freely move by ap-
plying sufficient ”heat”). After that, the temperature is gradually decreased. During
this process, the unites will move at lower and lower speed until they become fixed
and form a new structure as the temperature decreases.

Simulated annealing is an optimization technique. In Hopfield networks, local
minima are used in a positive way, but in optimization problems, local minima get
in the way; one must have a way of escaping from them. When optimizing a very
large and complex system (i.e., a system with many degrees-of-freedom), instead
of ”always” going downhill, we try to go downhill ”most of the time”. Initially, the
probability of not going downhill should be relatively high (”high temperature”),
but as time (iterations) go on, this probability should decrease (with the temperature
decreasing according to an annealing schedule).

Now the convergence time of a BM is usually extremely long. According to the
”annealing schedule”, if T0 is very large, then a strategy is pursued whereby neu-
rons are flipping on and off at random, totally ignoring incoming information. If
T0 is close to zero, the network behaves ”deterministically”, i.e. like a network of
McCulloch-Pitts neurons.

Although the way in which a BM works is similar to a Hopfield network, we
cannot use Hebb’s postulate to create the weight matrix representing the correlations
between units. Instead, we have to use a training (learning) algorithm - one based
on the Metropolis algorithm.

The BM can be seen as a stochastic, generative counterpart of the Hopfield net-
work. In the BM, probability rules are employed to update the state of neurons and
the energy function as follows:

If Vi(t +1) is the output of neuron i, in the subsequent time iteration t +1, Vi(t +1)
is 1 with probability P, and Vi(t + 1) is 0 with probability 1−P, where

P[Vi(t + 1)] = f

(
u(t)
T

)
. (4)

Here, f (·) is a sigmoid function, T is a network temperature, and ui(t) is the total
input to neuron i shown in equation (4), which is given by

ui(t) = ∑
j=1

wi jVi(t)+θi (5)
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where, wi j is the weight between neurons i and j, θi is the threshold of neuron i, and
Vi is the state of unit i. The energy function, E , proposed by Hopfield, is written as:

E(t) =
1
2 ∑i, j=1

wi jVi(t)Vj(t)−
n

∑
i=1

θiVi(t) (6)

Hopfield has shown that this energy function simply decreases with learning [19].
There is the possibility that this energy function converges to a local minimum.
However, in the case of the BM, the energy function can increase with minute prob-
ability. Therefore, the energy function will be unlikely to fall into a local minimum.
Thus, the combination of Hopfield network and BM offers a solution to overcome
the problem of finding the optimal number of units in the neural network. Accord-
ingly, this study proposes a double-layered BM which we discuss in detail in the
Section 4.

4 Double-Layered Hybrid Neural Network

Conventionally, the number of units is decided on the basis of expert experience.
In order to solve this problem, we formulate a double-layered neural network con-
sisting of both Hopfield and Boltzmann neural networks and hybrid with genetic
algorithm at the upper layer. This double-layered model can be employed to select
are units from those available. The double-layered model has two layers - referred
to as the upper and lower layers, respectively. The functions of the layers are as
follows:

1. Upper layer (Hopfield neural network and genetic algorithm) is used to select
are units from the total. This hybrid layer is called a “supervising layer”.

2. Lower layer (BM) is used to decide the optimal units from the selected units
in the upper layer. This Boltzmann layer is called an “executing layer”.

This double-layered hybrid neural network is a new type of neural network model
which deletes units (neurons) in the lower layer that are not selected in the upper
layer during execution. The lower layer is then restructured using the selected units.
Because of this feature, the double-layered hybrid neural network converges more
efficiently than a conventional BM. This is an efficient method for solving a selec-
tion problem by transforming its objective function into the energy function, since
the Hopfield and Boltzmann networks converge at the minimum point of the energy
function.

The double-layered hybrid neural network just described converts the objective
function into energy functions of two components - namely the upper layer (Hop-
field network and genetic algorithm) Eu and the lower layer (BM) El . The double-
layered BM is tuned such that the upper layer influences the lower layer with prob-
ability 0.9, and the lower layer influences the upper layer with probability 0.1. The
main reason for selecting these probabilities is based on trial and error, it is found
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that the selected probabilities provide the best solution to our proposed method.
Thus the double-layered hybrid neural network is iterated with

Yi = 0.9yi + 0.1xi

for the upper layer, and
Xi = xi(0.9yi + 0.1)

for the lower layer. Here Yi in the upper layer is a value transferred to the corre-
sponding nodes in the upper layer, Xi in the lower layer is a value transferred to
corresponding nodes in the lower layer, yi is the value of the present state at node
i in the upper layer, and xi is the value of the present state at node i in the lower
layer, respectively. Xi means that the value is influenced to the tune of 90% from the
value of node i in the upper layer. When Yi is 1, Xi = xi; otherwise, when yi is 0,
10% of the value of xi is transferred to the other nodes. On the other hand, Yi has a
10% influence on the lower layer. Therefore, even if the upper layer converges to a
local minimum, the disturbance from the lower layer makes the upper layer escape
from this local minimum. When the local minima possess a large barrier, dynamic
behavior may be used (by changing 0.9 and 0.1 dynamically) - this phenomenon is
similar to simulated annealing. The proposed algorithm of the double-layered hy-
brid neural network is as follow, and is shown in Figure 1 where (a) represents the
processing stage of the algorithm and (b) illustrates the final stage of the proposed
method:

Lower level

Upper level

(a) (b)

Lower level

Upper level

(a) (b)

Fig. 1 Double-layered hybrid neural network

5 Numerical Examples

In this section we will present two examples provided in [22] to illustrate the va-
lidity of the double-layered BM approach for the mixed integer quadratic bilevel
programming.
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(Proposed Algorithm)

Step 1. Set each parameter to its initial value.
Step 2. Input Ku (weight for upper layer) and Kl (weight for lower layer) .
Step 3. Execute the upper layer.
Step 4. If the output value of a unit in the upper layer is 1, add some amount of this value

to the corresponding unit in the lower layer. Execute the lower layer.
Step 5. After executing the lower layer at a constant frequency, decrease the temperature.
Step 6. If the output value is sufficiently large, add a certain amount of the value to the

corresponding unit in the upper layer.
Step 7. Iterate from Step 3 to Step 6 until the temperature reaches the restructuring tem-

perature.
Step 8. Restructure the lower layer using selected units in the upper layer
Step 9. Execute the lower layer until reaching the termination condition.

Example 5.1.

min (x1 −30)2 +(x2 −20)2 −20y1 + 20y2

subject to x1 + 2x2 ≤ 30

x1 + x2 ≥ 30

0 ≤ x1 ≤ 15

0 ≤ x2 ≤ 15

min (x1 − y1)2 +(x2 − y2)2

subject to 0 ≤ y1 ≤ 15

0 ≤ y2 ≤ 15.

Example 5.2.

min y2
1 + y2

2 − x2 −4x

subject to 0 ≤ x ≤ 2

min y2
1 + 0.5y2

2 + y1y2 +(1−3x)y1 +(1 + x)y2

subject to 2y1 + y2 ≤ 1

y1 ≥ 0

y2 ≥ 0.

Table 1 shows the comparison results by using the proposed method in this paper
and the results in the references. F and f are the objective function value of the
upper-level and lower-level programming problem, respectively.
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Table 1 Comparison of optimal solutions

Example No. Proposed Method Reference

1 (x1,x2,y1,y2) = (15,7.511,10,7.514) (15,7.501,10,7.501)
F = 330.821 331.262
f = 24 25

2 (x,y1,y2) = (0.8394,0.7521,0) (0.8438,0.7657,0)
F = −2.1091 −2.0769
f = −0.5742 −0.5863

6 Conclusions

A new proposal was presented to solve a mixed integer quadratic bilevel program-
ming problems. We proposed the double-layered hybrid neural network that in-
cluded upper layer which employs the genetic algorithm and Hopfield network and
lower layer which employs BM. The resultant numerical outcomes of the method
proposed in this paper were also compared to the results obtained in the refer-
ences [22]. The proposed double-layered hybrid neural network proved to be very
efficient from the computational point of view and quality of solutions. By using
the same token, we could conclude that proposed method is capable to solve bilevel
programming problem. Furthermore, the approach could also be applied to solve a
complicated mixed integer quadratic bilevel programming problems.
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Aggregation of Quasiconcave Functions∗

Jaroslav Ramı́k and Milan Vlach

Abstract. Aggregation of information is important in many fields, ranging from
engineering and economics to artificial intelligence and decision making processes.
Aggregation refers to the process of combining a number of values into a single
value so that the final result of aggregation takes into account, in a given form, all
individual values under consideration. In decision making processes the values to be
aggregated are typically preference or satisfaction degrees. This paper could serve
as a theoretical background for applications mainly in the area of decision analysis,
decision making or decision support.

1 Introduction

Aggregation refers to the process of combining values into a single value so that
the final result of aggregation takes into account, in a given form, all individual val-
ues under consideration. In decision making, values to be aggregated are typically
preference or satisfaction degrees. A preference degree, for example v(A,B), tells
to what extent an alternative A is preferred to an alternative B. This way, however,
will not be followed here. In this paper the values are understood and interpreted
as satisfaction degrees which express to what extent a given alternative is satisfac-
tory with respect to a given criterion - a given real-valued function, or as a kind of
distance to a prototype which may represent the ideal alternative for the decision
maker. Depending on concrete applications, values to be aggregated can be also in-
terpreted as degrees of confidence in the fact that a given alternative is true, or as
experts’ opinions, similarity degrees, etc.; see, for example, [1].
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Once some values on a scale (for example, on the unit interval [0,1]) are given,
we can aggregate them and obtain a new value defined on the same scale. This can
be done in many different ways according to what is expected from such mappings.
They are usually called aggregation operators, and they can be roughly divided into
three classes, each possessing very distinct behavior and semantics, see [5].

Operators of the first class, conjunctive type operators, combine values as if they
were related by a logical “and” operation. In other words, the result of combination
is high if all individual values are high. Triangular norms are typical examples of
conjunctive type aggregations.

On the other hand, disjunctive type operators combine values as an “or” oper-
ation, so that the result of aggregation is high if some of the values are high. The
most common examples of disjunctive type operators are triangular conorms.

Between conjunctive and disjunctive type operators, there is room for the third
class of aggregation operators, which are often called averaging type operators.
They are usually located between minimum and maximum, which are the bounds
of the t-norms and t-conorms. Averaging type operators have the property that low
values of some criteria can be compensated by high values of the other criteria
functions.

There are of course other operators which do not fit into any of these classes.

2 Definition and Basic Properties

When aggregating data in applications, we assign uniquely to each tuple of elements
a real number. For this purpose, both t-norms and t-conorms are rather special oper-
ators on the unit interval [0,1].

Definition 2.1. A function T : [0,1]2 → [0,1] that is commutative, associative,
nondecreasing in every variable and satisfies the boundary condition T (a,1) =
a for all a ∈ [0,1], is called the triangular norm or t-norm. The most popular t-
norms are defined as follows:

TM(a,b) = min{a,b}, (1)

TP(a,b) = a.b, (2)

TL(a,b) = max{0,a + b−1}. (3)

TD(a,b) =

{
min{a,b} if max{a,b} = 1,

0 otherwise.
(4)

They are called Minimum t-norm TM , Product t-norm TP, Lukasiewicz t-norm TL

and Drastic product TD.

A class of functions closely related to the class of t-norms is the class of functions
S : [0,1]2 → [0,1] defined as follows.

Definition 2.2. A function S : [0,1]2 → [0,1] that is commutative, associative, non-
decreasing in every variable and satisfies the boundary condition S(a,0) = a for all
a ∈ [0,1], is called the triangular conorm or t-conorm.



Aggregation of Quasiconcave Functions 235

The functions SM, SP, SL and SD defined for a,b ∈ [0,1] by

SM(a,b) = max{a,b}, (5)

SP(a,b) = a + b−a ·b, (6)

SL(a,b) = min{1,a + b}, (7)

SD(a,b) =

{
max{a,b} if min{a,b}= 0

1 otherwise.
(8)

are typical t-conorms. Often, SM, SP, SL and SD are called the maximum, probabilis-
tic sum, bounded sum and drastic sum, respectively.

It can easily be verified that for each t-norm T , the function T ∗ : [0,1]2 → [0,1]
defined for all a,b ∈ [0,1] by T ∗(a,b) = 1 − T (1 − a,1− b) is a t-conorm. The
converse statement is also true. Namely, if S is a t-conorm, then the function S∗ :
[0,1]2 → [0,1] defined for all a,b ∈ [0,1] by S∗(a,b) = 1− S(1− a,1− b) is a t-
norm. The t-conorm T ∗ and t-norm S∗ are called dual to the t-norm T and t-conorm
S, respectively. It can easily be verified that

T ∗
M = SM, T ∗

P = SP, T ∗
L = SL, T ∗

D = SD. (9)

Using the commutativity and associativity of t-norms, we extend them (and analo-
gously t-conorms) to more than two arguments by the following formula

T n−1(x1,x2, . . . ,xn) = T (T n−2(x1,x2, . . . ,xn−1),xn), (10)

where T 1(x1,x2) = T (x1,x2).
A triangular norm T is said to be strict if it is continuous and strictly monotone.

It is said to be Archimedian if for all x,y ∈ (0,1) there exists a positive integer n
such that T n−1(x, . . . ,x) < y. Notice that if T is strict, then T is Archimedian.

There exist other useful operations related to or generalizing t-norms or t-
conorms, either on the unit interval or on an arbitrary closed subinterval [a,b] of
the extended real line. Because of the natural correspondence between [a,b] and
[0,1], each result for operations on the interval [a,b] can be transformed into a result
for operators on [0,1], and vice versa. Therefore, the discussion about aggregation
operators on [0,1] is sufficiently general, at least from the theoretical point of view.

Definition 2.3. An aggregation operator A is a sequence {An}∞n=1 of map-
pings (called aggregating mappings) An : [0,1]n → [0,1] satisfying the following
properties:

(i) A1(x) = x for each x ∈ [0,1];
(ii) An(x1,x2, . . . ,xn)≤An(y1,y2, . . . ,yn) whenever xi ≤ yi for every i = 1,2, . . . ,n,

and every n = 2,3, . . . ;
(iii) An(0,0, . . . ,0) = 0 and An(1,1, . . . ,1) = 1 for every n = 2,3, . . . .

Condition (i) means that A1 is an identity unary operation, condition (ii) says that ag-
gregating mapping An is nondecreasing in all of its arguments xi, and condition (iii)
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represents natural boundary requirements. Some other mathematical properties can
be requested from an aggregation operators, we list some of them in the following
definition.

Definition 2.4. Let A = {An}∞n=1 be an aggregation operator.

(i) The aggregation operator A is called commutative, idempotent, nilpotent,
strictly monotone or continuous if, for each n ≥ 2, the aggregating mapping An

is commutative, idempotent, nilpotent, strictly monotone or continuous, respec-
tively. The aggregation operator A is called strict if An is strictly monotone and
continuous for all n ≥ 2.

(ii) The aggregation operator A is called associative if, for all m,n ≥ 2 and all
tuples (x1,x2, . . . ,xm) ∈ [0,1]m and (y1,y2, . . . ,yn) ∈ [0,1]n, we have

Am+n(x1,x2, . . . ,xm,y1,y2, . . . ,yn)
= A2(Am(x1,x2, . . . ,xm),An(y1,y2, . . . ,yn)).

(iii) The aggregation operator A is called decomposable if, for all m,n ≥ 2 and all
tuples (x1, . . . ,xm) ∈ [0,1]m and (y1, . . . ,yn) ∈ [0,1]n, we have

Am+n(x1, . . . ,xm,y1, . . . ,yn)
= Am+n(Am(x1, . . . ,xm), . . . ,Am(x1, . . . ,xm),y1, . . . ,yn)

(11)

where, in the right side, the term Am(x1,x2, . . . ,xm) occurs m times.
(iv) The aggregation operator A is called compensative if, for n ≥ 2 and for all

tuples (x1,x2, . . . ,xn) ∈ [0,1]n, the following inequalities hold:

TM(x1,x2, . . . ,xn) ≤ An(x1,x2, . . . ,xn) ≤ SM(x1,x2, . . . ,xn). (12)

We have already seen that the commutativity and associativity make it possible to
extend t-norms and t-conorms to n-ary operations, with n > 2. Therefore, a sequence
{T n}∞n=1, where T 1 is the identity mapping, defines an aggregation operator, and T n

are its aggregating mappings. For the sake of simplicity, when there is no danger of a
confusion, we call this aggregation operator also a t-norm and denote it by the orig-
inal symbol T . In other words, when speaking about a t-norm T or t-conorm S as an
aggregation operator, we always have in mind the corresponding sequence {T n}∞n=1
or {Sn}∞n=1, respectively. Recall also that, for the same reason, we shall sometimes
omit the index n in the aggregating mappings An. Considering this convention in the
following propositions, we obtain some characterizations of the previously defined
properties. Each t-norm and each t-conorm is a commutative and associative aggre-
gation operator. The minimum TM is the only idempotent t-norm, but it is not strict.
The product norm TP is strict, but not nilpotent. Lukasiewicz t-norm TL is both strict
and nilpotent. The drastic product TD is nilpotent, but not continuous, see [3].

Analogous properties hold for t-conorms SM, SP, SL and SD. A transformation of
an aggregation operator by means of a monotone bijection from [0,1] to [0,1] yields
again an aggregation operator. We have the following proposition the proof of which
is elementary.
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Proposition 2.1. Let A = {An}∞n=1 be an aggregation operator and let ψ : [0,1] →
[0,1] be a strictly increasing or strictly decreasing bijection. Then Aψ = {Aψn }∞n=1
defined by Aψn (x1,x2, . . . ,xn) = ψ−1(An(ψ(x1), . . . ,ψ(xn))) for all n = 1,2, . . . and
all tuples (x1,x2, . . . ,xn) ∈ [0,1]n, is an aggregation operator.

Continuity of aggregation operators play an important role in applications. The fol-
lowing proposition shows that for continuity of commutative aggregation operators
it is sufficient that they are continuous in a single variable only. The proof of the
following two propositions can be found in [4].

Proposition 2.2. Let A = {An}∞n=1 be a commutative aggregation operator. The op-
erator A is continuous if and only if, for each n = 1,2, . . . , the mapping An is contin-
uous in its first variable x1; that is, if, for each n and x2, . . . ,xn ∈ [0,1], the function
A(·,x2, . . . ,xn) of single variable is continuous on [0,1].

Notice that a completely analogous proposition holds for the upper and lower semi-
continuity. Also notice that, by monotonicity of an aggregation operator A, the left
(right) continuity of A is equivalent to the LSC (USC) of A, and that the left and
right continuity mean exactly the interchangeability of the supremum and infimum,
respectively, with the application of the aggregation operator.

3 Averaging Aggregation Operators

Between conjunctive and disjunctive type operators, t-norms and t-conorms, there
is a room for another class of aggregation operators of averaging type. They are
located between minimum and maximum satisfying inequalities (12). Averaging
type operators have the property that low values of some criteria can be compensated
by high values of the other criteria.

Perhaps, even more popular aggregation operators than t-norms and t-conorms
are the means: the arithmetic mean M = {Mn}∞n=1, the geometric mean G =
{Gn}∞n=1, the harmonic mean H = {Hn}∞n=1 and the root-power mean M(α) =
{M(α)

n }∞n=1, given by, respectively,

Mn(x1,x2, . . . ,xn) =
1
n

n

∑
i=1

xi, (13)

Gn(x1,x2, . . . ,xn) =

(
n

∏
i=1

xi

)1/n

, (14)

Hn(x1,x2, . . . ,xn) =
n

n

∑
i=1

1
xi

, (15)

M(α)
n (x1,x2, . . . ,xn) =

(
1
n

n

∑
i=1

xαi

)1/α

, α �= 0. (16)
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All these operators are commutative, idempotent and continuous, none of them is
associative. The root-power mean operators M(α), α ≥ 0, are strict, whereas G and
H are not strict. Notice that M = M(1) and H = M(−1).

The next proposition says that the operators (13) - (16) are all compensative. It
says even more, namely, that the class of idempotent aggregation operators is exactly
the same as the class of compensative ones. The proof of this result is elementary
and can be found in [2].

Proposition 3.1. An aggregation operator is idempotent if and only if it is
compensative.

The following proposition clarifies the relationships between some other properties
introduced in Definition 2.4. The proof can be found also in [2].

Proposition 3.2. Let A = {An}∞n=1 be a continuous and commutative aggregation
operator. Then A is compensative, strict and decomposable, if and only if for all
x1,x2, . . . ,xn ∈ [0,1]

An(x1,x2, . . . ,xn) = ψ−1

(
1
n

n

∑
i=1

ψ(xi)

)
, (17)

with a continuous strictly monotone function ψ : [0,1] → [0,1].

The aggregation operator (17) is called the generalized mean. It covers a wide
range of popular means including those of (13) - (16). The minimum TM and the
maximum SM are the only associative and decomposable compensative aggregation
operators.

4 Concave, Quasiconcave and Starshaped Functions

In this section and the following sections we shall deal with our main problem,
that is, the aggregation of generalized quasiconcave functions. First, we will look
for sufficient conditions that secure some properties of quasiconcavity. For a more
detailed treatment of concavity and some of its generalizations, see [4].

The concepts of concavity, convexity, quasiconcavity, quasiconvexity and quasi-
monotonicity of a function f : Rn → R can be introduced in several ways. The
following definitions will be most suitable for our purpose.

Definition 4.1. Let X be a nonempty subset of Rn. A function f : X → R is called

(i) concave on X (CA) if

f (λx +(1−λ )y)≥ λ f (x)+ (1−λ ) f (y) (18)

for every x,y ∈ X and every λ ∈ (0,1) with λx +(1−λ )y∈ X
(resp. convex on X if − f is concave on X);
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(ii) strictly concave on X if

f (λx +(1−λ )y) > λ f (x)+ (1−λ ) f (y) (19)

for every x,y ∈ X , x �= y and every λ ∈ (0,1) with λx +(1−λ )y∈ X
(resp. strictly convex on X if − f is strictly concave on X);

(iii) semistrictly concave on X if f is concave on X and (19) holds for every
x,y ∈ X and every λ ∈ (0,1) with λx +(1−λ )y∈ X such that f (x) �= f (y)
(resp. semistrictly convex on X if − f is semistrictly concave on X).

Definition 4.2. Let X be a nonempty subset of Rn. A function f : X → R is called

(i) quasiconcave on X (QCA) if

f (λx +(1−λ )y)≥ min{ f (x), f (y)}

for every x,y ∈ X and every λ ∈ (0,1) with λx +(1−λ )y∈ X
(resp. quasiconvex on X if − f is quasiconcave on X);

(ii) strictly quasiconcave on X if

f (λx +(1−λ )y) > min{ f (x), f (y)} (20)

for every x,y ∈ X , x �= y and every λ ∈ (0,1) with λx +(1−λ )y∈ X
(resp. strictly quasiconvex on X if − f is strictly quasiconcave on X);

(iii) semistrictly quasiconcave on X if f is quasiconcave on X and (20) holds for
every x,y ∈ X and every λ ∈ (0,1) with λx+(1−λ )y ∈ X such that f (x) �= f (y)
(resp. semistrictly quasiconvex on X if − f is semistrictly quasiconcave on X).

Notice that in Definitions 4.1 and 4.2 the set X is not required to be convex. If in
the above definitions the set X is convex, then we obtain the usual definition of
(strictly) quasiconcave and (strictly) quasiconvex functions. Observe that if a func-
tion is (strictly) concave and (strictly) convex on X , then it is (strictly) quasiconcave
and (strictly) quasiconvex on X , respectively, but not vice-versa.

In Definitions 4.1 and 4.2 we introduced concepts of semistrictly CA functions
and semistrictly QCA functions, respectively. The former (the latter) is stronger
than the concept of a CA function (QCA function), and weaker than the concept of
a strictly CA function (strictly QCA function).

We shall need the following generalization of convexity of sets and functions.

Definition 4.3. Let X be a subset of Rn, y ∈ X . The set X is starshaped from y if, for
every x ∈ X , the convex hull of the set {x,y} is included in X . The set of all points
y ∈ X such that X is starshaped from y is called the kernel of X and it is denoted
by Ker(X). The set X is said to be a starshaped set if Ker(X) is nonempty, or X is
empty.

Clearly, X is starshaped if there is a point y ∈ X such that X is starshaped from y.
From the geometric viewpoint, if there exists a point y in X such that for every other
point x from X the whole linear segment connecting the points x and y belongs to X ,
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then X is starshaped. Evidently, every convex set is starshaped. For a convex set
X , we have Ker(X) = X . Moreover, in the 1-dimensional space R, convex sets and
starshaped sets coincide.

To introduce starshaped functions, we begin with the following, well known,
characterization of quasiconcave and quasiconvex functions.

Proposition 4.1. Let X be a convex subset of Rn. A function f : X → R is quasicon-
cave on X if and only if all its upper-level sets are convex subsets of Rn. Likewise, f
is quasiconvex on X if and only if all its lower-level sets are convex subsets of Rn.

Proposition 4.1 suggests a way of generalization of quasiconcave and quasiconvex
functions. Replacing all convex upper-level sets U( f ,α) and convex lower-level sets
L( f ,α) in Proposition 4.1 by starshaped sets, we obtain the following generalization
of quasiconcave and quasiconvex functions.

Definition 4.4. Let X be a starshaped subset of Rn. A function f : X → R is called

(i) upper-starshaped on X (US) if its upper-level sets U( f ,α) are starshaped
subsets of Rn for all α ∈ R;

(ii) lower-starshaped on X (LS) if its lower-level sets L( f ,α) are starshaped
subsets of Rn for all α ∈ R;

(iii) monotone-starshaped on X (MS) if it is both lower-starshaped and
upper-starshaped on X .

It is obvious that if a function f : X → Rn is upper-starshaped on X , then the
function − f is lower-starshaped on X , and vice-versa. From the fact that each
convex set is starshaped it follows that each quasiconcave (quasiconvex) function
is upper-starshaped (lower-starshaped). Moreover, each quasimonotone function is
monotone-starshaped. Evidently, the classes of quasiconcave (quasiconvex) func-
tions and upper-starshaped (lower-starshaped) functions coincide on R. In more
dimensions it is not true, see [4].

5 T -Quasiconcave Functions

In contrast to the previous section, we now restrict our attention to functions defined
on Rn with range in the unit interval [0,1] of real numbers. Such functions can
be interpreted as membership functions of fuzzy subsets of Rn. We therefore use
several terms and some notation of fuzzy set theory. However, it should be pointed
out that such functions arise in more contexts. In what follows, the Greek letter
μ , sometimes with an index, denotes a function that maps Rn into the closed unit
interval [0,1] in R.

We have introduced quasiconcave (semi)strictly quasiconcave, quasiconvex
and (semi)strictly quasiconvex functions in Definition 4.1. First, we generalize
Definition 4.1 by using triangular norms and conorms.

Definition 5.1. Let X be a nonempty convex subset of Rn, T be a triangular norm,
and S be a triangular conorm. A function μ : Rn → [0,1] is called
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(i) T -quasiconcave on X if

μ(λx +(1−λy))≥ T (μ(x),μ(y)) (21)

for every x,y ∈ X , x �= y and λ ∈ (0,1);
(ii) strictly T -quasiconcave on X if

μ(λx +(1−λ )y) > T (μ(x),μ(y)) (22)

for every x,y ∈ X , x �= y and λ ∈ (0,1);
(iii) semistrictly T -quasiconcave on X if (21) holds for every x,y ∈ X , x �= y and
λ ∈ (0,1) and (22) holds for every x,y ∈ X and λ ∈ (0,1) such that μ(x) �= μ(y);

(iv) S-quasiconvex on X if

μ(λx +(1−λy))≤ S(μ(x),μ(y)) (23)

for every x,y ∈ X , x �= y and λ ∈ (0,1);
(v) strictly S-quasiconvex on X if

μ(λx +(1−λ )y) < S(μ(x),μ(y)) (24)

for every x,y ∈ X , x �= y and λ ∈ (0,1);
(vi) semistrictly S-quasiconvex on X if (23) holds for every x,y ∈ X , x �= y and
λ ∈ (0,1) and (24) holds for every x,y ∈ X and λ ∈ (0,1) such that μ(x) �= μ(y);

(vii) (strictly, semistrictly) (T,S)-quasimonotone on X , provided μ is (strictly,
semistrictly) T -quasiconcave and (strictly) S-quasiconvex on X , respectively;

(viii) (strictly, semistrictly) T -quasimonotone on X if μ is (strictly, semistrictly)
T -quasiconcave and (strictly, semistrictly) T ∗-quasiconvex on X , where T ∗ is the
dual t-conorm to T .

6 Aggregation of Functions

Obviously, the class of quasiconcave functions that map Rn into [0,1] is exactly the
class of TM-quasiconcave functions and the class of quasiconvex functions that map
Rn into [0,1] is exactly the class of SM-quasiconvex functions. Similarly, the class
of quasimonotone functions that map Rn into [0,1] is exactly the class of (TM,SM)-
quasimonotone functions. As SM = T ∗

M, we have, by (viii) in Definition 5.1, that
this is the class of TM-quasimonotone functions. Moreover, since the minimum tri-
angular norm TM is the maximal t-norm, and the drastic product TD is the minimal
t-norm, we have the following consequence of Definition 5.1.

Proposition 6.1. Let X be a nonempty convex subset of Rn, μ be a function, μ :
Rn → [0,1], and T be a triangular norm.

(i) If μ is (strictly, semistrictly) quasiconcave on X, then μ is (strictly,
semistrictly) T -quasiconcave on X , respectively.
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(ii) If μ is (strictly, semistrictly) T -quasiconcave on X, then μ is also (strictly,
semistrictly) TD-quasiconcave on X, respectively.

Analogously, the maximum triangular conorm SM is the minimal conorm and the
drastic sum SD is the maximal conorm, hence Proposition 6.1 can be reformulated
for S-quasiconvex functions.

It is easy to show that there exist T -quasiconcave functions that are not quasicon-
cave (see [4]), and there exist strictly or semistrictly T -quasiconcave functions that
are not strictly or semistrictly quasiconcave. Nevertheless, in the one-dimensional
Euclidean space R, the following proposition is of some interest.

Proposition 6.2. Let X be a nonempty convex subset of R, let T be a triangular
norm, and let μ : R → [0,1] be upper-normalized in the sense that μ(x̄) = 1 for
some x̄ ∈ X. If μ is (strictly, semistrictly) T -quasiconcave on X, then μ is (strictly,
semistrictly) quasiconcave on X.

Analogous propositions are valid for S-quasiconvex functions and for T -quasi-
monotone functions.

Proposition 6.3. Let X be a nonempty convex subset of R, let S be a triangular
conorm, and let μ : R → [0,1] be lower-normalized in the sense that μ(x̂) = 0 for
some x̂ ∈ X. If μ is (strictly, semistrictly) S-quasiconvex on X, then μ is (strictly,
semistrictly) quasiconvex on X.

To prove Proposition 6.3 we shall use the following relationship between
T -quasiconcave and S-quasiconvex functions.

Proposition 6.4. Let X be a nonempty convex subset of Rn, let T be a triangular
norm and let μ : Rn → [0,1] be (strictly, semistrictly) T -quasiconcave on X. Then
μ∗ = 1−μ is (strictly, semistrictly) T ∗-quasiconvex on X, where T ∗ is the t-conorm
dual to T .

Proof. The proof follows directly from Definition 5.1 and the relation T ∗(a,b) =
1−T(1−a,1−b).

The following proposition is a consequence of Propositions 6.2 and 6.3.

Proposition 6.5. Let X be a nonempty convex subset of R, let T and S be a t-norm
and t-conorm, respectively, and let μ : R → [0,1] be normalized. If μ is (strictly,
semistrictly) (T,S)-quasimonotone on X, then μ is (strictly, semistrictly) quasi-
monotone on X.

In what follows we shall use the above relationship between T -quasiconcave
and T ∗-quasiconvex functions restricting ourselves only to T -quasiconcave func-
tions. Usually, with some exceptions, the dual formulation for S-quasiconvex func-
tions will not be explicitly mentioned. It turns out that the assumption of (upper,
lower)-normality of μ is essential for the validity of Propositions 6.2 and 6.3.

Proposition 6.6. Let X be a nonempty convex subset of Rn, let T and T ′ be t-norms
and let μi : Rn → [0,1], i = 1,2, be T -quasiconcave on X. If T ′ dominates T , then
ϕ : Rn → [0,1] defined by ϕ(x) = T ′(μ1(x),μ2(x)), is T -quasiconcave on X.
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Proof. As μi, i = 1,2, are T -quasiconcave on X , we have μi(λx + (1 − λ )y) ≥
T (μi(x),μi(y)) for every λ ∈ [0,1] and x,y ∈ X . By monotonicity of T ′, we obtain

ϕ(λx +(1−λ )y) = T ′(μ1(λx +(1−λ )y),μ2(λx +(1−λ )y))
≥ T ′(T (μ1(x),μ1(y)),T (μ2(x),μ2(y))).

(25)

Using the fact that T ′ dominates T , we obtain

T ′(T (μ1(x),μ1(y)),T (μ2(x),μ2(y)))
≥ T (T ′(μ1(x),μ2(x)),T ′(μ1(y),μ2(y))) = T (ϕ(x),ϕ(y)).

(26)

Combining (25) and (26), we obtain the required result.

Corollary 6.1. Let X be a convex subset of Rn, let T be a t-norm, and let μi : Rn →
[0,1], i = 1,2, be T -quasiconcave on X. Then ϕi : Rn → [0,1], i = 1,2, defined by
ϕ1(x) = T (μ1(x),μ2(x)) and ϕ2(x) = TM(μ1(x),μ2(x)), are also T-quasiconcave
on X.

Proof. The proof follows from the preceding proposition and the evident fact that
T dominates T and TM dominates every t-norm T .

The following results of this type are also of some interest, for proofs, see [4].

Proposition 6.7. Let X be a convex subset of Rn, and let μi : Rn → [0,1], i =
1,2, . . . ,m, be upper normalized TD-quasiconcave on X such that Core(μ1)∩ ·· · ∩
Core(μm) �= /0. Let Am : [0,1]m → [0,1] be an aggregating mapping. Then ψ : Rn →
[0,1] defined by ψ(x) = Am

(
μ1(x), . . . ,μm(x)

)
is upper-starshaped on X.

Proposition 6.8. Let X be a convex subset of Rn, and let μi : Rn → [0,1], i =
1,2, . . . ,m, be upper normalized TD-quasiconcave on X such that Core(μ1) = · · · =
Core(μm) �= /0. Let Am : [0,1]m → [0,1] be a strictly monotone aggregating map-
ping. Then ψ : Rn → [0,1] defined for x ∈ Rn by ψ(x) = Am(μ1(x), . . . ,μm(x)) is
TD-quasiconcave on X.

The above proposition allows for constructing new TD-quasiconcave function on
X ⊂ Rn from the original TD-quasiconcave functions on X ⊂ Rn by using a strictly
monotone aggregating operator, e.g., the t-conorm SM. It is of interest to note that
the condition Core(μ1) = · · · = Core(μm) �= /0 is essential for TD-quasiconcavity of
ψ in Proposition 6.8.

The following definition extends the concept of domination between two
triangular norms to aggregation operators.

Definition 6.1. An aggregation operator A = {An}∞n=1 dominates an aggregation op-
erator A′ = {A′

n}∞n=1, if, for all m ≥ 2 and all tuples (x1,x2, . . . ,xm) ∈ [0,1]m and
(y1,y2, . . . ,ym) ∈ [0,1]m, the following inequality holds

Am(A′
2(x1,y1), . . . ,A′

2(xm,ym))
≥ A′

2(Am(x1,x2, . . . ,xm),Am(y1,y2, . . . ,ym)).
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The following proposition generalizes Proposition 6.6.

Proposition 6.9. Let X be a convex subset of Rn, let A = {An}∞n=1 be an ag-
gregation operator, T be a t-norm and let μi : Rn → [0,1], i = 1,2, . . . ,m, be
T -quasiconcave on X, and let A dominates T . Then ϕ : Rn → [0,1] defined by
ϕ(x) = Am(μ1(x), . . . ,μm(x)) is T -quasiconcave on X.

Proof. As μi , i = 1,2, . . . ,m, are T -quasiconcave on X , we have μi(λx + (1 −
λ )y) ≥ T (μi(x),μi(y)) for every λ ∈ (0,1) and each x,y ∈ X . By monotonicity of
aggregating mapping Am, we obtain

ϕ(λx +(1−λ )y)
= Am(μ1(λx +(1−λ )y), . . . ,μm(λx +(1−λ )y))
≥ Am(T (μ1(x),μ1(y)), . . . ,T (μm(x),μm(y))).

(27)

Using the fact that A dominates T , we obtain

Am(T (μ1(x),μ1(y)), . . . ,T (μm(x),μm(y)))
≥ T (Am(μ1(x), . . . ,μm(x)),Am(μ1(y), . . . ,μm(y)))
= T (ϕ(x),ϕ(y)),

(28)

where T = T (2). Combining (27) and (28), we obtain the required result.
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Choquet Integral Models with a Constant

Eiichiro Takahagi

Abstract. Choquet integral models are useful comprehensive evaluation models in-
cluding interaction effects among evaluation items. Introducing a constant, Choquet
integral model enables to change evaluation attitudes at the constant. In this paper,
monotonicity and normality are defined for the model. We propose a global fuzzy
measure identification method from upper and lower ordinal fuzzy measures and
a constant. Lastly, we compare the models with the ordinal Choquet integral, the
Choquet-integral-based evaluations by fuzzy rules, the cumulative prospect theory
and the bi-capacities model.

1 Introduction

The Choquet integral[1] is a useful comprehensive evaluation method which can
represent the interaction among evaluation items[2].

In this paper, we consider the case which changes the evaluation parameters
depending on input values. For example, evaluators want to change the evalua-
tion method whatever each item’s score fulfills the satisfaction level. To solve the
problem, the bi-capacity model[3][4] and the Choquet-integral-based evaluations by
fuzzy rules[5] were proposed.

The domain of bi-capacity is the pairs of sets of evaluation items and comprehen-
sive values are calculated by the Choquet integral with respect to bi-capacities. The
Choquet-integral-based evaluations by fuzzy rules divide the input area to some
segments and comprehensive values are calculated by the Choquet integral at the
segment which includes the input values.

In section 2, we define some notations that are commonly used. In section 3, we
propose the Choquet integral with a constant. In section 4, we show that the Choquet
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integral with a constant can decompose the sum of two ordinal Choquet integrals.
we define the monotonicity and normality for the Choquet integral with a constants
and show the conditions to satisfy the properties. In section 5, we propose a global
fuzzy measure identification method from ordinal fuzzy measures of two areas, a
constant, and a weight for the area. In section 6, we show that the Choquet integral
with a constant can represent the ordinal Choquet integral and the Šipoš integral
with a constant can represent the cumulative prospect theory.

2 Notations

In this paper, we discuss the case that the number of constants is one. It is possible
to extend the multiple constants case, easily.

Evaluatgion Items: X = {1,2, . . . ,n} is the set of evaluation items and n is the
number of evaluation items.

Input Values: Input values are xi ∈ [0,1], i = 1, . . . ,n.
Constant: The constant is the (n+1)-th input x̄n+1 ∈ [0,1] and Y = {n+1} is the

set of constants.
Universal Set: Z = X ∪Y is the universal set, that is the domain of the global

fuzzy measure.
Global Fuzzy Measure: Global fuzzy measure μ : 2Z → RRR is non-monotone and

we assume

μ( /0) = 0. (1)

Normal and Monotone Fuzzy Measure: Normal and monotone fuzzy measure
μ∗ for X is defined as

μ∗ : 2X → [0,1] (2)

μ∗( /0) = 0, μ∗(X) = 1 (Normality) (3)

μ∗(A) ≤ μ∗(B) if A ⊆ B ⊆ X (Monotonicity) (4)

Integrand: Integrand of the Choquet Integral h is defined as

h : Z → [0,1]. (5)

Choquet Integral: The Choquet integral with respect to μ of h is defined as

y = (C)
∫

hdμ ≡
∫ ∞

0
μ({x | h(x) > r})dr (6)

3 Choquet Integral with a Constant

Definition 3.1. The integrand of the Choquet integral with a constant h : Z → [0,1]
is
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h(i) =xi, i = 1, . . . ,n

h(n + 1) =xn+1 (7)

Global fuzzy measure of Choquet integral with a constant μ(μ : 2Z →RRR) is asuumed
as

μ( /0) = 0 and μ({n + 1}) = 0. (8)

The comprehensive value of the Choquet integral with a constant is calculated by
ordinal Choquet integral,

y = (C)
∫

hdμ . (9)

4 Properties of the Choquet Integral with a Constant

4.1 Decomposition into Two Choquet Integrals

Property 4.1. The Choquet integral with a constant is represented as the sum of two
ordinal Choquet integrals, such as,

(C)
∫

hdμ = (C)
∫

hU dμU + (C)
∫

hLdμL (10)

where

μ : 2Z → RRR, μU : 2X → [0,1], μL : 2X → [0,1] (11)

μU(E) =μ(E), ∀E ∈ 2X (12)

μL(E) =μ(E ∪{n + 1}), ∀E ∈ 2X (13)

hU(i) =

{
h(i)− x̄n+1 if h(i) ≥ x̄n+1

0 otherwise
(14)

hL(i) =

{
h(i) if h(i) < x̄n+1

x̄n+1 otherwise.
(15)

For example, h(1) = 0.9, h(2) = 0.3, x̄n+1 = 0.6 and

μ( /0) = 0, μ({3}) = 0

μ({1}) = 1.4, μ({1,3}) = 0.05

μ({2}) = 1.225, μ({2,3}) = 0.15

μ({1,2}) = 1.75, μ({1,2,3}) = 0.5 (16)
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then

μU( /0) = 0, μL( /0) = 0

μU({1}) = 1.4, μL({1}) = 0.05

μU({2}) = 1.225, μL({2}) = 0.15

μU({1,2}) = 1.75, μL({1,2}) = 0.5 (17)

and hU(1) = 0.3, hU(2) = 0, hL(1) = 0.6, hL(2) = 0.3. Therefore, as (C)
∫

dUμU =
0.42 and (C)

∫
dLμL = 0.165, then (C)

∫
dμ = 0.585.

4.2 Monotonicity

Definition 4.1. Monotonicity of a Choquet integral with a constant with respect to
a μ and a xn+1 ∈ [0,1] is dedined as if x1

i ≥ x2
i , i = 1, . . .n then

(C)
∫

h1dμ ≥ (C)
∫

h2dμ (18)

where h1(i) = x1
i ,h

2(i) = x2
i , i = 1, . . . ,n.

Property 4.2. If

μ(A) ≥ μ(B) if n + 1 ∈ B,Z ⊇ A ⊇ B (19)

μ(A) ≥ μ(B) if n + 1 /∈ A,n + 1 /∈ B,Z ⊇ A ⊇ B. (20)

then the Choquet integral with respect to the μ have monotonicity.

It is clear that the monotonicity condition equation (19) and (20) is the same as
the monotonicity condition of decomposed two fuzzy measure μU (equation (12))
and μL (equation (13)). Therefore, if equation (19) and (20) is satisfied, the decom-
posed fuzzy measure μU and μL are monotone. As hU(i) and hL(i) are monotone
with x1, . . . ,xn, from equation (10), the Choquet integral with respect to the μ have
monotonicity.

The non-monotone fuzzy measure μ of equation (16) satify the condition of
equation (19) and (20). Therefore the Choquet integral with respect to equation (16)
is a monotone increasing function with respect to x1, . . . ,xn.

4.3 Normality of the Choquet Integral with a Constant

Definition 4.2. Normality of the Choquet integral with a constant is defined as

(A) When x1 = · · · = xn = 0, then y = 0 and
(B) When x1 = · · · = xn = 1, then y = 1.
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(0.9,0.3)

0.9

x1

x2

μU

μL

0 x̄3 = 0.6 1
0

x̄3 = 0.6

1

hU(1) = 0.3

hU(2) = 0
0.42

hL(2) = 0.3

hL(1) = 0.6

0.165 0.585
+

Fig. 1 Different Area’s Inputs

Property 4.3. If

(1− x̄n+1)μ(X)+ x̄n+1μ(Z) = 1, (21)

then the Choquet integral with respect to the μ have normality.

Because μ( /0) = 0, μ({n + 1}) = 0, and the equation (8), (A) is always satisfied.
From equation (21), (B) is always satisfied.

When x̄n+1 = 0.6, the equation (16) satisfy the equation (21).

4.4 Numerical Example

In the Choquet integral with a constant, there are two areas, upper area and lower
area from the constant for each input. If some inputs are in the upper area and the
others are in lower, the output value is the sum of the two Choquet integral shown
as equation (10).

Figure 1 is the calculation process of x1 = 0.9, x2 = 0.3 and x̄3 = 0.6. As x1 ≥ x̄3,
x1 is the upper area from the constant. As x2 < x̄2, x2 is the lower area from the
constant. In the upper area, as x1 ≥ x̄3 and x2 < x̄2, then hU(1) = x1 − x̄3 = 0.3,
and hU(2) = 0. The output value of the upper area is calculated by the Choquet
integral with respect to μU (eqaution (17)), that is 0.42. In the lower area, as
hL(1) = x̄n+1 = 0.6 and hL(2) = x2 = 0.3, the output value of the lower area is
calculated by the Choquet integral with respect to μL (eqaution (17)), that is 0.165.
The comprehensive output is the sum of two values, 0.585.

Figure 2 is the graph of x2 and y with respect to the fuzzy measure equation
(16) and x1 = 0.2. When 0 ≤ x2 < 0.2, from super-additivity of the fuzzy measure
without {3}, the slope of the piecewise linear function is μ({1,2,3})−μ({1,3})=
0.45. Similarly, when 0.2≤ x2 < 0.5, from super-additivity without {3}, the slope is
μ({2,3})−μ({3})= 0.15. However, when 0.5≤ x2, as the fuzzy measure including
{3} is sub-additive, the slope is μ({2}) = 1.225.
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0 1
0

0.2

0.4

0.6
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y

x− 3=0.6
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Sub−Additive

From x2 < x1 < 06,
Slope: 0.45

From x1 < x2 < 0.6,
Slope: 0.15

From x1 < 0.6 < x2,
Slope: 1.225

x1=0.2

Fig. 2 Interactions among different areas

5 Fuzzy Measure Identification Methods from Upper and
Lower Fuzzy Measure

In this model, it is possible to represent the different evaluation method – different
weights and different interaction degrees – among upper and lower areas from the
constant. In this section, we describe the global fuzzy measure identification method
from upper area’s fuzzy measure μU , lower area’s fuzzy measure μL, and a constant.

The example of the section is n = 2 and the constant is x̄3. The upper area fuzzy
measure μU (μU : 2X → [0,1]) is

μU( /0) = 0, μU(X) = 1, μU({1}) = 0.8, μU({2}) = 0.7, (22)

that is monotone, sub-additive, and normal. The lower area fuzzy measure μL (μL :
2X → [0,1])is

μL( /0) = 0, μL(X) = 1, μL({1}) = 0.1, μL({2}) = 0.3, (23)

that is monotone, super-additive, and normal.

5.1 The Case x̄3 = 0.5 and the Same Weights

In this subsection, the constant is x̄3 = 0.5 and the weights of the upper area and
lower area are the same. From the conditions, the global fuzzy measure μ(μ : 2Z →
RRR) is assigned from the equations (12) and (13), that is
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μ(E) =

{
μU(E) if n + 1 /∈ E

μL(E \ {n + 1}) otherwise
(24)

∀E ∈ 2Z . The case of equation (22) and (23),

μ( /0) = 0, μ({3}) = 0

μ({1}) = 0.8, μ({1,3}) = 0.1

μ({2}) = 0.7, μ({2,3}) = 0.3

μ({1,2}) = 1, μ({1,2,3}) = 1. (25)

The comprehensive value is calculated by the ordinal Choquet integral,

y = (C)
∫

hdμ . (26)

Figure 3 is the 3D graph of equation (25) and x̄3 = 0.5. As the lower area from
the constant (x1 ≤ 0.5 and x2 ≤ 0.5) is super-additive fuzzy measure, the graph is
convex, that is the complementary evaluation. As the upper area from the constant
(x1 > 0.5 and x2 > 0.5) is sub-additive fuzzy measure, the graph is concave, that is
the substitutable evaluation.

0 0.2 0.4 0.6 0.8 1
x100.20.40.60.81

x2

0

0.2

0.4

0.6

0.8

1

Fig. 3 3D Graph of equation (25)

5.2 The Case of x̄3 ∈ [0,1] and Weights

Let’s α ∈ [0,1] be the weight of the lower area, 1−α be the weight of the upper
area and x̄n+1 ∈ [0,1] be the constant, and μL and μU be normal and monotone fuzzy
measure.

In this method, the global fuzzy measure μ(μ : 2Z → RRR) is assigned as

μ(E) =

⎧⎪⎨⎪⎩
1−α

1− x̄n+1
μU(E) if n + 1 /∈ E

α
x̄n+1

μL(E \ {n + 1}) otherwise
(27)
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Fig. 4 3D Graph of equation (30)

∀E ∈ 2Z . The comprehensive evaluation value is calculated by the Choquet integral

y = (C)
∫

hdμ . (28)

Property 5.1. The Choquet integral with a constant with respect to μ of equation
(27) have following properties,

Constant inputs: if xi = x̄n+1, i = 1, . . . ,n, then

(C)
∫

hdμ = α (29)

Monotonicity: If μU and μL are monotone fuzzy measure, then y is also monotone
with respect to x1, . . . ,xn.

Normality: If μU and μL are normal, then y is also normal.

In the case of the example of equation(22),(23), x̄3 = 0.6, and α = 0.3, the identified
fuzzy measure is

μ( /0) = 0, μ({3}) = 0

μ({1}) = 1.4, μ({1,3}) = 0.05

μ({2}) = 1.225, μ({2,3}) = 0.15

μ({1,2}) = 1.75, μ({1,2,3}) = 0.5. (30)

This fuzzy measure μ is non-monotone and not normal fuzzy measures in the ordi-
nal fuzzy measure sense, but the global fuzzy measure μ is normal and monotone
with respect to xi, i = 1, . . . ,n.

Figure 4 is the 3D graph of fuzzy measure equation (30) and x̄3 = 0.6. The graph
also shows that the upper area is super-additive fuzzy measure and complemen-
tary evaluation and the lower area is sub-additive fuzzy measure and substitutable
evaluation. The border of the two evaluation is x1 = x2 = x̄3 = 0.6. As the weights
of lower area is α = 0.3 and upper area is 0.7(= 1−α), the inflection point of y
is 0.3.
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Property 5.2. The Choquet integral of the global fuzzy measure μ of the eqaution
(27) can decompose the sum of two Choquet integral with respect to the original
fuzzy measure μU and μL, that is,

(C)
∫

hdμ = (1−α)(C)
∫

hUdμU +α(C)
∫

hLdμL (31)

where

hU(i) =

⎧⎨⎩
h(i)− x̄n+1

1− x̄n+1
if h(i) ≥ x̄n+1

0 otherwise
(32)

hL(i) =

⎧⎨⎩
h(i)
x̄n+1

if h(i) ≤ x̄n+1

1 otherwise.
(33)

This equation show the reason that α is the weight of lower area.

6 Comparisons

6.1 Ordinal Chouqet Integral

The proposed model uses the constant and switches between upper and lower fuzzy
measure. The global fuzzy measure is non-monotone fuzzy measure and compre-
hensive value is calculated by once Choquet integral calculation. The condition of
monotonicity and normality differ from ordinal Choquet integral.

In figure 2, when x1 = 0.2 and 0.6 < x2, the slope of the function is 1.225. This
value is greater than 1 and this situation can not be represented by the ordinal nor-
mal Choquet integrals. In this manner, the propose model can represent various
functions.

6.2 Choquet-Integral-Based Evaluations by Fuzzy Rules

Figure 5 shows comparison between proposed models and Choquet-integral-based
evaluations by fuzzy rules[5]. Choquet-integral-based evaluations by fuzzy rules can
represent the Choquet integral with a constant.

In figure 5, Choquet-integral-based evaluations by fuzzy rules divide 4 segments
at the constant when n = 2. The vertexes of the segments are called representa-
tive points and assigned output value c(i, j). Choquet-integral-based evaluations by
fuzzy rules interpolate the values by the Choquet integral of the segment.

The Choquet integral with a constant use S22 and S11. When S11 or S22, input
values are allocated to S22 and S11 and the comprehensive value is the sum of the
S22 and S11 ( figure 1). Table 1 is the correspondence among c(i, j) and μ and x̄3.
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Fig. 5 Choquet-integral-based Evaluations by Fuzzy Rules

Table 1 Choquet-integral-based Evaluations by Fuzzy Rules

c(i, j) Equation
c(1,1) x̄3μ({3})
c(2,1) x̄3μ({1,3})
c(1,2) x̄3μ({2,3})
c(2,2) x̄3μ({1,2,3})

c(i, j) Equation
c(3,2) (1− x̄3)μ({1})+ x̄3μ({1,2,3})
c(2,3) (1− x̄3)μ({2})+ x̄3μ({1,2,3})
c(3,3) (1− x̄3)μ({1,2})+ x̄3μ({1,2,3})
c(3,1) c(2,1)+c(3,2)−c(2,2)
c(1,3) c(1,2)+c(2,3)−c(2,2)

6.3 Cumulative Prospect Theory

The cumulative prospect theory[6] can be represented by Choquet integral with a
constant where fuzzy integral is Šipoš integral[7] and the constant is −∞ or the
lower limit of input domain.

In the cumulative prospect theory, it is known that comprehensive value is the
sum of two Choquet integral outputs. One is the evaluation of positive area, another
is negative area.

Let μ+(μ+ : 2X → [0,1]) be a fuzzy measure to evaluate the positive area and
μ−(μ− : 2X → [−1,0]) be for the negative area. Let f (i) ∈ [−1,1], i = 1, . . . ,n be
the gain (if f (i) ≥ 0) and loss (if f (i) < 0). The inputs of Choquet integrals are

f +(i) = max( f (i),0), f−(i) = max(− f (i),0) (34)

and comprehensive value is

(C)
∫

f +μ+ + (C)
∫

f−μ−. (35)
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Šipoš integral[7] is defined as

(S)
∫

hdμ ≡
∫ +∞

0
μ({x|h(x) > r})dr−

∫ 0

−∞
μ({x|h(x) < r})dr. (36)

Definition 6.1. The Šipoš integral with a constant use Šipoš integral instead of Cho-
quet integral, that is, the global fuzzy measure μ satisfies equation (8) and integrand
is assigned from equation (7). The comprehensive value y is

y = (S)
∫

hdμ . (37)

Property 6.1. The Šipoš integral with a constant can represent the cumulative
prospect theory, that is,

(C)
∫

f +μ+ + (C)
∫

f−μ− = (S)
∫

hdμ (38)

where

μ : 2Z → [−1,1], h : Z → [−1,1] (39)

μ(A) = μ+(A) ∀A ∈ 2X (40)

μ(A∪{n + 1})= −μ−(A) ∀A ∈ 2X (41)

h(i) = f (i), i = 1, . . . ,n, h(n + 1) = −1. (42)

6.4 Bi-capacities Model

Let Q(X)= {(A,B)∈ 2X ×2X |A∩B = /0} and xi ∈ [−1,1], i = 1, . . . ,n. Bi-capacities
[3] is defined as a function v : Q(X)→ [−1,1] that satisfies the following conditions:

• If A ⊂ A′, v(A,B) ≤ v(A′,B) and if B ⊂ B′, v(A,B) ≥ v(A,B′),
• v( /0, /0) = 0 and
• v(X , /0) = 1,v( /0,X) = −1.

The Choquet integral with respect to bi-capacities[4] is defined as

Cv(x) =
n

∑
i=1

| xσ(i) | [v(Aσ(i)∩X+,Aσ(i)∩X−)− v(Aσ(i+1)∩X+,Aσ(i+1)∩X−)]

(43)

where X+ ≡ {i ∈ X | xi ≥ 0}, X− = X \X+ and σ is a permutation on X satisfying
| xσ(1) |≤ . . . ≤| xσ(n) | and Aσ(i) ≡ {σ(i), . . . ,σ(n)}.

Property 6.2. The Choquet integral with respect to bi-capacities can represent the
Šipoš integral with a constant where constant h(n + 1) = −1, that is

Cv(x) = (S)
∫

hdμ (44)
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where

μ : 2Z → [0,1], h : Z → [−1,1] (45)

xi = h(i), i = 1, . . . ,n h(n + 1) = −1 (46)

v(A,B) = μ(A)− μ(B∪{n + 1}),∀A,B∈ 2X ,A∩B = /0 (47)

7 Conclusions

The Choquet integral with a constant is proposed. This method enables to analyze
the multiple Choquet integral models by one Choquet integral calculation.
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Fuzzy MCDM and the Sugeno Integral

Didier Dubois, Hélène Fargier, and Sandra Sandri

Abstract. We study the case of using Sugeno integral to aggregate ill-known (fuzzy)
local utilities. The proposed approach is based on the extension principle and a
formulation of the Sugeno integral that does not require that utility values be totally
ordered. We apply the proposed approach in a decision-making framework in which
fuzzy rule-bases are used to derive local utilities.

1 Introduction

In a decision making problem, we are usually given a set of description variables,
a set of criteria associated to these variables, a set of local utilities, each of which
associated to a criterion, and finally, a capacity measure, expressing the importance
of coalitions of criteria.

Given an alternative (a set of values for the description variables) one obtains its
global utility by somehow aggregating the local utilities. Some well-known aggre-
gation functions are for example the so-called Sugeno integral, a sup-min expression
[5], and Choquet integral, a sup-product expression. Several works have addressed
the question of how to deal with such problems in presence of uncertainty, specially
in what regards the Choquet integral ([10, 11, 12]) and OWA operators ([2, 13]).

In the works using Sugeno integral in decision-making problems, it is assumed
that the values of the utilities obtained for a given alternative are known with pre-
cision. The question is: what shall be done when it is not the case, i.e. when the
values of the utilities are ill-known. That is for instance the case in the applica-
tion framework described in [14], in which fuzzy rule-bases are used to derive local
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utilities. In the present paper, we study the case of imprecise/vague knowledge about
the utilities, assuming that these variables are independent from each other.

This work is organized as follows. In the next section we describe some basic
notions on Possibility Theory. In Sections 3 and 4 we describe the decision-making
and the application frameworks used in this work. In Section 5 we extend our frame-
works to the case in which the local utilities are ill-known and in Section 6 we study
how a final decision can be made on the basis of this information. Section 7 finally
brings the conclusion and future developments.

2 Basic Notions in Possibility Theory

Let xi be a possibilistic variable with range Ωi ⊆ R, i.e., its values are restricted
by a possibility distribution πi : Ωi → [0,1]. From πi, it is possible to calculate the
possibility and necessity of events A ⊆ Ωi with Π(xi ∈ A) (also denoted Π(A))
= supv∈Aπi(v), and N(xi ∈ A) (also denoted N(A)) = 1−Π(Ā) = 1− supv/∈Aπi(v),
respectively. In particular,Π(xi ∈ [λ ,+∞)) (also denotedΠ(xi ≥ λ )) = supv≥λπi(v)
and N(xi ∈ [λ ,+∞)) (also denoted N(xi ≥ λ )) = 1−Π(xi < λ ) = 1−(supv<λπi(v)).

Given n non interactive (independent) possibilistic variables xi, each of which
associated to its possibility distribution πi, we can determine the values of a variable
y = f (x1, . . . ,xn), where f :Ω1 × ...×Ωn →Ωy ⊆ R. In this case, variable y is also
possibilistic, and its distribution πy is calculated from the distributions associated to
the xi’s by the extension principle:

πy(ω) = sup
(ω1,...,ωn) s.t. v= f (ω1,...,ωn)

min(π1(ω1), . . . ,πn(ωn)).

The possibility and necessity of the events on y can then be calculated, as described
above.

3 Multi-criteria Decision Making Basic Framework

In the following, we describe the multi-criteria decision-making framework used in
this work. We suppose we are given:

• A set of m description variables v j ∈V , each of which defined on an appropriate
domainΩ j.

• A set of m-tuples (alternatives) A ⊆Ω , where Ω = × j=1,mΩ j.
• A set of n criteria i ∈C, each associated with a set of variables Vi ⊆V .
• A set of n local utilities ui, each of which associated with a criterion i. Each

local utility ui is a function from the set of alternatives1 into a common scale
of evaluation Λ . In the following we assume that Λ = [0,1]. Each local utility
is thus a mapping ui : A → [0,1]. The utility vector associated to an alternative
ak = (ak,1, . . . ,ak,m) will be denoted by uk = (u1(ak), . . . ,um(ak)).

1 Usually, ui is computed from the values of some of the variables describing an alternative
a ∈ A, hence the name ”local utility”.
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• A capacity measure μ : 2C �→ [0,1] expressing the importance of coalitions of
criteria2, i.e, μ(X) ≥ μ(Y ) means that the satisfaction of the criteria in X is at
least as important as the satisfaction of those in Y .

• An aggregation function u that maps the local utilities ui into a global one using
the common scale; i.e. here u : [0,1]n → [0,1].

Well-known examples of aggregation operators are the weighted arithmetic mean
and the weighted min, respectively defined as u(a)=Σi∈C ui(a)×μ({i}) and u(a)=
mini∈C max(ui(a),1− μ({i})). The first operator makes sense when the criteria are
independent from each other. The other operation involves negligibility effects and
is driven by the violation of important criteria (veto effect). In the general case,
the main rational aggregation operators are the Sugeno integral and the Choquet
integral. As a generalization of the weighted arithmetic mean, the latter suits the
handling of compensatory numerical criteria. When the evaluation scales used by
the criteria are rather ordinal, as it is the case in the present paper, one should rather
use the Sugeno integral, that generalizes the weighted min to non-veto criteria.

Before introducing Sugeno integrals, we need some more notation. Let F(C) de-
note the set of all capacities on a set of criteria C and letΛ(a) = {λ | ∃i ∈C,ui(a) =
λ}) be the set of local utilities values associated with alternative a.

The Sugeno integral, with respect to a fuzzy measure μ ∈ F(C), can be written
as

∀a ∈ A,Sugμ(a) = ∨λ∈Λ(a)[λ ∧μ({i | ui(a) ≥ λ})], (1)

where ∨ and ∧ stand for max and min, respectively.
An equivalent definition of Sugeno integral can be found in [9], written in our

framework as:

∀a ∈ A,Sugμ(a) = ∨D⊆C[μ(D)∧ (∧i∈Dui(a))]. (2)

This formula has the inconvenient of dealing with 2n terms instead of n but will be
useful when the framework is extended to the fuzzy case in Section 5.

4 Application Framework and Running Examples

4.1 Application Framework

A decision making framework was proposed in [14], in which each local utility ui is
computed using a fuzzy rule-base RBi. In this framework, the description variables
may assume fuzzy values and the computed utility may be fuzzy also when the
description variable values are precise.

Formally, each description variable v taking values in Ω is a fuzzy variable. It is
associated to a set of fuzzy terms Tv that represents a fuzzy partition of Ω :

2 By definition, a function μ over some set C is a capacity measure (or ”fuzzy measure”)
if it satisfies three conditions: i) μ( /0) = 0, ii) μ(C) = 1 and iii) ∀X ,Y ⊆ C,(X ⊆ Y =⇒
μ(Y ) ≥ μ(X)).
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• each element of Tv is a fuzzy set, i.e. ∀t ∈ Tv, t ∈ FS(Ω), where FS(Ω) is the set
of all fuzzy sets in domain Ω ,

• Tv coversΩ , i.e. ∀ω ∈Ω ,∃t ∈ Tv, t(ω) �= 0.

When the terms in T are precise values, we can think of them as a set of labels
associated to values on the domain Ω in a 1-to-1 relation.

A rule-base RBi is associated to each criterion i. Each rule in a RBi has the subset
of description variables associated to criterion i (Vi ⊆ V ) as input variables and a
fuzzy variable oi as output variable, associated to a set of terms Oi. A rule-base RBi,
bearing on a set Vi = {v(1), . . . ,v(s)}, s = |Vi|, of description variables, is a table that
associates a term o ∈ Oi to each of the combination of values in T(1)×·· ·×T(s). We
impose the following restrictions:

• The domain Ω j of each variable v j is a subset of R.
• Any description variable v j pertains to a unique criterion i and thus appears in at

most one single rule base RBi.
• Each rule base RBi is complete in the sense that there exists a rule for each com-

bination of terms associated to the variables in Vi.

Note that in this framework, the ui’s are supposed to be independent, therefore one
given description variable should not appear in more than one rule base even under
different names.

An alternative a can thus be reduced to a vector of precise values: the jth compo-
nent of a, i.e. the value of description variable v j for alternative a is an element of
Ω j.

We treat the examples in two ways. In the simple case, shown as a reference
for the complex case, the values in the alternative vectors, as well as the terms in
the rule-bases are simply labels. In the more complex (fuzzy) case, the alternative
vectors contain precise values from the variable domains, which are compared with
the fuzzy sets associated with each term in the rule-bases.

In the fuzzy case, the fuzzy rules in RBi are then triggered for each criteria i,
resulting in a fuzzy utility ũi : [0,1] → [0,1], which can be interpreted as the set of
more or less possible values of the local utility of criterion i. See [14] for the details
on the fuzzy-rule based mechanism employed here.

4.2 Running Examples

The examples are based on previous works (see e.g. [14]). In all these examples, we
consider that a friend living abroad asks us to rent him a car for a stay in our town.
He tells us roughly how he evaluates his satisfaction in relation to a car, based on its
power, price and age. Hence we have:

• A set of description variables V = {cost, power,age} taking values in domains
normalized to Ω = [0,1].

• A set of terms associated with each input variable; those associated with cost
and power are respectively given in scales Tcost = {L$,M$,H$} and Tpower =
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{Lhp,Mhp,Hhp} (for ”low”, medium, high”), whereas those associated to age are
given in scale Tage = {O,M,N} (for ”old”, ”medium”, ”new”).

• A set of terms associated with each output variable oi (the local utility related to
criterion i), given in scale < none, low,reasonable,high, per f ect > and denoted
by < NS,LS,RS,HS,PS >.

• A set of criteria C that are different in each example (to be described below).
• A fuzzy measure μ : 2C → [0,1], that describes the different importance values

the criteria enjoy, which is different in each example.

In both examples, the approach is maxitive; if the individual importance degree of a
criterion i is given as d(i), we have

∀D ⊆C,μ(D) = maxi∈D d(i). (3)

It means that only the most important criteria in each group are considered.
Two alternatives (two cars) a1 and a2 are used in both examples, whose descrip-

tions are given on the following values given in an informal “verbose” form:

• car a1 is “rather expensive, rather fast and rather old”.
• car a2 is “rather cheap, rather slow and rather new”.

4.2.1 Example 1

Let us suppose that our friend’s level of satisfaction can be described using three
criteria C = {1,2,3}, each of which associated with a single variable: V1 = {cost},
V2 = {power} and V3 = {age}. The individual importance degrees of the criteria are
d(1) = 1, d(2) = .7 and d(3) = .5. Applying the Sugeno integral and formula (3)
we obtain Sugμ(a) = max(u1(a),min(.7,u2(a)),min(.5,u3(a))).

The local utilities (representing the satisfaction in relation to each criterion) are
calculated based on the rule-bases in Table 1. The rule “high cost → no satisfaction”
is represented in the 3rd entry of the first rule base.

Table 1 Rule-bases for Example 1

cost u1

L$ PS
M$ HS
H$ NS

power u2

Lhp LS
Mhp HS
Hhp RS

age u3

O LS
M HS
N PS

4.2.2 Example 2

In Example 2, we have criteria C = {12,3}, where V12 = {cost, power} and
V3 = {age}. The individual importance degrees of the criteria are d(12) = 1,
d(3) = .5. Applying the Sugeno integral and formula (3) we obtain Sugμ(a) =
max(u12(a),min(.5,u3(a))). The local utilities are calculated based on the rule-
bases in Table 2.
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Table 2 Rule-bases for Example 2

(cost, power) u12

(L$,Lhp) HS
(L$,Mhp) PS
(L$,Hhp) PS
(M$,Lhp) LS
(M$,Mhp) RS
(M$,Hhp) HS
(H$,Lhp) NS
(H$,Mhp) LS
(H$,Hhp) RS

age u3

O LS
M HS
N PS

4.3 Qualitative Modeling of Examples

In the qualitative modeling of the examples, the values in the alternative vectors,
as well as terms in the rule-bases, are simple labels interpreted as values in [0,1].
As the matches between the alternatives and the rule-bases are exact, each rule-base
can be thought of as a look-up table (LUT). The local utility ui, i ∈ C, associated to
a criterion i, is just the label obtained through its respective LUT.

In the following, let us suppose that the labels in the associated to the output
variables are interpreted as

NS = .05, LS = .25, RS = .5, HS = .75 and PS = .95.

Also, let us suppose the values in the description vectors are given as

a1 = [H$,Hhp,O] and
a2 = [L$,Lhp,N].

4.3.1 Qualitative Modeling of Example 1

In the qualitative modeling of Example 1, we obtain the local utility vectors
u1 = [.05, .5, .25] and u2 = [.95, .25, .95] (the interpretations of [NS,RS,LS] and
[PS,LS,PS], respectively). Applying the Sugeno integral as aggregation function,
we obtain the global utilities:

Sugμ(a1) = max(u1(a1),min(.7,u2(a1)),min(.5,u3(a1)))
= max(.05,min(.7, .5),min(.5, .25))
= .5

Sugμ(a2) = max(u1(a2),min(.7,u2(a2)),min(.5,u3(a2)))
= max(.95,min(.7, .25),min(.5, .95))
= .95

Therefore, car a2 is clearly more satisfying a choice than a1.
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4.3.2 Qualitative Modeling of Example 2

In example 2, we obtain the local utility vectors u1 = [.5, .25] and u2 = [.75, .95]
(from [RS,LS] and [HS,PS], respectively). The application of Sugeno integral then
yields the following global utilities:

Sugμ(a1) = max(u12(a1),min(.5,u3(a1)) = max(.5,min(.5, .25))
= .5

Sugμ(a2) = max(u12(a2),min(.5,u3(a2)) = max(.75,min(.5, .95))
= .75

Also here, car a2 should be preferred over a1.

4.4 Fuzzy Set Modeling of Examples

In the fuzzy set modeling, the rules in the knowledge bases are the same, however
now the terms are no longer interpreted as precise values but their imprecision is
modeled by fuzzy sets of possible values. Here, the local utility ũi, i ∈ C, associ-
ated to a criterion i, is obtained using RBi, using the fuzzy rule-base mechanism
explained in [14] and originally proposed in [3].

Let < l,c,u > denote a triangular fuzzy set with support [l,u] and core c and
< l,c,d,u > denote a trapezoidal fuzzy set with support [l,u] and core [c,d] . In the
following, terms {NS,LS,RS,HS,PS} are triangular fuzzy sets (see Figure 24.1).

Fig. 1 Fuzzy partition for output variables: NS =< 0,0, .05, .25 >, LS =< .05, .25..5 >,
RS =< .25, .5, .75 >, HS =< .5, .75..95 >, PS =< .75, .95,1,1 >

4.4.1 Fuzzy Set Modeling of Example 1

Let us suppose the description vectors of cars a1 and a2 were compared with
the terms in the input variable’s partitions and obtained the following degrees of
compatibility:
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• L$(cost(a1)) = 0, M$(cost(a1)) = .25, H$(cost(a1)) = .75
Lhp(power(a1)) = 0, Mhp(power(a1)) = .25, Hhp(power(a1)) = .75
O(age(a1)) = .75, M(age(a1)) = .25, N(age(a1)) = 0

• L$(cost(a2)) = .25, M$(cost(a2)) = .75, H$(cost(a2)) = 0
Lhp(power(a2)) = .75, Mhp(power(a2)) = .25, Hhp(power(a2)) = 0
O(age(a2)) = 0, M(age(a2)) = .25, N(age(a2)) = .75

The application of the rules to the data sets, using the mechanism explained in [14],
then provides vectors of fuzzy evaluations as outputs. For example, the rules fired
for car a1 and criterion 1 are (H$,NS) with degree .75 and (M$,HS) with degree
.25. Now, as more than one rule may fire, the results of the fired rules have to be
aggregated. As the rules here are considered to be gradual [7], hence modeled by an
implication, we use the intersection of the rules results as the final result. Therefore,
for car a1 and criterion 1 we obtain < 03, .3, .71 >.

In the following, we denote a rule If v1 = A and v2 = B then u = C as (A,B,C).
We have:

• ũ1(a1) =< 03, .3, .71 >, ũ2(a1) =< .5, .56, .75 >, ũ3(a1) =< .25, .375, .75 >,
• ũ1(a2) =< .75, .8, .95 >, ũ2(a2) =< .25, .375, .75 >, ũ3(a2) =< .75, .9, .95 >,

So we know, for instance, that the utility of criterion 1 lies in the interval [.03,.71]
with .3 as a most possible value.

4.4.2 Fuzzy Set Modeling of Example 2

In Table 2 we still have RB3 for u3 : F(Ωage) → U but instead of RB1 and RB2 we
now have RB12, which stands for u12 : F(Ωcost)×F(Ωpower) → U . Since now we
have rules with two premises, and the compatibility between a term in an input par-
tition and a piece of data is a value in [0,1], we have to aggregate the compatibilities
corresponding to each premise into a single compatibility degree value between the
rule and the description vector. In the following we consider that the compatibility
of a rule is the minimum of the premises compatibilities.

For example, for car a1, 4 rules are fired for criterion 12:

• (M$,Mhp,RS) with degree min(.25, .25)=.25,
• (M$,Hhp,HS) with degree min(.25, .75)=.25,
• (H$,Mhp,LS) with degree min(.75, .25)=.25,
• (H$,Hhp,RS) with degree min(.75, .75)=.75,

The aggregation of the rules then yield ¡.4167,.5,.5833¿ for car a1 in relation to
criterion 1.

Applying the reasoning above to all criteria and alternatives we obtain the fol-
lowing vector of ill-known (fuzzy) local utility degrees:
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• ũ1(a1) =< .41, .5, .58 >, ũ2(a1) =< .25, .375, .75 >
• ũ1(a2) =< .26, .43, .98 >, ũ2(a2) =< .75, .9, .95 >

5 Extending Sugeno Integral to Ill-Known Utility Degrees

In this section, we aim at computing the possible values of a Sugeno integral, from
the knowledge of a vector of fuzzy utilities (ũ1, . . . , ũn). As usually done with pos-
sibility theory, we interpret ũi(αi) as a possibility degree that the local utility degree
ui is equal to αi. We also assume that the possibility distributions on utility degrees
are non-interactive, thus:

∀α = (α1, . . . ,αn) ∈ [0,1]n,π(α) = min
i=1,n

ũi(αi),

where ũi is the membership function of fuzzy local utility ui. Since configuration
α = (α1, . . . ,αn) is a classical vector of utility, we can easily compute Sugμ(α).

Because the real configuration is not known with precision, the value of the
Sugeno integral for u = (ũ1, . . . , ũn) is ill-know. Following the extension principle
(see Section 2), we can compute a possibility distribution over its possible values:

πSug(u)(s) = sup
α ,Sug(α)=s

π(α),

πSug(u)(s) is the possibility degree that the value of the Sugeno integral for the alter-
native described by vector u is equal to s.

Because the Sugeno integral is a function which is increasing for each of its
arguments, and because the ui are non interactive possibilistic variables, it holds
that:

πSug(u)(s) = m̃axD⊆C [m̃in(μ̃(D),m̃ini∈Dũi)](s),

where m̃ax and m̃in correspond to the fuzzy max and fuzzy min, respectively [6]3. In
other words, the Sugeno integral for u is now described by a fuzzy number defined

using equation (2): Sug(u) = m̃axD⊆C [m̃in(μ̃(D),(m̃ini∈D ũi)].
For example, let A =< .25, .75, .75 > and B =< .5, .5, .75 >. Clearly, the first

formula (1) shown in Section 2 cannot be used since it requires that utility values be
totally ordered, but A and B cannot be ranked. However, the second formula (2) can
be used.

Applying the extension principle to alternatives a1 and a2 we obtain:

S̃ugμ(a1) = m̃ax(ũ1(a1),m̃in(.̃7, ũ2(a1)),m̃in(.̃5, ũ3(a1)))
= m̃ax(< .037, .3, .71 >,m̃in(.̃7,< .5, .56, .75 >),m̃in(.̃5,< .25, .375, .75 >))

S̃ugμ(a2) = m̃ax(ũ1(a2),m̃in(.̃7, ũ2(a2)),m̃in(.̃5, ũ3(a2)))
= m̃ax(< .75, .8, .95 >,m̃in(.̃7,< .25, .375, .75 >),m̃in(.̃5,< .75, .9, .95 >)

3 When x0 ∈ R, the notation x̃0 stands for the precise fuzzy set A, in which A(x0) = 1 and
∀x �= x0, A(x) = 0.
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The results are depicted in Figure 24.2.

0 .05                 .25                       .5                       .75                 .95 1 .56 .71

u(a1) u(a2)

Fig. 2 Result of aggregation with Sugeno integrals for example 1

In example 2, we have

S̃ugμ(a1) = m̃ax(ũ12(a1),m̃in(.̃5, ũ3(a1))
= m̃ax( ˜< .41, .5, .58 >,m̃in(.5, . < .25, .375, .75 >)

S̃ugμ(a2) = m̃ax(ũ12(a2),m̃in(.̃5, ũ3(a2))
= m̃ax( ˜< .26, .43, .98 >,m̃in(.5, . < .75, .43, .98 >)

The results are depicted in Figure 24.3.

0 .05                 .25                       .5                       .75                 .98 1 .58

u(a1)

u(a2)

Fig. 3 Result of aggregation with Sugeno integrals for example 2

6 Deciding on the Basis of a Fuzzy Sugeno Integral

When the values of the criteria are known with precision, the Sugeno integral pro-
vided a way to compare alternatives, simply by comparing their Sugeno values.
Selecting the best alternative is not so direct now, because the values of the Sugeno
integrals are not known with precision anymore, but described by possibility distri-
bution πSug(u). In other terms, we face a problem of multi-criteria decision making
under uncertainty.

First of all, we shall try to characterize an alternative a with respect to some level
λ considered as a sufficient level or quality. This leads to compute the possibility
and necessity degrees that Sug(a) reaches reference level λ :
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Π(Sug(a)≥ λ ) = sup(α1,...,αn) s.t. Sug(α1,...,αn)≥λ mini π(αi).
N(Sug(a)≥ λ ) = 1−Π(Sug(a) < λ )

= 1− sup(α1,...,αn) s.t. Sug(α1,...,αn)<λ mini π(αi).

The alternatives maximizing N(Sug(a) ≥ λ ) could then be considered as the most
eligible with respect to threshold λ . This approach is in the spirit of Chen’s rank-
ing technique [1], where fuzzy positive and negative goals are used instead of a
threshold λ .

Secondly, we could make a definitive choice on the basis of the pessimistic utility,
as prescribed by [6] for the case of mono criterion decision making. Given a possi-
bility distribution πu,a on the value of the utility of an alternative a, the pessimistic
utility of a is given by:

U pes(a) = maxλ∈[0,1] min(λ ,N(u(a) ≥ λ )).

In the present paper, we do not consider a mono criterion utility degree u, but an
aggregated one, namely the Sugeno integral w.r.t. the set of criteria. Because the
individual utility degrees ui are non interactive, pessimistic utility can be generalized
to MCDM as follows:

U pes(a) = maxλ∈[0,1] min(λ ,N(Sug(a) ≥ λ ))
= maxλ∈[0,1] min(λ ,1− sup(α1,...,αn) s.t. Sug(α1,...,αn)<λ minπ(αi)).

Alternatives can then be compared on the basis of this generalized pessimistic utility,
yielding a complete preorder. The better U pes(a), the better alternative a.

7 Conclusion and Future Work

Here we have discussed the extension of Sugeno integral for the case in which the
utilities are given as fuzzy sets instead of precise values. We have shown the appli-
cation of the extension in a framework in which the utilities for an alternative are
calculated using fuzzy rule-bases.

Our approach has been made possible by means of the Sugeno integral for-
mulation (2) exploited in [9], that does not require ordering the fuzzy utilities. It
is very comparable to the one advocated by [10] for extending Choquet integral
to the case of ill-known utility degrees. Its drawback is the exponential comput-
ing complexity, as it deals with the power-set of the utilities. However, it is not
necessary to calculate the term involving a set D of criteria, when there exists
D′ ⊆ D such that μ(D) = μ(D′). Indeed, min(μ(D),mini∈D ui) is always smaller
than min(μ(D′),mini∈D′ ui). More generally, we can say that the computing com-
plexity depends on the number of non-null elements for the qualitative Moebius
transform of μ (see [8]).

Would it be possible to extend the other formulations of Sugeno integral shown
here? Even though worthwhile, such a development would require other tools and
is left for future work.
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Group Decisions in Interval AHP Based on
Interval Regression Analysis

Tomoe Entani and Masahiro Inuiguchi

Abstract. For encouraging communication in a group decision making, this paper
proposes methods to aggregate individual preferences. The individual preferences
are denoted as the interval priority weights of alternatives by Interval Analytic Hi-
erarchy Process (Interval AHP). It is proposed to handle subjective judgments since
the induced results are intervals reflecting uncertainty of given information. When
each decision maker gives the judgments on alternatives, the priority weights of
alternatives are obtained. In the sense of reducing communication barriers, such
information helps group members to realize their own preferences and the others’
opinions. Then, they are aggregated based on the concept of the interval regression
analysis with interval output data, where two inclusion relations between the esti-
mations and the observations are assumed. From the possibility view, the least upper
approximation model is determined so as to include all observations. While, from
the necessity view, the greatest lower approximation model is determined so as to
be included in all observations. The former possible aggregations are acceptable for
each group member and the latter necessary ones are useful for the supervisor at the
upper level of decision making.

1 Introduction

The group decision support system is discussed from the scope of AHP (Analytic
Hierarchy Process). AHP is a useful method in multi-criteria decision making prob-
lems [1]. It is structured hierarchically as criteria and alternatives. The priority or
weight for each element of the hierarchy is obtained by eigenvector method, given
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the pairwise comparison matrix on the elements. They are summed up to reach a
final decision. The advantages of AHP are the following two points. It helps de-
cision maker structure complex problems hierarchically. In order to determine pri-
ority weights of elements, the decision makers only pairwisely compare elements
at one time and give subjective judgments directly. This paper focuses on the latter
advantage of AHP from the view of reducing communication barrier, since the deci-
sion makers often have some difficulties in representing and recognizing their own
opinions.

The group decision making with AHP is discussed in [2, 3, 4, 5]. In the prob-
lem setting, more than two comparison matrices are given. The definitive purpose
of the group is to reach a decision, that is, to choose one alternative which seems
to be acceptable and agreeable for all members. However, it is sometimes difficult
to reach a consensus among group members [6]. Especially when members do not
have a face-to-face consultation, there exist some barriers to understand one an-
other. It may happen that some members may exaggerate their preferences in order
to influence the group decision. In this sense, it is important to support the inter-
personal information exchange, as well as to find the agreeable alternative, in the
group decision making. As a preparation for the consensus, it becomes necessary
to remove communication barriers by representing individual opinions simply and
clearly [6, 7]. In this paper, Interval AHP in [8, 9], which is suitable to handle uncer-
tainty of given information, plays a significant role. Then, the individual opinions
are aggregated based on the concept of Interval Regression analysis [10]. The group
members can see the difference of the aggregated and their own opinions easily.

This paper consists as follows. As a preliminary, the definition and properties of
the interval probability which are used for normalization of intervals are explained
in Section 2. At first, Interval AHP as a tool to represent each group member’s pref-
erence is shown briefly in Section 3. Then, in Section 4, the approaches to aggregate
individual preferences which are obtained by Interval AHP are proposed. Finally,
the proposed models are tested with a numerical example in the case of a group of
four decision makers in Section 5.

2 Interval Probability as Preliminary

The interval probabilities are defined by a set of intervals as follows. This definition
is originally proposed in [11] and also is used in [12, 13]. The conventional crisp
probabilities are extended into interval ones.

Definition 2.1. Interval probability: The set of intervals denoted as {W1, ...,Wn}
where Wi = [wi,wi] are called interval probabilities if and only if

1) 0 ≤ wi ≤ wi, ∀i
2) ∑i�= j wi + wj ≥ 1, ∀ j
3) ∑i�= j wi + wj ≤ 1, ∀ j.

(1)



Group Decisions in Interval AHP Based on Interval Regression Analysis 271

From (1), two inequalities, ∑iwi ≤ 1 and ∑iwi ≥ 1, hold. Then, (1) is regarded as
the normality condition of intervals corresponding to the conventional one∑i wi = 1.
It is noted that in interval probabilities there are many combinations of crisp values
whose sum is one.

The combination of a pair of interval probability sets is denoted as follows.

Property 2.1. Combination Assuming a pair of interval probabilities on n elements
as {W A

1 , ...,W A
n } and {WB

1 , ...,W B
n } which satisfy (1), their combination is denoted

as {W AB
1 , ...,W AB

n }. Each of elements is an interval W AB
i = [wAB

i ,wAB
i ] denoted as.

wAB
i = min{wA

i ,wB
i } and wAB

i = max{wA
i ,wB

i }. (2)

The set of combined intervals also satisfies (1) so that it is interval probability. As
for the combination of more than two sets of intervals, it is also interval probability.

[Proof] Requirement 1) in (1) is apparent. Assuming wA
j < wB

j , Requirement 2) is
verified as follows.

∑i�= j wAB
i + wAB

j = ∑i�= j max{wA
i ,wB

i }+ min{wA
j ,w

B
j }

≥ ∑i�= j wA
i + wA

j ≥ 1.

For wA
j > wB

j , Requirement 2) can be proved similarly. Requirement 3) can be shown
in the same way. Therefore, all requirements in (1) are satisfied. (Q.E.D.)

The average of a pair of interval probability sets is denoted as follows.

Property 2.2. Average Assuming a pair of interval probabilities on n elements
as {W A

1 , ...,W A
n } and {WB

1 , ...,W B
n } which satisfy (1), their average is denoted as

{W
AB
1 , ...,W

AB
n }. Each of elements is an interval W

AB
i = [wAB

i ,w
AB
i ] denoted as

wAB
i = (wA

i + wB
i )/2 and w

AB
i = (wA

i + wB
i )/2. (3)

The set of average intervals {W
AB
1 , ...,W

AB
n } also satisfies (1) so that it is interval

probability. It is the same for more than two sets of interval probability.

[Proof] Requirement 1) in (1) is apparent. Requirement 2) is verified as follows.

∑i�= j wAB
i + wAB

j = ∑i�= j(wA
i + wB

i )/2 +(wA
j + wB

j )/2
= {(∑i≤ j wA

i + wA
j )+ (∑i≤ j wB

i + wB
j )}/2 ≥ 1.

Similarly, Requirement 3) is verified. Then, all requirements are satisfied. (Q.E.D.)

3 Interval AHP

AHP is an approach to multi-criteria decision making problems. The problem is
decomposed into hierarchy by criteria and alternatives. The choice or preferences



272 T. Entani and M. Inuiguchi

of alternatives are induced as a final decision from the decision maker’s judgments
given as pairwise comparison matrix. The decision maker compares all pairs of
alternatives and gives the pairwise comparison matrix for n alternatives [1].

A =

⎛⎜⎝ 1 · · · a1n
... ai j

...
an1 · · · 1

⎞⎟⎠ (4)

where ai j shows the importance ratio of alternative i comparing to alternative j.
The comparison matrix satisfies the following relations so that the number of given
comparisons is n(n−1)/2.

aii = 1(identical) and ai j = 1/a ji (reciprocal) (5)

The decision maker can give his/her judgment intuitively without caring about
the relative relations of comparisons. Although it is an advantage of AHP, the
given comparisons are not always consistent each other. The consistent comparisons
satisfy the following transitivity relations.

ai j = aikak j, ∀i, j (6)

In the following, inconsistency means that (6) is not satisfied. The proposed models
in this paper deal with such inconsistency from the possibility view [10].

In the conventional AHP, crisp priority weights are obtained from the given
comparison matrix by the eigenvector method as follows [1].

Aw = λw (7)

where λ and w are the eigenvalue and eigenvector, respectively. Solving (7), the
eigenvector corresponding to the principal eigenvalue is obtained as the priority
weight vector. The weights are extended to intervals in Interval AHP [8, 9]. The
given comparisons are inconsistent each other, that is, they do not always satisfy (6).
In order to reflect such inconsistency, the priority weight of alternative is denoted as
the interval Wi = [wi,wi], ∀i. For their normalization, they are represented as interval
probabilities so that they satisfy (1) in Definition 2.1.

The pairwise comparison is an intuitive ratio of two alternatives so that they are

approximated by the interval Wi
Wj

=
[

wi
w j

, wi
w j

]
where 0 < wi,∀i and the upper and

lower bounds of the approximated comparison are defined as the maximum range
with respect to the two intervals.

In the approximation model the probabilities are determined so as to include the
given pairwise comparisons. Thus, from the possibility view, the obtained interval
probabilities satisfy the following inclusion relation which leads to the inequalities.

ai j ∈ Wi

Wj
⇔ wi

wj
≤ ai j ≤ wi

wj
⇔ wi ≤ ai jw j and wi ≥ ai jw j, ∀i, j (8)
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The approximations by the obtained interval priority weights include the given
inconsistent comparisons.

For any inconsistent comparisons, assuming [wi,wi] = [0,1], ∀i, the above inclu-
sion relation (8) is apparently satisfied. A decision maker does not need to revise his
intuitive judgments so as to be consistent. When a decision maker gives completely
inconsistent judgments, the obtained priority weights of all alternatives are equally
[0,1]. It represents complete ignorance. Inconsistency among the given comparisons
is reflected in the uncertainty of interval probabilities.

The constraint conditions for determining the interval probabilities are (1) and
(8). In order to obtain the least uncertain probabilities, the uncertainty of interval
probabilities should be minimized. The uncertainty of interval probabilities can be
measured by several indices, such as widths of intervals and entropy [14]. For sim-
plicity, the sum of widths of intervals is used in this paper. The problem to determine
the interval priority weights is formulated as follows.

I = min ∑i(wi −wi)
s.t. Equation (1) and Equation (8)

(9)

The greater optimal objective function value is, the more uncertain the given interval
priority weight becomes.

4 Group of Decision Makers

Interval AHP is introduced to the group decision making by aggregating individual
opinions. Each group member gives pairwise comparisons for alternatives based on
his/her subjective judgments. The comparison matrix given by the member k, where
k = 1, ...,m, is denoted as follows.

Ak =

⎛⎜⎝ 1 · · · a1nk
... ai jk

...
an1k · · · 1

⎞⎟⎠ , ∀k (10)

When pairwise comparison matrices are given, they can be aggregated at the be-
ginning stage of group decision making process. The group members can see
their differences on their giving comparisons. One of the comparison aggregation
approaches is taking the geometric mean of comparisons ai j = n

√
∏k ai jk, ∀i, j

[4, 5, 15, 16]. Since the aggregated comparison matrix satisfies (5), the eigenvector
method can be also applied to it and the priority weights are obtained.

The other conceivable approach to aggregate the comparisons given by m
decision makers is to take their minimum and maximum from the possibility view.

Ai j = [ai j,ai j] = [min
k

ai jk,max
k

ai jk], ∀i, j (11)
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The interval priority weights are obtained from the aggregated interval comparison
matrix by replacing the inclusion constraints (8) into

Ai j ∈ Wi

Wj
⇔ wi

w j
≤ ai j and ai j ≤ wi

wj
. (12)

The inclusion relation (12) with interval comparisons is an extension of (8) with
crisp ones. The aggregated comparisons are interval and included in the approxi-
mated ones by the interval priority weights.

In these methods, it is simple to aggregate the given comparisons directly. How-
ever, a decision maker might slip on in giving his/her judgment on a pair of
alternatives and also he/she has no chance to check his own preferences on alter-
natives.

In the following section, each individual preference is induced beforehand and
then they are aggregated. First, the priority weights of alternatives are obtained from
the individually given pairwise comparison matrix. The interval priority weights
based on the comparison matrix given by kth decision maker are denoted as
[wik,wik]. Each decision maker can realize his/her priority weights on the alterna-
tives, as well as others’. Then, in order to reach a consensus of the group, the ob-
tained individual priority weights are aggregated.

If there is some information about the importance of each group member, it is
reasonable to take it into consideration [17]. In the following, they are aggregated
based on the concepts of interval regression analysis, which is so called the least
upper and greatest lower approximations. The basic concept is that the estimations
should be obtained so as to be the nearest to the individual preferences. By the
former method, they include all the given intervals, which are the individual interval
priority weights. While by the latter method, they are obtained so as to be included
in each given interval. We do not need to be given nor calculate the importance
weights of group members.

4.1 Least Upper Approximation Model

From the view of possibility, the aggregated interval priority weights Wi and the
individually obtained ones Wik should satisfy the following inclusion relation.

Wi = [wi,wi] ⊇Wik = [wik,wik] ⇔ wi ≤ wik and wik ≤ wi, ∀i,k (13)

The difference between two intervals Wi and Wik can be measured as follows.

cik = max(wik −wi,wi −wik) (14)

One of the well-known definitions of difference is the sum of deviations of the upper
and lower bounds; cik = (wik −wi)+ (wi −wik). Let’s assume the two cases shown
in Fig.1, one is that each bound is overestimated as α , and the other is that only the
upper bound is overestimated as 2α . Although the sums of deviations of both bounds
of 1Wi and 2Wi are the same, for decision maker k they seem to be different. The
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former 1Wi seems to fit his/her intuitive sense and reflect his/her preference more
than the latter 2Wi. 1Wi includes the decision maker’s preference Wik at its center,
while 2Wi includes it at its left. The maximum of deviations of 1Wi is less than that
of 2Wi. By using the maximum of deviations of the upper and lower bounds, the
aggregated interval tends to include each group member’s preferences at its center.
Therefore, in our setting, it is more suitable to measure difference by the maximum
of deviations than the sum of deviations.

αα

α2

ik
W

i
W
1

i
W
2

Fig. 1 Aggregated intervals including individual intervals

The problem to determine the aggregated interval priority weights is formulated.

min ∑ik max{wik −wi,wi −wik}
s.t. Equation (1) and Equation (13)

(15)

The sum of deviations between all comparisons and priority weights is minimized
by the objective function and the possible aggregations are obtained. Since the ag-
gregated ones should be normalized, the conditions of interval probabilities (1) are
added to the constraints. The aggregations Wi include the given intervals Wik with
minimum width so that they are called the least upper approximations.

The combinations of the interval priority weights by all group members are
W ∗

i = [wi,wi] = [mink wik,maxk wik], ∀i. By Property 2.1, they are interval proba-
bility. Therefore, they are apparently the optimal solutions of (15) and there is no
need to solve the above problem.

This model is based on possibility concept so that the aggregated preference in-
cludes all group members’ preferences. Then, from the view of each group member,
the aggregations are easy to accept. It works well on the assumption that all the
group members give reasonable information. When the individual preferences are
very different one another such as in a big group, the widths of the aggregated prior-
ity weights become large, that is, they are uncertain. Even if there is only one outlier,
who gives apparently different preference from the others, the aggregated prefer-
ences highly depend on his/her preference. In order to reduce such an influence, the
method to exclude outliers is proposed [17]. From the view of the supervisor who
refers the results at the upper level of decision making process, such uncertain ag-
gregated preference is not useful. In the next section, the model which induces the
less uncertain aggregated preferences is proposed.

Remark 4.1. We obtain wide interval weights by the least upper approximation
model. Indeed, we can show that the sum of widths of the obtained interval
weights is usually larger than or equal to that obtained by a method based on (12).
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Namely, from the constraints on inclusion relations (8) in (9) and (13) in (15), we
have

wi ≤ wik ≤ ai jkw jk ≤ ai jkw j and wi ≥ wik ≥ ai jkw jk ≥ ai jkw j, ∀i, j,k. (16)

Therefore, we have

wi ≤
(
mink ai jk

)
wj = ai jw j and wi ≥

(
maxk ai jk

)
wj = ai jw j, ∀i, j. (17)

This means that a feasible solution of (15) satisfies the constraints of the problem
based on (12), i.e.,

min ∑i(wi −wi)
s.t. wi ≤ ai jw j ∀(i, j)

wi ≥ ai jw j ∀(i, j)
Equation (1).

(18)

Because of the interval weights obtained by a method based on (12) are an optimal
solution to (18), the sum of widths of the interval weights obtained from (15) is
usually larger than or equal to that obtained by a method based on (12).

4.2 Greatest Lower Approximation Model

On the other hand, from the view of necessity, the aggregated interval priority
weights are included in the individually given ones.

Wi = [wi,wi] ⊆Wik = [wik,wik] ⇔ wik ≤ wi and wi ≤ wik, ∀k (19)

It is not always possible to find Wi included in Wik. For instance, the individual
priority weights are all crisp; wik = wik = wik∀k and they are different one another;
wik �= wik′ . By relaxing each individual interval [wik,wik] into [wik − dik,wik + dik],
the inclusion (19) can be satisfied. The width is enlarged and dik and dik are the
positive variables and should be minimized.

Similarly to (14) the difference between two intervals Wi and Wik is measured.

cik = max{wi − (wik −dik),(wik + dik)−wi} (20)

In Fig.2, two intervals included in the individual preference are shown and they
are different by means of the maximum of deviations. The individual preference
Wik is underestimated to obtain the aggregated one 1Wi or 2Wi. The difference is
considered to represent the degree of compromise of each group member. From the
view of compromise, 1Wi, which locates more centered, looks better than 2Wi. The
advantage of using the maximum of deviations is that the aggregated preference can
be located at more centered of the individual one.

Considering this assumption, the problem to determine the aggregated interval
priority weights is as follows.
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αα

α2
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i
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2

Fig. 2 Aggregated intervals being included in individual intervals

min ∑i,k{(dik + dik)+ εmax{wi − (wik −dik),(wik + dik)−wi}}
s.t. wik −dik ≤ wi ∀i,k

wi ≤ wik + dik ∀i,k
dik,dik ≥ 0
Equation (1)

(21)

where variables are the bounds of the aggregated intervals, wi and wi, and the added
parts of individually given intervals, dik and dik. By the objective function, primarily
the added parts of the individual preference and secondary the difference of two
intervals are minimized.

(21) is reduced to the following LP problem by adding new variable wik, which
constrains the maximum deviation.

min ∑i,k{(dik + dik)+ εwik}
s.t. wi − (wik −dik) ≤ wik ∀i,k

(wik + dik)−wi ≤ wik ∀i,k
constraints of (21)

(22)

The necessary aggregations are obtained and they are included in the enlarged given
intervals with maximum width so that they are called the greatest lower approxima-
tions. The aggregated preferences do not depend on the outlier too much. Although
each group member has to compromise to some extent, from the view of the super-
visor at the upper level of decision making process, such less uncertain information
based on the necessity concept is useful.

4.3 Least Squares Model

In the former two sections, the inclusion relation between the aggregated and indi-
vidual preferences is assumed. In this section, such an assumption is excluded so
that the difference of two intervals can be defined as follows.

cik =∑{(wi −wik)
2 +(wi −wik)2} (23)

By minimizing the sum of difference for all alternatives and all group members, the
problem to determine the aggregated interval priority weights is formulated.
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min ∑i,k{(wi −wik)
2 +(wi −wik)2}

s.t. Equation (1)
(24)

Using squared deviations avoids any of bounds of the aggregation to be extremely
far from each of the individual preference. It does not matter whether the aggre-
gations locate inside or outside of the individual preferences. The object is simple,
that is, to determine the upper and lower bounds of the aggregated interval so as
to be close to those of the individual intervals as possible. Comparing the upper
or lower bounds of the individual preferences and the aggregation, some members’
preferences are underestimated and the others’ are overestimated.

The interval whose bounds consist of the average of the individually given in-
terval priority weights are W ∗

i = [∑k wik/n,∑k wik/n] ∀i. By Property 2.2, they are
interval probability. Their sum of squared deviations from the individual intervals is
the minimum. Therefore, they are the optimal solutions of (24) so that there is no
need to solve the above problem.

5 Numerical Example

Assuming four decision makers, k = 1,2,3,4, each of them gives the pairwise com-
parison matrix on four alternatives, i = 1,2,3,4 and the obtained interval priority
weights Wk by (15) are shown in Table 1. All decision makers roughly think that
alternative 1 and 4 are the most and least preferable. The priority weights of the
alternative 1 by all group members are crisp. For comparison, at the right column
of Table 1, the crisp priority weights by (7) and C.I. which represents consistency
of the pairwise comparison matrix in the sense of eigenvector method are shown.
If C.I.=0, then the obtained priority weights by (7) and (15) are crisp and
the same.

The individual preferences are aggregated by the proposed three methods and the
aggregations are shown in Table 2. Based on the least upper approximation model
(15), all the individual preferences are considered to be possible. Since the obtained
interval priority weight of each alternative by each decision maker is included in
the aggregated intervals, the aggregated preferences are acceptable from the group
members’ viewpoints. However, the widths of the aggregated intervals tend to be
too large, in case that the individual priority weights diverse.

When it comes to be referred the aggregated preferences at the upper level of
decision making process by a supervisor, such uncertain information is not useful.
Based on the greatest lower approximation model (22), the necessity parts of the
individual preferences are focused. The aggregated interval priority weight is de-
termined so as to be included in the obtained interval priority weights by all group
members as much as possible. Instead of being included, the aggregated priority
weights of alternatives 1 and 2 are between the four individually given crisp priority
weights. Each group member compromises to some extent, which is measured by
the maximum of deviations of the upper and lower bounds. From the view of the
supervisor, such less uncertain information from the necessity view is preferable.
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By the third model (24), the inclusion relations of the individual and aggregated
preferences are not assumed. The difference is measured by the sum of squared
deviations of both bounds by all group members. The interval priority weights of
alternative 3 by A1 and A4 are included in and that by A2 includes the aggregated one.
As for A3, its upper bound is underestimated, while its lower bound is overestimated.
The aggregated intervals by the least squares model are between those by the least
upper and greatest lower models.

Table 1 Comparison matrices by four decision makers

A1 W1 I=0.083 w1C.I.=0.010 A2 W2 I=0.350 w2 C.I.=0.081
1 2 3 4 0.500 0.402 1 1 4 6 0.390 0.470

1 2 3 0.250 0.337 1 3 4 [0.244,0.390] 0.255
1 2 [0.125,0.167] 0.164 1 4 [0.098,0.244] 0.192

1 [0.083,0.125] 0.097 1 [0.065,0.122] 0.083

A3 W3 I=0.283 w3 C.I.=0.102 A4 W4 I=0.375 w4 C.I.=0.150
1 3 3 4 0.571 0.487 1 1 2 2 0.375 0.260

1 3 3 [0.190,0.214] 0.269 1 3 1 [0.219,0.375] 0.335
1 4 [0.071,0.190] 0.168 1 3 [0.125,0.188] 0.246

1 [0.048,0.143] 0.076 1 [0.063,0.219] 0.159

Table 2 Aggregated interval priority weights by three methods

Least upper Greatest lower Least suquare
A1 [0.375,0.571] 0.5 0.459
A2 [0.190,0.390] 0.250 [0.226,0.307]
A3 [0.071,0.244] [0.128,0.167] [0.105,0.197]
A4 [0.048,0.219] [0.083,0.122] [0.065,0.152]

6 Conclusion

The group decision support system based on Interval AHP has been discussed fo-
cusing on the aggregation of individual preferences. By Interval AHP the priority
weights of elements are obtained as interval from the pairwise comparison matrix
given by a decision maker based on his/her intuitive judgments. The obtained in-
terval priority weights reflect all the possibilities in the given information. Interval
AHP is one of the useful tools for them to realize their preferences as well as others.
At first, the individual preferences are obtained and then they are aggregated based
on the concept of interval regression analysis. From the possibility view by the least
upper approximation model, the aggregations are determined so as to include the
individual preferences. The obtained possible aggregations are easily acceptable for
each group member. They are the same as the combinations of all group members’
interval priority weights. From the necessity view by the greatest lower approxi-
mation model, the aggregations are determined so as to be roughly included in the
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individual preferences. Since the necessary aggregations are less uncertain, they are
useful for the supervisor. Without assuming the inclusion relations, the aggregations
are also obtained by the least squares model, where the sum of squared deviations
is minimized. The obtained aggregations are the same as the average of all group
members’ interval priority weights. Although the suitable approach depends on the
situations, the proposed three methods to aggregate group members’ preferences
help them understand one another and reach consensus.
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Linguistic Multi-Expert Decision Making
Involving Semantic Overlapping

Hong-Bin Yan, Van-Nam Huynh, and Yoshiteru Nakamori

Abstract. This paper presents a probabilistic model for linguistic multi-expert de-
cision making (MEDM), which is able to deal with vague concepts in linguistic
aggregation and decision-makers’ preference information in choice function. In lin-
guistic aggregation phase, the vagueness of each linguistic judgement is captured by
a possibility distribution on a set of linguistic labels. A confidence parameter is also
incorporated into the basic model to model experts’ confidence degree. The basic
idea of this linguistic aggregation is to transform a possibility distribution into its
associated probability distribution. The proposed linguistic aggregation results in a
set of labels having a probability distribution. As a choice function, a target-oriented
ranking method is proposed, which implies that the decision-maker is satisfactory
to choose an alternative as the best if its performance is as at least “good” as his
requirements.

1 Introduction

Multi-expert decision making (MEDM) is a common and important human activity.
In practice, the uncertainty, constraints, and even the vague knowledge of the ex-
perts imply that the information cannot be assessed precisely in quantitative form,
but may be in a qualitative one [7]. A possible way to solve such situation is the
use of the fuzzy linguistic approach [19]. Also, the process of activities or decisions
usually creates the need for computing with words. One linguistic computational
approach is making use of the associated membership function for each label based
on the extension principle [4]. Another approach is the symbolic one [5] by means
of the convex combination of linguistic labels. In these two approaches, however,
the results usually do not match any of the initial linguistic labels, hence an ap-
proximation process must be developed to express the result in the initial expression
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domain. This produces the consequent loss of information and lack of precision. To
overcome this limitation, a 2-tuple fuzzy linguistic representation model is proposed
in [7]. Although such an approach has no loss of information, it does not directly
take into account the underlying vagueness of the linguistic labels, i.e., it assumes
that any neighboring linguistic labels have no semantic overlapping.

Two approaches have been proposed in an attempt to involve the underlying
vagueness of the words in linguistic MEDM problems. Ben-Arieh & Chen [1] have
proposed a fuzzy linguistic OWA (FLOWA) operator, which assigns fuzzy mem-
bership functions to all linguistic labels by linearly spreading the weights from the
labels to be aggregated. The aggregating result changes from a single label to a
fuzzy set with membership levels of each label. Tang [17] has introduced a collec-
tive linguistic MEDM model to capture the underlying vagueness of linguistic labels
based on the semantic similarity relation [18], in which the similarities among lin-
guistic labels are derived from fuzzy relation of linguistic labels. However, such an
approach violates the bounded property of the linguistic aggregation. For more de-
tail of the properties of linguistic aggregation, see [5]. Moreover, it assumes that the
same label assessed by different experts has the same label overlapping.

According to the epistemic stance interpretation in linguistic modeling by Lawry
[12], when an expert assesses some alternatives (options) with a linguistic label,
it is assumed that he will probably choose other linguistic labels to describe the
option. Possibility theory [6] provides a convenient tool to represent experts’ uncer-
tain assessments. Furthermore, even if two different experts have assessed an option
with the same linguistic label, the appropriateness degree of other linguistic labels
may be different according to experts’ confidence degree, i.e., to what extent the
experts are sure that other linguistic labels are appropriate to describe the option.
Finally, our another motivation comes from the fact that experts are not necessarily
the decision-makers, but only provide an advice [15]. The decision-makers’ prefer-
ence information plays an important role in choice of alternatives, which is missed
in most research.

In light of the above observations, we summarize our main contributions as fol-
lows. First, we assume that the appropriate labels are linearly distributed around
the linguistic label provided by the expert with a possibility distribution. The label
provided by the expert will be called prototype label. And then based on the basic
mass function, we can obtain the probability distribution on the linguistic labels as
the aggregation result. Fuzzy modifiers [19] are also used to model some expert’
confidence quantifying how he is sure of the appropriateness of other linguistic la-
bels. Second, we propose a target-oriented ranking method incorporating decision-
makers’ preferences. It is well-known that human behavior should be modeled as
satisficing instead of optimizing [16]. Intuitively, the satisficing approach has some
appealing features because thinking of targets is quite natural in many situations.

The rest of this paper is organized as follows. Section 2 proposes a probabilis-
tic approach to linguistic aggregation involving vague concepts. Section 3 proposes
a ranking procedure based on target-oriented decision model, in which decision-
makers’ preferences are considered. Section 4 provides an illustrative example.
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Section 5 discusses the relationships between our approach and three prior ap-
proaches. Finally, Section 6 presents some concluding remarks.

2 A Probabilistic Approach to Linguistic Aggregation Involving
Semantic Overlapping

In fuzzy environment, a common characteristic of the MEDM problems, is a finite
set of experts, denoted by E = {E1, · · · ,Ek, · · · ,EK}, who are asked to assess an-
other finite set of alternatives A = {A1, · · · ,Am, · · · ,AM}. The linguistic assessment
provided by expert Ek regarding alternative Am is presented as xm

k ∈ L , where L is
a finite, but totally ordered label set of linguistic variables with an odd cardinality,
i.e., L = {L0, · · · ,Ln, · · · ,LN} with Ln > Ll for n > l. Also, each expert is assigned
a degree of importance or weight wk, denoted as W = [w1, · · · ,wk, · · · ,wK ].

2.1 Linguistic Aggregation Involving Vague Concepts

With the linguistic judgements for alternative Am provided by a set of experts E ,
we can obtain a linguistic judgement vector as Xm = (xm

1 , · · · ,xm
k , · · · ,xm

K), where
xm

k ∈ L ,k = 1, · · · ,K. When there is no possibility of confusion, we shall drop
the subscript m to simplify the notations. Our main objective is to aggregate the
linguistic judgement vector X for each alternative A.

The linguistic judgement provided by one expert implies that the expert makes
an assertion. It seems undeniable that humans posses some kind of mechanism for
deciding whether or not to make certain assertions. Furthermore, although the un-
derlying concepts are often vague the decision about the assertions are, at a certain
level, bivalent. That is to say for an alternative A and a linguistic label L, you are
willing to assert ‘A is L’ or not. Nonetheless, there seems to be an underlying as-
sumption that some things can be correctly asserted while others cannot. Exactly
where the dividing line between those labels are and those that are not appropri-
ate to use may be uncertain. This is the main idea of epistemic stance proposed by
Lawry [12].

Motivated by the epistemic stance, we assume that any neighboring basic lin-
guistic labels have partial semantic overlapping in linguistic MEDM. Thus, when
one expert Ek evaluates alternative A using linguistic label xk ∈ L , other linguistic
labels besides xk in L may also be appropriate for describing A, but which of these
linguistic labels is uncertain. Here, similar with [13], the linguistic label xk will be
called prototype label. If experts can directly assign the appropriateness degrees of
all linguistic labels, then we can obtain a possibility distribution. However, the need
of experts’ involvement creates the burden of decision process. Without additional
information, we assume that the appropriate labels are distributed around the pro-
totype label xk with a linear possibility distribution. Possibility theory is convenient
to represent consonant imprecise knowledge [6]. The basic notion is the possibility
distribution, denoted π .
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It is very rare that when all individuals in a group share the same opinion about
the alternatives (options), since a diversity of opinions commonly exists [1]. With
the linguistic judgement vector X for alternative A, we can define

Lmin = mink=1,··· ,K{xk}, Lmax = maxk=1,··· ,K{xk} (1)

where xk ∈ L , Lmin < Lmax, and Lmin, Lmax are the smallest and largest linguis-
tic labels in X , respectively. The label indices of the smallest and largest labels in
judgement vector X are expressed as indmin and indmax, respectively. Also, the
label index of the prototype label xk provided by expert Ek is denoted as pIndk.

Note that, the result of linguistic aggregation should lie between Lmin and
Lmax (including Lmin and Lmax). In addition, if two label indices have the same dis-
tance to the index of the prototype label xk, we assume that they have the same
appropriateness (possibility) degree. Furthermore, as Lawry [12] pointed out, “an
assertability judgement between a ‘speaker’ and a ‘hearer’ concerns an assessment
on the part of the speaker as to whether a particular utterance could (or is like to)
mislead the hearer regarding a proposition about which it is intended to inform him.”
Thus if one expert is viewed as a ‘speaker’, then other experts will act as ‘hearer’.
Accordingly, we first define a parameter as

Δk = max{pIndk −indmin,indmax −pIndk}. (2)

We then define a possibility distribution of around the prototype label xk ∈ L on
linguistic labels Ln as follows

π(Ln|xk) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1− pIndk−n

Δk+1 , if indmin ≤ n < pIndk;
1, if n = pIndk;
1− n−pIndk

Δk+1 , if pIndk < n ≤ indmax;
0, if n < indmin or n > indmax.

(3)

where n = 0, · · · ,N. Assume that there is a set of seven linguistic labels L =
{L0, · · · ,L6}. Also, we have Lmin = L1 and Lmax = L5. Then for a possible prototype
label x, according to Eq. (3), we obtain the possibility distribution of appropriate
labels as shown in Fig. 1.

Note π(Ln|xk) is a possibility distribution of around prototype label xk on the
linguistic label set L , then the possibility degrees are reordered as

{π1(xk), · · · ,πi(xk), · · · ,πm(xk)}

such that 1 = π1(xk) > π2(xk) > · · · > πm(xk) ≥ 0. Then similar with [10, 11], we
can derive a consonant mass assignment function mxk for the possibility distribution
function π(Ln|xk), such that

mxk (φ)=1−π1(xk),mxk (Fi)= πi(xk)−πi+1(xk), i = 1, · · · ,m−1,mxk(Fm)= πm(xk)
(4)
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Fig. 1 Possible prototype label and its appropriate labels under [L1,L5]

where Fi = {π(Ln|xk)≥ πi(xk)}, i = 1, · · · ,m and {Fi}m
i=1 are referred to as the focal

elements of mxk .
The notion of mass assignment suggests a means of defining probability distri-

bution for any prototype label. Then we can obtain the least prejudiced distribu-
tion [10] of around the prototype label xk on the linguistic label set L as follows:

p(Ln|xk) = ∑
Fi:Ln∈Fi

mxk (Fi)
|Fi| (5)

where Ln ∈ L , mxk is the mass assignment of π(xk) and {Fi}i is the corresponding
set of focal elements.

With the weighting vector W = [w1, · · · ,wk, · · · ,wK ], we can obtain the collective
probability distribution on the linguistic label set L as follows:

pn = p(Ln) =
K

∑
k=1

p(Ln|xk) ·wk (6)

where n = 0, · · · ,N. We then obtain a N + 1-tuple probability distribution on the
linguistic label set L as follows (p0, · · · , pn, · · · , pN) for each alternative A. The
probability distributions of all alternatives on the label set L are shown in Table 1.

Table 1 Probability distribution on the N +1 labels regarding each alternative

Alter.
Linguistic labels

L0 · · · Ln · · · LN

A1 p1
0 · · · p1

n · · · p1
N

...
...

...
...

...
...

Am pm
0 · · · pm

n · · · pm
N

...
...

...
...

...
...

AM pM
0 · · · pM

n · · · pM
N
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2.2 Involving Expert’s Attitudinal Character in Vague
Concepts

Now we introduce a parameter α to model the confidence/certain degree of an ex-
pert. It quantifies to what extent the expert is sure that other linguistic labels around
the prototype label are appropriate to describe an alterative. With the confidence
character α , we define the possibility distribution of around prototype label xk ∈ L
on linguistic label Ln as follows:

π(Ln|xk,α) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
1− pIndk−n

Δk+1

]α
, if indmin ≤ n < pIndk;

1, if n = pIndk;[
1− n−pIndk

Δk+1

]α
, if pIndk < n ≤ indmax;

0, if n < indmin or n > indmax.

(7)

where α is a linguistic modifier and α > 0. When α > 1 it means that the expert
has an optimistic attitude (he is more sure that the prototype label is appropriate
to describe an alternative); when α = 1 it means that the expert has a neutral atti-
tude (it is equivalent to the basic model); when α < 1 it means that the expert has a
pessimistic attitude (he is less sure that the prototype label is appropriate to describe
an alternative). Without possibility of confusion, the confidence factor will be also
called attitude character.

Note that each expert can assign different confidence values according to his
preferences or belief. In order to better represent expert’s attitude factor, we in-
troduce another parameter β , where α = 2β . Although α and β have continuous
forms, for purposes of simplicity, we assign β integer values distributed around
0. For example, β = {−∞, · · · ,−3,−2,−1,0,1,2,3, · · · ,+∞}, consequently we get
α = {2−∞ · · · ,1/8,1/4,1/2,1,2,4,8, · · · ,2+∞}. In order to help experts conve-
niently express their confidence degree, we construct a totally ordered linguistic
label set with an odd cardinality. We can define the following set of linguistic labels
to represent experts’ confidence degrees.

V = {V0 = absolutely unsure,V1 = very unsure,V2 = unsure,V3 = neutral,

V4 = sure,V5 = very sure,V6 = absolutely sure}
α ={2−M,1/4,1/2,1,2,4,2M},β = {−M,−2,−1,0,1,2,M}

(8)

where M is big enough positive integer to make sure that [π(Ln|xk)]
2M → 0 if

indmin ≤ n < pIndk or pIndk < n ≤ indmax.
And then according to the procedure mentioned in the basic model, Eqs. (4)-(6),

we can infer a collective probability distribution for each alternative.

3 Ranking Based on Target-Oriented Decision Model

After linguistic aggregation, the next step of linguistic MEDM is to exploit the
best option(s) using a choice function. Most MEDM process is basically aimed at
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reaching a “consensus”, e.g. [3, 8]. Consensus is traditionally meant as a strict and
unanimous agreement of all the experts regarding all possible alternatives. The de-
cision model presented below assumes that experts do not have to agree in order
to reach a consensus. There are several explanations that allow for experts not to
converge to a uniform opinion. It is well accepted that experts are not necessarily
the decision-makers, but provide an advice [15]. Due to this observation, the lin-
guistic judgements provided by the experts does not represent the decision-makers’
preferences.

The inferred probability distribution on a set of linguistic labels for each alter-
native, as shown in Table 1, could be viewed as a general framework of decision
making under uncertainty [14], in which there are N + 1 states of nature, whereas
the probability distributions are different. Now let us consider the ranking procedure
for the probability distribution on N +1 linguistic labels in L , as shown in Table 1.
We assume that the decision-maker has a target in his mind, denoted as T . We also
assume that the target is independent on the set of M alternatives and the linguistic
judgements provided by the experts. Based on target-oriented decision model [2],
we define the following function

V (Am) = Pr(Am � T ) = ∑
L∈L

pm(Am = L) ·Pr(L � T ) =
N

∑
n=0

pm
n ·Pr(Ln � T ) (9)

We assume there exists a probability distribution on the uncertain target regarding
each linguistic label Ln, denoted as pT (Ln), where n = 0, · · · ,N. Then we define the
following function

Pr(Am � T ) =
N

∑
n=0

pm
n ·
[

N

∑
l=0

u(Ln,Ll)pT (Ll)

]
(10)

Recall that the target-oriented model has only two achievement levels, thus we can
define u(Ln,Ll) = 1, if Ln ≥ Ll ; 0, otherwise. Then we can induce the following
value function

Pr(Am � T ) =
N

∑
n=0

pm
n ·
[

n

∑
l=0

pT (Ll)

]
(11)

Now let us consider two special cases. Without additional information (if the
decision-maker does not assign any target), we can assume that the decision-maker
has a uniform probability distribution on the uncertain target T , such that

pT (Ln) =
1

N + 1
,n = 0, · · · ,N. (12)

Then we can obtain the value of meeting the uniformly linguistic target as follows:

Pr(Am � T ) =
N

∑
n=0

pm
n ·
[

n

∑
l=0

pLl (T )

]
=

N

∑
n=0

pm
n · n + 1

N + 1
(13)
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If the decision-maker assigns a specific linguistic label Ll as his target, the probabil-
ity distribution on uncertain target is expressed as

pT (Ln) =
{

1, if Ln = Ll ;
0, if Ln �= Ll .

where n = 0, · · · ,N. Then the probability of meeting target is as follows:

Pr(Am � Ll) =
N

∑
n=0

pm
n ·Pr(Ln � Ll) =

N

∑
n=l

pm
n (14)

Having obtained the utility (probability of meeting target), the choice function for
linguistic MEDM model is defined by

A∗ = arg max
Am∈A

{V (Am)} (15)

4 Illustrative Example

In this section, we demonstrate the entire process of the probabilistic model via an
example borrowed from [7].

A distribution company needs to renew/upgrade its computing system, so it con-
tracts a consulting company to carry out a survey of the different possibilities existing
on the market, to decide which is the best option for its needs. The options (alterna-
tives) are {A1 : UNIX,A2 : WINDOWS-NT,A3 : AS/400,A4 : VMS}. The consulting
company has a group of four consultancy departments as {E1 : Cost anal.,E2 :
Syst. anal.,E3 : Risk anal.,E4 : Tech. anal.}.

Each department in the consulting company provides an evaluation vector ex-
pressing its opinions for each alternative. These evaluations are assessed in the set
L of seven linguistic labels as L = {L0 = none,L1 = very low,L2 = low,L3 =
medium,L4 = high,L5 = very high,L6 = perfect}. The evaluation matrix and
weighting vector are shown in Table 2.

Table 2 Linguistic MEDM problem in upgrading computing resources

Alter.
Experts

E1 : 0.25 E2 : 0.25 E3 : 0.25 E4 : 0.25
A1 L1 L3 L4 L4

A2 L3 L2 L1 L4

A3 L3 L1 L3 L2

A4 L2 L4 L3 L2

Now let us apply our proposed model to solve the above problem. The first step
is to aggregate linguistic assessments involving vague concepts. With the linguistic
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evaluation matrix (Table 2), we obtain the minimum and maximum linguistic labels
for each alternative according to Eq. (1) as follows:

A1 A2 A3 A4

[L1,L4] [L1,L4] [L1,L3] [L2,L4]

A set of seven linguistic labels, as shown in Eq. (8), is used to represent the con-
sultant departments’s confidence degrees. Each consultant department can assign
different confidence degrees according to his preference/belief. In this example, we
consider two cases:

Case 1: the four departments assign absolutely sure as their confidence degrees.
Case 2: the four departments assign neutral as their confidence degrees.

According to linguistic aggregation with vague concepts, proposed in Section 2,
we obtain different probability distributions for the four alternatives with respect to
different cases, as shown in Table 3.

Table 3 Probability distributions on linguistic labels with respect to different cases

Cases Alter.
Linguistic labels

L0 L1 L2 L3 L4 L5 L6

Case 1

A1 0.0 0.25 0.0 0.25 0.5 0.0 0.0
A2 0.0 0.25 0.25 0.25 0.25 0.0 0.0
A3 0.0 0.25 0.25 0.5 0.0 0.0 0.0
A4 0.0 0.0 0.5 0.25 0.25 0.0 0.0

Case 2

A1 0.0 0.1823 0.1892 0.3038 0.3247 0.0 0.0
A2 0.0 0.2153 0.2847 0.2847 0.2153 0.0 0.0
A3 0.0 0.25 0.375 0.375 0.0 0.0 0.0
A4 0.0 0.0 0.375 0.375 0.25 0.0 0.0

From Table 3, it is easily seen that when the four departments assign a abso-
lutely sure attitude, it means that they are absolutely sure that a label L is appro-
priate for describing an alternative. In this case, the group probability distribution
will depend only on the weight information. For instance, for alternative A2 under
case 1, the four departments provide their judgements as {L3,L2,L1,L4} and they
have equal weight information, thus the probability distribution on the 7 labels is
(0,0.25,0.25,0.25,0.25,0,0).

Now let us rank the four alternatives according to the target-oriented ranking
procedure proposed in Section 3. In this example, the four consultant departments
provide their advice, but do not make decisions. The true decision-maker is the
distribution company. To renew a computer system, the distribution company may
simply looks for the first “satisfactory” option that meets some target. Having this



290 H.-B. Yan, V.-N. Huynh, and Y. Nakamori

in mind, we first assume that the distribution company does not assign his target,
i.e., the distribution company has a uniform target T1, which can be represented as
(L0 : 1/7,L1 : 1/7,L2 : 1/7,L3 : 1/7,L4 : 1/7,L5 : 1/7,L6 : 1/7) . If the distribution
company can provide a specific label as his target, for example, the company assigns
his target as T2 = L4 = high, it means that the distribution company is satisfactory
to choose an alternative as the best if its performance is at least “good” as high.
Table 4 shows the probability of meeting those two targets assigned by the distribu-
tion company with respect to four cases of confidence degrees provided by the four
consultant departments. From Table 4, option A4 (VMS) or A1 (UNIX) is the best
choice according to the confidence degrees provided by the four departments and
the targets provided by the distribution company.

Table 4 Probability of meeting targets

Cases Targets
Alternatives

A1 A2 A3 A4

Case 1
T1 0.5714 0.5 0.4643 0.5357
T2 0.5 0.25 0.0 0.25

Case 2
T1 0.5387 0.5 0.4464 0.5536
T2 0.3247 0.2153 0.0 0.25

5 Discussions

In this section, we shall discuss the relationships between our research and three
prior related approaches.

Huynh & Nakamori [9] have proposed a satisfactory-oriented approach to lin-
guistic MEDM. In their framework, the linguistic MEDM is viewed as a decision
making under uncertainty problem, where the set of experts plays the role of states
of the world and the weights of experts play the role of subjective probabilities as-
signed to the experts. They then proposed a probabilistic choice function based on
the philosophy of satisfactory-oriented principle, i.e., it is perfectly satisfactory to
select an alternative as the best if its performance is as least “good” as all the oth-
ers. In the aggregation step, such an approach does not directly take into account
the underlying vagueness of the labels. The proposed linguistic aggregation some-
what generalizes the work provided in [9]. In particular, when all the experts have
absolutely sure confidence degree, our linguistic aggregation is equivalent to that
given in [9]. For example, under Case 1 of Table 3, the linguistic aggregation results
with a probability distribution on the set of linguistic labels, which is dependent on
the weights of experts. In the choice function step, although both our approach and
that given in [9] are based on the satisfactory-oriented philosophy, we incorporate
decision maker’s target preference into the linguistic MEDM problems.
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Ben-Arieh & Chen [1] have proposed a so-called FLOWA aggregation operation,
which assigns fuzzy membership functions to all linguistic labels by linearly spread-
ing the weights from the labels to be aggregated. The aggregating result changes
from a single label to a fuzzy set with membership levels of each label. And then
the fuzzy mean and standard deviation are used as two criteria to rank the aggre-
gation results. Compared with [1], in the aggregation step, our approach provides a
probabilistic formulation for the linguistic aggregation involving underlying vague-
ness of linguistic labels. In addition, our approach can model experts’ confidence
degree to quantify the appropriateness of linguistic labels. In the choice function
step, our approach considers decision-maker’s requirements.

Tang [17] has proposed a collective decision model based on the semantic sim-
ilarities of linguistic labels [18] to deal with vague concepts and compound lin-
guistic expressions1. In this approach, a similarity relation matrix < R,L > for a
set of basic linguistic labels is defined beforehand. And then by viewing similarity
distribution as possibility distribution, the collective probability distribution on the
linguistic label set L is obtained by Eqs. (4)-(6). Finally, two methods are suggested
to rank the alternatives: an expected value function and a probabilistic pairwise com-
parison method. The expected value function is similar to the ranking function in [1]
and the pairwise comparison method is quite similar with the satisfactory-oriented
principle proposed in [9]. Compared with our approach, the linguistic aggregation
by [17] violates the bounded property of aggregation operation. In addition, the ap-
proach in [17] does not consider experts’ confidence degrees. In the choice function
step, it does not take into account decision-makers’ requirements.

6 Conclusions

In this paper, we have proposed a probabilistic model for MEDM problem un-
der linguistic assessments, which is able to deal with linguistic labels having par-
tial semantic overlapping as well as incorporate experts’s confidence degrees and
decision-makers’ preference information. It is well known that linguistic MEDM
problems follow a common schema composed of two phases: an aggregation phase
that combines the individual evaluations to a collective evaluations; and an exploita-
tion phase that orders the collective evaluations according to a given criterion, to
select the best options. For our model, our linguistic aggregation does not generate
a specific linguistic label for each alternative, but a set of labels with a probabil-
ity distribution, which incorporates experts’ vague judgements. Moreover, experts’
confidence degree is also incorporated to quantify the appropriateness of linguistic
labels other than the prototype label. Having obtained the probability distributions
on linguistic labels, we have proposed a target-oriented choice function to establish
a ranking ordering among the alternatives. According to this choice function, the
decision-maker is satisfactory to select an alternative as the best if its performance
is as at least “good” as his requirements.

1 The compound linguistic expressions is beyond the scope of our research, thus we only
consider the vague concepts in linguistic MEDM problems.
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Constructing Fuzzy Random Goal Constraints
for Stochastic Fuzzy Goal Programming

Nureize Arbaiy and Junzo Watada

Abstract. This paper attempts to estimate the coefficient of the goal constraints
through a fuzzy random regression model which plays a pivotal role in solving a
stochastic fuzzy additive goal programming. We propose the two phase-based solu-
tions; in the first phase, the goal constraints are constructed by fuzzy random-based
regression model and, in the second phase, the multi-objective problem is solved
with a stochastic fuzzy additive goal programming model. Further, we apply the
model to a multi-objective decision-making scheme’s use in palm oil production
planning and give a numerical example to illustrate the model.

1 Introduction

In the formation of a classical goal programming model, goal constraints are formed
for each associated objective under the consideration of the contained goal vari-
ables. The goal variables measure the deviation between goal levels and actual out-

comes. The general formulation of goal constraints is written as
n
∑
j=1

ai jXj +d−
i −d+

i

for i = 1, ...,m where, Xj denotes the decision variable, ai j is the coefficient of the
jth decision variable, gi is the target goal, and d+

i and d−
i are the positive and the

negative deviations with non-negative value, respectively.
Usually, it is assumed that decision makers are responsible for deciding the con-

stant values of a system model; i.e., the relative weight, the actual values for the
coefficients ai j , and the goal target values of gi . These, however, might contain
errors, which should ruin the formulation of the model [15]. A number of studies
have suggested methods in order to minimize these potential defects. For instance,
analytic hierarchy process [18] and conjoint analysis [2] are used to determine the
relative weights or priorities of the goal. Furthermore, logarithmic transformations
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of goal variables [14], input-output analysis [5] and regression analysis [7] have also
been used to estimate the coefficients of goal constraints.

When the decision makers are responsible to decide the model’s coefficient, it
makes these decisions crucial and influential to the model’s result. Nevertheless, the
model coefficients are not exactly known, as relevant data is sometimes not given or
is sometimes difficult to obtain or estimate. Therefore, the estimation of the goal con-
straint’s coefficient in the fuzzy additive-goal programming model by using fuzzy
random variable is proposed by Nureize and Watada to solve the multi-objective
problem [12]. In addition, decision makers are assumed to provide the value of
these coefficients from historical data or by the statistical inference, though this is
sometimes uncertain [13]. Hence, it is more realistic to consider that estimated val-
ues of the coefficients are imprecise rather than precise value. Additionally, the given
data may meanwhile include either stochastic information or fuzzy information.

Consequently, fuzzy set theory was introduced in the goal programming to deal
with such imprecision. The use of fuzzy set theory in the goal programming was
first formulated by [3, 4, 11]. Tiwari et al. have illustrated various aspects of de-
cision problem using fuzzy goal programming [17]. Unlike conventional goal pro-
gramming, which requires a decision maker to set definite aspiration values for each
objective, fuzzy goal programming is treated in a flexible manner when specifying
the aspiration values. Moreover, randomness in a goal programming problem results
in a stochastic goal programming problem. A stochastic approach to the goal pro-
gramming has put forward by Contini [1] to deal with the problem of attaining a
set of targets (goals) with the sub-goals. The stochastic goal programming scheme
with estimated parameters is proposed by Sengupta [16] and stochastic fuzzy goal
programming in addressing the randomness in fuzzy goal programming problems
has been addressed by Iskander [6].

Since it is sometimes difficult to estimate the coefficients of goal constraints in
such situations, mathematical analysis is used to decide these coefficients by using
statistical data. Hence, this paper attempts to estimate the coefficients ai j of decision
variables and further develop the fuzzy random model for the goal constraints. The
objectives of this study are twofold. First, fuzzy random regression model is used to
estimate the coefficients. Second, the stochastic fuzzy additive goal programming is
then used to solve the multi-objective linear problem where the goal constraints are
developed by mean of fuzzy random regression models.

The remainder of this paper is divided into five sections. Section 2 explains the
fuzzy regression model based on fuzzy random variables. Section 3 describes the
solution method for stochastic fuzzy goal programming where the goal constraints
are developed by fuzzy random regression model. The numerical example to palm
oil production planning is illustrated in Section 4. Section 5 covers conclusions.

2 Fuzzy Random Regression Model

Given a universe Γ , let Pos be a possibility measure defined on the power set P(Γ )
of Γ . Let ℜ be the set of real numbers. A function Y : Γ → ℜ is said to be a fuzzy
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variable defined on Γ (see [10]). The possibility distribution μY of Y is defined by
μY (t) = Pos{Y = t}, t ∈ ℜ, which is the possibility of event {Y = t}. For fuzzy
variable Y with possibility distribution μY , the possibility and necessity of event
{Y � r} are given, respectively, in the following forms:

Pos{Y � r} = sup
t≤r
μY (t),

Nec{Y � r} = 1− sup
t>r
μY (t).

(1)

From [8], we can define the expectation based on an average of possibility and
necessity. The motivation behind the introduction of the expectation is to develop a
sound aggregate of the extreme cases such as the possibility (expressing a level of
overlap) and necessity (articulating a degree of inclusion). The expected value of a
fuzzy variable is presented as follows:

Definition 2.1. Let Y be a fuzzy variable. The expected value of Y is defined as

EEE[Y ] =

∞∫
0

(
1
2

[
1 + sup

t≥r
μY (t)− sup

t <r
μY (t)

])
dr

−
0∫

−∞

(
1
2

[
1 + sup

t≤r
μY (t)− sup

t >r
μY (t)

])
dr

(2)

under assumption that the two integrals are finite. Making use of (2), we determine
the expected value of Y to be EEE[Y ] = al+2c+ar

4 when Y is a triangular fuzzy number
(c,al,ar). What follows here is the definition of fuzzy random variables and their
expected value operators.

Definition 2.2. Suppose that (Ω ,Σ ,Pr) is a probability space and Fv is a collection
of fuzzy variables defined on possibility space (Γ ,P(Γ ),Pos). A fuzzy random vari-
able is a map x :Ω → Fv such that for any Borel subset B of ℜ, Pos{X(ω) ∈ B} is
a measurable function of ω .

Let X be a fuzzy random variable on Ω . From the above definition, we know that,
for each ω ∈Ω ,X(ω) is a fuzzy variable. Furthermore, a fuzzy random variable X
is said to be positive if, for every ω , X is almost surely positive.

Let V be a random variable on probability space (Ω ,Σ ,Pr). Define that for every
ω ∈Ω , X(ω) = (V (ω)−2,V(ω)+ 2,V(ω)+ 6)Δ which is a triangular fuzzy vari-
able on some possibility space (Γ ,P(Γ ),Pos). Therefore, X is a (triangular) fuzzy
random variable.

For any fuzzy random variable X on Ω , the expected value of the fuzzy variable
X(ω) is denoted by E[X(ω)], which has been proved to be a measureable function
of Ω ; i.e., it is a random variable. Theorem 1 [9]. Given this, the expected value
of the fuzzy random variable X is defined as the mathematical expectation of the
random variable E[X(ω)].

Definition 2.3. Let X be a fuzzy random variable defined on a probability space
(Ω ,Σ ,Pr). The expected value of X is defined as
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EEE[X ] =
∫
Ω

⎡⎢⎢⎣
∞∫
0

(
1
2

[
1 + sup

t≥r
μZ(ω)(t) − sup

t <r
μZ(ω)(t)

])
dr

−
0∫

−∞

(
1
2

[
1 + sup

t≤r
μZ(ω)(t) − sup

t >r
μZ(ω)(t)

])
dr

⎤⎥⎥⎦Pr(dω). (3)

Definition 2.4. Let X be a fuzzy random variable defined on a probability space
(Ω ,Σ ,Pr) with expected value e. The variance of X is defined as

Var[X ] = E[(X − e)2] (4)

where e = E[X ] given by Definition 3.

Fuzzy random data, denoted as Yi,Xik for all i = 1, · · · ,N and k = 1, · · · ,K defined
as

Yi =
MYi⋃
t=l

{
(Yt

i ,Yt,l
i ,Yt,r

i )� , pt
i

}
(5)

Xik =
MXik⋃
t=l

{
(Xt

ik,X
t,l
ik ,Xt,r

ik )� ,qt
ik

}
(6)

respectively. That means all values are given fuzzy variables with probabilities,
where fuzzy variables (Yt

i ,Yt,l
i ,Yt,r

i )� and (Xt
ik,X

t,l
ik ,Xt,r

ik )� are obtained with prob-
ability pt

i and qt
ik for i = 1, · · · ,N, k = 1, · · · ,K and t = 1, · · · ,M or t = 1, · · · ,MXik

respectively.
Let us denote a fuzzy linear model with fuzzy coefficients A

∗
i , · · · ,A∗

K as follows:

Y
∗
i = A

∗
i Xi1 + · · ·+ A

∗
KXiK , (7)

where each Y
∗
i denotes an estimate of the output and A

∗
k = ([A∗l

k +A
∗r
k ]

2 ,A
∗l
k ,A

∗r
k )� are

symmetric triangular fuzzy coefficients when triangular fuzzy random data Xik are
given for i = 1, · · · ,N, k = 1, · · · ,K.

The input data Xik = (xik,xl
ik,x

r
ik)� and output data Yi = (yi,yl

i,y
r
i )� for all and i =

1, · · · ,N, k = 1, · · · ,K are fuzzy random variables. Therefore, the following relation
should hold:

Y
∗
i = A

∗
i Xi1 + · · ·+ A

∗
KXik ⊃FR Yi, i = 1, · · · ,N (8)

where ⊃FR is a fuzzy random inclusion relation.
Let us use the one-sigma (1×σ) confidence interval to express the confidence in-

terval, which is induced by the expectation and variance of a fuzzy random variable
as follows:

I [eX ,σX ]�
[
E(X)−

√
var(X),E(X)+

√
var(X)

]
(9)

Hence, the fuzzy random regression model with σ−confidence intervals is de-
scribed as follows:
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min
A

J(A) =
K

∑
k=1

(Ar
k −A

l
k)

A
r
k ≥ A

l
k,

Y
∗
i = A

∗
i I [eXi1 ,σXi1 ]+ · · ·+ A

∗
KI [eXiK ,σXiK ] ⊃h̃ I [eYi ,σYi ] ,

i = 1, · · · ,N; k = 1, · · · ,K.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(10)

The inclusion relation should be written as follows.

Y
∗
i +{eXiK +σXiK} ≤ (Ar

K · {eXiK +σXiK})T ,

Y
∗
i −{eXiK −σXiK} ≥ (Al

K · {eXiK −σXiK})T .

}
(11)

Given this, finding the value of the solution of the problem may rely on some heuris-
tics proposed in [19]. The solution of the fuzzy random regression model with con-
fidence interval can be rewritten as a problem of samples with one output and input
interval values [20, 21].

3 The Solution

In this section we introduce the stochastic based fuzzy additive goal programming
(SFaGP) with fuzzy random goal constraints. In the first part, stochastic fuzzy goal
programming with additive model was explained, and followed by the solution of
SFaGP model with fuzzy random goal constraints.

3.1 Stochastic Based Fuzzy Additive Goal Programming

The additive modeling in stochastic fuzzy goal programming was explored by em-
ploying the usual addition as an operator to aggregate the fuzzy stochastic goals in
the conventional fuzzy additive goal programming. The stochastic problem is refor-
mulated based on the additive model [17] and defined as follows:

Find X ,

to satisfy Gi(X)≥̃
′′
gi; i = 1, · · · ,m

subject to AX ≤ b,
X ≥ 0.

⎫⎪⎪⎬⎪⎪⎭ (12)

where ≥̃
′′

refers to the stochastic and fuzzification of the aspiration level. A linear

membership function for the fuzzy stochastic goal Gi(X)≥̃
′′
gi is given according to

[22]. The membership function is described as follows:

μi =

⎧⎪⎨⎪⎩
1 if G̃i(X)≤di j
Gi(X)−di j

gi j−di j
if gi j ≤ G̃i(X) ≤ di j

0 if G̃i(X) ≥ gi j

(13)

where di j < gi j and
m

max
j=1

di j <
m

min
j=1

gi j.
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The stochastic fuzzy additive goal programming (SFaGP) is given by adding the
memberships function together as:

max V (μ) =
m

∑
i=1

E[μi(Gi(X))]

subject to E[μi(Gi(X))] ≥ αi,
AX ≤ b, μi ≤ 1,
X ,μ ≥ 0; i = 1, · · · ,m

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (14)

where E[μi(Gi(X))] denotes the expectation of μi(Gi(X)) and αi is a satisfactory
threshold determined by the decision maker. Let us denote gi j as the target value,
di j as the tolerance or aspiration level, and pi j as the probability decided for gi. The
value is decided by the decision maker with di j ≤ gi j. When the goal constraints

E[μi(Gi(X))] are expressed by
m

∑
i=1

p j
i μi(Gi(X)) , model (14) is rewritten as:

max V (μ) =
m

∑
i=1

pi jμi(Gi(X))

subject to
m

∑
i=1

pi jμi

(
Gi(X)−di j

gi j −di j

)
≥ αi,

max{di j} ≤ μi(Gi(X)) ≤ min{gi j},
AX ≤ b; xi ≥ 0; i = 1, · · · ,m.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(15)

Considering the fuzzy stochastic decision function, μi and αi are then maximized in
the model (15).

3.2 Stochastic Fuzzy Additive Goal Programming with Fuzzy
Random Goal Constraints

In this study we propose the fuzzy random regression model to estimate the co-
efficient of the goal constraints in the fuzzy goal programming definition. Using
the fuzzy random variables based regression model, we estimate the coefficient c̃i j

for decision parameters. The solution for fuzzy random variables results in interval
numbers [al

j,a
r
j] where al and ar are the lower and upper boundaries, respectively.

Considering the center coefficient value c̃ = 0.5(al + ar), the fuzzy stochastic goal
constraints are turned into G̃ j(X) = ξi j(xi) where the ξi j expresses the fuzzy random
coefficient for decision variables, xi. The SFaGP with fuzzy random goal constraints
are then described as follows:

max V (μ) =
m

∑
i=1

p j
i μi(ξi j(X))

subject to
m

∑
i=1

p j
i μi

(
ξi j(X)−di j

gi j −di j

)
≥ αi,

max{di j} ≤ μi(ξi j(X)) ≤ min{gi j},
AX ≤ b; xi ≥ 0; i = 1, · · · ,m

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(16)
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where V (μ) is the fuzzy achievement function or fuzzy decision function, and ξi j

is fuzzy random coefficient. The proposed two-phase programming solution of the
model can be illustrated as in Fig. 27.1.

Hence, the two phases of solving process are explained from the solution’s steps.
First, we use fuzzy random variables based regression model to build the fuzzy
random goal constraint. Second we model the SFaGP consisting of fuzzy random
goal constraints to solve fuzzy multi-objective problem. The subsequent chapter will
provide the numerical example to illustrate the proposed models.

Problem description

Phase I
For each goal, apply Fuzzy Random Regression

Model to construct goal constraints.

Phase II
Construct multi-goal model and solve fuzzy

random based goal constraints by using Stochastic
Fuzzy Additive Goal Programming Model.

Decision analysis

�

�

�

Fig. 1 A Flowchart for Solution Model

Table 1 Palm Oil Production and Profit Target

Oil Palm Product Production Profit
2009 2010 2009 2010

Crude Palm Oil 17.62 18.56 38.76 40.83
Crude Palm Kernel 2.09 2.19 4.70 5.04

4 A Numerical Example: Palm Oil Production Planning

The first step involves the problem description such as determine the decision pa-
rameters, the objectives, the constraints and the constant value for each parameters.
We consider a national planning of palm oil production in Malaysia. The national
target for the year of 2009 and 2010 are as in Table 27.1. Two objectives are consid-
ered; which are maximizing the total production and the profit returns. Let us assume
two functional objectives are investigated under four system constraints. Two main
products represents the decision variables are crude palm oil (CPO) and crude palm
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kernel oil (CPKO). The main resources that govern the production target are such
as the fresh fruit bunch, the land area that cultivated the fruit, the mills capacity and
the oil extraction rate.

The following step involves data preparation for estimating decision coefficients
by using Fuzzy Random-based Regression Model. Two data sets are collected from
Malaysian Palm Oil Board for CPO and CPKO production and price for 5 years
from 2003 to 2007. Since two objectives were defined for this problem, two fuzzy
random regression models were used to estimate the weights of decision parame-
ters x1 and x2. From Equation (10), the fuzzy regression model corresponding to the
input-output data was obtained as follows. The linear program of Equation (17)and
Equation (18)are for oil palm production and for profit of oil palm products respec-
tively. Production Model:

minA J(A) =
2
∑

k=1
(Ar

k −A
l
k)

subject to A
r
1 ≥ A

l
1 ≥ 0; A

r
2 ≥ A

l
2 ≥ 0;

(1.3221×107)×A
l
1 +(3.8000×107)×A

l
2 ≤ 1.6472×107 ,

(1.3916×107)×A
l
1 +(4.3841×107)×A

l
2 ≤ 1.7602×107 ,

(1.4333×107)×A
l
1 +(2.4976×107)×A

l
2 ≤ 1.8111×107 ,

(1.5404×107)×A
l
1 +(3.9312×107)×A

l
2 ≤ 1.9065×107 ,

(1.5600×107)×A
l
1 +(3.5612×107)×A

l
2 ≤ 1.9940×107 ,

(1.3755×107)×A
r
1 +(4.1073×107)×A

r
2 ≥ 1.7152×107 ,

(1.4455×107)×A
r
1 +(6.3622×107)×A

r
2 ≥ 1.8290×107 ,

(1.4692×107)×A
r
1 +(3.2105×107)×A

r
2 ≥ 1.8604×107 ,

(1.6039×107)×A
r
1 +(4.0302×107)×A

r
2 ≥ 1.9545×107 ,

(1.6126×107)×A
r
1 +(3.9362×107)×A

r
2 ≥ 2.0498×107 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17)

Return Model:

minA J(A) =
2
∑

k=1
(Ar

k −A
l
k)

subject to A
r
1 ≥ A

l
1 ≥ 0; A

r
2 ≥ A

l
2 ≥ 0;

(1.5106×103)×A
l
1 +(1.5067×103)×A

l
2 ≤ 2.9749×103 ,

(1.5334×103)×A
l
1 +(2.4746×103)×A

l
2 ≤ 3.8034×103 ,

(1.3434×103)×A
l
1 +(2.0622×103)×A

l
2 ≤ 3.6000×103 ,

(1.4498×103)×A
l
1 +(1.5762×103)×A

l
2 ≤ 3.2675×103 ,

(2.5816×103)×A
l
1 +(2.9733×103)×A

l
2 ≤ 5.2029×103 ,

(1.5695×103)×A
r
1 +(1.5285×103)×A

r
2 ≥ 3.0170×103 ,

(1.5658×103)×A
r
1 +(3.0251×103)×A

r
2 ≥ 3.9698×103 ,

(1.3818×103)×A
r
1 +(2.1727×103)×A

r
2 ≥ 3.6970×103 ,

(1.4956×103)×A
r
1 +(1.7427×103)×A

r
2 ≥ 3.3633×103 ,

(2.6437×103)×A
r
1 +(3.4558×103)×A

r
2 ≥ 5.4196×103 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(18)

We obtained the optimal solution of A
l

and A
r

for production and profit; by solving

the linear program problem of Equations (17) and (18). The interval of [Al
,A

r] shows
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the estimated weight for decision parameters. Using the central values of fuzzy in-
tervals, the fuzzy random regression models are written with confidence interval as
follows:

Y production =
(

A
l+A

r

2

)
T

I [eXiK ,σXiK ]

= (1.254)T I [eX1 ,σX1 ]+ (0.000)T I [eX2 ,σX2 ] ,

}
(19)

Y return =
(

A
l+A

r

2

)
T

I [eXiK ,σXiK ]

= (0.856)T I [eX1 ,σX1 ]+ (1.100)T I [eX2 ,σX2 ] .

}
(20)

The two models of Equations (19) and (20) represent the goal constraints in fuzzy
goal programming. Therefore the stochastic fuzzy goal program model is then writ-
ten as follows:

(1.250x1 +0.000x2)≥̃
′′
g1

(1.250x1 +0.000x2)≥̃
′′
g2

subject to
(3.83x1 +0.99x2) ≤ 87.75,
(x1 +x2) ≤ 4.49,
(17.73x1 +2.13x2) ≤ 96.55,
(x1 +x2) ≤ 20.21,
μi ≤ 1; xi,μi ≥ 0.;

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(21)

In this example, two decision makers are assumed to decide the target value for each
goal with the probabilities, tolerance value and the threshold value. The parameters
values used in the model are as shown in Table 27.3, which including the results
from fuzzy random regression derived from the first stage.

Now the stochastic fuzzy goals are converted into crisp ones by using member-
ship function as defined in (13). Thus the problem in Model (21) reduces to

max V (μ) = 0.8 1.250x1+0.000x2−0.6
2.075−0.6 + 0.2 1.250x1+0.000x2−0.2

2.075−0.2
+0.3 1.126x1+0.867x2−0.4

4.705−0.4 + 0.7 1.126x1+0.867x2−0.1
4.705−0.1

subject to 0.8 1.250x1+0.000x2−0.6
2.075−0.6 + 0.2 1.250x1+0.000x2−0.2

2.075−0.2 ≥ 0.25,

0.3 1.126x1+0.867x2−0.4
4.705−0.4 + 0.7 1.126x1+0.867x2−0.1

4.705−0.1 ≥ 0.15,
2

max
i=1

k1 ≤ 1.250x1 + 0.000x2 ≤
2

min
i=1

g1,

2
max
i=1

k2 ≤ 1.126x1 + 0.867x2 ≤
2

min
i=1

g2,

3.83x1 + 0.99x2 ≤ 87.75,
x1 + x2 ≤ 4.49,
17.73x1 + 2.13x2 ≤ 96.55,
x1 + x2 ≤ 20.21,
xi ≥ 0; i = 1,2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(22)

Computer software LINGO was used to run the equivalent ordinary linear program-
ming model (22).
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The first stage uses the fuzzy random regression to estimate the coefficient of the
goal constraints. The regression models (17) and (18) were applied to the data set
of palm oil production and returns, respectively. The fuzzy random coefficients are
obtained as shown in Table 27.3, where the center value is then used for solving
the second stage. This result illustrates the coefficients for each attribute and shows
the range of the evaluation. The result depicts that the production of CPO oil has
significant contribution with weights of (1.237, 1.271) compared to the CPKO. This
is related to the expert’s judgment where about 90% CPO will be extracted from
FFB. For the profit returns, the CPO and CPKO have the weights (0.56) and (1.006,
1.194), respectively. The interval form of the coefficient shows the flexibility which
reflects the fuzzy judgment in the evaluation.

The second stage concerns solving the multi-objective problem with stochastic
problem. The conventional FAGP is used by adding the stochastic properties and
the goal constraints consist of fuzzy random model which was developed in the first
stage. The model (9) is solved by using the simplex method. The results obtained by
the proposed method are x1 = 1.66, x1 = 2.83 with achieved goal values G1 = 2.07,
G2 = 4.32 and membership values μ1 = 0.98 and μ2 = 0.93. Hence, the first goal
(production) is 98% achieved whereas the latter (revenue) is achieved by 93% .

Table 2 The Result from Fuzzy Random Regression

Goal Fuzzy Random Coefficient ξi j
x1 x2

Production [1.237,1.271] [0.000,0.000]
Return [0.856,0.856] [1.006,1.194]

Table 3 Parameters Value for Stochastic-FaGP

Goal Fuzzy Random Coefficient Target Probability Tolerance Threshold
x1 x2 gi pi di αi

Production 1.254 0.000 [2.075,2.310] [0.8,0.2] [0.6,0.2] 0.25
Return 0.856 1.100 [4.705,4.587] [0.3,0.7] [0.4,0.1] 0.15

5 Conclusions

In this paper, we proposed the stochastic fuzzy additive goal programming method
with fuzzy random goal constraints which consists of two phases of solution in or-
der to solve the fuzzy stochastic multi-objective problem. The fuzzy random based
regression model was introduced in the first phase to build the goal constraints,
and is used to estimate the coefficient of goal constraints using historical data. The
property of fuzzy random regression model is utilized to resolve the co-existence
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of fuzziness and randomness in the data, in which many real situations might oc-
cur. In the second phase, fuzzy stochastic multi-objective problem was solved using
stochastic fuzzy additive goal and goal constraints model were derived from the first
part of the solution. In this study, apart from solving the multi-objective problem,
the proposed method suggests to use historic data to approximate the coefficient
due to the difficulty of determining such value. The analytical results demonstrate
that the proposed method using the central values of fuzzy intervals can achieve
the stochastic based fuzzy goal programming. This shows that the fuzzy random
regression used in the first stage of solution enables us to reduce the difficulty of
determining the coefficient value for the multi-objective model as produced by the
conventional fuzzy goal programming. In this study fuzzy random regression model
effectively determines the coefficients value from historical data.
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Bags, Toll Sets, and Fuzzy Sets

Sadaaki Miyamoto

Abstract. The aim of the present paper is to show two mathematical structures of
bags and toll sets that are comparable with fuzzy sets. Bags which are also called
multisets is generalized to real-valued bags with membership values in [0,∞]. This
generalization is more similar to fuzzy sets than conventional integer-valued bags.
Correspondence between a bag and a fuzzy set is shown. Another class of set-like
structure is called toll sets, which are similar to and yet different from bags. Al-
though the latter two are less-known, we show why it is useful to study real-valued
bags and toll sets in applications in addition to fuzzy sets. In particular, s-norms and
t-norms for real-valued bags and toll sets are studied. Bag relations with max-s and
max-t compositions and toll relations with min-s and min-t compositions are also
considered.

1 Introduction

Bags alias multisets have been studied by computer scientists as a basic data struc-
ture [1, 4, 7]. More recently generalizations of bags have been studied by researchers
which include fuzzy bags [21, 22, 5, 6, 17, 18, 19, 9, 10, 11, 12, 13, 15, 20], real-
valued bags [16], and another class of generalized bags [14]. In these generaliza-
tions, real-valued bags can be compared with fuzzy sets, as we will see later.

Another less-known class that can be compared with fuzzy sets is toll sets pro-
posed by Dubois and Prade [2]. Although they did not study this class in detail, we
can expect this concept can have a deep structure [8].

In this paper we overview these two and show in what sense these two can be
compared with fuzzy sets, by showing basic relations and operations. Moreover we
introduce bag relations and toll relations which are similar to fuzzy relations and
discuss where these relations are different from fuzzy relations.

Sadaaki Miyamoto
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2 Bags and Real-Valued Bags

Throughout this paper a basis set of objects is denoted by X . Unless stated otherwise,
X is assumed to be a finite set for simplicity.

2.1 Crisp Bags

A (crisp) bag M of X is characterized by a function CM(·) which is called count
function of M, whereby a natural number including zero corresponds to each x ∈ X :
CM : X →{0,1,2, . . .}.

When X = {x1, . . . ,xn}, We may express a crisp bag as

M = {k1/x1, . . . ,kn/xn}

or

M = {
k1︷ ︸︸ ︷

x1, . . . ,x1, . . . ,

kn︷ ︸︸ ︷
xn, . . . ,xn}.

In this way, an element of X may appear more than once in a bag.

Basic Operations for Bags

The followings are basic relations and operations for crisp bags.

1. (inclusion): M ⊆ N ⇔CM(x) ≤CN(x), ∀x ∈ X .
2. (equality): M = N ⇔CM(x) = CN(x), ∀x ∈ X .
3. (union): CM∪N(x) = max{CM(x),CN(x)}.
4. (intersection): CM∩N(x) = min{CM(x),CN(x)}.
5. (addition or sum): CM+N(x) = CM(x)+CN(x).
6. (scalar multiplication): CαM = αCM(x), where α is a nonnegative integer.
7. (Cartesian product): Let P is a bag of Y . CM×P(x,y) = CM(x)CP(y).

We use ∨ and ∧ for max and min, respectively. Note that the relations and operations
are similar to those for fuzzy sets. However, bags have the addition operation that
fuzzy sets do not have, and the Cartesian product for bags is different from that for
fuzzy sets.

2.2 Real-Valued Bags

A straightforward generalization is that we assume a count function can take an ar-
bitrary positive real value. Moreover the value of infinity should be included into the
range of a count function, as we show its usefulness later. Thus, CM : X → [0,+∞]
(note [0,+∞] = [0,∞)∪{+∞}). Since count function takes real values, we say this
generalization real-valued bags, or shortly R-bags. Note that the above definitions
of basic relations and operations 1–7 are unchanged.
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Complementation of R-Bags

A function N : [0,+∞] → [0,+∞] with the next properties is used to define a com-
plementation operation:

(i) N (0) = +∞, N (+∞) = 0.
(ii) N (x) is strictly monotonically decreasing on (0,+∞).
(iii) N (N (x)) = x.

A typical example is

N (x) =
const

x
(const > 0) (1)

An operation for the complement is then defined:

9.(complement):
CM̄(x) = N (CM(x)).

This operation justifies the generalization into R-bags, i.e., even when we start from
crisp bags, the result of complementation is generally real-valued.

We immediately have the next two propositions; the proof is easy and omitted.

Proposition 2.1. For arbitrary R-bags M,N, the next properties are valid:

(M) = M (2)

M∪N = M̄∩ N̄, M∩N = M̄∪ N̄. (3)

Proposition 2.2. Let an empty bag /0 and the maximum bag Infinity in R-bags be

C/0(x) = 0, ∀x ∈ X , (4)

CInfinity(x) = +∞, ∀x ∈ X . (5)

Then we have
/̄0 = Infinity, Infinity = /0. (6)

s-Norms and t-Norms for Bags

We introduce two functions t(a,b) and s(a,b) like those in fuzzy sets, but the defi-
nitions are different.

Definition 2.1. Two functions t : [0,+∞] × [0,+∞] → [0,+∞] and s : [0,+∞] ×
[0,+∞] → [0,+∞] having the next properties (I)–(IV) are called a t-norm and an
s-norm for R-bags, respectively. An s-norm is also called a t-conorm for bags.

(I)[monotonicity] For a ≤ c, b ≤ d,

t(a,b) ≤ t(c,d),
s(a,b) ≤ s(c,d).
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(II)[symmetry]
t(a,b) = t(b,a), s(a,b) = s(b,a).

(III)[associativity]

t(t(a,b),c) = t(a, t(b,c)),
s(s(a,b),c) = s(a,s(b,c)).

(IV)[boundary condition]

t(0,0) = 0, t(a,+∞) = t(+∞,a) = a,

s(+∞,+∞) = +∞, s(a,0) = s(0,a) = a.

A purpose to introduce such norms for bags is to generalize the intersection and
union operations. First we note that s(a,b) = a + b, s(a,b) = max{a,b}, and
t(a,b) = min{a,b} satisfy the above conditions (I)–(IV). Thus the s-norms and
t-norm represent the addition, union, and intersection. We moreover introduce a
generating function g(x) for s-norm.

Definition 2.2. A function g : [0,+∞] → [0,+∞] is called a generating function for
s-norm if it satisfies the next (i)–(iii):

(i) it is strictly monotonically increasing,
(ii) g(0) = 0, g(+∞) = +∞,
(iii) g(x + y)≥ g(x)+ g(y), ∀x,y ∈ [0,+∞].

We have the next two propositions.

Proposition 2.3. Let
s(a,b) = g−1(g(a)+ g(b)). (7)

Then s(a,b) is an s-norm.

An example of the generation function is

g(x) = xp (p ≥ 1). (8)

Proposition 2.4. Let s(a,b) is an s-norm and N is a complementation operator.
Then

t(a,b) = N (s(N (a),N (b))) (9)

is a t-norm. Suppose t(a,b) is a t-norm, then

s(a,b) = N (t(N (a),N (b))) (10)

is an s-norm.

If a pair of t-norm and s-norm has the above property stated in Proposition 2.4, we
say (s,t) has the duality of norm and conorm. The duality has the next property.
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Proposition 2.5. Suppose s0(a,b) is an s-norm and t0(a,b) is derived from s0(a,b)
by the operation (9). Let

s(a,b) = N (t0(N (a),N (b)))

Then s(a,b) = s0(a,b). Suppose also that t0(a,b) is a t-norm and s0(a,b) is derived
from t0(a,b) by the operation (9). Let

t(a,b) = N (s0(N (a),N (b)))

Then t(a,b) = t0(a,b).

We apply s-norm and t-norm to define bag operations MS N and MT N:

CMS N(x) = s(CM(x),CN(x)). (11)

CMT N(x) = t(CM(x),CN(x)). (12)

Let us consider typical examples.

Example 2.1. The standard operators

s(a,b) = max{a,b} (13)

t(a,b) = min{a,b} (14)

are an s-norm and a t-norm, respectively. This pair has the duality stated in Propo-
sitions 2.4 and 2.5. where N = const/x.

Example 2.2. Let g(x) be given by (8). Using this generating function, we have

s(a,b) = (ap + bp)
1
p , (15)

t(a,b) = (a−p + b−p)−
1
p . (16)

This pair has the duality stated in Proposition 2.4 when N = const/x is used. This
example includes the addition, max, and min operations. First, s(a,b) = a + b is
a particular case of (15) for p = 1. Moreover s(a,b) = max{a,b} and t(a,b) =
min{a,b} are obtained from (15) and (16) when p → +∞.

3 Toll Sets

Toll sets proposed by Dubois and Prade [2] has memberships in [0,+∞] which ap-
pears to be the same as that for bags. The concept of toll sets is, however, different
from bags. Dubois and Prade suggest the following example of a toll set.

Example 3.1. Let x represents a person. He wants to belong a club YOUNG. If
x is perfectly young, he does not have to pay any charge when he belongs to
YOUNG club. His charge is denoted by φYOUNG(x) as a membership. In this case
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φYOUNG(x) = 0. If he is old and does not match concept YOUNG, he has to pay a
charge: thus φYOUNG(x) > 0. If x is very old and is not relevant at all to YOUNG, he
cannot belong to the club however much he pays, and hence φYOUNG(x) = +∞.

By abstraction, we have the concept of toll sets. A toll set T is characterized by a
membership function φT : X → [0,+∞] with the following interpretation:

(I) If x is perfectly relevant to T , φT (x) = 0.
(II) If relevance of x to T is ambiguous, 0 < φT (x) < +∞.
(III) If x is irrelevant at all to T , φT (x) = +∞.

It is natural to define inclusion of toll sets as follows.

T ⊆ T ′ ⇐⇒ φT (x) ≥ φT ′(x), ∀x ∈ X . (17)

with the obvious definition of equality:

T = T ′ ⇐⇒ φT (x) = φT ′(x), ∀x ∈ X . (18)

We also have
φ /0(x) = +∞, ∀x ∈ X . (19)

Thus, toll sets are very different from bags, although their ranges of the membership
functions are the same.

Complementation of Toll Sets

The function introduced for bags N : [0,+∞] → [0,+∞] with the monotonically
decreasing property, N (N (x)) = x, and N (0) = +∞, N (+∞) = 0 is also useful
for the definition of complementation of toll sets.

We define the complement T̄ of toll set T :

φT̄ (x) = N (φT (x)). (20)

Remember that a typical example of N (x) is given by (1): N (x) = const/x with
const > 0.

Next, the union and intersection for toll sets are as follows.

Union for toll sets: φT∪U (x) = min{φT (x),φU (x)}.
Intersection for toll sets φT∩U(x) = max{φT (x),φU (x)}.
The interpretation of union T ∪U is the minimum toll set that includes both T and
U ; intersection T ∩U is the maximum toll set that is included in both T and U .

It is easy to see the next proposition holds.

Proposition 3.1. For arbitrary toll sets T and U, the next properties are valid:

(T ) = T (21)

T ∪U = T̄ ∩Ū , T ∩U = T̄ ∪Ū . (22)
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There is yet another operation of addition for toll sets:

Addition for toll sets:

φT+U(x) = φT (x)+φU(x). (23)

Dubois and Prade suggest the addition as an option for intersection with the fol-
lowing interpretation of union and intersection: suppose x wants to be a member
of either T or U , in other words, he wants to be a member of T ∪U . Then it is
sufficient to pay minimum charge of φT (x) and φU (x), i.e., we have φT∪U(x) =
min{φT (x),φU (x)}. Suppose x wants to be a member of both T and U , i.e., he
wants to be a member of T ∩U . It is natural that he has to pay both φT (x) and
φU(x), i.e., φT (x) + φU(x). We thus have φT∩U(x) = φT (x) + φU(x), which is dif-
ferent from (23). Suppose, however, that he can expect maximum discount: if he
pays maximum charge of of φT (x) and φU(x), other charge is waived. Then we have
φT∩U(x) = max{φT (x),φU (x)} which is the standard definition for intersection.

In this way, we have two options for the intersection: standard intersection of
maximum and addition. We can contrast this with bags, where two options of max-
imum and addition can be used for union.

3.1 t-Norm and s-Norm for Toll Sets

The above discussion suggests similarity and difference between bags and toll sets at
the same time. Hence t-norms and s-norms for toll sets can be defined by referring to
those for bags. In order to distinguish those norms for toll sets from those for bags,
a t-norm and s-norm for toll sets are respectively denoted by tt(a,b) and st(a,b).
They are defined as follows.

(I)[monotonicity] For a ≤ c, b ≤ d,

tt(a,b)≤ tt(c,d),
st(a,b) ≤ st(c,d).

(II)[symmetry]
tt(a,b) = tt(b,a), st(a,b) = st(b,a).

(III)[associativity]

tt(tt(a,b),c) = tt(a, tt(b,c)),
st(st(a,b),c) = st(a,st(b,c)).

(IV)[boundary condition]

st(0,0) = 0, st(a,+∞) = st(+∞,a) = a,

tt(+∞,+∞) = +∞, tt(a,0) = tt(0,a) = a.
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Only the boundary conditions are different from those for bags. Moreover we note
the correspondence s(a,b) ↔ tt(a,b) and t(a,b) ↔ st(a,b). Hence we have propo-
sitions analogous to those for bags as follows.

Proposition 3.2. Let g(x) be given by Definition 2.2. Then

tt(a,b) = g−1(g(a)+ g(b)). (24)

is a t-norm for toll sets.

Proposition 3.3. Let tt(a,b) is a t-norm for toll sets and N is a complementation
operator. Then

st(a,b) = N (tt(N (a),N (b))) (25)

is an s-norm. Suppose st(a,b) is an s-norm, then

tt(a,b) = N (st(N (a),N (b))) (26)

is a t-norm.

Example 3.2. The standard operators

st(a,b) = min{a,b} (27)

tt(a,b) = max{a,b} (28)

are an s-norm and a t-norm, respectively. Moreover let g(x) be given by (8). Using
this generating function, we have

tt(a,b) = (ap + bp)
1
p , (29)

st(a,b) = (a−p + b−p)−
1
p . (30)

The latter includes the addition, max, and min operations. First, tt(a,b) = a + b is
a particular case of (29) for p = 1. Moreover tt(a,b) = max{a,b} and st(a,b) =
min{a,b} are obtained from (29) and (30) when p → +∞.

In this way, we can generalize set operations for toll sets as those for bags. Since
the generalizations are straightforward, we omit the details.

Note 3.1. The values of memberships of bags and toll sets are in [0,+∞]. As a
result convex bags and convex toll sets means the classical convexity, i.e., their
epigraphs are convex sets. Note that fuzzy convex sets imply a weaker property of
quasi-convexity.

4 Bag Relations and Toll Relations

We naturally introduce relations for bags and also relations for toll sets. We study
operations specific to relations, i.e., their compositions.
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4.1 Bag Relations

In this section we briefly overview max-s and max-t compositions for bag rela-
tions [16].

Definition 4.1. A bag relation R on X ×Y is a real-valued bag of X ×Y . The count
of R for (x,y) is denoted by R(x,y) instead of CR(x,y) for simplicity.

Definition 4.2. Let s and t be an s-norm and t-norm for bags. A max-s composition
of bag relations R on X ×Y and S on Y ×Z is defined by

(R◦ S)(x,z) = max
y∈Y

s(R(x,y),S(y,z)). (31)

A max-t composition of bag relations R on X ×Y and S on Y ×Z is defined by

(R• S)(x,z) = max
y∈Y

t(R(x,y),S(y,z)). (32)

We have

Proposition 4.1. The associative property holds for any max-s and max-t composi-
tions, i.e.,

(R◦ S)◦T = R◦ (S ◦T) (33)

(R• S)•T = R• (S •T) (34)

The proof is given in [16] and is omitted here.
Note that the above compositions include max-plus algebra [3] and max-min

algebra as special cases.

4.2 Toll Relations

Toll relations and their compositions are defined likewise.

Definition 4.3. A toll relation R on X ×Y is a toll set of X ×Y . The membership of
R for (x,y) is denoted by R(x,y) instead of φR(x,y) for simplicity.

Definition 4.4. Let st and tt be an s-norm and t-norm for toll sets. A min-s compo-
sition of toll relations R on X ×Y and S on Y ×Z is defined by

(R◦ S)(x,z) = min
y∈Y

st(R(x,y),S(y,z)). (35)

A min-t composition of toll relations R on X ×Y and S on Y ×Z is defined by

(R• S)(x,z) = min
y∈Y

tt(R(x,y),S(y,z)). (36)
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We have the next lemma.

Lemma 4.1. Let us write a!b = tt(a,b) and a⊕b = min{a,b}. Then,

a⊕b = b⊕a, a!b = b!a, (37)

a⊕ (b⊕ c) = a⊕ (b⊕ c), a! (b! c) = a! (b! c), (38)

a! (b⊕ c) = (a!b)⊕ (a! c). (39)

The same properties also hold when we put a!b = st(a,b) and a⊕b = min{a,b}.

To summarize, we can calculate toll relation compositions like matrix calculations.
We therefore have the next proposition.

Proposition 4.2. The associative property holds for any min-s and min-t composi-
tions, i.e.,

(R◦ S)◦T = R◦ (S ◦T) (40)

(R• S)•T = R• (S •T) (41)

The proof is straightforward from Lemma 4.1 and the details are omitted here.
Note that the min-t composition generalizes the min-plus and min-max algebras.

Note 4.1. Applications of bag relations and toll relations are omitted here, but op-
timization problems on networks are promising, as the above compositions include
max-plus, max-min, min-plus, and min-max algebras [3].

5 Conclusion

Real-valued bags and toll sets have complementary roles to fuzzy sets. These two
structures have a common property that the membership values are in [0,+∞] with
the infinite point. In this paper we have shown basic properties such as set opera-
tions and t-norms and s-norms. Moreover bag relations and toll relations with their
compositions have been studied. We will show how these structures can be used in
a variety of applications. Thus, there are many research possibilities.
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On a Criterion for Evaluating the Accuracy of
Approximation by Variable Precision Rough
Sets

Yasuo Kudo and Tetsuya Murai

Abstract. We introduce a new criterion for evaluating the accuracy of approxima-
tion in variable precision rough set models. The authors have proposed an evalua-
tion criterion of relative reducts in Pawlak’s rough sets, which is based on counting
equivalent classes that are used for upper approximations constructed from relative
reducts. By introducing this idea to evaluation of the accuracy of approximation, the
proposed criterion evaluates the accuracy of approximation by the average certainty
scores of equivalent classes that are used in β -lower approximations and β -upper
approximations, respectively.

1 Introduction

In this paper, we introduce a new criterion for evaluating the accuracy of approx-
imation in variable precision rough set (for short, VPRS) models proposed by
Ziarko [7]. VPRS is an extension of Pawlak’s rough set theory [3, 4], and it pro-
vides a theoretical basis to treat inconsistent or probabilistic information by β -lower
approximations and β -upper approximations. A criterion called the “accuracy of ap-
proximation” is used for evaluating approximations by indiscernibility relations [4],
however, this criterion does not consider the number of equivalent classes based on
the indiscernibility relations to be used to construct lower and upper approxima-
tions. The authors [1, 2] have proposed an evaluation criterion of relative reducts in
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Pawlak’s rough set, which is based on counting equivalent classes that are used for
upper approximations constructed from relative reducts.

Thus, by introducing this idea to evaluation of the accuracy of approximation in
VPRS models, we propose a new criterion that evaluates the accuracy of approxi-
mation by the average certainty scores of equivalent classes that are used in β -lower
approximations and β -upper approximations, respectively.

2 Rough Sets

In this section, we review the foundations of rough set theory as background for this
paper. The contents of this section are based on [4, 5, 7].

2.1 Lower and Upper Approximations in Decision Tables

In rough set data analysis, objects as targets of analysis are illustrated by combina-
tion of multiple attributes and those values, and represented by the following deci-
sion table:

(U,C,d),

where U is the set of objects, C is the set of condition attributes such that each
attribute a ∈ C is a function a : U → Va from U to the value set Va of a, and d is a
function d : U →Vd called the decision attribute.

The indiscernibility relation RB on U with respect to a subset B ⊆C is defined by

xRBy ⇐⇒ a(x) = a(y), ∀a ∈ B. (1)

The equivalent class [x]B of x ∈ U by RB is the set of objects which are not dis-
cernible with x even though using all attributes in B.

Any indiscernibility relation provides a partition of U . In particular, the partition
D = {D1, · · · ,Dm} provided by the indiscernibility relation Rd with respect to the
decision attribute d is called the set of decision classes.

For any decision class Di (1 ≤ i ≤ m)C the lower approximation B(Di) and the
upper approximation B(Di) of Di with respect to the indiscernibility relation RB are
defined as follows, respectively:

B(Di) = {x ∈U | [x]B ⊆ Di}, (2)

B(Di) = {x ∈U | [x]B ∩Di �= /0}. (3)

Table 1 is an example of a decision table which consists of the set of objects
U = {x1, · · · ,x10}, the set of condition attributes C = {c1, · · · ,c6} and the deci-
sion attribute d. For example, an attribute c3 is a function c3 : U → {1,2,3}, and
the value of an object x1 ∈ U at c3 is 1, that is, c3(x1) = 1. Moreover, the decision



Evaluating the Accuracy of Approximation by Variable Precision Rough Sets 321

Table 1 An example of decision table

U c1 c2 c3 c4 c5 c6 d

x1 1 3 1 1 1 2 1
x2 3 2 3 1 2 2 1
x3 2 1 2 1 2 1 2
x4 2 1 2 2 2 1 2
x5 2 2 3 1 1 2 1
x6 3 3 1 1 2 2 3
x7 1 3 1 1 2 1 2
x8 2 3 1 1 1 2 2
x9 3 2 3 2 2 2 1
x10 1 2 3 1 1 2 3

attributed d provides the following three decision classes; D1 = {x1,x2,x5,x9}, D2 =
{x3,x4,x7,x8} and D3 = {x6,x10}.

2.2 Criteria of Approximations and Decision Rules

As evaluation criteria of approximation, the accuracy of approximation and the qual-
ity of approximation are well-known [4], however, we concentrate the accuracy of
approximation in this paper. Formally, the accuracy of approximation αB(D) of the
set of decision classes D = {D1, · · · ,Dm} by RB is defined by

αB(D) =
∑Di∈D |B(Di)|
∑Di∈D |B(Di)|

, (4)

where |X | is the cardinality of the set X .
We denote a decision rule constructed from a subset B ⊆C of condition attribute,

the decision attribute d and an object x ∈U by (B,x) → (d,x). The concepts of cer-
tainty and coverage are well-known criteria for evaluating decision rules, however,
we use only the certainty in this paper. For any decision rule (B,x) → (d,x), the
degree Cer(·) of certainty is defined by

Cer((B,x) → (d,x)) =
|[x]B ∩Di|
|[x]B| , (5)

where the set Di is the decision class such that x ∈ Di.
For example, a decision rule (B,x10) → (d,x10) constructed from a set B =

{c3,c4}, the decision attribute d and an object x10 ∈ U has actually the following
form:

(c3 = 3)∧ (c4 = 1) → (d = 1),

and its certainty is 2
3 .
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2.3 Variable Precision Rough Set Models

VPRS models generalize Pawlak’s rough set models by generalizing the notion of the
standard set inclusion, and provide a theoretical basis for dealing with inconsistent
information in the framework of rough sets. Suppose that a decision table (U,C,d)
is given. For any sets X ,Y ⊆U of objects, the measure c(X ,Y ) of the relative degree
of misclassification of the set X with respect to the set Y is defined by

c(X ,Y ) def=

⎧⎨⎩1− |X ∩Y |
|X | , if |X | > 0,

0, if |X | = 0.
(6)

The relative degree c(X ,Y ) represents that if we were to classify all objects of X
into Y , then the misclassification error ratio would be c(X ,Y )×100%. It is easy to
confirm that the following property holds for any sets X ,Y ⊆U :

X ⊆ Y ⇐⇒ c(X ,Y ) = 0. (7)

Thus, by setting an admissible classification error ratio, called a precision β (0 ≤
β < 0.5), the set inclusion is generalized as

X
β
⊆ Y

def⇐⇒ c(X ,Y ) ≤ β . (8)

Let RB be an indiscernibility relation with respect to B ⊆C, and U/RB be the quo-
tient set based on RB. For each decision class Di, the β -lower approximation Bβ (Di)
and the β -upper approximation Bβ (Di) with respect to RB are introduced by

Bβ (Di)
def=
⋃
{[x]B ∈U/RB | [x]B

β
⊆ Di} (9)

= {x ∈U | c([x]B,Di) ≤ β}, (10)

Bβ (Di)
def= {x ∈U | c([x]B,Di) < 1−β}. (11)

It is easy to confirm that B0(Di) = B(Di) and B0(Di) = B(Di) hold, i.e., the β -lower
(upper) approximation is identical to Pawlak’s lower (upper) approximation in the
case of β = 0.

Note that the β -lower approximation of the decision class Di is also called the
β -positive region of Di and denoted POSβB(Di). The β -boundary region BNDβB(Di)
and the β -negative region NEGβB(Di) are defined by

BNDβB(Di) = {x ∈U | β < c([x]R,Di) < 1−β}, (12)

NEGβB(Di) = {x ∈U | c([x]R,Di) ≥ 1−β}. (13)
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3 A New Criterion of the Accuracy of Approximation in
VPRS Models

In this section, we introduce a new criterion for evaluating the accuracy of approxi-
mation in VPRS models with considering the numbers of equivalent classes that are
used to construct the β -lower approximation and the β -upper approximation.

3.1 Motivation

Equation (4) evaluates the accuracy of approximation by comparing the cardinal-
ity of the lower approximation and the upper approximation. However, this criteria
does not treat the number of equivalent classes to construct the lower and upper
approximations.

Example 3.1. Let A = {c3,c4} and B = {c2,c3} be subsets of condition attributes in
Tab. 1. We have the following five equivalent classes based on the indiscernibility
relation RA:

[x1]A = {x1,x6,x7,x8}, [x2]A = {x2,x5,x10}, [x3]A = {x3},
[x4]A = {x4}, [x9]A = {x9}.

As we described, Tab. 1 has three decision classes; D1 = {x1,x2,x5,x9}, D2 =
{x3,x4,x7,x8}, and D3 = {x6,x10}. The β -lower approximation and the β -upper
approximation of the decision classes by RA under β = 1

3 are as follows:

Aβ (D1) = {x2,x5,x9,x10}, Aβ (D2) = {x3,x4}, Aβ (D3) = /0,

Aβ (D1) = {x2,x5,x9,x10}, Aβ (D2) = {x1,x3,x4,x6,x7,x8}, Aβ (D3) = /0.

Thus, if we apply the accuracy of approximation by (4) directly to the constructed
β -lower and β -upper approximations, we have the following result of the accuracy
αA(D):

αA(D) =
4 + 2 + 0
4 + 6 + 0

=
3
5
. (14)

Moreover, the β -lower and β -upper approximations by RB with B = {c2,c3} under
β = 1

3 are identical to the β -lower and β -upper approximations by RA, and therefore
we have αB(D) = 3

5 .
The equivalent classes by RB are as follows, which are different from the case of

RA:
[x1]B = {x1,x6,x7,x8}, [x2]B = {x2,x5,x9,x10}, [x3]B = {x3,x4}.

Thus, the accuracy of approximation can not capture the difference between U/RA

and U/RB.

The authors [1, 2] have proposed a criterion that can capture such difference in the
framework of Pawlak’s rough sets by considering the number of equivalent classes.
Thus, using the idea in [1, 2], we introduce a criterion for VPRS models that can
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evaluate the accuracy of approximation in some sense and capture the difference of
the number of equivalent classes that are used to construct the β -lower approxima-
tion and the β -upper approximation.

3.2 A New Criterion Based on the Average Certainty

For evaluating the accuracy of approximation with considering the numbers of
equivalent classes, we want to evaluate how each equivalent class contributes to
construct the β -lower approximation and the β -upper approximation. Thus, instead
of the cardinality of the β -lower and β -upper approximations as in the accuracy of
approximation (4), we use the average of certainty defined by (5) of all equivalent
classes that are used to construct the β -lower and β -upper approximations.

As we discussed in the previous subsection, we consider the numbers of equiva-
lent classes included to β -lower (upper) approximations to evaluate approximations
in VPRS models. Here, we introduce two functions to provide the numbers of equiv-
alent classes that construct the β -lower and β -upper approximations.

Definition 3.1. Suppose a decision table (U,C,d) is given. Let B⊆C be a nonempty
set of condition attributes, X ⊆U be a set of objects, and β be a precision. A function
nβB : 2U → N based on B and β is defined by

nβB(X) =
∣∣{[x]B ∈U/RB | [x]B ⊆ Bβ (X)}∣∣ . (15)

Similarly, A function nβB : 2U → N is defined by

nβB(X) =
∣∣{[x]B ∈U/RB | [x]B ⊆ Bβ (X)}∣∣ . (16)

By Definition 3.1, it it obvious that the higher the value nβB(X) (nβB(X)), the β -lower
(upper) approximation is constructed by finer equivalent classes.

To introduce a new criterion of the accuracy of approximation in VPRS mod-
els, we calculate the average certainty of all equivalent classes used to construct the
β -lower approximations Bβ (Di) of all Di ∈ D , denoted by ACerβB(D), and the aver-
age certainty of all equivalent classes used to construct the β -upper approximations

Bβ (Di), denoted by ACer
β
B(D), as follows:

Definition 3.2. Let B ⊆C be any nonempty set of condition attributes, D be the set
of all decision classes, and β (0 ≤ β < 0.5) be a precision. The average certainty
of all equivalent classes in all of the β -lower approximations of the decision classes
is

ACerβB(D) =

⎧⎪⎨⎪⎩
∑Di∈D ∑[x]B⊆Bβ (Di)Cer([x]B,Di)

∑Di∈D nβB(Di)
, ∃Di with nβB(Di) > 0,

0, otherwise,

(17)
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where the notationCer([x]B,Di) means the certainty of a decision rule (B,y)→ (d,y)
of some y ∈ [x]B ∩Di defined by (5).

Similarly, the average certainty of all equivalent classes in all of the β -upper
approximations of the decision classes is

ACer
β
B(D) =

⎧⎪⎨⎪⎩
∑Di∈D ∑[x]B⊆Bβ (Di)Cer([x]B,Di)

∑Di∈D nβB(Di)
, ∃Di with nβB(Di) > 0,

0, otherwise.

(18)

Note that the numerator of (17) is the sum of the certainty scores of all equivalent
classes used to construct all Bβ (Di), and the denominator of (17) is the sum of the
numbers of equivalent classes used to construct all Bβ (Di). Similarly, the numerator
of (18) is the sum of the certainty scores of all equivalent classes used to construct
all Bβ (Di), and the denominator of (18) is the sum of the numbers of equivalent
classes used to construct all Bβ (Di).

The following inequality holds between ACer
β
B(D) and ACerβB(D).

Lemma 3.1. Suppose POSβB(D) �= /0 holds. Then

ACer
β
B(D) ≤ ACerβB(D), (19)

where POSβB(D) def=
⋃

Di∈D POSβB(Di) is the β -positive region of decision classes
based on the partition constructed from B ⊆ C. The equality in (19) holds if and
only if BNDβB(Di) = /0 for any Di ∈ D .

Using two values ACer
β
B(D) and ACerβB(D), we introduce a new criterion for eval-

uating the accuracy of approximation with considering the number of equivalent
classes.

Definition 3.3. Let B ⊆C be any nonempty set of condition attributes, D be the set
of all decision classes, and β (0 ≤ β < 0.5) be a precision. A criterion AoAβB(D) for
evaluating the accuracy of approximation in VPRS models by RB with considering
the number of equivalent classes is defined by

AoAβB(D) =

⎧⎪⎨⎪⎩
ACer

β
B(D)

ACerβB(D)
, if ACerβB(D) > 0,

0, if ACerβB(D) = 0.

(20)

We intend that the proposed criterion (20) evaluates the accuracy of approxima-
tion by RB under the precision β by measuring how much the average certainty
decreases by extending the range of consideration from the β -lower approximation
to the β -upper approximation. This intension is based on Lemma 3.1, and we con-
sider that the higher the score AoAβB(D), the higher the quality of approximation
by RB.
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Theorem 3.1. The criterion AoAβB(D) defined by (20) satisfies the following
properties:

• 0 ≤ AoAβB(D) ≤ 1.

• AoAβB(D) = 1 if and only if both POSβB(D) �= /0 and BNDβB(Di) = /0 for any
Di ∈ D hold.

• AoAβB(D) = 0 if and only if POSβB(D) = /0 holds.

Example 3.2. We present an example of evaluation of the accuracy of approximation
by the proposed criterion. Let B = {c2,c3} be a set of condition attributes in Tab. 1,
and β = 1

3 be a precision as in Example 3.1. We have the following three equivalent
classes based on the indiscernibility relation RB:

[x1]B = {x1,x6,x7,x8}, [x2]B = {x2,x5,x9,x10}, [x3]B = {x3,x4}.

As we described, Tab. 1 have three decision classes; D1 = {x1,x2,x5,x9}, D2 =
{x3,x4,x7,x8}, and D3 = {x6,x10}. The β -lower and β -upper approximations of the
decision classes under β = 1

3 are as follows:

Bβ (D1) = {x2,x5,x9,x10}, Bβ (D2) = {x3,x4}, Bβ (D3) = /0,

Bβ (D1) = {x2,x5,x9,x10}, Bβ (D2) = {x1,x3,x4,x6,x7,x8}, Bβ (D3) = /0.

Thus, the numbers of equivalent classes used in the β -lower (upper) approximations
of decision classes are

nβB(D1) = 1, nβB(D2) = 1, nβB(D3) = 0,

nβB(D1) = 1, nβB(D2) = 2, nβB(D3) = 0.

Moreover, we calculate the certainty of each equivalent class with each decision
class as follows:

Cer([x1]B,D1) = 1
4 , Cer([x1]B,D2) = 1

2 , Cer([x1]B,D3) = 1
4 ,

Cer([x2]B,D1) = 3
4 , Cer([x2]B,D2) = 0, Cer([x2]B,D3) = 1

4 ,
Cer([x3]B,D1) = 0, Cer([x3]B,D2) = 1, Cer([x3]B,D3) = 0.

Combining the above results, by (20), the evaluation score AoAβB(D) of the
accuracy of approximation by RB with considering the number of equivalent classes
is

ACerβB(D) =
3
4 + 1

1 + 1 + 0
=

7
8
,

ACer
β
B(D) =

3
4 + 1

2 + 1

1 + 2 + 0
=

3
4
,

AoAβB(D) =
3
4
7
8

=
6
7
.
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By similarly calculating for A = {c3,c4} as in Example 3.1, we also have the fol-

lowing evaluation score AoAβA(D) of the accuracy of approximation by RA with
considering the number of equivalent classes:

ACerβA(D) =
2
3 + 1 + 1 + 1

2 + 2 + 0
=

11
12

,

ACer
β
A(D) =

2
3 + 1 + 1

2 + 1 + 1

2 + 3 + 0
=

5
6
,

AoAβA(D) =
5
6
11
12

=
10
11

.

Thus, the difference of equivalent classes causes the different evaluation scores of
the accuracy of approximation between A = {c3,c4} and B = {c2,c3}.

4 Conclusion

In this paper, we introduced a new criterion for evaluating the accuracy of approx-
imation in VPRS models. Considering the numbers of equivalent classes that are
needed to construct approximations, the proposed criterion evaluates the accuracy
of approximation by the average certainty scores of equivalent classes that are used
in β -lower approximations and β -upper approximations, respectively.

More consideration and refinement of the proposed criterion, formulation of a
new criterion for the quality of approximation with considering the numbers of
equivalent classes, and comparison of the proposed criteria with other methods, for
example, approximate entropy reducts [6] in the aspect of comparison of partitions,
are interesting future issues.
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Granularity and Approximation in Sequences,
Multisets, and Sets in the Framework of Kripke
Semantics

Tetsuya Murai, Seiki Ubukata, Yasuo Kudo, Seiki Akama, and Sadaaki Miyamoto

Abstract. This paper makes some consideration on representing the concepts of se-
quences, multisets, and usual subsets in the framework of Kripke semantics. First,
a Carnap model, which is a tuple of a non-empty set of possible worlds and a val-
uation mapping, that is, a Kripke model without a binary relation on the nonempty
set, is shown to represent, in general, a multiset, and in special case, a subset. Also
sequences and digital images are represented by special kinds of Kripke models.
Further, when a binary relation on the non-empty set, two approximation operators
can be defined.

1 Introduction

Bull and Segerberg stated in [1] that the idea of applying the notion of possible
worlds to analysis of modal concepts was originated from Leibniz, was further
considered by Wittgenstein, Carnap, Prior and others, and then was finally for-
mulated as possible world semantics by Kanger, Hinttika, Kripke, and others. The
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nowadays so-called Kripke-style models are well-known to be able to give descrip-
tions of semantics not only for modal logics but also for intuitionistic logic and
some other non-classical logics. In this paper, in the framework of Kripke semantics
for non-classical logic, we will give some consideration on representing concepts
of sequences, multisets, and (sub)sets (cf. [4, 5]), which are, needless to say, very
important in intelligent knowledge systems with uncertainty.

2 Carnap Models, Multisets and Subsets

By [1], Carnap was the first who formulated a semantics for modal logic except for
the algebraic one and his semantics can be recasted as the following Carnap model

〈W,v〉,

where W is a non-empty set and v is a mapping, i.e.,

v : A×W → 2,

where A is a set of letters and 2 = {0,1}. Elements in W are often called possible
worlds, or simply world. The mapping v assigns one truth value in 2 to each letter
at each world. The class of Carnap models is known to be sound and complete with
respect to S5.

A Carnap model 〈W,v〉 can be regarded as a family f of subsets in A indexed by
W :

f : W → 2A.

In fact, from the mapping v, we can define a mapping fv : W → 2A by

fv(w) = {a ∈ A | v(a,w) = 1}.

Conversely, given a mapping f : W → 2A, we can recover v f : A×W → 2 by

v f (a,w) = 1 ⇐⇒ a ∈ f (w).

Because we have v = v fv and f = fv f , we can write a Kripke model also as 〈W, f 〉.
Thus, in general, a Carnap model represents a multiset on 2A. In fact, given a

Carnap model 〈W, f 〉, there may be f (w) = f (w′) for different two elements w,
w′ ∈W , so W is an index set of 2A. More precisely, when we define a binary relation
on W by

w ∼ f w′ ⇐⇒ f (w) = f (w′),

for w,w′ ∈W , it is obviously an equivalence relation ∼ f on W . Then we can define
a multiset (count function) on 2A, that is, a mapping Ct f : 2A → N by

Ct f (X) = |[ f−1(X)]∼ f |,
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for X ⊆ A, where [w]∼ f is an equivalence class of w(∈ W ) with respect to relation
∼ f , and | · | is the number of elements.

Note that a Carnap model 〈W,v〉 can be regarded just as a subset in 2A when f is
infective because ∼ is the identity relation on W and each equivalence class [w]∼ f

becomes a singleton.
Then we can define equality and inclusion relation of two Carnap models M1 =

〈W, f1〉 and M2 = 〈W, f2〉 by

M1 = M2 ⇐⇒ Ct f1 = Ct f2 ( ⇐⇒ Ct f1(X) = Ct f2(X) for any X ⊆ A),
M1 ⊆ M2 ⇐⇒ Ct f1 ⊆Ct f2 ( ⇐⇒ Ct f1(X) ≤Ct f2(X) for any X ⊆ A).

Also we have union, intersection and addition of them:

M1 ∪M2 ⇐⇒ Ct f1 ∪Ct f2 ,

(where (Ct f1 ∪Ct f2)(X) = max{Ct f1(X),Ct f2(X)} for any X ⊆ A),
M1 ∩M2 ⇐⇒ Ct f1 ∩Ct f2 ,

(where (Ct f1 ∩Ct f2)(X) = min{Ct f1(X),Ct f2(X)} for any X ⊆ A),
M1 + M2 ⇐⇒ Ct f1 +Ct f2 ,

(where (Ct f1 +Ct f2)(X) = Ct f1(X)+Ct f2(X) for any X ⊆ A).

3 Approximation of Multisets as Kripke Models

A Carnap models is a Kripke model without a binary relation on W or with the
universal relation W ×W on W . It, however, has a binary relation ∼ f on W induced
from f :

〈W,∼ f ,v〉.
Thus we can say multisets and subsets naturally have their Kripke-model-based
representation.

Further let us consider that some binary relation different from ∼ f is given on W .
For example, when we are given some binary relation S on the set A of letters, we
can induce a binary relation R on W by

wRw′ ⇐⇒ f (w)S f (w′).

In such cases, with respect to the relation R, we can introduce approximation in
the sense of rough set theory (cf. [9, 7]) or, in general, some concept in topology
(cf.[7, 8, 10]).

In a Kripke model for every subset X ⊆W , we can define the following two sets:

[R]X = {w ∈W |Ww ⊆ X},
〈R〉X = {w ∈W |Ww ∩X �= /0},
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where Ww = {w′ ∈ W | wRw′}. The two subsets are called (generalized) lower and
upper approximations of X in rough set theory (cf. [7, 9]), respectively, and, also
called interior and closure of X in topology (cf. [7, 8]).

Note that, for every subset X ⊆W , f |X : X → 2A defined by f |X (w) = f (w) for
every w ∈ X is a submultiset of f . Then we can introduce the two unary operators
[R] and 〈R〉 for multisets by

[R]( f |X ) = f |[R]X ,

〈R〉( f |X ) = f |〈R〉X ,

4 Kripke Models and Sequences

When we consider a preorder relation ≤ on W , a Kripke model

〈W,≤,v〉

is a model for intuitionistic logics.
In particular, the following binary Kripke model

〈N,≤,v〉,

where ≤ is the usual totally order relation on N, represents a sequence of elements
in 2A.

Further let us introduce another binary relation R on W . Note that, for every sub-
set X ⊆W , f |X : X → 2A defined by f |X (w) = f (w) for every w ∈ X is a submultiset
of f . Then we can introduce the two unary operators [R] and 〈R〉 for multisets by

[R]( f |X ) = f |[R]X ,

〈R〉( f |X ) = f |〈R〉X ,

5 Multivalued Cases

We can also consider a multi-valued Kripke model 〈W,R,vn〉, where

vn : A×W → n (= {0,1, · · · ,n−1}),

and then we have
fn : W → nA,

which is a multiset in nA. The mapping fn can be written in binary one as

f2 : W → 2A×n.

Then f2 is a multiset on A×n.
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The idea proposed in this paper can be applied to image and music processing.
For example, let us consider a digital RGB-based-color image. Let A = {R,G,B}
and 256 = {0,1, . . . ,255}. Then such image can be represented by a 256-valued
Kripke model

〈N×N,$,v256〉,
where

(m,k) $ (m′,k′) ⇐⇒ m ≤ m′ ∧ k ≤ k′,
v256 : A×N×N→ 256 (a finitely partial mapping).

The relation $ is a directed order on N×N. Then we have a finitely partial mapping

f256 : N×N → 256A

or
f2 : N×N → 2A×256.

Note that for any (m,k) ∈ N×N defined in f2 and for any c ∈ A, there uniquely
exists k ∈ 256 such that (c,k) ∈ f2(m,k).

6 Concluding Remarks

With respect to the concepts of sequences, multisets, and (sub)sets, there are several
kinds of mathematical formulations for these concepts. For example, given a set A of
letters, the free monoid A∗ generated from A with string concatenation · as product
and the empty string ε is the set of finite sequences (strings). It is a partially ordered
set but, in general, is not a lattice. Also, it is well-known that, if the monoid satisfies
commutativity, then it becomes the set of multisets in A. In the case, concatenation
changes into addition operator so it is also a lattice-ordered commutative monoid.
When it further has idempotency, it is just the power set of A, a typical kind of
Boolean algebras. The future task is to investigate some relationship between such
algebraic formulation with Kripke semantics.
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Uncertainty in Future: A Paraconsistent
Approach

Seiki Akama, Tetsuya Murai, and Yasuo Kudo

Abstract. A future event is uncertain and contingent. Since the age of Aristotle,
this feature induces philosophical issues like the Master argument. In this paper, we
propose to suggest interpreting future contingents, not as Aristotle did, as gappy, but
as glutty in some sense using Priest’s dialectical tense logic DT L, which is a version
of paraconsistent tense logic.

1 Introduction

Human usually regards the future as uncertain or contingent in that he cannot know
the future. If the future is certain, we have to face the determinism. Since the age
of Aristotle, this feature induces philosophical issues like the Master argument.
Lukasiewicz [8] and Prior [13] challenged the issue within the framework of three-
valued logic. Unfortunately, their attempt was not successful.

It is now widely held that one of the most reasonable solution is to discard the
principle of bivalence (PB) and to retain the law of excluded middle (LEM), which
is compatible to Aristotle’s thinking. This can be established by using three-valued
logic with supervaluation.

In this paper, we propose an alternative interpretation of future contingents, what
we call the paraconsistent interpretation. We suggest interpreting future contingent
sentences, not as Aristotle did, as gappy, but glutty in some sense. The interpretation
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can be formally implemented by rejecting the law of non-contradiction. It is there-
fore possible to model a future contingent based on a paraconsistent tense logic.
We support our interpretation by means of dialectical tense logic of Priest [10], [11]
who proposed it for different purposes.

The organization of this paper is as follows. In section 2, we review the problem
of future contingents. In section 3, we give an outline of Priest’s dialectical tense
logic DT L with an axiomatization and semantics. In section 4, we argue that the
dialectical tense logic is of help to deal with the problem of future contingents and
that our approach is philosophically defensible. Section 5 gives our conclusion.

2 Future Contingents

To give the truth-value of future contingent events has challenged philosophers for
many years. Before considering the problem discussed in this paper, some remarks
about the ontology of time are in order here. There are two different philosophical
approaches to the ontology of time, i.e. the A-theory (or the tensed theory) and the
B-theory (or the tenseless theory).

The A-theory, also called the presentism, holds that there exist metaphysically
privileged times like “present”, “past” and “future”; see Craig [5]. The standard
tense logic has been based on the A-theory since Prior [13].

On the other hand, the B-theory, also called four-dimensionalism, assumes that
time has no “flow”, and is often taken to follow from Einstein’s Special Theory of
Relativity. Consequently, B-theorists dispense with a tensed language; see Oaklan-
der [9].

Although B-theorists would not regard the problem of future contingents as a
problem, we are addressing ourselves to those who share their A-theoretic assump-
tion about time, and who as such are still troubled by Aristotle’s problem about
future contingents. In fact, our goal in this paper is to propose a new approach to the
problem of future contingents based on the A-theoretic view.

Now, we state the problem of future contingents as follows. If future contingents
are either true or false, namely if they have a truth-value, this contradicts our as-
sumption that these propositions are contingent. There is an intimate connection
of future contingents and determinism. If all sentences on the future are true or
false, namely determined, then we have a conclusion that everything in the future
is determined. Namely, if something happens, it is necessary that it happens, and if
something does not happen, it is impossible that it happens. Since determinism is
controversial, it is very important to give a formal treatment of future contingents.

There are here two important concepts in investigating the nature of future con-
tingents, namely the law of excluded middle (LEM) and the principle of bivalence
(PB). However, they should be clearly distinguished. By (LEM), we mean the syn-
tactic thesis of the form A∨¬A. (PB) is the semantic thesis that every proposition is
either true or false. If (PB) holds, then these theses are equivalent. But if it does not
hold, then there are two options whether (LEM) holds.
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The study of future contingents has a long history. Aristotle [3] considered the
issue in De Interpretatione IX. According to Aristotle, only propositions about the
future which are either necessarily true, or necessarily false, or something deter-
mined have a determinate truth-value. In other words, Aristotle accepts (LEM), but
rejects (PB) for future contingents. In addition, we know that Aristotle defended
the law of non-contradiction (LNC). Consequently, we need to endorse Aristotle’s
argument that (PB) leads to fatalism (determinism) and seek to avoid the fatalist
conclusion. There are several approaches to the solution.

Lukasiewicz [8] attempted to formalize Aristotle’s idea by developing a three-
valued logic in which the third truth-value reads “indeterminate”. Here, the third
truth-value can be seen as a gap. We know that Lukasiewicz presented the truth-
value tables for negation, conjunction, disjunction and implication. For example,
consider (1):

(1) I will go to Melbourne.

It seems correct to say that my going to Melbourne remains open. We can thus give
(1) the third truth-value without any doubt. This suggests that a future contingent
proposition lacks no determinate truth-values. Unfortunately, many philosophers (or
logicians) criticized Lukasiewicz’s three-valued logic in that it is not successful as
a logic for future contingents. There is a serious difficulty. In fact, the interpretation
based on Lukasiewicz’s three-valued logic does not work when we deal with the
disjunctive proposition in which one disjunct is the negation of the other disjunct
like (2).

(2) Either I will go to Melbourne or I will not go to Melbourne.

Obviously, (2) is definitely true. But, if we rely on Lukasiewicz’s three-valued logic,
the truth-value of (3) is indeterminate, and the result is not intuitively justified. (2)
is an instance of (LEM), which is of the form A∨¬A.

We here claim that the interpretation of disjunction (conjunction) with
indeterminate disjuncts (conjuncts) causes the trouble. In addition, Lukasiewicz’s
three-valued logic cannot formalize the above mentioned Aristotle’s idea because
Aristotle wants necessarily true propositions like A ∨¬A,¬(A ∧¬A) to have the
determinate truth-value, namely “true”. We can thus conclude that Lukasiewicz’s
three-valued logic is not suited to model a future contingent proposition. However,
other three-valued approaches based on gaps may be found in Akama, Nagata, and
Yamada [1], [2].

3 Dialectical Tense Logic

Dialectical tense logic stemmed from a paraconsistent nature of change. Priest [10]
started with the problem of the instance of change, classifying three possibilities.
Assume here that before a time t0 a system S is in a state S0. After t0, S is in a state
S1. This implies that a change is done from S0 to S1 at t0. There are three possibilities
of changes at t0, i.e.
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(α)S is in exactly one of S0 and S1.

(β )S is in neither S0 nor S1.

(γ) S is in both S0 and S1.

Priest argued not that there some changes are contradictory, but that all moments
of change are contradictory, and indeed that this is the only way they can count as
being “moments of change”. In this regard, all changes are type-γ changes.

To make the above idea formally, Priest advocated a dialectical tense logic DTL
based on the logic of paradox LP. DTL is a paraconsistent counterpart of the classi-
cal tense logic Kt . Although a paraconsistent tense logic could be formalized based
on any paraconsistent logic, e.g. da Costa’s [6] C-systems, it suffices to use DTL for
our purposes in this paper.

The language L of DTL is that of propositional language with two tense opera-
tors, i.e. F (it will be the case that) and P (it was the case that). H (it has been always
the case that) and G (it will be always the case that) can be respectively defined as
¬P¬ and ¬F¬.

Unlike the standard (classical) tense logic, DT L supposes the set of truth-values
V = {{0},{1},{0,1}} (false, true and both true and false). In Priest’s formulation,
both true and false (glut) can be identified with neither true nor false (gap), and we
can dispense with a gap.

We denote by P a set of propositional variables and by F a set of formulas. An
interpretation I for L is a pair 〈<,v〉, where < is an arbitrary relation on X2 and
v is a valuation function with domain X such that for all x ∈ X , vx : P → V . v can
be extended for any formulas, namely vx : F →V . The interpretation of formulas of
DT L is as follows:

1(a) 1 ∈ vx(¬A) iff 0 ∈ vx(A)
(b) 0 ∈ vx(¬A) iff 1 ∈ vx(A)

2(a) 1 ∈ vx(A∧B) iff 1 ∈ vx(A) and 1 ∈ vx(B)
(b) 0 ∈ vx(A∧B) iff 0 ∈ vx(A) or 0 ∈ vx(B)

3(a) 1 ∈ vx(A∨B) iff 1 ∈ vx(A) or 1 ∈ vx(B)
(b) 0 ∈ vx(A∨B) iff 0 ∈ vx(A) and 0 ∈ vx(B)

4(a) 1 ∈ vx(PA) iff ∃y < x,1 ∈ vy(A)
(b) 0 ∈ vx(PA) iff ∀y < x,0 ∈ vy(A)

5(a) 1 ∈ vx(FA) iff ∃y > x,1 ∈ vy(A)
(b) 0 ∈ vx(FA) iff ∀y > x,0 ∈ vy(A)

Here, the interpretation is given in tandem due to the three-valued character. In ad-
dition, the interpretations of H and G are obvious from the duality of tense operators
in the following way.

6(a) 1 ∈ vx(HA) iff ∀y < x,1 ∈ vy(A)
(b) 0 ∈ vx(HA) iff ∃y < x,0 ∈ vy(A)

7(a) 1 ∈ vx(GA) iff ∀y > x,1 ∈ vy(A)
(b) 0 ∈ vx(GA) iff ∃y > x,0 ∈ vy(A)



Uncertainty in Future: A Paraconsistent Approach 339

A semantic consequence relation |= is defined as follows:

Σ |= A iff for all interpretations I and all x in the domain of the first member
of I, either 1 ∈ vx(A) or for some B ∈ Σ , 1 �∈ vx(B).

Note that the original formulation of DT L lacks implication, and it could be intro-
duced if needed, cf. Priest [12]. But we dispense with implication for our purposes
in this paper. Priest gave an axiomatization of DT L based on a natural deduction. Let

the rule of the form
A
B

to show that the conclusion B is derivable from the premise

A. The premise can include several formulas. The bracketed formula is discharged
in the conclusion of a rule. Priest formulated rules as follows:

(1)
A∧B

A (B)
(2)

A B
A∧B

(3)
¬(A∧B)
¬A∨¬B

(4)
A (B)
A∨B

(5) A∨B
[A]
C

[B]
C

C
(6)

¬(A∨B)
¬A∧¬B

(7)
A

¬¬A
(8)

A∨¬A

(9)
A

HFA
(10)

G¬A
¬FA

(11)
FHA

A
(12)

GA∧FB
F(A∧B)

(13)
G(HB∨C)

B∨GC
(14)

[A]
B FA

FB

(15)

[Σ ]
B GA1, ...,GAn

GB

(16) (Mirror-image rules) of (9)-(15)

Here, in (14) A is the only undischarged assumption on which B depends. In (15),
A1, ...,An are all the undischarged assumptions of Σ , which are discharged by an
application of this rule. Mirror-image rules are those obtainable from (9)-(15) by
replacing F by P and P by F. (8) can be presented as the axiom (LEM) instead of a
rule.

We also note that the converse of (3), (6) and (10) hold.

(17)
¬A∨¬B
¬(A∧B)

(18)
¬A∧¬B
¬(A∨B)

(19)
¬FA
G¬A
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A proof-theoretic consequence relation % is defined as follows:

Σ % A iff there is a proof tree whose bottom formula is A and all of whose
undischarged assumptions are in Σ .

It is here addressed that (LNC) holds, i.e. �% ¬(A∧¬A). This is an essential feature
of DT L as a paraconsistent logic. We note, however, that (LEM) holds, i.e. % A∨¬A.

Priest proved the completeness theorem of DT L, and considered some of exten-
sions of DT L. For details of DT L, the reader is referred to Priest [10].

4 Future Contingents Are Open

It has been often held that a plausible interpretation of future contingents is given by
keeping (LEM) and rejecting (PB). However, we can dispense with the requirement
in our interpretation by using DT L. There are two reasons to adopt DTL. First, we
assume that falsity simply is the truth of negation in DTL which makes (LEM) and
(PB) equivalent. Second, the disjunction in DTL is inclusive. These features can
support our new interpretation of future contingents.

Our central argument is as follows. Seeing future contingents as glutty serves
the anti-fatalist intuitions being pumped by Aristotle’s sea battle problem much bet-
ter than seeing them as gappy does, since it both preserves the intuition that such
propositions are “up in the air”; and it simultaneously preserves the intuition that
the disjunction “either there will be a sea battle tomorrow or there will not be a sea
battle tomorrow” comes out not up in the air but definitely true.

From the observation, a future contingent sentence is in some way “open”, and
our interpretation can receive a smooth formulation in DTL. Of course, the sort of
temporal contradictions we argue for are derived from a very different source from
the sort of contradiction for which Priest introduced his DT L. So our arguments
stand or fall quite independently of Priest’s.

A future contingent proposition is expressed in DTL as follows:

(3) FA

Of course, the representation (3) is viewed as a logical simplification. Strictly speak-
ing, however, DT L cannot express old famous sentences like “There will be a sea
battle tomorrow”, but only “There will at no/some/every time in the future be a sea
battle”. Rather, it is suitable to express future contingents like “George will die by
hanging” (maybe he will die like that, maybe he will die by droning instead, in
which case he will never die by hanging). In this paper, however, we neglect such a
representational issue.

A negated future contingent proposition can be expressed in DTL. (4) is repre-
sented as either (5) or (6).

(4) I will not go to Melbourne.
(5) ¬FA
(6) F¬A
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In standard tense logic (5) and (6) are different interpretations, and linguistically
they should be distinguished due to internal and external negation. In DT L they are
also different, and we need to distinguish them.

The alleged sentence (2) is naturally interpreted in DT L. In fact, (7), which is a
formal representation of (2), evaluates as true.

(7) FA∨F¬A

which is equivalent to (8).

(8) F(A∨¬A)

Because (LEM) is true in DT L, (8) is true. There is here an interesting parallel of the
paraconsistent interpretation and the incomplete interpretation. Despite conceptual
differences, they yield a similar view, namely both supports (LEM).

In addition, we can address that the paraconsistent interpretation is not incom-
patible to Aristotle’s argument. The fact may be surprising. In DTL, some sentences
can have a third truth-value (both true and false), but it clearly remains the case
that every sentence is true or false or both. Incorporating this third possibility is
consistent with Aristotle’s argument in which (LEM) holds but (PB) does not. The
argument is by dilemma on two cases true/false, but nowhere is it required the two
cases be exclusive.

Many writers seem to believe that an appropriate logic to model future contin-
gents compatible with Aristotle’s thinking is a version of three-valued logic or some
semantic technique allowing for truth-value gaps. However, the approach in this pa-
per reveals that we can have an alternative option allowing for truth-value gluts. It
is thus possible to find intriguing aspects in Aristotle’s view which can be properly
formalized by paraconsistent logic.

5 Concluding Remarks

We proposed to suggest interpreting a future contingent proposition, not as Aristo-
tle did, as gappy, but glutty in some sense. We started with considerations that we
have common with the (non-dialetheist) gap theorist, and argued from there to a
dialetheic solution to the problem of future contingents. We justified the proposed
interpretation invoking Priest’s dialectical tense logic DT L to apply to the situation.
We also discuss some philosophical issues related to it. We believe that the present
work is one of the attractive applications of DTL.

The paraconsistent interpretation of future contingents is very interesting from
philosophical point of view. However, it is well known that Aristotle loathed incon-
sistency. Aristotle spent much of Metaphysics V to try to defend (LNC), by giving
three versions of (LNC). The first version, which is seen as a main one, says that
it is impossible for the same thing to belong and not to belong at the same time to
the same thing. The second version is that it is impossible to hold the same thing to
be and not to be. The third version claims that opposite assertions cannot be true at
the same time. Because Aristotle seemed to consider (LNC) as one of the common
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axioms to all sciences, it is not surprising that for him to give a paraconsistent
account of future contingents would be, to say the least, unprecedented.
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Filters on Commutative Residuated Lattices

Michiro Kondo

Abstract. In this short paper we define a filter of a commutative residuated lattice
and prove that, for any commutative residuated lattice L, the lattice Fil(L) of all
filters of L is isomorphic to the congruence lattice Con(L) of L, that is,

Fil(L) ∼= Con(L).

1 Introduction

In the paper [3], it is proved that, for any commutative residuated lattice L, the
congruence lattice Con(L) is isomorphic to the lattice of all convex subalgebras of
L, that is,

Con(L) ∼= Subc(L).

But, when we investigate properties of BL-algebras and MV-algebras which are ax-
iomatic extensions of commutative residuated lattices, we usually consider about
filters of those algebras and get many results by use of filters. Thus it is convenient
to consider some kind of filters on commutative residuated lattices instead of con-
vex subalgebras to get uniform method. In this short paper, we define filters of a
commutative residuated lattice L and prove that the lattice Fil(L) of all filters of L
is isomorphic to the lattice Con(L) of all congruences on L, that is,

Fil(L) ∼= Con(L).

An example in the paper shows that filters are different from convex subalgebras.
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2 Preliminaries

At first we recall the definition of commutative residuated lattices. By a commutative
residuated lattice (CRL), we mean an algebraic structure (L,∧,∨,!,→,e), where

1. (L,∧,∨) is a lattice;

2. (L,!,e) is a commutative monoid with a unit element e;

3. For all x,y,z ∈ L, x!y ≤ z if and only if x ≤ y → z.

Let L be a CRL. The following is familiar ([1, 2, 3, 4]).

Proposition 2.1. For all x,y,z ∈ L, we have

(i) x ≤ y ⇐⇒ e ≤ x → y
(ii) x → (y → z) = x! y → z = y → (x → z)

(iii) x! (x → y) ≤ y
(iv) x → y ≤ (y → z) → (x → z)
(v) x → y ≤ (z → x) → (z → y)

A subset C ⊆ L is called a convex subalgebra of L if it satisfies the conditions:

(C1) C is order-convex, that is, if a,b ∈C and a ≤ x ≤ b then x ∈C;

(C2) C is a subalgebra of L, that is, if x,y ∈C then x∧ y,x∨ y,x!y,x → y ∈C.

By Subc(L), we mean the class of all convex subalgebras of L. It is easy to show
that Subc(L) is a lattice. Moreover if we denote the class of all congruences on L by
Con(L), then it is proved in [3] that

Theorem 2.1. For any commutative residuated lattice L,

Con(L) ∼= Subc(L).

In the present paper we define filters which are different from convex subalgebras
and prove the same characterization theorem by congruence lattices. A subset F ⊆ L
is called a filter if

(F1) e ∈ F ;

(F2) If x,y ∈ F then x!y ∈ F ;

(F3) If x,y ∈ F then x∧ y ∈ F ;

(F4) If x ∈ F and x ≤ y then y ∈ F .

Let L be a commutative residuated lattice. It is clear that a set [e) = {x ∈ L |e ≤ x}
is the least proper filter of L. For any filter F of L, we define a relation C (F) on L
as follows:

(x,y) ∈ C (F) ⇐⇒ x → y,y → x ∈ F.

Proposition 2.2. If F is a filter then C (F) is a congruence.
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Conversely, for any congruence θ on L, we define a subset F (θ ) by

F (θ ) = {x ∈ L |∃u ∈ e/θ ;u ≤ x}.

For that subset F (θ ), we can show the next result.

Proposition 2.3. F (θ ) is a filter of L.

It is easy to show that

Proposition 2.4. Let F,G be filters and θ ,ϕ be congruences. Then we have

(1) If F ⊆ G then C (F) ⊆ C (G).

(2) If θ ⊆ ϕ then F (θ ) ⊆ F (ϕ).

For a congruence C (F) determined by a filter F and a filter F (θ ) done by a con-
gruence θ , it is a natural question whether F = F (C (F)) and θ = C (F (θ )). Con-
cerning to the question we have an affirmative solution.

Theorem 2.2. For any filter F and congruence θ , we have

(1) F = F (C (F))

(2) θ = C (F (θ ))

Proof. We only show the case of (1) F = F (C (F)). The other case can be proved
similarly. To prove F = F (C (F)), suppose that x ∈ F (C (F)). There exists u such
that (u,e) ∈ C (F) and u ≤ x. Since u = e → u ∈ F and u ≤ x, we have x ∈ F
and thus F (C (F)) ⊆ F . Conversely, if we take x ∈ F , since e ∈ F , then we have
e∧ x ∈ F . Since e∧ x ≤ e, we have e ≤ e∧ x → e and e∧ x → e ∈ F . Moreover,
e → e∧ x = e∧ x ∈ F . This means that (e∧ x,e) ∈ C (F) and e∧ x ∈ e/C (F). It
follows from e∧ x ≤ x that x ∈ F (C (F)) and hence that F ⊆ F (C (F)). Thus we
have F = F (C (F)).

From the result above, considering maps ξ : Fil(L) → Con(L) defined by ξ (F) =
C (F) and η : Con(L) → Fil(L) by η(θ ) = F (θ ), we conclude that these maps are
isomorphism to each other.

Theorem 2.3. For every commutative residuated lattice L, we have

Fil(L) ∼= Con(L).

3 Negative Cone

Let L− = {x |x ≤ e}. The subset L− is called a negative cone in [3]. In this section,
we show that each filter can be represented by a subset of negative cone.

Lemma 3.1. For S ⊆ L−, the set {x |∃n,∃si ∈ S;s1 ! s2 !·· ·! sn ≤ x} is a smallest
filter including S.
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We hereby denote the smallest filter including a subset S by [S), that is, by [S) we
mean the filter generated by S. For any subset S of L, a subset S∗ = {x ∈ S |x ≤ e} is
called a negative cone of S. We show that any filter can be determined by its negative
cone. Let F be a filter and F∗ = {x∧e |x ∈ F}. Since F is the filter, it is obvious that
F∗ is the negative cone of F , that is, {x∧ e |x ∈ F} = {x ∈ F |x ≤ e}.

Theorem 3.1. F = [F∗).

By use of negative cones, we can concretely describe a filter F ∨G of filters F and
G.

Proposition 3.1. For all filters F and G,

F ∨G = {x |∃n,m, ∃ui ∈ F∗, v j ∈ G∗;u1 !·· ·!un ! v1 !·· ·! vm ≤ x},

where F∗ and G∗ are negative cones of F and G, respectively.

We note that our filters are different from convex subalgebras defined in [3], as the
following example shows. Let L be the non-distributive lattice M5 = {0,a,b,e,1}.
It is clear that a sublattice B = L−{e} is a Boolean algebra and any element x ∈ B
has a complement element x′, for example a′ = b and b′ = a. We define operations
! and → as follows:

x! y =
{

x∧ y ( if x,y ∈ B )
y ( if x = e )

x → y =

⎧⎨⎩ x′ ∨ y ( if x,y ∈ B )
x′ ( if x ∈ B and y = e )
y ( if x = e )

It is clear that (L,∧,∨,!,→,e,0,1) is the commutative residuated lattice. In the
example, {e} is the convex subalgebra but not a filter, because the smallest filter is
{e,1}. Thus, filters are different from convex subalgebras. Concerning to the relation
between convex subalgebras and filters, we have a following result.

Theorem 3.2. For any commutative residuated lattice L, Subc(L) = Fil(L) if and
only if L is integral, that is, e is a greatest element of L.

Proof. Considering the fact Subc(L) ∼= Con(L)∼= Fil(L), since a convex subalgebra
and a filter corresponding to the least congruence ω = {(x,x) |x ∈ L} are identical,
we have {e} = {x ∈ L |e ≤ x}. This means that e is the greatest element of L. Be-
cause, since e ≤ e∨ x for every element x ∈ L, we have e∨ x ∈ {e} and e∨ x = e,
that is, x ≤ e. It follows that e is the greatest element of L.

Conversely, if e is the greatest element then we have x! y ≤ x for all x,y ∈ L. It
is clear that any convex subalgebra is also a filter. For any filter F , since x ≤ y → x,
if x,y ∈ F then x → y,y → x ∈ F . It follows that F is the convex subalgebra.
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An Algebraic Structure of Fuzzy Logics with
Weakly Associative Conjunctors

Mayuka F. Kawaguchi, Yasushi Koike, and Masaaki Miyakoshi

Abstract. This research focuses on an algebraic structure of fuzzy logics equipped
with weakly associative conjuctors. The authors show that the weak associativity
of conjunctors should reduce to the associativity in such algebras with one conjuc-
tor and two implicators as the conventional non-commutative fuzzy logics. As the
main result of this article, we give the definition of an algebra equipped with one
implicator and two weakly associative conjunctors.

1 Introduction

The class of triangular norms (in short, t-norms) and some other classes of the
functions generated from it are regarded as a canonical form of fuzzy logical con-
nectives. T-Norms and their dual operators (t-conorms) are commutative monoids
i.e. they are associative. However, it should be noted that the associativity of logical
operators is not assumed in most practical works of fuzzy logics.

Demirli et al. [1] have centered their attention to the residuation relation which
is essential between a conjunctor and an implicator. Also, they have derived the
broadest class of pairs of such functions on [0,1] , following the theory of Galois-
connections [3].

Kawaguchi et al. [4] have introduced the notion of the weak associativity, which
is obtained by loosening the associativity (i.e. by replacing the equality sign with
an inequality sign). Moreover, they have defined the class of weakly associative
conjunctors, which is broader than that of t-norms (which are associative), and is
included in that by Demirli et al. It should be remarkable that the weak associativity
of a conjunctive operator is one of sufficient conditions for the syllogism in fuzzy
logic system.
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The aim of this research work is to establish an algebraic structure for the fuzzy
logics with weakly associative conjunctors. Since a weakly associative conjunc-
tor do not require the commutativity, we need consider some non-commutative
structure. In the conventional algebras for non-commutative logics (e.g. [2]), two
implicators are defined from one conjunctor. However, through this approach, the
associativity of conjunctor should be derived. In order to avoid this problem, the
authors adopt another approach, in which two conjunctors are defined from one
implicator.

2 Preliminaries

2.1 Galois-Connection

The definition of a Galois-connection is defined as follows.

Definition 2.1. [3] (L,≤L) and (M,≤M) be partially ordered sets. A pair (φ ,ψ) of
mapping φ : L → M and ψ : M → L is called a Galois-connection when it satisfies
the following two conditions:

(i) both φ and ψ are monotone, and
(ii) φ(l) ≤M m ⇔ l ≤L ψ(m) (∀(l,m) ∈ L×M).

Definition 2.2. The right-residual of a binary operator G : [0,1]2 → [0,1] is denoted
by IG : [0,1]2 → [0,1] and defined as follows:

IG(a,c) ≡ sup{x ∈ [0,1]|G(a,x) ≤ c}.

Demirli et al. [1] have obtained the following result about the pair of the binary
operators which satisfies the right-residual relation.

Theorem 2.1. [1] Consider a binary operator G : [0,1]2 → [0,1] and its right-
residual IG : [0,1]2 → [0,1]. The following statements are equivalent to one another:

(i) (G, IG) satisfies the right-residual relation, i.e.
G(a,b) ≤ c ⇔ b ≤ IG(a,c) for ∀a,b,c ∈ [0,1],

(ii) G is increasing and left-hand continuous with respect to the second variable
and G(a,0) = 0 for any a ∈ [0,1],

(iii) IG is increasing and right-hand continuous with respect to the second
variable and IG(a,1) = 1 for any a ∈ [0,1].

Note that (G, IG) can be regarded as a Galois-connection when L = M = [0,1] and
the first variables of G and IG are fixed at any value a ∈ [0,1].

Also, Demirli et al. have shown the following property of a Galois-connection
(G, IG) on [0,1].

Theorem 2.2. [1] Consider a Galois-connection (G, IG) on [0,1]. Then, G is in-
creasing with respect to the first valiable, if and only if IG is decreasing with respect
to the first valiable.
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On the other hand, Kawaguchi et al. [4] have named the operator G described in
Theorem 1 (ii) a Galois-operator on [0,1].

Definition 2.3. [4] A Galois-operator on [0,1] denoted by G : [0,1]2 → [0,1] is a
function satisfying the following conditions for any a,bλ ∈ [0,1]:

(G1) boundary condition: G(a,0) = 0,
(G2) infinite distributivity: sup

λ∈Λ
G(a,bλ ) = G(a, sup

λ∈Λ
bλ ) .

It should be noted that the condition (G2) infinite distributivity is equivalent to the
statement “G is increasing and left-hand continuous with respect to the second vari-
able” in Theorem 1 (ii).

Theorem 2.3. [4] A Galois-operator G and its right-residual IG satisfy the
following relation:

G(a,1) = a ⇔ (a ≤ b ⇔ IG(a,b) = 1).

Regarding a and b as the truth values of propositions A and B, respectively, the right
part of the above expression (a ≤ b ⇔ IG(a,b) = 1) can be interpreted that a ≤ b
if and only if the proposition A ⇒ B is a tautology.

2.2 Weakly Associative Conjunctors on [0,1]

The authors introduce here the following two kinds of weak associativities, and we
treat the operators equipped with either of them, in the rest of this paper.

Definition 2.4. Two kinds of weak associativities of a binary operation G are
defined by the following inequalities:

Weak Associativity I: G(a,G(b,c)) ≤ G(G(a,b),c),
Weak Associativity II: G(G(a,b),c) ≤ G(a,G(b,c)).

Kawaguchi et al. [4] have introduced a new function which is a Galois-operator
equipped with the weak associativity I, as follows.

Definition 2.5. [4] A weakly associative function on [0,1] : W : [0,1]2 → [0,1] is a
function satisfying the following conditions for any a,bλ ∈ [0,1]:

(W1) boundary condition: W (a,0) = 0 ,
(W2) infinite distributivity: sup

λ∈Λ
W (a,bλ ) = W (a, sup

λ∈Λ
bλ ) ,

(W3) weak associativity I: W (a,W (b,c)) ≤W (W (a,b),c) .

Theorem 2.4. [4] Let W be a weakly associative function on [0,1]. If W is monotone
increasing with respect to the first valiable, then the following expression holds.

W (IW (a,b), IW (b,c)) ≤ IW (a,c)

Theorem 4 mentions that the syllogism holds when W and IW are regarded as a
conjunctor and a implicator, respectively. The weak associativity I of a weakly
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associative function as a conjunctor is one of the sufficient conditions for the
syllogism being a tautology.

3 An Algebra for Logics with Weakly Associative Conjuctors

3.1 Axioms for the System with One-Implicator and
Two-Conjunctors

Let us consider after here, the following two kinds of residuation relations between
a conjunctor ∗ and an implicator → :

Right-Residuation: a ≤ b → c ⇔ b ∗ a ≤ c,
Left-Residuation: a ≤ b → c ⇔ a ∗ b ≤ c.

When a pair (∗,→) satisfies the above both residuation relations, the operator ∗
becomes commutative. In other words, when ∗ is non-commutative, both residuation
relations are not compatible in a pair (∗,→). Thus, it becomes necessary to define
another conjunctor or implicator.

The following corollary can be derived directly from Theorem 4.

Corollary of Theorem 4. Let W be a weakly associative function on [0,1],
W ′(a,b) ≡ W (b,a) for any a,b ∈ [0,1]. And define the left-residual of W ′ as
I′W ′(a,c) ≡ sup{x ∈ [0,1]|W ′(x,a) ≤ c}. Then, I′W ′(a,c) = IW (a,c), (W ′, IW ) sat-
isfies the left-residuation, and W ′ satisfies the weak associativity II. Moreover, if
W ′ is monotone increasing with respect to the second variable, then the following
expression holds:

W ′(IW (b,c), IW (a,b)) ≤ IW (a,c).

The above expression can be regarded as another type of syllogism. In this section,
the authors would try to construct the system equipped with both type of weakly
associative conjunctors.

In most of non-commutative logical algebras, e.g. pseudo-BL algebras [2], for
one conjunctor ∗ , its right-residual →R and left-residual →L are defined through
the right-residuation and the left-residuation, respectively. In such algebras, if we
assume both weak associativities of a conjunctor, the operator reduced to the asso-
ciative one.

Now, the authors propose an algebra of logics equipped with weakly associative
conjunctors, starting from one implicator →, by defining two conjunctors ∗R and ∗L

which satisfy the right-residuation and the left-residuation with →, respectively.

Definition 3.1. I = ([0,1];∨,∧,→,∗R,∗L), where ∨ = max and ∧ = min, is an
algebraic system which satisfies the following axioms for ∀a,b,c ∈ [0,1]:

(1) right-residuation : a ≤ b → c ⇔ b ∗R a ≤ c,
(2) weak associativity I : a ∗R (b ∗R c) ≤ (a ∗R b)∗R c,
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(3) boundary condition : a ∗R 1 = a,
(4) monotonicity: a ≤ b ⇒ a ∗R c ≤ b ∗R c,
(5) a ∗R b = b ∗L a.

3.2 Properties of Each Operator in Algebraic System I

3.2.1 Properties of Implicator →
Theorem 3.1. In the algebraic system I, the following statements and expressions
hold:

(i) → is decreasing with respect to the first valiable, i.e.
a ≤ b ⇒ b → c ≤ a → c,

(ii) → is increasing and right-hand continuos with respect to the second valiable
and a → 1 = 1 for any a ∈ [0,1],

(iii) a ≤ b ⇔ a → b = 1,
(iv) 0 → 0 = 0 → 1 = 1 → 1 = 1.

3.2.2 Properties of Conjunctors ∗R and ∗L

Theorem 3.2. In the algebraic system I, the following statement and expressions
hold:

(i) ∗R is increasing and left-hand continuous with respect to the second variable
and a ∗R 0 = 0 for any a ∈ [0,1],

(ii) 0 ∗R 0 = 0 ∗R 1 = 1 ∗R 0 = 0, 1 ∗R 1 = 1.

Theorem 3.3. In the algebric system I, the following expressions hold:

(i) left-residuation : a ≤ b → c ⇔ a ∗L b ≤ c,
(ii) weak associativity II : (c∗L b)∗L a ≤ c∗L (b ∗L a),
(iii) boundary condition : 1 ∗L a = a,
(iv) monotonicity: a ≤ b ⇒ c∗L a ≤ c∗L b.

Theorem 3.4. In the algebraic system I, the following statement and expressions
hold:

(i) ∗L is increasing and left-hand continuous with respect to the first variable
and 0 ∗L a = 0 for any a ∈ [0,1],

(ii) 0 ∗L 0 = 0 ∗L 1 = 1 ∗L 0 = 0, 1 ∗L 1 = 1.

Theorem 3.5. In the algebraic system I, if ∗R (and ∗L) has the unit element, then it
is restricted to 1.

3.3 Syllogism in Algebraic System I

Theorem 3.6. In the algebraic system I, the following expressions hold:

(i) (a → b)∗R (b → c) ≤ (a → c),
(ii) (b → c)∗L (a → b) ≤ (a → c).
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Regarding a,b and c as the truth values of proposition A,B and C, respectively, we
can derive that the following propositions:

((A ⇒ B) andR (B ⇒C)) ⇒ (A ⇒C),
((B ⇒C) andL (A ⇒ B)) ⇒ (A ⇒C),

i.e. two kinds of syllogisms are tautologies in the algebraic system I. Thus, we have
achieved the aim of this research work.

4 Concluding Remarks

In this article, the authors proposed an algebra of logics equipped with one impli-
cator and two weakly associative conjunctors, in order to realize a logical system
where the syllogism is a tautology without assuming the associativity of conjunc-
tors. As the problems of our proposed algebra I, the following points should be
considered in the next research work.

(1) It is not clear whether the conjunctor ∗R and ∗L have the unit element, or not.
(2) It is not clear whether the implicator → satisfies 1 → 0 = 0 , or not.

Moreover, in the further stage of this research work, the necessary and sufficient
condition for the syllogism being a tautology should be clarified.
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Reasoning with Uncertainty in Continuous
Domains

Elsa Carvalho, Jorge Cruz, and Pedro Barahona

Abstract. Continuous constraint programming has been widely used to model safe
reasoning in applications where uncertainty arises. Constraint propagation propa-
gates intervals of uncertainty among the variables of the problem, eliminating val-
ues that do not belong to any solution. However, to play safe, these intervals may
be very wide and lead to poor propagation. We proposed a probabilistic continu-
ous constraint framework that associates a probabilistic space to the variables of the
problem, allowing to distinguish between different scenarios, based on their likeli-
hoods. In this paper we discuss the capabilities of the framework for decision sup-
port in nonlinear continuous problems with uncertain information. Its applicability
is illustrated in inverse and reliability problems, which are two different types of
problems representative of the kind of reasoning required by the decision makers.

1 Introduction

A mathematical model describes a system by a set of variables and a set of con-
straints that establish relations between the variables. Uncertainty and nonlinear-
ity play a major role in modeling real-world continuous systems. When the model
is highly nonlinear small approximation errors may be highly magnified. Any
framework for decision support in continuous domains must provide an expressive
mathematical model to represent the system behavior and be able to perform sound
reasoning that accounts for the uncertainty and the effect of nonlinearity. Given the
uncertainty, there are two classical approaches to reason with the possible scenarios
consistent with the mathematical model.

When safety is a major concern all possible scenarios must be predicted. For
that purpose, rather than associate approximate values to variables, intervals can be
used to include all their possible values. This is the approach adopted in continuous
constraint programming [1, 18] which uses safe constraint propagation techniques to
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narrow the intervals thus reducing uncertainty. Nevertheless this approach considers
all the scenarios to be equally likely, leading to great inefficiency if some costly
decisions are taken due to very unlikely scenarios.

In contrast, stochastic approaches reason on approximations of the most likely
scenarios. They associate a probabilistic model to the problem characterizing the
likelihood of the different scenarios. Some methods use local search approximation
techniques to finding the most likely scenario, which may lead to erroneous deci-
sions due to approximation errors and nonlinearity. Moreover, there may be other
satisfactory scenarios to decision making which are ignored by this single scenario
approach. Other stochastic methods use aim extensive random sampling over the
different scenarios to characterize the complete probability space. However, even
after intensive computations, no definite conclusion can be drawn with these meth-
ods, because a significant subset of the probabilistic space may have been missed.

We proposed an extension to the classical continuous constraint approach to com-
plement the interval bounded representation of uncertainty with a probabilistic char-
acterization of the values distributions [3]. In this paper we argue that this constitutes
an attractive approach to decision support in the presence of uncertainty, bridging
the gap between pure safe reasoning and pure probabilistic reasoning.

There are a number of works that combine probabilities and constraint program-
ming [8, 21, 23] or represent the uncertainty associated with the modeled problems
[2] but they deal with discrete domains and, consequently, both the techniques and
the modeled problems are necessarily different.

Our approach is applied to inverse and reliability problems. Inverse problems aim
to estimate parameters from observed data based on a model of the system behavior.
Uncertainty arises from measurement errors on the observed data or approximations
in the model specification. Reliability problems aim to find reliable decisions ac-
cording to a model of the system behavior, where both decision and uncontrollable
variables may be subject to uncertainty. Given the choices committed in a decision,
its reliability quantifies the ability of the system to perform the required functions.

2 Continuous Constraint Programming

A Continuous Constraint Satisfaction Problem (CCSP) is defined by a set of real
valued variables and a set of constraints on subsets of the variables. A solution is a
value assignment to all variables satisfying all the constraints.

Constraint reasoning aims at eliminating value combinations from the initial do-
mains (the initial search space) that do not satisfy the constraints. Usually, during
constraint reasoning in continuous domains, the search space is maintained as a set
of boxes (Cartesian product of intervals) which are pruned and subdivided until a
stopping criterion is satisfied (e.g. all boxes are small enough).

The pruning of the variable domains is based on constraint propagation. For
this purpose, narrowing functions (mappings between boxes) are associated with
constraints, often implementing efficient methods from interval analysis (e.g. the
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interval Newton [20]) to guarantee correctness (elimination of no solutions) and
contractness (the box obtained is smaller or equal than the original one).

In classical CCSPs, the uncertainty associated with the problem is modeled by
using intervals to represent the domains of the variables. Constraint reasoning re-
duces uncertainty providing a safe method for computing a set of boxes enclosing
the feasible space. To play safe, the initial interval domains may be very wide, lead-
ing to poor propagation and consequently to a wide enclosure of the regions that
might contain the most likely solutions. This paradigm cannot distinguish between
different scenarios and thus all combination of values within such enclosure are
considered equally plausible.

3 Probabilistic Continuous Constraints

Probability provides a classical model for dealing with uncertainty [12]. The ba-
sic element of probability theory is the random variable with an associated domain
where it can assume values. In particular, continuous random variables assume real
values. A possible world, or atomic event, is an assignment of values to all the vari-
ables of the model. An event is a set of possible worlds. The complete set of all
possible worlds in the model is the sample space. If all random variables are con-
tinuous, the sample space is the Cartesian product of the variable domains, and the
possible worlds and events are, respectively, points and regions on such hyperspace.

Probability measures may be associated with events. A probabilistic model is an
encoding of probabilistic information, allowing to compute the probability of any
event, in accordance with the axioms of probability. In the continuous case, the usual
method for specifying a probabilistic model assumes, either explicitly or implicitly,
a full joint probability density function (p.d.f.), which assigns a probability measure
to each point of the sample space. Such assignment is representative of the likeli-
hood in its neighborhood. The probability of any event E , given a p.d.f. f , is its
multi-dimensional integral on the region defined by the event:

P(E) =
∫

E
f (x)dx (1)

In accordance with the axioms of probability, f must be a non-negative function
and, when the event E is the complete sample space, the above integral must be 1.

To complement the interval bounded representation of uncertainty with a proba-
bilistic characterization of the value distributions, the authors proposed the Proba-
bilistic CCSP (PCCSP) [3] as an extension of a CCSP.

In a PCCSP (X ,D,C, f ), X is a tuple of n real variables 〈x1, . . . ,xn〉, D is the
Cartesian product of their domains I1 × ·· ·× In, with each variable xi ranging over
the real interval Ii, C is a finite set of numerical constraints on subsets of the variables
in X , and f is a non-negative point function defined in D such that:∫

I1
. . .

∫
In

f (x1, . . . ,xn)dxn . . .dx1 = 1 (2)
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The framework extends a CCSP associating a probabilistic model to its initial search
space D characterized by a full joint p.d.f. f and the probability of any event E may
be theoretically computed as in (1). In particular, the feasible space F is the event
containing all possible points that satisfy the constraints.

In general such multi-dimensional integral cannot be easily computed since the
event E may establish a nonlinear integration boundary for which there is no closed-
form solution. To compute a multi-dimensional integral of a nonlinear integration
area, this area is safely approximated through discretization into a set of boxes en-
closing it E ⊆ {B1, . . . ,Bk}. Then, the integrals of all boxes P(Bi) are computed and
summed up to obtain an approximation of the original integral. A safe lower bound
for the probability value, corresponds to sum the contributions of all boxes com-
pletely included in the original area whereas a safe upper bound corresponds to sum
the contributions of all boxes that are included or intersect with the original area:

∑
Bi⊆E

P(Bi) ≤ P(E) ≤ ∑
Bi∩E �= /0

P(Bi) (3)

The PCCSP framework provides a safe method to compute the probability P(F) of
the feasible space. A set of boxes enclosing F is firstly obtained through constraint
reasoning. For this purpose we use an hypergrid over the entire search space, forcing
each of the final enclosing boxes either to be completely included in the feasible
space or to be an hypergrid-box that intersects with it. Such enclosure is then used,
according to (3), to compute safe bounds for the multi-dimensional integral which
are closer to the correct value when the hypergrid granularity gets smaller.

Moreover, for any box B the probability P(F ∩B) is similarly computed if each
box enclosing the feasible space is previously intersected with B. Furthermore, the
probability of B given the feasible space F is calculated by the conditional proba-
bility rule P(B|F) = P(B∩F)/P(F). See [3] for implementation details.

The ability of the PCCSP framework for combining feasibility, through constraint
reasoning, and probability providing a safe method to reason with a probabilistic
model, makes it potentially appealing for decision support in nonlinear continuous
problems with uncertain information.

4 Inverse Problems

Inverse problems aim to estimate parameters from observed data based on a model
of the system behavior. The variables are the model parameters whose values com-
pletely characterize the system, and the observable parameters which are measured.
Usually a forward model defines a mapping from the model parameters to the ob-
servable parameters allowing to predict measurements from the model parameters.

The forward mapping is commonly represented as a vector function G from the
parameter space m (model parameters) to the data space d (observable parameters):

d = G(m) (4)
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Such relation may be represented explicitly by an analytical formula or implicitly
by a complex system of equations or some special purpose algorithm.

Nonlinearity and uncertainty play a major role in modeling the behavior of most
systems. An inverse problem may have no exact solutions, since usually there are no
model parameter values capable of predicting exactly all the observed data. There-
fore uncertainty, mainly due to model approximations and measurement errors, must
be included in the model. When the model is highly nonlinear, uncertainty may be
dramatically magnified, and an arbitrarily small change in the data may induce an
arbitrarily large change in the values of the model parameters.

4.1 Alternative Approaches to Inverse Problems

Nonlinear inverse problems are classically handled as curve fitting problems [19].
Such approaches are based on nonlinear regression methods which search for the
model parameter values that best-fit a given criterion. For instance, the least squares
criterion minimizes a quadratic norm of the difference between the vectors of ob-
served data and model predictions. The minimization criteria are justified by the
hypothesis that all uncertainties may be modeled using a well behaved distribution.

In nonlinear inverse problems where no explicit formula can be provided for
obtaining the best-fit values, minimization is often performed through local search
algorithms. However, the search method may stop at a local minimum with no guar-
antees on the complete search space. Moreover a single best-fit solution may not
be enough since other solutions could also be satisfactory and so, the uncertainty
around them should be characterized. The use of analytic techniques for this pur-
pose must rely on some special assumptions about the model parameter distributions
(for instance, assuming a single maximum). However, if the problem is highly non-
linear, such assumptions do not provide realistic approximations for the uncertainty.

Other stochastic approaches [22] associate a probabilistic model to the problem,
allowing to obtain any statistical information on the parameters. These approaches
typically rely on extensive random sampling (Monte Carlo) to characterize the pa-
rameter space. Nevertheless, only a number of discrete points of the continuous
model space is analyzed and the results must be extrapolated to characterize the
overall uncertainty. To provide better uncertainty characterizations the sampling
needs to be reinforced in highly nonlinear problems. Contrary to constraint reason-
ing approaches, these probabilistic techniques cannot prune the search space based
on model information, and so the entire space must be considered for exploration.

In contrast, bounded-error approaches [10, 16] characterize the set of all solutions
consistent with the uncertainty on the parameters, the forward model and the data.
Bounded-error estimation assumes initial intervals to each problem variable and
solves a CCSP with the set of constraints representing the forward model. It assumes
prior knowledge on the acceptable parameter ranges and on the uncertainty about the
difference between predicted and observed data. From the safe approximation of the
feasible space, a projection on the set of model parameters (or a subset of it) provides
insight on the remaining uncertainty about their possible value combinations.
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The formulation of an inverse problem as a CCSP allows its application when a
forward model is not defined by an explicit analytical formula but by a complex set
of relations. Furthermore, it may easily accommodate additional requirements, in
the form of constraints, which are more difficult to enforce in classical approaches.
However, in most inverse problems, there is also additional knowledge about the
plausibility distributions of values within the bounds of some uncertain parameters,
which are not representable in the CCSP model. For instance, uncertainty due to
measuring errors may be naturally associated with an error distribution.

4.2 Probabilistic Continuous Constraints for Inverse Problems

The application of the PCCSP framework to inverse problems [4], similarly to
bounded-error estimation, assumes prior knowledge on the acceptable parameter
ranges and on the uncertainty about the difference between predicted and observed
data. However, the use of intervals to bound initial uncertainty is complemented with
an explicit joint p.d.f. to represent prior information about the values distributions.

Any nonlinear inverse problem as specified in (4) may be represented by a
PCCSP (X ,D,C, f ) where X are the model and observable parameters, D is the
Cartesian product of their initial ranges, C is a set of constraints representing the
forward model, and f is the joint p.d.f. representing the available prior probability
information. When the random variables are independent (which is usually the case
for the observed parameters whose error distributions may be considered indepen-
dent) the joint p.d.f. is the product of their individual densities. If prior information
is unavailable, uniform distributions may be considered.

Once established a PCCSP for representing an inverse problem, the probability
of any combination of parameter values given the observed data can be computed as
the conditional probability of such combination given the feasible space F . There-
fore, complementary to the safe approximation of the feasible space, the framework
provides insight on the a posteriori distribution of the resulting narrowed ranges.

Consider the example of a nonlinear inverse problem extracted from [22]. The
goal is to estimate the epicentral coordinates of a seismic event. The seismic waves
produced have been recorded at a network of six seismic stations at different arrival
times. Table 1 presents their coordinates and the observed arrival times.

Table 1 Arrival times of the seismic waves observed at six seismic stations

(xi,yi) (3 km,15 km) (3 km,16 km) (4 km,15 km) (4 km,16 km) (5 km,15 km) (5 km,16 km)
ti 3.12 s 3.26 s 2.98 s 3.12 s 2.84 s 2.98 s

It is assumed that: seismic waves travel at a constant velocity of v = 5km/s;
experimental uncertainties on the arrival times are independent and can be modeled
using a Gaussian probability density with a standard deviation σ = 0.1s.

Clearly, the model parameters are the epicentral coordinates (m0,m1) of the seis-
mic event, and the observable parameters are the six arrival times di which are re-
lated by a forward model with six equations (one for each seismic station i):
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di = Gi(m0,m1) =
1
v

√
(xi −m0)

2 +(yi −m1)
2 (5)

To represent this inverse problem by a PCCSP we define acceptable initial ranges for
the parameters of the problem, which are unbounded for the two model parameters
and [ti − 3σ ,ti + 3σ ] for the six observable parameters. The constraints are the six
equations of the forward model (5). The joint p.d.f. is the product of the parameter
densities, which are Gaussians N(ti,σ) for the observable parameters and Uniform
densities for the model parameters (no prior information is available).

Figure 1 shows the a posteriori distribution of the model parameters given the
feasible space of this PCCSP, computed as a conditional probability as described
in section 3. Besides identifying which value combinations of m0 and m1 are con-
sistent, figure 1a illustrates its joint probability distribution, allowing to identify
regions of maximum likelihood (darker colors represent more likely regions). An
external contour was added to illustrate the safe enclosure of the feasible space
obtained with classical constraint reasoning. Clearly the most likely region is con-
centrated in a much smaller area. Figures 1b and 1c are projections on m0 and m1

showing the a posteriori probability computed for each of the model parameters.

a) 2 4 6 8 10 12 14 16 18
m0

b) 0 5 10 15 20 25
m1

c)

Fig. 1 Epicentral coordinates of the seismic event. (a) Joint p.d.f.; (b)(c) marginal p.d.f.s.

The a posteriori p.d.f. for the model parameters provides valuable information
for inspecting the quality of a particular model. Not only it allows easy identifica-
tion of maximum likelihood regions as peaks of such p.d.f., but also displays the
shape of the uncertainty dispersion showing, for instance, if it is unimodal. More-
over, if the goal is simply to compute the maximum likelihood point as in classical
best-fit approaches, the PCCSP can be embedded within an optimization algorithm
that searches the maximum likelihood feasible point with guarantees of global opti-
mality. For this example, it can be easily proved that the maximum likelihood point
is in [14.70,14.77]× [4.65,4.72].

The PCCSP associated with an inverse problem can be extended to make pre-
dictions on the outcomes of new measurements. For this purpose, for each new
measurement, a constraint is added to the model and includes new unknown ob-
servable parameters (initially unbounded and uniformly distributed). A posteriori
distributions for these new variables are then computed. Figures 2a and 2b illustrate
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Fig. 2 Expected arrival time at: (a) (10.0km,10.0km) and (b) (5km,3km)

the predictions for the arrival time of the seismic waves that should be observed at
two seismic stations with coordinates (10km,10km) and (5km,3km) respectively.

5 Reliability Problems

Reliability studies the ability of a system to perform its required function under
stated conditions. For instance, civil engineering structures must operate under un-
certain forces caused by environmental conditions (e.g. earthquakes and wind) and
materials display some variety of their engineering properties due to manufacturing
conditions. When modeling a design problem there is often a distinction between
controllable (or decision) variables, representing alternative actions available to the
decision maker, and uncontrollable variables (or states of nature) corresponding to
external factors outside her reach. Uncertainty affects both types of variables. There
can be variability on the actual values of the decision design variables (e.g. the exact
intended values of physical dimensions or material properties may not be obtained
due to limitations of the manufacturing process). Or there can be uncertainty due
to external factors that represent states of nature (e.g. earthquakes, wind). In both
cases it is important to quantify the reliability of a chosen design. The reliability
of a decision is the probability of success of the modeled system given the choices
committed in the decision variables.

Let X = {X1, . . . ,Xn} be random variables, with domains IX = IX1 ×·· ·× IXn and
a joint p.d.f. fX (X). Let D = {D1, . . . ,Dm} be decision variables, with domains ID =
ID1 ×·· ·× IDm . The feasible region, F , of a reliability problem is described by a set
of constraints G, on the decision and random variables such that:

F = {〈x,d〉 : x ∈ IX ∧d ∈ ID ∧∀1≤ j≤kG j(x,d) ≥ 0} (6)

Given a decision d and region Δ = IX ×d, its reliability is the probability that a point
in Δ is feasible, computed as the multi-dimensional integral on the region F ∩Δ :

R(d) =
∫

F∩Δ
fX (x)dx (7)

The reliability of a decision is 0 if there are no value combinations for the random
variables (with d) that satisfy the constraints (F ∩Δ = /0). Conversely, the reliability
of a decision is 1 if all the value combinations satisfy the constraints (F ∩Δ = Δ ).
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In reliability problems with continuous decision variables the decision space may
be discretized into a set of hyperboxes with step sizes specified by the decision
maker. This allows the selection of meaningful decisions δ as hyperboxes (δ ⊆ ID)
in which the points are considered indifferent among each other, i.e., equally likely.

Since decision and random variables are probabilistically independent, the relia-
bility of δ is computed as the multi-dimensional integral on the region F ∩Δ , where
Δ = IX × δ and fD is a multivariate uniform distribution over δ :

R(δ ) =
∫

F∩Δ
fX (x) fD(d)dxdd (8)

When an hypergrid on the decision variables is considered, it is possible to evaluate
how reliable each decision is and characterize the entire decision space in terms of
its reliability. This information is useful to decision makers as it allows to choose
between different alternatives, based on the given reliability and on their expertise.

In practice many reliability problems include optimization criteria and are reli-
ability based optimization problems [6]. Besides the information about the failure
or success of a system (modeled by the constraints), they include additional infor-
mation about its desired behavior, modeled by objective functions over the decision
variables, Hi(D). The aim is to obtain reliable optimal decisions.

5.1 Alternative Approaches to Reliability Problems

Reliability estimation involves the calculation of a multi-dimensional integral (8)
in a possibly highly non-linear integration boundary. Classical techniques devised a
variety of approximation methods to compute this integral, including sampling tech-
niques based on Monte Carlo simulation (MCS) [11]. This approach works well for
a small reliability requirement, but as the desired reliability increases, the number
of samples must also increase to find at least one infeasible solution.

Hasofer and Lind introduced the reliability index technique for calculating ap-
proximations of the desired integral with reduced computation costs [13]. The reli-
ability index has been widely used in the first and second order reliability methods
(FORM [15] and SORM [9]). However, the accuracy of the computed approxima-
tion is sacrificed due to several assumptions taken to implement those methods.

The first assumption is that the joint p.d.f. can be reasonably approximated by
a multivariate Gaussian. Various normal transformation techniques can be applied
[14] which may lead to major errors when the original space includes several non-
normal random variables.

The second assumption is that the feasible space determined by a single con-
straint can be reasonably approximated based on a particular point, most probable
point (MPP), on the constraint boundary. Instead of the original constraint, a tangent
plane (FORM) or a quadratic surface (SORM), fitted at the MPP, is used to approx-
imate the feasible region. However, the non linearity of the constraint may lead
to unreasonable approximation errors. Firstly, the local optimization methods [13],
used to search for the MPP, are not guaranteed to converge to a global minimum.
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Secondly, an approximation based only on a single MPP does not account for the
possibly significant contributions from the other points [17]. Finally, the approxi-
mations of the constraint may be unrealistic for highly non-linear constraints.

The third assumption is that the overall reliability can be reasonably approxi-
mated from the individual contributions of each constraint. In its simplest form, only
the most critical constraint is used to delimit the unfeasible region. This may obvi-
ously lead to overestimations of the overall reliability. More accurate approaches
[7] take into account the contribution of all the constraints but, to avoid overlapping
between the contribution of each pair of constraints, have to rely on approximations
of corresponding joint bivariate normal distributions.

Given the simplifications, none of the above methods provides guarantees on the
reliability values computed, specially with nonlinear operating conditions.

5.2 Probabilistic Continuous Constraints for Reliability
Problems

The probabilistic continuous constraint paradigm provides sound techniques to find
a safe enclosure of the correct reliability value [5].

Since the reliability of a decision δ is the probability that a point in Δ = IX × δ
is feasible, this corresponds to the probability of the feasible space F of a PCCSP
(X ,D,C, f ), where variables X are the decision and random variables of the reliabil-
ity problem, the initial search space D = Δ , the constraints C are the set of inequality
constraints G j ≥ 0 of the reliability problem and, finally, the p.d.f. f = fX × fD.

Once established an hypergrid over the decision space of a reliability problem,
it is possible to characterize the entire space in terms of its reliability associating
to each hypergrid decision an adequate PCCSP and computing safe bounds for the
probability of its feasible space (3).

Moreover, the probabilistic framework is also adequate to deal with reliability-
based optimization problems. A Pareto-optimal frontier can be computed according
to the criteria of maximizing reliability and optimizing the objective functions Hi.

The calculation of enclosures for the possible values of optimization functions
over the feasible space (Hi for maximization functions or −Hi for minimization
functions) can be done in a similar way to the calculation of the reliability value
enclosure for a decision, based on the feasible space.

Thus, a l + 1-tuple of enclosing intervals, Oδ , can be associated with each de-
cision δ , where the first element represents the reliability and the others, the ob-
jective functions. For any two decisions δ1 and δ2 with its corresponding tuples
Oδ1

and Oδ2
, δ1 strictly dominates δ2, if it satisfies the Pareto criterion: ∀iOδ1

[i] ≥
Oδ2

[i]∧∃iOδ1
[i] > Oδ2

[i]. The Pareto-optimal frontier is the set of decisions that
are not strictly dominated by another decision. Since the compared elements are
intervals, the ≥ and > interval operators [20] must be used.

Consider a problem [6] with two decision variables, D1 and D2, and two random
variables, X1 and X2, which represent variability around the decision values (y =
D1 +X1 and z = D2 +X2). Decision variables assume values in ID = [1,10]× [1,10]
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and random variables assume values in IX = [−0.9,0.9]× [−0.9,0.9] with triangu-
lar distributions in their domains and mode 0. The constraints are {G1,G2,G3} =
{ 1

20 y2z−1 ≥ 0, −y2 −8z+ 75≥ 0 , 5y2 + 5z2 + 6yz−64y−16z+124≥ 0}.
Figure 3a presents the computed feasible space of such problem (projected over

the the decision space D) characterized by its reliability. The calculated information
allows the decision maker to have a global view of the problem. Based on his expertise
he can choose to further explore regions of interest, with increased accuracy.
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Fig. 3 a) Decision space reliability; b) Trade-off line between H11 and the reliability value

To illustrate the reliability-based optimization functionality we tested this exam-
ple with two different minimization functions (separately) H11(D) = D1 + D2 and
H12(D) = D1 + D2 + sin(3D2

1) + sin(3D2
2). With objective function H11, the non

dominated decisions were obtained near the feasible region above the intersection
of constraints G1 and G3. Figure 3b shows the relation between the reliability values
and the corresponding H11 values for the obtained decisions. This constitutes impor-
tant knowledge to the decider, as it provides information on the trade-off between
the system reliability value and its desired behavior. Function H12 has several local
optima (figure 4b) and our method is able to identify and characterize them in terms
of their reliability values producing a Pareto-optimal frontier (figure 4a).
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6 Conclusions

Decision support in nonlinear continuous problems with uncertainty requires an ex-
pressive mathematical model to represent the system behavior and sound reasoning
that accounts for the uncertainty and the effect of nonlinearity. Our previous work
on probabilistic constraint reasoning is able to satisfy both requirements. We argue
that it is an attractive approach for dealing with inverse and reliability problems,
bridging the gap between pure safe reasoning and pure probabilistic reasoning.
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Information Cell Mixture Models: The Cognitive
Representations of Vague Concepts

Yongchuan Tang and Jonathan Lawry

Abstract. Based on prototype theory for vague concept modelling, a transparent
cognitive structure named information cell mixture model is proposed to represent
the semantics of vague concept. An information cell mixture model on domainΩ is
actually a set of weighted information cells Lis, where each information cell Li has a
transparent cognitive structure ‘Li = about Pi’ which is mathematically formalized
by a 3-tuple 〈Pi,di,δi〉 comprising a prototype set Pi(⊆ Ω), a distance function di

on Ω and a density function δi on [0,+∞). A positive neighborhood function of
the information cell mixture model is introduced in this paper to reflect the belief
distribution of positive neighbors of the underlying concept. An information cellu-
larization algorithm is also proposed to learn the information cell mixture model
from training data set, which is a direct application of k-means and EM algorithms.
This novel transparent cognitive structure of vague concept provides a powerful tool
for information coarsening and concept modelling, and has potential application in
uncertain reasoning and classification.

1 Introduction

Modelling vague concepts has fundamental importance in artificial intelligence.
The ideas of fuzzy set theory originally proposed by Zadeh [1] have dominated
the modelling of concept vagueness. In that approach the extension of a concept
is represented by a fuzzy set which has a membership function with values rang-
ing between 0 and 1. The calculus for fuzzy set theory is truth-functional which
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means that the full complement of Boolean laws cannot all be satisfied [2]. How-
ever, the membership function has no clear interpretation in the theory of fuzzy sets.
The current proposed semantic interpretations of membership function don’t result
in the truth-functional calculus of fuzzy logic [3, 4, 5, 6]. Alternatively, from the
philosophical viewpoint of the epistemic stance, Lawry proposed a functional (but
non-truth-functional) calculus, label semantics, for modelling vague concepts and
computing with words [7, 8, 9]. The label semantics assumes that there is a crisp
but uncertain line between the appropriate label sets and inappropriate label sets for
describing the underlying instances. Based on this assumption, a calculus system
on the appropriateness of linguistic expressions is developed, which is in general
a non-truth-functional system [7, 8, 9]. Some applications of label semantics are
developed in knowledge fusion [10], decision tree learning [11], linguistic rule in-
duction [12, 13, 14] and collective decision making [15, 16].

Lawry and Tang recently proposed the prototype theory interpretation of label se-
mantics [17, 18]. Based on the prototype theory interpretation, this paper develops a
new framework for concept modelling and learning, the framework of information
cell mixture models, which can deal with the unsupervised learning and supervised
learning in a unified way. We firstly introduce an information cell model to represent
vague concept having the form ‘Li = about Pi’. An information ’cell’ has a trans-
parent structure and operational semantics derived from the prototype theory inter-
pretation of label semantics [17, 18, 13, 14]. We then develop the information cell
mixture model for modelling complex concept having form ‘about P’, where P has
n possible states Pi with probability Pr(Li). In other words an information cell mix-
ture model is actually a set of weighted information cells. This type of knowledge
representation can model the behavior of disjunction of basic concepts. Based on
this new knowledge representation, we further develop an information cellulariza-
tion algorithm for concept learning. The basic aim is to learn a set of most appropri-
ate concepts LA = {L1, . . . ,Ln} with a probability distribution {Pr(L1), . . . ,Pr(Ln)}
from a data set DB. Finally we illustrate the basic idea and efficiency of the infor-
mation cell mixture models by some examples.

2 Information Cell for Cognitive Representation of Vague
Concept Semantics

We assume that LA = {L1, . . . ,Ln} is a set of labels for elements from domain
Ω = Rm. For each label Li we assume that Li is a linguistic expression having form
as ‘about Pi’, where Pi ⊆Rm is a set of prototypical cases of concept Li. Clearly this
type of concept is very common in the human natural language to make commu-
nication and convey information. In some sense, it is the smallest unit for concept
description. Appropriately modelling this type of concept unit has a fundamental
importance in knowledge representation and machine learning. Duo to the vague
constraint ‘about’ involved in the concept unit Li the semantic of concept is obvi-
ously vague. In the following, a transparent cognitive structure called information
cell is proposed to model the concept semantics.
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Definition 2.1 (Information Cell). An information cell (or a semantic cell) for
vague concept Li = about Pi on the domain Ω is a 3-tuple representation 〈Pi,di,δi〉,
where Pi is a set of prototypes for concept Li, di is a distance function on Ω where
for any X ,Y ∈ Ω di(X ,Y ) = di(Y,X) and di(X ,X) = 0, and δi is a density function
on [0,+∞) (For I ⊆ [0,+∞) we denote δi(I) =

∫
I δi(ε)dε).

In this definition Pi called information nucleus represents the set of all prototypical
cases for Li, and we implicitly introduces an information membrane which bounds
the positive neighborhood for Li softly. The distance function di is used to measure
the size ε of positive neighborhood, and due to the vagueness of ‘about’ the density
function δi reflects the distribution of size ε of positive neighborhood. In this paper,
for simplicity Pi is assumed to be a single element in Ω , for any X ,Y ∈ Ω the
distance di(X ,Y ) � d(X ,Y )= ‖X−Y‖ (Euclidean distance) and the density function

δi(ε) is a normalized normal density function δ (ε | ci,σi) = f (ε|ci ,σi)
F
σi
ci

where f (ε |
ci,σi) is a normal density function 1√

2πσi
exp (ε−ci)2

−2σ2
i

and Fσi
ci is the normalization

factor
∫+∞

0 f (ε | ci,σi)dε .
Based on this transparent cognitive structure, information cell Li = 〈Pi,di,δi〉, we

can define a positive density function δLi(X) on Ω .

Definition 2.2 (Positive Density Function). The positive density function associ-
ated with the information cell Li = 〈Pi,di,δi〉, δLi , is defined as follows: for any
X ∈Ω ,

δLi(X) = δi(di(X ,Pi)) (1)

where di(X ,Pi) = infY∈Pi di(X ,Y ).

Notice that the positive density function and density function associated with the
same information cell have the similar notation, but they have different domains.
Their meanings can be easily distinguished in the context.

Definition 2.3 (Positive Neighborhood). For any Li ∈ LA and ε ≥ 0 the positive
neighborhood PN ε

Li
for information cell Li is defined as follows:

PN ε
Li

= {X : di(X ,Pi) ≤ ε} (2)

where di(X ,Pi) = infY∈Pi di(X ,Y ).

Intuitively speaking PN ε
Li

identifies the set of positive neighbors lying within ε of
prototypes Pi for label Li. Here the neighborhood radius of PN ε

Li
is measured by

the threshold ε , and ε is a random variable with a density function δi. From this we
can obtain the belief (degree) of each point X in Ω being a positive neighbor for Li

by integrating δi(ε) over {ε : X ∈ PN ε
Li
}.

Definition 2.4 (Positive Neighborhood Function). ∀Li ∈ LA, ∀X ∈ Ω , the belief
(degree) of X being a positive neighbor for information cell Li is given by:

μLi(X) = δi({ε : X ∈ PN ε
Li
}) = δi([d(X ,Pi),+∞)) (3)
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In this paper we also use notation Δ(ε) to represent the integration δ ([ε,+∞)).
Sometimes we use notation ΔLi(X) or Δi(X) to represent the positive neighborhood
function μLi(X) � δi([di(X ,Pi),+∞)). Therefore, for each information cell Li there
are two functions, positive density function δi(X) and positive neighborhood func-
tion Δi(X), defined on the domainΩ .

3 Information Cell Mixture Model (ICMM) for Semantic
Representation of Complex Concept

We can see that the positive neighborhood functions μLi(X) or Δi(X) of information
cells Li = 〈Pi,di,δi〉 are all uni-modal, which may not represent more complex con-
cepts having multi-modal neighborhood functions, if we assume that Pi is a single
prototype. In this section we introduce a new tool to represent complex concepts.

Definition 3.1 (Information Cell Mixture Model). An information cell mixture
model is formal represented as L P = 〈LA,Pr〉 where LA is a set of information
cells Li = 〈Pi,di,δi〉 for i = 1, . . . ,n and Pr is a probability distribution on LA such
that ∑n

i=1 Pr(Li) = 1.

The information cell mixture model L P uses a set of information cells to represent
complex concept, where each information cell Li is assigned a probability Pr(Li).
In this definition, the information cells can be considered as the basic blocks for
knowledge representation, and more complex knowledge can be constructed using
mixture models of information cells. In general, for simplicity we assume that each
information cell has a single prototype, this assumption may limit the knowledge
representation capability of information cells. However, the information cell mixture
model provides a way to represent the complex concept with multiple prototypes.
Hence, the mixture model of information cells still has a transparent structure and
operational semantics. In other words, the information cell mixture model L P =
〈LA,Pr〉 represents a complex concept about P where P has n crisp but uncertain
states Pi for i = 1, . . . ,n. In the following section, we will develop a reliable learning
algorithm to learn an information cell mixture model from data set.

For the information cell mixture model we can also define the positive density
function and the positive neighborhood function on the domain Ω .

Definition 3.2 (Positive Density Function δL P ). The positive density function of
a mixture model of information cells L P, δL P , is defined as follows: for any
X ∈Ω

δL P(X) =
n

∑
i=1

δi(X)Pr(Li) (4)

where δi(X) are the positive density functions of information cells Li for i = 1, . . . ,n.

Definition 3.3 (Positive Neighborhood Function ΔL P ). The positive neighbor-
hood function of an information cell mixture model L P , μL P (or ΔL P ), is de-
fined as follows: for any X ∈Ω
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μL P (X) =
n

∑
i=1

μLi(X)Pr(Li) (5)

Although we can consider {P1, . . . ,Pn} as the prototype set of the mixture model of
information cells L P, and define a positive density function δL P on Ω for L P ,
but it is very hard to define a corresponding density function on [0,+∞) for L P
like that of information cells.

A direct application of information cell mixture models is classification, since
each mixture model of information cells represents a concept which in general cor-
responds to a class on the domain Ω . Note that the positive neighborhood function
Δ(X) reflects the coverage degree of underlying concept. This indicates that we can
adopt Δ(X) to make a classification decision.

Definition 3.4 (Δ Decision Rule for Classification). Given two information cell
mixture models L P1 and L P2, X ∈Ω belongs to the concept L P1 if

μL P1(X) > μL P2(X) (6)

In order to represent a concept using an information cell mixture model, we only
need (m+3)n parameters in which there are n m-dimensional prototypes Pi, n prob-
ability values assigned to the prototypes, and n normalized normal density functions.
This type of representation for complex concept is still very simple, and has very
transparent cognitive structure and operational semantics.

4 Learning Information Cell Mixture Model from Data Set

This section presents a method for learning an information cell mixture model L P
from a data set DB. We assume that the basic concept Li involved in L P is repre-
sented by an information cell having a single prototype Pi ∈Ω and a density function
δ (ε | ci,σi) on [0,+∞). In the proposed learning algorithm we use k-means algo-
rithm to determine all prototypes Pi involved in L P and learn the density functions
and probabilities associated with information cells by optimizing an objective func-
tion J(L P) from a data set DB. The learning algorithm for optimizing the objec-
tive function J(L P) is analyzed in detail, which involves the updating of density
functions and probabilities of information cells.

4.1 Objective Function Based on Positive Density Function

Given a data set DB = {X1, . . . ,XN}, our objective is to derive an information cell
mixture model L P = 〈LA,Pr〉 where LA = {L1, . . . ,Ln} are the most appropriate
information cells for describing the underlying data set DB. We call this induction
process the information cellularization or conceptualization driven by the data set.
Notice that the prototypes involved in the information cell mixture model have clear
and operational semantics: they are the typical cases or average cases of the un-
derlying concepts. This means we can take the k-mean algorithm to determine the
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prototypes Pi of information cell mixture model L P . Once the prototypes Pi are
given, we should learn the density functions δi of information cells Li and the
probability distribution Pr of information cells. They can be learnt by maximiz-
ing the positive density function δL P(X) on the data from the training data set DB,
since δL P(X) reflects the likelihood of X ‘generated’ from the information mixture
model L P . The log likelihood function of L P given the data set DB is defined
as follows:

maximize J(L P) = lnδL P(DB) � ln
N

∏
k=1

δL P(Xk) =
N

∑
k=1

lnδL P (Xk)

=
N

∑
k=1

ln

(
n

∑
i=1

δ (εik | ci,σi)Pr(Li)

)
(7)

where for i = 1, . . . ,n and k = 1, . . . ,N:

εik = d(Xk,Pi) = ‖Xk −Pi‖,δ (εik | ci,σi) =
f (εik | ci,σi)

Fσi
ci

.

The above log likelihood function is very difficult to optimize because it contains
the log of the sum. But if we assume the existence of unobserved data whose val-
ues inform us which information cell ‘generated’ each data, then we can define the
complete log likelihood function as follows:

Jc(L P) =
N

∑
k=1

n

∑
i=1

zik ln(δ (εik | ci,σi)Pr(Li)) (8)

where zik ∈ {0,1} and ∑n
i=1 zik = 1.

4.2 Updating Probability Distribution of Information Cells

Then we may use the Expectation-Maximization (EM) algorithm to optimize the
above complete log likelihood function, which comprises two steps: the computa-
tion of conditional expectation of complete log likelihood function given the current
estimate ˆL P, and its maximization.

According to EM algorithm we firstly compute the following conditional expec-
tation of complete log likelihood function:

Q(L P, ˆL P) = E(Jc(L P) | ˆL P) =
N

∑
k=1

n

∑
i=1

q̂ik ln(δ (εik | ci,σi)Pr(Li))

=
N

∑
k=1

n

∑
i=1

q̂ik

(
(εik − ci)2

−2σ2
i

− ln
√

2πσi − lnFσi
ci

+ lnPr(Li)
)

(9)
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where

q̂ik = E(zik | ˆL P) =
δ (εik | ĉi, σ̂i)P̂r(L̂i)

∑n
i=1 δ (εik | ĉi, σ̂i)P̂r(L̂i)

(10)

From the expression Q(L P, ˆL P), our goal is to obtain the optimized values of
Pr for the probability distribution of information cells, and the density functions
δ (· | ci,σi) of information cells.

To find the expression for Pr(Li), we introduce the Lagrange multiplier λ with
the constraint that ∑n

i=1 Pr(Li) = 1, and solve the following equation:

∂
∂Pr(Li)

[
Q(L P, ˆL P)+λ

(
n

∑
i=1

Pr(Li)−1

)]
= 0

or
N

∑
k=1

1
Pr(Li)

q̂ik +λ = 0

Summing both sizes over i, we obtain λ = −N resulting in the following updating
formula for the probability distribution of information cells:

Pr(Li) =
1
N

N

∑
k=1

q̂ik, i = 1, . . . ,n (11)

4.3 Updating Density Functions of Information Cells

However, it is difficult to obtain the optimized density functions of information cells
LA from the expression Q(L P, ˆL P). So we try to obtain the sub-optimal values
of information cells LA by introducing an auxiliary function U(L P, ˆL P):

U(L P, ˆL P) =
N

∑
k=1

n

∑
i=1

q̂ik

(
(εik − ci)2

−2σ2
i

− ln
√

2πσi + lnPr(Li)
)

Due to − lnFσi
ci ≥ 0 we have the following conclusion:

U(L P, ˆL P) ≤ Q(L P, ˆL P) (12)

By maximizing the lower bound function U(L P, ˆL P) we can obtain the sub-
optimal values of density functions δ (· | ci,σi) of information cells Li. Letting
∂
∂ci

U(L P, ˆL P) = 0 and ∂
∂σi

U(L P, ˆL P) = 0, we obtain the formulas:

ci =
∑N

k=1 q̂ikεik

∑N
k=1 q̂ik

(13)

σ2
i =

∑N
k=1 q̂ik(εik − ci)2

∑N
k=1 q̂ik

(14)



378 Y. Tang and J. Lawry

The above computation of conditional expectation of complete log likelihood func-
tion and parameter estimation steps can then be repeated as necessary. Our classifi-
cation experiments show that updating formulas (13) and (14) are feasible and have
a good performance.

4.4 Information Cell Updating Algorithm

Given a data set DB = {Xk : k = 1 . . . ,N} and a cell number n, the information
cellularization algorithm is outlined as follows:

(i) Obtain the prototypes Pi by using k-mean algorithm and assume Pr(Li(0)) = 1
n

for i = 1, . . . ,n.
(ii) Compute distances: for i = 1, . . . ,n and k = 1, . . . ,N,

εik = d(Xk,Pi) = ‖Xk −Pi‖

(iii) Initialize ci(0) and σi(0) for i = 1, . . . ,n using the following formulas:

ci(0) =
1
N

N

∑
k=1

εik,(σi(0))2 =
1
N

N

∑
k=1

(εik − ci(0))2

(iv) Compute weights: for i = 1, . . . ,n and k = 1, . . . ,N,

qik(0) =
δ (εik|ci(0),σi(0))Pr(Li(0))

∑n
i=1 δ (εik|ci(0),σi(0))Pr(Li(0))

(v) Repeat

a. t = t+1
b. Update the probability distribution of information cells: for i = 1, . . . ,n,

Pr(Li(t)) =
1
N

N

∑
k=1

qik(t −1)

c. Update density functions δ (· | ci(t),σi(t)) for i = 1, . . . ,n:

ci(t) =
∑N

k=1 qik(t −1)εik

∑N
k=1 qik(t −1)

,(σi(t))2 =
∑N

k=1 qik(t −1)(εik − ci(t))2

∑N
k=1 qik(t −1)

d. Compute weights: for i = 1, . . . ,n and k = 1, . . . ,N,

qik(t) =
δ (εik(t)|ci(t),σi(t))Pr(Li(t))

∑n
i=1 δ (εik(t)|ci(t),σi(t))Pr(Li(t))

e. Compute objective function J(L P(t)).

(vi) Until |J(L P(t)) − J(L P(t − 1))| is less than a user defined positive
threshold.
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By applying the above information cellularization algorithm to data set DB, we can
explicitly obtain a set of information cells LA with a probability distribution Pr. We
can then determine the valuesΔL P(X) using formula (5). Hence, if information cell
mixture models are applied to classification problem, we can learn an information
cell mixture model for each class, and use Δ decision rule to make classification for
any data on the domain Ω .

5 Experiment Study

The first example shows the concept learning process of the proposed information
cellularization algorithm on a 2-dimensional data set. In this example the data set
DB has 140 data points on [0,1]2. The distribution of data set DB is illustrated in
Figure 1.

According to this distribution of data set, the number of information cells is
then assumed to be 2. We then apply the information cellularization algorithm to
this data set DB. After 20 iterations, the objective function J(L P) converges (see
Figure 1), we finally obtain an information cell mixture model 〈{L1,L2},Pr〉, where
the parameters associated with the information cell L1 = 〈P1,d,δ (· | c1,σ1)〉 are
P1 = (0.7119,0.2770), c1 = 0.1458 and σ1 = 0.0734, and the parameters associ-
ated with the information cell L2 = 〈P2,d,δ (· | c2,σ2)〉 are P2 = (0.3241,0.6929),
c2 = 0.1777 and σ2 = 0.0601. The probability values associated with information
cells are Pr(L1) = 0.3341 and Pr(L2) = 0.6659.

Two derived information cells L1 and L2 are visualized in Figure 2. The de-
rived one dimensional density functions associated with information cells, δ (ε |
c1,σ1) and δ (ε | c2,σ2), both of which are normalized normal density functions,
are shown in Figure 2 (a). And corresponding two positive neighborhood func-
tions μL1(x,y) (or ΔL1(x,y)) and μL2(x,y) (or ΔL2(x,y)) are both illustrated in
Figure 2 (b).

Especially, the positive neighborhood function ΔL P(x,y) of the information
cell mixture model L P is visualized in Figure 3. This function incorporates the
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Fig. 1 (a) The distribution of data set DB in R2, where P1 = (0.7119,0.2770) and P2 =
(0.3241,0.6929). (b) The objective function vs the iteration of information cellularization
algorithm
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Fig. 2 (a) The density functions δi of information cells Li for i = 1 and 2, where δ1(ε) = δ (ε |
0.1458,0.0734) and δ2(ε) = δ (ε | 0.1777,0.0601). (b) The positive neighborhood functions
μLi(x,y) of information cells Li for i = 1 and 2, where μLi(x,y) = δi([d((x,y),Pi),+∞)) for
i = 1 and 2
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Fig. 3 The positive neighborhood function Δ (x,y) � μL P (x,y) of information cell mixture
model L P , where μL P(x,y) = μL1 (x,y)Pr(L1)+μL2 (x,y)Pr(L2)

information cells and their probabilities, which is a kind of compromise of informa-
tion cells.

The classification problem we have worked with is Iris Plants Database which
was created by R.A. Fisher. The data set contains 3 classes of 50 instances each,
where each class refers to a type of iris plant. The number of instances in the Iris
Plants Database is 150 (50 in each one of three classes), and the number of attributes
is 4.

The information cellularization algorithm is then applied to three sub data sets
where each one only contains one class. In the algorithm, the involved information
cell number is assumed to be 2. Three information cell mixture models L P i for
i = 1,2,3 are then obtained, their parameters are listed in Table 1.

After obtaining the information cell mixture models from the iris data set, we
then use the decision rule introduced in (6) to make classification. The classification
results of the information cell mixture models are compared with the given classes,
and discrepancies arising from mismatch between the given classes. For Iris Plant
database, the discrepancies between the actual classes and the achieved classes is
very few, and the classification rate is 97.33%.
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Table 1 Information cell mixture models learnt from Iris data sets

Pi δ (· | ci,σi) Pr(Li)
L P1 L1 (53.7059,38.0000,15.1765,2.7647) δ (· | 4.4756,1.2941) 0.3038

L2 (48.1818,32.3636,14.3333,2.3030) δ (· | 4.2292,2.0323) 0.6962
L P2 L1 (63.0769,29.2308,46.0769,14.5769) δ (· | 5.6363,2.0051) 0.5226

L2 (55.3333,26.0417,38.8333,11.8333) δ (· | 5.9569,2.9551) 0.6962
L P3 L1 (73.8571,31.3571,62.2857,20.8571) δ (· | 6.5876,2.2164) 0.2514

L2 (62.7778,29.1111,52.8889,20.0278) δ (· | 6.3900,2.6777) 0.7486

6 Conclusions

Information cell mixture model uses a set of weighted information cells to model
complex concept, where each information cell can be considered as the smallest
unit of concept representation with its own prototype(s), a distance function and a
density function on the neighborhood size. The proposed information cell mixture
model can be considered as an approximate representation of the disjunction of the
underlying information cells, which keeps the transparent structure and operational
semantics like the information cells themselves. The positive neighborhood func-
tion Δ equipped with the information cell mixture model provides a powerful tool
to measure the uncertainty of the underlying concept. More importantly, the infor-
mation cellularization algorithm developed in this paper gives an iterative procedure
to learn the parameters of information cell mixture model from training data. A di-
rect application of information cell mixture models is the supervised classification,
where each class is represented by an information cell mixture model. Another po-
tential application is unsupervised concept learning.
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Combination of Uncertain Class Membership
Degrees with Probabilistic, Belief, and
Possibilistic Measures

Tru H. Cao and Van-Nam Huynh

Abstract. One important issue of uncertain or fuzzy object-oriented models is that
uncertain membership degrees of an object to the classes in a class hierarchy may be
obtained from different sources while they are actually constrained by the subclass
relation. In this paper we present the notion of admissible combination functions
and an algorithm to propagate and combine prior uncertain membership degrees on
a class hierarchy, which are possibly conflicting, in order to produce a tightly consis-
tent uncertain membership assignment. We assume uncertain membership degrees
to be measured by support pairs represented by sub-intervals of [0,1]. The usual
probabilistic interval intersection, Dempster-Shafer, and possibilistic combination
rules are examined and proved to be admissible ones.

1 Introduction

Object-oriented models have been shown to be useful for designing and implement-
ing information and intelligent systems. The uncertain and fuzzy nature of real
world problems has motivated significant research effort in extension of the clas-
sical object-oriented framework to a more powerful one involving uncertain and
fuzzy values [4, 9].

Uncertain and imprecise attribute values lead to partial membership of an
object to a class. Representing, computing, and reasoning with partial class mem-
bership have been one of the key issues in development of uncertain and fuzzy
object-oriented systems. There were different measures proposed for uncertain class
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membership degrees. For instance, [12] defined for each class a membership func-
tion on a set of objects. In [3] linguistic labels were used to express the strength of
the link of an object to a class. In [7] class membership was defined as similarity
degrees between objects and classes. Meanwhile, [2] mentioned different measures,
including probabilistic one, to be used for membership degrees.

However, most of the literature about uncertain and fuzzy object-oriented sys-
tems does not address and deal with the fact that membership degrees of an object
can be obtained from different sources and to different classes in a class hierarchy,
which can also be conflicting to each other. Meanwhile, a membership degree of
an object to a class imposes constraints on membership degrees of the object to the
subclasses and super-classes of that class. Therefore, a posterior membership degree
of an object to a class should be a combination of a prior assigned one and those
constrained and propagated from the subclasses and super-classes of that class.

In this paper we introduce the notion of admissible combination functions for
uncertain membership degrees represented by sub-intervals of [0,1], called support
pairs. The lower and upper bounds of such a support pair can be interpreted as
those of a probability interval, belief and plausibility degrees as in Dempster-Shafer
theory [11], or necessity and possibility degrees as in possibility theory [8]. We then
present an algorithm to propagate and combine membership support pairs, in order
to produce a tightly consistent membership assignment for an object on a whole
class hierarchy. These are refinement and extension of the early proposal in [5].

Section 2 defines the properties of an admissible uncertain class membership
combination function and presents the propagation and combination algorithm.
Sections 3, 4, and 5 particularly examine and prove the admissibility of the usual
probabilistic interval intersection, Dempster-Shafer, and possibilistic combination
rules. Finally, Section 6 concludes the paper with some remarks.

2 Combination Functions and Algorithm

Definition 2.1. Class Hierarchy
A class hierarchy is defined as a pair (C,⊆) where C is a set of classes and ⊆ is the
subclass partial order. Given c1,c2 ∈ C, c1 ⊆ c2 denotes that c1 is a subclass of c2.

From now on, I ([0,1]) denotes the set of all sub-intervals of [0,1].

Definition 2.2. Uncertain Membership Assignment
Let (C,⊆) be a class hierarchy and O be a set of objects. An uncertain membership
assignment is a function m : C×O → I ([0,1]). For every c ∈ C, o ∈ O, m(c,o)
denotes the uncertain membership degree of o to c; m(c,o) = [] means that there is
inconsistency about the membership of o to c.

The subclass relation imposes a constraint on membership degrees of an object to
classes as stated in the following assumption, which was first proposed in [6].

Assumption:

(i) If an object is a member of a class with some positive characteristic degree,
then it is a member of any super-class of that class with the same degree.
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(ii) If an object is a member of a class with some negative characteristic degree,
then it is a member of any subclass of that class with the same degree.

For fuzzy truth degrees, for instance, the positive and negative characteristics could
be defined to be true and false characteristics, respectively. For examples, “(Object
#1 is an EAGLE) is very true” entails “(Object #1 is a BIRD) is very true”, and
“(Object #1 is a BIRD) is very false” entails “(Object #1 is an EAGLE) is very
false”, provided that EAGLE⊆BIRD. The assumption here is that, if one can assign
a class to an object with a TRUE-characteristic degree, then one can assign a super-
class of this class to the object with at least the same truth degree (i.e., it is possibly
truer), which is actually the least specific statement subsuming all other possible
statements of the case. Dually, if one can assign a class to an object with a FALSE-
characteristic degree, then one can assign a subclass of this class to the object with
at least the same falsity degree (i.e., it is possibly falser).

Here, uncertainty lower bounds are considered as positive characteristic de-
grees, while uncertainty upper bounds are considered as negative characteristic ones.
Therefore, if an object is a member of a class with a support pair [l,u], then it is a
member of any super-class of that class with the support pair [l,1], and a member of
any subclass of that class with the support pair [0,u]. This is in agreement with [10],
for instance, which states that the membership degree of an object to a class is at
least equal to its membership degree to a subclass of that class.

In this paper, given two support pairs [x1,x2] and [y1,y2], we write [x1,x2] ≤μ
[y1,y2] to denote that x1 ≤ y2, and [x1,x2] ≤τ [y1,y2] to denote that x1 ≤ y1 and
x2 ≤ y2.

Definition 2.3. Consistent Uncertain Membership Assignment
An uncertain membership assignment m on (C,⊆) and O is said to be consistent
wrt (with respect to) (C,⊆) iff (if and only if):

(i) m(c,o) �= [], for every c ∈ C and o ∈ O, and
(ii) m(ci,o) ≤μ m(c j,o), for every ci ⊆ c j ∈ C.

It is called tightly consistent when m(ci,o) ≤τ m(c j,o).

This notion of consistency of support pair assignment wrt the subclass relation
constraint on a class hierarchy was first proposed in [6]. Its rational is that, if
m(ci,o) ≤μ m(c j,o) then there exist u ∈ m(ci,o) and v ∈ m(c j,o) such that u ≤ v.
The notion of tight consistency added here requires further that both the lower and
upper bounds of m(ci,o) are respectively smaller than those of m(c j,o). One can
observe that ≤τ is a partial order, while ≤μ is not, and ≤τ is stronger than ≤μ in the
sense that [x1,x2] ≤τ [y1,y2] implies [x1,x2] ≤μ [y1,y2].

Due to the assumption above, given a prior uncertain class membership assign-
ment on a class hierarchy, the posterior membership degree of an object to a class is
determined not only by a prior one of the object to that class alone, but also by the
constrained membership degrees of the object to the super-classes and subclasses of
that class. That is, if ({c1,c2, . . . ,cn},⊆) is the class hierarchy and [ui,vi] is the prior
membership support pair of the object to the class ci, for every i from 1 to n, then the
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posterior support pair for the object belonging to the class ck is a combination of the
support pairs in the set {[uk,vk]}∪{[0,vi]|ck ⊆ ci, i �= k}∪{[u j,1]|c j ⊆ ck, j �= k}.

An important issue here is that a used combination function should maintain the
consistency of membership degrees of every object on a whole class hierarchy as
expressed in Definition 2.3. For this, we introduce the notion of admissible functions
as defined below (cf. [5]).

Definition 2.4. Admissible Combination Function
An uncertain membership combination function ⊗ : I ([0,1]) × I ([0,1]) →
I ([0,1]) is said to be admissible if satisfying the following properties as long as
not resulting in the empty interval []:

(i) ⊗ is commutative and associative,
(ii) ⊗ is monotonic: [x1,x2] ≤τ [y1,y2] ⇒ [x1,x2]⊗ [u,v]≤τ [y1,y2]⊗ [u,v]

(iii) [x1,x2]⊗ [0,z]≤τ [x1,x2]
(iv) [y1,y2] ≤τ [y1,y2]⊗ [z,1].

The first two properties are desirable for any combination function. Meanwhile,
properties 3 and 4 show that [0,z], as a negative constraint, and [z,1], as a positive
constraint, respectively decreases and increases the support pairs they are combined
with.

Moreover, one has the following derived properties for an admissible combina-
tion function:

(v) [x1,x2]⊗ [0,1] = [x1,x2]
(vi) [x1,x2]⊗ [0,y2] ≤τ [x1,1]⊗ [y1,y2]

Property 5 is a direct consequence of properties 3 and 4, due to [x1,x2]⊗ [0,1] ≤τ
[x1,x2] and [x1,x2] ≤τ [x1,x2]⊗ [0,1]. Intuitively, since [0,1] denotes an absolutely
uninformative support pair, it should be neutral when combined with another sup-
port pair. Property 6 is a consequence of properties 2, 3, and 4, because [x1,x2] ≤τ
[x1,1] and [0,y2]≤τ [y1,y2] and ⊗ is monotonic. Here [x1,1] means “at least x1” and
[0,y2] means “at most y2”, which self-explain the property.

Algorithm 1 below exploits the subclass relation constraint on uncertain member-
ship to combine and resolve possibly inconsistent prior support pairs of an object on
a class hierarchy. Suppose a class hierarchy is ({c1,c2, . . . ,cn},⊆) and the support
pair of an object o to each class ci is [ui,vi]. The idea of the algorithm is that, for
every i and j from 1 to n, if ci is a subclass of c j, then pass [ui,1] to c j and [0,v j]
to ci, on the basis that the membership degree of o to ci is smaller than to c j as
assumed above. The resulting support pair of o to each class is then obtained as a
conjunction of [ui,vi] and those passed from ci’s subclasses and super-classes. As
such, the computational complexity of this algorithm is O(n2).

The algorithm was first proposed in [6], but for only the interval intersection
function and without any proof for its correctness. We present a proof for it here.

Proposition 2.1. Algorithm 1 is correct wrt its input-output specification.



Combination of Uncertain Class Membership Degrees 387

Algorithm 1. The propagation and combination algorithm
Input: A prior uncertain membership assignment m for an object o wrt a class hierarchy

({c1,c2, . . . ,cn},⊆) and an admissible membership combination function ⊗.
Output: A posterior uncertain membership assignment m′ for an object o wrt

({c1,c2, . . . ,cn},⊆) such that, for every ci ⊆ c j, m′(ci,o) ≤τ m′(c j,o), as long as
m′(ci,o) �= [] and m′(c j,o) �= [].

1: for every i from 1 to n do
2: Si = {[ui,vi] = m(ci,o)}
3: end for
4: for every i from 1 to n−1 do
5: for every j from i+1 to n do
6: if ci ⊆ c j then
7: Si = Si ∪{[0,v j]},S j = S j ∪{[ui,1]}
8: else
9: if c j ⊆ ci then

10: Si = Si ∪{[u j,1]},S j = S j ∪{[0,vi]}
11: end if
12: end if
13: end for
14: end for
15: return m′(ci,o) = ⊗

[u,v]∈Si

[u,v](1 ≤ i ≤ n).

Proof. For simplicity, but without loss of generality, suppose that c1 and c2 are two
arbitrary classes such that c1 ⊆ c2. One has:

(i) S1 = {[u1,v1], [0,v2]}∪{[0,v j]|c1 ⊆ c j, j �= 1,2}∪{[ui,1]|ci ⊆ c1, i �= 1}.
S2 = {[u2,v2], [u1,1]}∪{[ui,1]|ci ⊆ c2, i �= 1,2}∪{[0,v j]|c2 ⊆ c j, j �= 2}.

(ii) [u1,v1]⊗ [0,v2] ≤τ [u2,v2]⊗ [u1,1] (due to Property 6 presented above).
(iii) {[0,v j]|c2 ⊆ c j, j �= 2} ⊆ {[0,v j]|c1 ⊆ c j, j �= 1,2}, because of c1 ⊆ c2. Since

a combination with [0,z] decreases a membership support, due to Property 3 in
Definition 2.4, the following holds:

[u1,v1]⊗ [0,v2]⊗{ j|c1⊆c j , j �=1,2} [0,v j] ≤τ [u2,v2]⊗ [u1,1]⊗{ j|c2⊆c j , j �=2} [0,v j]

(iv) {[ui,1]|ci ⊆ c1, i �= 1} ⊆ [ui,1]|ci ⊆ c2, i �= 1,2}, because of c1 ⊆ c2. Since a
combination with [z,1] increases a membership support, due to Property 4 in
Definition 2.4, the following holds:

[u1,v1]⊗ [0,v2]⊗{ j|c1⊆c j , j �=1,2} [0,v j]⊗{i|ci⊆c1,i�=1} [ui,1]
≤τ [u2,v2]⊗ [u1,1]⊗{ j|c2⊆c j , j �=2} [0,v j]⊗{i|ci⊆c2,i�=1,2} [ui,1]

Therefore m′(c1,o) ≤τ m′(c2,o), as long as m′(ci,o) �= [] and m′(c j,o) �= [].
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3 Interval Intersection

In this section we examine the common and simple combination function that in-
tersects involved support pairs, which could be interpreted as probability lower and
upper bounds.

Definition 3.1. Interval Intersection Function
Let ⊗i : I ([0,1])×I ([0,1]) → I ([0,1]) be defined by

[x1,x2]⊗i [y1,y2] = [x1,x2]∩ [y1,y2] = [max(x1,y1),min(x2,y2)].

Proposition 3.1. ⊗i is an admissible uncertain membership combination function.

Proof.

(i) It is obvious that ⊗i is commutative and associative, because the min and max
functions are so.

(ii) [x1,x2]⊗i [u,v] = [max(x1,u),min(x2,v)]
[y1,y2]⊗i [u,v] = [max(y1,u),min(y2,v)]
Since [x1,x2] ≤τ [y1,y2], i.e., x1 ≤ y1 and x2 ≤ y2, one has max(x1,u) ≤
max(y1,u) and min(x2,v) ≤ min(y2,v), and thus [x1,x2]⊗i [u,v] ≤τ [y1,y2]⊗i

[u,v].
(iii) [x1,x2]⊗i [0,z] = [x1,min(x2,z)] ≤τ [x1,x2].
(iv) [y1,y2] ≤τ [max(y1,z),y2] = [y1,y2]⊗i [z,1].

Example 3.1. Suppose the uncertain membership assignment μ for an object wrt
the class hierarchy illustrated in Figure 1. It expresses that it is certain to a degree
between 0.7 and 1 that the object belongs to the class BIRD, and between 0.8 and
1 to the class PENGUIN. Meanwhile, there is inconsistency as the object does not
belong to the class ADULT-BIRD, i.e. with the membership support [0,0], but to its
subclass ADULT-PENGUIN with the membership support [.5, .5]. Also, the mem-
bership support pairs assigned to the classes BIRD and PENGUIN are not tightly
consistent.

Applying Algorithm 1 using the interval intersection function, one obtains the
membership support pair for each class as follows:

BIRD: [.7,1]⊗i [0,1]⊗i [.8,1]⊗i [.5,1] = [.8,1]
ADULT-BIRD: [0,0]⊗i [.5,1]⊗i [0,1] = []
PENGUIN: [.8,1]⊗i [.5,1]⊗i [0,1] = [.8,1]
ADULT-PENGUIN: [.5, .5]⊗i [0,0]⊗i [0,1]⊗i [0,1] = []

The empty membership support pairs for ADULT-BIRD and ADULT-PENGUIN
are due to the inconsistency of the given membership assignment as noted above.
Except for that, the posterior membership support pairs computed for the classes
BIRD and PENGUIN become tightly consistent.

Proposition 3.2. Given a prior consistent uncertain membership assignment for an
object wrt a class hierarchy, Algorithm 1 using ⊗i produces a posterior tightly
consistent membership assignment for the object wrt the class hierarchy.
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BIRD [.7,1]

ADULT-BIRD [0,0] PENGUIN [.8,1]

ADULT-PENGUIN [.5, .5]

���������

���������

���������

���������

Fig. 1 A class hierarchy with an uncertain membership assignment

Proof. What is to be proved is only that no combination in Algorithm 1 results in
[]. Indeed, for every ci ⊆ c j and the current membership support pairs to ci and
c j being respectively [ui,vi] and [u j,v j], the combinations are only [ui,vi]⊗i [0,v j]
and [u j,v j]⊗i [ui,1]. Meanwhile, [ui,vi] ≤μ [u j,v j], i.e., ui ≤ v j, because the given
membership assignment is consistent. So, for ⊗i, one has:

[ui,vi]⊗i [0,v j] = [ui,min(vi,v j)] �= []
[u j,v j]⊗i [ui,1] = [max(u j,ui),v j] �= []

because ui ≤ min(vi,v j) and max(u j,ui) ≤ v j.

4 Dempster-Shafer Combination

As shown in Example 3.1, the interval intersection function may result in empty
membership support pairs. Dempster-Shafer combination rule [11] can resolve join
of conflicting support pairs, whose intersection is empty.

We recall that, in Dempster-Shafer theory, a basic probability mass is assigned to
each non-empty subset A of the set of all hypotheses, and denoted by m(A). The joint
mass assignment of two mass assignments m1(A) and m2(A) is defined as follows:

m(A) = ∑X∩Y=A m1(X).m2(Y )
∑X∩Y �= /0 m1(X).m2(Y )

This combination function is thus commutative and associative.
In [1], a support pair [x1,x2] for a proposition p is interpreted as the following

mass assignment on the power set of {p,¬p}:

{p} : x1,{¬p} : 1− x2,{p,¬p} : x2 − x1

Dempster-Shafer combination of two support pairs [x1,x2] and [y1,y2] for p can be
first performed as the combination of their corresponding mass assignments, yield-
ing the following one:
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{p}: K(x1y2 + x2y1 − x1y1)
{¬p}: 1−Kx2y2

{p,¬p}: K(x2y2 + x1y1 − x1y2 − x2y1)

where K = 1/(1 + x1y2 + x2y1 − x1 − y1). Then the combined support pair for p
can be derived as [K(x1y2 + x2y1 − x1y1),Kx2y2]. We note that it is always a valid
support pair, i.e., 0 ≤ K(x1y2 + x2y1 − x1y1) ≤ Kx2y2 ≤ 1.

Definition 4.1. Dempster-Shafer Combination Function
Let ⊗ds : I ([0,1])×I ([0,1]) → I ([0,1]) be defined by

[x1,x2]⊗ds [y1,y2] = [K(x1y2 + x2y1 − x1y1),Kx2y2]

where K = 1/(1 + x1y2 + x2y1 − x1 − y1).

Proposition 4.1. ⊗ds is an admissible uncertain membership combination
function.

Proof.

(i) Since Dempster-Shafer rule of combining probability masses is commutative
and associative, so is ⊗ds.

(ii) [z1,z2]⊗ds [u,v] = [K(z1v + z2u− z1u),Kz2v]
where K = 1/(1 + z1v + z2u− z1−u).
Consider the function f (z1,z2) = K(z1v + z2u− z1u). One has

∂ f (z1,z2)/∂ z1 = K2[(v−u)(1 + z2u−u)+ (1− v)z2u] ≥ 0,
∂ f (z1,z2)/∂ z2 = K2u(1−u)(1− z1)] ≥ 0.

So f (z1,z2) is increasing wrt both z1 and z2.
Similarly, consider the function g(z1,z2) = Kz2v. One has

∂g(z1,z2)/∂ z1 = K2v(1− v)z2 ≥ 0, and
∂g(z1,z2)/∂ z2 = K2v(1 + z1v− z1 −u)

≥ K2v(1 + z1v− z1 − v) = K2v(1− v)(1− z1) ≥ 0.

So g(z1,z2) is also increasing wrt both z1 and z2.
Hence, [x1,x2]⊗ds [u,v] ≤τ [y1,y2]⊗ds [u,v] if [x1,x2] ≤τ [y1,y2].

(iii) [x1,x2]⊗ds [0,z] = [Kx1z,Kx2z], where K = 1/(1 + x1z− x1).
It is easy to check that Kz ≤ 1, and thus [Kx1z,Kx2z] ≤τ [x1,x2].

(iv) [y1,y2]⊗ds [z,1] = [K(zy2 + y1 − zy1),Ky2], where K = 1/(1 + zy2− z).
It is easy to check that K(zy2 +y1−zy1)≥ y1 and Ky2 ≥ y2, and thus [y1,y2]≤τ
[y1,y2]⊗ds [z,1].

Example 4.1. Applying Algorithm 1 using Dempster-Shafer combination function
on the class hierarchy and membership assignment as in Example 3.1, one obtains
the membership support pair for each class as follows:
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BIRD: [.7,1]⊗ds [0,1]⊗ds [.8,1]⊗ds [.5,1] = [.97,1]
ADULT-BIRD: [0,0]⊗ds [.5,1]⊗ds [0,1] = [0,0]
PENGUIN: [.8,1]⊗ds [.5,1]⊗ds [0,1] = [.9,1]
ADULT-PENGUIN: [.5, .5]⊗ds [0,0]⊗ds [0,1]⊗ds [0,1] = [0,0]

One can observe that the posterior membership support pairs computed for all the
classes become tightly consistent.

Proposition 4.2. Using ⊗ds, Algorithm 1 always produces a tightly consistent
membership assignment.

Proof. This is due to a property of Dempster-Shafer combination function that it
never results in the empty interval [] as noted above.

5 Possibilistic Combination

In possibility theory, uncertainty of a proposition p is expressed by a pair [N(p),
Π(p)], where N(p) and Π(p) are respectively called the necessity and possibility
degrees and satisfy the condition max(1 −N(p),Π(p)) = 1. Different combina-
tion rules were proposed for necessity and possibility degrees obtained from vari-
ous sources [8]. Here we apply a multiplicative and associative one for combining
membership support pairs as defined below.

Definition 5.1. Possibilistic Combination Function
Let ⊗p : I ([0,1])×I ([0,1]) → I ([0,1]) be defined by

[x1,x2]⊗p [y1,y2] = [1−D(1− x1)(1− y1),Dx2y2]

where D = 1/max((1− x1)(1− y1),x2y2).

Proposition 5.1. ⊗p is an admissible uncertain membership combination function.

Proof.

(i) ⊗p is clearly commutative. The associativity of the function was proved in [8].
(ii) For the monotonic property, we have to prove that [x1,x2] ≤τ [y1,y2] ⇒

[x1,x2]⊗p [u,v] ≤τ [y1,y2]⊗p [u,v]. According to the above-mentioned con-
dition of a necessity-possibility pair, either u is 0 or v is 1. So we prove this
property in these two cases.

(a) [x1,x2]⊗p [0,v] ≤τ [y1,y2]⊗p [0,v]
Indeed, one has:
[x1,x2]⊗p [0,v] = [1− (1−x1)

max(1−x1,x2v) ,
x2v

max(1−x1,x2v) ] and

[y1,y2]⊗p [0,v] = [1− (1−y1)
max(1−y1,vy2) ,

vy2
max(1−y1,vy2) ]

• x1 = 0 and y1 = 0: [x1,x2]⊗p [0,v] = [0,x2v] ≤τ [y1,y2]⊗p [0,v] = [0,vy2],
because x2 ≤ y2.

• x1 = 0 and y2 = 1: [x1,x2]⊗p [0,v] = [0,x2v] ≤τ [y1,y2]⊗p [0,v] = [1−
(1−y1)

max(1−y1,v)
, v

max(1−y1,v) ], because x2v ≤ v ≤ v/max(1− y1,v).
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• x2=1⇒ y2=1, 1−x1 ≤ v⇒ 1−y1 ≤ v: [x1,x2]⊗p [0,v] = [1− (1−x1)
v ,1]≤τ

[y1,y2]⊗p [0,v] = [1− (1−y1)
v ,1], because x1 ≤ y1.

• x2 = 1⇒ y2 = 1, v≤ 1−x1: [x1,x2]⊗p [0,v] = [0,v/(1−x1)]≤τ [y1,y2]⊗p

[0,v] = [1− (1−y1)
max(1−y1,v)

, v
max(1−y1,v) ], because max(1− y1,v) ≤ (1− x1).

(b) [x1,x2]⊗p [u,1]≤τ [y1,y2]⊗p [u,1]
In this case, one has:
[x1,x2]⊗p [u,1] = [1− (1−x1)(1−u)

max((1−x1)(1−u),x2)
, x2

max((1−x1)(1−u),x2)
] and

[y1,y2]⊗p [u,1] = [1− (1−u)(1−y1)
max((1−u)(1−y1),y2) ,

y2
max((1−u)(1−y1),y2) ]

• x1 = 0 and y1 = 0, y2 ≤ 1−u ⇒ x2 ≤ 1−u:
[x1,x2]⊗p [u,1] = [0,x2/(1− u)] ≤τ [y1,y2]⊗p [u,1] = [0,y2/(1− u)], be-
cause x2 ≤ y2.

• x1 = 0 and y1 = 0, 1−u ≤ y2:
[x1,x2]⊗p [u,1] = [1− (1−u)

max(1−u,x2)
, x2

max(1−u,x2)
] ≤τ [y1,y2]⊗p [u,1] = [1−

(1−u)/y2,1], because max(1−u,x2) ≤ y2.
• x1 = 0 and y2 = 1:

[x1,x2]⊗p [u,1] = [1− (1−u)
max(1−u,x2)

, x2
max(1−u,x2)

] ≤τ [y1,y2]⊗p [u,1] = [1−
(1−u)(1− y1),1], because (1− y1) ≤ 1/max(1−u,x2).

• x2 = 1 ⇒ y2 = 1:
[x1,x2]⊗p [tu,1] = [1− (1− x1)(1− u),1] ≤τ [y1,y2]⊗p [u,1] = [1− (1−
u)(1− y1),1], because x1 ≤ y1.

(iii) [x1,x2]⊗p [0,z] = [1− (1−x1)
max(1−x1,x2z) ,

x2z
max(1−x1,x2z) ]

• x1 = 0: [x1,x2]⊗p [0,z] = [0,x2z)] ≤τ [x1,x2].
• x2 = 1: [x1,x2]⊗p [0,z] = [1− (1−x1)

max(1−x1,z) ,
z

max(1−x1,z)
] ≤τ [x1,x2], because 1−

x1 ≤ (1− x1)/max(1− x1,z).

(iv) [y1,y2]⊗p [u,1] = [1− (1−u)(1−y1)
max((1−u)(1−y1),y2) ,

y2
max((1−u)(1−y1),y2) ]

• y1 = 0: [y1,y2]≤τ [y1,y2]⊗p [u,1]= [1− (1−u)
max(1−u,y2)

, y2
max(1−u,y2)

], because y2 ≤
y2/max(1−u,y2).

• y2 = 1: [y1,y2] ≤τ [y1,y2]⊗p [u,1] = [1− (1− u)(1 − y1),1], because (1−
u)(1− y1) ≤ 1− y1.

Example 5.1. In possibility theory, the assigned membership support pairs to the
classes ADULT-BIRD and ADULT-PENGUIN in Example 3.1 are not valid ones.
Applying Algorithm 1 using the defined possibilistic combination function on only
the classes BIRD and PENGUIN, one obtains the membership support pair for each
class as follows:

BIRD: [.7,1]⊗p [.8,1] = [.94,1]
PENGUIN: [.8,1]⊗p [0,1] = [.8,1]

As such, the posterior membership support pairs computed for these two classes
become tightly consistent.
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Proposition 5.2. Using ⊗p, Algorithm 1 always produces a tightly consistent
membership assignment.

Proof. The normalization factor D in Definition 5.1 assures that max(D(1−x1)(1−
y1),Dx2y2) = 1. So ⊗p never results in the empty interval [].

6 Conclusion

We have presented an algorithm to propagate and combine uncertain membership
support pairs on a class hierarchy. As proved, given a prior membership assignment
from various sources for an object to the classes in the hierarchy, the algorithm
produces a tightly consistent posterior membership assignment for that object to
the classes. As such, it also resolves possibly conflicting prior membership support
pairs. The algorithm is based on an admissible combination function whose proper-
ties have been defined and membership constraints due to the subclass relation.

Three specific combination functions, namely, the interval intersection, Dempster-
Shafer, and possibilistic ones have been examined and proved to be admissible. We
have also proved that interval intersection produces a tightly consistent posterior
membership assignment if the prior assignment is consistent. Meanwhile, Dempster-
Shafer and possibilistic combination functions always produce a tightly consistent
one.

The results can be applied for computation and reasoning in object-oriented or
ontology-based systems involving uncertainty, in particular one of class member-
ship. Moreover, the framework of uncertain membership combination presented
here could be adapted for other belief or uncertainty measures as well. These are
among the topics we are investigating.
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Toward Rough Sets Based Rule Generation from
Tables with Uncertain Numerical Values

Hiroshi Sakai, Michinori Nakata, and Dominik Ślȩzak

Abstract. Rough sets based rule generation from tables with uncertain numerical
values is presented. We have already focused on two topics, i.e., rule generation
from tables with non-deterministic in f ormation and rule generation from tables
with numerical values. For non-deterministic information, we have extended the
typical rough sets to rough sets based on uncertain information. For numerical val-
ues, we have defined numerical patterns with two symbols ‘@’ and ‘#’, and have
introduced the equivalence classes depending upon the figures. This paper employs
intervals for uncertain numerical values, as well as rules with intervals. By using a
real example, we show that it is possible to handle such rules according to the same
method as the one already developed for non-deterministic information.

1 Introduction

We are following rough sets based rule generation in Deterministic In f ormation
Systems (DISs) [14, 20], and we are extending it to rule generation in Non-
deterministic In f ormation Systems (NISs) [16, 17, 18]. NISs were proposed
by Pawlak [14], Orłowska [13] and Lipski [11] in order to handle information
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incompleteness in DISs, like null values, unknown values, missing values. Since
the emergence of incomplete information research [6, 9, 11, 13], NISs have played
an important role.

As for rule generation in NISs, we newly proposed rough sets with the minimum
and the maximum sets [16]. Since the typical rough set theory depends upon tables
with definite information, it is seen as rough sets based on certain in f ormation, and
our extended rough sets may be seen as rough sets based on uncertain in f ormation.

We also touched rule generation from tables with numerical values. In our pre-
vious research, we defined numerical patterns with two symbols ‘@’ and ‘#’, and
explicitly specified the signi f icant f igures [19]. In this work, we handled some
kinds of information uncertainty.

In this paper, at first we briefly survey rule generation from tables with non-
deterministic information and rule generation from tables with numerical values.
Then, we explicitly employ the intervals for handling uncertain numerical values.
Once we obtain the minimum and the maximum sets, we can also apply our devel-
oped method to such uncertain numerical values. Finally, we show an exemplary
data and a simulation of rule generation.

2 Decision Rule Generation and Apriori Algorithm

A DIS is a quadruplet (OB,AT,{VALA|A ∈ AT}, f ) [14]. We usually identify a DIS
with a standard table. A rule (more correctly, a candidate of a rule) is an appro-
priate implication in the form of τ : Condition part ⇒ Decision part generated
from a table. We usually employ two criteria, support(τ) and accuracy(τ) for the
appropriateness [1, 14].

A Definition of a Rule Generation in DISs
Find all implications τ satisfying support(τ) ≥ α and accuracy(τ) ≥ β for the
threshold values α and β (0 < α,β ≤ 1).

Agrawal proposed Apriori algorithm [1] for such rule generation, and Apriori
algorithm is now a representative algorithm for data mining [2].

Fig. 1 A pair (support,accuracy) corresponding to the implication τ is plotted in a
coordinate plane
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3 Decision Rule Generation in NISs

A NIS is also a quadruplet (OB, AT,{VALA|A ∈ AT},g), where g : OB× AT →
P(∪A∈ATVALA) (a power set of ∪A∈ATVALA). Every set g(x,A) is interpreted as that
there is an actual value in this set but this value is uncertain.

Table 1 A Non-deterministic Information System (An artificial table data)

OB Temperature Headache Nausea Flu

1 {high} {yes,no} {no} {yes}
2 {high,very high} {yes} {yes} {yes}
3 {normal,high,very high} {no} {no} {yes,no}
4 {high} {yes} {yes,no} {yes,no}
5 {high} {yes,no} {yes} {no}
6 {normal} {yes} {yes,no} {yes,no}
7 {normal} {no} {yes} {no}
8 {normal,high,very high} {yes} {yes,no} {yes}

For a NIS=(OB,AT,{VALA| A ∈ AT},g) and a set ATR ⊆ AT , we name a
DIS=(OB,ATR,{VALA|A ∈ AT R},h) satisfying h(x,A) ∈ g(x,A) a derived DIS
(for ATR) from a NIS. In a NIS, there are derived DISs due to the information
incompleteness.

We can pick up τ1 : [Temperature,high]⇒ [Flu,yes] from objects 1, 2, 3, 4 and
8. We may use the notation τx from object x, for example, τ1

1 (τ1 from object 1) and
τ8

1 (τ1 from object 8). Furthermore, we consider a set of derived DISs with τx, and
let DD(τx) denote this set. For a set of attributes {Temperature,Flu}, there are 144
(=24 ×32) derived DISs, |DD(τ1

1 )|=144 and |DD(τ8
1 )|=48 hold. If τx (for an object

x) satisfies the condition of the criterion values, we see this τ is a rule.

A Definition of a Rule Generation in NISs (A Revised Definition in [17])
Let us consider the threshold values α and β (0 < α,β ≤ 1).

(The lower system) Find all implications τ in the following: There exists an object
x such that support(τx) ≥ α and accuracy(τx) ≥ β hold in each ψ ∈ DD(τx).

(The upper system) Find all implications τ in the following: There exists an object
x such that support(τx) ≥ α and accuracy(τx) ≥ β hold in some ψ ∈ DD(τx).

For this rule generation, we have proved the next results.

Result 1. [17] For each implication τx, there is a derived DISworst , where both
support(τx) and accuracy(τx) are minimum. Furthermore, there is a derived DISbest ,
where both support(τx) and accuracy(τx) are maximum.

Result 2. [17] In a NIS=(OB,AT,{VALA|A ∈ AT},g), we can calculate minsupp
(minimum support), maxsupp (maximum support), minacc (minimum accuracy)
and maxacc (maximum accuracy) by the next sets, i.e., Descin f ([Ai,vali, j]) and
Descsup([Ai, vali, j]).
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Fig. 2 A distribution of pairs (support,accuracy) for an implication τx

(1) Descin f ([Ai,ζi, j])={x ∈ OB|g(x,A)={ζi, j}}.
(2) Descin f (∧i[Ai,ζi, j])=∩iDescin f ([Ai,ζi, j]).
(3) Descsup([Ai,ζi, j])={x ∈ OB|ζi, j ∈ g(x,A)}.
(4) Descsup(∧i[Ai,ζi, j])=∩iDescsup([Ai,ζi, j]).

For example, if every attribute value is definite in τx : [CON,ζ ] ⇒ [DEC,η ],
minsupp(τx)=|Descin f ([CON,ζ ])∩Descin f ([DEC,η ])|/|OB|,
minacc(τx)= |Descin f ([CON,ζ ])∩Descin f ([DEC,η])|

|Descin f ([CON,ζ ])|+|OUTACC| ,

(OUTACC=[Descsup([CON,ζ ])−Descin f ([CON,ζ ])]−Descin f ([DEC,η ]),
maxsupp(τx)=|Descsup([CON,ζ ])∩Descsup([DEC,η ])|/|OB|,
maxacc(τx)= |Descin f ([CON,ζ ])∩Descsup([DEC,η])|+|INACC|

|Descin f ([CON,ζ ])|+|INACC| .

(INACC=[Descsup([CON,ζ ])−Descin f ([CON,ζ ])∩Descsup([DEC,η ])).

An Equivalent Definition of a Rule Generation in NISs
Let us consider the threshold values α and β (0 < α,β ≤ 1).

(The lower system) Find all implications τ in the following: There exists an object
x such that minsupp(τx) ≥ α and minacc(τx) ≥ β .

(The upper system) Find all implications τ in the following: There exists an object
x such that maxsupp(τx) ≥ α and maxacc(τx) ≥ β .

In the first definition, we needed to examine support and accuracy in all derived
DD(τx), however we can examine the same results by comparing (minsupp, minacc)
and (maxsupp,maxacc) with the threshold α and β due to this equivalent defini-
tion. Like this, we extended rule generation in DISs to rule generation in NISs,
and realized a software tool NIS-Apriori [17, 18]. This can handle not only deter-
ministic information but also non-deterministic information. NIS-Apriori algorithm
does not depend upon the number of derived DISs, and the complexity is almost the
same as the original Apriori. In [17], the execution on Hepatitis.csv (155 objects, 20
attributes, 167 missing values, more than 10 power 100 derived DISs) [22] is pre-
sented. In [18], the execution on Mammo.csv (961 objects, 6 attributes, 162 missing
values, more than 10 power 98 derived DISs) [22] is also presented.

We are now coping with NIS-Apriori on Infobright ICE system [21], and we are
discussing on Data Mining in Warehousing and Various Types of Inexact Data [8].
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4 Decision Rule Generation from Tables with Numerical Values

There are several research to obtain the tendency or rules from numerical data sets,
for example, the confidence interval theory [5], logic with intervals [23, 24], cluster
analysis [4], decision tree like C4.5 [15], rough sets and intervals [10, 25], rough
sets based rule generation [3, 7]. In rough sets based rule generation, most of the
research seems to try to discretize numerical values. However, we have developed a
software tool in another way.

4.1 Mumerical Patterns for Numerical Values

We defined a numerical pattern with @ and # symbols [19]. Intuitively, @ denotes a
significant figure and # denotes the ”do not care” figure. Let us consider an irrational
number π=3.14· · · . For students in elementary schools, π=3.14 will be sufficient for
calculating the area of a circle. On the other hand, π=3.14 may be insufficient for
researchers of numerical analysis. Namely, students see π with a numerical pat-
tern @.@@#· · · , and researchers see π with a numerical pattern @.@@@· · · . Such
concepts seem familiar in data analysis. We noticed the necessity for handling such
concepts, and explicitly defined numerical patterns. Since the numerical patterns
naturally define the hierarchy of data, the numerical patterns will be applicable to
define the concepts ”coarse” and ”fine” or (zoom in and zoom out) in [12, 14, 26].

4.2 Example 1

Let us consider Table 2. There are numbered four persons, and Table 2 stores a
relation between Sex, Height and Weight.

Table 2 Exemplary deterministic information system with numerical values

Person Sex Height(cm) Weight(kg)

1 f emale 162 64.3
2 f emale 162 64.5
3 male 164 65.8
4 male 172 72.8

According to regression analysis in Microsoft Excel, we obtained a regression
line from Height to Weight

Weight=0.6445×Height-39.982.
However, we may soon see such an implication that

τ2: If Height is in the 160s, the Weight is in the 60s.

In some cases, this implication τ2 may be more informative than the regression line.
In Table 2, we have the next equivalence relations based on the rough sets
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eq({Sex})={{1,4},{2,3}}, eq({Height})={{1,2},{3},{4}},
eq({Weight})={{1},{2},{3},{4}}.

According to [14], we can recognize the data dependency by using equivalence
relations. Let CON and DEC be condition and decision attributes, and [x] be an
equivalence class with an object x. If [x]CON ⊆ [x]DEC holds for any x, there exists
the data dependency from CON to DEC. In the above case, we do not recognize the
data dependency from Sex to Weight nor Height to Weight. We do not recognize τ2,
neither. However, if we employ numerical patterns, we have the following:

eq({Height},@##)={{1,2,3,4}}, eq({Height},@@#)={{1,2,3},{4}},
eq({Height},@@@)={{1,2},{3},{4}}, eq({Weight},@#.#)={{1,2,3},{4}},
eq({Weight},@@.#)={{1,2},{3},{4}},
eq({Weight},@@.@)={{1},{2},{3},{4}}.

In this case, we know the data dependency from {Height} with @@# to {Weight}
with @#.#, and we recognize two consistent implications including τ2.

4.3 Example 2

Let us consider Table 3, which is a part of baseball game data. This is small size
data, however it is enough to discuss rough sets based issues.

Table 3 Players’ Batting Data in Baseball Games, AVG: Batting Average, SF&SH: Sacrifice
Flies and Hits, SB: Stolen Bases, OBP: On-Base Percentage, SLG: Slugging Percentage

OBJECT(Players) AV G SF&SH SB OBP SLG

p1 0.322 0 3 0.397 0.553
p2 0.312 1 7 0.391 0.430
p3 0.309 0 3 0.390 0.557
p4 0.300 0 1 0.307 0.556
p5 0.273 0 5 0.326 0.467
p6 0.402 0 2 0.362 0.628
p7 0.274 3 11 0.327 0.437
p8 0.271 1 3 0.361 0.466
p9 0.266 0 0 0.292 0.525
p10 0.263 0 3 0.294 0.363

In Table 3. we have the following.

eq(AVG)={{p1},{p2},{p3},{p4},{p5},{p6},{p7},{p8},{p9},{p10}},
eq(SLG)={{p1},{p2},{p3},{p4},{p5},{p6},{p7},{p8},{p9},{p10}}.

Since [pi]AVG={pi} and [pi]SLG={pi} hold for every pi, [pi]AVG ⊆ [pi]SLG holds for
every pi. Thus, there exists the data dependency from AV G to SLG. The degree of
dependency is 1.0, and it is possible to obtain consistent implications from Table 3.
Although we can obtain consistent implications like [AVG,val] ⇒ Decision, every
implication represents just a player’s property, and such a consistent implication
does not represent the total players’ property.
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In rough set theory, we usually handle a finite set of categorical values, and im-
plicitly the number of attribute values is restricted to small size. Therefore, we have
the small number of equivalence classes for every attribute. In an attribute AVG in
Table 3, attribute values are decimal numbers between 0.000 and 1.000. The amount
of the attribute values is 1001. This amount seems too large in rough set theory.
We can solve such problems by using numerical patterns. In the following, we are
generating implications τ : Condition ⇒ [AV R,val] such that support(τ) ≥ 0.3 and
accuracy(τ)≥ 0.7.

Fig. 3 Since each equivalence class AV R is a singleton set, any implication does not satisfy
support ≥ 0.3. The symbol 0 implies that there is no implication satisfying the condition

Fig. 4 If we employ # symbols, we have 11 implications satisfying the condition

We applied this software tool to bunpa.csv (345 objects, 7 attributes), glass.csv
(155 objects, 20 attributes), yeast.csv (1484 objects, 9 attributes) in UCI data
repository [22], and we examined this tool could easily handle such data.
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4.4 A Problem Related to Numerical Patterns

By using numerical patterns, we can explicitly handle the concept of the signifi-
cant figure. In Table 3, [AVG,0.3##] implies that this player’s batting average is 30s
percent. Such information is familiar in our life.

However, numerical patterns may cause some strange results due to the figure.
For three batting average data, player11 : 0.385, player12 : 0.302 and player13 :
0.298, a numerical pattern @.@## defines two classes {player11, player12} and
{player13}, but the average of player12 and player13 is closer than that of player11

and player12. This is not the theoretical problem on the numerical patterns at all,
but this is the property of the numerical patterns.

5 Decision Rule Generation with Intervals from Tables with
Numerical Values

5.1 Rules with Intervals

In order to handle numerical values in implications, the following syntax seems too
specific.

[Attribute1,val1]∧·· ·∧ [Attributen,valn] ⇒ [AttributeDec,valDec].

In Table 3, each implication from a tuple just represented the tuple itself. Therefore,
we fix a radius in each attribute, and consider the following implications whose
attribute values are intervals.

[Attribute1, [val1 − r1,val1 + r1]]∧·· ·∧ [Attributen, [valn − rn,valn + rn]]
⇒ [AttributeDec, [valDec − rDec,valDec + rDec]] (r1 > 0, · · · ,rn > 0 and rDec > 0 ).

This extension from rules with values to rules with intervals is very simple, and we
connect rough sets to the rules with intervals.

Here, we consider just rules with intervals, but we can see several work related to
intervals in [6, 10, 23, 24, 25]. The manipulation of intervals seems to be the main
issue in decision making under uncertainty and logic under uncertainty [23, 24].

5.2 An Example: Rules with Intervals from Tables with
Numerical Values

Let us consider Table 2, again. At first, we fix the set of the condition attributes
{Height}, the set of decision attributes {Weight}, radiuses rH=2 and rW =0.4. Then,
the implication from the first person is

τ3 : [Height, [160,164]]⇒ [Weight, [63.9,64.7]].

In Table 2, person 1, 2 and 3 satisfy the descriptor [Height, [160,164]], and person 1
and 2 satisfy the descriptor [Weight, [63.9,64.7]]. Therefore, the person 1 and 2 sup-
port τ3, and we similarly define the criteria support(τ3)=2/4 and accuracy(τ3)=2/3
due to Fig.1.
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By changing the radiuses rH and rW , we can manipulate the support and
accuracy of τ3. For rH=20 and rW =10, we deal with the next τ ′3,

τ ′3 : [Height, [142,182]]⇒ [Weight, [54.3,74.3]].

In this case, support(τ ′3)=1.0 and accuracy(τ ′3)=1.0 hold. However, this τ ′3 seems
too trivial, and this τ ′3 may be meaningless. For rH=1 and rW =0.1, we deal with the
next τ ′′3 ,

τ ′′3 : [Height, [161,163]]⇒ [Weight, [64.2,64.4]].

In this case, support(τ ′′3 )=1/4 and accuracy(τ ′′3 )=1/2 hold. We need implications,
whose support and accuracy are high and the radiuses are pretty small. For exam-
ple, let us suppose radiuses rH=2 and rW =1.5, then we have the next implication
from person 2.

τ4 : [Height, [160,164]]⇒ [Weight, [63.0,66.0]].

In this case, support(τ4)=3/4 and accuracy(τ4)=1.0 hold, and τ4 semantically
corresponds to τ2 in Section 4.2.

5.3 Decision Rule Generation and Apriori Algorithm

Now, we define rule generation with intervals.

A Definition of a Rule Generation with Intervals
For fixed radiuses in attributes, find all implications τ satisfying support(τ) ≥ α
and accuracy(τ)≥ β for the threshold values α and β (0 < α,β ≤ 1).

This is almost the same as rule generation in Section 2. We can easily apply
Apriori algorithm to this rule generation as follows:

(1) At first, we define descriptors [Attribute,valAttribute] for each tuple.
(2) For threshold values α and radiuses rAttribute, we define descriptors with an
interval [Attribute, [valAttribute − rAttribute,valAttribute + rAttribute]].
(3) We examine the number of objects satisfying intervals, then we pick up
descriptors satisfying the threshold value α .
(4) We combine descriptors and generate conjunctions satisfying the threshold value
α . If the condition of the accuracy is satisfied in the conjunction of descriptors,
we pick up this conjunction as a rule. Otherwise, we continue (4) until there is no
candidates of conjunctions.

However, we have to remark that following.

(1) For discrete data, we can easily define descriptors [Attribute,valueAttribute],
because the number of attribute values is experimentally small.
(2) For numerical data, we may need to define the large number of descrip-
tors [Attribute,valueAttribute]. In Table 3, we may need to consider 1001 intervals
[AVG, [val − rAVG,val + rAVG]] (0.000 ≤ val ≤ 1.000). This seems too large, and
this will be an important next problem in rule generation with intervals.
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6 Decision Rule Generation with Intervals from Tables with
Uncertain Numerical Values

Now, we consider the final case that the table consists of uncertain numerical values.
Let us consider Table 4 generated from Table 2 by adding some errors.

Table 4 An exemplary system with non-deterministic information and intervals. As for per-
son 1, she is a female, height is 162(cm) and the weight is between 64.0(Kg) and 64.6(Kg)
(An artificial and intentional table data)

Person Sex Height(center±error) Weight(center±error)

1 { f emale} [162,162](162±0) [64.0,64.6](64.3±0.3)
2 {male, f emale} [160,164](162±2) [64.2,64.8](64.5±0.3)
3 {male, f emale} [162,166](164±2) [65.5,66.1](65.8±0.3)
4 {male} [168,176](172±4) [72.5,73.1](72.8±0.3)

In Table 4, we see that each interval is reduced by adding more precise informa-
tion. We name a table with such reduced intervals an extension from this table. Due
to these extensions, we define the rule generation like Section 3.

A Definition of a Rule Generation from Tables with Intervals
Let us consider the threshold values α and β (0 < α,β ≤ 1).

(The lower system) Find all implications τ in the following: There exists an object
x such that support(τx) ≥ α and accuracy(τx) ≥ β hold in each extension.

(The upper system) Find all implications τ in the following: There exists an object
x such that support(τx) ≥ α and accuracy(τx) ≥ β hold in some extensions.

We can similarly handle this problem like NIS-Apriori. Let us fix the condition
attribute {Weight}, radiuses rH=2 and rW =0.4, threshold values α=0.5 and β=0.6.
For these conditions, we simulate the rule generation in the lower system. Since
α=0.5 and α×4(the amount of objects)=2, two objects must exist in Table 4.

Table 5 Revised Descinf (a set of objects whose interval is completely included in the de-
scriptor) and Descsup (a set of objects whose interval have the intersection of the descriptor)
in Result 2

Classes [Sex, f emale] [Sex,male] [H, [160,164]] [H, [162,166]] [H, [170,174]]

descin f {1} {4} {1,2} {1,3} {}
descsup {1,2,3} {2,3,4} {1,2,3} {1,2,3} {4}

Classes [W, [63.9,64.7]] [W, [64.1,64.9]] [W, [65.4,66.2]] [W, [72.4,73.2]]

descin f {1} {2} {3} {4}
descsup {1,2} {1,2} {3} {4}
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In Table 5, an object 1 certainly satisfies the descriptor [Sex, f emale], and ob-
jects 2 and 3 possibly satisfy this descriptor. If we focus on the implication from
the object 2, there exist two objects 1 and 2. Therefore, we need to consider
[Sex, f emale]. However, such case does not occur in [H, [170,174]], [W, [65.4,66.2]]
nor [W, [72.4,73.2]]. Thus, we reduce the meaningless descriptors sequentially.
Then, we generate the conjunctions of some meaningful descriptors satisfying the
condition of support, and we repeat this procedure. Due to this procedure and the
result in [17], we obtain the following τ5 from object 2,

τ5 : [Height, [160,164]]⇒ [Weight, [63.9,64.7]],
OUTACC=[{1,2,3}−{1,2}]−{1}={3}, and
minacc(τ5)=(|{1}|+ 1)/(|{1}∪{2}|+ |{3}|)=2/3.

Since τ5 satisfies minsup(τ5) ≥ 0.5 and minacc(τ5) ≥ 0.6, τ5 satisfies these con-
ditions in each extension of Table 4. However, we have to remark that the interval
[64.2,64.8] in the object 2 is reduced to [64.2,64.7]. Under this assumption, τ5 is a
rule in the lower system. Similarly, we have other three implications,

τ6 : [Sex, f emale] ⇒ [Weight, [63.9,64.7]] (from object 2),
τ7 : [Height, [162,166]]⇒ [Weight, [63.9,64.7]] (from object 2).
τ8 : [Height, [160,164]]⇒ [Weight, [64.1,64.9]] (from object 1).

After calculating minsupp(τ) and minacc(τ), we obtain an extension which causes
such two criterion values as a side effect of the calculation. Here, we just explained
the overview of the lower system. Similarly, we can show the overview of the upper
system.

7 Concluding Remarks

This paper briefly surveyed our previous work on uncertain information, and
clarified the next issue. In the manipulation of discrete data, like non-deterministic
information, the concept of derived DISs is so clear that we could develop the
framework Rough Non-deterministic In f ormation Analysis (RNIA) [16] includ-
ing NIS-Apriori [17] and SQL-NIS-Apriori [21]. In the next step, we will touch
rule generation from tables with intervals, i.e., INT ERVAL-Apriori algorithm and
related issues. It is necessary to compare our work with the previous work like
[10, 25], as well as decision tree method C4.5.
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Acquiring Knowledge from Decision Tables for
Evidential Reasoning

Koichi Yamada and Vilany Kimala

Abstract. This paper proposes a method to acquire rules for evidential reasoning
from multiple decision tables. The knowledge acquisition consists of two steps: the
first step derives uncertain rules of the form: if a(u) is x, then d(u) is in Y1 with r1

or . . . or d(u) is in YM with rM , where r j( j = 1, . . . ,M) are beliefs represented by
basic belief assignment. The second step derives rules of the form: if a(u) is in X ,
then d(u) is in Y1 with r1 or . . . or d(u) is in YM with rM , from the rules obtained in
the first step. A non-specificity based condition imposed on rules generated in the
second step is introduced. It is also shown that the disjunctive combination approach
satisfies the condition.

1 Introduction

Acquiring knowledge from decision tables and decision-making with the derived
knowledge have been common in various fields. Rough set theory provides a formal
methodology with this type of data analysis [8].

Rough set theory is a theory to deal with uncertainty contained in given data.
However, rules themselves derived from the original rough set model do not include
uncertainty. Rules with certainty are obtained from data with uncertainty; therefore
the theory may miss important rules when data include noise. Variable precision
rough set model [9] and Bayesian rough set model [6] have been thus studied to
expand the original one so that uncertain rules could be acquired.

There are also needs to acquire uncertain rules from multiple decision tables,
where all tables have the same values for non-decision attributes but they have dif-
ferent values for decision variables. A typical case is one to acquire judgment rules
from questionnaire results to multiple subjects [3].
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The paper proposes knowledge acquisition that derives uncertain rules from mul-
tiple decision tables, where uncertainty is represented by basic belief assignment
(bba) defined in Dempster-Shafer theory [4], and the rules are used for evidential
reasoning [2, 7, 10].

The knowledge acquisition consists of two steps: in the first step, rules in the
following form are derived borrowing Skowron et al.’s approach [5] from multiple
decision tables, where each table has different values from one another for the de-
cision attribute, while all values of the other (non-decision) attributes are the same.

If a1(u) = x1 and . . . and aN(u) = xN

then d(u) ∈Y1 with r1 or . . . or d(u) ∈ YM with rM
(1)

where ai(u)(i = 1, . . . ,N) are the values of non-decision (conditional) attributes ai of
an object u; xi are elements of domain Di of ai, d(u) is the value of decision attribute
(conclusive attribute) d of u; Yj( j = 1, . . . ,M) are subsets of domain Dd of d; and r j

are beliefs represented by bba or a mass function, and satisfy r1 + . . .+ rM = 1 and
r j > 0.

In the second step, we generate rules of the following form (2) from those
represented in (1) above.

If a1(u) ∈ X1 and . . . and aN(u) ∈ XN

then d(u) ∈ Y1 with r1 or . . . or d(u) ∈YM with rM
(2)

where Xi are subsets of domain Di of attributes ai. If the rules in the form (2) can
be obtained for any combination of Xi ⊆ Di, we could reason bba on the decision
attribute d using evidential reasoning [2, 10].

So far, there have been two different ideas proposed in the literature for deriving
rules (2) from rules (1); namely an ad hoc approach [2] and disjunctive combination
approach [7]. This paper discusses and proposes the condition that approaches to de-
rive rules (2) from rules (1) must satisfy, and examines the two approaches. Then, it
proves that the disjunctive combination approach satisfies the condition, and shows
that the other does not. The condition that we propose is based on non-specificity [1]
of bba [11], which is a generalization of Hartley information measure.

The main contributions of this paper are the proposal of the condition that ap-
proaches used in the second step must satisfy, and the proof that the disjunctive
combination approach satisfies the condition. In addition, this might be the first pa-
per that proposes a whole way to learn rules for evidential reasoning from given data
with a discussion of justification, as far as the authors know.

2 Acquiring Rules from Decision Tables

Suppose we have a decision table (U,A∪ {d},V,ρ), where U is a set of objects,
A = {a1, . . . ,aN} is a set of non-decision attributes, d is the decision attribute, V =
D1 ∪ . . .∪DN ∪Dd is a set of possible values of the attributes, and ρ is a function
satisfying ρ(u,ai) = ai(u) and ρ(u,d) = d(u), u ∈ U . For simplicity, we assume
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Dd = {α,β ,γ}. However, it is easy to generalize the discussion using Dd with any
cardinality n.

Let us denote by Yα (Yβ or Yγ , respectively) a set of objects such that d(u) = α
(β or γ , respectively). Then, by applying Skowron et al.’s approach [5], we get the
following rules

R1 : if u ∈ AYα , then d(u) ∈ {α},
R2 : if u ∈ AYβ , then d(u) ∈ {β},
R3 : if u ∈ AYγ , then d(u) ∈ {γ},
R4 : if u ∈ Bd(Yα ,Yβ ), then d(u) ∈ {α,β},
R5 : if u ∈ Bd(Yβ ,Yγ ), then d(u) ∈ {β ,γ},
R6 : if u ∈ Bd(Yα ,Yγ), then d(u) ∈ {α,γ},
R7 : if u ∈ Bd(Yα ,Yβ ,Yγ ), then d(u) ∈ {α,β ,γ},

where
Bd(Yα ,Yβ ) = BN(Yα)∩BN(Yβ )−BN(Yγ),
Bd(Yβ ,Yγ ) = BN(Yβ )∩BN(Yγ)−BN(Yα),
Bd(Yα ,Yγ ) = BN(Yα)∩BN(Yγ)−BN(Yβ ),
Bd(Yα ,Yβ ,Yγ ) = BN(Yα)∩BN(Yβ )∩BN(Yγ),
BN(Yα) = AYα −AYα ,BN(Sβ ) = AYβ −AYβ ,
BN(Yγ ) = AYγ −AYγ ,

and AY , AY and BN(Y ) are, respectively, upper approximation, lower approximation
and boundary of Y ⊆ Dd with respect to the indiscernibility relation induced by A.
Bd(Yα ,Yβ ) is called boundary set.

The conditional parts of rules R1 – R7 partition the set U . Thus, only one rule
is applied to every u ∈ U . Then, the actual rules are generally represented in the
following form:

If a1(u) = x1 and . . . and aN(u) = xN , then d(u) ∈ Y. (3)

Now, suppose that we have multiple decision tables which have different values
from one another for ρ(u,d) = d(u), but have the same values for ρ(u,ai) = ai(u).
Such decision tables are obtained, for example, from results of a questionnaire to
multiple subjects.

In typical conventional studies, where only rules from R1 to R3 derived from
lower approximations are used, the conclusive part is represented in the form of
d(u) = y ∈ Dd , instead of d(u) ∈ Y . Thus, the uncertainty caused by multiple de-
cision tables is represented in the form of a probability distribution on Dd , and the
reasoning could be done using simple probabilistic one. When Dd is a continuous
set or a totally ordered-set as most applications in the field of Kansei Engineering,
the expected value could be used instead of a probability distribution.

However, in our case where rules in the form of (3) are obtained from a decision
table, the rules derived from multiple decision tables must have the form of (1),
where uncertainty in the conclusive part is given by bba. These rules require us
unavoidably to conduct evidential reasoning. In addition, the general form of rules
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used in evidential reasoning must be in the form of (2), assuming that uncertainty of
non-decision attributes is given by bba’s.

3 Generating Rules for Evidential Reasoning

This section discusses the way to derive rules in the form (2) from rules repre-
sented in (1). Just for simplicity, let us denote the conditional parts of rules (1)
and (2) by a(u) = e and a(u) ∈ E , respectively, in the rest of the paper, where
a(u) = (a1(u), . . . ,aN(u)), e = (x1, . . . ,xN) and E = X1 × . . .×XN . Particularly,

If a(u) = e, then d(u) ∈ Y1 with r1 or . . . or d(u) ∈ YM with rM (4)

If a(u) ∈ E, then d(u) ∈Y1 with r1 or . . . or d(u) ∈YM with rM. (5)

When mass functions mi’s are given on the domain Di of ai, a mass function on Da =
D1 × . . .×DN is obtained by ma(E) = m1(X1) . . .mN(XN), assuming independence
of non-decision attributes among one another.

Liu et al. [2] represent the rules in the form of (4) by a matrix called Basic
Evidential Mapping (BEM, for short) as shown in Fig. 1. In the figure {e1}, . . . ,{eK}
are called row titles, and Y1, . . . ,YH are column titles. Each row of BEM represents
a rule of the form of (4), where a row title {ek} (ek ∈ Da, k = 1, . . . ,K = |Da|)
denotes its condition a(u) = ek, and a column title Yh (Yh ⊆ Dd , h = 1, . . . ,H) and a
matrix element mkh (mkh ∈ [0,1], mk1 + . . .+mkH = 1) denote a part of its conclusion
“d(u) ∈ Yj with r j”, unless mkh = 0. Y1, . . . ,YH are subsets of Dd which appear in
conclusions of all rules in the form of (4), and are renumbered appropriately.

⎛⎜⎜⎜⎝
Y1 Y2 . . . YH

{e1} m11 m12 . . . m1H
{e2} m21 m22 . . . m2H
...

...
...

. . .
...

{eK} mK1 mK2 . . . mKH

⎞⎟⎟⎟⎠
Fig. 1 Matrix of Basic Evidential Mapping

Liu et al. [2] also proposed a way to reason bba on Dd , when BEM and bba on
Da are given as follows. First, a so-called Complete Evidential Mapping (CEM, for
short) shown in Fig. 2 is derived from BEM, and then, evidential reasoning based
upon (6) is conducted.

md(Y ) =
{
∑K′

k=1 ma(Ek) ·nkh, if Y = Yh,
0, otherwise

(6)

where md is a mass function on Dd , 0 ≤ nkh ≤ 1 and nk1 + . . .+ nkH′ = 1.
Each row of CEM represents a rule in the form of (5), where a row title Ek (Ek ⊆

Da,Ek �= /0,k = 1, . . . ,K′ = |2Da |−1) denotes its condition a(u) ∈ Ek, and a column
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y1 Y2 . . . YH . . . YH ′ = Dd

E1 = {e1} n11 n12 . . . n1H . . . n1H ′
...

...
...

. . .
...

. . .
...

EK = {eK} nK1 nK2 . . . nKH . . . nKH ′

EK+1 = {e1,e2} nK+1,1 nK+1,2 . . . nK+1,H . . . nK+1,H ′

EK+2 = {e1,e3} nK+2,1 nK+2,2 . . . nK+2,H . . . nK+2,H ′

...
...

...
. . .

...
. . .

...
EK ′ = Da nK ′1 nK ′2 . . . nK ′H . . . nK ′H ′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fig. 2 Matrix of Complete Evidential Mapping

title Yh (Yh ⊆ Dd ,h = 1, . . . ,H ′) and a matrix element nkh (nkh ∈ [0,1], nk1 + . . .+
nkH′ = 1) denote a part of its conclusion “d(u) ∈ Yj with r j”, unless nkh = 0.

Validity of the evidential reasoning is discussed in three interpretations in [10]
assuming that nkh is a conditional bba m(Yh|Ek). These interpretations are based on
Bayesian theorem [2], combination rule of evidence [7] and generalized conditional
bba [10].

Row titles from E1 to EK in CEM are the same as those in BEM, namely as {e1}
to {eK}. Column titles from Y1 to YH in CEM are also the same as those in BEM.
Thus, for k and h satisfying 1 ≤ k ≤ K and 1 ≤ h ≤ H, nkh = mkh holds. Since
nk1 + . . .+ nkH′ = 1 must hold, nkh = 0 when 1 ≤ k ≤ K and H < h ≤ H ′.

As a result, the problem of generating CEM from BEM arrives at a problem of
deriving nkh where K < k ≤ K′ from nkh where 1 ≤ k ≤ K. For this problem, Liu
et al. proposed an ad hoc approach in [2], while Smets [7] proposed another way
to generate a rule in the form of (5) from rules in the form of (4) using disjunctive
combination of evidence as shown below.

m12(Y ) = ∑
Y=Z1∪Z2

m1(Z1) ·m2(Z2) (7)

where m1 and m2 are mass functions to be combined, and m12 is the one obtained
by the disjunctive combination.

In the case of Fig. 1 and Fig. 2, bba in a row title Ek (K < k ≤ K′) of CEM is
obtained by the following equation.

nk(Yh) = ∑
Yh = Zi1 ∪ . . .∪Ziλ
Zi1 , . . . ,Ziλ ∈ {Y1, . . . ,YH}
i1, . . . , iλ ∈ {i|ei ∈ Ek}

mi1(Zi1) . . .miλ (Ziλ ) (8)

where nk(Yh) = nkh. The equation means that bba in the conclusive part of a rule
with row title Ek (K < k ≤ K′) is given by disjunctive combination of bba’s in the
conclusive parts of rules with row title {ei} (ei ∈ Ek).
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Example 3.1. [2] Let Da = {e1,e2,e3} and Dd = {h1,h2,h3}. BEM is given as
follows: ⎛⎝

{h1,h2} {h3} {h4}
{e1} 0.5 0.5 0.0
{e2} 0.7 0.0 0.3
{e3} 0.0 0.0 1.0

⎞⎠
If we use the way proposed in [2], the following CEM is generated

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

{h1,h2} {h3} {h4} Dd {h1,h2,h4}
{e1} 0.5 0.5 0.0 0.0 0.0
{e2} 0.7 0.0 0.3 0.0 0.0
{e3} 0.0 0.0 1.0 0.0 0.0
{e1,e2} 0.6 0.0 0.0 0.4 0.0
{e1,e3} 0.0 0.0 0.0 1.0 0.0
{e2,e3} 0.0 0.0 0.65 0.0 0.35
Da 0.0 0.0 0.0 1.0 0.0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
On the other hand, CEM generated by the disjunctive rule of combination is as
follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

{h1,h2} {h3} {h4} Dd {h1,h2,h4} {h1,h2,h3} {h3,h4}
{e1} 0.5 0.5 0.0 0.0 0.0 0.0 0.0
{e2} 0.7 0.0 0.3 0.0 0.0 0.0 0.0
{e3} 0.0 0.0 1.0 0.0 0.0 0.0 0.0
{e1,e2} 0.35 0.0 0.0 0.0 0.15 0.35 0.15
{e1,e3} 0.0 0.0 0.0 0.0 0.5 0.0 0.5
{e2,e3} 0.0 0.0 0.3 0.0 0.7 0.0 0.0
Da 0.0 0.0 0.0 0.35 0.5 0.0 0.15

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
4 Evaluation of Generated CEM

Uncertain information represented by mass functions could be evaluated using non-
specificity and strife as discussed in [1]. Non-specificity is a generalization of Hartley
information measure, and strife is a generalization of Shannon’s information content.
Non-specificity and strife are defined by the following equations, respectively.

N(m) = ∑
A∈F

m(A) · log2 |A| (9)

S(m) = − ∑
A∈F

m(A) · log2 ∑
B∈F

m(B)
|A∩B|
|A| (10)

where F is the set of all focal elements of a mass function m.
The total uncertainty of m is defined by sum of non-specificity and strife.
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T (m) = ∑
A∈F

m(A) · log2
|A|2

∑B∈F m(B) |A∩B| . (11)

The range of these measures is 0 ≤ N(m),S(m),T (m)≤ log2 |Dd |. If the total uncer-
tainty is constant, increase of non-specificity means decrease of strife. In the case of
the example in the previous section, the maximum values of N(m),S(m) and T (m)
are log2 |Dd | = 2.

Each row of BEM and CEM gives a mass function. Thus, we can calculate
these measures for each row of the evidential mappings. Tables 1 to 3 show non-
specificity, strife and the total uncertainty of each row of BEM, CEM generated by
the ad hoc approach given in [2], and CEM generated by applying the disjunctive
combination.

Looking at the tables, there is a tendency that non-specificity of row title Ek′ (K <
k′ ≤ K′) in Tables 2-3 is greater than non-specificity of row title {ek} (1 ≤ k ≤ K)
in Table 1 such that ek ∈ Ek′ . On the other hand, strife has an opposite tendency:
strife of Ek′ (K < k′ ≤ K′) is less than strife of {ek} such that ek ∈ Ek′ . The total
uncertainty has the same tendency as non-specificity.

The tendencies seem to be consistent with our intuition. It is natural that non-
specificity of the decision attribute increases, when non-specificity (Hartley infor-
mation measure) of the conditional attribute increases. In addition, when
non-specificity increases, it seems natural that strife tends to decrease. This is be-
cause sizes of focal elements become larger and overlap between focal elements
tends to appear, as non-specificity becomes bigger. The reason why the total un-
certainty tends to become large when non-specificity increases is that the effect to
decrease strife given by increase of non-specificity is weak. This is understood by
the term of |A|2 in eq. (11).

Table 1 Uncertainty of BEM

Non-specificity Strife Total uncertainty

Row title {e1} 0.50 1.00 1.50

Row title {e2} 0.70 0.881 1.58

Row title {e3} 0.00 0.00 0.00

What should be noticed here is the value of non-specificity of row title {e2,e3}
in Table 2. Non-specificities of the other row titles Ek′ in Tables 2 and 3 are larger
than non-specificities of row titles {ek} such that ek ∈ Ek′ . However, non-specificity
of row title {e2,e3} in Table 2 is less than non-specificity of row title {e2} in
Table 1. Since it is clearly unnatural that non-specificity of the conclusive attribute
decreases when non-specificity of the conditional attribute increases, this might be
an important deficit of the approach proposed in [2].

Based on the above discussion, we propose a condition that CEM generated from
BEM must satisfy. That is, non-specificity of a row title Ek′ (K < k′ ≤ K′) in CEM
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Table 2 Uncertainty of CEM generated by the approach proposed in [2]

Non-specificity Strife Total uncertainty

Row title {e1, e2} 1.44 0.206 1,61

Row title {e1, e3} 2.00 0.00 2.00

Row title {e2, e3} 0.555 0.287 0.842

Row title Da 2.00 0.00 2.00

Table 3 Uncertainty of CEM generated by applying the disjunctive combination

Non-specificity Strife Total uncertainty

Row title {e1, e2} 1.29 0.525 1.82

Row title {e1, e3} 1.29 0.500 1.79

Row title {e2, e3} 1.11 0.225 1.34

Row Da 1.64 0.251 1.89

must be greater than or equal to non-specificity of any row title {ek} such that ek ∈
Ek′ in BEM. Then we have the following.

Proposition 4.1. Non-specificity of a mass function generated by the disjunctive
combination is greater than or equal to non-specificities of the mass functions that
are combined.

Proof. Let m12 is a mass function generated by applying the disjunctive rule of
combination to m1 and m2. Then, the non-specificity of m12 is given by

N(m12) = ∑
A∈F

m12(A) · log2 |A| = ∑
A∈F

(
∑

A=E1∪E2

m1(E1) ·m2(E2)

)
· log2 |A|

= ∑
A∈F,A=E1∪E2

m1(E1) ·m2(E2) · log2 |A|

Let F1 and F2 be the sets of focal elements of m1 and m2, respectively. For any
E1 ∈ F1, we have

∑
E2∈F2

m2(E2) · log2 |E1 ∪E2| ≥ ∑
E2∈F2

m2(E2) · log2 |E1| = log2 |E1|

Thus,
N(m12) = ∑

A=E1∪E2

m1(E1) ·m2(E2) · log2 |A|
= ∑

E1∈F1

∑
E2∈F2

m1(E1) ·m2(E2) · log2 |E1 ∪E2|
≥ ∑

E1∈F1

m1(E1) · log2 |E1| = N(m1)

Similarly, we also have N(m2) ≤ N(m12), which completes the proof.
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The non-decrease of non-specificity holds for the disjunctive combination of any
number of mass functions. Let m1...N be a mass function obtained by applying the
disjunctive combination rule to m1, . . . ,mN (N ≥ 3). Then, from the above proposi-
tion, N(m1...N) ≥ N(m1...(N−1)) ≥ . . . ≥ N(m1) holds. In addition, the associativity
of disjunctive combination rule shown below proves N(m1...N) ≥ N(mi) for any i
(1 ≤ i ≤ N).

Proposition 4.2. Disjunctive combination of evidence satisfies the associative law.

Proof. Disjunctive combination of mass functions m1(X1), . . . ,mN(XN) is given by

m(A) = ∑
A=X1∪...∪XN

m1(X1) . . .mN(XN)

= ∑
A=B∪XN

(
∑

B=X1∪...∪XN−1

m1(X1) . . .mN−1(XN−1)

)
·mN(XN)

= ∑
A=B∪XN

m′(B) ·mN(XN)

where m′(B) is the disjunctive combination of m1(X1),. . . , mN−1(XN−1). It is clear
that the suffixes of mass functions can be transposed one another. Thus, the associa-
tive law holds.

As for strife and the total uncertainty, there are both cases where uncertainty in-
creases/decreases in either of the two approaches as shown in Tables 1–3.

5 Conclusions

The paper discussed and proposed acquiring knowledge for evidential reasoning
from multiple decision tables, which have the same values for non-decision at-
tributes and different values for the decision attribute. Such decision tables are
frequently obtained when interviews or questionnaires are conducted to multiple
subjects. The paper showed that, in these cases, the uncertainty included in the
derived rules is naturally represented by bba of Dempster-Shafer theory, and dis-
cussed how to obtain all rules necessary to conduct evidential reasoning assuming
mass functions on the non-decision attributes are given. The main contributions of
this paper are a proposal of the condition that approaches used in the second step
must satisfy, and the proof that the disjunctive combination approach satisfies the
condition.

Evidence theory was expected to be an effective alternative to theories used in
Knowledge Engineering such as certainty factor, probability, non-monotonic logic,
etc. in 1980’s and 90’s. However, it could not become a major tool for real world
applications due to the computational complexity. If the number of attributes in
the conditional part is n, and each attribute has m possible values, the number of
combinations in the conditional part amounts to (2m−1)n. In the case of probability,
the number is mn.

Expert systems in the past usually had several hundreds or thousands of rules,
because they need long chaining rules and many parallel rules. If the evidence theory
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was used in such expert systems, the number of rules became (2m − 1)n/mn times
by simple arithmetic.

However, suppose the case where rules are acquired from decision tables. If the
number of attributes after relative reduction using rough set theory is n, and each
attribute has m possible values, the total number of rules is up to (2m −1)n. It could
be a manageable number with current computers, if the size of a relative reduct is
not so large.

In addition, the proposed approach does not necessarily need all of the rules
represented as rows in CEM. The number of rules that must be given a priori is
just mn in BEM, the same as the case of probability. The number of necessary rules,
which are generated at the excursion time except for those given at first, is the same
as the number of combinations of focal elements of bba’s given on non-decision
attributes, and is usually far less than (2m −1)n.

From all those things above, evidential reasoning has become a realistic tool to
manage uncertainty in the real world.
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Scalable Methods in Rough Sets

Sinh Hoa Nguyen and Hung Son Nguyen

Abstract. In this paper we investigate the scalability features of rough set based
methods in the context of their applicability in knowledge discovery from databases
(KDD) and data mining. We summarize some previously known scalable methods
and present one of the latest scalable rough set classifiers. The proposed solution is
based on the relationship between rough sets and association discovering methods,
which has been described in our previous papers [10] [11]. In this paper, the set
of decision rules satisfying the test object is generated directly from the training
data set. To make it scalable, we adopted the idea of the FP-growth algorithm for
frequent item-sets [7], [6]. The proposed method can be applied in construction of
incremental rule-based classification system for stream data.

1 Introduction

Mining large data sets is one of the biggest challenges in KDD. In many practi-
cal applications, there is a need of data mining algorithms running on terminals of
a clientserver database system where the only access to database (located in the
server) is enabled by SQL queries. Unfortunately, the proposed so far data mining
methods based on rough sets and Boolean reasoning approach are characterized by
high computational complexity and their straightforward implementations are not
applicable for large data sets.

Classification of new unseen objects is the most important task in data mining.
There are many classification approaches likes “nearest neighbors”, “naive Bayes”,
“decision tree”, “decision rule set”, “neural networks” etc. Every classification
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method has some advantages and disadvantages, hence the choice of classification
methods in practical data mining applications depends on different criteria like:
accuracy, description clearness, time and memory complexity etc.

This paper is related to the rule-based classification approach, which consists
of two basic steps: generalization and specification. In generalization step, a set of
decision rules is constructed from data as a knowledge base. In specialization step
the set of rules, that match a new object (to be classified) is selected and a conflict
resolving mechanism will be employed to make the decision for the new object.
This approach is quite common in classification methods based on rough set theory
(see e.g., [2], [15], [17], [18]).

Unfortunately, there is an opinion that rough set based methods can be applied
for not very large data sets. The main reproach is related to the lack of scalability
(more precisely: there is a lack of proof showing that they can be scalable). The
biggest troubles stick in the rule induction step. As we know, the potential number
of all rules is exponential. All heuristics for rule induction algorithms have at least
O(n2) time complexity, where n is the number of objects in the analyzed data set.
Moreover, the existing algorithms require multiple data scanning.

In our previous paper [10], we proposed to adopt the lazy learning idea to make
rough set based methods more scalable. The proposed method does not consist of
the generalization step. The main effort is shifted in to rule matching step. We had
shown that the set of such rules, that match an object (to be classified) can be se-
lected by a modification of Apriori algorithm proposed in [1] for sequent item set
generation from data bases.

This paper presents another method to this problem. The approach is based on
modification of FP-growth algorithms [7], [6]. The FP-growth algorithm is known
as an efficient and scalable method for frequent pattern discovery from transaction
data sets. We present the method called FDP, which is in fact a modification of FP-
growth, but is applicable for decision tables. We present the experimental results to
confirm the advantages of the proposed method.

2 Basic Notions

In this Section, we recall some well known notions related to rough sets and classi-
fication systems.

An information system [12] is a pair A = (U,A), where U is a non-empty,
finite set of objects and A = {a1, ...,ak} is a non-empty finite set of attributes
(or features), i.e. ai : U → Vai for i = 1, ...,k, where Vai is called the domain
of ai. Let B = {ai1 , ...,ai j}, where 1 ≤ i1 < ... < i j ≤ k, be a subset of A, the
set INFB = Vai1

×Vai2
× ...×Vai j

is called information space defined by B and

the function in fB : U → INFB defined by in fB(u) = 〈ai1(u), ...,ai j (u)〉 is called
“B-information map”. Function in fB defines a projection of objects from U into
information space INFB (or a view of U on features from B).

Two objects x,y ∈U are said to be indiscernible by attributes from B if in fB(x) =
in fB(y). It is easy to show that the relation IND(B) = {(x,y) : in fB(x) = in fB(y)},
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called indiscernibility relation, is the equivalent relation (see [14]). For any u ∈ U ,
the set [u]B = {x ∈U : (x,u) ∈ IND(B)} is called equivalent class of u relative to B.
Equivalent classes can be treated as building block to define basic notions of rough
set theory.

The main subject of rough set theory is concept description, which is the most
important challenge in Data Mining. Any concept can be associated with the set of
elements belonging to this concept. Let X ⊂ U be a concept to be describe and let
B ⊂ A be a set of accessible attributes. The set X can be described by attributes form
B by (BX ,BX), where

BX = {u ∈U : [u]B ⊂ X}, BX = {u ∈U : [u]B ∩X �= /0}

are the B-lower approximation of X and the B-upper approximation of X ,
respectively.

Any information system of the form A = (U,A∪ {dec}) with a distinguished
attribute dec is called a decision table. The attribute dec /∈ A is called the decision
attribute (or the decision, for short).

The classification problem can be formulated in term of decision tables. Assume
that objects from an universe X are classified into d classes by a decision function
dec : X → Vdec = {1, ...,d} which is unknown for learner. Every object from X
is characterized by attributes from A, but the decision dec is known for objects
from a sample set U ⊂ X only. The information about function dec is given by
decision table A = (U,A∪{dec}). The problem is to construct from A a function
LA : INFA →Vdec in such a way, that the probability

P({u ∈ X : dec(u) = LA(in fA(u))})

is sufficiently high. The function LA is called decision algorithm or classifier and
the methods constructing them from given decision table A are called classification
methods.

2.1 Rough Sets and Classification Problem

In this paper, we are dealing with the decision rule based approach, which is pre-
ferred by many Rough Set based classification methods, e.g., [2], [15], [17], [18].
One of the most interesting approaches is related to minimal consistent decision
rules.

Let A = (U,A∪{dec}) be a decision table and k ∈Vdec. Any implication of form

(ai1 = v1)∧ ...∧ (aim = vm) ⇒ (dec = k) (1)

where ai j ∈ A and v j ∈Vai j
, is called a decision rule for kth decision class.

Let r be an arbitrary decision rule of form (1), the set of all objects from U
satisfying the assumption of r is called the carrier of r and is denoted by [r]. Each
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decision rule r can be characterized by its length – the number of descriptors, its
support – the number of objects satisfying the assumption of r, i.e. support(r) =
|[r]|, and its confidence which is defined by

con f idence(r) =
|[r]∩DECk|

|[r]|
The decision rule r is called consistent with A if con f idence(r) = 1. The decision
rule r is called minimal consistent decision rule if it is consistent with A and any
decision rule r′ created from r by removing one of descriptors from left hand side
of r is not consistent with A. The set of all minimal consistent decision rules for a
given decision table A is denoted by MinConsRules(A).

The set of all minimal consistent decision rules can be found by computing object
oriented reducts (or local reducts) [8], [2] [17]. Let us recall the boolean reasoning
approach to local reducts [14], [8], [11]. Let u ∈ U be a arbitrary object in decision
table A = (U,A∪{dec}). We can define a function fu(a1, ...,ak) called discernibility
function for u as follows:

fu(a1, ...,ak) =
∧

v∈U:dec(u) �=dec(v)

(∨
{ai : (ai(u) �= ai(v))}

)
.

Every prime implicant of fu corresponds to “local reduct” for the object u and such
reducts are associated with a minimal consistent decision rules [14], [8], [11]. We
denote by MinRules(u) the set of all minimal consistent decision rules created from
boolean function fu. One can show that

MinConsRules(A) =
⋃

u∈U

MinRules(u)

The set MinConsRules(A) can be used as a knowledge base in classification sys-
tems. In data mining philosophy, we are interested in extraction of short and strong
decision rules with high confidence. The linguistic features like “short”, ”strong” or
“high confidence” of decision rules can be formulated using of their length, support
and confidence. Such rules can be treated as interesting, valuable and useful patterns
in data. In practice, instead of MinConsRules(A), we can use the set of short, strong,
and high accuracy decision rules defined by:

RULES(A,λmax,σmin,αmin) =
{

r: length(r)≤ λmax, support(r)≥ σmin

and con f idence(r)≥ αmin

}
All heuristics for object oriented reducts can be modified to induce the set
RULES(A,λmax,σmin,αmin) of decision rules.

Discretization of real value attributes is another important task in data mining,
particularly for rule based classification methods. Empirical results show that the
quality of classification methods depends on the discretization algorithm used in the
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preprocessing step. In general, discretization is a process of searching for partition
of attribute domains into intervals and unifying the values over each interval. Hence,
the discretization problem can be defined as a problem of searching for a relevant
set of cuts on the attribute domain.

In rough set theory, the optimal discretization problem has been transformed
into a corresponding problem related to reducts of a decision table [11]. The
greedy algorithm for this approach, called MD-heuristic, has been implemented in
RSES system. It has been shown that MD-heuristic for discretization is an efficient
preprocessing method for rule based classifiers [2].

2.2 Eager vs. Lazy Classification Approaches

The classification methods based on learning schema presented in Figure 1 are
called eager (or laborious) methods. Every eager method extracts a generalized the-
ory from the input data (the generalization process) and uses the generalized theory
to classify new objects (specialization). Typical rule based classification methods
consist of three phases:

(i) Learning phase: generates a set of
decision rules RULES(A) (satisfying
some predefined conditions) from a
given decision table A.

(ii) Rule selection phase: selects from
RULES(A) the set of such rules that
can be supported by x. We denote this
set by MatchRules(A,x).

(iii) Post-processing phase: makes a de-
cision for x using some voting
algorithm for decision rules from
MatchRules(A,x)

Rule generation

Rule selection

Classification

Decision table S �

New object x �

RULES(S)

MatchedRules(S,x)

�

�

�

�

�dec(x)

�
�

�
�

�
�

�
�

�
�

�
�

Fig. 1 The standard rule based classification system

In lazy learning approaches, new objects are classified without generalization
step. For example, in kNN (k Nearest Neighbors) method, the decision of new object
x can be made by taking a vote between k nearest neighbors of x. In lazy decision
tree method, we try to reconstruct the path p(x) of the “imaginable decision tree”
that can be applied for new object x.

The lazy methods need more time complexity for the classification step, i.e., the
answer time for the question about decision of a new object is much longer than in
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eager classification methods. But lazy classification methods are well scalable, i.e.
it can be realized for larger decision table using distributed computer system [3],
[13]. The scalability property is also very advisable in data mining. Unfortunately,
the eager classification methods are weakly scalable. As we recall before, the time
and memory complexity of existing algorithms does not make it possible to apply
rule base classification methods for very large decision table1.

3 Scalable Rough Set Methods for Classification Problem

The scalability is a very advisable property in data mining. Unfortunately, the ea-
ger classification methods are weakly scalable. As we recalled before, the time and
memory complexity of existing algorithms does not make possible to apply rule
base classification methods for very large decision table. Thus why the most often
reproach to rough set-based methods is the lack of scalability. We will show that
some classification methods based on rough set theory can be modified to make
them more scalable in the client-server environment.

The first proposition is related to discretization methods. The idea was based on
using “divide and conquer” technique to localize the cut that is very close to the
optimal with respect to discernibility measure. It has been shown that it can be done
by using only O(logn) simple SQL queries, where n is the number of objects. This
technique has been generalized for other measures [11].

The second proposition is related to the classification algorithm and it is based
on the lazy learning approach. In general, lazy learning methods need more time
complexity for the classification step, i.e., the answer time for the question about
decision of a new object is longer than in eager classification methods. But lazy
classification methods are well scalable, i.e., they can be realized for larger deci-
sion table using distributed computer system [4]. The lazy rule-based classification
diagram is presented in Fig. 2.

In other words, we will extract the set of decision rules covering the object x
directly from data without explicit rule generation. We show that this diagram can
work for the classification method described in previous section using the set of
decision rules from MinRules(S,λmax,σmin,αmin). Formally, the problem is formu-
lated as follows: given a decision table S = (U,A∪{dec}) and a new object x, find
all (or almost all) decision rules from the set

MatchRules(S,x) = {r ∈ MinRules(S,λmax,σmin,αmin) : x satisfies r}.

In the case of too large number of such rules, one can find as many rules from
MatchRules(S,x) as required.

The searching method for MatchRules(S,x), based on FP-growth algorithm,
consists of the following steps:

1 By large decision table we mean such tables containing millions of objects and hundreds
of attributes.
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Rule selection

Classification

New object x �

Decision table S

MatchedRules(S,x)

�

�

�
� dec(x)

�
�

�
�

�
�

�
�

Fig. 2 The lazy rule-based classification system

• Construction of the data structure called FDP(x) (Frequent Decision Pattern
tree). This step requires only two data scanning passes:

– The first scanning pass is required to calculate the frequencies of descriptors
from in fA(x). After the first data scan, these descriptors are ordered with re-
spect to their frequencies. The low-frequent descriptors are useless in order
to construct strong decision rules and can be removed. Let DESC(x) be the
resulting list of frequent descriptors.

– In the second scanning pass, each training object u is converted into a list
D(u) of frequent descriptors from DESC(x) that occur in in fA(u), and then
we insert the list D(u) into the data structure FDP(x).

• Generation of the set of frequent decision rules from FDP(x) by a recursive
procedure. This step does not guarantee the minimality of the obtained rules
(some rules are still reducible)

• Insert the obtained rules into a data structure called the minimal rule tree – de-
noted by MRT (x) – to get the set of irreducible decision rules. This data structure
can be used to perform different voting strategy.

As we can see, the key concept in this method is the FDP tree structure. In fact,
similarly to the original FP-tree, FDP is the prefix tree for the collection of ordered
list of descriptors. But, unlike FP-tree, each node in FDP tree consists of four fields:
descriptor name, support, class distribution and node link, where descriptor name
is the name of descriptor, support is the number of training objects that contain all
descriptors on the path from the root to the current node, class distribution is the
detail support for each decision class and node link are used to create list of nodes
of the same descriptor.

The detailed definitions and algorithms for this method were described in [9].
Because of the space limitation, we will illustrate the proposed method by the
following example.
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A a1 a2 a3 a4 dec
ID outlook temp. hum. windy play
1 sunny hot high FALSE no
2 sunny hot high TRUE no
3 overcast hot high FALSE yes
4 rainy mild high FALSE yes
5 rainy cool normal FALSE yes
6 rainy cool normal TRUE no
7 overcast cool normal TRUE yes
8 sunny mild high FALSE no
9 sunny cool normal FALSE yes

10 rainy mild normal FALSE yes
11 sunny mild normal TRUE yes
12 overcast mild high TRUE yes
13 overcast hot normal FALSE yes
14 rainy mild high TRUE no
x sunny mild high TRUE ?

=⇒

ID descriptor lists dec
1 d3, d1 [no]
2 d3, d4, d1 [no]
3 d3 [yes]
4 d3, d2 [yes]
5 [yes]
6 d4 [no]
7 d4 [yes]
8 d3, d2, d1 [no]
9 d1 [yes]
10 d2 [yes]
11 d2, d4, d1 [yes]
12 d3, d2, d4 [yes]
13 [yes]
14 d3, d2, d4 [no]

Descriptor: (outlook=sunny) (temp.=mild) (hum.=high) (windy=true)
Notation: d1 d2 d3 d4
Frequency: 5 6 7 6

Fig. 3 A decision table A and test object x

3.1 Example

Let us illustrate our concept for the whether decision table presented in Figure 3
(left). The test object induces four descriptors: d1 : a1 = sunny, d2 : a2 = mild,
d3 : a3 = high and d4 : a4 = TRUE . Figure 3 (right) presents the transaction data
set after obtained after the first data scan.

Thus we can fix the order of descriptors as follow: DESC(x) = [d3,d2,d4,d1],
and the training objects can be rewritten as follow as presented in Figure 3 (right).
The corresponding FDP tree for this collection of frequent descriptor lists is shown
in the following figure:

In order to generate decision rules from the FDP tree, one can apply the FDP-
growth algorithm which is the modification of FP-growth algorithm [7], [6]. The
readers can read more about the detail of this algorithm in [9]. In this example, one
can obtain the following set of decision rules:

1 (outlook = sunny) ∧ (hum. = high) ⇒ play = no
2 (outlook = sunny) ∧ (temp. = mild) ∧ (windy = TRUE) ⇒ play = yes
3 (outlook = sunny) ∧ (temp. = mild) ∧ (hum. = high) ⇒ play = no
4 (outlook = sunny) ∧ (hum. = high) ∧ (windy = TRUE) ⇒ play = no

One can see that this is not the set of irreducible decision rules, because, the rules
number 3 and 4 are the extensions of rule nr 1. To reduce the set of rules one can
use the additional data structure called MRT (minimal rule tree). In fact, MRT is the
modification of FPMAX tree, the data structure for extraction of maximal frequent
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Fig. 4 The FDP tree for the object x from Table 3

Fig. 5 The MRT tree for the previous set of decision rules

patterns, presented in [5]. The following figure illustrates the resulting MRT tree
after inserting all decision rules.

After all steps, one can obtain two minimal decision rules:

1 (outlook = sunny) ∧ (hum. = high) ⇒ play = no
2 (outlook = sunny) ∧ (temp. = mild) ∧ (windy = TRUE) ⇒ play = yes

4 Experimental Results

The FDP-growth algorithm was implemented and tested on data sets from UCI Ma-
chine Learning Repository. We compared the accuracy of FDP-growth algorithm
with other lazy classifiers: IBk (nearest neighbors classifier) and LBR (Naive Bayes
classifier) which are available in WEKA [16]. All experiments were done on PC
with dual Processor Athlon X2 4000+ (2 x 2.1GHz) and 4GB RAM.

The experiment was performed on the poker-hand data set. This data set consists
of 10 conditional attributes and 9 decision classes. The training data set consists of
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Table 1 The accuracy of three lazy classifiers over Poker-hand data

Algorithm FDP growth lBk LBR

train. size Acc. CPU time Acc. CPU time Acc. CPU time
10k 0.631 98s 0.528 5s 0.651 155s
20k 0.695 187s 0.551 10s 0.647 319s
50k 0.786 460s 0.589 24s 0.749 530s
100k 0.876 924s 0.608 50s 0.776 1667s
200k 0.861 1728s 0.649 98s 0.803 3353s
500k 0.915 4431s 0.689 334s 0.894 8526s
1000k 0.924 7906s 0.723 813s 0.916 17592s

Fig. 6 Comparing accuracy of three lazy classifiers for poker-hand data

25010 instances, while the test data contain 1000000 instances. In order to verify
the scalability of the proposed solution, we switched the role of this data sets. The
experiments were performed on training data sets of different sizes: 10000, 20000,
50000, 100000, 200000, 500000 and 1000000. The accuracy of classifiers were es-
timated on the sample of 1000 instances from the smaller data set and the detailed
results are presented in Table 1 and illustrated in Figure 6.

Figure 7 presents the plot of computation time for different training data sizes.
One can see the scalability of the proposed solution.
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Fig. 7 Comparing the scalability of three lazy classifiers for poker-hand data

5 Conclusions

We have presented a scalable lazy classifier which is is a rough set based classifier.
We have modified the FP-growth algorithm to calculate the set of minimal decision
rules for test objects. In fact, this algorithm can be used to calculate the object ori-
ented reducts in decision table. Hence the proposed method can be applied also for
eager learning. This method can be used for incremental learning.
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Comparison of Various Evolutionary and
Memetic Algorithms

Krisztián Balázs, János Botzheim, and László T. Kóczy

Abstract. Optimization methods known from the literature include gradient based
techniques and evolutionary algorithms. The main idea of the former methods is
to calculate the gradient of the objective function at the actual point and then to
step towards better values according to this function value. Evolutionary algorithms
imitate a simplified abstract model of evolution observed in the nature. Memetic
algorithms traditionally combine evolutionary and other, e.g. gradient techniques
to exploit the advantages of both methods. Our current research aims to discover
the properties, especially the efficiency (i.e. the speed of convergence) of particular
evolutionary and memetic algorithms. For this purpose the techniques are compared
by applying them on several numerical optimization benchmark functions and on
machine learning problems.

1 Introduction

The scope of engineering applications based on soft computing methods is con-
tinuously expanding in the field of complex problems, because of their favorable
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e-mail: botzheim@sze.hu
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properties. Evolutionary computation (and evolutionary based, e.g. memetic) meth-
ods form a huge part of these techniques. However, both theory and application
practice still contain many unsolved questions, hence researching the theory and
applicability of these methods is obviously an important and actual task.

Our work aims at the investigation of such methods. Evolutionary computation
algorithms are numerical optimization techniques, so their efficiency can be charac-
terized by the speed of convergence to the global optimum. Since so far there have
not been invented any methods to obtain this property exactly, it can be figured out
mostly by simulation. Therefore this investigation is based on simulation carried out
using a modular software system that we implemented in C language, introduced in
[1] and discussed deeper in [2].

It contains two larger units: a machine learning frame and a main optimization
module. Thus the system is able to deal with both optimization and machine learning
problems.

The learning frame implements fuzzy rule based learning with two infer-
ence methods, Mamdani-inference [3] and stabilized KH-interpolation [4], [5]
techniques.

The optimization main module contains various sub-modules, each one im-
plementing an optimization method, such as steepest descent [6] and Levenberg-
Marquardt [7], [8] from the family of gradient based techniques, genetic algorithm
[9] and bacterial evolutionary algorithm [10] both being evolutionary methods, fur-
thermore particle swarm optimization technique [11], which is a type of swarm
intelligence method. Obviously, memetic techniques [12] are also available in the
software as the combination of previously mentioned algorithm types.

The methods have been compared by their respective performance on various op-
timization benchmark functions (that are typically used in the literature to ’evaluate’
global optimization algorithms) and on machine learning problems.

Although many results have been published comparing particular evolutionary
and memetic techniques (see e.g. [10], [13]), these discussions considered only a
few methods and mainly focused on the convergence of the algorithms in terms of
number of generations. However, different techniques have very differing computa-
tional demands. Therefore the question arises: what is the relation of these methods
compared to each other in terms of time? This has been set as the main question of
this research.

Actually, our work is far from being complete, because we definitely have not im-
plemented and compared all optimization and inference methods that can be found
in the literature. This paper first of all tries to give a concept how such comparative
investigations can be carried out.

The next section gives a brief overview of the algorithms and techniques used.
After that, the benchmark functions and machine learning problems will be de-
scribed, that are applied in the simulations. The simulation results and the observed
behavior will be discussed in the fourth section. Finally, we summarize our work
and draw some conclusions.
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2 Overview of the Algorithms and Techniques Discussed in
This Paper

In order to carry out this investigation, it is necessary to overview two related theo-
retical topics and to point at the connection between them. One of these is numerical
optimization and the other one is supervised machine learning.

The following subsections aim to give a brief overview of some important points
of these theoretical aspects, which will be referred to later repeatedly in the paper.

2.1 Numerical Optimization

Numerical optimization [6] is a process, where the (global) optimum of an objective
function fob j(ppp) is being searched for by choosing the proper variable (or parame-
ter) vector ppp. The optimum can be the maximum or the minimum of the objective
function depending on the formulation of the problem.

There are several deterministic techniques as well as stochastic algorithms for
optimization. Some of them will be presented below; these are the ones that were
investigated in our work.

Gradient Based Methods. A family of iterative deterministic techniques is called
gradient based methods. The main idea of these methods is to calculate the gradient
of the objective function at the actual point and to step towards better (greater if the
maximum and smaller if the minimum is being searched) values using it by modi-
fying ppp. In case of advanced algorithms additional information about the objective
function may also be applied during the iterations.

After a proper amount of iterations, as a result of the gradient steps, the algo-
rithms find the nearest local minimum quite accurately. However, these techniques
are very sensible to the location of the starting point. In order to find the global opti-
mum, the starting point must be located close enough to it, in the sense that no local
optima separate these two points.

Evolutionary Computation Methods. A family of iterative stochastic techniques
is called evolutionary algorithms. These methods, like the genetic algorithm (GA)
[9] or the bacterial evolutionary algorithm (BEA) [10], imitate the abstract model
of the evolution observed in the nature. Their aim is to change the individuals in the
population by the evolutionary operators to obtain better and better ones. The good-
ness of an individual can be measured by its ’fitness’. If an individual represents a
solution for a given problem, the algorithms try to find the optimal solution for the
problem. Thus, in numerical optimization the individuals are potentially optimal
parameter vectors and the fitness function is a transformation of the objective
function. If an evolutionary algorithm uses an elitist strategy, it means that the best
ever individual will always survive and appear in the next generation. As a result,
at the end of the algorithm the best individual will hold the (quasi-) optimal
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values for ppp, i.e. the best individual will represent the (quasi-) optimal parameter
vector.

Swarm Intelligence Techniques. Another type of iterative methods is called swarm
intelligence techniques. These algorithms, like the particle swarm optimization
(PSO) [11], are inspired by social behavior observed in nature, e.g. bird flocking,
fish schooling. In these methods a number of individuals try to find better and better
places by exploring their environment led by their own experiences and the experi-
ences of the whole community. Since these methods are also based on processes of
the nature, like GA or BEA, and there is also a type of evolution in them (’social
evolution’), they can be categorized amongst evolutionary algorithms.

Similarly, like it was mentioned above, these techniques can also be applied as
numerical optimization methods, if the individuals represent parameter vectors.

Memetic Algorithms. Evolutionary computation techniques explore the whole ob-
jective function, because of their characteristic, so they find the global optimum, but
they approach it slowly, while gradient based algorithms find only the nearest local
optimum, however, they converge to it faster.

Avoiding the disadvantages of the two different technique types, evolutionary
algorithms (including swarm intelligence techniques) and gradient based methods
may be combined (e.g. [12], [13]), for example, if in each iteration for each in-
dividual some gradient steps are applied. Expectedly, this way the advantages of
both gradient and evolutionary techniques can be exploited: the local optima can be
found quite accurately on the whole objective function, i.e. the global optimum can
be obtained quite accurately.

There are several results in the literature confirming this expectation in the fol-
lowing aspect. Usually, the more difficult the applied gradient step is, the higher
convergence speed the algorithm has in terms of number of generations. It must be
emphasized, that most often these results discuss the convergence speed in terms
of number of generations. However, the more difficult an algorithm is, the greater
computational demand it has, i.e. each iteration takes longer.

Therefore the question arises: how does the speed of the convergence change in
terms of time if the gradient based technique applied in the method is changed?

Apparently, this is a very important question of applicability, because in real
world applications time as a resource is a very important and expensive factor, but
the number of generations the algorithm executes does not really matter.

This is the reason why the efficiency in terms of time was chosen to be
investigated in this paper.

Our work considers nine algorithms:

• Genetic algorithm, GA (without gradient steps)
• Genetic steepest descent, GSD (GA using SD steps)
• Genetic memetic algorithm, GMA (GA using LM steps)
• Bacterial evolutionary algorithm, BEA (without gradient steps)
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• Bacterial steepest descent, BSD (BEA using SD steps)
• Bacterial memetic algorithm, BMA (BEA using LM steps)
• Particle swarm optimization, PSO (without gradient steps)
• Particle steepest descent, PSD (PSO using SD steps)
• Particle memetic algorithm, PMA (PSO using LM steps)

2.2 Supervised Machine Learning

Supervised machine learning [14] means a process where parameters of a ’model’
are being adjusted so that its behavior becomes similar to the behavior of the ’sys-
tem’, which is to be modeled. Since the behavior can be characterized by input-
output pairs, the aim of the learning process can be formulated so that the model
should give similar outputs for the input as the original system does.

The model can be, for example, a simple function (e.g. a polynomial function),
where the parameters are the coefficients, or it can be a neural network, where the
parameters are the weights, or it can be a fuzzy rule base together with an infer-
ence engine [15]. In this case the parameters can be the characteristic points of the
membership functions of the rules in the rule base. In our work we applied a fuzzy
rule base combined with an inference engine using both Mamdani-inference [3] and
stabilized KH-interpolation [4], [5] techniques.

If a function φ(xxx) denotes the system and f (xxx, ppp) denotes the model, where xxx∈ X
is the input vector and ppp is the adjustable parameter vector, the previous requirement
can be expressed as follows:

∀xxx∈XXX : φ(xxx)
!≈ f (xxx, ppp)

In a supervised case the learning happens using a set of training samples (input-
output pairs). If the number of samples is m, the input in the ith sample is xxxi, the
desired output is di = φ(xxxi) and the output of the model is yi = f (xxxi, ppp), the follow-
ing formula can be used:

∀i∈ [1,m] : di
!≈yi

The error (ε) shows how similar the model to the system is. It is the function of the
parameter vector, so it can be denoted by ε(ppp). A widely applied definition for the
error is the Mean of Squared Errors (MSE):

ε(ppp) =

m

∑
i=1

(di −yi)2

m

Obviously, the task is to minimize this ε(ppp) function. It can be done by numerical
optimization algorithms.

This way machine learning problems can be traced back to optimization prob-
lems, furthermore they can be applied to discover the efficiency of evolutionary and
memetic algorithms.
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3 Benchmark Functions and Machine Learning Problems

The optimization benchmark functions and machine learning problems, which were
used during our investigations, will be described shortly in this section.

In case of the benchmark functions the minimum value, in case of the learning
problems the minimum error is searched.

3.1 Benchmark Functions

In our investigations five benchmark functions were applied: Ackley’s [16], Keane’s
[17], Rastrigin’s [18], Rosenbrock’s [19] and Schwefel’s function [20]. These func-
tions are widely used in the literature to evaluate global optimization methods, like
evolutionary techniques. They are generic functions according to dimensionality,
i.e. the number of dimensions of these functions can be set to an arbitrary positive
integer value. In our simulations this value was set to 30, because it is a typical value
in the literature for these functions.

Ackley’s, Keane’s, Rastrigin’s and Schwefel’s functions are multimodal, i.e. they
have more than one local optima (actually they have a number of local optima).

Rastrigin’s function is separable as well as Schwefel’s function. This means that
the minimization along each dimensions results the minimum.

For example, Ackley’s benchmark function is given as follows (k denotes the
number of dimensions):

fAck(xxx) = 20+e−20e

⎛⎝−0.2

√√√√1
k

k

∑
i=1

xxx2
i

⎞⎠
−e

(
1
k

k

∑
i=1

cos(2πxxxi)

)
, ∀xxxi ∈ [−30,30]

3.2 Machine Learning Problems

In our investigations three machine learning problems were applied: the one di-
mensional pH [13], the two dimensional ICT [13] and a six dimensional problem
that was also used by Nawa and Furuhashi to evaluate the performance of bacterial
evolutionary algorithm [10].

For example, this six dimensional function is defined as follows:

f6dim = xxx1 +
√

xxx2 +xxx3xxx4 +2e2(xxx5−xxx6)

xxx1,xxx2 ∈ [1,5], xxx3 ∈ [0,4], xxx4 ∈ [0,0.6], xxx5 ∈ [0,1], xxx6 ∈ [0,1.2]

4 Results and Observed Behavior

In the simulations the parameters had the following values. The number of rules
in the rule base was 4, the number of individuals in a generation was 14 in
genetic and bacterial algorithms, furthermore it was 80 in particle swarm methods.
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In case of genetic techniques the selection rate was 0.3 and the mutation rate was
0.1, in case of bacterial techniques the number of clones was 5 and 4 gene transfers
were carried out in each generation. The genetic methods applied elitist strategy.
In case of memetic algorithms 8 iterations long gradient steps were applied. The
gradient vector and the Jacobian matrix computing functions were not given, hence
pseudo-gradients and pseudo-Jacobians were computed where steepest descent or
Levenberg-Marquardt gradient steps were used.

The numbers of training samples were between 100 and 200 in the learning
processes.

During the runs the fitness values of the best individuals were monitored in terms
of time. These fitness values were calculated based on the MSE values (measured
on the training samples) as follows:

F =
10

MSE+1
=

10m
m

∑
i=1

(di −yi)2 +m

In case of all algorithms for all benchmark functions and learning problems 10 runs
were carried out. Then we took the mean of the obtained values. These means were
presented in figures to get a better overview. The horizontal axes show the elapsed
computation time in seconds and the vertical axes show the fitness values of the best
individuals at the current time.

On the figures (see later) dashed lines show the result of the pure evolutionary al-
gorithms (GA, BEA and PSO), dotted lines denote the techniques using steepest de-
scent gradient steps and solid lines present the graphs of methods using Levenberg-
Marquard technique.

The results of the runs and their short explanations follow in the next subsections.
Every simulation will not appear though, because their great number does not allow
it, rather some example results will be presented in the next three subsections. The
results for the other optimization benchmark functions and learning problems are
mostly, but not always similar, therefore these examples present only a behavior
that were observed most often.

In subsection 4.4 conclusions will be drawn about the behavior of the methods
considering all of the simulations.

4.1 Results for Ackley’s Benchmark Function

This example presents the performance of the compared techniques on Ackley’s
benchmark function.

Figure 1 shows the fitness values of the best individuals in terms of time.
As it can be observed, bacterial algorithms gave better results than genetic tech-

niques. Actually bacterial methods found the global optimum. At the beginning
BEA and BSD were better than BMA, but after an adequate time BMA was not
worse than any other algorithms.
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Bacterial techniques were better than the corresponding genetic methods
(i.e. BEA was better than GA, BSD was better than GSD, etc.).

Both GA and BEA outperformed PSO and both GMA and BMA gave better
results than PMA.

Among particle swarm techniques PSO was the best.

Fig. 1 Results for Ackley’s benchmark function

4.2 Results in Case of Applying Mamdani-Inference Based
Learning for the ICT Problem

This example presents the performance of the compared techniques on the two
dimensional ICT problem applying Mamdani-inference based learning.

The results given by PSO were between the results of GA and BEA. Its perfor-
mance was closer to the performance of BEA.

Like in the previous case, there is an adequate time again from when BMA was
not worse than any other techniques; however at the beginning BEA was better.

At the end GMA gave the second best result. Thus it was better than any other
genetic algorithms (see Figure 2).

The methods using steepest descent gradient steps were the worst among both
bacterial and genetic algorithms.

Again, bacterial techniques were better than the corresponding genetic methods,
furthermore among particle swarm techniques PSO was the best and both GMA and
BMA gave better results than PMA.
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Fig. 2 Results for the ICT learning problem applying Mamdani-inference based learning

4.3 Results in Case of Applying Stabilized KH-Interpolation
Based Learning for the Six Dimensional Problem

This example presents the performance of the compared techniques on the six di-
mensional learning problem, when stabilized KH-interpolation based learning was
applied.

Again, the results given by PSO were between the results of GA and BEA. Its
performance was closer to the performance of BEA.

In this case from the beginning BMA and GMA gave the best fitness values, and
there is also a time limit from when BMA was the best of all algorithms.

At the end GMA gave the second best results, thus it was better than any other
genetic algorithms (see Figure 3).

The methods using steepest descent gradient steps were the worst among both
bacterial and genetic algorithms.

Again, bacterial techniques were better than the corresponding genetic methods,
furthermore among particle swarm techniques PSO was the best and both GMA and
BMA gave better results than PMA.

4.4 Observed Behavior

Based on the simulation results we observed the following behaviors:

• Generally, bacterial techniques seemed to be better than the corresponding
genetic methods.
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Fig. 3 Results for the 6 dimensional learning problem applying stabilized KH-interpolation
based learning

• Except Rosenbrock’s function, in case of optimization benchmark functions PSO
seemed to be the worst among techniques using no gradient steps, however for
learning problems it always performed better than GA and sometimes relatively
close to BEA.

• Generally, among particle swarm methods PSO gave better results than the algo-
rithms using gradient steps.

• Generally, PMA seemed to be the worst technique using Levenberg-Marquardt
gradient steps.

• Generally, for learning problems GMA had the highest convergence speed among
genetic algorithms.

• Usually (but not always), after a sufficient time, BMA was not worse than any
other algorithms. The more difficult the problem is, the better the advantage of
the technique appears.

It might be said that BMA advances ’slowly but surely’ to the optimum. ’Slowly’,
because in most of the cases at the beginning it did not have the highest convergence
speed. ’Surely’, because during the simulations it did not lose so much from its
efficiency than the other techniques.

5 Conclusions

In our work various evolutionary and memetic algorithms have been compared on
general optimization benchmark functions and on machine learning problems. After
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we carried out simulation runs and investigated the obtained results, we drew some
conclusions about the behavior of the various techniques compared to each other.
They can be summed up shortly as follows.

Generally, bacterial techniques seemed to be better than the corresponding
genetic methods. For optimization benchmark functions (except Rosenbrock’s
function) PSO was outperformed by both other techniques using no gradient steps,
however for learning problems it performed better than GA and sometimes rela-
tively close to BEA. Usually, in case of genetic and bacterial methods algorithms
applying LM technique seemed to be better for learning problems than methods not
using gradient steps or using SD, however among particle swarm techniques the
algorithm applying no gradient steps seemed to be the best.

To reinforce these tendencies, as a continuation of this work, carrying out
more simulations is necessary. Further research may aim to compare other global
optimization algorithms that can be found in the literature.
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On the Selection of Parameter m in Fuzzy
c-Means: A Computational Approach

Luis Gabriel Jaimes and Vicenç Torra

Abstract. Several clustering algorithms include one or more parameters to be fixed
before its application. This is also the case of fuzzy c-means, one of the most well-
known fuzzy clustering algorithms, where two parameters c and m are required. c
corresponds to the number of clusters and m to the fuzziness of the solutions. The
selection of these parameters is a critical issue because a bad selection can blur the
clusters in the data. In this paper we propose a method for selecting an appropriate
parameter m for fuzzy c-means based on an extensive computation. Our approach is
based on the application of the clustering algorithm to several instantiations of the
same data with different degrees of noise.

1 Introduction

Clustering and fuzzy clustering [1, 8, 12] are tools in machine learning for knowl-
edge extraction from a dataset. Several clustering methods include one or more pa-
rameters that have to be tunned to obtain the appropriate clusters.

Fuzzy c-means [1] is one of the most well-known clustering methods. This
method can be seen as a generalization of k-means. While k-means partitions the
data into a set of disjoint clusters (i.e., a crisp partition), fuzzy c-means leads to a
fuzzy partition. That is, data can have partial membership to several clusters.

Although this paper focuses on fuzzy c-means, there is a large number of alter-
native fuzzy clustering methods, each focusing on different aspects of the data, or
on different assumption on the resulting model for the data. See e.g. [7, 14, 16].

It is well known that fuzzy c-means depends on two parameters. On the one hand,
the user needs to supply c, the number of clusters. On the other hand, the user needs
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Vicenç Torra
IIIA-CSIC, Campus UAB s/n, 08193 Belaterra, Catalonia, Spain
e-mail: vtorra@iiia.csic.es

V.-N. Huynh et al. (Eds.): Integrated Uncertainty Management and Applications, AISC 68, pp. 443–452.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

luis.jaimes@upr.edu
vtorra@iiia.csic.es


444 L.G. Jaimes and V. Torra

to supply a parameter m that corresponds to a fuzziness degree. m should be larger
than one, and the larger the m, the fuzzier the final clusters.

In this paper we consider the problem of parameter selection in fuzzy c-means
focusing on the parameter m. We propose an approach based on the intensive appli-
cation of fuzzy c-means to datasets with different levels of noise, and the comparison
of the different results obtained.

The problem of selection of parameter c has been studied in some detail in the
literature. Some indices have been proposed that measure the suitability of the re-
sulting clusters. See e.g. [2, 11, 10, 15]. Selection of m has not been studied in detail,
and most applications use an heuristic selection of its value (e.g., a value of m larger
than 1 and often around 1.5 and below 2).

The structure of the paper is as follows. In Section 2, we review fuzzy c-means.
In Section 3, we introduce our approach for selection of the parameter m. Then, we
discuss the results obtained. The paper finishes with some conclusions and lines for
future work.

2 Preliminaries: Fuzzy c-Means

This section reviews fuzzy c-means [1], the fuzzy clustering approach used in this
paper. This method constructs a fuzzy partition of a given dataset, and is one of the
most well-known methods for doing so.

The following notation is used in this paper. X = {x1, . . . ,xn} represents the set
of objects, c is the number of clusters to be built from these data. The parameter c
is expected to be given by the user. Then, the method builds the clusters which are
represented by membership functions μik, where μik is the membership of the kth
object (xk) to the ith cluster.

Fuzzy c-means uses c (the number of clusters) and m as its parameters. The pa-
rameter m, that should be such that m > 1, plays a central role. The larger the value
m, the larger the fuzziness in the clusters. With values near to 1, solutions tend to be
crisp.

The fuzzy c-means clustering algorithm constructs the fuzzy partition μ from X
solving a minimization problem. The problem is formulated below. In the formula-
tion, we use vi to represent the cluster center, or centroid, of the i-th cluster.

MinimizeJFCM(μ ,V ) = {
c

∑
i=1

n

∑
k=1

(μik)m||xk − vi||2} (1)

subject to the constraints μik ∈ [0,1] and ∑c
i=1 μik = 1 for all k.

A (local) optimal solution of this problem is obtained using the iterative process
described in Algorithm 1. This process interleaves two steps. One that estimates the
optimal membership functions of elements to clusters (when centroids are fixed) and
another that estimates the centroids for each cluster (when membership functions
are fixed). The algorithm is bootstrapped with initial values for the centroids. One
approach to do so is to define them from the elements to be clustered (doing a
random selection). The PAM algorithm [9] is another approach for this assignment.
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Algorithm 1. Fuzzy c-means
Step 1: Generate initial V
Step 2: Solve minμ∈MJ(μ,V ) computing:

μik =
( c

∑
j=1

( ||xk −vi||2
||xk −v j||2

) 1
m−1
)−1

Step 3: Solve minV J(μ,V ) computing:

vi =
∑n

k=1(μik)mxk

∑n
k=1(μik)m

Step 4: If the solution does not converge, go to step 2; otherwise, stop

This iterative algorithm is only ensured to converge to a local optimal solution.
This fact will be taken into account later because it is of great relevance when
comparing the results of two applications of the clustering algorithm to the same
data.

3 Our Approach

Our approach to parameter selection consists of considering on the one hand a data
file X and on the other several versions of this file with increasing levels of noise.
Let {X ′

i }i with i = 1, . . . , I be these files ordered according to the noise level (i.e.,
the larger the i, the larger the noise). Then, a good parameterization of the clustering
should permit us to visualize that the larger the noise, the worse the original structure
of the file is kept.

Taking this rationale into account, our approach consists of clustering all files X
and X ′

i . Let clp(X) be the clusters obtained from X using the parameter p. Then,
we compare the clusters clp(X) and clp(X ′

i ). For a good parameter p, the larger the
noise, the larger the difference. If d(clp(X),clp(X ′

i )) represents the distance between
the clusters clp(X) and clp(X ′

i ), we have a good parameter p when we have a good
correlation between the noise level and the distance.

That is, if we consider the set of distances {d(clp(X),clp(X ′
i ))}i for i = 1, . . . , I,

then a good parameter p is the one that maximizes the correlation between these
distances {d(clp(X),clp(X ′

i ))}i and the values i.
To do so, we need a measure to compare the fuzzy clusters. While there are some

methods for comparing crisp clusters (as e.g. the Rand, Adjusted Rand, and the
Jaccard index), at present there is no consolidated methodology to compare fuzzy
clusters. An approach is to consider α-cuts of the fuzzy sets and compare these sets.
Nevertheless, as these sets do not, in general define a partition, this is not in general
appliable. As an alternative, we have defined two different measures for comparing
the results of fuzzy clustering algorithms. They are measures for comparing two
fuzzy partitions or, equivalently, for comparing two sets of fuzzy sets.
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Distance between cluster centers. That is, given two sets of fuzzy clusters A and
B, we compare each cluster center in A with each cluster center in B. Then, we
assign each cluster in A to a cluster in B. Finally, we compute the distance be-
tween the assigned clusters and the whole distance is its summation. Formally,
let a ∈ A denote the cluster centers in A and b ∈ B denote the cluster centers in B,
then we compute d(ai,b j) for all pairs of a,b in A,B. Let π be an assignment of
ai in b j, then the distance between the two sets of clusters is

d1(A,B) = ∑
i=1,...,c

(ai −bπ(i))
2

We use an eager method to determine π . Formally, each ai is assigned to the
nearest record in B. So, we define π(i) as follows: π(i) = argmin jd(ai,b j).

Distance based on memberships. The previous distance considers only the clus-
ters but no information on the number of objects that have been clustered (the size
of the cluster), their position or membership. To avoid this drawback, we have de-
fined another distance that takes all this into account and also consider whether
objects are clustered in the same cluster by the clustering methods. The alterna-
tive distance considers the differences between membership functions. Formally,
let μA

ik be the membership of the kth object to the ith cluster in the set of clusters
A, and let μB

ik be the corresponding membership in the set of clusters B; then, the
distance between the two sets of clusters is

n

∑
k=1

c

∑
i=1

(μA
ik − μB

ik)
2.

Note that the actual computation of this distance needs to find a correct alignment
between the clusters in A and B. That is, we need that i denotes the same cluster
for both A and B. In our particular application, we use here the π constructed for
computing the previous distance. Therefore, the actual distance is as follows:

d2(A,B) =
n

∑
k=1

c

∑
i=1

(μA
ik − μB

π(i)k)
2

Note that while the second distance takes additional information into account, its
computational cost is much larger. Given c clusters, and n data in a t dimensional
space, the cost of computing d1 is O(c ·t) while the cost of computing d2 is O(c ·t ·n).

4 Analysis and Experiments

The analyis of the approach has been applied to a dataset extracted from the U.S.
Census Bureau. The data, described in detail in [3, 4], consists of a data file with
1080 records described in terms of 13 numerical attributes. Let X represent this
file.
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The dataset was preprocessed so that data was standardized for each attribute.
That is, for each x′ik = (xi

k − μ i)/δi.
Three sets of experiments were carried out on two different datasets. All these

datasets are modifications of X . The first dataset is the result of modifying X by
using Gaussian noise. This noise has been added to each variable of the file using
N(0, ps) where s is the standard deviation of the variable in the original file, and p is
the parameter. The following values of p were used: 0.01, 0.02, 0.04, 0.06, 0.08 and
up to 0.2 with 0.02 increments. This results into 12 different files. The second dataset
is the result of modifying X by means of microaggregation. Both Gaussian noise
and microaggregation are standard tools for data protection and both corresponds
to an approach to distort the data. In both cases, there is a parameter to control the
noise added to the data (and in both cases, the larger the parameter, the larger the
noise). A complete description of microaggregation can be found in [5, 6] (see
also [13]).

The first experiment consisted in the execution of FCM on the two datasets de-
scribed above. To avoid the problems of local optima, we have computed 60 execu-
tions of FCM (with 250 iterations each execution) for each parameter tuple (c,m).
Finally, the one with the lowest objective function was selected as the best local
optima.

In all these experiments the c value was fixed to 10 and the value m ranged from
1.1 to 2.5 with an step size of 0.01. That is, in total, 141 different values of the
objective function were obtained.

Figures 1 and 2 show the correlation between distance and the increasing amount
of Gaussian noise vs. the values of m. The y-axis and the x-axis of the figures corre-
spond, respectively, to correlations and the values of m. Figure 1 corresponds to the
correlation with respect to distance d1 and Figure 2 to correlations with respect to
distance d2.

Figures 3 and 4 correspond to the same experiment on the dataset {X ′
i } with

i = 1, . . . ,17 generated by the microaggregation procedure. Again, the y and x axis
correspond to the correlation between distances d1 or d2, and the increasing amount
of noise introduced by the microaggregation process vs. the values of m.

These sets of experiments on both noise and microaggregation data show that the
values m that better represent the proportional divergence between noise and cluster
differences seems to be around the interval [1.35, 1.45]. It is within this interval
that the correlation between m and the distance takes a smooth shape with a local
maxima. Outside this interval other larger values exist but they are either in a noisy
region or in a flat region. Note that for large values of m, we might have very fuzzy
clusters and this might result also in a high correlation. However, such fuzzy clusters
will be of no interest.

So, from our point of view, we consider that outside the mentioned interval, the
parameter m does not lead to clusters consistent with the noise added to the data
(i.e., the property that the larger the noise, the larger the distortion on the clusters is
not well represented).
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Naturally, the optimal value of m is different for the case of Gaussian noise
(Figures 1 and 2) and microaggregation (Figure 3 and 4) because of different
correlation results, but the optimal m are around the same values.

The second set of experiments was carried out on the same datasets, but this
time, we did not use for FCM the default initialization (choosing random centers for
the initial clusters). Instead, we computed 60 executions of FCM on the dataset X
with 250 iterations for convergence, and the resultant cluster centers were used for
fixing the center of the clustering process on the modified datasets {X ′

i }i. In other
words, in each execution, the original dataset X and the modified versions {X ′

i }i

were clustered using the same set of initial centers. With this approach we try to
avoid that the FCM converges to different local minima. This is a problem when
we apply FCM to the original and the perturbed datasets because this would result
in incomparable results. We believe that the 60 executions of the FCM gives us a
good chance of finding the global minimum, but this result can not be guaranteed.
Figures 5 and 6 show the results of these experiments for d1 and d2 when datasets
correspond to datasets generated with Gaussian noise.

We can observe that the values of m that better permit us to represent the diver-
gences between the increasing amount of noise and the clustering results are the
ones in the interval [1.4, 1.55].

The third experiment was carried out establishing the same initial centers for
the clustering process of both original X and perturbed datasets {X ′

i }i. The original
dataset was clustered by the PAM-algorithm [9], and the resultant medoids were
used as the initial centers for the FCM clustering process on both X and {X ′

i }i

datasets. For each tuple (c,m) sixty executions of FCM were computed with 250
iterations per execution, finally, the lowest value of the FCM objective function
was selected. This process was carried out on the original X , the perturbated files
with Gaussian noise {X ′

i }i for i = 1, . . . ,11, and the perturbated files by means of
microaggregation {X ′

i }i for i = 1, . . . ,17.
The PAM (Partition Around Medoids) algorithm is based on the search for k

representative objects or medoids among the objects of the dataset. These objects
should represent the structure of the data. In a more formal basis, the objective
of the PAM-algoritm is to find k representative objects minimizing the sum of the
dissimilarities of the objects to their closest representative object. After finding a
set of k medoids, k clusters are constructed by assigning each object to the nearest
medoid. Two of the main features of this algorithm are: (i) it accepts a dissimilarity
matrix and (ii) it is more robust than the c-means because it minimizes a sum of
dissimilarities instead of a sum of squared Euclidean distances.

From an operational point of view, the PAM algorithm first looks for a good
initial set of medoids (this is called the build phase). Then, it finds a local mini-
mum for the objective function, that is, a solution such that there is no single switch
of an object with a medoid that will decrease the objective (this is called the swap
phase). A more complete description of this clustering algorithm can be found in [9].
Figures 7 and 8 show the outcomes of these experiments. The first graph shows the
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Fig. 1 Correlation in ex-
periment 1 between d1 and
Gaussian noise vs. value m

Fig. 2 Correlation in ex-
periment 1 between d2 and
Gaussian noise vs. value m

Fig. 3 Correlation in ex-
periment 1 between d1 and
microaggregation noise vs.
value m

correlation between distance d1 and microaggregation noise vs values of m, and the
second one shows the correlation between distance d2 and the noise produce by
micro-agregation process vs values m.

All there results together show that the values m that permits us to observe the
high correlation between the increasing amount of noise and the clustering results
can be find in the interval [1.4, 1.45].
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Fig. 4 Correlation in ex-
periment 1 between d2 and
microaggregation noise vs.
value m

Fig. 5 Correlation in ex-
periment 2 between d1 and
Gaussian noise vs. value m

Fig. 6 Correlation in ex-
periment 2 between d2 and
Gaussian noise vs. value m

The experiments permit us to compare also the two distances. It can be seen that
both distances have similar behaviour. That is, the shape of the figures is the same
when we change d1 by d2. E.g., Figure 1 vs. Figure 2. So, in some sense, both
distances encompass similar information.

The approach presented here has as its main drawback its high requirements with
respect to the computational power. The approach relies on an intensive computation
of clusters from the data. As explained above, different sets of data are clustered,
and, in addition, each data set is clustered taking into account different parameters
m. Besides of that, due to the fact that fuzzy c-means often lead to local optima,
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Fig. 7 Correlation in ex-
periment 3 between d1 and
microaggregation noise vs.
value m

Fig. 8 Correlation in ex-
periment 3 between d2 and
microaggregation noise vs.
value m

we need to apply each algorithm several times. This results in a large number of
executions for a given data set. Efficient algorithms for fuzzy c-means might permit
us to apply the approach to large datasets. Nevertheless, the high computational
needs can not be overcome.

5 Conclusion

In this paper we have presented an approach to determine the parameter m on the
basis of extensive computation of clustering on noisy data artificially generated. As
future work we will fine-tune the selection of m using this approach.
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Dissimilarity Based Principal Component
Analysis Using Fuzzy Clustering

Mika Sato-Ilic

Abstract. The object of this study is to increase the accuracy of the result of prin-
cipal component analysis (PCA). PCA is a well known method to capture smaller
uncorrelated dimensions, which are the principal components, from correlated ob-
servational high dimensions. The smaller dimensional space is obtained as the most
explainable hyper plane space by orthogonal projection of data in observational
high dimension space. However, since the explanatory power is evaluated by the
relatively small distances from the objects to the hyperplane spanned by the vec-
tors of the principal components and only the non-expansive property is satisfied
for the fixed two objects between the distances in the obtained space and in the
original observational space, it may happen that there is a significantly larger dif-
ference between the two distances. In order to combat this attitude, we propose a
principal component analysis considered dissimilarity structure of objects in high
dimensional space by adopting a fuzzy clustering method.

1 Introduction

The aim of principal component analysis (PCA) [10] is to summarize the latent
similarity structure of data observed in high dimensional space by projecting the
data into a much smaller dimensional space. This method is one type of multivariate
analysis which is a well known classical method and used across a broad range
of scientific areas. This is largely due to the vast amounts of complex data and the
current need to analyze this data. PCA is an effective method of dimension reduction
as a pretreatment of pattern extraction for data mining which is a typical method to
tackle the vast amounts of complex data.
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However, classical PCA has the following problem. Since the methodology of
classical PCA is based on orthogonal projection, the metric projection defined in
convex vector space, which is the data space, is non-expansive. Therefore, a norm
between two projected vectors (objects) in a smaller dimensional space is inevitably
smaller than the norm between the corresponding pre-projected two vectors (ob-
jects) in a high dimensional space which shows that there exists any larger norms
corresponding to the projected norm between fixed two objects. The root cause of
this problem is that PCA only focuses on minimizing the sum of square of distances
from objects in a high dimensional space to a hyper plane in a lower dimensional
space, and does not consider similarities among objects in a high dimensional space.

Therefore, in this study, we extract similarity structure of objects in a high di-
mensional space by using a fuzzy clustering method and by tacking the result to the
PCA, propose a new PCA considering the similarity structure of objects in a high
dimensional space in order to obtain more accurate result of the PCA.

There are many clustering methods but there are reasons why we use the fuzzy
clustering method. Fuzzy clustering is a generic name for clustering methods based
on fuzzy logic. Its specific property is to consider not only which cluster objects be-
long to, but also by how much the objects belong to the cluster which is known as the
degree of belongingness. Such a classification is also available by using probabilistic
clustering, however, fuzzy clustering does not need the restriction of the probability
structure of data. Therefore, if data has complexity of classification structure, fuzzy
clustering can extract the data structure more precisely. Moreover, it often happens
that when the data is complex and we try to detect that complexity, the results tend
to be sensitive for changes in procedure and fuzzy clustering is well known as robust
clustering even when the data has noise.

We measure interval-valued data which has an advantage in cases where the data
has uncertainty or where the data size is large. Interval-valued data involves ordinal
single-valued data, so this measurement of data is a generalization of an ordinal
measurement of data.

In order to adapt fuzzy clustering to PCA, we define the following items. First
is the degree of contribution of each object to the obtained classification struc-
ture by using a fuzzy clustering method. This is a weight to show how an object
is clearly classified for the obtained classification structure. Second, we define a
weighted variance-covariance matrix based on fuzzy clustering by adopting this
weight to a variance-covariance matrix of data appropriately. Also, we generate a
definition in order for it to be applicable to interval-valued data, and on this gen-
eration, we define weighted empirical joint function for interval-valued data. The
weighted variance-covariance matrix based on fuzzy clustering can be reduced to a
conventional variance-covariance matrix when the clustering result is obtained as 0
or 1 which is an ordinal hard clustering result. In this sense, significance exists for
the use of fuzzy clustering, so, this method exploits an advantage of fuzzy clustering
in which the result is obtained as continuous values from 0 to 1.

In order to quantify the validity of the proposed PCA, we use multidimensional
scaling (MDS) [13] for the comparison and show the efficacy.
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This paper consists of the following sections. In the next section, we explain
the problem of conventional principal component analysis. In the third section, we
briefly explain fuzzy c-means method [2] which is the fuzzy clustering method used
in this paper. In the fourth section, we discuss a fuzzy cluster based covariance [8]
and present an extended covariance for single-valued data. In the fifth section, we
propose a fuzzy cluster based covariance for interval-valued data and dissimilarity
of the interval-valued data based on the fuzzy cluster based covariance. We pro-
pose a PCA by using the fuzzy cluster based covariance for interval-valued data. In
the sixth section, several numerical examples are described. Finally, in the seventh
section we conclude the paper.

2 Principal Component Analysis (PCA) for Metric Projections

Principal component analysis is interpreted geometrically as finding a projected
space spanned by vectors which show direction of the principal components.

Let L be a nonempty subset of the inner product space X . Then we define a
mapping PL from X into the subsets of L called the metric projection onto L. Then
PL(x) is defined as follows:

PL(x) = {y ∈ L| ‖ x− y ‖= d(x,L)},

where x ∈ X and
d(x,L) = inf

y∈L
‖ x− y ‖ .

Let L be a convex Chebyshev set in which for each x ∈ X , there exists at least one
nearest point in L. Then PL is nonexpansive, that is,

‖ PL(x)−PL(y) ‖≤‖ x− y ‖, ∀x,y ∈ X . (1)

Proof

‖ x− y ‖2 = ‖ [x−PL(x)]+ [PL(x)−PL(y)]+ [PL(y)− y] ‖2

= ‖ [PL(x)−PL(y) ‖2 + ‖ x−PL(x)− [y−PL(y)] ‖2

+2〈PL(x)−PL(y),x−PL(x)− [y−PL(y)]〉
= ‖ [PL(x)−PL(y) ‖2 + ‖ x−PL(x)− [y−PL(y)] ‖2

+2〈PL(x)−PL(y),x− y〉−2 ‖ [PL(x)−PL(y) ‖2

≥ ‖ PL(x)−PL(y) ‖2 + ‖ x−PL(x)− [y−PL(y)] ‖2

(2)

In equation (2), we use the following property:

〈PL(x)−PL(y),x− y〉 ≥ ‖ PL(x)−PL(y) ‖2, ∀x,y ∈ X .

In order to prove the above, we use a theorem in which if L is a convex subset of the
inner product space X , then x0 = PL(x) if and only if

〈x− x0,y− x0〉 ≤ 0, ∀y ∈ L,

where x ∈ X and x0 ∈ L.
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The problem of the PCA is that the metric projections only satisfies equation (1)
and PCA does not consider the size of values shown as follows:

C(x,y) =‖ x− y ‖ − ‖ PL(x)−PL(y) ‖ .

Therefore, dissimilarity of objects denoted as ‖ x − y ‖ is not always satisfacto-
rily explained by the dissimilarity of objects on the projected space which is de-
noted by ‖ PL(x)−PL(y) ‖. In this case, the obtained result of PCA cannot reflect
the real similarity structure in data space which is represented by the right side of
equation (1).

3 Fuzzy Clustering

The state of fuzzy clustering is represented by a partition matrix U = (uik) whose
elements show the degree of belongingness of the objects to the clusters, uik, i =
1, · · · ,n, k = 1, · · · ,K, where n is the number of objects and K is the number of
clusters. In general, uik satisfies the following conditions:

uik ∈ [0,1],∀i,k;
K

∑
k=1

uik = 1,∀i. (3)

Fuzzy c-means (FCM) [2] is one of the methods of fuzzy clustering. FCM is the
method which minimizes the weighted within-class sum of squares:

J(U,v1, · · · ,vK) =
n

∑
i=1

K

∑
k=1

um
ikd2(xi,vk), (4)

where vk = (vka), k = 1, · · · ,K, a = 1, · · · , p denotes the value of the centroid of
a cluster k, xi = (xia), i = 1, · · · ,n, a = 1, · · · , p is i-th object, and d2(xi,vk) is the
square Euclidean distance between xi and vk. p is the number of variables. The
exponent m which determines the degree of fuzziness of the clustering is chosen
from [1,∞) in advance. The purpose is to obtain the solutions U and v1, · · · ,vK which
minimize equation (4). From conditions shown in equation (3), the local extrema of
equation (4) can be obtained as follows:

uik = 1/
K

∑
l=1

{d(xi,vk)/d(xi,vl)}
2

m−1 , (5)

vk =
n

∑
i=1

(uik)mxi/
n

∑
i=1

(uik)m, ∀i,k. (6)

If we assume equation (6), then the minimizer of equation (4) is shown as:

J(U) =
K

∑
k=1

(
n

∑
i=1

n

∑
j=1

um
ikum

jkdi j/(2
n

∑
l=1

um
lk)

)
, (7)
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where di j = d2(xi,x j). When m = 2, equation (7) is the objective function of the
FANNY algorithm [11] for any dissimilarity di j.

4 Fuzzy Cluster Based Covariance for Single-Valued Data

Covariance matrix for a fuzzy cluster k [8] for single-valued data has been defined
as follows:

Ck =
n

∑
i=1

um
ik(xi − vk)t(xi − vk)/

n

∑
i=1

um
ik.

Then we have extended the covariance in a fuzzy cluster to a fuzzy cluster based
covariance matrix with respect to variables as follows:

C =
n

∑
i=1

K

∑
k=1

um
ik(xi − x̄)t(xi − x̄)/

n

∑
i=1

K

∑
k=1

um
ik, x̄ =

n

∑
i=1

xi/n, m ∈ (1,∞). (8)

In equation (8), if we assume the following condition,

uik ∈ {0,1},
K

∑
k=1

uik = 1, (9)

then equation (8) is as follows:

C̃ =
n

∑
i=1

(xi − x̄)t(xi − x̄)/n, (10)

which is an ordinal covariance matrix. Since equation (9) shows conditions of a
hard clustering which is an ordinal clustering, this is a special case of equation (3),
the ordinal covariance matrix is a special case of the fuzzy cluster based covariance
matrix and the ordinal covariance matrix is obtained when the clustering result is
obtained as a result of an ordinal hard clustering. Moreover, we exclude the case
when m = 1 in equation (8), since when m = 1, equation (8) reduces to become an
ordinal covariance matrix as shown in equation (10). Using the elements, equation
(8) can be rewritten as follows:

C = (cab), cab =
n

∑
i=1

wi(xia − x̄a)(xib − x̄b), a,b = 1, · · · , p, (11)

where

wi =
K

∑
k=1

um
ik/

n

∑
i=1

K

∑
k=1

um
ik, i = 1, · · · ,n, m ∈ (1,∞), (12)

and x̄a =
n

∑
i=1

xia/n, a = 1, · · · , p. From equations (3) and (12), wi satisfy the

following condition:
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wi > 0,
n

∑
i=1

wi = 1. (13)

In a hard clustering when equation (9) is satisfied, equation (12) is

wi = 1/n, ∀i.

Then from equation (11), the fuzzy cluster based covariance becomes an ordinal
covariance shown in equation (10). Also, since uik satisfies conditions shown in
equation (3), the weight wi in equation (12) shows how an object is clearly classified
for the obtained classification structure. If an object i is clearly classified to a cluster,
then the weight wi becomes larger, and if the classification situation with respect
to an object i is an uncertainty situation, then the value of wi becomes smaller.
Therefore, it can be seen that the weights shown in equation (12) show a degree of
fuzziness of the clustering with respect to each object and the fuzzy cluster based
covariance shown in equation (8) involve a classification structure over the variables
which is obtained by reflecting the dissimilarity structure of objects in a higher
dimensional space shown as ‖ x− y ‖ in equation (1).

5 Fuzzy Cluster Based Covariance for Interval-Valued Data

Suppose the observed interval-valued data yia which are values of n objects with
respect to p variables are denoted by the following:

Y = (yia) = ([y
ia
,yia]), i = 1, · · · ,n, a = 1, · · · , p,

where yia = [y
ia
,yia] shows the interval-valued data of the i-th object with respect to

a variable a which has the minimum value y
ia

and the maximum value yia.
The empirical joint density function for bivariate a and b has been defined [3] as

follows:

f (ya,yb) =
1
n

n

∑
i=1

Ii(ya,yb)
||Z(i)|| , (14)

where Ii(ya,yb) is the indicator function where each element of (ya,yb) is or is not
in the rectangle Z(i) = yia × yib consisted of two sides which are intervals [y

ia
,yia]

and [y
ib
,yib]. ||Z(i)|| is the area of this rectangle. ya is a-th column vector of Y

and is shown as follows: ya = (y1a, · · · ,yna)t = ([y
1a

,y1a], · · · , [yna
,yna])t . In order to

obtain the covariance shown in equation (11) in the case when the data is interval-
valued data under the assumption of uniform distribution, we extend the empirical
joint density function shown in equation (14) by using the weights shown in
equation (13) as follows:

f̃ (ya,yb) =
1
n

n

∑
i=1

wiIi(ya,yb)
||Z(i)|| . (15)
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Then fuzzy covariance for interval-valued data between variables a and b is derived
as follows:

ĉab =
∫ ∞

−∞

∫ ∞

−∞
(ya − ȳa)(yb − ȳb) f̃ (ya,yb)dyadyb, (16)

where ȳa is the symbolic empirical mean of ya derived as follows [4]:

ȳa =
1

2n

n

∑
i=1

(y
ia

+ yia). (17)

Substituting equation (15) into equation (16), and from equations (13) and (17), we
have obtained the following:

ĉab =
1
n

n

∑
i=1

wi

(yia − y
ia
)(yib − y

ib
)

∫ ∞

−∞

∫ ∞

−∞
(ya − ȳa)(yb − ȳb)Ii(ya,yb)dyadyb

=
1
n

n

∑
i=1

wi

(yia − y
ia
)(yib − y

ib
)

∫ yia

yia

∫ yib

yib

δaδbdδadδb − 1
n

ȳb

n

∑
i=1

wi(yia + y
ia
)

2

−1
n

ȳa

n

∑
i=1

wi(yib + y
ib
)

2
+

1
n

ȳaȳb

=
1

4n

n

∑
i=1

wi(yia + y
ia
)(yib + y

ib
)− 1

n
ȳb

n

∑
i=1

wi(yia + y
ia
)

2
− 1

n
ȳa

n

∑
i=1

wi(yib + y
ib
)

2

+
1
n

ȳaȳb.

(18)
Then we can define a fuzzy cluster based covariance matrix for interval-valued data
using equation (18) as follows:

Ĉ = (ĉab), a,b = 1, · · · , p. (19)

Moreover, from the comparison between equations (11) and (16), and from the
weighted empirical joint function shown in equation (15), it can be seen that the
fuzzy covariance for interval-valued data shown in equation (16) is a natural ex-
tension of fuzzy cluster based covariance for single-valued data shown in equation
(11). Therefore, we use the weights defined in equation (12) for defining the fuzzy
covariance for interval-valued data.

In ordinal principal component analysis [10], finding the first principal compo-
nent z1 is reduced to finding the eigen vector l1 corresponding to the maximum
eigen value λ1 for the covariance matrix with respect to variables. Using equation
(19), we obtain the eigen vector l1 corresponding to the maximum eigen value λ1

and obtain the first principal component z1 as follows:

z1 = Ŷ l1, (20)

where

Ŷ = (ŷia), ŷia =
y

ia
+ yia

2
, i = 1, · · · ,n, a = 1, · · · , p. (21)



460 M. Sato-Ilic

We obtain the second principal component z2 in the same way as follows:

z2 = Ŷ l2, (22)

where l2 is an eigen vector corresponding to the secondary large eigen value λ2.
The proposed fuzzy covariance for interval-valued data shown in equation (16)

involves a classification structure over the variables and then the results of the pro-
posed PCA shown in equations (20) and (22) can be obtained considering the clas-
sification based on dissimilarity structure of objects in the higher dimensional space
in which objects exist. This is why we can solve the problem of PCA mentioned in
section 2.

Based on the fuzzy cluster based covariance matrix for interval-valued data
shown in equation (19), we define dissimilarity d̃i j between a pair of interval-valued
data i and j as follows:

d̃i j = (ỹi − ỹ j)
tĈ−1(ỹi − ỹ j). (23)

Where
ỹi = wiŷi, ŷi = (ŷi1, · · · , ŷip)t , i = 1, · · · ,n.

wi shows the weight shown in equation (12). ŷia shown in equation (21) shows
an expected value of an interval [y

ia
,yia] under an assumption of uniform distri-

bution over the interval for a data yia. Since Ĉ is not a covariance matrix of ỹi,
equation (23) is not correctly a maharanobis distance. However, the form shown in
equation (23) is similar to mahalanobis distance, so we call this dissimilarity a
mahalanobis like dissimilarity.

6 Numerical Example

We use oil data shown in table 1 [9], [18]. The data is observed as interval-valued
data. Using the data shown in table 1, we calculate ŷia shown in equation (21) and
apply this data to the fuzzy c-means method shown in equation (4). Using equa-
tion (5), we obtain the degree of belongingness of objects to the fuzzy clusters.
The number of clusters is assumed as 4 when m = 2. Using the obtained degree of
belongingness for the fuzzy clusters, we calculate the weights shown in equation
(12). Then we obtain the fuzzy covariance matrix shown in equation (19) by using
the obtained weights and equation (18). Using the fuzzy covariance matrix and the
weights, we obtained the dissimilarity shown in equation (23). Applying the dis-
similarity to the FANNY method shown in equation (7), we could obtain the fuzzy
clustering result shown in figure 1. In this figure, the ordinate shows the values of
degree of belongingness of oils to each cluster and the values of the first dimension
for the result of MDS. The abscissa shows the oils. The order of oils is changed
according to the order of values obtained as a result of MDS.
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We evaluate the results shown in figure 1 by using an index in multidimensional
scaling (MDS) to show how much power the result has to explain the data. In order
to show the validity of using the weights shown in equation (12), figure 2 shows
a comparison of the results of cumulative proportion of variance with respect to
obtained dimensions by MDS. In this figure, we compare the two cases: one is the
case in which we use our proposed dissimilarity shown in equation (23) for MDS,
that is we consider the weighted covariance shown in equation (18) where the weight
wi shown in equation (12) is obtained by using a result of fuzzy clustering. The other
is a case in which we did not consider the weight wi in equation (23) but instead use
equation (14) and obtain the following covariance

C̃ = (c̃ab), a,b = 1, · · · , p,

where
c̃ab =

∫ ∞

−∞

∫ ∞

−∞
(ya − ȳa)(yb − ȳb) f (ya,yb)dyadyb. (24)

Replacing the weighted covariance ĉab with the non-weighted covariance c̃ab, we
calculate the dissimilarity shown in equation (23). From the calculation of equation
(24), it can be seen that the covariance c̃ab shown in equation (24) is equivalent
to a covariance between ŷa and ŷb, where ŷa = (ŷ1a, · · · , ŷna)t is a vector of a-th
variable whose components are centers of intervals shown in equation (21). There-
fore, the dissimilarity that used c̃ab in equation (23) is the same as mahalanobis
distance where the data are given as centers of intervals shown in equation (21).
Since the cumulative proportion in MDS shows the explainable power of obtained
dimensions for data, figure 2 shows a comparison of the explainable power of the
two dissimilarities, one is our proposed weighted dissimilarity and the other is non-
weighted dissimilarity which is a case of simply using the centers of interval of the
interval-valued data.

From this figure, it can be seen that our proposed dissimilarity needs only one
dimension for obtaining satisfactory explainable power (99%) for the data. How-
ever, non-weighted dissimilarity, which is the case where we did not consider the
weights in equations (15) and (18), needs four dimensions in order to obtain over
80% cumulative proportion. Therefore with the use of our proposed dissimilarity, it
is possible to explain the data using fewer parameters.

From figure 2, we can see that the eigen-value (variance) for the first dimension
shows almost 99% out of other eigen-values, so it is enough to only show the result
of the first dimension. A line in figure 1 shows a result of MDS with respect to the
first dimension obtained by using our proposed dissimilarity shown in equation (23).

From a comparison between lines for clusters and the line for the result of MDS
in figure 1, it can be seen that oils which consist of each cluster have similar values
to the result of MDS. For example, oils which consist of a cluster 1 are located in the
zero area of the result of MDS. This means that the result of the multidimensional
scaling also shows a similar classification structure which is obtained as a result
of the proposed clustering method. Since the result of MDS is obtained using the
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high explanatory power of the result of multidimensional scaling (99%), we show a
validity of the results of our proposed clustering shown in figure 1.

Table 1 Oil Data

Oil Gravity Refractive Ind. Solidification Iodine Saponification
o1 [0.93,0.935] [1.48,1.483] [-27,-18] [170,204] [118,196]
o2 [0.93,0.937] [1.48,1.482] [-5,-4] [192,208] [188,197]
o3 [0.923,0.925] [1.47,1.473] [-28,-15] [149,167] [190,193]
o4 [0.93,0.941] [1.5,1.511] [-21,-17] [145,176] [185,195]
o5 [0.916,0.922] [1.471,1.475] [-16,-8] [117,141] [189,195]
o6 [0.916,0.918] [1.468,1.472] [-6,-1] [99,113] [189,198]
o7 [0.92,0.926] [1.47,1.474] [-6,-4] [104,116] [187,193]
o8 [0.907,0.913] [1.464,1.466] [-10,0] [97,107] [168,179]
o9 [0.91,0.915] [1.466,1.47] [0,3] [84,102] [188,195]
o10 [0.916,0.917] [1.468,1.47] [-21,-15] [80,82] [189,195]
o11 [0.914,0.919] [1.466,1.468] [0,6] [79,90] [187,196]
o12 [0.95,0.974] [1.477,1.479] [-17,-10] [81,86] [176,191]
o13 [0.908,0.918] [1.488,1.45] [14,25] [7,10] [251,264]
o14 [0.86,0.87] [1.454,1.459] [30,38] [40,48] [190,199]
o15 [0.858,0.864] [1.459,1.461] [22,32] [53,77] [190,202]

o1 : Linseed Oil o2 : Perilla Oil o3 : Hempseed Oil
o4 : Paulownia Oil o5 : Soybean Oil o6 : Cottonseed Oil
o7 : Sesame Oil o8 : Rapeseed Oil o9 : Peanut Oil
o10 : Camellia Oil o11 : Olive Oil o12 : Castor Oil
o13 : Palm Oil o14 : Beef Tallow o15 : Hog Fat

Fig. 1 Results for Clusters and MDS
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Fig. 2 Comparison of Cumulative Proportion

7 Conclusion

We propose a principal component analysis involving dissimilarity of objects in
high dimensional space. The dissimilarity structure is obtained as a fuzzy clustering
result and the fuzzy cluster based covariance for interval-valued data is proposed
for adopting the clustering result to the covariance of variables of the data. Our
proposed fuzzy cluster based covariance has two features: This is a mixture theory
of both fuzzy and probability, and it includes an ordinal statistical covariance as a
special case when the classification is obtained as an ordinal hard clustering result.
Therefore, our proposed fuzzy cluster based covariance is an extension of an ordinal
covariance. Numerical example shows a better performance.
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References

1. Babuka, R., van der Veen, P.J., Kaymak, U.: Improved Covariance Estimation for
Gustafson-Kessel Clustering. In: FUZZ-IEEE 2002, The IEEE International Conference
on Fuzzy Systems, pp. 1081–1085 (2002)

2. Bezdek, J.C., Keller, J., Krisnapuram, R., Pal, N.R.: Fuzzy Models and Algorithms for
Pattern Recognition and Image Processing. Kluwer Academic Publishers, Dordrecht
(1999)

3. Billard, L., Diday, E.: Regression Analysis for Interval-Valued Data. In: Kiers, H.A.L.,
et al. (eds.) Data Analysis, Classification, and Related Methods, pp. 369–374. Springer,
Heidelberg (2000)

4. Bock, H.H., Diday, E. (eds.): Analysis of Symbolic Data. Springer, Heidelberg (2000)



464 M. Sato-Ilic

5. Brito, P., Bertrand, P., Cucumel, G., de Carvalho, F.: Selected Contributions in Data
Analysis and Classification. Springer, Heidelberg (2007)

6. De Carvalho, F.A.T.: Some Fuzzy Clustering Models for Symbolic Interval Data based
on Adaptive Distances. In: The 56th Session of the International Statistical Institute, ISI
2007 (2007)

7. Denoeux, T., Masson, M.: Dimensionality Reduction and Visualization of Interval and
Fuzzy Data: A Survey. In: The 56th Session of the International Statistical Institute, ISI
2007 (2007)

8. Gustafson, D.E., Kessel, W.C.: Fuzzy Clustering with a Fuzzy Covariance Matrix. In:
The 18th IEEE Conference on Decision & Control, pp. 761–766 (1979)

9. Ichino, M., Yaguchi, H.: Generalized Minkowski Metrics for Mixed Feature-Type Data
Analysis. IEEE Transactions on Systems, Man, and Cybernetics 24(4), 698–708 (1994)

10. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, Heidelberg (2002)
11. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data. John Wiley & Sons, Chichester

(1990)
12. Krishnapuram, R., Kim, J.: A Note on the Gustafson-Kessel and Adaptive Fuzzy Clus-

tering Algorithms. IEEE Transactions on Fuzzy Systems 7(4), 453–461 (1999)
13. Kruskal, J.B., Wish, M.: Multidimensional Scaling. Sage publications, Thousand Oaks

(1978)
14. Sato-Ilic, M.: Fuzzy Cluster Covariance Based Analysis for Interval-Valued Data. In:

International Symposium on Management Engineering, pp. 74–78 (2008)
15. Sato-Ilic, M., Ito, S.: Principal Component Analysis with a Fuzzy Covariance for

Interval-Valued Image Data. In: Joint 4th International Conference on Soft Computing
and Intelligent Systems and 9th International Symposium on Advanced Intelligent Sys-
tems, pp. 1203–1207 (2008)

16. Sato-Ilic, M.: Fuzzy Covariance Retrieval for Clustering Interval-Valued Data under
Probabilistic Distribution. Intelligent Engineering Systems through Artificial Neural
Networks 18, 641–648 (2008)

17. Tran, D., Wagner, M.: Fuzzy Entropy Clustering. In: FUZZ-IEEE 2000, The IEEE Inter-
national Conference on Fuzzy Systems, pp. 152–157 (2000)

18. Chronological Scientific Tables. University of Tokyo (1988)



Fuzzy and Semi-hard c-Means Clustering with
Application to Classifier Design

Hidetomo Ichihashi, Akira Notsu, and Katsuhiro Honda

Abstract. From the objective function of a generalized entropy-based fuzzy c-
means (FCM) clustering, an algorithm was derived, which is a counterpart of Gaus-
sian mixture models clustering. A drawback of the iterative clustering method is
the slow convergence of the algorithm. Miyamoto et al. derived a hard clustering
algorithm by defuzzifying the FCM clustering in which covariance matrices were
introduced as decision variables. Taking into account this method, for quick and
stable convergence of FCM type clustering, we propose the semi-hard clustering
approach. The clustering result is used for a classifier and the free parameters of the
membership function of fuzzy clusters are selected by particle swarm optimization
(PSO). A high classification performance is achieved on a vehicle detection problem
for outdoor parking lots.

1 Introduction

There are four types of basic ideas representing clusters, i.e., crisp, probabilistic,
fuzzy, and possibilistic. Examples of alternating optimization algorithms of clus-
tering that can generate memberships to clusters as well as a set of cluster centers
from unlabeled object data are hard c-means (HCM) [1], Gaussian mixture models
(GMM) [1], fuzzy c-means (FCM) [2], and possibilistic c-means [3].

Since the standard FCM approach is based on Euclidean distance, it does not
posses an ability to represent elliptical clusters. Gustafson and Kessel’s modified
FCM algorithm [2, 4] is based on Mahalanobis distances and derived from an FCM
type objective function. But, we need to specify the values called “cluster volume”,
which are not known in advance [5]. Some revised approaches were proposed in
[5]. We proposed a novel membership function [6, 7, 8] suggested by GMM and a
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generalized FCM approach. We applied it to an algorithm based on iteratively re-
weighted least square (IRLS) method. Unlike FCM, by the GMM algorithm, when
the distances from a data point to all cluster centers are large, the data point tends
to belong to a cluster with full membership and tends to belong to all other clusters
with non-membership. This property is proved by Miyamoto in [8, 9]. The defi-
ciency of GMM is mitigated by the generalized FCM membership function. The
membership function also alleviates the singularity in standard FCM [7, 8].

Convergence of the iterative algorithm of FCM is slow. Sometimes the conver-
gence is not stable when the fuzzifier (i.e., the parameter for fuzzification) is small
and the algorithm takes into account covariance matrices or Mahalanobis distances.
Miyamoto et al. [8, 10] proposed a generalized hard c-means clustering by intro-
ducing Mahalanobis distances. The approach is originated from the FCM clustering
with regularization by K-L information [8, 11]. In this paper, the semi-hard c-means
(SHCM) algorithm is derived by bounding the membership values and linearizing
the objective function.

After partitioning data for all classes by the SHCM algorithm, the classification
is performed by computing class memberships. The hyperparameters, i.e., the free
parameters of the membership function, are selected to minimize classification er-
rors on the validation sets of a cross validation procedure (e.g., 10-fold CV). The
best setting of the hyperparameters is searched by PSO [12]. Instead of the FCM
objective function, the classification error rate is minimized by PSO.

The paper is organized as follows. In Section 2, FCM and its related algorithms
are reviewed, and the SHCM algorithm is derived in Subsection 2.3. The applica-
tion to classifier design is briefly stated in Section 3. The classifier performance
on the vehicle detection problem for outdoor parking lots is reported in Section 4.
Section 5 concludes the paper.

2 Fuzzy and Semi-hard c-Means Clustering

FCM clustering partitions data set by introducing memberships to fuzzy clusters.
The clustering criterion used to define good clusters for fuzzy c-means partitions
is the FCM objective function. Unlike GMM, in which likelihood maximization,
Bayes rule and EM algorithm are used, FCM is based solely on objective function
approach.

2.1 Entropy Regularized Fuzzy c-Means

In [8, 9], an entropy term and a positive parameter ν are introduced in the FCM
objective function.

Je f cm =
c

∑
i=1

N

∑
k=1

uki (D(xk,vi)+ν loguki) , (1)
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where D(xk,vi) denotes squared Euclidean distance between a data vector xk ∈ Rp

and a cluster center vi ∈ Rp. c denotes the number of clusters. N is the number
of objects. For minimizing (1) under the constraints that the sum of membership
uik with respect to i equals one (∑c

i=1 uki = 1), the method of Lagrange multipliers
is used and the Lagrange function is differentiated with respect to vi and uki. The
derived update rules of cluster center vi and uki are as follows.

vi =
∑N

k=1 ukixk

∑N
k=1 uki

. (2)

uki =
u∗ki

∑c
l=1 u∗kl

, (3)

where

u∗ki = exp

(
−D(xk,vi)

ν

)
. (4)

(4) is the same as Welsh’s weight function in M-estimation [13, 14]. This approach
is referred to as entropy regularization.

By replacing the entropy term with K-L information term, we can consider the
minimization of the following objective function under the constraints that both the
sum of uik and the sum of αi with respect to i equal one respectively [8, 11].

Jkl f cm =
c

∑
i=1

N

∑
k=1

uki

(
D(xk,vi;Si)+ν log

uki

αi
+ log |Si|

)
.

(5)

D(xk,vi;Si) = (xk − vi)(S−1
i (xk − vi) (6)

is squared Mahalanobis distance from xk to vi. Si is covariance matrix of data sam-
ples of i-th cluster. By using the method of Lagrange multipliers and differentiating
the Lagrange function with respect to Si, we have

Si =
∑N

k=1 uki(xk − vi)(xk − vi)(

∑N
k=1 uki

. (7)

In the same manner, we have cluster center vi as in (2), and the mixing proportion
of i-th cluster as:

αi =
∑N

k=1 uki

∑c
j=1∑

N
k=1 uk j

=
1
N

N

∑
k=1

uki. (8)

We have (3), where
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u∗ki = αi|Si|− 1
ν exp

(
−D(xk,vi;Si)

ν

)
. (9)

(5) is defined as an FCM objective function, though, it is a reinterpretation of GMM
when ν = 2. If uki ) αi for all k and i, the partition becomes very fuzzy. But when
ν is 0, the optimization problem with respect to uki reduces to a linear one. Thus the
solution uki are obtained at extremal point, i.e., uki equals 0 or 1 and the partition be-
comes crisp. We will later use this fact to derive the semi-hard clustering algorithm.
Fuzziness of the clusters can be controlled by ν whereas it is usually fixed to 2 in
the GMM algorithm. Equations (2), (3), (7)-(9) are used for variable update in the
iterative clustering algorithm.

2.2 Generalized Fuzzy c-Means

Now, we consider the minimization of (10) under the condition ∑c
i=1 uki = 1.

Jg f cm =
c

∑
i=1

N

∑
k=1

(uki)m (D(xk,vi)+ν) . (10)

Both m and ν are the fuzzifiers of FCM clustering. ν in (10) is introduced for
regularization in place of ν loguki in (1).

The update rule for minimizing (10) is the repetition of the necessary condition
of optimality with respect to uki and vi. By differentiating Lagrange function with
respect to vi, we have

vi =
∑N

k=1(uki)mxk

∑N
k=1(uki)m

. (11)

In the similar manner, we have (3), where

u∗ki = (D(xk,vi)+ν)−
1

m−1 . (12)

Therefore (uki)m in (10) is

(uki)m = (D(xk,vi)+ν)−
m

m−1

(
c

∑
j=1

(D(xk,vi)+ν)−
1

m−1

)−m

. (13)

The solution (12) satisfies uki ≥ 0 and uki is continuous if ν > 0. When m = 2 and
ν = 1, u∗ = 1

(x−v)2+1
is the Cauchy weight function in the M-estimation [13, 14].

When ν = 0 and m > 1, (10) is the standard FCM objective function.
Since D(xk,vi) is Euclidean distance, this approach does not posses an ability to

represent elliptical clusters. Although Gustafson and Kessel’s modified FCM algo-
rithm [2, 4] can treat covariance matrices and is derived from an FCM objective
function with fuzzifier m, we need to specify the value called “volume”, which is
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the determinant of covariance matrix of each cluster. The volumes are not known in
advance.

Now we consider to deploy a technique from the robust M-estimation [13, 14].
The M-estimators try to reduce the effect of outliers by replacing the squared resid-
uals with ρ-function, which is chosen to be less increasing than square. Instead of
solving directly this problem, we can implement it as the IRLS. While the IRLS
approach does not guarantee the convergence to a global minimum, experimental
results have shown reasonable convergence points.

Let us consider the loss function ρ in M-estimation and a clustering problem
whose objective function is written as:

Jρ =
c

∑
i=1

N

∑
k=1

ρ(dki) (14)

where dki =
√

D(xk,vi;Si) is a square root of the squared Mahalanobis distance given
by (6). When the loss function is squared residual between xk and vi, the arithmetic
mean is the M-estimator, though this is not robust. Let vi be the parameter vector to
be estimated. The M-estimator of vi based on the function ρ(dki) is the vector which
is the solution of the following p× c equations:

n

∑
k=1

ψ(dik)
∂dki

∂vi j
= 0, j = 1, ..., p, i = 1, ...,c (15)

where the derivative ψ(z) = dρ/dz is called the influence function. vi j is the j-th
element of the vector vi. We can define the weight function as:

w(z) = ψ(z)/z. (16)

Let uki denote the adaptive weight w(dki) associated with the ρ-function (uki =
w(dki)). Since

∂dki

∂vi
= −

(
(xk − vi)(S−1

i (xk − vi)
)− 1

2
S−1

i (xk − vi),

(15) becomes

N

∑
k=1

ukiS
−1
i (xk − vi) = 0, (17)

or equivalently as (2), which is exactly the solution to the following IRLS problem.

Ji f cm =
c

∑
i=1

N

∑
k=1

uki (D(xk,vi;Si)−ν logαi + log|Si|) . (18)

Now, we define the FCM objective function as above. If we choose uki from a va-
riety of weight functions in the robust M-estimator, we have different clustering
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methods, though they are not strictly the robust M-estimator and this paper does not
intend to develop robust clustering methods. For example, Welsh’s weight function
is the same as (4). Cauchy’s weight function is the same as (12) when m = 2 and
ν = 1. These clustering methods are related to possibilistic clustering [3] and noise
clustering [15].

In what follows, we will consider uki such that ∑c
i=1 uki = 1 again. If uki is a

variable to be determined, (18) is linear with respect to uki. And, uki becomes 0 or
1 since ∑c

i=1 uki = 1. In the IRLS approach, the weight is an adaptive weight. If we
use (9) and (3) in (18) as the adaptive weight we have the same clustering algorithm
as GMM (when ν = 2) or the FCM with regularization by K-L information whose
objective function is (5). Note that the algorithm is not for the robust clustering.

In this section, uki in (18) is regarded as the adaptive weight. The member-
ship function of the standard FCM method suffers from the singularity which oc-
curs when D(xk,vi) = 0. The function becomes spiky shape, i.e., the singularity
in shape, when the fuzzifier m is large [7]. Fig. 1 shows the graphs of (4) with
ν=5(blue), 10(green), 15(red). Fig. 2 shows the graphs of (u∗)m by (12) with
ν=1, m=1.1(blue), 1.2(green), 1.3(red). Fig. 3 shows the graphs of (12) with ν=1,
m=1.1(blue), 1.2(green), 1.3(red). Fig. 4 shows the graphs of (u∗)m by (12) with
m=1.1, ν=1(blue), 1.1(green), 1.2(red). Fig. 5 shows the graphs of (12) with m=1.1,
ν=1(blue), 1.1(green), 1.2(red). Only slight differences are observed, and when ν is
small and m is large, by (12), uki of (3) becomes spiky function.

The new membership function, which corresponds to the adaptive weight, is
suggested by (9) and (12). And, u∗ki is given as:

u∗ki = αi|Si|− 1
ν (D(xk,vi;Si)+ν)−

1
m−1 . (19)

Covariance matrix Si in (7) is derived by differentiating (18) with respect to Si. The
procedure of “IRLS Fuzzy c-Means” is the repetition of update of Si,vi,αi and uki.
From the similarity of (4), (9), (12) and (19), it is our conjecture that the update rule
of (19) is convergent.

(19) has an advantage over (9) or equivalently over GMM. When |xk −vi| is large
for all i, the k-th datum tends to belong to a cluster with full membership and belong

Fig. 1 Graphs of u∗ =
exp(−D(xk,vi)/ν) in (4)
with ν=5(blue), 10(green),
15(red)
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Fig. 2 Graphs of (u∗)m =
(D(xk,vi)+ν)−

m
m−1 by using

(12) with ν=1, m=1.1(blue),
1.2(green), 1.3(red)
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Fig. 3 Graphs of u∗ =
(D(xk,vi)+ν)−

1
m−1 in (12)

with ν=1, m=1.1(blue),
1.2(green), 1.3(red)
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Fig. 4 Graphs of (u∗)m =
(D(xk,vi)+ν)−

m
m−1 by using

(12) with m=1.1, ν=1(blue),
1.1(green), 1.2(red)
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to other clusters with non-membership by (9) [9, 8]. The k-th datum can fuzzily
belong to all clusters by (19) with large m and small ν . These two properties can be
harmonized by choosing the values of m and ν .
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Fig. 5 Graphs of u∗ in (12)
with m=1.1, ν=1(blue),
1.1(green), 1.2(red)

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

 x

 u
*

2.3 Semi-hard c-Means

From objective function (5), Miyamoto et al. [10, 8] derived the generalized hard
clustering by linearizing (5) with respect to uki. This hard clustering is called a de-
fuzzified algorithm. Note that by setting ν = 0 in (5), we can have a linearized
objective function. Convergence of the iterative algorithm of FCM is time consum-
ing, and sometimes not stable when the fuzzifier (i.e., parameter m) is small and the
clustering result becomes nearly crisp partition. These characteristics are shared by
GMM [1] and the entropy regularized FCM clustering [8] especially when they take
into account covariance matrices or Mahalanobis distances.

We minimize the objective function:

Jhcm =
c

∑
i=1

N

∑
k=1

uki (D(xk,vi;Si)−ν logαi + log|Si|) , (20)

(20) is the same as (18) except that uki ∈ {0,1}. Cluster centers vi in (2), covariance
matrix Si in (7) and mixing proportion αi in (8) can be derived by differentiating the
Lagrange function with respect to vi, Si and αi respectively.

Since (20) is linear with respect to uki, the solution is an extremal point ∈ {0,1},
which is a point where the objective function attains its extremum. For updating uki

following rule is adopted [10, 8].

uki =

{
1 (i = arg min

1≤ j≤c
D(xk,v j;S j)−ν logα j + log|S j|),

0 (otherwise).
(21)

The above hard c-means rule is modified as follow. For simply fuzzifying the mem-
bership, uki is bounded such that uki ∈ [ 1−β

c−1 ,β ] while uki sum to one for each k. The
value β ≥ 1/c should be prespecified. Since objective function (20) is linear with
respect to uki, we have the update rule:

uki =

{
β (i = arg min

1≤ j≤c
D(xk,v j;S j)−ν logα j + log|S j|),

1−β
c−1 (otherwise).

(22)
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When β = 1, the algorithm produces crisp partition. When β = 1/c, all clusters
overlap each other, i.e., there is no partitioning and all cluster centers overlap with
the center of gravity. By increasing β from 1/c to 1, the partition gradually changes
from a single cluster to crisp c clusters. The clustering procedure is the repetition of
update of vi,Si,αi and uki. (22) is called the semi-hard c-means (SHCM) rule.
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Fig. 6 Semi-hard clustering result. Left figure shows the result with β = 0.6,ν = 1 and c = 2
on a two-class data. Cluster centers denoted by squares are located near the class mean. Right
figure shows the result with β = 1.

Fig. 6-left shows the clustering result with β = 0.6,ν = 1 and c = 2 on a two-
class data set. The clustering is on a per class bases. The two classes are denoted
by large and small circles. Cluster centers are denoted by black and white squares.
Each cluster center is located near its corresponding class mean since β is close to
1/c. Fig. 6-right shows the result with β = 1. The semi-hard clustering algorithm
secure the convergence.

3 FCM Classifier

In the classifier based on normal population, one assumes that the class conditional
density is a multivariate normal, but in practice this assumption rarely holds. There-
fore it is natural to assume that the class conditional density is a finite mixture of
multivariate Gaussian (normal) distributions with unknown parameters, i.e., GMM.
The GMM is generalized by parameterizing ν as in (9). We further generalized in
Subsection 2.2 by introducing a membership function (19) suggested by (9) and
(12). From (18) or (20), we have derived the SHCM rules. At the completion of
semi-hard clustering on the training set of each class, we then compute Mahalanobis
distance by (6) for all the samples in the validation set.

One of the impediments for the classifier is the singularity of covariance matrices,
which frequently occurs when feature dimension is relatively high and the number
of samples in one of the clusters is small. So, the modification of covariance matri-
ces in the mixture of probabilistic principal component analysis (MPCA) [16] or the
character recognition [17] is applied in FCMC. Pi is a p× p matrix of eigenvectors
of Si. p equals the dimensionality of input features. Let S′i denote an approximation
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of Si in (7). Pr
i is a p× r matrix of eigenvectors corresponding to the r largest eigen-

values, where r < p− 1. Δ r
i is an r × r diagonal matrix. r is chosen so that all S′is

are nonsingular and the classifier maximizes its generalization capability in terms
of cross validation procedure.

Inverse of S′i becomes

S
′−1
i = Pr

i ((Δ r
i )

−1 −σ−1
i Ir)Pr(

i +σ−1
i Ip, (23)

σi = (trace(Si)−Σ r
l=1δil)/(p− r), (24)

where Ir and Ip are the unit matrices of r and p dimensions.
After partitioning data for all classes, the classification is performed by com-

puting class memberships. Let πq denote the mixing proportion of class q, i.e., the
a priori probability of class q. Let αq j be αi in (8) for cluster j of class q. The class
membership of k-th data xk to class q is computed as:

u∗q jk =
αq j|Sq j|−

1
γ

(D(xk,vq j;Sq j)/0.1 +ν)
1
m

, (25)

ũqk =
πq∑c

j=1 u∗q jk

∑Q
s=1πs∑c

j=1 u∗s jk

, (26)

where c denotes the number of clusters of each class and Q denotes the number of
classes.

The hyperparameters (i.e., free parameters) are selected to minimize classifica-
tion errors on the validation sets of a cross validation procedure (e.g., 10-fold CV).
The distances by (6) for all the samples in the validation sets are fixed and the best
setting of the hyperparameters of the membership function (19) is searched by PSO.
The Mahalanobis distances are not recomputed in the optimization procedure. We
choose m, ν , γ and αqi for all q and i as the hyperparameters. It should be noted that
different parameter values can not be used for different folds of the cross validation
procedure. They must be held constant. So, instead of αqi, their change rates are
optimized.

4 Performance on Vehicle Detection at an Outdoor Parking Lot

The images taken by a surveillance camera installed in an outdoor parking lot have
been transmitted to Nichizo Tech Inc. via the Internet very 10 minutes. The lot has
27 parking spaces, which are captured by the single camera. The images are stored in
JPEG format of 704 × 576. The extracted images of parking spaces and vehicles are
thinned as 32 × 32-size image. Since the images have different brightness, various
kinds of edges are detected from both occupied and vacant areas. It is apparent that
the gray scale threshold approach and edge detection scheme for classification of
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Table 1 Classification performance on vehicle detection problem at an outdoor parking lot

Image data Number of samples

Training set (first half, 8 weeks) 135,000
Test set (latter half, 8 weeks) 135,000

Classification error rate on test set 0.34 (%)
Detection rate of occupancy (sensitivity) 99.7 (%)
Detection rate of vacancy (specificity) 99.6 (%)

vacancy and occupancy do not function under the ill conditioned circumstances of
outdoor parking lots.

We used 10,000 pictures obtained during 16 weeks from April to July in 2009.
The training set consists of 135,000 image data, which are obtained during 8 weeks
of the first half. The test set consists of 135,000 image data obtained during 8 weeks
of the latter half. The RGB images of vehicles and parking spaces are cropped and
converted to gray scale images. The image data is compressed to 50 dimensional
feature data by PCA. The daytime test results are shown in Table 1. By adjusting
the cutoff point, we have attained the very high detection rate (i.e., sensitivity) of
99.7% while maintaining the specificity to the level of 99.6% .

5 Concluding Remarks

In this paper, several FCM based clustering approaches are reviewed. Taking these
approaches into consideration, the semi-hard clustering algorithm was derived. The
classifier based on the clustering and hyper-parameter search by PSO, achieved high
performance. The classification error rate by the proposed FCM based classifier was
improved by an order of magnitude compared to a current camera based vehicle
detection system for parking lots. The classifier is now undergoing a series of test to
confirm the discriminatory power in many real world problems.
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15. Davé, R.N., Krishnapuram, R.: Robust clustering methods, A unified approach. IEEE

Trans. Fuzzy Syst. 5(2), 270–293 (1997)
16. Tipping, M.E., Bishop, C.M.: Mixtures of Probabilistic Principal Component Analysers.

Neural Computation 11, 443–482 (1999)
17. Sun, F., Omachi, S., Aso, H.: Precise selection of candidates for hand written character

recognition. IEICE Trans. Information and Systems E79-D(3) , 510–515 (1996)



 
 

Part VIII 
Applications 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



On the Applications of Aggregation Operators in
Data Privacy

Vicenç Torra, Guillermo Navarro-Arribas, and Daniel Abril

Abstract. In this paper we give an overview on the application of aggregation opera-
tors in data privacy. Applications include data protection methods, as microaggrega-
tion, as well as measures to evaluate in what extent data is perturbated – information
loss measures – and satisfy privacy requirements – disclosure risk measures.

1 Introduction

Data privacy seeks the protection of the data against the disclosure of sensitive infor-
mation. In the general scenario, data is transferred to a third party to perform some
analysis, but no disclosure is permitted on the sensitive data. Privacy preserving data
mining [1] and Statistical Disclosure Control [24] research on methods and tools for
ensuring the privacy of the data.

At present, different techniques have been developed. Protection procedures can
be classified [19] into data-driven (or general purpose), computation-driven (or
specific purpose), and result-driven. This classification focuses on the intended or
known use of the data.

Data-driven or general purpose: In this case, it is not known the intended use of
the data, and protection should take into account that the user might apply to
the data a large range of tools. E.g., some users might apply regression, other
classification or association rules. Perturbative methods are appropriate for this
purpose.

Computation-driven or specific purpose: In this case, it is known the type of anal-
ysis to be performed on the data. For example, this would be the case if we know
that the researcher will apply association rules to the data. In this case, protec-
tion can be done so that the results on the protected data are the same than (or as
similar as possible) on the original data. In this case, the best approach is that the
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data owner and the data analyser agree on a cryptographic protocol [25] so that
the analysis can be done with no information loss. The case of distributed data
with a specific goal falls also in this class.

Result-driven: In this case, the concern about privacy is about the results of apply-
ing a particular data mining method to some particular data. Protection methods
have been designed so that e.g. the resulting association rules from a data set do
not disclose sensitive information for a particular individual.

Note that for a particular application, data-driven and result-driven are not exclusive
aspects to be taken into account.

Data-driven protection methods are methods that given a data set build another
one based on the former adding some imprecision or noise. Most of these meth-
ods can be classified into the following three categories: Perturbative methods,
Non-perturbative methods and Synthetic data generators.

The development of data-driven protection methods needs to take into account
disclosure risk. In addition, as data is modified its utility might decrease. To measure
these aspects measures of disclosure risk and information loss (or data utility) have
been developed.

In this paper we discuss the use of aggregation operators in the field of data
privacy. We focus on two issues. First, we consider the use of aggregation operators
in one of the perturbative data protection methods: microaggregation. We also focus
on the use of aggregation operators in disclosure risk measures.

The structure of this paper is as follows. In Section 2 we focus on microaggrega-
tion and the role of aggregation in it. In Section 3 we focus on record linkage, a tool
for measuring disclosure risk, and the role of aggregation in it.

2 Microaggregation

Microaggregation [2, 3] is a data protection method based on the construction of
small clusters of the data, and the replacement of these clusters by the cluster cen-
ters. Data protection is ensured because each cluster is required to have at least k
records, and a small information loss is ensured because at most 2k records are per-
mitted in each cluster. So, k is a parameter of the method that permits the user to
obtain a good trade-off between information loss and privacy.

As an example, Table 1 shows a simplified data, sometimes referred as micro-
data, with four attributes for row (each row corresponds to a different individual). In
a normal situation the attribute name will be considered as an identifier. An identi-
fier is an attribute, which unambiguously identifies the responder, and it is normally
deleted or encrypted. The rest of the attributes are quasi-identifiers (also known as
key attributes), which are attributes that can be exploited for re-identify individ-
ual records by combining them [14]. This are the attributes that are perturbed to
anonymize the microdata. Finally there may be also confidential attributes (does
that contain sensitive information on the respondent) that are not perturbed. In our
example we consider age, wage ratio, and hours as quasi identifiers.
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Table 1 Original data

Name Age Wage r. Hours
Lenny 40 59 40
Woody 29 35 40
Etch 32 30 20
Sarge 49 62 30
Rex 42 65 35
Hamm 19 20 10
Wheezy 35 30 30
Mike 22 40 40
Shark 53 60 40

Table 2 Microaggregated data with
k = 3 using MDAV

Name Age Wage r. Hours
A 47.333 60.333 36.667
B 31.000 46.667 38.333
C 28.667 26.667 20.000
D 47.333 60.333 36.667
E 31.000 46.667 38.333
F 28.667 26.667 20.000
G 28.667 26.667 20.000
H 31.000 46.667 38.333
I 47.333 60.333 36.667

Table 2 shows the result of microaggregating the original microdata using a con-
crete microaggregation method, MDAV (see below), and k = 3. As it can be seen the
result is that there are groups of three quasi-identifiers which are indistinguishable
between them, making it more difficult to re-identify individuals from them.

Note that when all variables are considered at once, microaggregation is a way
to implement k-anonymity [14, 16]. The k-anonymity property states that every
combination of values of quasi-identifiers can be indistinctly matched to at leas k
individuals.

From a mathematical point of view, microaggregation is formalized as an
optimization problem as follows:

Minimize SSE = ∑g
i=1∑

n
j=1 ui j(d(x j,vi))2

Subject to ∑g
i=1 ui j = 1 for all j = 1, . . . ,n

2k ≥ ∑n
j=1 ui j ≥ k for all i = 1, . . . ,g

ui j ∈ {0,1}
Here ui j is used to describe the clusters (crisp clusters) of records in the data set X .
Naturally, ui j = 1 if record j is assigned to the ith cluster, and ui j = 0 otherwise.
vi represents the cluster center of the ith cluster. g corresponds to the number of
clusters built.

In the case of univariate microaggregation (for the Euclidean distance and the
arithmetic mean), there exist optimal algorithms in polynomial time [7]. In con-
trast, for multivariate data sets, the problem becomes an NP-Hard [13]. Due to this,
heuristic methods exist, such as the Maximum Distance to Average Vector (MDAV)
algorithm [3]. These methods can be defined operationally in two steps: partition
and aggregation.

• Partition. Records are partitioned into clusters, each of them consisting of at
least k records and at most 2k records.

• Aggregation. For each of the clusters a representative (the centroid) is computed.

The partition step is usually based in a distance function, while the aggregation
step makes use of some aggregator operators [22]. Different aggregation tools are
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used according to the data type under use, and the desired results. In the following
sections we summarize the aggregators used in microaggregation applications.

2.1 Numerical Data

Most of the microaggregation applications have been developed for numerical data,
and more precisely for continuous data. In this case the most usual aggregator is the
arithmetic mean. This aggregator allows to preserve the general or partial arithmetic
means in the protected data. Nevertheless other aggregators such as the median has
also been used in [15].

In some cases preserving the means of the protected data is not enough and some
other considerations have to be taken into account. For instance, in [18] the authors
propose the microaggregation of data with some constraints. These constrains (re-
ferred as data edits in the statistics literature) are preserved in the protected data by
means of the aggregator in use. So, while the arithmetic mean can be used to pre-
serve linear constraints in the protected data, the geometric mean is shown to pre-
serve some non-linear constraints (normally multiplicative constraints). In the same
work other aggregation methods to preserve edit constraints are also discussed.

2.2 Categorical Variables

Microaggregation for categorical data was introduced in [17], and then used in
MDAV in [5]. In this latter work, functions for ordinal and nominal scales were
introduced.

Typical aggregator operators for ordinal data are the median, or convex
median [5] for ordinal data, or the plurality rule (or mode) for nominal data.

2.3 Heterogeneous Data

The microaggregation of heterogeneous multivariate data has been also studied.
In [8], the fusion of logs from a Web server is performed as a combination of sev-
eral operators. The data presents several variables of different types, and each type
has a different aggregator, these aggregators are then combined to produce the final
result. Besides typical numerical and categorical variables, the aggregation of other
types of data is also considered. For example the aggregation of domain names,
file system like paths, URLs, etc. These data are normally aggregated, based on the
hierarchy they represent, by generalization.

2.4 Sequences

Microaggregation has also been applied to data sequences such as numeric time
series, or categorical spatial series.

In [11], and [12] the authors describe the approach for aggregating time series.
Note that the approach is used in conjunction with the way of building the cluster
centers. That is, on the distance used to compare the time series.
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While the above mentioned methods focus on numerical time series, a related
topic consists on the aggregation of categorical series. That is, series of terms of a
predefined set. This latter approach has interest in location privacy [10, 6], where a
set of individuals register e.g. their visits in a city. In the categorical scenario, the
visits are described in terms of the monuments they visit (e.g., cathedral, townhall).
[23] discusses ways of aggregating these series of categorical terms.

2.5 Other Data Types

More elaborated data types have bee also used in microaggregation. In [9] the mi-
croaggregation of logs from a Web search engine is proposed. To achieve the desired
protection, these logs are represented as ordered trees. More precisely a tree is build
for each user appearing in the logs. The leafs of the tree are the search terms, while
the intermediate nodes represent other information of each query, such as a times-
tamp, clicked URL, etc. The aggregation of these trees is the performed by levels
and using specific aggregators for each type of node.

3 Record Linkage

One of the approaches for disclosure risk assessment is record linkage. This ap-
proach, which is general enough to measure risk in a large number of different
scenarios (including the case of data privacy using synthetic data), is based on the
assumption that the information available to the intruder can be expressed in terms
of records in a data file. Then, the intruder would attack a data file (the protected
and released version of the original file) trying to link his information with the one
in the published data file.

According to this approach, in order to measure the risk, we link the protected
data file with the original data file. To this end, subsets of variables are considered
(according to our knowledge on the available information an intruder might pos-
sess), and record linkage is applied to the two files considering these subsets of
variables.

The number of correct links is a measure of the risk. That is, if all the records
are correctly identified, there is a maximal risk. I.e., an intruder would disclosure
sensitive information for all the records he might possess. On the other hand, when
no correct link is achived, we have a maximal protection.

In general, given the original and the protected data file, only a percentage of
the original records will be reidentified. This percentage is a measure of the risk.
The larger the percentage, the larger the chances that an intruder can reidentify his
information with the protected one, so, the larger the risk.

Two main approaches exist for reidentification, the probabilistic record linkage
and the distance-based record linkage. See e.g. [21] for details. Given an original
record (the one in possession of the intruder), distance-based record linkage consists
of determining the nearest record in the protected data set. For this purpose, several
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distances have been proposed in the literature. The most usual one is the Euclidean
distance, although e.g. Mahalanobis distance [20] has also been used.

Different distances result into different number of correctly reidentified records.
So, the measure of the risk depends on the effectiveness of the distance selected.

3.1 Learning Parameters for Aggregation Operators in Record
Linkage

One important aspect, when using distances in practice, is about how the variables
that describe a record are weighted. Note that an appropriate selection of the weights
might result into a better performance of the reidentification algorithm, and, there-
fore, the risk measure can be better estimated. Although for some distances, as in
the case of the Mahalanobis one, the weights are not required or they are estimated
automatically, in some other cases there is no clear way to estimate them. Euclidean
distance is one of the latter cases.

To deal with this problem we can use a supervised approach. Due to the fact that
the estimation of the risk is based on the assumption that we know which are the cor-
rect links, we can use this information to determine the optimal weights. Formally,
the optimal weights are the ones that maximize the number of reidentifications.

This problem is formalized in terms of two sets of records A = (a1, . . . ,aN) and
B = (b1, . . . ,bN) for which we know that ai is the protected record of bi. I.e., for the
sake of simplicity, and without loss of generality, we assume that the two files are
aligned. Then, if Vk(ai) represents the value of the kth variable of the ith record, we
will consider the sets of values d(Vk(ai),Vk(b j)) for all pairs of records ai and b j.

Then, the optimal performance of record linkage using aggregation operator C is
achieved when the aggregation of the values d(Vk(ai),Vk(bi)) for all k is larger than
the aggregation of the values d(Vk(ai),Vk(b j)) for all i �= j. I.e.,

C(d(V1(ai),V1(bi)), . . . ,d(Vn(ai),Vn(bi))) ≥ (1)

C(d(V1(ai),V1(b j)), . . . ,d(Vn(ai),Vn(b j)))

for all i �= j.

Table 3 Data to be considered in the learning process

d(V1) d(V2) outcome
d(V1(a1),V1(b1)) d(V2(a1),V2(b1)) link
d(V1(a1),V1(b2)) d(V2(a1),V2(b2)) no-link
d(V1(a1),V1(b3)) d(V2(a1),V2(b3)) no-link
d(V1(a2),V1(b1)) d(V2(a2),V2(b1)) no-link
d(V1(a2),V1(b2)) d(V2(a2),V2(b2)) link
d(V1(a2),V1(b3)) d(V2(a2),V2(b3)) no-link
d(V1(a3),V1(b1)) d(V2(a3),V2(b1)) no-link
d(V1(a3),V1(b2)) d(V2(a3),V2(b2)) no-link
d(V1(a3),V1(b3)) d(V2(a3),V2(b3)) link
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Table 4 Original and protected data

Data V1 V2 V3 V4 V5
0.6483975 -0.2601455 0.75506370 -0.15284270 0.5143842
0.3031257 1.1088260 -0.52762480 1.63997442 0.2779776

Original 1.1372751 0.9948208 0.03762776 0.02845342 1.2505432
-1.1242793 -1.0051539 -1.38052068 -1.02029424 -0.9600163
-0.9645190 -0.8383474 1.11545402 -0.49529091 -1.0828886
0.3500006 -0.7409297 0.8403626 -0.2888373 0.5644870
0.4571528 1.0977215 -0.5153755 1.7279855 0.3201949

Protected 1.2478131 1.0819753 0.2307468 -0.2828642 1.1922915
-1.0313381 -0.5773717 -1.4654095 -0.8799123 -1.0250432
-1.0236284 -0.8613954 0.9096756 -0.2763717 -1.0519302

Table 5 Distance matrix between original and protected data

d(V1) d(V2) d(V3) d(V4) d(V5) outcome
0.089040728 0.2311534633 0.0072758964 0.01849453 0.002510291 link
0.036574539 1.8438026777 1.6140156690 3.53751470 0.037709498 no-link
0.359299028 1.8012881656 0.2749082343 0.01690559 0.459558331 no-link
2.821511805 0.1006324944 4.9305013359 0.52863021 2.369836610 no-link
2.795670633 0.3615015058 0.0239048475 0.01525942 2.453340768 no-link
0.002197254 3.4215961836 1.8713894487 3.72031457 0.082087631 no-link
0.023724348 0.0001233107 0.0001500464 0.00774595 0.001782297 link
0.892434248 0.0007209612 0.5751274609 3.69730836 0.835969921 no-link
1.780793704 2.8432628295 0.8794401751 6.34982909 1.697863138 no-link
1.760276435 3.8817725424 2.0658325321 3.67238254 1.768654756 no-link
0.619801109 3.0128296323 0.6443831741 0.10067338 0.470673069 no-link
0.462566288 0.0105885589 0.3058125608 2.88840930 0.865547968 no-link
0.012218654 0.0075959132 0.0372949569 0.09691866 0.003393255 link
4.702883153 2.4717892140 2.2591210622 0.82512828 5.178293166 no-link
4.669503754 3.4455385367 0.7604674874 0.09291837 5.301383574 no-link
2.173501232 0.0698144491 4.9323224076 0.53502928 2.324110377 no-link
2.500927565 4.4220850152 0.7484762528 7.55304150 1.638940684 no-link
5.626822378 4.3561084179 2.5961828369 0.54380306 4.632429033 no-link
0.008638066 0.1829976159 0.0072061150 0.01970709 0.004228490 link
0.010130609 0.0206665076 5.2449991384 0.55342070 0.008448159 no-link
1.727961747 0.0094902168 0.0756753070 0.04262310 2.713846466 no-link
2.021150734 3.7483628609 2.6596047957 4.94295799 1.968643296 no-link
4.894413276 3.6876393963 0.7827068981 0.04512511 5.176444702 no-link
0.004464794 0.0681083210 6.6608566144 0.14793362 0.003346098 no-link
0.003493920 0.0005312099 0.0423447464 0.04792561 0.000958425 link

Table 3 represents the information available in the learning process for a small
example. In this example, we consider the reidentification applied to two files, each
one with three records described in terms of two variables.
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Table 6 Final weights

w(V1) w(V2) w(V3) w(V4) w(V5)
0 0.96995789 0.03004211 0 0

Different aggregation operators C will lead to different approximations of the
optimal solution. For a given operator C, with parameter p, we can optimize p with
respect to the number of inequalities 1 that hold.

Note that in the same way, different ways of computing the distance d, will lead
to different results. Current work in progress considers this problem when C is a
Choquet integral, solving the problem according to the approach in [22].

Finally, we introduce a simple example using the weighted mean as C. Table 4
contains the normalized data of the original and protected files, both files are com-
posed by five rows, representing the different records, and five columns, representing
the values of each record. This example is built from a subset of the records described
in the experiments of e.g. [4, 5].

Then, the next step is to compute the distance between each record of the original
data and all the records of the protected data. You can observe the different distances
and also the reidentification of two files records in Table 5. From the information in
this table, we have constructed a model based on Equation 1. From this model, and
using the weighted mean as explained above, we obtain the weighting vector.

In Table 6 there are the weights of the solution of this example. As it can
be appreciated, variables two and three are the only relevant ones to make the
reidentification between both files.

4 Conclusions

In this paper we have presented a survery on the uses of aggregation operators in
data privacy. We have focused on microaggregation and on record linkage.

As future work we plan to analyse the effectiveness of our approach to record
linkage and, as stated above, work is in progress for the case of C equal a Choquet
integral.
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R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 899–908. Springer, Heidelberg
(2006)

12. Nin, J., Torra, V.: Towards The Evaluation of Time Series Protection Methods. Informa-
tion Sciences 179(11), 1663–1677 (2009)

13. Oganian, A., Domingo-Ferrer, J.: On the Complexity of Optimal Microaggregation for
Statistical Disclosure Control. Statistical J. United Nations Economic Commission for
Europe 18(4), 345–354 (2000)

14. Samarati, P.: Protecting Respondents’ Identities in Microdata Release. IEEE Transac-
tions on Knowledge and Data Engineering 13(6), 1010–1027 (2001)

15. Sande, G.: Exact and approximate methods for data directed microaggregation in one or
more dimensions. Int. J. of Unc., Fuzz. and Knowledge Based Systems 10(5), 459–476
(2002)

16. Sweeney, L.: k-Anonymity: a Model for Protecting Privacy. International Journal on Un-
certainty, Fuzziness and Knowledge-based Systems 10(5), 557–570 (2002)

17. Torra, V.: Microaggregation for categorical variables: A median based approach. In:
Domingo-Ferrer, J., Torra, V. (eds.) PSD 2004. LNCS, vol. 3050, pp. 162–174. Springer,
Heidelberg (2004)

18. Torra, V.: Constrained microaggregation: Adding constraints for data editing. Transac-
tions on Data Privacy 1(2), 86–104 (2008)

19. Torra, V.: Privacy in Data Mining. In: Handbook of Data Mining, 2nd edn. (2009) (forth-
coming)

20. Torra, V., Abowd, J.M., Domingo-Ferrer, J.: Using mahalanobis distance-based record
linkage for disclosure risk assessment. In: Domingo-Ferrer, J., Franconi, L. (eds.) PSD
2006. LNCS, vol. 4302, pp. 233–242. Springer, Heidelberg (2006)

21. Torra, V., Domingo-Ferrer, J.: Record linkage methods for multidatabase data mining.
In: Torra, V. (ed.) Information Fusion in Data Mining, pp. 101–132. Springer, Heidelberg
(2003)



488 V. Torra, G. Navarro-Arribas, and D. Abril

22. Torra, V., Narukawa, Y.: Modeling decisions: information fusion and aggregation opera-
tors. Springer, Heidelberg (2007)

23. Valls, A., Nin, J., Torra, V.: On the use of aggregation operators for location privacy. In:
Proc. of the IFSA-EUSFLAT Conference, pp. 489–494 (2009)

24. Willenborg, L., de Waal, T.: Elements of Statistical Disclosure Control. Lecture Notes in
Statistics. Springer, Heidelberg (2001)

25. Yao, A.C.: Protocols for Secure Computations. In: Proc. of 23rd IEEE Symposium on
Foundations of Computer Science, Chicago, Illinois, pp. 160–164 (1982)



Rough Analysis for Knowledge Discovery in a
Simplified Earthquake Database

Yaxin Bi, Shengli Wu, Xuhui Shen, and Jiwen Guan

Abstract. Seismic databases usually contains many parametric earthquake at-
tributes, some of them are recorded by one observing means that is associated with
one type of seismic precursors, and some are observed by a different measure to seek
another type of abnormal events that are potentially related to earthquakes. In seis-
mological study it is a very common requirement to evaluate how one type of param-
eter is related to another, which providing a cross-verification of seismic anomalies
or an estimate of earthquake consequence with a quantitative measure. This require-
ment can be formulated as a knowledge discovery task which can be handled by
rough analysis technology. In this study we develop a rough analysis method for
investigating various relations between a set of attributes by introducing two con-
cepts in terms of key and maxima and develop a set of rough analysis algorithms.
The proposed method permits us not only to reduce non-discriminant attributes
in decision tables but also to quantify relations between parametric attributes. It
has been applied to analyzing the relation between earthquake magnitudes and
intensities within a simplified earthquake database, demonstrating its practical
value.

1 Introduction

Rough set theory is a mathematical tool that is capable of dealing with vagueness
and uncertainty in knowledge based systems. The theory, which was first introduced
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by Pawlak [1], has been applied to many areas including decision making support,
data mining, pattern recognition and inductive learning. Also it has been recently
integrated with fuzzy logics to tackle uncertainty problems in the form of possibil-
ity logics [2]. The key feature of rough set theory lies in knowledge reduction by
means of reducts and handling of uncertain, vague, and incomplete knowledge by
means of lower and upper approximations. It is fully appreciated that during the
course of computing reducts, the dependence between attributes has to be analyzed
in a pairwise way [3], however the time complexity of computing all pairwise com-
binations of attributes often prohibits us to obtain optimal reducts when the number
of attributes is vary large.

The objective of this paper is to develop a set of heuristic algorithms for find-
ing quantitative relationships between attributes. Instead of computing conventional
reducts on the basis of rough set theory [4], we propose the two concepts of a key
− a minimal set of discriminant attributes − and a maxima − the intersection of
all keys that is minimal maxima of keys, which can be used to analyze various de-
pendent relations inherent in attributes and reduce the number of attributes as to
discover more meaningful associations from massive data in the form of produc-
tion rules. We present an illustration of the introduced concepts with the simplified
earthquake data, demonstrating that the proposed method can be used effectively to
analyze massive earthquake data observed by a wide range of seismic networks
[5], in particular, to investigate correlation between earthquake magnitudes and
intensities.

In seismology a scale of intensity is a way of measuring or rating the effects of
an earthquake at different sites. The Modified Mercalli Intensity Scale (MMIS) is
a commonly used measure to rate the severity of earthquake effects by seismolo-
gists. Intensity ratings are generally represented as Roman numerals between I at
the low end and XII at the high end [6]. Intensity IV, for example, represents a
situated effect that “most people indoors feel movement; hanging objects swing;
dishes, windows, and doors rattle, etc”. Clearly each earthquake has one epicen-
ter along with one magnitude, but its intensities vary greatly from place to place.
Rapidly estimating effects of an earthquake not only plays a central role in coor-
dinating emergency responders for mitigating natural hazards − consequence of
earthquakes, but also provides an alternative mechanism to estimate or verify the
magnitude of the earthquake from the area of the map enclosed by isoseismal con-
tours of certain intensities. To date there is little effort devoted to establish an em-
pirical data model from historical earthquake records to detect correlation between
magnitudes and intensities of earthquakes by an inductive learning approach. This
study proposes a rough analysis based model to detect various relations between
parametric attributes, and as a case study, to investigate the relationship between
earthquake magnitudes and intensities, which could be used to effectively assess
the consequence of earthquakes and plan rescue operations when an earthquake
happens.
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2 An Overview of Rough Set Theory

To properly understand rough analysis technology, we start with a formal rough set
model for rule induction [1, 7].

In rough set theory, objects / instances are organized into an information system,
denoted by I =< U,A >, where

1. U = {u1,u2, · · · ,u|U|} is a finite non-empty set, called the universe or object
space; elements of U are called objects/instances;

2. A = {a1,a2, · · · ,a|A|} is also a finite non-empty set; elements of A are called
attributes;

3. for every a∈A there is a mapping for a from U into some space a : U → a(U),
where a(U) = {a(u) | u ∈ U} is called the domain of attribute a, also denoted by
Va. |Va| is referred to as the number of domain values (length) for a.

An information system I can be expressed intuitively in terms of an information
table as follows:

U\A | a j

ui | a j(ui)
(1)

where attribute a j has domain a j(U) = {a j(ui) | i = 1,2, ..., |U |}. When there is
no repetition of objects, the information table is a relation, and attributes can be
divided into two categories of condition and decision based on their dependencies.
An information system < U,A > is called a decision table, if we have A = C ∪D
and C∩D = /0, where attributes in C are called condition attributes and attributes in
D are called decision attributes.

With a decision table, we can model a simplified earthquake database, which
records the major earthquakes occurred in China from 1900 to 1975, along with
magnitudes in the range 4.3-8.5 and intensities in the range VI-XII degrees [8]. To
ease data analysis we encode the magnitude attribute m into a set of categorical
labels as shown in Table 1:

1 – [4.15,4.45), 2 – [4.45,4.75), 3 – [4.75,5.05), 4 – [5.05,5.35), 5 – [5.35,5.65),
6 – [5.65,5.95), 7 – [5.95,6.25), 8 – [6.25,6.55), 9 – [6.55,6.85), 10 – [6.85,7.15), 11
– [7.15,7.45), 12 – [7.45,7.75), 13 – [7.75,8.05), 14 – [8.05,8.35), 15 – [8.35,8.65).

Table 1 is a decision table made up of only two attributes, where m is condition
attribute and i is decision attribute. This table will be used throughout the paper
to illustrate the different concepts introduced − how they can be exploited for
discovering knowledge in the form of production rules from decision tables.

3 Partitions

Let < U,A > be a decision table. For every attribute a ∈ A we can introduce a
partition, denoted by U/a, in universe U as follows: two objects u,v ∈ U are in the
same class if and only if a(u) = a(v), we say that the relation between a(u) and a(v)
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Table 1 EAR: An Earthquake Decision Table

U m i U m i U m i U m i U m i
u1 6 7 u35 4 6 u69 6 7 u103 9 8 u137 14 10
u2 6 7 u36 5 7 u70 4 7 u104 8 8 u138 11 10
u3 8 8 u37 4 7 u71 9 9 u105 5 7 u139 5 7
u4 8 8 u38 3 6 u72 5 7 u106 6 7 u140 12 10
u5 8 9 u39 8 9 u73 5 7 u107 7 8 u141 10 9
u6 8 9 u40 4 6 u74 9 9 u108 6 7 u142 6 8
u7 7 8 u41 13 10 u75 8 7 u109 5 7 u143 7 8
u8 7 8 u42 4 6 u76 6 7 u110 3 6 u144 12 10
u9 7 7 u43 5 6 u77 6 7 u111 7 7 u145 9 9
u10 10 8 u44 5 7 u78 13 10 u112 5 7 u146 3 6
u11 10 9 u45 5 7 u79 15 12 u113 7 7 u147 6 8
u12 8 8 u46 8 8 u80 13 11 u114 9 9 u148 7 8
u13 6 8 u47 5 7 u81 7 8 u115 5 8 u149 6 7
u14 6 8 u48 5 7 u82 11 10 u116 3 7 u150 9 8
u15 8 9 u49 3 6 u83 5 6 u117 3 7 u151 6 8
u16 8 8 u50 3 6 u84 5 7 u118 3 6 u152 11 9
u17 6 7 u51 3 6 u85 4 6 u119 3 6 u153 3 6
u18 3 7 u52 3 6 u86 6 7 u120 3 6 u154 4 7
u19 3 6 u53 5 6 u87 5 7 u121 6 7 u155 6 7
u20 3 6 u54 8 8 u88 3 6 u122 5 7 u156 6 8
u21 7 7 u55 12 10 u89 3 7 u123 1 6 u157 9 8
u22 3 6 u56 7 8 u90 10 8 u124 4 7 u158 4 6
u23 5 6 u57 9 9 u91 3 6 u125 9 9 u159 3 6
u24 6 8 u58 7 8 u92 3 6 u126 5 6 u160 3 6
u25 7 8 u59 5 7 u93 5 7 u127 11 10 u161 5 7
u26 5 7 u60 11 10 u94 9 8 u128 7 7 u162 5 7
u27 7 8 u61 6 7 u95 12 9 u129 7 8 u163 7 8
u28 7 7 u62 5 6 u96 13 11 u130 4 7 u164 11 9
u29 5 7 u63 5 7 u97 11 9 u131 8 7 u165 13 11
u30 4 6 u64 9 9 u98 11 9 u132 5 6 u166 11 9
u31 7 7 u65 4 7 u99 10 9 u133 6 7
u32 4 7 u66 12 9 u100 9 9 u134 5 6
u33 8 9 u67 9 9 u101 8 8 u135 2 6
u34 7 7 u68 5 7 u102 8 8 u136 11 9

is equivalent. To compute partitions for attributes based on the equivalent relation,
we develop the following algorithm.

The algorithm is devised only for generating one partition U/a for one attribute
a ∈ A. With a set of attributes A = {a1,a2, . . . ,a|A|} and universe U , the algorithm
can be run concurrently to compute all partitions U/a1,U/a2, . . . ,U/a|A|, for all
attributes. By running the algorithm on Table 1 we can have two partitions along
with the length of each individual subset of the partitions (the number of domain
attributes) as shown in Example 1.
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1 Input U : a set of objects, a ∈ A: an attribute
2 Output U/a: a partition of equivalent classes
3 i ← 1, j ← 1,s ← 1, V1 = {u1}.
4 if i = |U | then output U/a = {V1,V2, ...,Vs}, stop.

else if i < |U | then i ← i+1, j ← 1.
5 if j = s then s ← s+1,Vs = {ui}, go to 4.

else if j < s then j ← j +1.
6 if a(ui) = a(Vj) then Vj + ui.
7 go to 4.

Fig. 1 Partitioning algorithm

Example 1. Applying the algorithm (perhaps parallelized) to the EAR decision ta-
ble, we obtain two partitions on attributes m and i below.

U/m = {V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15} (2)

U/i = {W6,W7,W8,W9,W10,W11,W12} (3)

where

V1 = {u123}, |V1| = 1;
V2 = {u135}, |V2| = 1;
V3 = {u18,u19,u20,u22,u38,u49,u50,u51,u52, u88,u89,u91,u92,u110, u116,u117,
u118,u119,u120, u146,u153,u159,u160}, |V3| = 23;
V4 = {u30,u32,u35,u37,u40,u42,u65,u70,u85,u124,u130,u154,u158}, |V4| = 13;
V5 = {u23,u26,u29,u36,u43,u44,u45,u47,u48,u53,u59,u62,u63,u68,u72,u73,u83,
u84,u87,u93,u105,u109,u112,u115,u122,u126,u132,u134,u139,u161,u162}, |V5| = 31;
V6 = {u1,u2,u13,u14,u17,u24,u61,u69,u76,u77,u86,u106,u108,u121, u133,u142,
u147,u149,u151,u155,u156}, |V6| = 21;
V7 = {u7,u8,u9,u21,u25,u27,u28,u31,u34,u56,u58,u81,u107,u111,u113,u128,u129,
u143,u148,u163}, |V7| = 20;
V8 = {u3,u4,u5,u6,u12,u15,u16,u33,u39,u46,u54,u75,u101,u102,u104,u131}, |V8|= 16;
V9 = {u57,u64,u67,u71,u74,u94,u100,u103,u114,u125,u145,u150,u157}, |V9| = 13;
V10 = {u10,u11,u90,u99,u141}, |V10| = 5;
V11 = {u60,u82,u97,u98,u127,u136,u138,u152,u164,u166}, |V10| = 10;
V12 = {u55,u66,u95,u140,u144}, |V12| = 5;
V13 = {u41,u78,u80,u96,u165}, |V13| = 5;
V14 = {u137}, |V14| = 1;
V15 = {u79}, |V15| = 1.

W6 = {u19,u20,u22,u23,u30,u35,u38,u40,u42,u43,u49,u50,u51, u52,u53,u62,u83,u85,
u88, u91,u92,u110,u118,u119,u120,u123,u126,u132,u134,u135,u146,u153,u158,u159,u160},
|W6| = 35;
W7 = {u1,u2,u9,u17,u18,u21,u26,u28,u29,u31,u32,u34,u36,u37,u44,u45, u47,u48,u59,
u61,u63,u65,u68,u69,u70,u72,u73,u75,u76,u77,u84,u86,u87,u89,u93, u105,u106,u108,
u109,u111,u112,u113,u116,u117,u121,u122,u124,u128,u130,u131,u133,u139, u149, u154,
u155,u161,u162}, |W7| = 57;
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W8 = {u3,u4,u7,u8,u10,u12,u13,u14,u16,u24,u25,u27,u46,u54,u56,u58, u81,u90,u94,
u101,u102,u103,u104,u107,u115,u129,u142,u143,u147,u148,u150,u151,u156,u157,u163}, |W8|=
35;
W9 = {u5,u6,u11,u15,u33,u39,u57,u64,u66,u67,u71,u74,u95,u97,u98,u99,u100,u114,
u125,u136,u141,u145,u152,u164,u166}, |W9| = 25;
W10 = {u41,u55,u60,u78,u82,u127,u137,u138,u140,u144}, |W10| = 10;
W11 = {u80,u96,u165}, |W11| = 3;
W12 = {u79}, |W12| = 1.

4 Rough Subsets and Support Subsets

The power of rough analysis lies in approximating inconsistent partitions which
originate from uncertain, vague and incomplete information embedded in objects of
decision tables. By calculating approximations, we can generate certain and uncer-
tain rules based on the approximated structures. Before discussing rule generation,
we need to introduce some core concepts in rough set theory: lower and upper ap-
proximations, and strength, etc.

Definition 1. Let W be a subset of U and U/a be a partition. A rough subset of
subset W is defined as a pair of subsets (W (U/a)− ,W (U/a)+), where

1. W (U/a)+ = ∪V∈U/a,V∩W �= /0V , simply denoted by Pa(W ), is called the upper
approximation to W from U/a. Subset Pa(W ) is also said to be the plausible subset
to W from attribute a, and plsa(W ) = |Pa(W )|/|U | is said to be the plausibility to W
from attribute a.

2. W (U/a)− = ∪V∈U/a,V⊆WV , also denoted by Sa(W ), is called the lower approx-
imation to W from U/a. Subset Sa(W ) is also said to be the support subset to
W from attribute a. We call bela(W ) = |Sa(W )|/|U |,spta(W ) = |Sa(W )|/|W | the
belief, support to W from attribute a, respectively.

Now consider condition attribute x and decision attribute y, we further define
Sx(W ), expressing such a relation between x and y that “x implies y = y(W )” with
strength sptx(W ) = |Sx(W )|/|W |, which is explained as a production rule where x is
antecedent, y is consequent and sptx(W ) represents the degree of belief to the con-
sequent if the rule fires. When sptx(W ) = belx(W ) = 0, i.e.,Sx(W ) = /0, the relation
between x and y is inconsistent.

Furthermore, Sx(W ) ⊆ Sx(Z) when /0 ⊂ W ⊂ Z ⊆ U and Sx(U) = U . Thus, in
the inconsistent case for W , we can always find Z such that /0 ⊂ W ⊂ Z ⊆ U
and Z is consistent to knowledge in sense that rule “x implies y = y(Z)” has
strength sptx(Z) = |Sx(Z)|/|Z|. These properties underpin an algorithm for discov-
ering the two types of rules from decision tables. To illustrate the application of the
approximations, we continue Example 1 as in Example 2.

Example 2. For EAR, based on the partitioning results 2 and 3 in Example 1, we
have

Pm(W6) = ∪V∈U/m,V∪W6 �= /0V = V1 ∪V2 ∪V3 ∪V4 ∪V5;
plsm(W6) = |Pm(W6)|/|U |= |V1 ∪V2 ∪V3 ∪V4 ∪V5|/|U |
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= (1 + 1 + 23 + 13+31)/166 = 69/166;
Sm(W6) = ∪V∈U/m,V⊆W6

V = V1 ∪V2 = {u123}∪{u135} = {u123,u135};
belm(W6)=|Sm(W6)|/|U |=|{u123,u135}|/|U |=2/166,sptm(W6)=|Sm(W6)|/|W6|=

2/35;
Pm(W7) = ∪V∈U/m,V∪W7 �= /0V = V3 ∪V4 ∪V5 ∪V6 ∪V7 ∪V8;
plsm(W7) = |Pm(W7)|/|U |= |V3 ∪V4 ∪V5 ∪V6 ∪V7 ∪V8|/|U |
= (23 + 13 + 31 +21+20+16)/166 = 124/166;
Sm(W7) = ∪V∈U/m,V⊆W7

V = {};
belm(W7)= |Sm(W7)|/|U |= |{}|/|U |=0/166,sptm(W7)= |Sm(W7)|/|W7|= 0/57;

there is an inconsistence.
Pm(W8) = ∪V∈U/m,V∪W8 �= /0V = V5 ∪V6 ∪V7 ∪V8 ∪V9 ∪V10;
plsm(W8) = |Pm(W8)|/|U |= |V5 ∪V6 ∪V7 ∪V8 ∪V9 ∪V10|/|U |
= (31 + 21 + 20 +16+13+5)/166 = 106/166;
Sm(W8) = ∪V∈U/m,V⊆W8

V = {};
belm(W8)=|Sm(W8)|/|U |=|{}|/|U |=0/166,sptm(W8) = |Sm(W8)|/|W8| = 0/35;

there is an inconsistence.
Pm(W9) = ∪V∈U/m,V∪W9 �= /0V = V8 ∪V9 ∪V10 ∪V11 ∪V12;
plsm(W9) = |Pm(W9)|/|U |= |V8 ∪V9 ∪V10 ∪V11 ∪V12|/|U |
= (16 + 13 + 5 + 10+5)/166 = 49/166;
Sm(W9) = ∪V∈U/m,V⊆W9

V = {};
belm(W9)=|Sm(W9)|/|U |=|{}|/|U |= 0/166,sptm(W9)= |Sm(W9)|/|W9|= 0/25;

there is an inconsistence.
Pm(W10) = ∪V∈U/m,V∪W10 �= /0V = V11 ∪V12 ∪V13 ∪V14;
plsm(W10) = |Pm(W10)|/|U | = |V11 ∪V12 ∪V13 ∪V14|/|U |
= (10 + 5 + 5 + 1)/166 = 21/166;
Sm(W10) = ∪V∈U/m,V⊆W10

V = V14 = {u137};
belm(W10)=|Sm(W10)|/|U |=|{u137}|/|U |=1/166,sptm(W10)=|Sm(W10)|/|W10|=

1/10;
Pm(W11) = ∪V∈U/m,V∪W11 �= /0V = V13;
plsm(W11) = |Pm(W11)|/|U | = |V13|/|U |= 5/166;
Sm(W11) = ∪V∈U/m,V⊆W11

V = {};
belm(W11)= |Sm(W11)|/|U |= |{}|/|U |= 0/166,sptm(W11) = |Sm(W11)|/|W11|=

0/3; there is an inconsistence.
Pm(W12) = ∪V∈U/m,V∪W12 �= /0V = V15 = {u79};
plsm(W12) = |Pm(W12)|/|U | = |{u79}|/|U |= 1/166;
Sm(W12) = ∪V∈U/m,V⊆W12

V = V15 = {u79};
belm(W12)=|Sm(W12)|/|U |=|{u79}|/|U |=1/166,sptm(W12)=|Sm(W12)|/|W12|=

1/1.
From the resulting plausibility and support values, it is easy to distinguish be-
tween consistent and inconsistent subsets in the partition 3 of Example 1. For the
consistent cases W6,W10,W12, we can find the following certain rules.

If m=1,2 then i=6 with plsm(W6)=69/166, belm(W6)=2/166, and sptm(W6) =
|Sm(W6)|/|W6| = 2/35.

Mapping the coding labels back to Table 1, the rule can be represented as
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If magnitude is [4.15,4.45); [4.45,4.75) then intensity degree is 6 with plausibil-
ity 69/166, belief 2/166, and strength 2/35.

If m = 14 then i = 10 with plsm(W10) = 21/166, belm(W10) = 1/166, and
sptm(W10) = |Sm(W10)|/|W10| = 1/10; i.e.,

If magnitude is [8.05,8.35) then intensity degree is 10 with plausibility 21/166,
belief 1/166, and strength 1/10.

If m=15 then i=12 with plsm(W12)=1/166, belm(W12)=1/166, and sptm(W12)=
|Sm(W12)|/|W12| = 1/1; i.e.,

If magnitude is [8.35,8.65) then intensity degree is 12 with plausibility 21/166,
belief 1/166, and strength 1.

For the inconsistent cases W7,W8,W9,W11, we treat them in a different way in
order to generate uncertain rules.

Pm(W7 ∪W8) = ∪V∈U/m,V∪(W7∪W8) �= /0V = V3 ∪V4 ∪V5 ∪V6 ∪V7 ∪V8 ∪V9 ∪V10;
plsm(W7 ∪W8) = |Pm(W7 ∪W8)|/|U |= |V3∪V4∪V5∪V6∪V7∪V8∪V9 ∪V10|/|U |
= (23 + 13 + 31 +21+20+16+13+5)/166 = 142/166;
Sm(W7 ∪W8) = ∪V∈U/m,V⊆W7∪W8

V = V6 ∪V7;
belm(W7 ∪W8) = |Sm(W7 ∪W8)|/|U |= |V6∪V7|/|U |= (21+20)/166 = 41/166,
sptm(W7 ∪W8) = |Sm(W7 ∪W8)|/|W7 ∪W8| = 41/(57 + 35)= 41/92;
If m = 6,7 then i = 7,8 with plsm(W10 ∪W11) = 142/166, belm(W10 ∪W11) =

41/166, and sptm(W10 ∪W11) = |Sm(W10 ∪W11)|/|W10 ∪W11| = 41/92; i.e.,
If magnitude is [5.65,5.95), [5.95,6.25) then intensity degree is 7,8 with plausi-

bility 142/166, belief 41/166, and strength 41/92.
Pm(W8 ∪W9) = ∪V∈U/m,V∪(W8∪W9) �= /0V = V5 ∪V6 ∪V7 ∪V8 ∪V9 ∪V10 ∪V11 ∪V12;
plsm(W8∪W9)= |Pm(W8∪W9)|/|U |= |V5∪V6∪V7∪V8∪V9∪V10∪V11∪V12|/|U |
= (31 + 21 + 20 +16+13+5+10+5)/166= 121/166;
Sm(W8 ∪W9) = ∪V∈U/m,V⊆W8∪W9

V = {};
belm(W8∪W9)=|Sm(W8∪W9)|/|U |=|{}|/|U |=0/166,sptm(W8∪W9)=|Sm(W8∪

W9)|/|W8 ∪W9|=0/(35 + 25); there is an inconsistence.
Pm(W7∪W8∪W9) =∪V∈U/m,V∪(W7∪W8∪W9) �= /0V =V3∪V4∪V5∪V6∪V7∪V8∪V9∪

V10 ∪V11 ∪V12;
plsm(W7 ∪W8 ∪W9) = |Pm(W7 ∪W8 ∪W9)|/|U | = |V3 ∪V4 ∪V5 ∪V6 ∪V7 ∪V8 ∪

V9 ∪V10 ∪V11 ∪V12|/|U |
= (23 + 13 + 31 +21+20+16+13+5+10+5)/166 = 157/166;
Sm(W7 ∪W8 ∪W9) = ∪V∈U/m,V⊆W7∪W8∪W9

V = V6 ∪V7 ∪V8 ∪V9 ∪V10;
belm(W7 ∪W8 ∪W9) = |Sm(W7 ∪W8 ∪W9)|/|U | = |V6 ∪V7 ∪V8 ∪V9 ∪V10|/|U |=

(21 + 20 + 16 +13 +5)/166 = 75/166,
sptm(W7∪W8∪W9) = |Sm(W7∪W8∪W9)|/|W7∪W8∪W9|= 75/(57+35+25)=

75/117;
If m = 6,7,8,9,10 then i = 7,8,9 with plsm(W7∪W8∪W9)= 157/166, belm(W7∪

W8 ∪W9) = 75/166, and sptm(W7 ∪W8 ∪W9) = |Sm(W7 ∪W8)∪W9)|/|W7 ∪W8 ∪
W9| = 75/177; i.e.,

If magnitude is [5.65,5.95), [5.95,6.25), [6.25,6.55), [6.55,6.85), [6.85,7.15)
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then intensity degree is 7,8,9 with plausibility 157/166, belief 75/166, and
strength 75/177.

Pm(W10 ∪W11) = ∪V∈U/m,V∪(W10∪W11) �= /0V = V11 ∪V12 ∪V13 ∪V14;
plsm(W10 ∪W11) = |Pm(W10 ∪W11)|/|U |= |V11 ∪V12 ∪V13 ∪V14|/|U |
= (10 + 5 + 5 + 1)/166 = 21/166;
Sm(W10 ∪W11) = ∪V∈U/m,V⊆W10∪W11

V = V13 ∪V14 = {u41,u78,u80,u96,u165} ∪
{u137}

= {u41,u78,u80,u96,u137,u165};
belm(W10 ∪W11) = |Sm(W10 ∪W11)|/|U | = |{u41,u78,u80,u96,u137,u165}|/|U | =

6/166,
sptm(W10 ∪W11) = |Sm(W10 ∪W11)|/|W10 ∪W11| = 6/(10 + 3) = 6/13;
If m = 13,14 then i = 10,11 with plsm(W10∪W11) = 21/166, belm(W10∪W11) =

6/166, and sptm(W10 ∪W11) = |Sm(W10 ∪W11)|/|W10 ∪W11| = 6/13; i.e.,
If magnitude is [7.75,8.05), [8.05,8.35) then intensity degree is 10,11 with

plausibility 21/166, belief 6/166, and strength 6/13.
From the derived rules, we find that the certain rules only include single attribute

values as premises, but the uncertain rules comprise more attribute values in the rule
conditions in which these values are disjunctive from one another.

5 Significance and Maxima of Attributes

With partitions, we have introduced the concept of lower and upper approximations
and applied them to discovering certain and uncertain rules. Besides this, on the
basis of partitions we further develop a formalism for analyzing significance of con-
dition attributes in order to find which subset of attributes is minimal that can be
used to distinguish individual objects from one another. This is what we mean by
a “key” in this context. The intersection of all keys is referred to as “maxima”. To
find out keys and maxima from a given decision table, we define several concepts in
accordance with the notation in Section 2.

Definition 2. Let u ∈ U and x ∈ A, we denote [u]x = Vx(u), and [u]x = {v|v ∈
U and x(v) = x(u)}, which is called as the x-class of object u. Moreover, for a u ∈U
and X ⊆ A, let us denote [u]X = ∩x∈X [u]x, and [u]X = ∩x∈X{v|v ∈ U and x(v) =
x(u)}, called as the X-class of object u.

Examining the properties of Definition 2, we notice that if X1 ⊆ X2, then [u]X1 ⊇
[u]X2 . In the remainder context of this paper, we always assume that [u]D ⊂U for all
u ∈U .

To explain Definition 2, we refer back to the partitions given in Example 1, we
can find a number of m−classes of objects and i−classes of objects below.

[u1]m = V6, [u1]i = W7; [u3]m = V8, [u3]i = W8; [u5]m = V8, [u5]i = W9;
[u7]m = V7, [u7]i = W8; [u9]m = V7, [u9]i = W7; [u10]m = V10, [u10]i = W8;
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[u11]m = V10, [u11]i = W9; [u13]m = V6, [u13]i = W8; [u18]m = V3, [u18]i = W7.

Definition 3. Suppose u ∈ U and x ∈ A, we denote xu = {x = x(u)}, called as the
x-value of object u. Also, for a u ∈ U and X ⊆ C, we denote Xu = ∪x∈X xu, that is
Xu = {x = x(u)|x ∈ X}, which is called as Xu the X-values of object u. Similarly we
observe that if X1 ⊆ X2 then (X1)u ⊆ (X2)u.

Looking at the EAR and by this definition, we have the following {m, i}−values
of object for u1.

{m, i}u1 = {m = 6, i = 7}, {m}u1 = {m = 6},{i}u1 = {i = 7}.

Definition 4. For a u ∈ U and /0 ⊂ X ⊆ C, let us denote SD
X (u) = [u]X ∩ [u]D, and

sptD
X (u) = |SD

X (u)|/|U |.
We say that all objects in SD

X (u) is support set of objects for u from condition
attributes in X . This means that all objects v ∈ SD

X (u) (there are |SD
X (u)| objects)

support a rule which states that condition Xv = Xu implies decision Dv = Du with
strength sptD

X (u).
In addition, we also denote SD

/0 (u) = [u]D and sptD
/0 (u) = |[u]D|/|U | since [u] /0 =U

and U ∩ [u]D = [u]D. We say that all objects v ∈ [u]D (so there are |[u]D| objects) sup-
port a rule which states decision Dv = Du with strength sptD

/0 (u) = |[u]D|/|U |. By
this definition, for object u1 in the EAR decision table, for example, we have

Si
m(u1) = [u1]m ∩ [u1]i =

{u1,u2,u17,u61,u69,u76,u77,u86, u106,u108,u121,u133,u149,u155}

Therefore objects v = u1,u2,u17, ...,u155 (14 objects in total) support a rule which
states that conditions m(u1) = 6 imply decision i(u1) = 7 with strength spti

m(u1) =
|Si

m(u1)|/|U |= 14/166 = 7/83.

Definition 5. Let u ∈ U . Let X be a (non-empty or empty) subset of condition
attributes: /0 ⊆ X ⊆C. Then we have

1. If [u]X ⊆ [u]D then for a subset X0 ⊆ X , the corresponding value subset (X0)u

of Xu is said to be a key of Xu when X0 satisfies: i) [u]X0 ⊆ [u]D; ii) if X ′ ⊂ X0 then
[u]X ′ �⊆ [u]D. And we denote a value key in Xu for u as KX

u .
2. If [u]X �⊆ [u]D then Xu has the unique key KX

u and KX
u = CX

u = Xu.

Definition 6. Let /0 ⊂ X ⊆C and let x ∈ X . We say that value xu is significant in Xu

for u if and only if [u]X−{x} �⊆ [u]D Otherwise, we say that value xu is nonsignificant
in Xu for u.

Definition 7. Let /0 ⊂ X ⊆ C. The value maxima CX
u in Xu for object u is the set of

significant values xu in Xu for object u. That is, CX
u = {x = x(u)|x∈ X and [u]X−{x} �⊆

[u]D}.
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Definition 8. Let /0 ⊂ X ⊆ C and let u ∈ U . For an x ∈ X , the significance of value

x = x(u) in Xu for u is defined as sigu
X−{x}(x) =

|[u]X−{x}−[u]D|
|U| . So sigu

X−{x}(x) > 0 if

and only if [u]X−{x} �⊆ [u]D.

In the special case where X is a singleton in 2C, X = {x}, we denote sigu
/0(x) =

sigu(x) as follows: sigu(x) = |[u] /0−[u]D|
|U| = 1− |[u]D|/|U | > 0. Notice that we have

sigu
X−{x} < 1 since

|[u]X−{x}−[u]D|
|U| ≤ |U−[u]D|

|U| = |U|−|[u]D|
|U| ≤ |U|−1

|U| < 1.

By Definitions 2-8, we perform three analyses on the EAR. The first one is that
for object u1 in the EAR decision table, Cm

u1
= {m(u1) = 6}, computing all value

maxima for each object, we have the same table for all value maxima as the EAR
table. The second is that from the results obtained by Definition 2, we have the
following: sigu1(m) = 1− |[u1]i|

|U| = 1− 56
166 = 55/83. The third is that from the second

analysis, we know all value subsets are significant: {m}u1 = {m(u1) = 6}.
After calculating all value keys and maxima for every object, we can merge the

repeated objects in decision tables, resulting in a minimized table, where each object
can be defined as a rule as presented in Section 4.

6 Discussion and Summary

In this paper we present two approaches to analyzing seismic data with the rough
analysis technology. One is based on the lower and upper approximations and an-
other is to employ the proposed concepts of keys and maxima for condition at-
tributes to find which set of attributes is minimal discriminant set of attributes in
decision tables. More specifically, for each key, the decision table is reduced to a
key decision table in which the key becomes the set of condition attributes. Apply
these approaches to the simplified seismic data table, the resulting rules provide in-
sights into the relation structure between magnitude m and intensity i. Importantly
we can observe that the magnitudes in the range 4.15−4.75 is certainly correspond-
ing to intensity 6, the magnitudes in the range 8.05−8.34 is correlated to intensity
10 and the magnitudes in the range 8.35− 8.65 to 12. However for the rest of the
magnitude ranges, we only can obtain rough associations with the intensities even
though there are higher rule supports attached. These associations might confirm a
fact that determining intensities on the basis of earthquake severity often involves
more subjective factors and it might be difficult to draw explicit boundaries among
intensities with an earthquake magnitude. Nevertheless such a sort of knowledge is
of practical value to emergency responders for planning rescue operations when an
earthquake occurs.
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User Authentication via Keystroke Dynamics
Using Bio-matrix and Fuzzy Neural Network

Thanh Tran Nguyen, Bac Le, Thai Hoang Le, and Nghia Hoai Le

Abstract. Current approaches to user authentication via keystroke dynamics are
based on either key-pressed durations and multiple key latencies [2] or key-pressed
forces to find personal typing motif ([3], [4]). This paper proposes a novel method to
detect key presses, release durations as well as key-pressed forces indirectly through
analyzing sound signals created when typing the keyboard. Both above sources of
information are represented in the proposed keystroke dynamics bio-matrix. A per-
sonal keystroke dynamics bio-matrix is used to train a fuzzy neural network ([1],
[5]) to solve user authentication problem. Experimental results show that the pro-
posed method are feasible and reliable with false acceptance rate (FAR) 3.5% and
false rejection rate (FRR) 7%.

1 Introduction

The simplest way for user authentication is username/password. However, pass-
words can be stolen or even guessed. To improve security, some systems use an-
other factor to authenticate user such as: using hard tokens, soft tokens (one time
password) or biometrics. One of the newly used biometrics is keystroke dynam-
ics (behavioural biometrics). Keystroke dynamics represents user’s characteristics
based on how he types on the keyboard. Each person has his own unique keystroke
dynamics characteristic. This characteristic is detected, extracted from typing pat-
tern in order to authenticate the user. Most publications on keystroke dynamics are
based on key-pressed duration [2] or typing pressure ([3], [4]). Our approach uses
both characteristics to solve the user authentication problem.
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In this paper, we propose an indirect method to detect key-pressed time, key-
released time and key-typed forces by analyzing sound signals created when typing
on the keyboard. Fig. 1 sumarizes our proposed user authentication method’s pro-
cess. Keystroke dynamics characteristics are retrieved from sound signals by using
a sound recorder. Sound recorders are very popular so it is easier to deploy this
solution than using specific device like bio-keyboard [3]. Section 2 describes the
pre-processing phase in which typing sound signals containing the combined char-
acteristics of typing pattern are translated to a keystroke dynamics bio-matrix. The
keystroke dynamics bio-matrix is the unique characteristic of user’s typing habit.
A fuzzy neural network [1] is trained to classify different bio-matrices and identify
user. Section 3 describes the proposed fuzzy neural network in detail. In section 4,
we will show some experimental results of the proposed method. Finally, Section 5
concludes the paper.

2 The Keystroke Dynamics Bio-matrix

2.1 Indirect Method to Measure Keystroke Dynamics

The process illustrated in Fig. 1 has two phases: registration and authenticating. In
registration phase, user is required to input his username and password NR times
(15 times in our experiments). Of NR register times, there are NRS times in silent
environment without noise to determine initial parameter values. After registering,
user will be authenticated when accessing system again. The sound signals received
when user types on keyboard is analyzed. The spectro sound signals of typing pattern
is translated to the keystroke dynamics bio-matrix in pre-processing phase. Then, the
keystroke dynamics bio-matrix is converted to a vector (called keystroke dynamics
pattern) and is used as an input of fuzzy neural network for training or authenticating.

Fig. 1 Registration (above) and authentication (below) using keystroke dynamics
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2.2 Pre-processing

The original sound signal is pre-processed to make the correlative keystroke dynam-
ics bio-matrix. Fig. 2 is an example of sound signals of pressing and releasing keys.
It also shows the difference in typing forces. The sound signal is transformed to
frequency domain by short-time Fourier transform. Gabor transform is used to ana-
lyze typing sound signal because this transformation has no cross-term and avoids
the confusion between noise and non-noise components. Moreover, this transforma-
tion has lower computational complexity so it improves the speed. Fig. 3 displays
spectrogram of ‘onetntall’ typing pattern.

At registration phase, with the first NRS registering times in silent environment,
the system calculates the threshold values for each user (including high frequency
threshold θFhigh and low frequency threshold θFlow).

θFhigh =
∑NRS

i=1 max
(

f i
j

)
n

(1)

Fig. 2 Time-sequence signal of password ‘onetntall’

Fig. 3 Spectrogram of password ‘onetntall’
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θFlow =
∑NRS

i=1 min
(

f i
j

)
n

(2)

where, n is number of register times in slient environment, f i
j is frequency value of

the ith time, j is index of signal frequency for each register.
The spectrogram of original sound signal is used to create the keystroke dynamics

bio-matrix described in the next section.

2.3 Keystroke Dynamics Bio-matrix

The original typing signal is filtered by band-pass filter with θFhigh, θFlow in order
to get exact typing frequency domain. An intensity matrix MINT ×NF is made from
that domain which each element of the matrix is calculated in formula (5).

δT =
T

NT
(3)

δF =
θFhigh −θFlow

NF
(4)

where, T is the time that user inputs password, NT is predefined number of sections
of T time, δT is time length of each time section; NF is predefined number of divided
sections in [θFlow, θFhigh] interval , δF is length of each frequency section.

MIx,y =
xδT

∑
i=(x−1)δT

yδF +ΘFlow

∑
j=(y−1)δF+ΘFlow

Ii, j (5)

where, x = 1..NT , y = 1..NF , Ii, j is intensity of frequency f j at time i.
From the intensity matrix, the maximum and minimum intensity of all elements

are calculated in formula (6), (7).

Imax = max(MIx,y) (6)

Imin = min(MIx,y) (7)

where, x = 1..NT , y = 1..NF .
We propose the keystroke dynamics bio-matrix bioMNT ×NF whose elements

represent the relative intensity of the elements of the intensity matrix MINT ×NF .

bioMx,y =
∣∣∣∣MIx,y − Imin

Imax − Imin
× NI

∣∣∣∣+ 1 (8)

where, NI is predefined number of intensity sections of the intensity matrix
MINT ×NF .
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In the next section, we describe the fuzzy neural network to authenticate user
through the keystroke dynamics bio-matrix.

3 Fuzzy Neural Network for Authentication User by Keystroke
Dynamics Bio-matrix

We propose the use of a fuzzy neural network (FNN) ([1], [5]) for authenticating
keystroke dynamics. The parameter set and initial structure of FNN are constructed
from training data. Each function performs in each class of FNN corresponds to each
operational step of a fuzzy system. FNN has a five-layer structure as in Fig. 4(a).
Input and output data of FNN are non-fuzzy data. The processes of fuzzification
of input data and defuzzification of output data are performed automatically inside
FNN. The FNN authenticates keystroke dynamics, called K-FNN.

With the authentication network K-FNN, we need to construct a separate in-
put vector: Xk (kth pattern). It includes NI elements corresponding to NI intensity
sections:

Xk =
(

Xk
1 ,Xk

2 , . . . ,Xk
NI

)
(9)

where, i = 1..NI , Xk
i = ∑NT

x=1∑
NF
y=1 (x × NT + y) if bioMx,y = i.

Authenticates keystroke dynamics.

K-FNN has NI inputs
(

Xk
1 ,Xk

2 , . . . ,Xk
NI

)
and 2 outputs: keystroke dynamics is True

or keystroke dynamics is False.

3.1 Training

With each subject A (user A), we used NR keystroke dynamics patterns of it for
registration:

A =
{

Ak =
(

Ak
i , i = 1..NI

)NR

k=1

}
(10)

where, i = 1..NI , Ak
i =∑NT

x=1∑
NF
y=1 (x × NT + y) if bioMx,y = i.

Each Ak
i is defined by linguistic values {Zero, Tiny, Small, Average, Large}. Each

linguistic value is represented by a bell-shape membership function (see Fig. 4(b)).
The use of bell-shape membership function instead of triangular or trapezoidal
functions is to ensure differentiability of these functions.

The centroid of the membership function (c value) for linguistic values is de-
termined: ci,Zero = 0; ci,Small = ∑NR

k=1 Ak
i /NR; the width of function (δ value): δ =

ci,Small/2; ci,Tiny = ci,Small − δ ; ci,Average = ci,Small + δ ; ci,Large = ci,Average + δ .
To identify the fuzzy rules that are supported by the set of registration data: NR

keystroke dynamics patterns of subject A are True keystroke dynamics, patterns of
another subjects are False keystroke dynamics. For example (see Table 1), the fuzzy
rules of the keystroke dynamics patterns of subject A:
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(a)

(b)

Fig. 4 Fuzzy neural network authenticates keystroke dynamics. (a) K-FNN structure. (b)
Bell-shape member function for the nodes in Conditional class

Table 1 An example of fuzzy rules

Input Output
A1 A2 . . . ANI Keystroke dynamics

Tiny Tiny . . . Tiny True
Small Tiny . . . Tiny True
Tiny Small . . . Tiny True

Small Tiny . . . Zero True

In order to reduce unnecessary noisy rules we use threshold θ such that if the
output is in third class: the basic rule class o3

k > θ then it can attend fourth class,
otherwise that rule will be excluded.

3.2 Authenticating

The fingerprint pattern need to be authenticated: X = (X1,X2, ..,XNI ). Xi, i = 1..NI

are non-fuzzy inputs of K-FNN. Following is details of each class:
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Input class (Layer One): The neurons in input class, linguistic nodes, are the input
for second class. Input g1

i and output o1
i are determined by formula (11).

g1
i = Xi

o1
i = g1

i
(11)

where, Xi is non-fuzzy value for linguistic node i in input class.
Conditional class (Layer Two): The neurons in conditional class are called input-

label nodes. They represent labels: “Zero”, “Tiny”, “Small”, “Average”, “Large” of
correspondent input linguistic variables. These nodes contain the set of clauses of
fuzzy rules in K-FNN. Each (i,j)-th input-label node defines label j of linguistic node
i in input data class. It is described by a bell-shape member function (Fig. 4(b)). The
input network g2

i, j and output network o2
i, j of node (i,j) are determined by formula

(12). With i = 1..NI , j ∈ {Zero, Tiny, Small, Average, Large}.

Input network : g2
i, j = − (o1

i −c2
i, j)

2

δ 2
i, j

Out put network : o2
i, j = eg2

i, j

(12)

where, c2
i,j is the mass of member function for input-label node (i,j) and δ 2

i, j is the
width of member function with input-label node (i,j).

Basic rule class (Layer Three): The neurons in basic rule class are called
rule nodes, they describe fuzzy rules. For example, if (X1 = Tiny) & (X2 =
Tiny) & .. & (XNI = Tiny), Keystroke dynamics = True. With i = 1..NI , j ∈
{Zero, Tiny, Small, Average, Large}. The input network g3

k and output network
o3

k of kth rule node is defined as in formula (13).

Input network : g3
i, j = mini, j(o2

i, j)
Out put network : o3

i, j = g3
i, j

(13)

where, o2
i, j is the output network of input-label node (i,j).

Concluding class (Layer Four): The neurons in concluding class are called
output–label nodes. They describe labels as “True” and “False” of correspondent
output variables (Keystroke dynamics). Output–label node (l,m) represents label l
of mth defuzzification node in output class, with “Authenticates Keystroke Dynam-
ics” then l ∈ {False,True} and m ∈ {Keystroke Dynamics} (only one output). The
input network g4

l,m and output network o4
l,m of output-label nodes (l,m) are defined

as in formula (14).

Input network : g4
l,m = ∑NR

k=1 o3
k

Out put network : o4
l,m = min(1,g4

l,m)
(14)

where, o3
k is output of network of kth rule node and gives effects to the conclusion of

output–label node (l,m). We should note that the formula for sum computing in (14)
can only be applied to rule nodes which receive output–label node (l,m) as one of
their conclusions. With “Authenticates Keystroke Dynamics”, we didn’t use Layer 5
of FNN.
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l ∈ {False,True} and m ∈ {Keystroke dynamics}
⇒ o4

l,m is {o4
False, Keystroke dynamics,o

4
True, Keystroke dynamics} (15)

The condition to authenticate user is below.

i f (o4
False, Keystroke Dynamics < o4

True, Keystroke Dynamics)
Xis authenticated.

else
Xis not authenticated.

(16)

4 Experimental Results

In our experiments, NU users are invited to test the proposed authentication system
with 2 experiments. Experiment 1 is to authenticate in silent environment without any
noise. Experiment 2 is to authenticate in both silent environment and workable envi-
ronment (e.g. library, school yard, coffee shop, ...). In each experiment, after register-
ing, user accesses the system NAuth times to test authentication ability of the system.
In addition, every user’s username and password is public and two other persons will
use that information to attack the system. An intruder will attack one account NAttack

times. Table 2 shows the parameters of experiment 1 and experiment 2.

Table 2 Parameters of experiments 1 and 2

Experiment NU NR NRS NAuth NAttack NT NF NI θ

1 20 15 15 5 5 40 40 5 0.5
2 20 15 5 5 5 40 40 5 0.5

Table 3 Total FAR and FRR for experiments 1 and 2

Experiment Number of
authentic

participants

Number of
intruder

participants

Number of
attacks

Number of
successful

attacks

FAR% FRR%

1 20 20 200 7 3.5 7
2 20 20 200 5 2.5 12

Experimental results prove that the proposed authentication system is feasible
and reliable with FAR 3.5%, FRR 7% in silent environment and FAR 2.5%, FRR
12% in workable environment. Table 3 shows the results of experiments 1 and 2.
In noisy working environment, authentication system has the lower FAR and higher
FRR. This is because unexpected sound is recorded and converted into the keystroke
dynamics bio-matrix and affects the results.

Table 4 shows a comparision between results obtained here and previous research
efforts. Note that these systems use different sample sizes with different parameters
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Table 4 Comparision of our results with previous efforts

Research Number of
participants

Training
samples

Password
string

FAR% FRR%

Legget and Williams (1988) [6] 36 12 large 5.00 5.50
Joyce and Gupta [7] 33 8 4 13.30 0.17
De Ru and Eloff [8] 29 Varies 1 2.80 7.40

(2 to 10)
Haider et al. [9] Not mentioned 15 1 6.00 2.00
Araújo et al. [10] 30 10 1 1.89 1.45
Eltahir et al. [3] 23 20 1 3.75 3.04
Kenneth Revett [2] 20 10 1 0.80 0.90
(threshold 0.60)
Our proposed method 20 15 1 3.50 7.00

and methodologies to measure the results. Nevertherless, our proposed method gives
comparable results with existing methods. This shows the feasibility and reliability
of using sound signals to measure keystroke dynamics for authentication.

5 Conclusion

Keystroke dynamics is gaining interests in recent years. Several commercial
solutions using keystroke dynamics have been introduced in the market.

This study proposed the indirect method to measure the pressure of key typ-
ing via sound signals so widespread deployment is easier because it does not use
any specific devices like bio-keyboard. In addition, the novel keystroke dynamics
bio-matrix combining both typing time and typing force information is used to au-
thenticate user reliably by fuzzy neural network. Experimental results show that the
proposed authentication system is feasible and reliable.
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How to Activate a Collaboration Network via a
Core Employee’s Communication?

Hiroyasu Yuhashi and Junichi Iijima

Abstract. As globalization of the economy progresses, a wide range of products
and services has become commoditized. An increasing number of companies have
sought to derive their competitiveness from the creation of knowledge by employ-
ees. Social networking among employees is the foundation of knowledge creation,
and if management can support social networks, the company will be able to gain
organizational strength. This paper analyzes the relationship between collaboration
networks and communicative activities in the case of a company that specialized
in the development and maintenance of information systems. Based on the results
of the analysis, we propose ways to manage a collaboration network by manipulat-
ing the communication style.

1 Introduction

A wide range of products and services has become commoditized as a result of
the globalization of the economy. Corporate downsizing and restructuring are grad-
ually losing their effectiveness in maintaining sustainable competitiveness within
markets. And companies are turning to internal resources and organizational abili-
ties that they have accumulated over the years in order to find new ways to gain a
competitive advantage to the core business (Hamel et al., 1989, 1990, 1994).

Senge introduced the concept of organizational learning. He focused on em-
ployee training and the promotion of independent individual learning by themselves
as a means of continuously improving organizational strength (Senge, 1990). At
the same time, Nonaka stated that knowledge created by individual employees is
transformed into knowledge at the organizational level through communication-
based interactions among employees (Nonaka, 1991, 1995). Nonaka proposed the
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SECI model, a knowledge creation framework according to which the organizational
knowledge creates further levels of knowledge within the individual, and organized
the idea of organizational learning into the concept of managing the ”place” where
knowledge management happens.

Furthermore, Davenport, in his research on management methods for knowledge
workers, pointed out that competent knowledge workers glean most of their impor-
tant information from social networks (Davenport, 2005). In other words, they create
relationships, both inside and outside the workplace, that allow them to gather ad-
vice and they maintain those relationships. Those relationships allow them to solve
a range of problems relating to work through the power of their social networks.
And, Davenport showed that competent knowledge workers not only gather infor-
mation, but also provide information. He also suggested that company support of
social networks from a management perspective can lead to further organizational
strength. But it is not mentioned the concrete method enough. Now, the establish-
ment of a dynamic method to grasp a situation of a social network is demanded for
a daily management.

The question remains whether an understanding of social networks underpin-
ning knowledge creation, and an approach to specific parameters, would facilitate
the enlivening of social networks. The authors analyzed this issue according to the
following procedure:

(1) Extract some core employees in a case company.
(2) Clarify relationships with some core employees’ communication activities

and collaboration networks of the whole organization.
(3) Examine the management method by considering important points from the

results of a case company.

Based on the analysis, it is concluded that the collaboration network can be
controlled by core employees’ communications toward dynamic management.

2 Review of the Literature

There is a range of existing research into corporate organizations from the perspec-
tive of social networks. Burt looked at high-tech companies and investigated the re-
lationship between the upper level managers’ social networks and the speed at which
they were promoted throughout the company (Burt, 1992). He found that, while an
employee’s individual abilities and the resources invested in each employee cannot
be ignored, work performance will be significantly influenced by the characteristics
of the social networks to which the employee belongs, as well as by the employee’s
position within these networks. In other words, he concluded that the positioning of
employees in a social network influences their performance. This opinion is a very
important point in our research.

Furthermore, Cross et al. clarified the effectiveness of social networks on busi-
ness and, furthermore, proposed some measures to ensure close-knit relationships
between employees (Cross et al., 2004). Additionally, the authors categorized the
social networks within more than sixty companies across a range of industries into
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three categories and demonstrated that there was a difference. It depends on the type
of network that types of collaborative activities generated through such networks
(Cross et al., 2005). In organizations where the demand for efficiency is strong (e.g.
a call center), the social network structure is a simple radiating structure. On the
other hand, in organizations where the demand for creativity is strong, the social
network structure is complex. The social network examined in our research has a
complex structure.

In addition, Gloor used case analysis to show that in certain companies social
networks can lead to innovation and defined the type of ideal social network for
creating beneficial effects on business activities as collaborative innovation net-
works (COINs) (Gloor, 2006). And he introduced successful cases. We praise his
research showing an ideal social network contributing to the performance of a com-
pany. However, this COIN has the premise that is a Web interface as the method of
communication. Now, there are various applications of ICT, and we think that it is
not necessary to limit the COIN to Web-based communication.

The analyses of existing research, however, are most literatures based on static re-
search, which looks at a company at a particular shot in time. Even if the researchers
comment on the derivation of social networks, there are almost no cases in which the
perspective of the organization is dynamic in an attempt to link the results to man-
agement. However, the competitive environment surrounding a company changes
every day. Depending on outside environmental changes, the company organization
is pressed to adapt every day. For daily adaptation, changes in the formal organization
and informal social networks are necessary.

On the other hand, a certain previous research was carried out from a dynamic
viewpoint. Yuhashi et al. took the case of companies with an excellent reputation
for utilization of ICT and analyzed the structural equivalence relations to change
dynamically on social networks (Yuhashi et al., 2008). Structural equivalence oc-
curs when the switching of two employees within a network does not affect the link
patterns. This means that the employees play a similar role within the social net-
work. Within the network structure, the researchers grouped similar employees and
divided the social networks of the company being analyzed into four sub-networks.
Within the group that contained employees of whom knowledge work was particu-
larly required, a dynamic correlation was obtained from multiple regression analysis
of monthly data, showing, among other things, that a high rate of email transactions
within the company as a whole led to a higher average degree of the group. And
it stated that communication precedes collaboration. However, it is a special sug-
gestion in the specific group, no suggestion was offered for specific measures to
control the overall volume of email transactions within the company. In this paper,
based on an analogy of producing word-of-mouth effect in the marketing process,
we considered ways to realize dynamic management for a whole organization.

Gladwell states that word-of-mouth communication occurs when a few mem-
bers of a group with specific attributes become involved in distributing information
(Gladwell, 2000). The mechanism for word-of-mouth movement requires someone
known as the “maven,” with high levels of communication and stored knowledge, to
come into possession of the information first. The information then spreads through
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the “connectors,” who are people with many acquaintances and who cross over into
various different communities. Then the “salesman,” who comes from a different
background than the others, gives the information reliability and persuades people
to take action.

Placing this analogy into the social networks of a company, the mavens can be
interpreted as employees who communicate frequently and who have a high level
of occupational expertise. The connectors comprise employees with high levels of
degree and betweenness, both of which are indexes of social network analysis. The
salesmen can be considered directors, or other employees whose position is some-
what different from general employees. And, it is often that an employee with these
properties is the same person in a company organization from experience. In par-
ticular, when peculiar some core employees show both all properties, there is it
in a small organization. Our idea for this research is “When an employee with
these attributes increases levels of communication, our case proves that this leads to
beneficial effects for the organization as a whole”.

3 Analysis of Collaboration

3.1 Research Framework

Nishiguchi points out that for employees to utilize all the resources available within
a company above their own levels of awareness, it is important for an organization
to have a “small-world network” (Nishiguchi, 2007). A companyfs small world is
created when two phenomena occur at once - a high clustering coefficient caused
by the close relationships between employees within an organizationfs social net-
works, and closeness (short average path length) between employees caused by the
existence of a relationship that joins different divisions or business areas. When
employees who ordinarily have no particular link are joined together, the flow of
information can be stimulated in a way that exceeds employee awareness and the
limitations of resources, and the social network will grow. By understanding the sit-
uations where communication between employees leads to collaboration, it is possi-
ble to consider an approach to manage organizational performance from a network
structural perspective.

We define communication here as “interactive processes employed by human be-
ings in order to communicate their psychological content - including knowledge,
emotions and will - between one another, using symbols such as body language,
words, text, images and so on as meditational means”. To date, a range of academic
definitions has been given to the concept of communication. Some people consider
communication mechanically (“the process of convincing another through the rep-
etition of stimulus and response”) and still some view it as “the process of transfer-
ring meaning from one individual to another” (Okabe, 1993). This research applies
in environment using information and communication devices, while at the same
time requiring a response to a range of situations within the workplace. We there-
fore define communication as something not requiring a face-to-face encounter with
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another, but rather as a process in which the medium (body languages, words, texts,
images, or other symbols) and the communication content (knowledge, emotion,
will, or other psychological content) bring out the action (the process of interaction
between the communicating parties).

On the other hand, collaboration is defined as “an activity that leads to an emer-
gent result, which takes place alongside an act of communication within a group
that has a mutually beneficial relationship”. This “mutual benefit” is the process
of sustaining and developing a society that is created by members with a feeling
of fellowship and sense of unity and acting autonomously and collaboratively while
taking care of each otherfs weaknesses. This “group” occurs when a multiple parties
begin to regulate and sustain their mutual actions and relationships, and a certain ex-
tent of will begins to be shared among them. When many elements and parties begin
to influence one another, new attributes appear and are added, and this is known as
“emergence”.

We paid attention to core employees within the organizations of companies.
And, when a core employee’s communication was activated, our research confirmed
whether a collaboration network for a whole organization became a small-world
network in an example company.

Therefore, this study examines a way to make a collaborative network a small
world by stimulating on the communication activity of the core employees. We ex-
amined using the regression coefficients of each explanatory variable as a simple
confirmation way in order to define the principal factor.

In a multiple regression analysis, it is desirable for the number of data to be bigger
enough than explanatory variables. However there is a limit for the cooperation
of the data acquisition by the company. This research has data of the week unit
for seven weeks, but it is not sufficient quantity. This point is a notice matter on
considering this analysis. Even if there is a notice matter, the empirical research
using such a case has significance. Based on the above-mentioned considerations,
the following are the hypotheses of this research.

Hypothesis 1 Structural characteristic indexes of a collaboration network are
related to communicative activities of some core employees.

Hypothesis 2 Companies have the potential for a management method to operate
the collaboration network via some core employees’ communicative
activities.

First, we extracted some core employees from the case of a large company. Next, we
tried a practical experiment and inspect validity as a core employee by a multiple
regression analysis of Bayesian statistics. And we examine the management method
of a collaboration network via a core employee’s communication activities.

3.2 Company D

Company D belongs to group that is a major mobile phone operator. The busi-
nesses of Company D are development and maintenance of corporate information
systems and the sales of hardware relating to information systems. Its capital fund



516 H. Yuhashi and J. Iijima

is 652.6 million JPY, and its sales were 35 billion JPY (as of the fiscal year ending
March 2008). The number of employees totals 685 people (as of March 31, 2008).
This research treats the system integration division that plans, develops, and oper-
ates mobile solutions for customers. The employees have the knowledge to devise
the customization. The system integration industry is a severe competitive market.
Therefore, employees must demonstrate strength in using mobile devices.

The organizational administration is characteristic. Generally, account managers
and system developers often belong to separate divisions. In Company D, account
managers and system developers belong to the same division. In such an organi-
zation, there are two advantages. One is that it is easy to adapt the system to the
needs of the customer. The other is acceleration of the work by decreasing the pro-
cess between organizations. There are many kinds of mobile solutions, and suitable
project members are assigned for every request from the customer. For system in-
tegration, the communication with various members is necessary in every project.
Because the needs of the customer are different for every project, it is necessary
for employees with different skills to collaborate. In other words, the collaboration
where a variety of different skills are combined leads to organizational performance
via communication between promoted employees.

The analysis examines 27 employees in the mobile solution group of the sys-
tem integration division. The first stage is monitoring the facts. We divided data
acquisition of Company D into two stages. For the first stage, we collected data
from November 23, 2008, to December 20, 2008 (for 4 weeks). The second stage
is a proof experiment to practice management methods. For the second stage, we
collected data from March 8, 2009, to March 28, 2009 (for 3 weeks).

This study regards communication implemented using indirect media as an ex-
change of email. The system integration division does not use notebook personal
computers for security. Mobile phones are not used very much because many em-
ployees are inside. Therefore, an exchange of email represents communication im-
plemented using indirect media. The number of emails that one employee received
from other employees in the same division was 22.08 out of 25.91 sent.

On the other hand, we thought about the collaboration as follows: There are many
employees in the division for system integration. The collaboration involving this di-
vision occurs in the office. The office has employee’s personal desks, some meeting
rooms, and two lounges. It is thought that the communication is created between
employees because the places are shared. And the collaboration occurs from the
communication in a specific ratio depending on the use of the place.

Therefore this work visualized a collaboration network using an RFID system
(Fig. 1). We let the employees in the study wear an RFID tag that detected position
information in the office. A unique ID number was assigned to this RFID tag. This
tag sends a signal with the ID number every 30 seconds. We installed 17 antennas in
the office to receive this signal. Employee positions in the office become clear using
this mechanism. Employees remaining in the same place are recognized.

In addition, another signal is sent when an employee pushes the button on the
tag. We made a rule for using this button: when the collaboration was created via
communication between employees, they pushed the button. But, their buttons may
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Fig. 1 RFID System (transmitter and receiver)

Fig. 2 Collaboration Network within Company D

not be pushed for all collaborations. Thus, the number of times that the button was
pushed is added up for every location. We used it for a weight charge ratio where
collaboration occurred via communication. Specifically, it regards the time when
employees shared a location as expectation of communication. The frequency of
collaboration by location is regarded as the ratio derived by dividing the number
of times buttons were pushed in one location by the total number of times in all
locations. We produced the expectation of communication and the frequency of col-
laboration between employees. A collaboration network for Company D constructed
as described is shown in Fig. 2 (from November 23, 2008 to March 28, 2009).

3.3 Key Employees

In this research, the term “core employees” is used in reference to the employees
with attributes of all three types, maven, connector, and salesman, based on the
marketing analogy given above. We used a multiple regression analysis to determine
whether, when communication behaviors of these core employees are stimulated, a
collaboration network of the organization as a whole turn into a small world.

Whether or not an employee was classed as a maven depended on the volume
of emails sent/received as well as the level of technical skill and development ex-
periment. This level of technical skill was provided by a self-answer by our ques-
tionnaire. Because the technical skill was a subjective answer, we considered that
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Table 1 Attributes of Core Employees

an ability as an engineer need to be supplemented by adding the years of a system
development experience.

On the other hand, Employees serving as connectors were considered based on
the degree of collaborative relationships and betweenness, while serving as sales-
men was considered according to the post. The business system moves money, ma-
terials, persons, and information. Knowledge work is concluded by a movement
of information. In other words, for knowledge work, key persons that govern the
movement of information are important.

We selected employees who were in high rank positions for all categories
shown in Table 1, as a result, ID20300224 and ID20300113 were selected as core
employees. They have three properties (maven, connector, and salesman).

ID20400446 showed a good level of the property of maven and salesman. He
seems to be a candidate for core employee. But he was absent for a long time during
the experiment period, and his data are insufficient for a multiple regression analysis.
And ID20300335 is not a candidate for a core employee. Betweenness is necessary
to support the whole division in terms of management. However, there is a person in
the circumference of a collaboration network because his betweenness is too high.

3.4 Factors in Communication

We conducted an experiment that changed the state of division’s collaborative net-
work by intentionally increasing the volume of communications of candidates of
core employee. In the first stage, the communication and state of the collaboration
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was monitored from November 23, 2008, to December 20, 2008. In the second stage,
measures to increase the communication of candidates whom we chose by the above
were implemented from March 8, 2009, to March 28, 2009. These measures con-
sisted of discussions about the mailing list as an idea for a new solution and the
increase in information sharing from the executive manager.

We took a multiple regression analysis about candidates whom we chose by the
above. It took the following two categories from the email usage log at this division
as explanatory variables relating to communication activity.

- The number of emails received of a core employee oneself
- The number of emails sent of a core employee oneself

For explained variables, we defined clustering coefficients and path length as the
indexes to understand the attributes of a collaboration network as a whole.

- The division’s collaboration network clustering coefficient
- The division’s collaboration network path length

But ID20300113 was absent during second stage, because he had been a long busi-
ness trip. It was confirmed only by ID20300224. For ID20300224, the average of
emails sent in the first stage was 27.0 and the average of emails sent in the second
stage was 35.3. The division’s collaborative network path length for the first stage
was 1.29 and the path length of the second stage was 1.26. By intentional operation,
some changes seem to have been brought.

Table 2 is a result according to our regression analysis of the least-squares
method. The numbers of emails received or sent by ID20300224 are effective as
explanatory variables about the division’s collaborative network path length. This
indicates a possibility that his communication activities may contribute to making a
collaborative network small. On the other hand, the result of the ID20300113 is the
value that we calculated only from the first stage.

But the number of the data which we got from the experiment of all seven
weeks is not big enough. Therefore we assumed this result foreknowledge and per-
formed a multiple regression analysis based on Markov chain Monte Carlo method
of Bayesian statistics.

About ID20300224 and the division’s collaborative network path length, the dis-
tribution was as follows: the mean of coefficient of the number of emails received is

Table 2 Regression coefficient of explanatory variables

ID  Explained variable Explanatory variable Coefficient
Standard
margin
 of error

t-value P-value

20300224 No. of emails received 0.954 0.051 18.616 0.034
No. of emails sent -0.001 0.001 -0.532 0.689

Intercept -0.001 0.001 -1.041 0.487
No. of emails received 0.048 0.001 4.393 0.012

No. of emails sent 0.076 0.001 12.353 0.000
Intercept 0.834 0.048 17.294 0.000

20300113 No. of emails received 0.018 0.001 1.971 0.188
No. of emails sent -0.018 0.001 -2.575 0.124

Intercept 0.994 0.033 30.456 0.001
No. of emails received -0.057 0.005 -1.133 0.375

No. of emails sent 0.089 0.004 2.350 0.143
Intercept 0.675 0.182 3.713 0.065

collaboration network
clustering coefficient

collaboration network
path length

collaboration network
clustering coefficient

collaboration network
path length
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0.048 and the credible interval of 95.0% is from 0.009 to 0.085. The mean of coeffi-
cient of the number of emails sent is 0.077 and the credible interval of 95.0% is from
0.055 to 0.098. If the communication from subordinate increases, the division’s col-
laborative network path length shortens. And, when the number of emails sent by
ID20300224 increases, the division’s collaborative network path length shortens.

He is this division’s liaison for information about crossing organizations based
on an interview. The official general manager is the other person, but he consciously
behaves as a general manager in daily life. But he did not have a correlation between
his communication activities and the clustering coefficient of the collaboration net-
work. The number of emails sent by a core employee makes the division’s collabora-
tive network path length small in ID20300224. On the other hand, the ID20300113
did not have strong variables about emails. Though his technical skill is not high
and his development experience is poor, his work emphasizes sales. He works by
coordinating many projects in daily life based on an interview. He behaved as the
typical middle manager. But ID20300113 may not think like a core employee and
affect the whole organization by his communication activities.

3.5 Effectiveness

Managing the division’s collaborative network path length is clear. We expected that
the number of emails sent by a core employee was the principal factor. However, the
influence of the core employee was restrictive.

According to the interview with ID20300224, he engages in two kinds of com-
munication. One is communication with some employees for system integration
projects. The other is communication to support the work of the whole division. He
said that this communication helps to make the culture of the division. All commu-
nication of the core employee does not influence the whole division. Only communi-
cation for organizational culture affects the whole division. Therefore, the influence
is restrictive. In terms of a qualitative interpretation of the analysis results in the
light of the realities of business, sending email for the whole organization by core
employees brings employees together. And the division’s collaborative network will
be shortened because their activities support other employees’ collaborative work.

4 Conclusions

4.1 Suggestions for Management

Invested resources and an employee’s innate abilities are not the only things that
contribute to the performance of an organization. In particular, within an organiza-
tion that has to strategically utilize knowledge creation in order to respond to the
market, as with those involved in proposal-based sales, the management of situa-
tions in which collaboration arises by referring to communication status will lead to
sustainable competitive advantages.
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With this in mind, we tried to see collaboration from the perspective of social net-
work analysis and sought the criteria for communication that lead to the creation of
a ”small world” in the mutual relationships between employees. We performed anal-
ysis to determine whether changes in communication behavior by employees with
the qualities to become core employees in terms of information distribution have
an effect on the networks within the organization as a whole. We found that send-
ing email with core employee information shortened the average path length and
increased communication between other employees. Our research indicates, that
there are methods according to which management can work to maintain a situa-
tion in which the communications of core employees has a positive effect on the
collaborative networks of the organization as a whole.

4.2 Future Issues

From the case of Company D, we were able to show tentatively that by working
on the communication behavior of core employees, it is possible to turn company
social networks into a small- world network. This assumption is based on the unique
case of Company D, and the seven weeks data sets that is not a long period. In order
to generalize the proposed management method, it will be necessary to add further
analysis of cases to verify it in details.

In addition, it is necessary to consider other co-works for generating of a collab-
oration network. We want to scan the collaboration to the actual situation of a case
of company. These will be the subjects of our future research.

These will be the subjects of our future research.
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Restructuring of Rough Sets for Fuzzy Random
Data of Creative City Evaluation

Lee-Chuan Lin and Junzo Watada

Abstract. In this paper we provide the restructuring method of rough sets for analyz-
ing fuzzy random data that many experts evaluate creative cities. Usually it is hard
to clarify the situation where randomness and fuzziness exist simultaneously. This
paper presents a method based on fuzzy random variables to restructure a rough set.
The algorithms of rough set is used to distinguish whether a subset can be classified
in the object set or not based on confidence interval. The expected-value-approach
is also applied to calculate the fuzzy value with probability into a scalar value.

1 Introduction

Today, city renaissance has played an increasingly important role in urban regen-
eration. Recently, arts-oriented approaches to urban design, involving cultural ex-
periments and activities to bring social, economic and environmental regeneration
outcomes, are increasing being applied in many cities [8]. In order to enhance the
identity of a city, many explorations of urban design have been developed.

The Creative City describes a new method of strategic urban planning. John
Howkins’ Creative Economy is the economic building block for the creative city
movement, defined by a core set of creative city industries [4]. Howkins’ model for
“creative management” responds to the shift with a focus on the human characteris-
tics of ideas, talent, and learning. Richard Florida proposes a strategy for supporting
this economy based on the power of attracting and retaining the Creative Class [1].
The concept of the Creative City, proposed by Charles Landry is driving the imag-
ination of professionals involved in city redevelopment [8]. Increasingly, creative
industries are becoming crucial for the economic prosperity and public welfare of
the world’s great cities.
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In this paper we provide the restructuring method of rough sets for analyzing
fuzzy random data that many experts evaluate creative cities. We provide the re-
structuring method based on the credibility mean value and confidence intervals.
This method enables us to apply conventional rough sets analysis for fuzzy random
data easily. It would enhance the efficiency of problem-solving in urban design and
city revitalization.

We often have problems in classifying data under hybrid uncertainty of both ran-
domness and fuzziness. For example, linguistic data always have these features.
However, as the meaning of each linguistic datum can be interpreted by a fuzzy set
and the variability of the individual meaning may be understood as a random event,
fuzzy random variable is a concept that can be applied to such a situation. In this
research linguistic data are obtained randomly as a fuzzy random variable and after
the fuzzy random variables are defined, the expected-value-approach will be applied
to calculate them into some scalar values. Finally the subset, using its expectation
values of random samples, will be distinguished whether to be classified into the
object set or not by applying the method of rough set.

First, the concept of fuzzy random variables was clarified by Kwakernaak [6, 7]
in 1978. Puri and Ralescu [22] established the mathematical basis of fuzzy random
variables. Other authors also discussed fuzzy random variables, related works can
be found in [16, 24] and so on. Comparing with these literatures, the novelty of this
paper is, to propose a new rough set approach to the classification field for analyzing
fuzzy random variable.

Following the ideas of Kwakernaak, several variants as well as extensions of
fuzzy random variable were presented subsequently by other researchers such as
Kruse and Meyer [5], Liu and Liu [14], and López-Diaz and Gil [17]. Fuzzy
random variable has been a basic tool in constructing the framework of decision
making models under fuzzy random environment, and a number of practical op-
timization problems have been studied based on fuzzy random variables, such as
inventory, risk management, portfolio selection, renewal process, and regression
analysis (see [26, 27]).

The remainder of this paper is organized as follows. We give an overview of
rough set theory and fuzzy random variables in Sections 2 and 3, respectively.
The expected-value-approach, which can calculate the fuzzy random variables into
scalar values, will also be explained in Section 3. In the end, we will summarize this
paper in conclusions.

2 Preliminaries

In this section, we recall some basic concepts on fuzzy variable and fuzzy random
variable that make it easier to follow further discussions on the models. Assume
that (Γ ,P(Γ ),Pos) is a possibility space, where P(Γ ) is the power set of Γ , X is a
fuzzy variable defined on (Γ ,P(Γ ),Pos) with membership function μX , and r is a
real number. As a well-known fuzzy measure, possibility measure of a fuzzy event
X ≤ r is defined as
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Pos{X ≤ r} = sup
t≤r
μX(t). (1)

Lacking the self-duality, the possibility measure is not always the optimal approach
to characterize the fuzziness or vagueness in decision making problems.

Definition 2.1. Assume that Y = (c,al,ar)T is a triangular fuzzy variable whose
possibility distribution is

μY (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x − al

c − al , al ≤ x ≤ c

ar − x
ar − c

, c ≤ x ≤ ar

0, otherwise.

As a simple example, we consider an event X > 3 induced by a triangular fuzzy
variable X = (2,1,10)T . Through possibility, we can calculate the confidence level
of X > 3 is 0.875. However, this event with such “high” confidence level is not
justifiable, because, the possibility of the opposite event, i.e., X ≤ 3, is 1. This fact
makes decision-makers confused. To overcome the above drawback, a self-dual set
function, named credibility measure, is formed by [13] as follows

Cr{X ≤ r} =
1
2

(
1 + sup

t≤r
μX (t)− sup

t>r
μX(t)

)
. (2)

In the above example, we can calculate by credibility the confidence of X > 3 is
0.435, and the confidence level of X ≤ 3 based on credibility is 1 − 0.435 = 0.565.
The readers who are interested in credibility measure may refer to [12, 13].

A fuzzy variable X is said to be positive if the credibility of X ≤ 0 is zero, i.e.,
Cr{X ≤ 0} = 0. Furthermore, fuzzy variable X is said to be convex if all the α-
cut sets of X are convex sets on ℜ. In addition, for an n-ary fuzzy vector X =
(X1,X2, · · · ,Xn), where each individual coordinate Xk is a fuzzy variable for k =
1,2, · · · ,n, the membership function of X is given by taking the minimum of the
individual coordinates as follows

μX (t) =
n∧

i=1

μXi(ti), (3)

where t = (t1, · · · , tn) ∈ℜn.
For the purpose of fuzzy random optimization, a modified fuzzy random variable

was given by Liu and Liu [14], and a mean chance was defined in [16] for measuring
events in fuzzy random decision-making systems.

Definition 2.2 ([14]). Suppose that (Ω ,Σ ,Pr) is a probability space, Fv is a collec-
tion of fuzzy variables defined on possibility space (Γ ,P(Γ ),Pos). A fuzzy random
variable is a map ξ :Ω → Fv such that for any Borel subset B ofℜ, Pos{ξ (ω) ∈ B}
is a measurable function of ω .
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Example 2.1. Let X be a random variable defined on probability space (Ω ,Σ ,Pr).
We call ξ a triangular fuzzy random variable, if for every ω ∈ Ω , ξ (ω) is a trian-
gular fuzzy variable defined on some possibility space (Γ ,P(Γ ),Pos), e.g.,

ξ (ω) =
(

X(ω),X(ω)− 1,X(ω)+ 1
)

T
.

We say ξ is a normal fuzzy random variable, denoted by NF (X ,b),b > 0, if for
every ω ∈Ω , the membership function of ξ (ω) is

μξ (ω)(r) = exp

(−(r − X(ω))2

b

)
.

In addition, a fuzzy random variable ξ is said to be positive if for almost every
ω ∈Ω , ξ (ω) is a positive fuzzy variable. For example, we can construct a positive
normal fuzzy random variable ξ as

μξ (ω)(r) =
{

exp
(−(r − X(ω))2/b

)
, r ≥ 0

0, r < 0.
(4)

In this paper, the above positive normal fuzzy random variable ξ is denoted by
N +

F (X ,b).
In order to measure an event ξ ∈ B induced by fuzzy random variable ξ , where

B is any Borel subset ofℜ, the mean chance measure (see [16]) is defined as

Ch{ξ ∈ B} =
∫
Ω

Cr{ξ (ω) ∈ B}Pr(dω). (5)

Example 2.2. Consider a triangular fuzzy random variable ξ with ξ (ω) = (X(ω)+
3,X(ω)+2,X(ω)+4)T , where X is a discrete random variable, which takes on val-
ues X1 = 2 with probability 0.4, and X2 = 4 with probability 0.6. Now we calculate
the mean chance of event ξ ≤ 7.

Note that fuzzy random variable ξ takes on fuzzy variables ξ (X1) = (5,4,6)T with
probability 0.4, and ξ (X2) = (7,6,8)T with probability 0.6, by the definition, we
can work out Cr{ξ (X1) ≤ 7} = 1, and Cr{ξ (X2) ≤ 7} = 0.5. From (5), we have
Ch{ξ ≤ 7} =

∫
Ω Cr{ξ (ω) ≤ 7}Pr(dω) = 1 × 0.4 + 0.5 ×0.6 = 0.7.

3 Overview of Rough Set Theory

Rough set theory was first introduced by Pawlak in the 1980s [21] and it has been
applied in many applications such as machine learning, knowledge discovery since
then. Rough set is especially useful for domains where data collected are impre-
cise or incomplete about domain objects [2, 29, 31]. It provides powerful tools for
data analysis and data mining from imprecise and ambiguous data. Various rough
sets models have been developed in the rough set community these years. Some of
them have been applied in the industry data mining projects such as stock market
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prediction, telecommunication churn prediction, and financial bank customer
attribution analysis to solve challenging business problems [10, 11, 32].

In rough set theory, information is often available in a form of data tables, known
as information systems, attribute-value tables or information tables. Columns of an
information table are labeled by attributes, rows - by objects and entries of the table
are attribute values. Objects having the same attribute values are indiscernible with
respect to these attributes and belong to the same block of classification determined
by the set of attributes. The following explains basic problems in data analysis which
can be tackled employing the rough set approach:

1) Characterization of set of objects in terms of attribute values.
2) Finding dependencies (total or partial) between attributes.
3) Reduction of superfluous attributes (data).
4) Finding the most significance attributes.
5) Decision rule generation

It is possible that rough set theory can roughly express elements in a set of consid-
ered objects according to the recognizable scale. The rough set theory denotes such
rough representation as approximation. This is a method of knowledge acquisition.
There are two kinds of approximations: one is an upper approximation to take an
element of a rough set into consideration from possibility points of view and the
other is a lower approximation to take an element of a rough set from viewpoints of
necessity. The visual illustration of upper and lower approximations is shown below.

Fig. 1 Upper and lower approximations in Rough set Theory

3.1 Lower and Upper Approximations

Let us explain rough set briefly [9, 28]. Generally, an information system denoted
by IS is defined by IS = (U,A) where U is a universe consisting of finitely many
objects and A is a finite set of attributes {a1,a2, · · · ,ak}. Each attribute a belongs to
the set A that is, a ∈ A. There is a function fa : U → Va which assigns an element of
Va to each element of U , where Va is a set of values of attributes, called the domain
of attribute a.

The method to analyze rough sets is based on two basic concepts, namely the
lower and upper approximations of a focal set. Let X ⊂ U be a subset of elements
in the universe U . Let us consider a subset P ⊆ Va. With any P ⊆ A there is an as-
sociated equivalence relation IND(P). IND(P) = {(x,y) ∈ U2|∀a ∈ P,a(x) = a(y)}
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The partition of U generated by IND(P) is denoted U [X ]ind(P) (or U/P) and can
be calculated Uind(P) = ⊗{Uind({a})|a ∈ P} where A ⊗ B = {X ∩Y |∀X ∈ A,∀Y ∈
B,X ∩ Y �= /0}. The lower approximation of P, denoted P, defined as the union
of all elementary sets Xi contained in X as PX = {Xi ⊂ U [Xi]ind(P) ⊂ X} where
Xi is an elementary set contained in Xi, i = 1,2, · · · ,n. The upper approximation
of P, denoted PX , a non-empty intersection of all elementary sets Xi contained
in X as PX = {Xi ⊂ U [Xi]ind(P) ∩ X �= φ}. The boundary of X in U is defined by
PNX = PX − PX .

4 Fuzzy Random Variables and the Expected-Value Approach

Given some universe Γ , let Pos is a possibility measure defined on the power set
P(Γ ) of Γ . Let ℜ be the set of real numbers. A function Y : Γ → ℜ is said to be
a fuzzy variable defined on Γ [18]. The possibility distribution μY of Y is defined
by μY (t) = Pos{Y = t}. For fuzzy variable Y with possibility distribution μY , the
possibility, necessity and credibility of event {Y ≥ r} are given, as follows:

Pos{Y ≤ r} = sup
t≤r
μY (t), (6)

Nec{Y ≤ r} = 1 − sup
t>r
μY (t), (7)

Cr{Y ≤ r} =
1
2
(1 + sup

t≤r
μY (t) (8)

It should be noted that the credibility measure is an average of the possibility and
the necessity measure, i.e. Cr{·} = (Pos{·}+ Nec{·})/2, and it is a self-dual set
function for any A in P(Γ ). The motivation behind the introduction of the credibility
measure is to develop a certain measure which is a sound aggregate of the two
extreme cases such as the possibility (expressing a level of overlap and being highly
optimistic in this sense) and necessity. Based on credibility measure, the expected
value of a fuzzy variable is presented as follows.

Definition 4.1 ([13]). Let Y be a fuzzy variable. The expected value of Y is defined
as:

E[Y ] =
∫ ∞

0
Cr{Y ≥ r}dr −

∫ 0

−∞
Cr{Y ≤ r}dr (9)

provided that the two integrals are finite.

Example 4.1. Assume that Y = (c,al,ar)T is a triangular fuzzy variable given by
Definition 2.1. Making use of (9), we determine the expected value of Y to be

E[Y ] =
al + 2c + ar

4
. (10)
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Next the definitions of fuzzy random variable, its expected value and variance oper-
ators will be explained. For more theoretical results on fuzzy random variables, one
may refer to Gil et al. [3], Liu and Liu [14], and Wang and Watada [25].

Definition 4.2 ([14]). Suppose that (Ω ,Σ ,Pr) is a probability space, Fν is a col-
lection of fuzzy variables defined by possibility space (Γ ,P(T ),Pos). A fuzzy ran-
dom variable is a mapping X : Ω → Fν such that for any Borel subset B of ℜ,
Pos{X(ω) ∈ B} is a measurable function of ω

Let X be fuzzy random variable on Ω . From the above definition, we can know for
each ω ∈Ω , X(ω) is a fuzzy variable. Furthermore, a fuzzy random variable X(ω)
is said to be positive if for almost every ω , fuzzy variable X(ω) is positive almost
surely.

Example 4.2. Let V be a random variable defined on probability space (Ω ,Σ ,Pr).
Define that for every ω ∈ Ω , X(ω) = (V (ω)+ 2,V (ω)− 2,V (ω)+ 6)T which is a
triangular fuzzy variable defined on some possibility space (Γ ,P(T ),Pos). Then X
is a triangular fuzzy random variable.

For any fuzzy random variable X on Ω , for each ω ∈ Ω , the expected value of the
fuzzy variable X(ω) is denoted by E[X(ω)], which has been proved to be a measur-
able function of ω . Given this, the expected value of the fuzzy random variable X is
defined as the mathematical expectation of the random variable E[X(ω)].

Definition 4.3. Let X be fuzzy random variable defined on a probability space
(Ω ,Σ ,Pr). The expected value of X is defined as:

E[ξ ] =
∫
Ω

[
∫ ∞

0
Cr{ξ (ω) ≥ r}dr −

∫ 0

−∞
Cr{ξ (ω) ≤ r}dr]Pr(dω)

Definition 4.4 ([14]). Let X be a fuzzy random variable defined on a probability
space (Ω ,Σ ,Pr) with expected value e. The variance of X is defined as

Var[X ] = E[(X − e)2] (11)

where e = E[X ] is given by Definition 4.3.

5 Confidence Intervals

Fuzzy arithmetic and fuzzy arithmetic operations for fuzzy numbers have been stud-
ied by making use of the extension principle [19, 20, 30]. These studies have in-
volved the concept of possibility. Tanaka and Watada [23] pointed out that fuzzy
equations discussed by Sanchez can be regarded as possibilistic equations.
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Table 1 illustrates a format of data to be dealt with here, where independent at-
tributes Xik and decision attribute Yi, for all i = 1. · · · ,N and k = 1, · · · ,K are fuzzy
random variables, which are defined as

Yi=
MYi⋃
t=1

{(
Yt

i ,Y
t,l
i ,Yt,r

i

)
T
, pt

i

}
, (12)

Xik=
MXik⋃
t=1

{(
Xt

ik,X
t,l
ik ,Xt,r

ik

)
T
,qt

ik

}
, (13)

respectively. This means that all values are given as fuzzy numbers with probabil-
ities, where fuzzy variables (Yt

i ,Y
t,l
i ,Yt,r

i )T and (Xt
ik,X

t,l
ik ,Xt,r

ik )T are associated with
probability pt

i and qt
ik for i = 1,2, · · · ,N, k = 1,2, · · · ,K and t = 1,2, · · · ,MYi or

t = 1,2, · · · ,MXik , respectively.

Table 1 Data given for fuzzy random
attributes

Decision Independent
Sample Attribute Attributes
i Y X1 X2 · · · Xk · · · , XK

1 Y1 X11 X12 · · · X1k · · · , X1K
2 Y2 X21 X22 · · · X2k · · · , X2K

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

i Yi Xi1 Xi2 · · · Xik · · · , XiK

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

N YN XN1 XN2 · · · XNk · · · XNK

Table 2 Confidence intervals calculated for
attributes

Decision Independent
Sample Attribute attributes

i I[eY ,σY ] I[eX1 ,σX1 ] · · · I[eXK ,σXK ]
1 I[eY1 ,σY1 ] I[eX11 ,σX11 ] · · · I[eX1K ,σX1K ]
2 I[eY2 ,σY2 ] I[eX21 ,σX21 ] · · · I[eX2K ,σX2K ]
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

i I[eYi ,σYi ] I[eXi1 ,σXi1 ] · · · I[eXiK ,σXiK ]
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

N I[eYN ,σYN ] I[eXN1 ,σXN1 ] · · · I[eXNK ,σXNK ]

Before discussing the restructuring of rough sets using fuzzy random attributes
with confidence interval, we define the confidence interval which is induced by the
expectation and variance of a fuzzy random variable. When we consider the one
sigma confidence (1 ×σ ) interval of each fuzzy random variable, we can express it
as the following interval

I[eX ,σX ] �
[
E(X)−

√
Var(X), E(X)+

√
Var(X)

]
, (14)

which is called a one-sigma confidence interval. Similarly, we can define two-sigma
and three-sigma confidence intervals. All of these confidence intervals are called
σ -confidence intervals. Table 2 shows the data with one-sigma confidence interval.

6 Restructuring

The objective of this paper is to provide the analysis method based on rough sets
theory for fuzzy random data. When we have some values given, then we used to
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classify the attribute with such value to some category when the value is over or be-
low some threshold. However it is not easy to deal with fuzzy random variable from
this perspective. Rather conveniently, when we employ the Liu & Liu definition, it
is much easier because the credibility is given as a scalar value instead of a fuzzy
value. Then we can decide whether such values should be included in some sets or
not depending on some threshold given previously.

We provide the restructuring method based on the credibility mean value and con-
fidence intervals. This method enables us to apply conventional rough sets analysis
for fuzzy random data easily.

Definition 6.1. Let Xi be an fuzzy random attribute defined on a probability space
(Ω ,Σ ,Pr) with expected value ei. The variance of Xi as in the definition 4.4. When
the threshold is denoted θ , the structuring of the attribute Xi is defined as follows:
if we define Xi is included in the set Xi when Xi ≥ θ , using confidence interval we
redefine as if eXi +σXi ≥ θ then Xi is classified as being included in rough set.

In the same way, if we define Xi is included in the set Xi when Xi ≤ θ , using
confidence interval we redefine as if eXi − σXi ≤ θ then Xi is classified as being
included in rough set.

After the restructuring of fuzzy random data we can apply the rough sets analysis to
the processed data as explained in the following example.

7 An Example

In this section, we present a simple example to visualize how to use the proposed
method to a creative city classification problem. Assume that the data of fuzzy ran-
dom independent and decision attributes (4 samples and 2 attributes) are given in
the Tables 3 and 4, respectively.

Table 3 Independent attributes

No. X1 (≥ 5 is ”good.”)

1 X11 =
(
(3,2,4)T ,0.5;(4,3,5)T ,0.5

)
2 X21 =

(
(6,4,8)T ,0.5;(8,6,10)T ,0.5

)
3 X31 =

(
(12,10,14)T ,0.25;(14,12,16)T ,0.75

)
4 X41 =

(
(14,12,16)T ,0.5;(16,14,18)T ,0.5

)
No. X2 (≤ 5 is ”not bad.”)

1 X12 =
(
(2,1,3)T ,0.1;(4,3,5)T ,0.9

)
2 X22 =

(
(3,2,4)T ,0.5;(4,3,5)T ,0.5

)
3 X32 =

(
(12,10,16)T ,0.2;(14,12,16)T ,0.8

)
4 X42 =

(
(18,16,20)T ,0.2;(21,20,22)T ,0.8

)

Table 4 Decision attribute

No. Y (≤ 25 means “acceptable.”)

1 Y1 =
(
(14,10,16)T ,0.4;(18,16,20)T ,0.6

)
2 Y2 =

(
(17,16,18)T ,0.8;(20,18,22)T ,0.2

)
3 Y3 =

(
(22,20,24)T ,0.3;(26,24,28)T ,0.7

)
4 Y4 =

(
(32,30,34)T ,0.4;(36,32,40)T ,0.6

)

Table 5 Expectation and standard devia-
tion of the data

i
(
eXi1 ,σXi1

) (
eXi2 ,σXi2

) (
eYi ,σYi

)
1

(
3.5, 0.56

) (
3.8, 0.75

) (
16.2, 7.68

)
2

(
7.0, 2.25

) (
3.5, 0.56

) (
17.6, 2.41

)
3

(
13.5, 1.87

) (
13.7, 4.20

) (
24.8, 4.68

)
4

(
15.0, 2.25

) (
20.4, 2.00

) (
34.4, 8.24

)
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First, four sample cities were selected. Then, we define independent attribute X1
as annual visitors of art events, X2 as quantity of creative industry companies in
Table 3. The two attributes are related to the Creative City evaluation in our expert
questionnaires. Also, we define the decision attribute Y as a city has developed into a
Creative City in Table 4. Next, we need to calculate all the I[eXik ,σXik ] and I[eYk ,σYk ]
for i = 1,2,3,4,k = 1,2. By using the calculation in Definitions 5 and 6, we obtain
all the pairs

(
eXik ,σXik

)
and

(
eYk ,σYk

)
as shown in Table 5.

Hence, the confidence intervals for the input data and output data can be calcu-
lated in the form

I[eXki ,σXki ] = [eXki −σXki ,eXki +σXki ] (15)

and
I[eYi ,σYi ] = [eYi −σYi ,eYi +σYi ], (16)

respectively, for i = 1,2 and k = 1,2,3,4. They are listed in the Tables 6 and 7,
respectively. Then we can apply Definition 6.1.

Table 6 Confidence inter-
vals of the input data

i I[eXi1 ,σXi1 ] I[eXi2 ,σXi2 ]

1 [2.94,4.06] [3.05,4.75]
2 [4.75,9.25] [2.94,4.06]
3 [11.63,15.37] [9.50,17.90]
4 [12.75,17.25] [18.40,22.40]

Table 7 Confidence inter-
vals of the output data

i I[eYi ,σYi ]

1 [8.52,23.88]
2 [15.19,20.01]
3 [20.12,29.48]
4 [26.16,42.64]

Table 8 Restructuring of
fuzzy random data

i Xi1 Xi2 Yi

1 0 0 0
2 1 0 0
3 1 1 1
4 1 1 1

8 Conclusions

This research aims to solve the problem of classification when the object contains
vagueness, randomness and fuzziness. First, we proposed a rough set approach be-
cause rough set deals well with the vagueness. Second, we apply the concepts of
fuzzy random variable as well as the method of expected-value-approach to han-
dle the problem of randomness and fuzziness. After we obtained the expected value
of fuzzy random variables through the above method, the algorithm is adopted to
reach the goal of classification. In this paper we provided the restructuring method
of rough sets for analyzing fuzzy random data which are obtained from many ex-
perts evaluation of creative cities. Creative City design is a complex and delicate
adventure. It will integrate with a wide range of knowledge and diverse databases.
The Creative City describes a new method of strategic urban planning and shows
how people can think, plan and act creatively in the city. Good city-making consists
of maximizing assets. In building Creative Cities, we explore how to make our cities
more livable and vital by inspiring peoples imagination and talent. Creativity is not
always the answer to all our urban problems, but it provides the possible opportuni-
ties to find solutions. Further research efforts are needed to evaluate the efficiency.
We provided the restructuring method based on the credibility mean value and con-
fidence intervals. This method enabled us to apply conventional rough sets analysis
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for fuzzy random data easily. Furthermore, to apply this approach with some real
data is also considered in the near future.
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17. López-Diaz, M., Gil, M.A.: Constructive definitions of fuzzy random variables. Statis-

tics and Probability Letters 36(2), 135–143 (1997)
18. Nahmias, s.: Fuzzy variables. Fuzzy Sets and Systems 1(2), 97–111 (1978)
19. Negoita, C.V., Ralescu, D.A.: Application of Fuzzy Sets to Systems Analsyis.

Birkhauser Verlag, Basel
20. Nguyen, H.T.: A note on the extension principle for fuzzy sets. Journal of Mathematical

Analysis and Applications 64(2), 369–380 (1978)
21. Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sci-

ences 11(5), 341–356 (1982)
22. Puri, M.L., Ralescu, D.A.: Fuzzy random variables. Journal of Mathematical Analysis

and Applications 114(2), 409–422 (1986)
23. Tanaka, H., Watada, J.: Possibilistic linear systems and their application to the linear

regression model. Fuzzy Sets and Systems 27(3), 275–289 (1988)



534 L.-C. Lin and J. Watada

24. Wang, G.Y., Qiao, Z.: Linear programming with fuzzy random variable coefficients.
Fuzzy sets and Systems 57(3), 295–311 (1993)

25. Wang, S., Watada, J.: Studying distribution functions of fuzzy random variables and its
applications to critical value functions. International Journal of Innovative Computing,
Information & Control 5(2), 279–292 (2009)

26. Watada, J., Wang, S.: Regression model based on fuzzy random variables. In: Seising,
R. (ed.) Views on Fuzzy Sets and Systems from Different Perspectives, ch. 26, Spring-
Verlag, Berlin (2009)

27. Watada, J., Wang, S., Pedrycz, W.: Building confidence-interval-based fuzzy random
regression models. IEEE Transactions on Fuzzy Systems 17(6) (2009) (in press)

28. Wikipedia. Rough Set (2008), http://en.wikipedia.org/wiki/Rough_set
(Cited December 10, 2008)

29. Yao, J.T., Yao, Y.Y.: Induction of classification rules by granular computing. In: Alpig-
ini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI),
vol. 2475, pp. 331–338. Springer, Heidelberg (2002)

30. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate
reasoning-I. Information Science 8(3), 199–249, 8(4), 301–357, 9(1), 43–80 (1975)

31. Zhuang, Z.Y., Churilov, L., Burstein, F., Sikaris, K.: Combining data mining and case-
based reasoning for intelligent decision support for pathology ordering by general prac-
titioners. European Journal of Operational Research 195(3), 662–675 (2009)

32. Ziarko, W.: Rough sets as a methodology for data mining. In: Rough Sets in Knowl-
edge Disco 1: Methodology and Applications, pp. 554–576. Physica-Verlag, Heidelberg
(1998)

http://en.wikipedia.org/wiki/Rough_set


A Novel Idea of Real-Time Fuzzy Switching
Regression Analysis: A Nuclear Power Plants
Case Study

Azizul Azhar Ramli and Junzo Watada

Abstract. In this paper, the concept of regression models is extended to handle hy-
brid data from various sources that quite often exhibit diverse levels of data quality
specifically in nuclear power plants. The major objective of this study is to develop a
convex hull method as a potential vehicle which reduces the computing time, espe-
cially in the case of real-time data analysis as well as minimizes the computational
complexity. We propose an efficient real-time fuzzy switching regression analysis
based on a convex hull approach, in which a beneath-beyond algorithm is used in
building a convex hull when alleviating limitations of a linear programming in sys-
tem modeling. Additionally, the method addresses situations when we have to deal
with heterogeneous data.

1 Introduction

Nowadays, nuclear power plant industry is one of the important entities that pro-
vide an alternative energy solution for the society and industries. Over the past
decade, managers of utilities such as nuclear power plants have been faced with
an increasing number of new challenges. Considering the important usage of this
energy, therefore precise analysis in timely manner becomes a key of flourishing
management process. On the other hand, intelligent data analysis (IDA) is one of
pivotal elements of successful factor which are implemented in various analysis
purposes.

Additionally, soft computing provides the concept of fuzzy regression with full
advantage of the strength and ability that is due to advance computational tech-
nologies (cf. [13], [17]). Fuzzy regression analysis exploits linear programming to
describe dependencies among variables. In this context, linear programming (LP) is

Azizul Azhar Ramli · Junzo Watada
Graduate School of Information, Production and Systems (IPS), Waseda University, 2-7,
Hibikino, Wakamatsu-ku, Kitakyushu-shi, Fukuoka-ken, 808-0135 Japan
e-mail: azizulazhar@moegi.waseda.jp,junzow@osb.att.ne.jp

V.-N. Huynh et al. (Eds.): Integrated Uncertainty Management and Applications, AISC 68, pp. 535–546.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

azizulazhar@moegi.waseda.jp, junzow@osb.att.ne.jp


536 A.A. Ramli and J. Watada

subject to constraints whose number is proportional to the number of samples (data
points) when designing the construct of fuzzy regression, see [12], [21]. In contrast,
the increase of the number of attributes plus sample size might be directly raising
the computational complexity as well as the processing time. On the other hand,
convex hull is defined as the smallest convex polygon located in multi-dimensional
data space which contains all points (vertices) [14].

Our intent is to exploit the concept and algorithm of convex hull in the execution
of real-time fuzzy switching regression. In addition, the adaptation of a convex hull
approach; called beneath-beyond algorithm helps us alleviate the limitations of the
ordinary switching regression when pursuing real-time data analysis. Additionally,
the main concern here is to decrease the time of data processing as well as the
computational complexity to efficiently support decision-making procedures [2].

With the intention to show the details of the proposed method, illustrative ex-
amples are presented using real data coming from the requirement analysis of nu-
clear power plants industry. The proposed approach will help to produce an optimal
result for generating electric power by the deployment of nuclear power sources.
The results are compared with those produced by conventional switching regression
analysis.

The paper is organized as follows. Section 2 offers a concise related literature
review which focuses on IDA for nuclear power plants case. The fuzzy switching
regression models have been constructed on the basis of methods such as genetic
clustering technique. A convex hull approach is also discussed. Next, in Section 3
we present the real-time fuzzy switching regression model, realized with the use
of the convex hull approach. Section 4 is devoted to show illustrative examples
related with data analysis of nuclear power plants while Section 5 offers a pertinent
discussion. Finally, Section 6 covers concluding remarks.

2 Related Literature Review

2.1 Intelligent Data Analysis (IDA) for Nuclear Power Plants

Intelligent Data Analysis (IDA) is an important tool to support decision making ac-
tivities. Some representative examples are risk analysis, targeted marketing manage-
ment, customer retention analysis, portfolio management and brand loyalty analysis.

Related to these examples, tools of computational intelligence (CI) emphasize
their abilities to construct models in the presence of noise while enhancing their
efficiency, effectiveness and interpretability. Let us recall that the CI is a unified
conceptual and algorithmic vehicle embracing neurocomputing, fuzzy sets and evo-
lutionary optimization. The study reported in [6] stresses the need to form a consis-
tent methodology that supports the development of high quality models and offers
their further maintenance. One of the main requirements in a successful industrial
data analysis is to perform fast computation processing with minimal computational
complexity.
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Thus, the integrated methodology amplifies the advantages of the individual tech-
niques, significantly reduces the computational time as well as the complexity of
calculation procedure. Therefore, the advantages of this hybrid approach are totally
useful for high risk industry such as nuclear power plants which involve the pro-
cessing of heterogeneous data sets. These approaches will maximize the precision
of the appropriate decision making towards successful management process.

2.2 Fuzzy Switching Regression Models

Regression models were initially developed as ones which statistically describe the
relationship among the variables, that is, explain one variable by making use of
variation of some other (independent) variables. Variables are called explanatory
ones when the variables are used to explain the other variable [3], [10], [15].

In addition, a generic regression analysis is concerned with data which come
from a single data source. A single functional relationship is assumed between the
independent or input variables x ∈ RP and the dependent or output variable y ∈
R1 and this relationship holds for all the data being collected. A general model of
regular regression is then described as follows:

yi = h(xi)+ εi, i = 1, ...,n, (1)

where h(·) is some function and εis are independent random variables with zero
mean and some variance, i = 1, ...,n.

Regression analysis is based on the assumption that the analyzed data set is ho-
mogeneous in the sense that there is only a single functional relationship between
exogenous and endogenous variables. On the other hand, we encounter situations in-
volving heterogeneous data. Additionally, we might have prior information as to the
division of the overall data set into homogeneous subsets. Therefore, switching re-
gression methods should be applied. Interestingly, switching regression was applied
to various fields such as in economic and engineering data analysis. An implemen-
tation of switching regression is performed for heterogeneous data set by forming c
homogeneous subsets of data and determining a regression function for each subset
k(k = 1, ...,c):

yi = ŷik + εik = fi(ak,xi)+ εik, (k = 1, ...,c; i = 1, ...,Mk;
c
∑

k=1
Mk = M;x0 = 1) (2)

In other words, a mixed distribution is given and one is aimed at dividing this dis-
tribution into homogeneous sets. The performance criterion captures the squared
differences between the estimated values of the regression function in each subset
and the experimental data. The criterion has to minimize over all data subsets.

With the incorporation of fuzzy sets, an enhancement of regression model comes
in the form of so-called fuzzy regression or possibilistic regression that was orig-
inally introduced by Tanaka et al. [16] (also refer to Tanaka and Guo [15]) to re-
flect the relationship between the dependent variable and independent variables
expressed in terms of fuzzy sets. The upper and lower regression boundaries of
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the possibilistic regression reflect upon the possibilistic distribution of the output
values. Associated with the previously discussed methods, fuzzy switching regres-
sion analyses have been proposed by several researchers including Hathway and
Bezdek [5], Jajuga [7] and Quandt and Ramsey [11]. Additionally, the realization of
fuzzy switching regression is completed in several phases which includes clustering
technique implementation.

2.2.1 Genetic Clustering Technique

Several researchers employed this hybrid approach to solving various problems [1],
[8], [19], [20]. Additionally, the implementation of the fuzzy switching regression
requires fuzzy clustering to translate the problem into a series of sub problems to
be handled for the individual subsets of data [9]. More specifically, we exploit GA
to determine the prototypes of the clusters in the Euclidean space ℜn . At each
generation, a new set of prototypes is created by the process of selecting individu-
als according to their level of fitness and affecting them by running genetic opera-
tors [1], [19]. This process leads to the evolution of population of individuals that
become more suitable with the level of fit expressed by the fitness function.

Basically, several researches have utilized the advantages of GA with FCM. Ba-
sically, the FCM algorithm is developed based on the minimization of the following
objective function:

Jm(U,V ) =
n

∑
i=1

c

∑
k=1

(Uik)mD2
ik(vi,xk), (3)

where U ∈ Mf cm is a fuzzy partition matrix,m ∈ [1,∞) is the weighting exponent on
each fuzzy membership, V = [v1, ...,vc] is a matrix of prototype parameters (cluster
centers) vi ∈ ℜs∀i and Dik(vi,xk) is a measure of the distance from xk to the ith

cluster prototype. The partition matrix U should satisfy the following conditions:

Ui j ∈ [0,1];∀i = 1,2, ...,n;∀ j = 1,2, ...,c (4)

c

∑
j=1

Ui j = 1;∀i = 1,2, ...,n (5)

We focus here, genetically guided clustering algorithm proposed by Hall et al. in
1999. Based on [4], in any generation, element i of the population, Vi , a c × s ma-
trix of cluster centers in FCM notation. The initial population of size P is built by
random assignment of real numbers to each of the features of the c cluster centers.
The initial values are constrained to be in the range (determined from the data set)
of the feature to which they are assigned, otherwise is random.

In addition, the cluster center figures will be used within the GA which it is nec-
essary to reformulate the objective function for FCM for optimization. The equation
(4) can be expressed in terms of distances from the prototypes (as done in the FCM
method). Specifically, for m > 1 as long as D jk(v j,xk) > 0∀ j,k, we can substitute
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Uik = 1/
c

∑
j=1

( Dik(vi,xk)
D jk(v j,xk)

)2/(m−1)
f or 1 ≤ i ≤ c; 1 ≤ k ≤ n (6)

into fuzzy partition matrix equation, therefore reformulated FCM functional
becomes

Rm(V ) =
n

∑
k=1

( c

∑
i=1

D1/(1−m)
ji

)1−m
. (7)

2.3 Convex Hull Approach and Beneath-Beyond Algorithm

The affine hull of a set S in Euclidean spaceℜn is the smallest affine set that contains
in S, or equivalently the intersection of all affine sets containing S [18]. Here, an
affine set is defined as the translation of a vector subspace. The affine hull a f f (S)
of S is the set of all affine combinations of elements of S, namely,

a f f (S) = {
k

∑
i=1

αixi | xi ∈ S,αi ∈ R,
k

∑
i=1

αk = 1,k = 1,2, ...}. (8)

The convex hull of a set S of points hull(S) is defined to be a minimum convex set
containing S. A point P ∈ S is an extreme point of S if P /∈ hull(S − P).

In general, if S is finite, then hull(S) is a convex polygon and the extreme points
of S are the corners of this polygon. The edges of this polygon will be referred to as
the edges of the hull(S).

On the other hand, beneath-beyond algorithm this algorithm incrementally builds
up the convex hull by keeping track of the current convex hull Pi using an incidence
graph. In order to add a new point P to the convex hull, the incremental algorithm
identifies the facets below the point. These are the visible facets from the point. The
boundary of the visible facets builds the set of horizon ridges for the point. If there
is no visible facet from point P, the point inside the convex hull can be discarded.
Otherwise, the algorithm constructs new facets of the convex hull from horizon
ridges and the processed point P and does not explicitly build the convex hulls of
lower dimensional faces. A new facet of the convex hull is a facet with point P as its
apex and a horizon ridge as its base. The cone of point P is the set of all new facets.
Assuming that every time a point has been chosen to be added to the current convex
hull, it is not in the same affine space as any of the facets of the current convex hull.
For instance, if the current convex hull is a tetrahedron, a new point to be added will
not be coplanar with any of the faces of the tetrahedron.

3 Proposed Real-Time Fuzzy Switching Regression Analysis

Fuzzy switching regression is applied to real-time scenarios deal with dynamic
changes of data sizes. An adaptation of the convex hull algorithm, the beneath-
beyond algorithm in particular becomes of interest here. Figure 1 highlights the
main phases of the proposed method.
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Fig. 1 The main processing phases of the proposed fuzzy switching regression

There are two major processes, which are involved in the implementation of real-
time fuzzy switching regression analysis. The first process concerns the determina-
tion of the clusters. Here we employ the GA-optimized FCM. The second one is the
utilization of a convex hull approach. Based on the original method of the determi-
nation of the convex hull, the process has to be realized using all given analyzed
data.

3.1 Solution of a Problem with a Convex Hull Approach

In order to obtain a proper regression model based on the constructed convex hull,
the connected vertex points serve as constraints in the formulation of the LP prob-
lem. Considering this process, we note that the limited number of selected vertices
will directly minimize the calculation complexity which required producing a sound
model while reducing processing time.

Let us recall that the main purpose of fuzzy regression analysis is to form the
upper and lower bounds of the linear regression model. Both, upper line, YU and
lower line, Y L for fuzzy regression are expressed in the form:

YU = AU
1 x1 + ...+ AU

n xn : AU
i xi = αixi + ci|xi| (9)

Y L = AL
1x1 + ...+ AL

nxn : AL
i xi = αixi − ci|xi| (10)
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The relationship can be expressed as follows:

1. Evaluation function

min
α ,x

n

∑
i=1

d

∑
j=2

c j|pi j| (11)

2. Constraints

Pi1 ∈ Yi ⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pi1 ≤ α1 + c1 +

d
∑
j=2
α jpi j +

d
∑
j=2

c j|pi j|

pi1 ≥ α1 − c1 +
d
∑
j=2
α jpi j −

d
∑
j=2

c j|pi j|
(i = 1, ...,n)

(12)

The above equations can be further written down as follows:

YU = {YU
i |i = 1, ...,n|} (13)

Y L = {Y L
i |i = 1, ...,n|} (14)

We also arrive at the following simple relations for pi1

pi1 ≥ YU
i , pi1 ≥ Y L

i (i = 1, ...,n) (15)

In addition, we know that any discrete topology is a topology that is formed by a
collection of subsets of a topological space x. The smallest topology has two open
sets, the empty set Ø and the whole space x. The largest topology contains all subsets
as open sets and is called the discrete topology. In particular, every point in x is an
open set in the discrete topology. The discrete metric ρ on x is defined by

ρ(x,y) =
{ 1 i f x �= y

0 i f x = y
(16)

for any x, y ∈ X . In this case (X ,ρ) is called a discrete metric space or a space of
isolated points.

According to the definition of discrete topology, supporting hyperplane of a
convex hull is rewritten as follows:

S(YU) =
d

∑
j=1

AU
j pi j ≥ 0 (17)

S(Y L) =
d

∑
j=1

AL
j pi j ≤ 0 (18)

where we assume that AU
1 = 0.

This equation corresponds to the definition of the support hyperplane. Under the
consideration of this range, the following relation is valid:
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⋂
S(YU) =

⋂
S(Y L) (19)

This is explained by the fact that regression functions YU and Y L are formulated
by vertices of a convex hull. Therefore, it is explicit that the convex hull approach
or its vertices can clearly define the discussed constraints of fuzzy mathematical
programming which is more reliable and highly accurate.

The convex hull is the smallest convex unit which contains given points and is
named for the range included in the unit. Let us denote the set of points given as
input data as P and the set of vertices of the convex hull as PC where PC ∈ P, respec-
tively. Therefore, convex hull may reflect on the following relations

conv(P) = conv(PC) (20)

Let us introduce the following set

PC = xCk ∈ {Ed|k = 1, ...,m} ⊆ P (21)

where m is the number of vertices of the convex hull. Substituting this relation into
equation (12), we have the following constraints:

pi1 ∈ Yi ⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pi1 ≤ α1 + c1 +

d
∑
j=2
α jpi j +

d
∑
j=2

c j|pi j|

pi1 ≥ α1 − c1 +
d
∑
j=2
α jpi j −

d
∑
j=2

c j|pi j|
(i = 1, ...,m)

(22)

Using these, the constraints of the LP for the fuzzy regression analysis can be written
in the following manner:

yi ∈ Yi ⇐⇒
⎧⎨⎩

yi ≤ αxi + c|xi|
yi ≤ αxi − c|xi|

(i = 1, ...,m)
(23)

Furthermore, in order to form a proper regression model based on a constructed con-
vex hull, the connected vertex points will be used as constraints in the LP formula-
tion of the fuzzy regression. Considering this process, the limited number of selected
vertices minimizes the computing complexity required to develop the model.

4 Nuclear Power Plants Case Study

In this example, we consider real-world data coming from the nuclear power plant
industry. Since the maximal operating thermal power of any nuclear plants is
bounded by the specific licensing requirements, the amount of uncertainty in its
calculation has a direct effect on the maximum energy that can be produced. Addi-
tionally, this raw data set obtained from heterogeneous sources and locations. The
estimated flow of the nuclear power plants is determined on a basis of three main
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attributes; 1. Pump differential pressure transmitter, x1, 2. Pressure transmitter, x2,
and 3. Valve position, x3.

To demonstrate the dynamical changes of data representation under an assump-
tion of real-time data analysis, we initially perform the proposed method for 300
data samples. We observe that the constructed convex hull for the first cluster (tri-
angles) consists of 10 vertices while another one has 12 convex vertices. There-
fore, utilizing these vertex points as the constraint part of LP, we can directly form
appropriate regression models for each cluster of data.

Next we add 100 more data samples in real time. The added samples were
processed in the same manner as discussed in the previous example.

There are changes of constructed convex hull due to the distribution of newly
added data. The re-constructed convex hull for the first cluster was modified and
comes with one newly added vertex point which uses to connect convex edges. The
second convex hull corresponding to the second cluster has been slightly changed
and now the total number of vertices becomes 15.

Finally, the selected vertices which are used for convex hull polygon for each
cluster will become as the constrain part of LP formulation for producing fuzzy
regression models.

5 Discussion

Consequently, due to the increase in sample size, this might cause computational dif-
ficulty through the implementation of the LP formulation. Another problem might
emerge when changes occur with regard to the variables themselves, thus the entire
set of constraints must be reformulated. Therefore the computing complexity in-
creases which makes the computing longer. The increase of computing complexity
is alleviated by implementing the proposed method.

For comparative purposes, in Table 1 we summarize here the results provided by
the proposed fuzzy switching regression and the conventional regression models for
both the numerical examples discussed in the previous section.

In order to obtain the regression models for both numerical studies, an LP ap-
proach was used in estimating the fuzzy coefficients for each of both determined
clusters in fuzzy switching regression models.

Based on Table 1, we can generalize here, most of the obtained proposed fuzzy
switching regression models are just a little different which indicates that there were
only slightly changes of distributed analyzed data as well as constructed convex hull
polygon. Therefore, we can wrap up here that newly added data will not influence
too much to the regression models and produced models are highly more accurate
because re-constructed convex hull automatically covers all points of analyzed data.
In other words, the above fuzzy switching regression model s are highly optimum.

The computing time is reported in Table 2, we can discover here, less time for
obtaining regression models is required comparing with the implementation of con-
ventional procedure. In addition, the dynamical changes of data size do not influ-
ence on the computation because real-time processing execution did not affect the
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Table 1 Fuzzy switching and conventional regression models details

Regression Group Sample Regression Models
Method

Fuzzy 300 samples y1 = −(18.01,2.41)− (25.31,2.22)x1 − (25.86,2.35)x2
switching −(26.77,2.56)x3
regression y2 = (19.65,2.54)+(6.68E −02,2.35)x1 +(5.65E −02,2.28)x2
models +(7.14E −02,2.44)x3
(proposed 400 samples y1 = −(19.82,2.74)− (26.23,2.69)x1 − (26.43,2.71)x2−
approach) (27.04,2.84)x3

y2 = (20.52,3.51)+(7.28E −02,3.06)x1 +(6.21E −02,3.18)x2
+(6.68E −02,3.25)x3

Conventional 300 samples y1 = −18.66−2.82x1 −2.55x2 −6.19x3
switching y2 = 20.56+7.02E −02x1 +5.88E −02x2 +6.97E −02x3
regression 400 samples y1 = −18.71−3.38x1 −1.35x2 −7.49x3
models y2 = 20.44+3.43E −02x1 +2.54E −02x2 +6.91E −02x3

Table 2 Time analysis

Regression Method Group Sample Time Required
(mm:ss)

300 samples 00:01.85
Fuzzy switching regression models (proposed approach)

400 samples 00:02.51

300 samples 00:02.39
Conventional switching regression models

400 samples 00:03.02

performance of proposed approach. Therefore, the adequate time of processing
will becomes one of the major advantages of the proposed approach to real time
situations.

6 Concluding Remarks

In this paper, we have reported the development of fuzzy switching regression model
which can be regarded as a potential IDA tool to an array of essential problems
of real-time data analysis, especially those encountered in the industry and
manufacturing field.

We have developed the enhancement of the fuzzy switching regression, which
comes with a combination with the convex hull method, specifically the beneath-
beyond algorithm. In real-time processing where we faced with dynamically mod-
ified data, the proposed algorithm performed fuzzy switching regression analysis
by re-constructing particular edges and considering new vertices for which the
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re-computing was realized. The implementation of the proposed method clearly
highlights that the convex edges of the constructed convex hull become data bound-
aries under which the other analyzed data points are found inside the constructed
convex hull.

In addition, it is worth stressing the adaptation of the convex hull approach in
order to improve a real-time fuzzy switching regression analysis procedure. On the
other hand, we also showed that the number of obtained vertices of convex hull
edifice will not drastically change. Therefore, retaining the computing effort is rel-
atively constant in spite of an increasing number of samples. This suggests that the
proposed method can be applied to real-world large-scale systems, especially in
real-time computing environment. In addition, the proposed method does not lead
to repetition of computing as the proposed method focuses only on newly arriving
data, which potentially can become new vertices. This strategy becomes suitable for
implementation of real-time fuzzy switching regression where the convex hull can
effectively handle new data with low computational overhead thus decreasing the
overall processing time.

In conclusion, our goal was to establish a practical approach to solving fuzzy
switching regression analysis by implementing the strategy of convex hull. We of-
fered some evidence showing that this method performed as a randomized incre-
mental algorithm that is truly output-sensitive to the number of vertices. In addition,
the approach uses less space than most of the randomized incremental algorithm
and executes faster for inputs with non-extreme points, especially when dealing
with real-time data analysis. Such fuzzy switching regression can become an effi-
cient vehicle for analyzing real world data where ambiguity or fuzziness cannot be
avoided.
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Consideration on Sensitivity for Correspondence
Analysis and Curriculum Comparison

Masaaki Ida

Abstract. Correspondence analysis is frequently utilized in data and text mining,
which is one of the useful descriptive techniques to analyze simple and multiple
cross tables containing some measure of correspondence between the rows and
columns. It will deepen the global understanding on the characteristics of accu-
mulated text information and may lead to new knowledge discovery. We have so
far focused on the text information of syllabuses in Japanese higher education. We
conducted research on collecting and analyzing such information, and on text min-
ing to analyze and visualize the information for grasping the global characteristics
of curricula. However, in case of data variation, result of correspondence analy-
sis might change. This article presents mathematical consideration on sensitivity of
correspondence analysis and an application to comparative analysis of curricula.

1 Introduction

Correspondence analysis is a method to analyze corresponding relation between
data in multiple categories expressed by cross tabulation (cross tab). Correspon-
dence analysis is frequently utilized for visualization in text mining. Various com-
prehensive considerations on overall accumulated data can be taken by executing
the correspondence analysis.

In a practical situation, elements of the cross tab, numbers of elements, include
uncertain information. Therefore, it is necessary to examine fluctuation of the result
of correspondence analysis. On the other hand, in some cases, result of correspon-
dence analysis might not be fluctuated by the change of cross tab. For such a robust
case, interpretation of the consequence of correspondence analysis is also important.
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This paper is divided into two parts. The first part presents mathematical con-
sideration on sensitivity of correspondence analysis, The second part shows an
application to comparative analysis of curricula of higher education institutions.

2 Correspondence Analysis

2.1 Formulation of Correspondence Analysis

Correspondence analysis has principal axis solutions, which possess optimal proper-
ties related to various forms of methods as third method of quantification, dual scal-
ing, and homogeneity analysis and others. Mathematically, correspondence analysis
is based on singular value decomposition.

A cross tabulation displays the joint distribution of two or more variables. They
are usually presented in a matrix format as Table 1. This table expresses for variables
X ×Y ; variable X has m categories and Y has n categories, and these categories are
all inclusive. Each cell (ai j) shows the number of specific combination of responses
to categories Xi and Yj.

Table 1 Cross tabulation for X ×Y

Y1 Y2 · · · Yn

X1 a11 a12 · · · a1n
X2 a21 a22 · · · a2n
...

...
...

...
...

Xm am1 am2 · · · amn

Mathematical description of correspondence analysis is as follows (e.g., [1]).
Cross tab for two categories is denoted by m× n matrix A.

A =

⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
am1 am2 . . . amn

⎞⎟⎟⎟⎠ . (1)

We denote the m×m diagonal matrix by B (and the n×n diagonal matrix by C) that
has diagonal elements equal to the sum of each column (and row) of the matrix A as
follows:

B = diag(b11, · · · ,bmm), bii =
n

∑
j=1

ai j (2)

C = diag(c11, · · · ,cnn), c j j =
m

∑
i=1

ai j. (3)

It is natural to assume that bii > 0 and c j j > 0.
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Two vectors given to two kinds of category sets are denoted by x = (x1, . . . ,xm)T

and y = (y1, . . . ,yn)T. These vectors are called scores in correspondence anal-
ysis. The scores of correspondence analysis are the solutions for the following
optimization problem.

maximize xT Ay (4)

subject to xT Bx = yTCy = k (5)

where k is a constant ( in usual case; 1 or ∑m
i=1∑

n
j=1 ai j ). In this paper we set

k = 1.
The solutions for (4), (5) satisfy the following equations:

Ay = μBx (6)

ATx = μCy. (7)

The solutions for the equation system are equivalent to the solutions of eigenvalue
(singular value) problem as follows:

K1u = λu (8)

K2v = λv (9)

where

u = B
1
2 x, (B

1
2 )ii =

√
bii (10)

v = C
1
2 y, (C

1
2 ) j j =

√
c j j (11)

K1 = HHT (12)

K2 = HTH (13)

H = B− 1
2 AC− 1

2 (14)

λ = μ2. (15)

We denote eigenvalue by λi (μi: singular value) and the corresponding eigenvectors
by ui (xi) and vi (yi). Here, K1 and K2 are defined by (12) and (13), so that λi >= 0.
Moreover, the maximal eigenvalue λ0 = μ0 = 1 and x0 = 1,y0 = 1, therefore, we
omit this trivial case.

In the following discussion, we consider the case that the eigenvalues, 0 < λi < 1,
and λi >= λ j for (i < j) and as follows:

0 < λi < 1, (i = 1, · · · , l; l <= min(m,n)− 1) (16)

ui ·ui = 1, ui ·uj = 0(i �= j) (17)

vi · vi = 1, vi · v j = 0(i �= j). (18)

We denote
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S1
i = { j | λ j �= λi, j �= i}, (19)

S2
i = { j | λ j = λi, j �= i}. (20)

2.2 Sensitivity of Correspondence Analysis

In this section we consider the case that there exists data variation in the element
of matrix A. The differential coefficients of the eigenvectors for apq are shown as
follows. The following equations are obtained according to the characteristics of
eigenvalue and eigenvector:

From (8) and (9) that have the common eigenvalues,(
dK1

dapq
− dλi

dapq

)
ui +(K1 −λiI)

dui

dapq
= 0 (21)(

dK2

dapq
− dλi

dapq

)
vi +(K2 −λiI)

dvi

dapq
= 0 (22)

and (
d2K1

da2
pq

− d2λi

da2
pq

)
ui + 2

(
dK1

dapq
− dλi

dapq

)
dui

dapq
+(K1 −λiI)

d2ui

da2
pq

= 0 (23)(
d2K2

da2
pq

− d2λi

da2
pq

)
vi + 2

(
dK2

dapq
− dλi

dapq

)
dvi

dapq
+(K2 −λiI)

d2vi

da2
pq

= 0. (24)

We obtain the following equations:
if S2

i = /0,

dui

dapq
= ∑

j∈S1
i

uT
j

(
dK1
dapq

)
ui

λi −λ j
u j (25)

dvi

dapq
= ∑

j∈S1
i

vT
j

(
dK2
dapq

)
vi

λi −λ j
v j, (26)

otherwise,

dui

dapq
= ∑

j∈S2
i

uT
j

(
d2K1
da2

pq

)
ui −∑k∈S1

i

uT
k

(
dK1
dapq

)
uj

λ j−λk
uk

uT
j

(
dK1
dapq

)
uj − uT

i

(
dK1
dapq

)
ui

u j (27)

dvi

dapq
= ∑

j∈S2
i

vT
j

(
d2K2
da2

pq

)
vi −∑k∈S1

i

vT
k

(
dK2
dapq

)
vj

λ j−λk
vk

vT
j

(
dK2
dapq

)
v j − vT

i

(
dK2
dapq

)
vi

v j (28)
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where

dK1

dapq
=
(

dH
dapq

)
HT + H

(
dH

dapq

)T

(29)

dK2

dapq
=
(

dH
dapq

)T

H + HT
(

dH
dapq

)
(30)

and

d2K1

da2
pq

=

(
d2H
da2

pq

)
HT + 2

(
dH

dapq

)(
dH

dapq

)T

+ H

(
d2H
da2

pq

)T

(31)

d2K2

da2
pq

=

(
d2H
da2

pq

)T

H + 2

(
dH

dapq

)T( dH
dapq

)
+ HT

(
d2H
da2

pq

)
. (32)

In the equations (29) to (32), we can calculate the value of dH
dapq

and d2H
da2

pq
as follows:

dH
dapq

= Lpq + MpH + HNq (33)

and

d2H
da2

pq
=

dLpq

dapq
+

dMp

dapq
H + Mp

dH
dapq

+
dH

dapq
Nq + H

dNq

dapq
(34)

where Lpq, Mp, Nq are m×n, m×m, n×n sparse matrices, only one element of that
has a value (other elements are zero) as follows:

Lpq =

⎛⎜⎝
q

0
... 0

p · · · 1√
bppcqq

0 0

⎞⎟⎠ (35)

Mp =

⎛⎜⎝
p

0
... 0

p · · · − 1
2bpp

0 0

⎞⎟⎠ (36)

Nq =

⎛⎜⎝
q

0
... 0

q · · · − 1
2cqq

0 0

⎞⎟⎠ (37)

and
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dLpq

dapq
=

⎛⎜⎝
q

0
... 0

p · · · − 1/bpp+1/cqq

2
√

bppcqq

0 0

⎞⎟⎠ (38)

dMp

dapq
=

⎛⎜⎝
p

0
... 0

p · · · 1
2b2

pp

0 0

⎞⎟⎠ (39)

dNq

dapq
=

⎛⎜⎝
q

0
... 0

q · · · 1
2c2

qq

0 0

⎞⎟⎠. (40)

For example we show the matrix of dH
dapq

as

dH
da11

=

⎛⎜⎜⎜⎜⎜⎜⎝

−a11(b11+c11)+2b11c11

2b
3/2
11 c

3/2
11

−a12

2b
3/2
11 c

1/2
22

· · · −a1n

2b
3/2
11 c

1/2
nn−a21

2b1/2
22 c3/2

11

0 · · · 0

...
...

...
−am1

2b
1/2
mm c

3/2
11

0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (41)

From (10) and (11),

dxi

dapq
=

dB− 1
2

dapq
ui + B− 1

2
dui

dapq
(42)

dyi

dapq
=

dC− 1
2

dapq
vi +C− 1

2
dvi

dapq
. (43)

Calculating the values of dH
dapq

and d2H
da2

pq
, we can easily obtain the numerical values

of (
dx1

dapq
,

dx2

dapq
, · · ·
)

and

(
dy1

dapq
,

dy2

dapq
, · · ·
)

with the matrices
dB− 1

2

dapq
and

dC− 1
2

dapq
.

Using these derivatives, we can visualize the fluctuations of the scores in
correspondence analysis.
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3 Comparative Analysis of Curricula and Sensitivity Analysis

3.1 Syllabus Sets and Cross Table

We developed the curriculum analysis system based on clustering and correspon-
dence analysis for syllabus data, which is applied for some departments of Japanese
universities [2, 3, 4].

Procedure of the analysis system is described as follows:

1. Collection of curriculum information or syllabuses.
2. Categorizing (clustering) based on the technical terms in contents of syllabuses
3. Visualization for the distribution of syllabus clusters by using correspondence

analysis

As an example in this paper, we choose five departments or five universities whose
department name include media in Japanese from universities in Japan. Department
names including media departments are listed in Table 2. The reason for selecting
the name of media is that such departments have rapidly emerged in recent years
and have interdisciplinary characteristics, and offer curricula combined with the in-
dividual application domains. Therefore, it is considered that comparison of the
characteristics between curricula is relatively clear to understand.

Table 2 Departments of five universities; “media”

Univ.1 Department of Media Technology
Univ.2 Department of Media and Image Technology
Univ.3 Department of Multimedia Studies
Univ.4 Department of Media Arts, Science and Technology
Univ.5 Department of Social and Media Studies

In categorizing procedure, as the most useful candidate for the classification dic-
tionary, in this paper we use the system of library classifications, NDC, which is a
decimal classification in library usage. NDC is the Nippon Decimal Classification,
which is a system of library classification developed for Japanese language books
[5]. The system is based on using each successive digit to divide into ten divided
categories. At first level the system has ten categories, and then each category at
first level has also 10 sub-categories, and then each sub-category has 10 categories,
and so on. This can be regarded as a kind of ontology and layered classification. In
order to utilize NDC for our curriculum analysis in higher education, we omit some
general terms for library usage from original NDC and we select approximately
9,600 terms as shown in Table 3.

For our media department case, totally 22,962 keywords (terms) are selected from
their syllabuses. Cross tabulation for 5 departments and 20 categories (clusters) is
shown in Table 4. We can perform the considerations on this table as follows:

• University 1 has more terms in Category 1 of information science compared with
other universities.
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Table 3 20 term-categories for curriculum analysis

1 110 terms from (000) Knowledge and academics, Information science
2 261 terms from (100) Psychology
3 2385 terms from (300) Social Sciences, Economics, Statistics, Sociology, Education
4 53 terms from (400) Natural Sciences
5 392 terms from (400) Mathematics
6 438 terms from (400) Physics
7 693 terms from (400) Chemistry
8 323 terms from (500) Technology and Engineering
9 453 terms from (500) Construction, Civil engineering
10 376 terms from (500) Architecture
11 526terms from (500) Mechanical engineering, Nuclear engineering
12 563 terms from (500) Electrical and Electronic engineering
13 193 terms from (500) Maritime and Naval engineering
14 364 terms from (500) Metal and Mining engineering
15 582 terms from (500) Chemical technology
16 395 terms from (500) Manufacturing
17 282 terms from (500) Domestic arts and sciences
18 593terms from (600) Commerce, Transportation and Traffic, Communications
19 495terms from (700) Music and Dance, Theater, Motion Pictures, Recreation
20 151 terms from (800) Language

• University 2 has few terms related to Category 5 of mathematics in ratio, but has
categories of physics and chemistry.

• University 5 has few to Category 1, but more terms related to Category 3 of social
sciences.

More detailed considerations is possible by correspondence analysis for Table 4.
Frequencies are standardized to the total value in each university. Eigenvalues for
the analysis are {0.0994359, 0.0650083, 0.0206999, 0.00650698}. Therefore, it is
sufficient to analyze in two dimensions because the accumulated contribution ratio
is 86% for first and second values. Fig.1 shows two-dimension graphical allocation
so that we can grasp the global feature of Table 4. Points in the figure correspond to
the vectors of categories (x1, x2) and departments (y1, y2).

We can obtain global understandings on this curriculum comparison.
Interpretations for Fig. 1 are as follows:

• Top center part is an area of computer science or language. University 1 is related
to these categories.

• Lower right is an area of social science or psychology. University 5 is related to
this category.

• Lower left is an area of natural science and physics. University 2 is related to
these categories.

• University 3, University 4 in center area and they have various syllabuses.
University 3 and 4 are regarded as average curricula.

We encounter many departments with the name of media have been emerged in
these days, but we have difficulty in comparing their curricula. However, by using
our curriculum comparison method, we can make quantitative comparison for this
new academic field.
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Table 4 Category-department cross tabulation (20×5)

���������Category
Dept.

U1: Media
technology

U2: Media
and image
technology

U3: Multi-
media stud-
ies

U4: Me-
dia arts,
science
technology

U5: Social
and media
studies

sum

1 Knowledge and
academics, Informa-
tion science

953 311 159 331 9 1763

2 Psychology 236 418 129 227 35 1045
3 Social Sciences,
Economics, Statis-
tics, Sociology,
Education

1744 2181 799 1104 260 6088

4 Natural Sciences 95 129 37 60 7 328
5 Mathematics 1472 703 518 694 105 3492
6 Physics 280 1147 153 324 3 1907
7 Chemistry 74 453 59 82 2 670
8 Technology and
Engineering

407 564 43 258 6 1278

9 Construction, Civil
engineering

190 250 69 209 24 742

10 Architecture 217 520 77 274 22 1110
11 Mechanical engi-
neering, Nuclear en-
gineering

252 116 61 117 0 546

12 Electrical and
Electronic engineer-
ing

347 708 58 391 33 1537

13 Maritime and
Naval engineering

5 12 5 4 0 26

14 Metal and Mining
engineering

20 30 19 25 3 97

15 Chemical technol-
ogy

58 59 36 41 0 194

16 Manufacturing 29 40 11 49 1 130
17 Domestic arts and
sciences

20 21 14 29 10 94

18 Commerce,
Transportation and
Traffic, Communica-
tions

48 221 14 243 14 540

19 Music and Dance,
Theater, Motion
Pictures, Recreation,
Amusements

194 88 116 97 52 547

20 Language 507 63 101 140 17 828

sum 7148 8034 2478 4699 603 22962

Generally, these results depend on the quality of syllabuses, however, we can
assert that it is possible for the understanding of global features of tendency in cur-
ricula with many syllabus documents.
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1. Knowledge and academics, 
Information science

2. Psychology 3. Social Sciences, Economics, 
Statistics, Sociology,  Education

4. Natural Sciences

5. Mathematics

6. Physics

7. Chemistry

8. Technology & Engineering

9. Construction, Civil engineering

10. Architecture

11. Mechanical engineering, 
Nuclear engineering

12. Electrical & Electronic 
engineering

13. Maritime & Naval engineering

14. Metal & Mining engineering

15. Chemical technology

16. Manufacturing

17. Domestic arts and sciences

18. Commerce, Transportation & 
Traffic,  Communications

19. Music & Dance, Theatre, 
Motion Pictures,  Recreation, 

Amusements

20. Language

Univ. 1: Dept of Media 
Technology 

Univ. 2: Dept. of Media & Image 
Technology 

Univ. 3: Dept. of Multimedia 
Studies Univ.4: Dept. of Media Arts, 

Science and Technology 

Univ. 5: Dept. of Social and Media 
Studies 
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Fig. 1 Result of correspondence analysis: scores in two dimension for 5 universities and 20
categories

3.2 Data Variation in Cross Tab

As seen in the previous sub-section, various comprehensive considerations on the
overall accumulated data can be taken by executing the correspondence analysis.
However, elements of the cross tab, numbers of keywords in syllabuses contain
uncertainty. Therefore, it is necessary to examine the sensitivity of the result for
correspondence analysis by means of variation of elements in cross tab.

When variation of the cross tab would make more changes in the result of cor-
respondence analysis, the interpretation on the data should be very careful. Some-
times we have to correct the interpretation if necessary. On the other hand, result
of correspondence analysis might not be influenced by the change of cross tab. In
such a robust case, the interpretation of the result of correspondence analysis has
robust and important features. Therefore, it is important to examine the variations
mathematically by the change of cross tab.

We developed web-based visualization system for sensitivity analysis. For our
media department case in this paper, results of calculations of equation (42) and
(43) for Table 4 are easily visualized as shown in Fig. 2. Arrows in the figures
correspond to the vectors of differential coefficients;(

dx1

dapq
,

dx2

dapq

)
,

(
dy1

dapq
,

dy2

dapq

)
Therefore, we are able to understand sensitivities and expect the change of result
of correspondence analysis clearly for variations in text analysis. Fig. 2 shows the
case of U1 (Department of Media Technology): sensitivity for ai1 (i = 1, ... , 20)
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Fig. 2 Sensitivity for universities (U1: department of media technology)



558 M. Ida

denoted as (i, 1) in the figure. U1 is located in the top upper part of each figure. The
bold (red) arrow in the figure for a61 (6, 1) shows that if the number of keywords in
syllabuses of U1 for Cluster 6 increase, then U1 moves to left side. U1 comes closer
to the group of natural science as physics or chemistry.

4 Conclusion

In this paper, we consider the sensitivity for correspondence analysis and curricu-
lum comparison. Especially, derivatives of the scores for correspondence analysis
was deduced and numerical example of data variations is shown. We will improve
the web-based visualization system for sensitivity analysis that easily visualizes the
results for many variations simultaneously.
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Slězak, Dominik 395
Sriboonchitta, Songsak 15, 141

Takahagi, Eiichiro 245
Takahashi, Masayuki 83

Tanaka, Hideo 3, 153
Tang, Yongchuan 371
Torra, Vicenç 71, 443, 479

Ubukata, Seiki 329

Vlach, Milan 233

Wang, Shuming 209
Watada, Junzo 175, 209, 221, 293, 523,

535
Wu, Berlin 175
Wu, Shengli 489

Yaakob, Shamshul Bahar 209, 221
Yamada, Koichi 407
Yan, Hong-Bin 281
Yang, Wenjuan 127
Yuhashi, Hiroyasu 511
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